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Dynamics and transport of the Z2 spin liquid:
application to κ-(ET)2Cu2(CN)3

Yang Qi, Cenke Xu, and Subir Sachdev
Department of Physics, Harvard University, Cambridge MA 02138, USA

(Dated: September 2, 2008)

We describe neutron scattering, NMR relaxation, and thermal transport properties of Z2 spin
liquids in two dimensions. Comparison to recent experiments on the spin S = 1/2 triangular lattice
antiferromagnet in κ-(ET)2Cu2(CN)3 shows that this compound may realize a Z2 spin liquid. We
argue that the topological ‘vison’ excitations dominate thermal transport, and that recent thermal
conductivity experiments by M. Yamashita et al. have observed the vison gap.

Much attention [1, 2, 3, 4, 5, 6, 7] has recently focused
on the organic compound κ-(ET)2Cu2(CN)3 because it
may be the first experimental realization of a resonating
valence bond spin liquid [8, 9]. This compound belongs
to a class [10, 11] of organic Mott insulators which can
be described by S = 1/2 spins residing on the vertices
of a triangular lattice. Experiments have not detected
any magnetic order or a structural distortion leading to
a doubling of the unit cell in κ-(ET)2Cu2(CN)3, and so
there is justifiable optimism that the elusive spin liquid
state may finally have been found.

The debate then turns to the identification of the pre-
cise spin liquid state, among the many possible candi-
dates. Measurements of the electronic specific heat, CP ,
by S. Yamashita et al. [3] were interpreted to yield a non-
zero low temperature (T ) value of γ = limT→0 CP /T .
Such a non-zero γ is characteristic of a Fermi surface,
and hence a spin liquid state with a Fermi surface of neu-
tral, S = 1/2, fermionic spinons was postulated [3, 5, 6].
However, it should be noted that the measurement of γ
involves a potentially dangerous subtraction of a diver-
gent nuclear specific heat [3].

Very recently, M. Yamashita et al. have measured [4]
the thermal conductivity, κ, to below T ≈ 0.1 K. This
has the advantage of focusing on the mobile excitations,
and not being contaminated by a nuclear contribution.
A spinon Fermi surface should yield a non-zero low T
limit for κ/T , but this quantity was clearly observed to
vanish. Instead, the measured κ was fit reasonably well
by the activated behavior κ ∼ exp(−∆κ/T ), with a ‘gap’
∆κ ≈ 0.46 K. Furthermore, κ was found to be insensitive
to an applied field for H < 4 T, suggesting that the gap
∆κ is associated with a spinless excitation. These ob-
servations appear to be incompatible with spinon Fermi
surface states at these low T , and we shall present an
alternative theory here.

Also of interest are the measurements [2] of the NMR
relaxation rate, 1/T1. The power-law behavior 1/T1 ∼
T a, with the exponent a ≈ 1.5, was observed for 0.02 <
T < 0.3 K. This requires the presence of spinful excita-
tions with a gapless spectrum at the fields of the NMR
experiment, although at zero field there may well be a
small spin gap.

In this paper, we will compare these observations
with the Z2 spin liquid state originally proposed in
Refs. 12, 13, 14. The low energy excitations of this
state are described by a Z2 gauge theory, and the spin-
ful excitations are constructed from S = 1/2 quanta
(the spinons) which carry a Z2 electric charge. Crucial
to our purposes here are vortex-like spinless excitations
[15] which carry Z2 magnetic flux, later dubbed ‘visons’
[16]. A number of solvable models of Z2 spin liquids,
with spinon and vison excitations, have been constructed
[16, 17, 18, 19, 20, 21, 22]. We propose here that it is
the visons which dominate the thermal transport in κ-
(ET)2Cu2(CN)3, and the gap ∆κ is therefore identified
with a vison energy gap, ∆v. If our interpretation is cor-
rect, the vison has been observed by M. Yamashita et al.
[4].

Our proposal requires that the density of states of
low energy vison excitations is much larger than that
of all other excitations. A model appropriate to κ-
(ET)2Cu2(CN)3 is the triangular lattice S = 1/2 antifer-
romagnet with nearest neighbor two-spin exchange (J2)
and plaquette four-spin (J4) exchange which was studied
by Liming et al. [23]. They found antiferromagnetic or-
der at J4 = 0 (as in earlier work [24]), and a quantum
phase transition to a spin liquid state with a spin gap
around J4/J2 ≈ 0.1. Notably, they found a very large
density of low-lying spin singlet excitations near the tran-
sition. We propose here that κ-(ET)2Cu2(CN)3 is near
this quantum phase transition, and identify these singlets
with visons which have a small gap and bandwidth, both
much smaller than the spin exchange J2 ∼ 250K. We will
argue below that at T ≪ J2, and comparable to the vison
bandwidth, visons will dominate the thermal transport.

