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Abstract

We explore supersymmetric quantum field theories in three and four dimensions via an

analysis of their BPS spectrum.

In four dimensions, we develop the theory of BPS quivers which provides a simple picture

of BPS states in terms of a set of building block atomic particles, and basic quantum mechanical

interactions. We develop efficient techniques, rooted in an understanding of quantum-mechanical

dualities, for determining the spectrum of bound states, and apply these techniques to calculate

the spectrum in a wide class of field theories including ADE gauge theories with matter, and

Argyres-Douglas type theories.

Next, we explore the geometric content of quivers in the case when the four-dimensional

field theory can be constructed from the six-dimensional (2, 0) superconformal field theory com-

pactified on a Riemann surface. We find that the quiver and its superpotential are determined by

an ideal triangulation of the associated Riemann surface. The significance of this triangulation is

that it encodes the data of geodesics on the surface which in turn are the geometric realization of

supersymmetric particles.

Finally we describe a class of three-dimensional theories which are realized as supersym-

metric domain walls in the previously studied four-dimensional theories. This leads to an under-

standing of quantum field theories constructed from the six-dimensional (2, 0) superconformal field

theory compactified on a three-manifold, and we develop the associated geometric dictionary. We

find that the structure of the field theory is determined by a decomposition of the three-manifold
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into tetrahedra and a braid which specifies the relationship between ultraviolet and infrared ge-

ometries. The phenomenon of BPS wall-crossing in four dimensions is then seen in these domain

walls to be responsible for three-dimensional mirror symmetries.



Contents

Title Page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i
Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii
Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
Citations to Previously Published Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi
Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
Dedication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1 Introduction and Summary 1

2 Quivers of N = 2 QFTs 8
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2 BPS Quiver Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Quiver Mutation and Duality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 SU(2) Gauge Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
2.5 SU(N) Gauge Theories and Beyond . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

3 Quivers and Riemann Surfaces 102
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102
3.2 BPS Quivers of Complete Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
3.3 Exceptional Complete Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

4 Braids Walls and Mirrors 133
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
4.2 Five-Branes on Three-Manifolds . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
4.3 R-flow, Domain Walls and a 4d-3d Link . . . . . . . . . . . . . . . . . . . . . . . . . 170
4.4 4d BPS States of An Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
4.5 Tetrahedra and Braids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 191
4.6 Flows of General 4d N = 2 Theories . . . . . . . . . . . . . . . . . . . . . . . . . . . 244

A Self-Folded Triangles 253

Bibliography 256

v



Citations to Previously Published Work

Chapter 2 has appeared in the following paper:

“N=2 Quantum Field Theories and Their BPS Quivers,” M. Alim, S. Cecotti, C. Cor-
dova, S. Espahbodi, A. Rastogi, C. Vafa. hep-th/1112.3984.

Chapter 3 has appeared in the following paper:

“BPS Quivers and Spectra of Complete N=2 Quantum Field Theories,” M. Alim, S.
Cecotti, C. Cordova, S. Espahbodi, A. Rastogi, C. Vafa. hep-th/1109.4941.

Chapter 4 has appeared in the following paper:

“Braids, Walls, and Mirrors,” S. Cecotti, C. Cordova, C. Vafa. hep-th/1110.2115.

Citations of the form hep-th/XXXX.XXXX can be found on the preprint server www.arxiv.org.

vi



Acknowledgments

Completing this doctoral work has been a remarkable undertaking. Over the last five years

I have experienced pessimism and discouragement in the face of challenging concepts and prob-

lems, and the optimism and excitement which comes through breakthroughs and understanding.

Throughout, I have been sustained by a number of important colleagues, mentors, and family.

I have been lucky to have Cumrun Vafa as my advisor. Working closely with him over

the last few years has been an incredible intellectual experience. Cumrun has a remarkable ability

to marshal enthusiasm and to foster hard work. Working with him, one has the feeling that no

problem is insurmountable. From him, I have begun to learn some of the more difficult and subtle

aspects of science: how to give a good talk, how to be an effective group leader, how to ask the

right questions, how to intuit the right answers.

I have also had the privilege of working on a number of projects with excellent collabo-

rators. I would like to thank Murad Alim, Ashwin Rastogi, and Sam Espahbodi, and Jonathan

Heckman for having energy when I had none. I would especially like to single out Sergio Cecotti

as an outstanding coworker who kept me sharp and focused.

Throughout graduate school I have learned a tremendous amount from conversations

with many people in the Harvard group. My peer group of graduate students have been unfailing

comrades. And postdocs and professors including Andy Neitzke, Daniel Jafferis, and Xi Yin have

been kind to share their time and insights. In particular I must single out Frederik Denef for guiding

me through my adolescence of graduate school and always being there to listen to my ideas and

confusions, and David Simmons-Duffin for helping me learn quantum field theory and for being a

good friend.

Finally, I would like to thank my family for their constant support and encouragement.

Chad, Jessy, Janet, Marsha, and Mitch have each in their own way encouraged me to persevere

and to excel and for that I am eternally grateful. Above all, I thank my wife Allie for holding my

hand every step of the way.

vii



Dedicated to my mother Janet,

who taught me that through determination

one may overcome any obstacle.

viii



Chapter 1

Introduction and Summary

One of the overarching and motivating questions for this thesis is to develop useful tools

for understanding non-perturbative aspects of quantum field theories. The tools we will discuss

apply to quantum field theories in three and four dimensions which have extended supersymmetries.

In four dimensions, these extra symmetries make it possible to single out a subclass of distinguished

particles in the theory, the supersymmetric states. The defining property of these states is that

they are the lightest possible charged particles. More specifically, we will frequently be considering

field theories whose low-energy description is that of an abelian gauge theory. The extended

supersymmetry of the field theory allows us to prove that for each charge γ, there a lower bound

on the mass of all particles carrying that charge

Mγ ≥ |Z(γ)|. (1.0.1)

Where in the above, the quantity Z(γ) is a certain complex number, the central charge. The

supersymmetric (BPS) states are those that saturate the bound. In a generic quantum field theory

one may expect that massive charged particles which do not saturate the inequality (1.0.1) may

decay to photons and lighter BPS states. When this is so, the BPS spectrum can be understood as

simply the set of stable particles. As such, a detailed understanding of the BPS spectrum is first step

1



2 Chapter 1: Introduction and Summary

towards understanding the dynamics of any quantum field theory with extended supersymmetry.

Despite the obvious importance the BPS spectrum, until recently explicit computations

of these states were not possible beyond the most elementary examples. In essence, part of the

difficulty is that even for simple cases the BPS spectrum is often infinite and may be difficult

to enumerate explicitly. What’s more, the theories in question may often depend on additional

parameters, moduli, and the spectrum is in general discontinuous as a function of these parameters,

meaning simply that a particle which is supersymmetric and hence stable for a given value of the

parameters may be unstable and decay for a different value of the parameters. A key breakthrough

in this problem was a remarkable piece of technology, a so-called wall-crossing formula [1] discovered

by mathematicians, which provides a general answer to the question of the discontinuities of the

spectrum. This work directly inspired a number of results in physics interpreting the mathematics

[2–5], and rekindled the hope that a systematic understanding of BPS states was possible.

The remaining difficulty in determining the supersymmetric spectrum of a given field

theory is then to develop a useful framework where the states can be understood systematically.

Such a framework is provided by BPS quivers [6–8] studied in detail in chapter 2 of this thesis. In

physical terms, a BPS quiver is a description of the spectrum as quantum mechanical bound states

of a small number of atomic BPS particles. The atoms and their interactions are conveniently

encoded in graph where the atoms are indicated by nodes, and the interactions are indicated by

arrows. Thus, a typical diagram which we will study takes the form given below:

1 2
//
// (1.0.2)

In fact, this example is the BPS quiver which governs the spectrum of pure SU(2) Yang-Mills [9,10]

and as such is a paradigmatic example in the subject. The two nodes, indicate the two atoms, the

so called magnetic monopole and dyon which are stable for all values of the parameters of the

theory. The arrows specify interactions between these states, and the fact that there are two is an
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indication of the strength of the the force. We will see that depending on the values of parameters

of the theory, these same two atomic particles may support different numbers of bound states. As

a result the wall-crossing formulas mentioned in the previous paragraph are automatically built in

to the quiver description.

When a quantum field theory admits a quiver description of its spectrum, a great simpli-

fication is achieved. One has reduced the problem of calculating the states, for which previously

there was no known method, to a definite problem in quantum mechanics. Even better, the entire

spectrum which previously may have been quite intractable is reduced to primary constituents.

This makes an understanding of the spectrum possible. Motivated by these ideas, in chapter 2 we

accomplish the task of enumerating the BPS quivers for a huge variety of quantum field theories.

We find that many basic operations in field theory such as adding matter, gauging flavor symme-

tries, and taking decoupling limits translate into simple graphical operations on the quiver. Thus,

the quiver in many ways serves as an effective replacement for the Lagrangian description of the

theory and indeed in many cases a BPS quiver description is available even when no Lagrangian is

known.

One of the most significant features to emerge from our detailed analysis is the recognition

that the set of atomic BPS particles governing the spectrum of a theory is in general not unique.

This simple fact leads immediately to the idea that one may develop distinct inequivalent quantum

mechanical descriptions of the BPS spectrum. These quantum mechanics problems are dual to

one another. That is, they are mathematically distinct descriptions of the same physics. By

understanding and exploiting these dualities we are able to determine an efficient algorithm for

computing the states of the theory and calculate the full exact spectrum in a variety of physically

interesting examples including all ADE gauge theories with fundamental matter.

Throughout chapter 2 our discussion of BPS quivers is rooted in four-dimensional physics,

and we strive to emphasize the fact that the properties of a quiver are a simply a graphical way
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of encoding a quantum field theory. While a tremendous amount of progress can be made in the

subject from this perspective there remains a fundamental question which cannot be answered:

Why does the quiver exist at all? This question may be tackled in the context of string theory

and brings us to the subject of chapter 3. Here we study quantum field theories which arise from

decoupling limits of type IIB string theory on non-compact Calabi-Yau manifolds, or equivalently,

four-dimensional field theories that arise from the (2, 0) six-dimensional superconformal theory

of M5-branes compactified on Riemann surfaces. As a general rule, whenever a supersymmetric

quantum field theory is constructed from a higher dimensional theory via compactification, many

of its properties observable at low-energies are encoded in the geometry of the compactification

manifold. In our context, this principle is born out as follows: the BPS states of the theory are in

one-to-one correspondence with a class of supersymmetric branes, which are in turn described by

geodesics, i.e. curves of shortest length on the Riemann surface itself [11].

Given the above, in chapter 3 our primary aim is to determine how the geodesics on a

Riemann surface are related to quivers and quantum mechanics. Building on previous work [12,13]

we are led to the observation that the combinatorial data of a geodesic can be encoded from

its intersections with a triangulation of the surface. Such triangulations are naturally related to

quivers. To give a concrete example, we consider the case of SU(2) Yang-Mills theory whose quiver

was given in equation (1.0.2). The surface in question is an annulus and the geometry is illustrated

in Figure 1.1. This example illustrates the general features of the correspondence: interior lines of

a triangulation, i.e. those not on the boundary of the surface, are nodes of the quiver, and when

these lines share a triangle an arrow is produced.

The relationship between triangulations and quivers allows us to answer the basic question,

of why in the context of these examples, a quiver description of the BPS spectrum is possible: BPS

states are geodesics which are encoded in triangulations and hence quivers. In particular, this

allows us to find a direct geometric analog of the quantum mechanical duality discussed in chapter
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(a) SU(2) Triangulation (b) A Geodesic

Figure 1.1: BPS trajectories and triangulations for SU(2) Yang-Mills. In diagram (a), the associ-

ated triangulation of the annulus. Interior red dots denote points where geodesics may terminate.

The two interior lines of the triangulation yield the two nodes of the quiver. The fact that these

two interior lines share two triangles leads to the two arrows in the quiver. In (b) a sample BPS

geodesic is shown in blue. This geodesic can be interpreted as a bound state of three particles of

type 1 and two of type 2.

2: it is simply the fact that a given Riemann surface admits many triangulations each of which is

capable of encoding the data of the BPS geodesics.

In the final chapter of this thesis we turn our attention to the study of three-dimensional

quantum field theories with N = 2 supersymmetry. These are naturally related to the four-

dimensional theories studied in chapters 2 and 3 because the three-dimensional theories can often

be thought of as trapped degrees of freedom living on a domain wall in a four-dimensional universe.

In fact the examples we study are primarily of this type and this allows us to import directly the

technology from our previous discussion.

We begin chapter 4 by focusing our attention on the class of three-dimensional field theories
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that arise as domain walls in the models studied in chapter 3. This means that the field theories

in question can be constructed by starting from the (2, 0) six-dimensional superconformal theory

of M5-branes and considering it on the geometry of a Riemann surface Σ times a real line R where

the parameters of the field theory, encoded by the geometry of Σ vary along the line R. Thus

the total geometry of the M5-brane is given by a three-dimensional Minkowski space, where the

effective three-dimensional low-energy physics is observed, times a non-trivial three-manifold. We

explain how properties of the theory are determined by the three-manifold geometry, for instance

the effective gauge group and Chern-Simons levels describing the low-energy dynamics are encoded

in homology. A primary role is again played by the BPS states, again described by a kind of

geodesic on the three-manifold.

One of the most interesting results of this chapter concerns the phenomenon of three-

dimensional mirror symmetry [14, 15]. In elementary terms this is a statement that two distinct

quantum field theories may ultimately describe the same low-energy dynamics. A particularly useful

example is supersymmetric quantum electrodynamics and the so-called XY Z model, a theory of

three scalars with cubic interactions. At general energy scales these two field theories are distinct,

however at extremely low energies they describe the same physics. In our context we make contact

with this phenomenon by noting that the spectrum of particles trapped on the wall are inherited

from the ambient four-dimensional universe whose spectrum is given by the BPS states. Thus,

the BPS spectrum of the four-dimensional theory allows us to deduce the physics on the wall.

Moreover the wall-crossing phenomenon, which related distinct spectra by variation of parameters

in four-dimensions, shows that there are distinct three-dimensional descriptions of the same low-

energy physics. In other words, wall-crossing in four-dimensions implies the existence of mirror

symmetries in three dimensions.

We relate this mirror symmetry to the three-dimensional geometry of the M5-brane by

introducing a combinatorial decomposition of the three-manifold into tetrahedra, analogous to
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the decomposition of the Riemann surface into triangles used in chapter 3. In this case, each

tetrahedron encodes the existence of a particle, and different ways of splitting the manifold into

tetrahedra describe different mirror descriptions of the same low energy physics [16]. For example,

the geometry relevant to the mirror pair described in the previous paragraph is illustrated in Figure

1.2.

Figure 1.2: The geometry of the mirror symmetry between the XY Z model and U(1) QED. In

the center we see the bipiramid, the compactification manifold for the M5 brane. On the left, it

is decomposed into two tetrahedra glued along a face. This describes a theory of electrodynamics

with the two tetrahedra in correspondence with the electron and positron. On the right the same

bipiramid, is decomposed into three tetrahedra glued along the green edge. The three tetrahedra

are the X, Y, and Z particles of the XY Z model.

Finally, we conclude this dissertation by noting that the relationship between wall-crossing

and mirror symmetry suggests the existence of fascinating dualities between exotic three-dimensional

theories, potentially with infinitely many species of particles, yet to be discovered.



Chapter 2

Quivers of N = 2 QFTs

2.1 Introduction

In the study of four-dimensional quantum field theories with extended supersymmetry,

one of the most fruitful and enduring ideas has been the analysis of the spectrum of BPS particles.

An understanding of this protected sector of the Hilbert space is often a key ingredient in testing

field theory, and stringy dualities and played an important role in the foundational low-energy

solution of N = 2 gauge theories [9, 10]. More recently, significant progress has been made both

in mathematics and in physics, in understanding the universal rules that govern potential decay

processes of BPS particles [1, 2, 17–19], and continuing progress in this subject [3–5, 12, 13, 20–29]

suggests that there are yet undiscovered structures lurking in the BPS spectra of field theories.

However in spite of these dramatic developments, there exists no general method for calculating

the BPS spectrum of a given field theory.

In this work we study a wide class of field theories where this difficulty is overcome.

These are theories, whose spectra of BPS states can be calculated from the quantum mechanics of

an associated BPS quiver. Such quivers originally arose in string theory constructions of quantum

field theories [6–8,30–33]. In that context, there is a natural class of BPS objects, namely D-branes,

8
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and a quantum mechanical description of the BPS spectrum is provided by the worldvolume theory

of the relevant branes. This string theory setup provides a simple way of organizing the spectrum

into elementary BPS branes and their bound states and explains the non-abelian degrees of freedom

needed in the quiver description.

While the geometric engineering perspective provides a useful source of examples, our focus

in this paper is on analyzing the theory of BPS quiver directly from the point of view of quantum

field theory. The class of BPS quiver theories is broad, and includes gauge theories coupled to

massive hypermultiplets, Argyres-Douglas type field theories [34], and all theories defined by M5

branes on punctured Riemann surfaces [12,28,35–40].1 For all of these theories the quiver appears

to provide a simple and unique characterization of the theory, and one of the aims of this work

is to illustrate in a variety of examples how simple graphical features and operations at the level

of quivers translate into physical properties and constructions such as flavor symmetries, gauging,

decoupling limits, and dualities.

To accomplish our task of exploring BPS quivers, we begin in section 2.2 with a detailed

description of the way in which quiver quantum mechanics encodes the spectrum of BPS states. We

then develop the theory of quiver representations, the holomorphic description of quiver quantum

mechanics and explain how quivers yield a concrete method for studying wall-crossing phenomenon

and review basic examples of these techniques. This material is known and is included for com-

pleteness and to provide context for subsequent extensions.

A significant feature of quiver description of the spectrum is that a fixed quiver typically

describes the BPS particles only on a small patch of the moduli space of a given theory. A key role

is then played by quantum mechanical dualities, encoded by quiver mutations, which relate distinct

quivers valid in different regions of parameter space. These relationships between a priori distinct

quantum mechanics are a one-dimensional version of Seiberg duality [41]. Their basic content is

1At least one puncture is required. The punctureless case provides examples of theories without BPS quivers [12].
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that the BPS spectrum can be decomposed into bound states of primitive particles in more than

one way by suitable changes of the set of building block BPS states. In section 3 we discuss these

dualities and analyze the constraints that they impose upon the BPS spectrum. Remarkably we

find that these consistency conditions are so powerful that frequently they completely determine

the BPS spectrum. This results in an algorithm, the mutation method, for calculating a spectrum

that is far simpler than a direct investigation of the quantum mechanics.

In sections 4-5 we put the general theory to use by computing the BPS spectrum in a

broad class of examples. We focus our attention on non-abelian gauge theories with ADE gauge

group and fundamental matter. For all such theories we determine the quiver and frequently our

mutation method is powerful enough to determine the BPS spectrum in a strongly coupled chamber

where there are only finitely many BPS states. The spectrum in all chambers can then be deduced

by the application of the wall crossing formula of Kontsevich and Soibelman [1]. Let B denote the

set of BPS particles at strong coupling, and |B| the number of such particles. Then a summary of

the gauge theories whose strong coupling spectra we determine is:

• SU(Nc) gauge theory coupled to Nf fundamentals.

|B| = Nc(Nc − 1) +Nf (2Nc − 1)

• SO(2Nc) gauge theory coupled to Nv vectors.

|B| = 2Nc(Nc − 1) +Nv(4Nc + 1)

• E6 gauge theory coupled to N27 fundamental 27’s.

|B| = 72 + 73N27

• E7 gauge theory.

|B| = 126
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• E8 gauge theory.

|B| = 240

One elegant feature of the above results can be seen in the limit where there is no matter whatsoever

so that one is considering the strong coupling BPS spectrum of pure super-Yang-Mills with an

arbitrary ADE gauge group. Then our results can be summarized by noting that the number of

BPS particles is given simply by the number of roots in the associated Lie algebra.

2.2 BPS Quiver Quantum Mechanics

We begin with a four-dimensional N = 2 field theory with Coulomb moduli space U .

Here by a point u ∈ U we will mean a specification of all supersymmetric parameters in the theory

including Coulomb branch moduli, bare masses, and coupling constants. At a generic value of the

moduli u ∈ U , this field theory has a U(1)r gauge symmetry, and a low energy solution described

by:

• A lattice Γ of electric, magnetic, and flavor charges of rank 2r+ f , where f is the rank of the

flavor symmetry.

• A linear function Zu : Γ → C, the central charge function of the theory.2 Central charges

which couple to the electric and magnetic charges encode the effective coupling and theta

angle of the infrared physics, while the central charges that couple to the flavor symmetries

sample possible bare masses of matter in the theory.

The behavior of the central charge function as one varies the moduli fixes completely the

effective action for the neutral massless fields. However, the description of the massive charged

2Here we explicitly indicate the u dependence by including a subscript on the central charge function. For
notational simplicity, we will eventually drop the subscript and leave the u dependences implicit
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particles is more subtle. According to the N = 2 superalgebra, the central charge provides a lower

bound on the masses of charged particles. The mass of a particle with charge γ ∈ Γ satisfies

M ≥ |Zu(γ)|. (2.2.1)

The lightest charged particles are those that saturate the above bound - these are termed BPS. The

spectrum of BPS states is a priori undetermined by the low energy solution of the theory alone, and

it is precisely this question that we aim to address. We will describe a class of theories where the

BPS spectrum can be computed and studied using the technology of quiver quantum mechanics.

2.2.1 Quivers and Spectra

In this section we lay the foundations for our ideas by describing the connection between

quantum mechanical quiver theories and BPS spectra of four-dimensional quantum field theories.

In the course of our analysis we will also discover various restrictions on the class of theories to

which these quiver techniques apply. We first describe in section 2.2.1 how the BPS spectrum of the

4d theory at a fixed point in moduli space can frequently be used to define an associated quiver, and

therefore to pose a supersymmetric quantum mechanics problem. We will then see in section 2.2.1

that the ground states of this supersymmetric quantum mechanics precisely reproduce the BPS

spectrum. From this point of view, the quiver provides merely a clever way of organizing the BPS

spectrum. However, the true power of the technique is that there exist many ways of producing a

BPS quiver that do not assume a knowledge of the spectrum. These are briefly surveyed in section

2.2.1. It is through these methods that we can hope in turn to discover previously unknown spectra.

From BPS Spectra to BPS Quivers

Let us begin by fixing a point u ∈ U in moduli space. Suppose the occupancy of BPS

states here is known. We will then explain how to construct a quiver that describes the theory at

this point u.
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To begin we split the BPS spectrum into two sets, the particles and the antiparticles. We

define particles to be those BPS states whose central charges lie in the upper half of the complex

Z plane, and antiparticles those in the lower. CPT invariance ensures that for each BPS particle

of charge γ, there is an antiparticle of charge −γ. Thus the full BPS spectrum consists of the set

of BPS particles plus their associated CPT conjugate antiparticles. We will use the occupancy of

the particles to construct a quiver.

Among the particles, we choose a minimal basis set of hypermultiplets. Since the lattice

Γ has rank 2r + f , our basis will consist of 2r + f BPS hypermultiplets. Let us label their charges

γi. The particles in the basis set should be thought of as the elementary building blocks of the

entire spectrum of BPS states. As such they are required to form a positive integral basis for all

occupied BPS particles in the lattice Γ. This means that every charge γ which supports a BPS

particle satisfies

γ =

2r+f∑
i=1

niγi. ni ∈ Z+ (2.2.2)

We emphasize that the basis need not span Γ, but only the subset of occupied states in Γ. We will

see in section 2.2.1 that this equation can be interpreted as saying that the BPS particle with charge

γ can be viewed as a composite object built up from a set of elementary BPS states containing ni

particles of charge γi.

It is important to notice that the requirement that a set of states form a positive integral

basis for the entire spectrum of BPS particles is quite strong, and in particular uniquely fixes a

basis when it exists. To see this, we suppose that {γi} and {γ̃i} are two distinct bases. Then there

is a matrix nij relating them

γ̃i = nijγj ; γi = (n−1)ij γ̃j . (2.2.3)

However since both {γi} and {γ̃i} form positive integral bases, the matrix nij and its inverse must

have positive integral entries. It is easy to see that this forces both matrices to be permutations.
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Thus the two bases can differ only by a trivial relabeling.

Now, given the basis of hypermultiplets {γi} there is a natural diagram, a quiver, which

encodes it. This quiver is constructed as follows:

• For each element γi in the basis, draw a node of the quiver.

• For each pair of charges in the basis compute the electric-magnetic inner product γi ◦ γj . If

γi ◦ γj > 0, connect corresponding nodes γi and γj with γi ◦ γj arrows, each of which points

from node j to node i.

To illustrate this construction, we consider the simple case of pure SU(2) gauge theory

at a large value of the Coulomb branch modulus, where the theory is governed by semiclassical

physics. In terms of their associated electric and magnetic charges (e,m), the occupied BPS states

consist of:

Vector multiplet W − boson : (2, 0),

Hypermultiplet dyons : (2n, 1), (2n+ 2,−1) n ≥ 0.

(2.2.4)

Choosing the particle half-plane represented in Fig. 2.1a, the unique basis is given by the monopole

(0, 1) and the dyon (2,−1). The spectrum and the resulting quiver are then shown in Figure 2.1.

So, returning to the general story, we have given a map from BPS spectra to quivers.

At this stage, we pause to point out important subtleties in this procedure. The first is that our

identification of arrow being determined by the Dirac inner product glosses over the possibility of

having arrows between nodes which point in opposite directions. In fact, what the Dirac product

truly captures is the net number of arrows. It is a fortunate feature of all of the field theory

examples discussed in this work, with the exception of section 6.2, the electric magnetic inner

product accurately determines the arrows in the quiver. Further analysis of this issue occurs in our

discussion of superpotentials in section 3.

A second important subtlety is that there exist field theories for which there is no BPS

quiver whatsoever. To illustrate this, note that one assumption thus far was that we could find a
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e

m

(a) BPS Spectrum

#
(0, 1)

#
(2,−1)

////

(b) BPS Quiver

Figure 2.1: The spectrum and BPS quiver of SU(2) Yang-Mills. In (a) the weak-coupling BPS

spectrum, both particles and antiparticles, is plotted in the (e,m) plane. Red dots denote the

lattice sites occupied by BPS states. The green arrows show the basis of particles given by the

monopole and dyon. We have represented our choice of particle central charge half-plane by the

grey region. In (b) the BPS quiver is extracted from this data. It has one node for each basis

vector, and the double arrow encodes the symplectic product.

basis of hypermultiplets in the upper half of the central charge plane. By linearity of the central

charge function, this gives a constraint on the occupied subset of Γ. In particular, since the set

{γi} forms a basis, we have for an arbitrary BPS particle of charge γ,

γ =
∑
i

niγi =⇒ Zu(γ) =
∑
i

niZu(γi). ni ≥ 0 (2.2.5)

Since Z(γi) all lie in the upper half-plane, (2.2.5) implies that the central charges of all BPS particles

lie in a cone in the upper half of the central charge plane, bounded by the left-most and right-most

Z(γi); we denote this the cone of particles.

One can see that many theories do not even have such a cone, and therefore don’t have

an associated BPS quiver. The simplest example is N = 4 Yang-Mills with gauge group SU(2).

Because of S-duality, this theory has a spectrum of dyons with charges (p, q), for p and q arbitrary

coprime integers. It follows that the phases of the central charges of these dyons form a dense set

in the unit circle in the central charge plane. In particular, there is no cone of particles and hence

no quiver.
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We can state the problem with N = 4 Yang-Mills from the N = 2 perspective: there is an

adjoint hypermultiplet which is forced to be massless. TheN = 2∗ theory, where the adjoint is given

a mass, does admit a BPS quiver, given in section 2.4. This situation is typical of gauge theories

that become conformal when all mass deformations are turned off. A conformal field theory has

no single particle states at all, let alone BPS states. A quiver description is therefore only possible

when sufficiently many massive deformations of the theory exist and have been activated.

Alternative Constructions of BPS Quivers

Thus far we have explained how BPS quivers provide a way of describing certain properties

of the basis for the BPS spectates at a fixed point in moduli. In the next section, we explain the

reverse construction, that is, how to extract a BPS spectrum from a BPS quiver, and hence how a

BPS quiver can be used as a convenient way for encoding the complete BPS spectrum. However,

the most important application of BPS quivers is that they can be used to deduce an unknown

BPS spectrum. One reason this is so, is that our construction of BPS quivers is completely local

in the Coulomb branch moduli space U . Given a point u ∈ U where the BPS spectrum is known,

the quiver description of the spectrum is uniquely fixed if it exists. But, as will be clear by the

conclusion of section 3, once a quiver is determined for a single modulus u, the quiver description

of the entire moduli space U is also fixed. Thus, we may determine the quiver in say a region of

weak coupling where the physics is under control, and then use it to calculate the BPS spectrum

at strong coupling.

Even more striking is the fact that BPS quivers can frequently be deduced by alternative

geometric methods in various contexts in string theory, even when the BPS spectrum is unknown

for any value of the moduli. The quiver methods described in the following sections can then be

used to determine the spectrum from scratch.

The existing literature on the techniques used to extract BPS quivers is by now very vast,
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in the following we outline some of the various interrelated approaches:3

• Building on the original orbifold construction of quiver gauge theories of [6] refs. [7, 8, 30, 43]

provided the identification of the quiver nodes with a basis of BPS states obtained from

fractional branes, these BPS quivers were further explored in [31,32].

• The relation of the 4d quivers with the soliton spectrum in 2d [44] was studied in various

places, see for example [45–47], more recently this 2d/4d correspondence and the associated

construction of BPS quivers was discussed in [4].

• The toric methods of [48, 49] and the relation to dimer models [50] were used in [51] to

construct a large class of quivers, their construction using mirror symmetry was studied

in [52].

• Based on the geometric study of BPS states in SW theories pioneered in [11] and further

studied in [13,53], the BPS quivers can be obtained from triangulations of Riemann surfaces

as described in [12, 28] using the relation of triangulations and quivers of [54]. Given a pair

of M5-branes wrapping a Riemann surface C, an ideal triangulation of C can be used to

determine the BPS quiver. We explore this idea in chapter 3 of this thesis.

Quiver Quantum Mechanics: From BPS Quivers to BPS Spectra

We now return to our general discussion of BPS quivers and explain how to deduce the

full spectrum from the quiver. Thus far the BPS quiver we have introduced is merely a way of

encoding a basis of BPS states {γi} for a given N = 2 theory. To construct a general BPS state,

we must know, for a given charge

γ =
∑
i

niγi (2.2.6)

3See also [42] and references therein for an excellent recent exposition of the mathematical structures used to
describe to D-branes which in includes in particular the associated quiver representation theory.
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whether any particles of this charge exist in the theory, and if so, determine their degeneracy and

spins. We attack this question by viewing the hypothetical state with charge γ as a quantum

mechanical bound state of ni copies of each basis particle γi. Since we seek a BPS particle, we

introduce a four supercharge quantum mechanics problem and look for its supersymmetric ground

states. The precise quantum mechanics theory is constructed from the BPS quiver and the charge

γ in the following way: Let i index nodes of the quiver, and a index the arrows of the quiver. Then

we introduce a gauge group for each node and bifundamental field Ba
ij for each arrow pointing

i→ j,

Gauge Group =
∏

nodes i

U(ni), Matter =
⊕

arrows a

Ba
ij . (2.2.7)

Thus, the BPS quiver, whose nodes and arrows were originally merely a presentation of a basis

of hypermultiplets, now encodes the gauge groups and bifundamental matter of a quiver quantum

mechanics.

This prescription can be motivated most easily when the four-dimensional field theory is

engineered in string theory. In such a situation, BPS states are viewed as various supersymmet-

ric bound states of D-branes. Then the nodes of our quiver correspond to a collection of basic

supersymmetric branes and the arrows are bifundamental fields that arise at brane intersections.

This also provides an elementary understanding of the appearance of non-abelian gauge fields in

the quantum mechanics: they are the usual non-abelian degrees of freedom that arise when branes

coincide. The quantum mechanics problem introduced above is then nothing but the worldvolume

theory of a system of D-branes dimensionally reduced to 0+1 dimensions.

Returning to our general analysis, to asses the existence of a BPS particle with charge γ,

we look for supersymmetric ground states on the Higgs branch of this quiver theory. These depend

on two data which we must still specify:

• Fayet-Iliopoulos Terms
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Since the gauge groups at each node are given by U(ni), the overall U(1) at each node can

couple to an independent FI-term θi. These parameters are fixed by the central charges

Zu(γi) of the constituent particles. We state this identification in the case that all the central

charges point in nearly the same direction in the complex plane. Then let Zu(γ) denote the

central charge of a state with charge γ, and set

θi = |Zu(γi)|
(

arg(Zu(γi))− arg(Zu(γ))

)
. (2.2.8)

For each node i in the quiver there is then a D-term equation of motion

∑
arrows

starting at i

|Ba
ij |2 −

∑
arrows

ending at i

|Ba
ki|2 = θi. (2.2.9)

When the central charges are not nearly aligned, the identification of the FI parameters is

more involved, and for now the reader should assume that the moduli are such that this

approximation is valid.4 Later in section 2.2.2 we will see an elegant way of rephrasing our

problem that completely avoids this issue.

• Superpotentials

Whenever there are non-trivial oriented cycles in the BPS quiver, the quantum mechanics

theory admits a non-trivial gauge invariant superpotentialW which is a holomorphic function

of the bifundamental fields. Our procedure for producing a quiver does not fix a superpoten-

tial; it is an independent datum of our construction which must be computed by alternative

means. Later in section 2.3 we will see general constraints on W. For now, we simply assume

that W is given. This superpotential yields F-term equations of motion

∂W
∂Ba

ij

= 0. (2.2.10)

4Alternatively one may tune the central charges to near alignment. Since this involves no crossing of walls of
marginal stability the spectrum is stable under this motion.
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Having fully fixed the quantum mechanics, we now turn to the moduli space of supersym-

metric ground states with charge γ, Mγ .5 This space is simply the solution to the equations of

motion described above, quotiented by the action of the unitary gauge groups.

Mγ =

Ba
ij

∣∣∣∣∣∣∣
∂W
∂Ba

ij

= 0,
∑

arrows
starting at i

|Ba
ij |2 −

∑
arrows

ending at i

|Ba
ki|2 = θi

 /
∏
i

U(ni). (2.2.11)

IfMγ is non-empty, then there exists a BPS particle in the spectrum with charge γ. To determine

spins and degeneracy from Mγ , we examine the structure of its cohomology. Specifically, since

Mγ is the moduli space of a theory with four supercharges, it is a Kähler manifold, and as such

its cohomology automatically forms representations of Lefschetz SU(2). For each such irreducible

Lefschetz SU(2) representation, we obtain a supersymmetric BPS multiplet. The spacetime spin of

a multiplet is then determined by tensoring the Lefschetz spin with an overallN = 2 hypermultiplet,

Spin = Lefschetz⊗
([

1

2

]
+ 2 [0]

)
. (2.2.12)

Equation (2.2.12) can be intuitively understood by thinking about the worldvolume theory

of a BPS particle. This worldvolume theory supports four supercharges and hence has an R-

symmetry group of SU(2) which is none other than the Lefschetz SU(2) of the moduli space. On

the other hand, the R-symmetry group of a brane, in this case our particle, can be identified with

the group of rotations transverse to the worldvolume, which in turn controls the angular momentum

of the state. Thus the Lefschetz SU(2) computes the orbital angular momentum of the state, and

the overall shift by 1/2 in (2.2.12) simply takes into account the intrinsic spin contribution.

In practice the most important application of (2.2.12) is to distinguish vector multiplets

from hypermultiplets. The latter are associated to Lefschetz multiplets of length zero, as would

naturally occur if, say, Mγ were a point. Meanwhile vector multiplets are associated to Lefschetz

5From now on, whenever we refer to supersymmetric ground states of the quiver quantum mechanics, we will
always mean on the Higgs branch. The Coulomb branch can also be studied and gives rise to equivalent results for
BPS spectra. [33]
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multiplets of length two, the canonical example of which is Mγ
∼= P1. In complete generality the

formula (2.2.12) tells us that ifMγ has complex dimension d then there is guaranteed to be a BPS

multiplet of spin d+1
2 with charge γ in the spectrum. Naive parameter counting gives the expected

dimension of the Mγ as

d =
∑
Baij

(ninj)−
∑

nodes i

n2
i − (# F-term constraints) + 1. (2.2.13)

Here we have simply counted the degrees of freedom of the bifundamental fields, Ba
ij , and subtracted

the gauge degrees of freedom and the F-term constraints. The addition of 1 is for the overall diagonal

gauge group U(1)d ⊂
∏
i U(1) ⊂

∏
i U(ni). Since all fields are bifundamental, no field is charged

under the simultaneous U(1) rotation of all gauge groups, so this gauge degree of freedom is actually

redundant.

In summary, given a quiver we have defined a supersymmetric quantum mechanics prob-

lem, and the cohomology of the moduli spaces of grounds states of this quantum mechanics deter-

mines the occupancy of BPS states.

2.2.2 Quiver Representations

While our supersymmetric quantum mechanics construction determines the BPS spectra

as specified by a quiver, it is useful in practice to work in the language of quiver representation

theory. Here the problem of determining the ground states of the supersymmetric quantum me-

chanics gets recast in a holomorphic framework. Our ability to rephrase the problem in terms of

quiver representation theory arises from the fact that a supersymmetric moduli space of a theory

with four supercharges, such as Mγ , can be presented in two ways:

• As the solution to the F-term and D-term equations of motion modulo the action of the

unitary gauge groups (this is what has been stated in (2.2.11)).
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• As the solution to the F-term equations modulo the action of the complexified gauge group∏
iGl(ni,C), augmented by a stability condition.

It is the second notion of Mγ that makes use of quiver representation theory.

To begin, we note that in a zero energy field configuration of supersymmetric quantum

mechanics, the bifundamental fields are constants and hence their expectation values can be viewed

as linear maps between vector spaces Cni associated to each node. These expectation values are

constrained by the condition that they must solve the F-term equations of motion ∂W/∂Ba
ij = 0. A

quiver representation is by definition precisely a choice of complex vector spaces Cni for each node,

and linear maps Ba
ij : Cni −→ Cnj for each arrow in a quiver subject to the F-term equations. So

the data of a classical zero energy field configuration completely specifies a quiver representation

(See [42] and references therein).

Given a quiver representation R, defined by vector spaces Cni and maps Ba
ij an important

notion in the following will be the subrepresentations S ⊂ R. A subrepresentation S is defined by

a choice of vector subspaces Cmi ⊂ Cni for each node and maps baij : Cmi −→ Cmj for each arrow,

such that all diagrams of the following form commute:

Cni
Baij // Cnj

Cmi
baij //

OO

Cmj

OO
(2.2.14)

To complete our holomorphic description of the moduli space we must still specify a

stability condition that ensures that a given quiver representation R is related to a solution of

the D-term equations in quiver quantum mechanics. To motivate this, note that a quiver rep R

with vector spaces Cni is related to the description of a particle with charge γR =
∑
niγi. Then

heuristically, a subrepresentation S of R can be thought of as a bound state of smaller charge which

may, in principle, form one of the constituents of a decay of a particle of charge γR. To prohibit

such a decay, we must restrict our attention to stable quiver representations. To define this notion
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of stability we let Zu(R) denote the central charge of a representation,6

Zu(R) ≡ Zu(γR) =
∑
i

niZu(γi). (2.2.15)

By construction the central charge vector lies in the cone of particles in the upper half of the central

charge plane. Then R is called stable if for all subrepresentations S other than R and zero, one has

arg(Zu(S)) < arg(Zu(R)). (2.2.16)

We will refer to any subrepresentation S that violates this condition as a destabilizing subrepre-

sentation. This condition is denoted Π-stability, and was studied in [7]. We take this to be the

requisite notion of stability at general points in moduli space. One important consistency check on

this choice is that when all the central charges are nearly aligned, the stability condition (2.2.16)

reduces to the D-term equations of motion presented earlier [7, 55].

Given this notion of stability, we can now formulate the moduli spaceMγ as set of stable

quiver representations modulo the action of the complexified gauge group.

Mγ =

{
R = {Ba

ij : Cni → Cnj}

∣∣∣∣∣ ∂W∂Ba
ij

= 0, R is Π− stable

}
/
∏
i

Gl(ni,C). (2.2.17)

This is a completely holomorphic description ofMγ , and in many examples is explicitly computable.

As a very elementary application, we note that the nodes of a quiver are always Π-stable

reps. That is, consider γj as the representation given by choosing ni = δij . This is always stable

since it has no non-trivial subrepresentations, and thus in particular no destabilizing subreps.

Furthermore, since there is only one non-zero vector space, all maps must be chosen zero; thus the

moduli spaceMγj is given by a single point. We find that each node of a quiver gives a multiplicity

one hypermultiplet BPS state.

6When we speak of the central charge of a representation, we are always referring to the central charge of the
bound state associated to that representation.
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2.2.3 Walls of Marginal Stability and Examples of Quiver Representations

The preceding discussion in this section has focused exclusively on utilizing BPS quivers to

encode the spectrum of an N = 2 quantum field theory at a specific point u on the Coulomb branch

U . BPS states are stable under infinitesimal variations of the modulus, and thus our description can

be viewed as local theory of BPS particles adequate on a patch in U . Of course we are interested

in determining the spectrum across the entire moduli space, and this can also be achieved using

the quiver.

In the quiver representation theory problem, the moduli u along with bare mass parameters

and coupling constants enter the calculation through the central charge function Zu. From the

perspective of quiver representation theory, these are changes in the stability conditions. For

small deformations of the stability condition, the set of stable representations, and hence the

BPS spectrum, is unchanged. However at certain real codimension one loci in moduli space we

encounter walls of marginal stability where a supersymmetric particle decays. At the wall, the

central charges of some representation R and its subrep S become aligned. On one side of the wall,

argZ(S) < argZ(R) so that R stable, and hence some corresponding BPS particle exists. On the

other side of the wall, the phases have crossed, and the stability condition has changed. We will

have argZ(S) > argZ(R), so the representation R is no longer stable, and the associated particle

has disappeared from the BPS spectrum.

It is a virtue of the description of the spectrum in terms of stable quiver representations

that these wall-crossing processes are completely explicit. Indeed the BPS quiver gives us a way

to calculate directly the BPS spectrum on either side of a wall. One can then simply compare

the answer on both sides, and see that properties such as the Kontsevich-Soibelman wall-crossing

formula hold. In this section we study these wall crossing phenomena in the context of the Argyres-

Douglas conformal theories.
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A2 Theory

Let’s begin with a simplest possible example which demonstrates wall-crossing. We will

consider the Argyres-Douglas A2 theory, whose quiver is given by two nodes connected by a single

arrow [4]. We will denote by Zi the central charges of the two basis particles,

1 2// (2.2.18)

No matter what the value of the central charges, the basis particles described by the nodes

of the quiver are stable. Thus the spectrum always contains at least two hypermultiplets. Now let

us search for a bound state involving n1 particles of type γ1 and n2 particles of type γ2. According

to the general theory developed in the previous sections we are to study a quiver representation of

the following form

Cn1 B // Cn2 (2.2.19)

To determine stability we investigate subrepresentations. Let’s start with a subrepresentation of

the form

Cn1 B // Cn2

0
0 //

OO

C

OO
(2.2.20)

There is no condition on the field B for this diagram to commute; it is always a subrepresentation.

Thus, stability of our bound state requires

arg(Z2) < arg(n1Z1 + n2Z2) =⇒ arg(Z2) < arg(Z1). (2.2.21)

Next we consider a similar decay involving the first basis particle

Cn1 B // Cn2

C 0 //

OO

0

OO
(2.2.22)
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If this is a subrepresentation, then stability demands that arg(Z1) < arg(Z2), so (2.2.21) cannot

be satisfied. Thus, to ensure the existence of a bound state we must forbid this subrepresentation,

and hence we must choose B so that the diagram in (2.2.22) does not commute. Thus B should

have no kernel, and in particular, we have n1 ≤ n2.

Finally we consider a decay involving the subrepresentation

Cn1 B // Cn2

C b //

OO

C

OO
(2.2.23)

It is clear that b can be chosen in such a way that this is always a subrepresentation. Then stability

demands that the central charges satisfy

arg(Z1 + Z2) < arg(n1Z1 + n2Z2). (2.2.24)

However, given that n1 ≤ n2, and that Z2 has smaller phase than Z1, it is not possible to satisfy

the above inequality. It follows that the only possibility for a bound state is that (2.2.23) is not

a subrepresentation, but an isomorphism of representations. So we only have the possibility of

non-trivial moduli spaces for n1 = n2 = 1.

In summary, when arg(Z2) < arg(Z1) this theory supports a bound state with charge

γ1 +γ2. The moduli space of representations of this charge is given by the quotient of a single non-

zero complex number B modulo the action of the complexified gauge group. Clearly this moduli

space is just a point, and so this representation describes a single hypermultiplet. The complete

spectrum for this example is depicted in Figure 2.2, and agrees with the known result for this

theory [53]. This basic 2-3 decay process is known in various contexts as a primitive decay [18].

In formalism of Kontevich and Soibelman this wall-crossing gives rise to the pentagon identity of

quantum dilograthims.
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-Z2

-Z1

Z1 + Z2

-Z1 - Z2

(a) Chamber 1

Z1
Z2

-Z2

-Z1

(b) Chamber 2

Figure 2.2: The chambers of the A2 Argyres-Douglas theory. The BPS spectrum is plotted in the

central charge plane. Particles are shown in red, antiparticles in blue. The cone of particles is the

shaded grey region. In (a) the particles form a bound state. In (b) the bound state is unstable and

decays.

A3 Theory

As another example of quiver representation theory and wall-crossing we consider a quiver

involving a non-trivial superpotential W. The quiver, known to be related to the A3 Argyres-

Douglas theory is given by

1 2

3

α1

α2α3

//
��

__

(2.2.25)

We let αi indicate the bifundamental field map exiting node i and Zi the central charge

of node i. The quiver is equipped with a superpotential

W = α3α2α1. (2.2.26)

Minimization ofW implies that in any allowed field configuration all compositions of pairs of maps
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vanish

α2 ◦ α1 = 0, α3 ◦ α2 = 0, α1 ◦ α3 = 0. (2.2.27)

We will show that this quiver has, up to relabeling the nodes, exactly two chambers with four or

five BPS hypermultiplets respectively.

First, we note that as usual all of the node representation where the dimensions ni of

the associated vector space are given by ni = δij for j = 1, 2, 3 are stable and hence yield three

hypermultiplets. Further, when one of the ni vanishes, then two of the maps α must also vanish and

the analysis reduces to the A2 case considered in the previous section. This yields two or one bound

states depending on whether the phases of the Zi are or are not cyclically ordered. To conclude

the analysis of this quiver, we now wish to illustrate that there are no further bound states that

arise from representations

Cn1
α1 // Cn2

α2 // Cn3

α3

||
(2.2.28)

with all ni non-zero.

We begin by considering possible subrepresentations corresponding to node vectors, (1, 0, 0),

(0, 1, 0), and (0, 0, 1). These are only subrepresentations when αi has a kernel for i = 1, 2, 3 re-

spectively. Clearly not all of these can be subreps simultaneously or else the representation would

already be destabilized. It follows that at least one of the αi, say α1 is injective and hence in

particular n1 ≤ n2.

Now we apply the F-term equations (2.2.27). From the fact that α1 ◦ α3 = α2 ◦ α1 = 0

and the fact that α1 is injective we learn that both α2 and α3 have non-vanishing kernels. This

means that both the node representations (0, 1, 0) and (0, 0, 1) are subreps so we deduce that Z1

must have largest phase for stability, and argZ2, argZ3 < arg(n1Z1 + n2Z2 + n3Z3).
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However now we consider a subrepresentation with dimension vector (1, 1, 0).

Cn1
α1 // Cn2

α2 // Cn3

α3

||

C β1 //

i

OO

C

j

OO

β2 // 0

0

OO

0

aa

(2.2.29)

This is a subrep exactly when the image of α1 meets the kernel of α2 non-trivially, which it does

by the F-terms. Thus we learn that

arg(Z1 + Z2) < arg(n1Z1 + n2Z2 + n3Z3). (2.2.30)

Given the conditions on the Zi and the fact that n1 ≤ n2, the above is impossible.

Thus we have arrived at a contradiction. It follows that for this quiver with the given

superpotential there are no states with all ni non-vanishing. Note that this conclusion is altered

when the superpotnetial is turned off. In that case it is easy to check that the representation

(1, 1, 1) with all maps non-zero provides a stable hypermultiplet at all moduli. This completes our

analysis of this quiver.

2.3 Quiver Mutation and Duality

We have seen how wall crossing is encoded into our quiver quantum mechanics picture.

Walls of marginal stability correspond to hypersurfaces in which two central charges become aligned.

