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GADIA: A Greedy Asynchronous Distributed

Interference Avoidance Algorithm

Behtash Babadi and Vahid Tarokh

Abstract

The problem of distributed dynamic frequency allocatiortasisidered for a canonical communi-
cation network, which spans several networks such as d¢egmidio networks and Digital Subscriber
Lines (DSL). A Greedy Asynchronous Distributed InterfarenAvoidance (GADIA) algorithm for
horizontal spectrum sharing has been proposed that ashjgsdormance close to that of a cen-
tralized optimal algorithm. The convergence of the GADIA@&ithm to a near-optimal frequency
allocation strategy is proved and several asymptotic pedoce bounds have been established for
various spatial configurations of the network nodes. Funtioee, the near-equilibrium dynamics of the
GADIA algorithm has been studied using the Glauber dynanfigsidentifying the problem with the
anti-ferromagnetic inhomogeneous long-range Potts mddighg the near-equilibrium dynamics and
methods from stochastic analysis, the robustness of thariddg with respect to time variations in
the activity of network nodes is studied. These analytialtesalong with simulation studies reveal
that the performance is close to that of an optimum cengedlizequency allocation algorithm. Further
simulation studies confirm that our proposed algorithm etfggms the Iterative Water-filling algorithm
in the low SIR regime, in terms of achieved sum-rate, coniplegonvergence rate and robustness to

time-varying node activities.

Index Terms

Dynamic spectrum allocation, interference avoidancenitivg radios, distributed algorithms, Glauber

dynamics.

Copyright (c) 2010 IEEE. Personal use of this material isniiéed. However, permission to use this material for anyepth
purposes must be obtained from the IEEE by sending a requgsths-permissions@ieee.org.

B. Babadi and V. Tarokh are with the School of Engineering apglied Sciences, Harvard University, Cambridge, MA,
02138. (e-mails{behtash , vahig@seas.harvard.edu)

This research is supported in part by ARO MURI grant numberlW&--07-1-0376. The views expressed in this paper are

those of the authors alone and not of the sponsor.

DRAFT



I. INTRODUCTION

Dynamic frequency allocation has an important role in invprg the performance of com-
munication networks, for it results in less transmissionv@o which is a crucial objective
in system design. To do this in an optimal way, there needseta lrentralized processor
with full knowledge of the spatial distribution profile ofemetwork nodes. However, in many
emerging communication networks (such as ad hoc wireletsgonles, wireless sensor networks,
cognitive radios, etc.), no central frequency allocatiatharity is naturally available. This makes
distributed frequency allocation an important, but mosithchartered territory in networking.

Centralized frequency allocation has been extensivellistiin the context of cellular wireless
systems (See, for example, [31] and [49]). As for wirelessvoeks, Leung et al. [30] propose
a heuristic centralized algorithm based on local searcbriglhgns to search through the possible
frequency combinations. In another approach, Steens#i8pifitroduces a central controller to
the network, which assigns frequency bands to the nodegl lmas¢heir interference with their
neighboring high priority nodes.

There are also various proposed methods for decentralizetwliijuted) frequency allocation in
different contexts (See, for example, [13], [15], [22], [2B4], [37], [38], [40], [41], [42], [43],
[45], [51], [56], [58], and [59]). These include methods édn graph coloring for cognitive
networks, greedy interference avoidance techniquesitiverWater-filling for Digital Subscriber
Lines (DSL), game theoretic approaches to dynamics spaditiocation and methods based on
auction theory. Here, we review a number of these resultstwaie most relevant to our work
(For a more comprehensive review of these results, see.[36])

These approaches may either excessively simplify theferesice models, or may not be de-
centralized, or may require too much information exchangf@/ben autonomous nodes/clusters,
or may suffer from all these shortcomings. Additionallygyhmay be too complex to implement.

Ramanathan [43] takes an approach based on approximagngptimal resource allocation
solutions on a graph. Peng et al. [38] propose that secondseys choose their spectrum
according to their information about their local primarydasecondary neighbors. They employ
a simplified model for mutual interference of the network esdhat turns the problem into the
graph multi-coloring problem. They subsequently computai-optimal solution to the graph

multi-coloring by using approximation algorithms to thegh labeling problem. Cao et al. [57]
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show that the graph model has the potential to representysqal interference model. Zhao et
al. [60] propose a distributed coordination protocol inartb construct an in-band control path
(instead of pre-assigned out-of-band control channelhabthe nodes can coordinate and choose
their spectrum accordingly. In a different approach by Caal.12], the communication load of
coordination between the nodes is decreased and a rultegspectrum sharing mechanism
is used, in which the nodes regulate their actions by comglwith a set of predefined rules.

In another strand of work, Rose et al. [45], D. C. Popescu.¢4@], [41], and O. Popescu et al.
[42] extensively study the problem of greedy interfereneagidance in wireless networks. Rose
et al. [45] propose and study iterative algorithms (namitlg, eigen-algorithm and the MMSE
algorithm) for interference avoidance through waveformaphg in a synchronous network of
multiple users connected to a common receiver (or co-ldcagt of receivers). D. C. Popescu
et al. have extended the results of [45] to several scenarip40] and have been formalized
them in the more general framework of multiple-access vegttannels in [41]. It must be noted
that the GADIA algorithm is an extension of the greedy irgeghce avoidance procedure to the
canonical network model considered in this paper.

In the context of Digital Subscriber Lines (DSL), some rdcemrks regarding spectrum
balancing have been done (See, for example, [13] and [5B8.0bjective of spectrum balancing
in DSL systems is to maximize the throughput of each user lapisly its Power Spectral
Density (PSD) of transmission, satisfying a certain powenstraint. Yu et al. [58] propose
the method of Iterative Water-filling in order to solve theolplem. In the case of two users,
they show the existence and conditions on the uniquenessNafsh equilibrium point for the
iterative algorithm. However, each user must know a wemlgem of the PSD of the other
users (interference), in order to do water-filling. The dtere Water-filling algorithm has high
complexity and the resulting Nash equilibrium poinnigt necessarilfyhe optimal solution. For
instance, in a two-user scenario, if both users start withtaPED initially, iterative Water-filling
does not change their PSD. This is clearly a Nash equilibquaint, but is far away from the
optimal answer. Etkin et al. [15] and O. Popescu et al. [4Zwslthat this non-optimal Nash
equilibrium point might be the only Nash equilibrium, anceitkfore Iterative Water-filling fails
for various scenarios.

Cendrillon et al. [13] consider the scenario where the useesl to balance their power along a

number of tones in order to optimize their throughout und®wer constraints. The optimization
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problem is relaxed by introducing a virtual user with fixedetholds. It turns the problem into
a separable optimization problem across the tones forrdiffeusers. An algorithm has been
proposed to solve the relaxed problem iteratively via smviocal optimization problems by
the users. The knowledge of a weighted sum of the PSD of ther atbers (as a measure of
interference) is required for each user to solve its locainwipation problem. The convergence
of the algorithm has been shown in high SIR regime. Simuiatishow that the achievable
region resulted by the solution of the relaxed distribut@diroization is close to that of the
optimal centralized solution. However, no one-to-one egpondence between the points of
the achievable regions of the optimal (centralized) ancedialized algorithms is guaranteed.
Therefore, the algorithm does not necessarily convergeptimal values. For the case of
asynchronous transmission (in the presence of ICI), thenggtion problem is not separable
across the tones. They have therefore used heuristic @atilon approaches with no convergence
guarantees.

Etkin et al. [15] show that the problem of optimal PSD shapngpss the users is reducible to
that of allocating piece-wise constant powers. This ramaltices the complexity of the spectrum
sharing problem. Furthermore, a number of achievability existence results in the context of
non-cooperative and cooperative game theory for obtaieffigiency and fairness, as well as a
punishment-based mechanism have been established. Aragthwach has been presented by
Huang et al. [22], where each user in the network announceseatp the other users, so that they
can adapt their power allocation accordingly. Convergeeselts have been established using
supermodular game theory. Bae et al. [5] and Huang et al.d&3jose and investigate methods
based on auction theory. In particular, Bae et al. [5] cagrsitie scenario where a spectrum
broker collects bids by the users and allocates the resqpomeer or bandwidth) according to
a sequential second-price auction. Equilibrium analysipresented for the two-user case and
the existence of a Nash equilibrium has been establishethéot-user scenario.

Hicks et al. [21], Menon et al. [33], Sung et al. [50], [51],dabllukus et al. [53] consider
spreading code adaptations, where each node is isolatedqneincy and spreading codes are
used to minimize the interference (See [36] for a detailedulision of this topic). Lacatus et al.
[28] present a distributed algorithm for codeword and poagaptation towards achieving a target
SINR in CDMA systems, in the context of hon-cooperative gdheory. In [34], [35] and [37],

methods based on potential games have been proposed. Ni¢3&1 propose a communication
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protocol in which the nodes can coordinate and obtain sefftcinformation for their decision
making. Moreover, convergence to a mixed-strategy eqiilit has been established. Neel et al.
[34] establish the convergence to a pure-strategy equilibrunder the hypothesis of Bilateral
Symmetric Interference (See Section IlI-A for more dejails

In this paper, we consider a canonical network model whichlz&aused to represent various
communication networks. Examples are clustered wirelessarks (where the agents are divided
into different clusters and each cluster is represented blyster-head) and Digital Subscriber
Lines. A Greedy Asynchronous Distributed Interference ilaace (GADIA) algorithm has
been proposed for the horizontal spectrum sharing in sutivonkes. The GADIA algorithm
provides a simple, fully distributed, dynamic frequenclpedtion strategy that requires neither
any information exchange between autonomous devicesyearany knowledge of the existence
of other autonomous entities. Additionally, it can be usedconjunction with any realistic
wireless radio channel model such as those commonly engbloyevireless standards (Hata
model, Okumura model, etc.).

In the GADIA algorithm, each node, having knowledge aboet ititerference it experiences,
chooses the frequency band with the least amount of interéer from the other nodes. It is
shown that the GADIA algorithm converges to a near-optinp@ctrum assignment (under the
hypothesis of interference reciprocity), without any sratuster information exchange. In [34]
and [36], the convergence of a GADIA-like algorithm is editied under the hypothesis of
Bilateral Symmetric Interference (BSI). The network tyilin [34], [35] and [36] is the negated
sum of interferences in the network, which has also been @egl by the present authors
in [2], [3] and [4]. To guarantee convergence under BSI, treasored marginal interference
contribution between pairs of radios (clusters) needs ttheesame so that in [34] and [36], one
needs to have’,«; f(s;, s;) = Pjoyif(s;,s;) for all « and j, where P, is the transmittion power
of nodei, «;; is the normalized channel between nodemnd j, and f(-, -) is the interference
leakage function (See Section Il for more details). In gahe¢he BSI condition does not hold
in a network with generic power distribution over the usémg.35], this is overcome by having
each radioy, scale its metric by its own transmit powé¥; [35] shows that this is sufficient
to satisfy BSI with a generic power distribution. Thus [35jdaGADIA differ only in that [35]
scales the metric by, while GADIA does not. In the nomenclature of [35], GADIA walube
considered a weighted potential game while [35] is an exattrgial game, with [35] having
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a potential function (called network utility function harg given by Eq. (6) divided by 2. In
practice, this distinction means that GADIA saves a muttgilon for every channel interference
evaluation, while converging to the same operating poirtitere@as the linear-space properties of
exact potential games allows [35] to aggregate interfexeneasurements from each device in a
cluster for more device-specific responsiveness. This a8t establishes performance bounds
on the GADIA algorithm (Section 1V) and considers contingdme dynamical analysis (Section
V) which were not considered in [34], [35] and [36], and to tiest of our knowledge in any
existing work on this topic. In particular, several asyntgtgerformance bounds for a wide
range of network topologies have been established usingyimenetries of the network utility
and the minimum energy property of Bravais lattices. Thewvodt utility, under which the
performance of the GADIA algorithm is studied, is the wegghtaggregate interference. It is
shown that this network utility is closely related to the state of the network. Furthermore,
the dynamical behavior of the GADIA algorithm has been cahpnsively studied, in analogy
to the Glauber dynamics of the inhomogeneous long-rangdeammagnetic Potts model. In
particular, we have constructed a framework based on sttichanalysis in order to evaluate
the near equilibrium performance of the GADIA algorithm presence of time-varying activity
of the network nodes. Simulation results (Section VI) shbat the GADIA algorithm achieves
more than 9% of the optimal sum-rate of the network in the low SIR reginoe arious network
topologies. Also, further simulation studies confirm thbusiness of the GADIA algorithm with
respect to the time-varying node activities, in accordanitk the analytical results.