Further support for the proximity of a magnetic order-
ing quantum critical point comes from [11] the closely re-
lated series of compounds X[Pd(dmit)2]2. By varying the
anisotropy of the triangular lattice by varying X, we ob-
tain compounds with decreasing magnetic ordering criti-
cal temperatures, until we eventually reach a compound
with a spin gap and valence bond solid (VBS) order [25].
In between is the compound [27] with X=EtMe3P which
has been proposed to be at the quantum critical point
[11], and has properties similar to κ-(ET)2Cu2(CN)3. Fi-
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nally, series expansion studies [26] also place the triangu-
lar lattice antiferromagnet near a quantum critical point
between magnetically ordered and VBS states.

A description of the NMR experiments requires a the-
ory for the spinon excitations of the Z2 spin liquid. The
many models of Z2 spin liquids [12, 13, 14, 15, 16, 17,
18, 19, 20, 21, 22] have cases with either fermionic or
bosonic spinons. While we do not find a satisfactory ex-
planation for the NMR with fermionic spinons, we show
that a model [12, 13, 14] of bosonic spinons in a spin
liquid close to the quantum phase transition to the anti-
ferromagnetically ordered state (as found in the model of
Liming et al. [23]) does naturally explain the T depen-
dence of 1/T1. We shall show below that the quantum
critical region for this transition leads to 1/T1 ∼ T η̄ with
the exponent [28, 29] η̄ = 1.37, reasonably close to the
measured value a = 1.5. It is important to note that the
vison gap, ∆v, remains non-zero across this magnetic or-
dering critical point [35]. Consequently, our interpreta-
tion of the experiments remains valid even if the system
acquires a small antiferromagnetic moment, as may be
the case in the presence of the applied magnetic field
present in the NMR measurements.

The remainder of the paper presents a number of com-
putations of the physical properties of Z2 spin liquids,
and uses them to elaborate on the experimental inter-
pretation sketched above.

We begin with a theory [30] of the spinon excitations
near the quantum critical point between the magnetically
ordered state and the Z2 spin liquid. Here the low energy
spinons are S = 1/2 complex bosons zα, with α =↑, ↓ a
spin index, and the low energy imaginary time action is

S =
1

g

∫

d2rdτ
[

|∂τzα|2 + c2|∇rzα|2
]

, (1)

where (r, τ) are spacetime co-ordinates, g is a coupling
which tunes the transition to the spin liquid present for
some g > gc, and c is a spin-wave velocity. We impose
the local constraint

∑

α |zα|2 = 1 in lieu of a quartic
self-interaction between the spinons. This theory has an
emergent O(4) global symmetry [29, 31] (which becomes
manifest when zα is written in terms of its real and imag-
inary components). This symmetry is an enlargement of
the SU(2) spin rotation symmetry, and we will neglect the
irrelevant terms which reduce the symmetry to SU(2).

(i) Dynamic spin susceptibility. The dynamic spin
correlations of S near the quantum critical point can be
computed by the 1/N expansion on the O(N) model,
which has been described elsewhere [32]. With an eye to-
wards possible future neutron scattering measurements,
we first describe the dynamic spin susceptibility, χ(k, ω)
as a function of momentum k and real frequency ω. Here
the momentum k is measured as a deviation from the
ordering wavevector, Q, of the antiferromagnetically or-
dered state. At g = gc and T = 0, this has the quantum-

critical form

χ(k, ω) =
A

(c2k2 − ω2)1−η̄/2
, (2)

where the exponent η̄ is related to the scaling dimension
of the composite spin operator ∼ zασy

αγ~σγβzβ (~σ are the
Pauli matrices), and is known with high precision from
field-theoretic studies [28] (η̄ = 1.374(12)) and Monte
Carlo simulations [29] (η̄ = 1.373(2)). The overall am-
plitude A is non-universal, but the same A will appear
in a number of results below. Integrating Eq. (2) over
all k, we obtain the local susceptibility χL(ω), which is
also often measured in scattering experiments, again at
g = gc and T = 0

Im χL(ω) =
A sgn(ω)

4c2

sin(πη̄/2)

πη̄/2
|ω|η̄. (3)

