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Development and field-deployment of an absorption spectrometer to measure atmospheric 
HONO and NO2 

Abstract 

 
Field observations show daytime HONO levels in urban, rural and remote environments are 

typically greater than those expected at photostationary state, that is, balance between production 

by the homogeneous NO+OH reaction and loss by UV-photolysis and OH-oxidation. Studies 

have interpreted measurements of [HONO]Obs > [HONO]PSS – or equivalently, the rate of HONO 

loss exceeding that of production – as evidence of a missing, sunlight-driven HONO source. 

Formation rate inferred from assuming photostationarity indicate a significant, yet-unaccounted 

source of HONO, which photolyzes to yield OH. Moreover, depending on the mechanism, this 

source may represent a pathway by which deposited nitrogen oxides are repartitioned back into 

the atmosphere in reactive form.  

The accumulation of HONO beneath the nocturnal boundary layer initiates photochemistry in 

the early morning prior to other HOx precursors. Previous studies have estimated nighttime 

HONO production rate by attributing the increase in HONO:NOx solely to heterogeneous HONO 

formation, while treating NOx as an invariant. Moreover, because ambient HONO:NOx exceed 

what is observed in automobile exhaust, combustion sources are discounted. 

In May of 2009, we observed HONO and NO2 mixing ratios in Houston, Texas during the 

SHARP campaign. We demonstrate – using a chemical box model – that photostationary state 

during daytime is not fully established. The reaction/transport time since emission from 

automobiles is short relative to the lifetime of HONO. The result of assuming PSS is a drastic 

over-estimation of the magnitude of the so-called missing HONO source. At night, we show that 
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NOx oxidation and emission are significant, thus, NOx cannot be treated as a conservative tracer 

to infer secondary HONO production. 

Nearly-continuous observations of HONO and NO2 at Harvard Forest from December 2010 

to December 2011 reveal daytime HONO levels that are comparable to what is expected from 

just known chemistry and much lower than has been reported in similar environments by 

different measurement techniques. Moreover, HONO fluxes are always below detection limit, 

indicating daytime HONO production contributes negligibly to the HOx and NOx budgets of the 

overlying atmosphere at Harvard Forest. Nighttime HONO enhancement is observed, but high 

night-to-night variability in HONO:NO2 that is not reasonably explained by the trends in HONO 

and NO2 fluxes, suggest a non-NO2, non-ground/canopy-surface related HONO source. 
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Chapter 2  
 
Figure 2.1. Optical table of the dual cw-QC laser spectrometer. A = QC laser  (1660 cm-1, 
HONO); B = QC laser (1604 cm-1, NO2); C = astigmatic multi-pass sampling cell; D = thermo-
electrically cooled detector; E = reference cell filled with NO2 and HONO. The blue and red 
traces represent paths traveled by the HONO (1660 cm-1) and NO2 (1604 cm-1) laser light, 
respectively. The traces for the reference cell and normalization are not shown. The optical table 
has a footprint of 2 ft " 4 ft (0.6 m " 1.2 m). 
 
Figure 2.2. Transmission spectra, averaged over 30-seconds, of (A) HONO and (B) NO2 at 40 
torr. The colored areas represent the fits to the observed spectra (green dots) according to the 
known peak-position, line-strength and recorded pressure and temperature. 
 
Figure 2.3. The top two panels show HONO (blue) and NO2 (red) mixing ratios in ppt 
(pmol/mol) measured in zero-air at 40 torr. The Allan variance plot on the bottom panel shows 
the decrease in instrument variance with time averaging for both species. Deviation from pure 
white or random noise occurs due to slow-moving temperature-driven optical fringes, but is 
addressed with frequent spectral background subtractions, here conducted every fifth minute for 
30 seconds (20 seconds to obtain an average background spectrum and 10 seconds of flush time). 
The y-intercepts on the Allan variance plot representing the 1-second 1# measurement noise for 
HONO and NO2 are 9.4"103 and 8.8"101 ppt2 Hz-1, or 97 and 9.4 ppt Hz-1/2, respectively. 
 
Figure 2.4. Schematic of the quartz inlet manifold. The inlet and subsequent tubing are shielded 
from light to prevent photolysis and photo-induced surface reactions. 
 
Figure 2.5. One-second mixing ratios of HONO and NO2 during calibration gas additions, 
observed during the Study of Houston Atmospheric Radical Precursor (SHARP) campaign in 
April and May of 2009. The response times (tau) – determined by the pumping speed and cell 
volume (5 L) – of HONO and NO2 are indistinguishable, indicating no preferential loss of 
HONO through the inlet, tubing and sampling cell.  
 
Figure 2.6. One-second mixing ratios of NO2 (top) and ten-second average mixing ratios of 
HONO (bottom) during a high-concentration NO2 addition through 40-feet (12.2 m) of unheated 
tubing at ambient pressure, conditions under which surface reactions are favored. Note that there 
is no HONO formed during or immediately following high levels of NO2 under humid conditions 
(no positive artifact). The error bars represent the standard deviation of 10-second averaged data. 
 
Figure 2.7. Observed 30-minute averaged mixing ratios in ppb (nmol/mol) of HONO (A) and 
NO2 (B) during the entire SHARP campaign. Gaps in the data are due to maintenance operations, 
inlet attenuation/artifact tests and instrument shutdown from power failures. 
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Figure 3.1. One-second spectra observed in aircraft exhaust emitted during 7% (a, b) and 85% 
(c, d) rated engine thrust. The above snapshots at idle and take-off conditions represent CH4, 
N2O, HONO and H2O2 values of 2000, 335, 10, 35 ppb and 1875, 325, 75, 5 ppb, respectively. 
For most of AAFEX, the spectral window shown in a) and c) was scanned, save for one day 
(experiment no. 11 & 12) when the window in b) and d) was scanned. The filled-in color areas 
are simulations of the retrieved mixing ratios.  
 
Figure 3.2. Mixing ratios of CO2, NOx, HONO and H2O2 measured 145 m downwind of the 
aircraft in plumes emitted during 4% (a) and 85% (b) rated engine thrust. Correlation plots (c) of 
NOx, HONO and H2O2 versus CO2 for the same time periods from (a) and (b), along with 
corresponding emission indices and standard errors. 
 
Figure 3.3. Emission indices (EI = g per kg of fuel) of NOx (a), HONO (b) and H2O2 (c) plotted 
against % of maximum rated engine thrust, along with HONO to NOx ratio (d). Each symbol 
represents the fuel-experiment average while the black trace is the campaign average ± one 
standard deviation of the mean at each engine power, except for c) which shows results for JP-8 
fuel experiments 11 and 12 only.  
 
Figure 3.4. Emission index of HONO observed during the APEX-3 (black line). Revised APEX-
3 values (grey line) using corrected line strength values overlaid on top of observations from 
AAFEX (red). Emission indices for NO2 (blue) and NO (green) from APEX-3 are shown as well. 
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Figure 4.1. A simplified schematic of chemical reactions occurring in the troposphere. OH and 
HO2, collectively known as HOx, are responsible for the breakdown of VOCs and other reactive 
species. Note the cyclic nature of both HOx (=OH+HO2) and NOx (=NO+NO2), inter-converting 
between one another while generating O3 with each cycle. This cycling is ultimately terminated 
by the reaction between NO2 and OH forming nitric acid (HNO3), which is eventually deposited 
and lost from the atmosphere. 
 
Figure 4.2. Mixing ratios of HONO (parts per billion, ppb) and CO2 (parts per million, ppm) 
observed in aircraft exhaust. Twelve experiments were conducted over a period of a week under 
widely varying ambient conditions and engine settings, which ranged from idle to full thrust. 
Above is brief excerpt of 1-second time-resolution data. Note how the levels of HONO and CO2 
co-vary together in time at A) high engine power (85% thrust) as well as at B) low engine power 
(7% thrust). C) HONO plotted against CO2 clearly shows the dependence of their relationship on 
engine setting.  
 
Figure 4.3. HONO emission index from a single CFM-56 jet engine plotted as a function of 
rated engine thrust. Each EI value represents the campaign average of all observed individual 
plumes, each lasting from a few seconds to approximately 30 seconds. The error bars represent 
the 1-# of the average.  
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Figure 4.4. a) Ratio of HOx radical production rate in jet exhaust relative to those under 
“typical” urban conditions (~0.5 parts per trillion per second), plotted versus plume dilution 
factor. HOx is produced from the photolysis of precursors including HONO, HCHO, CH3CHO 
and the ozonolysis reactions between O3 and alkenes. b) Relative strengths of HOx sources in jet 
exhaust. 
 
Figure 4.5. Plume dilution factor calculated from CO2 measurements made at varying distances 
from the emission source, plotted versus distance.  
 
 
Chapter 5 
 
Figure 5.1. Schematic of the instrumental setup used to determine absorption parameters for the 
cis conformer. 
 
Figure 5.2. Time series (1-hertz) of HONO, NO2 and NO (measured by two different 
instruments) mixing ratios (ppb) during two gas addition experiments. Addition of a) NO2 from a 
permeation device and from generated b) HONO. 
 
Figure 5.3. Absorbance (base e) spectra of cis-HONO (top panel) and effective line strengths 
(bottom panel) from KMH (black) and this study (red), all plotted as a function of wavenumber 
(cm-1). Listed numbers represent the ratio of KMH strengths to those from this study. Brackets 
above the figure summarize each experimental condition. Asterisks point to degenerate entries in 
KMH due to limited spectral resolution. 
 
Figure 5.4. Same as figure 3, for trans-HONO. 
 
Figure 5.5. Absorbance spectra (base 10) obtained by S04 (black) and KMH (grey) of the $2 
bands of cis and trans-HONO centered around 1640 and 1699 cm-1, respectively. While there is 
good agreement between the two spectra for the trans conformer, the S04 spectrum is lower than 
that of KMH by about a factor of two for the cis conformer. 
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Figure 6.1. a) Small grey symbols show the hourly-averaged measured:PSS ratio and b) sum of 
HONO production (R1) and loss rates (R2+R3), both plotted as a function of time of day (CST). 
The large black line-connected markers represent the overall median for each daytime hour 
during the SHARP campaign.  
 
Figure 6.2. Simulated time-series of (a) [NO], [NO2], [HONO]time-integrated and [HONO]instantaneous-PSS 
in vehicle exhaust for constant [OH] = 0.5 ppt and constant [O3] = 30 ppb, (b) sum of the 
production (R1) and loss (R2+R3) rates of HONO and (c) the ratio of time-
integrated:instantaneous-PSS HONO for the four cases. (d) Probability distribution of the age of 
air mass that was assigned to each simulation, the result of which is summarized in figure 3.  
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Figure 6.3. The color contours show the ratio of time-integrated:instantaneous-PSS HONO 
mixing ratios of vehicle exhaust following a time period that was randomly assigned from a 
Gaussian probability distribution centered at 30±10 minutes (figure 2d). Results here are plotted 
as a function of OH and JHONO, both of which were held constant throughout each simulation 
(case ii). The black markers represent OH and JHONO observed during SHARP. 
 
Figure 6.4. (a) Observed (black circles) and modeled (red = chemistry only; blue = chemistry + 
deposition; green = chemistry + deposition + emissions) HONO:NOx ratio plotted starting at 
19:00 (CST). (b) HONO production rate per NO2 deposited per time, calculated as the difference 
between observed (black) and modeled (green), after accounting for NOx chemistry, deposition 
and emission. 
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Figure 7.1. Time series of NO2 (top) and HONO (bottom), with total solar radiation (right). 
 
Figure 7.2. Diurnal mean and median of HONO mixing ratio (left) and total solar radiation 
(right). 
 
Figure 7.3. Time series of HONO (red) and NO2 (black) mixing ratio, observed flux of NO2 
(green), calculated flux of NO2 needed to account for observed nighttime HONO enhancement 
(grey) and total solar radiation (beige). 
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Figure B1. Mixing ratios time series observed during a typical injection of source gas with 
enhanced levels of CH4 and HONO. Time response (1/e) – determined by an exponential fit of 
the increase and decrease of the mixing ratios versus time – are averages of six injection tests. 
 
Figure B2. Emission indices of NOx (a) and HONO (b) observed at maximum rated engine 
thrust parsed by fuel-type (symbols shown in legend), plotted against ambient temperature. 
 
Figure B3. Time-series a) of HONO and NOx mixing ratios measured from a diesel-powered 
generator during AAFEX. Scatter plot b) between HONO and NOx shows an emission ratio of 
0.82 ± 0.05%. 
 
Figure B4. Half-hour averaged absorbance spectra of (a) HONO and (b) NO2. 
 
Figure B5. Atmospheric lifetime of HONO (color contour) and observed JHONO versus OH (black 
markers). Top panel shows %HONO (E3) for the entire range of JHONO and OH encountered during 
SHARP, while the bottom panel is a close-up of daytime conditions. 
 
Figure B6. Hourly-averaged and SHARP campaign median of HONO, NOx and HONO:NOx 
plotted from 19:00. 
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Figure B7. Complete times series of 1-hr averaged HONO and NO2 mixing ratios measured by 
the dual-laser absorption spectrometer at Harvard Forest from December 2010 to December 
2011. Gaps in the data are due to power flickers, instrument failures and routine maintenance.  
 
Figure B8. Side by side spectra (1-hr averaged) of ambient and background HONO (top) and 
NO2 (bottom).  
 
Figure B9. Additions of HONO with full setup (left), without the 180 feet of tubing (middle) and 
without inlet or tubing (right). 
 
Figure B10. Scatter plot showing enhancement of HONO during additions of NO2 on top of dry 
room air, humid Houston air and humidity-matched zero-air.  
 
Figure B11. Top panel shows HONO and NO2 mixing ratios during a 12-hr zero-addition 
experiment, when the instrument was exposed to typical temperature swings inside the shed at 
Harvard Forest. Allan variance analysis shows 1-s (1#) noise for HONO and NO2 decrease from 
100 ppt and 15 ppt by a factor of 20 and 10, respectively, with 1-hr averaging. 
 
Figure B12. Lag-correlation plot of HONO’ and NO2’, lagged against w’. 
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Chapter 1: 

Introduction 

 

Numerous studies infer the existence of a strong, yet-unconstrained daytime nitrous acid 

(HONO) forming pathway. Given the reported rates, this sunlight-driven source can have a 

significant impact on the cycling of HOx and NOx species near the Earth’s surface. This so-called 

missing HONO source, it has been argued, may close the gap in the model-measured discrepancy 

of boundary layer OH levels. However, previous measurements – particularly in rural and remote 

environments – have been made utilizing wet-chemical extraction methods, which have not 

always demonstrated good agreement with optical techniques.  

A robust, field-deployable dual-laser absorption spectrometer was constructed to measure the 

mixing ratios and eddy covariance fluxes of HONO and NO2, a hypothesized HONO precursor. 

The sampling system consists of a filter-free inlet followed by temperature-controlled, shielded 

tubing to draw ambient air down from aloft to the ground-based instrument. Routine in-field tests 

demonstrated the absence of positive and negative artifacts. We report detection limits (3# 1-hr) 

below 15 and 5 ppt for HONO and NO2, respectively, with one-hour spectral averaging. We 

determined experimentally in a laboratory experiment the absorption parameters – including line 

strengths and air-broadening coefficients in the 6 and 8 micron spectral regions – to accurately 

quantify gaseous HONO spectroscopically.  

The goal of my thesis was to characterize the production and loss processes of atmospheric 

HONO in a polluted, urban environment and above a rural forest in New England. The aim was 

to quantify the impact of daytime HONO production on the NOx and HOx budgets. Aided by 
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accompanying measurements and from long-term deployments, the chemical reaction(s) 

responsible for this HONO source was to be determined.  

The following six chapters are each self contained, with an abstract, introduction, results, 

conclusion and references. In chapter 2, I discuss the instrument structure, performance and 

applicability. In chapters 3 and 4, measurements of HONO aircraft emission indices during the 

Alternative Aviation Fuel Experiment (January 2009 in Palmdale, California) and their potential 

impact on air quality are described. Chapter 5 outlines the laboratory experiment to determine 

HONO absorption parameters – which are not accurately represented in any comprehensive 

linelist – in the 6 and 8 micron spectral regions. Chapter 6 discusses HONO and NO2 

measurements during the Study of Houston Atmospheric Radical Precursors campaign (May 

2009 in Houston, Texas) and the invalidity of assuming air masses sampled in urban areas are at 

all times at photostationary state. Finally, chapter 7 concludes by summarizing nearly-

continuous, year-long measurements of HONO and NO2 above the canopy at Harvard Forest. A 

conclusion chapter sums up the main findings of the thesis and presents potential future research.  
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Chapter 2: 

Simultaneous measurements of atmospheric HONO and NO2 via absorption spectroscopy 

using tunable mid-infrared continuous-wave quantum cascade lasers1 

 

Abstract  

Nitrous acid (HONO) is important as a significant source of hydroxyl radical (OH) in the 

troposphere and as a potent indoor air pollutant. It is thought to be generated in both 

environments via heterogeneous reactions involving nitrogen dioxide (NO2). In order to enable 

fast-response HONO detection suitable for eddy-covariance flux measurements and to provide a 

direct method that avoids interferences associated with derivatization, we have developed a 2-

channel tunable infrared laser differential absorption spectrometer (TILDAS) capable of 

simultaneous high-frequency measurements of HONO and NO2. Beams from two mid-infrared 

continuous-wave mode quantum cascade lasers (cw-QCLs) traverse separate 210 m paths 

through a multi-pass astigmatic sampling cell at reduced pressure for the direct detection of 

HONO (1660 cm-1) and NO2 (1604 cm-1). The resulting one-second detection limits (S/N=3) are 

300 and 30 ppt (pmol/mol) for HONO and NO2, respectively. Our HONO quantification is based 

on revised line-strengths and peak-positions for cis-HONO in the 6-micron spectral region that 

were derived from laboratory measurements. An essential component of ambient HONO 

measurements is the inlet system and we demonstrate that heated surfaces and reduced pressure 

minimize sampling artifacts.  

 

                                                 
1 Lee, B. H, Wood, E. C, Zahniser, M. S., McManus, J. B., Nelson, D. D., Herndon, S. C., Santoni, G. W., Wofsy, S. 
C., and J. W. Munger1 (2011), Appl. Phys. B, 102, 417-423, doi:10.1007/s00340-010-4266-5. 
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2.1.  Introduction 

Atmospheric nitrous acid (HONO) photo-dissociates with a lifetime between 10 and 20 

minutes to yield nitric oxide (NO) and hydroxyl radical (OH), the main oxidant in the 

atmosphere. Nighttime HONO formation and photolysis at sunrise can contribute significantly to 

early morning photochemistry. Observations of mid-day HONO concentrations above levels 

expected from photo-stationary balance between HONO, NO and OH suggest a yet unidentified 

light-dependent production mechanism. These measurements have used various instruments in a 

wide range of environments [1-3]. Thus, HONO may make a larger contribution to the HOx (= 

OH + HO2) cycle in the lower troposphere than has been accounted for by its nighttime 

formation. In addition, HONO chemistry may contribute to reactivating deposited nitrogen, 

which was presumed to be permanently removed from photochemical cycle. HONO is also an 

indoor air pollutant – both emitted directly from combustion processes and formed on various 

surfaces – and can react with amines to form carcinogenic compounds [4, 5]. NO2 is proposed as 

a precursor to HONO formation via heterogeneous reactions. In order to examine the exchange 

of HONO between the biosphere and atmosphere and the role of NO2 in this exchange, we have 

developed a dual-laser spectrometer to simultaneously measure both gases.  

