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The role of microglia in amyotrophic lateral sclerosis: Analysis of microRNAs 
 
 

Abstract 
 

  
 Amyotrophic lateral sclerosis (ALS) is a progressive adult onset neurodegenerative 

disease characterized by selective death of the upper and lower motor neurons of the brain and 

spinal cord.  Neuromuscular synapses are lost leading to paralysis and ultimately death.  Non-

neuronal cells, such as astrocytes, oligodendrocytes, and microglia, have been shown to 

contribute to ALS disease progression in mouse models.  Microglia, the innate immune cells of 

the central nervous system, have been shown to be activated in ALS and contribute to disease 

progression.  Hundreds of mRNAs have shown to be dysregulated in a variety of ALS cell types 

and tissues, including total spinal cord, acutely isolated microglia, and in vitro differentiated 

motor neurons.  These mRNAs can be regulated post-transcriptionally by microRNAs 

(miRNAs), which are small endogenous non-coding RNAs with important regulatory roles in a 

wide range of cellular processes.  This dissertation examines the contribution of miRNAs to ALS 

disease progression in microglia.  

I acutely isolated primary microglia from the spinal cords of transgenic mice 

overexpressing human wild type (WT) SOD1 and human G93A SOD1.  I used small RNA 

sequencing to profile the miRNAs that are expressed during disease progression, and identified 

miRNAs that are differentially expressed.  I confirmed these results by quantitative PCR and 

examined the expression changes of predicted targets in a microglia RNA-seq dataset.  Here I 

show that miRNAs are dysregulated in acutely isolated microglia from SOD1 G93A transgenic 
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mice, and that miR-155, a pro-inflammatory miRNA, and miR-210, a hypoxia-inducible 

miRNA, are significantly upregulated during disease progression.  In addition, miR-1198-5p, 

miR-182, miR-503, and miR-668 are also dysregulated, and predicted mRNA targets of all six of 

these miRNAs are differentially expressed during disease progression.   

To my knowledge, this is the first analysis of miRNA expression in microglia during 

ALS disease progression.  This work contributes to the understanding of the contribution of a 

non-neuronal cell type to ALS disease progression and serves as a paradigm for studies in other 

non-neuronal cell types, such as astrocytes and oligodendrocytes, and other ALS mouse models. 
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Neurodegeneration 
 

Neurodegenerative disorders such as Huntington’s disease, Parkinson’s disease, 

Alzheimer’s disease, and amyotrophic lateral sclerosis (ALS) are pathologies characterized by 

the progressive loss of neuronal structure and function and ultimately neuronal death.  These 

disorders can occur either sporadically or in an inherited, familial manner.  Recent advances in 

neurodegenerative research have identified common mechanisms involved in many of these 

diseases, suggesting there may be common dysfunctional pathways, which could be targeted for 

the development of therapeutics. 

Autophagy, the degradation of a cell’s own components in lysosomes, is a highly 

regulated process involved in normal cell growth, development, and homeostasis that is essential 

for maintaining the balance between synthesis, degradation, and turnover of various cellular 

components.  Although autophagy has been studied for decades, its importance in the central 

nervous system has been recognized only recently (1).  Quality control through autophagy is of 

particular importance in neurons where damaged organelles and misfolded proteins accumulate 

during disease progression.  If these damaged components are not identified and removed, their 

accumulation can lead to neurotoxicity (2, 3).  The ability of autophagosomes to function 

efficiently depends on their ability to navigate the unique architecture of the neuron, which 

contains long processes and dynamic traffic of vesicles and signaling molecules.  Autophagic 

dysfunction has been identified in many human disorders, including a growing number of 

neurodegenerative disorders (2-9).   

In addition to being the source of energy in the cell, mitochondria are critical regulators 

of cellular metabolism and play an important role in cell death pathways.  Mitochondrial 

dysfunction and damage are important in many human diseases, including the pathology of many 
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neurodegenerative diseases (10).  Due to high energy demands and increased sensitivity to 

apoptosis and reactive oxygen species, muscle and neurons are particularly susceptible to 

mitochondrial dysfunction.  Mitochondrial dysfunction has been studied the most extensively in 

Alzheimer’s and Parkinson’s diseases.  Examples of dysfunction include mitochondrial DNA 

mutations, mutations in nuclear-encoded mitochondrial proteins, and mutated proteins localized 

to incorrect intracellular compartments.  In Alzheimer’s disease, the accumulation of 

neurofibrillary tangles and plaques is observed, which are composed of the amyloid-β peptide 

(Aβ) in two conformations.  Aβ appears to inhibit mitochondrial enzymes, such as cytochrome c 

oxidase and succinate-cytochrome reductase, directly interacts with mitochondrial proteins, and 

affects mitochondrial morphology and axonal transport of mitochondria (11).  Despite these 

many links between Aβ and mitochondria, it is unknown how these different mechanisms 

contribute to disease pathogenesis.  In Parkinson’s disease, however, mitochondrial dysfunction 

is a direct causal factor for the disease.  For example, two genes associated with autosomal 

recessive Parkinson’s disease, Parkin and PINK1, interact to maintain mitochondrial function 

(12).  Loss-of-function of either gene affects mitochondrial morphology and ATP production, 

and their expression suppresses mitochondrial fragmentation. 

The expansion of trinucleotide repeat sequences within mRNAs is a prominent motif in at 

least 16 neurological disorders including Huntington’s disease and fragile X syndrome (13-15).  

Expansion of these repeats beyond the normal threshold can have dramatic effects on the 

expression and stability of the host mRNA, leading to the disruption of cell and protein function, 

resulting in neurodegeneration.  The varying number of repeats also helps explain the variability 

in phenotypes observed, and the larger the expansion, the earlier the onset and severity of 

disease.  In addition, the expansions display germline instability, and thus subsequent 
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generations often have larger expansions, resulting in earlier disease onset and more severe 

disease progression.  There are three primary types of diseases caused by repeat expansions: 1) 

Diseases caused by a loss of protein function, including fragile X syndrome in which there is a 

loss of FMRP.  2) Diseases caused by RNA-mediated gain-of-function, including myotonic 

dystrophy type 1 resulting from a repeat expansion in the 3'UTR of the kinase DMPK, which 

reduces its own expression and induces chromatin changes that alter the expression of 

neighboring genes (16).  3) Diseases caused by a gain-of-function, including Huntington's 

disease in which an expansion in the N-terminus of huntingtin causes protein aggregation (13, 

17). 

Tau, a microtubule-associated protein, is a neuronal phosphoprotein that has been shown 

to promote and stabilize microtubule formation in vitro and is involved in the development of 

axonal morphology (18).  Many neurodegenerative diseases also exhibit tau pathology, including 

Alzheimer's disease, ALS, and Creutzfeldt-Jakob disease.  These tauopathies are characterized 

by large aggregates of hyperphosphorylated tau protein in neurofibrillary tangles.  Tau 

aggregates are associated with synapse and neuronal loss, and tau conformational changes, and 

thus neurodegeneration, are caused by alterations in tau splice forms (19, 20), phosphorylation 

(21), fibrillization (22-24), and association with Aβ (25, 26). 

Inflammation is associated with many neurodegenerative diseases, including Alzheimer's 

disease, Parkinson's disease, ALS, and multiple sclerosis.  The immune system is critical for the 

maintenance of tissue homeostasis and the response to infection and injury.  Microglia are the 

immune cells of the nervous system and reside in the brain and spinal cord.  They survey the 

microenvironment and produce factors that are either toxic or protective towards neighboring 

neurons and astrocytes, which are glial cells of the brain and spinal cord.  In a normal 
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physiological situation, microglia are in a resting state and produce anti-inflammatory and 

neurotrophic factors.  However, in response to a pathogen or tissue damage, as observed in many 

neurodegenerative diseases, microglia switch to an activated state that is generally inflammatory 

leading to further activation of the immune system, initiation of tissue repair, and phagocytosis 

(27).  An acute injury or insult may trigger oxidative and nitrosative stress, but is unlikely to be 

detrimental to long-term neuronal survival.  However, chronic neuroinflammation, which occurs 

during neurodegeneration, results in long-term activation of microglia and sustained release of 

pro-inflammatory factors (28).  Neuroinflammation will be discussed in greater detail below.    

 

Amyotrophic lateral sclerosis 
 

Amyotrophic lateral sclerosis (ALS) is the most common motor neuron disease in 

adults and was first described in 1869 by the French neurobiologist and physician Jean-Martin 

Charcot (29).  ALS is a progressive neurodegenerative disease characterized by selective death 

of the upper and lower motor neurons of the brain and spinal cord, leading to muscle atrophy and 

paralysis of voluntary muscles (30).  Disease onset of ALS is typically between 40-70 years of 

age, with a median age of onset of 50, and the disease is generally fatal within 1-5 years of onset 

(31).  There are ~30,000 American ALS patients at a given time. 

The majority of ALS cases are sporadic with no known cause, and only 10% of cases are 

inherited (referred to as familial ALS).  In both sporadic and familial ALS, there is progressive 

dysfunction of lower motor neurons and cortical motor neurons (32).  In 1993, autosomal 

dominant mutations in the gene encoding the ubiquitous cytosolic Cu/Zn superoxide dismutase 

(SOD1) protein were shown to cause ALS (33).  SOD1 is a homodimeric metalloenzyme that 

catalyzes the conversion of the toxic superoxide anion, a byproduct of oxidative phosphorylation 



 6 

in the mitochodria, to hydrogen peroxide.  Approximately 20-25% of familial ALS cases are 

caused by mutations in SOD1 (34).  More than 114 disease-causing mutations have been 

identified that span all five exons of the gene (34).  It is important to note that ALS is not a 

consequence of the loss of function of any of the enzymatic activities of SOD1 (31).  Rather, the 

common feature of all of the characterized ALS-causing mutations is the presence of 

ubiquitinated SOD1 aggregates.  SOD1 is a ubiquitous, highly abundant protein that appears to 

be highly susceptive to aggregation when mutated. 

With the advent of more powerful genetic tools and whole exome or genome sequencing, 

many more ALS-causing genes have been identified (Table 1.1).  For example, the nuclear 

protein TAR DNA-binding protein (TDP-43) was identified in sporadic ALS patients as a major 

component of ubiquitinated inclusions in motor neurons (35-38).  More recently, a 

hexanucleotide expansion in C9ORF72 was found to segregate with familial ALS in a Finnish 

population and is also present in 21% of sporadic cases (39).    

A common feature of many ALS-causing mutant proteins is their tendency to form 

ubiquitinated protein aggregates.  For example, TDP-43, a protein involved in transcription and 

alternative splicing, was found to be a major component of the ubiquitinated protein aggregates 

in patients with sporadic ALS and the most common form of frontotemporal dementia (35, 36). 

 Aggregates were observed in the cytoplasm and nuclei of neurons and glia.  In addition, brain 

and spinal cord samples from patients with these diseases showed abnormal ubiquitination of 

TDP-43.  TDP-43 inclusions are recognized as a common characteristic in the majority of ALS 

patients, with the exception of patients with familial ALS caused by SOD1 mutations.  In 2008, 

many groups reported additional dominant mutations in the TDP-43 gene (37, 38).  These 

mutations were found in individuals with both sporadic and familial ALS.  Most mutations are  
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Table 1.1. Common mutations in ALS. 
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located primarily in the glycine-rich region (41), which has been shown to be highly prone to 

protein misfolding.  Polymenidou et al. used antisense oligonucleotides to generate mice that 

lacked expression of TDP-43 in the striatum and observed that these mice were depleted of pre-

mRNAs with very long introns and exhibited incorrect alternative splicing of some TDP-43  

targets (42).  However, it is currently unknown whether TDP-43 mutations lead to motor neuron 

degeneration through a toxic gain-of-function or a loss of normal function due to accumulation 

of the protein in cytoplasmic and nuclear inclusions. 

In 2009, mutations in another DNA/RNA-binding protein, FUS/TLS, were found to 

cause familial ALS (43, 44).  FUS/TLS binds to RNA, functions in diverse processes including 

transcription and splicing, and is normally localized to the nucleus.  The mutations were located 

in the glycine-rich region and within the last 13 amino acids of the protein (41).  FUS/TLS is 

both structurally and functionally highly similar to TDP-43.  In ALS, FUS/TLS is found in 

neuronal cytoplasmic inclusions.  Interestingly, TDP-43 inclusions are absent in ALS patients 

with FUS/TLS mutations, and thus, despite the functional similarity between TDP-43 and 

FUS/TLS, FUS/TLS mutations are independent of TDP-43 aggregation (43).   

More recently, several new mutations have been identified that cause ALS.  Optineurin, a 

gene that functions in autophagy and is the cause of a type of glaucoma, was found to carry 

several mutations that cause ALS (45).  Optineurin has also been implicated in the NF-κB 

pathway, and missense and nonsense mutations in optineurin abolish the inhibition of NFκB 

activation, while another mutation causes altered cytoplasmic distribution of the protein.  In 

addition, it was observed that TDP-43 and SOD1 inclusions in sporadic and familial ALS, 

respectively, also stained positive for optineurin.   
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Mutations in the gene encoding the protein ubiquilin 2, a component of the 

ubiquitin/proteasome pathway, were also found to cause familial ALS (46).   These mutations 

result in a general decrease in proteasome-dependent protein degradation.  Ubiquilin 2 

colocalizes with cytoplasmic TDP-43 associated with ALS.  The most recently discovered ALS-

linked mutation is a hexanucleotide (GGGGCC) repeat expansion in C9ORF72, a gene of 

unknown function (39).  This repeat expansion was found to account for 46% of familial and 

21% of sporadic ALS in a Finnish population, making it the most predominant mutation 

currently known.  Based on a previously described repeat expansion implicated in the disease 

myotonic dystrophy (16), the C9ORF72 expansion has been proposed to act as a sponge for 

RNA binding proteins, thus preventing them from carrying out their normal functions.  In the 

case of myotonic dystrophy, the key RNA proteins involved have been identified, and at least 

one of them (muscleblind) can complement the repeat expansion mutation (47). 