Let us now move into the spin liquid state, with g > gc,
where the spinons have an energy gap ∆z. The critical
results in Eqs. (2) and (3) will apply for |ω| ≫ ∆z, but
for |ω| ∼ 2∆z, we will have spectra characteristic of the
creation of a pair of spinons (we set ~ = 1, although
it appears explicitly in a few expressions below). Com-
puting the pair creation amplitude of non-interacting
spinons, we obtain a step-discontinuity threshold at ω =
√

c2k2 + 4∆2
z (at T = 0). However, the spinons do have

a repulsive interaction with each other, and this reduces
the phase space for spinon creation at low momentum,
as described in the supplementary material; the actual
threshold behavior is:

Imχ(k, ω) =
AC sgn(ω)

∆2−η̄
z

θ
(

|ω| −
√

k2 + 4∆2
z

)

ln2

(

∣

∣ω2 − k2 − 4∆2
z

∣

∣

16∆2
z

) , (4)

where C is a universal constant; to leading order in the
1/N expansion, C = N2/16. We can also integrate the k-
dependent generalization of Eq. (4) to obtain a threshold
behavior for the local susceptibility at 2∆z: Im χL(ω) ∼
sgn(ω)(|ω| − 2∆z)/ ln2(|ω| − 2∆z).

(ii) NMR relaxation. Turning to the NMR relaxation
rate, we have to consider T > 0, and compute

Γ = lim
ω→0

kBT

ω
ImχL(ω). (5)

This is far more subtle than the computations at T = 0,
because we have to compute the damping of the quantum
critical excitations at T > 0 and extend to the regime
ω ≪ T . From general scaling arguments [32], we have

Γ =
A
c2

(kBT )η̄Φ(∆z/(kBT )), (6)

where Φ is a universal function. The computation of
Φ for undamped spinons at N = ∞ is straightforward,
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and unlike the case for confining antiferromagnets [32],
yields a reasonable non-zero answer: Φ(y) = [4πey/2(1 +√

4 + ey)]−1. However, the 1/N corrections are singular,
because Γ has a singular dependence upon the spinon
lifetime. A self-consistent treatment of the spinon damp-
ing is described in the supplementary material, and leads
to the quantum-critical result (∆z = 0):

Φ(0) =
(
√

5 − 1)

16π

(

1 + 0.931
lnN

N
+ . . .

)

. (7)

(iii) Thermal conductivity. We now turn to the ther-
mal transport co-efficient measured in the recent reveal-
ing experiments of Ref. 4. We consider the contribution
of the spinons and visons in turn below, presenting fur-
ther arguments on why the vison contribution can dom-
inate in the experiments.

(iii.a) Spinons. For agreement with the NMR mea-
surements of 1/T1 [2], we need the spinons to be in the
quantum critical regime, as described above. Therefore,
we limit our considerations here to the quantum critical
thermal conductivity of the spinons, κz, with ∆z = 0.
This can be obtained from the recent general theory of
quantum critical transport [33] which yields

κz = sc2τ imp
z , (8)

where s is the entropy density of the spinons, and 1/τ imp
z

is the spinon momentum relaxation rate, with the T de-
pendence

τ imp
z ∼ T 2/ν−3. (9)

Here ν is the critical exponent of the O(4) model [34],
ν = 0.749(2), and so τ imp

z ∼ T−0.33. The two dimen-
sional entropy density can be obtained from the results
of Ref. 32:

s =
3Nζ(3)k3

BT 2

2π~2c2

[

4

5
− 0.3344

N
+ . . .

]

, (10)

where ζ is the Reimann zeta function. We estimate the
co-efficient in Eq. (9) in the supplementary material using
a soft-spin theory with the spinons moving in a random
potential, V (r)|zα|2, due to impurities of density nimp

each exerting a Yukawa potential Vq = Vz/(q2 +µ2); this
leads to

κz ∼ Nc2
~k4

Bµ4T 2Tz

animpV 2
z

×
(

T

Tz

)2/ν−3

. (11)

Here a is the spacing between the layers, and Tz is the
spinon bandwidth in temperature units and is propor-
tional to the spinon velocity c.