Several factors make accurate HONO measurements difficult. It is unstable so certified 

reference gases for HONO do not exist. Its reactivity and solubility also make it prone to 

sampling losses and artifacts. Consequently, inter-comparisons between different techniques 

often exhibit significant discrepancies [2, 6]. Further progress on understanding HONO sources 

and sinks requires a sensitive and unambiguous measurement method.  
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There are many methods to detect HONO, but they do not fully satisfy the need for 

sensitivity, selectivity and fast time response. Analytical techniques based on derivatization 

partition gaseous HONO into a liquid and subsequently measure the nitrite ion or its derivative 

by ion or liquid chromatography, long-path photometry or chemiluminescence [4, 7-9]. Although 

these methods can be very sensitive, the need to scrub HONO into solution may introduce 

sensitivity to any other gas-phase species that react with the solution [6]. Such interferences can 

be corrected if the chemically active species is quantifiable [10]. Furthermore, the need for long 

extraction integration times (a few minutes) precludes the application of these methods to eddy-

covariance flux measurements.  

Absorption spectroscopy directly measures atmospheric trace gases without the need for 

chemical extraction, with calibrations that are based on constant absorption cross-sections (line-

strengths) and specificity that can be confirmed by spectral identification. However, absorption 

spectroscopic analytical methods tend to be expensive, and for many trace gases the fundamental 

sensitivity is relatively low, requiring either long absorption paths or increased signal averaging 

time. Both open-path (differential optical absorption spectroscopy, DOAS) [1, 11, 12] and 

closed-path (tunable diode laser absorption spectroscopy, TDLAS) [13, 14] systems have been 

utilized to measure HONO. Based on a prior implementation of nitric acid (HNO3) and NO2 

TDLAS [15-17], we have developed a dual-channel tunable infrared laser differential absorption 

spectrometer (TILDAS) using continuous-wave quantum-cascade lasers instead of diode lasers 

to measure HONO and NO2. The advantages of using cw-QC lasers in TILDAS over diode lasers 

in TDLAS are greater mode stability, higher laser power output and the ability to operate both 

lasers and detectors near room temperature without the need for cryogenic cooling, which 

facilitates long-term field measurements. The spectrometer is coupled with sample handling and 
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calibration schemes intended to minimize inlet artifacts and provide quality-assurance that the 

system is working properly. Section 2 describes the spectrometer design and quantifies 

performance. Section 3 presents results from the investigation of HONO line-strengths and peak-

positions. Section 4 describes the sampling scheme and presents preliminary results from field 

measurements demonstrating the absence of positive and negative artifacts.  

 

2.2.  Instrument 

The main components of the optical table (Figure 1) include two light sources, a reference 

cell, multi-pass sampling cell and two detectors. For the light source, the spectrometer uses two 

thermo-electrically cooled QC lasers (Alpes Lasers) operated in continuous-wave mode that 

output light in the 6-micron spectral region. The laser light is scanned across a frequency 

spectrum in time by controlling its temperature, which is coarsely tuned with a Peltier element 

and finely tuned on a milli-Kelvin scale by providing the lasers with a programmable current 

ramp using a high compliance current source (ILX Lightwave). The resulting laser frequency 

scan covers approximately 0.2 cm-1 with a resolution of about 0.001 cm-1 per channel. The 

instrumental line-widths for both lasers are less than 0.001 cm-1 (half-width at half-maximum), 

which is smaller than Doppler broadened widths. The tuning rates of each laser are determined 

with a germanium etalon. 
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Figure 2.1. Optical table of the dual cw-QC laser spectrometer. A = QC laser  (1660 cm-1, 

HONO); B = QC laser (1604 cm-1, NO2); C = astigmatic multi-pass sampling cell; D = thermo-

electrically cooled detector; E = reference cell filled with NO2 and HONO. The blue and red 

traces represent paths traveled by the HONO (1660 cm-1) and NO2 (1604 cm-1) laser light, 

respectively. The traces for the reference cell and normalization are not shown. The optical table 

has a footprint of 2 ft " 4 ft (0.6 m " 1.2 m). 
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The two lasers are spatially and temporally multiplexed so that even though light from each 

laser traverses distinct paths inside and outside the sampling cell, both beams are collected by a 

single detector at alternate times on the order of 1 ms for each laser. The spectra for NO2 (1604.5 

to 1604.7 cm-1) and HONO (1659.5 to 1659.7 cm-1) are repeatedly scanned one after the other at 

a total rate of about 3 kHz and are subsequently averaged in real-time to improve the signal to 

noise ratio. Approximately 10% of the duty cycle is dedicated to measuring the detector zero 

light level when both lasers are off. The spectral fitting software (TDLWintel, also responsible 

for the laser control) determines the absorbance by performing a non-linear fit according to a set 

of Voigt line shape functions to the recorded spectra and a low-order polynomial fit to the 

spectral baseline. Mixing ratios are calculated by accounting for the sample pressure and 

temperature along with spectral broadening and IR line-strengths archived in the HITRAN 

database for NO2 [18] and determined experimentally here for HONO (discussed below). Figure 

2 shows transmission spectra of HONO and NO2 observed during calibration gas additions. 
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Figure 2.2. Transmission spectra, averaged over 30-seconds, of (A) HONO and (B) NO2 at 40 

torr. The colored areas represent the fits to the observed spectra (green dots) according to the 

known peak-position, line-strength and recorded pressure and temperature. 
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Ambient air is sampled through an inlet and transported in tubing (discussed below) to the 

sampling cell, which is maintained at a constant reduced pressure to minimize spectral overlap 

with other infrared-light absorbing species (especially water), while maintaining sufficient 

absorption depths for high sensitivity. Light from each laser enters the multi-pass cell and 

reflects between two astigmatic mirrors with multilayer dielectric coatings (reflectivity ~0.998, 

LohnStar Optics, Inc.). The mirrors are spaced 0.88 m apart and obtain 238 passes, resulting in a 

total path-length of 210 m. The light exits the cell through the entrance coupling-hole and is 

directed onto a thermo-electrically cooled detector (Vigo). It should be noted that a liquid-

nitrogen cooled HgCdTe detector – which due to its larger active detector area is less susceptible 

to aiming changes – could be used to improve overall stability. However, the costs and 

measurement interruptions associated with liquid nitrogen fills for a comparable level of 

sensitivity with the HgCdTe detectors, make the thermo-electrically cooled detectors a preferred 

option.  

The optical table also includes secondary and tertiary light paths, both external to the 

sampling cell – derived from the reflections off the front and back surfaces of a transmission 

beam splitter. One path is directed through a 7 cm path-length reference cell filled with gaseous 

HONO and NO2. The spectra of this transmitted light is continuously measured by a second 

detector and is used to “lock” the lasers to the desired absorption features of HONO and NO2, 

which is necessary when ambient levels of the species of interest are too low to observe 

significant absorbance in real-time and also preferred for the routine additions of zero-air, or 

ambient air scrubbed of these gases. The third beam and detector could be used to normalize out 

power variability associated with the light source, if desired, but has not been implemented. 

Details regarding the laser control, optical trace and alignment, data acquisition system, spectral 
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fitting software, detectors and sampling cell have been discussed at length previously [17, 19-

22].  

Absorbance precisions less than 3"10-6 Hz-1/2 (1.4"10-10 cm-1 Hz-1/2) and 5"10-6 Hz-1/2 (1.9"10-

10 cm-1 Hz-1/2) are achieved for HONO and NO2, respectively. The NO2 channel is slightly noisier 

due to the inherent variability of this particular QC device. We achieve the same absorbance 

precision as that of HONO by utilizing normalization [22]. Normalization with intermittent peak-

position locking could be implemented in this dual detector configuration, however, it does not 

improve HONO sensitivity. Furthermore, at the low HONO mixing ratios expected in rural 

environments, intermittent line-locking is not adequate to maintain the laser tuning. We sacrifice 

some NO2 sensitivity, which is not needed for typical ambient NO2 levels, to ensure accurate 

HONO spectroscopy. For measurements at cell pressure of 40 torr, the one-second 1-# 

precisions for HONO and NO2 are 100 and 10 ppt (6 ppt if absorbance precision observed for 

HONO is achieved for NO2), respectively. Long-term stability is limited by optical fringes that 

change with temperature, causing drifts in the spectral baseline. These effects may be minimized 

by frequent background spectrum subtractions obtained by flushing the cell with HONO and 

NO2 scrubbed air, or zero-air, which is generated by passing ambient air over a heated palladium 

catalyst. This source of zero-air does not significantly alter the water-vapor mixing ratio, which 

is critical because there are weakly absorbing H2O features in both the HONO and NO2 scans 

(Figure 2). Time averaging improves the precision of HONO and NO2 measurements by a factor 

of 10 or better over an integration time of 30 minutes, which is a typical interval to compute 

eddy covariance over a forest canopy, with background spectra subtractions conducted once 

every 5 minutes (Figure 3). 
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Figure 2.3. The top two panels show HONO (blue) and NO2 (red) mixing ratios in ppt 

(pmol/mol) measured in zero-air at 40 torr. The Allan variance plot on the bottom panel shows 

the decrease in instrument variance with time averaging for both species. Deviation from pure 

white or random noise occurs due to slow-moving temperature-driven optical fringes, but is 

addressed with frequent spectral background subtractions, here conducted every fifth minute for 

30 seconds (20 seconds to obtain an average background spectrum and 10 seconds of flush time). 

The y-intercepts on the Allan variance plot representing the 1-second 1# measurement noise for 

HONO and NO2 are 9.4"103 and 8.8"101 ppt2 Hz-1, or 97 and 9.4 ppt Hz-1/2, respectively. 
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An optimal spectral region is selected based upon the maximum absorption cross-section and 

minimum absorbance by other gases that may be present in the sample. We selected the 6-micron 

region (Figure 2) where lasers, detectors and mirrors were all available allowing simultaneous 

measurements of HONO and NO2. There are, however, alternative spectral regions where HONO 

absorbs mid-infrared light much more strongly, which may improve sensitivity. In particular, 

HONO absorption lines at 1708.998, 1713.511, 1247.165 and 1273.598 cm-1 may increase 

precision by a factor of three to five, however, the 8.0 micron region would be costly for NO2 

measurement sensitivity and at this time no appropriate lasers are available in the 5.8 micron 

region. 

 

2.3.  Line-strengths 

The accuracy of the mixing ratios obtained using absorption spectroscopy largely depends on 

the accuracy of the absorption cross-section or line-strength. For long-lived gases and other well-

studied species such as NO2, the absorption parameters are well characterized and available in 

publications and in databases such as HITRAN [18]. For HONO, however, there are fewer 

published studies and greater uncertainty in absolute values, which required us to re-evaluate the 

HONO spectra. 

We determined the amount of infrared (1659.1 to 1660.2 cm-1) light absorbed by the cis 

conformer of HONO while sampling a known amount of total (cis + trans) HONO at the given 

constant temperature of 303 K, hence at a constant cis to trans ratio. This effective line-strength 

of cis-HONO was obtained by introducing high levels of gaseous HONO (between 300 and 800 

ppb) – generated by passing HCl vapor over powdered NaNO2 [23] – into the sampling cell at 

low pressures (< 9 torr) to minimize absorption line overlap while maintaining high signal to 
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noise. In parallel, we quantitatively converted the same HONO source to NO using a heated 

molybdenum catalyst and quantified NO with a pulsed-mode QC laser (1906.73 cm-1, 

Hamamatsu Photonics) spectrometer calibrated against a traceable NO standard to determine the 

absolute HONO concentration. Because NO is relatively inert, it is less susceptible to line-losses 

and can be accurately calibrated using traceable gas mixtures.  

Deviation of the sample from the temperature at which our effective line-strengths were 

determined will result in a change in the cis to trans ratio. The effective line-strengths can be 

corrected knowing the cis-trans energy barrier, for which there is a large discrepancy amongst 

reported values [24-28]. In practice, a constant sample temperature is well maintained by heating 

the inlet, tubing, the optical table and its protective cover. Furthermore, routine calibration gas 

additions are conducted in the field to ensure the accuracy of the measurements, as discussed in 

the next section. Lastly, because the time required for isomerization to occur is much shorter 

(~10-12 seconds) than that needed for ambient air to travel through the inlet and subsequent 

tubing to the sampling cell (~1 second), we expect the HONO conformers to be in thermal 

equilibrium and independent of changing ambient conditions. 

Line positions and effective line-strengths used in the spectral fits in Figure 2 are listed in 

Table 1. Additional details regarding this experiment, along with comparison of the relative 

absorption strengths between cis and trans conformers, determination of the pressure-broadening 

coefficient, comparison to values in the ATMOS database and to a high-resolution FTIR 

spectrum are part of an ongoing analysis that is not yet complete. 
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Peak position (cm-1) 
Effective line-strength (cm2 molecule-1 

cm-1) "10-21 

1659.5031 9.571 

1659.5099 8.810 

1659.5887 10.15 

1659.5968 3.283 

1659.6238 1.863 

1659.6770 12.92 

1659.6886 7.419 

 

Table 2.1. Peak-position and effective line-strength of cis-HONO between 1659.5 and 1659.7 

cm-1 measured at 303 K. 
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2.4.  Sampling technique 

Figure 4 shows a schematic of the inlet manifold we use for minimizing contact between 

sampled ambient air and moist surfaces, for removing coarse particles by inertial separation and 

for routine additions of reference gases and zero-air. HONO (Henry’s Law constant, KH = 50 M 

atm-1) – though not nearly as soluble as HNO3 (KH =2.1´105 M atm-1) – is still photo-chemically 

active, relatively soluble compared to NO (1.4´10-3 M atm-1) and NO2 (1.2´10-2 M atm-1), and 

mostly dissociated above pH 3.3 [29-32]. In addition to the high probability of HONO 

equilibrating with accumulated particles and moist surfaces, there is strong evidence for 

heterogeneous reactions converting precursors to HONO [33]. Consequently, both positive and 

negative HONO artifacts are a concern, leading us to minimize opportunities for the sample to 

contact humid surfaces and aerosol that would accumulate on a particle filter. 

Surface-adsorbed water is minimized by 1) using a siloxyl-coated quartz inlet to make its 

surface hydrophobic, 2) heating the inlet, the downstream tubing and sampling cell and 3) 

reducing the pressure by drawing the sample through a critical orifice built into the inlet (Figure 

4). The divergent flows after the orifice – with exhaust vented in line with the incoming flow and 

the sample air forced to make a 180° turn – cause particles with diameters 4 mm or larger to be 

separated out of the sample flow by inertia [34, 35]. The inlet and subsequent tubing are shielded 

from light to avoid photolytic losses and photo-enhanced reactions involving surface adsorbed 

nitrate ions leading to HONO production [33]. A similarly designed inlet was used successfully 

to measure formaldehyde, formic acid and ammonia, which are also highly surface active [36, 

37]. 

Frequent in-field artifact testing is an integral part of the instrument system. The manifold is 

equipped with ports at the entrance of the inlet to allow for routine additions of standards and 
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zero-air (Figure 4). An outlet adjacent to the flow-restricting orifice is used to draw a subsample 

of the ambient matrix to a heated Mo catalyst to convert all reducible nitrogen oxides to NO, 

followed by quantification of the NO by O3-chemilumiscence. HONO generated from the HCl + 

NaNO2 source, which typically is > 97% pure, is dynamically mixed with zero-air, added at the 

inlet entrance in excess of the total sample flow-rate and sampled by both instruments, thereby 

providing an independent check on the measurements by tying the observations to traceable NO 

standards. A similar test is applied for NO2, which is supplied from either compressed gas 

standards or a permeation tube. 
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Figure 2.4. Schematic of the quartz inlet manifold. The inlet and subsequent tubing are shielded 

from light to prevent photolysis and photo-induced surface reactions. 
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Standard gas additions can also test for temporary surface adsorption that attenuates 

atmospheric variations. The rise and fall in absorbance when a standard is switched on or off 

should be nearly instantaneous, with only some delay associated with the flushing time defined 

by the pumping speed through the inlet, tubing and sampling cell as well as smearing due to 

mixing and diffusion. These response times can be determined by fitting the mixing ratio time 

series during standard gas additions to a single exponential curve. A slower response of HONO 

compared to that of an inert gas would suggest some uptake of HONO on the surfaces. For the 

current instrumental configuration, HONO response is compared to that of NO2, which also is 

generally not attenuated by wall interactions [15-17]. A prototype of this inlet system was 

deployed at the Study of Houston Atmospheric Radical Precursor (SHARP) campaign in April 

and May 2009, during which polluted, humid air was sampled through the inlet and 40 ft (12.2 

m) of 3/8’’ O.D. (9.5 mm) PFA Teflon tubing. Figure 5 shows indistinguishable response times 

between HONO and NO2 during additions of both gases at SHARP.  

The possibility for positive artifacts from the inlet, tubing or cell surface reactions forming 

HONO is checked by introducing NO2 into the inlet in addition to the ambient air matrix. An 

increase in HONO mixing ratios during these additions would indicate reactions involving NO2 

yielding HONO. During the SHARP campaign, we did not observe any artifact HONO when 

NO2 was added to ambient air (Figure 6). Even at NO2 levels exceeding 100 ppb – well above the 

range of observed values – there was no change in the HONO mixing ratio, demonstrating 

freedom from positive artifacts based on NO2.  
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Figure 2.5. One-second mixing ratios of HONO and NO2 during calibration gas additions, 

observed during the Study of Houston Atmospheric Radical Precursor (SHARP) campaign in 

April and May of 2009. The response times (tau) – determined by the pumping speed and cell 

volume (5 L) – of HONO and NO2 are indistinguishable, indicating no preferential loss of 

HONO through the inlet, tubing and sampling cell.  
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Figure 2.6. One-second mixing ratios of NO2 (top) and ten-second average mixing ratios of 

HONO (bottom) during a high-concentration NO2 addition through 40-feet (12.2 m) of unheated 

tubing at ambient pressure, conditions under which surface reactions are favored. Note that there 

is no HONO formed during or immediately following high levels of NO2 under humid conditions 

(no positive artifact). The error bars represent the standard deviation of 10-second averaged data. 
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Figure 7 shows the mixing ratios of HONO and NO2 measured during the SHARP campaign. 

The levels of the two species typically co-vary in time as a result of common or co-located 

emission sources and mixing in the atmosphere. Higher levels are usually observed in the early 

morning and in the evening when weaker vertical mixing and shallow boundary layer heights 

promote accumulation of pollutants and photo-chemical losses are reduced compared to mid-day 

conditions. 
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Figure 2.7. Observed 30-minute averaged mixing ratios in ppb (nmol/mol) of HONO (A) and 

NO2 (B) during the entire SHARP campaign. Gaps in the data are due to maintenance operations, 

inlet attenuation/artifact tests and instrument shutdown from power failures. 
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2.5.  Conclusions 

This dual continuous-wave mode quantum cascade laser spectrometer has achieved one-

second detection limits (S/N = 3) for HONO and NO2 of 300 and 30 ppt, respectively. Spectral 

averaging with frequent background subtractions allows further reduction in signal noise, 

improving the HONO and NO2 detection limits (S/N = 3) to 35 and 3 ppt, respectively, over a 

30-minute integration period. The detection limit for HONO is higher than that for NO2 – despite 

better absorbance precision on this channel – due to much weaker line-strengths for cis-HONO 

between 1659 and 1660 cm-1 compared to NO2 at 1604 cm-1. A sample-handling scheme that 

minimizes adsorbed water on the inlet and subsequent tubing that bring sample into the optical 

cell is effective at preventing both positive and negative HONO artifacts. The system is designed 

to allow inlet checks to be a part of routine field operation and provide frequent quality checks 

on the measurement.  