 Because the clinical and pathological characteristics of sporadic and familial ALS are 

indistinguishable, it is assumed that studies examining ALS-causing gene mutations will also 

provide insights on sporadic ALS.  As SOD1 was the first gene identified with ALS-linked 

mutations, the majority of animal models are based on these mutations (33).  Transgenic mouse 

models of the disease have been generated for numerous SOD1 mutations in which the mutant 

human proteins are overexpressed.  SOD1 transgenic mice and rats develop motor neuron 

disease with the same features as ALS, including progressive paralysis and death due to motor 

neuron degeneration (48-51).  The most commonly used animal model is the SOD1 glycine 93 to 

alanine (G93A) transgenic mouse (49).  As mentioned above, despite the prevalence of 

mutations and the importance of the SOD1 protein, there is no obvious correlation between 

enzymatic activity and disease severity and progression.  Although most mutations reduce 
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dismutase activity, others retain full catalytic activity (31).  Interestingly, mice completely 

deficient in SOD1 activity develop normally and do not display motor defects, indicating that 

SOD1 is not necessary for normal motor neuron development (52).  In addition, when transgenic 

mice overexpressing the human G85R SOD1 mutation were mated to mice expressing wild type 

human SOD1 at six times the level of endogenous mouse SOD1 or mice lacking endogenous 

SOD1, there was no effect on onset, disease progression, or accumulation of mutant protein (53). 

 Thus, it is more likely that the mutations cause the acquisition of one or more dominant gain-of-

function toxic activities.   

Numerous ALS disease mechanisms have been proposed, including mitochondrial 

dysfunction, aberrant chemistry and oxidative stress, protein instability and aggregation, altered 

axonal transport, apoptosis, excitotoxicity and glutamate transport, and neuroinflammation (34, 

54).  In addition, extensive work has been done to understand the effect of non-neuronal cells on 

motor neurons.  A common feature of SOD1-associated ALS is the presence of immunoreactive 

SOD1 aggregates in motor neurons, the neuropil, and astrocytes of transgenic SOD1 rodents and 

some human ALS cases (53, 55).  These aggregates are also positive for ubiquitin (48, 53).  It is 

not yet understood how SOD1 aggregates directly affect motor neurons in disease (56), however, 

due to the ubiquitin-positive SOD1 aggregates, it is likely that protein misfolding, aggregation, 

and stability are involved.  These observations suggest a unifying hypothesis for ALS: a life-time 

imbalance of protein aggregation and degradation (proteostasis) ultimately leads to the 

accumulation of protein aggregates capable of inducing multiple cellular pathways leading to 

motor neuron death (54). 

 An important recent advance was the realization that the effects of mutant SOD1 are not 

solely cell autonomous.  Using mouse blastocyst chimeras that were mixtures of normal and 
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SOD1 mutant-expressing cells, Clement et al. showed that toxicity to motor neurons required 

damage from mutant SOD1 expressed in non-neuronal cells and that non-neuronal cells not 

expressing mutant SOD1 delayed motor neuron degeneration and extended survival (57).  Even 

more striking, the selective expression of mutant SOD1 protein in motor neurons was not 

sufficient to cause motor impairment or disease despite high levels of mutant SOD1 present in 

motor neurons (58, 59).  Jaarsma et al. did a similar study, and although they observed motor 

defects, onset and end-stage of the disease were much delayed and there was no hindlimb 

paralysis observed (60). 

Efforts have also been made to understand the contributions of mutant SOD1 in non-

neuronal cell types.  Although retraction of motor axons from synaptic connections to muscle is 

among the earliest pre-symptomatic events, deletion of mutant SOD1 from muscle did not affect 

onset or survival (61).  Expression of mutant SOD1 in oligodendrocytes was also found to not 

affect disease onset (62).  Deletion of mutant SOD1 from microglia had little effect on onset but 

significantly delayed disease progression (63).  Similarly, deletion of mutant SOD1 in astrocytes 

did not affect onset but delayed microglial activation and disease progression (64).  Very 

recently, it was shown that astrocytes expressing mutant SOD1 can induce the degeneration of 

wild type motor neurons in vivo (65).  These papers demonstrated the critical role of astrocytes 

and microglia in disease pathogenesis and illustrated the importance of non-neuronal cells.  In 

addition, cell culture studies using primary glial cultures and either primary motor neurons or 

embryonic stem cell-derived motor neurons showed that mutant SOD1 astrocytes secrete a toxic 

factor that is able to kill motor neurons (66, 67).  Thus, mutant SOD1 within motor neurons 

causes direct cell autonomous damage to motor neurons in the spinal cord, but disease 
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progression likely depends on the expression of the mutant protein in non-neuronal cells, such as 

microglia and astrocytes (68).    

 

Microglia 
 

Microglia, which comprise 5-20% of all glial cells in rodents, are the innate immune cells 

(i.e. the resident macrophages) of the brain and spinal cord (69).  Microglia were first described 

by Pio del Rio-Hortega in 1919 as a cell type in the nervous system distinct from neurons and 

astrocytes (70).  Rio-Hortega observed that microglia are critical to pathological processes in the 

central nervous system and are able to rapidly change their morphology from a branched, 

ramified morphology to an amoeboid morphology in response to various insults including 

physical trauma and infection (71, 72).   In addition to a distinct morphology, microglia are 

distinct from other glial cells, such as astrocytes and oligodendrocytes, based on their origin, 

gene expression patterns, and functions.   

Microglia are hematopoietic in origin and are most closely related to bone marrow-

derived macrophages (73).   Recent studies suggest that microglia originate from the yolk sac 

macrophages that migrate into the central nervous system during early embryogenesis and are 

distinct from cells that are generated by definitive hematopoiesis in the bone marrow and from 

circulating cells (74, 75).  Microglia appear to represent a distinct type of macrophage that are 

long-lived and/or locally self-renewing (73).  In a normal physiological state, resting microglia 

are highly dynamic and actively survey their environment with extremely motile processes and 

protrusions (76-78).  They are highly ramified with an elaborate branch structure.  Each 

microglia cell occupies a 30-50 µm-wide region of the brain, and an individual cell rarely crosses 

branches with its neighbors.  Upon traumatic injury and disruption of the blood-brain barrier, 
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microglia processes rapidly converge on the site of injury to create a barrier between the injured 

tissue and healthy tissue (77, 78).   

Microglia play important roles in the normal physiology of the brain (79, 80).  The loss of 

neuronal cells is a critical event during the development of the nervous system and involves 

apoptosis followed by efficient removal of the remains of the neurons.  The removal of dead 

cells is accomplished by phagocytes, such as microglia.  In addition, it has recently been shown 

that microglia actually promote the death of Purkinje neurons engaged in synaptogenesis (81). 

 The rapid release of reactive oxygen species by microglia induces neuronal death, and then, 

these dead cells are contacted by spreading microglial processes and engulfed.  As described 

above, microglia survey their microenvironment.  Using two-photon imaging of fluorescently-

labeled neurons and microglia, it was recently shown that resting microglial processes make 

brief, direct contacts with synapses approximately once per hour, and these contacts are activity-

dependent and decrease in frequency in response to reductions in neuronal activity (82). 

 Following transient cerebral ischemia, the length of the microglia-synapse contacts is extended 

(to around an hour) and are often followed by the disappearance of the presynaptic bouton.  Very 

recently, a protective role for ramified, resting microglia has been described by Vinet et al. (83). 

 These authors found that resting microglia protect hippocampal neurons in response to 

excitotoxicity and therefore limit neuronal death (84).  In addition, it has been shown in mice that 

microglia actively engulf synaptic material and play a major role in synaptic pruning during 

postnatal development (85). 

As the immune cells of the central nervous system, microglia monitor the presence of 

pathogens and injury in the nervous system.  Microglia are often the first cell type to respond to 

tissue damage in the central nervous system (86).  As discussed above, resting microglia are 
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ramified, with thin processes that continuously sense and survey the cell’s immediate 

microenvironment.  This random scanning changes to an actively targeted movement when 

microglia sense infection, trauma, ischemia, neurodegeneration, or altered neuronal activity (72, 

87).  Once a disturbance in brain homeostasis has been sensed, microglia are activated and also 

undergo phenotypic changes; the cell body increases in size, and the processes retract to become 

an amoeboid cell.  Microglia can then carry out a number of diverse functions.  Local 

populations of microglia can proliferate to provide more cells to defend against infection and 

restore tissue homeostasis (72).  Microglia respond to different types of stimuli to act in either a 

neuroprotective or neurotoxic manner.  Activation is associated with increased production of 

potentially cytotoxic molecules, such as reactive oxygen species, nitric oxide, proteases, and pro-

inflammatory cytokines such as interleukins and TNFα (88, 89).  Microglia can also release 

chemoattractant molecules to recruit other immune cell populations to the central nervous 

system.  In addition, microglia can be further stimulated by interferon-γ secreted by T cells and 

act as antigen-presenting cells to present antigenic compounds to T cells to mount an adaptive 

immune response (90, 91).  Activation can also lead to some neuroprotective roles for microglia. 

 A primary neuroprotective role of microglia is to phagocytose tissue debris and damaged cells, 

thus allowing healthy cells to survive (92).  Microglia can also produce growth factors and 

extracellular matrix to encourage wound healing.  In addition, microglia can upregulate insulin-

like growth factor 1 (IGF1), which supports neuronal survival (91).     

 

Microglia in neurodegenerative diseases 

It is not yet entirely clear whether microglia are beneficial or harmful in 

neurodegenerative diseases (91, 93).  In some diseases, inflammation of the central nervous 
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system directly leads to neuronal damage.  Bacterial meningitis leads to neuronal apoptosis via 

activation of microglia through TLR- and MyD88-dependent pathways (94).  As mentioned 

previously, aggregated β-amyloid is observed in neurodegenerative diseases.  β-amyloid has 

been found to activate microglia resulting in neuronal apoptosis (95, 96).  In addition, inhibition 

of microglia with minocycline, an anti-apoptotic compound, has neuroprotective effects in 

mouse models of Parkinson’s disease (97, 98).  Thus, microglia activation can clearly be harmful 

in some diseases of the central nervous system.  However, there is also evidence for a 

neuroprotective role for microglia in other neuronal diseases.  In a mouse model of stroke, 

microglia express the neuroprotective protein IGF1, and selective removal of proliferating 

resident microglia led to a decrease in IGF1 and more ischemic damage (99).  It has also been 

observed that in Alzheimer’s disease, microglia play an important role in the clearance of 

harmful Aβ aggregates via phagocytosis (100).  Additionally, in the SOD1 mouse model, mutant 

microglia have been observed to upregulate IGF1 as well as other growth factors, suggesting an 

anti-inflammatory response in these cells (101). 

Neuroinflammation occurs in nearly every disease of the nervous system (86).  During 

infection there are mechanisms in place to suppress neuroinflammation, including activation-

induced cell death and regulatory T cells (102, 103).  Although necessary to combat pathogens, 

neuroinflammation can be deleterious to nearby neurons when not controlled or in chronic 

situations (89).  Neurodegenerative diseases, including Alzheimer’s disease, Parkinson’s disease, 

multiple sclerosis, and ALS are examples of chronic neuroinflammation and microglial 

activation (79, 104).  In Alzheimer’s disease, microglia display an activated phenotype, surround 

β-amyloid plaques, and participate in their clearance (105, 106).  In a rat model of Parkinson’s 

disease, extensive microglia activation was prominent in the substantia nigra and striatum and 
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preceded dopaminergic neuron degeneration (107).  In Huntington’s, inflammation appears 

peripherally and in the central nervous system during disease progression (28).   

 

Microglia in ALS 

Neuroinflammation is a prominent feature in the spinal cords of ALS patients and rodent 

models of ALS.   Inflammation and microglial activation and proliferation in the spinal cord 

parallels motor neuron degeneration (108, 109).  Adaptive immunity is also involved in disease 

progression, with active accumulation of T cells and deposition of antibodies within the spinal 

cord.  Numerous pro-inflammatory cytokines are elevated in ALS and the levels of their 

expression correlate with disease progression (110-112).  In addition, Chiu et al. found that T 

cells infiltrate the spinal cord during disease progression and potentiate neuroprotective 

inflammation in the G93A SOD1 model of ALS (101). 

Several recent studies illustrate the deleterious effects of mutant SOD1 in microglia and 

suggest that mutant microglia contribute to the disease progression.  Microglia activation is 

observed throughout the spinal cord and increases with disease progression (104, 113).   Boillee 

et al. showed that selective depletion of mutant SOD1 from microglia and macrophages of 

transgenic mice led to an extension in lifespan (63).  The deletion of mutant SOD1 had no affect 

on disease onset, but progression was dramatically retarded, suggesting the expression of mutant 

SOD1 in microglia had deleterious effects on disease progression.  In addition, Beers et al. used 

SOD1 G93A mice that lack endogenous microglia to show that bone marrow transplantation of 

wild type microglia progenitors led to an extension of lifespan, whereas transplantation of mutant 

microglia progenitors did not affect lifespan (114).  These studies illustrate the deleterious effects 

of mutant SOD1 in microglia and suggest that mutant microglia might be neurotoxic when 
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compared with wild type microglia (115, 116).  Consistent with the involvement of SOD1, 

reactive oxygen species have been implicated as a mutant microglia-produced toxic factor. 

 Exogenously supplied mutant SOD1 (G93A or G85R) activated microglial release of pro-

inflammatory cytokines and free radicals (i.e., reactive oxygen species) (117).  More specifically, 

deletion of Nox2, which encodes the inflammatory NADPH oxidase, a major source of reactive 

oxygen species in inflammation, slowed disease progression and improved survival (97, 118). 

 Together, these data, along with other studies, indicate that microglia play a central role in ALS 

disease progression. 

 

General miRNA background 

MicroRNAs (miRNAs) are endogenous small, single-stranded non-coding RNAs ~21-25 

nucleotides (nt) in length that are critical regulators of gene expression.  miRNAs act by 

downregulating target mRNAs either by translational repression or mRNA degradation (119-

122).  miRNA genes are estimated to comprise 1-3% of all vertebrate genes and are highly 

conserved from flies to humans, suggesting that they play an important role in the regulation of 

gene expression (123).  Since their discovery, miRNAs have been shown to function in diverse 

processes ranging from mammalian myoblast differentiation (124), cell death in Drosophila 

(125), and neuronal patterning in C. elegans (126, 127).  Early studies in the mammalian nervous 

system showed that expression patterns of miRNAs change during development (128-130), 

suggesting that miRNAs are involved in the development and physiology of the nervous system.  