The stability condition will differ on the two sides of this wall, and therefore there may be some

representations which are stable on one side but not the other. There is in fact another type of

hypersurface in moduli space that is strikingly relevant in our picture: hypersurfaces across which

a fixed quiver quantum mechanics description of the BPS spectrum may break down entirely.

Following [1] we will refer to these as walls of the second kind.
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The situation is less dire than it may seem; we will be able to find another quiver de-

scription, valid on the other side of the wall. We will argue that the transformation of a quiver

across a wall of the second kind is given by a canonical procedure, known as quiver mutation which

describes a quantum mechanical duality relating the ground state spectra of two distinct quivers.

Once the rule for transforming quivers at such walls is understood, we will be able to start with

a quiver description at any point in moduli space and arrive at any other point by following an

arbitrary path connecting them, doing the necessary mutations along the way. Further, in section

2.3.2 we will revisit this procedure and see that the same transformation can be made on quivers

at a fixed point in moduli space, and in this case the transformation will take us between quivers

that describe the same physics. We will then immediately exploit this duality to circumvent the

computations involved in solving the representation theory problem.

Recalling that the nodes of a quiver all correspond to particles, and must therefore have

central charges which lie in the upper half-plane, we see what can go wrong. As we tune moduli,

our central charge function changes, and as we cross some real co-dimension 1 subspace in U , the

central charge of one of the nodes may exit the half-plane. This behavior defines the walls of the

second kind. They are the loci in moduli space (including as usual masses and couplings) where

the central charge of a basis particle becomes real

Zu(γi) ∈ R. (2.3.1)

Let us study the process of crossing a wall of the second kind in more detail. Consider

the central charge configuration illustrated in Figure 2.3a where the BPS particles are described

by the quiver Q. As moduli are varied, the central charge of one of the basis elements, Z1 rotates

out of the upper half-plane and we arrive at the new configuration illustrated in Figure 2.3b.

The first thing to notice about this process is that, since no central charges align, no walls

of marginal stability are crossed, and hence the total BPS spectrum (consisting of both particles
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Z1

-Z1

Z¢

-Z¢

(a) Spectrum pre-duality

Z1 -Z1

Z¢

-Z¢

(b) Spectrum post-duality

Figure 2.3: A discontinuity in the quiver description results in a quantum mechanical duality

described by quiver mutation. In both diagrams the BPS spectrum is plotted in the central charge

plane. Red lines denote particles while blue lines denote antiparticles. The gray shaded region

indicates the cone of particles. In passing from (a) to (b) the particle with central charge Z1

changes its identity to an antiparticle. The cone of particles jumps discontinuously and a new

quiver description is required.

and antiparticles) is the same in Figures 2.3a and 2.3b. On the other hand, from the point of

the quiver this process is discontinuous. After Z1 has rotated out of the upper half of the central

charge plane, it has changed its identity from a particle to an antiparticle. Then the original basis

of particles encoded by the quiver Q is no longer an acceptable basis. Specifically, in passing from

Figure 2.3a to Figure 2.3b, the cone of particles has jumped discontinuously and as a result the

original quiver description of the BPS spectrum is no longer valid.

To remedy this deficiency we must introduce a new quiver Q̃ that encodes the BPS spec-

trum in the region of moduli space described by Figure 2.3b. Since the total spectra of particles

and antiparticles in Q and Q̃ are identical, the physical relation between them is that of a duality:

they are equivalent descriptions of the same total spectrum of BPS states. In the moduli space

U the regions of validity of Q and Q̃ are sewn together smoothly along the loci where the central

charge of an elementary basis particle is real. This sewing is illustrated in Figure 2.4
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Q Q
�

Figure 2.4: A cartoon of the moduli space and its relation to various BPS quiver descriptions. The

red lines denote walls of marginal stability where the BPS spectrum jumps. The gray shaded region

is the domain in moduli space where Q describes the BPS spectrum. The gray checkered region

is the domain where Q̃ describes the spectrum. The two descriptions are glued together smoothly

away from the walls of marginal stability. Their interface is a wall of the second kind.

In section 2.3.1 we define the operation of mutation on a given quiver Q to produces

the quiver Q̃, valid on the other side of the wall of the second kind. In section 2.3.2 we explain

how the existence of the mutation operation, when interpreted as duality between different quiver

descriptions, leads to a powerful and striking method for determining BPS spectra.

2.3.1 Quiver Mutation

As the preceding discussion indicates, a global description of the BPS spectrum across

the entire Coulomb branch will require many quivers all glued together in the fashion described

above. In this subsection we describe the algorithmic construction of this set of quivers by a

graphical process known as quiver mutation. In the following subsection we justify these rules

using arguments from quiver representation theory.

To define mutation, let us suppose that node γ1 is the BPS particle in the quiver whose

central charge Z1 is rotating out of the half-plane. We then seek to describe the dual quiver Q̃

with corresponding nodes {γ̃i}. Of course, since we have determined that a given spectrum of BPS

particles admits at most one basis of BPS states, both Q̃ and {γ̃i} are uniquely fixed. What’s more,
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the quiver Q̃ can be described in a simple graphical way starting from Q. [45, 46, 56–60]. The new

basis is given by

γ̃1 = −γ1 (2.3.2)

γ̃j =


γj + (γj ◦ γ1)γ1 if γj ◦ γ1 > 0

γj if γj ◦ γ1 ≤ 0.

(2.3.3)

To construct Q̃ graphically we follow the steps below:

1. The nodes of Q̃ are in one-to-one correspondence with the nodes in Q.

2. The arrows of Q̃, denoted B̃a
ij , are constructed from those of Q, denoted Ba

ij as follows:

(a) For each arrow Ba
ij in Q draw an arrow B̃a

ij in Q̃.

(b) For each length two path of arrows passing through node 1 in Q, draw a new arrow in

Q̃ connecting the initial and final node of the length two path

Ba
i1B

b
1j −→ B̃c

ij . (2.3.4)

(c) Reverse the direction of all arrows in Q̃ which have node 1 as one of their endpoints.

B̃a
i1 −→ B̃a

1i; B̃a
1j −→ B̃a

j1. (2.3.5)

3. The superpotential W̃ of Q̃ is constructed from the superpotential W of Q as follows:

(a) Write the same superpotential W.

(b) For each length two path considered in step 2(b) replace in W all occurrences of the

product Ba
i1B

b
1j with the new arrow B̃c

ij .

(c) For each length two path considered in step 2(b) Ba
i1B

b
1j there is now a new length three

cycle in the quiver Q̃ formed by the new arrow created in step 2(b) and the reversed

arrows in step 2(c)

B̃a
1iB̃

c
ijB̃

b
j1. (2.3.6)
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Add to the superpotential all such three cycles.

As a simple example of this procedure we consider the A3 quiver of section 2.2.3 shown on the left

and its mutation at node 1 shown on the right.

1 2

3

//

ZZ

��

W = B12B23B31

1 2

3

oo

ZZ

��

DD

W = B̃32B̃23 + B̃32B̃21B̃13

(2.3.7)

As the above example illustrates, the process of quiver mutation in general creates cycles

of length two in our new quiver. From a physical perspective these are fields in the quiver quantum

mechanics which admit a gauge invariant mass term. In the example above such mass terms are

present in the quadratic piece of the potential B̃32B̃23. As is typical in physical theories, the massive

fields decouple from the analysis of ground states and hence do not affect the BPS spectrum. We

may therefore integrate them out. Thus to our list of quiver mutation rules we append the following

final steps:

4. For each two-cycle in Q̃ for which a quadratic term appears in W̃ , delete the two associated

arrows.

5. For each deleted arrow B̃a
ij in step 4, solve the equation of motion

∂W̃

∂B̃a
ij

= 0. (2.3.8)

Use the solution to eliminate B̃a
ij from the potential.

In the example illustrated above, the only two cycle has quadratic terms in the superpo-

tential and is therefore deleted from the quiver. This results in a vanishing superpotential and a
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quiver of the following form.

2 1 3// // (2.3.9)

As a general rule, the study of BPS quivers is greatly complicated by the existence of

pairs of opposite arrows whose associated fields cannot be integrated out from the superpotential.

When this is never the case, that is when the potential W is strong enough to integrate out to all

opposite bifundamental fields after an arbitrary sequence of mutations, the potential is said to be

non-degenerate. It is a fortunate simplification that for all of the BPS quivers related to quantum

field theories that we discuss in this chapter the potential will turn out to be non-degenerate.

A3 Revisited

To put the above theory of quiver mutation in perspective, it is useful to consider the

simplest example where the phenomenon of wall of the second kind occur. This is the A3 theory

whose representation theory was investigated in section 2.2.3. There are in fact four distinct quivers

for the A3 theory related by mutation. These are given by

1 32// //

1 32oo //

1 32// oo

1 32cc
////

Let us name these four quivers respectively as L, O, I, and C. The representation theory of the

C quiver was worked out in section 2.2.3. In particular we determined that C supports either 4 or

5 BPS states depending on moduli. The representation theory of the other quivers is also readily

calculated. One finds that L has 6 distinct chambers, while both I and O have 4. If we dentote
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Chamber Phase Conditions Number of BPS States

L1 θ3 > θ2 > θ1 3

L2 θ2 smallest, and θ1, θ3 > θ12 4

L3 θ2 largest, and θ23 > θ1, θ3 4

L4 θ1 > θ12 > θ3 > θ2 5

L5 θ2 > θ1 > θ23 > θ3 5

L6 θ1 > θ2 > θ3 6

O1 θ2 smallest 3

O2 θ2 intermediate 4

O3 θ2 largest, and θ12 < θ3 or θ23 < θ1 5

O4 θ2 largest, and θ12 > θ3 and θ23 > θ1 6

I1 θ2 largest 3

I2 θ2 intermediate 4

I3 θ2 smallest, and θ3 < θ12 or θ1 < θ23 5

I4 θ2 smallest, and θ3 > θ12 and θ1 > θ23 6

C1 not cyclically ordered e.g. θ2 > θ1 > θ3 4

C2 cyclically ordered e.g. θ1 > θ2 > θ3 5

Table 2.1: The chambers of the A3 quivers before mutation equivalences are imposed. For each

quiver labelled with node charges Zi, θi denotes the argument of Zi while θij denotes the argument

of Zi + Zj .
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by θi the phase of Zi and θij the phase of Zi + Zj , then the complete list of chambers is given in

table 2.1.

In the global theory of A3 these chambers are connected together across walls of the second

kind where the quiver changes by a mutation. To understand mutations we then represent each

chamber as a node in a graph and connect those mutation equivalent with directed arrows. For

example we define the expression

Qi // Q̃j , (2.3.10)

to mean that mutation in chamber i of quiver Q on the leftmost boundary ray leads to chamber j

in the quiver Q̃. With these conventions the complete structure of walls of the second kind in the

A3 theory is encoded in the following diagrams.

L1

��
I1

// O1

`` I2

  
L2

>>

  

C1
oo L3

oo

O2

>>

L5
// C2

// L4

��
I3

OO

O3
oo

L6

��
O4

// I4

``

(2.3.11)

Where in the above, some chambers have two arrows leaving them because one can change the

leftmost ray without crossing a wall.

Justification of Mutation

The previous subsection gives a straightforward recipe for producing, from a given quiver

Q, all of its related duals by considering mutations at various nodes. However we have not yet

explained why this mutation rule is in fact correct. In this subsection we fill in this gap.7 Specifically

our goal will be to derive the mutation rule, given the assumption that a quiver description Q̃ exists

after the transition illustrated by Figure 2.3.

7The arguments in this section are somewhat technical and could be skipped in a first reading.
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The basic point is that the new elementary basis particles γ̃i, are interpreted from the

point of view of Q as certain bound states of the original basis particles γi. The key step is to

identify which bound states.

Consider again the cone geometry illustrated in Figure 2.3. A special role is played by the

two particles whose central charge rays form the boundary of the cone. Such particles must always

be included in the basis because, as their central charges are on the boundary of the cone, there

is no way to generate these states by positive linear combinations of other rays in the cone. Thus

in Figure 2.3b the two states with central charges Z ′ and −Z1 must appear as nodes of the quiver

Q̃. Of these, the latter is easy to identify as the antiparticle of the mutated node, −γ1, and hence

this charge must be in the new basis. Meanwhile, in the following argument we will prove that the

left-most ray, which we frequently refer to as the extremal ray, Z ′, is always a two particle bound

state which may be identified explicitly.

To begin, we consider all connected length two subquivers of Q which involve the node

γ1. For a given node γi there are ki arrows pointing either from γi to γ1 or from γ1 to γi.

γ1 γi...

B1

!!
B2

))

Bki

;; or γi γ1...

B1

!!
B2

))

Bki

;; (2.3.12)

Let us describe the leftmost bound state supported by these two node quivers. In the case on the

right of (2.3.12), γ1 appears as a sink. Then, since Z(γ1) has largest phase by hypothesis, γ1 by

itself is a destabilizing subrep of any possible bound state; thus no bound states can form.

On the other hand, in the case on the left of (2.3.12), where γ1 appears as a source, bound

states can exist. We consider a general representation of the form

Cn Cm...

B1

��
B2

((

Bki

== (2.3.13)
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To make a bound state with largest possible phase we wish to make a representation where

n/m is as large as possible. However, it is not difficult to see that the ratio n/m is bounded. Indeed,

since Z(γ1) has largest phase, there is a potentially destabilizing subrepresentation involving only

the particle γ1. Such a subrepresentation is described by ki commutative diagrams of the form

Cn
Bj // Cm

C 0 //

OO

0

OO (2.3.14)

In other words, the potential destabilizing subrepresentation is nothing but a non-zero vector which

is simultaneously in the kernel of all of the maps Bj . But then a simple dimension count shows

that

dimension

 ki⋂
j=1

ker(Bj)

 ≥ n− kim. (2.3.15)

And so in particular when the right-hand side of the above is positive, the subrepresentation (2.3.14)

exists and hence the bound state is unstable. Thus we learn that stability requires

n

m
≤ ki. (2.3.16)

Finally, it is not difficult to find a stable representation R which saturates the above bound.

Indeed let us take n = ki and m = 1. Then the maps Bj are simply projections to a line. The

stability constraint that the Bj have no common kernel implies that, up to gauge transformation,

Bj can be taken to be the dual vector to the jth basis element in the vector space attached to γ1.

So defined, the representation R is stable and has no moduli. Thus it gives rise to a hypermultiplet

with charge

γi + kiγ1. (2.3.17)

This completes the required analysis of quivers with two nodes. To summarize, in the

region of parameter space where Z(γ1) has largest phase, we have determined the extremal bound

state of all two-node subquivers involving γ1. The charges of the extremal bound states are:
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• If γi ◦ γ1 < 0 then the extremal bound state is simply γi.

• If γi ◦ γ1 > 0 then the extremal bound state is γi + (γi ◦ γ1)γ1.

Now we claim that in the quiver Q with an arbitrary number of nodes, one of the two

particle bound states we have identified above will still be the left-most extremal ray after Z(γ1)

exits the upper half-plane. To see this, we consider an arbitrary stable representation R of Q. We

write the charge of R as

γR = nγ1 +
∑

γi◦γ1>0

miγi +
∑

γj◦γ1≤0

ljγj (2.3.18)

Let us focus in on the representation R near the node γ1. There are now many nodes connected to

the node 1 by various non-zero maps. For those connections with γi ◦ γ1 ≤ 0, the node γ1 appears

as a sink, for those with γi ◦ γ1 > 0, γ1 appears as a source.

Our strategy is again to test whether R is stable with respect to decays involving the

subrepresentation S with charge γ1. As in the two node case, in such a situation the connections

where γ1 is a sink are irrelevant. On the other hand, if S is really a subrepresentation then for

each node link in the representation where node 1 is a source, we have commutative diagrams of

the form (2.3.14).

Given that Z(γ1) has largest phase, stability of R means that we must obstruct the

existence of S. As in the analysis of the two node quivers we see that S will be a subrepresentation

provided that the kernels of all maps exiting the node γ1 have nonzero intersection. However, just

as in (2.3.15) we can see that this leads to an a priori bound on n, the amount of γ1 contained in

the representation R. Explicitly we have

dimension

 ⋂
γi◦γ1>0

ki⋂
j=1

ker(Bj)

 ≥ n− ∑
γi◦γ1>0

kimi. (2.3.19)

Hence to obstruct the existence of the subrepresentation S we deduce the bound

n ≤
∑

γi◦γ1>0

kimi. (2.3.20)
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But now we can directly see that R cannot be extremal. We have

arg (Z(R)) = arg

nZ1 +
∑

γi◦γ1>0

miZi +
∑

γj◦γ1≤0

ljZj

 (2.3.21)

≤ arg

 ∑
γi◦γ1>0

mi(kiZ1 + Zi) +
∑

γj◦γ1≤0

ljZj

 .

But the final expression in (2.3.21) is manifestly contained in the positive span of the two node

extremal bound states, kiγ1+γi, that we identified in our analysis of two node quivers. In particular,

this means that R cannot be a boundary ray and hence is not extremal.

Thus we deduce that the left-most ray after mutation is one of the two particle bound

states that we have identified in our analysis of two node quivers. Extremality then ensures that

our new basis must include this two particle bound state. But finally we need only notice that the

central charges of all the two node extremal bound states that we have discovered are independent

parameters. Indeed letting the central charges vary in an arbitrary way, our conclusion is in fact

that all the two node bound states which we have determined must in fact be in the new basis. In

particular this means that the new basis of charges after mutation is completely fixed and we may

write the transformation as follows:

γ̃1 = −γ1 (2.3.22)

γ̃j =


γj + (γj ◦ γ1)γ1 if γj ◦ γ1 > 0

γj if γj ◦ γ1 ≤ 0

(2.3.23)

As one can easily verify, the graphical quiver mutation rules described in the previous

section are a direct consequence of computing the new BPS quiver Q̃ from the symplectic products

of the new basis of charges {γ̃i}. This completes our argument justifying the mutation rules.
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2.3.2 The Mutation Method: BPS Spectra from Quiver Dualities

We saw above that at walls of the second kind, we were forced to change our quiver

description because the central charge of some state exited the upper half of the complex half-

plane, thereby turning from a particle to an antiparticle. We might also consider what happens if

we fix a modulus u ∈ U and then consider a different definition of the particle half-plane, H. If

we imagine continuously changing our choice from one H to another, the situation is precisely the

same as above; there is some parameter which we are tuning, and at some critical value the central

charge of some state becomes such that it switches from particle to antiparticle.

In this case, however, we are remaining at a fixed point in moduli space, and so all of

these quivers describe precisely the same physics. That is, they are dual descriptions of the BPS

spectrum. In fact, there is a whole class of quivers related to each other by duality at each point in

moduli space. We will now exploit this fact to produce for us, in many cases, the entire spectrum

for free.

First, let us reiterate that a single form of the quiver already in principle determines

exactly which BPS states in the theory are occupied, including their spin and multiplicity. To

find the answer, one can solve the representation theory of the quiver with superpotential, which

amounts to the linear algebra problem described in section 2.2.2. However, in practice this problem

can become quite intractable. The mutation method we propose gets rid of all of the unsightly

work required in solving the problem directly, and instead produces the spectrum using chains of

dualities through different quiver descriptions of the theory.

Recall our first application of quiver rep theory in section 2.2.2, where we checked that

nodes of the quiver always correspond to multiplicity one hypermultiplets. This fact, together with

an examination of which states are forced to be nodes for various choices of half-plane H, is at the

heart of what we call the mutation method. Imagine that for our initial choice of H, with BPS
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basis {γi}, γ1 is the node such that Z(γ1) is left-most in H.8 Say we then rotate our half-plane

past it, and do the corresponding mutation to arrive at a new quiver description of the theory.

This mutation includes an action on the charges of the quiver γi, as given in equation (3.2)-(3.3).

Since this new quiver is a description of the BPS states of the same theory, its nodes are also

multiplicity one hypermultiplets. Consequently, we have discovered some subset of states in the 4d

theory which we can say must exist. In particular, we generate some new BPS states of the form

−γ1, γi + (γi ◦ γ1)γ1. Of course, −γ1 is just the antiparticle of the state γ1, so this is no additional

information. However, the states γi + miγ1 are completely new. To discover these same states

from the original quiver would have involved solving the non-trivial representation theory problem

studied in the previous subsection. We are able to avoid this headache by observing that, because

of duality, these states must be in the spectrum for consistency.

So we have found that duality will trivially produce some subset of the spectrum as nodes

of various dual quivers. But in fact it does much more: in many cases, mutation produces the

full spectrum in this way. Imagine we’re in a chamber with finitely many BPS states, and pick an

arbitrary state γ which is a hypermultiplet of the 4d theory. Then we can rotate the half-plane H

so that γ is left-most. As usual, since the nodes of the quiver form a positive basis for states in

H, γ must itself be a node. Therefore, if we start with any quiver description, and start rotating

H → e−iθH until γ becomes left-most, we will go through a corresponding sequence of mutations,

after which γ will simply be a node of the quiver.

It is then easy to see how to systematically generate the spectrum in any finite chamber.

We start with any quiver description which is valid at our given point in moduli space, and start

rotating the half-plane. Since there are only finitely many states, we will only pass through finitely

many mutations before we return to the original half-plane H → e2πiH.9 The key point is every

8From now on we will abuse verbiage slightly and simply say that “γ1 is left-most.”

9Recall that for a given choice of H, the quiver description is actually unique - there is a unique positive integral
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state in the chamber is left-most at some point during this rotation, so every state will indeed show

up as a node of one of the dual quivers. Since rotating past a state corresponds to mutating on the

node corresponding to that state, if we do the entire sequence of mutations and record each state

we’ve mutated on, we will have exhausted all states in the chamber.

We can save a bit of work by making use of CPT: for any state γ in the spectrum, −γ is

also occupied. So instead of taking H → e2πiH, we can just rotate half-way, H → eiπH, ending up

at the quiver which describes all the antiparticles.10 If we record every state γ we mutate on as H

is rotated, and then add all antiparticles −γ, we will have precisely the spectrum of the 4d theory.

Note that we must repeat this procedure for each chamber, by doing mutations in some different

order, as prescribed by the ordering of the phases of the central charges in that region of moduli

space. As we discussed above any given quiver generally only covers some subset of moduli space;

therefore, for different chambers, it will generally be necessary to apply this procedure to different

mutation forms of the quiver.

Let’s try an example. The representation theory for the Argyres-Douglas A3 theory was

worked on in detail in section 2.3.2. We will see how to reproduce it with much less work in the

present framework. We will assume that we are at a point in moduli space covered by the cyclic

three node quiver. Imagine that γ1 is leftmost. After the first mutation, the mutation that follows

will depend on the ordering of γ3 and γ1 + γ2. Suppose that γ3 is to the left. Then the particle

basis for the lattice of occupied BPS states, up to permutation. So we will also return to the original quiver up to
permutation when H undergoes a full rotation.

10By a similar argument as above, the final quiver will have nodes −γi.
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half-plane, H and associated quiver before (i) and after (ii) the first mutation at γ1 are

Z2
Z1

Z3 Z1 + Z2

γ1

 
γ2

#
γ3

# ##oooo

(i)

Z2

-Z1

Z3 Z1 + Z2

−γ1

#
γ1 + γ2

#
γ3

 {{ //

(ii)

In the above diagrams, we denote the left-most particle state in each quiver, which indicates the

next node to be mutated, by drawing the corresponding node in black,  . Now since the γi were in

the original half-plane H to begin with, it must be that γ1 + γ2 is to the left of −γ1 and −γ3 in the

current half-plane. This is true in general: one never mutates on negative nodes in going through

a π-rotation of H from a quiver to its antiparticle quiver. The remaining mutations are completely

fixed, and we find (iii,iv,v)

Z2

-Z1

-Z3

Z1 + Z2

−γ1

#
γ1 + γ2

 
−γ3

#{{ oo

(iii)

Z2

-Z1

-Z3-Z1 - Z2

γ2

 
−γ1 − γ2

#
−γ3

# ##oo

(iv)
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-Z2
-Z1

-Z3-Z1 - Z2

−γ2

#
−γ1

#
−γ3

#{{ // //

(v)

So we’ve arrived at the antiparticle quiver, which at the level of quiver without charges is the same,

because the antisymmetric product is not affected by an overall sign on charges.11 Therefore we’ve

discovered a chamber with the states γ1, γ2, γ3 and γ1 + γ2. This indeed agrees with one of the

chambers found in 2.3.2. All of the chambers can similarly be mapped out, without ever doing the

linear algebra analysis.

We pause here to emphasize two important points. The first is to recall that a quiver

from the mutation class generically only covers a subset of moduli space. Therefore to map out all

chambers, one must carry forth the above with the starting quiver being any one of the quivers in

the mutation class. The second point is that, using the above method, one will not find any chamber

covered by the cyclic quiver which contains the state γ1 +γ2 +γ3. In the analysis of section 2.3.2, it

was found that the γ1 +γ2 +γ3 state was there in the quiver without superpotential, but killed when

the (unique) non-degenerate superpotential was included. Thus we see that this mutation method

knows about the associated non-degenerate superpotential indirectly. This is expected, because a

11If you try to label nodes and keep track of them, which the drawings may subliminally suggest you do, in general
you will return to (−1)×permutation.
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non-degenerate superpotential is required for the mutation rule written above to be sensible.

There are some simple non-trivial statements which we can immediately make based on

this method. One is that any finite chamber can only contain hypermultiplets, with multiplicity

one. The argument here is simply that any state in a finite chamber can be made into a node of

some dual quiver, and nodes, as we’ve mentioned, can never correspond to higher spin objects or

higher multiplicity hypers. Therefore, it would be inconsistent with duality to ever have a higher

spin or higher multiplicity object in a finite chamber.

Now let’s consider infinite chambers. An additional layer of complexity, as compared

to the finite case, is that two dual quiver descriptions may be separated by an infinite sequence

of mutations. This is because, as we rotate between two choices of H, we will generically have

infinitely many BPS states which rotate out to the left. Our method above depended on our ability

to keep track of the sequence of mutations which happens as H → eiπH. Now the infinitude of

states in some sense blocks us from competing this sequence of mutations. For example, if we

start with a given quiver description, we can’t explore beyond the closest accumulation ray in the

Z-plane. Because of this difficulty, we can’t make a similarly definite statement about the method

as it applies to infinite chambers. Indeed, for certain theories, such as N = 2∗ SU(2) (the mass

deformed N = 4 theory), it appears that the method isn’t sophisticated enough to exhaust the

spectrum.12

However, as we will see in several examples, infinite chambers may also be understood by

this method. Infinitude of the chamber is often due to higher spin objects, and we can often make

progress by being just a bit clever. Note that any higher spin object must in fact be an accumulation

ray of states in the central charge plane: If it weren’t, we could rotate H so that it was left-most,

and as above, in this dual quiver description our higher spin state would be a node. Of course

12Of course we can always produce some arbitrarily large subset of states of the theory by mutating until exhaustion
(of the mutator, that is).
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this is a contradiction - nodes are always multiplicity one hypers. Higher multiplicity hypers must

similarly be accumulation rays, a fact which may be less intuitive outside of this framework.

Before going on to examples and applications, we make some additional technical notes

about the actual implementation of the mutation method. As we have described it here, we choose

a point of the physical moduli space, compute central charges at that point, and mutate on the

nodes in the order given by the ordering of phases of the central charges, as we tune H → Hπ.

Instead, when exploring the possible BPS spectra, it is sometimes more practical to simply mutate

on the nodes in any order, and then check two things: (1) that the ordering chosen is consistent,

and (2) that the ordering chosen is realized somewhere in physical moduli space. By consistent,

we mean that there exists some choice of central charges Z(γi) that correspond to the ordering

chosen. As it turns out, there is no need to check the first point: as long as we mutate only on

nodes whose charges are given by positive linear combinations of the original γi, then the ordering

is consistent. Of course, we expect to only mutate on positive nodes since we are only rotating

by π through the particle half-plane, and all particles should be given by positive integer linear

combinations of the initial γi. Note that the only condition for consistency is that argZ(γ1 +γ2) lie

between argZ(γ1), argZ(γ2). In fact, the mutation method protects us from making inconsistent

choices. Fix argZ(γ1) > argZ(γ2), and suppose we have already mutated past γ1, but not yet

γ2. Thus −γ1 is in the positive integral span of the mutated quiver basis. Suppose both γ1 + γ2

and γ2 to appear as nodes; this is an immediate contradiction with the fact that the nodes form a

basis, since now γ2 is both a basis element and a non-trivial linear combination of basis elements

(γ1 +γ2)+(−γ1). So only one of these can appear as nodes and be mutated on next. If it is γ1 +γ2,

there we are safe, and there is no inconsistency. If it is γ2, let’s mutate past so that both −γ1,−γ2

are in the positive integral span of the mutated quiver basis; now it is impossible for γ1 + γ2 to

appear as a node of the quiver, or else we can construct 0 as a non-trivial linear combination of

basis elements γ1 + γ2 + (−γ1) + (−γ2).
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Therefore we can apply the mutation method by simply mutating on the positive nodes in

any order we like, until we arrive at a quiver with all nodes labelled by negative charges, indicating

that we have completed the rotation H → Hπ. It remains to be checked whether the ordering we

have applied is actually physically realized in moduli space. We can dispense of this final check

when the physical moduli space has complex dimension equal to the number of nodes. Then as we

move in moduli space, it is possible to tune all central charges of nodes however we wish. These

theories are known as complete theories, studied and classified in [12]. In a companion paper [28]

we studied the application of these techniques to the class of complete theories. In the more general

case of non-complete theories, existence of the desired changer in the physical moduli space must

be checked by hand.

Quiver Mutation and Quantum Monodromy

The mutation method outlined in the previous section can be extended to compute not

only the BPS spectrum, but also the full Kontsevich-Soibelman (KS) quantum monodromy operator

itself [1, 12,27]. In this section we briefly discuss these techniques.

To implement the KS formalism one first introduces the quantum torus algebra. Let i

index the nodes of the quiver, as discussed in detail in previous sections, these nodes integrally

generate the lattice of BPS charges. Then the quantum torus algebra is defined by:

• A generator Yi for each node of the quiver.

• Commutation relations between the generators.

YiYj = q−γi◦γjYjYi, (2.3.24)

where in the above, q is a parameter.

Given a general charge γ =
∑

i niγi we introduce the operator Yγ as a normal ordered product of
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the corresponding generators:

Yγ ≡ N [Y n1
1 · Y n2

2 · · ·Y
nm
m ]. (2.3.25)

The KS framework gives a characterization of the BPS spectrum in terms of a certain operator

M(q) which acts on the quantum torus algebra and is constructed as a product of certain quantum

dilogarithm operators, Ψ(Yγ , q) built form the Yγ . These operators act naturally on the quantum

torus algebra by conjugation

Yα → Ψ(Yγ , q)YαΨ(Yγ , q)
−1. (2.3.26)

Meanwhile, the operation of quiver mutation studied in the previous sections also acts on the

algebra through its action on the charges at various nodes. We let µk denote the operation on the

charge lattice induced by quiver mutation at the k-th node. The induced action on the generators

Yi is then given in parallel to equations (3.2)-(3.3) as

µk(Yi) =



Y −1
k if i = k

Yi if γi ◦ γk > 0

Yγi+(γk◦γk)γk if γi ◦ γk < 0

(2.3.27)

We can combine the action of conjugation by the quantum dilogarithm with quiver mutation to

produce a quantum mutation operator which acts on the torus algebra

Qk = Ad(Ψ(Yk, q)) ◦ µk. (2.3.28)

The quantum mutation operator is the natural generalization of quiver mutation to the torus

algebra. Furthermore, just as ordinary quiver mutations, like those studied in the previous section,

allow us to easily determine the BPS spectrum, the quantum mutation operator allows us to write

the full quantum monodromy operator M(q). Specifically, in a chamber consisting of finitely many

BPS states there exists a sequence of mutations which acts as the identity (up to a permutation of

nodes) on the quiver Q

µk(s) · · ·µk(2)µk(1)Q = Q. (2.3.29)
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A key feature of this sequence is that it is phase ordered; the state k(1) is left-most, the state

k(2) is next to left-most and so on. Associated to this sequence is an ordered product of quantum

mutation operators

Qk(s) · · · Qk(2)Qk(1). (2.3.30)

The above operator can be expressed in terms of the adjoint action of a single operator which is

none other than the desired operator M(q). As a consequence of the fact that the original sequence

of mutations in equation (2.3.29) is phase ordered, the operator M(q) has the desired expression in

terms of a phase ordered product over the BPS states of quantum dilogarithm operators [4,61,62].

In this way we recover the full KS monodromy operator from ordered mutation sequences.

2.4 SU(2) Gauge Theories

We begin our study of examples with SU(2) gauge theories. This is a natural starting

point, as the BPS spectra of several of these theories have been worked out from different points

of view [13, 63–65]. We will reproduce those results straight-forwardly from the mutation method.

These examples serve as non-trivial confirmation of our framework, and also as a demonstration of

the power of the mutation method.

2.4.1 Pure SU(2)

The quiver for pure SU(2) gauge theory has been worked out in various papers [4,12,21,

32, 33]. Here we will content ourselves to fix it based on the known SU(2) spectrum, as was done

in section 2.2.1, and then check that the mutation method produces the correct spectrum.

The quiver we are studying is given by

#
γ1 = (0, 1)

#
γ2 = (2,−1)

//// (2.4.1)
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The strong coupling chamber is given by argZ(γ2) > argZ(γ1). As we rotate H, we have the

following sequence of mutations

#
γ1

 
γ2

////

(i)

 
γ1

#
−γ2

oo oo

(ii)

#
−γ1

#
−γ2

////

(iii)

(2.4.2)

We see that we end with the antiparticle quiver, and that the only states in this chamber are γ1

and γ2. This agrees with the well known result that only the monopole and dyon are stable at

strong coupling.

We can move on to do the same analysis at weak coupling, where argZ(γ1) > argZ(γ2).

 
γ1

#
γ2

////

(i)

#
−γ1

 
2γ1 + γ2

oooo

(ii)

 
3γ1 + 2γ2

#
−2γ1 − γ2

////

(iii)

· · ·  
(k + 1)γ1 + kγ2

#
−kγ1 − (k − 1)γ2

////

(k+1)

· · ·

(2.4.3)

It is quite clear that we are in an infinite chamber. The entire sequence we’ll find is obvious:

we will have (k + 1)γ1 + kγ2 for k ≥ 0, with charge (2k, 1). In the Z plane these limit to the

ray αZ(γ1 + γ2). Notice that the (e,m) charge of γ1 + γ2 is (2, 0). We’re finding the expected

accumulation ray associated with the vector, the W boson, in the weak coupling spectrum. In

terms of rotating the half-plane, W is protected from being a node because it is an accumulation

ray of hypermultiplet dyons. In terms of the mutations, the “quiver with W as a node” is infinitely

many mutations away in the space of dualities, preventing a contradiction. As mentioned above,
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this accumulation ray is blocking us from exploring the states lying in the rest of the central charge

plane. We expect to only find one vector in the pure SU(2) theory, but we have not yet found all

the dyons. We would expect another set of dyons, (2k,−1) which decompose as kγ1 + (k + 1)γ2

for k ≥ 0. These would all lie to the right of the W boson, γ1 + γ2; thus we need some method for

exploring that region of the Z-plane.

In this case, and in any case where there is only a single accumulation ray, we can get

around this problem easily. To do so, we recall that our mutation rule came from rotating the

half-plane clockwise, H → e−iθH. We’ll refer to this as left-mutation, because it is associated with

states rotating out of the left of H. There should of course be a similar mutation rule corresponding

to rotating the half-plane counter-clockwise instead, H → eiθH, which we will call right-mutation.

Both of these rules can be expressed as an action of a linear operator on the set of charges γi which

label the nodes of the quiver. If we call the usual left-mutation action on charges ML, and the

right-mutation action MR, then we should have the obvious relations

MLMR = MRML = Id{γ} (2.4.4)

One can check that the transformation which satisfies the above identities (for γ1 rotating

out of H) is simply

γ̃1 = −γ1 (2.4.5)

γ̃j =


γj + (γ1 ◦ γj)γ1 if γ1 ◦ γj > 0

γj if γ1 ◦ γj ≤ 0.

(2.4.6)

Pictorially, mutation to the left (on node 1) acts non-trivially on those nodes which 1

points to, while right mutation acts non-trivially on nodes which point to 1. With this new rule in

hand, we can start with the quiver and begin mutating “to the right”. Then we’ll explore the BPS
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states starting from the right side of H, as these are the ones leaving the half-plane. If there is only

a single accumulation ray in H, left and right-mutation together will allow us to explore both sides

of it, filling out the entire Z-plane except for the ray of the accumulation point.

Let’s apply right mutation starting from the original SU(2) quiver to find the remaining

states. Now we use ⊗ to indicate the right-most node which will be right-mutated next.

#
γ1

⊗
γ2

// //

(i)

⊗
γ1 + 2γ2

#
−γ2

oo oo

(ii)

#
−γ1 − 2γ2

⊗
2γ1 + 3γ2

////

(iii)

· · · ⊗
kγ1 + (k + 1)γ2

#
−(k − 1)γ1 − kγ2

oooo

(k+1)

· · ·

(2.4.7)

We have generated the states kγ1 + (k + 1)γ2 = (2k,−1). So mutation to the right obtains the

dyons that we didn’t see before, namely the ones lying on the other side of the vector. Since these

states limit to the same ray in the Z plane, at Z(γ1 + γ2), we have understood the stability of

all states except those lying on this ray. To complete the analysis, in principle one should do the

representation theory for states along the ray γ1 + γ2. At a generic choice of parameters, the only

particles that may exist along this ray are of the form n(γ1 + γ2). 13 It turns out that there is

indeed a single vector present with the expected charge. This seems slightly obnoxious, because we

still have to do some representation theory, but keep in mind that the work has been drastically

reduced in that we only have to check for representations along this ray.

To summarize, we have found the strong coupling SU(2) spectrum by a completely trivial

13 This statement heavily relies on the fact that this theory is complete. If the central charges of nodes cannot be
varied independently, and the theory is thus incomplete, then there are non-trivial relations satisfied by the central
charges of nodes at all points of parameter space. For example, there may be a relation of the form γk = γ1 + γ2,
satisfied for all parameter choices. Then the general particle at the ray Z(γ1 + γ2) is of the form n(γ1 + γ2) +mγk.
We will see how this may come about in section 2.4.3.
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Z2Z1

. . . . . .

Z1 + Z2

Figure 2.5: The BPS spectrum of pure SU(2) gauge theory, plotted in the central charge Z-plane.

The spectrum contains a vector state with charge Z1 + Z2 (plotted in green), which is forced to

occur in the Z-plane at an accumulation ray of hypermultiplet states. On either side of the vector

state, there is an infinite sequence of dyons whose central charges asymptotically approach the ray

on which the vector lies. The mutation method is able to capture the full spectrum of the theory

by rotating the half-plane to the left (yielding particles on the left of the vector particle) and the

to right (yielding particles on the right of the vector particle).
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application of the mutation method. For the weak coupling chamber, we introduced right-mutation

to be able to explore the central charge Z-plane on both sides of the accumulation ray at the W

boson. Here we found, as expected, the W boson and the infinite tower of dyons. In Figure 2.5,

we draw the spectrum in the Z-plane to clarify how the mutation method is capable of obtaining

all states of the theory. The well-known resulting spectra are summarized in the table below:

Strong coupling Weak coupling

Monopole: (0, 1) Positive dyons: (2n, 1)
Dyon: (2,−1) Negative dyons: (2n+ 2,−1)

W boson: (2, 0, 0)

2.4.2 Adding matter

The quiver of SU(2) Nf = 1 was deduced using general considerations in [12]. Here we

simply recall their reasoning. We expect 2r + f = 3 nodes of the quiver. First we note that we

can tune the mass of the quark to infinity. Then the massive quark fields should decouple from the

theory, leaving the BPS states of pure SU(2). This suggest that the quiver should consist of the

pure SU(2) quiver (with the usual monopole and dyon charges) along with an additional node. In

the decoupled limit, there should be additional states with (e,m) charges (±1, 0); the third node

should correspond to one of these two charges. However, we need to make the correct choice for

third node that allows both of these new states to be generated by positive linear combinations

of the nodes. If we take (1, 0), all nodes of the quiver have positive electric charge, and the state

(−1, 0) cannot be generated; the correct choice is then (−1, 0), which can be combined with the W

boson (2, 0) of the SU(2) subquiver to form (1, 0). Computing electric-magnetic inner products,

we find the following quiver:

γ1 = (0, 1)

#
γ3 = (−1, 0)

# #
γ2 = (2,−1)

��

[[

////

(2.4.8)
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We can repeat this argument to add as many additional flavors as we like; the result is to

produce Nf copies of the node γ3 with different flavor charges.

γ4γ3 γNf

γ1 γ2

. . .

��

dd

//vv

CC

��

hh

//

(2.4.9)

Alternatively, we can add hypermultiplet matter charged under other representations of

the gauge group. If instead of a fundamental 2 of SU(2) we consider a j rep of SU(2), we find that

γ3 has charge (−j, 0). Generalizing our analysis above, we conclude that if a quiver description of

this theory exists, it is given by a similar quiver with j arrows γ3 → γ1, γ2 → γ3

γ1 = (0, 1)

#
γ3 = (−j, 0)

# #
γ2 = (2,−1)

jj

��

[[

////

(2.4.10)

Certainly this quiver can generate the full j representation, raising the electric charge by adding the

W boson. However, for j 6= 2, it is possible that the quiver generates some additional representations

of the gauge group. Indeed, it turns out that such a quiver will correspond to SU(2) with a full

⊗j2 representation of the gauge group. We will see an explicit occurrence of this in section 2.4.8,

where for j = 2 the quiver above (2.4.10) produces the matter representation 3⊕ 1.

2.4.3 Massless Nf = 1

Recall that a single quiver from the mutation class generally does not cover all of moduli

space. If we start with a valid quiver description and move in moduli space, it may be that at some

point the central charges Z(γi) no longer lie in a common half-plane. We deduced the SU(2) with

matter quivers in the decoupling limit of infinite quark mass, so there is no reason to expect it to

cover the chamber with the bare mass of the quark set to zero. Actually, one can easily see that
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the massless chamber should have Z(γ1 + γ2 − 2γ3) = 0 for the charges given in (2.4.3). Thus we

have Z(γ3) = −1
2Z(γ1) +Z(γ2)). There is no way that the three central charges can lie in a single

half-plane.

It is easy to remedy this situation by properly applying mutations. Imagine beginning at a

point of parameter space where the quiver above is valid. Then we consider tuning parameters until

we reach the desired point. As we do this, we should keep track of any states leaving the half-plane,

and perform the appropriate mutations. This sounds as though it involves detailed knowledge of

the moduli space geometry, but that turns out to be completely unnecessary. There is no need to

restrict our path to the physical parameter space; instead we are free to move throughout full space

of central charges for the theory. In other words, we are free to pretend that the theory is complete

as we tune parameters.14 This drastically simplifies the procedure. Now we may start with a valid

quiver at a certain choice of parameters, and then tune the central charges one-by-one to produce

the arrangement at the desired endpoint in parameter space.

For the Nf = 1 quiver (2.4.3), let’s keep γ1, γ2 fixed in the central charge plane, and tune

γ3 from its initial value within the half-plane by rotating it to the right. It will exit on the right,

inducing a right-mutation on γ3. We should continue rotating γ3 all the way to Z(γ3) = −Z(γ1+γ2),

and keep track of mutations of the charges of the mutated quiver. In this case, no additional

mutations occur. This gives15

#
γ1 = (0, 1, 1/2)

#
γ3 = (1, 0,−1)

#
γ2 = (1,−1, 1/2)

//

CC

��

(2.4.11)

The flavor group for Nf = 1 is SO(2) ∼= U(1), so we label the charges of our states by their U(1)

14This theory actually is complete; however, in any other non-complete examples, the same approach is valid.

15The monopole and dyon acquire flavor charges [10], which we now include in the charge labels.
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charge f ; the nodes then correspond to the electromagnetic and flavor charges (e,m, f) as given

above. At zero bare mass, the central charge function only depends on the electric and magnetic

charges of the states, so the third node is constrained as Z(γ3) = Z(γ1) + Z(γ2). Thus, just as in

the pure SU(2) theory, there are only two distinct chambers, one with arg Z(γ1) > arg Z(γ2), and

the other with arg Z(γ2) > arg Z(γ1). This will turn out to be a feature of all the massless examples

we consider.

Let’s start by exploring the chamber with Z(γ2) ahead of Z(γ1). We start by mutating

on γ2, after which we have the nodes γ1, γ3 and −γ2. γ3 is now left most, so we must mutate on it

next, and so on.

#γ1

#
γ3

 γ2//

CC

��

(i)

#γ1

 
γ3

# −γ2oo

CC [[

(ii)

 γ1

#
−γ3

# −γ2oo�� ��

(iii)

#−γ1

#
−γ3

# −γ2//

CC

��

(iv)

(2.4.12)

We see the only states in this chamber were the nodes of the original quiver and their antiparticles.

We’ve discovered the strong coupling chamber of the Nf = 1 theory, whose spectrum indeed

coincides with these hypermultiplets.

Now let’s explore the other chamber. Here we take Z(γ1) ahead of Z(γ2). We have the
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sequence

 
γ1

#
γ3

#
γ2

//

CC

��

(i)

#
−γ1

 
γ1 + γ3

#
γ1 + γ2

oo�� ��

(ii)

#
γ3

#
−γ1 − γ3

 
2γ1 + γ2 + γ3

oo

CC [[

(iii)

 
γ1 + γ2 + 2γ3

#
γ1 + γ2

#
−2γ1 − γ2 − γ3

//

CC

��

(iv)

(2.4.13)

We’re clearly in an infinite chamber. Continuing in this way, we see our spectrum includes the

states

(n+ 1)γ1 + n(γ2 + γ3) = (2n, 1, 1/2)

(n+ 1)(γ1 + γ3) + nγ2 = (2n+ 1, 1,−1/2)

As in the weak chamber of the pure SU(2) theory, we are seeing the accumulation ray which should

contain the W boson of the theory. Here we are actually getting twice as many hypermultiplets as

in pure SU(2) since we have states of both even and odd electric charge. We will identify the odd

electric charge states as quark-dyon bound states.

As before, let’s start with the original quiver and mutate to the right to study the BPS

states on the other side of the accumulation ray. This generates the states

n(γ1 + γ3) + (n+ 1)γ2 = (2n+ 1,−1, 1/2)

nγ1 + (n+ 1)(γ2 + γ3) = (2n+ 2,−1,−1/2)
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This sequence of states also accumulate at the same ray in the central charge plane; between these

two sequences of infinities, the only central charges that can appear are proportional to Z(γ1 +γ2).

We might again expect that these dyons limit to a single vector in the central charge plane. We

could attempt to test this hypothesis by actually doing the representation theory along this ray,

but instead let’s appeal to some physical reasoning to see why this is indeed wrong. Namely, we’re

in the weak coupling chamber of the Nf = 1 theory. We would expect that this theory indeed

contains BPS states corresponding to the fundamental quark hypermultiplet, and at zero bare

mass the central charge of this hyper lies directly at the same BPS phase as the W boson. This is

precisely the non-generic situation we hinted at in footnote 13.

Actually, given the non-genericity, something special has happened in this example. This

quarks, given by γ3 and by γ1 + γ2, appeared as nodes after a finite sequence of mutations. Note

that we never mutated on these quark nodes, because the nodes we mutate on are left-most (or

right-most) and being on an accumulation ray, the quark can never be made left-most (or right-

most). Instead, they simply appeared as one of the other “interior” nodes in some of the dual

quiver descriptions of the theory. This doesn’t have to happen, and indeed won’t happen in the

undeformed Nf = 2, 3 cases below. We simply got lucky. If we hadn’t seen the quark this way,

we would have had to find it by hand. In either case, how can we be sure there are no other

hypermultiplets lying on top of the vector, which aren’t showing up as interior nodes elsewhere?

One should consider a slightly deformed Nf = 1 theory with m 6= 0 and check that there are no

additional hypermultiplets (aside from those predicted by wall-crossing formulae). In this way, one

can check that there are no additional hypermultiplets coinciding with the vector when m → 0.

In principle, it is irrelevant whether or not the deformation we take is physically realized - thus,

even in a non-complete theory, the same strategy works for understanding the particles along an

accumulation ray. Alternatively, of course, one could always directly use quiver representation

theory to rule out other states with that BPS phase.
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Putting everything together, we find the following possible spectra for massless Nf = 1.

Strong coupling Weak coupling

Quark: (1, 0,−1) Quarks: (1, 0,±1)
Monopole: (0, 1, 1/2) Positive dyons: (2n, 1, 1/2)

Dyon: (1,−1, 1/2) Negative dyons: (2n+ 2,−1,−1/2)
Quark-dyons: (2n+ 1,∓1,±1/2)

W boson: (2, 0, 0)

where n ranges over integers n ≥ 0. Along with their antiparticles, this collection agrees

with the well known weak coupling spectrum of massless SU(2) Nf = 1 ( [64]).