The main contributions of this paper are: (1) proposing gptémlow-complexity, robust and
fully decentralized algorithm for horizontal spectrum shg, (2) proving explicit performance
bounds on the outcome of the algorithm in various environsg3) presenting an analytical
model for the dynamics of the proposed algorithm, inspinganethods from statistical physics,
and (4) analytical evaluation of the robustness of the &lgorin presence of time-varying node
activities.

The outline of this paper follows next. In Section I, the aaital network model, the network
utility formulation and the underlying assumptions arecdssed. The GADIA algorithm is
introduced in Section Ill, followed by the discussion ofiitgplications. The convergence of the
GADIA algorithm and asymptotic performance bounds arehdistaed in Section IV. Section

V includes the study of the dynamical properties of the GARQorithm, such as the near-
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equilibrium dynamics and performance evaluation undeetuarying activity of network nodes.
Simulation studies are presented in Section VI, followedcbgclusion in Section VII. Finally,
a number of technical lemmas and mathematical derivatiompr@@sented in Appendices A and
B.

[I. CANONICAL NETWORK MODEL

Suppose that we have a set of network nodes distributed icespa general, each node
may have an internal structure, i.e., it may comprise smalfgities. Each node is interested
in inter-node and/or intra-node communications. We dettute general structured network by
the canonical network Many communication networks of interest can be represeitethis

canonical form. As mentioned in the introduction, two suetworks are the following:

Clustered Wireless Networks: Suppose that we have a set of transceivers distributedaicesp
such that they can be partitioned into a union of possiblyrlapping clusters. Each cluster is
equipped with a cluster-head. These networks often happpractice. For instance, in a combat
scenario, a group of soldiers can be divided into a numbelusters according to their missions.
We briefly review a few examples of such networks in what feo

Moreover, such networks commonly arise in the context ofndoge radios. According to
the recent FCC order on TV white spaces [16], all fixed devioea cognitive network must
register their locations in the database. In addition, fidedices must transmit identifying
information to make it easier to identify them if they are fduto interfere. Furthermore, fixed
and personal/portable devices operating independentlt provide identifying information to
the TV bands database. However, FCC permits applicatioreeftification of devices that do not
include the geo-location and database access capabditigsnstead rely on spectrum sensing
to avoid causing harmful interference. A fixed device muspley both geo-location, database
access, and spectrum sensing capabilities that enableetheedo listen for and identify the
presence of signals from other transmitters. A persondldple device must either be under
the control of a fixed device or a personal/portable devie¢ émploys geo-location, database
access and spectrum sensing or employ geo-location/d&talcaess and spectrum sensing itself.
Therefore, the assumption of a clustered wireless networkyhich each cluster consists of a
number of users is very reasonable in the context of cognitistworks sharing white spaces

horizontally.
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Another example is the homogeneous/heterogeneous @ddstensor networks for target track-
ing and in general, anomaly detection purposes [9], [119].[8 such networks, agile clusters
are formed which comprise pressure, sonar and magnetiorsesach cluster is equipped with
a cluster-head, which communicates with the cluster mesigathers their data and reports to a
fusion center. Often times a number of such clusters coexibe same space-time neighborhood,
and hence spectrum sharing is very desired in order to iserttee throughput of the underlying

intra-cluster communication links.

Further examples include Wireless LAN Hotspots and WPANvoéts, in which intra-cluster
communication is very desired. There are a number of effiamethods for partitioning the
network elements, which will lead to such clustered netwoHowever, these methods are not
the focus of this paper and we are assuming that the clusteral@ady formed in a specified

mannetr.

Digital Subscriber Lines: In a Digital Subscriber Line (DSL) system, modems use fezmies
above the voice band for handling high-speed data. The bwidfansmission lines may contain
up to 100 subscriber lines. Clearly, there will be electrgnsdic interference between the lines
in the bundle. Thus, the DSL system can be modeled as a nurhb@nemitters and receivers
interfering into each other [58].

Thus, for a clustered wireless network, each node is a ¢ateof users forming a cluster and
in a DSL system each node is a subscriber line. In the formse, @ach node has a cluster-head
responsible for managing some of the network functions. ddr@nical network model is given
by a collection of nodes;;, i = 1,--- , N, which is depicted in Fig. 1 for a clustered wireless

network.

Remark: Bambos [7] has introduced a canonical conceptual framevarkhe networking
paradigm, in which the network is conceptually modeled asolection of interfering links
According to [7], two instances of this concept are ad hoavogts (with no fixed infrastructure
and possibly multi-hop communication mode) and cellulamoeks (with a fixed infrastructure
and single-hop communication mode). The canonical netwaokiel of this paper can also be
viewed as a collection of interfering links. However, theotmetwork models pertain to different
structural scales; the canonical network model in our papesists of a number of co-existing

and hence interfering network nodes, where each node may drainternal structure a al the
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Fig. 1. Canonical Network Model

canonical conceptual model of Bambos [7]. For example, se a clustered wireless networks,
the network consists of a number of co-existing clusterer@leach cluster comprises a number
of users along with a cluster-head. On a smaller scale, teesus each cluster may form a
network of the type described in [7], e.g., the users insidduater may communicate with
each other or the cluster-head in a multi-hop/single-hapranication mode. The case of the
DSL network is slightly different: a DSL network consistsabundle of co-existing and hence

interfering wires, but the wires have no internal networkicture.

A. Assumptions

We make the following main assumptions on the network model:

1) The interference between any two nodes is reciprocal.

2) The leakage interference between any two nodes is synemetr

3) The noder; transmits with power”,.

4) The channel between nodesandc; is given byh,;. For exampleh;; can be modeled as
a Rayleigh fading channel or path loss with expongniVe also denote the self-gain of a node
by h;;.

5) The accessible spectrum is divided intalifferent bands, denoted by, - - - , b,.
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6) At time ¢, the ith node is in state;(t) € {1,2,---,r}, corresponding to the index of the
frequency band it is using for communication purposes.

7) The rate of change of the spatial distributions of the sodethe network is much less
than the processing/transmission rate. Therefore, theldgp of the network is assumed to be

fixed in the analysis of the frequency allocation algorithm.

Remark: Assumption 1 readily holds for the DSL network due to the pdglsproperties of
transmission lines. In other words, in the DSL netwaétkis simply the self-inductance of the
ith wire (in contrast toy;; which is the mutual inductance of wirésind j). Hence, interference
reciprocity is implied by the mutual inductance reciprgcgince the self-gairk;; is typically
the same for all wires.

For clustered wireless networks in general, there are wangays in order to obtain inter-
ference symmetry, which are discussed in details in [35f Imore specific network scenario,
where the mutual distances between the clusters in a chastereless network are much larger
than the typical cluster size, one can obtain interfereryoensetry from channel reciprocity by
adding the additional assumption that at each moment in elaster there is at most one user
transmitting. In this caseh,;; can be interpreted as the link gain between the transmittasy
in clusteri and j, and h; can be interpreted as the typical link gain between the etistad
and cluster members of clustér This assumption can be enforced by employing a TDMA
scheme for intra-cluster communication [26], or consiagrihe 802.11e or 802.16h scenarios.
We further assume that the clusters have similar physicalacheristics, henck;; = h;; for all

1 andj.

B. Network Utility

A common choice for the network utility is the sum-rate (Seee,example, [13], [15], [58]).
Let nodec; be in states;, i.e., transmitting in frequency barid.. We define the rate of a node

as follows:

P,
.= 1 72
R; :=log (1 + NoG) T 1) (1)

where Ny(s;) is the noise power in bansl and /., is the interference experienced by The

interference experienced by nodg given the state of the system beifig, s2, -+, sy}, can
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be modeled as

I, = Z Pjai; f(si, 55) 2)
i
where
hi;
Qij = h—; 3)

and f(s;,s;) denotes the symmetric leakage interference of the frequéaad s; into s;.
For example, if the leakage between different frequencydbar negligible,f can be well

approximated by the Kronecker delta function:

1 SZ'ISJ'
0 Si#Sj

As mentioned in Section II-A, we assume thaf is constant across different nodes in the

(S(SZ',S]') = (4)

network, hence the condition of interference symmetry, ag f (s;, s;) = c;f(s;, s:), is implied
by h;; = hj;, which is the channel reciprocity between nodesmd ;.

The sum-rate can then be defined as
N
Usum—rate - Z Rz (5)
i=1

The network utility function considered in this paper is theighted aggregate interference

and is defined as

N
U=~ PI, (6)
i=1

The weight of the interference experienced by nedis given by its transmission powet;. A
similar metric has been introduced by Lacatus et al. [28hi& ¢ontext of power and codeword
adaptation in CDMA systems. It is possible to consider a ngaeeral network utility for the
case where the nodes allocate their total power across frequency bands. LeP* be the

transmission power of nodeg in frequency band,, such that

iﬁza (7)
k=1

We can define a similar power-weighted aggregate interéerexs follows:

N r
U'=-> Y Pt (8)

1=1 k=1
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where the additional summation overcaptures the effect of power distribution across all the
frequency bands. As it will be discussed later in SectiofAllimaximizingthe network utilityU’
reduces tanaximizingthe network utilityU' (Further motivations for choosing such a network
utility function is discussed in detail in Section IlI-A).h€refore, we will only present our
analysis for the network utility/.

Other metrics such as aggregate SIR (See Sung et al. [51]pgrslum-rate (See Etkin et al.
[15]) have also been studied in the literature. Finallyertbiat the entire analysis throughout this
paper can be carried out by negating the utility functidand considering utility minimization.
This way, the network utility will be a positive quantity atite results (especially the inequalities)
will be more intuitive. However, in order to align ourselves the common notion ofitility
maximization we prefer to work with negative utility functions in favof maintaining utility

maximization as our objective.

C. Connection of the Weighted Aggregate I nterference to Sum-rate

The negated weighted aggregate interference has been siseduccessful metric in some
strands of results in the existing literature (See, for exani28], [34], [35] and [36]). However,
we find it useful to delineate the connection of this metricthe sum-rate metric. In what
follows, we show that there exists a regime of SINR (i.e., BAMR regime) where maximizing
the negated aggregate interference yields an approxinohiéasn to the maximization of the
sum-rate. The low SINR regime is defined by the following detanditions:

b <
o =
No(SZ') + Ici

foralli=1,2,---, N. We also assume thd{,(s;) < I, forall i =1,2,--- /N and therefore

1 %)

focus our attention on the low SIR regime. A practical exanpil a network with low SIR is
the CDMA/HDR network. In fact, several measurements don&éyder et al. [10] reveal that
almost 50% of the nomadic users in a CDMA/HDR system havetiveg8IR (in the dB scale).