The instrument described in this study was adapted from a previously deployed instrument 

with a large optical table and near 1 m base-length multi-pass cell. With insulation and a 

protective cover, the instrument is 3 ft " 6 ft (0.9 m " 1.8 m). The performance demonstrated by 

this implementation points to the possibility of using a re-designed astigmatic multi-pass cell 

with a base-length of 47.5 cm and 200 m of absorption path-length. This cell fits on an optical 

table measuring 43 " 65 cm. Its smaller volume of 1 L allows faster response times and will be 

more easily portable for field use without any sacrifice in detection limit [38]. 

The chief advantages of this dual cw-QC TILDAS spectrometer over previous diode laser 

and pulsed-mode QC laser systems are higher power output and narrower laser line-widths, 

which provide improved precision and enable thermo-electrically cooled detectors to be used 

instead of cryogenically cooled detectors that present logistical challenges for long-term, remote 
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operation in the field. This spectrometer has been deployed at a rural forest to measure the 

diurnal and seasonal trends in the exchange of HONO and NO2 between the biosphere and 

atmosphere.  
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Chapter 3: 

Measurements of nitrous acid in commercial aircraft exhaust at the Alternative Aviation 

Fuel Experiment2 

 

Abstract 

The Alternative Aviation Fuel Experiment (AAFEX), conducted in January of 2009 in Palmdale, 

California quantified aerosol and gaseous emissions from a DC-8 aircraft equipped with CFM56-

2C1 engines using both traditional and synthetic fuels. This study examines the emissions of 

nitrous acid (HONO) and nitrogen oxides (NOx=NO+NO2) measured 145 m behind the grounded 

aircraft. The fuel-based emission index (EI) for HONO increases approximately six-fold from 

idle to take-off conditions, but plateaus between 65% and 100% of maximum rated engine thrust, 

while the EI for NOx increases continuously. At high engine power, NOx EI is greater when 

combusting traditional (JP-8) than Fischer-Tropsch fuels, while HONO exhibits the opposite 

trend. Additionally, hydrogen peroxide (H2O2) was identified in exhaust plumes emitted only 

during engine idle. Chemical reactions responsible for emissions and comparison to previous 

measurement studies are discussed.  

 

3.1. Introduction 

The effects of aircraft exhaust on air quality and climate are a growing concern given the 

projected global increase in air travel over the coming decades. Uncertainties associated with 

induced indirect effects related to microphysical processes and heterogeneous chemistry have 

                                                 
2 Lee, B. H., G. W. Santoni, E. C. Wood, S. C. Herndon, R. C. Miake-Lye, M. S. Zahniser, S. C. Wofsy, J. W. 
Munger (2011), Environ. Sci. & Technol., 45, 7648-7654, doi:10.1021/es200921t. 
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been the focus of numerous previous studies [1-4], which stress among others the importance of 

characterizing emissions and their driving factors to evaluate the influence of the aviation 

transportation sector on chemistry, radiative forcing and public health. 

Nitrous acid (HONO) is the primary reservoir of hydroxyl radicals (OH) emitted in fresh jet 

exhaust [5, 6]. HONO during daytime undergoes rapid photolysis, yielding OH, which initiates 

the oxidation of simultaneously emitted nitrogen oxides (NOx=NO+NO2), sulfur dioxide (SO2) 

and volatile organic compounds (VOCs). Heterogeneous chemistry on the surface of aircraft-

generated particles can further shift the partitioning of in-plume NOx towards NOy 

(=NOx+HNO3+HONO+…), altering the impact of emission on ozone (O3) levels at altitude [7]. 

Moreover, enhanced reactivity in exhaust from idling and taxiing aircraft adversely affects air 

quality in and around airports [8]. HONO itself is a lung irritant and reacts with amines to form 

carcinogenic compounds [9-11].  

Fischer-Tropsch (FT) fuels, despite high energy costs of production, have gained much 

attention as a viable alternative to imported oil because the main feedstocks are readily available 

(e.g. coal, natural gas and bio-oils). In addition, FT-derived fuels do not contain aromatic-

hydrocarbon and sulfur compounds, resulting in emissions that are typically lower in soot and 

sulfate aerosols. A recent study observed lower NO and higher NO2 emissions in FT-derived 

exhaust compared to those combusting traditional JP-8 fuel [12]. Simultaneous measurements of 

NOx and HONO during AAFEX provided an opportunity to further investigate fuel-type 

dependence of nitrogen oxide emissions from jet engines. We present fuel-based emission 

indices of HONO, NOx and hydrogen peroxide (H2O2) emitted from CFM56-2C1 commercial 

aircraft engines as a function of engine power.  
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3.2. Methods 

During AAFEX, a DC-8 was chocked on the runway at NASA’s Dryden Aircraft Operation 

Facility in Palmdale, California. Two of its four engines (one on each side) were fired for twelve 

experiments – each typically lasting a few hours – during which the rated engine thrust was 

varied to simulate idle to take-off conditions. The left (control) inboard engine was supplied with 

traditional JP-8 fuel, while the right (experiment) alternated between traditional, two different 

Fischer-Tropsch fuels and blends of both. JP-8 fuel – utilized by the military – contains additives 

to enhance lubrication/inhibit icing that are not present in Jet A-1 fuel – most commonly used in 

commercial aviation – but exhibit similar combustion emission properties [13]. Experiments 

were conducted from before sunrise to late afternoon over a span of eight days to test the impact 

of the wide range in ambient conditions on emission characteristics. Composition and mixing 

ratios of particles and various trace gases were measured 1 and 30 m behind both engines and at 

a distance of 145 m in-line with the right inboard engine relative to the direction of the aircraft. 

This downstream location observed a mixture of naturally diluted and cooled exhaust from both 

engines and is the focus of the present study. Table 1 lists a brief description of the experimental 

conditions, with fuller details given by Bulzan et al. [14]. 

Mixing ratios of HONO, H2O2, nitrous oxide (N2O) and methane (CH4) were measured 

simultaneously by a tunable infrared laser differential absorption spectrometer (TILDAS) 

utilizing a continuous-wave quantum cascade laser (Alpes Lasers) operating near the 8 mm 

(1275 cm-1) spectral region. Infrared light from the laser is directed into a multi-pass sample cell 

where the laser light reflects 238 times between two astigmatic high-reflectivity (R=0.993) 

mirrors spaced 0.88 m apart to achieve a total absorption path-length of 210 m. Light exits the 

sample cell and is directed onto a cryogenically-cooled HgCdTe detector (Vigo). An absorbance 
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Experiment no. Date Fuel‡ 
Ambient 

temperature (°C) 
Relative humidity (%) 

1 Jan. 26 JP-8 5 60 

2 Jan. 27 JP-8 10 30 

3 Jan. 28 JP-8 -3 30 

4 Jan. 28 FT1 10 30 

5 Jan. 29 FT1 0 60 

6 Jan. 30 FT1‡‡ 2 55 

7 Jan. 30 FT2 14 25 

8 Jan. 31 FT2 0 75 

9 Jan. 31 FT2‡‡ 14 30 

10 Jan. 31 JP-8 17 20 

11 Feb. 2 JP-8 2 60 

12 Feb. 2 JP-8 12 25 

 

Table 3.1. Fuel used, average ambient temperature and relative humidity for each experiment 

during AAFEX. 

 

‡  Fuel utilized by the right inboard engine. The left inboard engine powered by JP-8 for all 

experiments. FT1 derived from natural gas. FT2 derived from coal. 

‡‡  Right inboard engine fueled with 50/50 mixture by volume of JP-8/FT blend. 
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precision less than 6"10-6 Hz-1/2 in one second was achieved in the field, which translated to 

detection limits (S/N = 3) of 450 ppt (pmol/mol), 1,200 ppt and 900 ppt for HONO, H2O2 and 

N2O, respectively, in one second. Figure 1 shows typical one-second spectra observed while 

sampling plumes emitted during 7% (a, b) and 85% (c, d) of maximum rated engine thrust.  

Special attention was paid to the sample handling to minimize HONO loss and artifact 

formation on instrument surfaces. Sample air – a variable mixture of exhaust and background air 

– was continuously pulled through a quartz inlet (length approx. 6 inches (15.2 cm); inner 

diameter approx. 0.25 inch (6.4 mm)), which was treated with siloxyl coating and shielded from 

sunlight to reduce surface chemistry. The sample subsequently passed through a critical orifice 

(0.04 inch diameter (1.0 mm)), to accelerate the flow and reduce the pressure, then diverged in 

two paths – a vent-flow parallel and sample-flow perpendicular to the direction of flow through 

the orifice. Inertial separation prevented coarse particles with diameters greater than about 4 µm 

from entering the sample cell [15]. This design was utilized instead of a particle filter, which 

would present a large surface area where loss or production of “sticky” gases could occur. The 

sample then traveled through approximately 40 feet (12.2 m) of 3/8’’ (9.5 mm) outer diameter 

PFA tubing to the siloxyl-coated multi-pass sample cell in which the pressure was maintained at 

approximately 30 torr. With a total flow-rate of about 10 standard liters per minute (SLPM) the 

sample residence times (1/e) in the inlet, tubing and cell were on average 0.3, 0.2 and 1.2 

seconds, respectively. Additional details regarding the instrumentation and sampling schemes are 

provided elsewhere [15]. Results for N2O and CH4, measured by a second TILDAS instrument 

connected in series with this system are presented by Santoni et al. [16]. 

Introduction of air infused with HONO and CH4 at the end of the eight-day campaign showed 

indistinguishable response times between the two gases (Supporting Information, figure B1), 
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Figure 3.1. One-second spectra observed in aircraft exhaust emitted during 7% (a, b) and 85% 

(c, d) rated engine thrust. The above snapshots at idle and take-off conditions represent CH4, 

N2O, HONO and H2O2 values of 2000, 335, 10, 35 ppb and 1875, 325, 75, 5 ppb, respectively. 

For most of AAFEX, the spectral window shown in a) and c) was scanned, save for one day 

(experiment no. 11 & 12) when the window in b) and d) was scanned. The filled-in color areas 

are simulations of the retrieved mixing ratios.  
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indicating no reversible loss of HONO on the inlet/tubing/cell surfaces. Laboratory tests prior to 

deployment that compared the signal of HONO standard introduced through the sampling 

inlet/tubing to the signal when HONO was introduced directly into the cell demonstrated no 

detectable loss of HONO on inlet/tubing walls. However, the same addition tests under field 

conditions could not be repeated during the experiments. Similar tests for H2O2 were not 

conducted because a steady source was not available in the field. Though the reduced pressure in 

the sample line and use of hydrophobic siloxyl coating minimize water activity on surfaces, we 

cannot discount the potential for loss of H2O2 given that the Henry’s law constant for H2O2 is 

82,000 M atm-1 compared to 50 M atm-1 for HONO [17, 18]. In addition, spectral overlap 

between HONO and H2O2 absorption lines around 1275.82 cm-1 (figure 1a, 1c) during 

experiments 1-10 (table 1) resulted in artificial enhancement of the retrieved H2O2 mixing ratios 

in the presence of high HONO. This was not observed when H2O2 was scanned near the 1275.98 

cm-1 region (figure 1b, 1d), where its absorption lines were free of overlap. As a result, H2O2 data 

from only experiments 11 and 12 are reported. In-field additions of high levels of H2O2 showed 

no significant influence by H2O2 on calculated HONO mixing ratios.  

Calibrations with a constant HONO source were not possible in the field. Instead, 

measurements relied on the accuracy of absorption line strengths. Line positions and relative line 

strengths for HONO were initially obtained from high-resolution FTIR spectra provided by 

Herman et al. [19-21]. Absolute values were derived in the laboratory by measuring the 

absorbance of a high-purity HONO source with the TILDAS system. Total HONO in the 

generated source was simultaneously converted via molybdenum (Mo) catalysis to NO followed 

by quantification with a second calibrated TILDAS system [22]. We found that the previous 
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aircraft emission study by Wood et al. [23] used incorrect line strength values that resulted in 

measurements of HONO to be low by a factor of approximately 2.4 (discussed below). 

Absorption parameters for H2O2, CH4 and N2O are obtained from the HITRAN database [24]. 

The NOx mixing ratio – the sum of NO and NO2 – was measured using Mo-catalysis ozone 

chemiluminescence (ThermoElectron 42i). The Mo catalyst converts other species besides NO2, 

but because the converter was preceded by a particle filter and 40 ft of tubing maintained near 

ambient pressure, it is unlikely that reducible NOy species such as HONO and HNO3 were 

transmitted. Mixing ratios of CO2 were measured using a non-dispersive infrared absorption 

spectrometer (Li-Cor 6262). The flow-rate was approximately 0.5 SLPM for each of these two 

instruments connected in parallel to tubing dedicated to NOx and CO2 measurements, resulting in 

sample residence times (1/e) of less than one second in each instrument.  

To derive emission indices we compute slopes from linear regression of each species against 

CO2 and convert to a fuel-based emission index (g of species per kg of fuel consumed) by scaling 

with the emission index for CO2 (carbon content of the fuel). Regression slopes provide a more 

robust estimate of EI, with associated uncertainty, in downwind plumes with highly variable 

mixing ratios than the background-subtracted ratio of the average mixing ratio to CO2 [25]. Note 

that the EI for HONO and H2O2 are scaled by their respective molecular masses, while EI for 

NOx is reported using the molecular mass of NO2. 

 

! 

EIx = mx,CO2
"

Mx

MCO2

" EICO2 , 

 

where EIx is emission index of species x (g of x per kg fuel), mX,CO2 is slope of the linear 

regression between species x and CO2, M is molecular weight (g of x per mole of x) and EICO2 is 
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g of CO2 emitted per kg fuel consumed determined for each fuel-type by C/H fuel analysis [14]. 

The analyses presented here utilize a single EICO2 value for all experiments because the extent of 

mixing of exhaust from the two engines was unknown. 

Figure 2 (a, b) shows a brief 1 hertz time-series of HONO, NOx, H2O2 and CO2 mixing ratios. 

All gases co-vary in time. This is also reflected in the correlation of that same plume of HONO, 

NOx and H2O2 versus CO2 mixing ratio (figure 2c). The mean uncertainty in the emission indices 

– determined as the standard error of the regressed slopes – for HONO, NOx and H2O2 are 0.03, 

0.4 and 0.01 g kg-1, respectively, which are about a factor of three less than the observed plume-

to-plume variability as seen in figure 3.  

 

3.3. Results and Discussion 

3.3.1 HONO and NOx EI – chemistry and fuel dependence 

Figure 3 (a, b) shows the emission indices for NOx and HONO plotted as a function of the 

percentage of maximum rated engine thrust. The EI for NOx – driven primarily by the Zeldovich 

reactions [26] – increases continuously with engine thrust, hence gas temperature during 

combustion. The EI for HONO in comparison levels off between 65% and 100% engine setting, 

an unexpected trend assuming OH production – presumably from the reaction between water 

vapor and O(1D) in the combustor – also increases continuously with engine power. Thermal 

decomposition (R-1) alone may explain the flattening of HONO EI above 65% of rated engine 

thrust as proposed by Wood et al., however, that HONO production is also underestimated at low 

engine power points to missing reactions and/or inaccurate kinetic constants [23]. Notably, 

published values for HONO self-reaction rate (R4) differ by six orders of magnitude [27]. 
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Figure 3.2. Mixing ratios of CO2, NOx, HONO and H2O2 measured 145 m downwind of the 

aircraft in plumes emitted during 4% (a) and 85% (b) rated engine thrust. Correlation plots (c) of 

NOx, HONO and H2O2 versus CO2 for the same time periods from (a) and (b), along with 

corresponding emission indices and standard errors. 
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Figure 3.3. Emission indices (EI = g per kg of fuel) of NOx (a), HONO (b) and H2O2 (c) plotted 

against % of maximum rated engine thrust, along with HONO to NOx ratio (d). Each symbol 

represents the fuel-experiment average while the black trace is the campaign average ± one 

standard deviation of the mean at each engine power, except for c) which shows results for JP-8 

fuel experiments 11 and 12 only.  
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R1)   NO + OH + M ! HONO + M 

R2)   NO2 + HO2 ! HONO + OH 

R3)    HONO + OH ! H2O + NO2 

R4)    HONO + HONO ! H2O + NO + NO2 

 

Ab-initio calculation by Xia and Lin of reaction rate R3 reveals a change from negative to 

positive temperature dependence above 1000 K [28], which is consistent with our observed trend 

in HONO EI as the rate of HONO loss by OH becomes significant with increasing combustion 

temperature and OH levels. Though targeted measurements of NO2 – the product of reaction R3 – 

were not made during AAFEX, results from a previous campaign Aircraft Particle Experiment-3 

(APEX-3) show an increase in NO2 EI at high engine power (figure 4). Underestimation of 

reaction R3 in previous studies may also help reconcile the large discrepancy between engine exit 

OH levels predicted at cruise (9.0-13.2 ppm) [6] and observed under take-off conditions (90 ppb) 

[29]. Self-reaction of OH is ruled out because modeling studies [6, 30] report near-complete 

titration of OH by excess NO, and because this reaction would result in the production of H2O2, 

which was not observed at high engine power (discussed below). Heterogeneous chemistry, as 

well, plays a small role [31]. 

A weak fuel-type dependence was observed for NOx, which on average exhibited lower EI 

values during FT and FT-blend versus JP-8 fuel combustion experiments (table 2). This is 

consistent with measurements made near engine exit at AAFEX and in a previous study in which 

NOx EI values were 5-11% lower in FT-derived exhaust [12, 32]. Table 2 summarizes the JP-8 

normalized emission indices of NOx and HONO for FT/FT-blend experiments. Note that a bias is 

introduced for these experiments because a constant non-fuel-type specific EICO2 value is used 
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Figure 3.4. Emission index of HONO observed during the APEX-3 (black line). Revised APEX-

3 values (grey line) using corrected line strength values overlaid on top of observations from 

AAFEX (red). Emission indices for NO2 (blue) and NO (green) from APEX-3 are shown as well. 
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4% 

(low) 

7% 

(idle) 

30% 

(approach) 

65% 

(cruise) 

85% 

(climb-out) 

100% 

(takeoff) 

NOx FT 0.82 1.03 0.97 0.95 0.96 0.99 

 blend 0.83 0.99 0.98 0.90 0.95 0.94 

        

HONO FT 1.02 1.45 1.10 1.02 1.03 1.04 

 blend 1.20 1.17 1.16 1.00 1.02 1.03 

 

 

Table 3.2. NOx and HONO emission indices for FT and blended fuel experiments normalized by 

those for JP-8.  
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since we do not know the relative contribution of exhaust from each engine measured at 145 m. 

This can account for at most 2% of the EI difference in the extreme case that exhaust from only 

the “experiment” engine was sampled during FT experiments. Moreover, we at times observe 

lower NOx EI for FT-blend than FT-only experiments, though we expect FT-blend values to be 

an average of the JP-8 and FT [12]. Ambient conditions that affect engine chemistry and 

measurement downstream including temperature, humidity, sunlight, transport time from 

emission to sampling and the extent of the mixing of exhaust from the two engines could not be 

adjusted in a controlled manner, complicating direct comparisons between experiments. 