2.4.4 Massive Nf = 1

For just one flavor, it is not too difficult to actually find all possible spectra of the theory

with m 6= 0. It turns out that the acyclic quiver used in the previous subsection covers all chambers.

Unfortunately, there is a great deal of redundancy in the full chamber spectrum - there are many

distinct regions of moduli space that give the same spectrum due to dualities. By duality here, we

mean the following: the spectrum depends only on the quiver and the central charges decorating

the nodes, but not on the actual charge (e,m, f) labels themselves. Thus, there may be widely

separated regions of moduli space that happen to have the same quiver and associated central

charges, but different charge labels; consistency of this framework requires that such regions actually

have spectra that are equivalent up to some appropriate Sp(2r,Z) relabeling of charges. Here we

will simply list the possible spectra, without choosing a particular point in moduli space or duality

frame; the downside is that as a result we cannot give the charges of the states, since charge labels

require a choice of duality frame.

• Minimal chamber: 3 nodes are the only BPS states.

• 4 state chamber: 3 nodes and 1 bound state hypermultiplet.

• 5 state chamber: 3 nodes and 2 bound state hypermultiplet.
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• Weak coupling chambers, labelled by k. These consist of:

– 2 quark hypermultiplets,

– W boson vector multiplet,

– Infinite tower of dyon hypermultiplets,

– k additional quark-dyon bound state hypermultiplets, for 0 ≤ k ≤ ∞.

This list exhausts the BPS spectra that can be supported by quivers in this mutation class. Embed-

ded in this result are the two massless chambers, which correspond to the 3 state minimal chamber

and the k =∞ weak coupling chamber. It is a relatively straight-forward exercise to find all these

chambers beginning with the minimal massless spectrum, by repeated application of the pentagon

and SU(2) wall-crossing identities.

2.4.5 Massless Nf = 2

The relevant quiver for massless Nf = 2 follows from analogous mutations of the decou-

pling limit quiver (2.4.9) in section 2.4.2. Here we find

#γ1 = (1,−1, 0,−1/2)

#
γ4 = (0, 1,−1/2, 0)

# γ2 = (1,−1, 0, 1/2)

#
γ3 = (0, 1, 1/2, 0)

__ ??
�� ��

(2.4.14)

The flavor group is now Spin(4) ∼= SU(2)× SU(2), and we will denote our states by (e,m, f1, f2),

where fi are the charges under the U(1) contained in the ith SU(2) factor. We see that there

are only two distinct values for the central charge between the four nodes when the bare masses

vanish. This means that there will again only be two chambers, given by the relative ordering of

Z(γ1) = Z(γ2),Z(γ3) = Z(γ4).



64 Chapter 2: Quivers of N = 2 QFTs

There is a small added subtlety that was absent for Nf = 1. Namely, we technically can’t

rotate the central charge of a single node out of the half plane by itself. All mutations will happen

for two nodes simultaneously. Also, as mentioned above, we don’t get lucky in this example - the

quarks don’t show up as interior nodes of any of the quivers as we start mutating. If we mass

deform the theory, however, the central charge of the quarks no longer coincides with the vector,

and we will see them appear after a finite number of mutations. This tells us that there are the

quark hypermultiplets lying on top of the vector when m→ 0, but no extra states. For simplicity,

we will work out the m = 0 point and quote this result.

For strong coupling, we first mutate on nodes 1 and 2, and find

#
γ4

 γ2

#
γ3

 γ1 __ ??
�� ��

(i)

 
γ4

# −γ2

 
γ3

#−γ1

�� ��

?? __

(ii)

#
−γ4

# −γ2

#
−γ3

#−γ1 __ ??
�� ��

(iii)

(2.4.15)

Thus we see that this chamber contains no bound states, and the only states are hyper-

multiplets contributed by the nodes. We have one hypermultiplet of electromagnetic charge (1,−1)
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in the (1,2) rep of SU(2)× SU(2), and one of charge (0, 1) in the (2,1).

The other chamber is of course more interesting. We have the following sequence of

mutations:

 
γ4

# γ2

 
γ3

#γ1 __ ??
�� ��

(i)

#
−γ4

 γ2 + γ3 + γ4

#
−γ3

 γ1 + γ3 + γ4

�� ��

?? __

(ii)

 
γ1 + γ2 + 2γ3 + γ4

# −γ2 − γ3 − γ4

 
γ1 + γ2 + γ3 + 2γ4

#−γ1 − γ3 − γ4 __ ??
�� ��

(iii)

(2.4.16)

Continuing in this way, we generate the states

n(γ1 + γ2 + γ4) + (n+ 1)γ3 = (2n, 1, 1/2, 0)

(n+ 1)γ4 + n(γ1 + γ2 + γ3) = (2n, 1,−1/2, 0)

(n+ 1)(γ1 + γ3 + γ4) + nγ2 = (2n+ 1, 1, 0,−1/2)

(n+ 1)(γ2 + γ3 + γ4) + nγ1 = (2n+ 1, 1, 0, 1/2).
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On the other hand, mutating to the right gives the states

n(γ1 + γ3 + γ4) + (n+ 1)γ2 = (2n+ 1,−1, 0, 1/2)

n(γ2 + γ3 + γ4) + (n+ 1)γ1 = (2n+ 1,−1, 0,−1/2)

(n+ 1)(γ1 + γ2 + γ4) + nγ3 = (2n+ 2,−1,−1/2, 0)

nγ4 + (n+ 1)(γ1 + γ2 + γ3) = (2n+ 2,−1, 1/2, 0).

These fill out dyons (2n,±1) in the (2,1) and quark-dyons (2n + 1,±1) in the (1,2). Trapped

between the two infinite sequences we have the vector boson γ1 + γ2 + γ3 + γ4 = (2, 0, 0, 0), which

we identify as the W . The quarks also lie at the same BPS phase, and are given by γ2 + γ4, γ1 +

γ4, γ2 + γ3, γ1 + γ3.

The two spectra are tabulated below, where we now assemble the states into representa-

tions of the full SU(2)× SU(2) with charges given as (e,m)f1,f2 :

Strong coupling Weak coupling

Monopole: (0, 1)2,1 Quarks: (1, 0)2,2

Dyon: (1,−1)1,2 Positive dyons: (2n, 1)2,1

Negative dyons: (2n+ 2,−1)2,1

Quark-dyons: (2n+ 1,±1)1,2

W boson: (2, 0)1,1

This agrees with the well known weak coupling spectrum of the SU(2) Nf = 2 theory.

2.4.6 Massless Nf = 3

The Nf = 3 quiver is given, after mutations to reach the massless chamber, as

#γ5 = (0, 1, 1, 0, 0)

#
γ2 = (0, 1,−1, 1, 0)

#
γ3 = (0, 1, 0,−1, 1)

#
γ4 = (0, 1, 0, 0,−1)

#
γ1 = (1,−2, 0, 0, 0)

// �� ooOO (2.4.17)
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The flavor group is SO(6) ∼= SU(4) and the nodes of the quiver make up a monopole of elec-

tric/magnetic charge (0, 1) in the 4 of SU(4), and a dyon of charge (1,−2) in the 1. We have

labelled the flavor charges as (e,m, q1, q2, q3), where qi are the eigenvalues under the respective

generators of the Cartan of SU(4). The central charge degeneracy we experienced in the Nf = 2

case is again present, among γi for 2 ≤ i ≤ 5. Half the spectrum will come as sets of 4 simultaneous

mutations.

There are again two chambers, one with arg Z(γ5) > arg Z(γ1), and the other with arg Z(γ1) >

arg Z(γ5). The second chamber is strong coupling, and just includes the particles that correspond

to the original nodes of the quiver. In the other chamber, the mutations generate the spectrum

γi + n(γ2 + γ3 + γ4 + γ5) + 2nγ1 = (2n, 1, 1, 0, 0)

(n+ 1)(γ2 + γ3 + γ4 + γ5) + (2n+ 1)γ1 = (2n+ 1, 2, 0, 0, 0)

−γi + (n+ 1)(γ2 + γ3 + γ4 + γ5) + (2n+ 1)γ1 = (2n+ 1, 1,−1, 0, 0)

The states in which γi appears are repeated for 1 ≤ i ≤ 4. Thus we see that we have a magnetic

charge 2 dyon that is a singlet under flavor SU(4), as well as magnetic charge 1 dyons in the 4̄ and

quark-dyons in the 4.

As usual, the mutations to the right will fill out the dyons on the other side of the

accumulation ray. Right mutation generates:

n(γ2 + γ3 + γ4 + γ5) + (2n+ 1)γ1 = (2n+ 1,−2, 0, 0, 0)

γi + n(γ2γ3 + γ4 + γ5) + (2n+ 1)γ1 = (2n+ 1,−1, 1, 0, 0)

−γi + (n+ 1)(γ2 + γ3 + γ4 + γ5) + (2n+ 2)γ1 = (2n+ 2,−1,−1, 0, 0)

The vector W boson, is at an accumulation ray, and the subtlety about generating the quarks is

the same as in the Nf = 2 case. Here the quarks are given by γ1 + γi + γj , where 2 ≤ i < j ≤ 5.
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Strong coupling Weak Coupling

Monopole: (0, 1)4 Quarks: (1, 0)6

Dyon: (1,−2)1 Positive dyons: (2n, 1)4

Negative dyons: (2n+ 2,−1)4̄

m = 2 dyons: (2n+ 1,±2)1

Quark-dyons: (2n+ 1,−1)4

(2n+ 1, 1)4̄

W boson: (2, 0)1

2.4.7 Nf = 4

For Nf = 4 the massless theory is conformal; mass deformations break conformality. The

quiver in the decoupling m→∞ limit is given as16

##γ1 = (2,−1) γ2 = (0, 1)

γ5 = (−1, 0)

γ3 = (−1, 0)

γ6 = (−1, 0)

γ4 = (−1, 0)

# #

# #

// //

xx

KK

��

ff

ff

��

KK

xx (2.4.18)

There are many additional subtleties in this BPS spectrum because it corresponds to a massive

deformation of the conformal theory. In particular, there is no quiver that describes the m → 0

limit; if we try to follow the strategy employed in the asymptotically free cases to trace the quiver

from m =∞ to m = 0, we find that any path goes through infinitely many mutations, preventing

us from identifying a quiver for the m = 0 chamber.

Nonetheless, we may take a finite mass and find various chambers in which the mutation

method can successfully compute BPS spectra. The following is an example of a finite chamber of

this theory, with the BPS states listed in decreasing order of BPS phase:

γ3, γ4, γ2, γ1 + γ3 + γ4, γ2 + γ5, γ2 + γ6, γ1 + γ3, γ1 + γ4, γ2 + γ5 + γ6, γ1, γ5, γ6. (2.4.19)

16Our analysis will break the SO(8) flavor symmetry, so we supress all flavor data.
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This theory is complete, so, as previously discussed, this chamber must occur in physical moduli

space.

In principle, the BPS spectrum can be worked out in all of moduli space by applying

the KS wall crossing formula to this chamber. However, the spectrum in some regions of moduli

space becomes extremely complicated. To give a general sense of this, we will describe some wall

crossings in this theory, which were first studied in [13].

Focus on the first three states, γ3, γ4, γ2. If we move γ2 all the way to the left, we will

produce γ2, γ2 + γ3, γ2 + γ4, γ2 + γ3 + γ4, γ3, γ4. Separating the rest of the spectrum into similar

consecutive sets of three, analogous wall crossings will produce a spectrum of 24 states.

γ2, γ2 + γ3, γ2 + γ4, γ2 + γ3 + γ4, γ3, γ4,

γ2 + γ5, γ2 + γ6, γ1 + 2γ2 + γ3 + γ4 + γ5 + γ6, γ1 + γ2 + γ3 + γ4 + γ6,

γ1 + γ2 + γ3 + γ4 + γ5, γ1 + γ3 + γ4,

γ2 + γ5 + γ6, γ1 + γ2 + γ3 + γ5 + γ6, γ1 + γ2 + γ4 + γ5 + γ6,

2γ1 + γ2 + γ3 + γ4 + γ5 + γ6, γ1 + γ3, γ1 + γ4,

γ5, γ6, γ1 + γ5 + γ6, γ1 + γ5, γ1 + γ6, γ1. (2.4.20)

Now we can produce various vectors by crossing states between the four sets of six; for example,

(γ1 + γ3 + γ4) ◦ (γ2 + γ5 + γ6) = −2, so exchanging them will produce a tower of dyons and a vector

γ1 + γ2 + γ3 + γ4 + γ5 + γ6 = (−2, 0), by the SU(2) wall crossing identity. Similarly, exchanging

γ3, γ4 with γ2 + γ5, γ2 + γ6 = will produce a vector 2γ2 + γ3 + γ4 + γ5 + γ6 = (−4, 2) along with two

dyon towers and four additional hypers; this is just the wall crossing of massless SU(2), Nf = 2.

Two more vectors will be generated by this procedure, 2γ1 + γ3 + γ4 + γ5 + γ6 = (0,−2) and

γ1 − γ2 = (2,−2).17 These four vectors have non-trivial electric-magnetic inner products, and so

additional wall crossing of the vectors will produce some highly complicated spectrum with infinitely

17To obtain this last vector, we must rotate the half-plane, allowing γ2 to exit and mutating on γ2 in the quiver.
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many vectors.

One would expect such wild BPS behavior in the massless conformal limit, where confor-

mal dualities produce some infinite set of vectors dual to the familiar W boson. It is interesting

to observe that this complicated structure begins to emerge even with finite mass, in regions of

moduli space where the quiver description is perfectly valid.

2.4.8 N = 2∗

The N = 2∗ theory is a massive deformation of conformal N = 4, where we give the

adjoint hypermultiplet some non-zero mass. Alternatively, it is simply a gauge theory with a

massive hypermultiplet charged under the adjoint of the gauge group. For SU(2) this is given,

following the discussion in section 2.4.2, by the following quiver:

#
γ1 = (0, 1)

#
γ3 = (−2, 0)

#
γ2 = (2,−1)

//��

[[

//
��

[[

(2.4.21)

As indicated in section 2.4.2, this quiver indeed turns out to generate matter content of the

full 2⊗2 = 3⊕1. Thus it gives the N = 2∗ theory plus an uncharged singlet hypermultiplet. In [28],

this quiver was obtained in studying the rank two Gaiotto theory on a torus with one puncture. We

can understand this matter content from the point of view of [36]. We start with a pair of pants,

corresponding to a half-hypermultiplet charged as a trifundamental under three SU(2) flavor groups,

represented by the three boundary components. Glueing together two boundary components of the

pair of pants identifies the two SU(2)’s and gauges them. To form the punctured torus, we glue

two legs together, producing an SU(2) gauge group, and matter content 2⊗ 2 = 3⊕ 1.

This fact can be checked from the BPS spectrum as follows. Consider the rep γ1 +γ2 +γ3
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of this quiver. This rep has charge (0, 0) meaning that it is a pure flavor state. For N = 2∗ we would

expect such a hypermultiplet, corresponding to the state inside the 3 that is uncharged under the

U(1) ⊂ SU(2); if we add an uncoupled singlet, we would then expect this site of the charge lattice

to be occupied by two BPS particles. Quiver representation theory finds the latter situation, as we

now demonstrate.

The superpotential for this quiver was worked out in [28]. The result was

W = X12X23X31 + Y12Y23Y31 +X12Y23X31Y12X23Y31. (2.4.22)

Here, Xij , Yij correspond to the two maps between nodes i, j in the representation. The resulting

F-terms are of the form

X23X31 + Y23X31Y12X23Y31 = 0, (2.4.23)

X12X23 + Y12X23Y31X12Y23 = 0, (2.4.24)

X31X12 + Y31X12Y23X31Y12 = 0, (2.4.25)

Y23Y31 +X23Y31X12Y23X31 = 0, (2.4.26)

Y12Y23 +X12Y23X31Y12X23 = 0, (2.4.27)

Y31Y12 +X31Y12X23Y31X12 = 0. (2.4.28)

We are studying the rep γ1 + γ2 + γ3, so all gauge groups are U(1), and the bifundamental fields

here are simply 1× 1 matrices. In this example, we can solve the full equations by just truncating

to the quadratic pieces and solving those, since setting the quadratic pieces to zero also sets the
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quintic terms to zero.18.

X23X31 = 0 (2.4.29)

X12X23 = 0 (2.4.30)

X31X12 = 0 (2.4.31)

Y23Y31 = 0 (2.4.32)

Y12Y23 = 0 (2.4.33)

Y31Y12 = 0 (2.4.34)

These will set two of the X’s and two of the Y ’s equal to zero. We will focus on the two non-zero

fields, Xi, Yj , with i, j ∈ {(12), (23), (31)}. Before going on, we pause to consider what the possible

moduli spaces may be. For any choice of i, j, there is enough gauge symmetry to set both Xi, Yj to

one; thus the moduli space is at most 9 points, one for each choice of (i, j). Some of these points

will be eliminated by the stability analysis. Note that Π-stability does not distinguish between

X,Y, so if Xi, Yj 6= 0 is stable, then Xj , Yi 6= 0 is also stable. We will show below that the stability

analysis always yields a moduli space of 2 points.

The simplest way to proceed is a case-by-case analysis of the possible orderings of central

charges. For each choice of orderings, we will consider the following cases of (i, j): (a) (12, 23),

(b) (23, 31), (c) (31, 12), (d) (12, 12), (e) (23, 23), (f) (31, 31). There are three more cases obtained

by exchanging (i, j). A simple study of commutative diagrams shows that, for (a) the subreps are

γ3, γ2 + γ3. By cyclic symmetry, (b) has subreps γ1, γ3 + γ1, and for (c), γ2, γ1 + γ2. For (d) we find

subreps γ2, γ3, γ2 +γ3, γ1 +γ2; (e) and (f) have subreps given by cyclic symmetry. We can choose γ1

to be the left-most node without loss of generality. Automatically, (e) and (f) are unstable due to the

subrep γ1 which has argZ(γ1) > argZ(γ1 + γ2 + γ3). Suppose argZ(γ1) > argZ(γ2) > argZ(γ3).

18There is also a solution given by nontrivial cancellation between the quadratic and quintic terms. However, the
resulting moduli space is non-compact, so its cohomology contains no normalizable forms, and as such it does not
contribute to the particle spectrum
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Then rep (b) is destabilized by subrep γ1, and reps (c,d) are destabilized by subrep γ1 + γ2. Rep

(a), on the other hand, is stable since its subreps have argZ(γ1 + γ2 + γ3) > argZ(γ2 + γ3) >

argZ(γ3). So here the moduli space is 2 points, X12, Y23 6= 0 and X23, Y12 6= 0. Next, we consider

argZ(γ1) > argZ(γ1 + γ2) > argZ(γ3) > argZ(γ2). Rep (a) is again stable, while rep (b) is

destabilized by γ1 and reps (c,d) are destabilized by γ1 + γ2. The final case we must study is

argZ(γ1) > argZ(γ3) > argZ(γ1 + γ2) > argZ(γ2). Now we find that rep (c) is stable, while reps

(a,d) are destabilized by γ3 and rep (b) is destabilized by γ1. The conclusion is that the moduli

space of the rep (γ1 + γ2 + γ3) is simply two points for any choice of parameters. Therefore, at all

values in the parameter space of this theory, we find two hypermultiplets with no electric-magnetic

charge. This confirms that the quiver is describing the Gaiotto construction, N = 2∗ plus a single

uncharged hypermultiplet.

The spectrum of this theory is extremely intricate for any chamber of the moduli space.

We will demonstrate the existence of at least two vector particles for any choice of central charges.

Without loss of generality, we take γ1 to be leftmost. Then we should consider two cases. If

argZ(γ1) > argZ(γ2) > argZ(γ3), then the Π-stability analysis yields γ1+γ2 = (2, 0) and γ1+γ3 =

(−2, 1) as stable vector particles. Alternatively, if argZ(γ1) > argZ(γ3) > argZ(γ2), then γ1 + γ2

is a stable vector particle, along with either (n+ 1)γ1 + nγ2 + γ3 or nγ1 + (n+ 1)γ2 + γ3 for some

choice of n. In any of the cases, the two vector particles identified have non-zero electric-magnetic

inner product. Consequently, the stable vector states could form a highly complicated spectrum

of bound states. The presence of multiple accumulation rays (one at each vector) obstructs the

mutation method as defined from producing an unambiguous result for the spectrum. We can

use left and right mutation to identify some set of dyons, along with the left-most and right-most

vector states; however, the region of the Z-plane between the two vectors could be arbitrarily wild.

It would be interesting to try to develop an extension of the algorithm capable of computing the

spectrum for this theory.
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2.4.9 Flavor Symmetries and Gauging

The above SU(2) examples involve a well-known SO(2Nf ) flavor symmetry at the massless

point of parameter space. In fact, the quivers used in the analysis all display quite suggestive

symmetries themselves. In this section we will study the relationship between global symmetries of

the physical theory and discrete symmetries of the quiver. This will turn out to provide a powerful

tool for constructing quivers for new theories by gauging global symmetries.

Suppose a physical theory has some known global symmetry. Generally speaking, turning

on various deformations of the theory will break the global symmetry, so here we consider studying

the theory at the precise point of parameter space that preserves the full global symmetry of

interest. Of course, the BPS spectrum should reflect this symmetry. The first question we wish to

explore is how this symmetry should be encoded in the BPS quiver.

It is possible that every state in the BPS spectrum might be singlet under the global

symmetry; then it would be very difficult to find evidence for the symmetry in either the quiver or

the full BPS spectrum. So we should refine the question a bit. Let us restrict to a global SU(n)

symmetry, and further, let us study the case in which there is some BPS hypermultiplet in the

fundamental of SU(n). In this case we can give a very straightforward answer to the question. The

full fundamental multiplet of BPS states must have identical central charges. We simply choose our

quiver half-plane so that this multiplet is left-most in the Z-plane.19 Since they carry distinct flavor

charges spanning the weight space, all n states of fundamental must occur in the quiver.20 These

19This choice of half-plane will be impossible when the phase of central charge of the fundamental of hypermultiplets
occurs at some accumulation ray of BPS states. In fact, this exact situation occurs in the case of SU(2), N = 2∗. This
theory has an enhanced SU(2) flavor symmetry at the massless point. However, we are never able to see the symmetry
in the quiver (which has a single mutation form, given in section (2.4.21)). The massless theory is conformal, and
the spectrum is dense; hence there is no half-plane that admits a positive integer basis. Barring this complication,
there exists a half-plane that yields a mutation form of the quiver which explicitly presents the symmetry.

20The weight space is only n− 1-dimensional, so one may worry that only n− 1 of the states appear. However, the
weights obey

∑
i fi = 0 so that the last weight is given by a negative integer linear combination of the others. As

long as the multiplet carries some non-zero electric-magnetic charge, the last state be linearly independent from the
others. Then, to fill out the n states of the fundamental, all n states must appear in the quiver.
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states of course have different global charges, but identical electric-magnetic charges. Since the

quiver is only sensitive to electric-magnetic charges, we will find n identical nodes in the resulting

quiver, and thus an Sn permutation symmetry that exchanges these identical nodes.

The above SU(2) examples with massless matter illustrate this fact. For Nf = 2, we have

an SO(4) = SU(2)×SU(2) flavor symmetry, which manifests as two S2 discrete symmetries in the

quiver, given by exchanging γ1, γ2 and γ3, γ4. For Nf = 3, we have an SO(6) = SU(4) symmetry,

manifested as an S4 on γ1, γ2, γ3, γ4. For Nf = 4, there should be a full SO(8) flavor symmetry;

however, it is only preserved at the massless conformal point, where we have no quiver description.

For any mass deformation, the maximal symmetry is SU(4), which corresponds to the obvious S4

acting on γ3, γ4, γ5, γ6.

Alternatively, suppose we start with a quiver containing n identical nodes and an Sn sym-

metry. If we assign identical charges to these nodes, the resulting BPS spectra will be forced to

organize into representations of SU(n), because the quiver representation theory does not distin-

guish among these n identical nodes. The nodes themselves will form a multiplet in the fundamental

representation, while bound states involving combinations of the identical nodes will form various

tensor representations. Unfortunately, we cannot conclude from this that the full theory preserves

this symmetry - perhaps is it is preserved by the BPS states, but broken by some non-BPS states.

Nonetheless, if we are expecting an SU(n) global symmetry, it is quite natural to identify it with

this discrete symmetry of the quiver.

From these observations, we can suggest a powerful rule for constructing quivers of new

theories by gauging global symmetries of a theory with a known quiver. For now, let us focus on

gauging a global SU(2) symmetry that is manifested as an S2 symmetry in the quiver acting on a

pair of identical nodes. We will extend to general SU(n) after we have discussed quivers of more

general gauge theories. Physically, to gauge a symmetry, we add gauge degrees of freedom and

couple them appropriately to the matter already present in the theory. At the level of the quiver,
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the procedure is quite analogous. We should add two nodes of an SU(2) subquiver to add the gauge

degrees of freedom. Then we must couple to the existing pair of identical nodes to this subquiver to

form a fundamental of the SU(2). Recall that when we added a flavor to SU(2), we added only one

state of the doublet fundamental representation, because bound states would generate the second.

Here we must do the same thing - we delete one of the nodes, and connect the other to the SU(2)

subquiver in an oriented triangle. The deleted state will now be generated by a bound state with

the SU(2) nodes.

To give an example, we can consider gauging one of the SU(2) flavor symmetries of

SU(2), Nf = 2, which exchanges γ1, γ2.

γ1

γ3

γ2

γ4

�� ��
__ ??

gauge
=⇒

γ3

γ2

γ4 b

c

��
??

OO OO

��

��

(2.4.35)

We have added an SU(2) subquiver b, c and charged the flavor node γ2 under it; now we have two

SU(2) gauge groups with a bifundamental matter field. In this case, we can actually see the weak

coupling description of the resulting theory from the quiver, if we apply some mutations. Mutating

on γ1, γ2, b, c in that order produces

#

#

# #

#

��

��

OO OOOO OO

��

��

(2.4.36)

in which there are two SU(2) subquivers, each coupled to the same node as a fundamental matter

state, producing a bifundamental.

This gauging procedure can be understood very nicely from the perspective of the Gaiotto

curve [36]. That work studied the conformal N = 2 theories that arise from wrapping stacks of n

M5-branes on some punctured Riemann curve known as the Gaiotto curve; n is denoted the rank

of the theory. The punctures correspond to mass deformations of the theory; an exactly conformal
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theory would have all punctures turned off. In the case of two M5-branes, the resulting theories have

gauge group SU(2)k. We briefly recall the map between the Gaiotto curve and the weak coupling

gauge theory description for the rank 2 case. Each puncture of the Gaiotto curve corresponds

to an SU(2) flavor symmetry. Such Riemann surfaces may be glued together at punctures by

opening a hole at each puncture and glueing the two together with a tube. This results in gauging

the diagonal subgroup of the SU(2)’s corresponding to the punctures. The sphere with three

punctures corresponds to a half-hypermultiplet trifundamental under the three SU(2)’s associated

to the three punctures. Then from the pair-of-pants decomposition of a Riemann surface, we can

break any surface into some number of three-punctured spheres connected up in some way. From

this, we may determine a weak coupling description of any such theory. Since the pair-of-pants

decomposition is non-unique, there may be many different weak coupling descriptions; these are

precisely the N = 2 dualities studied in [36]. For our purposes, we simply want to note that this

glueing procedure can be translated to the quiver gauging rule at the level of the quiver, if we can

identify the appropriate S2 symmetries in some mutation forms of each quiver. Then the quiver of

the glued surface is precisely the quiver obtained by simultaneously gauging the S2 symmetries in

the two quivers. That is, we add an SU(2) subquiver, remove one of each pair of identical nodes

in the two quivers, and couple both of the remaining nodes to the same SU(2) subquiver.

As another example, consider glueing the SU(2), Nf = 4 quiver to itself other by gauging

the diagonal subgroup SU(2)d ⊂ SU(2)×SU(2) ⊂ SU(4). The original quiver presents S2×S2 ⊂ S4

symmetries given by exchanging γ3, γ4 and γ5, γ6 respectively. The gauging procedure looks as

follows
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γ5 γ6
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For these rank 2 theories, there is actually a more systematic way to generate quivers

for all surfaces via triangulations from special lagrangian flows, as developed in [12, 28]. The

quiver gauging rule just described can in fact be understood from this triangulation view point,

as explained in [12]. For example, the theory SU(2), Nf = 4 corresponds to a sphere with 4

punctures; the gauged quiver shown above is known from that analysis to correspond to a torus

with 2 punctures, which is precisely the surface produced after glueing two punctures from the

4-punctured sphere. Notice that, since the resulting surface contains 2 punctures, we would expect

there to be two more SU(2)’s available for gauging. In fact, a mutation sequence can produce

one S2 in the quiver, but there is no way to produce two such symmetries. The analysis from

the triangulation perspective shows that we can produce all but one S2 in the quiver; that is,

we can realize one fewer S2 than the total number of punctures. Actually, there is a very good

reason that we are unable to gauge the last SU(2). If we did so, we would remove all punctures

from the surface, and produce a quiver for a punctureless surface. However, a punctureless surface

supports an exactly conformal theory - all mass deformations have been turned off. Hence the

BPS spectrum would exhibit some duality, and in general be dense in the central charge plane,

obstructing the existence of a quiver. Thus for consistency, it is necessary that we not be able to

gauge the SU(2) symmetry of a once-punctured surface. Nonetheless, we can be able to build up a

quiver for any surface with at least one puncture, and these all agree with the quivers obtained from

triangulations. For higher rank theories, the analog of the triangulation approach is not known;

however, the gauging rules will allow us to construct quivers for a large class of theories whose

quiver descriptions were previously unknown.
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2.5 SU(N) Gauge Theories and Beyond

In this section we apply the formalism discussed in the previous section to the examples

of non-abelian ADE Yang-Mills theories with matter.

2.5.1 Construction of SU(N) Quivers

Quivers for pure SU(N) gauge theory were constructed in [4] via the 2d/4d correspondence

studied there. These BPS quivers have also been studied previously in [32]. That work identified

as nodes of the quiver a set of fractional branes in an orbifold phase of the geometries used in the

type IIA geometric engineering [66,67].21

Here we will provide a purely 4d motivation for that result, and use it to extend the

proposal to SU(N) gauge theory with arbitrary matter. First we fix some notation. We have

been using (e,m) for electric and magnetic charges. Electric charges will naturally be associated

to weights of the gauge group, and magnetic charges associated to roots. We denote simple roots

αi and fundamental weights ωi; the appropriate inner product is given by αi · ωj = δij .

By the 2r + f counting, the quiver should consist of 2(N − 1) nodes. Let us consider the

mutation form of the quiver that covers the decoupling limits in which each W boson associated

to a simple root αi separately becomes infinitely massive. In order to separately decouple these

vectors, the N − 1 simple root W bosons must be disjointly supported as reps of the quiver. Since

the reps supported on only one node cannot give vectors, and we only have 2(N − 1) nodes, each

W boson must be supported on two distinct nodes. So we have two nodes bi, ci, forming an SU(2)

subquiver associated to each simple root. Then we simply need to choose charge assignments within

21Fractional branes as a basis of BPS quivers were studied in [7,8,30]. Their charges for SU(N) were identified from
a boundary CFT analysis in [68]. BPS particles with magnetic and electric charge in the IIA geometric engineering
context correspond to even branes wrapped on cycles of the geometry. The fractional branes are identified with the
monopoles and dyons which can become massless somewhere in moduli space, equivalently these states correspond
to the vanishing cycles in the homology lattice of the Seiberg-Witten curves of these theories found in refs. [69–71].
See also [72] and references therein.
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the SU(2) subquivers. In order to obtain the associated W boson, the two nodes should have the

charges of a consecutive pair of dyons, ((ni + 1)αi,−αi), (−niαi, αi). The most obvious choice is

just ni = 0, the appropriate monopole and dyon for each simple root. If we make this choice, the

result is precisely the quiver computed by [4] using the 2d/4d correspondence:

. . .

cN−1

bN−1

c2

b2

c1

b1

OO OOOO OO

�� ��   ~~   ~~

OO OO

(2.5.1)

where bi = (0, αi) and ci = (αi,−αi).

The SU(N) quivers we have deduced contain closed oriented cycles; thus the quiver re-

quires a superpotential to be specified. The orbifold construction of [32] produces this superpoten-

tial by reducing the superpotential of theN = 4 theory.22 Explicitly, the appropriate superpotential

is given as,

c2

b2c1

b1

cN−1

bN−1

X1 Y1 Y2X2 YN−1XN−1

φ2

φ′2

φN−2

φ′N−2
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oo

//
OO OO
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//

OO OO
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(2.5.2)

with

W =

N−2∑
i=1

Xiφ
′
iXi+1φi − Yiφ′iYi+1φi. (2.5.3)

Before going on, we will demonstrate a weak-coupling check on this superpotential. The

quivers given above explicitly display W bosons associated to the simple roots; the ordering

argZ(bi) > argZ(ci) ensures that there will be a W boson associated to the ith simple root.

However, at weak coupling we would expect massive vector W bosons associated to all roots of the

22The quiver (and superpotential) discussed on [32] is actually related by some mutations to the quiver we study
here.



Chapter 2: Quivers of N = 2 QFTs 81

SU(N) algebra, due to Higgsing of the gauge bosons. The set of massive vectors should fill out

exactly one adjoint of the SU(N), except for the Cartan elements, which remain massless.

Let us see how these additional vectors come about by first considering SU(3). We seek a

vector state corresponding to a representaion with dimension vector (1, 1, 1, 1). The superpotential

is then

W = X1φ
′X2φ− Y1φ

′Y2φ, (2.5.4)

and the resulting F-terms are

φφ′X2 = φφ′Y2 = φφ′X1 = φφ′Y1 = 0 , (2.5.5)

φ(X1X2 − Y1Y2) = φ′(X1X2 − Y1Y2) = 0 . (2.5.6)

If both φ, φ′ are zero, the rep is given by Xi, Yi, and falls apart into the direct sum of two subreps,

b1 + c1, b2 + c2. Such a situation is described as a decomposable representation; decomposable reps

are never stable, since one of the two subreps must be to the left of decomposable rep in the Z-plane.

If φ, φ′ are both nonzero, then Xi, Yi are all zero by (2.5.5), and again the rep is decomposable.

We are left with two cases, φ = 0, φ′ 6= 0 and vice versa. Having set one of the φ’s to zero, there is

one more equation in (2.5.6) that must be satisfied: X1X2 = Y1Y2. Naive dimension counting gives

us 6 − 2 − 3 = 1, so we have a vector. Gauge fixing sets φ (or φ′) = X1 = Y1 = 1; then the actual

moduli space is parameterized by X2 = 1/Y2, which forms P1. Lefschetz SU(2) gives exactly one

vector of this charge, and no hypers. It remains to check the stability conditions. For φ = 0, there

are subreps c1, b1 + c1, b1 + c1 + c2; these are not destabilizing precisely when, in addition to the

weak coupling conditions, we also have argZ(b1 + c1) < argZ(b2 + c2). On the other hand, when

argZ(b1 + c1) > argZ(b2 + c2), then c1 + b1 is certainly a destabilizing subrep. Similarly, φ2 = 0 is

stable precisely for argZ(b1 + c1) > argZ(b2 + c2). Therefore, at any region in weak coupling, we

find precisely one W boson of the desired charge.

Now we consider arbitrary SU(N). By embedding the SU(3) quiver as a subquiver of an
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arbitrary SU(N) quiver, we see that the specified superpotential (2.5.3) guarantees that exactly

one W boson vector with charge (αi + αi+1, 0) appears at weak coupling. It remains to check the

W bosons associated to the rest of the roots, which have charges
(∑j+k

i=j αi, 0
)

for any k > 1. As

representations, these are given by
∑j+k

i=j bi + ci. It is clear that, for this analysis, we can simply

focus on the subquiver formed by bi, ci for j ≤ i ≤ j+k; all other nodes (and maps involving them)

are set to zero in this rep, and consequently, any superpotential terms from them are trivial. Thus

we can simply study the rep v =
∑k

i=1 bi + ci of the SU(k+ 1) quiver and superpotential as shown

above.

The F-terms are now a bit more subtle.

φi−1φ
′
i−1Xi−1 + φiφ

′
iXi+1 = φi−1φ

′
i−1Yi−1 + φiφ

′
iYi+1 = 0 , (2.5.7)

φi(XiXi+1 − YiYi+1) = φ′i(XiXi+1 − YiYi+1) . (2.5.8)

Again, not both φi, φ
′
i can be zero, or else the rep is decomposable. However, it seems that perhaps

both φi, φ
′
i may be nonzero; since (2.5.7) now has two terms, this no longer forces the rep to become

decomposable. Nonetheless, we can dispose of this possibility by stability. If both φi, φ
′
i are nonzero,

then either both φi−1, φ
′
i−1 are nonzero or Xi+1, Yi+1 are zero due to (2.5.7). By induction, we will

find that Xj , Yj are zero for some j. This situation cannot be Π-stable; because Xj , Yj vanish, we

have two subreps, bj (which is now effectively a sink in the quiver), and v− cj , the subrep where we

set to zero cj , (which is now an effective source in the quiver). It must be the case that one of these

is destabilizing. If argZ(cj) > argZ(v), then we have argZ(bj) > argZ(cj) > argZ(v) so that bj

is destabilizing; otherwise argZ(v − cj) > argZ(v) > argZ(cj), so that v − cj is destabilizing.

Having dealt with this subtlety, we can continue with the analysis. The remaining case

is that exactly one of φi, φ
′
i is nonzero for each i; this gives 2k possibilities. First, we check the

dimension of the parameter space: we start with 4k − 2 maps and 2k − 1 gauge symmetries; we

have set k− 1 maps to zero, and we have k− 1 remaining constraints (2.5.8); thus (4k− 2)− (2k−
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1) − (k − 1) − (k − 1) = 1. We may gauge fix φi (or φ′i) = Xi = Yi = 1 for 1 ≤ i < N − 1; then

the moduli space is P1 parametrized by XN−1 = 1/YN−1. Thus we have 2k vector states. Using

stability, we will find that precisely one of these vectors is stable for any region of weak coupling.

To see this, fix j and choose φj 6= 0. Because of this choice, there is a subrep
∑k

i=j+1 bi + ci,

which is destabilizing when argZ
(∑k

i=j+1 bi + ci

)
> argZ(v) > argZ

(∑j
i=1 bi + ci

)
. If we had

chosen φ′j 6= 0, we would have a subrep
∑j

i=1(bi + ci) which is destabilizing in exactly the opposite

situation, argZ
(∑j

i=1 bi + ci

)
> argZ(v) > argZ

(∑k
i=j+1 bi + ci

)
.23 So we have arrived at the

desired conclusion, namely, that we obtain precisely one vector for each root of SU(N). With a

bit more work it is possible to see that, up to field redefinitions, this is the unique superpotential

at quartic order that properly produces exactly one set of W bosons. In principle this leaves the

possibility of higher order terms in the superpotential, but the derivation of [32] shows that indeed

no such terms arise.

2.5.2 General ADE-type Gauge Group

Some brief comments will allow us to extend the above analysis to arbitrary ADE-type (ie

simply-laced) gauge group G. At weak coupling, we would again expect to be able to decouple the

rankG distinct SU(2) subgroups, again with one corresponding to each simple root of the algebra.

Then we would again find an SU(2) subquiver for each simple root αi. If we again make the

ansatz of fixing charges (0, αi), (αi,−αi), then we find that, for each line in the Dynkin diagram (ie

23There are some additional subreps that should be considered, but ultimately play no role. For example, if

φj 6= 0, φ′m 6= 0 for j < m, then there is a subrep
∑m
i=j+1 bi+ci, which is destabilizing when argZ

(∑m
i=j+1 bi + ci

)
>

Z(v). Suppose that neither subreps described above are destabilizing; then argZ
(∑k

i=j+1 bi + ci
)
< argZ(v) and

argZ
(∑m

i=1 bi + ci
)
< argZ(v). Summing these inequalities, we find argZ

(∑m
i=j+1 bi + ci

)
< Z(v), so that this

new subrep cannot be destabilizing. Further, if ci + bi is a subrep, then so is ci, but this again gives no additional
destabilizing constraints since argZ(bi) > argZ(bi + ci) > argZ(ci).
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αi · αj = −1), we must connect the respective SU(2) subquivers as

cj

bjci

bi

Xi Yi YjXj

φ′ij

φij

����
oo

//
OO OO

(2.5.9)

with the quartic superpotential W = Xiφ
′
ijXjφij − Yiφ′ijYjφij .

Thus there is a straightforward graphical prescription for constructing a quiver for pure

SYM with simply-laced gauge group G, starting from the Dynkin diagram of G. For every node i of

the Dynkin diagram, we draw and SU(2) subquiver with nodes bi, ci; for every line in the Dynkin

diagram given i − j we connect the SU(2) subquivers as above, with the quartic superpotential.

This is exactly the quiver Â1�G, which was found to describe these theories via 2d/4d in [12]. The

superpotential guarantees the existence of some subset of the W bosons, namely those contained

in any SU(N) subquiver of the full G quiver; studying the full root system of W bosons becomes

quite complicated, and we omit the analysis here. While the quartic terms must be present in the

superpotential, there may or may not be some additional higher order terms. For clarity, we draw

the Dynkin diagrams along with resulting quivers for D4, E6.
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2.5.3 BPS Spectra of Pure SU(N) SYM

In the following we will compute the BPS spectra of SU(N) theories using the mutation

method. We find a spectrum consisting of N(N −1) BPS particles and their antiparticles at strong

coupling in agreement with the identification of the spectrum in this region with CFT states of [68].

For N ≥ 3 these theories are not complete in the sense of ref. [12] since their charge lattice

has rank 2(N − 1) while there are only N physical moduli that can be varied corresponding to half

of the charges and the coupling of the theory. We will therefore not have the freedom to adjust all

the central charges as we wish since some of them will be fixed by special geometry. To apply the

mutation method we therefore need to compute the central charges in a chamber in moduli space

and find a basis which has central charges lying in a half plane.

SU(3)

We begin with an analysis of the SU(3) theory starting from the quiver discussed in

section 2.5.1, which was obtained from a weak coupling analysis and which is verified by the 2d/4d

correspondence [4]. We identify the nodes of the quiver with cycles in the SW geometry and

compute their central charges to determine the ordering of the mutations. Furthermore, we track

these cycles to the strong coupling region where we produce the full BPS spectrum consisting of 6
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particles.

The central charge function is part of the IR data of the theory, and is thus specified by

the SW solution. The SU(N) SW curve can be written as [69–71]

y2 = (PAN−1
(x, ui))

2 − Λ2N , PAN−1
(x, ui) = xN −

N∑
i=2

uix
N−i , (2.5.12)

where the ui are the Casimirs parametrizing the Coulomb branch and Λ is the strong coupling

scale. The SW differential is then given by [69–71]

λ(ui) =
1

2πi

∂PAN−1
(x, ui)

∂x

x dx

y
, (2.5.13)

and a BPS particle which is represented by a cycle γ on the SW curve has charge

Zui(γ) =

∫
γ
λ(ui). (2.5.14)

Finally, the electric-magnetic inner product of two particles is computed by the intersection product

of the associated cycles. We will use γ to refer to both the particle and associated cycle, and ◦ to

indicate both the electric-magnetic inner product and the intersection product.

We will calculate the central charge configuration for a weakly coupled point of the SU(3)

theory. For SU(3) we set u2 = u and u3 = v. The Casimirs ui determine the vevs of the

Cartan elements of SU(N) semi-classically, and it can be checked that u→ −∞ and v = 0 indeed

corresponds to a weakly coupled point in SU(3).

The SU(N) theory has an Sp(2N−2,Z) duality which is manifest in the different possible

choices of symplectic homology basis that could be identified with electric and magnetic charges.

We postpone the charge labeling and identify the nodes of the quiver directly with a choice of cycles

in the geometry as shown in Fig. 2.6a.

The quiver obtained in this way at weak coupling should have a number of properties:

• The intersections of cycles must agree with the electric-magnetic inner product as defined by

the quiver
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(a) Choice of cycles at

weak coupling

(b) Cycles at strong coupling

Figure 2.6: The choice of cycles in the x-plane at weak and strong coupling is shown in Figs. 2.6a

,2.6b respectively. ei , i = 1, . . . , 6 denote the roots of (x3 − ux − v)2 − Λ6 and become the sixth

roots of unity as we tune the moduli to strong coupling and set Λ = 1.

γ1
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#KS
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Figure 2.7: Quiver obtained from the intersections of the cycles in Figs. 2.6a,2.6b.
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• The central charges of all the nodes must lie in a common half-plane

• The apparent SU(2) subquivers should be weakly coupled

• The central charges of the W bosons of the SU(2) gauge groups should be vanishingly small

compared to the central charges of the nodes in the u→ −∞ limit

The last condition follows from the fact that the electrically charged objects should be

parametrically light compared to the dyonic states of the theory at weak coupling, since here the

electric particles are the fundamental degrees of freedom.

The choice of cycles in Fig. 2.6a meets these conditions. That the first is met is obvious,

and the latter three can be explicitly checked by numerically computing the associated integrals

of the SW differential along the given curves. This has been done, and the values of the central

charges for large but finite u < 0 are as depicted in Fig. 2.8a. Since the SU(2) subquivers are

weakly coupled, we are in an infinite chamber, as expected at weak coupling. To apply the mutation

method most efficiently we will tune the moduli to arrive in a chamber with a finite spectrum.

We can track the behavior of the quiver explicitly as we tune moduli. At walls of marginal

stability nothing happens at the level of the quiver, while at walls of the second kind we must

mutate to find a valid description on the other side. A generic path in the SU(3) moduli space

may pass through arbitrarily many - even infinitely many - walls of the second kind, thereby

alluding an analysis. For SU(3) there exists a path which takes us from weak coupling to the

strongly coupled u = 0 point and passes through no walls of the second kind, thereby allowing a

quite seamless transition between the understood weak coupling chamber and the strongly coupled

chamber containing the u = 0 point.

We follow the straight line path with v = Imu = 0 from u = −∞ to u = 0. The pairs of

aligned central charges stay aligned along the entire path, and cross in tandem at a finite value of

u < 0. All the while, all central charges remain in the upper half-plane. At u = 0, both SU(2)’s
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(a) Weak coupling (b) Strong coupling

Figure 2.8: The central charges of BPS states of SU(3) are depicted at weak (a) and strong (b)

coupling respectively. At weak coupling, the left- and right-most nodes, along with the weak

coupling W bosons are shown explicitly. The full spectrum at weak coupling is not known, but at

least includes two infinite towers of dyons, which are not shown. In the limit of zero coupling, the

left- and right-most nodes approach π separation and infinite length. As we tune towards strong

coupling, the states γ1, γ3 and γ2, γ4 approach and cross each other. At strong coupling, the full

finite spectrum of BPS states is depicted; the Z6 symmetry is manifest.
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are strongly coupled, and the central charge configuration is as given in Fig. 2.8b. Now we simply

apply the mutation algorithm with the central charges associated to this point in moduli space.

What we find is a N(N − 1) = 6 state chamber with states

γ2, γ4, γ2 + γ3, γ1 + γ4, γ1, γ3 . (2.5.15)

Let us note some features of the strong coupling spectrum we have found. First of all,

all states in the chamber correspond to vanishing cycles in the Seiberg-Witten geometry. That is,

they all correspond to cycles which vanish somewhere on moduli space. This agrees with earlier

intuition about the relation between the strong coupling SU(N) spectrum and vanishing cycles of

the SW geometry [32,69,71,72].

The second feature, which will become quite important in our SU(N) analysis below, is

that the chamber we have found respects the Z2N = Z6 symmetry of the IR solution.

In principle one would hope that the same story carried over for the SU(N) case. We would

ideally start from weak coupling and tune moduli until we arrived at the strongly coupled ui = 0

point, and then see that this point lied in a finite chamber with N(N − 1) states. Unfortunately

the situation becomes technically complicated, in a way we will briefly explain. Above, we chose a

very particular path between the ui = 0 point and weak coupling, along which the quiver passed

through no walls of the second kind, where quiver mutation is necessary. This was a path which

deformed the order 1 term in the defining polynomial of the Seiberg-Witten curve.

In the SU(N) case it is always the xN−2 deformation which has this nice property. That

is, if we deform the coefficient of the xN−2 term alone from the ui = 0 point along certain directions

in C, the quiver will be extremely well behaved, just as above. The issue is that it is only in the

N = 3 case that this deformation alone is sufficient to arrive at weak coupling. In all other cases

there will be some unbroken subgroup which remains. Thus to get to weak coupling, we must

deform lower order terms, but these are not nice in terms of the quiver description. In particular,
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no simple choice seems to get from strong to weak coupling while only passing through a small

number of walls of the second kind. Potentially such a path remains to be found, and the same

method can then be generalized to the SU(N) case. At present, we will proceed with a discussion

of the SU(N) case at u = 0 based on what we’ve learned in SU(3).