In this regime, the sum-rate can be approximated by
P
sum-rate __ g 2
prnmrate — EZ_ T o({a2}). (10)

sincelog(1 + =) = = for < 1. Moreover, if we assume that the network is homogeneous, i.e

the nodes have very similar structures (which is true for @280 clustered wireless networks)
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and the number of interferers and available frequency baneldarge enough (See Remark 1

below), the interference experienced by nedean be expressed as
I, =1+4I,, (11)

with 3; := §1,,/I < 1 foralli = 1,2,---, N. Note that] captures theypical interference
experienced by the nodes in the homogeneous network Andtands for the variations in the
interference levels. The sum-rate can be then further appeted by

sum-rate ~_ E _ 61& _ E _ ICz‘
v 37 (0 I‘>_zi:]‘<2 7)

7

1
= Uy+ ﬁU (12)
where
Up=2) il (13)
0-— i I—
independent ob /.., for:=1,2,--- , N, and the overall error is of the order
o({a2}) +0(153). (14)

Therefore,Us™* ~ U, + U and maximizingU is equivalent to maximizing/s»mr for
a homogeneous network in low SIR regime (Note that a simiffamearelation holds between
yUsumrate gnd U7). Simulation studies in Section VI verify that the maxintipa of the negated

aggregate interference indeed yields a near-optimalisalti® sum-rate maximization.

Remark: The hypothesis ofl., < I is adopted from statistical physics. If the network
geometry is homogenous with high number of interferers, thiede is a considerable number
of available frequency bands, this condition holds for gengpatial and frequency band con-
figurations of the network nodes. As an example, let us censicscenario where the nodes are
distributed in the plane with a density of, nodes per normalized unit area. Also, we suppose
that each node can take any of thavailable frequency bands with equal probability. It isyeas
to show that the ratio of standard deviation to mean of therfatence for each user scales as
v/ (r —1)/ng. Hence, ifny > r—1, the hypothesis holds with high probability for generictsa
configurations of the network nodes with random frequenaydbassignments. In the jargon of
statistical physics, this corresponds to the high tempegdtehavior of the system, where each

state is accessible equi-probably. It is worth considethwy low temperature behavior, where
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the network lives near the optimal frequency band assighiien, equilibrium, in the statistical
physics terms). In this case, the most probable states afystem occur when one node switches
away from the optimal frequency band to a non-optimal bartt equal probability. In is easy to
show that the variations in the interference experienceddnh user scale &3(1/r). Hence, if

r > 1, the hypothesis holds for generic configurations of theesystear the optimal frequency
band assignment. Therefore, when bath>> r — 1 andr > 1 are satisfied, the assumption
of 51, < I is reasonable for generic spatial and frequency band caafigas of the network

nodes.

D. Discrete-time vs. Continuous-time Models

Let the state of the network bfs, (), s2(%), -+, sn(t)} at timet. Each node, say;, picks
a timet = t,, at random and updates its transmission frequency band. dtueenof the update
procedure is asynchronous for all the nodes. This is inelitiappealing, because of the nature
of distributed networks, where there is usually no commarlclamong the nodes. We assume
that the updates are taking place at timesty,t,, - --. The update process can be different for
each node. For example, each node can choose the updatebtisexs on a point process (e.g.,
Poisson point process) with a specific rate. The update gsoeél be discussed in more detail

in Section V. In this case, we can express the interferenpergnced by node; at timet by

N
L,(t) == > Paiif (si(t), 55(1)) (15)
j=1
7
The network utility at timef, U(t), can be written as

N N N
Ut) == — Zf)ilci (t) =— Z Pz'PjOéijf(Si(t)a Sj(t)) (16)

=1 i=1 Jjjgi
Let Gx(t) C {1,2,---, N} denote the set of nodes transmitting in bandat time¢. Also,
let 7% (t) denote the interference experienceddyaused by all the nodes i, (t), if ¢; was

transmitting in band,. I () can be written as

N
IE) = Y P f(k,s5(1)) (17)
j=1

i
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Whenever the temporal dynamics of the updates are not ieapofor our purposes, we

can alternatively use a discrete-time state-space modwlresmhe state of system is given by

{s1[n], s2[n],- - -, sn[n]} at timen, corresponding td¢ = ¢,. The quantities/.,[n], U[rn] and
I%[n] can be similarly defined by substituting the continuousetistatess; (t), s2(t), - - -, sn(t)
with their discrete-time versions; [n|, s2[n], - -, sy[n].

It must be noted that, for notational convenience, we may dhe time dependence of the
functions I.,[n], I¥[n] and U[n| following the convergence of the algorithm or whenever the
state of the system is not varying over time, and denote thgm..b Ifji and U, respectively.
Also, we may add the dependence &h the number of nodes, upon convenience and denote
the above functions by,,(N), I (N) andU(N), respectively.

[Il. THE GADIA ALGORITHM

Given the canonical network model and the utility functionin Section II, the objective is
to design a distributed algorithm to maximize the netwotktytfunction across different nodes
in the network. Note that each node, sgy can only observdﬁi[n] forall k =1,2,---,r.
For example, in a clustered wireless network, the clustadhscans the spectrum and esti-
mates/measures the interference it experiences in eaghefney band. Thus, each node is only
aware of its own interference profile. Given the measureerf@tence profile, each node needs
to update its frequency band in a way to increment the netwoliky. Our proposed distributed
algorithm for this purpose is called the Greedy Asynchraistributed Interference Avoidance
(GADIA) Algorithm. We can formally define the GADIA algorith as follows:

The GADIA Algorithm: Nodes scan all the frequency banfds- - - , b, in an asynchronous
manner over time. Each node chooses the frequency band ichvithexperiences the least
interference from other nodes. In other words, a negdpicks a timen at random and updates

its state according to the following rule
siln + 1] = argmin I’ [n]. (18)
J

If the minimizer is not unique; randomly picks one such minimizer.
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A. Discussions

In case of clustered wireless networks, the cluster-headsgs the new transmission frequency
band according to Eq. (18), and then announces the new fiegurand to the other users in the
cluster. In case of a DSL system, the interference chanael®e measured in the loop-planning
phase and then the transmitter modems can shape their PSRliagcto the GADIA algorithm.
We will mainly focus on the clustered wireless networks tlyloout the paper, and will point
out the relevant analogies to DSL systems whenever convienie

As confirmed by simulations in Section VI, such a networkitytiintroduces more robust-
ness to the performance of the distributed frequency dilmtalgorithm in presence of time-
variations, in comparison with the Iterative Water-filliaggorithm [58]. Moreover, the GADIA
algorithm achieves a higher sum-rate compared to the iterdfater-filling algorithm in the low
SIR regime (See Section VI). Finally, as it will be discussedhe forthcoming sections, our
choice of network utility admits a tractable mathematicahiework to analyze the performance
of the GADIA algorithm under time-variations (see Sectiopand uncertainties [2].

The constraint that each node chooses a single frequendyfbarrommunication purposes
at each time is consistent with the network utility In fact, this is induced by this particular
choice of network utility. In contrast, suppose that eactienoan allocate its total power across
the r available frequency bands. Consider the network utilityadapted to this new power

allocation strategy, defined in Eq. (8) as:

N
U=->"
=1 k

It is easy to check thal/’ has an affine relation witli/s"™ % as in Eq. (12). The node;

T

ci

phIt (19)
1

can only observdfji, k=1,2,---,r and can allocate its total powét across the- frequency
bands in order to increment the network utility. LBt be the transmission power of nodgin

frequency band,, such that

Z Pt=P, (20)
k=1
Then, the node; needs to solve the following local optimization problem:

max { = Hklé} subjectto > Pf =P, (21)
k k

(P
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Since the objective function is linear iR*, clearly the solution is to allocate the total power

to the frequency band,.- such that
k* = arg mkin IZ' (22)

Therefore, even if the nodes start the update process wivempallocation across all the
frequency bands, the above choice of power-weighted agtgagterference for the network
utility will give rise to single frequency band allocatioms the steady state. In light of the
above, we only analyze the algorithm under the networktytili, corresponding to the single
frequency band assignments.

In the Iterative Water-filling algorithm [58], node allocates its power across the frequency
bands as follows:
Pl =(v—1I), (23)

7

where (z), := max(z,0) andv is selected such that

T

> w-I),=P (24)

j=1

First of all, we note that the Iterative Water-filling algidwin clearly has higher computational
complexity compared to the GADIA algorithm. Secondly, asmtianed in the introduction, the
outcome of the Iterative Water-filling algorithm might ndivays be near-optimal. In fact, as
pointed out by Etkin et al. [15] and O. Popescu et al. [42], dbécome of the Iterative Water-
filling algorithm might be the only possible outcome and famfi optimal. For example, let us
consider the scenario in Fig. 3. There are two nodesand c¢,, and two available frequency
bandsp, andb,. The initial power allocation is the flat power allocation@ss the two frequency
bands. Clearly, this is an equilibrium point for the ItevatWater-filling algorithm, since the best
response of each node to the flat power allocation of the ashdre flat allocation allocation
[15], [42]. On the other hand, the GADIA algorithm bypassashsa Nash equilibrium, due to
its inherent equilibrium selection via tie-breaking. Iinet words, the GADIA algorithm chooses
a single frequency band, even if several available frequérands have the same interference
level. Hence, GADIA would indeed quickly segregate itsait@man equilibrium in which the
two nodes do not impose any interference on each other. Touthis example, the output of
the GADIA algorithm has clearly a higher sum-rate than tHathe Iterative Water-filling.
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Fig. 2. The equilibrium of Iterative Water-filling vs. GADIAGADIA results in full interference avoidance, whereagdte
Water-filling flattens the PSD.

Although this example is not very generic, it captures theemse of difference between
the two algorithms. In particular, in the low SIR regime, BADIA algorithm is more likely
to output a frequency band assignment wsilgnificant interference avoidanceompared to
Iterative Water-filling (since in this regime, the IteraiWater-filling algorithm tends tflatten
the spectrum).

Also, in clustered wireless networks, the clusters may brg ese to each other and even
partially overlapping: For example, in a cognitive ad hobawgk, it is possible to have partially
overlapping clusters of users which are communicating aifew fixed devices equipped with
geo-location systems. Moreover, due to the nature of thelegs channel and also high number
of interferers, the SIR at the receivers might be very low. &ample, in CDMA/HDR systems
almost 50% of the nomadic users suffer from negative SIRh@dB scale) [10]. Therefore, in
general, one expects the network to be operating in a relgtlew SIR environment. This is
not usually the case in the DSL networks, since the subsdiiiess can not physically overlap.
Simulation results in Section VI confirm that the GADIA algbm outperforms the Iterative

Water-filling algorithm in a relatively low SIR regime, forl&road range of clustered wireless
networks with different topologies.
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IV. MAIN RESULTS STATIC ANALYSIS

First, we will establish the convergence of the GADIA algfom under the hypothesis of
interference reciprocity. Then, we will present performarbounds for the GADIA algorithm

under different network topologies.

