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GADIA: A Greedy Asynchronous Distributed

Interference Avoidance Algorithm

Behtash Babadi and Vahid Tarokh

Abstract

The problem of distributed dynamic frequency allocation isconsidered for a canonical communi-

cation network, which spans several networks such as cognitive radio networks and Digital Subscriber

Lines (DSL). A Greedy Asynchronous Distributed Interference Avoidance (GADIA) algorithm for

horizontal spectrum sharing has been proposed that achieves performance close to that of a cen-

tralized optimal algorithm. The convergence of the GADIA algorithm to a near-optimal frequency

allocation strategy is proved and several asymptotic performance bounds have been established for

various spatial configurations of the network nodes. Furthermore, the near-equilibrium dynamics of the

GADIA algorithm has been studied using the Glauber dynamics, by identifying the problem with the

anti-ferromagnetic inhomogeneous long-range Potts model. Using the near-equilibrium dynamics and

methods from stochastic analysis, the robustness of the algorithm with respect to time variations in

the activity of network nodes is studied. These analytic results along with simulation studies reveal

that the performance is close to that of an optimum centralized frequency allocation algorithm. Further

simulation studies confirm that our proposed algorithm outperforms the Iterative Water-filling algorithm

in the low SIR regime, in terms of achieved sum-rate, complexity, convergence rate and robustness to

time-varying node activities.

Index Terms

Dynamic spectrum allocation, interference avoidance, cognitive radios, distributed algorithms, Glauber

dynamics.
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I. INTRODUCTION

Dynamic frequency allocation has an important role in improving the performance of com-

munication networks, for it results in less transmission power, which is a crucial objective

in system design. To do this in an optimal way, there needs to be a centralized processor

with full knowledge of the spatial distribution profile of the network nodes. However, in many

emerging communication networks (such as ad hoc wireless networks, wireless sensor networks,

cognitive radios, etc.), no central frequency allocation authority is naturally available. This makes

distributed frequency allocation an important, but mostlyunchartered territory in networking.

Centralized frequency allocation has been extensively studied in the context of cellular wireless

systems (See, for example, [31] and [49]). As for wireless networks, Leung et al. [30] propose

a heuristic centralized algorithm based on local search algorithms to search through the possible

frequency combinations. In another approach, Steenstrup [48] introduces a central controller to

the network, which assigns frequency bands to the nodes based on their interference with their

neighboring high priority nodes.

There are also various proposed methods for decentralized (distributed) frequency allocation in

different contexts (See, for example, [13], [15], [22], [28], [34], [37], [38], [40], [41], [42], [43],

[45], [51], [56], [58], and [59]). These include methods based on graph coloring for cognitive

networks, greedy interference avoidance techniques, Iterative Water-filling for Digital Subscriber

Lines (DSL), game theoretic approaches to dynamics spectrum allocation and methods based on

auction theory. Here, we review a number of these results which are most relevant to our work

(For a more comprehensive review of these results, see [36]).

These approaches may either excessively simplify the interference models, or may not be de-

centralized, or may require too much information exchange between autonomous nodes/clusters,

or may suffer from all these shortcomings. Additionally, they may be too complex to implement.

Ramanathan [43] takes an approach based on approximating the optimal resource allocation

solutions on a graph. Peng et al. [38] propose that secondaryusers choose their spectrum

according to their information about their local primary and secondary neighbors. They employ

a simplified model for mutual interference of the network nodes that turns the problem into the

graph multi-coloring problem. They subsequently compute asub-optimal solution to the graph

multi-coloring by using approximation algorithms to the graph labeling problem. Cao et al. [57]
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show that the graph model has the potential to represent the physical interference model. Zhao et

al. [60] propose a distributed coordination protocol in order to construct an in-band control path

(instead of pre-assigned out-of-band control channel) so that the nodes can coordinate and choose

their spectrum accordingly. In a different approach by Cao et al. [12], the communication load of

coordination between the nodes is decreased and a rule-regulated spectrum sharing mechanism

is used, in which the nodes regulate their actions by complying with a set of predefined rules.

In another strand of work, Rose et al. [45], D. C. Popescu et al. [40], [41], and O. Popescu et al.

[42] extensively study the problem of greedy interference avoidance in wireless networks. Rose

et al. [45] propose and study iterative algorithms (namely,the eigen-algorithm and the MMSE

algorithm) for interference avoidance through waveform shaping in a synchronous network of

multiple users connected to a common receiver (or co-located set of receivers). D. C. Popescu

et al. have extended the results of [45] to several scenariosin [40] and have been formalized

them in the more general framework of multiple-access vector channels in [41]. It must be noted

that the GADIA algorithm is an extension of the greedy interference avoidance procedure to the

canonical network model considered in this paper.

In the context of Digital Subscriber Lines (DSL), some recent works regarding spectrum

balancing have been done (See, for example, [13] and [58]). The objective of spectrum balancing

in DSL systems is to maximize the throughput of each user by shaping its Power Spectral

Density (PSD) of transmission, satisfying a certain power constraint. Yu et al. [58] propose

the method of Iterative Water-filling in order to solve the problem. In the case of two users,

they show the existence and conditions on the uniqueness of aNash equilibrium point for the

iterative algorithm. However, each user must know a weighted sum of the PSD of the other

users (interference), in order to do water-filling. The Iterative Water-filling algorithm has high

complexity and the resulting Nash equilibrium point isnot necessarilythe optimal solution. For

instance, in a two-user scenario, if both users start with a flat PSD initially, iterative Water-filling

does not change their PSD. This is clearly a Nash equilibriumpoint, but is far away from the

optimal answer. Etkin et al. [15] and O. Popescu et al. [42] show that this non-optimal Nash

equilibrium point might be the only Nash equilibrium, and therefore Iterative Water-filling fails

for various scenarios.

Cendrillon et al. [13] consider the scenario where the usersneed to balance their power along a

number of tones in order to optimize their throughout under power constraints. The optimization
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problem is relaxed by introducing a virtual user with fixed thresholds. It turns the problem into

a separable optimization problem across the tones for different users. An algorithm has been

proposed to solve the relaxed problem iteratively via solving local optimization problems by

the users. The knowledge of a weighted sum of the PSD of the other users (as a measure of

interference) is required for each user to solve its local optimization problem. The convergence

of the algorithm has been shown in high SIR regime. Simulations show that the achievable

region resulted by the solution of the relaxed distributed optimization is close to that of the

optimal centralized solution. However, no one-to-one correspondence between the points of

the achievable regions of the optimal (centralized) and decentralized algorithms is guaranteed.

Therefore, the algorithm does not necessarily converge to optimal values. For the case of

asynchronous transmission (in the presence of ICI), the optimization problem is not separable

across the tones. They have therefore used heuristic optimization approaches with no convergence

guarantees.

Etkin et al. [15] show that the problem of optimal PSD shapingacross the users is reducible to

that of allocating piece-wise constant powers. This resultreduces the complexity of the spectrum

sharing problem. Furthermore, a number of achievability and existence results in the context of

non-cooperative and cooperative game theory for obtainingefficiency and fairness, as well as a

punishment-based mechanism have been established. Another approach has been presented by

Huang et al. [22], where each user in the network announces a price to the other users, so that they

can adapt their power allocation accordingly. Convergenceresults have been established using

supermodular game theory. Bae et al. [5] and Huang et al. [23]propose and investigate methods

based on auction theory. In particular, Bae et al. [5] consider the scenario where a spectrum

broker collects bids by the users and allocates the resource(power or bandwidth) according to

a sequential second-price auction. Equilibrium analysis is presented for the two-user case and

the existence of a Nash equilibrium has been established forthe n-user scenario.

Hicks et al. [21], Menon et al. [33], Sung et al. [50], [51], and Ulukus et al. [53] consider

spreading code adaptations, where each node is isolated in frequency and spreading codes are

used to minimize the interference (See [36] for a detailed discussion of this topic). Lacatus et al.

[28] present a distributed algorithm for codeword and poweradaptation towards achieving a target

SINR in CDMA systems, in the context of non-cooperative gametheory. In [34], [35] and [37],

methods based on potential games have been proposed. Nie et al. [37] propose a communication
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protocol in which the nodes can coordinate and obtain sufficient information for their decision

making. Moreover, convergence to a mixed-strategy equilibrium has been established. Neel et al.

[34] establish the convergence to a pure-strategy equilibrium, under the hypothesis of Bilateral

Symmetric Interference (See Section III-A for more details).

In this paper, we consider a canonical network model which can be used to represent various

communication networks. Examples are clustered wireless networks (where the agents are divided

into different clusters and each cluster is represented by acluster-head) and Digital Subscriber

Lines. A Greedy Asynchronous Distributed Interference Avoidance (GADIA) algorithm has

been proposed for the horizontal spectrum sharing in such networks. The GADIA algorithm

provides a simple, fully distributed, dynamic frequency allocation strategy that requires neither

any information exchange between autonomous devices, nor even any knowledge of the existence

of other autonomous entities. Additionally, it can be used in conjunction with any realistic

wireless radio channel model such as those commonly employed in wireless standards (Hata

model, Okumura model, etc.).

In the GADIA algorithm, each node, having knowledge about the interference it experiences,

chooses the frequency band with the least amount of interference from the other nodes. It is

shown that the GADIA algorithm converges to a near-optimal spectrum assignment (under the

hypothesis of interference reciprocity), without any cross-cluster information exchange. In [34]

and [36], the convergence of a GADIA-like algorithm is established under the hypothesis of

Bilateral Symmetric Interference (BSI). The network utility in [34], [35] and [36] is the negated

sum of interferences in the network, which has also been employed by the present authors

in [2], [3] and [4]. To guarantee convergence under BSI, the measured marginal interference

contribution between pairs of radios (clusters) needs to bethe same so that in [34] and [36], one

needs to havePiαijf(si, sj) = Pjαjif(sj, si) for all i andj, wherePi is the transmittion power

of nodei, αij is the normalized channel between nodesi and j, andf(·, ·) is the interference

leakage function (See Section II for more details). In general, the BSI condition does not hold

in a network with generic power distribution over the users.In [35], this is overcome by having

each radio,i, scale its metric by its own transmit powerPi; [35] shows that this is sufficient

to satisfy BSI with a generic power distribution. Thus [35] and GADIA differ only in that [35]

scales the metric byPi while GADIA does not. In the nomenclature of [35], GADIA would be

considered a weighted potential game while [35] is an exact potential game, with [35] having
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a potential function (called network utility function herein) given by Eq. (6) divided by 2. In

practice, this distinction means that GADIA saves a multiplication for every channel interference

evaluation, while converging to the same operating points whereas the linear-space properties of

exact potential games allows [35] to aggregate interference measurements from each device in a

cluster for more device-specific responsiveness. This workalso establishes performance bounds

on the GADIA algorithm (Section IV) and considers continuous time dynamical analysis (Section

V) which were not considered in [34], [35] and [36], and to thebest of our knowledge in any

existing work on this topic. In particular, several asymptotic performance bounds for a wide

range of network topologies have been established using thesymmetries of the network utility

and the minimum energy property of Bravais lattices. The network utility, under which the

performance of the GADIA algorithm is studied, is the weighted aggregate interference. It is

shown that this network utility is closely related to the sum-rate of the network. Furthermore,

the dynamical behavior of the GADIA algorithm has been comprehensively studied, in analogy

to the Glauber dynamics of the inhomogeneous long-range anti-ferromagnetic Potts model. In

particular, we have constructed a framework based on stochastic analysis in order to evaluate

the near equilibrium performance of the GADIA algorithm, inpresence of time-varying activity

of the network nodes. Simulation results (Section VI) show that the GADIA algorithm achieves

more than 90% of the optimal sum-rate of the network in the low SIR regime, for various network

topologies. Also, further simulation studies confirm the robustness of the GADIA algorithm with

respect to the time-varying node activities, in accordancewith the analytical results.

The main contributions of this paper are: (1) proposing a simple, low-complexity, robust and

fully decentralized algorithm for horizontal spectrum sharing, (2) proving explicit performance

bounds on the outcome of the algorithm in various environments, (3) presenting an analytical

model for the dynamics of the proposed algorithm, inspired by methods from statistical physics,

and (4) analytical evaluation of the robustness of the algorithm in presence of time-varying node

activities.

The outline of this paper follows next. In Section II, the canonical network model, the network

utility formulation and the underlying assumptions are discussed. The GADIA algorithm is

introduced in Section III, followed by the discussion of itsimplications. The convergence of the

GADIA algorithm and asymptotic performance bounds are established in Section IV. Section

V includes the study of the dynamical properties of the GADIAalgorithm, such as the near-
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equilibrium dynamics and performance evaluation under time-varying activity of network nodes.

Simulation studies are presented in Section VI, followed byconclusion in Section VII. Finally,

a number of technical lemmas and mathematical derivations are presented in Appendices A and

B.