HONO showed a fuel-type dependence opposite to that of NOx (table 2), which cannot be 

attributed to the use of a constant EICO2. Timko et al. [12] observed lower NO and higher NO2 EI 

in FT-derived plumes compared to those utilizing only JP-8 fuel. That NO2 and HONO – both 

byproducts of reactions involving NO – exhibit a fuel-type dependence trend that is opposite to 

that of NO indicates an environment that is more favorable to oxidation during FT-fuel 

combustion, perhaps a result of the absence of aromatics and sulfur compounds. Future 

experiments with speciated measurements of individual nitrogen oxide species under identical 

ambient conditions are required to determine whether the total amount of NOy produced or only 

the partitioning between species is affected by the use of synthetic fuels.  

NOx EI exhibit a positive dependence on ambient temperature (0.19±0.04 g kg-1 K-1) at the 

maximum rated engine thrust (Figure B2), consistent with the ICAO database [33]. A 

temperature dependence for HONO was not observed (Figure B2), suggesting the chemical 

processes governing HONO production and loss are not sensitive to ambient temperatures. 

 

3.3.2. Comparison to previous campaigns 
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HONO EI trend with increasing engine power observed during AAFEX is consistent with 

those from previous field campaigns [23, 34]. Figure 4 shows good agreement at low engine 

power between HONO EI from AAFEX to those observed at the APEX-3 (using corrected line 

strengths), during which HONO was measured 1 m behind engine exit [23]. HONO EI from 

APEX-3 was lower by a factor of approximately three at higher engine thrust. The discrepancy 

may simply be explained by difference in engine type and age, both of which can influence 

aircraft NOx emissions [35]. However, because results agree well under some engine conditions 

but not others (figure 4), a more likely explanation is incomplete HONO formation during 

APEX-3. Tremmel et al. [6] simulate HONO formation via R1 continuing for several 

milliseconds following engine exit, therefore, at higher engine power (i.e. higher exhaust 

velocity), HONO formation may not be complete at a distance of 1 m downstream as the 

remaining OH is quenched by the inlet probe. Consequently, HONO measured at 1 m may 

underestimate total production, suggesting sampling of reactive gases should be conducted 

farther downstream to ensure completion. Metal probes used to sample hot exhaust near engine 

exit and heating/dilution to prevent condensation in inlet lines during APEX-3 may have 

promoted HONO surface losses or thermal dissociation leading to underestimation of HONO.  

Figure 3d shows HONO to NOx ratios observed during AAFEX ranging from 3-6%, which is 

consistent with predicted value of 4.5% in jet engine exhaust [30] and considerably higher than 

0.29-0.8% reported for on-road vehicles, with diesel-powered engines emitting a higher ratio 

than their gasoline-powered counterparts [36, 37]. Sampling exhaust from a diesel-powered 

generator during AAFEX revealed HONO/NOx of 0.82±0.05% (figure B3). Lastly, recent 

measurements of exhaust from 8 different commercial aircraft in flight [38] show decreasing 
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HONO/NOy with increasing NOx EI, as also observed during AAFEX for engine settings 

simulating cruise conditions (~65% maximum rated engine thrust) and beyond. 

 

3.3.3. H2O2 chemistry 

Hydrogen peroxide was detected in aircraft exhaust only at low/idle engine power. H2O2 EI 

for JP-8 fuel at low power (4%) is 0.34±0.19 (1#) g per kg fuel and decreases to below detection 

limit beyond 30% of maximum rated engine thrust. EI for H2O2 exhibits no dependence on 

ambient temperature. During combustion H2O2 can be formed by the self-reactions of HO2 (R5) 

and OH (R6). The H2O2 EI trend with respect to rated engine thrust reflects that of NO2 (figure 4), 

which Wood et al. [23] proposed is primarily generated during combustion by reaction involving 

HO2 (R7) and exhibits the opposite trend of HONO, formed primarily by reaction involving OH 

(R1). Therefore, HO2 by reaction R6 and not OH by reaction R5 is the likely H2O2 precursor in jet-

fuel combustion. HO2 is likely formed from the OH-driven oxidation of incomplete combustion 

byproducts such as carbon monoxide and formaldehyde, both of which exhibit EI trends similar 

to that of H2O2 [39]. 

 

R5)   OH + OH + M ! H2O2 

R6)   HO2 + HO2 + M ! H2O2 + O2 

R7)   HO2 + NO ! NO2 + OH 

 

Identification of H2O2 at levels comparable to those of HONO (figure 2) at low engine thrust 

represents an additional airport-related source of HOx precursors to the boundary layer, though 

given its slow rate of photolysis and loss via deposition its impact on the HOx budget is likely to 
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be much smaller than that of HONO. Though this was the first spectroscopic measurement of 

H2O2 in aircraft exhaust, the reported values for H2O2 from AAFEX should be qualified because 

of the yet uncharacterized potential for attenuation during sampling. 

 

3.3.4 Impact on atmospheric chemistry 

Emission indices of HONO observed during AAFEX are higher than those previously 

reported [23, 34]. We calculate photolysis of idle-aircraft-emitted HONO at engine exit will 

yield OH at a rate of about 1000 ppt sec-1, which is roughly three orders of magnitude faster than 

observed in a typical sunny urban atmosphere. With increasing engine power (at higher 

altitudes), HONO goes from a dominant to nearly sole source of HOx in jet exhaust [40], which 

can influence photochemistry in heavily traveled flight corridors. Consequently, HOx precursors 

emitted simultaneously with pollutants of interest should be included in models aimed at 

understanding the evolution of plumes from emission sources, particularly given the non-

linearity and cycling of NOx-HOx chemistry prior to termination. Moreover, reported 

discrepancies on the potential significance of ClNO production [41-43] – a driver of catalytic 

stratospheric ozone destruction – due to HONO and HCl uptake on the surface of H2SO4 aerosols 

require more information of, among other variables, HONO levels in aircraft exhaust. This study 

characterizing emission indices as a function of engine power, ambient conditions and fuel-type 

– in addition to gaining insight into engine chemistry – provides a useful tool for such 

applications.  
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Chapter 4: 

Reactive chemistry in aircraft exhaust: Implications on air quality3 

 

Abstract 

Exhaust emitted from jet engines contain high concentrations of combustion by-products, some 

of which are damaging to human and ecosystem health. As these pollutants mix with the 

surrounding air, they undergo chemical reactions that eventually break them down to their water-

soluble or inert forms. To date, the reactivity of aircraft exhaust has been largely unexplored, and 

it is not known whether state-of-the-art models account for chemistry at the plume level, which 

directly relates to air quality downwind of airports. To a large extent, the concentrations of 

hydroxyl (OH) and hydroperoxyl (HO2) radicals – collectively called HOx – present in emitted 

plumes determine the rate at which components of the exhaust are oxidized. In January of 2009, 

we quantified emissions of all HOx precursors including nitrous acid (HONO), formaldehyde 

(HCHO), acetaldehyde (CH3CHO) and ozone (O3) at the Alternative Aviation Fuels Experiment 

in Palmdale, California. We report that 1) HOx production rate due to direct emission of these 

precursors is orders of magnitude faster in the exhaust plume than in “normal” urban air, 2) 

Concentration of pollutants in plumes do not reach typical ambient levels until it has been diluted 

by a factor of about 6,000 and that 3) Photolysis of HONO in these plumes is by far the biggest 

source of HOx during daytime. Analyses of the reactions involving HOx demonstrate that 

propagation of these radicals is favored over termination, which indicate chemical reactivity will 

continue to be enhanced in these plumes even after it has been diluted down to ambient levels. 

                                                 
3 Lee, B. H., E. C. Wood, R. C. Miake-Lye, S. C. Herndon, J. W. Munger, S. C. Wofsy (2011), Transportation 
Research Record: Journal of the Transportation Research Board, No. 2206, pp. 19-23, doi: 10.3141/2206-03. 
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4.1. Introduction 

There is growing concern regarding aviation emission and its effect on air quality, 

particularly given the projected increase in global air travel over the coming decades [1-3]. The 

impact of airports on local air quality and public health is not well understood [4]. Knowledge of 

emissions of trace gases and particulate matter has improved in the past decade from 

measurements close behind aircraft engines in operation [5-8]. These measurements of emission 

indices can be used to generate emission inventories of airports to be utilized as input variables 

in air quality models. The relationship, however, between emissions and resulting pollutant 

concentrations is complex and dependent on many variables including transport and mixing, 

strength and duration of emission source, proximity to the source and chemical processing within 

the atmosphere. Air quality models that do not account for all of these parameters are unlikely to 

make accurate forecasts. 

Recent studies have shown that the chemistry in the evolving, diluting exhaust plume is 

drastically enhanced compared to that of the ambient atmosphere [9]. Reaction rates are 

magnified relative to normal conditions due to concentrated levels of directly emitted reactive 

species such as volatile organic compounds (VOCs), carbon monoxide (CO), sulfur dioxide 

(SO2) and nitrogen oxides (NOx), all of which are categorized as either a criteria air pollutant or a 

precursor by the Environmental Protection Agency [10].  

The species central to the chemical breakdown of these primarily emitted pollutants in 

the atmosphere are the hydroxyl (OH) and hydroperoxyl (HO2) radicals, collectively known – 

due to the fast inter-conversion between themselves – as HOx radicals. HOx species play a key 
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role in the non-linear, highly coupled dynamics of atmospheric chemistry (see Figure 1). For 

instance, oxidation of VOCs by HOx lowers the concentration of the parent VOC, but leads to the 

formation of potentially more harmful secondary organic aerosols and oxygenated VOCs. 

Increased chemical activity also leads to the formation of tropospheric ozone (O3), another 

criteria air pollutant and greenhouse gas, as well as a major OH precursor.  

At the Alternative Aviation Fuels Experiment (AAFEX) conducted in January of 2009, 

we observed mixing ratios of all of the dominant HOx precursors emitted in aircraft exhaust, 

including nitrous acid (HONO), formaldehyde (HCHO), acetaldehyde (CH3CHO) and O3. 

Measurements show that photolysis of these HOx precursors during daytime results in plumes 

that are drastically more reactive than air unperturbed by emissions. Analyses suggest that the 

enhanced reactivity persists even after plumes have diluted down to ambient levels several km 

downwind. These results call for the need to account for these species that are driving the 

chemistry, in order to properly assess impact of airports on downwind air quality. 

 

4.2. Methods 

Measurements of a whole suite gaseous species and particulate matter were made during 

AAFEX at various distances (between 3 m and approximately 150 m) behind a DC-8 jet, which 

was choked on the runway at the NASA Dryden Flight Research Center in Palmdale, California. 

A total of twelve experiments, each lasting several hours, were conducted over a span of a week 

at various times of the day to test the wide range of ambient conditions as variables on emissions. 

Different fuel types (traditional and synthetic) were fed into the engine, which during each 

experiment was varied from idle to take-off conditions. A detailed report on the experimental 

setup, mission goals and summary results are presented by Bulzan et al. [11]. 
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Figure 4.1. A simplified schematic of chemical reactions occurring in the troposphere. OH and 

HO2, collectively known as HOx, are responsible for the breakdown of VOCs and other reactive 

species. Note the cyclic nature of both HOx (=OH+HO2) and NOx (=NO+NO2), inter-converting 

between one another while generating O3 with each cycle. This cycling is ultimately terminated 

by the reaction between NO2 and OH forming nitric acid (HNO3), which is eventually deposited 

and lost from the atmosphere. 



57 

 

In this study, we focus on HOx radical precursors such as formaldehyde and ethene 

(measured by a dual pulsed-mode infrared laser absorption spectrometer), acetaldehyde and 

propene (proton-transfer reaction mass spectrometer) and nitrous acid (continuous-wave-mode 

infrared laser absorption spectrometer). In addition, measurements of carbon dioxide were made 

using a non-dispersive infrared gas analyzer. The various instrumentation – though they differ in 

technique – essentially operate by drawing ambient air through an inlet composed of a particle 

filter or inertial separator (to keep the instruments free of interfering particles) through tubing (to 

keep instrument out of the path of jet exhaust) and into the instrument where concentrations are 

quantified. All of the instruments were set up to allow sampling response times of less than one 

second to be able to resolve the rapid fluctuations in the level of pollutants in the exhaust. 

 

4.3. Results 

Figure 2 shows a brief time-series of HONO and CO2 mixing ratios observed during 

AAFEX. In figure 2a,b note how the levels of both gases co-vary together in time because of 

their common emission source and due to atmospheric mixing similarly processing both gases 

from engine exit to the sampling point. The slope of the correlation plot between HONO and 

CO2 (figure 2c) is commonly called the emission ratio (ER) and is significant because it 

quantifies the emission signature of the species of interest (in this case, HONO) relative to CO2, 

which is a main by-product of fossil-fuel combustion and readily traceable to the amount of fuel 

consumed. To adhere to International Civil Aviation Organization standards, we report here the 

emission index (EI) in units of mass (g) of x per mass (kg) of fuel consumed, 
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Figure 4.2. Mixing ratios of HONO (parts per billion, ppb) and CO2 (parts per million, ppm) 

observed in aircraft exhaust. Twelve experiments were conducted over a period of a week under 

widely varying ambient conditions and engine settings, which ranged from idle to full thrust. 

Above is brief excerpt of 1-second time-resolution data. Note how the levels of HONO and CO2 

co-vary together in time at A) high engine power (85% thrust) as well as at B) low engine power 

(7% thrust). C) HONO plotted against CO2 clearly shows the dependence of their relationship on 

engine setting.  
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where EI CO2 is the emission index of CO2, which for jet fuel is 3,160 g of CO2 emitted per kg of 

fuel consumed. 

 Figure 3 shows the EI of HONO plotted as a function of rated engine thrust. Each data 

point at a given engine setting in figure 3 is the AAFEX campaign averaged value, which is 

composed of hundreds of emission indices calculated from individual plumes lasting anywhere 

from a few to 30 seconds. Approximately 0.1 g of HONO is emitted on average for every kg of 

fuel consumed at engine idle (~7% rated engine thrust), and increases nearly seven-fold at 60% 

rated engine thrust, beyond which EI for HONO remains fairly constant. HONO is formed within 

the engine primarily by the gas-phase reaction between nitric oxide (NO) and OH. As the engine 

power is increased from idle thrust, the concentrations of both NO and OH in the engine 

increase, resulting in greater HONO EI values. HONO EI is not significantly affected by ambient 

temperature (which ranged from slightly below 0°C to 23°C), relative humidity (20 to 70%), 

presence of sunlight, wind speed or direction, or fuel type (traditional jet fuel, coal-

derived or natural-gas derived synthetic fuels). The dominant variable influencing HONO EI 

is the engine power setting (Figure 3). 

 

4.4. Discussion 

In typical unperturbed ambient atmosphere, HOx is predominantly generated by sun-light 

induced photolysis of O3 and HCHO with some contributions from the photolysis of HONO and 
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Figure 4.3. HONO emission index from a single CFM-56 jet engine plotted as a function of 

rated engine thrust. Each EI value represents the campaign average of all observed individual 

plumes, each lasting from a few seconds to approximately 30 seconds. The error bars represent 

the 1-# of the average. 
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the ozonolysis reaction between O3 and various alkenes (mainly ethene and propene), as 

illustrated by the reactions listed below.  

 

(R1a)  O3 + h$ ! O2 + O(1D) 

(R1b)  O(1D) + H2O ! 2OH 

 

(R2a)  HCHO + h$ ! HCO + H 

(R2b)  H + O2 + M ! HO2 + M 

(R2c)  HCO + O2 +M ! CO + HO2 + M 

 

(R3a)  CH3CHO + h$ ! CH3CO + H 

(R3b)  H + O2 + M ! HO2 + M 

 

(R4)  HONO + h$ ! NO + OH 

 

(R5a)  O3 + alkene ! products + OH + RO2 + HO2  

 

where h$ represents the energy from sunlight absorbed by the reactants.  

The rates at which these reactions proceed are dependent on the reactant concentrations 

and the rate constants, which for the photolysis reactions (R1-R4) are a function of the intensity 

and wavelength of the incident radiation. Consequently, since each of the five chemical reactions 

(R1-R5) listed above yield at least one HOx radical (either OH or HO2), the total HOx production 

rate is given by the sum of the reaction rates R1 through R5.  
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(R6)  P(HOx) = R1 + R2 + R3 + R4 + R5 

= 2"j1b"[O(1D)][H2O] + 2"j2"[HCHO] + 2"j3"[CH3CHO] + j4"[HONO] + 

k4"[O3]"[alkene](HOx yield) 

 

where the “j values” are photolysis rate constants and “k values” are the reaction rate constants. 

Table 1 lists the photolysis rates for O3, HCHO, CH3CHO and HONO under typical cloudless 

sky conditions at 30° solar zenith angle obtained using NCAR’s (National Center for 

Atmospheric Research) TUV model [12]. The concentration of the reactant species at engine exit 

is calculated from the emission ratios with respect to CO2 observed at AAFEX. Since the 

concentration of CO2 at the engine exit is well known (2.1% at engine idle and 4% at high 

power), the corresponding concentration of the species of interest at engine exit is simply the 

product of the emission ratio and the CO2 concentration at engine exit. 

 Figure 4a shows the production rate of HOx in exhaust plumes due to the photolysis of 

emitted precursors relative to what is typically observed in the ambient atmosphere, plotted as a 

function of plume dilution. A dilution factor of one represents conditions at engine exit before 

any mixing or dilution has taken place. Emission rate of precursors used in the calculation here 

are representative of those observed at engine idle and photolysis rates are from conditions listed 

in table 1. From this figure, the HOx production rate is several orders of magnitude faster inside 

the exhaust plume at the engine exit and only reaches those observed in normal air after being 

diluted by a factor of about 6,000. A breakdown of the relative strengths of the precursors show 

that HONO is the biggest contributor to HOx production due in part to its fast photolysis rate 
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Figure 4.4. a) Ratio of HOx radical production rate in jet exhaust relative to those under 

“typical” urban conditions (~0.5 parts per trillion per second), plotted versus plume dilution 

factor. HOx is produced from the photolysis of precursors including HONO, HCHO, CH3CHO 

and the ozonolysis reactions between O3 and alkenes. b) Relative strengths of HOx sources in jet 

exhaust. 
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Table 4.1. Shows the photolysis rates of HOx precursors emitted from jet exhaust. Rates are 

calculated for typical cloud-less winter mid-day conditions at 30° solar zenith angle. 

 
Reaction Precursor Photolysis rate (sec-1) 

R1a O3 3.4"10-5 
R2a HCHO 3.2"10-5 
R3a CH3CHO 5.4"10-6 
R4 HONO 2.1"10-3 
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(table 1), followed by HCHO, then the ozonolysis reactions of ethene and propene, and lastly 

CH3CHO (figure 4b). 

 Relating dilution factor to actual distance from emission source is problematic, since the 

rate at which dilution occurs in the ambient atmosphere is governed by numerous factors 

including wind speed, wind shear and geographic conditions. Figure 5 shows dilution factors 

estimated from measured CO2 levels (relatively inert at these time-scales) observed in diluting, 

evolving plumes sampled at various distances from airports in numerous field campaigns 

including AAFEX. Observations from these campaigns with varying ambient conditions and 

geographic layouts indicate that dilution due to mixing occurs at a relatively predictable rate at 

these distances and that concentration of an emitted species reaches background levels of normal 

air between approximately 1 and 4 km (0.6 and 2.4 miles) downwind of airports.  