(iii.b) Visons. The visons are thermally excited
across an energy gap, ∆v, and so can be considered to be
a dilute Boltzmann gas of particles of mass mv. We as-
sume there are Nv species of visons. The visons see the

2 4 6 8 10
-1

-5

-3

-7

FIG. 1: Fit of the T dependence of the vison thermal conduc-
tivity in Eq. (12) to the thermal conductivity measurements
by Yamashita et al. [4]; Tv, ∆v and the overall prefactor were
the fit parameters.

background filling of spins as a magnetic flux through
the plaquette on the dual lattice, and hence the dynam-
ics of visons can be well described by a fully-frustrated
quantum Ising model on the honeycomb lattice. De-
tailed calculations show that there are four minima of
the vison band with an emergent O(4) flavor symme-
try at low energy [17], therefore Nv = 4. As with
the spinons, the visons are assumed to scatter off im-
purities of density nimp with, say, a Yukawa potential
Vq = Vv/(q2 + µ2). We use the fact that at low T ,
and for a large vison mass mv, the visons are slowly
moving. So each impurity scattering event can be de-
scribed by a T -matrix = [mv ln(1/k)/π]−1 characteristic
of low momentum scattering in two dimensions. Applica-
tion of Fermi’s golden rule then yields a vison scattering
rate 1/τ imp

v = π2nimp/(mv ln2(1/k)). This formula be-
comes applicable when ln(1/k) × Vv/(~2µ2/2mv) ≫ 1
i.e. the impurity potential becomes nonperturbative.
We can now insert this scattering rate into a standard
Boltzmann equation computation of the thermal con-
ductivity κv = 2k2

BTnvτ
imp
v /mv, where nv is the ther-

mally excited vison density and the typical momentum
k ∼ (mvkBT )1/2, to obtain

κv =
Nvmvk

3
BT 2 ln2(Tv/T )e−∆v/(kBT )

4π~3nimpa
. (12)

Here Tv is some ultraviolet cutoff temperature which can
be taken as the vison bandwidth. Note that for a large
density of states of vison excitations, i.e. a large mv, the
prefactor of the exponential can be large. Similar calcu-
lations will not lead to a logarithmic divergence for the
critical spinon z due to the positive anomalous dimension
of |z|2, and therefore the impurity scattering of spinons
is perturbative for Vz/(cµ~)2 < 1.

Using Eq. (12), we fit the thermal conductivity mea-
sured by M. Yamashita et al. in Ref. 4 by tuning param-
eters Tv and ∆v. The best fit values are Tv = 8.15K,
and ∆v ≡ ∆κ = 0.238K, as shown in Fig. 1. For consis-
tency check, we calculate the ratio between the thermal
conductivities contributed by spinons and visons using
Eq. (11) and Eq. (12) and assuming moderate spinon
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0.2

T

0.10

0.15

0.20

0.25

0.60.50.40.3

FIG. 2: Ratio of the thermal conductivity of spinons to visons
in Eq. (13)

impurity strength Vz/(cµ~)2 ∼ 1:

κz

κv
∼ kBTz

mvc2
×
(

T

Tz

)2/ν−3
1

(ln Tv/T )2
e∆v/kBT

∼ Tv

Tz
×
(

T

Tz

)2/ν−3
1

(lnTv/T )2
e∆v/(kBT ). (13)

We plot this ratio in Fig. 2, with Tz ∼ J2 = 250 K
and other parameters as above, for the experimentally
relevant temperature between 0.1 K and 0.6 K; we find
consistency because κ is dominated by the vison contri-
bution. The vison dispersion is quadratic above the vison
gap, and this leads to a T -independent γ = Cp/T when
T > ∆v, as observed in experiments [3]. Our estimate of
the vison bandwidth, Tv, is also consistent with a peak
in both CP [3] and κ [4] at a temperature close to Tv.

The vison gap, ∆v, obtained here is roughly the same
as the temperature at which the 1/T1 of NMR starts
to deviate from the low temperature scaling of Eq. (6)
[2]. When T is above ∆v, thermally activated visons will
proliferate. We discuss a theory of the spin dynamics in
this thermal vison regime in the supplement, and find
a 1/T1 with a weaker T dependence compared to that
present for T < ∆v. These observations are qualitatively
consistent with the NMR data for 0.25 < T < 10 K [2].

Ref. 4 also measured the thermal conductivity, in an
applied field H up to 10 T. There was little change in κ for
H < 4 T. As H couples to the conserved total spin, it only
appears as an opposite “chemical potential” term for zα,
modifying the temporal derivative (∂τ +(H/2)σz)z†(∂τ −
(H/2)σz)z. At the quantum critical point, this term will
induce a condensate of z i.e. a non-collinear magnetically
ordered state. We do not expect a significant difference
in the thermal conductivity of the gapless spinons versus
gapless spin-waves across this second order transition.
We conjecture that the change at 4 T is associated with
a vison condensation transition to a valence bond solid,
as the field scale is or order the energy scales noted in the
previous paragraph. This transition is possibly connected
to the H-dependent broadening of the NMR spectra [2].