II. CANONICAL NETWORK MODEL

Suppose that we have a set of network nodes distributed in space. In general, each node

may have an internal structure, i.e., it may comprise smaller entities. Each node is interested

in inter-node and/or intra-node communications. We denotethis general structured network by

the canonical network. Many communication networks of interest can be represented in this

canonical form. As mentioned in the introduction, two such networks are the following:

Clustered Wireless Networks: Suppose that we have a set of transceivers distributed in space

such that they can be partitioned into a union of possibly overlapping clusters. Each cluster is

equipped with a cluster-head. These networks often happen in practice. For instance, in a combat

scenario, a group of soldiers can be divided into a number of clusters according to their missions.

We briefly review a few examples of such networks in what follows.

Moreover, such networks commonly arise in the context of cognitive radios. According to

the recent FCC order on TV white spaces [16], all fixed devicesin a cognitive network must

register their locations in the database. In addition, fixeddevices must transmit identifying

information to make it easier to identify them if they are found to interfere. Furthermore, fixed

and personal/portable devices operating independently must provide identifying information to

the TV bands database. However, FCC permits applications for certification of devices that do not

include the geo-location and database access capabilitiesand instead rely on spectrum sensing

to avoid causing harmful interference. A fixed device must employ both geo-location, database

access, and spectrum sensing capabilities that enable the device to listen for and identify the

presence of signals from other transmitters. A personal/portable device must either be under

the control of a fixed device or a personal/portable device that employs geo-location, database

access and spectrum sensing or employ geo-location/database access and spectrum sensing itself.

Therefore, the assumption of a clustered wireless network,in which each cluster consists of a

number of users is very reasonable in the context of cognitive networks sharing white spaces

horizontally.
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Another example is the homogeneous/heterogeneous clustered sensor networks for target track-

ing and in general, anomaly detection purposes [9], [11], [39]. In such networks, agile clusters

are formed which comprise pressure, sonar and magnetic sensors. Each cluster is equipped with

a cluster-head, which communicates with the cluster members, gathers their data and reports to a

fusion center. Often times a number of such clusters coexistin the same space-time neighborhood,

and hence spectrum sharing is very desired in order to increase the throughput of the underlying

intra-cluster communication links.

Further examples include Wireless LAN Hotspots and WPAN networks, in which intra-cluster

communication is very desired. There are a number of efficient methods for partitioning the

network elements, which will lead to such clustered networks. However, these methods are not

the focus of this paper and we are assuming that the clusters are already formed in a specified

manner.

Digital Subscriber Lines: In a Digital Subscriber Line (DSL) system, modems use frequencies

above the voice band for handling high-speed data. The bundle of transmission lines may contain

up to 100 subscriber lines. Clearly, there will be electromagnetic interference between the lines

in the bundle. Thus, the DSL system can be modeled as a number of transmitters and receivers

interfering into each other [58].

Thus, for a clustered wireless network, each node is a collection of users forming a cluster and

in a DSL system each node is a subscriber line. In the former case, each node has a cluster-head

responsible for managing some of the network functions. Thecanonical network model is given

by a collection of nodes,ci, i = 1, · · · , N , which is depicted in Fig. 1 for a clustered wireless

network.

Remark: Bambos [7] has introduced a canonical conceptual frameworkfor the networking

paradigm, in which the network is conceptually modeled as acollection of interfering links.

According to [7], two instances of this concept are ad hoc networks (with no fixed infrastructure

and possibly multi-hop communication mode) and cellular networks (with a fixed infrastructure

and single-hop communication mode). The canonical networkmodel of this paper can also be

viewed as a collection of interfering links. However, the two network models pertain to different

structural scales; the canonical network model in our paperconsists of a number of co-existing

and hence interfering network nodes, where each node may have an internal structure à al the
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Fig. 1. Canonical Network Model

canonical conceptual model of Bambos [7]. For example, in case of clustered wireless networks,

the network consists of a number of co-existing clusters, where each cluster comprises a number

of users along with a cluster-head. On a smaller scale, the users in each cluster may form a

network of the type described in [7], e.g., the users inside acluster may communicate with

each other or the cluster-head in a multi-hop/single-hop communication mode. The case of the

DSL network is slightly different: a DSL network consists ofa bundle of co-existing and hence

interfering wires, but the wires have no internal network structure.

A. Assumptions

We make the following main assumptions on the network model:

1) The interference between any two nodes is reciprocal.

2) The leakage interference between any two nodes is symmetric.

3) The nodeci transmits with powerPi.

4) The channel between nodesci andcj is given byhij . For example,hij can be modeled as

a Rayleigh fading channel or path loss with exponentη. We also denote the self-gain of a node

by hii.

5) The accessible spectrum is divided intor different bands, denoted byb1, · · · , br.
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6) At time t, the ith node is in statesi(t) ∈ {1, 2, · · · , r}, corresponding to the index of the

frequency band it is using for communication purposes.

7) The rate of change of the spatial distributions of the nodes in the network is much less

than the processing/transmission rate. Therefore, the topology of the network is assumed to be

fixed in the analysis of the frequency allocation algorithm.

Remark: Assumption 1 readily holds for the DSL network due to the physical properties of

transmission lines. In other words, in the DSL networkhii is simply the self-inductance of the

ith wire (in contrast tohij which is the mutual inductance of wiresi andj). Hence, interference

reciprocity is implied by the mutual inductance reciprocity, since the self-gainhii is typically

the same for all wires.

For clustered wireless networks in general, there are various ways in order to obtain inter-

ference symmetry, which are discussed in details in [35]. Ina more specific network scenario,

where the mutual distances between the clusters in a clustered wireless network are much larger

than the typical cluster size, one can obtain interference symmetry from channel reciprocity by

adding the additional assumption that at each moment in eachcluster there is at most one user

transmitting. In this case,hij can be interpreted as the link gain between the transmittinguser

in clusteri and j, andhii can be interpreted as the typical link gain between the cluster-head

and cluster members of clusteri. This assumption can be enforced by employing a TDMA

scheme for intra-cluster communication [26], or considering the 802.11e or 802.16h scenarios.

We further assume that the clusters have similar physical characteristics, hencehii = hjj for all

i and j.

B. Network Utility

A common choice for the network utility is the sum-rate (See,for example, [13], [15], [58]).

Let nodeci be in statesi, i.e., transmitting in frequency bandbsi
. We define the rate of a node

as follows:

Ri := log

(

1 +
Pi

N0(si) + Ici

)

(1)

whereN0(si) is the noise power in bandsi and Ici
is the interference experienced byci. The

interference experienced by nodeci, given the state of the system being{s1, s2, · · · , sN}, can
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be modeled as

Ici
:=

∑

j 6=i

Pjαijf(si, sj) (2)

where

αij :=
hij

hii
(3)

and f(si, sj) denotes the symmetric leakage interference of the frequency band sj into si.

For example, if the leakage between different frequency bands is negligible,f can be well

approximated by the Kronecker delta function:

δ(si, sj) =







1 si = sj

0 si 6= sj

(4)

As mentioned in Section II-A, we assume thathii is constant across different nodes in the

network, hence the condition of interference symmetry, i.e., αijf(si, sj) = αjif(sj, si), is implied

by hij = hji, which is the channel reciprocity between nodesi andj.

The sum-rate can then be defined as

U sum-rate :=
N

∑

i=1

Ri (5)

The network utility function considered in this paper is theweighted aggregate interference

and is defined as

U := −
N

∑

i=1

PiIci
(6)

The weight of the interference experienced by nodeci is given by its transmission powerPi. A

similar metric has been introduced by Lacatus et al. [28] in the context of power and codeword

adaptation in CDMA systems. It is possible to consider a moregeneral network utility for the

case where the nodes allocate their total power across ther frequency bands. LetP k
i be the

transmission power of nodeci in frequency bandbk, such that
r

∑

k=1

P k
i = Pi. (7)

We can define a similar power-weighted aggregate interference as follows:

U ′ := −

N
∑

i=1

r
∑

k=1

P k
i Ik

ci
(8)
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where the additional summation overk captures the effect of power distribution across all the

frequency bands. As it will be discussed later in Section III-A, maximizingthe network utilityU ′

reduces tomaximizingthe network utilityU (Further motivations for choosing such a network

utility function is discussed in detail in Section III-A). Therefore, we will only present our

analysis for the network utilityU .

Other metrics such as aggregate SIR (See Sung et al. [51]) andlog-sum-rate (See Etkin et al.

[15]) have also been studied in the literature. Finally, note that the entire analysis throughout this

paper can be carried out by negating the utility functionU and considering utility minimization.

This way, the network utility will be a positive quantity andthe results (especially the inequalities)

will be more intuitive. However, in order to align ourselvesto the common notion ofutility

maximization, we prefer to work with negative utility functions in favor of maintaining utility

maximization as our objective.

C. Connection of the Weighted Aggregate Interference to Sum-rate

The negated weighted aggregate interference has been used as a successful metric in some

strands of results in the existing literature (See, for example, [28], [34], [35] and [36]). However,

we find it useful to delineate the connection of this metric tothe sum-rate metric. In what

follows, we show that there exists a regime of SINR (i.e., lowSINR regime) where maximizing

the negated aggregate interference yields an approximate solution to the maximization of the

sum-rate. The low SINR regime is defined by the following set of conditions:

αi :=
Pi

N0(si) + Ici

≪ 1 (9)

for all i = 1, 2, · · · , N . We also assume thatN0(si) ≪ Ici
for all i = 1, 2, · · · , N and therefore

focus our attention on the low SIR regime. A practical example of a network with low SIR is

the CDMA/HDR network. In fact, several measurements done byBender et al. [10] reveal that

almost 50% of the nomadic users in a CDMA/HDR system have negative SIR (in the dB scale).

In this regime, the sum-rate can be approximated by

U sum-rate =
∑

i

Pi

Ici

+ O
(

{α2
i }

)

, (10)

sincelog(1 + x) ≈ x for x ≪ 1. Moreover, if we assume that the network is homogeneous, i.e.,

the nodes have very similar structures (which is true for DSLand clustered wireless networks)
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and the number of interferers and available frequency bandsare large enough (See Remark 1

below), the interference experienced by nodeci can be expressed as

Ici
= Ī + δIci

, (11)

with βi := δIci
/Ī ≪ 1 for all i = 1, 2, · · · , N . Note thatĪ captures thetypical interference

experienced by the nodes in the homogeneous network andδIci
stands for the variations in the

interference levels. The sum-rate can be then further approximated by

U sum-rate ≈
∑

i

Pi

Ī

(

1 −
δIci

Ī

)

=
∑

i

Pi

Ī

(

2 −
Ici

Ī

)

= U0 +
1

Ī2
U (12)

where

U0 := 2
∑

i

Pi

Ī
(13)

independent ofδIci
, for i = 1, 2, · · · , N , and the overall error is of the order

O
(

{α2
i }

)

+ O
(

{β2
i }

)

. (14)

Therefore,U sum-rate ≈ U0 + 1
Ī2 U and maximizingU is equivalent to maximizingU sum-rate for

a homogeneous network in low SIR regime (Note that a similar affine relation holds between

U sum-rate andU ′). Simulation studies in Section VI verify that the maximization of the negated

aggregate interference indeed yields a near-optimal solution to sum-rate maximization.

Remark: The hypothesis ofδIci
≪ Ī is adopted from statistical physics. If the network

geometry is homogenous with high number of interferers, andthere is a considerable number

of available frequency bands, this condition holds for generic spatial and frequency band con-

figurations of the network nodes. As an example, let us consider a scenario where the nodes are

distributed in the plane with a density ofn0 nodes per normalized unit area. Also, we suppose

that each node can take any of ther available frequency bands with equal probability. It is easy

to show that the ratio of standard deviation to mean of the interference for each user scales as
√

(r − 1)/n0. Hence, ifn0 ≫ r−1, the hypothesis holds with high probability for generic spatial

configurations of the network nodes with random frequency band assignments. In the jargon of

statistical physics, this corresponds to the high temperature behavior of the system, where each

state is accessible equi-probably. It is worth consideringthe low temperature behavior, where
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the network lives near the optimal frequency band assignment (i.e., equilibrium, in the statistical

physics terms). In this case, the most probable states of thesystem occur when one node switches

away from the optimal frequency band to a non-optimal band with equal probability. In is easy to

show that the variations in the interference experienced byeach user scale asO(1/r). Hence, if

r ≫ 1, the hypothesis holds for generic configurations of the system near the optimal frequency

band assignment. Therefore, when bothn0 ≫ r − 1 and r ≫ 1 are satisfied, the assumption

of δIci
≪ Ī is reasonable for generic spatial and frequency band configurations of the network

nodes.