SU(N) at Strong Coupling

We now consider the general case of SU(N) at strong coupling. Our objective is to

determine the quiver, charge labels of nodes, and ordering of central charges at some point of

strong coupling, and then compute the resulting spectrum via the mutation method. Of course,

to honestly produce the quiver we would need to somehow find a basis of BPS states. However,

the quiver has already been derived from other considerations, and motivated from a purely 4d

perspective in 2.5.1. Here we will infer quiver along with charge labels at strong coupling by

generalizing the results above for SU(3).

Fix the moduli ui = 0, so that the Seiberg-Witten curve is given as

y2 = x2N − Λ2N , (2.5.16)

with Seiberg-Witten differential

λ =
1

2πi

NxNdx

y
. (2.5.17)

We take a symplectic homology basis, ai, bi for i = 1, . . . , N − 1, with ai ◦ aj = bi ◦ bj = 0 and

ai ◦ bj = δij . The appropriate choice of cycles is shown in Figure 2.9. We have chosen the ai’s to

be the cycles that collapse as uN → ∞, since these are pure electric charges. There is still some

ambiguity in choosing b cycles, which are pure magnetic monopoles with charges given by simple

roots of SU(N). We fix the ambiguity by choosing the b cycles to be ones that vanish somewhere

in moduli space. This is a natural choice, since each of the simple roots has a full SU(2) moduli

space associated with it contained in the SU(N) moduli space; by the original Seiberg-Witten
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SU(2) analysis, the monopole associated to each simple root becomes massless at some locus of the

SU(N) moduli space.

At the origin of moduli space, the curve has a Z2N discrete symmetry. If we denote ξ the

generator of the symmetry, we have

ξ(x) = e−iπ/Nx. (2.5.18)

The action on the x-plane is simply a −π/N rotation; on the central charge function Z, this gives

ξ(λ) = −e−iπ/Nλ (2.5.19)

ξ (Z(γ)) = −e−iπ/NZ(γ). (2.5.20)

This induces an exact symmetry of the quantum theory that will be quite useful. It indicates that

BPS states will come in Z2N orbits; the magnitude of their central charges of cycles in an orbit

are all identical, and their phases are distributed Z2N symmetrically in the complex plane. Again,

by SU(2) reasoning, each magnetic monopole with simple root charge will be a BPS state at the

origin of moduli space. From Figure 2.9, it is clear that all the bi’s are in distinct orbits. Thus we

have obtained (N − 1) distinct orbits, one for each simple root monopole with electric-magnetic

charge (0, αi); each orbit consists of 2N BPS states, N of which are particles, and N antiparticles.

To compute the periods, we integrate the Seiberg-Witten differential, to obtain∫
λ =

1

2π

N

N + 1
xN+1

2F1

(
1

2
,
N + 1

2N
,

1

2N
+

3

2
, 1

)
= κ(N)xN+1, (2.5.21)

where κ is some proportionality constant that depends on N but is independent of x. Evaluating

the definite integral for the bi’s shown in Figure 2.9, we find

Z(bj) = 2κ(N)ieiπ/N sin
jπ

N
(2.5.22)

From the action of the ξ, we see that the full Z2N orbits of vanishing cycles will fill out all 2N -roots

of unity (up to some overall phase arg(ieiπ/Nκ(N))) in the Z-plane. This configuration of central

charges is depicted in Figure 2.10
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Figure 2.9: The Seiberg-Witten curve described by (2.5.16), shown as a double cover of the x-plane,

with branch cuts as indicated. The labelled ai, bi cycles give a symplectic homology basis. The

action of the Z2N symmetry rotates the plane by e−iπ/N , and thus rotates bi into ci. The bi, ci

cycles constitute the positive integral basis of states that appear as nodes of the quiver. Note that

we have taken a different convention for branch cuts than the one used in Fig. 2.6a. This choice is

more convenient for the strong coupling analysis, and agrees with the conventions used in [71].
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c1, cN-1

c2, cN-2

b1, bN-1 b2, bN-2

. . .
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Figure 2.10: Central charges of vanishing cycles plotted in the Z-plane (where we have rotated by

some overall phase arg(iκ(N)). The half-plane we use to construct the quiver is shown as the gray

region. The bj cycles have Z(bj) ∼ sin jπ
N ; note that Z(bj) = Z(bN−j). The bj are therefore N − 1

distinct collinear states shown on the positive real axis. Each ray of collinear red arrows is a Z2N

rotation of the bj ’s. There are N such rays in the half-plane, situated at 2N -roots of unity. In

total we have N(N−1) states depicted in the diagram. The antiparticles in the opposite half-plane

are not shown. The half-plane is chosen so that bj are right-most BPS states, which forces cj to

be left-most BPS states. As explained in the analysis, for such a half-plane to exist, the region

checkered in white and gray must be free of BPS states.
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To continue, we now generalize from the SU(2) and SU(3) results. In those cases, the

BPS spectra were precisely equivalent to the set of vanishing cycles of the Seiberg-Witten geometry.

It is natural to imagine that for general N it is at least possible to choose a positive integral basis

for BPS states that consists of vanishing cycles. The vanishing cycles do in fact span the homology

lattice, so this is sensible assumption. As we will see, this allows us to obtain a quiver that agrees

with (2.5.1), which was also proposed from other perspectives [4, 32]. Thus, we seek a positive

integral basis of vanishing cycles; to do so, we must first choose a half-plane. Since the N − 1 bi’s

have the same phase, we may tune the half-plane to make them right-most vanishing cycles; then

the bi’s are forced to appear as N − 1 nodes of the quiver.24 Having fixed this choice of half-plane,

it is clear from Figure 2.10 that ci ≡ ξ(bi) form N − 1 right-most vanishing cycles in the half-plane,

and therefore must also appear in the quiver. These states are given as

ci ≡ ξ(bi) =


−ai−1 + 2ai − ai+1 + bi = (αi, αi) if i is even

−ai−1 + 2ai − ai+1 − bi−1 − bi − bi+1 = (αi,−αi−1 − αi − αi+1) if i is odd

(2.5.23)

We now have specified 2(N − 1) nodes of the quiver; in fact, this is exactly the number of nodes in

the quiver, by the counting 2r + f = 2(N − 1). At this point we have fully determined the quiver

as follows:

. . .

cN−1

bN−1

c2

b2

c1

b1

OO OOOO OO

�� �� ��~~   ��

OO OO

(2.5.24)

24In principle, a bound state of multiple bi’s would also have the same phase, and one might worry that some of
these N − 1 states were actually bound states of the others. However, this is in fact impossible. The bi are linearly
independent cycles, so none can occur as a linear combination of the others; furthermore bi ◦ bj = 0, so there exist
no bound states of the form bi + bj . So all of the bi cycles must appear as nodes of the quiver.
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It is encouraging to note that mutation equivalences will allow us to make contact with the weak

coupling discussion of section 2.5.1. The quiver we have obtained (2.5.24) is already of the same

form as (2.5.1), but with different charge assignments. Mutating to the right on all b2i and to

the left on all b2i−1 will produce leave the quiver form unchanged, but transform the charges to

bi = (0,−αi), ci = (αi, αi). These are precisely the weak coupling charges proposed in section 2.5.1,

with some alternative choice of dyon pairs, ni = −1. Note, however, that in order to realize these

mutations, we must go through a large number of wall crossings, since we took left-mutations of

some bi, which, in our strong coupling calculation, are not left-most, but instead right-most.

We can use the quiver to compute the full BPS spectrum at this strong coupling chamber

of moduli space. We begin by mutating on the left-most states, ci. This produces a new set of

charges, ci → −ci, bi → bi + ci−1 + ci+1. The new states that replace the bi are now left-most,

again all at the same phase in the central charge plane. Focusing on the central charges of the

nodes, we see that the charges of the new quiver are related to those of the original quiver by a

rotation of e−iπ/N (see Fig. 2.10). So as we continue mutating in phase order, this process of N

coincident mutations simply repeats itself. Continuing in this way, a finite spectrum is exhibited

by the mutation method with a mutation sequence of length N(N − 1),

c1, c2, . . . , cN−1, b1, b2, . . . , bN−1, c1, c2, . . . , cN−1, b1, b2, . . . , bN−1, . . . (2.5.25)

The states produced in this way are,

c1, c2, c3, . . . , cN−1,

b1 + c2, c1 + b2 + c3, c2 + b3 + c4, . . . , cN−2 + bN−1,

b2 + c3, b1 + c2 + b3 + c4, c1 + b2 + c3 + b4 + c5, . . . , cN−3 + bN−2

b3 + c4, b2 + c3 + b4 + c5, b1 + c2 + b3 + c4 + b5 + c6, . . . , cN−4 + bN−2

...
...

...
...

...

bN−1, bN−2, bN−1 , . . . , b1

(2.5.26)
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This array of states can be filled out iteratively after the first two rows are computed. The state

µij in position (i, j) with i ≥ 2 is given by

µi−1,j−1 + µi−1,j+1 − µi−2,j , (2.5.27)

where we set µij = 0 for j < 1 and j > N − 1. It is slightly more economical to take as the base

cases i = 0, 1 where we add µ0,j = −bj , along with µ1,j = cj as already given. The resulting states

precisely fill out the full set of N(N − 1) vanishing cycles,

|BSU(N)| = N(N − 1). (2.5.28)

This result agrees with the computation of strong coupling BPS states via CFT methods

[68] and is a strong confirmation of the techniques studied here.

2.5.4 Adding Matter

Adding arbitrary hypermultiplet matter to pure SYM with ADE-type gauge group is quite

analogous to the procedure described in 2.4.2 for SU(2). Consider adding hypermultiplet matter

charged under the gauge group G in a representation R. Again, we tune the mass of the matter to

infinity. Here, by similar decoupling reasoning we would expect to add as a node a an electrically

charged lowest weight state of the matter representation R; ie we should have electric-magnetic

charge (−d, 0) where −d is the lowest weight of R. From this, positive linear combinations may

generate the full representation R by adding various W bosons with charge (αi, 0) to the new state

(−d, 0).

Having determined the charge of the new node f = (−d, 0), it is straightforward to

compute electric-magnetic inner products to fix the quiver. Explicitly, we may decompose the

lowest weight −d = −
∑

i diωi where di are positive integers. Then f ◦ bj = (−d, 0) ◦ (0, αj) =

−di(ωi ·αj) = −di and f ◦cj = (−d, 0)◦ (αj ,−αj) = di. Thus the new node has di arrows connected

to each node of the ith SU(2) subquiver, forming an oriented three-cycle. Again we run into the
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subtlety seen in section 2.4.8: this quiver can certainly generate the matter rep R, but may in fact

generate some additional matter representations. In fact, by adding such a node, we actually add

the full tensor reducible representation ⊗iri
di , (where ri are the fundamental reps of the gauge

group) instead of adding only the irreducible rep, R.

We can propose one very clear consistency check on this procedure. Due to the structure of

N = 2 hypermultiplets, adding a hypermultiplet in rep R adds a multiplet of states in R⊕R̄. Thus,

in principle, adding matter in rep R is equivalent to adding matter in rep R̄. For the fundamental

N of SU(N), the lowest weight of N is −ωN−1, while the lowest weight of N is −ω1. This creates

some ambiguity in defining the quiver of SU(N) Nf > 1.

. . .

cN−1

bN−1

c2

b2

c1

b1

fk+1

fk+2

fNf

...

f1

f2

...

fk

OO OO

55

��

,,

||

��ii

OO OO

�� ��   ~~   ~~

OO OO

ii

��

rr

""

��
55

(2.5.29)

By the above discussion, any choice of 0 ≤ k ≤ Nf seems to give a possible quiver for this theory.

For consistency, the representation theory of all of these quivers must be equivalent. One can

easily check that the quivers are in fact mutation equivalent. To move node fi from the left to the

right, apply the following sequence of mutations: fi, b1, c1, b2, c2, . . . , bN−1, cN−1; a similar reversed

sequence fj , bN−1, cN−1, bN−2, cN−2, . . . , b1, c1 moves node fj from right to left. We can move the

fi one by one across the quiver, and any two choices of k will be connected via these mutation

sequences. Thus by the general reasoning of section 2.3, these quivers do in fact correspond to

identical physical theories.
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2.5.5 BPS States of SQCD

We now wish to extend our analysis of strong-coupling SYM to include arbitrary funda-

mental quark hypermultiplets coupled to the gauge group. Recall that our rule for coupling matter

was valid with all masses tuned parametrically large. With a suitable definition of charges, only the

Nf flavor nodes will carry flavor charge,25 and decouple from the pure gauge theory when masses

are scaled up. We again study the origin of the Coulomb branch, and expect the light pure gauge

degrees of freedom to reproduce the finite spectrum given above. Finally, we must fix the central

charge phases of the flavor nodes; we choose all of them to be to the left of the ci; for definiteness,

let argZ(f1) > argZ(f2) > · · · > argZ(fNf ). Having fixed all parameters of the theory, we may

use the mutation method to compute a finite spectrum. For each flavor fk, we find, in phase order

fk, fk + b1, fk + b1 + c1, fk + b1 + c1 + b2, . . . , fk

N−1∑
i=1

bi + ci, (2.5.30)

given by mutation sequence

fk, b1, c1, b2 . . . cN−1. (2.5.31)

As discussed in section 2.4.4, the charges assigned to nodes are dependent on some choice of ‘duality

frame.’ If we take the charge assignments found at weak coupling, bi = (0, αi), ci = (αi,−αi), we

can see a nice consistency check on this result. With these charges, the flavor states found above

contain N pure electric (ie, zero magnetic charge) states with charges forming a fundamental N

of the SU(N), given by fk +
∑k

i=1 bi + ci, 0 ≤ k ≤ N − 1. The remaining states are then some

additional N − 1 additional flavor dyon states.

Since the flavor nodes are to the left with parametrically large masses, any state with

flavor occurs before any of the light pure gauge degrees of freedom; by our choice of central charges,

25Recall that in our analysis of SU(2) with flavor, the natural assignment of charges gave flavor charge to the nodes
of the SU(2) subquiver, along with the additional flavor node. This was simply a familiar choice of convention; by
redefining electric and magnetic charges, we can arrange a configuration in which only the additional matter node
carries flavor charge.
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the flavor states occur in order. All states with flavor charge f1 occur first, and then all states with

charge f2 and so on. Continuing with the mutation method, the set of N(N−1) gauge dyons will be

found after all the flavor states described above. The full spectrum is given byNf (2N−1)+N(N−1)

BPS hypermultiplets, consisting of 2N − 1 flavor states for each fundamental, and N(N − 1) pure

gauge strong coupling dyons,

|BSQCD| = Nf (2N − 1) +N(N − 1). (2.5.32)

2.5.6 Further ADE examples

Here, we briefly review some additional finite chambers of ADE-type gauge theories that

may be obtained by the mutation method. For these examples, the period computation done in

section 2.5.3 becomes much more complicated. We will skip that calculation, and instead simply

identify a finite mutation sequence that generalizes the one found there for SU(N).

For pure SYM with DE-type gauge group, the quiver was given in section 2.5.2. There

exists a finite mutation sequence for any of the ADE-type quivers whose number of states is exactly

the total number of roots of G,

|BADE | = dim(adjoint)− rank(G). (2.5.33)

This spectrum can be interpreted as a monopole-dyon pair for every positive root. The mutation

sequence is given as before

c1, c2, . . . , cn, b1, b2, . . . , bn, c1, c2, . . . , cn, . . . (2.5.34)

We can also study ADE-type groups with additional matter representations, by following

the same strategy as 3.2.4. We fix the pure gauge degrees of freedom at the strong coupling,

finite chamber point discussed above, and take large mass limit for the matter. By choosing the

phase of the matter nodes to be left-most, we force all states with flavor charge to be further
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left than the pure gauge states. For an A-type group (ie SU(N)), in addition to quarks, we may

couple antisymmetric tensor representations, and find a finite chamber. Generalizing from the

SQCD result, there is some duality frame for which the flavor states organize into 1
2N(N − 1) pure

electric states whose charges fill out the antisymmetric tensor of SU(N), along with some number

of additional dyon states. Note that by contrast, an SU(N) theory with matter in the symmetric

tensor rep can never have a finite chamber. The symmetric tensor is given as a the highest weight

representation of the tensor N⊗N. By the prescription of section 2.5.4, the resulting quiver would

contain a subquiver of the form studied for the SU(2), N = 2∗ theory. In section 2.4.8, we showed

that this any chamber of this quiver contains at least two vector particles, and thus cannot have

finitely many states. Furthermore, the presences of at least two accumulation rays obstructs the

mutation method. The larger quiver for SU(N) with a symmetric tensor will produce at least all

the states obtained from its subquiver, and thus it will suffer from the same complications.

For a D-type group, SO(2n) with matter in vector representation of SO(2n), we find a

finite chamber of 4(n + 1) flavor states, along with the 2n(n − 1) gauge states. Here the flavor

states contain 2n pure electric states whose charges fill out a 2n-vector of SO(2n), along with

2n+ 1 additional flavor dyon states. With Nv vector representations, we find

|BSO(2n)| = Nv(4n+ 1) + 2n(n− 1). (2.5.35)

We also find a finite chamber for E6 with matter in the smallest fundamental representa-

tion, 27; the flavor states contain pure electric charges filling out the fundamental representation,

along with 46 additional flavor dyon states; a theory with Nf 27’s yields

|BE6 | = 73Nf + 72. (2.5.36)

For E8, one may not expect any finite chamber, since the smallest fundamental is the adjoint, and

the resulting theory is N = 2∗, that is, a massive deformation of a conformal N = 4 theory.



Chapter 3

Quivers and Riemann Surfaces

3.1 Introduction

In this chapter we aim to broaden our understanding of BPS quivers by studying a simple,

and largely geometric set of examples. We investigate BPS quivers in a class ofN = 2 quantum field

theories known as complete theories [12]. These theories are defined by the property that as one

varies all parameters (including moduli, couplings and bare masses), the number of independent

central charges is equal to the rank of the charge lattice. Completeness is a strong assumption

about a field theory and is typically not satisfied. However, a rich class of examples of such

theories includes all the four dimensional N = 2 models that can be obtained by wrapping a

pair of M5 branes on a punctured Riemann surface. These are the so-called rank two Gaiotto

theories. [35, 36,39,73].

Because of their simplicity, the class of complete theories defined by pairs of M5 branes

on Riemann surfaces will be the focus of our investigation in this work. Broadly speaking, our

aim is to determine and understand the BPS quiver in such examples. To accomplish the task of

determining the BPS quiver, in section 3.2 we reconstruct these complete theories via geometric

engineering in type IIB string theory on a local Calabi-Yau threefold. [11,66,67]. Such an approach

102
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has the advantage that the BPS states can be explicitly identified as D3-branes wrapping special

lagrangian cycles in the Calabi-Yau. This makes the appearance of a quiver in the BPS state

counting problem manifest: the quiver simply encodes the world volume quantum mechanics of the

D3-branes. [6] However, we can go further and pass from this implicit description of the quantum

mechanics of D3-branes to an explicit algorithm for constructing the BPS quiver. As we review

there, the structure of the quiver is completely encoded by a certain triangulation of the Gaiotto

curve, the Riemann surface where the pair of M5 branes lives. Further, we explain how the same

triangulation allows one to compute the superpotential for the quiver, and in this way makes the

task of determining the full BPS quiver data for any given example an algorithmic procedure.

Finally, in section 3.3 we undertake a brief investigation of complete theories with BPS

quivers which do not come from Gaiotto type constructions. In [12] such theories were classified.

They consist of eleven exceptional theories which are not of the Riemann surface type. For all

these examples except one, we determine an associated superpotential and a finite chamber of BPS

states.

3.2 BPS Quivers of Complete Theories

We now turn to our primary interest of determining the BPS quivers, superpotentials,

and spectra for complete theories. In this section we focus on determining the BPS quiver for

those complete theories that coincide with the rank two Gaiotto theories.1 By construction, all

such theories are intrinsically determined by a Riemann surface C decorated by a number of marked

points defined by the punctures. By the conclusion of this analysis, we will see that the BPS quiver,

together with its superpotential, is encoded combinatorially in a triangulation of this decorated

surface.

1In fact, among such theories, BPS quivers exist only for theories given by a Riemann surface with some punctures.
The case with no punctures describes an exactly conformal theory and its BPS states do not admit a simple description.



104 Chapter 3: Quivers and Riemann Surfaces

We will construct these models using geometric engineering [11, 66, 67] in type IIB string

theory on a non-compact Calaibi-Yau threefold. The threefolds in question can be built up starting

from a Riemann surface C. We start with a four complex-dimensional space described by a rank

three complex vector bundle over C. Explicitly

KC ⊕KC ⊕KC → C, (3.2.1)

where in the above KC denotes the canonical line bundle of holomorphic one-forms on the Riemann

surface C. In general the surface C is punctured at a finite number of points pi ∈ C and thus is

non-compact.

Next we select a particular holomorphic quadratic differential φ on C. As a quadratic

differential, φ transforms under holomorphic changes of coordinates on C as follows

φ′(x′) = φ(x)

(
dx

dx′

)2

. (3.2.2)

To completely specify the problem, we must also fix the limiting behavior of φ at the ideal boundaries

of C, namely the punctures pi. Near each such puncture the quadratic differential is permitted to

have a pole of finite order. We fix the non-normalizable behavior of φ as a boundary condition and

therefore impose that near pi

φ(x) ∼ 1

xki+2
dx2 + less singular terms. (3.2.3)

The integer ki ≥ 0 associated to each puncture is invariant under changes of coordinates. It is an

important aspect of the construction, which we return to in section 3.2.1.2

Given this data our Calabi-Yau threefold is then defined by introducing local coordinates

(u, v, y) on the fiber of the vector bundle (3.2.1) and solving the following equation

uv = y2 − φ(x). (3.2.4)

2The reason for the exclusion of the case ki = −1 is that such fluctuations in φ are normalizable, and hence are
not fixed as part of the boundary conditions.
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The associated holomorphic three-from Ω is given by

Ω =
du

u
∧ dy ∧ dx. (3.2.5)

It is then known that finite mass strings probing the singularity of this geometry engineer a 4d field

theory with N = 2 supersymmetry. The Seiberg-Witten curve Σ of such a theory is given by a

double cover of C, and we obtain the Seiberg-Witten differential by integrating Ω over a non-trivial

2-cycle in the fiber.

Σ = {(x, y)|y2 = φ(x)}; λ =

∫
S2(x)

Ω = ydx =
√
φ. (3.2.6)

By varying the quadratic differential we obtain a family of Seiberg-Witten curves, and in this way

the Coulomb branch U of the theory is naturally identified with the space of quadratic differentials

obeying the boundary conditions (3.2.3).

It is also known that many of the simplest interesting gauge theories can be geometrically

engineered in this fashion. For example taking C to be a sphere with two punctures pi both with

ki = 1 constructs the pure SU(2) theory. In general the class of field theories constructed in

this way yields asymptotically free or conformal theories with gauge groups given by a product of

SU(2)’s, together with various scaling and decoupling limits of such field theories. They are exactly

the type IIB version of the rank two Gaiotto theories constructed using M-theory in [36], and, as

we have mentioned above, in that context C is referred to as the Gaiotto curve.

For our present purposes, the primary advantage of building an N = 2 quantum field

theory in string theory is that the set of supersymmetric objects in string theory, the BPS branes,

is known. In our case we seek a brane whose physical interpretation in four-dimensions is a charged

supersymmetric particle of finite mass. Thus the worldvolume of the brane should be an extended

timelike worldline in Minkowski space times a volume minimizing compact cycle in the Calabi-Yau

(3.2.4). Since type IIB has only odd dimensional branes, the only possibility is that BPS states are

described geometrically by Dirichlet three-branes wrapping special lagrangian three-cycles.
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Thus we are reduced to a classical, if difficult, geometric problem of counting special

lagrangians [53, 74]. These are compact lagrangian three-manifolds N on which the holomorphic

three-form has a constant phase

Ω|N = eiθ|Ω|. (3.2.7)

The central charge of such a brane is given by

Zu(N) =

∫
N

Ω, (3.2.8)

and the phase θ in the above is identified with the argument of the central charge of the 4d particle

defined by N

θ = argZ(N). (3.2.9)

Now one of the key observations of [11] is that, in the geometries described by (3.2.4), the

counting of special lagragians can in fact be phrased entirely as a problem in C. To exhibit this

feature we use the fact that all of our special lagrangians are embedded inside the vector bundle

(3.2.1) and hence admit a natural projection to C. The image of this projection is a certain one

cycle η in C whose topology depends on the topology of N . Each special lagrangian also wraps a

non-trivial S2 in the fiber, which shrinks to zero at the zeros of φ. The possibilities in our examples

are as follows, and are illustrated in Figure 3.1:

• N ∼= S3. Such special-lagrangians are discrete. Their quantization yields hypermultiplets in

4d. When this three-sphere is projected to C we obtain an interval η stretching between two

zeros of the quadratic differential φ.

• N ∼= S1×S2. This class of special-lagrangians always come in one-parameter families. Their

quantization yields a vector multiplet in 4d. The projection of any such S1 × S2 to C is a

closed loop η.
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(a) S3 (b) S1 × S2

Figure 3.1: Special-Lagrangian geometry in the Calabi-Yau. The blue denotes a patch of the surface

C. The red trajectory denotes the cycle η and the S2 fibers are indicated schematically above C.

In (a) the topology of the cycle η is an interval which terminates at two zeros of φ. The S2 fibers

shrink at these end points yielding a total space of an S3. In (b), the cycle η has the topology of

a circle, and the total space is S1 × S2. Such special-lagrangians always come in one parameter

families indicated in orange.

The shape of η in C is constrained by the special Lagrangian condition (3.2.7) on N .

Explicitly if we let t ∈ R parametrize η then the condition of constant phase Ω reduces to

√
φ|η = eiθdt. (3.2.10)

The ambiguity in choosing the square root appearing in the above reflects the physical fact that

for every BPS particle there is also an associated BPS antiparticle of opposite charge. Choosing

the opposite sign for the square root then sends θ → θ + π, i.e. it replaces a BPS particle by its

antiparticle.

We have now arrived at an elegant statement of the problem of calculating BPS states

in this class of quantum field theories. Our goal, however, is not directly to use this structure to

compute the BPS states, but rather to extract the BPS quiver of this theory. In the following we

will explain a natural way to extract such a quiver from a global analysis of the flow equations
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(3.2.10).

3.2.1 Triangulations from Special-Lagrangian Flows

Our goal in this section will be to encode certain topological and combinatorial data about

the special lagrangian flow in terms of a triangulation of the surface C. Our basic strategy will

be to analyze the local and asymptotic properties of the flow on C defined by (3.2.10). This is a

problem which is well-studied in mathematics [75] and has recieved much attention in the present

physical context [2,13,22,26,53]. We will confine ourselves to a brief self-contained review. Since a

quiver is constructed from hypermultiplets, our focus will be on the trajectories of this flow which

interpolate between the zeros of φ. Thus a special role will be played by these trajectories.

To begin, we investigate the local nature of the flow near each zero. We assume that this

is a simple zero so that, in some holomorphic coordinate w(x) centered at the zero of φ, the flow

equation (3.2.10) takes the local form

√
wdw = eiθdt =⇒ w(t) =

(
3

2
eiθt+ w

3/2
0

)2/3

. (3.2.11)

Because of the three roots of the right-hand-side of the above, each zero has three trajectories

emanating from it. These trajectories make angles of 2π/3 with each other and separate a local

neighborhood centered on them into three distinct families of flow lines, as illustrated in Figure

3.2.

Aside from the zeros, which can serve as endpoints for BPS trajectories, the other distin-

guished points for the flow are the punctures of C. Since the punctures form ideal boundaries of

C, they should be thought of as lying at strictly infinite distance. Thus the behavior of the flow

equation near these points governs the asymptotic properties of trajectories at very late and early

times. In a local neighborhood centered on the puncture pi ∈ C, the flow equation is asymptotically
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Figure 3.2: The local structure of the flow near a zero of φ shown as a black dot at the center of

the diagram. The red trajectories are the three flow lines which pass through the zero. The black

trajectories denote other generic flow lines.

given by

dw

w1+ki/2
= eiθdt. (3.2.12)

We split our analysis of the solutions into two cases depending on the order ki + 2 of the pole in φ

at the puncture:

• Regular Punctures: ki = 0

The regular punctures in C are naturally associated to flavor symmetries and hence mass

parameters of the engineered field theory [36]. In our analysis this manifests itself in the

following way: the residue of the pole in the flow equation is a coordinate invariant complex

parameter that is part of the boundary data of the geometry. Restoring this parameter to

the asymptotic flow equation we then have.

m
dw

w
= eiθdt. (3.2.13)

The parameter m is the residue of a first order pole in the Seiberg-Witten differential and

can be interpreted as a bare mass parameter.
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We deduce the behavior of the late time trajectories by integrating (3.2.13). The solution

with initial condition wo takes the form

w(t) = wo exp
(
m−1eiθt

)
. (3.2.14)

Assume that the BPS angle θ has been chosen so that m−1eiθ is not purely imaginary. Then

the solution (3.2.14) is a logarithmic spiral. Asymptotically all trajectories spiral in towards

the puncture as illustrated in Figure 3.3.

Figure 3.3: The local flow near a regular puncture indicated in red. The flow lines are spirals

terminating at the puncture.

• Irregular Punctures: ki > 0

In the case of irregular punctures, we find power law behavior for the asymptotic trajectories

upon integrating (3.2.12):

w(t) =

(
−2eiθ

ki
t+

1

w
ki/2
o

)−2/ki

. (3.2.15)

A key feature of this solution is that it exhibits Stokes phenomena. For large |t| the trajectories

converge to the origin w = 0 along ki distinct trajectories. We account for this behavior of

the flows by cutting out a small disk in the surface C centered on the origin in the w plane.
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In terms of the metric structure of C this hole is to be considered of strictly infinitesimal size.

The modified surface now has a new ideal boundary S1, and the ki limiting rays of the flows

are replaced by ki marked points on this boundary. This procedure is illustrated in Figure

3.4.

(a) (b)

Figure 3.4: Asymptotic flows near an irregular puncture with k = 1. In (a) the flow lines converge

along a single ray, the rightward horizontal direction. In (b), the surface C is modified by cutting

out the small gray checkered region. This surface now has a boundary, depicted by the black curve.

On the modified surface with boundary, generic flows terminate at a point, indicated in red, on the

boundary.

For each puncture pi with ki > 0 we perform the operation described above. At the conclusion

of this procedure our modified surface C now has an ideal boundary component S1
i for each

irregular puncture pi and further each S1
i is decorated with ki marked points. From now on,

when discussing flows with irregular punctures, the symbol C shall mean this modified surface,

equipped with boundary components containing marked points for each irregular puncture.

Armed with the above, it is easy to deduce the global structure of the flow diagram on C, that is,

the global picture of the solutions to √
φ = eiθdt. (3.2.16)

We first choose the BPS angle θ generically. This means that there are no BPS trajectories in
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the flow, and hence no finite length trajectories connecting zeros of φ as well as no closed circular

trajectories. There are then two types of flow lines:

• Separating Trajectories

These are flow lines which have one endpoint at a zero of φ and one endpoint at a regular

puncture or marked point on the boundary of C. Separating trajectories are discrete and

finite in number.

• Generic Trajectories

These are flow lines which have both endpoints at either regular punctures or marked points

on the boundary. Generic trajectories always come in one parameter families.

(a) Flow Diagram (b) Triangulation

Figure 3.5: An example flow diagram and its associated triangulation. In (a) we have a global

flow diagram on a disc with four marked points on the boundary. The red dots are the zeros of φ

and the associated separating trajectories are the red lines. The gray cells denote one parameter

families of generic flows. All flow lines end on the four marked blue dots on the boundary. In (b)

we have extracted the associated triangulation. Each black line is a generic flow line selected from

each one parameter family. The resulting triangles each contain one zero of φ by construction.

A useful way to encode the topological structure of these flow diagrams is the following.

We consider our surface C with boundary. It has marked points in the interior for each regular
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puncture, and marked points on the boundary given by the order of the pole of φ at the associated

irregular puncture. Then, for each one parameter family of generic trajectories, we choose exactly

one representative trajectory and draw an arc on C connecting the indicated marked points. An

example is indicated in Figure 3.5b. This procedure produces an ideal triangulation of C where

each diagonal of the triangulation terminates at two marked points. Further, by construction,

each triangle contains exactly one zero of φ. Generally it is possible for the flow to produce an

ideal triangulation with self-folded triangles; these result in some technical complications which we

address in appendix A.

In summary, for a fixed quadratic differential φ and generic angle θ, we have produced an

ideal triangulation of C by studying trajectories of√
φ = eiθdt. (3.2.17)

The combinatorial structure of this triangulation encodes properties of the flow, and we will see in

the remainder of this section how to directly extract a BPS quiver and superpotential from this

triangulation. Throughout the discussion it will be important to inquire how the triangulation

varies as the data (φ, θ) varies. The quadratic differential φ labels a point in the Coulomb branch

of the gauge theories in question, and thus it is natural to fix this data and study the BPS spectrum

at fixed point in moduli space. By contrast, the angle θ is completely arbitrary. Any generic angle

θ can be used, and different angles will produce distinct triangulations. Demanding that ultimately

our results are independent of θ will give a powerful constraint in the upcoming analysis.

3.2.2 BPS Quivers from Ideal Triangulations

We have now arrived at the structure of an ideal triangulation on the surface C. From

this data there is a simple algorithmic way to extract a quiver [54]. As a preliminary definition, we

refer to an edge in the triangulation as a diagonal, δ, if the edge does not lie on a boundary of C.

Then proceed as follows:
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• For each diagonal δ in the triangulation, draw exactly one node of the quiver.

• For each pair of diagonals δ1, δ2 find all triangles for which the specified diagonals are both

edges. For each such triangle, draw one arrow connecting the nodes defined by δ1 and δ2.

Determine the direction of the arrow by looking at the triangle shared by δ1 and δ2. If δ1

immediately precedes δ2 going counter-clockwise around the triangle, the arrow points from

δ1 to δ2.

In [12] many aspects of these quivers were explored and it was argued that these are exactly the

BPS quivers of the associated quantum field theories. We now provide a full explanation of this

proposal.

We first address the identification of the diagonals of the triangulation with the nodes of

the quiver. As we have previously explained, our triangulation is constructed at a fixed value of

the central charge angle θ appearing in (3.2.10). This angle has been chosen such that no BPS

states have a central charge occupying this angle. Now let us imagine rotating θ. Eventually we

will reach a critical value θc where a BPS hypermultiplet occurs and the structure of the flow lines

will jump discontinuously. The key observation is that each triangle in the triangulation contains

exactly one zero of φ. Then, since BPS hypermultiplets are trajectories which connect zeros of

φ, a BPS hypermultiplet trajectory must cross some number of diagonals in the triangulation to

traverse from one zero to another. A simple example of this is illustrated in Figure 3.6(b).

What the above example illustrates is that each diagonal δ labels an obvious candidate

BPS hypermultiplet trajectory, connecting the two zeros in the two triangles which have δ as a

common boundary. Further any hypermultiplet trajectory which crosses multiple diagonals can be

viewed homologically as a sum of the elementary BPS trajectories which cross only one diagonal.

Therefore, diagonals should be nodes of the BPS quiver.
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Next let us justify why arrows in the quiver should be described by triangles in the

triangulation. Each elementary hypermultiplet, corresponding to a diagonal in the triangulation,

lifts to a three-sphere in the Calabi-Yau. Since these three spheres form nodes of the quiver, the

lattice generated by their homology classes is naturally identified with the charge lattice Γ of the

theory. Further the symplectic pairing given by the electric magnetic inner-product is precisely

the intersection pairing on these homology classes. Thus for each intersection point of the three-

spheres, we should put an arrow connecting the associated nodes. On the other hand it is clear

that this intersection number can be calculated by projecting the three-spheres to C and then

simply counting the signed number of endpoints that the associated trajectories share. Each shared

endpoint is naturally associated to the triangle containing it; so the triangles correspond to arrows

between nodes.

The result of this section is that, given a Riemann surface C defining a 4d, N = 2

quantum field theory, we have produced a natural candidate BPS quiver. It is quite interesting

to note that as a result of recent mathematical work [54], these quivers are all of finite mutation

type. In other words, repeated mutations of vertices produce only a finite number of distinct quiver

topologies. In fact this property is equivalent to the more physically understandable property of

completeness [12]. The set of finite mutation type quivers (or equivalently, the set of complete

theories) consists precisely of the quivers associated to triangulated surfaces, as described above,

along with a finite number of exceptional cases, discussed in section 3.3 [76].

We can give one strong consistency check on our proposal for the BPS quivers as follows.

Observe that, to a given Riemann surface theory C we have in fact produced not one quiver but

many. Indeed our quivers are constructed from the triangulation produced from a fixed value θ of

the BPS angle where there are no BPS states. So in fact our assignment is

(C, θ) −→ Qθ = BPS Quiver. (3.2.18)
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As the central charge phase θ varies over a small region, the flow evolves continuously and the

incidence data of the triangulation encoded in Qθ remains fixed. However, as θ varies past a BPS

state, the flow lines and triangulation will jump discontinuously, as illustrated in the basic example

of Figure 3.6. This results in a new quiver Qθ′ , distinct from Qθ. Both of these quivers Qθ and

Qθ′ are natural candidates for the BPS quiver of theory defined by C, and hence we should expect

that the quantum mechanics theories they define are equivalent. In other words consistency of

our proposal demands that all quivers of the from Qθ for any given θ are mutation equivalent.

Happily, a simple theorem [54] shows that this is indeed the case: the set of quivers obtained from

triangulations of a given surface precisely forms a mutation class of quivers.

(a) θ < θcritical (b) BPS State θ = θcritical (c) θ > θcritical

Figure 3.6: Evolution of the special lagrangian flows with the BPS angle θ. In each picture the black

dots indicate the branch points of the cover where flows emerge. Red trajectories are flows that

emerge from the branch points and terminate on the boundary at |x| =∞, while gray trajectories

indicate generic flow lines. The green trajectory denotes a representative of a generic flow line

which can serve as an edge in the triangulation. In (b) the BPS angle of the flow aligns with the

phase of the central charge and a new kind of trajectory, shown in blue, traverses between branch

points. Afterwards in (c) the green line has flipped.
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Actually, we can say more. If we tune θ from 0 to 2π, we will see that every BPS

hypermultiplet corresponds to a jump of the triangulation, and gives a new choice of quiver. This

approach to computing BPS spectra was studied in [13]. As was described there, the discontinuous

jump of triangulation, or flip, at each BPS state γ is given by simply removing the diagonal crossed

by γ, and replacing it with the unique other diagonal that gives an ideal triangulation.3 As argued

in [54], at the level of the quiver, this flip corresponds precisely to a mutation at the associated node.

Thus, if we forget about the surface C and triangulation, and instead focus on the quiver itself, we

see that we are simply applying the mutation method to compute Π-stable representations! This

seems to be a deep insight into how the naively unrelated problems of finding special lagrangians

and computing Π-stable quiver representations are in fact equivalent. Recall, however, that the

mutation method made no reference to completeness of the theory. While the triangulations and

flips exist for some set of complete theories, the mutation method is more general, and can be

applied any BPS quiver. In [77], and the previous chapter we explored applications of the mutation

method to non-complete theories.

In later sections of this paper we will see further evidence for this proposal by recovering

the BPS quivers of well-known quantum field theories. However, before reaching this point let us

illustrate one important subtlety which we have glossed over in the above. Consider the possible

structure in an ideal triangulation of some Riemann surface C, as illustrated in Figure 3.7. According

to the rules of this section, for each bivalent puncture in the triangulation we will obtain, as

indicated, a cycle of length two in the quiver. These are fields in the quiver theory which could,

in principle, admit a gauge invariant mass term in the superpotential. The quantum mechanics

described by the quiver will be rather complicated, if no such mass term is generated. In the next

section we will argue that the natural potential for these theories does indeed generate all possible

3To clarify, once we remove the diagonal of the appropriate BPS state, we are left with some quadrilateral in our
‘triangulation.’ To produce a true triangulation, we may add one of the two possible diagonals that would cut the
quadrilateral into a triangle. A flip is simply given by taking the choice that differs from the original triangulation.
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1

2

Figure 3.7: A bivalent puncture in the triangulation gives rise to a two-cycle in Q. The blue

denotes a patch of C. Red lines indicate diagonals and marked points are punctures. The nodes of

the quiver for the two indicated diagonals are drawn. The bivalent puncture implies that there is

a two cycle in the quiver indicated by the black arrows.

gauge invariant mass terms and therefore simplifies the resulting quivers considerably.

3.2.3 The Superpotential

The previous subsection identified a quiver associated to any ideal triangulation, and

further suggested that this quiver is naturally the BPS quiver of the associated gauge theory. In

this subsection we will complete this picture by describing a natural superpotential for such a

quiver, recently developed in the mathematics literature [78–80]. We will then argue on general

grounds, essentially as a consequence of completeness, that this superpotential yields the necessary

F-flatness conditions for the quiver quantum mechanics theory.

We will build up the superpotential starting from the elementary case of an acyclic quiver.

Since such a quiver has no cycles, there are simply no gauge invariant terms to be written and

W = 0.
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Next we consider an arbitrary quiver Q which, by a sequence of mutations, is connected

to an acyclic quiver. Since Q is the quiver of a complete theory, all of its central charges are

free parameters that can be varied arbitrarily as one scans over parameter space. It follows that

the sequence of mutations connecting Q to its dual acyclic form is in fact realizable by physical

variation of parameters. Hence, following the mutation rules of section 2.3, the superpotential for

the quiver Q is completely fixed by the acyclic quiver with trivial potential.

The argument of the previous paragraph shows that theW assigned to any such quiver Q

is completely fixed, however complicated the sequence of mutations leading from the acyclic form

to Q may be. Surprisingly, there exists an elementary description of this superpotential in terms of

the local incidence data of the triangulation of C which gives rise to Q. This description has been

developed in [78]. For any quiver Q mutation equivalent to an acyclic quiver, the superpotential

W is computed as follows:

• Let T denote a triangle in C. We say T is internal if all of its edges are formed by diagonals,

that is none of the sides of T are boundary edges in C. Then each edge of T represents a

node of the quiver and the presence of the internal triangle T implies that these nodes are

connected in the quiver in the shape of a three-cycle. For each such triangle T we add the

associated three-cycle to W. This situation is illustrated in Figure 3.8a.

• Next let p be an internal, regular puncture in C. Then some number n of edges in the

triangulation end at p. Further since p is an internal puncture which does not lie on the

boundary of C it follows that each such edge terminating at p is in fact a diagonal and hence

a node of the quiver. The n distinct nodes are connected in an n-cycle in the quiver and we

add this cycle to W. This situation is illustrated in Figure 3.8b.

For quivers with multiple arrows between two given nodes, it is important to keep track

of which triangle the arrow arises from when writing down the superpotential. The superpotential
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1

32

B12 B23 B31 Ì W

(a) Internal Triangle

3

21

k

4

B12B23 ... Bk1 Ì W

(b) Internal Puncture

Figure 3.8: The two distinct structures in the triangulation which contribute to the potential. The

blue region denotes a patch of C, the red edges are diagonals in the triangulation. These correspond

to nodes of the quiver which we have indicated on the triangulation. The black arrows connecting

the nodes are the arrows in the quiver induced by the shared triangles shown in the diagram. In

(a) an internal triangle gives rise to a three-cycle in W in (b) an internal puncture of valence k

gives rise to a k-cycle in W.

must be written with a fixed, consistent assignment of arrows to triangles; inconsistent choices are

not equivalent, and will generally give the wrong answer.

The observation that the superpotential can be determined in such an elementary way

from the incidence data of the triangulation is striking. It strongly suggests that W is a local

object that can be determined patch by patch on C. Granting for the moment that this is so allows

us to immediately generalize to any theory determined by an arbitrary Riemann surface C. We can

simply extend the simple rules given above to all quivers.

One important consequence of this extension is that the it automatically ensures that all

of our superpotentials will be compatible with mutation. That is, just as in equation (3.2.18),
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we have now constructed a map from a Riemann surface C and an angle θ to a quiver Q and

superpotential W. However the angle θ is arbitrary. As θ rotates, in general the triangulation T

of C will undergo a series of flips and arrive at a new triangulation T̃ . From this new triangulation

we can determine the quiver (Q̃, W̃). On the other hand we have previously noted that flips in the

triangulation are the geometric manifestation of quiver mutation. Thus we have two independent

ways of determining the dual quiver and superpotential:

• Compute (Q̃, W̃) from (Q,W) by performing a sequence of mutations.

• Compute (Q̃, W̃ ) from the new triangulation T̃

A necessary condition for a consistent superpotential is that the two computations yield the same

answer. In [78] it was proved that this is the case.

The above argument shows that our proposal for the superpotential is consistent with

the quiver dualities described by mutation. However, it depends fundamentally on our locality

hypothesis for the superpotential. As we will now argue, using the completeness property of the

field theories in question, we can give a strong consistency check on this assumption.

All of our arguments thus far involve constraints on W that arise from mutation. As

we mentioned in section 2.3 mutations may be forced when, as we move around in moduli space,

the central charges rotate out of the chosen half-plane. Most importantly, all these rotations are

physically realized, since in a complete theory all central charges are free parameters.

Of course the central charges of the theory come not just with phases but also with

magnitudes. In a complete theory we are also free to adjust these magnitudes arbitrarily. Let us

then consider the limit in parameter space where the magnitude of the central charge associated to

a node δ becomes parametrically large compared to all other central charges

|Z(δ)| −→ ∞. (3.2.19)
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In this limit, the BPS inequality implies that all particles carrying the charge δ become enormously

massive and decouple from the rest of the spectrum. At the level of the quiver Q this decoupling

operation is described as follows: simply delete from the quiver the node δ and all arrows which

start or end at δ. This produces a new quiver Q̃ with one node fewer than Q. The superpotential

for the resulting quiver theory Q̃ is then determined simply by setting to zero all fields transforming

under the gauge group indicated by δ.

Following our interpretation of nodes of the quiver as diagonals in a triangulation, it is

possible to describe this decoupling operation at the level of the Riemann surface C itself. Consider

the diagram of Figure 3.9a which depicts the local region in C containing a diagonal δ traversing

between two punctures or marked points pi. The decoupling operation to destroy the node δ is

then realized by excising a small disc containing δ as a diameter and no other diagonals. The

result of this procedure is shown in Figure 3.9b. It is clear from our construction of BPS quivers

from triangulations that this decoupling operation produces a new surface C̃, whose BPS quiver is

exactly Q̃, the quiver with the node δ decoupled. We may therefore determine the superpotential

W for Q̃ by applying the incidence rules described in this section to the new surface C̃.

In summary, we see that there are two distinct ways for computing the superpotential for

the quiver Q̃:

• Determine from C the superpotential for the quiver Q. Then reduce to Q̃ by deleting the

node δ.

• Determine directly from the surface C̃ the superpotential for the quiver Q̃.

Consistency of our proposal demands that the two methods give rise to the same superpotential. It

is easy to see directly that this is the case. Indeed the effect of the surgery operation illustrated in

Figure 3.9 is to change the two triangles Ti to external ones, and to change the points pi to marked

points on the boundary. Clearly this eliminates from the superpotential exactly those terms in
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p2p1
∆

T1

T2

(a) C pre-surgery

p2p1

T1

T2

(b) δ Decoupled

Figure 3.9: The node decoupling surgery for a typical diagonal δ. In (a) we see a patch of C focused

on the region involving a typical diagonal δ. In (b) δ has decoupled leaving a new a new Riemann

surface C̃ which differs from C by the addition of a new boundary component which encloses the

checkered region and has two marked points pi.

which fields charged under the node δ appear.

By completeness, the decoupling limit argument can be applied to an arbitrary node in a

BPS quiver and yields a strong consistency check on the locality hypothesis and thus our proposal

for the superpotential.

Let us remark that the superpotential we have constructed naturally resolves the headache

proposed at the end of section 3.2.2. By construction, every two-cycle in a quiver arises from a

bivalent puncture of the corresponding triangulation. For each bivalent puncture there is now a

quadratic term in the superpotential that lifts the fields involved in the associated two-cycle. Thus

we may integrate out and cancel all possible two-cycles to produce a two-acyclic quiver.

Finally, before turning to examples, we point out that it would be interesting to calcu-

late this superpotential directly from a string theory construction. While several plausibility and
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consistency arguments have been given, a direct calculation may certainly lead to further insight.

3.2.4 Examples from SU(2) Gauge Theory

In this section we illustrate the rules developed above by cataloguing the BPS quivers, with

their required superpotential, for simple theories given by a single SU(2) gauge group with matter

and asymptotically free or conformal coupling. Of course each theory comes with a number of

quivers related by mutations and we need only derive one. Consistent with our previous discussion,

for those examples involving irregular punctures, we will present triangulations of surfaces with

boundary. In [77] and the previous chapter, the representation theory of these quivers was studied,

and found to agree with the well known BPS spectra of the associated theories.

Before enumerating the examples, we take a moment to fix conventions. Throughout, in all

triangulations, red labeled lines denote diagonals, which appear as nodes of the quiver, while black

lines denote boundary components. Both regular punctures and marked points on the boundary

are indicated by black dots. Bifundamental fields corresponding to arrows in the quiver will be

denoted by Xij and Yij where i and j label the initial and final vertex of the arrow respectively.