We have described the properties of a Z2 spin liquid,
on the verge of a transition to an magnetically ordered
state, We have argued that the quantum critical spinons
describe the NMR observations [2], while the visons (with

a small energy gap and bandwidth) dominate the thermal
transport [4].

We are very grateful to Minoru Yamashita for valuable
discussions of the results of Ref. 4, and to the authors of
Ref. 4 for permission to use their data in Fig. 1. We
thank K. Kanoda, S. Kivelson, and T. Senthil for useful
discussions. This research was supported by the NSF
under grant DMR-0757145.
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This supplement presents additional details on compu-
tations in the main text. The large N expansion of the
nonlinear σ model field theory of the transition between
the Z2 spin liquid and the phase with non-collinear mag-
netic order is presented in Section I. The thermal con-
ductivity of the spinons is considered in Section II, and
the NMR relaxation rate at temperatures above the vison
gap is discussed in Section III.

I. LARGE-N EXPANSION OF NONLINEAR σ
MODEL

The phase transition between a non-collinear Néel
state and spin liquid state can be described by the O(4)
nonlinear σ model as in Eq. (1) in the main text

S =
1

g

∫

d2rdτ [|∂τ zα|2 + c2|∇rzα|2], (1)

with the constraint that |z1|2 + |z2|2 = 1. The physical
antiferromagnetic order parameter is related to the O(4)
field zα by the bilinear function [1, 2]

Si = zασy
αγσi

γβzβ. (2)

This differs from the collinear case, where the order pa-
rameter is linearly proportional to the field of the O(3)
σ model. Therefore, the spin correlation function is pro-
portional to a bubble diagram of the z field (see Fig. 1)
[1]:

χ(x, τ) ∼ Π(x, τ) =
〈

zα(x, τ)zβ(x, τ)z∗β(0, 0)z∗α(0, 0)
〉

.
(3)

The correlation function Π(k, ω) for the O(4) field can
then be calculated using the large-N expansion. The
framework of the expansion can be set up in the disor-
dered phase as follows. First, we rewrite the constraint
as a path integral over a Lagrangian multiplier field λ

S =
N

2g

∫

d2rdτ [|∂τ zα|2+c2|∇rzα|2+iλ(|zα|2−1)]. (4)

Here the coupling constant g is rescaled from that in
Eq. (1) in the main text to show the N dependence in
the large-N limit explicitly. Integrating out the n field

FIG. 1: Bubble diagram for the correlation function of Π.
The solid line represents propagator given by equation (8).

in the above action, the path integral over λ becomes

Z =

∫

Dλ exp

[

−N

2

(

Tr ln(−c2∇2 − ∂2
τ + iλ)

− i

g

∫

dτd2xλ

)]

. (5)

Therefore, in the N → ∞ limit, the path integral is dom-
inated by the contribution from the classical path, along
which λ becomes a constant given by the saddle point
equation

1

β

∑

ωn

∫

d2k

(2π)2
1

ω2
n + c2k2 + m2

=
1

g
, (6)

where m2 = iλ, and m = ∆
(0)
z is the spinon gap in the

N → ∞ limit.
At the N = ∞ order, the λ field is treated as a con-

stant, and the theory contains only free zα field with
mass gap ∆z . The full large-N expansion is obtained
by including fluctuations of λ controlled by the action
in Eq. (5): the N−n order expansion corresponds to a
n-loop correction.

The spin correlation function in Eq. (3) can be cal-
culated from the Π(k, ω) correlation function for the zα

field using the large-N expansion. At N = ∞ order, the
correlation function is given by a bubble diagram of two
free propagators,

Π0(k, iωn) =

∫

d2p

(2π)2
1

β

∑

νn

G0(p, iνn)G0(p+k, iνn+iωn),

(7)
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where G0(p, iωn) is the free propagator of zα field

G0(p, iωn) =
1

c2p2 + ω2
n + m2

. (8)

At the 1/N order, the contribution from the fluctua-
tion of the λ field needs to be included at one-loop level.
There are two corrections that need to be included for
the bubble diagram: the self-energy correction and the
vertex correction.

First, the bare propagator in Eq. (7) needs to be re-
placed by a propagator with a self-energy correction at
one-loop level[3].