D. Discrete-time vs. Continuous-time Models

Let the state of the network be{s1(t), s2(t), · · · , sN(t)} at time t. Each node, sayci, picks

a timet = tn at random and updates its transmission frequency band. The nature of the update

procedure is asynchronous for all the nodes. This is intuitively appealing, because of the nature

of distributed networks, where there is usually no common clock among the nodes. We assume

that the updates are taking place at timest = t1, t2, · · · . The update process can be different for

each node. For example, each node can choose the update timesbased on a point process (e.g.,

Poisson point process) with a specific rate. The update process will be discussed in more detail

in Section V. In this case, we can express the interference experienced by nodeci at time t by

Ici
(t) :=

N
∑

j=1
j 6=i

Pjαijf
(

si(t), sj(t)
)

(15)

The network utility at timet, U(t), can be written as

U(t) := −

N
∑

i=1

PiIci
(t) = −

N
∑

i=1

N
∑

j=1
j 6=i

PiPjαijf
(

si(t), sj(t)
)

(16)

Let Gk(t) ⊆ {1, 2, · · · , N} denote the set of nodes transmitting in bandbk at time t. Also,

let Ik
ci
(t) denote the interference experienced byci caused by all the nodes inGk(t), if ci was

transmitting in bandbk. Ik
ci
(t) can be written as

Ik
ci
(t) =

N
∑

j=1
j 6=i

Pjαijf
(

k, sj(t)
)

(17)
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Whenever the temporal dynamics of the updates are not important for our purposes, we

can alternatively use a discrete-time state-space model, where the state of system is given by

{s1[n], s2[n], · · · , sN [n]} at time n, corresponding tot = tn. The quantitiesIci
[n], U [n] and

Ik
ci
[n] can be similarly defined by substituting the continuous-time statess1(t), s2(t), · · · , sN(t)

with their discrete-time versions,s1[n], s2[n], · · · , sN [n].

It must be noted that, for notational convenience, we may drop the time dependence of the

functions Ici
[n], Ik

ci
[n] and U [n] following the convergence of the algorithm or whenever the

state of the system is not varying over time, and denote them by Ici
, Ik

ci
and U , respectively.

Also, we may add the dependence onN , the number of nodes, upon convenience and denote

the above functions byIci
(N), Ik

ci
(N) andU(N), respectively.

III. T HE GADIA A LGORITHM

Given the canonical network model and the utility functionU in Section II, the objective is

to design a distributed algorithm to maximize the network utility function across different nodes

in the network. Note that each node, sayci, can only observeIk
ci
[n] for all k = 1, 2, · · · , r.

For example, in a clustered wireless network, the cluster-head scans the spectrum and esti-

mates/measures the interference it experiences in each frequency band. Thus, each node is only

aware of its own interference profile. Given the measured interference profile, each node needs

to update its frequency band in a way to increment the networkutility. Our proposed distributed

algorithm for this purpose is called the Greedy Asynchronous Distributed Interference Avoidance

(GADIA) Algorithm. We can formally define the GADIA algorithm as follows:

The GADIA Algorithm: Nodes scan all the frequency bandsb1, · · · , br in an asynchronous

manner over time. Each node chooses the frequency band in which it experiences the least

interference from other nodes. In other words, a nodeci picks a timen at random and updates

its state according to the following rule

si[n + 1] = arg min
j

Ij
ci
[n]. (18)

If the minimizer is not unique,ci randomly picks one such minimizer.
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A. Discussions

In case of clustered wireless networks, the cluster-head chooses the new transmission frequency

band according to Eq. (18), and then announces the new frequency band to the other users in the

cluster. In case of a DSL system, the interference channels can be measured in the loop-planning

phase and then the transmitter modems can shape their PSD according to the GADIA algorithm.

We will mainly focus on the clustered wireless networks throughout the paper, and will point

out the relevant analogies to DSL systems whenever convenient.

As confirmed by simulations in Section VI, such a network utility introduces more robust-

ness to the performance of the distributed frequency allocation algorithm in presence of time-

variations, in comparison with the Iterative Water-fillingalgorithm [58]. Moreover, the GADIA

algorithm achieves a higher sum-rate compared to the Iterative Water-filling algorithm in the low

SIR regime (See Section VI). Finally, as it will be discussedin the forthcoming sections, our

choice of network utility admits a tractable mathematical framework to analyze the performance

of the GADIA algorithm under time-variations (see Section V) and uncertainties [2].

The constraint that each node chooses a single frequency band for communication purposes

at each time is consistent with the network utilityU . In fact, this is induced by this particular

choice of network utility. In contrast, suppose that each node can allocate its total power across

the r available frequency bands. Consider the network utilityU ′ adapted to this new power

allocation strategy, defined in Eq. (8) as:

U ′ = −

N
∑

i=1

r
∑

k=1

P k
i Ik

ci
(19)

It is easy to check thatU ′ has an affine relation withU sum-rate as in Eq. (12). The nodeci

can only observeIk
ci

, k = 1, 2, · · · , r and can allocate its total powerPi across ther frequency

bands in order to increment the network utility. LetP k
i be the transmission power of nodeci in

frequency bandbk, such that
r

∑

k=1

P k
i = Pi (20)

Then, the nodeci needs to solve the following local optimization problem:

max
{P k

i }r
k=1

{

−
∑

k

P k
i Ik

ci

}

subject to
∑

k

P k
i = Pi (21)
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Since the objective function is linear inP k
i , clearly the solution is to allocate the total powerPi

to the frequency bandbk∗ such that

k∗ = arg min
k

Ik
ci
. (22)

Therefore, even if the nodes start the update process with power allocation across all the

frequency bands, the above choice of power-weighted aggregate interference for the network

utility will give rise to single frequency band allocationsin the steady state. In light of the

above, we only analyze the algorithm under the network utility U , corresponding to the single

frequency band assignments.

In the Iterative Water-filling algorithm [58], nodeci allocates its power across the frequency

bands as follows:

P j
i = (ν − Ij

ci
)+ (23)

where(x)+ := max(x, 0) andν is selected such that
r

∑

j=1

(ν − Ij
ci
)+ = Pi (24)

First of all, we note that the Iterative Water-filling algorithm clearly has higher computational

complexity compared to the GADIA algorithm. Secondly, as mentioned in the introduction, the

outcome of the Iterative Water-filling algorithm might not always be near-optimal. In fact, as

pointed out by Etkin et al. [15] and O. Popescu et al. [42], theoutcome of the Iterative Water-

filling algorithm might be the only possible outcome and far from optimal. For example, let us

consider the scenario in Fig. 3. There are two nodes,c1 and c2, and two available frequency

bands,b1 andb2. The initial power allocation is the flat power allocation across the two frequency

bands. Clearly, this is an equilibrium point for the Iterative Water-filling algorithm, since the best

response of each node to the flat power allocation of the otheris the flat allocation allocation

[15], [42]. On the other hand, the GADIA algorithm bypasses such a Nash equilibrium, due to

its inherent equilibrium selection via tie-breaking. In other words, the GADIA algorithm chooses

a single frequency band, even if several available frequency bands have the same interference

level. Hence, GADIA would indeed quickly segregate itself onto an equilibrium in which the

two nodes do not impose any interference on each other. Thus,for this example, the output of

the GADIA algorithm has clearly a higher sum-rate than that of the Iterative Water-filling.
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Fig. 2. The equilibrium of Iterative Water-filling vs. GADIA; GADIA results in full interference avoidance, whereas Iterative

Water-filling flattens the PSD.

Although this example is not very generic, it captures the essence of difference between

the two algorithms. In particular, in the low SIR regime, theGADIA algorithm is more likely

to output a frequency band assignment withsignificant interference avoidance, compared to

Iterative Water-filling (since in this regime, the Iterative Water-filling algorithm tends toflatten

the spectrum).

Also, in clustered wireless networks, the clusters may be very close to each other and even

partially overlapping: For example, in a cognitive ad hoc network, it is possible to have partially

overlapping clusters of users which are communicating witha few fixed devices equipped with

geo-location systems. Moreover, due to the nature of the wireless channel and also high number

of interferers, the SIR at the receivers might be very low. For example, in CDMA/HDR systems

almost 50% of the nomadic users suffer from negative SIR (in the dB scale) [10]. Therefore, in

general, one expects the network to be operating in a relatively low SIR environment. This is

not usually the case in the DSL networks, since the subscriber lines can not physically overlap.

Simulation results in Section VI confirm that the GADIA algorithm outperforms the Iterative

Water-filling algorithm in a relatively low SIR regime, for abroad range of clustered wireless

networks with different topologies.
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IV. M AIN RESULTS: STATIC ANALYSIS

First, we will establish the convergence of the GADIA algorithm under the hypothesis of

interference reciprocity. Then, we will present performance bounds for the GADIA algorithm

under different network topologies.

A. Convergence

Theorem 4.1: Given any reciprocal interference model, the GADIA algorithm converges to a

local minimum.

Proof: First, we show that−U [n] is a non-increasing function ofn. Without loss of

generality, we assume that the nodeck is updating its frequency band at timen. Suppose that

ck has been transmitting in bandbsk[n] at timen. Thus,U [n] can be written as

U [n] = −
N

∑

i,j=1
i6=j 6=k

PiPjαijf
(

si[n], sj[n]
)

−
N

∑

i=1,i6=k

PiPkαikf
(

si[n], sk[n]
)

(25)

−
N

∑

i=1,i6=k

PkPiαkif
(

sk[n], si[n]
)

.

Since,αik = αki, for all i 6= k by the assumption of interference reciprocity andf(si, sk) =

f(sk, si) by the leakage symmetry hypothesis, we can writeU [n] as

U [n] = −
N

∑

i,j=1
i6=j 6=k

PiPjαijf
(

si[n], sj [n]
)

− 2
N

∑

i=1,i6=k

PiPkαikf
(

si[n], sk[n]
)

(26)

= −

N
∑

i,j=1
i6=j 6=k

PiPjαijf
(

si[n], sj [n]
)

− 2PkI
sk[n]
ck

[n]

After the update,ck chooses the new bandbsk [n+1], where

sk[n + 1] = arg min
j

Ij
ck

[n]. (27)

Therefore,

U [n + 1] = −

N
∑

i,j=1
i6=j 6=k

PiPjαijf
(

si[n], sj [n]
)

− 2PkI
sk[n+1]
ck

[n] (28)

= U [n] − 2Pk

(

Isk[n+1]
ck

[n] − Isk[n]
ck

[n]
)
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Eq. (27) implies thatIsk[n+1]
ck [n] 6 I

sk[n]
ck [n]. Hence,

U [n + 1] − U [n] > 0, (29)

which implies that−U [n] is a non-increasing function ofn. Moreover,−U [n] is clearly lower

bounded by0. Therefore,∃M ∈ N such that∀m > M , we haveU [n+1] = U [n], which proves

the statement of the Theorem.

B. Performance Bounds: Lower Bound

Theorem 4.2 gives a lower bound on the performance of the GADIA algorithm for the general

canonical network model.

Theorem 4.2 (Lower Bound): LetUG denote the network utility corresponding to the state of

the algorithm following convergence (see Theorem 4.1), andUw be the network utility corre-

sponding to the worst case interference scenario (where allnodes transmit in the same frequency

band). Then,

UG >
1

r
Uw, (30)

wherer is the number of available frequency bands.

Proof: Suppose that at timen the nodeci chooses the frequency bandbk. Therefore, we

haveIk
ci
[n] 6 Ij

ci
[n], for all j 6= k. Hence,

rIk
ci
[n] 6

r
∑

j=1

Ij
ci
[n] (31)

Note that the right-hand side is independent ofn, since it stands for the interference experienced

by ci when all the other nodes are transmitting in the same frequency band. LetM be a time

following the convergence of the GADIA algorithm. Clearly,the above inequality holds for time

M :

rIk
ci
[M ] 6

r
∑

j=1

Ij
ci
[M ] (32)

and for all nodesci, i = 1, 2, · · · , N . On the other hand,Uw can be written as

Uw = −
N

∑

i=1

r
∑

j=1

Ij
ci
[M ] (33)
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Summing overi on the both sides of Eq. (32) yields:

−rUG = r
N

∑

i=1

Ik
ci
[M ] 6

r
∑

j=1

Ij
ci
[M ] = −Uw (34)

which proves the statement of the theorem.