Asymptotically Free Theories

We first study quivers for SU(2) theories with asymptotically free gauge coupling.

• SU(2)

This theory is constructed on an annulus with one marked point at each boundary.
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1 2

1 2
//
//

W = 0.

Of course this is exactly the quiver for SU(2) Yang-Mills.

• SU(2) Nf = 1

This theory is constructed on an annulus with one marked point on one boundary component,

and two marked points on the remaining boundary component.

1 2

3

1 2

3

//
//

ZZ

��

W = X12X23X31.

• SU(2) Nf = 2

This theory is constructed on an annulus with two marked points on each boundary compo-

nent.
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1 2
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3

4

//
//

ZZ
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��
ZZ

W = X12X23X31 + Y12X24X41.

• SU(2) Nf = 3

This theory is constructed on a disc with two marked points on the boundary and two

punctures.

2 4

1

5

3
1 2

3

4

5oo

DD

��
//

ZZ

��

OO

��

W = X13X35X51 +X23X35X52

+ X14X45X51 +X24X45X52.
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Conformal Theories

While the previous examples illustrate many general features, all the quivers given there

are mutation equivalent to quivers without oriented cycles. Thus for those cases the potential is

completely fixed by the mutation rules of section 2.3. Now we will consider the case of SU(2)

Yang-Mills theories with vanishing beta functions where the conformal invariance is broken only

by mass terms. Such quivers arise from triangulations of closed Riemann surfaces and never have

acyclic quivers. As such, our proposal for the superpotential is the only known way of constructing

W.

• SU(2) Nf = 4

This theory is constructed on a sphere with four punctures. We draw the associated triangu-

lation on a plane omitting the point at infinity.

2

1

34

5 6

1 2

4

3

5

6

##

;;

cc

{{
ZZ

��

��

DD

W = X15X52X24X41 +X13X32X26X61

+ X15X52X26X61 +X13X32X24X41.

Notice that this triangulation contains two bivalent punctures; the quiver and superpotential

above are obtained after integrating out the corresponding two-cycles.

• SU(2) N = 2∗.
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This theory is constructed on a torus with one puncture. We draw the triangulation on a

quadrilateral where opposite sides are identified.

2

13

1 2

3

//
//

ZZ ZZ

����

W = X12X23X31 + Y12Y23Y31

+ X12Y23X31Y12X23Y31.

It is amusing to note that the this quiver for the N = 2∗ theory is in fact invariant under

mutation and, consistent with our general discussion, our potential is also mutation invariant.

Building from the examples in this section the reader can easily construct the BPS quiver for a

complete theory associated to any arbitrary Riemann surface.

3.3 Exceptional Complete Theories

Thus far in our analysis in this paper we have studied complete gauge theories that are

canonically related to Riemann surfaces. These Riemann surface examples constitute all but finitely

many of the complete theories with BPS quivers. More generally, the full classification of complete

theories consists of [12,76]:

• All quivers associated to triangulated surfaces, as described in subsection 3.2.2.

• 9 quivers corresponding to En, Ên,
̂̂
En type Dynkin diagrams, for n = 6, 7, 8. En and Ên

correspond to the usual finite and affine Dynkin diagrams;
̂̂
En is given in Figure 3.10.
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• Derksen-Owen quivers, X6, X7, given in Figure 3.10 [81].

Having thoroughly investigated the BPS quivers and spectra for complete theories associated to

Riemann surfaces, we now take our investigation to its logical conclusion and investigate the BPS

spectra of the 11 exceptional cases. By construction, the examples of quivers described here have

no interpretation in terms of triangulated surfaces. Thus a priori we have no independent method

for fixing the superpotential, and we simply proceed with an ad hoc case by case investigation.4

3.3.1 En, Ên,
̂̂
En

The En quivers correspond to physical theories that are generalizations of the Argyres-

Douglas superconformal theories, and were studied with the affine Ên quivers in [4]. These quivers

are acyclic, and thus have no superpotential. Acyclic quivers always contain a chamber in which

the only stable states are those given by the nodes themselves. Thus these theories have finite

chambers, where the BPS spectra consists of only the nodes themselves.

The
̂̂
En quivers were also explored in [12]. They are given by glueing linear acyclic quivers

to the quiver of SU(2), Nf = 3, (see Figure 3.11). The only cycles available in these quivers are

those of the SU(2), Nf = 3 quiver; thus we can decouple the acyclic linear pieces as described in

subsection 3.2.3. The linear subquivers do not participate in the superpotential, since they are not

involved in any cycles of the full quiver; therefore this decoupling does not change the superpotential

at all. The superpotential for these quivers is simply the one given by SU(2), Nf = 3, shown in

Figure 3.11. Since the quivers involved in the glueing (i.e. An linear quivers and SU(2), Nf = 3)

have finite chambers 5 we conclude that the
̂̂
En quivers also have finite chambers.

4After completing the manuscript, we were informed that these potentials (excluding X7) were independently
obtained in [82] from slightly different considerations.

5We have not described an explicit finite chamber for the SU(2), Nf = 3 quiver. However, since it corresponds to
a Riemann surface with boundary, namely the disc with two marked points on the boundary and two punctures, we
know that a finite chamber exists.
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Figure 3.10: The three elliptic E–type Dynkin diagrams oriented as to give finite mutation quivers,

and the two Derksen–Owen quivers.
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Figure 3.11: Quiver of SU(2), Nf = 3. The superpotential is given by W = X12X23X31 +

Y12X24X41 + (X12 + Y12)X25X51. Notice that this quiver is embedded as a subquiver of the
̂̂
En

quivers, as shown in Fig. 3.10. A decoupling argument indicates that this gives the correct super-

potential for studying the
̂̂
En quivers.

2

1

3

4
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&&
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Figure 3.12: Quiver of the annulus with one marked point on each boundary and one

puncture, (0, 1, 2, {1, 1}). The superpotential is given by W = X12X23X31 + X34X45X53 +

Y12X23X34Y45X53X31. Note that this quiver is embedded as a subquiver in X6, X7.

3.3.2 X6, X7

The corresponding theories to the Derksen-Owen quivers were also studied in [12]. The

X7 theory is an SU(2)3 gauge theory with a massive hypermultiplet trifundamental. The X6 theory

is a certain decoupling limit of the X7.

The X6 theory can be decoupled to the quiver corresponding to a punctured annulus, with

one marked point on each boundary (0, 1, 2, {1, 1}) without losing any cycles. Thus its superpo-

tential is simply given by the triangulation construction for that theory, as shown in Figure 3.12.

Since X6 can be obtained from a quiver glueing of the punctured annulus quiver to a one-node

quiver, this theory also has a finite chamber.
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Finally, we consider X7. No node of this quiver can be decoupled without removing an

oriented cycle, so the approaches used for the other exceptional quivers will not apply. How-

ever, the mutation class consists of only two quivers [81]; thus it is easy to check by hand that a

propsed superpotential provides a quadratic mass term for all two-cycles generated under mutation.

Furthermore, decoupling node 7 should yield the quiver X6, with the superpotential given there.

From this we are able to guess the superpotential, W = X12X23X31 +X14X45X51 +X16X67X71 +

Y12X23X34Y45X51 + Y45X53X36Y67X73X34 + Y67X73X31Y12X23, which has the desired properties.

In principle there are infinitely many higher order terms that could be added to this potential and

preserve these properties; this is simply the minimal guess. Exhaustive computational searches via

the mutation method have failed to yield a finite chamber for this quiver. Although we have no

proof of this statement, it appears that this quiver does not admit any finite chamber.



Chapter 4

Braids Walls and Mirrors

4.1 Introduction

The previous chapters of this dissertation have served to illustrate the intricate nature

of the BPS spectrum of a general four-dimensional theory. One outcome of these calculations

appears to be the fact that the BPS states are a powerful invariant of the ultraviolet behavior

of the quantum field theory. In particular it is natural to conjecture that for each set of BPS

charges and degeneracies, there is at most one consistent N = 2 theory. Thus, the BPS structure,

which can roughly be viewed as an IR data, appears powerful enough to reconstruct the full UV

description of the theory. However, despite these developments, there is no simple explicit map

from the four-dimensional BPS data to the UV description of the field theory. In particular, as

the BPS states carry both electric and magnetic charges, there is in general no local Lagrangian

description of their interactions.

The story may be simpler for N = 2 theories in three dimensions. These theories are close

cousins of N = 2 theories in four dimensions, but they have half as much supersymmetry. They

enjoy a real central charge in the BPS algebra. Moreover they have the advantage, compared to

their 4d cousin, that even abelian theories are UV-complete. Thus, one can in principle hope that

133
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given an effective Lagrangian description of all the BPS states, the same Lagrangian may describe

the theory in the UV.

In this chapter, we provide a link between the study of 4d BPS states and 3d BPS states

by constructing 3d N = 2 theories from parent 4d N = 2 theories. One natural way to carry

out such a reduction, is to consider a one-parameter family of 4d models, parameterized by an

extra circle where as one goes around the circle one identifies the two sides up to some symmetry

transformation. In [83, 84], the corresponding symmetry was an element of the S-duality group of

the N = 2 theory. Another choice, studied in [3,4] was to use the R-symmetry of conformal N = 2

theories to reduce the theory. Our construction of 3d theories from 4d theories is close in spirit

to [3,4], except that the circle is replaced by real line with suitable boundary conditions at infinity.

In our description, the 3d theory will appear as a 3d domain wall inside a 4d theory. This

wall is characterized by a one-parameter flow of the 4d BPS central charges Zi. As we traverse the

thickness of the 3d wall from one side to the other, the Zi vary along parallel lines while preserving

their phase order, and the boundary conditions of the flow are such that asymptotically all central

charges become infinitely large. As a consequence of these boundary conditions, all degrees of

freedom of the 4d bulk theory, except the massless U(1) gauge multiples, become infinitely heavy

and decouple from the 3d wall theory. However, the BPS particles of the 4d theory have finite

mass on the wall and are trapped there. Thus, the result of this construction is a 3d theory with

N = 2 supersymmetry whose BPS states are inherited from the parent 4d and are potentially

gauged under the U(1) symmetries of the bulk. We call this flow of the 4d theory the ‘R-flow’

due to the fact that at the two boundaries the central charges have flipped sign and hence have

undergone an R-symmetry rotation, Zi → eiθZi, by θ = π. The most important feature of this wall

is that, because the R-flow respects the phase order of the 4d central charges, each BPS state of a

given 4d chamber will give rise to a trapped particle on the 3d domain wall.

Our reduction of a given 4d theory to a 3d theory is not unique, as one could in principle
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start the R-flow from different chambers in 4d related by BPS wall-crossing. This results in a

different set of trapped modes on the 3d wall and hence determines a correspondence between

3d theories constructed by R-flow from a parent 4d model, and the BPS chambers of the parent.

We thus have the analog of induced wall-crossing in three dimensions, and as we will see, this

3d wall-crossing phenomenon can be interpreted as mirror symmetry. As a result, we find a set

of 3d dual theories which are labeled by chambers of the parent 4d theory. And further, the 4d

Kontsevich-Soibelman wall-crossing formula enforces partition function equality of these 3d dual

theories. For example, the simplest non-trivial N = 2 superconformal theory is the A2 Argyres-

Douglas theory [34]. In this case we have two or three 4d BPS states depending on the choice of

chamber, and under R-flow, these lead to two dual theories in 3d, known as Nf = 1 SQED and the

XYZ model [15].

In the process of reduction of 4d theories to 3d, supersymmetry demands that we vary

all the central charges along parallel lines. However, this is not generally possible for arbitrary 4d

theories, as the space of allowed central charges is a subspace of all allowed complex numbers. An

exception is the case of ‘complete’ N = 2 theories, which are characterized by the property that all

their central charges can be varied arbitrarily [12]. Thus, the reduction of complete N = 2 theories

from 4d to 3d will constitute the main example of this paper.

As shown in [12], and discussed in chapter 3, with the exception of eleven cases, all

complete theories (which have BPS quivers) come from two M5-branes wrapping a punctured

Riemann surface as studied for example in [13, 22, 26, 35, 36]. Thus, their reduction to 3d will

correspond to two M5-branes wrapping a one-parameter family of Riemann surfaces. In other words,

it is a 3d theory determined to two M5-branes wrapping a 3d geometry M . For this class of theories

we make contact with the recent work [16]. The BPS data of the 4d parent theory is governed by a

triangulation of the associated Riemann surface. During the R-flow, this triangulation evolves by

a sequence of flips each of which corresponds to a 4d BPS state. Remarkably, exactly the sequence
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of flips prescribed by R-flow determines a decomposition of the 3d geometry M into tetrahedra,

where each tetrahedron is in direct correspondence with a 3d BPS particle. This picture leads to

an explanation and extension of the rules proposed in [16].1 Each 4d chamber, which corresponds

to a dual 3d description, maps to a particular tetrahedral decomposition M , and 4d wall-crossings,

reinterpreted as 3d mirror symmetries, manifest themselves as changes in the number of tetrahedra.

The 3d geometry described byM , together with its decomposition into tetrahedra, encodes

the physics of two M5-branes and hence can be viewed as a non-abelian UV data of the theory.

However, in the IR, this non-abelian structure is higgsed to an abelian one. As a result, the physics

is captured by the geometry of a single recombined M5-brane M̃ which is a double cover of M

branched along a knot. The IR geometry M̃ is the direct 3d analog of the Seiberg-Witten curve

for 4d N = 2 theories and we develop its properties in detail. We find that the R-flow of the

parent 4d theory naturally determines a braid diagram presentation of the branching knot. The

geometry of this branching braid is the key to deciphering the 3d theory. Each intersection of the

branching braids describes a massless 3d particle. Giving the particle mass resolves the intersection

and, in simple cases, determines a correspondence between general 3d particles and braid moves.

Further, the geometry of the braid also encodes the existence of certain superpotentials. These

superpotentials are generated by M2-brane instantons ending on the M5-brane, and are seen as

primitive polygons in the braid diagram.

We illustrate these ideas in the context of the ADE Argyres-Douglas theories. For exam-

ple, for An theories, there are various chambers ranging from n particles to n(n + 1)/2 particles.

This in turn translates to a UV 3d geometry with a minumum number of n tetrahedra and a maxi-

mum of n(n+1)/2 tetrahedra. In the IR this same theory is described by a branching braid on n+1

strands, with particles described by braid moves, and generically cubic and quartic superpotentials.

For the R-flow of the E-case, as we will demonstrate, we can still obtain the resulting 3d theory.

1 For instance we find that some, but not all superpotential terms arise from tetrahedra sharing an edge.
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However, since these do not correspond to multiple M5-branes, the corresponding 3d theories are

not captured by a 3d geometry.

Perhaps the most exciting new 3d theories correspond to the case where the bulk 4d

theory has infinitely many BPS particles. This for example, happens for the weak coupling phase

of pure SU(2). In this case there are infinitely many dyonic BPS states. However, unlike the 4d

case where the dyons have unbounded masses, their reduction to 3d can lead to nearly equal and

finite mass for the trapped dyons. Moreover the 4d vector W-bosons can also be trapped on the

3d wall. In this way it appears that all of the infinitely many BPS states of the 4d theory assemble

themselves into a representation of SL(2,R), and it is natural to conjecture that the trapped W-

bosons mean that the SL(2,R) symmetry is gauged. What is remarkable, is that this theory also

has a strongly coupled phase with only two particles which should describe its 3d dual. In terms of

the 3d geometry, this phenomenon corresponds to situations where, as the hyperbolic structure is

varied, the manifold M goes from having a finite ideal tetrahedralization, to a decomposition into

infinitely many accumulating tetrahedra. It appears that similar phenomena have been studied in

the math literature [85,86].

The organization of this chapter is as follows: In section 2 we study the geometry of M5-

branes wrapping special Lagrangian cycles of Calabi-Yau threefolds, leading to N = 2 theories in

their three uncompactified directions. We explore the emergence of the 3d recombined M5-brane

geometry which encodes the 3d gauge theory, as a direct 3d analog of Seiberg-Witten geometry for

N = 2 theories in 4d. We focus on the main example of the paper which involves two M5-branes. In

this case we explain how the geometry of the branching knot encodes the 3d physics. In particular

we show how the Seifert surface of the knot encodes the description of the U(1)k Chern-Simons

gauge theories, with the Seifert matrix giving the matrix of the Chern-Simons levels. In section 3

we introduce the main notion of R-flow and explain our reduction of N = 2 theories in 4d to N = 2

theories in 3d. In section 4 we recall some basic facts about 4d BPS states described in previous
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chapters and isolate the key features relevant to our constructions. In section 5 we provide some

concrete examples, and study the R-flow of 4d An Argyres-Douglas theories and their resulting

braids. In particular, we explain how the A1 theory (a 4d free hypermultiplet) maps to two M5-

branes wrapping the tetrahedron geometry and show how the double cover of the tetrahedron is

a special Lagrangian lens space in C3. We also show how the chambers of the A2 theory map

to the XY Z model and Nf = 1 SQED, and explain how the 4d wall-crossing leads to 3d mirror

symmetry. We also discuss some aspects of other An theories and show that they correspond to

UV 3d geometries comprised of n-piramids (in the minimal chamber). In section 6 we discuss the

case where we have infinitely many particles corresponding to weak coupling limit of SU(2).

4.2 Five-Branes on Three-Manifolds

One purpose of this paper is to describe a class of three-dimensional N = 2 quantum field

theories which can be engineered by wrapping M5-branes on three-manifolds which we generically

denote by M . In later sections of the paper our primary applications will be to the case involving

two five-branes though the geometry described in this section applies more generally.

4.2.1 Three-Dimensional N = 2 Gauge Theories

Let us begin by recalling the basic parameters and properties of the field theories in

question [15]. We will be focused on describing the degrees of freedom in the infrared on the

Coulomb branch where all non-abelian gauge symmetries have been higgsed to a product of U(1)

factors. The data of such a field theory is then:

• A gauge group U(1)N .

• A flavor group U(1)F with an associated real mass parameter mi for each U(1) factor.

• A symmetric matrix of kij of Chern-Simons terms.
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• A spectrum of charged chiral matter multiplets Xi.

• A superpotential, W, a holomorphic function of chiral fields.

An important fact is that in three dimensions, abelian gauge fields with field strength F are dual

to scalars γ via the relation

∗ F = dγ. (4.2.1)

Charge quantization means that γ is periodic, and in simple cases the resulting theory after duality

enjoys a flavor U(1) which acts on the dual photon γ as a shift. Under this duality, the real mass

parameter m of the dual flavor symmetry can be interpreted as the real FI parameter ζ of the

original gauge group. However, in general it is not always true that shifts of the dual photon

appear as flavor symmetries of the theory. If σ denotes expectation value of the real scalar in the

U(1) gauge multiplet, then after duality the monopole operator

M = exp(σ + iγ) (4.2.2)

is a chiral field which carries charge under the candidate U(1) flavor symmetry. In particular, if

sayM appears in the superpotential, then the flavor symmetry will be broken and correspondingly

there is no real mass parameter, or equivalently no FI-term for the original gauge theory.

Next we consider the central charge of 3d N = 2 theories. Just as in four-dimensional

N = 2 theories, the superalgebra admits the appearance of a central term Z which sets the BPS

bound for the masses of particles carrying U(1) charges. However, unlike the situation in four

dimensions where Z is complex, in three dimensions the central charge is real. If qj and fi denote

gauge and flavor charges respectively, then the total central charge of a particle is

Z(q, f) =
∑
j

qjσj +
∑
i

fimi. (4.2.3)
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Where in (4.2.3) we have implicitly included FI terms as real masses to dual flavor groups. Then,

as stated above, charged particles satisfy a bound on their mass

m ≥ |Z|. (4.2.4)

Charged BPS states saturate the above and, in the simplest case of minimal spin, form chiral

multiplets.

Finally, we take a moment to discuss Chern-Simons terms. In general, we study theories

involving fermions and thus R1,2 (or any other manifold on which we study a three-dimensional

field theory) is equipped with a choice of spin structure. In this situation, the correct quantization

condition for the level matrix is half-integral units, kij ∈ 1
2Z [87]. For convenience, we therefore

introduce the notation k̂ij ≡ 2kij . Then, k̂ij is integrally quantized. Concretely, given a collection

of U(1) gauge fields Ai with canonically normalized kinetic terms, k̂ij appears in the action as

∑
ij

k̂ij
4π

∫
Ai ∧ dAj . (4.2.5)

From now on we will always work with the quantity k̂ij , and refer to it as the level.

We also note that in three dimensions, CS levels receive anomalous contributions from

integrating massive fermions at one loop. Specifically, if (qF )i denotes the vector of U(1) gauge

charges of a chiral fermion F with mass mF then the effective levels are related to the bare ones as

(k̂ij)eff = (k̂ij)bare +
∑
F

(qF )i(qF )jsign(mF ). (4.2.6)

For answering questions about the physics in the extreme IR it is the effective levels which are

the relevant ones. Indeed, assuming that all matter fields are massive, they may be integrated out

leaving a pure Yang-Mills-CS theory with level matrix (k̂ij)eff . However, from the right-hand-side

of (4.2.6) we can see that the effective levels depend on the masses of fields which in turn depend on

the parameters and moduli (mi, ζj , σk). By contrast the bare CS terms are a globally well-defined

property of a theory. Thus, in the following, when we compute CS terms we will always have in
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mind the bare contribution. The effective levels can then be determined from a knowledge of the

spectrum and an application of (4.2.6).

4.2.2 One Five-Brane

Now we study a class of three-dimensional N = 2 field theories that can be constructed

from M-theory. We let Q denote a Calabi-Yau threefold and consider M-theory on the spacetime

R1,4 ×Q. (4.2.7)

We pick a linear subspace R1,2 ⊂ R1,4 and a consider a three-manifold M embedded inside Q as a

special Lagrangian. We then consider the effective three-dimensional field theory determined by a

single M5 brane on

R1,2 ×M. (4.2.8)

In the field theory limit, which is all that is relevant for this paper, we are interested only in the

local dynamics near M inside the Calabi-Yau Q. Then, we may consider a scaling limit where Q

is taken to be non-compact and gravity is decoupled from the degrees of freedom determined by

the five-brane. By construction, the resulting field theory admits four supercharges and hence has

N = 2 supersymmetry in the three-dimensional sense. We will see that the structure of this field

theory is intimately related to the geometry of M .

Geometry of the Coulomb Branch

A basic observation is that there are scalar degrees of freedom describing the small fluc-

tuations of the special Lagrangian M inside the local Calabi-Yau threefold Q. To characterize

these, we first note that near M, Q can be modeled by the contangent bundle T ∗M , and hence to

describe deformations it suffices to think of M embedded inside its own cotangent bundle as the

special Lagrangian zero section. To be explicit, we may introduce a system of local coordinates xi
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on M . Then, any one-form can be expressed locally as yidxi, and hence the yi provide a natural set

of coordinates on the cotangent directions to M . In terms of these our starting point for studying

deformations is therefore the special Lagrangian

M = {(x, 0) ∈ T ∗M} . (4.2.9)

Consider a deformation of M . Since M deforms in its cotangent bundle its local motion

is described by activating a certain one-form λ. In other words, M has deformed to the locus of

points M ′ of the form

M ′ = {(x, λ(x))} ⊂ T ∗M. (4.2.10)

To minimize the energy, the deformation M ′ must also be special Lagrangian. In the linear ap-

proximation, such deformations are canonically identified with the space of harmonic one-forms on

M . To see this we note that in terms of the local coordinates (x, y) on T ∗M the symplectic form

ω has the canonical expression

ω = dy1 ∧ dx1 + dy2 ∧ dx2 + dy3 ∧ dx3 = d(yidxi). (4.2.11)

Therefore on the deformed locus M ′, the symplectic form restricts to

ω|M ′ = d(λ). (4.2.12)

Since we wish M ′ to be Lagrangian, the restriction of ω to M ′ must vanish and hence λ must be

closed.

We can perform a similar calculation with the local holomorphic three-form Ω on T ∗M .

Restricted to the deformation locus M ′ the imaginary part of Ω appears to first order in λ as

= (Ω|M ′) = d(∗λ). (4.2.13)

To ensure that the deformation is special, the imaginary part of Ω must vanish when restricted to

M ′. This implies that the one-form λ is co-closed and hence harmonic on the original three-manifold

M .
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Thus, in the linear approximation, the classical moduli space of special Lagrangian de-

formations of the three-manifold M can be identified with the vector space of harmonic one-forms

which can in turn be identified with the cohomology group H1(M,R) via Hodge theory. To gener-

alize beyond the linear approximation we now invoke a theorem of Mclean [88] which ensures that

every first order supersymmetric fluctuation of M can in fact be integrated to a supersymmetric

deformation of finite size. Hence, the full non-linear classical moduli space of deformations of the

special Lagrangian M inside Q can be identified with a manifold whose tangent space at M is

canonically the space of harmonic one-forms.

Now, supersymmetry dictates that all fields must appear in representations of the N = 2

superalegebra. In particular, this means that the real scalars we have found must in fact be paired

with other bosons. To find the remaining half of the bosonic fields, we recall that the five-brane

theory supports a two-form field B propagating on its worldvolume. This field can be activated

for zero cost in energy provided that the field strength is vanishing dB = 0. On the other hand, B

itself is only defined up to gauge transformations which shift its value by an exact two-form. Hence,

flat B fields on M yield a space of deformations of dimension h2(M,R). To be completely precise

we should also note that as a gauge field, B is naturally a periodic variable and hence the correct

cohomology measuring B is valued in R/Z. If we combine these scalars with those arising from

fluctuations of M we find that locally, the classical five-brane moduli space can be parameterized

by

H1(M,R)×H2(M,R/Z). (4.2.14)

Three-dimensional Poincaré duality ensures that the two vector spaces introduced above are of

equal dimension and implies that these scalars fill out N = 2 chiral multiplets.

To a low-energy three-dimensional observer in R1,2, the scalar degrees of freedom that we

have identified have a natural interpretation in terms of the classical coordinates on the Coulomb

branch of an effective U(1)b1(M) gauge theory. Indeed the one-form λ is characterized by its periods
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and describes the expectation values of the real adjoint scalars σ appearing in N = 2 vector

multiplets. Meanwhile the circle valued variables described by the periods of B are the expectation

values of dual photons γ. If we introduce a basis of one-cycles αi and a Poincaré dual basis of

two-cycles βj then an explicit set of local coordinates along the moduli space is given by

∫
αi

λ = σi,

∫
βj

B = γj . (4.2.15)

The fact that the moduli space can be coordinatized in terms of periods is the starting point for a

kind of real special geometry which governs the classical effective action.2 This real special geometry

is the three-dimensional counterpart to the holomorphic special geometry of four-dimensional N =

2 systems. However unlike the situation there where non-renormalization theorems protect the

form of the metric from quantum corrections, a three-dimensional N = 2 system has only four

supercharges and hence the metric is subject to quantum corrections. Nevertheless, the observation

that the central charges of particles can be characterized in terms of the periods of a one-form λ

will play a crucial role in the remainder of this paper. These central charges are protected from

quantum corrections involving chiral multiplets [15, 90], and hence the periods of λ will remain

meaningful when we study the quantum behavior of the theory.

There is an important subtlety in the above description of the Coulomb branch which

arises due to the fact that three-dimensional Yang-Mills theories admit Chern-Simons terms. In

the presence of a non-vanishing level k̂ the equation of motion for a three-dimensional U(1) gauge

field with field strength F and Yang-Mills coupling e is modified to

∆F ∼ (k̂e2)2F. (4.2.16)

2 Indeed, in generalizing beyond the linear approximation, one finds a real prepotential F (σ) characterized by the
condition that ∂F

∂σi
=
∫
βi
∗λ. In terms of F the full non-linear metric on the classical moduli space is then [89]

ds2 =
∂2F

∂σi∂σj
dσi ⊗ dσj +

(
∂2F

∂σi∂σj

)−1

dγi ⊗ dγj .
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This equation means that the propagating photon has been given a non-zero mass k̂e2. In particular

this implies that the expectation value of the dual photon γ is frozen to zero. By supersymmetry

the same is in fact true for the adjoint scalar, σ. In our geometric context this has the following

significance. The quantities γ and σ are measured by periods of the two form B and the one-form λ

over a certain two-cycle β and dual one-cycle α. If these periods are frozen to zero then at the level

of cohomology valued in R the associated cycles cannot be detected, and hence the Betti numbers

b1(M) and b2(M) have each been decreased by one unit.

However, the cycle can still be detected by the more refined data of the integer valued

homology. In the presence of a non-zero level k̂ for the U(1), there are observables given by the

holonomy of the gauge field along cycles C in R1,2

exp

(
iq

∮
C
A

)
. (4.2.17)

For such an operator, the charge q is naturally valued in Zk̂. Indeed, given two such observables,

the correlation function is [91]〈
exp

(
iq1

∮
C1

A

)
exp

(
iq2

∮
C2

A

)〉
∼ exp

(
2πiq1q2

k̂
[C1, C2]

)
. (4.2.18)

Here the quantity [C1, C2] denotes the integer valued linking number between the curves Ci. From

the form of this correlation function, we see that if q vanishes mod k̂ then the Wilson line (4.2.17)

has trivial correlation functions thus illustrating that q is valued in Zk̂.

In our context, gauge charges for the theory are captured by H1(M,Z). Then, if the CS

level is k̂ we see from the above discussion that we only expect mod k̂ charges. In other words the

CS level is k̂ if and only if H1(M,Z) = Zk̂. This is our desired result: CS levels for the U(1) gauge

theory are encoded in geometry by torsion classes in H1(M,Z). We can extend this observation to

the case where we have many U(1)’s. In full generality, the relationship between the homology of

M and the gauge theory in R1,2 is as follows. Let the gauge theory be that of n U(1) gauge fields

with a level matrix k̂ij . Then H1(M,Z) is generated by n elements Γi modulo relations defined by
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the image of k̂ij

H1(M,Z) ∼=
n⊕
i=1

Z[Γi]
/(

k̂ijΓj = 0
)
. (4.2.19)

This equation has the key feature that b1(M) counts the number of zero-eigenvalues of k̂ij and

hence captures the number of propagating massless gauge fields. The remaining non-degenerate

part of k̂ij encodes the torsion structure of the homology. The fact that the charges of U(1)n

Chern-Simons theories are captured by (4.2.19) is well known (see e.g. [92, 93]), and we return to

concrete applications of this formula in our study of examples in section 4.2.4.

Finally, to complete our geometric description of the massless sector of the Coulomb

branch, we will now describe how to include FI terms and real masses into the description. Both of

these deformations are naturally associated with activating bulk moduli of the ambient Calabi-Yau

Q. In fact both arise from a variation in the Kähler class of Q. To see this let us suppose that the

symplectic form ω is varied to a new class

ω → ω + δω. (4.2.20)

Then, since ω enters in determining the Lagrangian condition on submanifolds, the deformation

above enters our description as a modification in the behavior of the one-form λ as in (4.2.12)

dλ = δω|M 6= 0. (4.2.21)

The interpretation of the above modification depends on the behavior of δω restricted to M .

Specifically, since δω is closed its restriction to M can be in general a sum of terms which are

cohomologicaly trivial or non-trivial. We examine the effects of each of these:

• δω restricts to M to an exact form dη. Then, the one-form λ is modified to include a

contribution from η

λ→ λ+ η. (4.2.22)
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Such a modification permits λ to develop periods over contractible one-cycles in M and it

is these periods which are interpreted as real mass parameters. They are well defined as a

consequence of the fact that the symplectic form is closed.

To see the connection of the modulus δω to a flavor symmetry, we note that this modulus is in

the same N = 2 multiplet as the bulk U(1) gauge field A which descends from the reduction

of the M-theory three-form C as

C = δω ∧A. (4.2.23)

From the point of view of the five-brane, the field A is non-dynamical, and therefore fields

charged under A carry a flavor charge. The expectation value of the scalar modulus δω then

determines the associated mass.

To be precise, one should view the non-vanishing contribution to dλ as being supported at

infinity in the Calabi-Yau Q, and the real mass as a kind of residue. This is analogous

to how mass parameters appear in 4d N = 2 theories described by wrapping an M5-brane

on a Riemann surface. There is a one-form φ on the Riemann surface, the Seiberg-Witten

differential, which characterizes the normal motion of the brane. The embedding of the

Riemann surface in Q is non-compact and has ends which appear asymptotically as R× S1.

The periods of φ over these asymptotic circles are then the mass parameters of the theory

[13,16,22,26,35,36]. We can equivalently describe this feature by compactifying the Riemann

surface, and allowing φ to have residues. This means that φ is no longer closed as dφ ∼ δ(x).

Similarly in our three-dimensional context, the embedding of M in Q can have ends which

appear asymptotically as R× C for some Riemann surface C. Then, the one-form λ can have

periods over cycles in C which encode the real masses. Compactifying M , simply means that

λ is no longer closed as above.

• δω restricts toM to a non-exact form. In that case we make use of a basis βi of cohomologically
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non-trivial two-forms and expand δω. Then, the modification of the equation defining λ is

dλ =
∑
i

ζiβi. (4.2.24)

Here, the real coefficients ζi appearing in the above expansion are naturally interpreted as FI

parameters. Observe that, there is one such constant for each two-cycle, dual to βi which are

non-trivial not only inside M but also in Q. Later, when we describe M2-branes we will see

that it is exactly these cycles which give rise to dual flavor symmetries.

The fact that these parameters are indeed the FI terms can be understood by noting that

in the presence of non-vanishing ζi there is no solution to the above equation. As in our

description of Chern-Simons levels this is interpreted as a destruction of the two-cycle dual

to βi. As a consequence of this we see that the parameter ζi has the correct physical effect of

higgsing the associated U(1) gauge group. Again, as in the case of real masses, one can make

λ closed at the expense of deleting certain loci.

BPS M2-Branes and Instantons

The massless U(1) gauge multiplets we have identified constitute an important subset of

the information defining the Coulomb branch of the three-dimensional field theory determined by

a five-brane on a three-manifold M . To complete the description, we now incorporate charged

chiral multiplets and superpotentials. As we will see, all such objects arise from the possibility of

M2-branes ending on the M5-brane and altering the physics.

First, let us discuss the inclusion of chiral multiplets in the field theory. We recall that

because an M5 supports the two-form field B an M2 may end on an M5 in two spacetime dimensions

while remaining consistent with charge conservation. Thus, to make a particle in three dimensions

we may consider a two-brane whose worldvolume meets the five-brane along a timelike direction in

R1,2 and a one-cycle Γ in M , as illustrated in Figure 4.1. Let D denote the two-cycle in the Calabi-
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Figure 4.1: A BPS M2 brane. A three-manifold M , shown in green, sits inside the ambient Calabi-

Yau Q, shown in white. The three-manifold supports a non-trivial one-cycle Γ shown in blue. A

minimal M2 disc, shown in red, can end on this cycle and describes a BPS particle in R1,2.

Yau Q defined by the spatial directions of the M2. Then the mass m of the associated particle in

R1,2 is determined by the volume of D. However, since we are interested in chiral multiplets we

are interested in short representations of the supersymmetry algebra and hence in BPS M2 branes.

Thus the cycle D must be minimal in its homology class and is therefore holomorphic. As a result

the volume of D is fixed by the Kähler form

m =

∫
D
ω. (4.2.25)

However, locally near M we may use (4.2.12) to write ω = dλ. Then since ∂D = Γ we use Stokes’

theorem in the above to obtain

m =

∫
Γ
λ = Z (4.2.26)

Where Z is the central charge of the particle as measured by the periods of λ. This fact clarifies

why it is the periods of the one-form λ which measures the central charges of charged particles.

In the far infrared, all matter particles in R1,2 can be described by two-branes, and hence the

gauge charge lattice of the theory is naturally identified with the set of one-cycles H1(M,Z). The

one-form λ pairs with these charges and hence its periods can encode the central charges of the
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field-theory.

Geometrically, a non-trivial chiral multiplet of charge Γ is described by a two-brane with

topology of a disc. The existence of this disc means that while the one-cycle Γ may be non-trivial

in M , when considered as a cycle in the ambient Calabi-Yau Q it is homologically trivial. It

is exactly these cycles which become contractible in the ambient space that give rise to charged

matter. Those one-cycles in M which remain non-contractible in Q describe gauge groups which

have no associated charged chiral particles.

The above discussion of chiral multiplets sets the stage for other ways in which two-

branes can influence the three-dimensional physics. Indeed, because an M2 can end on an M5 in

two spacetime dimensions, its interpretation to a low-energy observer depends upon how many of

the macroscopic dimensions the two-brane occupies. If a two-brane ends along a compact two-cycle

in M then it occupies zero macroscopic dimensions and hence exists at a point in R1,2. Such an

object is naturally interpreted as an instanton. One way to understand this is to examine the

contributions to the action of this instanton. Since the two-brane carries B field charge, if it ends

on the cycle βj in M then its action will receive a contribution of the form

exp

(
i

∫
βj

B

)
= exp

(
iγj

)
. (4.2.27)

Thus, the instanton action is weighted by a phase determined by the expectation value of the dual

photon. This is familiar from the general structure three-dimensional field theories. It also serves

to illustrate why it is the periods of B which measure the expectation values of the dual photons.

The charges of possible instantons are naturally labeled by two-cycles, and it is with these objects

that B can naturally pair.

Similar to the case of M2-brane particles, the presence of the instanton ending on the

cycle β implies that while β is a non-trivial cycle in M it is homologically trivial in Q. This in

turn implies that the associated monopole operator M is present in the Lagrangian of the theory,
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and hence the dual flavor symmetry is broken. Note that this further clarifies why the parameters

appearing in (4.2.24) are indeed the FI parameters. Dual flavor symmetries appear only for those

non-trivial two-cycles in M which remain non-trivial in Q. For those two-cycles in M which are

contractible in Q there are M2-brane instantons, and the dual flavor symmetry is broken.

Finally, to construct a superpotential for the chiral fields we may consider an two-brane

geometry which is a hybrid of the two elementary geometries described above. We fix background

chiral particles Xi described geometrically by M2-brane discs ending on a collection of one-cycles

Γi ⊂M . Then, we find an M2 world-membrane that mediates an interaction between these objects.

Topologically the worldvolume of this membrane is a three-manifold with boundary. This three-

manifold lies entirely in the internal geometry Q and has boundary along the M2 discs describing

the particles and along a two dimensional surface in M whose boundary is the union of the Γi. An

example of this geometry is illustrated in Figure 4.2a. When the world-volume of this membrane

is minimal, it describes a supersymmetric interaction and hence can give a contribution to the

superpotential for the chiral fields. In practice, the most relevant case of this phenomenon occurs in

the limit where the masses of the chiral particles become small and the superpotential is important.

In that limit, the one-cycles labeling the charge of the chiral fields collapse to points and the two-

brane we are describing is a handlebody whose boundary Riemann surface lies on a two-cycle in M

and has a number of marked points corresponding to the insertion of massless chiral fields as shown

in Figure 4.2b. That such instanton-like brane geometries make contributions to the superpotential

is familiar from a variety of similar situations.

4.2.3 Many Five-Branes

When multiple five-branes wrap a three-manifold M , the resulting non-abelian dynamics

gives rise to a strongly interacting field theory in three dimensions. Nevertheless in the IR on the

Coulomb branch, we can still make use of the geometry described in the previous section to encode
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(a) Superpotential Geometry for Massive Fields (b) Superpotential Geometry for Massless Fields

Figure 4.2: M2 brane contributions to the superpotential. In (a), we have four massive BPS

states described by the pink M2 discs ending on blue one-cycles in the three-manifold. A three-

dimensional closed M2 has boundary on these discs and along a two-dimensional locus in M and

mediates a quartic interaction between the BPS particles. In (b), the BPS states become massless

and the membrane geometry degenerates to a solid ball with four marked points, whose boundary

lies entirely in M .

the physics. The key observation is again to recognize the effective scalar degrees of freedom. Just

as for the case of a single five-brane, the tranverse motion of the branes can be viewed as taking

place in the cotangent bundle T ∗M . If there are a total of n five-branes wrapping M then there

are naively n independent one-forms λi on M which describe the motion of each individual five-

brane. The reason that this assertion is naive is that it fails to account for the possibility that,

after activating fields, the n distinct branes will recombine into a single connected object. In fact,

a generic point on the Coulomb branch of the field theory is described by a geometry of this sort,

and thus this possibility must be taken into account.

Fortunately, there is an elementary way to allow for brane recombination. We simply

permit the possibility that the n objects λi are not individually globally well-defined but instead
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permute amongst themselves as we traverse the manifold M [94]. Said differently, the one-forms

λi are permitted to have one-dimensional branch loci and, under circling the branch locus, they

are acted on by Sn, the permutation group on n letters. Such a structure naturally encodes brane

recombination and gives rise to a three-manifold M̃ which is a n-sheeted cover of M . By definition,

M̃ is exactly the three-manifold where the n branched one-forms λi glue together to yield a single,

globally well-defined, harmonic one-form λ. We can encode this condition in equations by noting

that λ defines completely the locus of the three-manifold cover M̃ inside the cotangent bundle of

the base T ∗M . Thus, knowledge of λ is equivalent to knowledge of the induced metric on the special

Lagrangian M̃ and hence defines a hodge star operation ∗λ. Then, the supersymmetric equations

defining the IR geometry are

dλ = d ∗λ λ = 0. (4.2.28)

These are a set of non-linear relations on λ or equivalently the λi. They state that λ is harmonic

in the induced metric which it determines.

Conceptually, the advantage of passing to the cover M̃ is that in the infrared all of the

physics that is described by n five-branes wrapping M is completely encoded by the recombined

brane M̃ . The virtue of this description is that the effective description is that of a single five-brane

on M̃ . It is therefore naturally abelian and described by the geometry of the previous section. For

example, it is the periods of the harmonic one-form λ on M̃ which determine the real central charges

of the three dimensional field theory. Thus all of the non-abelian dynamics of multiple five-branes

is encoded in the geometry of the covering manifold.

It is natural to interpret the existence of the cover M̃ , and its central role in the field

theory, as a parallel to a similar structure which occurs in four-dimensional N = 2 gauge theories

which arise from placing n five-branes on a Riemann surface Σ. Just as above, the infrared dynamics

of that theory are determined by brane recombination. The transverse motion of a single five brane

is again identified with fluctuations in the contangent directions to the compactification manifold,
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namely Σ. Thus, for each brane we expect a holomorphic one-form φi which parametrizes the

position of the i-th brane. Brane recombination implies that the φi are not well-defined and

instead have branch cuts where they mix. On passing to an n-fold cover Σ̃ these one-forms glue

together to a single globally well-defined object φ. This cover Σ̃ is the Seiberg-Witten curve and

φ is the Seiberg-Witten differential [35]. Their geometry and periods completely encode the low-

energy action [9, 10]. The manifold M̃ , whose abstract existence we have eluded to in this section

plays a similar role in the three-dimensional physics, and in later sections where we study explicit

examples, our primary task will be to determine M̃ .

4.2.4 Two Five-Branes

For most of our explicit examples in later sections, we will be interested in the special-

ization to the case where the number of five-branes, before recombination, is two. Then, the IR

five-brane geometry is that of a branched double cover M̃ →M . In this section we discuss in more

detail the resulting three-dimensional topology and its relation to the physics.3 In practice our pri-

mary examples will be to the case where M is a three-sphere and for the remainder of this section

we make that restriction.4 Our specific goal will be to determine the homology group H1(M̃,Z).

As we have argued in equation (4.2.19), complete knowledge of this homology is equivalent to a

description of the gauge boson sector of the field theory on R1,2, with propagating fields captured

by the Betti number b1(M̃) and non-trivial levels k̂ij encoded in the torsion classes of H1(M̃,Z).

Further, in section 4.2.4, we also illustrate how the M2 brane geometries discussed in previous

sections can be visualized more directly in the case of a double cover.

3 Much of this geometry is classical. For an introduction see [95].

4 In terms of the topology of the cover M̃ this is no restriction. Indeed, every orientable compact three-manifold
can be presented as a double branched cover of S3 [95].
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Seifert Surfaces

We begin with the elementary observation that S3 has trivial topology. From this it follows

that all the resulting topology of the cover is encoded in its branch structure over S3. Since M̃ is

smooth, the branch locus is required to be a smooth embedded closed submanifold of M dimension

one. Topologically, the branch locus is therefore a union of circles. However, the circles may be

embedded in S3 in a complicated fashion and hence form a non-trivial knot K.5 The topology

of the cover M̃ is completely fixed by K. To construct the cover we first proceed by drawing a

branch sheet. This is a smooth two-dimensional surface F whose boundary is the given knot K.

A classical theorem of Seifert, Frankl, and Pontrajgin ensures that such a surface always exists,

and that further one may assume F to be orientable. When this is so, F is referred to as a Seifert

surface for the knot K. Some examples are illustrated in Figure 4.3.

Once a Seifert surface has been specified, the double cover M̃ can be constructed explicitly.

We take two copies of S3 and cut them both along F . In each three-sphere this creates a boundary

which is topologically two copies of the Seifert surface, F+ and F−, intersecting along K. Then we

glue F+ in one S3 to F− in the other S3 and vice versa to create M̃ which is a two-to-one cover

of S3 except over the knot K. Of course, as is the case with branched covers of Riemann surfaces,

there are in general many choices of branch sheets, and so given a knot K its Seifert surface is not

unique. However, the topology of the cover M̃ is independent of this choice and thus any convenient

Seifert surface can be used for the branch sheet. In practice this construction is useful since many

properties of the cover can be deduced directly from any given Seifert surface.

One useful quantity that we may extract from the Seifert surface F is the homology

H1(M̃). Indeed, since S3 has no non-trivial one-cycles, all cycles in M̃ can be localized to a

neighborhood of K and must involve the knot if they are to be non-trivial. This is quite similar

5 In this paper by the term knots we will refer to both knots and links, and whenever we really mean “knot” we
shall emphasize it.
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(a) Pretzel Knot (b) Seifert Surface

(c) Borromean Rings (d) Seifert Surface

Figure 4.3: Knots and associated Siefert surfaces. In (a) and (c) we see non-trivial knots. In (b)

and (d), we see Seifert surfaces whose boundaries are the given knots. The knots are an example

of possible branch loci for a double cover of S3. The Seifert surfaces are then the branch sheets

defining the cover geometry.
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to the case of the homology of a branched cover of the two-sphere. There, the branch locus is

a number of points, and the branch lines are segments I connecting pairs of these points. The

homology of the double cover is then generated by the classes in the complement of the branch

lines, H1(S2 − ∪I). Our situation is exactly parallel, save for the fact that it takes place in one

higher dimension. The homology of M̃ , a branched double cover of S3, is generated by the cycles

in the complement of the branch sheet H1(S3 − F ).

We can make a further simplification by observing that cycles in S3 − F and cycles in F

are naturally dual. Indeed, given α ∈ H1(S3 − F ) and β ∈ H1(F ) we represent α and β by simple,

oriented, closed curves and compute the linking number [α, β] ∈ Z. This determines a pairing

[·, ·] : H1(S3 − F )×H1(F ) −→ Z. (4.2.29)

And in fact the pairing is an isomorphism. This implies that a natural spanning set of one-cycles

generating H1(M̃) is given by the homology classes on the Seifert surface itself, H1(F ).

Now, although the homology H1(F ) generates the homology of the cover, typically when

considered in M̃ , many of these cycles are in fact homologically trivial. Thus, H1(F ) is generally an

overcomplete set of cycles, and our task is to determine which classes on the Seifert surface become

trivial in M̃ . To do so, we introduce the concept of a Seifert matrix. This is a b1(F )×b1(F ) integral

matrix defined as follows.

• Definition: Let Γi be a one-cycle in F . Since F is oriented we can define Γ+
i as a small pushoff

of Γi out of F in the positive direction. Then the Seifert matrix A is the matrix of linking

numbers Aij between the one-cycle Γi and the pushoff Γ+
j .

Armed with this matrix we can then say that the first homology of the cover M̃ is generated

by H1(F ) modulo the relations defined by the symmetrized Seifert matrix

H1(M̃) ∼= H1(F )/Image(A+AT ). (4.2.30)
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Thus for example, the rank of the kernel of the map A+AT computes the first Betti number of M̃ .

Meanwhile if the homology of M̃ is a finite abelian group, then the order of this group is computed

by |det(A+AT )|.6

The fact (4.2.30) should be directly interpreted in terms of our general discussion of U(1)

gauge fields and CS terms in (4.2.19). In general, the gauge multiplet sector of the theory is

described by a collection of abelian gauge fields and a matrix k̂ij of levels. This data translates

into a description of the homology H1(M̃). The U(1) gauge fields are a generating set of classes

in the homology, and the matrix k̂ij describes the relations among these generators. In (4.2.30) we

see exactly this description and hence we propose that:

• U(1) gauge fields are given by generators Γi of H1(F ).

• CS levels k̂ij are given by the symmetrized Seifert matrix A+AT .