Many specific miRNAs have been examined in the central nervous system, an example of which 

is the mouse miR-124, one of the most highly expressed miRNAs in the mammalian brain.  This 

miRNA has been shown to promote a neuronal-like transcriptional profile by lowering levels of 
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non-neuronal transcripts (131).  Specifically, Makeyev et al. demonstrated that miR-124 targets 

PTBP1, a global repressor of alternative pre-mRNA splicing in non-neuronal cells, leading to 

neuron-specific alternative splicing (132). 

Since the demonstration that the miRNAs let-7 and lin-4 control the timing of 

developmental events in C. elegans via complementarity to regions in the 3’ untranslated region 

(UTR) of heterochronic genes (133-136), there has been substantial effort to identify how miRNs 

are processed and how they affect mRNA biogenesis.  miRNA genes are located in intergenic 

regions or within introns of protein-coding genes.  miRNAs located in intergenic regions are 

transcribed by RNA polymerase II to generate capped and polyadenylated primary miRNA 

transcripts (pri-miRNA) (137, 138).  Alternatively, miRNAs encoded within introns are co-

transcribed with the host mRNA and are subsequently processed post-transcriptionally (123).  

Pri-miRNAs have a stem-loop (hairpin) structure that contains the ~21-25 nt long mature 

miRNA.  The stem-loop of the pri-miRNA is excised by the RNaseIII Drosha-DGCR 

Microprocessor complex to yield a ~60-80 nt precursor miRNA (pre-miRNA) (139-143).  The 

pre-miRNA is exported from the nucleus to the cytoplasm by Exportin-5 (144, 145) and further 

processed by the RNaseIII Dicer to yield a miRNA duplex (139, 146).  One strand of the duplex 

(the mature miRNA) is loaded into the miRNA RNA-induced silencing complex (miRISC) while 

the other strand is typically degraded.  miRISC stabilizes the target strand and guides it to target 

mRNAs with sequences in the 3’UTRs complementary to the mature miRNA (123).   

Following the targeting of miRISC to their cognate mRNAs, target mRNAs are then 

downregulated by either translational repression or mRNA degradation.  There is evidence for 

translational repression at both initiation and post-initiation, although there is more evidence for 

repression occurring at initiation (147).  In both C. elegans and mammalian cell culture 
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experiments, miRNAs were observed to associate with polysomes, suggesting their regulation 

occurred post-initiation (148-152).  There exist numerous hypotheses for how this regulation 

occurs, including degradation of the growing polypeptide chain co-translationally (151) and 

premature ribosome dissociation from the mRNA (152).   However, there are also studies that 

suggest repression occurs at translation initiation.  In the presence of cognate miRNAs, mRNAs 

do not sediment with polysomes, but rather shift toward lighter fractions with fewer ribosomes or 

free messenger ribonucleoproteins (153).  In addition, experiments performed using cell-free 

extracts have shown that miRNAs do not target mRNAs with an artificial cap structure and fail 

to silence transcripts driven by an IRES, which suggests that the silencing machinery targets the 

cap or interferes with the cap-binding complex (154-158).  

There is also substantial evidence supporting the role of miRNAs in target degradation.  

Although it was initially thought that animal miRNAs acted primarily through translational 

repression, more recent studies provide evidence that animal miRNAs also act through target 

degradation.  Much evidence for this target degradation comes from individual studies that 

examine specific miRNA:mRNA pairs in which the upregulation of a specific miRNA correlates 

with  downregulation at the transcript level of specific targets (147).   Transcriptome-wide 

studies examining the up or downregulation of a specific miRNA leads to corresponding down or 

upregulation of its predicted targets (131, 159, 160).  In plant cells it is well established that 

miRNAs can lead directly to cleavage of cognate mRNAs (161).  However, in animal cells it is 

more likely that miRNAs direct mRNAs toward mRNA decay by deadenylation of the mRNA 

(162-166).  Several studies have also observed that the abundance of miRNA targets increases 

when decay factors are depleted corroborating their role in miRNA-induced mRNA decay (162, 

165, 166).  More recent quantitative mass spectrometry studies have measured the effect of 
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miRNAs at the proteome level (159, 167).  The results of these studies show only modest 

inhibition in protein output, which is rarely more than four-fold.  In addition, ribosome profiling 

to measure effects on protein production coupled with RNA-seq analysis to measure mRNAs 

revealed that decreased mRNAs were responsible for >84% of the observed decrease in protein 

production (168).  This finding suggests that the destabilization of target mRNAs is the major 

reason for decreased levels observed at the protein level. 

In metazoans, bioinformatic studies predict that individual miRNAs could potentially 

downregulate hundreds of mRNAs through partial complementarity to the 3’ UTR of the target 

mRNA (122, 131, 169).  It has been estimated that on average an individual Drosophila miRNA 

targets 54 transcripts and an individual human miRNA targets up to 200 transcripts (170-172).  

Lewis et al. predicted that up to 50% of mammalian mRNAs could be miRNA targets (173).  

However, due to the partial complementarity between miRNAs and mRNA targets, target 

prediction is computationally challenging.  The miRNA region with the highest degree of 

complementarity is termed the miRNA seed and comprises nucleotides 2-8 from the 5’ end 

(174).  The seed is often flanked by an adenosine (173), and this region is usually conserved 

within miRNA families.  The seed is critical for regulation, and sometimes sufficient for a 

miRNA to target an mRNA.  More recent work has suggested that there are additional intricacies 

to a miRNA targeting an mRNA than simply the seed.  There is evidence that, in the cases of less 

optimal pairing within the miRNA seed, there might be additional compensatory pairing between 

the 3’ end of the miRNA and the mRNA (175, 176).  Most UTRs contain more than one miRNA 

binding site, and these binding sites can exhibit different degrees of complementarity to the 

miRNA (177).  mRNAs can also be targeted by more than one miRNA, suggesting combinatorial 

control (174, 178).  Additionally, a single miRNA can bind an mRNA at more than one site and 
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act cooperatively for higher levels of downregulation than might typically be expected (178-

180).  There is a general view that individual mRNAs are likely regulated based on the number 

and nature of the miRNA target sequence, as well as the levels of miRNA present (181).  The 

context of the target sites are also thought to play a role in the efficacy of a particular site (182).  

Grimson et al. suggested that close sites act synergistically and that being located within an AU-

rich local sequence and near either end of the 3’ UTR also contribute to targeting.  The authors 

observed that sites within the first 15 nucleotides after the stop codon make poor target sites, 

perhaps due to interference with ribosomes (175).  

Target site prediction is particularly challenging due to the necessity of as few as 6 

complementary nucleotides for binding and recognition (131).   Numerous target prediction tools 

are now available and typically identify targets based on the evolutionary conservation of seed 

matches within a given gene (171, 173, 183).  Although various prediction tools, such as 

Targetscan, Pictar, and Miranda, are of great importance for the field, the algorithms generate 

different results and have high false-discovery rates (167, 170, 184).  Recently a non-

computational method called Argonaute (Ago) HITS-CLIP (high throughput sequencing of RNA 

isolated by crosslinking immunoprecipitation) was developed (185, 186).  HITS-CLIP is a 

technique that allows the identification of in vivo protein-RNA interactions on a genome-wide 

scale.  In brief, RNA-protein complexes that are in direct contact are covalently crosslinked 

using UV irradiation, and the RNAs bound by specific proteins can then be identified by high 

throughput sequencing.  Ago HITS-CLIP enables the precise identification of mRNA targets that 

are bound to specific locations within 3’UTRs in a ternary complex with Ago, thus providing 

strong evidence of target recognition and subsequent downregulation. 
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Additionally, the 3’ UTR provides additional opportunities for regulation through 

alternative processing.  The 3’ UTR contains many cis-acting regulatory elements that lead to a 

variety of events, including polyadenylation, decay, stability, subcellular localization, and 

translation (187).  Single mutations can affect the regulation of a specific 3’ UTR or a mutation 

or deficiency in a factor that interacts with the UTR could cause more widespread effects.  Mayr 

et al. found that cancer cell lines often express higher levels of mRNAs with shorter 3’ UTRs, 

due to alternative cleavage and polyadenylation.  These shorter isoforms were observed to be 

more stable than the full-length isoforms and also produced much higher levels of protein (188).  

Additionally, the use of alterative 3’ UTRs can affect the ability of a miRNA to target a cognate 

mRNA.  In a recent study, the Drosophila Hox gene Ultrabithorx (Ubx) was found to generate 

mRNAs with variable 3’ UTRs in different regions of the embryo (189).  Ubx is targeted by two 

miRNAs, and the resulting alternative 3’ UTRs carry different miRNA target sites, thus allowing 

the long isoform to be regulated by miRNAs.  Mutations in the 3’ UTR can also introduce or 

remove miRNA target sites.  For example, Texel sheep are an extremely muscular breed due to 

lower levels of myostatin.  Clop et al. identified a point mutation that caused a target site in the 

myostatin 3’ UTR for two miRNAs that are highly expressed in skeletal muscle; thus, myostatin 

is translationally repressed leading to muscular hypertrophy of this breed of sheep (190).   

 

miRNAs in the central nervous system 

         miRNAs are highly expressed in the nervous system and have been shown to be involved 

in the regulation of numerous processes ranging from patterning and cell specification to 

neuronal plasticity (191, 192).  Some early studies examined the involvement of miRNAs in the 

nervous systems of invertebrates.  Examples include the miRNA lsy-6, which controls left-right 
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neuronal asymmetry in C. elegans by targeting a homeobox gene, cog-1 (126), and miR-9a, 

which was shown to ensure the specification of neuronal sensory organ precursor cells during 

Drosophila development (193).  Many groups have also examined the expression patterns of 

miRNAs during mouse development (128-130, 194).  These studies revealed many miRNAs that 

are specifically enriched in the brain, suggesting that these miRNAs could have specific 

functions in the central nervous system.   

Early studies by Krichevsky et al. and Miska et al. demonstrated that various miRNAs 

exhibit precise temporal regulation during brain development, indicating they might be involved 

in development of the mammalian brain (128, 130).  It has since been shown that miRNAs are 

indeed involved in the developing nervous system, and in processes including neural patterning, 

cell specification, axonal pathfinding, and apoptosis (191).  miR-124 is a mammalian miRNA 

that has been extensively studied due to its high expression in mature neurons and its role in 

establishing and maintaining neuronal identity.  A study in HeLa cells illustrated that 

overexpression of miR-124 causes these cells to express a more neuronal mRNA profile (16, 

131).  Similarly, in neural progenitor cells, miR-124 drives cells toward a more neuronal identity, 

perhaps by inhibiting gliogenesis (195).  It was later shown by Makeyev et al. that miR-124 is 

able to promote neuronal differentiation by targeting PTBP1, a global repressor of alternative 

splicing in non-neuronal cells, thus triggering brain-specific alternative splicing (132).  In 

addition, miRNAs are expressed in mature neurons and are involved in synaptic plasticity (196) 

and dendritic spine development (197).   
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miRNA in neurodegenerative diseases 

 The levels of mRNA transcripts are pathologically altered in most neurodegenerative 

diseases.  As miRNAs are highly expressed in the nervous system, it has been hypothesized that 

miRNAs, which have the ability to regulate hundreds of mRNA targets, might be involved in 

neurodegeneration.  miRNAs have been shown to be involved in processes that, if dysregulated, 

might contribute to degeneration, including supporting neuronal survival and cellular stress (198-

200).   In addition, deletion of Dicer from Purkinje cells (201) and motor neurons (202) leads to 

cerebellar and motor neuron degeneration, respectively.  Progressive neurodegeneration due to 

the loss of Dicer suggested a potential role for miRNAs in neurodegeneration.  Bilen et al. 

showed that in Drosophila and human cell line models of spinocerebellar ataxia, reductions in 

miRNA processing caused an enhancement of polyglutamine toxicity (203).  In addition, it was 

shown that removal of Dicer in mouse adult forebrain neurons led to abnormal tau 

hyperphosphorylation and neurodegeneration (204).   

 Subsequent papers examined the role of miRNAs in neurodegeneration more specifically. 

 Karres et al. found that in Drosophila, miR-8 acts to tune atrophin levels to prevent 

neurodegeneration (205).  In human cells expressing ataxin1, a gene which when containing an 

expanded polyglutamine repeat causes spinocerebellar ataxia type 1, it was found that three 

miRNAs co-regulate ataxin1 levels and inhibition of these miRNAs enhance toxicity of the 

expansion (206).  Various miRNAs are up or downregulated in models of different 

neurodegenerative diseases.  For example, the bifunctional miR-9/miR-9* is downregulated in 

Huntington’s disease (207).  Some studies performed on post-mortum tissue from individuals 

with neurodegenerative diseases have shown aberrant miRNA expression, including the 

downregulation of miR-29a in the brains of Alzheimer’s patients (208). 
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miRNAs have not been thoroughly examined in ALS, and to date only three papers 

have been published that address motor neuron disease and miRNAs.  Haramati et al. showed 

that the loss of miRNAs in motor neurons due to mutant Dicer causes progressive locomotor 

dysfunction, muscular atrophy, and a loss of motor neurons, thus concluding that mice lacking 

miRNAs in spinal motor neurons resemble the degeneration observed in spinal muscular atrophy 

(SMA) (202).  The authors also observed incorrect stoichiometry of the neurofilament subunits, 

and that miR-9, which targets one of the neurofilament subunits, is downregulated in a mouse 

model of SMA.  Williams et al. published the only study specifically examining the role of 

miRNAs in ALS (209).  They observed that miR-206, a skeletal muscle-specific miRNA, is 

dramatically upregulated in the SOD1 G93A mouse model of ALS, and acts to delay ALS 

progression by promoting the regeneration of neuromuscular synapses in mice.  This 

regeneration is accomplished by miR-206 repressing the production of histone deacetylase 4, 

which itself has an inhibitory effect on neuromuscular junction reinnervation.  Finally, Buratti et 

al. knocked down TDP-43 in a cell culture line and found that there were specific miRNAs that 

were up or downregulated (210).  let-7b and miR-663 are two of these miRNAs and were also 

found to directly bind TDP-43. 

 

miRNAs and microglia 

 Only a few labs have examined miRNAs in microglia.  Rom et al. showed that miR-146a, 

a miRNA known to be involved in the regulation of the innate immune response and increased in 

chronic inflammation, targets the chemokine CCL8/MCP-2 in HIV-1-infected human microglial 

cells (211).  Ponomarev et al. observed that miR-124 promotes microglia quiescence and 

suppresses experimental autoimmune encephalomyelitis, a model of multiple sclerosis, by 
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deactivating macrophages through the C/EBPα-PU.1 pathway (212).  In addition, they showed 

that expressing miR-124 in macrophages transformed these cells from an activated to a resting 

phenotype.  Finally, Cardoso et al. showed that miR-155, a pro-inflammatory miRNA, 

modulates the immune response in a microglia cell line by downregulating SOCS-1, an inhibitor 

of the inflammatory response, and by promoting the production of cytokines and nitric oxide 

(213). 