Note that so far the network model under study is the canonical model in its most general

form. In order to obtain concrete performance bounds, we will make a number of simplifying

assumptions on the network topology, power constraints andchannel model to make the math-

ematical analysis tractable. In particular, we focus our attention to clustered wireless networks

and assume that the channel model is path loss with exponentη, i.e.,

hij =
1

dη
ij

(35)

wheredij is the distance between nodes (clusters)ci andcj. We further assume that the quantities

dij are normalized by the size of the clusters, so that

αij =
1

dη
ij

(36)

Furthermore, we assume that the leakage between different frequency bands is negligible and

approximate the leakage functionf(si, sj) by the Kronecker delta function,δ(si, sj), as discussed

before in Section II-B. When all the clusters have the same size, i.e., homogeneous network,

hii is constant across different nodes. Thus, the model is interference reciprocal. Therefore, all

the previous results (convergence and lower bound) hold. Under the foregoing assumptions, the

network utility at timen takes the following form:

U [n] := −
N

∑

i,j=1
i6=j

PiPj

dη
ij

δ
(

si[n], sj[n]
)

(37)

Remark: Note that the asymptotic behavior ofαij must be such thatU [n]/N is well-defined

for any choice of state variablessi[n], asN → ∞. In particular, for the path loss model with

exponentη, we must haveη > D, whereD is the dimension of the space over which the nodes

are distributed.
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(c) Uniform 2D Array(b) Uniform Linear Array

(a) General Linear Array

Fig. 3. Examples of network topologies. a) General linear array, b) Uniform linear array, and c) Uniform 2D array.

C. Performance Bounds: Asymptotic Upper Bound

It is in general hard to characterize the optimal frequency band assignment, even for simple

network topologies such as linear arrays. This is due to the fact that nodes have long-range

interactions, which makes the centralized network utilitymaximization problem non-trivial. One

simplification is to consider short-range interactions, e.g., nearest neighbors, which is widely

studies in Statistical Physics in the context of Ising-typemodels (See, for example, [8]). Also,

a graph model has been studied by Peng et al. [38], which fairly simplifies the interference

model. In light of the above, in order to compare the performance of the GADIA algorithm to

the optimal centralized strategy, we will obtain a non-trivial lower bound on the optimal network

utility.

Fig. 3 shows some examples of the network topologies studiedin this paper. The nodes forming

a linear array are shown in Fig. 3a. For a givenN , we assume that the nodes are located in

[0, (N − 1)d], whered is a constant. As a special case, when each node is a distanced apart

from its neighbors, we denote the array byuniform linear array(Fig. 3b). Note that the uniform

linear array corresponds to the integerZ1 lattice [14]. Generalizations of the uniform linear array

to higher dimensions, which are appropriate for our purposes, are referred to asBravais lattices

(See, for example, [14]). For example, one such lattice in 2 dimensions is theuniform 2D array

shown in Fig. 3c, which corresponds to the integerZ2 lattice [14]. Before moving on to the main
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result regarding the lower bound, we mention our motivationfor employing Bravais lattices and

briefly review some of their properties.

Let Uo(N
D) be the network utility corresponding to the optimal strategy for a given spatial dis-

tribution ofND nodes inside theD dimensional cube of sideNd. Recall thatGk ⊆ {1, 2, · · · , N}

is the subset of nodes transmitting in frequency bandbk, corresponding to the optimal frequency

band assignment. LetNk := |Gk|. We expressUo(N
D) as follows:

Uo(N
D) =

r
∑

k=1

Uw(Nk) (38)

whereUw(Nk) denotes the utility corresponding to theNk nodes in the setGk, which are all

transmitting in bandbk (hence the subscriptw).

Let us consider the nodes inGk and suppose that they are particles inside theD dimensional

cube of sideNd, interacting with one another according to the following vector field:

Fij =
PiPj

ηdη+2
ij

(xi − xj), (39)

where xi denotes the position of nodeci in space. This interaction field is clearly repulsive.

Therefore, if we arbitrarily distribute the nodes inside the D dimensional cube of sideNd (with

the freedom to move inside the cube), the final equilibrium configuration is when the potential

function given by

VGk
:=

∑

i∈Gk

∑

j∈Gk

j 6=i

PiPj

dη
ij

(40)

achieves a local minimum. We note that the potential function VGk
is exactly equal to−Uw(Nk).

Therefore, the final configuration of the nodes is when the network utility corresponding to

the nodes inGk is maximized. LetU∗
w(Nk) denote the network utility ofNk nodes which are

distributed in space according the spatial configuration corresponding to the global minimum

of the potential functionVGk
. We then haveUw(Nk) 6 U∗

w(Nk). This inequality is the key to

proving the main theorem regarding the optimal frequency band assignment (Theorem 4.3).

If Pi = P0 for all i = 1, 2, · · · , N , the configuration corresponding to any local minimum of

the above potential function, in the limit ofN → ∞, is assumed to be aD dimensional Bravais

lattice. For example, all the natural crystals are formed byrepeatedly placing a collection of
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atoms on a Bravais lattice. Bravais lattices are well-studied in the context of crystallography and

solid state physics (See, for example, [1]). For example, itis shown that there are 1, 5 and 14

different Bravais lattices in 1, 2 and 3 dimensions, respectively. The unique Bravais lattice in 1

dimension is simply the integerZ1 lattice.

Although in solid state physics it is widely assumed that theconfiguration corresponding to the

minimum of the potential function of particles interactingvia an isotropic and convex repulsive

field is a Bravais lattice, a mathematically rigorous proof in 2 and 3 dimensions does not exist. A

recent article [52] addresses construction of such proofs for a class of interactions which include

those with power law asymptotics (e.g., the path loss model with exponentη). The proof for the

1 dimensional case is given in [54].

LetL(d) be a Bravais lattice inD dimensions with unit spacingd and generatorsa1, a2, · · · , aD

[14]. We define the energy of the latticeL(d) as follows:

E(η) :=

∞
∑

i1,i2,··· ,iD=−∞
(i1,i2,··· ,iD)6=0

1
∥

∥i1a1 + i2a2 + · · ·+ iDaD

∥

∥

η

2

(41)

For example, forD = 1, the Bravais lattice (integerZ1 lattice) has energyE(η) = ζ(η), the

Riemann zeta function. The values ofE(η) for different Bravais lattices can be easily computed

numerically. LetL∗(d) be theD dimensional Bravais lattice with minimum energyEmin(η).

The alternating frequency band assignment on theL∗(d) lattice can be defined as assigning

frequency bandsb1, b2, · · · , br to the r cosets ofL∗(d), with unit spacingr1/Dd, respectively.

The alternating frequency band assignment is commonly usedin cellular communication systems

(See, for example, [31] and [44]) as the optimal frequency reuse strategy.

Theorem 4.3 gives a non-trivial upper bound on the optimal network utility of a D dimensional

network:

Theorem 4.3 (Optimal Utility InD Dimensions): LetUo(N
D) be the network utility corre-

sponding to the optimal strategy for a given spatial distribution of ND nodes inside theD

dimensional cube of sideNd. Moreover, assume thatPj = P0 for all j = 1, 2, · · · , N . Then,

lim
N→∞

1

ND
Uo(N

D) 6 −
1

r
η
D

Emin(η)
P 2

0

dη
(42)

whereEmin(η) is the energy of the Bravais latticeL∗(d), assuming the minimum energy property

of the Bravais lattices inD dimensions.
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Proof: Recall that

Uo(N
D) =

r
∑

k=1

Uw(Nk), (43)

where Uw(Nk) denotes the utility corresponding to theNk nodes in the setGk, which are

all transmitting in bandbk. The configuration corresponding to the Bravais lattice with the

minimum energy,L∗
(

(ND

Nk
)

1
D d

)

, gives the global minimum of the potential functionVGk
(the

global maximum of−Uw(Nk)). Hence, for any given distribution of theND nodes inside the

D dimensional cube of sideNd, we have

lim
Nk→∞

1
Nk

Uw(Nk)

1
Nk

Uw

(

Nk;L∗
(

(ND

Nk
)

1
D d

)

) 6 1 (44)

whereUw

(

Nk;L
∗
(

(ND

Nk
)

1
D d

)

)

corresponds to the worst case network utility when theNk nodes

are located on the sites of the Bravais latticeL∗ with unit spacing(ND

Nk
)

1
D d.

Moreover, it can be shown thatNk → ∞ as N → ∞ for all k = 1, 2, · · · , r, whereGks

correspond to that of the optimal frequency band assignment. This is established by Lemma A.2

in Appendix A. Thus, we have

lim
N→∞

1

ND
Uo(N

D) = lim
N→∞

1

ND

r
∑

k=1

Uw(Nk) (45)

6 lim
N→∞

1

ND

r
∑

k=1

Uw

(

Nk;L
∗
(

(ND

Nk
)

1
D d

)

)

Also, for an array of nodes located in inside theD dimensional cube of sideNd on the sites

of theL∗(d) Bravais lattice, it is easy to show that

lim
N→∞

1

ND
Uw(ND;L∗(d)) = −Emin(η)

P 2
0

dη
. (46)

This result is proven in Lemma A.1 in Appendix A. Roughly speaking, the above equation states

that the boundary effects of the lattice can be neglected in the limit of N → ∞. Using the

foregoing result, the right-hand side of Eq. (45) can be bounded as follows:

lim
N→∞

1

ND

r
∑

k=1

Uw(Nk;L
∗
(

(ND

Nk
)

1
D d)

)

6 lim
N→∞

(∑r
k=1 N

η
D

+1

k

Nη+D

)

1

ND
Uw(ND;L∗(d)) (47)
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The expression
∑r

k=1 N
η
D

+1

k clearly achieves its minimum whenNk = ND/r, for k =

1, · · · , r. Therefore,

lim
N→∞

1

ND
Uo(N

D) 6 lim
N→∞

(∑r
k=1 N

η
D

+1

k

Nη+D

)

1

ND
Uw(ND;L∗(d)) (48)

6
1

r
η
D

lim
N→∞

1

ND
Uw(ND;L∗(d))

= −
1

r
η
D

Emin(η)
P 2

0

dη

which proves the statement of Theorem 4.3.

Remark: Note that the network utilityU(ND) is anextensivevariable, i.e., it scales with the

number of nodesND. The normalization factor1/ND in the result of Theorem 4.3 (and similar

theorems that follow) guarantees that the limits are well-defined.

We can prove the following stronger result for the alternating frequency band assignment to

the nodes located on the Bravais lattice with minimum energy:

Theorem 4.4: LetUalt(N
D;L∗(d)) be the network utility corresponding to the alternating

frequency band assignment to the nodes located on theD dimensional Bravais latticeL∗(d)

with minimum energyEmin(η) and unit spacingd. Also, suppose thatPi = P0 for all 1 6 i 6 N .

Then, we have

lim
N→∞

1

ND
Ualt(N

D;L∗(d)) = −
1

r
η
D

Emin(η)
P 2

0

dη
. (49)

Proof: Suppose that we alternatingly assign frequency bandsb1, b2, · · · , br to the nodes

located on ther cosets ofL∗(d). First, we will show that

rUw

(

⌊ND/r⌋;L∗(r1/Dd)
)

> Ualt

(

ND;L∗(d)
)

> rUw

(

⌈ND/r⌉;L∗(r1/Dd)
)

(50)

To see this, we note that in the alternating frequency band assignment there are⌊ND/r⌋ 6

Nk 6 ⌈ND/r⌉ nodes located on the cosetL∗(r1/Dd) which are all operating in frequency band

bk, for k = 1, 2, · · · , r. Therefore, the network utility is given by the sum of network utilities

of the r disjoint sets of nodes corresponding to different frequency bands. Clearly, all the nodes
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in each subset have the same frequency band and therefore, the network utility for subsetGk,

with |Gk| = Nk, is Uw(Nk;L
∗(r1/Dd)). We can writeUalt(N ; d) as follows:

Ualt(N
D;L∗(d)) =

r
∑

k=1

Uw(Nk;L
∗(r1/Dd)) (51)

SinceUw(N ; ·) is an increasing function ofN , we can sandwichUw(Nk;L
∗(r1/Dd)) as

Uw

(

⌊ND/r⌋;L∗(r1/Dd)
)

> Uw

(

Nk;L
∗(r1/Dd)

)

> Uw

(

⌈ND/r⌉;L∗(r1/Dd)
)

(52)

Summing overk yields

rUw

(

⌊ND/r⌋;L∗(r1/Dd)
)

> Ualt

(

ND;L∗(d)
)

> rUw

(

⌈ND/r⌉;L∗(r1/Dd)
)

(53)

where we have used Eq. (51). Using the Sandwich Theorem, we get

lim
N→∞

1

ND
Ualt(N

D;L∗(d)) = lim
N→∞

1

ND
rUw

(

⌈ND/r⌉;L∗(r1/Dd)
)

(54)

= lim
N→∞

−
⌈ND/r⌉

ND/r
Emin(η)

P 2
0

(r1/Dd)η

= −
1

r
η
D

Emin(η)
P 2

0

dη
.

On the other hand, from Theorem 4.3 we know that

lim
N→∞

1

ND
Uo(N

D) 6 −
1

r
η
D

Emin(η)
P 2

0

dη
(55)

Therefore,

lim
N→∞

1

ND
Uo(N

D;L∗(d)) = lim
N→∞

1

ND
Ualt(N

D;L∗(d)) = −
1

r
η
D

Emin(η)
P 2

0

dη
(56)

which proves the statement of the theorem.