In this description, the fact that the Seifert surface is non-unique translates to a statement about

equivalence of various CS theories. Any Seifert surface may be used to describe the physics, and

distinct surfaces give distinct sets of U(1)’s and level matrices k̂ij all of which determine the same

theory.

To derive the above proposal, we first phrase the computation of linking numbers in a

more familiar language of differential forms as follows. Each homology class Γi in H1(F ) can be

represented by a cycle that is topologically an unknot embedded in S3. Thus, the pushoff Γ+
i

bounds an embedded disc Di ⊂ S3. The symmetrized Seifert matrix of linking numbers is then

given by computing the intersection number of Γi with Dj

(A+AT )ij = Γi ∩Dj + Γj ∩Di. (4.2.31)

6 Incidentally, the Seifert matrix can also be used to define the Alexander polynomial of the knot by the definition
AK(t) = det(A−tAt). Then the determinant above, which computes the order of H1(M̃) when finite, is the Alexander
polynomial evaluated at t = −1.
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However, the intersection number on the right of the above can alternatively be computed in terms

of the Poincaré dual form to the disc Di [96]. Specifically, since the disc Di are bounded by the

cycles Γ+
i the above is

(A+AT )ij =

∫
M
αi ∧ dαj . (4.2.32)

Equation (4.2.32) gives a direct way of seeing that the symmetrized Seifert matrix com-

putes the levels k̂ij . For each of the one-forms αi introduced above we may consider an associated

U(1) gauge field Ai by decomposing the two-form field B propagating on the fivebrane M̃ . This

gauge field may be massless, or massive depending on the resulting equation of motion. To examine

this issue, we consider the self-dual 3-form field strength T = dB written as

T = αi ∧ Fi + ∗αi ∧ ∗Fi. (4.2.33)

Then, the equation of motion dT = 0 implies in particular

dαi ∧ Fi + ∗αi ∧ d ∗ Fi = 0. (4.2.34)

Wedge the above equation with αj and integate over M̃ to find

(∫
M̃
αj ∧ ∗αi

)
d ∗ Fi + (A+AT )jiFi = 0. (4.2.35)

The normalization matrix
∫
M̃
αj ∧∗αi determines the metric on the space of U(1) gauge fields, and

with this identification, (4.2.35) is exactly the equation for a collection of U(1) vectors with a level

matrix k̂ij given by the symmetrized Seifert matrix A+AT .

As a sample application of these ideas, we consider the case of a cover branched over the

unknot. Of course, because the unknot bounds a disc we may choose this as the Seifert surface.

Then glueing together two S3’s with a branching sheet given by a disc is simply taking the connected

sum of the two S3’s. This means that the cover M̃ is again an S3 and hence has trivial homology.

However for a more interesting choice we can take as the Seifert surface F a torus minus a disc
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Figure 4.4: A Seifert surface F for the unknot. The green torus minus a disc bounds the unknot

shown in blue. The red and black cycles, a and b, are a basis for the homology of F . The pushoff

a+ is linked with b.

as shown in Figure 4.4. A basis of H1(F ) is then the two one-cycles a and b shown in the Figure.

Taking the outward direction of the torus to be the positive orientation we then conclude that there

is a non-vanishing linking number +1 between b and the pushoff a+. Hence in this case we find

that the symmetrized Seifert matrix is

A+AT =

 0 1

1 0

 . (4.2.36)

From this we deduce that both a and b are in the image A+AT and hence trivial in the homology

of M̃ . Thus we recover the correct result that H1(M̃) is vanishing.

Physically, the example given above describes a known duality [97]. A U(1)×U(1) gauge

theory together with level matrix

A+AT = k̂ij =

 0 1

1 0

 (4.2.37)

is equivalent to a trivial theory of no gauge group whatsoever. In fact, this example suffices to
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understand the general result that the gauge multiplet theory is independent of the choice of F .

Indeed, given a fixed knot K any two topologically distinct Seifert surfaces F and F ′ with the genus

of F ′ larger than F , differ by excising some number n of discs from F and attaching n handles like

those shown in Figure 4.4 to obtain F ′. At the level of the Seifert matrices this has the effect

(A+AT )|F ′ = (A+AT )|F
n⊕
i=1

 0 1

1 0

 . (4.2.38)

In other words, adding an irrelevant handle simply adds a trivial theory in the form of a U(1)×U(1)

with off-diagonal level matrix (4.2.36) and hence does not modify the physics.

Checkerboards and Tait Graphs

In the forthcoming applications of this paper, it will be important for us to have a more

explicit method for determining a Seifert surface for a given knot and computing Chern-Simons

levels. One way to produce such a surface is to use a so-called checkerboard coloring of the knot.

This is an assignment of black versus white to each region enclosed by the planar projection of

the knot. It has the property that regions which share an edge have opposite colors. Given any

knot, there is no obstruction to constructing a checkerboard coloring. Indeed, we simply consider

the local structure of the knot near a given crossing. If we forget the data of which component

passes over versus under, the crossing appears as the intersection of two lines, and separates the

plane into four regions as shown in Figure 4.5a. Then, we choose a pair of non-adjacent regions

and shade them as shown in Figure 4.5b. We continue this shading procedure consistently to all

the remaining crossing in the knot. At the conclusion we have constructed a checkerboard coloring.

The relation of checkerboard colorings to Seifert surfaces is simply that the shaded regions

of the coloring define a two-dimensional surface F whose boundary is the knot K. The interior of

each shaded region is a disc and at the crossings, these discs are glued together by twisted bands.
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(a) Knot Crossing (b) Checkerboard Shading

Figure 4.5: Local definition of checkerboard coloring. In (a) a planar projection of a crossing in a

knot diagram. In (b) a checkerboard coloring at the crossing.

Thus the shaded regions of a checkerboard diagram determine a surface F whose boundary is the

knot K.7

Notice that as a consequence of the construction, there is a natural notion of duality

among checkerboard colorings of the knot. Given such a coloring, we may exchange the black and

white regions to produce a new coloring. A specific example of this is given for the trefoil knot in

Figure 4.6. In later sections we will see that this basic black-white duality of checkerboard colorings

has an interesting physical interpretation in terms of duality of 3d field theories.

However, for our present purposes our main interest in checkerboard colorings is simply

that they provide a convenient way of determining the homology of the cover M̃ , and therefore a

method for determining a set of U(1) gauge fields and a level matrix k̂ij .

Let us first fix the basis of cycles. These are manifest in the checkerboard coloring. Each

white region of the diagram is, by construction, a hole in the surface defined by the shaded regions

of the coloring. Therefore there is a non-trivial cycle defined by simply moving the boundary of the

given white region slightly into the shaded region. Thus, if R1, · · ·Rn+1 denote the white regions

7 In many situations this surface is orientable and hence meets the requirements to be called a Seifert surface for
K. Sometimes, however the surface is non-orientable and is technically therefore not a Seifert surface. This causes no
problem from the point of view of using such a surface as a branch sheet to construct a cover. Further as we describe
below, all of the pertinent results of the previous section, go through unmodified.
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(a) Trefoil (b) Checkerboard (c) Dual Checkerboard

Figure 4.6: Checkerboard colorings for the trefoil knot. In (a) the trefoil knot. In (b) and (c) its

two dual colorings. The shaded regions can be interpreted as surfaces with boundary the trefoil.

of the checkerboard there are associated cycles Γi encircling Ri. Examples are illustrated in Figure

4.7. One of these cycles, say Γn+1 can be generated in homology of the surface F by the remaining

n. The remaining cycles Γ1, · · ·Γn are an explicit basis for the homology of the surface. In physical

language these are the defining generators for a U(1) gauge theory.

Next we extract the CS levels. As in our general discussion, these levels are determined

by a linking number computation. However in the case of the checkerboard coloring there is a

simple more algorithmic way of determining the levels. First we associate to each crossing c in the

diagram a sign function ζ(c) = ±1 determined by whether the overstrand or understrand is to the

left or the right of the surface F as illustrated in Figure 4.8. The CS matrix is then most easily

determined by keeping track of all the n+ 1 cycles associated to all the white regions, as opposed

to just the n in a spanning set. Specifically, we construct an (n+ 1)× (n+ 1) matrix whose rows

and columns index the white regions. Then:

• The off-diagonal elements k̂ij for i 6= j are determined by summing over all crossings where
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(a) Checkerboard (b) Dual Checkerboard

Figure 4.7: Dual checkerboard colorings for the figure eight knot. The gray regions denote the

Seifert surface of the black knot. The colored cycles denote the spanning set of the homology of

the surface given by the enclosed white regions of the checkerboard. The signs at each crossing

indicate the contribution to the Chern-Simons levels.

(a) ζ(c) = −1 (b) ζ(c) = +1

Figure 4.8: Positive and negative crossings in a knot.

regions i and j meet taken with sign.

k̂ij =
∑

i,j crossings

ζ(c) (4.2.39)



Chapter 4: Braids Walls and Mirrors 165

• The diagonal elements k̂ii are determined by the condition that the sum of all entries in any

row vanishes

k̂ii = −
∑
j 6=i

k̂ji. (4.2.40)

• At the conclusion of the computation, eliminate the (n+ 1)-st row and column to obtain an

n× n matrix of levels k̂ij involving the U(1)’s related to the white regions R1, · · · , Rn.

In this context of checkerboard colorings, the matrix k̂ij is known as the Goerizt form, and the

equations above provide us with an algorithmic recipe for determining CS levels.

For concreteness, let us now apply this construction to the case of the knot shown in

Figure 4.7. As illustrated, there are two dual checkerboards each of which has three white regions.

Then the the 2× 2 level matrix for the cycles defined by regions 1 and 2 are given respectively by

k̂ij =

 2 −1

−1 3

 , and k̂ij =

 −3 2

2 −3

 . (4.2.41)

As a consistency check on this computation, note that the two level matrices determined by the

checkerboard and its dual have identical determinants. Indeed as we have previously described,

when finite, | det(k̂ij)| computes the order of the first homology group of the cover M̃ , and hence

is invariant to the choice of surface.

The combinatorics of checkerboard colorings can also be conveniently encoded in a so-

called Tait graph. Given a coloring we extract the graph as follows:

• For each white region Ri draw a node of the diagram.

• For each crossing connecting white regions i and j connect the corresponding nodes with a

link.

• Attach a sign ±1 to each link by evaluating ζ of the corresponding crossing.
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Figure 4.9: Checkerboards and associated Tait graphs for the square knot. The two checkerboards

are related by a black white exchange. And correspondingly, the two Tait graphs are dual.

As a sample application of this notion, we consider the two checkerboards of the knot illustrated

in Figure 4.9.

Notice from this example that the black-white duality between checkerboard colorings

of the knot maps to duality of the corresponding Tait graphs. Specifically, given a graph G, to

construct the dual Ĝ we simply:

• Replace each cell of G with a dual vertex of Ĝ.

• Replace each link in G with a dual link in Ĝ.

• Change the sign of each link relative to its dual.

The Tait graph encodes completely the gauge content of the theory. Each node describes

a white region, and hence corresponds to a cycle in the surface F . Up to removing one such cycle

or equivalently one node in the graph, these are exactly the U(1) gauge fields. Similarly, the CS
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level matrix k̂ij is determined by summing over the links connecting nodes i and j weighted as in

(4.2.39) by the sign of the link. This structure is completely universal and depends only on the

topology of the double cover M̃ . In subsequent sections however, we will see examples where the

Tait diagram encodes more than merely the gauge group and levels. Indeed, in Section 4.5, after

determining the matter content of the theory, we will see that the Tait diagram plays the role of

the quiver diagram for the gauge theory in R1,2.

BPS M2-Branes, Instantons and Double Covers

In addition to the homology of the cover, which encodes the gauge sector of the theory,

there are other physical quantities of interest that can be read directly from the knot. Of particular

importance to us in later sections will be the possible BPS M2 brane geometries. Let us begin with

the case of an M2 brane disc describing a particle in three dimensions. The boundary of this disc

is a circle Γ inside the double cover M̃ . Now project Γ to the base S3. If the projection is a circle

then, since S3 has vanishing homology, the cycle is contractible and the particle carries no gauge

charges. We will therefore ignore this case. The remaining possibility is that the projection is an

interval connecting two pieces of the branching knot K as shown in Figure 4.10a. Such a particle

can in principle carry gauge charges depending on whether or not the cycle Γ is non-trivial in M̃ .

Geometrically, Γ is partitioned into two pieces, one on each sheet of the cover M̃±, both

of which project to the given segment in S3. The two segments are then glued together at their

intersection with K which occupies both sheets. This description also makes elementary why the

mass of such a particle is determined by λ as

m =

∫
Γ
|λ|. (4.2.42)

In this case, |λ| is the physical height separating the two sheets M̃± of the cover, and the above

integral, by definition, computes the area of the disc illustrated in Figure 4.10b.
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(a) Projection of BPS Particle (b) Lift to Q

Figure 4.10: Projections of BPS M2-brane particles to the base. A portion of the branching knot

K is shown in black. In (a), the boundary of an M2 disc appears as a blue segment connecting two

pieces of the knot. In (b), the blue segment is doubled in M̃ to make a closed cycle S1. The red

disc, which lies in Q− M̃ , shows how Γ is filled in to make the full M2-brane geometry.

M2 brane contributions to the superpotential can also be seen from the knot diagram.

Suppose first that we consider the case of interactions among massless particles. According to the

geometry described in the previous paragraph, this means that the segment projections shown in

blue in Figure 4.10a have all collapsed to points, and as a result the knot K has developed self-

intersections. Let us further assume that these self-crossings form the vertices of a closed polygon

whose boundary lies entirely in K. Then, there is an M2 brane instanton in Q whose boundary

projects to the polygon and which can give rise to interactions among the massless fields at the

vertices as illustrated in Figure 4.11.

To be explicit, in the Calabi-Yau Q, the polygon lifts to a three-ball B3 whose boundary

S2 is P±, the interior of the polygons on each of the sheets M̃± of the cover. These two polygons

have been glued together along their common boundary in the branching knot K whose boundary
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(a) Projection of BPS Instanton (b) Lift to Q

Figure 4.11: Projections of BPS M2-brane instanton to the base. A portion of the branching knot

K is shown in black. The knot has self-intersections supporting massless particles shown in blue. In

(a), the interior of the polygon, shown in green, is the projection to M̃ , of the boundary of an M2

instanton. In (b), we see the lift of the M2 instanton to the Calabi-Yau. Its boundary is doubled

to an S2 presented as two hemispheres glued along the knot. In the interior, this S2 is filled in to

make a three-ball.

is

∂B3 = S2 = P+

⋃
K
P− ⊂ M̃. (4.2.43)

And a wrapped M2 brane over B3 leads to a superpotential term involving the product of the

massless chiral fields, one for each of the vertices of the polygon. Deforming the geometry and

making the chiral fields massive, resolves the self-crossings of the knot diagram. This can be

described by an M2 brane instanton, whose boundary will also include a disc ‘plug’ for each massive

chiral field as in the general description of Figure 4.2.
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4.3 R-flow, Domain Walls and a 4d-3d Link

The geometry described in the previous section gives an abstract prescription for extract-

ing the effective three-dimensional N = 2 system that arises when multiple five-branes wrap a

three-manifold. We first determine the IR covering geometry M̃ , then we compute the spectrum

of BPS M2-brane particles which give rise to chiral multiplets, and finally determine their interac-

tions from the various M2-brane contributions to the superpotential. However, in practice it may

be difficult to carry out this procedure. The first difficulty is that we have no general method for

determining M̃ , or equivalently the branching knot K ⊂ M . Moreover, even if the topology of M̃

were deduced, this only suffices to describe the gauge groups and flavor symmetries but not the

BPS states. In the infrared, it is the BPS states which describe the charged chiral multiplets of

the theory, and thus extracting the spectrum of these particles is a crucial step in determining the

behavior of the quantum field theory.

In principle, the BPS states are completely encoded by the one-form λ on the cover.

Indeed, given that λ defines the local central charge density, it follows that the boundary of a BPS

M2 brane is an integral curve of the flow defined by λ. In equations, if γ denotes this boundary

one-cycle and s is a local coordinate on γ, then the BPS condition requires

λ|γ = ds. (4.3.1)

For example, a chiral field arises as a solution to the above equation whose endpoints are on the

branch knot as described in the previous section. This is the three-dimensional analog of the flow

equation defining BPS states in 4d N = 2 theories [11]. However, without explicit knowledge of λ,

there is no method for determining the BPS particles in the theory and hence no way of directly

fixing the IR behavior of the model.

In this section, we introduce our main technique for circumventing these difficulties. We

consider the special case where the M5-branes are related to a flow of a parent 4d theory, and
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use the knowledge of the spectrum of the 4d BPS states and Seiberg-Witten geometry to find the

answer for the resulting 3d theory. Let us recall that in the 4d case, instead of (4.3.1), the BPS

spectrum is determined by integral curves of the Seiberg-Witten differential

φ|γ = eiθds, (4.3.2)

where there is a solution only if θ is chosen to equal the phase of the central charge Z of the BPS

state

Z = |Z|eiθ. (4.3.3)

Now let us consider the 3d case. Our ansatz, of viewing the 3d theory as a one-parameter variation

of the 4d theory, implies that we are studying a domain wall, where roughly

λ = eiθ(t) φ+ c.c.+ . . . (4.3.4)

In this way, we will have solutions to the 3d BPS equation (4.3.1) at specific ‘times’ ti during

the one-parameter variation, such that θ(ti) = θ(BPS) for some BPS particle. This is exactly

the characteristic feature of the time evolution defined by R-twisting [3, 4]. However, there is one

important difference in our context: unlike the case in R-twisting where the central charges rotate

in phase as we evolve in time, in order to preserve a standard 3d supersymmetry, we need to make

the central charges flow along parallel lines. This can be achieved by the suitable choice of the . . .

terms in equation (4.3.4), as will be discussed later in this section. The result, which we shall call

the ‘R-flow,’ is a one-parameter variation of the parent 4d theory, characterized in terms of the

variation of the 4d central charges Zi by two simple features:

• The real part of the Zi is constant along the flow.

• Along the flow, the Zi retain their phase order.

These features are shown in Figure 4.12. As we will see, these two properties mean that the time
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(a) t >> 0 (b) t > 0 (c) t < 0 (d) t << 0

Figure 4.12: Evolution of the cetral charges along an R-flow. The colored rays denote the central

charges of the 4d theory. As we move along the flow, these rays flow along parallel lines and

maintain their phase order.

evolution in the R-flow respects the BPS spectrum of the 4d theory, and ultimately implies that

the 3d BPS spectrum of chiral fields living on the domain wall is in one-to-one correspondence with

the BPS spectrum of the ambient 4d theory.

Finally, a crucial aspect of the domain wall construction is the observation that, in gen-

eral, such a domain wall field theory couples non-trivially to the bulk four-dimensional physics.

However, our interest is in constructing honest three-dimensional theories which have an indepen-

dent existence. Thus, in addition to the construction of the domain walls, we must also take a

decoupling limit in which the four-dimensional theory decouples and the three-dimensional theory

on the wall remains. This decoupling limit amounts to a specification of boundary conditions for

the R-flow, where as |t| → ∞ we also have |Z| → ∞. Then, the full trajectories of the 4d central

charges during an R-flow are infinite parallel lines.
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4.3.1 Domain Wall Geometry

Consider any number five-branes which wrap a Riemann surface Σ and give rise to a

four-dimensional N = 2 gauge theory. The local geometry is then

R1,4 × T ∗Σ× C. (4.3.5)

To engineer a macroscopically four-dimensional system we choose linear subspaces R1,2 ⊂ R1,4 and

R ⊂ C and place the five-branes on

R1,2 × Σ× R. (4.3.6)

Such a geometry supports a natural class of defects which describe domain walls. The linear

subspace R ⊂ C is replaced by a non-trivial path γ(t). Asymptotically for t −→ ±∞ this path

approaches horizontal asymptotes, and combines with the fixed R1,2 dimensions to make a macro-

scopically four dimensional theory described by five-branes on Σ(±∞). However in the interior of

the path there is a non-trivial kink along which we allow the parameters describing the Riemann

surface, and hence the parameters of the four-dimensional field theory, to vary, Σ → Σ(t). Since

this defect is codimension one in space it describes a domain wall in the four-dimensional N = 2

system [83]. The total geometry is illustrated in Figure 4.13.

In terms of the geometry of the previous section, we can phrase the domain wall construc-

tion as follows. The three-manifold, which supports the five-branes is Σ × R. We coordinatize R

by t and loosely refer to as “time,” and we allow the parameters describing the Riemann surface

Σ to vary with t. The asymptotic boundaries of the three-manifold M , namely Σ × {−∞} and

Σ × {+∞} encode the fact that this domain wall theory does not have an independent existence

but couples to the bulk four-dimensional theory.

Now, if the variation of parameters of the Riemann surface Σ is done in an arbitrary way,

then the domain wall will break all the supersymmetry of the problem. If we wish to preserve

3d N = 2 supersymmetry, then the domain wall should be half-BPS, and the supersymmetries
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Figure 4.13: The domain wall geometry. Asymptotically, the five-branes wrap the Riemann surfaces

Σinitial and Σfinal an give rise to theories with four macroscopic dimensions. In the interior, the

parameters of Σ vary and describe a domain wall.

preserved in 3d are embedded inside the 4d N = 2 superalgebra as a subalgebra. Such 3d N = 2

subalgebras are labeled by a choice of angle. Note that this also matches the central charge

structure. A 3d theory with N = 2 supersymmetry has a real central charge. To get a reduction

from N = 2 theory in 4d, which has a complex central charge, to the one in 3d, with a real central

charge, we must choose a ‘real’ subspace in the 4d complex central charge plane. Let us choose this

direction to correspond to the real axis in the complex plane of the 4d central charges. Then, the

four-dimensional and three-dimensional central charges obey by the relation

Zi3d = Re(Zi4d). (4.3.7)

In terms of the IR Coulomb branch geometry, the domain wall construction means that

there is a relationship between the SW curve Σ̃ of the parent 4d N = 2 model and the IR three-

manifold M̃ . Specifically, M̃ is a one parameter thickening of the SW curve

M̃ = Σ̃(t)× Rt. (4.3.8)

This means that every non-trivial one-cycle Γ in M̃ is inherited from Σ̃. As a result, (4.3.7) yields a

simple relationship between the periods of the Seiberg-Witten defferential φ on the Seiberg-Witten
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curve Σ̃, and the periods of the harmonic one-form λ on M̃

∫
Γ
λ = <

(∫
Γ
φ

)
. (4.3.9)

In the primary case of interest in this paper, the parent 4d theory can be described by two

M5-branes on Σ. Hence, the SW curve Σ̃ is a branched double cover of Σ, where the branch points

of the cover are exactly the zeros of the SW differential. In this case, the presentation (4.3.8) of the

IR three-manifold implies that M̃ is a branched double cover of Σ × R, where the branch locus is

exactly the one-dimensional strands swept out by the zeros of the SW differential during the time

evolution. This fact will be of crucial importance to us throughout the remainder of this work.

An Elementary Example

Let us now turn to the most basic example of this construction. We consider an N = 2

theory in 4d which is the theory of a free massive hypermultiplet. We can model this geometrically

as above by taking Σ to be simply the complex plane with coordinate x and placing a pair of

five-branes there with suitable boundary conditions at infinity. Then the Seiberg-Witten geometry

is given by the following curve and differential

y2 = x2 −m, φ = y dx. (4.3.10)

In the above, the function y(x) = ±
√
x2 −m describes the separation between the two branes. The

sign ambiguity in y(x) is consistent with the fact that the two five-branes are indistinguishable. At

y(x) = 0 the two branches of the function y(x) exchange and hence the two M5 branes connect up

into a single smooth object. This is consistent with the general geometry described in section 2:

the IR Coulomb branch physics is governed by the geometry of a single smooth five-brane related

to the UV description by brane recombination. In this case, the recombined brane is an infinite

cylinder which is a branched double cover of the complex plane.
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The BPS hypermultiplet of the theory can also be seen from the general analysis in section

2. The non-trivial one-cycle Γ in the cylinder, describes a charge in the 4d IR physics. However

in the ambient Calabi-Yau geometry, this cycle is contractible. Physically this means that there is

an M2 brane disc which ends on the cycle Γ. The boundary of the disc is a circle made up of two

halves, each half corresponds to an interval on each of the two M5 branes stretched between the

two branch points. It gives rise to a BPS particle with central charge m in four-dimensions.

Now we would like to construct a domain wall in this theory by considering a one-

parameter family of these SW geometries. Thus, we let m vary as a function of a parameter t

as

m(t) = m0 + it (4.3.11)

Further, we take m0 to be real, and this will be the resulting three-dimensional central charge. The

flow of Z4d is illustrated in Figure 4.14.

Figure 4.14: The flow of the 4d central charge for the A1 theory. The blue line indicates the

trajectory of Z4d(t) shown in blue. The 3d central charge m0, is the real part of Z4d.

As a result of this one-parameter variation, the UV description of the theory is two five-

branes which wrap the three dimensional space (x, t). In the IR, the theory is described by a single

five-brane described as a branched double cover over (x, t) and given by the equation

y2 = x2 − (m0 + it). (4.3.12)
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Further, the one-form λ and the SW differential are related as

λ = y(t)dx+ y(t)dx+ fdt. (4.3.13)

Where f denotes separation of the M5 branes in the cotangent direction to t and is chosen so

that dλ = 0. Notice that this satisfies the key requirement (4.3.7) for preserving three-dimensional

N = 2 supersymmetry, namely the periods of λ over one-cycles at constant time t are simply the

real parts of the periods of φ, and hence the three-dimensional central charge is simply m0.

An important fact is that already in this simple example we can see topology changing

transitions occurring in the IR geometry as 3d parameters are varying. Specifically, consider the

branch loci of the cover. These are given by the two curves

x± = ±
√
m0 + it (4.3.14)

Note that when m0 = 0 the two branch lines meet at (x, t) = (0, 0). Also note that the branch lines

have reconnected as m0 goes from positive values to negative. This reconnection is illustrated in

Figure 4.15. In terms of the IR geometry the topology of the cover is jumping as m0 passes through

(a) m0 >> 0 (b) m0 > 0 (c) m0 = 0 (d) m0 < 0 (e) m0 << 0

Figure 4.15: The reconnection process. The strands are illustrated in black and the blue line

indicates the projection of the boundary of the BPS M2 brane. In (c), when the mass m0 of the

particle vanishes, the two strands touch and their individual identity is ambiguous. As m0 becomes

negative the strands reconnect.

zero. In later sections we will interpret these topology changes in terms of mirror symmetries.
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General Flows

Let us return to the general discussion of domain walls. We start with an N = 2 theory

in four dimensions given by a SW geometry. This can be an arbitrary N = 2 theory, and not

necessarily one arising from M5 branes. However, for simplicity of exposition here we describe it

for the case of M5-branes. We start with an IR M5-brane geometry in 4d given by the Seiberg-

Witten curve Σ̃. We then consider a one real parameter family of these theories to yield the IR

three-manifold M̃ . The real one-form λ and the SW differential are related as

λ = φ(t) + φ(t) + gdt (4.3.15)

We require that λ is closed, which in particular requires

dλ = 0→
(dφ
dt

+ c.c.
)
dt+ d(g dt) = 0. (4.3.16)

This means that d(φ + φ)/dt is cohomologically trivial, and hence has no periods on the SW

curve, which in turn implies that the periods of Re(φ) do not change with t. Thus to preserve

supersymmetry, all the central charges will have to move along straight vertical lines as we move

through the flow parameter t. Can this be arranged?

In general the answer is simply “no.” The various central charges of the 4d theory will be

related in an intricate way determined by special geometry. In particular they are not independent

parameters and hence there is no reason to believe that they can be varied in any particular pre-

scribed way. However, there does exist a class of N = 2 theories, the so-called complete theories

which have exactly enough moduli and coupling constants to treat the central charges as indepen-

dent parameters. Further, except for a finite number of exceptional cases, all complete N = 2

theories can be described by two M5-branes wrapping a punctured Riemann surface with suitable

boundary conditions at the punctures [12]. Our primary examples will be in the case involving two

five-branes where we can preserve 3d N = 2 supersymmetry via a flow of 4d central charges in
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straight vertical lines. However, in section 8 we also discuss exceptional complete theories which

are not M5-brane theories.

For non-complete theories, we cannot vary the central charges arbitrarily if we wish to

maintain having a UV-complete theory. However, even for non-complete theories the central charges

can vary arbitrarily if one does not insist on a UV completion and views them as effective theories

which are UV incomplete, but can in principle be embedded in a UV complete theory. An example

of this is pure SU(N) gauge theory, where the non-renormalizable terms tr Φk with k > 2 can in

principle be generated if SU(N) is embedded in a bigger UV complete theory.

In any case, our primary examples in this paper will all be associated to domain walls

in theories described by pairs of five-branes wrapping punctured Riemann surfaces. In fact our

main focus discussed in section 5 will all be generalizations of the free hypermultiplet theory, where

the UV five-brane Riemann surface is again the complex plane C. In that case, the total internal

Calabi-Yau threefold is simply C3 with its standard symplectic, and holomorphic structure. The

abstract flow of Riemann surfaces studied in this section is then a specific instance of a Joyce-

Harvey flow construction [98–100] of special Lagrangians.8 These equations turn out to be difficult

to solve. Luckily, many features of what we need are independent of the detailed solution.

For another perspective on the domain wall geometry we can ask for the dual description

for these theories in type IIB. The dual to an M5 brane is a local ALE fibration of the form

uv = P (x, y, t). (4.3.17)

Where in the above the equation P (x, y, t) = 0 defines the locus of five-branes in the original

geometry and as t varies describes a one-parameter family of SW geometries. Abstractly, the

8 The general structure of this flow equation is as follows. We consider a Riemann surface Σ and a one parameter
family of real analytic embeddings ψt : Σ −→ C3. Then given any positive bivector X on Σ one studies the following
flow equation

∂ψit
∂t

= gij(ψt∗X)kl< (Ω)jkl .

It is then a fact that if the symplectic form vainishes on the initial surface ψ0(Σ) then the three-manifold swept out
by Σ as one varies through time is special Lagrangian.
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equation (4.3.17) defines a a one-parameter family of Calabi-Yau threefolds, and supersymmetry

demands that the resulting seven-dimensional total space have G2 holonomy. Then, the one-form

λ we have discussed is promoted to the three-form ρ which determines the G2 structure. This

three-form fixes the metric completely and hence satisfies the equation

dρ = d ∗ρ ρ = 0. (4.3.18)

These are the analogs of the harmonicity of the one-form λ. If we fix the boundary conditions for

the flow, then the G2 version of Yau’s theorem implies that the metric is characterized completely

by the three-dimensional real central charges.

4.3.2 Decoupling Limits and R-Twisting

In the previous section we have described a class of domain walls which exist in four-

dimensional N = 2 systems described by five-branes on Riemann surfaces. Such domain walls are

characterized by the fact that the flow of the 4d central charges is on vertical straight lines. In

general such walls will have complicated interactions with the ambient 4d field theories. In this

section, we take the key step of decoupling the bulk physics leaving only the remaining 3d N = 2

system. In the process, we see how the domain wall geometries described in this section can be

interpreted in terms of R-twisting.

The most important observation is simply the BPS bound in the bulk 4d theory. This

states that all charged particles have a mass m which satisfies

m ≥ |Z4d|. (4.3.19)

Consider this bound applied to the bulk 4d theories living at the endpoints of the flow defining

the domain wall. To decouple the 4d charged particles from the low-energy physics, it suffices to

make them infinitely massive. On the other hand according to the BPS bound (4.3.19) this will be
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achieved, provided that the initial and final central charges of the flow have infinite length. Thus,

decoupling demands that for both the initial and final condition

|Zi4d| −→ ∞. (4.3.20)

Since the flow demands that the 4d central charges evolve along straight lines, the above equation

implies that the trajectories in the complex Z4d plane swept out by the central charges during

the flow are infinite vertical lines which cross the real axis at the values dictated by the three

dimensional real central charges.

If these boundary conditions for the flow are satisfied then all 4d charged particles have

infinite mass in the bulk and decouple from the domain wall. However the massless 4d neutral

gauge multiplets remain unaffected by this limit. For these fields, which have independent U(1)

coupling constants, we are free to chose their three-dimensional physics. We can take these coupling

constants to be finite in which case we are left with dynamical gauge field in three dimensions, or we

may dial these constants to zero in which case the resulting U(1) appears as a flavor symmetry in

three dimensions. Thus, what the decoupling limit (4.3.20) naturally produces is in fact a class of,

in general distinct, 3d theories labeled by a choice of whether the U(1)′s are gauged or ungauged.

We will examine this freedom in detail in section 5. It turns out, that there are some additional

U(1)’s coupled to the chiral fields which are massed up by Chern-Simons terms, but are nevertheless

necessary for describing the full content of the theory.

Finally, we come to a crucial ansatz of our theory of domain walls. We have succeeded

in producing a decoupled 3d N = 2 theory, but so far there is no simple relationship between the

spectrum of BPS chiral multiplets on the wall and the spectrum of the bulk four-dimensional theory.

As the central charges of the 4d theory flow in general they flow at different speeds and cross each

other at various times. Such crossings lead to the wall-crossing phenomenon. If they occur they

imply that the effective spectrum of the 4d theory is changing, and hence during the flow the 4d
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theory is crossing walls of marginal stability in its moduli space. As a key simplifying assumption,

we will now assume that such crossings do not happen at any time during the evolution. Thus our

assumption for the rates of flow of central charge is:

• During the flow the central charges retain whatever phase order they started with.

This is a natural assumption for solutions to the Joyce flow equations. For example in the context

of Janus domain walls, such BPS walls do indeed exist [101,102]. One can see that a simple ansatz

satisfying the above assumption is given by taking the 4d central charges to flow linearly in some

coordinate with a speed controlled by their real part

Zi(t) = Z0
i − i<(Z0

i )t. (4.3.21)

Given such an anastz for the flow, one can see that the central charges retain their phase order and

have constant real part.

Let us now take stock of the resulting properties of the domain walls we have described.

• They are characterized by a phase ordered flow of the central charges along vertical lines.

• In the decoupling limit, the central charges begin at i∞ and terminate at −i∞.

Notice that if we ignore the length of the central charges, which varies during the flow in time, the

first property is identical to the evolution of the central charges generated by an R-symmetry rota-

tion Z → eiθZ. Further, the decoupling limit boundary conditions can also naturally be interpreted

as saying that as time evolves, the central charges rotate through angle of π.

Thus, we have in a sense succeeded in making the R-twisting compactification physical.

To preserve the standard supersymmetry, the central charges flow along straight vertical lines and

hence their lengths during the evolution are not constant. In this sense, the time evolution we have

constructed is not merely a phase rotation on Z. However, when our ansatz for the rates of flow is

satisfied, the central charges of 4d flow in way which respects their phase order and in this sense
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the time coordinate we have constructed can be interpreted as, essentially, the phase of Z. Further,

our decoupling limit boundary conditions mean that under the complete time evolution the phase

rotates by π. As in the general story of R-twisting this leads to a simple relationship between the

4d BPS spectrum and the 3d BPS spectrum, and for this reason we refer to the flow as the ‘R-flow.’

3d BPS Spectrum from Trapped 4d BPS States

Now we come to the central consequence of the decoupling limit developed in the previous

section:

• The 3d BPS chiral spectrum is in one-to-one correspondence with the 4d BPS spectrum.

To see this fundamental fact, we observe that each 4d central charge, Z4d, is the central charge of

a certain BPS particle in 4d. However for a typical point along the flow such a particle is not BPS

in the three-dimensional sense. Indeed, to be BPS in three dimensions Z4d(t) must align with real

direction defining the 3d central charges. This means that at the time t = ti when Zi4d(ti) = real

the corresponding BPS state will be a 3d BPS state with the same central charge. In other words,

the 4d BPS state with central charge Zi is trapped in the wall at t = ti. Note that this is physically

sensible, in the sense that the 4d mass m(t) = |Zi(t)| is minimized at ti, where the length of Zi(t)

is minimized. Thus, the particle is trapped at t = ti simply by energy considerations. If the

boundary condition of the flow were such that the asymptotic central charges had finite length,

then the difference in length between the 3d central charge and the 4d central charge at either side

of the wall would be finite and the 3d BPS chiral particle, while trapped on the wall, could escape

out to the bulk for a finite cost in energy. However, in the decoupling limit where the 4d central

charges become parametrically large as |t| → ∞, the potential energy well trapping the 3d particle

becomes infinitely deep, and the 4d bulk physics decouples.

Finally if we now invoke our ansatz where the order of the phases of the central charges

do not change, it follows from our discussion above that for each chamber of the 4d theory, we



184 Chapter 4: Braids Walls and Mirrors

get a chamber of a 3d theory, where the corresponding 4d BPS states are trapped and become BPS

states of the 3d theory. Given that by changes of parameters in the 4d theory we can go from one

chamber to another (passing through walls of marginal stability), it suggests that the same should

be true for the 3d theory, at least as far as the IR behaviour is concerned. In particular the initial

conditions for the R-flow which can vary continuously, should not affect the IR dynamics. In other

words we should get a family of dual 3d theories labeled by chambers of the parent 4d theory. In the

remainder of this paper we provide evidence for this claim through a study of explicit examples.

We aim to illustrate that, via this correspondence, the three-dimensional version of wall-crossing is

mirror symmetry.

4.4 4d BPS States of An Theories

At the conclusion of the previous section, we have arrived at a class of domain wall theories

whose 3d BPS particles are in one-to-one correspondence with the ambient 4d BPS particles. In

order to apply this useful fact to the study of 3d field theories, we will need to make use of various

methods for counting 4d BPS states. These have been discussed in detail in the previous chapters

of this dissertation. In this section we present a brief review of recap of these techniques: ideal

triangulations, and BPS quivers. Our goal is to isolate the essentially algorithmic features of each

method in the simplest possible examples, the so-called An Argyres-Douglas theories [34], relevant

for subsequent analysis in this work. We refer the reader to the previous chapters and to the original

papers [11,13,22,26,28,53,77] for a complete treatment.

4.4.1 Ideal Triangulations

The first method we recall is that of ideal triangulations developed in detail in [13]. We

consider a pair of M5 branes wrapping a Riemann surface Σ. The Seiberg-Witten geometry is

described by a quadratic differential φ2 on Σ. As in previous sections, φ2 defines a double cover Σ̃
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of Σ. This double cover is the Seiberg-Witten curve and on Σ̃, the one-form φ is the Seiberg-Witten

differential.9 The key idea in this method is to recognize that a BPS M2-brane, describing a BPS

particle in four-dimensions, must have minimal area. In particular the boundary of this two-brane

defines a one-cycle in the Seiberg-Witten curve and its length must be minimal.

It is straightforward to translate this idea into concrete equations formulated on the orig-

inal curve Σ itself. The boundary one-cycle of the M2-brane projects to Σ and defines a curve

γ parametrized by a variable s. Since the central charge is measured by φ it is this quantity

which characterizes the notion of minimal length and hence γ(s) solves the differential equation

(4.3.2) [11].

φ|γ = eiθds. (4.4.1)

As discussed in the previous section, the angle θ entering the equation above is the angle of the

central charge of the particle defined by the two-brane.

For most of the remainder of this paper, we will be focused on a simple class of examples

involving theories which have a finite number of BPS hypermultiplets and no BPS vector multiplets.

These examples are the so-called Argyres-Douglas ADE theories [34]. The An case, which will be

our main focus in this section, is characterized by a particularly simple geometry. The curve Σ

which supports a pair of five-branes is just the complex plane C. Giving this plane the complex

coordinate x, the Seiberg-Witten differntial φ defining the central charge density is given by a

polynomial in x of degree n+ 1

φ =
√
Pn+1(x) dx. (4.4.2)

In these cases the BPS counting problem is particularly simple as we will see below.

For the vast majority of angles θ, there is no BPS state whose central charge has that

given angle, and hence no finite length solution to the flow equation (4.4.1). In this case, we can

9 We are being a bit loose with notation here. On the base Σ the quantity φ2 is not the square of anything. Only
on passing to Σ̃ does it have a globally well defined square root.
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draw a simple combinatorial picture which characterizes the global asymptotic properties of the

flow. Then, if we perturb the angle θ by a small amount, we we will not encounter any BPS states

and hence the combinatorial diagram will be stable. On the other hand, if we tune θ a large amount

past a critical angle which supports a BPS hypermultiplet, the global flow diagram will jump in a

definite way. As θ varies from 0 to π we encounter all BPS particles in the theory and thus the

BPS spectrum is realized geometrically as a sequence of moves in the flow diagram.

In the context of our simple An theories, let us now be more specific and introduce the

asymptotic flow diagram, an ideal triangulation, and the operation on it a flip, determined by a

BPS state. We first draw a large circle the x plane which defines the asymptotic boundary of C.

Then, on this circle we mark the (n + 3)-rd roots of unity, which makes the boundary circle into

an (n + 3)-sided polygon. The complex plane is represented by the interior of this polygon. We

then triangulate this space using only lines that end at the vertices of the polygon. So defined, we

have constructed an ideal trangulation of the (n + 3)-gon. This triangulation has the important

property that each traingle contains exactly one zero of the differential φ. An example for the case

of A1 is shown in Figure 4.16a.

Now that we have introduced ideal triangulations, it remains to explain how BPS states

are visualized in this setup. As we have described above, the BPS states are sudden changes in

the flow as we rotate θ. This means that they are described by operations, known as flips, which

change the triangulation. The flip operation can be performed on any internal (i.e. non-boundary)

edge E in the triangulation. We first delete E making a quadrilateral, and then replace E with E′,

the unique other edge in the quadrilateral which forms a triangulation as shown in Figure 4.16b.

The name of the operation, a flip, is justified by the fact that the new triangulation is related to

the old one by rotating the edge E.

In terms of the flow equation (4.4.1), the significance of a flip is easy to explain. Each

triangle in the triangulation contains exactly one zero of φ and the trajectories of the flow equation
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(a) An Ideal Trangulation (b) A Flip

Figure 4.16: A sample ideal triangulation. In (a), we have an ideal triangulation of the square used

for counting BPS states in the A1 model. The red line denotes an interior edge. The blue points

the zeros of the differential φ2. In (b), the edge E has flipped to E′.

(4.4.1) emanating from φ asymptotically terminate on the vertices of the triangle containing the

zero. Meanwhile, an internal edge E is an object at the interface of two triangles, and hence

equivalently two zeros. As the BPS angle is rotated towards a critical value, a pair of trajectories,

one from each zero, become near to each other. Exactly at the critical angle the trajectories connect,

leading to a BPS hypermultiplet described by a segment which crosses the edge E. Just after the

critical angle the trajectories again separate and the edge E is replaced with E′.

Given that an individual BPS state appears as a flip, the complete BPS spectrum is then

characterized by a sequence of flips. To describe the sequence, we note that as the BPS angle

rotates from 0 to π, all BPS particles will be seen by the flow and hence all flips will occur. On

the other hand, as θ rotates through π the quadratic differential returns to itself, except that the

asymptotic vertices rotate counterclockwise by an (n + 3)-rd root of unity. In other words, the

vertices of the polygon rotate one unit to the left. These facts determine how a BPS spectrum is

encoded in a sequence of flips:

• A BPS spectrum of An is a sequence of flips on the internal edges of a triangulation such that,
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after all flips have occurred, the ideal triangulation has returned to itself up to a rotation by

an (n+ 3)-rd root of unity.

The allowed sequences of flips also satisfy several minimality properties. Namely, if the edge E

flips to E′ then the edge E′ is not the next edge to flip, and if the sequence at any point reaches

the initial triangulation rotated by an (n+ 3)-rd root of unity, then it must terminate.

As developed in detail in [13], the most fascinating and useful aspect of this description

of BPS spectra is the ease with which one can describe wall-crossing. In this context, the fact that

there exists more than one chamber of BPS states is simply reflected in the fact that there exists

more than one sequence of flips satisfying the above criteria. Indeed, in the simplest example, the

A1 model, there is exactly one possible sequence of flips shown in Figure 4.16, and hence the BPS

spectrum consists of exactly one BPS hypermultiplet as described in section 3. However the A2

model, corresponding to the pentagon, already exhibits two such sequences and hence two chambers

of BPS spectra, as illustrated in Figure 4.17. This geometric fact will be significant for us in our

study of 3d field theories in section 5 and beyond.

4.4.2 Quivers and Mutation

A second, equivalent method for studying BPS states of the An models is to make use of

BPS quivers and mutations [28,77]. In this method, BPS states are described by studying a quiver

quantum mechanics on the worldvolume of a BPS particle. In the An examples the quiver is given

by an oriented version of the An Dynkin diagram.

· · ·

γ1 γ2 · · · γn

// // // (4.4.3)

In (4.4.3) γi denote the charges of an elementary basis of hypermultiplet which are always stable

states. Since charges are defined by one-cycles on the SW-curve each γi is associated to an element

of H1(Σ̃). The number of arrows between the nodes of the quiver is then fixed by computing the
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Figure 4.17: The two BPS chambers of the A2 model realized as a sequence of flips. The upper-left

pentagon, and upper-right pentagons, are the initial and final triangulations respectively. Each

arrow denotes a flip on one of the internal edges shown in red. Following the solid arrows we find

a chamber with two BPS states. Following the dashed arrows we find a chamber with three BPS

states.

intersection product of cycles, γi ◦ γj , or equivalently the four-dimensional electric-magnetic inner

product of the associated 4d particles. All remaining BPS particles in the spectrum can be viewed

as supersymmetric bounds states of these, which exist in the quiver quantum mechanics theory

defined by (4.4.3) [6–8].

In comparing the method of ideal triangulations to that of BPS quivers, the quiver diagram

plays the role of the ideal triangulation of a polygon. It is a basic combinatorial diagram which

encodes information about the spectrum. The analogous operation to a flip is then a quiver mutation

which acts on the quiver to produce a new quiver. This operation can be defined on any node i of
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the quiver, and acts on the charges as follows:

γi −→ −γi

γj −→


γj + (γi ◦ γj)γ1 if γi ◦ γj > 0

γj if γi ◦ γj ≤ 0

(4.4.4)

Thus, after mutation we can form a new quiver by computing the intersection of the charges on

the right-hand-side of (4.4.4).

Now, in the method of ideal triangulations, each BPS state is associated to a flip. Similarly

in the method of BPS quivers each BPS state is associated to a mutation. It then follows that

the complete BPS spectrum is captured by certain sequences of mutations. These sequences are

defined by the following properties [77]:

• The initial quiver appears as in (4.4.3) with node charges γi.

• The final quiver has charges −γi.

• At each step one may mutate on any node whose charge γ can be expressed as

γ =
∑
i

niγi, (4.4.5)

where in the above the ni are non-negative integers.

Let us see how the two examples considered in the previous section, the A1 and A2 theories,

are described using this method. In the case of A1, the quiver consists of one node and there is

trivially one possible sequence of mutations.

γ1

−→

−γ1

(4.4.6)

This agrees with our identification of this theory as a single free hypermultiplet. There are no

interactions and hence no wall-crossing. Meanwhile, in the case of the A2 theory things are more
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interesting. The two spectra described in Figure 4.17 map to two possible sequences of mutations.

The first sequence, with two BPS particles, is:

γ1 γ2

// −→

γ1 −γ2

oo −→

−γ1 −γ2

// (4.4.7)

While the second sequence describing the second chamber with three BPS particles is:

γ1 γ2

// −→

−γ1 γ1 + γ2

oo −→

γ2 −γ1 − γ2

// −→

−γ2 −γ1

//

(4.4.8)

One can easily generalize from these examples to determine the spectrum in the various chambers

of An theories for larger n. In our applications of this method to 3d N = 2 theories in later sections,

one detail of these calculations will be important to us:

• At the conclusion of a sequence of mutations the original quiver charges {γi}, as a set, have

been changed to {−γi}. However, they may have also undergone a non-trivial permutation

by an element χ ∈ Sn. Indeed, in the case of the first chamber of A2 described by (4.4.7) χ

is the identity element, while in the case of the second sequence, descirbed by (4.4.8) χ is the

non-trivial element in S2. This permutation proves important for our considerations later in

this paper.

4.5 Tetrahedra and Braids

Armed with the technology of the previous section, we now return to our general discussion

of 3d N = 2 theories constructed as domain walls in 4d N = 2 theories. Our aim will be to apply

the techniques of ideal triangulations and quiver mutations to develop a detailed geometrical toolkit

for extracting the physics of the domain wall.

Throughout all of the examples discussed in this section, the 4d theory will be one of the

An models whose BPS spectra we have now described in some detail. In the UV these theories are
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determined by a pair of five-branes wrapping the complex plane C and this leads to a particularly

simple geometry of the associated three-manifold M defining the domain wall theory. To be specific,

M is simply a thickening of the complex plane to C×R, where R describes the time parameter of

the R-flow in section 3. Along this flow all the central charges move in vertical straight lines, and

central charges cross the real axis in phase order. As we have previously noted this means that

each 4d BPS state will appear as a 3d BPS chiral particle trapped along the wall. Further, if we

ignore the length of the 4d central charges along the flow and concentrate only on their angles, then

we may interpret the fact that the particles cross in phase order as an identification of the time

coordinate with the BPS angle θ of the 4d central charges. In this section our aim will be to make

use of this fact to determine a concrete Lagrangian description of the field theory on the domain

wall.