It is, however, important to stress here that based on previous measured emission indices 

of reactive gases and the rates at which they are oxidized by HOx radicals, we calculate that > 

95% of the OH radical produced in these plumes react with VOCs and CO because they are 

emitted in large quantities from idling engines due to inefficient fuel combustion. These 

reactions tend to favor cycling between OH and HO2 while generating noxious gases such as O3 

and alkyl peroxyl radicals. This branching of chemistry (figure 1), thus represents propagation of 

HOx. The reaction between OH and NO2 forming nitric acid (HNO3) –  which is readily lost from 

the atmosphere through deposition thus terminating the cycling between OH and HO2 – occurs 

less frequently. In short, the regeneration of HOx species due to the rapid cycling between OH 

and HO2 is favored in these plumes over termination. The decrease in HOx production rate 

diagrammed in figure 4 only takes into account dilution and not the propagation due to cycling. 



66 

 
 
 

Figure 4.5. Plume dilution factor calculated from CO2 measurements made at varying distances 

from the emission source, plotted versus distance. 
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Consequently, enhanced reactivity (faster HOx production than in normal air) is sure to 

persist farther downwind than the 1 to 4 km calculated above. 

Lastly, it should be noted that HOx production in these plumes occurs only during 

daytime through sun-light induced photolysis of emitted precursors. During nighttime, emissions 

from airports would lead to the buildup of these HOx precursors as well as the other emitted 

pollutants such as VOCs, NOx and SO2 in the nighttime air. This nighttime build-up is enhanced 

because of the so-called nocturnal boundary layer as it traps emissions at the surface due to an 

inversion in the vertical temperature profile. Therefore, nighttime emissions can serve as a 

significant pulse of reactivity in the morning immediately following sunrise when photolysis 

commences. 

 

4.5. Conclusion 

We report measurements of HOx precursors in aircraft exhaust made during the AAFEX 

field campaign in January of 2009 at the NASA Dryden Flight Research Center. Analyses show 

photolysis of nitrous acid (50%) is the dominant source of HOx in exhaust plumes, followed by 

photolysis of formaldehyde (40%), the ozonolysis reactions between ozone and light alkenes 

(8%), then photolysis of acetaldehyde (2%). Due to the enhanced levels of precursors, the 

reactivity of emitted plumes reach HOx production rates usually observed in ambient air after it is 

diluted by three to four orders of magnitude, or approximately between 1 and 4 km downwind of 

emission sources. However, due to the cyclic nature – reaction followed by regeneration – of the 

HOx radicals, enhanced chemistry likely persists much farther downwind.  
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Analyses presented here provide strong evidence for the need to account for HOx 

precursors in engine exhaust due to it role in driving chemistry. This is required in order to 

realistically translate airport emission inventories to enhancements in the pollutant levels 

downwind, and ultimately to assess the effects on the health of nearby communities. Species 

such as tropospheric ozone and secondary organic aerosols are not directly emitted from engines 

but are harmful by-products of the transformations driven by chemistry. The measurements made 

during AAFEX will help bridge that gap in understanding between emissions and impact, and 

allow future modeling efforts to improve assessments.  

 All of the HOx precursors discussed above are in some form already monitored by the 

International Civil Aviation Organization, which sets certification guidelines for aviation-related 

emissions of CO, NOx and total VOCs. HONO is indirectly included in the NOx inventory, as are 

HCHO, CH3CHO, ethene and propene in the total VOC inventory. Therefore, explicit regulation 

of these gases is likely not necessary, however, determining the scaling of these particular 

species to their respective inventories would greatly aid future modeling programs. 

 

Acknowledgments 

 The authors gratefully acknowledge the Transportation Research Board for the Airport 

Cooperative Research Program Award. 

 
 
 
 
 



69 

Rerferences 
 
1. Lee, D. S.; Fahey, D. W.; Forster, P. M.; Newton, P. J.; Wit, R. C. N.; Lim, L. L.; Owen, 

B.; Sausen, R., Aviation and global climate change in the 21st century. Atmospheric 
Environment 2009, 43, (22-23), 3520-3537. 

 
2. Mohn, T. At German Airports, Bees Help Monitor Air Quality. 

http://www.nytimes.com/2010/06/29/business/29airports.html?ref=air_pollution 
(September 4, 2010),  

 
3. Penner, J. E., Aviation and the global atmosphere. Cambridge University Press: 

Cambridge, 1999; p 373 p. 
 
4. Klemm, R.; Wyzga, R.; Thomas, E., Daily Mortality and Air Pollution in Atlanta: August 

1998-December 2006. Epidemiology 2009, 20, (6), S223-S223. 
 
5. Anderson, B. E.; Chen, G.; Blake, D. R., Hydrocarbon emissions from a modern 

commercial airliner. Atmospheric Environment 2006, 40, (19), 3601-3612. 
 
6. Miake-Lye, R. C.; Anderson, B. E.; Cofer, W. R.; Wallio, H. A.; Nowicki, G. D.; 

Ballenthin, J. O.; Hunton, D. E.; Knighton, W. B.; Miller, T. M.; Seeley, J. V.; Viggiano, 
A. A., SOx oxidation and volatile aerosol in aircraft exhaust plumes depend on fuel sulfur 
content. Geophysical Research Letters 1998, 25, (10), 1677-1680. 

 
7. Spicer, C. W.; Holdren, M. W.; Smith, D. L.; Hughes, D. P.; Smith, M. D., Chemical-

Composition of Exhaust from Aircraft Turbine-Engines. Journal of Engineering for Gas 
Turbines and Power-Transactions of the Asme 1992, 114, (1), 111-117. 

 
8. Yelvington, P. E.; Herndon, S. C.; Wormhoudt, J. C.; Jayne, J. T.; Miake-Lye, R. C.; 

Knighton, W. B.; Wey, C., Chemical speciation of hydrocarbon emissions from a 
commercial aircraft engine. Journal of Propulsion and Power 2007, 23, (5), 912-918. 

 
9. Wood, E. C.; Herndon, S. C.; Timko, M. T.; Yelvington, P. E.; Miake-Lye, R. C., 

Speciation and chemical evolution of nitrogen oxides in aircraft exhaust near airports. 
Environmental Science & Technology 2008, 42, (6), 1884-1891. 

 
10. United States. National Air Pollution Control Administration., Air quality criteria for 

photochemical oxidants. [For sale by the Supt. of Docs.: Washington;, 1970; p 1 v. 
(various pagings). 

 
11. Bulzan, D.; Anderson, B.; Wey, C.; Howard, R.; Winstead, E. H.; Beyersdorf, A.; 

Corporan, E.; DeWitt, M. J.; Klingshirn, C. D.; Herndon, S. C.; Miake-Lye, R.; Wood, E. 
C.; Tacina, K.; Liscinsky, D. S.; Hagen, D.; Lobo, P.; Whitefield, P. In Gaseous and 
Particulate Emissions Results of the NASA Alternative Aviation Fuel Experiment 
(AAFEX), ASME Turbo Expo 2010: Power for Land, Sea, and Air (GT2010), Glasgow, 
UK, June 14-18, 2010, 2010; ASME: Glasgow, UK, 2010; pp 1195-1207. 



70 

 
12. Hutzinger, O., The Handbook of environmental chemistry. In Springer-Verlag: Berlin ; 

New York, 1980; p v. 
 
 



71 

Chapter 5: 

Effective line strengths of trans-nitrous acid near 1275 cm-1 and cis-nitrous acid at 1660 cm-

1 using cw-QC TILDAS4 

 

Abstract 

We determined the effective line strengths of the trans conformer of nitrous acid (HONO) near 

1275 cm!1 (R-branch of $3 mode, N-O-H bend) and of the cis conformer at 1660 cm-1 (R-branch 

of $2 mode, N=O stretch), both at a spectral resolution of 0.001 cm!1 by tunable infrared laser 

differential absorption spectroscopy (TILDAS) utilizing continuous wave quantum cascade 

lasers. Absorbance of one conformer was measured while simultaneously quantifying the mixing 

ratio of total HONO by catalytic conversion to nitric oxide (NO) followed by calibrated 

absorption spectroscopy. Line strengths obtained here are consistent with band strengths reported 

by Kagann and Maki [1] for the trans conformer but are lower by a factor of approximately 2.4 

for the cis conformer. 

 

5.1. Introduction 

Nitrous acid (HONO) is a short-lived atmospheric reservoir of nitric oxide (NO) and the 

hydroxyl radical (OH). Photolysis of HONO – subsequent to formation by a pathway not 

involving OH or the hydroperoxyl radical (HO2) – represents a net source of HOx (=OH+HO2), 

collectively, one of the main drivers of atmospheric oxidation. Nighttime buildup beneath the 

boundary layer due to combustion emissions and heterogeneous reaction of nitrogen dioxide 

                                                 
4 Lee, B. H., Wood, E. C., Wormhoudt, J., Shorter, J. H., Herndon, S. C., Zahniser, M. S., Munger, J. W. (2012),  
Journal of Quantitative Spectroscopy & Radiative Transfer, submitted. 
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(NO2) provides the dominant source of reactivity in the early morning [2, 3]. Recent reports of 

HONO levels exceeding those expected at photostationary state suggest a secondary daytime 

source that may constitute a significant portion of the daily HOx budget in urban [4-6], rural [7-

10] and remote [11-13] atmospheres. In indoor environments, combustion from cooking directly 

releases HONO and NOx (=NO+NO2), which react to generate additional HONO. At enhanced 

levels (from few part-per-billion to several hundred ppb), HONO by itself is a minor lung and 

eye irritant [14, 15]. Reactions with amines present in the gas phase [16] and as residue on 

surfaces previously exposed to cigarette smoke yield carcinogenic nitrosamines, the effect of 

which has been commonly called “third-hand” smoke [17]. However, the chemical mechanism, 

rate and nature of the substrate on which production takes place remain uncertain. 

Many HONO measurement techniques rely on wet-chemical extraction, by which gaseous 

HONO is captured in liquid form, derivatized then quantified via photometry or chromatography 

[18-21]. Though offering near part-per-trillion (ppt) sensitivity, they are potentially prone to 

chemical interferences and have not always shown good agreement with optical techniques [22, 

23]. Absorption spectroscopy – applied previously in open-path [2-4, 24] and enclosed cell [25-

29] systems to measure ambient air and combustion exhaust – offers a more direct method with 

greater specificity. However, the fundamental rotational-vibrational transitions of HONO in the 

mid-infrared spectral region are not accurately represented in any comprehensive linelist [30, 

31]. 

We report effective line strengths – the absorbance of light by one conformer per unit column 

density of total (cis + trans) HONO – determined for the cis conformer at 1660 cm-1 and the 

trans near 1275 cm-1 at 303 K. The absolute line strengths – absorbance of light per unit column 

density of that particular conformer – could be calculated given the cis-trans equilibrium 
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constant, but the accuracy would be limited by large uncertainty in equilibrium constant [32]. 

The effective strength, along with line position and air-broadened halfwidth at half maximum, &air 

(cm-1 atm-1), provide the necessary parameters to quantify the concentration of total HONO by 

TILDAS. As thermal equilibrium between the two conformers via isomerization occurs nearly 

instantaneously (~10-12 seconds), maintaining the sample at a constant temperature for a few 

seconds ensures accurate total HONO quantification that is independent of thermal changes in 

the ambient atmosphere. We compare these results to previous effective band strength studies 

and discuss optimal spectral regions in which to measure HONO. 

 

5.2. Experimental Methods 

Figure 1 is a schematic of the experimental setup. Concentrated gaseous HONO was 

introduced into the sample cell of a dual-laser TILDAS system, in which the absorbance of cis-

HONO (1659.25-1660.10 cm-1; Alpes Lasers) and NO2 (1604.56 cm-1; Alpes Lasers) were 

simultaneously measured over an absorption path length of 210 m at reduced pressures. Total 

HONO at the same time was quantified via complete reduction of the sub-sampled mixture by 

molybdenum catalysis (TEI) to NO, which was continuously measured by a calibrated single-

laser TILDAS instrument. Other reducible nitrogen oxide species that may have been generated 

along with HONO were accounted for by monitoring the NO mixing ratio prior to conversion by 

O3-chemiluminescence (ThermoElectron 42i), and NO2 by absorption spectroscopy. Additions 

were conducted over a range of cell pressures (6 to 70 torr) to determine &air. The dual-laser 

instrument was then reconfigured to concurrently measure the absorbance of both cis and trans 

conformers. HONO was again introduced at various cell pressures. The effective line strength 

and &air of the trans conformer (1273.38-1273.47 cm-1; 1273.57-1273.62 cm-1; 1274.26-1274.36 
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Figure 5.1. Schematic of the instrumental setup used to determine absorption parameters for the 

cis conformer. 
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cm-1; 1275.74-1275.84 cm-1; Hamamatsu Photonics) was determined from the total HONO value 

obtained using the previously determined cis conformer absorption parameters. 

Laser temperature control, data acquisition and spectral fitting for the laser-based systems 

were controlled by the software TDLWintel (Aerodyne Research, Inc.). Thermo-electrically 

cooled QC lasers were spectrally tuned by providing them with a programmable current ramp 

from a high-compliance source (ILX Lightwave) to induce a milli Kelvin-scale temperature 

change to tune the output light over a range of approximately 0.2 cm-1. The QC lasers for both 

HONO conformers and NO2 were scanned at a rate of 150 Hz (a factor of approximately 10 

slower than typical operational conditions) to ensure line shape symmetry. The instrumental line 

widths for all three lasers were less than the 0.001 cm-1 spectral resolution. This was determined 

by scanning nearby lines of water vapor, for which absorption parameters are well known [31], at 

cell pressures below 2 torr to minimize collisional broadening. Details regarding the optical 

layout, signal detection and sensitivity of the spectrometers are provided elsewhere [33, 34]. 

Gas additions typically lasted between 30 to 120 seconds, over which the mixing ratios (and 

spectra) were averaged in time to reduce the variance of the final values used in the line strength 

calculations, described below. Flow rates were maintained to ensure sufficient mixing and to 

minimize residence times inside tubing and sample cells. Perfluoroalkoxy tubing was utilized 

and the sample cells of the TILDAS systems were treated with a siloxyl coating to reduce surface 

chemistry. Figure 2a shows a brief time series of mixing ratios when NO2 generated from a 

permeation device (Valco Instruments Co. Inc.) was introduced. The agreement between NO2 

quantified directly with the QC laser using HITRAN absorption parameters [31] and NO 

resulting from catalytic conversion (figure 2a), exhibits the purity of the laser mode. We also 

observed agreement in water vapor measurements between the two QC lasers at 1605.675 cm-1 
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Figure 5.2. Time series (1-hertz) of HONO, NO2 and NO (measured by two different 

instruments) mixing ratios (ppb) during two gas addition experiments. Addition of a) NO2 from a 

permeation device and from generated b) HONO. 
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and 1660.467 cm-1 (not pictured), establishing the laser mode purity of the cis-HONO laser. 

Moreover, additions of varying levels of NO2 from a tank source and its absence downstream of 

the catalytic converter demonstrated complete conversion efficiency. We assume unity efficiency 

in reduction for HONO as well, as previously reported [35]. 

The single-channel TILDAS system used to quantify the post-conversion NO mixing ratio 

was calibrated using a NO tank source (Scott Specialty, 34.6 ppm ± 1%), which tested to within 

1% of another NO tank (Airgas “Primary Standard”, 250.6 ppm) owned by NASA-Glenn 

(Changlie Wey). A five-point calibration procedure for NO was conducted for the TILDAS and 

O3-chemiluminescence NO instruments before and after the line strength quantification 

experiment. The sensitivity, hence calibration, of the O3-chemiluminescence instrument is 

affected by humidity and was taken into account by conducting calibrations at the same water 

vapor mixing ratio observed during the addition experiments. Output flow rates from a dynamic 

gas calibrator (ThermoElectron, model 146i) used during NO calibrations were compared to two 

calibrated (Gilibrator and Bios Dry Cal) flow meters and showed agreement to within 3%. The 

transducer (MKS, 0 to 1000 torr) measuring the pressure inside the sample cell was calibrated at 

0 torr and at ambient pressure using a Hg-manometer. 

Figure 2b shows a brief time series of mixing ratios during an addition of gaseous HONO, 

generated by flowing UltraPure air (Middlesex gases) first through a gas-washing bottle filled 

with dilute hydrochloric acid (Sigma Aldrich, 30% wt.) then through a 50-mL round-bottom (1 

inch diameter) Pyrex chamber loaded with approximately 5 g sodium nitrite granules (Sigma-

Aldrich, 99.999%) where HONO was produced via reaction R1 [36]. Side products NO and NO2 

likely produced by reaction R2 accounted for less than 3% by mixing ratio of total HONO and 

were explicitly taken into account. Nitric acid (HNO3) – also reducible to NO by molybdenum 
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catalysis – was not directly measured during the experiments. Addition of gaseous HNO3 from a 

permeation device and measured as NO following catalytic conversion exhibited a much slower 

response time through the system due to surface interaction (not pictured) than those exhibited 

by NO and NO2 (figure 2), gases unlikely to strongly interact with surfaces. We assert negligible 

amounts of HNO3 via reaction R3 were generated alongside HONO, which exhibited response 

times through the system similar to those of NO and NO2 (figure 2b). We assume nitrosyl 

chloride (ClNO) was also a negligible contributor due to its slow formation rate [37] and the fact 

that HONO output levels were positively dependent on the concentration of the HCl solution, 

indicating HCl was the limiting reagent thus unavailable for reaction R4 downstream of the 

NaNO2 chamber. Potential interferences from other reducible nitrogen oxide species such as 

NO3, N2O4 and N2O5 were assumed to be nonexistent due to the short residence times in the 

system and the absence of an ozone precursor. 

 

R1)   HCl(g) + NaNO2(s) ! HONO(g) + H2O 

R2)   HONO(g) + HONO(ads) ! NO(g) + NO2(g) + H2O 

R3)   HONO(g) + NO2(g) ! NO(g) + HNO3(g) 

R4)   HCl(g) + HONO(g) ! ClNO(g) + H2O 

 

Top panels of figures 3 and 4 show the observed absorbance during HONO addition 

experiments for the cis and trans conformers, respectively. Effective line strengths were 

calculated by taking into account the total HONO concentration, laser light path length, 

instrumental line width and sample cell pressure and temperature, using an algorithm called 

SELECTLINES [38] (Igor Pro, version 4.2, WaveMetrics, Inc.) developed by Aerodyne 
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Figure 5.3. Absorbance (base e) spectra of cis-HONO (top panel) and effective line strengths 

(bottom panel) from KMH (black) and this study (red), all plotted as a function of wavenumber 

(cm-1). Listed numbers represent the ratio of KMH strengths to those from this study. Brackets 

above the figure summarize each experimental condition. Asterisks point to degenerate entries in 

KMH due to limited spectral resolution. 
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Figure 5.4. Same as figure 3, for trans-HONO. 
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Research, Inc. The program first determines the line position given an initial guess then 

calculates the strength of each line by fitting a Voigt line profile to the observed absorbance 

spectrum. Absolute HONO line positions were determined relative to those of nearby water 

vapor and/or nitrous oxide along with laser tuning rates determined by recorded spectra of a 

germanium etalon, all except for experiments conducted when scanning between 1659.25 and 

1659.55 cm-1 and between 1659.85 and 1660.10 cm-1. In these instances, HONO line positions 

were based on those obtained from a broad-band FTIR spectrum with resolution better than 

0.005 cm-1 ranging from 700 to 4,000 cm-1, provided by M. Herman (personal communication). 

The same spectrum provided relative line strengths, which were scaled to absolute line strengths 

of the trans $3 mode from the ATMOS database [30], whose strengths are based upon band 

strengths reported by Kagann and Maki  [1]. The resulting line strengths are hereafter referred to 

as KMH and serve as the basis of comparison to other studies discussed below. 