A. Convergence

Theorem 4.1: Given any reciprocal interference model, t#G\ algorithm converges to a
local minimum.
Proof: First, we show that—U|[n] is a non-increasing function of. Without loss of
generality, we assume that the nodeis updating its frequency band at time Suppose that

cr has been transmitting in bardd,,) at timen. Thus,U[n] can be written as

N N
U] = - Z PinOéz'jf(Si["L Sj["]) - Z lDiPkOéikf(Si[n]? Sk["]) (25)
ij=1 i=1,ik
i#jFk

— Z Py Piousi f (sk[n], sin]).

i=1,i#k
Since, o, = ayy, for all i # k by the assumption of interference reciprocity afd;, sy) =

f(sk, s;) by the leakage symmetry hypothesis, we can wiife| as

N N
Un|] = — Z P, Pjoy; f (s:n], s;[n]) — 2 Z P;Pra, f (s:n], si[n]) (26)
ij=1 i=1,i#k
i#j#k

N
= — Z BPjaijf(Si[n], S [n]) — QPkIS:[n} [n]
ij=1
itk

After the update¢; chooses the new barig, 1, where

sk[n + 1] = argmin I [n]. (27)
J
Therefore,
N
Un+1 = — Y PPaf(sin], s;[n]) — 2P [n] (28)
ij=1
Ltk

= U[n] — 2P, (Ij}f[”“} [n] _ ]és:[n} [n])
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Eq. (27) implies that3*"*[n] < 3™ [n]. Hence,
Un+1]—=Uln] >0, (29)

which implies that—U|n| is a non-increasing function of. Moreover,—U|[n] is clearly lower
bounded by). Therefore M € N such thatvm > M, we haveU|n + 1] = Ul[n], which proves

the statement of the Theorem. [ ]

B. Performance Bounds: Lower Bound

Theorem 4.2 gives a lower bound on the performance of the @Adldorithm for the general

canonical network model.

Theorem 4.2 (Lower Bound): Léf; denote the network utility corresponding to the state of
the algorithm following convergence (see Theorem 4.1), @pdoe the network utility corre-
sponding to the worst case interference scenario (wheraalkes transmit in the same frequency
band). Then, '

Ug > ;Uw, (30)

wherer is the number of available frequency bands.
Proof: Suppose that at time the nodec; chooses the frequency bahag Therefore, we

have I’ [n] < I7[n], for all j # k. Hence,
rifn] <> I n] (31)
j=1

Note that the right-hand side is independent.p§ince it stands for the interference experienced
by ¢; when all the other nodes are transmitting in the same frexyuband. Let)M be a time
following the convergence of the GADIA algorithm. Cleadlie above inequality holds for time
M: .
rI¥[M] <Y I [M] (32)
j=1

and for all nodes;, i = 1,2,---, N. On the other hand/,, can be written as

N T
Up=—_ Y I[M] (33)

i=1 j=1
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Summing over; on the both sides of Eq. (32) yields:

N r
—rUq=r>» IFM] <> I [M]=-U, (34)
i=1 Jj=1
which proves the statement of the theorem. [ ]

Note that so far the network model under study is the canbmicalel in its most general
form. In order to obtain concrete performance bounds, wé méke a number of simplifying
assumptions on the network topology, power constraintsciwathnel model to make the math-
ematical analysis tractable. In particular, we focus oterdaion to clustered wireless networks
and assume that the channel model is path loss with exponeet,
i
dij

whered,; is the distance between nodes (clustersindc;. We further assume that the quantities

d;; are normalized by the size of the clusters, so that
B 1
= —

Furthermore, we assume that the leakage between differeaqidncy bands is negligible and

(36)

Ozij

approximate the leakage functidits;, s;) by the Kronecker delta functioi(s;, s,), as discussed

before in Section 1I-B. When all the clusters have the same, sie., homogeneous network,
h;; is constant across different nodes. Thus, the model isfanearce reciprocal. Therefore, all
the previous results (convergence and lower bound) holdeUthe foregoing assumptions, the

network utility at timen takes the following form:
N

Uln] .= — Z P;i?é(sl[n],sj[n]) (37)

ij=1
i#j

Remark: Note that the asymptotic behavior af; must be such that/[n|/N is well-defined
for any choice of state variablesn|, as N — oo. In particular, for the path loss model with
exponent;, we must have) > D, whereD is the dimension of the space over which the nodes

are distributed.
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Fig. 3. Examples of network topologies. a) General lineaayarb) Uniform linear array, and c) Uniform 2D array.

C. Performance Bounds: Asymptotic Upper Bound

It is in general hard to characterize the optimal frequenaydoassignment, even for simple
network topologies such as linear arrays. This is due to #oe that nodes have long-range
interactions, which makes the centralized network utiitsgeximization problem non-trivial. One
simplification is to consider short-range interactions}.,enearest neighbors, which is widely
studies in Statistical Physics in the context of Ising-typedels (See, for example, [8]). Also,
a graph model has been studied by Peng et al. [38], whiclyfairhplifies the interference
model. In light of the above, in order to compare the perforogaof the GADIA algorithm to
the optimal centralized strategy, we will obtain a noni#&ivower bound on the optimal network

utility.

Fig. 3 shows some examples of the network topologies studittds paper. The nodes forming
a linear array are shown in Fig. 3a. For a giveN, we assume that the nodes are located in
[0, (N — 1)d], whered is a constant. As a special case, when each node is a disiaagart
from its neighbors, we denote the array tnyiform linear array(Fig. 3b). Note that the uniform
linear array corresponds to the inted@grlattice [14]. Generalizations of the uniform linear array
to higher dimensions, which are appropriate for our purppaee referred to aBravais lattices
(See, for example, [14]). For example, one such lattice im&edsions is theiniform 2D array

shown in Fig. 3c, which corresponds to the integetattice [14]. Before moving on to the main
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result regarding the lower bound, we mention our motivatmremploying Bravais lattices and

briefly review some of their properties.

Let U,(NP) be the network utility corresponding to the optimal stratéay a given spatial dis-
tribution of N nodes inside th® dimensional cube of sid&¥d. Recall that7, C {1,2,--- , N}
is the subset of nodes transmitting in frequency bignaorresponding to the optimal frequency

band assignment. L&Y, := |G|. We expresd/,(NP) as follows:
Us(NP) = Uu(N) (38)
k=1

where U,,(Ny) denotes the utility corresponding to th, nodes in the sefs,, which are all
transmitting in band, (hence the subscript).
Let us consider the nodes @, and suppose that they are particles inside ffhdimensional

cube of side/Nd, interacting with one another according to the followingtes field:

Fij = W(Xi —X;), (39)

where x; denotes the position of node in space. This interaction field is clearly repulsive.
Therefore, if we arbitrarily distribute the nodes inside fh dimensional cube of sid&'d (with
the freedom to move inside the cube), the final equilibriumfiguration is when the potential

function given by

(40)

PP
Ve, = Z Z dn-]
1€Gr jeGE v
i

achieves a local minimum. We note that the potential fumctig, is exactly equal to-U,,(NNy).
Therefore, the final configuration of the nodes is when thevort utility corresponding to
the nodes i}, is maximized. LetU; (N,) denote the network utility ofV, nodes which are
distributed in space according the spatial configuratiomesponding to the global minimum
of the potential function;;,. We then haveJ,,(N;) < U;(Ny). This inequality is the key to

proving the main theorem regarding the optimal frequenaydbassignment (Theorem 4.3).

If P,=PF, foralli=1,2,---, N, the configuration corresponding to any local minimum of
the above potential function, in the limit &f — oo, is assumed to be B dimensional Bravais

lattice. For example, all the natural crystals are formedrdpeatedly placing a collection of
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atoms on a Bravais lattice. Bravais lattices are well-gtddin the context of crystallography and
solid state physics (See, for example, [1]). For examples ghown that there are 1, 5 and 14
different Bravais lattices in 1, 2 and 3 dimensions, respelgt The unique Bravais lattice in 1

dimension is simply the integét; lattice.

Although in solid state physics it is widely assumed thatdbefiguration corresponding to the
minimum of the potential function of particles interactivig an isotropic and convex repulsive
field is a Bravais lattice, a mathematically rigorous praofiand 3 dimensions does not exist. A
recent article [52] addresses construction of such pramfa ftlass of interactions which include
those with power law asymptotics (e.g., the path loss modtél @ponent)). The proof for the

1 dimensional case is given in [54].

Let £(d) be a Bravais lattice i dimensions with unit spacingand generators;, as, - - - ,ap
[14]. We define the energy of the lattie®d) as follows:
= 1
E(m):= ), (41)

; ; ; N
11,12, ,ip=—00 Hllal + 1282 + + ZDaDHQ

(31,02, ,ip)#0
For example, forD = 1, the Bravais lattice (integef,; lattice) has energy(n) = ((n), the
Riemann zeta function. The values Bfn) for different Bravais lattices can be easily computed
numerically. Let£*(d) be the D dimensional Bravais lattice with minimum energyi, ().
The alternating frequency band assignment on tiié(d) lattice can be defined as assigning
frequency band$,, b,,--- , b, to ther cosets ofL*(d), with unit spacingr'/Pd, respectively.
The alternating frequency band assignment is commonly inseellular communication systems

(See, for example, [31] and [44]) as the optimal frequenaseestrategy.

Theorem 4.3 gives a non-trivial upper bound on the optimadiaek utility of a D dimensional

network:

Theorem 4.3 (Optimal Utility InD Dimensions): Letl,(N”) be the network utility corre-
sponding to the optimal strategy for a given spatial disitibn of N” nodes inside theD

dimensional cube of sid®&'d. Moreover, assume that, = F, for all j =1,2,---,N. Then,
1 b 1 P?
m — < - . —
]\P—»oo ND UO(N ) A T’% Emm(n) d’? (42)

whereE,,i(n) is the energy of the Bravais lattia&*(d), assuming the minimum energy property

of the Bravais lattices inD dimensions.
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Proof: Recall that
UO(ND) = Uw<Nk)7 (43)

where U, (Ny) denotes the utility corresponding to thé, nodes in the set7;, which are
all transmitting in bandb,. The configuration corresponding to the Bravais latticehwihie
minimum energy,ﬁ*((%—f)%d), gives the global minimum of the potential functiog;, (the
global maximum of-U,(N,)). Hence, for any given distribution of th&” nodes inside the

D dimensional cube of sid&/d, we have
LU, (N
Jim Ul ’“)D <1 (44)

whereU,, <Nk, E*((ND)Dd)) corresponds to the worst case network utility when Ahenodes
are located on the sites of the Bravais latt@ewith unit spacing(]fv—f)%d.

Moreover, it can be shown thal, — oo as N — oo for all £ = 1,2,---,r, whereG,s
correspond to that of the optimal frequency band assignnidg is established by Lemma A.2

in Appendix A. Thus, we have

lim — ], (NP = lim LZUw(Nk) (45)

N—o0 ND N—o0 D

< S (e @)

Also, for an array of nodes located in inside thedimensional cube of sid&d on the sites
of the £*(d) Bravais lattice, it is easy to show that
P2
W

This result is proven in Lemma A.1 in Appendix A. Roughly skieg, the above equation states

D. px _

(46)
that the boundary effects of the lattice can be neglectedhenlimit of N — oo. Using the

foregoing result, the right-hand side of Eq. (45) can be blednas follows:

i S O £ (A2 h ) < i (2 Y L oy )
Nooo ND EASALE Ni = Nnt+D NP Y 7

N—o0
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n
The expression ", _, NkDJr1 clearly achieves its minimum whed, = N?/r, for k =

1,---,r. Therefore,
: 1 D : 22:1 Nk%—i_l 1 D *
dim EU(N) < lim (=50 ) eV £7(d) (48)
1.1 .
< T—%]\}l_fgo WUw(ND§£ (d))
1 P?
= __Emin —
ro (n) dn
which proves the statement of Theorem 4.3. [ ]

Remark: Note that the network utility/(N?) is anextensivevariable, i.e., it scales with the
number of nodesV”. The normalization factot /N in the result of Theorem 4.3 (and similar

theorems that follow) guarantees that the limits are weflrekd.

We can prove the following stronger result for the altemmgtirequency band assignment to

the nodes located on the Bravais lattice with minimum energy

Theorem 4.4: Letl/,(N”; £*(d)) be the network utility corresponding to the alternating
frequency band assignment to the nodes located on/thdimensional Bravais latticeC*(d)
with minimum energy...;, () and unit spacingl. Also, suppose tha?, = P, forall 1 <i < N.