Combining the results of Theorems 4.2 and 4.3, the followingtheorem compares the perfor-

mance of the GADIA algorithm to that of the optimal strategy:

Theorem 4.5: Consider a given spatial distribution ofND nodes inside theD dimensional

cube with sideNd. Suppose thatPi = P0 for all 1 6 i 6 N . Moreover, letUG(ND) be the

network utility corresponding to the output of the GADIA algorithm andUo(N
D) be that of the

optimal frequency band assignment. Then, we have

γD lim
N→∞

1

ND
Uo(N

D) 6 lim
N→∞

1

ND
UG(ND) 6 lim

N→∞

1

ND
Uo(N

D), (57)
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where

γD := r
η
D
−1Emax(η)

Emin(η)

1
(

dmin

d

)η , (58)

dmin := mini,j dij, and Emin(η) and Emax(η) are the minimum and maximum energies of the

Bravais lattices inD dimensions, respectively.

Proof: Clearly, we have

Uw(ND) > Uw(ND;L′(dmin)), (59)

whereL′(dmin) is the D dimensional Bravais lattice with the maximum energy,Emax(η), and

spacingdmin. In other words, for any given spatial configuration of the network nodes with all

being in the same frequency band, the worst case utility can be further decreased by locating all

the nodes on the sites of the Bravais lattice with the highestenergy and unit distance equal to the

smallest separation in the original network. Moreover, from Eq. (48) the statement of Theorem

4.3 can be expressed as

lim
N→∞

1

ND
Uo(N

D) 6
1

r
η
D

lim
N→∞

1

ND
Uw(ND;L∗(d))

=
1

r
η
D

(dmin

d

)η

lim
N→∞

1

ND
Uw(ND;L∗(dmin)) (60)

sinceUw(ND;L∗(dmin)) depends ond as1/dη. Using Theorem 4.2 and the bound given in Eq.

(59), we get

lim
N→∞

1

ND
UG(ND) >

1

r
lim

N→∞

1

ND
Uw(ND) >

1

r
lim

N→∞

1

ND
Uw(ND;L′(dmin)) (61)

Dividing Eq. (61) by Eq. (60) yields:

limN→∞
1

ND UG(ND)

limN→∞
1

ND Uo(ND)
>

1

r
·

r
η
D

(dmin

d
)η

·
limN→∞

1
ND Uw(ND;L′(dmin))

limN→∞
1

ND Uw(ND;L∗(dmin))
(62)

Now, Lemma A.1 implies that the ratio of1
ND Uw(ND;L′(dmin)) to 1

ND Uw(ND;L∗(dmin))

is asymptotically given byEmax(η)/Emin(η). Hence, by rearranging the terms in Eq. (62) we

recover

γD lim
N→∞

1

ND
Uo(N

D) 6 lim
N→∞

1

ND
UG(ND). (63)

Given the trivial upper bound ofUG(ND) 6 Uo(N
D), the statement of the Theorem follows.
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D. Discussion of the Results

Theorem 4.1 guarantees the convergence of the GADIA algorithm, regardless of the power

distribution and spatial configuration of the nodes in the network, as long as the hypothesis of

interference reciprocity holds. Theorem 4.2 establishes alower bound on the network utility

corresponding to the GADIA algorithm, which holds for any spatial distribution of the network

nodes. However, this bound also requires the hypothesis of interference symmetry. It is worth

mentioning that the symmetric interference requirement can be restrictive in generalizing the

application of the GADIA algorithm to other network models.For example, if the network

nodes are equipped with multiple transmitters and receivers, the assumption of symmetric inter-

ference does not hold in general [45]. Moreover, realization of channel reciprocity might exhibit

difficulties in practice (See [18] for a detailed discussion). However, as far as the network model

in this paper and those studied in [34], [35] and [36] are concerned, this requirement can be

enforced with rather mild costs. In particular, Neel [35] has introduced a number of methods

to synthetize the symmetric interference condition, whichare mainly based on appropriately

refining the interference sensing process.

Theorem 4.3 establishes an asymptotic upper bound on theoptimalnetwork utility, independent

of the spatial distribution of the nodes. Although, in obtaining this bound, properties of the

Bravais lattices have been used. Also, note that Theorem 4.3relies on the widely accepted

conjecture that Bravais lattices correspond to the energy minima of particles with repulsive

forces. Although this conjecture is supported with numerous experimental results and is widely

accepted in solid state physics, it must be noted that the verity of Theorem 4.3 depends on

the verity of this conjecture. Theorem 4.4 establishes thatthe bound obtained in Theorem 4.3 is

indeed sharp, i.e., there exists a network with the Bravais structure and a specific frequency band

assignment (alternating assignment) which has the same network utility as the bound obtained

in Theorem 4.3. Finally, Theorem 4.5 uses the results of Theorems 4.2 and 4.3 to establish an

asymptotic lower bound on the network utility corresponding to the GADIA algorithm, compared

to theoptimalnetwork utility, for a general spatial distribution of the network nodes. Note that the

lower bound of Theorem 4.2 and the asymptotic lower bound of Theorem 4.5 indeed correspond

to networks with general spatial distribution of nodes. Simulation results (Section VI) show that

these bounds give reasonable estimates of the utility rangeto which the network utility of the
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GADIA algorithm converges.

The result of Theorem 4.5 is the strongest when the constantγD is not too large. In order

to have some numerical intuition aboutγD, we consider some special cases: in 1 dimension,

with η = 2 and r = 2, for a uniform linear array with unit distanced, we haveγ1 = 2, which

implies that the output of the GADIA algorithm is guaranteedto be within3dB of the optimal

frequency band assignment. In 2 dimensions the situation isbetter, since the effect ofr on γD is

reduced: withη = 2.5 andr = 4, for a uniform rectangular array with unit distanced, we have

γ2 ≈ 1.41. Hence, the outcome of the GADIA algorithm will be within1.5dB of the optimal

strategy. Note that the result of corollary is a worst-case result which holds for any given spatial

configuration of the nodes and any single run of the GADIA algorithm. Simulation results in

Section VI indicate that the GADIA algorithm indeed performs within these bounds, and on

average performs very close to the optimal strategy.

It is worth mentioning that the lower bound obtained on the performance of the GADIA

algorithm can also be interpreted in the framework of Price of Anarchy (PoA) (See, for example

[27] and [47]). The notion of PoA denotes the ratio of the aggregate welfare of the optimal Nash

equilibrium to the worst case Nash equilibrium of a non-cooperative game with many players.

Originally, the PoA has been studied in the context of selfishrouting in data networks. In such

networks, each node needs to choose a path in a graph to route its message through. Each edge

of the graph is weighted according to itslatency, which is an increasing function of the number

of nodes including it in their routing path. The usual model used for the latency function is the

flow model, where the latency is an increasing function of flow(number of users) of that edge.

Several results concern linear, polynomial and continuousfunctions of the flow of each edge as

the corresponding latency [47].

In this regard, our network model can be viewed as a collection of N nodes which need to

route their message to a destination node, through one of theavailabler edges (which correspond

to the available frequency bands). The latency of each edge is then the interference experienced

in the corresponding frequency band. However, the flow modeldoes not necessarily yield a good

approximation to the physical properties of our network. For example, two frequency bands may

have the same number of users, but the interference experienced by a certain node in each of these

bands can be dramatically different due to the spatial configuration of the nodes. Hence, the usual
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results of PoA do not readily generalize to our problem. Moreover, unlike in the flow model, in

general it is very hard to characterize the optimal, worst case and other Nash equilibria of our

network with the physical interference model. Hence, in theforegoing bounding procedures we

have used other techniques to obtain the ratio of the welfarein the Nash equilibrium obtained

by the GADIA algorithm to that of the optimal frequency assignment strategy. Nevertheless,

the parameter1/γD can be interpreted as a lower bound on the PoA of the network (since the

welfare of the Nash equilibrium obtained by GADIA is greateror equal to that of the worst case

Nash equilibrium).

V. M AIN RESULTS: DYNAMICAL ANALYSIS

So far, we have used the discrete-time model in order to carryout the static analysis presented

in Section IV. Moreover, most of the results in Section IV correspond to the equilibrium analysis

of the algorithm, thus the discrete-time model sufficed to study the algorithm following equilib-

rium. However, the discrete-time model does not fully capture the response of the algorithm to

time variations and stochastic uncertainties. In other words, in order to evaluate the robustness

and stability of the algorithm one needs to take into accountthe continuous-time dynamics.

A. Update Process

First, we need to model the frequency band update process of the nodes in the network. In

general, the update process of each node can be modeled by a stochastic point process. Let

t
(1)
i , t

(2)
i , t

(3)
i , · · · be the points in time when the nodeci scans the spectrum in order to update

its frequency band. Letp
t
(ℓ+1)
i

(

t; t
(1)
i , t

(2)
i , · · · , t(ℓ)

)

be the probability density oft(ℓ+1) given the

previous pointst(1)i , t
(2)
i , · · · , t(ℓ). The densityp

t
(ℓ+1)
i

is sufficient to describe all the stochastic

properties of the point process. In our case, we will model the update process of each node with

a Poisson point process of rateλi [46], where

p
(

Ni(t + τ) − Ni(t) = k
)

=
e−λiτ (λiτ)k

k!
(64)

denotes the probability that the nodeci updates its frequency band a total ofk times in the

interval (t, t + τ ], for k = 0, 1, · · · . It is easy to see that [46]

p
t
(ℓ+1)
i

(

t; t
(1)
i , t

(2)
i , · · · , t(ℓ)

)

= λie
−λi

(

t−t
(ℓ)
i

)

. (65)
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We also assume that different nodes have independent updateprocesses. The assumption of

Poisson update processes is mainly made for mathematical simplicity of the dynamical analysis

that follows. Similar analysis can be carried out by modeling the update process by other point

processes. However, the analytical results will be more complicated (although very similar in

essence) and may adumbrate the underlying intuition and application of the results.

B. The Soft GADIA

Recall that according to the GADIA algorithm, each node, sayci, updates its frequency band

at time t(ℓ) according to the following rule:

si(t) = arg min
j

Ij
ci

(

t(ℓ)
)

(66)

wheret ∈ (t(ℓ), t(ℓ+1)]. This is simply the continuous-time version of the decisioncriterion given

in Eq. (18). We can alternatively consider a probabilistic decision criterion in which the nodeci

chooses the frequency bandbk with probability

p
(

si(t) = k
)

:=
exp

(

− βPiI
k
ci
(t(ℓ))

)

r
∑

j=1

exp
(

− βPiI
j
ci
(t(ℓ))

)

(67)

for k = 1, 2, · · · , r and t ∈ (t(ℓ), t(ℓ+1)], whereβ is a positive constant. Note that in the limit of

β → ∞, the probabilistic decision criterion coincides with thatof the GADIA algorithm, since

p
(

si(t) = k∗
)

= 1 (68)

wherek∗ := arg mink Ik
ci
(t

(ℓ)
i ), andp

(

si(t) = k
)

= 0 for all k 6= k∗, asβ → ∞. We note that

β is a measure of deviation from the optimal decision by the nodes in the network. Therefore,

in analogy to statistical physics conventions, we denote byβ the inverse temperature. We also

denote bySoft GADIA the frequency allocation algorithm with the decisioncriterion given in

Eq. (67). In what follows, we carry out the analysis for the Soft GADIA algorithm due to

the smoothness properties of its probability distributionon the state space, and also conforming

with the conventions of statistical physics. Nevertheless, the corresponding results for the GADIA

algorithm can be deduced from those of Soft GADIA by the limitprocessβ → ∞.

Recall that the state of the network at timet is given by the vector(s1, s2, · · · , sN) ∈

{1, 2, · · · , r}N corresponding to the frequency bands occupied by nodes(c1, c2, · · · , cN). Let
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P (t; s1, s2, · · · , sN) be the probability density of the nodes(c1, c2, · · · , cN) being at the point

(s1, s2, · · · , sN) in the state-space at timet. For any scalar functionf(s1, s2, · · · , sN) on the

state-space, theensemble averageat time t is defined as follows:
〈

f(s1, s2, · · · , sN)
〉

:=

r
∑

σ1=1

r
∑

σ2=1

· · ·

r
∑

σN=1

f(σ1, σ2, · · · , σN )P (t; σ1, σ2, · · · , σN) (69)

In particular, we will prove the following theorem regarding the dynamics of the Soft GADIA

algorithm:

Theorem 5.1: LetU(t) be the network utility at timet, corresponding to the Soft GADIA

algorithm with parameterβ. Moreover, suppose that the network nodes update their frequency

bands with a rateλ, i.e., λi = λ for all i = 1, 2, · · · , N . Then, the ensemble average of the

network utility satisfies the following differential equation:

d

dt

〈

U(t)
〉

= −2λ
(

〈

U(t)
〉

−
〈

U0(t)
〉

)

,

where

U0(t) := −

N
∑

k,l=1
k 6=l

PkPlαkl

exp
(

− β
∑

j 6=k PkPjαkjδ
(

sl(t), sj(t)
)

)

∑

m exp
(

− β
∑

j 6=k PkPjαkjδ
(

m, sj(t)
)

) .