 

Overview of dissertation 

Our lab is highly interested in the role of non-neuronal cells, particularly microglia and 

astrocytes, in ALS disease pathogenesis.  The primary goal of my dissertation is to examine the 

role of microglia in ALS disease progression by analyzing miRNAs.  In addition to the fact that 

this is the first time that miRNAs have been examined in the context of ALS disease progression, 

this is also the first global examination of miRNAs expressed in microglia.  To this end, I 

isolated primary microglia from mice overexpressing human wild type or G93A SOD1 during 

disease progression (at time points corresponding to pre-symptomatic, symptom onset, and end-

stage) and used these acutely isolated cells for numerous analyses.  miRNAs expressed in these 

microglia were sequenced by our collaborators at the HudsonAlpha Institute for Biotechnology 

(Shawn Levy) and genomic alignment and statistics were performed by Mike Muratet (Myers 

Lab, HudsonAlpha).  I analyzed and validated the sequencing data.  In addition, a former post-

doc from our lab, Isaac Chiu, performed RNA-seq analysis on acutely isolated microglia from 

both non-transgenic mice and mice overexpressing human G93A SOD1 mice during disease 

progression (unpublished data).  I have used this dataset to examine a functional relationship 

between miRNAs and their targets. 
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Abstract 

 Amyotrophic lateral sclerosis (ALS) is a neurodegenerative disease characterized by 

selective loss of motor neurons of the brain and spinal cord, leading to paralysis and death.  Non-

neuronal cells have been shown to contribute to ALS disease progression in mouse models.  

Microglia, the innate immune cells of the central nervous system, have been shown to be 

activated in ALS and contribute to disease progression.  Here I show that miRNAs are 

dysregulated in acutely isolated microglia from SOD1 G93A transgenic mice, and that miR-155 

and miR-210 are significantly upregulated with disease progression.  In addition, miR-1198-5p, 

miR-182, miR-503, and miR-668 are also dysregulated, and predicted mRNA targets of all six of 

these miRNAs are differentially expressed with disease progression.  To my knowledge, this is 

the first analysis of miRNA expression in microglia during ALS disease progression. 
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Introduction 

Amyotrophic lateral sclerosis (ALS) is an adult-onset, progressive neurodegenerative 

disease characterized by selective death of the upper and lower motor neurons of the brain and 

spinal cord, leading to muscle atrophy and paralysis of voluntary muscles (1).  Only 10% of ALS 

cases are inherited (called familial ALS), and of these 20-25% are caused by mutations in the 

Cu/Zn superoxide dismutase (SOD1) (2).  Mice overexpressing human mutant SOD1 develop 

motor neuron disease with the same features as ALS including progressive paralysis and 

ultimately death due to motor neuron degeneration (3-6).  The most commonly used animal 

model is the SOD1 glycine 93 to alanine (G93A) transgenic mouse (4).        

Recently non-neuronal cells have been directly implicated in ALS pathogenesis.  In 

human patients and mutant SOD1 transgenic mice, loss of motor neurons is accompanied by the 

accumulation of activated astrocytes and microglia (7).  Mouse blastocyst chimeras that were 

mixtures of normal and SOD1 mutant-expressing cells showed that damage caused by mutant 

SOD1 expressed in non-neuronal cells is toxic to motor neurons (8).  In addition, deletion of 

mutant SOD1 transgenes from astrocytes and microglia significantly delayed disease 

progression, but had no effect on disease onset (9, 10).  Microglia toxicity in ALS is not fully 

understood, and the role of microglia in ALS disease progression appears to be complex with 

both protective and toxic effects (11).    

microRNAs (miRNAs) are endogenous small, single-stranded non-coding RNAs ~21-25 

nucleotides (nt) in length that are critical regulators of gene expression.  They act by 

downregulating target mRNAs either by translational repression or mRNA degradation (12-15), 

and have been shown to function in diverse processes including myoblast differentiation (16), 

cell death (17), neuronal patterning (18, 19), and disease (20, 21).  They have also been shown to 
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be important regulators in immune cells, including B and T cells (22). 

Many mRNAs display alterations in expression levels in ALS.  As numerous pathways 

are aberrantly regulated, it has been hypothesized that miRNAs might be involved in the 

observed dysregulation.  miRNAs have not been thoroughly examined in ALS disease 

progression.  To date, miR-206, a skeletal muscle-specific miRNA, is the only miRNA known to 

be dysregulated in ALS (21).  miR-206 was found to be dramatically upregulated in the skeletal 

muscle of SOD1 G93A transgenic mice, and this miRNA acts to delay ALS progression by 

promoting the regeneration of neuromuscular synapses in mice.  

In this study, I characterize the miRNAs expressed in acutely isolated G93A SOD1 

microglia during ALS disease progression.  Small RNA sequencing revealed that miRNAs are 

dysregulated in microglia during ALS disease progression.  miR-155 and miR-210 are 

significantly upregulated with disease, and additional miRNAs, miR-1198-5p, miR-182, miR-

503, and miR-668, are also dysregulated.  Examination of predicted targets of these differentially 

expressed miRNAs reveals that mRNA targets are also differentially expressed with disease 

progression.             

 
 
 

 

 

 

 

 



 47	  

Materials and Methods 

Mice 

Mice were generated by crossing female B6SJLF1/J (Jackson Laboratory) with either male 

B6SJL-Tg(SOD1*G93A)1Gur/J (Jackson Laboratory) or male B6SJL/Tg(SOD1)2Gur/J 

(Jackson Laboratory).  Mice were bred and maintained in barrier facilities at Columbia 

University Medical Center.  F1 hybrids were used for all experiments.  All studies were 

conducted according to institutional guidelines for animal use and care at Columbia University 

Medical Center. 

 

Microglia isolation (Figure 2.1) 

Mice overexpressing human wild type (WT) SOD1 or G93A (MT) SOD1 were sacrificed at 4, 6, 

8, 10, 12, and 17 weeks of age.  Mice were intracardially perfused with phosphate buffered saline 

(PBS) to remove blood contamination.  Whole spinal cords were dissected into Hank’s Balanced 

Salt Solution (HBSS, Gibco) and 1-2 spinal cords were pooled per sample.  Spinal cords were 

minced in PBS, manually homogenized using a 7mL dounce with a loose-fitting pestle, and then 

passed through a 70 µm cell strainer (BD Biosciences).  The homogenized tissue was spun for 10 

min at 460 rcf, room temperature.  The cell pellet was resuspended in 5mL of 70% Percoll (GE 

Healthcare) and 7mL of 37% Percoll was layered on top of cells.  This was spun for 30 min at 

1000 rcf, room temperature with no brake.  The microglia and lymphocytes form a layer at the 

border between the two densities of Percoll (23).  These interface cells were collected and diluted 

with buffer (0.5% BSA, 2mM EDTA in PBS) and spun for 15 min at 600 rcf, 10°C.  The cells 

were transferred to an eppendorf tube for further pelleting (spun for 8 min, 350 rcf, 4°C).  Cells 

were incubated with Cd11b magnetic beads (Miltenyi Biotek) and purified using MACS  
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Figure 2.1. Microglia isolation scheme. 
 
 

 
Mice overexpressing human wild type SOD1 (WT) and human G93A SOD1(MT) were 
sacrificed at 4, 6, 8, 10, 12, and 17 weeks of age.  Following perfusion with PBS, the spinal cord 
was dissected and manually homogenized using a dounce.  After homogenization, the microglia 
and lymphocytes of the central nervous system were isolated using Percoll gradient 
centrifugation. These cells were further purified using beads conjugated to a microglia-specific 
antibody (Cd11b). Total RNA was extracted from these purified cells and used for further 
analyses. 
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separation columns according to the manufacturer’s instructions and previous protocols (24, 25).  

The cells were then lysed in 250uL Trizol (Invitrogen).  Trizol was stored at -80°C until RNA 

extraction.   

 

LPS injection 

Lipopolysaccharides from Escherichia coli 0111:B4 (LPS, Sigma) was resuspended in PBS pH 

7.2 (Gibco) and stored at -20°C as a 1mg/mL stock.  Mice were weighed and administered 

5mg/kg LPS (26) by intraperitoneal injection.  After 24 hours, mice were sacrificed, spinal cords 

removed, and microglia isolated as described above. 

 

Total RNA extraction 

Trizol samples were thawed and then pooled.  RNA extraction was performed according to 

manufacturer’s instructions with the following modifications.  For the isopropanol precipitation, 

glycoblue (Ambion) was also added as a carrier, and this precipitation was carried out at -20°C, 

overnight.  The next day ethanol precipitation was carried out.  RNA quantity was determined by 

Nanodrop and quality was determined by Bioanalyzer (RNA Pico 6000, Agilent). 

 

miRNA sequencing and analysis 

Total RNA was sent to the Levy lab at the HudsonAlpha Institute for Biotechnology.  The 

PureLink miRNA Isolate Kit (Invitrogen) was used to enrich the total RNA for small RNAs. 

 Quality of the RNA was examined using a Bioanalyzer.  Library construction was done using 

the ScriptMiner Small RNA-Seq Library Preparation Kit (Epicentre), and libraries were 

sequenced on Illumina sequencers.  Alignment was performed by Mike Muratet (Myers lab, 



 50	  

HudsonAlpha) using the SHRiMP tool (Computational Biology Lab, University of Toronto) (27) 

and differential expression was calculated using the DESeq tool (Huber lab, EMBL) (28).  

Volcano plots were generated based on fold change and p-values calculated for each miRNA.   

 

qPCR validation 

Reverse transcription was carried out using 12 ng total RNA and the MicroRNA Reverse 

Transcription Kit (Applied Biosystems), according to the manufacturer’s instructions.  miRNA-

specific primers were used (Applied Biosystems).  cDNA was diluted 1:10 with water.  qPCRs 

were carried out using miRNA-specific Taqman assays and Universal Master Mix II, no UNG 

(Applied Biosystems), according to manufacturer’s instructions.  The only modification is that 

2x the recommended amount of cDNA was used per qPCR reaction.  qPCRs were done on 4-7 

biological replicates.  snoRNA 135 was used to normalize the qPCRs. 

 

Target identification and examination 

Predicted targets of individual miRNAs were determined using Targetscan 

(http://www.targetscan.org/mmu_60/) (29).  Global trends in predicted targets were examined in 

the microglia RNA-seq dataset (unpublished data, Maniatis lab) using ExpressionPlot (30).  For 

2-way plot analysis, the following cut off parameters were used: p-value=1e-4, fold change=1.5, 

RPKM>2 for at least one condition.  Individual mRNAs were then examined using the microglia 

dataset.  Overlap of predicted targets for upregulated and downregulated miRNAs was 

determined using the Venny tool (http://bioinfogp.cnb.csic.es/tools/venny/index.html).  

Functional categories of up and downregulated mRNA targets were analyzed using the web-

based bioinformatic DAVID tool (Gene Ontology terms for Biological Process, Molecular 
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Function, and Cellular Component; Pathways from KEGG and BIOCARTA; and PIR Keywords, 

Sequence Features, and Protein Domains from INTERPRO and SMART) (31, 32).   

 

Statistics 

Student’s t test was used to determine statistical significance. 
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Results 
 
Identification of miRNAs that are constitutively expressed in microglia 

Primary microglia were acutely isolated from transgenic mice overexpressing human wild type 

(WT) and G93A (MT) SOD1 at 4, 6, 8, 10, 12, and 17 weeks.  Total RNA from these cells was 

examined by small RNA sequencing to identify the miRNAs expressed.  By analyzing this 

sequencing data over this extended time course, I was able to identify the miRNAs that are 

constitutively highly and moderately expressed in primary spinal cord microglia irrespective of 

age or genotype (Figure 2.2).  Although specific miRNAs have previously been examined in 

microglia (33-35), this reveals the signature steady state microglia miRNAs.   

 

miRNAs are differentially expressed in G93A microglia compared to WT microglia during 
disease progression 
 
As discussed above, primary microglia were acutely isolated from transgenic mice 

overexpressing human G93A SOD1 (MT) at 4, 6, 8, 10, 12, and 17 weeks (see Figure 2.1).  

These times points follow disease progression, with 4, 6, and 8 weeks being pre-symptomatic, 10 

and 12 weeks are early symptomatic/symptom onset, and 17 weeks is end-stage.  Total RNA 

from these microglia was examined by small RNA sequencing.  Using the DESeq tool, I 

determined the expression patterns of miRNAs in G93A SOD1 microglia compared to WT 

SOD1 microglia.  I found that a number of miRNAs are differentially expressed in the ALS 

microglia during disease progression, and that more changes are observed with disease 

progression (Figure 2.3).  Upon closer examination of the sequencing results, I found that 3 

miRNAs are upregulated and 3 miRNAs are downregulated at both 12 and 17 weeks, the time 

points corresponding to disease onset and end-stage (Figure 2.4).  I chose to focus on these  
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Figure 2.2. miRNAs constitutively expressed at high and moderate levels in microglia. 
 
miRNA sequencing was performed on total RNA isolated from microglia from WT or G93A 
SOD1 mice at 4, 6, 8, 10, 12, and 17 weeks.  Alignment was performed using SHRiMP and 
relative expression levels were determined using the DESeq tool.  I identified miRNAs that are 
constitutively highly (levels >16) and moderately (levels from 6.5-15) expressed using these 
relative expression levels.  The highly expressed miRNAs are purple, and the moderately 
expressed miRNAs are blue.   
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Figure 2.2, continued.  
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Figure 2.3. miRNAs are differentially expressed in G93A microglia compared to WT 
microglia. 
 

 
Graphpad Prism was used to plot log2(fold-change) vs -log10(p-value) for the miRNA 
sequencing data comparing the data from WT and G93A microglia at 4, 6, 8, 10, 12, and 17 
weeks.  miRNAs that correspond to p<0.01 and log(fold-change) >1 or <-1 are colored with red 
or green.  The data for microglia isolated at 6 and 12 weeks is shown. 
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Figure 2.4. miRNAs are dysregulated in G93A microglia by small RNA sequencing. 
 