Then, we have

i, U (N2 £°(d)) = ——5 B ) 22 (49)
Nlil})oﬁ alt ; = 7“_% min\7] %
Proof: Suppose that we alternatingly assign frequency bdnds, --- , b, to the nodes

located on the- cosets ofC*(d). First, we will show that
U (NP /1) £9(1Pd)) > Ui (NP3 £4(d)) > 10, (NP /1] £°(/Pd)) - (50)

To see this, we note that in the alternating frequency basijasent there ar¢éN? /r| <
N < [NP/r] nodes located on the cosét(r'/”d) which are all operating in frequency band
by, for k = 1,2,--- ,r. Therefore, the network utility is given by the sum of netwattilities

of ther disjoint sets of nodes corresponding to different freqydsends. Clearly, all the nodes
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in each subset have the same frequency band and thereferaetivork utility for subset,,
with |G| = Ny, is Uy (Ny; L*(r'/Pd)). We can writeU,;(N; d) as follows:

U V23 £(d) = 3 Ul N (74 (51)
k=1

SinceU,(N;-) is an increasing function oV, we can sandwicti/,,(N,; £*(r'/Pd)) as
Uu(INPfr): (7)) > U (Nis £(r7d)) > Uu (NP 1 £0(/Pd)) - (52)
Summing overk yields
TU,,J(LND /r J;E*(rl/Dd)> > Ue (NP £(d)) > er<[ND/ﬂ;£*(r1/Dd)) (53)

where we have used Eg. (51). Using the Sandwich Theorem, tve ge

. 1 D. px . . 1 D . px(.1/D
i U (NP £°(d)) = lim 5ol ([NP/r); £7(/2d)) (54)
: [NP)r] ry
A =5 Bmin () 7D
1 P?
- _";§§12nnn<n>25;'
On the other hand, from Theorem 4.3 we know that
1 b 1 P?
_ < - . v
A )
Therefore,
li ! U,(NP; £*(d)) = 1i ! Uate(NP: £*(d)) = ! E 5 (56)
N{{;W o( N7 ())—Nl_f}goﬁ alt (N7 ())__r_% mm(n)%
which proves the statement of the theorem. [ ]

Combining the results of Theorems 4.2 and 4.3, the follovilreprem compares the perfor-

mance of the GADIA algorithm to that of the optimal strategy:

Theorem 4.5: Consider a given spatial distribution 8f’ nodes inside theD dimensional
cube with sideNd. Suppose thaf’, = P, for all 1 < i < N. Moreover, letUg(NP) be the
network utility corresponding to the output of the GADIA@ithm andU,(N?) be that of the

optimal frequency band assignment. Then, we have

1 1 1
vp lim —U,(N?) < lim —=Ug(N?) < lim —

D
Jim 5 Jm 5 Jim 5 Us(NT), (57)
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where
n_ E (77) 1
N1 “max
Yp =TP N7
Emin(n) (—d"c‘l‘“)n

dmin = min, ; d;;, and Eyin(n) and Ep,.(n) are the minimum and maximum energies of the

(58)

Bravais lattices inD dimensions, respectively.

Proof: Clearly, we have
Uw(ND) 2 Uw(ND; 'C,(dmin))a (59)

where £'(d;,) is the D dimensional Bravais lattice with the maximum enerdy,..(n), and
spacingd,.;,. In other words, for any given spatial configuration of théwwek nodes with all
being in the same frequency band, the worst case utility eafutther decreased by locating all
the nodes on the sites of the Bravais lattice with the higaestgy and unit distance equal to the
smallest separation in the original network. Moreovernirgq. (48) the statement of Theorem
4.3 can be expressed as

1

1 1
lim —U,(NP) < lim ——U,(N”; £*(d))

N—o00 NL rg N—oo NE
== ( i ) 1'111 D U (N N ,C*(dm n)) (60)
’I“g d N1—>OO N v ’ '

sinceU,(NP; L*(d,)) depends onl as1/d". Using Theorem 4.2 and the bound given in Eq.
(59), we get

: 1 D L 1 D Lo 1 D. p1
]\}IB})OWUG(N )2;]\}@”@(%}“\[ )2;1\}1—@)0@(]1”(]\7 ; L' (diin)) (61)

Dividing Eq. (61) by Eq. (60) yields:

limy oo 55 Uc(NP) . r5 lmy—co 75 Uu(NP; L (dmin))
Emy oo §5U(NP) ~ 7 (fminyn limy o 575U (NP5 £ (diyin))
Now, Lemma A.1 implies that the ratio of Uy, (N7; L' (dmin)) 10 55 Uu(N?; L*(din))

is asymptotically given byF,..(17)/Emin(n). Hence, by rearranging the terms in Eq. (62) we

(62)

recover

. 1 D : 1 D
VDJ&I_{HOOWUo(N )gj\}l_lgoﬁUG(N )- (63)

Given the trivial upper bound dfo(N?) < U,(NP), the statement of the Theorem followm
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D. Discussion of the Results

Theorem 4.1 guarantees the convergence of the GADIA algoritegardless of the power
distribution and spatial configuration of the nodes in thewvoek, as long as the hypothesis of
interference reciprocity holds. Theorem 4.2 establishésweer bound on the network utility
corresponding to the GADIA algorithm, which holds for anyasal distribution of the network
nodes. However, this bound also requires the hypothesiatefference symmetry. It is worth
mentioning that the symmetric interference requirememt loa restrictive in generalizing the
application of the GADIA algorithm to other network modelor example, if the network
nodes are equipped with multiple transmitters and recgitbe assumption of symmetric inter-
ference does not hold in general [45]. Moreover, realizatibchannel reciprocity might exhibit
difficulties in practice (See [18] for a detailed discus3idtiowever, as far as the network model
in this paper and those studied in [34], [35] and [36] are eoned, this requirement can be
enforced with rather mild costs. In particular, Neel [35khatroduced a number of methods
to synthetize the symmetric interference condition, whack mainly based on appropriately
refining the interference sensing process.

Theorem 4.3 establishes an asymptotic upper bound ovptiv@al network utility,independent
of the spatial distribution of the nodes. Although, in obitag this bound, properties of the
Bravais lattices have been used. Also, note that Theorenreliés on the widely accepted
conjecture that Bravais lattices correspond to the energynma of particles with repulsive
forces. Although this conjecture is supported with numerexperimental results and is widely
accepted in solid state physics, it must be noted that thitgyvef Theorem 4.3 depends on
the verity of this conjecture. Theorem 4.4 establishesttiatbound obtained in Theorem 4.3 is
indeed sharp, i.e., there exists a network with the Bravaigtire and a specific frequency band
assignment (alternating assignment) which has the samenetitility as the bound obtained
in Theorem 4.3. Finally, Theorem 4.5 uses the results of fidmas 4.2 and 4.3 to establish an
asymptotic lower bound on the network utility correspormdio the GADIA algorithm, compared
to theoptimalnetwork utility, for a general spatial distribution of thetwork nodes. Note that the
lower bound of Theorem 4.2 and the asymptotic lower boundhafofem 4.5 indeed correspond
to networks with general spatial distribution of nodes. @ation results (Section VI) show that

these bounds give reasonable estimates of the utility remgéhich the network utility of the
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GADIA algorithm converges.

The result of Theorem 4.5 is the strongest when the constans not too large. In order
to have some numerical intuition aboti,, we consider some special cases: in 1 dimension,
with n = 2 andr = 2, for a uniform linear array with unit distaneé we havey,; = 2, which
implies that the output of the GADIA algorithm is guarantéedie within3dB of the optimal
frequency band assignment. In 2 dimensions the situatibetigr, since the effect ofonp is
reduced: withn = 2.5 andr = 4, for a uniform rectangular array with unit distanéewe have
v =~ 1.41. Hence, the outcome of the GADIA algorithm will be withinsdB of the optimal
strategy. Note that the result of corollary is a worst-caseilt which holds for any given spatial
configuration of the nodes and any single run of the GADIA atgm. Simulation results in
Section VI indicate that the GADIA algorithm indeed perfarwithin these bounds, and on

average performs very close to the optimal strategy.

It is worth mentioning that the lower bound obtained on thefgenance of the GADIA
algorithm can also be interpreted in the framework of PricAmarchy (PoA) (See, for example
[27] and [47]). The notion of POA denotes the ratio of the agate welfare of the optimal Nash
equilibrium to the worst case Nash equilibrium of a non-aragive game with many players.
Originally, the PoA has been studied in the context of self@iting in data networks. In such
networks, each node needs to choose a path in a graph to temessage through. Each edge
of the graph is weighted according to ie&gency which is an increasing function of the number
of nodes including it in their routing path. The usual modeéd for the latency function is the
flow model, where the latency is an increasing function of flowwmber of users) of that edge.
Several results concern linear, polynomial and contindaostions of the flow of each edge as
the corresponding latency [47].

In this regard, our network model can be viewed as a colleatio/N nodes which need to
route their message to a destination node, through one afviabler edges (which correspond
to the available frequency bands). The latency of each eslteen the interference experienced
in the corresponding frequency band. However, the flow mddek not necessarily yield a good
approximation to the physical properties of our network. &ample, two frequency bands may
have the same number of users, but the interference expedday a certain node in each of these

bands can be dramatically different due to the spatial cardigpn of the nodes. Hence, the usual
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results of POA do not readily generalize to our problem. Mweeg, unlike in the flow model, in

general it is very hard to characterize the optimal, worsecand other Nash equilibria of our
network with the physical interference model. Hence, inftiregoing bounding procedures we
have used other techniques to obtain the ratio of the welfatee Nash equilibrium obtained
by the GADIA algorithm to that of the optimal frequency assigent strategy. Nevertheless,
the parametet /v, can be interpreted as a lower bound on the PoA of the netwarkgghe

welfare of the Nash equilibrium obtained by GADIA is greaberequal to that of the worst case

Nash equilibrium).

V. MAIN RESULTS. DYNAMICAL ANALYSIS

So far, we have used the discrete-time model in order to carryhe static analysis presented
in Section IV. Moreover, most of the results in Section IVrespond to the equilibrium analysis
of the algorithm, thus the discrete-time model sufficed tmlgtthe algorithm following equilib-
rium. However, the discrete-time model does not fully ceptihe response of the algorithm to
time variations and stochastic uncertainties. In otherdapin order to evaluate the robustness

and stability of the algorithm one needs to take into accolb@tcontinuous-time dynamics.

A. Update Process

First, we need to model the frequency band update procedseafiddes in the network. In
general, the update process of each node can be modeled loghastic point process. Let
t 42 43 .. pe the points in time when the nodescans the spectrum in order to update

its frequency band. Le, i+ (¢ 0 ,t")) be the probability density of“") given the
m e
W) 42 )

previous pointst; . ¢, --- 1), The densityp,«+1) is sufficient to describe all the stochastic
properties of the point process. In our case, we will modelupdate process of each node with
a Poisson point process of raie [46], where

e NT(\T)P
k!

denotes the probability that the nodeupdates its frequency band a total oftimes in the

p(Nit+7) = Ni(t) = k) = (64)

interval (t,t + 7|, for k =0,1,---. It is easy to see that [46]

) (£)
Py (1047, 1 O) = e (+-47) (65)
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We also assume that different nodes have independent updatesses. The assumption of
Poisson update processes is mainly made for mathematicplisity of the dynamical analysis
that follows. Similar analysis can be carried out by modgline update process by other point
processes. However, the analytical results will be moreptmated (although very similar in

essence) and may adumbrate the underlying intuition anticapipn of the results.