Before proving Theorem 5.1, we need to introduce some concepts from statistical physics,

which are key to analyzing the dynamical performance of the Soft GADIA algorithm and, in

particular, proving Theorem 5.1.

C. Connection to Potts Model

In the continuous-time model, the network utility is given by

U(t) = −
N

∑

i=1

PiIci
(t) = −

N
∑

i,j=1
i6=j

PiPjαijδ
(

si(t), sj(t)
)

(70)

where we have approximated the leakage functionf(si, sj) by the Kronecker delta function

δ(si, sj). Let Jij := PiPjαij for 1 6 i, j 6 N , i 6= j. Clearly, Jij = Jji, by the hypothesis of

interference reciprocity (αij = αji). The network utility can be expressed as

U(t) = −

N
∑

i,j=1
i6=j

Jijδ
(

si(t), sj(t)
)

(71)
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The above expression can be identified with the Hamiltonian of an anti-ferromagnetic inhomo-

geneousr-state long-range Potts model[55]. The Potts model is a generalization of the Ising

model, which describes the interactions of spins on a crystalline lattice, and is studied extensively

in the context of solid state physics (See, for example, [8],[24] and [55]).

In the original Potts model, the summation is only over the nearest neighbors and is thus

denoted byshort-rangePotts model. Moreover,Jij = −J for all i andj. Therefore, the network

utility given in Eq. (71) corresponds to the inhomogeneous long-range generalization of the

original Potts model. Also, note that any two nearby nodes tend to be in different frequency

bands. Hence, the model is anti-ferromagnetic in nature, which is reflected in the negativeness of

the network utility. Another generalization, called theinfinite-rangePotts model, has been widely

studied in statistical physics, which corresponds to the case whereJij = 1/N for all i, j and the

summation is over all the spins on the lattice (not only the nearest neighbors) [55]. Although

the energetics of the infinite-range Potts model is analytically tractable, its generalization to the

inhomogeneous long-range case is not trivial.

D. Glauber Dynamics

In light of the above, we can analyze the temporal dynamics ofthe soft GADIA algorithm in

the context of spin dynamics. Study of spin dynamics was initiated by the seminal paper of Roy

J. Glauber [19] and is thus commonly denoted by Glauber dynamics. The Glauber dynamics was

originally devised in order to describe the near equilibrium collective behavior of the spins on a

lattice, interacting according to the one-dimensional Ising model [19]. Generalizations to other

spin models such as the original Potts model and infinite-range Potts model have been done

(See, for example, [6] and [29]). The decision criterion given in Eq. (67) is a generalization of

the Glauber dynamics to the anti-ferromagnetic inhomogeneousr-state long-range Potts model.

Let

wi(s) := p
(

si(t) = s
)

(72)

for all s ∈ {1, 2, · · · , r}, which is given by Eq. (67). We note thatwi(s) is implicitly a function of

t, but we drop the dependence ont for notational convenience. Recall thatP (t; s1, s2, · · · , sN)

is the probability density of the nodes(c1, c2, · · · , cN) being at the point(s1, s2, · · · , sN) in

the state-space at timet. As Glauber noted in his paper [19], the stochastic properties of such
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systems (and variants thereof) can be fully described by theMaster equation[32]:

∂

∂t
P (t; s1, s2, · · · , sN) =

N
∑

i=1

λiwi(si)
r

∑

σj=1
σj 6=sj

P (t; s1, s2, · · · , σj, · · · , sN) (73)

−
N

∑

i=1

r
∑

σj=1
σj 6=sj

λiwi(σj)P (t; s1, s2, · · · , sN).

for any configuration(s1, s2, · · · , sN). The first term on the right-hand side of the Master

equation corresponds to the probability flow of the nodes switching to the configuration given

by (s1, s2, · · · , sN) from any other configuration and thus appears with a positivesign. The

second terms corresponds to the probability flow of the nodeswhich are currently in states

(s1, s2, · · · , sN) and are switching to other configurations, which appears with a negative sign.

Note that the state-space hasrN distinct points of the form(s1, s2, · · · , sN). Thus, the Master

equation is a set ofrN coupled equations for the density functionsP (t; s1, s2, · · · , sN). Although

simultaneously solving this set of equations is mathematically intractable, the Master equation

is very useful for computing the time evolution of the statistical parameters of the network.

Proof of Theorem 5.1:We need to compute the ensemble average of the network utility,
〈

U(t)
〉

, which represents the expected value of the utility function at timet. In order to do this,

we need to compute ensemble averages of the form
〈

δ
(

sk(t), sl(t)
)〉

for all 1 6 k, l 6 N . As

it is shown in Appendix B, the time evolution of
〈

δ
(

sk(t), sl(t)
)〉

is given by the following

differential equation:

d

dt

〈

δ
(

sk(t), sl(t)
)

〉

= −(λk + λl)
〈

δ
(

sk(t), sl(t)
)

〉

(74)

+

〈

λk

exp
(

− β
∑

j 6=k Jkjδ
(

sl(t), sj(t)
)

)

∑

m exp
(

− β
∑

j 6=k Jkjδ
(

m, sj(t)
)

)

〉

+

〈

λl

exp
(

− β
∑

j 6=l Jljδ
(

sk(t), sj(t)
)

)

∑

m exp
(

− β
∑

j 6=l Jljδ
(

m, sj(t)
)

)

〉

for all 1 6 k, l 6 N . Although the above set ofN(N − 1)/2 non-linearly coupled differential

equations are very hard to solve, they are sufficient to describe the time evolution of
〈

U(t)
〉

.
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The ensemble average ofU(t) can be written as

〈

U(t)
〉

= −
N

∑

k,l=1,k 6=l

Jkl

〈

δ
(

sk(t), sl(t)
)

〉

. (75)

Given thatλi = λ for all i = 1, 2, · · · , N , combining Eqs. (74) and (75) yields:

d

dt

〈

U(t)
〉

= −2λ
(

〈

U(t)
〉

−
〈

U0(t)
〉

)

(76)

where

U0(t) := −
N

∑

k,l=1
k 6=l

Jkl

exp
(

− β
∑

j 6=k Jkjδ
(

sl(t), sj(t)
)

)

∑

m exp
(

− β
∑

j 6=k Jkjδ
(

m, sj(t)
)

) . (77)

Noting thatJij = PiPjαij , the statement of the theorem follows.

Eq. (76) (together with the set of equations given by Eq. (74)) gives the complete description

of the collective behavior of the network under the soft GADIA algorithm, at all times.

E. Near Equilibrium Linearization

Note that Eq. (76) has been derived for the utility modelU(t) in its most general form (with

the exception of approximating the leakage function by the Kronecker delta function). In other

words, for any interference reciprocal model, any spatial distribution of nodes and any number

of available frequency bands, the behavior of the ensemble average of the utility function is

governed by Eq. (76).

However, it is possible to further simplify Eq. (76) near theequilibrium, with appropriate

assumptions. First we note that:

lim
t→∞

〈

U(t)
〉

= lim
t→∞

〈

U0(t)
〉

(78)

Let
〈

U(∞)
〉

:= limt→∞

〈

U(t)
〉

. Furthermore, we need to characterize the behavior of the

function U0(t) near equilibrium. In the mean-field theory [24], we get:

〈

U0(t)
〉

≈ −

N
∑

k,l=1,k 6=l

Jklǫkl(t) (79)

where

ǫkl(t) :=
exp

(

− β
∑

j 6=k Jkj

〈

δ
(

sl(t), sj(t)
)〉

)

∑

m exp
(

− β
∑

j 6=k Jkj

〈

δ
(

m, sj(t)
)〉

) . (80)
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Clearly,0 6 ǫkl(t) 6 1, for all k, l and t. Let

ξ(t) := min
k

min
m,n
m6=n

∣

∣

∣

∑

j 6=k

Jkj

(

〈

δ
(

m, sj(t)
)〉

−
〈

δ
(

n, sj(t)
)〉

)
∣

∣

∣

+
(81)

wherex+ := max(x, 0) for all x ∈ R. Note thatξ(t) > 0 for all t. For β ≫ 1, any change in the

values of
〈

δ
(

sk(t), sl(t)
)〉

less thanξ(t)/2N , will not change the value ofǫkl(t). To see this,

note that in the limitβ → ∞, for a generic distribution of the coefficients{Jij} and for a fixed

userck, ǫkl(t) = 0 for all l 6= l∗, andǫkl∗(t) = 1, i.e., sl∗(t) is the frequency band in which user

ck experiences the least amount of interference (It is possible thatǫkl(t) 6= 0 for more than onel

for a given distribution of{Jij}, i.e., there are two frequency bands in which userck experiences

the same level of interference. But, the Lebesgue measure ofsuch distributions is zero among

all possible distributions of{Jij} for large enoughN , since such distributions need to satisfy a

finite number of linear equations). Thus,ǫij can be written as

ǫkl(t) :=

exp

(

− β
(

∑

j 6=k Jkj

〈

δ
(

sl(t), sj(t)
)〉

−
∑

j 6=k Jkj

〈

δ
(

sl∗(t), sj(t)
)〉

)

)

1 +
∑

m6=l∗ exp

(

− β
(

∑

j 6=k Jkj

〈

δ
(

m, sj(t)
)〉

−
∑

j 6=k Jkj

〈

δ
(

sl∗(t), sj(t)
)〉

)

) .

(82)

Clearly, any change smaller thanξ(t)/2N in the exponent of the numerator of the expression

in Eq. (82) does not change the limit ofǫkl(t) asβ → ∞. Hence, for
〈

U(t)
〉

sufficiently close to

its equilibrium value,
〈

U(∞)
〉

, the function
〈

U0(t)
〉

can be considered constant in the mean-field

theory. Therefore, forβ ≫ 1, we can approximate Eq. (76) near the equilibrium as:

d

dt

〈

U(t)
〉

= −2λ
(

〈

U(t)
〉

−
〈

U(∞)
〉

)

. (83)

This approximation can be also viewed as near equilibrium linearization. Note that the mean-field

theory describes the situation where there are a large number of interferers for each user, i.e.,

when the network is operating in the low SIR regime. Simulation results in Section VI confirm

the validity of the mean-field approximation and the near equilibrium linearization. It is worth

mentioning that we have previously obtained a similar result for the special case of 2 frequency

bands (r = 2) with more elementary arguments [2], [4]. However, the treatment here is much

more general and rigorous.
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F. Robustness with respect to Time-varying Node Activities

As an application of the near equilibrium dynamics of the GADIA algorithm, we want to

evaluate the robustness of the algorithm with respect to time-varying activity of the network

nodes. That is, we want to generalize the network structure to the case where the nodes can be

in active or sleep mode. Letai(t) be the activity state of the nodeci at time t. When the node

is active at timet, i.e., is transmitting, we haveai(t) = 1 and when the node is in sleep mode,

i.e., is not transmitting, we haveai(t) = 0. A simple stochastic model for the activity of the

nodeci is the two-state symmetric Markov model with transition probability µi. This model can

be represented in the Itô form as follows (See, for example,[17] and [25]):

dai(t) =
(

1 − ai(t)
)

dNi (84)

wheredNi is a Poisson counter with rateµi. Note thatdNi represents a Poisson jump process

with rateµi, such that

E{dNi} = µidt, (85)

whereE denotes the averaging operator corresponding to the Poisson jump process [17]. For

simplicity, suppose thatµi = µ for all i, i.e., all the nodes have the same temporal activity

statistics. Also, letPi = P0 for all ci. The following theorem establishes the steady state behavior

of the GADIA algorithm under time-varying node activities:

Theorem 5.2: LetU(t) be the network utility corresponding to the GADIA algorithmat time

t. Suppose thatλi = λ, µi = µ andPi = P0 for all i = 1, 2, · · · , N . Then, the normalized steady

state variance of the network utility is given by:

σ2
ss :=

limt→∞ E

{

(

〈

U(t)
〉

− E
{

〈

U(t)
〉

})2
}

limt→∞ E
{

〈

U(t)
〉2

} =
4µ

λN − 4µ
,

whereE{·} denotes the expectation with respect to the time-varying activity statistics.