The air-broadened half-width at half-maximum (&air) was obtained by iteratively varying &air 

by 0.0010 cm-1 atm-1 to optimize the spectral fits to each observed spectrum at eight different 

pressures from 6.6 to 72.1 torr. A common value of 0.0980 ± 0.0050 cm-1 atm-1 for &air was 

obtained for both conformers for all line scanned. All experiments were conducted at 303 K. 

Uncertainty in the reported line strengths is less than 6%, estimated by aggregating the errors 

associated with the accuracy of the NO tank (1%), NO calibration (0.5% in slope), mass flow 

rate (1% for small head, 2% for large head) and pressure transducer (1%).  

 

5.3. Results and Analysis 

The top panels of figures 3 and 4 show the observed absorbance spectra and their 

corresponding least-square non-linear fits using the calculated line strength, line position and &air 



82 

values. The bottom panels compare our line strengths to those of KMH, described above. Tables 

1 and 2 list the line position and strengths obtained from this study for the cis and trans 

conformers, respectively. 

Whereas the cumulative strengths for each of the 10 discernible peaks for the trans 

conformer near 1275 cm-1 (figure 4, top panel) are on average consistent with those of KMH, the 

14 peaks for the cis conformer at 1660 cm-1 (figure 3, top panel) are lower than those of KMH by 

a factor of approximately 2.4. This discrepancy for the cis $2 band is likely a result of the 

difficulty –  caused by the presence of lines of interfering species – associated with accurately 

integrating the broad-band spectrum of Kagann and Maki [1]. Figure 5 compares two sets of 

absorbance spectra of the $2 bands of cis and trans-HONO centered around 1640 and 1699 cm-1, 

respectively. The solid black line represents FTIR observations made by Sharpe et al. [39], who 

also normalized their broad-band HONO spectrum by the $3 band strength value of Kagann and 

Maki [1]. The dotted grey line is a simulated spectrum generated using the KMH line strengths 

and positions under the same experimental conditions of Sharpe et al. [39], hereafter referred to 

as S04. Note the KMH spectrum shows comparable absorbance depths for the $2 bands of the cis 

and trans conformers, as does the spectrum observed by Kagann and Maki [1] (top panel of their 

figure 3). S04, on the other hand, exhibits absorbance by the cis conformer that is about half that 

of KMH, consistent with observation of this study. 

One critical difference between these experiments is the method of generating gaseous 

HONO. The spectra presented here and by S04 were obtained from a near-pure source of 

gaseous HONO, generated according to the protocol of Febo et al. [36]. Kagann and Maki [1], 

on the other hand, obtained HONO as a minor byproduct from the heterogeneous reactions 

between water vapor and nitrogen oxides sealed in a static vessel. Consequently, spectral 
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Figure 5.5. Absorbance spectra (base 10) obtained by S04 (black) and KMH (grey) of the $2 

bands of cis and trans-HONO centered around 1640 and 1699 cm-1, respectively. While there is 

good agreement between the two spectra for the trans conformer, the S04 spectrum is lower than 

that of KMH by about a factor of two for the cis conformer. 
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Table 5.1. Line positions and effective line strengths for cis-HONO at 303 K. 

 
Line position 

cm-1 

Line strength 
cm-1 / (molec-cm-2) 

" 10-22 
1659.281714 84.99 
1659.286911 61.68 
1659.298047 10.49 
1659.340462 85.30 
1659.354836 86.99 
1659.371374 82.90 
1659.404336 84.47 
1659.409714 24.11 
1659.423318 16.95 
1659.452315 89.83 
1659.503076 95.71 
1659.509912 88.10 
1659.542224 14.09 
1659.549186 8.30 
1659.554688 3.54 
1659.560453 4.88 
1659.588721 101.50 
1659.596820 32.83 
1659.623827 18.63 
1659.676974 129.20 
1659.688638 74.19 
1659.749633 74.88 
1659.772514 15.57 
1659.803308 9.34 
1659.850733 69.18 
1659.887624 11.23 
1659.905308 46.62 
1660.015667 77.78 
1660.050167 13.57 
1660.057681 79.63 
1660.063576 24.24 
1660.064774 28.94 
1660.068246 87.64 
1660.068246 87.64 
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Table 5.2. Line position and effective line strengths for trans-HONO at 303 K.  

 

Line position 
cm-1 

Line strength  
cm-1 / (molec-cm-2) 

" 10-22 
1273.397922 22.30 
1273.401383 168.50 
1273.405927 8.29 
1273.409133 19.27 
1273.420385 29.12 
1273.424695 17.63 
1273.428455 17.63 
1273.438182 15.00 
1273.443661 264.80 
1273.460643 179.20 
1273.593035 15.04 
1273.594676 55.26 
1273.597142 312.80 
1273.599613 63.20 
1273.601263 18.53 
1274.272566 11.12 
1274.274129 16.36 
1274.278059 108.10 
1274.281960 20.63 
1274.286922 197.80 
1274.337689 18.62 
1274.341812 222.00 
1275.758141 125.20 
1275.822070 257.00 
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subtraction of interfering species was required to obtain the HONO spectrum. We note, for 

instance, the presence of the much stronger NO2 absorption structure at the same spectral region 

as that of the $2 band of cis-HONO (bottom panel of figure 3 in Kagann and Maki [1]). Any 

biasing errors associated with the NO2 line shape or concentration would have affected the 

spectral subtraction, hence, the retrieved HONO band strength. We rule out the difference in 

cis/trans ratio resulting from the different way in which gaseous HONO was generated, as the 

cause of the line/band strength discrepancy for cis-HONO. Given an isomerization energy barrier 

of 9.7 kcal mol-1 [40], equilibrium between the two conformers is reached on the order of pico-

seconds even in the extreme case that only one conformer is initially generated by the method of 

Febo et al. [36]. Deviation from cis/trans equilibrium by infrared light absorption-induced 

isomerization, likewise, did not play a role since the low energy cutoff occurs around 3,200 cm-1 

[40]. 

Our findings are supported by two independent studies [41-43], which validate the $3 band 

strength of the trans conformer using its absorption cross section in the ultraviolet region near 

340-380 nm. Moreover, ambient observations from the Study of Houston Atmospheric Radical 

Precursor campaign (Apr-May, 2009) show total HONO measurements using the cis absorption 

lines between 1659.45 and 1659.75 cm-1 agree to within 6% of those made by three other 

independent instruments. Detailed analysis on the HONO inter-comparison is being prepared by 

J. Pinto et al. (personal communication). The results here, however, are inconsistent with those 

of Becker et al. [44], which report effective strengths of nine absorption lines near 1255 cm-1 (P-

branch of trans $3 mode) that are exactly half of what is expected given the band strengths 

reported by Kagann and Maki [1] and Maki [45]. The cause for this discrepancy remains 

undetermined. A key difference between the current study and that of Becker et al. [44] is the 
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way in which gaseous HONO was quantified. Whereas in the present work, HONO was 

simultaneously measured by complete conversion followed by continuous NO quantification by 

calibrated absorption spectroscopy, Becker et al. [44] extracted gaseous HONO in a basic liquid 

trap followed by ion chromatography to quantify the nitrite ion. 

Upon rescaling the cis $2 KMH band using the region between 1650 and 1670 cm-1 as a guide 

to match the S04 spectrum, the values obtained here are still about a factor of 1.4 less than the 

rescaled KMH line strengths. This is likely due to missing absorption lines resulting from 

spectral interference in the KMH linelist. This would require scaling existing lines higher than 

the actual values to compensate for those missing. That there are missing lines in the KMH 

linelist is evident in the marked difference in the KMH and S04 spectra in the wings of both cis 

and trans $2 modes (figure 5). Lastly, we note the band strengths of Kagann and Maki [1] are 

based on experimental condition at 296 K, whereas values reported here were obtained at 303 K. 

Normalizing to the nominal temperature of 296 K – depending on which cis/trans energy 

difference is used – changes these values by at most 2%. 

 

5.4. Improving atmospheric measurements 

Our current detection limit (1-sec 3-#) for quantifying total HONO using cw-QC TILDAS is 

300 ppt, scanning the cis absorption lines near 1660 cm-1 and utilizing an astigmatic multi-pass 

sample cell with a total absorption path length of 210 m at a cell pressure of 30 torr [33]. In 

addition to increasing the absorption path length or improving the background electronic noise 

associated with the detector, sensitivity (i.e. absorbance) can be enhanced by choosing a spectral 

region in which HONO absorbs light more strongly. In light of our results and using the KMH 

linelist as a guide, a factor of about 2 improvement in precision can be readily achieved by 
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targeting absorption lines for the trans conformer at 1247.16 (P-branch of $2 mode) or 1273.60 

cm-1 (R-branch of $2 mode), as these lines are relatively free of spectral interference from water 

vapor and other known absorbers. Precision (1-sec 3-#) as low as 60 ppt may be obtained under 

the same conditions with trans conformer absorption lines at 1709.00 or 1713.51 cm-1 (R-branch 

of $2 mode), for which there is good agreement between the KMH and S04 spectra (figure 5).  

A targeted line-by-line study such as the one conducted here is likely required, however, for 

better accuracy in the retrieved HONO concentrations obtained from these less-studied spectral 

regions. Figures 4 shows that while on average our trans-HONO line strengths agree well with 

those in the KMH linelist, there may be a difference as high as 17% for a single discernible 

absorption peak. Discrepancies are more frequent in spectral regions where there is close overlap 

of absorption lines, pointing to the limited resolution of the KMH linelist. Furthermore, 

assessments of absorption parameters including the temperature dependence of isomerization and 

the air-broadened halfwidth are required for remotely measuring HONO and for its inclusion in 

linelist compilations such as HITRAN [31].  

The assertion here that the cis $2 band strength of Kagann and Maki [1] is too high by a 

factor of about 2.4 implies that previous measurements of HONO concentrations in aircraft 

exhaust [29] and references therein, should be adjusted accordingly. Examination of Table 1 of 

ref. [29] shows that correction by a factor of 2.4 of the measurements that utilized the cis $2 band 

strength [1], brings them closer to the range observed by measurements that used line strengths 

that are consistent with the trans $2 [29] and $3 [25] band strengths. 

 

5.5. Conclusion 



89 

We report effective line strengths for the cis and trans conformers of HONO. Absorbance of 

each conformer was recorded using multiple TILDAS systems equipped with cw-QC lasers, 

while simultaneously quantifying total HONO by catalytic conversion to NO. Line strengths 

obtained in this study for the trans conformer near the 1275 cm-1 spectral region are in good 

agreement with the previously reported trans $3 band strength [1], confirmed by two independent 

studies by comparison to the UV absorption cross section [41-43]. Line strengths for the cis 

conformer at 1660 cm-1 are, however, lower than reported cis $2 band strength [1] by about a 

factor of 2.4. The reason for the cis $2 line/band strength discrepancy, we submit, is the presence 

of interfering absorption lines from chemical species other than HONO in the spectra obtained in 

previous studies [1]. 
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Chapter 6: 

Urban measurements of atmospheric nitrous acid: an alternative assessment of secondary 

day and nighttime production5 

 

Abstract 

Numerous studies infer the existence of an “unknown” HONO source from measuring the rate of 

HONO losses by photolysis and OH-oxidation that exceed production by the gas-phase reaction 

between NO and OH. Production rates as high as 1.1 ppb hr-1 from a secondary source are 

needed to close this imbalance for photostationary state (PSS), based on measurements obtained 

during the SHARP campaign in May of 2009. We argue, however, that the PSS assumption of no 

net production or loss of HONO was not valid because the transport time from nearby emission 

sources to the measurement site was short relative to HONO’s lifetime. Using a chemical box 

model, we demonstrate that there is initially net HONO formation in fresh exhaust as NO – the 

main component of vehicle-derived NOx emissions – rapidly reacts with ambient OH. Production 

is followed by a period of net HONO loss, that is sustained on the order of several minutes to 

hours depending on solar radiation. The presence of relatively fresh diluted vehicle exhaust can 

in part, if not fully, account for this measured imbalance. We also show that a large fraction of 

the observed increase in HONO:NOx ratio at night can be explained by NO2 oxidation. 

 

6.1. Introduction 

                                                 
5 Lee, B. H., Wood, E. C., Herndon, S. C., Lefer, B. L., Luke, W. T., Brune, W. H., Nelson, D. D., Zahniser, M. S., 
J. W. Munger, to be submitted to Geophysical Research Letters. 
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The three gas-phase reactions that are typically considered to govern daytime HONO levels – 

ignoring heterogeneous chemistry – are formation by the reaction (R1) between nitric oxide 

(NO) and the hydroxyl radical (OH), and losses by photolysis (R2) and oxidation (R3) by OH.  

 

R1) OH + NO + M ! HONO + M   k1 

R2) HONO + h$ ! OH + NO    JHONO 

R3) HONO + OH ! H2O + NO2    k3 

 

At photostationary state (PSS), the net time rate of concentration change due to chemistry 

is zero. Observations of negative net rates – considering only reactions 1-3 and invoking PSS – 

have been interpreted as evidence of an unaccounted HONO source [Alicke et al., 2002; Alicke et 

al., 2003; Neftel et al., 1996; Sorgel et al., 2011; Staffelbach et al., 1997; Wong et al., 2012], as 

represented by P* in equation 1 (E1). Numerous formation pathways – the magnitude of which is 

given by equation 2 (E2) – have been proposed to reconcile the observed imbalance between 

production (R1) and loss (R2+R3), including heterogeneous reaction enhanced by photo-excited 

organics [Stemmler et al., 2006], long-wave photolysis of nitrogen dioxide (NO2) [Li et al., 

2008], direct release of HONO from soil due to excess nitrite ions [Su et al., 2011], production 

on aerosol/soot/TiO2 surfaces [Ammann et al., 1998; Langridge et al., 2009; Monge et al., 2010; 

Stemmler et al., 2007] and heterogeneous nitrate ion photolysis [Zhou et al., 2011; Ziemba et al., 

2010].  

 

(E1)  
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(E2)  

 

, where the concentrations of OH, NO and HONO and JHONO are observed quantities.  

Urban HONO levels – measured by a variety of detection techniques – indicate it to be a 

significant source of daytime radicals [Mao et al., 2010; Ren et al., 2003; Ren et al., 2006; Su et 

al., 2008; Vogel et al., 2003]. Photolysis of HONO formed by any pathway not involving OH or 

the hydroperoxyl radical (HO2) constitutes a net source of HOx (=OH+HO2). Whereas previous 

studies point to secondary production based on the PSS assumption, we propose that air masses 

sampled during SHARP (and perhaps at other urban locations) are not in photostationary balance 

for HONO, based on its atmospheric lifetime and conservatively-estimated transport time from 

emission sources surrounding the site. Using a chemical box model, we demonstrate that 

appreciable net HONO loss persists long enough that influence from fresh vehicle exhaust can, at 

least in part, account for the observed imbalance from PSS.  

Lastly, nighttime accumulation of HONO – which initiates photochemistry in the early 

morning prior to other HOx precursors [Winer and Biermann, 1994] – has largely been attributed 

to NO2-driven heterogeneous reaction with minor contribution from direct emissions, by using 

the HONO:NOx ratio as a conserved tracer [Pitts et al., 1984; Platt et al., 1980; Wong et al., 

2012; Yu et al., 2009]. Previous studies, however, failed to account for nighttime NOx oxidation 

and deposition, both of which can influence the HONO:NOx ratio. 

 

6.2. Field Measurements 

We present gaseous HONO and NO2 mixing ratios measured atop the North Moody Tower 

on the University of Houston (UH) campus, situated approximately 5 km southeast of downtown 
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Houston (latitude: 29.72°, longitude: -95.34°). Measurements were made as part of the Study of 

Houston Atmospheric Radical Precursors (SHARP) campaign during May of 2009, described by 

Lefer et al. [citation]. Mixing ratios of gaseous HONO and NO2 were simultaneously quantified 

using a dual tunable infrared quantum cascade laser absorption spectrometer. Ambient air was 

drawn from the top of a four-story scaffolding tower through a custom-built quartz inlet, 

connected by 30 feet (9.2 m) of 3/8 inch (9.5 mm) outer diameter perfluoroalkoxy (PFA) tubing 

to the spectrometer, which was housed in a temperature-controlled shed on the roof of the 18-

story building. The inlet design removed particles larger than about 4 microns from the sample 

stream by inertial separation, obviating the need for inlet filters. A critical orifice at the inlet 

reduced the pressure to about 0.5 bar. Both the inlet and tubing were heated to 35°C and covered 

by opaque materials. The combination of reduced pressure and heating above ambient 

temperature was designed to minimize the presence of aqueous films in the sample line. In-field 

tests conducted during the course of ambient measurements checked for possible artifacts and 

interferences resulting from the sampling technique. Routine additions of humidity-matched 

zero-air and gaseous HONO and NO2 consistently showed equal response times for HONO and 

NO2 through the inlet, tubing and sample cell, indicating no reversible loss of HONO during 

sampling. Additions from a stable source of HONO in laboratory studies exhibited no 

instantaneous loss due to either the inlet or the tubing. Introducing NO2 levels >200 ppb mixed 

with ambient Houston air under conditions conducive to heterogeneous chemistry (i.e. unheated 

tubing, sample near ambient pressure), showed no evidence of HONO production (figure 6 in 

Lee et al. [2011]). The sample residence (1/e) times in the inlet, tubing and cell were on average 

0.3, 0.2 and 1.3 seconds, respectively, at a total flow rate of approximately 10 standard liters per 

minute. During SHARP, the instrumental detection limits (3#) with one hour spectral averaging 
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were 40 ppt and 10 ppt (pmol/mol) for HONO and NO2, respectively. Typical half-hour averaged 

absorbance spectra obtained by the two lasers during the campaign are shown in the 

supplemental section (Supplementary figure B4). Additional details on instrument performance, 

sampling technique and mixing ratio time-series of HONO and NO2 observed during SHARP are 

presented by Lee et al. [2011]. 

Quantification of HONO in the field relied on the accuracy of mid-infrared line strengths 

obtained in the laboratory by measuring the absorbance of HONO by the spectrometer while 

quantifying HONO by complete catalytic conversion to NO, followed by calibrated absorption 

spectroscopy [Lee et al., 2012]. Comparison to other HONO measurements included in the 

SHARP campaign corroborates the accuracy of TILDAS. Ambient observations during the 

campaign by four unique point-measurement instruments showed agreement to within 6% 

considering all time-matched data. A long path-averaged differential optical absorption 

spectroscopy (DOAS) measurement was typically lower than the point measurement methods, 

particularly in the early morning hours, likely due to heterogeneity along the DOAS absorption 

path that is not represented by the point measurements. Detailed analyses on the inter-

comparison will be presented by J. Pinto (personal communication). 

The other variables utilized in the present analysis include measurements of OH by laser-

induced fluorescence [Faloona et al., 2004; Mao et al., 2010], NO by ozone-chemiluminescence 

[Luke et al., 2010] and HONO photolysis rates, derived from measured NO2 photolysis rates 

using the parameterization of Kraus and Hofzumahaus [1998]. All three in situ measurements 

were obtained by instruments co-located with the HONO inlet on the scaffolding tower. 