B. The Soft GADIA
Recall that according to the GADIA algorithm, each node, saypdates its frequency band
at timet(®) according to the following rule:

si(t) = argmin I (t(z)) (66)
j

wheret ¢ (), +“+V], This is simply the continuous-time version of the decisioiterion given
in Eqg. (18). We can alternatively consider a probabilisgcidion criterion in which the node

chooses the frequency banhdwith probability

exp (= BRI (H0))

p(si(t) = k:) = — (67)
> e (= BRILEY)
j=1
for k=1,2,---,r andt € (t©),t“*V], whereg is a positive constant. Note that in the limit of

[ — oo, the probabilistic decision criterion coincides with tlditthe GADIA algorithm, since
p(si(t) = k:*) =1 (68)

where k* := arg miny, Ifji(ty)), andp(s;(t) = k) = 0 for all k # k*, as3 — oco. We note that

[ is a measure of deviation from the optimal decision by theesad the network. Therefore,
in analogy to statistical physics conventions, we denote lilie inverse temperaturé/NVe also
denote bySoft GADIA the frequency allocation algorithm with the decisionterion given in
Eq. (67). In what follows, we carry out the analysis for theftSBADIA algorithm due to
the smoothness properties of its probability distributbonthe state space, and also conforming
with the conventions of statistical physics. Nevertheldss corresponding results for the GADIA
algorithm can be deduced from those of Soft GADIA by the lipribcess? — oc.

Recall that the state of the network at times given by the vector(s, so, -, sy) €

{1,2,---,r}" corresponding to the frequency bands occupied by nddes,,- - ,cy). Let
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P(t; s1,s9,- - ,sy) be the probability density of the nodés,, cs, - - ,cy) being at the point
(s1,82, -+ ,sy) in the state-space at time For any scalar functiorf (s, se, -+, sy) on the
state-space, thensemble averagat timet is defined as follows:

<f(81,82,~'~ ,SN)> = Z Z Z flor,09,-++ ,on)P(t; 01,09, -+ ,0N) (69)

o1=loy=1  on=1

In particular, we will prove the following theorem regardithe dynamics of the Soft GADIA
algorithm:

Theorem 5.1: Lef/(t) be the network utility at time, corresponding to the Soft GADIA
algorithm with parameters. Moreover, suppose that the network nodes update theiuéecy
bands with a rate)\, i.e., \;, = A for all i = 1,2,--- | N. Then, the ensemble average of the

network utility satisfies the following differential eqicat:

%w(m = - ((U1) ~ (Uo(0)),

where
al X - B2 F)f? j5 t),s;(t
Un(t) = Z . e p< > ik PrPio (si(t), s5( ))) |
k];l;ll > XD ( - Z#k PkPjozkjé(m, 8j(t>))

Before proving Theorem 5.1, we need to introduce some casdepm statistical physics,
which are key to analyzing the dynamical performance of tbé# SADIA algorithm and, in

particular, proving Theorem 5.1.

C. Connection to Potts Model

In the continuous-time model, the network utility is giveyn b

N N

U(t) == Pl(t)=— ) PPayd(si(t),s;t)) (70)
=1 ié:}

where we have approximated the leakage functfgs;, s;) by the Kronecker delta function

0(si, ). Let J;; == PPjoy; for 1 <i,j < N, ¢ # j. Clearly, J;; = Jj;, by the hypothesis of

interference reciprocityo;; = c;;). The network utility can be expressed as

U(t) = — Z Jij0 (s4(t), 5;(1)) (71)
zgz}
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The above expression can be identified with the Hamiltonfaancanti-ferromagnetic inhomo-
geneousr-state long-range Potts modg5]. The Potts model is a generalization of the Ising
model, which describes the interactions of spins on a dtystdattice, and is studied extensively

in the context of solid state physics (See, for example, [[B}] and [55]).

In the original Potts model, the summation is only over tharest neighbors and is thus
denoted byshort-rangePotts model. Moreover];; = —J for all i andj. Therefore, the network
utility given in Eq. (71) corresponds to the inhomogeneausgtrange generalization of the
original Potts model. Also, note that any two nearby nodesl t® be in different frequency
bands. Hence, the model is anti-ferromagnetic in natur&iwis reflected in the negativeness of
the network utility. Another generalization, called tihénite-rangePotts model, has been widely
studied in statistical physics, which corresponds to ttee aghere/;; = 1/N for all 4, j and the
summation is over all the spins on the lattice (not only tharest neighbors) [55]. Although
the energetics of the infinite-range Potts model is anallyidractable, its generalization to the

inhomogeneous long-range case is not trivial.

D. Glauber Dynamics

In light of the above, we can analyze the temporal dynamidgb@fsoft GADIA algorithm in
the context of spin dynamics. Study of spin dynamics wasaieitl by the seminal paper of Roy
J. Glauber [19] and is thus commonly denoted by Glauber djcganihe Glauber dynamics was
originally devised in order to describe the near equilibricollective behavior of the spins on a
lattice, interacting according to the one-dimensionaigsmodel [19]. Generalizations to other
spin models such as the original Potts model and infinitgeaRotts model have been done
(See, for example, [6] and [29]). The decision criterionegivin Eq. (67) is a generalization of
the Glauber dynamics to the anti-ferromagnetic inhomogese-state long-range Potts model.

Let

wis) = p(si(t) = s) (72)
forall s € {1,2,---,r}, which is given by Eq. (67). We note that(s) is implicitly a function of
t, but we drop the dependence offior notational convenience. Recall th&tt; s, so, -+, sy)
is the probability density of the noddgg;, cs, - ,cy) being at the points;, s, -+, sy) in

the state-space at time As Glauber noted in his paper [19], the stochastic progemif such

DRAFT



35

systems (and variants thereof) can be fully described byMaster equatior{32]:

T

5 N
—P(t; 81,82, ,8y) = Z)\Z—wi(si) Z P(t;s1,82,-+ ,05,+ - ,5N) (73)

ot
o=
0 #8;
N T
- Z Z )\sz(U])P(ta S1,82," " 7SN)‘
=1 o;=1
0 F#8;
for any configuration(sy, se, -+, sy). The first term on the right-hand side of the Master

equation corresponds to the probability flow of the nodedching to the configuration given
by (s1,s9,---,sn) from any other configuration and thus appears with a posgigae. The
second terms corresponds to the probability flow of the nodesh are currently in states
(s1,s9,-+-,sy) and are switching to other configurations, which appeark wihegative sign.
Note that the state-space hd$ distinct points of the form(s;, sy, - - , sy). Thus, the Master
equation is a set of" coupled equations for the density functiaR§; s;, s, - - - , si). Although
simultaneously solving this set of equations is matheralyigntractable, the Master equation

is very useful for computing the time evolution of the stiatsl parameters of the network.

Proof of Theorem 5.1:We need to compute the ensemble average of the networky,utilit
(U(t)), which represents the expected value of the utility funcao timet. In order to do this,
we need to compute ensemble averages of the farfa,(t), s;(¢))) for all 1 < k,I < N. As
it is shown in Appendix B, the time evolution (s (¢),s,(¢))) is given by the following
differential equation:

%<5(sk(t),sl(t))> - (Ak+>\l)<5( W(0), sl(t))> (74)
. <Ak exp (= 35,4 Jsd (1), 55(1))) >
ST D S <m w)))
. <)\l exp( B350 T (it )>>
Sexp (= B0 (m (1))

for all 1 < k,1 < N. Although the above set V(N — 1)/2 non-linearly coupled differential
equations are very hard to solve, they are sufficient to desc¢he time evolution of<U (t)>.
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The ensemble average bf(t) can be written as

N
Uy == 3 o). 5(0)). (75)
k,l=1,k=l
Given that\; = A for all i =1,2,--- | N, combining Egs. (74) and (75) yields:
d
—(U®) = -22((U®) - (Us®))) (76)
where
N exp ( — B> .4 Jeio(si(t), s;(t)
Up(t) :== — Z S ( i ( ’ )> : (77)
=1 Dy €XD ( — B Jrid (m, s (ﬂ))
k£l
Noting thatJ;; = P, P;c;;, the statement of the theorem follows. [ |

Eq. (76) (together with the set of equations given by Eq.)(@#)es the complete description

of the collective behavior of the network under the soft GAQlgorithm, at all times.

E. Near Equilibrium Linearization

Note that Eq. (76) has been derived for the utility modét) in its most general form (with
the exception of approximating the leakage function by then€cker delta function). In other
words, for any interference reciprocal model, any spatistrithution of nodes and any number
of available frequency bands, the behavior of the ensemideage of the utility function is

governed by Eq. (76).

However, it is possible to further simplify Eq. (76) near tbguilibrium, with appropriate

assumptions. First we note that:

o (010) = f (040 e
Let (U(oc0)) := lim, .o (U(t)). Furthermore, we need to characterize the behavior of the

function Uy(¢) near equilibrium. In the mean-field theory [24], we get:

<U0 Z Jrien(t (79)

k,l=1,k#l

where

exp (= 85,4 D0 (s:0).5,0)))
S exp (= 8340 S0 (m,55(1)))

nlt) == (80)
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Clearly,0 < e(t) < 1, for all k,1 andt. Let

(1) —mln mln )ZJ;W«(S m, s;(t))) — (6(n, s;(t )>)‘+ (81)

m;én J#k

wherez, := max(z, 0) for all z € R. Note that{(¢) > 0 for all . For 3 > 1, any change in the
values of (6(sy(t), s,(t))) less thani(¢)/2N, will not change the value ofy,(t). To see this,
note that in the Ilmltﬂ — 00, for a generic distribution of the coefficien{d;;} and for a fixed
usercy, ex(t) =0 for all [ # I*, andey-(t) = 1, i.e., s;-(¢) is the frequency band in which user
¢ experiences the least amount of interference (It is passitate,, (¢) # 0 for more than oné

for a given distribution of .J;;}, i.e., there are two frequency bands in which useexperiences
the same level of interference. But, the Lebesgue measuseabf distributions is zero among
all possible distributions of J;; } for large enoughV, since such distributions need to satisfy a

finite number of linear equations). Thus; can be written as
exp ( = B( 50 T (3 (51(8), 55(0)) ) = 32, i (80 (1) sj<t>)>))

1+ Zm;ﬁl* exp < - ﬁ( Zj;&k ka<5(m, Sj(t))> - Zj;ék ka<5(3l*(t)7 53<t))>>> |
(82)

Clearly, any change smaller th&(¥)/2N in the exponent of the numerator of the expression

Ekl(t) =

in Eq. (82) does not change the limit f(t) as — oo. Hence, for(U(t)) sufficiently close to
its equilibrium value{U(c0)), the function(Uy(t)) can be considered constant in the mean-field

theory. Therefore, fof > 1, we can approximate Eq. (76) near the equilibrium as:

S0 = -2 (W) - (U())). (83)
This approximation can be also viewed as near equilibrimesdiization. Note that the mean-field
theory describes the situation where there are a large nuaothaterferers for each user, i.e.,
when the network is operating in the low SIR regime. Simolatiesults in Section VI confirm
the validity of the mean-field approximation and the nearildayium linearization. It is worth
mentioning that we have previously obtained a similar tefsulthe special case of 2 frequency
bands { = 2) with more elementary arguments [2], [4]. However, the tireant here is much

more general and rigorous.
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F. Robustness with respect to Time-varying Node Activities

As an application of the near equilibrium dynamics of the GALRlgorithm, we want to
evaluate the robustness of the algorithm with respect te-trarying activity of the network
nodes. That is, we want to generalize the network structutbe case where the nodes can be
in active or sleep mode. Let;(¢) be the activity state of the node at time¢. When the node
is active at timef, i.e., is transmitting, we have;(t) = 1 and when the node is in sleep mode,
i.e., is not transmitting, we have;(t) = 0. A simple stochastic model for the activity of the
nodec; is the two-state symmetric Markov model with transitionability 1;. This model can

be represented in the Itd form as follows (See, for exanipld, and [25]):

wheredN; is a Poisson counter with raje. Note thatdN; represents a Poisson jump process
with rate p;, such that
E{dN;} = pdt, (85)

where £ denotes the averaging operator corresponding to the Pojssop process [17]. For
simplicity, suppose that; = p for all 4, i.e., all the nodes have the same temporal activity
statistics. Also, let?; = P, for all ¢;. The following theorem establishes the steady state behavi

of the GADIA algorithm under time-varying node activities:

Theorem 5.2: Let/(t) be the network utility corresponding to the GADIA algoritlamtime
t. Suppose thak; = \, y; = pand P, = Py forall i = 1,2,--- , N. Then, the normalized steady

state variance of the network utility is given by:

hmmoe{((U(t» —5{<U(t)>}>2} A
limt_,oog{<U(t)>2} AN — 4’

where&{-} denotes the expectation with respect to the time-varyitiyigcstatistics.