Proof: First, note that in the mean-field approximation, every nodewhich switches from the

sleep mode to the active mode at timet experiences an interference of
〈

U(t)
〉

/P0Na(t), where

Na(t) is the number of active nodes at timet. Hence, it will decrease the network utility by

a total of 2
〈

U(t)
〉

/Na(t) (Similarly, any node which switches to the sleep mode increases the
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network utility by the same amount). Clearly, we haveNa(t) ≈ N/2 near equilibrium, since all

the nodes have the same temporal activity statistics. Thus,the collective effect of the activity of

the nodes can be captured by two Poisson counters in the Itô form as follows:

2

N/2

〈

U(t)
〉

(

dN+ − dN−

)

(86)

where

E
{

dN±} =
N

2
µ. (87)

Hence, the evolution of the network utility near the equilibrium can be described by the following

Itô equation:

d
〈

U(t)
〉

= −2λ
(

〈

U(t)
〉

−
〈

U0(t)
〉

)

dt +
4

N

〈

U(t)
〉

(

dN+ − dN−

)

(88)

We can obtain the Itô equation corresponding to the quantity
〈

U(t)
〉2

, by the Itô differentiation

rule [25] as follows:

d
〈

U(t)
〉2

= −4λ
〈

U(t)
〉

(

〈

U(t)
〉

−
〈

U0(t)
〉

)

dt (89)

+

(

(

〈

U(t)
〉

+
4

N

〈

U(t)
〉

)2

−
〈

U(t)
〉2

)

dN+

+

(

(

〈

U(t)
〉

−
4

N

〈

U(t)
〉

)2

−
〈

U(t)
〉2

)

dN−

Simplifying Eq. (89) and taking the expectation of both sides yields:

d

dt
E
{

〈

U(t)
〉2

}

= −
(

4λ −
16

N
µ
)

E
{

〈

U(t)
〉2

}

+ 4λE
{

〈

U(t)
〉〈

U0(t)
〉

}

(90)

Therefore, in the steady state,t → ∞, we have

lim
t→∞

E
{

〈

U(t)
〉2

}

=
4λ

4λ − 16
N

µ
E
{

〈

U(∞)
〉2

}

(91)

given λ > 4µ/N . Hence, we have:

lim
t→∞

E

{

(

〈

U(t)
〉

− E
{

〈

U(t)
〉

})2
}

=
4λ

4λ − 16
N

µ
E
{

〈

U(∞)
〉2

}

− E
{

〈

U(∞)
〉2

}

=
4µ

λN − 4µ
E
{

〈

U(∞)
〉2

}

(92)

which proves the statement of the theorem.

Simulation results in Section VI show that Theorem 5.2 givesa reasonable estimate for the

steady state variance of the GADIA algorithm under the time-varying activity of the network
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nodes. A similar result has been derived in [4] for the special case ofr = 2, from a different

route with more elementary arguments. The robustness of theGADIA algorithm with respect to

the spectrum sensing time and the error induces by simultaneous spectrum sensing by different

nodes is studied in [2].

G. Discussion

Section V-A models the asynchronous update process as a Poisson process. The Poisson

process reflects the homogeneity of the network with respectto the update procedure. A more

general version of the GADIA algorithm is introduced in Section V-B, denoted by the Soft

GADIA algorithm. The difference of the GADIA algorithm withthe Soft GADIA is in the

decision criterion, which is probabilistic in the latter. The probability of choosing a frequency

band is given by the Boltzmann distribition with inverse temperatureβ. In the limit of β → ∞,

the Boltzmann distribution assigns probability 1 to choosing the frequency band with the least

amount of interference. This limiting case clearly coincides with the decision criterion of the

GADIA algorithm. However, as mentioned earlier, it is more convenient to analyze the dynamics

of the Soft GADIA algorithm. The corresponding dynamics of the GADIA algorithm can be

obtained by carrying out the limit ofβ → ∞. Finally, Theorem 5.1 establishes the dynamical

behavior of the ensemble average of the network utility corresponding to the Soft GADIA

algorithm.

Section V-C delineates the connection between the negated aggregate interference metric and

the Hamiltonian of an anti-ferromagnetic inhomogeneous long-range Potts model. With this

connection in mind, one can view the Soft GADIA algorithm as the Glauber dynamics gener-

alized to the anti-ferromagnetic inhomogeneous long-range Potts model. Using the properties

of the Glauber dynamics (which is well-studied in statistical physics), Theorem 5.1 regarding

the ensemble averaged behavior of the Soft GADIA (and consequently the GADIA) algorithm

has been proved in Section V-D. Section V-E presents the near-equilibrium linearization of the

dynamics. In fact, it is shown that in the limit ofβ → ∞, the dynamics can be simplified to a

linear first order differential equation with a constant inhomogeneous term (See Eq. (83)). The

linearized dynamics can be then used to study the dynamical behavior of the algorithm near the

equilibrium.
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As an application, we have studied the robustness of the GADIA algorithm with respect to

the time variations in the node activities in Section V-F. Inparticular, Theorem 5.2 establishes

the steady state variance of the network utility corresponding to the GADIA algorithm under the

mentioned time-varying setup and in the mean-field approximation. The proof uses modeling

techniques and mathematical tools from stochastic controltheory and Itô calculus. In fact, the

stochastic differential equation given in Eq. (88) gives the full statistical description of the

near-equilibrium behavior of GADIA under time-varying node activities. The first term on the

right-hand side of Eq. (88) corresponds to the negative drift of the GADIA algorithm which

is aimed to increase the network utility. The second term corresponds to the fluctuations in

the network utility due to time-varying node activities. Eq. (88) can be used to obtain various

moments of the network utility. The normalized steady statevariance is shown to settle down

to a constant ast → ∞, given λ > 4µ/N . The latter condition implies that the nodes need

to update their frequency band roughly4/N times faster than their on/off switching rate, in

order to enjoy a finite variance in the steady-state. Hence, the analysis reveals that as the rate of

on/off switching increases, the update rate needs to increase proportionally in order to maintain

stability.

VI. SIMULATION RESULTS

First, we compare the performance of the GADIA and IterativeWater-filling algorithms for

clustered wireless networks. We consider a rectangular lattice in D dimensions, which spans a

D dimensional cube of sideNd. We then randomly and independently pick the positions ofND

cluster-heads around the sites of the lattice according to the uniform distribution[−d/4, d/4] in

each of theD directions. Also, we assume that each cluster-head is transmitting its signal to

a user located at a distanced apart, which is also roughly the average distance to the nearest

interferers. Fig. 4 shows the performance of the GADIA and Iterative Water-filling algorithms for

different configurations of 100 nodes in one and two dimensions. Fig. 4 (a), (b) and (c) show the

ensemble-averaged normalized sum-rate of the network as a function of time in one dimension

with r = 2, r = 4 and in 2 dimensions withr = 4, respectively. The normalized sum-rate is

defined as the sum-rate divided by the number of clusters. Here d = 1, P0 = 1 andη = 2. In two

dimensions, the computation of the optimal frequency band assignment is very complicated and

finding it by exhaustive search is beyond the capabilities ofour simulation platforms. However,
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since the deviation from the rectangular geometry is relatively small, we have instead compared

the performance of the GADIA and Iterative Water-filling algorithms to that of the1 : 4 frequency

reuse pattern as a near-optimal candidate [44]. Note that the 1 : 4 frequency reuse pattern, which

is used in cellular telephony, coincides with the alternating frequency band assignment introduced

in Section IV-C. As it can be observed from Fig. 4, in all casesmore than 90% of the capacity of

the optimal (near-optimal) centralized frequency assignment is achieved. Moreover, the GADIA

algorithm exhibits a faster convergence rate compared to the Iterative Water-filling algorithm.

The results also clearly justify the connection between theweighted aggregate interference and

sum-rate.
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Fig. 4. Normalized sum-rate curves for arrays of 100 clusters vs. time, (a) 1D, r=2, (b) 1D, r=4, and (c) 2D, r=4

Fig. 5 (a) and (b) show the normalized network utility corresponding to the GADIA algorithm,
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Fig. 5. Normalized network utility of the GADIA algorithm and the theoretical bounds.

the lower and upper bounds we have derived in Section IV-B, for 100 and 400 nodes distributed

in one and two dimensions, respectively. Each curve has beenobtained by averaging 100 different

ensembles. We have setr = 2, η = 2 andr = 4, η = 2.5 for the one and two dimensional cases,

respectively. For the initial condition of the algorithm, we pick a random frequency band for

each cluster. The updates are repeated until the convergence is achieved. As we observe from

the figure, the GADIA algorithm achieves a network utility very close to the theoretical upper

bound.

Fig. 6 shows the average utility of 10 randomly chosen nodes from a rectangular array of

100 nodes vs. time, withr = 4. The utility is averaged over 50 different runs of the GADIA

algorithm on the network. As the GADIA algorithm converges,individual nodes greedily update

their frequency band, and eventually remain in the band withthe least interference among all.

Fig. 7 shows the performance of the GADIA and Iterative Water-filling algorithms for a linear

array of 100 clusters vs. time, in presence of time-varying node activities. For on/off switching

probabilitiesµ/Nλ = 0.01, 0.05 and 0.1, the GADIA algorithm achieves about 90%, 86% and

83% of the optimal sum-rate on average, respectively. But, Iterative Water-filling achieves about

76%, 74% and 73% of the optimal sum-rate on average, respectively.

In Fig. 8, the near-equilibrium behavior of the GADIA algorithm for a two dimensional array
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Fig. 6. Average utility of 10 randomly chosen nodes from a rectangular array of 100 nodes vs. time (r = 4).
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0.01, 0.05 and0.1. Left: GADIA, Right: Iterative Water-filling

of 100 clusters, forr = 2, 4 and8, is shown. The simulation curve is obtained by averaging over

500 different ensembles. The theoretical estimate of the decay rate of the network utility (which

is shown to be−2λ) matches the simulation data perfectly, which verifies the applicability of

the mean field theory to the Glauber dynamics near equilibrium.

Fig. 9 shows the normalized steady state variance of the network utility vs. µ/Nλ for a two

dimensional array of 100 clusters withr = 4. The simulation curve is obtained by averaging

over 500 different realizations of the update process. As itcan be observed from the figure, the

theoretical estimate of the steady state variance matches the simulation data perfectly.
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VII. CONCLUSION

We have considered the problem of distributed dynamic frequency allocation in a canoni-

cal communication network which spans many networks of interest, such as cognitive/ad hoc

networks or Digital Subscriber Lines (DSL). A Greedy Asynchronous Distributed Interference

Avoidance (GADIA) algorithm has been proposed that achieves performance close to that of

a centralized optimal algorithm. Each node in the network chooses its transmission frequency

band based on its knowledge of the interference that it experiences.

The convergence of the proposed distributed algorithm to a near-optimal frequency allocation

strategy is proved. Moreover, several asymptotic performance bounds have been derived for
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various spatial configurations of the nodes in the network, by analogy to minimum energy lattice

configurations used in solid state physics. These analytic results and additional simulation studies

verify performance close to that of an optimum centralized frequency allocation algorithm. In

particular, it is demonstrated that the algorithm achievesabout 90% of the sum-rate correspond-

ing to the optimum/near-optimum centralized frequency band assignments. Simulation studies

confirm that the GADIA algorithm outperforms the Iterative Water-filling, in the low SIR regime,

in terms of the achieved sum-rate, complexity and convergence rate.

Furthermore, the near-equilibrium dynamics of the GADIA algorithm has been studied em-

ploying the Glauber dynamics of the anti-ferromagnetic inhomogeneous long-range Potts model.

Using the near-equilibrium dynamics and methods from stochastic analysis, the robustness of the

algorithm with respect to time variations in the activity ofnetwork nodes is studied. It is shown

that given a high enough update rate, the network utility enjoys a finite steady-state variance in

the presence of time-varying node activities. Further simulation studies confirm the validity of

the stochastic modeling and the robustness of the algorithmin the foregoing time-varying setup.

APPENDIX A

TECHNICAL LEMMAS

Lemma A.1: LetUw(ND;L(d)) denote the network utility ofND nodes located on the sites

of theL(d) lattice inside theD dimensional cube of sideNd, when all nodes transmit in the

same frequency band. AsN → ∞, we have

1

ND
Uw(ND;L(d)) → −E(η)

P 2
0

dη
(93)

whereE(η) is the energy of the Bravais latticeL(d) in D dimensions.