G(k, iωn) =
1

ω2
n + c2k2 + m2 + Σ(k, iωn)

, (9)

where the self-energy has two parts. The first part
comes from an insertion of λ propagator on zα propa-
gator shown in Fig. 2:

Σ̃(k, iωn) =
2

N

1

β

∑

νn

∫

d2p

(2π)2
G0(k + q, iωn + iνn) − G0(k, iωn)

Π0(q, iνn)
. (10)

The second contribution is given by Fig. 3, and the total self-energy is

Σ(k, iωn) = Σ̃(k, iωn) − 1

Π0(0, 0)

1

β

∑

νn

∫

d2p

(2π)2
G0(p, iν)Σ̃(k, iνn)G0(p, iνn). (11)

In addition to including the self-energy in the propagators of Π(k, iωn), the vertex correction (see Fig. 4) also needs
to be included.

Π(1v)(k, iωn) =
2

N

1

β2

∑

νn,ǫn

∫

d2pd2q

(2π)4
G0(p, iνn)G0(p + q, iνn + iǫn)G0(p + k, iνn + iωn)G0(p + q + k, iνn + iǫn + iωn)

Π0(q, iǫn)
.

(12)

FIG. 2: The first term in self-energy correction: Σ̃(k, iωn)
evaluated in equation (10). In this diagram and Fig. 3 the
dotted line represents propagator of λ field given in equation
(5), and interaction vertex between two zα field operators and
one λ field operator is given by the last term in action (4).

A. Local susceptibility

In this section we consider the behavior of the imag-
inary part of dynamical susceptibility at the threshold
to creating two spinon excitations. At N = ∞ and zero
temperature, the integral in the expression of Π(k, iωn)
can be evaluated analytically from Eq. (7), and the result
is

Π0(k, ω) =
1

4π
√

c2k2 − ω2
tan−1

(√
c2k2 − ω2

2m

)

. (13)

The real and imaginary part of above equation have the
following asymptotic behavior when ω is just above the

FIG. 3: The second term in self-energy correction, which cor-
responds to the last term of equation (11). This diagram
contains two λ fields, which scales as N−2, and also a loop of
zα field, which contributes a factor of N . Therefore the whole
diagram is also at the order of 1/N .

threshold

Re Π0(k, ω) =
1

16πm
ln

(

ω2 − c2k2 − 4m2

16m2

)

, (14)

and

ImΠ0(k, ω) =
sgn(ω)

8
√

ω2 − c2k2
θ(ω −

√

c2k2 + 4m2). (15)

Naturally, Eqs (14) and (15) are connected by a Kramers-
Kronig relation.
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FIG. 4: Vertex correction for the bubble diagram, appeared
in equation (12).

The sharp discontinuity in the imaginary part of sus-
ceptibility is an artifact of the N = ∞ limit, and is mod-
ified once we add in vertex corrections. Actually, as the
bubble diagram evaluated in equation (13) has a loga-
rithmic divergence at the threshold, the ladder diagrams,
which contains all orders of this divergence, should be
summed as in an RPA approximation (see Fig. 5). Since
the bubble is divergent at the threshold, the most di-
vergent contribution to the ladder diagrams comes from
the propagator that is on shell and at the spinon thresh-
old. When that happens, there is no momentum transfer
through the λ propagator. Therefore, we can approxi-
mate the interaction vertex in the RPA summation as
the λ propagator at zero momentum:

u =
2

N

1

Π0(0, 0)
=

16π

N
m. (16)

Therefore the RPA resummation of the ladder diagrams

FIG. 5: Ladder diagram for vertex correction. A RPA resum-
mation of these diagrams is evaluated in equation (16).

gives

Π = Π0 + Π0uΠ0 + · · · =
Π0

1 − uΠ0
. (17)

Taking the imaginary part of χ, and taking only the most
divergent part, we obtain

ImΠ =
ImΠ0

u2(Re Π0)2
. (18)

Pluging into Eqs (14) and (15), we obtain

ImΠ(k, ω) =
N2sgn(ω)

8
√

ω2 − c2k2

θ
(

|ω| −
√

c2k2 + 4m2
)

ln2

(

ω2 − c2k2 − 4m2

16m2

) .