2
Ogs =

Proof: First, note that in the mean-field approximation, every na@tiech switches from the
sleep mode to the active mode at timexperiences an interference @f (¢))/ PN, (t), where
N,(t) is the number of active nodes at timeHence, it will decrease the network utility by

a total of 2(U(t))/N,(t) (Similarly, any node which switches to the sleep mode irsesahe
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network utility by the same amount). Clearly, we haVg(t) ~ N/2 near equilibrium, since all
the nodes have the same temporal activity statistics. Tthas;ollective effect of the activity of

the nodes can be captured by two Poisson counters in thertd ds follows:

N/2<U ><dN+ - dN_) (86)

where

E{dN.} = gﬂ- (87)

Hence, the evolution of the network utility near the equilin can be described by the following

Itd equation:
wU(1) = ~2A((U®) — (Us(t)) )t + %(U(t)}(d]\q ~an-) (88)

We can obtain the Itd equation corresponding to the qqaﬁm(t)f, by the Itd differentiation

rule [25] as follows:
wU®) = —aUB)({U®) - (Tot)) ) dt (89)
+ (((U(t)> + N(U(t») - <U(t)>2) N,
+ (W) - 1)’ - W)
Simplifying Eq. (89) and taking the expectation of both sigeelds:
Cel W)’} = - (11— on)e{ W)’} + me{ W)} (90)
Therefore, in the steady state;— oo, we have

o {0} = 5 De{ e’} ©

given A > 4,/N. Hence, we have:
i ef (o) -e{wmn})} = FEme{we)’} -e{wie?)
— 47”5{<U(oo)>2} (92)

which proves the statement of the theorem. [ ]
Simulation results in Section VI show that Theorem 5.2 gige®asonable estimate for the
steady state variance of the GADIA algorithm under the tiragang activity of the network
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nodes. A similar result has been derived in [4] for the spemage ofr = 2, from a different
route with more elementary arguments. The robustness dB&IRIA algorithm with respect to
the spectrum sensing time and the error induces by simultengpectrum sensing by different

nodes is studied in [2].

G. Discussion

Section V-A models the asynchronous update process as aoRopgocess. The Poisson
process reflects the homogeneity of the network with resimetite update procedure. A more
general version of the GADIA algorithm is introduced in SewtV-B, denoted by the Soft
GADIA algorithm. The difference of the GADIA algorithm witthe Soft GADIA is in the
decision criterion, which is probabilistic in the lattehd probability of choosing a frequency
band is given by the Boltzmann distribition with inverse paratures. In the limit of 5 — oo,
the Boltzmann distribution assigns probability 1 to chagsihe frequency band with the least
amount of interference. This limiting case clearly coirddvith the decision criterion of the
GADIA algorithm. However, as mentioned earlier, it is momneenient to analyze the dynamics
of the Soft GADIA algorithm. The corresponding dynamics bé tGADIA algorithm can be
obtained by carrying out the limit of — oc. Finally, Theorem 5.1 establishes the dynamical
behavior of the ensemble average of the network utility esponding to the Soft GADIA

algorithm.

Section V-C delineates the connection between the negatpegate interference metric and
the Hamiltonian of an anti-ferromagnetic inhomogeneousyiange Potts model. With this
connection in mind, one can view the Soft GADIA algorithm he Glauber dynamics gener-
alized to the anti-ferromagnetic inhomogeneous long@aRgtts model. Using the properties
of the Glauber dynamics (which is well-studied in stat@tiphysics), Theorem 5.1 regarding
the ensemble averaged behavior of the Soft GADIA (and caresdty the GADIA) algorithm
has been proved in Section V-D. Section V-E presents the-ewalibrium linearization of the
dynamics. In fact, it is shown that in the limit gf — oo, the dynamics can be simplified to a
linear first order differential equation with a constantaontogeneous term (See Eq. (83)). The
linearized dynamics can be then used to study the dynamatelviior of the algorithm near the

equilibrium.
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As an application, we have studied the robustness of the @Addgorithm with respect to
the time variations in the node activities in Section V-F.plarticular, Theorem 5.2 establishes
the steady state variance of the network utility correspantb the GADIA algorithm under the
mentioned time-varying setup and in the mean-field appration. The proof uses modeling
techniques and mathematical tools from stochastic cothexry and Itd calculus. In fact, the
stochastic differential equation given in Eq. (88) gives flll statistical description of the
near-equilibrium behavior of GADIA under time-varying reodctivities. The first term on the
right-hand side of Eqg. (88) corresponds to the negative dfifthe GADIA algorithm which
is aimed to increase the network utility. The second ternresponds to the fluctuations in
the network utility due to time-varying node activities..H88) can be used to obtain various
moments of the network utility. The normalized steady statgance is shown to settle down
to a constant ag — oo, given A > 4u/N. The latter condition implies that the nodes need
to update their frequency band roughlyN times faster than their on/off switching rate, in
order to enjoy a finite variance in the steady-state. Hertgeahalysis reveals that as the rate of
on/off switching increases, the update rate needs to iserpeoportionally in order to maintain

stability.

VI. SIMULATION RESULTS

First, we compare the performance of the GADIA and Iteravater-filling algorithms for
clustered wireless networks. We consider a rectangulacdain D dimensions, which spans a
D dimensional cube of sid&'d. We then randomly and independently pick the positiona/6f
cluster-heads around the sites of the lattice accordingaaihiform distributionN—d/4, d/4] in
each of theD directions. Also, we assume that each cluster-head ismittingy its signal to
a user located at a distandeapart, which is also roughly the average distance to theesear
interferers. Fig. 4 shows the performance of the GADIA aeddltive Water-filling algorithms for
different configurations of 100 nodes in one and two dimersi&ig. 4 (a), (b) and (c) show the
ensemble-averaged normalized sum-rate of the network asctidn of time in one dimension
with » = 2, » = 4 and in 2 dimensions withh = 4, respectively. The normalized sum-rate is
defined as the sum-rate divided by the number of clustere dler1, F, = 1 andn = 2. In two
dimensions, the computation of the optimal frequency basigament is very complicated and

finding it by exhaustive search is beyond the capabilitieswfsimulation platforms. However,
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since the deviation from the rectangular geometry is nedtismall, we have instead compared
the performance of the GADIA and Iterative Water-filling afghms to that of the : 4 frequency
reuse pattern as a near-optimal candidate [44]. Note tledt th frequency reuse pattern, which
is used in cellular telephony, coincides with the altemgfrequency band assignment introduced
in Section IV-C. As it can be observed from Fig. 4, in all casese than 9% of the capacity of
the optimal (near-optimal) centralized frequency assignins achieved. Moreover, the GADIA
algorithm exhibits a faster convergence rate compared ddtdrative Water-filling algorithm.
The results also clearly justify the connection betweenvikghted aggregate interference and

sum-rate.
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Fig. 4. Normalized sum-rate curves for arrays of 100 clsster. time, (a) 1D, r=2, (b) 1D, r=4, and (c) 2D, r=4

Fig. 5 (a) and (b) show the normalized network utility cop@sding to the GADIA algorithm,
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GADIA
‘‘‘‘‘ Lower bound
— — — Upper bound

0 5 10 15
Time (normalized)

Normalized Network Utility

GADIA
————— Lower bound
— — = Upper bound
i i
0 5 10 15
Time (normalized)

(b)

Normalized Network Utility

Fig. 5. Normalized network utility of the GADIA algorithm drthe theoretical bounds.

the lower and upper bounds we have derived in Section IV-B18&® and 400 nodes distributed
in one and two dimensions, respectively. Each curve has digtamed by averaging 100 different
ensembles. We have set= 2, n = 2 andr = 4, n = 2.5 for the one and two dimensional cases,
respectively. For the initial condition of the algorithmgewpick a random frequency band for
each cluster. The updates are repeated until the convergerachieved. As we observe from
the figure, the GADIA algorithm achieves a network utilityryeclose to the theoretical upper
bound.

Fig. 6 shows the average utility of 10 randomly chosen nodes fa rectangular array of
100 nodes vs. time, with = 4. The utility is averaged over 50 different runs of the GADIA
algorithm on the network. As the GADIA algorithm convergeslividual nodes greedily update
their frequency band, and eventually remain in the band thighleast interference among all.

Fig. 7 shows the performance of the GADIA and Iterative Wétking algorithms for a linear
array of 100 clusters vs. time, in presence of time-varyindenactivities. For on/off switching
probabilitiesi./N X = 0.01,0.05 and 0.1, the GADIA algorithm achieves about 90 86% and
83% of the optimal sum-rate on average, respectively. Butatiee Water-filling achieves about
76%, 74% and 734 of the optimal sum-rate on average, respectively.

In Fig. 8, the near-equilibrium behavior of the GADIA algbrn for a two dimensional array
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-35 i i i i i i i i i
0 2 4 6 8 10 12 14 16 18 20
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Fig. 6. Average utility of 10 randomly chosen nodes from aawegular array of 100 nodes vs. time= 4).

4 T T T T T T T T T 4 T T T T T T T T T
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i i i i i i i Optimal i i i i i i i i Optimal

4 | 4 .
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N
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2 2 war:‘«
GADIA —_—w
Optimal Optimal
0 0.5 1 15 2 25 3 35 4 4.5 5 0 0.5 1 15 2 25 3 35 4 45 5

Time (normalized) Time (normalized)

Fig. 7. Normalized sum-rate for a linear array of 100 clustes. time, for normalized on/ogg switching probabilitie&VA =
0.01,0.05 and0.1. Left: GADIA, Right: Iterative Water-filling

of 100 clusters, for = 2,4 and8, is shown. The simulation curve is obtained by averaging ove
500 different ensembles. The theoretical estimate of tltaydeate of the network utility (which
is shown to be—2)) matches the simulation data perfectly, which verifies thpliaability of
the mean field theory to the Glauber dynamics near equikoriu

Fig. 9 shows the normalized steady state variance of theamktutility vs. /N for a two
dimensional array of 100 clusters with= 4. The simulation curve is obtained by averaging
over 500 different realizations of the update process. Asiit be observed from the figure, the

theoretical estimate of the steady state variance mattigesimulation data perfectly.
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Fig. 8. Normalized network utility vs. time for a 2D array d®d clusters withr = 2,4 andS8.
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Fig. 9. Normalized steady state variance ygN \.

VIlI. CONCLUSION

We have considered the problem of distributed dynamic feqy allocation in a canoni-
cal communication network which spans many networks ofréste such as cognitive/ad hoc
networks or Digital Subscriber Lines (DSL). A Greedy Asyrarious Distributed Interference
Avoidance (GADIA) algorithm has been proposed that acligwerformance close to that of
a centralized optimal algorithm. Each node in the networ&osles its transmission frequency
band based on its knowledge of the interference that it éxpess.