A. miRNAs are upregulated at 12 and 17 weeks. 

 
 
B. miRNAs are downregulated at 12 and 17 weeks. 

 
        
miRNA sequencing was performed on total RNA isolated from wild type (WT) and G93A (MT) 
SOD1 microglia at 4, 6, 8, 10, 12, and 17 weeks.  Alignment was performed using SHRiMP and 
relative expression levels were determined using the DESeq tool.  I identified the miRNAs that 
were up (A) or downregulated (B) at both 12 and 17 weeks in MT compared to WT.  Values are 
relative expression for a single replicate. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



 57	  

miRNAs for further analyses.     

 

miR-155 is significantly upregulated in G93A microglia  

miR-155 was upregulated  in G93A microglia at 10, 12, and 17 weeks, which corresponds to 

early symptom onset through end-stage of the disease (Figure 2.4A).  I confirmed these results 

by qPCR on biological replicates (Figure 2.5A).  Indeed, miR-155 is upregulated ~1.6 fold at 8 

weeks, 3.5 fold at 10 weeks, 7.3 fold at 12 weeks, and 8.6 fold at 17 weeks.  Statistical analysis 

of the data revealed that the 10, 12, and 17 week changes are highly significant.  In addition, I 

performed small RNA sequencing on microglia 24 hours after lipopolysaccharide (LPS) 

injection.  LPS, a bacterial-derived sugar, is known to activate microglia, causing increased 

phagocytosis, secretion of cytokines, and induction of nitric oxide synthase (36).  I found that 

miR-155 is consistently upregulated upon activation by LPS (Figure 2.5B).  It is likely that the 

upregulation of miR-155 in the G93A microglia is due to their activation and might not be 

strictly a disease-specific response.  A general theme in reactive gliosis is that astrocytes and 

microglia become activated in response to a variety of traumas, and these responses are context-

dependent and graded (37, 38).  Thus, the upregulation of miR-155 is a change common to more 

than one type of stimuli including acute LPS activation and chronic neurodegeneration. 

 

miR-210 is significantly upregulated in G93A microglia 

I found that miR-210 is upregulated only at 12 and 17 weeks (Figure 2.4A), and although the 

increase was small, it was confirmed by qPCR on biological replicates (Figure 2.6A).  The 

observed upregulation of miR-210 is not as dramatic as for miR-155, however it is still  

upregulated 2.4 fold at 12 weeks and 3.5 fold at 17 weeks, both of which are significant changes. 
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Figure 2.5. miR-155 expression in acutely isolated microglia. 
 
A. miR-155 is upregulated in acutely isolated G93A microglia at 10, 12, and 17 weeks.  
Microglia were acutely isolated from the spinal cords of mice overexpressing human wild type 
(WT) and G93A (MT) SOD1 mice at 4, 6, 8, 10, 12, and 17 weeks.  Total RNA was isolated 
from 5-8 spinal cords and pooled to yield a biological replicate.  RNA quantity and quality were 
examined using a Nanodrop and Bioanalyzer, respectively.  miR-155-specific reverse 
transcription and Taqman qPCR were performed.  qPCR were normalized to snoRNA 135.   
* p<0.01, ** p<0.002, Student’s t test, WT 4 (n=4), MT 4 (n=4), WT 6 (n=4), MT 6 (n=4), WT 8 
(n=3), MT 8 (n=5), WT 10 (n=4), MT 10 (n=5), WT 12 (n=5), MT 12 (n=4), WT 17 (n=5), MT 
17 (n=6).  Values represent mean +/- SEM. 
 
B.  miR-155 is upregulated in response to LPS activation.  Mice overexpressing human wild type 
SOD1 were injected with 5mg/kg LPS 24 hours before microglia isolation (WT LPS).  Microglia 
were isolated at 4, 6, 8, 10, 12, and 17 weeks.  Total RNA was isolated from 5-8 spinal cords and 
small RNA sequencing was performed.  Alignment was performed using SHRiMP and relative 
expression levels were determined using the DESeq tool.  WT LPS was compared to WT.  
Values are relative expression for a single replicate.  
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Figure 2.5, continued. 
 
A. miR-155 is significantly upregulated in acutely isolated G93A microglia at 10, 12, and 17 
weeks. 
 

 
 
B. miR-155 is induced by LPS injection. 
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Figure 2.6. miR-210 expression in acutely isolated microglia. 
 
A. miR-210 is upregulated in acutely isolated G93A microglia at 12 and 17 weeks.  Microglia 
were acutely isolated from the spinal cords of mice overexpressing human wild type (WT) and 
G93A (MT) SOD1 mice at 4, 6, 8, 10, 12, and 17 weeks.  Total RNA was isolated from 5-8 
spinal cords and pooled to yield a biological replicate.  RNA quantity and quality were examined 
using a Nanodrop and Bioanalyzer, respectively.  miR-210-specific reverse transcription and 
Taqman qPCR were performed.  qPCR were normalized to snoRNA 135.  ** p<0.006,  
*** p<0.0007, Student’s t test, WT 4 (n=4), MT 4 (n=4), WT 6 (n=4), MT 6 (n=4), WT 8 (n=3), 
MT 8 (n=5), WT 10 (n=4), MT 10 (n=5), WT 12 (n=6), MT 12 (n=5), WT 17 (n=7), MT 17 
(n=7).  Values represent mean +/- SEM. 
 
B. miR-210 expression is not changed in response to LPS.  Mice overexpressing human wild 
type SOD1 were injected with 5mg/kg LPS 24 hours before microglia isolation (WT LPS).  
Microglia were isolated at 4, 6, 8, 10, 12, and 17 weeks.  Total RNA was isolated from 5-8 spinal 
cords and small RNA sequencing was performed.  Alignment was performed using SHRiMP and 
relative expression levels were determined using the DESeq tool.  WT LPS was compared to 
WT.  Values are relative expression for a single replicate.  
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Figure 2.6, continued. 
 
A. miR-210 is significantly upregulated in acutely isolated microglia at 12 and 17 weeks. 
 

 
 
B. miR-210 expression is not changed in response to LPS. 
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Interestingly, unlike miR-155, miR-210 does not respond to LPS stimulation (Figure 2.6B), so it 

is likely that this upregulation is specific to disease and is distinct from the general inflammatory 

response pathway.   

 

Predicted targets of miR-155 and miR-210 are downregulated in G93A microglia 

In addition to the microglia miRNA dataset, we also have RNA-seq data from acutely isolated 

microglia from G93A and non-transgenic mice at 9, 14, and 18 weeks, which corresponds to 

presymptomatic, symptom onset, and end-stage, respectively (unpublished data, Maniatis lab).  I 

identified putative targets of miR-155 and miR-210 using the Targetscan software (29).  These 

sets of mRNAs were globally examined in the microglia RNA-seq dataset using ExpressionPlot 

(Figure 2.7A, 2.8A) (30).  As miR-155 and miR-210 were both upregulated, I focused on the 

predicted downregulated mRNA targets.  I found that 10 miR-155 targets and 3 miR-210 targets 

were significantly downregulated during disease progression (Figure 2.7B, 2.8B).  Interestingly, 

two of these mRNAs, Tppp and Etv5, are targeted by both miR-155 and miR-210.  Tppp, tubulin 

polymerization-promoting protein, is a myelin protein that is reduced in demyelinated lesions 

that are enriched in the cerebrospinal fluid of multiple sclerosis patients (39).  

 

Additional miRNAs are dysregulated at 17 weeks in G93A microglia compared to WT 

By analyzing the small RNA sequencing, I also found that miR-1198-5p, miR-182, miR-503, 

and miR-668 were dysregulated at both 12 and 17 weeks (Figure 2.4).  miR-1198-5p was 

upregulated, and miR-182, 503, and 668 were all downregulated.  Although I was able to 

confirm these trends by qPCR on biological replicates, the qPCR changes were not statistically 

significant (Figure 2.9A, 2.9C).  Similar to the trend observed for miR-155, miR-503 is 
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Figure 2.7.  Predicted targets of miR-155 are differentially expressed in a microglia RNA-
seq dataset. 
 
A. Global view of trends in predicted targets of miR-155.  Predicted targets of miR-155 were 
determined using Targetscan for mouse (http://www.targetscan.org/mmu_60/).  These genes 
were then analyzed by 2-way plot using our acutely isolated microglia RNA-seq dataset and 
Expression Plot.  The microglia RNA-seq was carried out using microglia isolated as described 
in Figure 2.1 from mice overexpressing human G93A (MT) and non-transgenic mice (NT) at 9, 
14, and 18 weeks.  Genes that were significantly (p=1e-4, fold-change=2) up or down regulated 
in MT microglia versus NT microglia are colored as blue or green dots, respectively.  
 
B. Predicted targets of miR-155 are downregulated.  The predicted targets that were 
downregulated in G93A (MT) microglia compared to non-transgenic (NT) were further 
examined in the RNA-seq data.  mRNAs with RPKM below 2 for at least condition were filtered 
out.  *p<0.05, **p<0.003, ***p<6e-5 Student’s t test, NT 9, NT 14, NT 18 (n=3), MT 9 (n=5), 
MT 14 (n=7), MT 18 (n=9).  Values represent mean +/- SEM. 
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Figure 2.7, continued. 
 
A. Global view of trends in predicted targets of miR-155. 

 
 
B. Predicted targets of miR-155 are downregulated. 
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Figure 2.8. Predicted targets of miR-210 are differentially expressed in a microglia RNA-
seq dataset. 
 
A. Global view of trends in predicted targets of miR-210.  Predicted targets of miR-210 were 
determined using Targetscan for mouse (http://www.targetscan.org/mmu_60/).  These genes 
were then analyzed by 2-way plot using our acutely isolated microglia RNA-seq dataset and 
Expression Plot.  The microglia RNA-seq was carried out using microglia isolated as described 
in Figure 2.1 from mice overexpressing human G93A (MT) and non-transgenic mice (NT) at 9, 
14, and 18 weeks.  Genes that were significantly (p=1e-4, fold-change=2) up or down regulated 
in MT microglia versus NT microglia are colored as blue or green dots, respectively.  
 
B.  Predicted targets of miR-210 are downregulated.  The predicted targets that were 
downregulated in G93A microglia compared to non-transgenic (NT) were further examined in 
the RNA-seq data.  mRNAs with RPKM below 2 for at least one condition were filtered out.  
*p<0.03, ***p<6e-6 Student’s t test, NT 9, NT 14, NT 18 (n=3), MT 9 (n=5), MT 14 (n=7), MT 
18 (n=9).  Values represent mean +/- SEM. 
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Figure 2.8, continued. 
 
A. Global view of trends in predicted targets of miR-210. 
 

 
 
B. Predicted targets of miR-210 are downregulated.  
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Figure 2.9. miRNAs are dysregulated at 17 weeks in G93A microglia compared to WT. 
 
A, C. The microglia miRNA sequencing data was examined and the miRNAs that were changed 
in the same direction (i.e. upregulated or downregulated) at both 12 and 17 weeks were 
identified.  Additional microglia were acutely isolated from the spinal cords of mice 
overexpressing human wild type (WT) and G93A (MT) SOD1 mice at 17 weeks.  Total RNA 
was isolated from 5-8 spinal cords and pooled to yield a biological replicate.  RNA quantity and 
quality were examined using a Nanodrop and Bioanalyzer, respectively.  miR-1198-5p (A), miR-
182 (C), miR-503 (C), and miR-668 (C)-specific Taqman assays were used.  qPCR were 
normalized to snoRNA 135. p<0.08 (miR-503, miR-668), p<0.38 (miR-182, miR-1198-5p), 
Student’s t test, WT 17 (n=7), MT 17 (n=7).  Values represent mean +/- SEM.  
 
B, D. Global view of trends in predicted targets for miR-1198-5p (B), miR-182 (D), miR-503 
(D), and miR-668 (D).  Predicted targets of specific miRNAs were determined using Targetscan 
for mouse (http://www.targetscan.org/mmu_60/).  These genes were then analyzed by 2-way plot 
using our microglia RNA-seq dataset and Expression Plot.  The microglia RNA-seq was carried 
out using microglia isolated as described in Figure 2.1 from mice overexpressing human G93A 
(MT) and non-transgenic mice (NT) at 9, 14, and 18 weeks.  Genes that were significantly 
(p=1e-4, fold-change=2) up or down regulated in G93A microglia versus non-transgenic are 
colored as blue or green dots, respectively. 
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Figure 2.9, continued.  
 
A. miR-1198-5p is upregulated at 17 weeks. 

 
B. Global view of trends in predicted targets of miR-1198-5p. 
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B. Global view of trends in predicted targets of miR-1198-5p.
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Figure 2.9, continued.  
 
C. Several miRNAs are downregulated at 17 weeks. 
 

 
 
D. Global view of trends of targets of downregulated miRNAs. 
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D. Global view of trends in predicted targets of downregulated miRNAs.
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downregulated upon LPS injection at 12 and 17 weeks suggesting this downregulation might be 

a general result of activation (Figure 2.10).  Predicted targets of these miRNAs were determined 

using Targetscan, and these mRNAs were examined in the microglia dataset.  For all 4 miRNAs, 

there were predicted targets that changed in the expected direction, i.e. targets of upregulated 

genes were downregulated and targets of 

downregulated genes were upregulated (Figure 2.9B, 2.9D).  More targets are upregulated than 

downregulated, but this is likely due to the fact that in the G93A microglia, more mRNAs are 

upregulated than downregulated as a general trend (unpublished data, Maniatis lab).   

 

Common trends in predicted targets of dysregulated miRNAs 

The predicted targets of the upregulated miRNAs (miR-155, miR-210, and miR-1198-5p) and 

downregulated miRNAs (miR-182, miR-503, and miR-668) were examined.  The upregulated 

(Figure 2.11A) and downregulated targets of were compared (Figure 2.11B).  There was overlap 

between all upregulated genes and all downregulated genes, suggesting common pathways might 

be affected. 

 

Hypoxia-related genes are upregulated in G93A microglia 

miR-210 is considered a hypoxamir and is induced in hypoxic conditions in response to 

upregulation of HIF-1α (40).  HIF-1α directly binds the hypoxia responsive element on the miR-

210 promoter (41).  Thus, I examined HIF-1α levels in the microglia RNA-seq dataset.  I 

observed that HIF-1α is significantly upregulated at 14 and 18 weeks (Figure 2.12A), which  

correlates with the observed upregulation of miR-210 (Figure 2.12B).   
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Figure 2.10. miR-503 is downregulated in response to LPS. 