(19)

In order to relate this result for Π to the physical spin
correlation function χ, we need to insert the proportional
constant in Eq. (3). Combined with the spectral weight
from higher loop corrections, this gives the constant A
appearing in Eq. (2) in the main text. The mass gap
of the spinon ∆0

z = m also receives higher loop cor-
rections and becomes ∆z in general. In addition, near
the threshold, the factor of

√
ω2 − c2k2 is approximately

2∆z. Therefore the above equation can be rearranged
into

Imχ(k, ω) =
AN2sgn(ω)

16∆z

θ
(

|ω| −
√

c2k2 + 4∆2
z

)

ln2
(

ω2−c2k2−4∆2
z

16∆2
z

) . (20)

The overall scaling Imχ ∼ ∆−1
z is a result at N = ∞,

and shall be refined to Imχ ∼ ∆2−η̄
z when higher loop

corrections are included, where η̄ is the scaling compo-
nent appearing in Eq. (2) in the main text. With this
correction, the above equation becomes

Imχ(k, ω) =
AN2sgn(ω)

16∆2−η̄
z

θ
(

|ω| −
√

c2k2 + 4∆2
z

)

ln2
(

ω2−c2k2−4∆2
z

16∆2
z

) , (21)

which is the same as Eq. (4) in the main text with C =
N2/16.

B. Relaxation rate at order 1/N

In this section we calculate the relaxation rate at 1/N
order, at finite temperature above the critical point. We
will show that, in the leading order of 1/N expansion,
there is a singular term proportional to lnN/N .

Following Eq. (5) in the main text, we calculate

Γ = lim
ω→0

1

ω

∫

d2q

(2π)2
ImχL(q, ω). (22)

The singularity arises from the 1/N self-energy, by re-
placing χL with Π calculated with the full Green’s func-
tion in Eq. (9).

Π(q, iωn) =

∫

d2k

(2π)2

∑

νn

G(k, iνn)G(k + q, iνn + iωn).

(23)
In the critical region, temperature is the only energy
scale. Therefore we have set β = 1 in the above equation,
and in the remainder of this subsection.

Pluging Eq. (23) into (22), we obtain

Γ = lim
ω→0

1

ω

∫

d2qd2k

(2π)4

∑

νn

ImG(k, iνn)G(k+q, iνn + iωn).

(24)
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Using the frequency summation identity

lim
ω→0

1

ω
Im
∑

νn

G1(iνn)G2(iνn + iωn)

=

∫ ∞

−∞

dǫ

2π

ImG1(ǫ)ImG2(ǫ)

2 sinh2 ǫ
2

, (25)

and changing the variable in the second integral from q
to k + q, we obtain

Γ =

∫ ∞

−∞

dǫ

2π

A(ǫ)2

2 sinh2 ǫ
2

, (26)

where

A(ǫ) =

∫

d2k

(2π)2
Im G(k, ǫ), (27)

and the Green’s function includes self-energy correction
at 1/N order

G(k, ω) =
1

c2k2 + m2 − ω2 + Σ(k, ω)
. (28)

Below we will see that the imaginary part of the self-
energy leads to a lnN/N term, which is more divergent
than the 1/N correction from the real part. So if we
ignore the real part of the self-energy for the moment,
the imaginary part of Green’s function is

Im G(k, ω) =
ImΣ(k, ω)

(c2k2 + m2 − ω2)2 + [ImΣ(k, ω)]2
, (29)

where Σ(k, ω) is of order 1/N . For the case that k2 +
m2−ω2 6= 0, the integrand can be expanded to the order
of 1/N by ignoring the ImΣ term in the denominator.
Therefore, we expand ImΣ around the quasiparticle pole
ck0 =

√
ω2 − m2:

Σ(k, ω) = Σ(k0, ω)

+ Σ′(k0, ω)(k2 − k2
0) + O((k2 − k2

0)
2); (30)

the integral of the second term does not have a singularity
because k2−k2

0 is an odd function, and higher order terms
are also not singular. Hence these terms result in regular
corrections of the order 1/N . However, integrating the
constant term is divergent near the pole if the ImΣ term
is ignored. Therefore it needs to be put back and the
most divergent term in A(ω) is

A(ω) ∼
∫

d2k

(2π)2
ImΣ(k0, ω)

c2(k − k0)2 + [ImΣ(k0, ω)]2
, (31)

and the result of this integral is

A(ω) ∼ 1

8c2
+

1

4πc2
arctan

[

ω2 − m2

ImΣ(
√

ω2 − m2, ω)

]

. (32)

The function A(ω) can be expanded to the first two or-
ders of ImΣ as

A(ω) ∼ 1

4c2
− 1

4πc2

ImΣ(
√

ω2 − m2, ω)

ω2 − m2
. (33)

Pluging this into Eq. (26), we obtain

Γ =
1

c2

∫ ∞

m

dǫ

2π

1

sinh2(ǫ/2)

×
[

1

16
− 1

8π

ImΣ(
√

ǫ2 − m2, ω)

ǫ2 − m2

]

. (34)

The first term resembles the relaxation rate in the N =
∞ limit, and the second term yields a 1/(N lnN) correc-
tion because the integrand diverges when ǫ → m

Γ(1) ∼ 1

16π2c2

ImΣ(0, m)

2m sinh2(m/2)
ln ImΣ(0, m). (35)

Here m is the mass gap of spinon in the critical region
at β = 1. In the N = ∞ limit it can be evaluated
analytically

m = Θ = 2 ln

√
5 + 1

2
.