First, we study the structure of the three-manifold M . As we have described above,

M = C × R, however the boundary conditions on the circle at infinity in the complex plane are

fixed for all time. Thus, we will in fact work in a quotient three-manifold defined by identifying

these asymptotic regions for all time. It then follows that our three-manifold M can be viewed

as an infinite solid ball with an asymptotic S2 boundary. This boundary two sphere is naturally

partitioned into two components, the northern hemisphere corresponding to the initial boundary

condition, and the southern hemisphere corresponding to the final boundary condition. We will

refer to these hemispheres as the “front” and “back” face of our three-manifold respectively. The

equatorial circle of the boundary S2 is where the front and back faces are glued together and is

the boundary circle inside C2 that is identified for all time. Further, both the front and back face

of our three-manifold describe an An theory, and as such these faces are naturally equipped with

ideal triangulations of (n+ 3)-gons governing their BPS spectra. Since the complete flow through

time corresponds to a rotation of the BPS angle by π, the final triangulation differs from the initial

triangulation by a rotation by 2π
n+3 . An example of the geometry for the case of A2 is shown in
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Figure 4.18.

Figure 4.18: The manifold M and its boundary triangulation for the case of A2. M is an infinite

solid ball. Its boundary two sphere has two faces given by the northern and southern hemispheres.

Each face is a triangulated pentagon. The vertices of the pentagon are shown in black while the

arcs in the triangulation are shown in red. The blue dots are the zeros of the SW differential. One

such zero occurs in every triangle. As we flow through time, the zeros on the front face interpolate

to those on the back face.

As we flow through time, the initial triangulation will evolve by a sequence of flips as

described in section 4. We will see that this sequence of flips will naturally endow the three-

manifold M with a decomposition into tetrahedra. Since the 4d BPS states correspond to both

tetrahedra and trapped 3d BPS particles, we then learn that each tetrahedron in the manifold

M will encode the existence of a 3d BPS particle. In this way we will make contact with the

work of [16]: the tetrahedron is a kind of basic BPS building block of these 3d theories. Further

as we will see, the fact that the ambient 4d theories can undergo wall crossing, and hence have
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different numbers of flips, becomes the statement that a given three-manifold admits many distinct

decompositions into tetrahedra. In our context, these distinct tetrahedral decompositions of M

will encode different dual descriptions of the same IR field theory.

Next in our analysis, we describe the IR geometry which is given by a branched double

cover M̃ →M . Since M is an infinite solid ball its topology is trivial. Thus, up to data at infinity,

the situation is exactly the same as that of double covers of S3 described in section 2. In particular,

M̃ is completely fixed by the associated branch locus knot in M . In our context, this knot is

exactly the set of zeros of the one-form λ, or equivalently the zeros of the evolving Seiberg-Witten

differential φ. On the front face of M the differential φ for the An model has exactly n+1 zeros and

each zero resides in a triangle in the ideal triangulation. As we flow through time the zeros evolve

continuously and sweep out a braid composed of n+ 1 strands. As we will argue, the structure of

this braid completely determines the 3d physics with BPS particles in direct correspondence with

the crossings in the braid diagram. An example is shown in Figure 4.19.

Figure 4.19: A braid with seven strands describing a chamber in the A6 theory. Each strand follows

the evolution in time of a zero of φ. 3d BPS particles are described by braid moves. The endpoints

are the zeros of the initial and final SW differential.

To complete the description of the 3d theory from its braid diagram, there is one final step:

we must turn the braid into a knot; that is we choose a way of identifying the enpoints of the strands

of the braid in pairs to turn all components of the braid into closed loops. This step is physically
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natural from a number of perspectives. First, our three-manifold M is non-compact, and hence we

must impose boundary conditions. These boundary conditions involve specifying a choice of which

cycles in M̃ are contractible at infinity and which remain non-trivial. Since all cycles in the cover M̃

can be localized to a neighborhood of the branching link, this choice is equivalent to a specification

of how the braid is capped off to form a closed knot. Alternatively, from the perspective of the

domain wall theory we can see the need for boundary conditions as follows. At the conclusion of

the decoupling limit described in section 3 all the massive BPS states of the ambient 4d theory

have decoupled. However there remains the coupling to the U(1) gauge and flavor symmetries. To

completely specify the theory on the wall we must specify how we couple our 3d field theory to

these vectors. Since the coupling constants of these U(1)’s are arbitrary parameters, we can choose

whether in three dimensions a given U(1) appears as a gauge or global symmetry. In fact such

coupling choices for the An are in direct correspondence elements of Sp(2n,Z), where the various S

transformations act by changing the set of gauged versus global U(1)’s and the T transformations

appear as changes in the Chern-Simons levels. We will see how these facts are made geometrically

manifest in the course of our analysis.

4.5.1 The Tetrahedron theory

We begin with the simplest example of domain walls in the A1 theory. In 4d, this is the

theory of a free hypermultiplet, and the R-flow of central charges for this example was studied in

section 3. In this case, the boundary triangulations of the front and back face are squares, and

as we flow through time the triangulation evolves by a single flip to produce a single tetrahedron

shown in Figure 4.20. We know that this flip is naturally associated to a 3d BPS chiral particle

which has become trapped on the wall, and thus this theory of two five-branes on a tetrahedron

supports exactly one BPS chiral particle. The mass of this particle, m0 is the real part of the 4d

mass of the parent 4d hypermultiplet.
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Figure 4.20: The tetrahedron associated to the A1 domain wall. The tetrahedron is viewed with

its front face pointing out of the page. The square of the A1 theory is given by the black edges.

The red diagonal flips as one flows from the front to the back face. The black dots denote the two

zeros of the SW differential on the front face. As we flow through time, these zeros evolve to the

two zeros on the back face shown in white. In the process they sweep out two strands.

To study the geometry in more detail, we track the evolving zeros of the SW differential as

we move through the geometry of the tetrahedron. In each triangle in both the front and back face

there is one zero, and as time flows they determine a braid composed of two strands. At exactly

one critical time the strands of the braid become closest to each other and the BPS chiral particle

in 3d appears. We encode this fact in the braid diagram by drawing exactly one braid move as

shown in Figure 4.21a.

In terms of the geometry of section 2, the single BPS particle appears as a segment

connecting the two strands of the braid. Since the BPS particle is also associated to the one

braid move we can view this BPS segment as being localized at the crossing in the braid diagram.
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(a) A1 Braid (b) The U(1) in the A1 theory.

Figure 4.21: In (a), the braid for the tetrahedron theory. The single particle is encoded by the

single braid move. In (b), the red cycle γ circles the two strands of the braid. The particle at the

crossing is charged under this cycle.

As explained in section 2 such a particle carries a U(1) charge under the cycle γ which wraps

around the two strands of the braid illustrated in Figure 4.21. Depending on boundary conditions

to be specified, the cycle γ may be non-contractible, in which case it is gauged, or it may be

contractible at infinity, in which case the U(1) will survive as a flavor symmetry of the theory.

Thus in either case, the BPS particle carries a unit charge under this U(1). Note that in the

limit where the particle is massless, the two strands of the braid intersect. Thus, we can view

the separation between the strands as proportional to the mass of the particle and the effect of

going from overcross to undercross corresponds to changing the sign of the mass for the chiral field.

Finally, we will always make the convention that time flows from left to right in the braid diagram.

So defined the configuration of Figure 4.21a encodes a charged BPS particle with charge +1 under

the cycle γ.

Thus far, the braid we have introduced is simply a diagrammatic notation for the rather

trivial particle content of the tetrahedron theory. However, the reason that the braid is useful is

that operations on the braid diagram have a natural physical interpretation. We will illustrate

this feature throughout the course of our analysis. To begin, the first and most basic point we

address is the proof that the field theory we have defined is canonically associated to the braid.
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What this means is the following. The braid group on two strands is an infinite cyclic group which

is generated by a single element b which acts on the two strands, as in Figure 4.21a, by braiding

the lower strand over the upper strand in time order. Then the tautological relationship b−1b = 1

translates to the clear geometrical fact that an insertion of an overcross followed by and undercross

at any point in the braid is trivial as illustrated in Figure 4.22.

Figure 4.22: The braid group relation b−1b = 1. In the gray region, the strands braid with each

other in an arbitrary manner.

Now, in our physical context we may ask whether the relation in Figure 4.22 is satisfied.

To address this we follow the tentative dictionary set in the previous paragraphs. For each crossing

in the diagram we add a single chiral particle to the theory. Thus, in the left of Figure 4.22, the

relevant region where b−1b has been inserted corresponds to two particles X and Y . However, as

we will argue later in this section, these particles have opposite U(1) charges. This means that

there is an invariant superpotential term

W = µXY. (4.5.1)

Furthermore, we know from our general discussion of M2-brane contributions to the superpontential

in section 2 that exactly in this situation we expect to find such a quadratic contribution to W .

Indeed, the region of the overcross followed by undercross bounds a disc which is precisely the

projection of an M2 describing a quadratic interaction between the inserted particles as illustrated

in Figure 4.23.

Now, in equation (4.5.1) the parameter µ is a complex (as opposed to real) mass for the

fields X and Y . Such a mass term means that the fields X and Y are irrelevant in the infrared and
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Figure 4.23: The superpotential coupling the fields corresponding to the insertion of bb−1. The green

region lifts to the boundary of an M2-brane instanton which gives rise to a quadratic interaction

between the particles.

may be safely removed from the spectrum. This should be contrasted with the case of particles

with non-zero real masses. In the latter case, even though such fields are massive, their real mass is

detected by the partition function of the theory as we will discuss in sections 7 and 8. By contrast,

the partition function is independent of complex masses such as µ and thus we may freely take

these to be parametrically large. Doing so, we find that the insertion of b−1b in the braid diagram

is physically equivalent to inserting the identity, i.e. no particles whatsoever. In this way, we have

verified the braid group relation described by Figure 4.22.

Boundary Conditions and SL(2,Z)

Next in our analysis, we turn to the discussion of boundary conditions for the theory of

two M5-branes on the tetrahedron. As we have previously discussed, what the domain wall and

decoupling limit constructs for us is a 3d theory, together with an arbitrary choice of coupling to

the background U(1) multiplet. On such field theories, there is a natural action of SL(2,Z) [97,103]

defined by the action of its S and T generators as:

• T acts to increase the Chern-Simons level of the background U(1) by k̂ → k̂ + 1.

• S acts to gauge the U(1) in three dimensions, and introduces a new background U(1) which

is the dual flavor group.
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Thus, SL(2,Z) does not act as a duality group, but simply acts on such a theory to produce a new

one. As we will see, in our context, this SL(2,Z) is realized as acting on our choice of boundary

conditions.

The simplest way to study the boundary conditions is to consider the IR geometry M̃ →

M . This is a double cover of M branched over the braid described in the previous section. In

particular, the boundary of M as an S2 which contains the four endpoints of the braid, two from

the front face and another two from the back face. It follows that the boundary of M̃ is a double

cover of S2 branched over four points, and therefore ∂M̃ is a torus. The three-manifold M̃ fills in

this boundary smoothly, and is thus a solid torus.

Alternatively, one can also see the fact that M̃ is a solid torus by recalling that the

tetrahedron theory is determined by a one-parameter thickening of the A1 theory in 4d. The

Seiberg-Witten curve for the latter is a cylinder. Then, M̃ is a thickening of this cylinder. It has as

boundary the SW cylinders associated to the front and back face A1 theories which are connected

at their respective ends to make the surface ∂M into a torus as illustrated in Figure 4.24.

(a) SW Curve (b) M̃

Figure 4.24: The IR geometry for the tetrahedron theory. In (a), we see the SW curve, in this case

a cylinder, for the 4d A1 theory. In (b), the three-manifold M̃ obtained as a thickening of the SW

curve. Topologically this thickened cylinder has an asymptotic boundary of a torus.
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Now we are equipped to specify boundary conditions. We will modify the manifold M̃ by

adding data at infinity which turns it into a closed manifold without boundary M̃c. Then, all fields

are required to be well-behaved on M̃c. Since M̃ has boundary given by a torus, to close M̃ means

to glue it to another three-manifold whose boundary is a torus, in other words we simply glue

M̃ to another solid torus. From this description, we see that our choices of boundary conditions

are labeled by the gluing map g : T 2 → T 2 that specifies how the boundary tori are glued. Up to

isotopy, such gluings g are specified by their SL(2,Z) action on the homology of the boundary of the

torus. The manifolds M̃c that we obtain from such gluing are exactly the lens spaces. For example,

gluing two solid tori with the identity map makes, S2×S1, while gluing with the S transformation

produces S3. More generally, given p and q relatively prime, we consider the following element of

SL(2,Z) :

g =

 m n

p q

 . (4.5.2)

Where in the above m,n are chosen such that g has determinant one. Then, the three-manifold

obtained by gluing two solid tori with the map g is the Lens space L(p, q).10

One can see from this description that the S and T generators have the desired physical

effect of gauging, and shifting the level k̂ respectively. Indeed, for example consider as a starting

point the theory on S3 = L(1, 0). This manifold has no homology and hence no gauge group.

Acting with S changes the gluing to produce S2 × S1. Since this has first Betti number one, the

U(1) has been gauged, which is indeed the appropriate action for the generator S. Similarly, we

can act on the S3 theory with the transformation T p. This means that we are gluing two solid tori

with the map

g = T pS =

 p −1

1 0

 . (4.5.3)

10 Recall that, for any choice of signs L(±p,±q) are all identical. Thus we can be somewhat lax about signs in the
following.
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This again produces the S3 = L(1, 0). However, the integer p in the above is physical as it encodes

the CS level of the coupling of the theory to the background U(1) flavor symmetry now given by

k̂ = p. Indeed, to make this manifest we can now further act by S. This gauges the U(1) which is

now at level p. It is specified by the gluing map

g = ST pS =

 1 0

p 1

 , (4.5.4)

and hence results in the Lens space L(p, 1). This space has first homology group that is pure torsion

H1(L(p, 1)) ∼= Zp, and thus, as explained in section 2 describes a gauged U(1) CS theory at level

k̂ = p as desired.

We can further illuminate this SL(2,Z) structure by alternatively studying it from the

point of view of the branching braid which encodes the structure of the cover M̃ → M . The

SL(2,Z) action on the homology of the boundary T 2 of M̃ is obtained by motions involving the

four branch points in the cover T 2 → S2. Since these four endpoints are precisely the endpoints of

the braid, this means that the SL(2,Z) action can be seen as acting on the braid. To describe this

action, we must first state how we specify boundary conditions at the level of a braid. Our infinite

tetrahedron can be compactified to S3 by adding a point at infinity. As discussed in section 2, a

double branched cover of S3 is completely specified by its branching knot K. Thus, to specify the

boundary conditions we must close our braid into a knot. We do this by identifying the endpoints

of the braid in pairs. Specifically, we glue the initial points at t = −∞ together, and the final

points at t = +∞ together. In this way make a closed knot as illustrated in Figure 4.25.

In general, for the A1 theory, we will always specify boundary conditions by gluing initial

and final points as above. We illustrate this diagrammatically, with the dashed string shown in

Figure 4.25b to emphasize that this gluing is boundary data at infinity. With this prescription, we

can now specify completely the geometry of the compactified double cover M̃c. For example, in the

case of the braid of Figure 4.21a describing the basic tetrahedron theory, this procedure produces
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(a) A Braid (b) Closure of the Braid

Figure 4.25: Imposing boundary conditions. In (a) we see a braid. In the gray region the strands

braid with each other in an arbitrary manner. In (b), the strands are connected by the dashed

string to make a closed knot.

an unknot. Then M̃c, is double cover of S3 branched along the unknot and hence is also an S3.

Now we are equipped to discuss the action of SL(2,Z) on closed braids. Let us first

consider the T generator. This is to act by increasing the CS level for the background U(1) by

k̂ → k̂+ 1. We can interpret this action by making use of the quantum parity anomaly. This states

that upon integrating out a particle of mass m > 0 with charge ±1 the CS level shifts as k̂ → k̂+1.

In terms of its action of CS levels, the operation of adding a massive particle is therefore identical to

the desired T operation. In the above, we have associated the charged particles to the crossings in

the braid diagram, that is to the action of the braid group generator b±1. Sticking to this principle,

means that we simply identify the action of the SL(2,Z) element T with the insertion of b−1 at

the conclusion of the braid, as in Figure 4.26. In order to only modify the CS level, the particles

(a) A Braid (b) Action by T

Figure 4.26: The definition of the operator T . In (a) we see a generic braid. In (b) the action of T

on this braid.
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inserted by the T transformation should be interpreted as having parametrically large mass. This

is natural if we view T as acting on boundary conditions of the theory. Then, the closure of the

braid assocaited to T p acting on the basic tetrahedron braid in Figure 4.21a is again an unknot.

However, the integer p is physical and keeps track of the background CS level. Thus, although all

such examples produce covers M̃c which are topologically S3’s there is a physical integer ambiguity,

namely the CS level, which is resolved by the braid diagram.

Having defined the generator T let us now turn to the generator S. In our braid diagrams

time flows from left to right vertical slices define the notion of space. The operator T respects

this partition into space and time directions since it preserves the pairs of endpoints that appear

as initial and final points of the braid. By contrast, the operator S will not respect this partition

into space and time and mixes what were originally the initial and final endpoints of the braid.

Specifically, our definition of S is to permute the endpoints of the braid as shown in Figure 4.27.

(a) A Braid (b) Action by S

Figure 4.27: The definition of the operator S. In (a) we see a generic braid. In the gray region the

strands braid over each other in an arbitrary fashion. In (b) the action of S on this braid.

Given that S creates no new crossings in the diagram, we will not associate the creation

of new chrial particles with its action. However, the operator S does have the desired effect of

gauging the background U(1). To illustrate this fact consider the comparison of the closure of the

trivial braid with the closure of the braid defined by S as shown in Figure 4.28. In the case of

the trivial braid, the closure forms a connected unknot. However, in the case of inserting S, the
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(a) Closure of the Trivial Braid (b) Closure of S

Figure 4.28: The operator S changes the gauging prescription. In (a), the closure of a trivial braid

leads to an unknot. In (b) the closure of S leads to two unlinked circles. This changes the topology

of M̃ by increasing b1.

closure defines two unlinked circles. In the first case, the cycle γ encircling the two components of

the braid, has become contractible at infinity and the associated U(1) is not gauged. Meanwhile

in the case of the S braid, γ remains as a homologically non-trivial one-cycle and hence in this

theory the U(1) is gauged. Topologically, the compactified double cover geometry has changed to

M̃c
∼= S1 × S2.

From these two definitions of S and T , we may now see that they satisfy the required

relations to generate an action of SL(2,Z). This means that S2 must be a central element whose

square is the identity (sometimes written as S2 = −1), and further that (ST )3 = 1. To begin

consider the action of S2 shown in Figure 4.29. As compared to the original braid, the action of S2

Figure 4.29: The action of S2. This acts as time reversal on the braid.
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has been to reverse the direction of time flow by changing the initial versus final conditions. Thus,

S2 is simply time reversal along the R-flow and hence acts centrally. Since reversing time twice is

the identity operation, we conclude that S4 = 1.

Similarly, we may consider the action of (ST )3 illustrated in Figure 4.30. One can see,

Figure 4.30: The action of (ST )3. On braids this is the identity operator.

manifestly from the above, that the operator (ST )3 acts as the identity on the braid. This completes

the verification of the SL(2,Z) group structure.

Given that we have completely specified our choices of boundary data, we may now ask

quite generally: what are the possible IR geometries M̃c which we obtain by these methods?

Since the geometry is determined by the resulting closed knot obtained from capping off the braid

diagram, we may alternatively ask: what is the set of knots that we can obtain from the trivial

braid by repeated action of S and T? The answer to this question is exactly the set of rational

knots. They are completely classified by their so-called Conway fraction, z, which is valued in

Q ∪ {∞}. To define this fraction, we first normalize z by setting its value for the link defined by

the closure of S shown in Figure 4.28b to be 0. Then, given any rational knot K1, constructed by

action of ρ ∈ SL(2,Z) from the rational knot K2, we set

z(K1) = ρ (z(K2)) . (4.5.5)
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Where in the above the action of ρ on z is the usual action of SL(2,Z) as fractional linear trans-

formations.

The result of this construction is thus an invariant fraction z = p/q associated to each

rational link. We demand that the integers p and q are coprime. Consider two such rational knots

with Conway frations z1 = p1/q1 and z2 = p2/q2. Then, a theorem due to Schubert asserts that

the resulting knots are isotopic (that is equal as knots) if and only if

p1 = p2, q1 ≡ q±1
2 mod pi. (4.5.6)

This is exactly the same arithmetic conditions that occur in the classification of lens spaces L(p, q).

This is not a coincidence. The double branched cover of the S3, branched over the rational knot

with Conway fraction p/q, is L(p, q). Thus we recover our original answer. The IR geometries M̃c

for the tetrahedron theory are exactly the lens spaces.

Finally, let us note that these methods allow us to fully specify the basic theory associated

to closing the tetrahedron braid shown in Figure 4.31a. Indeed, the closed knot shown there is the

unknot and thus there is no gauged U(1). However, the chiral particle is still charged under a flavor

U(1). To full specify the resulting theory, it remains to determine the background CS level k̂ for

this flavor U(1). If k̂ is non-vanishing then, upon gauging the background U(1), that is acting with

the operator S, we obtain a three-manifold cover M̃c which has H1(M̃c,Z) ∼= Zk̂. Meanwhile, if

k̂ = 0 then acting with S produces a geometry with non-vanishing first Betti number.

Now, we know that T acts to change the CS level by one unit, and hence the operator

ST−k̂ must act on Figure 4.31a to produce a cover geometry with b1(M̃c) = 1. However, as is clear

from Figure 4.31b, the action of ST on the tetrahedron braid produces topologically two unlinked

circles. The double cover of S3 branched over two unlinked circles is precisely S2×S1 which indeed

has b1 = 1. Therefore we conclude that the basic tetrahedron theory defined by the closed knot in

Figure 4.31a has CS level k̂ = −1. This is identical to the definition of the theory given in [16].
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(a) Closure of the Tetrahedron Braid (b) Action by ST

Figure 4.31: Computing the CS level for the background U(1) in the tetrahedron theory. In (a) we

see the closure of the basic tetrahedron braid. In (b), the action of ST on this braid changes the

topology of the cover.

Doubled Tetrahedron as a Special Lagrangian in C3

We have now described a class of IR geometries relevant for the study of the A1 domain

walls. These are special Lagrangians presented as double covers of the tetrahedron, and are given

by the Joyce-Harvey flow of the SW geometry y2 = x2−m in C3. It is therefore natural to try and

identify these special Lagrangian subspaces of C3 more explicitly. As already mentioned, before

imposing boundary conditions, the IR special Lagrangian geometry M̃ is a non-compact solid torus.

Furthermore, the geometry supports a unique BPS state described by an M2 brane ending on an S1

inside the solid torus. In other words, we should be looking for a non-compact special Lagrangian in

C3 which has the topology of T 2×R+ where at the origin of R+ one of the two circles of T 2 shrinks

to a point. The M2-brane boundary is then also located at the origin of R+, and is supported on the

non-contracted S1 ⊂ T 2. Precisely such special Lagrangian submanifolds have been constructed by

Joyce [74], and figure prominently in the study of open string mirror symmetry [104]. Here we will

recall some facts about this class of special Lagrangians.

Let zi for i = 1, 2, 3 denote the three complex coordinates of C3. Then, the special
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Lagrangians of interest can be depicted as follows:

|z3|2 = |z2|2 = |z1|2 −
m0

2π
, θ1 + θ2 + θ3 = 0 (4.5.7)

where m0 > 0. Another way to characterize this subspace is as the locus where

z3 =
z1z2

|z1|
, |z1|2 = |z2|2 +

m0

2π
. (4.5.8)

From the second description, we see that this subspace has the topology of C× S1, parameterized

by {z2, θ1}. We can view this as a T 2 fibration over R+, where the torus is made of the angles

θ1, θ2, R+ is parameterized by |z2|, and at the origin of R+, the θ2 circle shrinks. The projection of

this special Lagrangian on the base of the toric representation of C3, given by (|z1|2, |z2|2, |z3|2) is

shown in Figure 4.32. Note that this special Lagrangian supports a unique M2-brane [104], which

Figure 4.32: Toric special Lagrangian in C3. The green ray denotes the toric projection of the

T 2×R+ special Lagrangian. The red disc is the worldvolume of a BPS M2-brane in C3 which ends

on the special Lagrangian on the blue circle, and gives rise to a BPS particle in R1,2.

ends on the θ1 circle at the origin of z1 space. In fact, one can show that if M ⊂ C3 is any special

Lagrangian submanifold, then the harmonic form λ is

λ =
∑
i

|zi|2 dθi
∣∣
M
, (4.5.9)

and from equation (4.5.7) we get

λ =
m0

2π
dθ1, (4.5.10)
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and the mass of the corresponding BPS state is m0.

This geometry thus has all the characteristics we expect for the special Lagrangian cor-

responding to the double cover of the tetrahedron, and we conjecture that they are equal. In fact,

given our explicit description we can see how the double cover works: it is simply given by the

complex conjugation action on C3

zi → zi. (4.5.11)

This is clearly a symmetry of the space defined by (4.5.8). Furthermore, the fixed locus of this

geometry are two strands given by

(z2 ∈ R, θ1 = 0) and (z2 ∈ R, θ1 = π). (4.5.12)

A further check for the identification of the this subspace with the double cover M̃ , is that if we

compactify the theory on S1 then the moduli space of the special Lagrangian submanifold is given

by the mirror geometry defined by a pair of complex variables (u, v) subject to the relation

eu + ev = 1. (4.5.13)

This is exactly the moduli space of SL(2,C) Chern-Simons theory on the tetrahedron. As we will

explain in section 7, this is to be expected and demystifies some of the observations in [105], and

explains why the partition function of SL(2,C) Chern-Simons on a tetrahedron should be the same

as that of the special Lagrangian brane on C3. Furthermore, this shows why the partition function

of the SL(2,C) Chern-Simons on a tetrahedron should be that of the open topological string for

this special Lagrangian A-brane.

Finally, let us note that the identification of the IR geometry M̃ as an explicit special

Lagrangian in C3 yields yet one more way to see the SL(2,Z) action on boundary conditions, and

to recover the fact that the compactified geometries M̃c are lens spaces. Specifically, we can consider

toric compactifications of the subspace (4.5.8). For example, we can complete the C×S1 geometry
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to S2×S1, which corresponds to having a locus where θ2 shrinks, depicted torically in Figure 4.33a.

Note that here the special Lagrangian has a modulus corresponding to ‘sliding’ it along the |z1|

axis. Thus in this phase the U(1) is gauged, and coupled to a charged chiral field described by BPS

M2-brane. Suppose instead we want to have the geometry of S3. This corresponds to shrinking

the θ1 circle, which is depicted in Figure 4.33b. In this case we have no gauged U(1) but we still

have a chiral field living on the M5-brane, again described by the M2-brane ending on the special

Lagrangian. Similarly we can obtain lens space geometries. For example, L(p, 1) is obtained by

having the circle p[S1]1 + [S1]2 shrink at infinity.

(a) Compactification to S2 × S1 (b) Compactification to S3

Figure 4.33: Toric compactifications of the special Lagrangian. In (a) the compactified geometry

is S2 × S1 and has a modulus which is described by sliding it along the |z1| axis. In (b) the

compactified geometry is S3 and the special Lagrangian is rigid.

Black-White Duality, Mirror Symmetry and Geometric Transitions

To summarize the results of the previous sections, we have obtained a class of 3d theories

which are described in the IR by a single M5-brane on a lens space L(p, q) together with a single

BPS M2-brane charged under a gauged or global U(1) symmetry of the theory. To conclude our

discussion of these theories, in this section we discuss simple examples of mirror symmetries.

Let us revisit the basic tetrahedron theory. We equip the resulting knot with a checker-

board coloring as shown in Figure 4.34a. As explained in section 2, the checkerboard provides an
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(a) Checkerboard for the Basic Tetrahedron (b) Dual Checkerboard for the Basic Tetrahedron

Figure 4.34: Black-White duality for the tetrahedron theory. In (a) we see a description of the

theory with no gauge group. In (b) there is a U(1) with k̂ = 1. The two theories are dual.

algorithmic way to read off the data of the gauge multiplets on R1,2. In Figure 4.34a, we see one

white region, and hence no gauge field. However, we may alternatively consider the dual checker-

board for the same knot shown in Figure 4.34b. Now, there are two white regions and hence the

gauge group is U(1). Further there is now a crossing connecting the white regions labeled 1 and 2

and correspondingly, the CS level for the U(1) is k̂ = 1.

Thus, without changing any data about the knot, and hence without changing the field

theory, we have found two distinct descriptions of the basic tetrahedron theory:

• A free chiral multiplet coupled to a background flavor U(1) with level k̂ = −1.

• A chiral multiplet coupled to a gauged U(1) with level k̂ = 1.

Consistency of our formalism demands that these two descriptions are equivalent, and this is indeed

a known mirror symmetry [103].

We can further investigate this basic duality by noting that the second description of the

theory involving a gauged U(1) is in fact identical to the action of ST 2 on the first description of

the theory. Thus, we can alternatively study this mirror symmetry by acting with the operator

ST 2 on the knot in Figure 4.34a. This produces the checkerboard shown in Figure 4.35. Of course,

geometrically one can clearly see that the knot defined by Figure 4.35 is equivalent to that of Figure
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Figure 4.35: The action of ST 2 on the basic tetrahedron theory. This recovers the black-white

duality of the theory as invariance under the operator ST 2.

4.34b as two of the crossing in the diagram are redundant and can be eliminated. Nevertheless, it

is still instructive to see that the algorithmic procedure of extracting the IR field content from the

checkerboard produces the correct duality. This is easily verified. The two white regions yield one

gauge field. Summing over the crossings connecting the regions with the indicated sign then gives

k̂ = 1 and hence reproduces the black-white mirror symmetry above.

Finally, we can also describe this duality in terms of a geometric transition. We consider

the basic tetrahedron theory encoded in Figure 4.34a and ask what happens as the mass m0 of the

chiral particle is smoothly taken through 0 to −m0. As studied in section 3, under this process the

strands of the braid reconnect as illustrated in Figure 4.36.

In terms of the braid diagrams used throughout this section, we can describe this recon-

nection as follows. First, as m0 → 0 the braid develops a self-crossing. Then, as m0 becomes

negative the original overcross is exchanged with an undercross. This means that the theory has

been acted on by the operator T 2. Second, the strands reconnect. This changes the identification

of endpoints which occurs at infinity. To see this, we compare the topology of the knot obtained

by identifying the upper endpoints and the lower endpoints of Figure 4.36a, with the same identi-

fication performed in Figure 4.36e. This changes the topology of the knot which is the signature

of the operator S. We conclude that the entire reconnection process is described by acting on the
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(a) m0 >> 0 (b) m0 > 0 (c) m0 = 0 (d) m0 < 0 (e) m0 << 0

Figure 4.36: The reconnection process. The strands are illustrated in black and the blue line

indicates the projection of the boundary of the BPS M2 brane. In (c), when the mass m0 of the

particle vanishes, the two strands touch and their individual identity is ambiguous. As m0 becomes

negative the strands reconnect.

theory with ST 2, and thus reproduces the black-white duality.

In fact, the above line of reasoning, that is the study of BPS particles with vanishing

masses, in some sense explains why it is possible to encode particles in a braid diagram to begin

with. The basic point is simply that when the mass is zero the strands must cross, and a braid

diagram is simply a resolution of this situation to account for non-zero masses.

4.5.2 A2 Domain Walls: The Bipiramid

Having investigated the simplest possible example of domain walls in the A1 model, we now

turn to the A2 theory. This is the simplest 4d theory that exhibits the wall-crossing phenomenon.

In one chamber, there are two particles, while in the second chamber there are three particles. This

fact has dramatic implications for domain walls. The spectrum in 3d is given by trapped particles

from the ambient 4d theory. Thus the different chambers in 4d yield 3d theories with distinct

spectra. For each such domain wall we must again specify boundary conditions. A key observation

is that the boundary conditions for the two domain walls are related in a non-trivial manner. Thus,

fixing a choice of boundary data in one wall, uniquely fixes the boundary data on the other wall,
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and hence fully specifies two 3d field theories. As we will illustrate by example in this section,

such pairs of 3d field theories, which are connected by 4d wall-crossing, are mirror pairs. Thus,

equivalence of the parent 4d theory under wall-crossing explains 3d mirror symmetry.

The Two Chambers and the Pachner Move

We begin our analysis with a discussion of the geometry of the manifold M . The A2

theory is described by triangulations of a pentagon, and hence this is the front and back face of M

as shown in Figure 4.18. In terms of the triangulation on its boundary, the manifold M is therefore

a bipiramid, that is topologically a solid ball whose boundary is triangulated into six triangles.

As in the discussion of the tetrahedron, as we flow through time, the triangulation on the

front face evolves by a sequence of flips to the triangulation of the back face. However because the

A2 theory exhibits wall-crossing, there are now two distinct ways in which the time evolution can

occur. One possibility is that in the course of time evolution, the triangulation will undergo two

flips, and hence the 4d theory will support two BPS particles. The other possibility is that the flow

through time produces three flips, and hence three particles. In each of these cases, a flip encodes a

solid tetrahedron and a trapped BPS particle on the wall. The two possible sequences of flips thus

describe two distinct ways of decomposing the bipiramid into tetrahedra as illustrated in Figure

4.37.

Above and beyond simply indicating the number of tetrahedra, the sequence of flips on

the triangulation completely specifies how the tetrahedra are to be glued together to form the

manifold M . Let us illustrate this feature for the case of the bipiramid. We label the triangles in

the front and back faces by Fi and Bi, and let Il, Jl denote the possible triangles appearing in the

interior of M for the two chambers respectively. Then, each flip of an edge E → E′ is associated to

four triangles: the two triangles adjacent to E which appear before the flip and the two triangles

adjacent to E′ which appear after the flip. These give the four sides of each tetrahedron. The
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Figure 4.37: The two chambers of the A2 theory give rise to two ways of decomposing the bipiramid.

In the center we see the bipiramid. The pentagon of the A2 theory is given by the black edges.

The red diagonals flip as one flows from the front to the back face. On the left, it is decomposed

into two tetrahedra glued along a face. On the right, it is decomposed into three tetrahedra glued

along the green edge.

complete sequences of flips then describes all the faces of all of the tetrahedra as illustrated in

Figure 4.38.

From this sequence of flips we can then easily extract the tetrahedra and their labelled

faces. Thus in the two particle chamber, the tetrahedra are

F2F3B3I1 and F1I1B1B2. (4.5.14)

While in the three particle chamber they are

F1F2J1J2 and J1F3J3B1 and J2J3B2B3. (4.5.15)

The gluing is then specified by simply identifying the shared faces. As one can easily check, this

reproduces the decompositions of the bipiramid shown in Figure 4.37. One can view the entire

sequence of flips as giving rise to a ’holographic’ view of the 3d geometry by drawing all edges that

are flipped as in Figure 4.39.
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Figure 4.38: The flips of the A2 theory reinterpreted as gluing data for a bipiramid. In the above,

the upper left pentagon with triangles Fi is the front face. The upper-right pentagon with triangles

Bi is the back face. As flips happen in time, tetrahedra are created. Following the solid arrows we

see two tetrahedra, while following the dashed arrows we see three tetrahedra.

(a) 2 particle chamber (b) 3 particle chamber

Figure 4.39: The two chambers of the A2 pentagon model viewed holographically from the front

face. The solid red lines are diagonals on the front face, while the dashed red lines are diagonals

on the back face. The dashed green line in (b) is the internal edge where the three tetrahedra are

glued together.
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Quite generally in the study of triangulated three-manifolds, the operation that we have

just described where two tetrahedra glued along a face are replaced with three tetrahedra glued

along an edge is known as a 2-3 Pachner mover. In our physical context, the 2-3 Pachner move is a

geometric manifestation of the basic 2-3 wall-crossing of the A2 theory. As we will discuss later in

this section, in generalizing to the An model all wall crossing that we encounter is exactly of this

2-3 sort and is thus completely captured in 3d by the Pachner move.

Boundary Conditions and Braids

Now that we have addressed the UV geometry, we turn to the solution of the model as

encoded by the IR geometry or equivalently its associated braid. As usual M̃ is a double cover

of the solid ball. The fastest way to understand its topology is to focus on the double cover of

its boundary S2. This cover is branched over exactly the six points which are the zeros of the

SW differential on the front and back face of M . Since a double branched cover of the sphere

branched at six points is a Riemann surface of genus two, we conclude that M̃ must be a smooth

three-manifold whose boundary is a surface of genus two.

We can be more specific about M̃ by making use of the SW curve of the A2 theory. For

the A2 model, the SW geometry is a double branched cover of the complex x plane described by

the equation

y2 = x3 + ax+ b. (4.5.16)

Where in the above a, b ∈ C are parameters of the theory. This SW curve is a punctured torus,

i.e. topologically a torus minus a disc. Then, the IR geometry M̃ is a thickening of this Riemann

surface and is therefore a “torus bottle,” with boundary a genus two Riemann surface as shown in

Figure 4.40. This picture allows us the determine the geometry more precisely. Given the boundary

∂M̃ , we choose generating homology classes A1, A2 B1, B2 with canonical symplectic relations

Ai ·Aj = Bi ·Bj = 0, Ai ·Bj = δij . (4.5.17)
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Figure 4.40: The IR geometry M̃ for the bipiramid theory. The SW curve is a punctured torus.

M̃ is a thickening of this to a torus bottle. The boundary of M̃ is composed of the exterior torus

less a disc which appears on the outside of the bottle, along with the interior of the bottle which is

again a torus less a disc. These are glued together to form a Riemann surface of genus two.

Then, the filling M̃ is specified at the level of homology by choosing a pair of cycles in ∂M̃ and

declaring them to be contractible in the interior. In our case, as is manifest from Figure 4.40, the

cycles which become contractible in the interior of M̃ are A1 −A2 and B1 −B2.

The fact that M̃ has boundary given by a surface of genus two makes clear the fact that

the 3d field theories that we obtain from such domain walls will naturally be acted on by Sp(4,Z).

Indeed, to completely specify our theory we must now impose boundary conditions on the manifold

M̃ . This means that we must complete this IR geometry to a manifold without boundary. As M̃

has boundary a surface of genus two, to remove the boundary we must glue M̃ to another manifold

with boundary a genus two surface. Now to specify the gluing, we choose an element of the mapping

class group of ∂M̃ and glue the boundaries together. On considering the action of this mapping
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class group element in homology of ∂M̃, we obtain the desired action of Sp(4,Z).11

From the point of view of the domain wall construction, the action of Sp(4,Z) that we

are describing is physically natural. After the decoupling limit, the 3d wall theory comes equipped

with a coupling to two U(1)’s, which are the electric and magnetic gauge fields that propagate in

the bulk. As in the case of the tetrahedron model, our choice of boundary conditions involves a

specification of whether or not these U(1) are gauged and what their background CS level is. Then,

Sp(4,Z) acts naturally on this data with the various S transformations inducing gaugings and the

T transformations changing CS levels.

To really pin down the IR physics, we now turn to a more detailed description of the

geometry as defined by its associated braid. As with our tetrahedral example, the geometric

significance of this braid is that it is the branching locus for the double cover. Since each face of

the three-manifold M has three triangles, the braid will be composed of three strands. However,

since the 4d A2 theory exhibits wall-crossing there are two distinct braids that we can associate

with these domain walls corresponding to the two chambers of the 4d theory. The first has two

particles and hence two braid moves, while the second has three particles and hence three braid

moves. These are shown in Figure 4.41.

The braids shown in Figure 4.41 have a number of significant properties that demand

explanation. To do that we recall from section 4 that we may describe the BPS spectrum by a

sequence of mutations on the A2 quiver. The nodes of this quiver are cycles in the SW curve and

hence are associated to a pair of branch points, or equivalently a pair of strands in the braid. Thus

for example in the quiver

ui vi

// (4.5.18)

11 Note that the choice of boundary data intrinsically involves the mapping class group as opposed to merely
Sp(4,Z). It would be interesting to discover a physical phenomenon which is sensitive to the more refined data of
the mapping class group element
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(a) 2 Particle Chamber (b) 3 Particle Chamber

Figure 4.41: The two braids associated to the bipiramid theory. In (a) we see the two particle

braid with two moves. In (b) the three particle chamber with three braid moves. The labels ui vi

denote cycles in the initial and final Riemann surface. Notice that in the case of the three particle

chamber the final cycles differ from the initial ones by a permutation.

the node labeled ui is associated to the cycle defined by the first and second strand as t → −∞.

Similarly, the node labeled vi is associated to the cycle defined by the second and third strand as

t→ −∞.

Now, for each mutation in the sequence defining the BPS spectrum in 4d, we obtain a

chiral particle in 3d and hence a braid move. In the case of a three strand braid relevant for our

current example, we first label the strands as 1,2 ,3 going down the page. Then, the braid group

is generated by two elements b12 and b23 where bij moves strand i under strand j in time order.

To determine which braid move we do, we look at which node of the quiver is being mutated.

Specifically:

• If node 1 is mutated do the braid move b12.

• If node 2 is mutated do the braid move b23.

This determines completely how the sequence of mutations describing the BPS spectrum is mapped

to the sequence of braid moves encoding the 3d geometry. As described in section 4, in the two
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particle chamber the we recall that the mutation sequence is given by node 2 followed by node 1,

and yields the braid shown in Figure 4.41a, while in the case of the three particle chamber the

mutation sequence is 1, 2, 1 and determines the braid shown in Figure 4.41b.

The fact that the braids are determined by mutation sequences with nodes corresponding

to cycles also explains another crucial feature of Figure 4.41. We recall from section 4.4.2, that at

the conclusion of a sequence of mutations describing a 4d BPS spectrum the cycles have in general

undergone a non-trivial permutation χ. As we saw there, this permutation element depends on

the BPS chamber. In the two particle chamber of A2, we found that χ is the identity, while in the

three particle chamber, χ was the non-trivial element of S2. This explains the labeling of cycles

that we have made in Figure 4.41. In the two particle chamber the initial basis of cycles denoted

ui, vi, agrees with the final basis of cycles denoted uf , vf . Meanwhile in the three particle chamber

the initial and final basis of cycles disagree, having been acted on by the permutation χ.

Duality

Now we are equipped to study how boundary conditions are imposed on the braids, and

thus how we can use the result to extract an explicit Lagrangian description of the resulting field

theories. As in our analysis of the theory of a single tetrahedron, boundary conditions at the level

of the braid are a specification of choices for how the braid is closed into a knot. Then, this knot is

the branching locus for the compactified IR geometry M̃c presented as a double cover of S3. The

most general set of boundary conditions thus involves choosing three pairs of the six endpoints

of the braid to glue together. Then, given any fixed gluing prescription, Sp(4,Z) acts to produce

another one by performing various S transformations which change the gauging prescription, and

T transformations which act as additional braid moves creating ultra-massive BPS particles and

changing the CS levels. This generates an interesting family of knots in S3 which classify in full

generality the IR field theories that we obtain from domain walls in the A2 theory.
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Rather than investigate the general case of such knots, we instead note that our construc-

tion of these field theories as domain walls, naturally singles out a simple subclass of boundary

conditions which respect the order of time flow. Indeed, at each boundary t = ±∞, there exists

a pair of cycles. At t = −∞ these are ui, vi, while at t = +∞ these are uf and vf . To impose

boundary conditions in general, means to choose cycles to be contractible. Doing this in a way

which preserves the time ordering implies that we choose one cycle from the initial set and one

cycle from the final set and declare them to be contractible. Thus, for example, we may choose

ui and uf . Then, given such a choice there is an action on such boundary conditions not by the

full Sp(4,Z) group, but rather by the subgroup Sp(2,Z) × Sp(2,Z) acting on the initial and final

trivialized cycles. Explicitly, given (gi, gf ) ∈ Sp(2,Z)× Sp(2,Z) the action is

ui → giui, uf → gfuf . (4.5.19)

As with the general action, this induces changes in the gauging prescription and adds various CS

levels, but it does so in a way which respects the time order defined by the flow on the geometry.

Let us now see some examples of such boundary conditions applied to the braids of Figure

4.41. We declare that ui and vf are contractible and connect the corresponding strands of the braid

without introducing additional twists and CS levels. Further, we give a checkerboard coloring to

the resulting knots shown in Figure 4.42.

Since we have fully specified boundary conditions, we have now fully specified the compact-

ified IR geometry M̃c and thus we may now read off the field content and determine the resulting

3d field theories obtained for each chamber. Let us consider first the theory determined by Figure

4.42a. We read off gauge structure by making use of the Seifert surface defined by the checkerboard

coloring. There are two white regions, labeled 1 and 2 in the Figure. Correspondingly, there is 1

U(1) gauge field in 3d theory on R1,2. The resulting level k̂ of this U(1) is vanishing, since the net

number of crossings between regions 1 and 2 vanishes. Meanwhile, as we will derive later in this
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(a) 2 Particle Chamber (b) 3 Particle Chamber

Figure 4.42: Closed links and checkerboards for the gluing determined by trivializing ui and vf .

In (a), we see the result from the two particle chamber. In (b), the result from the three particle

chamber. The theory on the left is Nf = 1 SQED. The theory on the right is the XY Z model.

section, the two particles in the theory carry opposite U(1) charges. Thus, the theory encoded by

the diagram of Figure 4.42a is exactly Nf = 1 SQED.

Similarly, we can read off the IR geometry and field content for the theory encoded by

Figure 4.42b. There is now only one white region in the checkerboard and hence there are no gauge

fields. The theory supports three BPS chiral multiplets X, Y , and Z encoded by the crossings in

the braid diagram. However, this theory has one additional crucial feature. The triangular region

of the knot diagram, bounded by the three crossings, is exactly the kind of geometry described

in section 2 in which BPS M2-branes yield contributions to the superpotential. This triangular

region should be contrasted with other discs with boundary along the knot that are apparent in the

diagram. As we have previously explained, dashed regions of the knot encode boundary conditions

at infinity. Thus, every disc which has its boundary along a dashed component of the knot has

infinite volume and hence supports no M2-brane contributions to the superpotential. However, the

triangular region in question has all solid boundaries and hence supports a finite disc. Thus, this
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theory also has a superpotential coupling its chiral fields as

W = XY Z. (4.5.20)

So defined, the theory described by Figure 4.42b exactly the so-called XY Z model.

Now we observe a striking fact. The two theories that we have produced via this construc-

tion are a mirror pair! Both Nf = 1 SQED and the XY Z model have the same IR dynamics near

their conformal fixed points [15]. This example illustrates a general phenomenon. The two open

braid diagrams of Figure 4.41 admit many different choices of boundary conditions. However, if we

fix boundary conditions in the two particle chamber of Figure 4.41a, then those of Figure 4.41b are

also fixed automatically by simply demanding that the same cycles are contractible. Thus, fixing

one choice of boundary conditions determines two theories, and the resulting models are always

mirror pairs. For another familiar example, we may consider trivializing ui and uf which has as a

result Figure 4.43.

(a) 2 Particle Chamber (b) 3 Particle Chamber

Figure 4.43: Closed links for the gluing determined by trivializing ui and uf . In (a), we see the

result from the two particle chamber. In (b), the result from the three particle chamber. The

theory on the left is that of two neutral chirals. The theory on the right is N = 4 U(1) Yang-Mills.

What theories are these? The answer is again obtained by a trivial application of the now

familiar rules. In Figure 4.43a, we see a theory with no gauge group and two uncharged particles
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say X and Y . Meanwhile in Figure 4.43b, we see a theory with a U(1) gauge group, vanishing level,

two particles of opposite charge Q and Q̃ and a neutral particle Φ with superpotential coupling

W = ΦQQ̃. (4.5.21)

The latter theory is thus exactly the N = 4 U(1) gauge theory coupled to a fundamental hy-

permultiplet. That this theory is mirror to a theory with just two neutral scalars is in fact the

paradigmantic example of three-dimensional mirror symmetry [14].