Additional details regarding the SHARP campaign are presented elsewhere [Lefer et al., in 

preparation]. 
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6.3. Results 

During SHARP, the measured HONO levels typically exceeded values calculated by 

assuming PSS between reactions 1-3 (figure 1a). By definition, measured levels are 

underestimated by PSS-approximated levels when d[HONO]/dt (E1, with P* = 0) is negative and 

overestimated when positive (figure 1b). At photostationary state, observed HONO ([HONO]Obs) 

concentrations that are greater than those at PSS ([HONO]PSS), suggests unaccounted HONO 

production and/or overestimation of loss. However, for the PSS approximation to be valid, the 

time to observation – or reaction time since emission/production – must be several times longer 

than the atmospheric lifetime of the species being considered [Steinfeld et al., 1989; Turanyi et 

al., 1993; Wayne, 2000]. The lifetime, %, defined as the inverse sum of the loss rates (E3), ranged 

from about ten minutes at midday to several hours during the early morning/late afternoon 

periods for HONO (Supplementary figure B5). 

 

(E3)  

 

The UH campus is approximately 5 km southeast of the center of Houston, where the 

majority of population is largely confined within a roughly 20 km radius, and is within 5 km of 

major freeways in all directions. Assuming that emission sources located within 10 km of the site 

are responsible for the observed enhancements of HONO and NOx mixing ratios, the mean 

transport time for the emitted species is approximately 30 minutes given SHARP-averaged 

daytime wind speed of 5.5 m sec-1. In actuality, sampled air masses are influenced by many 
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Figure 6.1. a) Small grey symbols show the hourly-averaged measured:PSS ratio and b) sum of 

HONO production (R1) and loss rates (R2+R3), both plotted as a function of time of day (CST). 

The large black line-connected markers represent the overall median for each daytime hour 

during the SHARP campaign. 
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emission sources during their recent history, resulting in a complex distribution of photochemical 

ages. 

We use a chemical box model to estimate the time rate of change of HONO concentration 

in vehicle exhaust, the dominant source of nitrogen oxides in the region, as it mixes with NOx-

free background air. HONO mixing ratios were calculated in two ways; by numerical integration 

([HONO]time-integrated) and by assuming instantaneous PSS between reactions 1-3 at each time step 

([HONO]instantaneous-PSS). Simulations were conducted over observed ranges of OH and JHONO – the 

two variables driving HONO loss. Reactions 1-6 were considered, with rates for 298 K [Atkinson 

et al., 2004; Sander et al., 2011]. The initial NO/NO2/HONO distribution (0.95/0.042/0.008) in 

exhaust was obtained from Kurtenbach et al. [2001]. Absolute initial concentrations did not 

affect the simulated ratio. Variation in the numerical integration time steps from 0.1 to 10 

seconds, likewise, had no effect. Due to the titration of ambient OH and O3 by NO in fresh 

exhaust and the rapid regeneration of OH from photolysis of concentrated HONO, four scenarios 

were considered to capture the range of possible conditions during initial mixing; i) constant OH 

(simulation value) and constant O3 (50 ppb), ii) constant OH with O3 linearly increasing in time 

from 0 ppb (t=0) to 50 ppb (t=5 min), iii) OH starting at double the simulation value (t=0) and 

decreasing linearly to simulation value (t=5 min) with constant O3 (50 ppb), and iv) both OH and 

O3 varying in time.  

 

R4) NO + O3 ! NO2 + O2     k4 

R5) NO2 + h$ ! NO + O     k5 

R6) NO2 + OH + M ! HNO3 + M   k6 
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For all cases, there is initially net production of HONO by reaction 1 (R1). Figures 2a and 

2b show that as NO is depleted by reaction with O3 (R4), a short period (on the order of a few 

minutes) of net HONO production (from R1) is followed by a longer period (on the order of 

several minutes to hours) of net HONO loss (from R2 and R3), demonstrating persistent nonzero 

net rate of change of HONO concentration. Production of HONO is faster if initial O3 levels are 

low (case ii) or if initial OH levels are high (case iii) due to their effects on NO. Figure 3 shows 

the time-integrated:instantaneous-PSS HONO ratios following a reaction time since emission 

that was assigned randomly with a Gaussian distribution of 30±10 minutes (figure 2d) to 

represent the complex mixture of photochemical ages sampled. Results in figure 3 are of case ii, 

determined for 40,000 different combination of OH and JHONO values. The simulated ratio under 

midday conditions is approximately 1.3 and increases with lower OH and JHONO values. If initial 

OH levels are low due to slow photolysis and/or suppression by high NO, then there is initially 

net HONO loss (R1) followed by a period of lower net loss or even net production as OH reacts 

with excess NO. For instance, the time period between 06:00 and 09:00 – characterized by 

morning emissions within a shallow mixing layer – experienced anomalously high net HONO 

loss (d[HONO]/dt < 0) on some days and production (d[HONO]/dt > 0) on others (figure 1b), 

likely depending on the history of OH in the sampled air mass and extent of chemical processing 

at the time of sampling. Moreover, the net rate (figure 1b) – outside of the morning rush hour – 

exhibited a diurnal trend, which may be evidence of photo-driven secondary HONO production 

[Wong et al., 2012] or may simply reflect the sunlight dependence of reactions 1-3. 

HONO for all cases approaches steady state following a perturbation period, the time that 

the model allows for OH and O3 to reach their respective steady state values and which dictates 

approximately the time since emission when the maximum time-integrated:instantaneous-PSS 
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Figure 6.2. Simulated time-series of (a) [NO], [NO2], [HONO]time-integrated and [HONO]instantaneous-PSS 

in vehicle exhaust for constant [OH] = 0.5 ppt and constant [O3] = 30 ppb, (b) sum of the 

production (R1) and loss (R2+R3) rates of HONO and (c) the ratio of time-

integrated:instantaneous-PSS HONO for the four cases. (d) Probability distribution of the age of 

air mass that was assigned to each simulation, the result of which is summarized in figure 3. 
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Figure 6.3. The color contours show the ratio of time-integrated:instantaneous-PSS HONO 

mixing ratios of vehicle exhaust following a time period that was randomly assigned from a 

Gaussian probability distribution centered at 30±10 minutes (figure 2d). Results here are plotted 

as a function of OH and JHONO, both of which were held constant throughout each simulation 

(case ii). The black markers represent OH and JHONO observed during SHARP. 
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ratio is encountered. Variation in its absolute value – set arbitrarily as five minutes to represent 

the time required for complete entrainment of background air – has minor effects on the degree 

of departure from steady state. Considering that the duration of a nonzero net rate of HONO 

change is inversely proportional to its lifetime, the main implication is that both the extent and 

duration of deviation from steady state are sensitive to the age of the sampled air mass since 

emission and photochemical conditions within the plume and of the ambient atmosphere. 

Daytime HONO concentrations observed during SHARP (and at other urban measurement sites) 

were frequently greater than those predicted for PSS of reactions 1-3. This analysis shows that 

reaction R1 can significantly – if not entirely – account for the persistent nonzero net HONO loss 

rate due to continued entrainment of fresh emissions. 

The observed HONO:NOx ratio increased during most nights (Figure 4a). Previous 

studies have attributed similar observations to NO2-fueled heterogeneous HONO production on 

the ground [Wong et al., 2011] or aerosol [Yu et al., 2009] surfaces. Direct emissions were 

discounted when estimating production rates because observed HONO:NOx ratios exceeded 

those reported in fresh vehicle exhaust. However, neither the chemical processing of directly-

emitted NOx nor its deposition, the presumed source of HONO production, were taken into 

account. We consider nocturnal chemistry of NOx associated with NO3 and N2O5 formation (R7-

R12) in a box model to estimate HONO production per deposited NO2 of a stagnant nighttime air 

mass. 

 

R7) NO + O3 ! NO2 + O2     k7   

R8) NO2 + O3 ! NO3 + O2    k8 

R9) NO + NO3 ! NO2 + NO2    k9 
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Figure 6.4. (a) Observed (black circles) and modeled (red = chemistry only; blue = chemistry + 

deposition; green = chemistry + deposition + emissions) HONO:NOx ratio plotted starting at 

19:00 (CST). (b) HONO production rate per NO2 deposited per time, calculated as the difference 

between observed (black) and modeled (green), after accounting for NOx chemistry, deposition 

and emission. 
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R10) NO2 + NO3 + M ! N2O5 + M    k10 

R11) N2O5 + M ! NO2 + NO3 + M    k11 

 

Figure 4a shows results from three simulations of HONO:NOx ratios following nightfall. The 

initial value at sunset (19:00) for all cases is set to the corresponding observed median ratio 

(0.016). The nighttime simulations were conducted with O3 held constant at 30 ppb and ignoring 

subsequent reactions and deposition of NO3 and N2O5. The base case (shown in red) considers 

only O3-initiated NOx oxidation (R7-R11) and exhibits an increasing trend in HONO:NOx that is 

comparable to observed patterns. Including deposition of HONO and NO2, both with a 

deposition velocity of 0.1 cm sec-1 integrated over a 100 m boundary layer height, does not 

significantly alter the HONO:NOx trend (blue line). In both cases, however, the resulting NOx 

level decays to about half the initial value mainly due to conversion of NOx to NO3 and N2O5. 

Observed NOx levels, however, do not show consistent nighttime drawdown (Supplementary 

figure B6). Maintaining a constant simulated NOx level by replacing the NOx lost to chemical 

reaction with fresh emissions that have a HONO:NOx ratio of 0.008 [Kurtenbach et al., 2001], 

results in a lower simulated HONO:NOx trend (green line). We interpret the difference between 

the median of the SHARP nighttime observations and this modeled scenario that includes 

chemistry, deposition and emissions as HONO production at the ground surface. Figure 4b 

shows that the increase in HONO:NOx not attributable to NO2 oxidation or NOx emission is 

about 1:15 HONO produced per NO2 deposited per hour, which is about twice the rate of 1:33 

reported by Stutz et al. [2002]. Given the simplification of the chemistry and assumption of a 

stagnant air mass, this difference may not be significant.  



109 

 

6.4. Conclusion 

We report direct simultaneous measurements of HONO and NO2 mixing ratios using a 

tunable infrared laser differential absorption spectrometer. Rigorous in-field and laboratory tests 

of the sampling scheme demonstrate the absence of positive and negative artifacts. Given the 

atmospheric lifetime of HONO, we show – based on conservative approximations of chemistry 

in mixing air parcels and transport times of directly-emitted vehicle exhaust – that air masses 

sampled during SHARP can sustain a nonzero net rate of HONO change with continued 

entrainment of fresh vehicle exhaust. A larger fraction of the discrepancy between measured and 

PSS-assumed levels may be reconciled if initial OH levels in exhaust plume were high (cases iii 

and iv) or if the actual distribution of photochemical ages is skewed toward younger ages. This 

analysis points to the importance of explicitly considering the effects of mixing and transport in 

the near-field, particularly when sampling in relative close proximity to emission sources. 

Distinguishing between alternate production pathways for HONO and primary production from 

OH + NO has important implications for determining the net production of HOx. During 

nighttime, we show that NOx oxidation and emissions are significant. Thus NOx cannot be 

considered a conservative tracer for using the HONO:NOx ratio as an indicator of HONO 

production. We estimate that 1 HONO molecule is emitted from the ground surface per 15 NO2 

molecules deposited per hour. 
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Chapter 7: 

Absence of daytime/non-surface-NO2-driven nighttime HONO production observed above 

a forest 

 

Abstract 

Daytime production of HONO in relatively pristine areas is reported to be a significant, yet-

unconstrained source of hydroxyl radicals, one of the main atmospheric oxidants, near the 

Earth’s surface. Nearly-continuous, year-long measurements by direct absorption spectroscopy a 

few meters above the canopy at Harvard Forest, however, show no evidence of sunlight-driven 

HONO production. The median daytime (10 am to 4 pm, local time) HONO mixing ratio 

spanning the four seasons is 15 ppt (n=1004, 1-hr avg.), comparable to levels expected given 

known chemistry. Biosphere-atmosphere exchange of HONO is at all times below instrument 

eddy covariance flux detection limit (1-hr 3-#) of about 0.9"10-6 mol m-2 h-1 (550 ppt cm sec-1). 

Observations indicate secondary daytime HONO production contributes negligibly to the HOx 

and NOx budgets of the overlying atmosphere at Harvard Forest over all seasons. Enhanced 

nighttime HONO level is observed, with high night-to-night variability exhibited in HONO:NO2 

that cannot be reasonably explained by NO2 and HONO fluxes. We propose non-NO2, non-

ground/canopy surface related nighttime source. 

 

7.1. Introduction 

Recent measurements above forest canopies show daytime HONO mixing ratios elevated 

above levels calculated assuming photostationary state. Such observations have been interpreted 
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as evidence of an unaccounted secondary HONO source [Acker et al., 2006b; Kleffmann et al., 

2005; Ren et al., 2010a; Sorgel et al., 2011; Zhou et al., 2007b; Zhou et al., 2011]. Numerous 

sunlight-driven production pathways have been proposed to balance the observed HONO loss 

rate due to photolysis and OH-oxidation that often exceed the rate of production by the gas-phase 

reaction between NO and OH [Stemmler et al., 2006; Su et al., 2011; Zhou et al., 2011]. The rate 

of secondary HONO formation inferred from this photostationary state approximation suggests a 

significant source of OH radical, as HONO photodissociates with a midday lifetime of around 

ten minutes during the summer season. Moreover, depending on the mechanism, it may represent 

a pathway by which deposited nitrogen oxides are repartitioned back into the atmosphere in 

reactive form [Zhou et al., 2003; Zhou et al., 2007a].  

Accumulation of HONO beneath the nocturnal boundary layer initiates photochemistry in 

the early morning prior to other HOx precursors [Platt et al., 1980; Winer and Biermann, 1994]. 

Previous studies have attributed nighttime HONO growth to the heterogeneous reaction of NO2 

on humid surfaces [Barney and Finlayson-Pitts, 2000; Finlayson-Pitts et al., 2003; Pitts et al., 

1984; Ramazan et al., 2006], even in urban areas where this reaction is thought to dominate over 

direct combustion emissions [Platt et al., 1980; Stutz et al., 2002]. In the laboratory, the rate of 

this reaction is first order with respect to the level of NO2, yielding 1 HONO molecule for every 

2 NO2 deposited. Over a grassy field in an urban environment, Stutz et al. [Platt et al., 1980; 

Stutz et al., 2002] observed 1 HONO emitted from the ground surface for every 33 NO2 

deposited.  

Here we present near-continuous measurements of atmospheric HONO and NO2 

observed above the forest canopy at the Environmental Measurement Site at Harvard Forest from 

December 2010 to December 2011 (supplemental figure B7). This represents the first extended 
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campaign simultaneously measuring HONO and NO2 – a proposed day and nighttime HONO 

precursor – mixing ratios as well as fluxes by eddy covariance using an absorption spectrometer. 

Though not as sensitive as the wet-chemical extraction technique [Dibb et al., 2004; Huang et 

al., 2002; Kleffmann et al., 2002], which to-date have been the only instruments deployed in 

forested environments, the direct spectroscopic method offers greater specificity as it is less 

prone to artifacts and interferences [Kleffmann et al., 2006; Liao et al., 2006] (Supplementary 

figure B8).  

 

7.2. Methods 

Ambient air was continuously drawn through an inlet located about 5 m above the canopy 

on a 30 m tall tower at the mixed deciduous (~30% red oak by basal area) Harvard Forest. The 

custom-designed inlet inertially separated large (>4 µm) particles, obviating the need for a filter. 

The inlet also reduced by about half the pressure of the sample, which subsequently traveled 

through 180 feet of perfluoroalkoxy tubing (0.375 inch outer diameter) to the ground-based 

spectrometer. The inlet and tubing were heated to above ambient and shielded from light to 

minimize the presence of surface water and photochemical reactions. A total flow rate of about 

12 standard liters per minute was maintained, resulting in sample residence times (1/e) of about 

0.3, 1.6 and 1.3 seconds in the inlet, tubing and sampling cell, respectively. Routine in-field 

additions of gaseous HONO and NO2 into the inlet showed equal response times through the 

inlet, tubing and instrument, exhibiting the absence of slow, reversible loss of HONO through 

the sampling setup. Additions of gaseous HONO with/without the inlet and with/without the 

tubing showed no instantaneous loss on the surfaces of either apparatus (Supplementary figure 

B9). Additions of high levels of NO2 under conditions conducive to heterogeneous HONO 
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production (i.e. unheated tubing/inlet, sample near ambient pressure) mixed with humid urban 

air, dry room air and humidity-matched zero-air showed no enhancement of HONO due either to 

chemical or spectroscopic interference (Supplementary figure B10). These tests demonstrate the 

absence of positive and negative artifacts from the sampling scheme used. 

Calibrations were periodically performed by catalytic conversion of generated HONO to 

nitric oxide, which was measured by a second co-located instrument [Munger et al., 1996]. 

Supplemented by continuously monitoring the laser stability – the main source of drift with 

spectroscopic techniques – we confirm the absence of long-term drift in measurements. Short-

term variability, driven by thermal perturbations to the instrument, were corrected by frequent 

spectral background subtractions with additions of zero-air – generated by scrubbing ambient air 

by heated palladium catalyst – every 180 seconds for 45 seconds. We report detection limits (3# 

1-hr) of 15 and 5 ppt for HONO and NO2, respectively (Supplementary figure B11). Additional 

details regarding the instrument performance and sampling scheme are provided elsewhere [Lee 

et al., 2011]. Eddy covariance flux detection limits (3# 1-hr) for HONO and NO2 were about 

0.9"10-6 mol m-2 h-1 (550 ppt cm sec-1) and 5"10-6 mol m-2 h-1 (2.9 ppb cm sec-1), respectively, 

determined as the 3# of the mean of the covariance from -1000 to -500 and +500 to +1000 

seconds away from true lag (Supplementary figure B12) [McKinney et al., 2011].  

 

7.3. Results and discussion 

Figure 1 shows a brief time series exhibiting a typical diurnal trend of HONO and NO2 

mixing ratios at Harvard Forest. Nighttime enhancement of HONO is observed, concomitant 

with NO2. The levels of both decrease with the breakup of the nocturnal boundary layer and 

photolytic loss at sunrise. Figure 2 shows the diurnally averaged HONO mixing ratios 
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Figure 7.1 Time series of NO2 (top) and HONO (bottom), with total solar radiation (right). 
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Figure 7.2. Diurnal mean and median of HONO mixing ratio (left) and total solar radiation 

(right) for December 2010 to December 2011.  
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encompassing all seasons. The median daytime (10 am to 4 pm) HONO mixing ratio is 15 ppt, 

much lower than has been previously measured in other rural, forested atmospheres [Acker et al., 

2006a; He et al., 2006; Kleffmann et al., 2005; Sorgel et al., 2011; Zhou et al., 2011]. Previous 

studies have compared measured values to those inferred assuming that HONO is at 

photostationary state, that is, that the production rate by the homogeneous reaction between NO 

and OH (R1) is exactly balanced by the sum of the loss rates by photolysis (R2) and OH-

oxidation (R3). 

 

  R1  NO + OH + M ! HONO + M 

R2  HONO + h$ ! OH + NO 

R3  HONO + OH ! H2O + NO2 

 

At photostationary state, the HONO mixing ratio is then given by, 

 

! 

HONO[ ]PSS =
k1 NO[ ] OH[ ]
J2 + k3 OH[ ]

 

 

Given typical rural daytime values of NO, OH and HONO photolysis rate, 

photostationary state yields HONO mixing ratio around 10 to 20 ppt. Comparable to our 

observations, Ren et al. [2010b] observed daytime HONO levels between 20 and 30 ppt at 

Blodgett Forest at the foothills of the Sierra Nevada Mountains. Ren et al. [2010b], nonetheless, 

report a secondary daytime HONO source as their measured values were on average a factor of 9 

greater that those calculated at PSS. We contend, however, that the PSS-approximated level does 

not establish a reliable baseline to infer a secondary source. It has been demonstrated that in 



121 

order for steady state to be established, a length of time since emission/production several times 

greater than the lifetime of the reactive species is required [Steinfeld et al., 1989; Turanyi et al., 

1993]. If rapid HONO production is occurring on the surface of canopy leaves [Zhou et al., 

2011], sampling a few m from the source suggests complete photostationary state is likely not 

achieved. If production is occurring below the shaded canopy [Stemmler et al., 2006; Su et al., 

2011] where the HONO lifetime is on the order of several tens of minutes, an even longer period 

of reaction/transport time since production is required for photostationary state to be established.  