At order 1/N it has been calculated that[4]

1

τ
= − ImΣ(0, m)

2m
=

0.904

N
.

Thus we obtain

Γ(1) ∼ 0.904

16π2c2 sinh2 Θ/2

1

N
lnN

=

√
5 − 1

16πc2
0.931

lnN

N
. (36)

This is the ln N/N correction in Eq. (7) in the main text.

II. SPINON THERMAL CONDUCTIVITY

The general equation for thermal conductivity at 2+1d
CFT was given in Eq. 8 in the paper:

κz = sc2τimp. (37)

The entropy density s is given in the paper by Eq. (10).
Based on simple scaling arguments, the leading order
scaling behavior of momentum relaxation rate 1/τimp

reads [6] :

1

τimp
∼ |Vimp|2T d+1−2/ν, (38)

with random potential V (r) coupling to |z|2, and Vimp

is defined as V (r)V (r′) = V 2
impδ

2(~r − ~r′). For a ran-
domly distributed impurity with Yukawa potential Vq =
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Vz/(q2 + µ2) and density nimp, we can identify V 2
imp ∼

nimpV
2
z /µ4. Compensating the dimension by inserting

the spinon bandwidth Tz and other physical constants,
we obtain the equation for the thermal conductivity of
spinons (Eq. 11 in the paper):

κz ∼ Nc2
~k4

Bµ4T 2Tz

animpV 2
z

×
(

T

Tz

)2/ν−3

. (39)

Notice that this equation is only applicable to the case
with 1/τimp ≪ T .

III. THERMAL PROLIFERATION OF VISONS

In this section we discuss the regime T > ∆v, where
the visons have thermally proliferated. As noted in the
paper, at these temperatures the 1/T1 NMR relaxation
rate is observed to have a plateau [5]. We believe this is
a general feature of a dense vison regime: the presence
of visons makes it harder for the spinons to propagate
independently, and so a vector spin model (which has a
T -independent NMR relaxation rate [4]) becomes more
appropriate.

Here we will illustrate this qualitative idea in a spe-
cific model. Rather than thinking about this as high T
regime for visons, imagine we reach this regime by send-
ing ∆v → 0 at fixed T . In other words, we are in the
quantum critical region of a critical point where the vi-
son gap vanishes leading to phase with the visons con-
densed. We have already argued in the paper that the
spinons are also in the quantum critical region of a tran-
sition where the spinons condense. Thus a description
of the spin dynamics in the regime T > ∆v is provided
by the quantum criticality of a multicritical point where
both the spinons and visons condense. A general theory
of such multicritical points has been discussed in a recent
work by two of us. [2] The NMR relaxation is then given
by 1/T1 ∼ T ηmc , where ηmc is the anomalous dimen-
sion of the magnetic order parameter at the spinon-vison

multicritical point.

Our only present estimates of ηmc come from the
1/N expansion, and so it is useful to compare estimates
of anomalous dimensions in this expansion at different
quantum critical points. For the regime, T < ∆z , dis-
cussed in the main paper, the NMR relaxation is con-
trolled by the theory in Eq. (1) describing the condensa-
tion of the spinons alone. Here we have 1/T1 ∼ T η where
[1]

η = 1 +
64

3π2N
. (40)

In the higher temperature regime, T > ∆z , we have
1/T1 ∼ T ηmc , and the same 1/N expansion for this ex-
ponent at the multicritical point where both spinons and
visons condense yields [2]

ηmc = η − 256

3π2N
× 1

1 + 256k2/(π2N2)
. (41)

Here k is the level of the Chern-Simons theory describ-
ing the multicritical point. The large N expansion is
performed with k proportaional to N , and the physical
values are k = 2 and N = 4.

The key point is that ηmc < η. Hence 1/T1 will have
a weaker dependence on T for T > ∆z than for T < ∆z.
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