We can also investigate the role of black-white duality in these theories. For example, we

study first the case of SQED shown in Figure 4.44. In terms of the physical content of the theories

(a) 2 Particle Chamber (b) 3 Particle Chamber

Figure 4.44: Black-White duality for U(1) QED. The theory is self-dual.

defined by the knot diagram, the two theories are identical. Thus under black-white duality, U(1)

QED is self-dual

A more interesting case is given by the XY Z model illustrated in Figure 4.45 In Figure

4.45b, there are now four white regions and hence three U(1) gauge fields in the theory on R1,2. If

we take the generators to correspond to the regions labeled 1, 2, 3, then the matrix of level is given
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(a) 2 Particle Chamber (b) 3 Particle Chamber

Figure 4.45: Black-White duality for the XYZ model. The theory on the right involves a non-local

superpotential which contains the monopole operators.

by

k̂ij =


1 0 0

0 1 0

0 0 −1

 . (4.5.22)

There are three charged particles, Xi charged only under U(1)i, with charges (-1,-1,+1). Again the

region 4 bounded by undashed components of the knot encodes a superpotential term. However,

now we find a novelty. Since region 4 is white, the superpotential also couples to the monopole

operators Mi = exp(σi + iγi) of the corresponding U(1). Thus, in this case

W = (M1X1)(M2X2)(M3X3). (4.5.23)

Note that this is gauge invariant because Mi carries a U(1)i charge k̂i, due to the Chern-Simons

terms. We can see that this is a valid duality by simply invoking the black-white duality for the

A1 theory three times, once for each of the fields Xi, replacing MiXi with the dual field X̃i.
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4.5.3 General An Walls

Having investigated the two most basic examples, we now state our proposal for the general

structure of domain walls in the An theories.

Five-Brane Geometry

First, there is the UV five-brane geometry M . This is described by a solid ball whose front

and back face are triangulations of the (n+ 3)-sidded polygon. As time evolves, the triangulation

of the front face will evolve into the triangulation of the back face by a sequence of flips. Each flip

describes a BPS state of the 4d theory and thus each state gives rise to a trapped 3d particle on

the wall. On the other hand, each flip naturally describes a solid tetrahedron in M . As in previous

sections, the full sequence of flips then encodes a complete tetrahedral decompostion of M . Thus,

we have the natural identifications

Flip↔ 4d BPS particle↔ Trapped 3d BPS particle↔ Tetrahedron.

In particular, the induced tetrahedral decomposition of M completely captures the 3d BPS spec-

trum of chiral multiplets. In the IR, these are all of the matter particles that are physically relevant.

Just as in the A2 example, the general An 4d field theory can exhibit wall-crossing in

its BPS spectrum. This means that there are different chambers of 4d BPS states which in turn

describe different possible spectra of trapped BPS states living on the domain wall. According

to our discussion above, this implies that the tetrahedral decomposition of the manifold M is not

fixed. Rather, distinct chambers are related by the primitive 2-3 wall-crossing where in crossing the

wall, a single hypermultiplet disappears from the spectrum. The geometric manifestation of this

in M is precisely the 2-3 Pachner move. In one BPS chamber there are three particles encoded by

three tetrahedra glued along an edge. In the second BPS chammber one of the particles disappear

and the three tetrahedra glued along an edge are replaced by two tetrahedra glued along a face.
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Next, we may describe the IR geometry M̃ and the way in which it encodes the solution of

the model. The manifold M̃ is a branched double cover of the (infinite) solid ball, with branching

locus given by the braid determined by the zeros of λ or equivalently the evolving SW differential.

At the asymptotic boundary of the ball, there is thus a sphere with 2n + 2 zeros of λ describing

the initial and final terminal points of the n + 1 strands in the braid. Thus, the boundary of M̃

can be described as a double cover of the sphere branched over 2n + 2 points and is therefore a

hyperelliptic Riemann surface of genus n. It follows that M̃ is a filling in of this Riemann surface

to a three-manifold.

In fact, our knowledge of the SW curve of the ambient An theory allows us to be more

precise and to specify exactly which filling in is prescribed by the time flow. Indeed, the SW curve

is given by a a certain polynomial of degree n+ 1 in x as

y2 = Pn+1(x). (4.5.24)

There are then two cases determined by the parity of n.

• n even:

Σ̃ is a surface of genus n/2 which has been made non-compact by removing a single disc.

Then, M̃ is a thickening of this to a genus n/2 bottle. If we label the cycles on the initial

surface Σ̃i on the outside of the bottle as (Ai, Bi), and those on the final surface Σ̃f on the

inside of the bottle as (Ãi, B̃i), for i = 1, · · · , n/2, the relations defining the filling in of the

boundary surface of genus n to make the manifold M̃ are

Ai = Ãi, Bi = B̃i. (4.5.25)

• n odd:

Σ̃ is a surface of genus (n− 1)/2 which has been made non-compact by removing two discs.

Then, M̃ is a thickening of this to a genus (n − 1)/2 pipe. Label the symplectically paired
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Figure 4.46: A thickened genus two pipe describing the IR geometry M̃ in the case of A5. The SW

geometry is a genus two curve with two discs removed. The cycles Ai, Bi, F , span the homology

of the SW curve Σ̃ at t −→ −∞. The boundary of M̃ is a surface of genus five.

cycles on the initial Σ̃i on the outside of the pipe as (Ai, Bi), and those on the final Σ̃f on

the inside of the pipe as (Ãi, B̃i), as for i = 1, · · · , (n − 1)/2. The remaining two cycles on

the boundary are unpaired cycles F, F̃ on the initial and final surfaces. The relations defining

how M̃ is filled in are then

Ai = Ãi, Bi = B̃i, F = F̃ . (4.5.26)

This geometry is illustrated in Figure 4.46.

Just as in the explicit examples we have studied thus far, to fully specify a 3d theory we

must impose boundary conditions. These are defined by taking the manifold M̃ and gluing it to

another copy of itself to determine a compact manifold M̃c with no boundary. As the boundary of

M̃ is a Riemann surface of genus n, there is a natural action of Sp(2n,Z) acting on our choices of

boundary conditions and hence the class of theories constructed in this manner. Such actions can

again be interpreted as changing the gauging prescription and the CS levels of the model.
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An Braids and Lagrangians

To determine the detailed structure of the theory, including charges of fields, superpoten-

tials, and CS levels, we proceed as in our examples to construct a braid canonically associated to

each chamber. The structure of this braid is completely fixed by R-flow. Indeed, R-flow is specified

by the evolution of the 4d central charges which are the periods of the Seiberg-Witten differential,

φ. Then, given the evolution of these central charges, we can in principle invert the period map

to determine the evolution of the loci where φ = 0. The strands in M swept out by these zeros

during the flow, are then exactly the strands of the braid. However, even for the simple case of

the An model, inverting the period map explicitly is a non-trivial task. Nevertheless, for these An

R-flows, we will see that the structure of the braid, and its detailed 3d physical interpretation, can

essentially be determined by simple consistency conditions. Of course, it would still be desirable to

invert the period map and verify our results directly.

First, we address how particles in the theory are visible from the braid diagram. As we

have seen in our analysis of the A1 and A2 examples, before closing the braid (which may involve

T transformations), there is a one-to-one correspondence between braid moves and 3d particles. In

fact, this correspondence holds generally for those 4d chambers, where all the mutating nodes of

the 4d BPS quiver have either, all incoming arrows, i.e. sinks, or all outgoing arrows, i.e. sources.

Note that the A1 and A2 examples are both of this type. For more general sequences of mutations

which involve nodes which are neither sources nor sinks, what we find is a kind of ‘non-planar’

structure, where each particle corresponds to a specific crossing, but not all crossings correspond

to particles.

To begin the investigation, note that BPS states can be viewed as segments connecting a

pair of strands in the braid. This observation provides the basic link between particles and braid

moves: when the particle becomes massless, the associated pair of strands must meet. Thus, if

we give the particle a small finite mass, we simply resolve the intersection of the strands into a
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braid move. It follows that, up to an overcross/undercross prescription to be determined, each 3d

particle will be associated with a braid move.

From this basic fact, we can already deduce why source/sink mutation sequences result in

a one-to-one correspondence between 3d particles and braid moves. Indeed, each node of the quiver

labels a cycle encircling a pair of strands, and if the corresponding nodes have an arrow between

them, then the corresponding pairs share a strand. Suppose we focus on three adjacent nodes of

our quiver, which we label α, β, γ. Let us consider the mutation of the node β. If the node β is

a sink, i.e., the arrow structure of the quiver is α → β ← γ, then after mutation the quiver has

changed to α← −β → γ. Therefore, up to the ambiguous overcross/undercross, the braid and the

associated cycles would appear as in Figure 4.47. Thus, in this case there is one particle and one

Figure 4.47: The effect of mutation at a sink node β on the strands. The undercross/overcross is

ambiguous.

braid move.

Meanwhile, if the node β is a source, i.e. the quiver α ← β → γ, then after mutation

the classes of the nodes have changed to (α + β) → −β ← (β + γ), and thus the corresponding

braid and cycles would appear, up to overcross/undercross, as in Figure 4.48a. This may look

like a complicated structure. Indeed, if say the next node to mutate is (β + γ), this means that

the second and fourth strand should cross, which cannot be done without an additional crossing

involving the third strand, which does not correspond to a physical particle. To avoid this, we
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(a) Source type mutation (b) Change of planar projection

Figure 4.48: A source type mutation on the node β. In (a) we see the resulting change of basis on

the cycles. In (b), the planar projection is changed by rotating strand two and three.

rotate the second and third strand after the mutation, resulting in Figure 4.48b. Then, after this

change in our planar projection of the braid, the source type mutation looks the same as the sink

type. The only difference is that the classes we associate to cycles between nearby strands have

changed in correspondence with the labeling of charges on the nodes of the quiver. So again, in

this case we see that there is one particle and one braid move.

Finally, consider a mutation on a node which is neither a source nor sink, say mutation of

the node β for the quiver α→ β → γ. Then, the mutated quiver would become
−−−−−−−−−−−−→
α→ −β → β + γ.

The corresponding braid looks, up to overcross/undercross as in Figure 4.49. Suppose next we

Figure 4.49: The effect of mutation at a mixed node β on the strands.
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wish to mutate on β + γ. This cannot be done without an extra crossing. However, unlike the

source/sink case where we could change our planar projection to avoid the unnecessary crossing,

this is not possible to do by any rotation of the strands after mutation. Continuing with further

mutations we will get a ‘non-planar’ braid, for which some crossings will be unphysical in the sense

that they do not correspond to chiral particles.

Thus, for precisely those mutation sequences which involve only sources and sinks, we can

achieve a planar projection of the braid where each crossing corresponds to a 3d chiral particle. For

this reason, we restrict our analysis in the remainder of this section to these sink/souce chambers.12

For these braids, the structure is completely determined by the sequence of mutations of the An

quiver describing the parent 4d BPS spectrum. We label the strands of the braid as 1, 2, · · ·n+ 1

going down the page. Then, the i-th node of the quiver labels a pair of adjacent strands (i, i+ 1),

and mutation on the node i corresponds to a crossing involving the pair of strands (i, i + 1). To

fully specify the braid we must now fix an overcross/undercross rule. As we will argue later in this

section, this rule is determined by consistency to be that the strand i+ 1 always overcrosses i. We

take this as our definition of the braid group generator bi,i+1, and thus for source/sink sequences,

the braid is completely fixed by:

mutation at node i↔ bi,i+1. (4.5.27)

Next, we specify boundary conditions for the theory by closing the braid with dashed

regions encoding the fact that the closure occurs at infinity. The simplest example of such boundary

conditions are those which do not introduce any additional crossings in the diagram. This preserves

the feature that all crossings can be associated to finite mass dynamical 3d particles, and we confine

ourselves to such simple examples. Then, to extract the IR Lagrangian we draw a checkerboard

coloring of the resulting knot. This fixes the gauge multiplet sector of the theory as:

12A more general example of a non-planar braid is considered in section 8.6.
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• The number of U(1)’s is one less than the number of white regions in the coloring.

• The matrix of CS terms is given by computing the Goeritz form for these white regions.

Finally, we must fix the superpotentials and charges of particles. As a consequence of our

source/sink assumption, and the simple choice of boundary conditions, each crossing in the diagram

corresponds to a particle. Let i index the white regions in the checkerboard. Between regions i and

j there are some number α of crossings cαij and associated chiral fields Φα
ij . The field Φα

ij carries

charge ±1 under the U(1)i and the U(1)j and vanishing charges for the remaining gauge groups.

We will now determine the sign of these charges by demanding that all apparent superpotential

terms are gauge invariant.

To study the superpotential, note that for a given checkerboard coloring of the projected

link we have both black and white regions. For each finite region, black or white, whose boundary

does not include any dashed portions of the knot that arise from boundary conditions, we expect

a superpotential contribution to our theory. This superpotential derives from M2-brane instantons

ending on the M5-brane. Thus, each one of the regions corresponds to a superpotential term.

However, depending on the color of the region, white or black, the interpretation is different for

the gauge theory on R1,2. We discuss each of these in turn.

• White Regions

Since white regions Ri are associated to gauge groups of the theory, the i-th finite white

region in the checkerboard describes a superpotential which is proportional to the monopole

operator for U(1)i

M±1
i = exp[±(σi + iγi)], (4.5.28)

where γi denotes the corresponding scalar dual to photon, and the sign εi = ±1 in the

exponent ofMi depends on the sign conventions for the gauge field yet to be determined. In

addition, the M2-brane instanton for white region i will contribute a monomial given by the
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chiral fields associated to each of the crossings of that region with other white regions. Thus,

each finite white region contributes a term

Wi =Mεi
i

∏
j,α

Φα
ij ∈ W. (4.5.29)

• Black Regions

For each finite black region B, we also get a superpotential term. But this time there is

no associated gauge cycle. Indeed, the one-cycles surrounding the white regions have trivial

intersection with any of the black regions (including the neighboring ones), and this implies

that the two-cycles defined by the black regions carry no monopole charge. Thus, for each

finite black region we simply get the contribution of the fields at the crossings on the boundary

of the region

WB =
∏

(ij,α)∈∂B

Φα
ij ∈ W. (4.5.30)

Now, we fix the charges of the fields Φα
ij by demanding that the superpotential terms

(4.5.29) and (4.5.30) are gauge invariant. Let qαk,ij denote the U(1)k charge of the field Φα
ij cor-

responding to the crossing cαij . Each of these fields corresponds to a basic crossing, and hence is

qαk,ij = ±1 for k = i, j and qαk,ij = 0 for k 6= i, j. Note also that the monopole field Mεi
i carries

U(1)j charge given by εik̂ij induced from the CS term.

Then, the U(1)j gauge invariance of the white region contribution Wi implies that

εik̂ij +
∑
α

qαj,ij = 0, (4.5.31)

and similarly, the U(1)i invariance of Wi implies that

εik̂ii +
∑
α,j

qαi,ij = 0. (4.5.32)

Using the U(1)i invariance of Wj the latter equation we learn

εik̂ii −
∑
j

εj k̂ji = 0. (4.5.33)
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And finally, multiplying this by εi we see that

k̂ii −
∑
j

εiεj k̂ij = 0 (4.5.34)

This is compatible with the definition of the CS matrix (4.2.39) only if, for each pair of i, j with

non-vanishing k̂ij , we have

εiεj = −1. (4.5.35)

This implies that it must be possible for this class of gauge theories to assign a parity to each U(1)

factor of the gauge group, defined by the sign εi, such that gauge fields which have non-vanishing

k̂ij have opposite parties. As a result, we learn that, after deleting a single ungauged node, the Tait

graph, defined by the checkerboard coloring as in section 2, is a bipartite graph for which we can

assign opposite ±1 to vertices which are connected. This turns out to be true for all the graphs

which arise in our constructions for the sink-source sequence of mutations.

Furthermore, note that equations (4.5.31) and (4.2.39) can be combined to express the

charges of the fields in terms of the sign ζ(cαij) associated to the crossing

∑
α

(εiζ(cαij) + qαi,ij) = 0. (4.5.36)

This suggests the canonical solution

qαi,ij = −εiζ(cαij) (4.5.37)

Equation (4.5.37) is the key final result which specifies the charges of the theory and completes

our description of these models. Together with the fact that εiεj = −1 for connected vertices, it

implies that the each of fields Φα
ij , charged under white regions i and j, are bifundamentals which

carry opposite charges under U(1)i and U(1)j

qαi,ij = −qαj,ij . (4.5.38)

This means that each of the links in the Tait graph, which corresponds to a crossing cαij and hence

a field Φα
ij , can be oriented by making use of the bipartite structure. If we make the convention
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that the link cαij points out of the node associated to U(1)i if the field Φα
ij carries charge +1 under

U(1)i, then this makes the Tait graph into the quiver for the resulting gauge theory.

Finally, we observe that these equations uniquely fix the charges in terms of the Chern-

Simons levels, up to the choice of εi. However, there are only two global choices of εi depending on

which nodes we assign as even and which one as odd. A change of an overall sign of εi simply flips the

oveerall sign of the charges, which gives an equivalent theory, by replacing all gauge fields by their

opposites, Ai → −Ai (which does not affect the Chern-Simons level matrix). The reverse is also

true: if we assign arrows to the links of the Tait diagram, thus fixing qαk,ij , we can read off the ζ(cαij)

from equation (4.5.37) and hence determine the associated overcross/undercross. This provides

a strong consistency check on our proposal for the charges of the fields, and our identification of

mutations with the basic braid move bi,i+1.

Cookbook

Let us summarize the rules derived in the preceding section into a recipe for extracting

the 3d theory. We confine our description to the simplest examples where the boundary conditions

respect the order of time flow, and no additional T transformations are performed.

• Given an An BPS quiver, identify a source-sink sequence of mutations describing a chamber

of the 4d theory.

• Construct a braid on n+ 1 strands by reinterpreting the mutation sequence as a sequence of

braid moves. When the node i is mutated do the braid move bi,i+1.

• Impose boundary conditions by choosing cycles to be contractible. If n is odd, this means

contracting n+1
2 initial and final cycles. If n is even, this means contracting n

2 initial and final

cycles.

• Equip the resulting knot with a checkerboard coloring and draw the associated Tait graph.
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This graph is bipartite except for the presence of one auxiliary framing node. By framing

node, we mean the node that is not gauged. For each other node i in the graph, assign a

parity εi = ±1 in such a way that nodes connected by a link have opposite parity.

• Orient the links in the Tait graph by making use of the parity of the nodes and the parity of

the links. Specifically:

– If both nodes are not the framing node and the link has parity +1 orient the link by

pointing it from the node with parity −1 to the node with parity +1.

– If both nodes are not the framing node and the link has parity −1 orient the link by

pointing it from the node with parity +1 to the node with parity −1.

– If one node is the framing node, orient the link by having it point out of the framing

node if the product of εi and the link orientation is +1 and point into the framing node

if the product of εi and the link orientation is −1

• The oriented Tait graph can now be interpreted as the quiver describing the field content and

gauge group of the resulting theory on R1,2. Thus, each node other than the framing node

yields a U(1). Each oriented link defines a bifundamental field. And the matrix of CS levels

k̂ij is determined by computing the Goeritz form the sign ± assigned to each of the links in

the Tait graph.

• Finally, the superpotential of the theory is given by summing over contributions from finite

white and black regions in the checkerboard

W =WBlack +WWhite. (4.5.39)

At the level of the Tait graph this means the following:

– For each finite black region B, we obtain a contribution toW in the form of a monomial

in elementary fields. Specifically, each such region B defines a cell in the Tait graph,
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and we add the cycle in the Tait graph defined by ∂B to the superpotential

WBlack =
∑
B

∏
∂B

Φα
ij . (4.5.40)

– For each finite white region W , we add an associated term in the superpotential involving

the monopole operatorMi associated to the i-th gauged node which corresponds to that

white region. Specifically, we take the product over fields charged under the node in

question

WWhite =
∑
W

Mεi
i

∏
i

Φα
ij . (4.5.41)

The algorithm defined above can be applied to any source-sink mutated chamber of the 4d

An theories. To compare the theories defined by two distinct chambers, we keep track permutation

χ which acts on the nodes of the quiver. Let χi for i = 1, 2 denote the two permutations. We

impose boundary conditions at t = +∞ on a given braid by contacting some set of cycles γi. Then,

to compare to the second braid we contract the cycles χ2 ◦ χ−1
1 (γi). Thus, one choice of boundary

conditions, fixed for the braid defined by one chamber, determines boundary conditions for the

braids defined by all other chambers. Extracting the physics from the resulting knot as above we

obtain a class of mirror 3d theories. In the next section, we will use the procedure to give new

examples of dual pairs.

4.5.4 A Final Example: Alternating A2n

As an example application of these rules we will consider domain wall theories in the

general A2n model. We consider an alternating orientation of the quiver.

· · ·

1 1̇ 2 2̇ · · · n ṅ

// oo // oo //oo (4.5.42)

This quiver corresponds to the zig-zag triangulation of an (2n + 3)-gon shown in Figure 4.50a.

This is the triangulation present on the front and back face of the three-manifold, and as usual,
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its evolution determines a decomposition of the solid ball into tetrahedra viewed holographically in

Figure 4.50b.

(a) Alternating Triangulation (b) Holographic Tetrahedra

Figure 4.50: Triangulations for the alternating An quiver in the case of A8. In (a) we see the

triangulation of the front face. In (b) the holographic view of the tetrahedra in the case of the

minimal chamber.

There are two simple chambers of these theories described by their mutation sequences as

• Minimal Chamber

There are 2n states. The mutation sequence proceeds by first mutating on all dotted nodes,

and then mutating on all undotted nodes. The associated permutation element χ is the

identity.

• Maximal Chamber

The theory has n(2n + 1) states. The mutation sequence proceeds by mutating on all all

undotted nodes, then all dotted nodes, then all undotted nodes, etc. for a total of 2n2 + n

mutations. The associated permutation element is

χ = (1, ṅ) (1̇, n) (2, ˙n− 1) (2̇, n− 1) · · · . (4.5.43)
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We construct the braid by identifying mutations with braid moves as described in the previous

section: when an undotted node m is mutated we do the braid move b2m−1,2m, when a dotted node

ṁ is mutated we do the braid move b2ṁ,2ṁ+1. This leads to braids of the form shown in Figure

4.51.

(a) Minimal (b) Maximal

Figure 4.51: Minimal and maximal braids for the A8 alternating quiver.

Next, to determine a 3d field theory we impose boundary conditions. As an illustrative

example, we choose to trivialize the undotted cycles at the initial time, and the dotted cycles at

the final time. Of course in doing so, we must also take into account the non-trivial permutation χ

in the maximal chamber.

Minimal Chamber

First, we investigate the physics of the minimal chamber. We follow the general instruc-

tions of the previous section. We draw a checkerboard coloring of the resulting knot, and its

associated Tait graph. Then, we identify a framing node in the graph which will be ungauged. All
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other nodes describe gauge groups in the theory and we assign a sign ε = ±1 to these nodes in

such a way that connected node have opposite parity. Orienting the links using our general rules

we obtain a Tait graph of the form shown in Figure 4.52.

(a) Checkerboard for the minimal chamber of A8 (b) Tait graph for the minimal chamber of A8

Figure 4.52: Checkerboard coloring and associated Tait graph for the minimal chamber of the

alternating A8 theory. The white region denoted by F corresponds to the square framed node in

the graph. The generalization to A2n is a linear Tait graph of length n.

From this Tait graph, reinterpreted as the quiver of the 3d theory, we determine that in

the minimal chamber there are n gauge groups, 2n particles, and no superpotential terms. The

charges of the fields, and the the associated CS matrix can all be read from the orientation of

arrows in the Tait graph and the Goeritz form of the links.

Maximal Chamber
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Next, we consider the maximal chamber. The checkerboard coloring of the knot, and

its associated Tait graph are shown in Figure 4.53. From the graph, we read off that there are

n(n − 1) gauge groups, and 2n2 + n particle, 2n of which are gauge neutral and encoded in the

links connecting the framed node to itself.13 Moreover, there is now a superpotential consisting of:

• Black Terms.

There are n2 finite black regions. Of these, n2−n yield quartic monomials in W, and n yield

cubic contributions. These can be off from from cells in the Tait graph.

• White Terms.

All white regions are finite and hence yield monopole contributions to the superpotential.

There are n(n− 1) such contributions.

The remaining data in the model, such as the charges of the fields and the CS levels, are all encoded

by the Tait graph.

In section 8 we will check this proposed duality by comparing partition functions of these

two theories.

4.6 Flows of General 4d N = 2 Theories

The examples described in the previous section, illustrate domain walls in the simplest

possible context of the An Argyres-Douglas models. However, the general procedure of extracting

a 3d theory from an R-flow of a parent 4d theory can be carried out for an arbitrary N = 2 model.

For example, the En case which does not correspond to 3d geometry will be discussed in section

8. One could perhaps also consider the R-flow of other N = 2 theories which are not complete,

by relaxing the constraint of UV finiteness, though we will not provide examples of that in this

13 The neutral links correspond to crossing connecting the framed region with itself. These do not contribute to
the CS levels and hence the links do not have an associated sign.
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(a) Checkerboard for the maximal chamber of alternating A8

(b) Tait graph for the maximal chamber of alternating A8

Figure 4.53: Checkerboard coloring and associated Tait graph for the maximal chamber of the

alternating A8 theory. The white region denoted by F corresponds to the square framed node in

the graph. The generalization to A2n is an n(n− 1) grid Tait graph.
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paper. Here, we will focus on the case where 4d gauge theory is defined by wrapping a pair of M5

branes on a punctured Riemann surface C of arbitrary genus g(C). Such 4d models have a number

of interesting geometric features which translate into properties of the resulting three-manifold M

which is given as a thickening of C. For example, if we consider the punctures of the surface C

there are two basic types [13,36]:

• Irregular Punctures

These are equivalent to boundary components of the Riemann surface. For example, the An

Argyres-Douglas model is equipped with such a puncture. In three dimensions, the boundary

data for these punctures is fixed for all time along the R-flow and hence these boundary com-

ponents are identified on the front and back face of M . Thus, in three dimensions, irregular

punctures do not give rise to boundary components, but instead map to pure topology of M .

• Regular Punctures

These encode mass parameters of the 4d theory and hence describe first order poles in the

SW differential. If we consider a one-parameter family of such punctures then we obtain a

line of cusp singularities in M̃

Topologically, the manifold M is given by a thickening of C modulo the relation that

the boundary components of C, defined by the irregular punctures, are identified for all time. It

has annular cusp singularities for each regular puncture. Further, if C has at least one boundary

component, then ∂M is a connected Riemann surface obtained by gluing two copies of C along

their common boundary. Specifically, if C has b ≥ 1 boundary components, then the genus of ∂M

is determined by a simple computation to be

g(∂M) = 2g(C) + b− 1. (4.6.1)

The manifold M is then a certain filling in of the boundary ∂M .
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Given any such surface C, its BPS data may be encoded in an ideal triangulation as

described in section 4. As we flow through time, the triangulation of the front face will evolve to

the triangulation of the back face and this determines a decomposition of M into tetrahedra. Each

tetrahedron encodes a 3d chiral particle in the theory, and finite 2-3 wall-crossings describe 2-3

Pachner moves on the 3d triangulation.

Next, we state some general facts about the resulting IR geometries M̃ . These are

branched double covers of M and their structure is encoded by the evolving zeros of the Seiberg-

Witten differential φ. For each triangle in the front face of the triangulation we obtain a zero of

φ. As the zeros evolve, they determine an open knot composed of strands, whose endpoints are

fixed at the front and back face of M . In principle, we can find the geometry of these strands using

the R-flow. Indeed, given the evolution of the 4d central charges, which are the periods of φ, we

can invert the period map and find the geometry of the branch point flow. This is quite similar to

the case of the An models studied in detail in section 5. However, unlike the the examples there,

where these strands moved and were tangled in a space with trivial topology of a ball B3, now the

strands evolve in a space M with non-trivial topology which has as boundary the surface of higher

genus (4.6.1). Further, the strands may also become braided around the annular cusp singularities

descending from the regular punctures in the surface C.

Thus, the result of a general R-flow on a punctured Riemann surface is a potentially

complicated topological configuration, and some of the technology that we developed for the An

case will be need to be enhanced to study this situation. Nevertheless, we can still see that some of

our general observations hold. For example, to impose boundary conditions on the resulting theory,

we close the open knot in M into an honest knot and this fixes the compactified geometry M̃c. From

this description, it is also clear that the resulting 3d theories will be acted on by Sp(2g(∂M),Z) and,

as in our general discussion, this action is physically realized by changing CS levels, and gauging

or ungauging some U(1)′s.
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4.6.1 Effective 3d Gauge Theories with Infinite Dimensional Representations

A major novel feature of the general flows outlined above is the presence of BPS chambers

of the 4d theory with infinitely many BPS states. Indeed, the main examples we have considered

involve 3d theories whose 4d parents have finite number of BPS states. However this is not the

typical situation. For example, the pure SU(2) gauge theory in 4d has infinitely many BPS states

in the weak coupling chamber. For SU(n) theories, not only can we have infinitely many BPS

states, but in addition, we may have chambers which support BPS states with arbitrarily high

spin. It is thus natural to ask: what would the interpretation of the reductions of such chambers

to 3d, and their equivalence to chambers with finitely many states imply?

To gain some insight to what implications these chambers and dualities may have in 3d,

let us consider the example of pure SU(2) gauge theory in 4d. This theory has two chambers. In

the strong coupling regime, we have two states given by (electric,magnetic) charges (2,−1) and

(0, 1), and in three dimensions this R-flows to a 3d theory with two chiral multiplets much as in

our analysis of the An models. Meanwhile, in the weak coupling chamber of 4d, there are infinitely

many BPS particles: the monople and its dyonic descendants, with charges (2n, 1), and the vector

W-boson which carries charge (2, 0). Consider the R-flow of the weak coupling chamber, where we

take the projection to be along the electric charge direction. In this way, all the 4d dyons will have

the same real projection defining the 3d supersymmetry, and hence all the trapped 3d dyons will

have equal finite masses. In addition, the 4d BPS W-boson will result in a massless trapped 3d

particle.

From the fact that these 3d particles arise from trapped 4d bulk fields, we can make a

number of observations. First of all, the W-boson must carry vector quantum numbers. Therefore,

we in fact have a massless 3d vector particle. There are only two possibilities for a non-abelian

3-vector theories: either we have an SU(2) gauge theory in 3d, or an SL(2,R) gauge theory in

3d. The first option may look more natural from the 4d perspective, where in the infinitely weak
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coupling regime we recover an SU(2) gauge theory. However, we believe the SL(2,R) is what is

realized in 3d, for the following reason: the infinite number of trapped 3d dyons have the same

mass, and this strongly suggests that they form one irreducible object. Furthermore, note that the

W-boson from the bulk can bind to any of these trapped dyons, transforming one to the other.

Since the vector particles should form either SU(2) or SL(2,R), and since SU(2) has no infinite

dimensional unitary representations with finite Casimir, we conclude that we must have an SL(2,R)

theory and that the 3d dyons form a single irreducible representation of SL(2,R) as illustrated in

Figure 4.54. Note also that if we tilt the angle of projection to 3d, so that the W-boson has a tiny

mass ε, the infinite tower of 3d dyonic states will have BPS masses given by |m + nε| where m is

the real mass and n ∈ Z. This can be interpreted as a deformation to the Coulomb branch of the

SL(2,R) theory by giving an expectation value to the adjoint scalar field in the SL(2,R) gauge

multiplet.

We can further argue why we may have obtained an SL(2,R) instead of SU(2) by ob-

serving that the main difference between these two cases is the sign of the kinetic term for the

W-bosons. How could the sign of the kinetic term for the W have flipped? This actually has a

simple explanation: the W-boson can never become massless in 4d. No matter how weak we make

the 4d coupling, as we come close to making the W massless (by taking the 4d scalar vev to zero)

we cross the curve of marginal stability, rendering the W unstable. However, if we did analytically

continue to the region where the W-boson is unstable, it is known that the kinetic term for the W

will flip sign [106,107], which is the signature of an SL(2,R) gauge theory. Of course, the CS level

must be non-zero, otherwise we would end up with a non-unitary theory, and the existence of CS

terms would render the gauge particles massive in the IR and make their wrong sign kinetic term

irrelevant.

As in our general discussion at the beginning of this section, the precise theory we get

from these R-flows of the weak and strong coupling chambers of SU(2), depends on the boundary
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Figure 4.54: BPS spectrum and R-flow for weak coupling SU(2). The blue dots denote the 4d

dyons, the red dots the 4d W-bosons. The green arrows specify the direction of R-flow. The 3d

trapped W-bosons are massless and give rise to an Sl(2,R) gauge symmetry. The 3d trapped dyons

all have equal mass and form an infinite dimensional representation of Sl(2,R).

conditions. However, what is clear is that this construction produces a 3d theory with infinitely

many chiral fields, corresponding to the weak coupling chamber, which is mirror to a theory with

only two chiral fields, corresponding to the strong coupling chamber. As for the higher SU(N)

gauge theories in 4d, the chambers which support higher spin BPS states, can lead under R-flow to

3d theories with massless (or nearly massless) particles of higher spin. One might speculate that

this suggests a 3d structure of a higher spin gauge theory. These are clearly exciting possibilities,

and are the subject of active investigation.
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4.6.2 Accumulating Tetrahedra

One feature of the resulting 3d geometry which we can see directly from the correspondence

between tetrahedra and 3d BPS particles, is that in infinite chambers of the 4d theory, the UV

three-manifold M will be partitioned into infinitely many tetrahedra. Further, at the accumulation

rays in the 4d BPS spectrum which describe vector multiplets, the resulting tetrahedra will also

accumulate.

As an explicit example, we can consider the case of pure SU(2) described above. Then,

the 4d N = 2 Riemann surface is given by an annulus with one marked point on each boundary.

The three-manifold M obtained from a flow of this data is therefore a filling of two annuli glued

along their common boundary. A trivial application of the genus formula (4.6.1) shows that ∂M

is a torus, and hence M is a solid torus. The front and back face of this torus are equipped with

triangulations, each with two triangles as shown in Figure 4.55.

Figure 4.55: The SU(2) triangulation of an annulus. The red lines denote the two internal edges

whose flips describe BPS states. The dark blue dots are the zeros of the SW differential.

As we flow through time, the triangulation of the front face will evolve to that of the

back face. This results in a tetrahedral decomposition of M . In the strong coupling chamber
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there are two states, and this determines a decomposition of the solid torus into two tetrahedra,

much as in the previous section’s description of the An theories. However, in the weak coupling

chamber, the geometry is much more novel. Due to the presence of infinitely many BPS particles

in 4d, the triangulation undergoes an infinite sequence of flips. Along these flips the internal edges

begin to accumulate as shown in Figure 4.56, and in the limit of infinitely many flips the W-boson

appears. Now we can reinterpret this sequence of flips a describing a decomposition of the solid

torus into infinitely many tetrahedra which degenerate. Similar structures have been studied by

mathematicians [85].

Figure 4.56: The sequence of flips for the weak coupling spectrum of SU(2). There are infinitely

many BPS states which give rise to flips that accumulate. In the corresponding 3d theory these

are reinterpreted as gluing data for accumulating tetrahedra.

Just as the 2-3 Pachner move is the geometric manifestation of 2-3 wall crossing in 4d,

the relationship described above, between two tetrahedra, and infinitely many, can be seen as the

geometric version of the wall-crossing governing the decay of a BPS vector multiplet. The physical

meaning, and mathematical consequences of this phenomenon demand further illumination.



Appendix A

Self-Folded Triangles

In our discussion above we have left out a minor technicality involving self-folded triangles.

A self-folded triangle is one in which two sides become identified, resulting in the degenerate

structure seen below.

•

•
int

ext

(A.0.1)

We will call the edge labeled ext exterior, and the edge labeled int interior. The framework of

triangulations above requires allowance of self-folded triangles. In particular, some triangulations

obtained from special lagrangian flows will require self-folded triangles, and similarly, some flips

will force self-folded triangles to occur.

To properly include these structures, we must slightly augment the rules for obtaining a

quiver Q and superpotential W from a triangulation T . First, it is useful to note that self-folded

triangles, while necessary for the formalism, are a bit of an extraneous complication. It is a theorem

from [54] that every surface admits a triangulation without self-folded triangles. Thus, having
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carefully understood the map from triangulations and quivers, which maps flips to mutations, the

rules for self-folded triangles can be derived from the rules given in the body of the paper. We

would simply apply flips of the triangulation to remove all self-folded triangles, use the given rules

to obtain Q and W, and then invert the flips with the appropriate inverse mutations on the quiver.

For completeness, we give the relevant rules here.

To obtain the quiver Q, we apply the usual rules as given in section 3.2.2 to all diagonals,

except for interior edges of self-folded triangles. For the interior edge of each self-folded triangle,

we draw a node corresponding to it, and draw arrows that duplicate the arrows of the node corre-

sponding to the exterior edge of the same self-folded triangle. For clarity, let us define a function

e on diagonals δ: if δ is an interior edge, e(δ) is the exterior edge of the self-folded triangle whose

interior edge is δ; otherwise, e(δ) is simply δ. Similarly, we define i(δ) to give the associated interior

edge if δ is an exterior one. Thus the full rules are:

• For each diagonal δ in the triangulation, draw exactly one node of the quiver.

• For each pair of diagonals δ1, δ2 find all triangles for which e(δ1), e(δ2) are both edges. Then

for each such triangle draw one arrow from δ1 to δ2 if e(δ1) immediately precedes e(δ2) going

counter-clockwise around the triangle.

Similarly, we should also extend the superpotential to include self-folded triangles. We

use α, β, γ . . . to denote both the diagonals and their respective nodes in the quiver, and Bαβ to

denote both an arrow from α to β and the associated bifundamental matter field. The full rules

are as follows:

• For each internal, non-self-folded triangle αβγ, we add the associated three cycle BαβBβγBγα.

• For each internal, non-self-folded triangle αβγ adjacent to exactly two self-folded triangles

enclosed by α, β respectively, we add an additional three cycle Bi(α)i(β)Bi(β)γBγi(α).
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• For each internal, non-self-folded triangle αβγ adjacent to exactly three self-folded triangles,

we add three additional termsBi(α)i(β)Bi(β)γBγi(α)+Bi(α)βBβi(γ)Bi(γ)i(α)+Bαi(β)Bi(β)i(γ)Bi(γ)α.

• For each internal, regular puncture adjacent to exactly one internal diagonal α, we must have

a self-folded triangle. The diagonal e(α) occurs in at most one non-self-folded triangle. If

that triangle is internal, e(α)βγ, we add the three cycle BαβBβγBγα.

• For each internal, regular puncture adjacent to more than one internal diagonal, we remove all

the exterior edges of self-folded triangles incident on the puncture. Now let n be the number

of remaining diagonals incident on the puncture. The quiver must have an n cycle α1 . . . αn;

we add the term Bα1α2 . . . Bαn−1αnBαnα1 .



Bibliography

[1] M. Kontsevich and Y. Soibelman, “Stability structures, motivic Donaldson-Thomas

invariants and cluster transformations,” ArXiv e-prints (Nov., 2008) , arXiv:0811.2435

[math.AG].

[2] D. Gaiotto, G. W. Moore, and A. Neitzke, “Four-dimensional wall-crossing via

three-dimensional field theory,” Commun.Math.Phys. 299 (2010) 163–224,

arXiv:0807.4723 [hep-th].

[3] S. Cecotti and C. Vafa, “BPS Wall Crossing and Topological Strings,” arXiv:0910.2615

[hep-th].

[4] S. Cecotti, A. Neitzke, and C. Vafa, “R-Twisting and 4d/2d Correspondences,”

arXiv:1006.3435 [hep-th].

[5] A. Sen, “Equivalence of Three Wall Crossing Formulae,” arXiv:1112.2515 [hep-th].

[6] M. R. Douglas and G. W. Moore, “D-branes, Quivers, and ALE Instantons,”

arXiv:hep-th/9603167.

[7] M. R. Douglas, B. Fiol, and C. Römelsberger, “Stability and BPS branes,” JHEP 0509

(2005) 006, arXiv:hep-th/0002037 [hep-th].

256

http://arxiv.org/abs/0811.2435
http://arxiv.org/abs/0811.2435
http://dx.doi.org/10.1007/s00220-010-1071-2
http://arxiv.org/abs/0807.4723
http://arxiv.org/abs/0910.2615
http://arxiv.org/abs/0910.2615
http://arxiv.org/abs/1006.3435
http://arxiv.org/abs/1112.2515
http://arxiv.org/abs/hep-th/9603167
http://dx.doi.org/10.1088/1126-6708/2005/09/006
http://dx.doi.org/10.1088/1126-6708/2005/09/006
http://arxiv.org/abs/hep-th/0002037


Bibliography 257

[8] M. R. Douglas, B. Fiol, and C. Römelsberger, “The Spectrum of BPS branes on a

noncompact Calabi-Yau,” JHEP 0509 (2005) 057, arXiv:hep-th/0003263 [hep-th].

[9] N. Seiberg and E. Witten, “Electric - magnetic duality, monopole condensation, and

confinement in N=2 supersymmetric Yang-Mills theory,” Nucl.Phys. B426 (1994) 19–52,

arXiv:hep-th/9407087 [hep-th].

[10] N. Seiberg and E. Witten, “Monopoles, duality and chiral symmetry breaking in N=2

supersymmetric QCD,” Nucl.Phys. B431 (1994) 484–550, arXiv:hep-th/9408099

[hep-th].

[11] A. Klemm, W. Lerche, P. Mayr, C. Vafa, and N. P. Warner, “Selfdual strings and N=2

supersymmetric field theory,” Nucl.Phys. B477 (1996) 746–766, arXiv:hep-th/9604034

[hep-th].

[12] S. Cecotti and C. Vafa, “Classification of complete N=2 supersymmetric theories in 4

dimensions,” arXiv:1103.5832 [hep-th].

[13] D. Gaiotto, G. W. Moore, and A. Neitzke, “Wall-crossing, Hitchin Systems, and the WKB

Approximation,” arXiv:0907.3987 [hep-th].

[14] K. Intrilligator and N. Seiberg, “Mirror Symmetry in Three-Dimensional Gauge Theories,”

arXiv:9607.207 [hep-th].

[15] O. Aharony, A. Hanany, K. Intrilligator, N. Seiberg, and M. Strassler, “Aspects of N=2

Supersymmetric Gauge Theories in Three Dimensions,” arXiv:9703.110 [hep-th].

[16] T. Dimofte, D. Gaiotto, and S. Gukov, “Gauge Theories Labelled by Three-Manifolds,”

arXiv:1108.4389 [hep-th].

http://dx.doi.org/10.1088/1126-6708/2005/09/057
http://arxiv.org/abs/hep-th/0003263
http://dx.doi.org/10.1016/0550-3213(94)90124-4, 10.1016/0550-3213(94)90124-4
http://arxiv.org/abs/hep-th/9407087
http://dx.doi.org/10.1016/0550-3213(94)90214-3
http://arxiv.org/abs/hep-th/9408099
http://arxiv.org/abs/hep-th/9408099
http://dx.doi.org/10.1016/0550-3213(96)00353-7
http://arxiv.org/abs/hep-th/9604034
http://arxiv.org/abs/hep-th/9604034
http://arxiv.org/abs/1103.5832
http://arxiv.org/abs/0907.3987
http://arxiv.org/abs/9607.207
http://arxiv.org/abs/9703.110
http://arxiv.org/abs/1108.4389


258 Bibliography

[17] F. Denef, “Supergravity flows and D-brane stability,” JHEP 0008 (2000) 050,

arXiv:hep-th/0005049 [hep-th].

[18] F. Denef and G. W. Moore, “Split states, entropy enigmas, holes and halos,”

arXiv:hep-th/0702146 [hep-th].

[19] D. Joyce and Y. Song, “A Theory of generalized Donaldson-Thomas invariants,”

arXiv:0810.5645 [math.AG].

[20] T. Dimofte and S. Gukov, “Refined, Motivic, and Quantum,” Lett.Math.Phys. 91 (2010) 1,

arXiv:0904.1420 [hep-th].

[21] T. Dimofte, S. Gukov, and Y. Soibelman, “Quantum Wall Crossing in N=2 Gauge

Theories,” Lett.Math.Phys. 95 (2011) 1–25, arXiv:0912.1346 [hep-th].

[22] D. Gaiotto, G. W. Moore, and A. Neitzke, “Framed BPS States,” arXiv:1006.0146

[hep-th].

[23] E. Andriyash, F. Denef, D. L. Jafferis, and G. W. Moore, “Wall-crossing from

supersymmetric galaxies,” arXiv:1008.0030 [hep-th].

[24] E. Andriyash, F. Denef, D. L. Jafferis, and G. W. Moore, “Bound state transformation

walls,” arXiv:1008.3555 [hep-th].

[25] J. Manschot, B. Pioline, and A. Sen, “Wall Crossing from Boltzmann Black Hole Halos,”

JHEP 1107 (2011) 059, arXiv:1011.1258 [hep-th].

[26] D. Gaiotto, G. W. Moore, and A. Neitzke, “Wall-Crossing in Coupled 2d-4d Systems,”

arXiv:1103.2598 [hep-th].

[27] S. Cecotti and M. Del Zotto, “On Arnold’s 14 ‘exceptional’ N=2 superconformal gauge

theories,” JHEP 1110 (2011) 099, arXiv:1107.5747 [hep-th].

http://arxiv.org/abs/hep-th/0005049
http://arxiv.org/abs/hep-th/0702146
http://arxiv.org/abs/0810.5645
http://dx.doi.org/10.1007/s11005-009-0357-9
http://arxiv.org/abs/0904.1420
http://dx.doi.org/10.1007/s11005-010-0437-x
http://arxiv.org/abs/0912.1346
http://arxiv.org/abs/1006.0146
http://arxiv.org/abs/1006.0146
http://arxiv.org/abs/1008.0030
http://arxiv.org/abs/1008.3555
http://dx.doi.org/10.1007/JHEP07(2011)059
http://arxiv.org/abs/1011.1258
http://arxiv.org/abs/1103.2598
http://dx.doi.org/10.1007/JHEP10(2011)099
http://arxiv.org/abs/1107.5747


Bibliography 259

[28] M. Alim, S. Cecotti, C. Cordova, S. Espahbodi, A. Rastogi, and C. Vafa, “BPS Quivers and

Spectra of Complete N=2 Quantum Field Theories,” arXiv:1109.4941 [hep-th].

[29] M. Del Zotto, “More Arnold’s N = 2 superconformal gauge theories,” JHEP 1111 (2011)

115, arXiv:1110.3826 [hep-th].

[30] D.-E. Diaconescu and J. Gomis, “Fractional branes and boundary states in orbifold

theories,” JHEP 0010 (2000) 001, arXiv:hep-th/9906242 [hep-th].

[31] B. Fiol and M. Marino, “BPS states and algebras from quivers,” JHEP 0007 (2000) 031,

arXiv:hep-th/0006189 [hep-th].

[32] B. Fiol, “The BPS spectrum of N = 2 SU(N) SYM and parton branes,”

arXiv:hep-th/0012079.

[33] F. Denef, “Quantum quivers and Hall / hole halos,” JHEP 0210 (2002) 023,

arXiv:hep-th/0206072 [hep-th].

[34] P. C. Argyres and M. R. Douglas, “New phenomena in SU(3) supersymmetric gauge

theory,” Nucl.Phys. B448 (1995) 93–126, arXiv:hep-th/9505062 [hep-th].

[35] E. Witten, “Solutions of four-dimensional field theories via M theory,” Nucl.Phys. B500

(1997) 3–42, arXiv:hep-th/9703166 [hep-th].

[36] D. Gaiotto, “N=2 dualities,” arXiv:0904.2715 [hep-th].

[37] D. Gaiotto and J. Maldacena, “The Gravity duals of N=2 superconformal field theories,”

arXiv:0904.4466 [hep-th].

[38] F. Benini, S. Benvenuti, and Y. Tachikawa, “Webs of five-branes and N=2 superconformal

field theories,” JHEP 0909 (2009) 052, arXiv:0906.0359 [hep-th].

http://arxiv.org/abs/1109.4941
http://dx.doi.org/10.1007/JHEP11(2011)115
http://dx.doi.org/10.1007/JHEP11(2011)115
http://arxiv.org/abs/1110.3826
http://arxiv.org/abs/hep-th/9906242
http://arxiv.org/abs/hep-th/0006189
http://arxiv.org/abs/hep-th/0012079
http://arxiv.org/abs/hep-th/0206072
http://dx.doi.org/10.1016/0550-3213(95)00281-V
http://arxiv.org/abs/hep-th/9505062
http://dx.doi.org/10.1016/S0550-3213(97)00416-1
http://dx.doi.org/10.1016/S0550-3213(97)00416-1
http://arxiv.org/abs/hep-th/9703166
http://arxiv.org/abs/0904.2715
http://arxiv.org/abs/0904.4466
http://dx.doi.org/10.1088/1126-6708/2009/09/052
http://arxiv.org/abs/0906.0359


260 Bibliography

[39] O. Chacaltana and J. Distler, “Tinkertoys for Gaiotto Duality,” JHEP 1011 (2010) 099,

arXiv:1008.5203 [hep-th].

[40] D. Xie, “Network, Cluster coordinates and N=2 theory I,” arXiv:1203.4513 [hep-th].

[41] N. Seiberg, “Electric - magnetic duality in supersymmetric nonAbelian gauge theories,”

Nucl.Phys. B435 (1995) 129–146, arXiv:hep-th/9411149 [hep-th].

[42] P. S. Aspinwall, T. Bridgeland, A. Craw, M. Douglas, M. Gross, A. Kapustin, G. W. Moore,
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