 
 
miR-503 expression is downregulated in response to LPS at 12 and 17 weeks.  Mice 
overexpressing human wild type SOD1 (WT) were injected with 5mg/kg LPS 24 hours before 
microglia isolation (WT LPS).  Microglia were isolated at 4, 6, 8, 10, 12, and 17 weeks.  Total 
RNA was isolated from 5-8 spinal cords and small RNA sequencing was performed.  Alignment 
was performed using SHRiMP and relative expression levels were determined using the DESeq 
tool.  WT LPS was compared to WT.  Values are relative expression for a single replicate. 
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Figure 2.11. Overlap of predicted targets of differentially expressed miRNAs. 
 
A. Overlap of upregulated genes.    

 
 
 
B. Overlap of downregulated genes. 

 
 
Predicted targets of the downregulated (miR-182, miR-503, miR-668) and upregulated (miR-
155, miR-210, miR-1198-5p) miRNAs were determined using Targetscan.  Targets were 
examined in our microglia RNA-seq dataset, and those with expression changes that correlated 
with changes in miRNA expression (ie, if a miRNA was upregulated, targets were 
downregulated, and if a miRNA was downregulated, targets were upregulated) and with a p-
value < 1e-4 and fold change > 2 were identified.  The overlap of these significant target lists 
was determined using the Venny tool (http://bioinfogp.cnb.csic.es/tools/venny/index.html). 
 

A. Overlap of upregulated genes.    

Overlap of predicted targets of di!erentially expressed miRNAs.

B. Overlap of downregulated genes.
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Figure 2.12. Hypoxia-induced genes are upregulated in G93A microglia. 
 
A. HIF-1α is upregulated in G93A microglia at 14 and 18 weeks.  Microglia were acutely 
isolated from the spinal cords of non-transgenic (NT) and G93A (MT) SOD1 mice at 9, 14, and 
18 weeks, and total RNA from microglia isolated from individual mice was examined by RNA-
seq. **p<0.003, *** p<0.0008, Student’s t test, NT 9, NT 14, NT 18 (n=3), MT 9 (n=5), MT 14 
(n=7), MT 18 (n=9).  Values represent mean +/- SEM. 
 
B. miR-155 is upregulated in acutely isolated G93A microglia at 10, 12, and 17 weeks.  
Microglia were acutely isolated from the spinal cords of mice overexpressing human wild type 
(WT) and G93A (MT) SOD1 mice at 4, 6, 8, 10, 12, and 17 weeks.  Total RNA was isolated 
from 5-8 spinal cords and pooled to yield a biological replicate.  RNA quantity and quality were 
examined using a Nanodrop and Bioanalyzer, respectively.  miR-155-specific reverse 
transcription and Taqman qPCR were performed.  qPCR were normalized to snoRNA 135.   
* p<0.01, ** p<0.002, Student’s t test, WT 4 (n=4), MT 4 (n=4), WT 6 (n=4), MT 6 (n=4), WT 8 
(n=3), MT 8 (n=5), WT 10 (n=4), MT 10 (n=5), WT 12 (n=5), MT 12 (n=4), WT 17 (n=5), MT 
17 (n=6).  Values represent mean +/- SEM. 
 
C. Model for hypoxia-induced changes.  In G93A microglia, HIF-1α is upregulated.  HIF-
1α directly binds the promoter of miR-210 to induce its expression. miR-210 is then able to bind 
and downregulate its predicted mRNA targets, Etv5, Tppp, and Rtn1.  miR-155 also targets Tppp 
and Etv5 for downregulation. 
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Figure 2.12, continued.  
 
A. HIF-1α is significantly upregulated in G93A microglia at 14 and 18 weeks. 
 

 
B. miR-210 is significantly upregulated at 12 and 17 weeks. 
 

 
 
 
C. Model for hypoxia-induced changes.  
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IGF1 and Nox 2 are upregulated in G93A microglia 

miR-182 and miR-668, two of the miRNAs downregulated at end-stage, are predicted to target 

insulin-like growth factor 1 (IGF1) and Nox2 (miR-182 is predicted to target both and miR-668 

is predicted to target just IGF1).  IGF1 is a neuroprotective factor that has been observed to be 

upregulated in G93A microglia during disease progression (42).  IGF1 activates AKT pro-

survival signaling in motor neurons (43) and has been shown to significantly extend lifespan 

when administered to ALS mice (44, 45).  Nox2, an NADPH oxidase, is increased in classically 

activated microglia (46) and has been shown to be neurotoxic to motor neurons by small 

molecule inhibition and knockout studies in ALS transgenic mice (47).  I examined both of these 

mRNAs in the microglia RNA-seq dataset.  Both mRNAs are significantly upregulated at 14 and 

18 weeks, which correspond to disease onset and end-stage, respectively (Figure 2.13).  The 

upregulation of both protective and toxic factors is interesting considering the complicated 

biology of microglia.  That two miRNAs are predicted to target IGF1 is particularly interesting 

since there is very high induction of IGF1 from symptom onset, and the mechanism of this 

upregulation is not understood.  

 

 

 

 

 

 

 

 



 76	  

Figure 2.13.  Predicted targets of miR-182 and miR-668 are upregulated.  
 
A. IGF1 is upregulated in G93A microglia. 

 
 
B. Nox2 is upregulated in G93A microglia. 
 

 
 
A. IGF1 is upregulated in G93A microglia.  miR-182 and miR-668 are both predicted by 
Targetscan to target IGF1.  As both these miRNAs are downregulated, their targets would be 
upregulated.  IGF1 levels were examined in the microglia RNA-seq dataset. **p<0.007, *** 
p<0.0004, Student’s t test, NT 9, NT 14, NT 18 (n=3), MT 9 (n=5), MT 14 (n=7), MT 18 (n=9).  
Values represent mean +/- SEM. 
 
B. Nox2 is upregulated in G93A microglia.  miR-182 is predicted by Targetscan to target Nox2.  
As miR-182 is downregulated, its targets would be upregulated.  Nox2 levels were examined in 
the microglia RNA-seq dataset.  **p<0.008, Student’s t test, NT 9, NT 14, NT 18 (n=3), MT 9 
(n=5), MT 14 (n=7), MT 18 (n=9).  Values represent mean +/- SEM. 
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Discussion 

 Microglia are an important non-neuronal cell type involved in ALS disease progression.  

These cells are activated and proliferate in the spinal cord, in parallel with motor neuron 

degeneration (7, 48).  miRNAs, which are small, non-coding molecules that are important 

regulators of gene expression have not been extensively examined in ALS.  To date, skeletal 

muscle-specific miR-206 is the only miRNA shown to be involved in disease pathogenesis (21).  

The role of miRNAs in microglia during ALS disease progression has not been previously 

examined.   

 By examining the miRNA sequencing from primary microglia over an extended time 

course, I was able to identify miRNAs that are highly and moderately expressed in primary 

spinal cord microglia (Figure 2.2).  To my knowledge, this study is the first identification of 

miRNAs dysregulated in microglia in ALS.  miR-155 is highly and significantly upregulated 

with disease progression, starting at 10 weeks, which corresponds to early symptom onset, and 

increasing to end-stage (Figure 2.5A).  miR-155 has been well established as a pro-inflammatory 

miRNA that is involved in many aspects of the immune response including the regulation of 

helper T cell differentiation (49), induction during the macrophage inflammatory response (50), 

and involvement in normal immune function of B, T, and dendritic cells (22).  I also observe that 

miR-155 is upregulated in response to LPS (34, 51).  As LPS is known to activate microglia, 

causing increased phagocytosis, secretion of cytokines, and induction of nitric oxide synthase 

(36), this suggests that the upregulation of miR-155 might be due to general microglial activation 

that occurs with ALS disease progression.  However, the upregulation of miR-155 as early as 10 

weeks is earlier than has been previously reported for gliosis and microglia activation in the 

SOD1 G93A transgenic mouse (http://jaxmice.jax.org/strain/002726.html) (52).   
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 miR-210 is also significantly upregulated in G93A microglia with disease progression, 

starting at 12 weeks (Figure 2.6A).  miR-210 has not previously been shown to be involved in 

neurodegenerative diseases or expressed in microglia.  This miRNA is considered a hypoxamir, 

as it is highly induced by hypoxia due to direct binding by HIF-1α to its promoter in hypoxic 

conditions (40, 53).  miR-210 has been found to target nucleotide excision repair enzymes (54), 

promote osteoblastic differentiation (55), and control mitochondrial metabolism (56).  I observe 

that HIF-1α is also upregulated in the G93A microglia (Figure 2.12A).  The upregulation of HIF-

1α was recently reported in total spinal cord from G93A SOD1 transgenic mice, but not in a 

specific cell type (57).  It has been suggested that HIF-1α might be responding to the oxidative 

stress conditions in ALS due to the increased levels of reactive oxygen species, and its 

upregulation might be a neuroprotective response (58).  Thus, it is possible that in G93A 

microglia, oxidative stress and hypoxia cause the induction of HIF-1α which directly upregulates 

miR-210.  miR-210 then downregulates its predicted targets Etv5, Tppp, and Rtn1 (Figure 

2.12C).  As noted above, miR-155 also targets Etv5 and Tppp, and remarkably is also hypoxia-

inducible and is itself able to target HIF-1α (59).  Thus, miR-210 and miR-155 appear to be 

coordinately regulated and cooperate to downregulate a specific set of miRNAs. 

I also found that miR-1198-5p is upregulated at end-stage, and miR-182, miR-503, and 

miR-668 are downregulated at end-stage (Figure 2.9A, 2.9C).  miR-503 is also downregulated in 

response to LPS activation, suggesting this miRNA might respond to numerous stimuli (Figure 

2.10).  I used Targetscan to examine the predicted targets of these miRNAs in the microglia 

RNA-seq dataset.  The Venny tool was used to determine the overlap of predicted targets of the 

downregulated miRNAs and the upregulated miRNAs (Figure 2.11, Table 2.1).  With regards to 

the upregulated miRNAs, it was interesting that all three miRNAs are predicted to target Tppp  
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Table 2.1. Description of up and downregulated mRNAs predicted to be targeted by more 
than one miRNA. 
 
A. Upregulated genes. 

 
(42, 60-65) 
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Table 2.1, continued. 
 
B. Downregulated genes. 

 
(39, 66-71) 
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(Figure 2.7B, 2.8B), a brain-specific protein normally expressed in oligodendrocytes.  It has been 

shown that changes in its expression are characteristic of some neurodegenerative diseases where 

neuronal expression occurs with accumulation in Lewy body inclusions, which mark 

degenerating neurons (72).  Thus, it is possible that the downregulation of Tppp could be a 

neuroprotective effect.  Csmd3 and P2ry13, a purinergic receptor, are also predicted to be 

targeted by both miR-155 and miR-1198-5p (Figure 2.7B), and both Csmd3 and P2ry13 mRNAs 

are constitutively expressed microglia mRNAs (unpublished data, communicated by Isaac Chiu).  

In addition, the upregulation of the divalent metal ion transporter Slc11a2 is interesting.  This 

transporter mediates iron transport in cerebral endosomal compartments, and a specific 

polymorphism in this gene was found to be associated with shorter duration of ALS in a cohort 

of French sporadic patients (60). 

The mRNAs predicted to be targeted by the downregulated miRNAs also show overlap.  

There are more genes in this group because there are more genes upregulated in G93A microglia 

than downregulated, as a general trend (unpublished data, Maniatis lab).  Of particular interest, 

miR-182 and miR-668, two of the miRNAs downregulated in G93A microglia at end-stage, are 

predicted to target Nox 2 and IGF1 (miR-182 is predicted to target both and miR-668 is 

predicted to target just IGF1) (Figure 2.13).  IGF1 is a neuroprotective molecule that is 

upregulated in microglia during ALS progression (42) and supports neuronal survival (73). 

 However, Nox2, the phagocytic NAPDH oxidase, is increased in classically activated microglia 

and exacerbates traumatic brain injury (46).  It has also been shown that NADPH oxidase is 

activated in the spinal cord of sporadic ALS patients and SOD1 G93A transgenic mice and that 

inactivation of the enzyme delays neurodegeneration and extends survival (74).  The 

upregulation of both protective and toxic factors is interesting, as microglia typically respond to 



 82	  

different stimuli to act in either a neuroprotective or neurotoxic manner.  Neurotoxic activation is 

typically associated with increased production of molecules including cytokines, reactive oxygen 

species, and Nox2.  Neuroprotective activation likely leads to an increase in phagocytosis and 

neuronal survival molecules, like IGF1.  In a model of brain ischemia, IGF1 was shown to be 

upregulated in resident microglia (75).  These observations suggest the interesting possibility that 

microglia respond in both protective and toxic ways during disease progression, possibly based 

on their proximity to damaged neurons.  One hypothesis of ALS disease progression in humans, 

“focality”, posits that neurodegeneration initiates stochastically in the spinal cord and spreads in 

the upper and lower motor neuron levels and the periphery (76-78).  Degeneration and other 

deficits spread contiguously, and it is possible that that microglia and astrocytes are required for 

this spreading.   

 Using the DAVID bioinformatic tool (31, 32), I examined functional categories of 

predicted targets of the differentially expressed miRNAs.  I pooled the upregulated targets of the 

downregulated miRNAs and the downregulated targets of the upregulated miRNAs.  Due to the 

numbers of genes I examined, I only had sufficient statistical power to obtain valuable 

information for the upregulated genes.  Of interest, there is an enrichment for genes involved in 

glycosaminoglycan degradation (KEGG pathway mmu00531), suggesting mutant microglia 

upregulate genes to degrade a specific component of the extracellular matrix.  In addition, there 

is enrichment for genes involved in antigen processing and presentation (KEGG pathway 

mmu04612) (Figure 2.14).  When activated, microglia have the ability to act as antigen-

presenting cells to present antigenic compounds to T cells in order to mount an adaptive immune 

response (73, 79).  It has also been shown that both CD4+ and CD8+ T cells infiltrate the spinal 

cord with disease progression in SOD1 ALS transgenic mice (42).  Thus, it is particularly  
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Figure 2.14. Gene ontology analysis of upregulated genes shows an enrichment in antigen 
processing and presentation. 
	  