The convergence of the proposed distributed algorithm teaa-optimal frequency allocation

strategy is proved. Moreover, several asymptotic perfocaabounds have been derived for
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various spatial configurations of the nodes in the netwoykafmlogy to minimum energy lattice
configurations used in solid state physics. These anabsiglts and additional simulation studies
verify performance close to that of an optimum centralizestjfiency allocation algorithm. In
particular, it is demonstrated that the algorithm achieaasut 904 of the sum-rate correspond-
ing to the optimum/near-optimum centralized frequencydbassignments. Simulation studies
confirm that the GADIA algorithm outperforms the Iterativaiét-filling, in the low SIR regime,
in terms of the achieved sum-rate, complexity and convergeate.

Furthermore, the near-equilibrium dynamics of the GADIgalthm has been studied em-
ploying the Glauber dynamics of the anti-ferromagnetiomliogeneous long-range Potts model.
Using the near-equilibrium dynamics and methods from stettb analysis, the robustness of the
algorithm with respect to time variations in the activityreftwork nodes is studied. It is shown
that given a high enough update rate, the network utilitypgsja finite steady-state variance in
the presence of time-varying node activities. Further $tnon studies confirm the validity of

the stochastic modeling and the robustness of the algoiithtme foregoing time-varying setup.

APPENDIX A

TECHNICAL LEMMAS

Lemma A.1: Lel/,(NP; L(d)) denote the network utility oV” nodes located on the sites
of the L(d) lattice inside theD dimensional cube of sid&d, when all nodes transmit in the

same frequency band. A¢ — oo, we have
P2
N dn
where E'(n) is the energy of the Bravais latticé(d) in D dimensions.

DU (NP5 L(d)) = —E(n)—- (93)

Proof: We present the proof fob = 1 for brevity. The generalization t® dimensions is
straightforward. ForD = 1, £(d) corresponds to a uniform linear array @n (N — 1)d] (i.e.,
the integerZ, lattice) [54]. Clearly, we have

1 1 P?

i=1 j=
J#Z

N 00
1 P P2
> TS : <§_ ) Emin(n)ﬁ

(94)
< i —J\"
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where

Erin(1) = 2¢(n) := 2 Zln

(95)

and((n) is the Riemann zeta function. We only need to show that for all0, 3M € N such
that for all vV > M, we have

L (V) < —2c(m) 2 4 (96)
AL My te
First, note that we can write/NU, (N;d) as follows
N N
1 P? 1
—U,(N:d) = — 0 97
LU, (Vi) Z(d2|_ﬂ) ©7)
JFi
Let K > 0 be such that
— K+z Y (98)
For N > 2(K + 1) we have
N N N-K-1 N
1 1 P? 1 1 P? 1
—Uy(N:d) = —— 0 S 9 : 99
=55 (S ) w2 (3 X ) @
i=1 j=1 i=K+1 j=1
j#i JFi
Clearly, for alli such thatk <i < N — K
P2 rrdL 1 PP ST 1
— (2 - — = —(2) —— 100
oy (20() = — ; T - ;] ; AT (100)
Ji J#i

where we have used the definition Af. Therefore, using Eq. (99) we obtain

1 1 P02 N-K-1 N—K—l6
FUu(Nid) < —5—b ; 20(n) + :; 5 (101)
~ )PZ N—2§VK+1)§ 2<K+1)2<( )Pz
If we chooseM large enough so thalt (n )dg KLl < ¢/2, for all N > M we have
N—-2(K+1)e P2K +1

N 3 C(n)ET < €/24¢€/2 (102)

= €
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which proves the statement of the Lemma for= 1. [ ]

Lemma A.2: Leti,(N) denote the set of nodes in the frequency biancbrresponding to the
optimal frequency band assignment strategy, for an arbjtspatial configuration ofV nodes in
D dimensions. LelV,(N) := |Gx(N)| and § := min; ; d;; > 0. Then, for eachk =1,2,--- ,r,
the sequence

{Ne(N)}3=s (103)

is unbounded.

Proof: Let S(N) = {N,(N)|k = 1,---,r} and K(N) := inf S(N). Suppose that the
sequence{ K (N)}%_, is bounded. That is, there exist integevs, B and a specific spatial
configuration of the nodes for any, such thatx (V) < Bforall N > M. Let K(N) correspond
HN)| = K(N).

Moreover, letU!(N) denote the optimal network utility corresponding to tNenodes, when

to the frequency band,- (whereas dependence awi is implicit), i.e.,

there arer frequency bands available to the network. We have

Ly = L Z > g1 3 oy (104)
N 0 - 4. N d’.
k;«ék Circ; €GR(N) U circi€Gpx (N) Y

Suppose that we fix the spatial distribution of the networ# #re frequency band assignments
of all the nodes, but assign arbitrary frequency basd® all ¢; € G«(N) such thats; # k*
for all 7. Let U"~'(N) denote the network utility corresponding to the foregoiregfiency band
assignment. We have:
Lo 1 Po2 0

Note that in the foregoing frequency band assignment thererafyr— 1 frequency bands used.
Therefore

U (N) < U HN), (106)

whereU’~!(N) denotes the optimal network utility corresponding to fiienodes, when there

arer — 1 frequency bands available to the network. We define

g(N) S > di; (107)
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and

1 P
h(N) = —— —2-5(s4, k). (108)
K(N) ktk cieg(N) c]eGZk(N) dij
Hence,
) = o) - 9 ) ) (109
1 K(N
< ~ur 0 - K ) - ()

Clearly, bothg(N) and2(N) are upper bounded b¥,,., () P¢/d", whered := min, ; d;; > 0
by hypothesis. Hence,

K(N) P} /B
T‘Q(N) —h(N)| < 2Emin(n)ﬁ <N) (110)
Thus, fore > 0 small enough, we can choogé sufficiently large such that
1 1,
qrr - Trr <

Eq. (111) implies that the optimal network utilities of a givnetwork corresponding to and

r — 1 available frequency bands for a specific spatial configomathay become arbitrarily close.
This is clearly not possible: suppose that thereraré available frequency bands,, bs, - - - , b,_;.

Given a fixed spatial configuration, let us consider the ogtifrequency band assignment to the

nodesc;, i =1,2,--- , N. Since)_, N,(N) = N, there exists &, 1 < ky < r — 1 such that

N
r—1

Nigy (N) = (112)

Suppose that the nodesd#,, (/V) are allowed to choose an additional frequency bandThen,
according to Theorem 4.2, there exists a frequency bandraseint for the nodes i, (IV),
using the two frequency bandg, andb,, for which the network utility of the nodes &', (V)
is at least half of when all are in frequency baig. Therefore, this new configuration, with

the additional frequency barig, increases the overall network utility by at least

1/1 P2 1/1 N 1 P
2 = Z0 > (= ) Z0
2(N 2 d’?.) ” 2<Nr—1(r_1)%Emm<n>d’7 (113)
cicj€GRy(N) Y
1 PZ
= o Bual)
2(7’_ o 1)%4_1 (n) d77
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for sufficiently largeN, according to Lemma A.1 and the minimum energy property othef
Bravais latticeC*(d). Thus

1 P}

—UT(N) —UT I(N)+mEmin( )d’?

U (V) > U (114)
Eq. (114) implies that-U;~(N) and +U!(N) can not be arbitrarily close, for any spatial
configuration of the nodes, @ — oc. This is clearly a contradiction, since Eq. (111) implies
that they can be arbitrarily close. Hendds (V) }%5_; is an unbounded sequence. SidceN) =

inf S(V) and S(N) is a finite set of size, we conclude thaf N,(NV)}%_, is an unbounded

sequence for alk =1,2,--- ,r. [ |

APPENDIX B

DERIVATION OF EQUATION (74)

LetR:{1,2,---,r} — {1,2,--- r} be an operator with the following action:
Rs:=(s+1) modr (115)

for all s € {1,2,---,r}. We use the notatiot* and R~* defined byR*s = (s + k) mod r
andR*s = (r +s — k) mod r, respectively. The Master equation (Eq. (73)) can be tbesef

expressed as follows:

P(t'Sl,SQ,"‘ si, - sN) (116)

M

ot

j=1

a N
_P(ta 851,82, asN) = Z wz Sz
N

—_

r—

— Z )\U)Z§R8 (t 81,82,"',8]\[).

=1 1

.
Il

for any configuration(sy, sq, -+, sy). Let f(s1, 59, -+, sy) be any scalar function on the state-

space. We define thtieace operator,Tr(-), as follows:

TI' (f(Sl,SQ,"' ,SN)> = Z Z Z f(O'l,O'Q,"' ,O'N) (117)

o1=102=1 on=1

Hence, the ensemble average of the functfoat timet can be written as follows:

<f(31,52,~-~ ,sN)> =Tr <f(51,32,~-~ ,SN)P(t; 81,89, ,sN)>. (118)
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In order to obtain a differential equation for the time evmno of <5(3k, sl)>, we multiply

both sides of the Eq. (116) by(sx(t),s:(t)) and take the trace as follows:
0
Tr (a (5(sk, sl)P(t; S1, 89, ,SN))> (119)
r—1
(Z)\5 Skasl w; (s ZP (t; 51,89, 7%j8i7"' 75N)>

7=1

N r—1

— Tr (Z Z )\ié(sk, sl)wi(%jsi)P(t; S1, 89, ,sN)).
i=1 j=1

Note that we have dropped the time dependencé(sf(t), s,(¢)) for notational convenience.
The expression on the left hand side can be identified Witld (s, s;)). The terms on the

right-hand side of Eq. (119) can be written as

N r—1
Tl"( Nid (sk, s1)wi (R ;) P(t; 51, 89, -+ - ,SN)) (120)
z;:kll o
N r—1
— Tr ( Z )\ié(sk,sl)wi(%jsi)P(t; 81,89, " ,sN))
z;:kll o
r—1
+ Tr ( )\k5(%_jsk, sl)wk(%_jsk)P(t; S1,89, ", SN))
j=1
r—1
+ Tr ( )\l5(sk,%_jsl)wl(%_jsl)P(t; S1, 89, ,SN))
j=1
- (ZM Sk 51) Wk (R s) P(t; 51, 82, -+ - 73N))
7=1
— Tr (Z )\ld(sk, sl)wl(%jsl)P(t; S1, 89, ,SN)>
j=1

The first two terms clearly cancel each other and the exmnessduces to:

r—1
Tr <Z )\kwk(%jsk){é(%jsk, Sl) - 5(Sk, Sl) }P(t7 S1,89, ", SN)) (121)
j=1

r—1
Tr (Z )\lwl(%jsl){(S(sk, %jsl) — 5(sk, sl)}P(t; 81,89, " ,sN))
j=1
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It is easy to show that
T_l . .
Z )\kwk(wsk){(;(wsk, s1) — (s, Sz)} = A <wk(3l) — (s, Sz))- (122)
j=1
To see this, note that for, = s; the above summation becomes
r—1
- Z Newi (R s1)0 (s, s1) = A (wi(s1) — 1) (123)
j=1

and for /s, = s; the summation simply becomes.w,(R’s,) = Mwi(s;). Hence, we can
combine these two cases as in Eqg. (122). Combining the abesudts, Eq. (119) takes the
following form:

d
£<5(Sk, 81)> = —(\ + )\l)<5(5k7 Sz)> + <)\kwk(81) + )\lwl(sk>> (124)

If we substitute
exp ( — ﬁzj# kaé(sl, sj)>
wk(sl) = (125)
>, €XP ( — ﬁzﬁék kaé(m, sj)>

and

xp | — 2 150 (8K, Sj
wi(si) = d GIRMETCD) (126)

> m €XD < - Zj;ﬁl Jlj(s(mv 5]’))
into Eq. (124), we get the expression given by Eq. (74), aisneld.
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