Proof: We present the proof forD = 1 for brevity. The generalization toD dimensions is

straightforward. ForD = 1, L(d) corresponds to a uniform linear array on[0, (N − 1)d] (i.e.,

the integerZ1 lattice) [54]. Clearly, we have

1

N
Uw(N ; d) = −

1

N

P 2
0

dη

N
∑

i=1

N
∑

j=1
j 6=i

1

|i − j|η
(94)

> −
1

N

P 2
0

dη

N
∑

i=1

2

( ∞
∑

j=1

1

jη

)

= −Emin(η)
P 2

0

dη
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where

Emin(η) = 2ζ(η) := 2

∞
∑

i=1

1

iη
(95)

andζ(η) is the Riemann zeta function. We only need to show that for allǫ > 0, ∃M ∈ N such

that for all N > M , we have

1

N
Uw(N ; d) < −2ζ(η)

P 2
0

dη
+ ǫ (96)

First, note that we can write1/NUw(N ; d) as follows:

1

N
Uw(N ; d) = −

N
∑

i=1

(

P 2
0

dη

N
∑

j=1
j 6=i

1

|i − j|η

)

(97)

Let K > 0 be such that
∞

∑

i=1

1

(K + i)η
< ǫ

dη

4P 2
0

(98)

For N > 2(K + 1) we have

1

N
Uw(N ; d) = −

1

N

N
∑

i=1

(

P 2
0

dη

N
∑

j=1
j 6=i

1

|i − j|η

)

< −
1

N

N−K−1
∑

i=K+1

(

P 2
0

dη

N
∑

j=1
j 6=i

1

|i − j|η

)

. (99)

Clearly, for all i such thatK < i < N − K,

P 2
0

dη
(2ζ(η))−

P 2
0

dη

( N
∑

j=1
j 6=i

1

|i − j|η

)

=
P 2

0

dη

(

2
∞

∑

j=1

1

jη
−

N
∑

j=1
j 6=i

1

|i − j|η

)

(100)

< 2
P 2

0

dη

∞
∑

j=1

1

(K + j)η
<

ǫ

2
,

where we have used the definition ofK. Therefore, using Eq. (99) we obtain

1

N
Uw(N ; d) < −

1

N

P 2
0

dη

N−K−1
∑

i=K+1

2ζ(η) +

N−K−1
∑

i=K+1

ǫ

2
(101)

= −2ζ(η)
P 2

0

dη
+

N − 2(K + 1)

N

ǫ

2
+

2(K + 1)

N
2ζ(η)

P 2
0

dη

If we chooseM large enough so that4ζ(η)
P 2

0

dη
K+1
M

< ǫ/2, for all N > M we have

N − 2(K + 1)

N

ǫ

2
+ 4ζ(η)

P 2
0

dη

K + 1

N
< ǫ/2 + ǫ/2 (102)

= ǫ
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which proves the statement of the Lemma forD = 1.

Lemma A.2: LetGk(N) denote the set of nodes in the frequency bandbk corresponding to the

optimal frequency band assignment strategy, for an arbitrary spatial configuration ofN nodes in

D dimensions. LetNk(N) := |Gk(N)| and δ := mini,j dij > 0. Then, for eachk = 1, 2, · · · , r,

the sequence
{

Nk(N)}∞N=1 (103)

is unbounded.

Proof: Let S(N) = {Nk(N)|k = 1, · · · , r} and K(N) := inf S(N). Suppose that the

sequence{K(N)}∞N=1 is bounded. That is, there exist integersM , B and a specific spatial

configuration of the nodes for anyN , such thatK(N) 6 B for all N > M . Let K(N) correspond

to the frequency bandbk∗ (whereas dependence onN is implicit), i.e., |G∗
k(N)| = K(N).

Moreover, letU r
o (N) denote the optimal network utility corresponding to theN nodes, when

there arer frequency bands available to the network. We have

1

N
U r

o (N) = −
1

N

∑

k 6=k∗

∑

ci,cj∈Gk(N)

P 2
0

dη
ij

−
1

N

∑

ci,cj∈Gk∗(N)

P 2
0

dη
ij

(104)

Suppose that we fix the spatial distribution of the network and the frequency band assignments

of all the nodes, but assign arbitrary frequency bandssi to all ci ∈ Gk∗(N) such thatsi 6= k∗

for all i. Let U r−1(N) denote the network utility corresponding to the foregoing frequency band

assignment. We have:

1

N
U r−1(N) = −

1

N

∑

k 6=k∗

∑

ci,cj∈Gk(N)

P 2
0

dη
ij

−
1

N

∑

k 6=k∗

∑

ci∈Gk∗(N)

∑

cj∈Gk(N)

P 2
0

dη
ij

δ(si, k) (105)

Note that in the foregoing frequency band assignment there are onlyr−1 frequency bands used.

Therefore

U r−1(N) 6 U r−1
o (N), (106)

whereU r−1
o (N) denotes the optimal network utility corresponding to theN nodes, when there

are r − 1 frequency bands available to the network. We define

g(N) :=
1

K(N)

∑

ci,cj∈Gk∗(N)

P 2
0

dη
ij

(107)
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and

h(N) :=
1

K(N)

∑

k 6=k∗

∑

ci∈Gk∗(N)

∑

cj∈Gk(N)

P 2
0

dη
ij

δ(si, k). (108)

Hence,

1

N
U r

o (N) =
1

N
U r−1(N) −

K(N)

N

(

g(N) − h(N)
)

(109)

6
1

N
U r−1

o (N) −
K(N)

N

(

g(N) − h(N)
)

Clearly, bothg(N) andh(N) are upper bounded byEmin(η)P 2
0 /δη, whereδ := mini,j dij > 0

by hypothesis. Hence,

K(N)

N

∣

∣g(N) − h(N)
∣

∣ < 2Emin(η)
P 2

0

δη

(B

N

)

(110)

Thus, forǫ > 0 small enough, we can chooseN sufficiently large such that
∣

∣

∣

∣

1

N
U r

o (N) −
1

N
U r−1

o (N)

∣

∣

∣

∣

6 ǫ (111)

Eq. (111) implies that the optimal network utilities of a given network corresponding tor and

r−1 available frequency bands for a specific spatial configuration may become arbitrarily close.

This is clearly not possible: suppose that there arer−1 available frequency bands,b1, b2, · · · , br−1.

Given a fixed spatial configuration, let us consider the optimal frequency band assignment to the

nodesci, i = 1, 2, · · · , N . Since
∑

k Nk(N) = N , there exists ak0, 1 6 k0 6 r − 1 such that

Nk0(N) >
N

r − 1
· (112)

Suppose that the nodes inGk0(N) are allowed to choose an additional frequency band,br. Then,

according to Theorem 4.2, there exists a frequency band assignment for the nodes inGk0(N),

using the two frequency bandsbk0 andbr, for which the network utility of the nodes inGk0(N)

is at least half of when all are in frequency bandbk0 . Therefore, this new configuration, with

the additional frequency bandbr, increases the overall network utility by at least

1

2

(

1

N

∑

ci,cj∈Gk0
(N)

P 2
0

dη
ij

)

>
1

2

(

1

N

N

r − 1

1

(r − 1)
η
D

Emin(η)
P 2

0

dη

)

(113)

=
1

2(r − 1)
η
D

+1
Emin(η)

P 2
0

dη
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for sufficiently largeN , according to Lemma A.1 and the minimum energy property of ofthe

Bravais latticeL∗(d). Thus

1

N
U r

o (N) >
1

N
U r−1

o (N) +
1

2(r − 1)
η
D

+1
Emin(η)

P 2
0

dη
(114)

Eq. (114) implies that1
N

U r−1
o (N) and 1

N
U r

o (N) can not be arbitrarily close, for any spatial

configuration of the nodes, asN → ∞. This is clearly a contradiction, since Eq. (111) implies

that they can be arbitrarily close. Hence,{K(N)}∞N=1 is an unbounded sequence. SinceK(N) =

inf S(N) andS(N) is a finite set of sizer, we conclude that{Nk(N)}∞N=1 is an unbounded

sequence for allk = 1, 2, · · · , r.

APPENDIX B

DERIVATION OF EQUATION (74)

Let ℜ : {1, 2, · · · , r} 7→ {1, 2, · · · , r} be an operator with the following action:

ℜs := (s + 1) mod r (115)

for all s ∈ {1, 2, · · · , r}. We use the notationℜk andℜ−k defined byℜks = (s + k) mod r

andℜ−ks = (r + s − k) mod r, respectively. The Master equation (Eq. (73)) can be therefore

expressed as follows:

∂

∂t
P (t; s1, s2, · · · , sN) =

N
∑

i=1

λiwi(si)

r−1
∑

j=1

P (t; s1, s2, · · · ,ℜjsi, · · · , sN) (116)

−
N

∑

i=1

r−1
∑

j=1

λiwi(ℜ
jsi)P (t; s1, s2, · · · , sN).

for any configuration(s1, s2, · · · , sN). Let f(s1, s2, · · · , sN) be any scalar function on the state-

space. We define thetrace operator,Tr(·), as follows:

Tr
(

f(s1, s2, · · · , sN)
)

:=

r
∑

σ1=1

r
∑

σ2=1

· · ·

r
∑

σN=1

f(σ1, σ2, · · · , σN) (117)

Hence, the ensemble average of the functionf at time t can be written as follows:
〈

f(s1, s2, · · · , sN)
〉

:= Tr
(

f(s1, s2, · · · , sN)P (t; s1, s2, · · · , sN)
)

. (118)
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In order to obtain a differential equation for the time evolution of
〈

δ
(

sk, sl

)

〉

, we multiply

both sides of the Eq. (116) byδ
(

sk(t), sl(t)
)

and take the trace as follows:

Tr
( ∂

∂t

(

δ
(

sk, sl

)

P (t; s1, s2, · · · , sN)
))

(119)

= Tr

( N
∑

i=1

λiδ
(

sk, sl

)

wi(si)
r−1
∑

j=1

P (t; s1, s2, · · · ,ℜjsi, · · · , sN)

)

− Tr

( N
∑

i=1

r−1
∑

j=1

λiδ
(

sk, sl

)

wi(ℜ
jsi)P (t; s1, s2, · · · , sN)

)

.

Note that we have dropped the time dependence ofδ
(

sk(t), sl(t)
)

for notational convenience.

The expression on the left hand side can be identified withd
dt

〈

δ
(

sk, sl

)〉

. The terms on the

right-hand side of Eq. (119) can be written as

Tr

( N
∑

i=1
i6=k,l

r−1
∑

j=1

λiδ
(

sk, sl

)

wi(ℜ
−jsi)P (t; s1, s2, · · · , sN)

)

(120)

− Tr

( N
∑

i=1
i6=k,l

r−1
∑

j=1

λiδ
(

sk, sl

)

wi(ℜ
jsi)P (t; s1, s2, · · · , sN)

)

+ Tr

( r−1
∑

j=1

λkδ
(

ℜ−jsk, sl

)

wk(ℜ
−jsk)P (t; s1, s2, · · · , sN)

)

+ Tr

( r−1
∑

j=1

λlδ
(

sk,ℜ
−jsl

)

wl(ℜ
−jsl)P (t; s1, s2, · · · , sN)

)

− Tr

( r−1
∑

j=1

λkδ
(

sk, sl

)

wk(ℜ
jsk)P (t; s1, s2, · · · , sN)

)

− Tr

( r−1
∑

j=1

λlδ
(

sk, sl

)

wl(ℜ
jsl)P (t; s1, s2, · · · , sN)

)

The first two terms clearly cancel each other and the expression reduces to:

Tr

( r−1
∑

j=1

λkwk(ℜ
jsk)

{

δ
(

ℜjsk, sl

)

− δ
(

sk, sl

)

}

P (t; s1, s2, · · · , sN)

)

(121)

+ Tr

( r−1
∑

j=1

λlwl(ℜ
jsl)

{

δ
(

sk,ℜ
jsl

)

− δ
(

sk, sl

)

}

P (t; s1, s2, · · · , sN)

)
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It is easy to show that

r−1
∑

j=1

λkwk(ℜ
jsk)

{

δ
(

ℜjsk, sl

)

− δ
(

sk, sl

)

}

= λk

(

wk(sl) − δ
(

sk, sl

)

)

. (122)

To see this, note that forsk = sl the above summation becomes

−

r−1
∑

j=1

λkwk(ℜ
jsk)δ

(

sk, sl

)

= λk

(

wk(sl) − 1
)

(123)

and for ℜjsk = sl the summation simply becomesλkwk(ℜ
jsk) = λkwk(sl). Hence, we can

combine these two cases as in Eq. (122). Combining the above results, Eq. (119) takes the

following form:

d

dt

〈

δ
(

sk, sl

)

〉

= −(λk + λl)
〈

δ
(

sk, sl

)

〉

+
〈

λkwk(sl) + λlwl(sk)
〉

(124)

If we substitute

wk(sl) =
exp

(

− β
∑

j 6=k Jkjδ
(

sl, sj

)

)

∑

m exp
(

− β
∑

j 6=k Jkjδ
(

m, sj

)

) (125)

and

wl(sk) =
exp

(

− β
∑

j 6=l Jljδ
(

sk, sj

)

)

∑

m exp
(

− β
∑

j 6=l Jljδ
(

m, sj

)

) (126)

into Eq. (124), we get the expression given by Eq. (74), as claimed.
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