	  
	  
The DAVID tool was used to analyze the functional categories of the predicted upregulated 
targets.  The KEGG pathway antigen processing and presentation (mmu04612) was enriched.   
* indicates genes in this pathway that are upregulated.	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
	  
 

 

 

 

 

Gene ontology analysis of upregulated genes shows an enrichment in antigen processing 
and presentation. 
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interesting that upregulated genes in microglia are involved in both the MHC I and MHC II 

pathway, and go on to activate both CD4+ and CD8+ T cells.  Although the levels of these genes 

cannot be directly attributed to the downregulation of specific miRNAs, that G93A microglia 

have increased expression of these genes in concert with the downregulation of miRNAs that 

target them is compelling. 

 In summary the data presented demonstrate that miRNAs are differentially expressed in 

SOD1 G93A microglia compared to WT microglia.  Specifically, miR-155 and miR-210 are 

significantly upregulated during ALS disease progression.  These data also add to our general 

understanding of miRNAs in ALS, as well as complement the other studies being done in the 

Maniatis lab to understand the role of non-neuronal cells is ALS disease progression. 
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 My thesis is the first study directed towards the identification of miRNAs that are 

dysregulated in cells of the nervous system in a transgenic mouse model of ALS.  Previously, 

only skeletal muscle-specific miR-206 had been found to be upregulated during ALS disease 

progression.  The authors proposed that this upregulation delays ALS progression by promoting 

the regeneration of neuromuscular synapses in mice (1).  Thus my identification of 6 miRNAs 

that are up or downregulated in SOD1 G93A microglia is novel and adds to our understanding of 

the specific contributions of microglia in ALS disease progression.  In particular, the significant 

upregulation of miR-155 and miR-210 in the SOD1 G93A transgenic mouse model is 

particularly interesting.  Although miR-155 is involved in inflammatory and immune processes, 

it has not previously been observed to be dysregulated in microglia in ALS.  miR-210, however, 

has not previously been implicated in microglia or neurodegenerative diseases. 

By examining the miRNA sequencing from primary microglia over an extended time 

course, I was able to identify the miRNAs that are highly and moderately expressed in resting 

primary spinal cord microglia (Table 2.1).  This is the first genome-wide examination of 

miRNAs expressed in microglia, so this alone is a valuable set of data for our lab as well as the 

general field.  The comparison of LPS-induced WT SOD1 microglia to non-induced WT SOD1 

microglia also provides information about the miRNAs that are up or downregulated in the 

presence of LPS.  This made it possible to determine whether changes in miRNA levels were 

specific to disease, or an aspect of broad microglial activation, for example miR-155 and miR-

503.  miR-155 and miR-503 are both dysregulated by LPS in the same manner as during disease 

progression, suggesting that these changes might occur in response to more than one type of 

trauma, for example chronic disease and acute LPS treatment.  
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Hypoxia, miR-210, and ALS 

Hypoxia-inducible factor 1α (HIF-1α) is a master regulator of cellular oxygen 

homeostasis and is activated by hypoxia.  In the brain, HIF-1α expression is induced by hypoxia 

in neurons, astrocytes, and ependymal and endothelial cells (2, 3).  There is accumulating 

evidence that activation of HIF-1α could potentially exert neuroprotective effects in both 

neuronal and non-neuronal cells (4).  In ALS, there is substantial evidence that mitochondrial 

dysfunction is an early pathogenic process in the disease and contributes to disease progression 

(5).  There is a significant decrease in the capacity for mitochondria in the brain and spinal cord 

of SOD1 G93A transgenic mice to load Ca2+, which leads to elevated Ca2+ levels (6).  This 

increase in Ca2+ has been found to induce reactive oxygen species and oxidative stress in primary 

motor neurons from G93A transgenic mice (7).  In addition, there is evidence that mitochondrial 

reactive oxygen species can act as signaling molecules and trigger protective responses through 

HIF-1α activation (4).  Taken together, this suggests that induction of HIF-1α could be 

neuroprotective in neurodegenerative diseases.  For example, using primary cultured astrocytes 

to study Alzheimer’s disease, it was shown that induction of HIF-1α reduces astrocyte activation 

by Aβ, thus supporting neuronal survival (8).   

The disease progression of ALS is closely related to hypoxia.  Motor neurons are 

particularly susceptible to hypoxic conditions due to their high oxygen consumption and 

relatively low capability for antioxidant mechanisms (9).  An early symptom of disease is 

diaphragm muscle weakness, which is involved in episodes of intermittent hypoxia and 

reoxygenation (10).  It was also recently found that HIF-1α is dysregulated in monocytes, which 

are circulating microglia precursors, from sporadic ALS patients (11).    

miR-210 is considered the master hypoxamir, and is highly activated in hypoxia in 
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response to upregulation of HIF-1α (12).  HIF-1α directly binds the hypoxia responsive element 

on the miR-210 promoter (13).  miR-210 has been found to be involved in numerous processes 

including the induction of angiogenesis (14), repression of mitochondrial metabolism (12), and 

inhibition of cell proliferation (15).  However, it has not previously been shown to be involved in 

ALS.  I observed that miR-210 is upregulated in G93A microglia at 12 and 17 weeks, which 

corresponds to symptom onset and end-stage, respectively (Figure 2.10B), and this is likely due 

to the upregulation of HIF-1α in G93A microglia (Figure 2.10A).  Several predicted targets of 

miR-210 are significantly downregulated in our microglia RNA-seq data.  Rtn1 expression is 

correlated with neuronal differentiation, and its downregulation might be a toxic effect (16). 

 However, Tppp is a brain-specific protein normally expressed in oligodendrocytes and changes 

in its expression are characteristic of some neurodegenerative diseases where neuronal 

expression occurs with accumulation in Lewy body inclusions which mark degenerating neurons 

(17).  Thus, it is possible that the downregulation of Tppp could be a protective effect.   

 

Future directions 

Current/ongoing plans 

 In the immediate future, I plan to carry out in situ hybridization experiments with spinal 

cord sections using locked nucleic acid (LNA) probes (Exiqon) to examine the localization of 

miR-155 and miR-210.  miR-146a will be used as a positive control since I found that this 

miRNA is constitutively and highly expressed in microglia (Figure 2.2).  It is interesting to 

consider the possibility that miR-155 and miR-210 are expressed in distinct populations of 

microglia within the spinal cord, corresponding to neurotoxic and neuroprotective phenotypes, 

respectively.   
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Further look into targets/relevance 

 Even though we have the RNA-seq data from acutely isolated microglia, thus localizing 

the observed mRNA changes to microglia, it will be beneficial to also do immunohistochemistry 

on spinal cord sections to examine protein levels of the target mRNAs.  In concert with the in 

situ hybridization described above, this would visually place the miRNA and its mRNA targets 

in the same cell.  For particularly compelling targets, for example IGF1 and Nox2, it would also 

be interesting to perform luciferase assays with the 3’UTR of the target mRNA downstream of a 

luciferase reporter.  Transfection of these reporters into the N9 microglia cell line, along with 

exogenous miRNA would allow us to determine if the specific UTR is regulated by the miRNA.  

If deletion of the target site in the same reporter abolishes the ability of the miRNA to 

downregulated luciferase, it would be strong indication that the miRNA is in fact targeting that 

mRNA.  To further understand the effects of the specific miRNAs in vitro, the N9 microglia cell 

line can be transduced with lentiviruses to express SOD1 G93A or WT SOD1 (18).  Knockdown 

and overexpression of specific miRNAs can then be carried out in these transduced cells. 

 

Examine how alternative 3’UTR usage affects miRNA targeting 

The lab has RNA-seq data from acutely isolated microglia from non-transgenic and 

SOD1 G93A mice at 9, 14, and 18 weeks, corresponding to pre-symptomatic, symptom onset, 

and end-stage, respectively.  Alternative splicing analysis of this dataset has revealed substantial 

splicing changes in disease, particularly alternative last exon usage, which would cause an 

alternative 3’UTR.  As discussed previously, alternative 3’UTRs could remove miRNA target 

sites, thus affecting the ability of a miRNA to target its cognate mRNA.  For example, Pax3, a 

myogenic regulator, that is transiently expressed during activation of adult muscle stem cells and 
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quiescent stem cells is regulated by miR-206 (19).  In most quiescent and activated adult stem 

cells miR-206 suppresses Pax3 expression.  However, quiescent stem cells that express high 

levels of Pax3 also express high levels of miR-206.  In these cells, Pax3 transcripts undergo 

alternative polyadenylation, resulting in a shorter 3’UTR, and thus removal of miR-206 target 

sites.  An intriguing candidate for the removal of target sites due to an alternative terminal exon 

in G93A microglia is macrophage scavenger receptor 1 (Msr1).  Msr1 is a predicted target of 

miR-155, however it is upregulated in the G93A microglia (Figure 3.1A) suggesting it is not 

targeted by miR-155.  Interestingly, analysis of the Msr1 3’UTR using Targetscan shows that it 

has two 3’UTRs; a short 3’UTR with no predicted miRNA target sites and a long 3’UTR with a 

highly conserved miR-155 target site.   Specific examination of the genomic location of Msr1 

using the microglia RNA-seq shows that at 18 weeks the G93A microglia specifically express 

the short UTR, whereas the control microglia do not express this short UTR (Figure 3.1B).  This 

suggests that with disease progression, G93A microglia selectively express the alternative short 

Msr1 3’UTR, which is not sensitive to the increased levels of miR-155.   

By a mechanism we do not fully understand, the predominant splicing change observed 

in the microglia RNA-seq data alternative last exon usage, which would lead to an alternative 

3’UTR (Table 3.1).  At the mRNA level in this dataset, there are many changes in splicing 

factors and spliceosome components, so this could be the cause of these changes (unpublished 

data, communicated by Isaac Chiu).  The mRNAs affected by these changes will have to be 

examined using bioinformatics to determine whether the alternative 3’UTRs cause the addition 

or removal of miRNA target sites.  Then the microglia RNA-seq data can be used to examine 

how levels of these mRNAs correlate with miRNA levels.     
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Table 3.1. Alternative splicing events in microglia RNA-seq dataset.   
 
9 weeks 

 
14 weeks 

 
18 weeks 

 
MISO was used to identify alternative splicing events in the RNA-seq dataset from acutely 
isolated SOD1 G93A microglia compared to non-transgenic microglia during disease 
progression (20). 
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Figure 3.1. Msr1 and miR-155. 
 
A. Msr1 is significantly upregulated in G93A microglia at 9, 14, 18 weeks.  Msr1 levels were 
examined in the microglia RNA-seq dataset.  *p<0.04, **p<0.009, Student’s t test, NT 9, NT 14, 
NT 18 (n=3), MT 9 (n=5), MT 14 (n=7), MT 18 (n=9).  Values represent mean +/- SEM. 
 
B. At 18 weeks, G93A microglia selectively express the short Msr1 3’UTR which lacks any 
miRNA target sites.  Targetscan shows that Msr1 has two 3’UTRs: a short 3’UTR with no 
miRNA target sites and a long 3’UTR with a highly conserved miR-155 target site.  The 
genomic region surrounding the Msr1 3’UTRs is shown for the microglia RNA-seq dataset.  The 
top five rows correspond to G93A 18 week microglia and the bottom two are non-transgenic 18 
week microglia.  The short alternative Msr1 3’UTR is boxed.  
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Figure 3.1, continued.  
 
A. Msr1 is upregulated in G93A microglia at 9, 14, and 18 weeks. 
 

 
 
B. At 18 weeks, G93A microglia selectively express the short Msr1 3’UTR which lacks any 
miRNA target sites. 
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Determine if miRNA changes also occur in sporadic ALS patients 

Although it is obviously challenging to obtain primary microglia from sporadic ALS 

patients, it is possible to obtain monocytes from the blood of patients.  Monocytes are white 

blood cells that are part of the immune system.  During hematopoeisis, some hematopoeitic stem 

cells differentiate into monocytes before settling in the central nervous system and further 

differentiating into microglia (21).  It would be very interesting to see if the miRNA changes I 

observe in acutely isolated microglia from G93A transgenic mice also occur in sporadic ALS 

cases.  It was recently shown that the HIF-1α pathway is dysregulated in monocytes from 

sporadic ALS patients (11).  Thus, I hypothesize that miR-210 would also be dysregulated in 

monocytes from sporadic ALS patients. 

 

miR-155 knockout mice 

In the past year there have been numerous studies linking the cytokine interferon-γ 

(IFNγ) to ALS disease progression, particularly the effects of mutant astrocyte-supplied IFN. 

 Aebischer et al. observed that mutant SOD1 astrocytes release IFNγ, which activates the 

LIGHT-lymphotoxin-β receptor death pathway (22).  Similarly it has also been shown that IFN 

signaling is activated in G93A transgenic mice, with an increase in IFN-stimulated genes in the 

spinal cords of presymptomatic G93A mice (23).  Specifically, the upregulated IFN-stimulated 

genes were found in the astrocytes.  Recently, it was shown that miR-155 is a positive regulator 

of IFNγ production in natural killer cells (24).  These observations are in concert with my data 

showing significant miR-155 upregulation in G93A microglia at 10, 12, and 17 weeks (Figure 

2.4A) and provide further evidence for the involvement of IFN and the inflammatory response in 

ALS disease progression.  Thus, I am currently crossing miR-155 null mice (B6.Cg-
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Mir155tm1.1Rsky/J, Jackson Laboratory) with SOD1 G93A mice (B6.Cg-

Tg(SOD1*G93A)1Gur/J, Jackson Laboratory) to generate miR-155 null mice that are also 

overexpressing human G93A SOD1.   If miR-155 is removed, we hypothesize that there could be 

an extension in lifespan due to the removal of this pro-inflammatory factor that also positively 

regulates IFNγ.  Although we are currently breeding these mice, it is likely that I will no longer 

be in the lab to determine the full effects of miR-155 deletion on disease progression.  A post-

doc in the lab will continue breeding these mice and characterize the resulting phenotype.  As 

miR-155 is a pro-inflammatory miRNA expressed in numerous immune cell types in addition to 

microglia, including T cells, B cells, dendritic cells, and natural killer cells (24-26), there could 

be significant improvement in disease progression and extension in lifespan.  In addition to the 

generation of these mice, we could also inject miR-155 shRNA viruses into the spinal cords of 

SOD1 G93A mice to determine if there is any effect on the transgenic mice.  This would be a 

less time consuming experiment and would provide some indication as to the possible benefits of 

decreased levels of miR-155 expression. 