Assuming that there is daytime HONO flux out of the canopy at a rate of our 3# flux 

detection limit (550 ppt cm sec-1) into a well-mixed daytime boundary layer height of 500 m, this 

would result in an enhancement of 36 ppt of HONO. The resulting rate of OH production due to 

HONO photolysis would be negligible compared to that from typically observed O3 levels.  

Daytime HONO production rate ranging from 160 to 2600 ppt hr-1 has been reported in 

rural and suburban sites in the U.S. and Europe [Acker et al., 2006b; Acker and Moller, 2007; 

Kleffmann et al., 2005; Ren et al., 2010a; Zhou et al., 2011]. Integrated throughout a daytime 

boundary layer height of 500 m, this range is equivalent to a vertical flux between 2,222 ppt and 

36,111 ppt cm sec-1, well within our detection limit. 

The contrasting observations are difficult to reconcile. Site-specific chemistry is possible, 

but unlikely seeing as Harvard Forest experienced comparable, if not higher, levels of NO2 – the 

hypothesized HONO precursor – than at sites where measurements indicate strong daytime 

production. Acidity, nitrite and nitrate ion and humic acid content in soils or leaf surface may 

differ. Instrumental sensitivity to artifacts cannot be ruled out. At the very least, previous claims 

of fast HONO production should not be extrapolated to all rural environments. 
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Figure 3 shows a brief time series of HONO and NO2 mixing ratios, flux of NO2 and total 

solar radiation. Note, that the level of nighttime HONO level enhancement is approximately the 

same on both nights, whereas NO2 on the second night is about half that of the first. Deposition 

of NO2 is far greater on the first night than on the second, consistent with NO2 but not HONO. 

Moreover, let us assume that 2 NO2 molecules depositing on the canopy/ground surface yields 1 

HONO molecule, and that the reaction and release of surface-adsorbed HONO into the canopy 

space is instantaneous. The grey trace on figure 5 shows the flux of NO2 required in a 100 m 

deep nocturnal boundary layer to maintain the observed HONO mixing ratio. While there is 

sufficient NO2 deposited on the first night, this is not the case on the second night. Similarly, 

HONO flux out of the canopy at a rate of our 3# flux detection limit into a nocturnal boundary 

layer height of 100 m, would result in a HONO enhancement of 180 ppt, less than what is 

observed. This indicates that the flux should be greater, but is not observed. Nighttime 

observations at Harvard Forest strongly suggest a nighttime HONO source independent of gas-

phase NO2 and unrelated to the below canopy/ground surface. 
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Figure 7.3. Time series of HONO (red) and NO2 (black) mixing ratio, observed flux of NO2 

(green), calculated flux of NO2 needed to account for observed nighttime HONO enhancement 

(grey) and total solar radiation (beige).  

 

 

 

 



124 

References 
 
Acker, K., A. Febo, S. Trick, C. Perrino, P. Bruno, P. Wiesen, D. Moller, W. Wieprecht, R. Auel, 

M. Giusto, A. Geyer, U. Platt, and I. Allegrini (2006a), Nitrous acid in the urban area of 
Rome, Atmospheric Environment, 40(17), 3123-3133. 

 
Acker, K., D. Moller, W. Wieprecht, F. X. Meixner, B. Bohn, S. Gilge, C. Plass-Dulmer, and H. 

Berresheim (2006b), Strong daytime production of OH from HNO2 at a rural mountain 
site, Geophysical Research Letters, 33(2), -. 

 
Acker, K., and D. Moller (2007), Atmospheric variation of nitrous acid at different sites in 

Europe, Environmental Chemistry, 4(4), 242-255. 
 
Barney, W. S., and B. J. Finlayson-Pitts (2000), Enhancement of N2O4 on porous glass at room 

temperature: A key intermediate in the heterogeneous hydrolysis of NO2?, Journal of 
Physical Chemistry A, 104(2), 171-175. 

 
Dibb, J. E., L. G. Huey, D. L. Slusher, and D. J. Tanner (2004), Soluble reactive nitrogen oxides 

at South Pole during ISCAT 2000, Atmospheric Environment, 38(32), 5399-5409. 
 
Finlayson-Pitts, B. J., L. M. Wingen, A. L. Sumner, D. Syomin, and K. A. Ramazan (2003), The 

heterogeneous hydrolysis of NO2 in laboratory systems and in outdoor and indoor 
atmospheres: An integrated mechanism, Physical Chemistry Chemical Physics, 5(2), 223-
242. 

 
He, Y., X. L. Zhou, J. Hou, H. L. Gao, and S. B. Bertman (2006), Importance of dew in 

controlling the air-surface exchange of HONO in rural forested environments, 
Geophysical Research Letters, 33(2), -. 

 
Huang, G., X. L. Zhou, G. H. Deng, H. C. Qiao, and K. Civerolo (2002), Measurements of 

atmospheric nitrous acid and nitric acid, Atmospheric Environment, 36(13), 2225-2235. 
 
Kleffmann, J., J. Heland, R. Kurtenbach, J. Lorzer, and P. Wiesen (2002), A new instrument 

(LOPAP) for the detection of nitrous acid (HONO), Environmental Science and Pollution 
Research, 48-54. 

 
Kleffmann, J., T. Gavriloaiei, A. Hofzumahaus, F. Holland, R. Koppmann, L. Rupp, E. 

Schlosser, M. Siese, and A. Wahner (2005), Daytime formation of nitrous acid: A major 
source of OH radicals in a forest, Geophysical Research Letters, 32(5). 

 
Kleffmann, J., J. C. Lorzer, P. Wiesen, C. Kern, S. Trick, R. Volkamer, M. Rodenas, and K. 

Wirtz (2006), Intercomparison of the DOAS and LOPAP techniques for the detection of 
nitrous acid (HONO), Atmospheric Environment, 40(20), 3640-3652. 

 
Lee, B. H., E. C. Wood, M. S. Zahniser, J. B. McManus, D. D. Nelson, S. C. Herndon, G. W. 

Santoni, S. C. Wofsy, and J. W. Munger (2011), Simultaneous measurements of 



125 

atmospheric HONO and NO2 via absorption spectroscopy using tunable mid-infrared 
continuous-wave quantum cascade lasers, Applied Physics B-Lasers and Optics, 102(2), 
417-423. 

 
Liao, W., A. T. Case, J. Mastromarino, D. Tan, and J. E. Dibb (2006), Observations of HONO by 

laser-induced fluorescence at the South Pole during ANTCI 2003, Geophysical Research 
Letters, 33(9), -. 

 
McKinney, K. A., B. H. Lee, A. Vasta, T. V. Pho, and J. W. Munger (2011), Emissions of 

isoprenoids and oxygenated biogenic volatile organic compounds from a New England 
mixed forest, Atmospheric Chemistry and Physics, 11(10), 4807-4831. 

 
Munger, J. W., S. C. Wofsy, P. S. Bakwin, S. M. Fan, M. L. Goulden, B. C. Daube, A. H. 

Goldstein, K. E. Moore, and D. R. Fitzjarrald (1996), Atmospheric deposition of reactive 
nitrogen oxides and ozone in a temperate deciduous forest and a subarctic woodland .1. 
Measurements and mechanisms, Journal of Geophysical Research-Atmospheres, 
101(D7), 12639-12657. 

 
Pitts, J. N., E. Sanhueza, R. Atkinson, W. P. L. Carter, A. M. Winer, G. W. Harris, and C. N. 

Plum (1984), An Investigation of the Dark Formation of Nitrous-Acid in Environmental 
Chambers, International Journal of Chemical Kinetics, 16(7), 919-939. 

 
Platt, U., D. Perner, G. W. Harris, A. M. Winer, and J. N. Pitts (1980), Observations of Nitrous-

Acid in an Urban Atmosphere by Differential Optical-Absorption, Nature, 285(5763), 
312-314. 

 
Ramazan, K. A., L. M. Wingen, Y. Miller, G. M. Chaban, R. B. Gerber, S. S. Xantheas, and B. J. 

Finlayson-Pitts (2006), New experimental and theoretical approach to the heterogeneous 
hydrolysis of NO2: Key role of molecular nitric acid and its complexes, Journal of 
Physical Chemistry A, 110(21), 6886-6897. 

 
Ren, X., H. Gao, X. Zhou, J. D. Crounse, P. O. Wennberg, E. C. Browne, B. W. LaFranchi, R. C. 

Cohen, M. Mckay, A. H. Goldstein, and J. Mao (2010a), Measurement of atmospheric 
nitrous acid at Blodgett Forest during BEARPEX2007, Atmospheric Chemistry and 
Physics, 10(13), 6283-6294. 

 
Ren, X., H. Gao, X. Zhou, J. D. Crounse, P. O. Wennberg, E. C. Browne, B. W. LaFranchi, R. C. 

Cohen, M. McKay, A. H. Goldstein, and J. Mao (2010b), Measurement of atmospheric 
nitrous acid at Blodgett Forest during BEARPEX2007 (vol 10, pg 6283, 2010), 
Atmospheric Chemistry and Physics, 10(14), 6501-6501. 

 
Sorgel, M., I. Trebs, A. Serafimovich, A. Moravek, A. Held, and C. Zetzsch (2011), 

Simultaneous HONO measurements in and above a forest canopy: influence of turbulent 
exchange on mixing ratio differences, Atmospheric Chemistry and Physics, 11(2), 841-
855. 

 



126 

Steinfeld, J. I., J. S. Francisco, and W. L. Hase (1989), Chemical kinetics and dynamics, xii, 548 
p. pp., Prentice Hall, Englewood Cliffs, N.J. 

 
Stemmler, K., M. Ammann, C. Donders, J. Kleffmann, and C. George (2006), Photosensitized 

reduction of nitrogen dioxide on humic acid as a source of nitrous acid, Nature, 
440(7081), 195-198. 

 
Stutz, J., B. Alicke, and A. Neftel (2002), Nitrous acid formation in the urban atmosphere: 

Gradient measurements of NO2 and HONO over grass in Milan, Italy, Journal of 
Geophysical Research-Atmospheres, 107(D22). 

 
Su, H., Y. F. Cheng, R. Oswald, T. Behrendt, I. Trebs, F. X. Meixner, M. O. Andreae, P. Cheng, 

Y. Zhang, and U. Poschl (2011), Soil Nitrite as a Source of Atmospheric HONO and OH 
Radicals, Science, 333(6049), 1616-1618. 

 
Turanyi, T., A. S. Tomlin, and M. J. Pilling (1993), On the Error of the Quasi-Steady-State 

Approximation, Journal of Physical Chemistry, 97(1), 163-172. 
 
Winer, A. M., and H. W. Biermann (1994), Long Pathlength Differential Optical-Absorption 

Spectroscopy (Doas) Measurements of Gaseous Hono, No2 and Hcho in the California 
South Coast Air Basin, Research on Chemical Intermediates, 20(3-5), 423-445. 

 
Zhou, X. L., H. L. Gao, Y. He, G. Huang, S. B. Bertman, K. Civerolo, and J. Schwab (2003), 

Nitric acid photolysis on surfaces in low-NOx environments: Significant atmospheric 
implications, Geophysical Research Letters, 30(23). 

 
Zhou, X. L., H. L. Gao, and Y. He (2007a), Evidence of nitric acid photolysis on surfaces as a 

Re-NOx-ification pathway, Abstracts of Papers of the American Chemical Society, 233, 
431-431. 

 
Zhou, X. L., G. Huang, K. Civerolo, U. Roychowdhury, and K. L. Demerjian (2007b), 

Summertime observations of HONO, HCHO, and O-3 at the summit of Whiteface 
Mountain, New York, Journal of Geophysical Research-Atmospheres, 112(D8), -. 

 
Zhou, X. L., N. Zhang, M. TerAvest, D. Tang, J. Hou, S. Bertman, M. Alaghmand, P. B. 

Shepson, M. A. Carroll, S. Griffith, S. Dusanter, and P. S. Stevens (2011), Nitric acid 
photolysis on forest canopy surface as a source for tropospheric nitrous acid, Nature 
Geoscience, 4(7), 440-443. 



127 

Chapter 8:  

Conclusions 

 

1) Field experiments: 

The instrument performed well at three different field deployments. It was first taken to the 

Alternative Aviation Fuel Experiment (January 2009 in Palmdale, CA) where it measured 

emission indices of HONO, N2O, CH4 and H2O2 in aircraft exhaust. It was next deployed at 

the Study of Houston Atmospheric Radical Precursor campaign (May 2009 in Houston, TX) 

to measure HONO and NO2 mixing ratios. Finally, HONO and NO2 mixing ratios and eddy 

covariance fluxes were measured above the forest canopy at the Environmental Measurement 

Site at Harvard Forest from December 2010 to December 2011. 

 

2) Instrument performance: 

The dual cw-QC laser absorption spectrometer achieved mixing ratio detection limits (3# 1-

hr) of 15 and 5 ppt, respectively, for HONO and NO2. For eddy covariance fluxes, the 

detection limits (3# 1-hr) for HONO and NO2 were 0.9"10-6 mol m-2 h-1 (550 ppt cm sec-1) 

and 5"10-6 mol m-2 h-1 (2.9 ppb cm sec-1), respectively. 

 

3) Sampling system: 

We modified an inlet design initially built to measure hydrophilic, photo-sensitive species 

such as nitric acid and formaldehyde. It inertially separates out large particles, allowing 

continuous ambient sampling at high flow-rates without the need for filters. Routine in-field 
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tests under humid, polluted conditions as well as in relatively pristine rural air demonstrate 

the absence of positive and negative artifacts due to our sampling system.  

 

4) Line strength quantification: 

Absorption line strengths – required to quantify gaseous species by spectroscopy – for 

HONO are not accurately represented in any comprehensive linelist, such as HITRAN. We 

determined in laboratory experiments the absorption line strengths for HONO in the 6 and 8 

micron spectral regions. In situ ambient measurements during the SHARP campaign showed 

overall agreement to within 6% between four independent instruments. 

 

5) Aircraft exhaust: 

We report emissions indices (g per kg of fuel consumed) of HONO, NOx and H2O2 as a 

function of engine power. While the EI of NOx increases continuously with engine power – 

presumably due to combustion temperature – that of HONO levels off at around 60% rated 

engine thrust, due likely to the exponential increase in HONO+OH reaction rate between 800 

and 1000 K. We detect H2O2 in aircraft exhaust at low idle thrust only. Production of H2O2 is 

due likely to the HO2 self-reaction and not the OH self-reaction. 

 

6) Urban air: 

Numerous studies claim significant, yet-unaccounted daytime HONO production rates 

assuming sampled air masses are at photostationary state. Using a simple chemical box 

model, we show given conservatively-estimated transport times from nearby emission 
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sources that PSS is likely not achieved, leading to an overestimate of the missing HONO 

source. 

 

7) Biosphere-atmosphere exchange: 

Large, unknown daytime HONO sources have also been reported in rural, forested 

environments. Direct measurements by absorption spectroscopy – as opposed to wet-

chemical extraction followed by derivatization – show much lower daytime levels. 

Additionally, HONO fluxes are lower than instrument detection limit at all times. We 

conclude no significant daytime HONO production. At night, we propose a non-NO2, non-

ground/canopy-surface source of HONO. 

 

 

Future research 

 

a) Is there a reliable near-field tracer for the photochemical age of air masses? 

For short-lived species such as HONO, with a midday photochemical lifetime on the order of 

several minutes, the limiting factor in being able to model/calculate its atmospheric mixing 

ratio is the photochemical age, which is required to determine whether observed 

enhancements are due to direct emission or secondary production. The photostationarity 

assumption is not valid in the near-field. Proxy such as NOz:NOy is not quantitative, due 

mainly to the uncertainty associated with the levels of NOz and NOy in the background 

atmosphere. Ratios of hydrocarbons, likewise, are not useful as emission sources are not co-

located with those of nitrogen oxides.  
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b) If the cause of the discrepancy in daytime HONO measurements in rural atmospheres 

is instrument artifact associated with the wet-chemistry method, is there valuable 

information to be gleaned? 

Measurements based on wet-chemical extraction indicate higher HONO levels in similar 

environments than has been measured by us at Harvard Forest with the more direct, specific 

technique. Those previous measurements clearly show a diurnal signal. What do those 

signals indicate? To what else are these instruments sensitive?  

 

c) What is the reaction responsible for nighttime HONO formation? 

We observe nighttime enhancement of HONO at Harvard Forest. We rule out direct 

involvement of gas-phase NO2 on the ground/canopy surface as the dominant source. This 

suggests a dispersed source in the ambient air. 
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Appendix 

Supplementary figures 

 
 
 

Figure B1. Mixing ratios time series observed during a typical injection of source gas with 

enhanced levels of CH4 and HONO. Time response (1/e) – determined by an exponential fit of 

the increase and decrease of the mixing ratios versus time – are averages of six injection tests. 
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Figure B2. Emission indices of NOx (a) and HONO (b) observed at maximum rated engine 

thrust parsed by fuel-type (symbols shown in legend), plotted against ambient temperature. 
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Figure B3. Time-series a) of HONO and NOx mixing ratios measured from a diesel-powered 

generator during AAFEX. Scatter plot b) between HONO and NOx shows an emission ratio of 

0.82 ± 0.05%. 
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Figure B4. Half-hour averaged absorbance spectra of (a) HONO and (b) NO2. 

 



135 

 

 
 
 

Figure B5. Atmospheric lifetime of HONO (color contour) and observed JHONO versus OH (black 

markers). Top panel shows %HONO (E3) for the entire range of JHONO and OH encountered during 

SHARP, while the bottom panel is a close-up of daytime conditions. 
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Figure B6. Hourly-averaged and SHARP campaign median of HONO, NOx and HONO:NOx 

plotted from 19:00. 
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Figure B7. Complete times series of 1-hr averaged HONO and NO2 mixing ratios measured by 

the dual-laser absorption spectrometer at Harvard Forest from December 2010 to December 

2011. Gaps in the data are due to power flickers, instrument failures and routine maintenance.  
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Figure B8. Side by side spectra (1-hr averaged) of ambient and background HONO (top) and 

NO2 (bottom).  
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Figure B9. Additions of HONO with full setup (left), without the 180 feet of tubing (middle) and 

without inlet or tubing (right). 
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Figure B10. Scatter plot of HONO during additions of NO2 on top of dry room air, humid 

Houston air and humidity-matched zero-air, demonstrating the absence of HONO enhancement.  
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Figure B11. Top panel shows HONO and NO2 mixing ratios during a 12-hr zero-addition 

experiment, when the instrument was exposed to typical temperature swings inside the shed at 

Harvard Forest. Allan variance analysis shows 1-s (1#) noise for HONO and NO2 decrease from 

100 ppt and 15 ppt by a factor of 20 and 10, respectively, with 1-hr averaging. 
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Figure B12. Lag-correlation plot of HONO’ (orange) and NO2’ (blue), lagged against w’, for a 

typical 1-hr period (December 31, 2010). A flux signal for NO2 is detected, which is not the case 

for HONO.   

 

 