Although similar studies with miR-210 would be very interesting, there is not currently a 

miR-210 knockout mouse available.  Due to the many roles of miR-210, it is possible that an 

inducible miR-210 deletion mouse might be necessary to study its involvement in disease.  This 

would then allow the specific deletion of miR-210 in microglia.  An alternative to a mouse 

model would be the injection of miR-210 shRNA viruses into the spinal cords of SOD1 G93A 

mice to determine if there is an effect on lifespan and disease progression. 
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Implications 

 Our lab is deeply interested in how the various cell types of the nervous system 

contribute to ALS disease progression.  We have numerous types of detailed analyses, including 

RNA-seq datasets from mouse ES cell-derived motor neurons overexpressing G93A SOD1, 

primary astrocytes from SOD1 G93A transgenic mice, acutely isolated microglia from SOD1 

G93A transgenic mice, total spinal cord from SOD1 G93A transgenic mice, and induced 

pluripotent stem cell-derived motor neurons from patients with various TDP43, FUS, and SOD1 

mutations.  My thesis work provides a paradigm for similar analyses in other cell types, such as 

astrocytes.  The use of the miRNA sequencing dataset in conjunction with our acutely isolated 

microglia RNA-seq dataset allowed me to simultaneously examine the levels of miRNAs and 

their predicted mRNA targets.  The identification of dysregulated miRNAs allows us to make 

hypotheses regarding the mRNAs they are potentially targeting.  An interesting example is IGF1, 

a neuroprotective factor, which has been shown to be upregulated in G93A microglia (Figure 

2.11A) (18).  To date, it is not know how IGF1 is upregulated, so the identification of two 

miRNAs that are downregulated with ALS disease progression that target IGF1, suggests these 

miRNAs might be involved in the significant upregulation of IGF1 observed in ALS.  A 

thorough understanding of how miRNA expression is changing in microglia during disease 

allows us to identify some of the mechanisms leading to the mRNA level changes that are 

occurring in microglia, and thus more deeply understand the contributions of this specific cell 

type to disease progression.  In addition, this has helped develop a framework for bioinformatic 

analyses for future miRNA sequencing and the different ways to probe available RNA-seq 

datasets.   
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 More specifically, my work suggests new directions for research on microglia, miRNAs, 

and ALS.  Only two studies thus far have examined hypoxia and HIF-1α in ALS (11, 27), and no 

previous studies have observed that hypoxia-inducible miR-210 is be upregulated in ALS.  As it 

has been hypothesized that upregulation of HIF-1α could be protective, this would be very 

interesting to investigate further.  In general, the identification of miRNAs dysregulated in 

microglia in ALS provide many potential avenues of research both specifically in microglia and 

also to understand the role of miRNAs in cells of the nervous system during disease progression.   
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Appendix 1. 
 

miRNAs are dysregulated in total spinal cord from SOD1 G93A transgenic mice. 
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Previous studies have shown that there are significant changes in gene expression that 

correlate with disease progression in the SOD1 mouse model of ALS, however the majority of 

studies carried out thus far have examined mRNA transcripts (1).  Only two papers have 

addressed ALS and miRNAs in more detail.  Williams et al. showed that miR-206, a skeletal 

muscle-specific miRNA, delays ALS progression and promotes the regeneration of 

neuromuscular synapses (2).  Haramati et al. observed that knockout of Dicer in motor neurons 

causes progressive motor dysfunction and made a correlative case for the involvement of miR-9.  

They found that miR-9 targets neurofilament subunits, the stoichiometry of which has been 

previously suggested to be dysregulated in ALS (3). 

To identify miRNA expression changes that occur during ALS disease progression in 

total spinal cord, I examined miRNAs expressed in total spinal cords from mice overexpressing 

human SOD1 G93A (MT) compared to wild type SOD1 (WT).  Spinal cords were removed from 

MT and WT mice at 4, 8, 12, and 17 weeks, and total RNA was isolated.  Total RNA from the 4 

and 17 week time points was examined by ABI Taqman low density array qPCR (a method to 

examine miRNAs on a global scale) (Biopolymer Facility, Harvard Medical School) and RNA 

from all four time points was examined by high throughput SOLiD sequencing (Biopolymer 

Facility, Harvard Medical School and Levy lab, HudsonAlpha Institue for Biotechnology).  

Based on the results of both of these analyses, I examined a number of miRNAs by individual 

Taqman qPCR assay. 

Based on the TLDA qPCR results, I first focused on the 4 and 17 week time points.  I 

performed Taqman qPCR assays and observed two main trends.  There were a number of 

miRNAs that were differentially regulated with age (Figure A1.1).  These miRNAs were all  
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Figure A1.1. miRNAs are differentially expressed with age in total spinal cord.   
 
 

 
 
Mice overexpressing human wild type (WT) or G93A SOD1 were sacrificed at 4 and 17 weeks, 
corresponding to pre-symtptomatic and end-stage, respectively.  Spinal cords were removed and 
total RNA was isolated.  miRNA-specific reverse transcription and Taqman qPCR assays were 
used to examine miR-219, miR-433-5p, miR-487b, miR-133a*, and miR-431*.  Results were 
normalized to snoRNA 135 and snoRNA 202.  Each replicate is the spinal cord from an 
individual mouse.  **p<0.003, Student’s t-test, miR-219 [WT 4 (n=4), MT 4 (n=3), WT 17 
(n=3), MT 17 (n=4)], miR-433-5p [WT 4 (n=4), MT 4 (n=4), WT 17 (n=4), MT 17 (n=4)], miR-
487b [WT 4 (n=4), MT 4 (n=3), WT 17 (n=4), MT 17 (n=3)], miR-133a* [WT 4 (n=4), MT 4 
(n=3), WT 17 (n=3), MT 17 (n=3)], miR-431* [WT 4 (n=5), MT 4 (n=5), WT 17 (n=5), MT 17 
(n=5)].  Values represent mean +/- SEM. 
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expressed at similar levels in WT and MT spinal cords at 4 weeks, and then were downregulated 

at 17 weeks in both genotypes.  

I also observed several miRNAs that were differentially expressed just at 17 weeks in the 

G93A spinals cords.  As this was a disease-specific effect, I further examined the expression of 

these miRNAs in the complete time course (4, 8, 12, and 17 weeks).  I observed that several 

miRNAs were dysregulated during disease progression but only at end-stage (Figure A1.2).  

miR-21*, miR-23a, miR-155, miR-27a*, and miR-431* are upregulated at end-stage and miR-

139-3p is downregulated.  Based on the observation of changes that occur late in disease, I 

hypothesized that these miRNAs might be due to the activation and proliferation of microglia 

that occurs during disease progression (4, 5).  The upregulation of miR-155 was particularly 

compelling as it had been found to be important to the inflammatory response (6, 7).  To 

investigate the changes in the microglia population during ALS disease progression, I performed 

qPCR on total RNA from the complete time course to examine levels of Cd11b and CD68 

(Figure A1.3).  CD11b is a general microglia and macrophage marker and CD68 is a marker for 

activated microglia (8).  From these qPCR, I observed that microglia increase from 12 weeks 

(Cd11b) and are also activated starting at 12 weeks (CD68).  This time point corresponds to 

symptom onset in this transgenic model.  Thus, it is reasonable to hypothesize that some of the 

changes I observe at end-stage are due to microglia.   

Although spinal cords are a physiologically relevant system, they contain a 

heterogeneous population of cells including motor neurons, astrocytes, microglia, and 

oligodendrocytes.  Thus, it was very challenging to deconvolute the total spinal cord miRNA 

expression results.  Based on these observations, at that point that I transitioned to focus solely 

on microglia.   
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Figure A1.2.  miRNAs are dysregulated at end-stage in total spinal cord. 
 
 

 
 
Mice overexpressing human wild type (WT) or G93A SOD1 were sacrificed at 4, 8, 12, and 17 
weeks, corresponding to pre-symtptomatic (4 and 8), symptom onset (12), and end-stage (17).  
Spinal cords were removed and total RNA was isolated.  miRNA-specific reverse transcription 
and Taqman qPCR assays were used to examine miR-21*, miR-23a, miR-139-3p, miR-155, 
miR-27a*, and miR-692.  Results were normalized to snoRNA 135 and snoRNA 202.  Each 
replicate is the spinal cord from an individual mouse.  *p<0.03, **p<0.006, Student’s t-test, 
miR-21* [WT 4, WT 8, MT 8, WT 12 (n=4), MT 4, MT 12, WT 17, MT 17 (n=3)], miR-23a 
[WT 4, WT 17 (n=4), MT 4, WT 8, MT 8, WT 12, MT 12, MT 17 (n=3)], miR-139-3p [WT 4, 
MT 4, WT 8, WT 12, MT 12, WT 17, MT 17 (n=4), MT 8 (n=3)], miR-155 [WT 4, MT 4, WT 8, 
MT 8, WT 12, MT 12, WT 17, MT 17 (n=4)], miR-27a* [WT 4, WT 8, WT 12, MT 12, WT 17, 
MT 17 (n=4), MT 4, MT 8 (n=3)], miR-692 [WT 4, MT 4, WT 8, MT 12, WT 17, MT 17 (n=4), 
MT 8, WT 12 (n=3)].  Values represent mean +/- SEM. 
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Figure A1.3. Microglia genes are upregulated in spinal cord with disease progression. 
 
 

 
 
Mice overexpressing human wild type (WT) or G93A SOD1 were sacrificed at 4, 8, 12, and 17 
weeks, corresponding to pre-symtptomatic (4 and 8), symptom onset (12), and end-stage (17).  
Spinal cords were removed and total RNA was isolated.  Reverse transcription was performed 
and qPCR were carried out to examine Cd11b and CD68.  Results were normaled to Gapdh and 
Rps17.  Each replicate is the spinal cord from an individual mouse.  *p<0.02, **p<0.006, 
Student’s t-test, Cd11b [WT 4, WT 8, MT 8, WT 12, MT 12, WT 17, MT 17 (n=4), MT 4 
(n=3)], CD68 [(WT 4, WT 8, MT 8, WT 12, WT 17, MT 17 (n=4), MT 4, MT 17 (n=3)].  Values 
represent mean +/- SEM.  
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Appendix 2.  
 

Microglial activation in response to LPS leads to differential expression of miRNAs. 
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Microglia activation occurs throughout the spinal cord in ALS models and increases with 

disease progression (1, 2).  To distinguish between miRNA changes that were caused by acute 

activation versus chronic ALS disease mechanisms, I used lipopolysaccharide (LPS) to activate 

microglia.  LPS, a bacterial-derived sugar, activates a toll-like receptor pathway and is known to 

activate microglia.  This causes increased phagocytosis, secretion of cytokines, and induction of 

nitric oxide synthase (3).  I performed intraperitoneal injection of 5mg/kg LPS 24 hours before 

microglia isolation (4).  I injected mice overexpressing human wild type SOD1 (WT) at 4, 6, 8, 

10, 12, and 17 weeks.  Following total RNA extraction, the miRNA expression profiles were 

determine by small RNA sequencing.  Using the DESeq tool to obtain relative expression levels, 

the results of the LPS-induced microglia (WT LPS) were compared to WT at each time point.  I 

observed that miRNAs are differentially expressed in response to LPS activation (Figure A2.1). 

 A preliminary analysis of these data revealed that there are more LPS-induced changes at 

4 weeks than at later time points.  This could be due to the developing maturity of the 

immunocompetence of the mouse through 4 weeks of age (5).  For example, natural killer cells 

do not begin to appear until ~3 weeks (6) and T cell-dependent antibody responses begin after 2 

weeks and do not reach mature levels until 6-8 weeks (7).  If the immune system of the mouse is 

not mature, it might be hypersensitive to external stimuli, such as LPS.     

 Comparison of WT LPS microglia to WT microglia also provide information about the 

miRNAs that are up or downregulated by the presence of LPS (Figure A2.2).  miR-155 is the 

only miRNA observed to respond at almost all time points (Figure A2.2A), suggesting this is a 

signature of classical activation.  I also observed miRNAs that only responded to LPS at later 

time points.  miR-382 is only induced at 12 and 17 weeks (Figure A2.2B), miR-300 and miR-

381 are induced only at 17 weeks (Figure A2.2C), and miR-32*, miR-331-3p, and miR-503 
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Figure A2.1. miRNAs are differentially expressed in response to activation by LPS. 
 
 

 
 
Mice overexpressing human wild type SOD1 (WT) were injected with 5mg/kg LPS 24 hours 
before microglia isolation (WT LPS).  Microglia were isolated at 4, 6, 8, 10, 12, and 17 weeks.  
Total RNA was isolated from 5-8 spinal cords and small RNA sequencing was performed.  
Alignment was performed using SHRiMP and relative expression levels were determined using 
the DESeq tool.  These data were compared to microglia from mice overexpressing human WT 
SOD1 that were not injected with LPS.  Graphpad Prism was used to plot log2(fold-change) vs -
log10(p-value) for the miRNA sequencing data, comparing WT LPS to WT.  miRNAs that 
correspond to p<0.01 and log(fold-change) >1 or <-1 are colored with red or green.  The data for 
microglia isolated at 4, 10, and 12 weeks is shown. 
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Figure A2.2. Differentially expressed miRNAs display different patterns of behavior. 
 
miRNA sequencing was performed on total RNA from microglia isolated from mice 
overexpressing human wild type SOD1 (WT) and WT mice injected with 5 mg/kg LPS 24 hours 
before microglia isolation (WT LPS) at 4, 6, 8, 10, 12, and 17 weeks.  Alignment was performed 
using SHRiMP and relative expression levels were determined using the DESeq tool.  The WT 
LPS microglia data was compared to the WT microglia data to identify miRNAs that are 
differentially expressed in response to LPS. 
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Figure A2.2, continued. 
 
A. miR-155 is upregulated at all time points. 
 

 
 
B. miRNAs are induced by LPS at later time points. 
 

 
 
C. miRNAs are induced by LPS at 17 weeks only. 
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Figure A2.2, continued. 
 
D. miRNAs are downregulated in response to LPS at later time points.  
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are downregulated at 12 and 17 weeks (Figure A2.2D).  It is interesting to observe that there are 

such different responses to LPS with age.  Perhaps this is due to the maturation of the murine 

immune system. 

 These data provide the first global examination of how the expression of miRNAs change 

in response to acute LPS activation in the spinal cord.  This adds to our understanding of 

microglia activation and allows us to differentiate between microglial miRNA changes that 

might be due to general activation versus specific diseases or pathological processes.   
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