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Preface 
Machines powered by Artificial Intelligence (AI) increasingly mediate our social,          
cultural, economic, and political interactions. Understanding the behaviour of AI          
systems is essential to our ability to control their actions, reap their benefits, and              
minimize their harms. We argue this necessitates a broad scientific research           
agenda to study machine behaviour that incorporates but expands beyond the           
discipline of computer science and requires insights from across the sciences. Here            
we first outline a set of questions fundamental to this emerging field. We then              
explore the technical, legal, and institutional constraints facing the study of machine            
behaviour. 

Introduction 
In his landmark 1969 book, Sciences of the Artificial, 1 Nobel Laureate Herbert Simon wrote: 
“Natural science is knowledge about natural objects and phenomena. We ask whether there 
cannot also be ‘artificial’ science—knowledge about artificial objects and phenomena.” In line 
with Simon’s vision, we describe the emergence of a new interdisciplinary field of scientific 
study. This new field is concerned with the scientific study of intelligent machines, not as 
engineering artefacts, but as a new class of actors with particular behavioural patterns and 
ecology. This field overlaps with but is distinct from computer science and robotics. It treats 
machine behaviour empirically. This is akin to how ethology and behavioural ecology study 
animal behaviour by integrating physiology and biochemistry -- intrinsic properties -- with the 
study of ecology and evolution -- properties shaped by the environment. Animal and human 
behaviours cannot be fully understood without study of the contexts in which behaviours occur. 
Machine behaviour likewise cannot be fully understood without the integrated study of 
algorithms and the social environments in which algorithms operate. 
 
At present, the scientists who study the behaviours of these virtual and embodied artificial 
intelligence (AI) agents are predominantly the same scientists who have created the agents 
themselves (throughout we use the term “AI agents” liberally to refer to both complex and 
simple algorithms used to make decisions). As these  scientists create agents to solve particular 
tasks, they most often focus on ensuring the agents fulfill their intended function (though these 
respective fields are much broader than the specific examples listed here). For example, AI 
agents should meet a benchmark of accuracy in document classification, face recognition, or 
visual object detection. Autonomous cars must navigate successfully in a variety of weather 
conditions. Game playing agents must defeat a variety of human or machine opponents. And 
data mining agents must learn which individuals to target in advertising campaigns on social 
media. 
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These AI agents have the potential to augment human welfare and well-being in myriad ways. 
Indeed, that is typically the vision of their creators. But a broader consideration of the behavior 
of AI agents is now critical. AI agents will increasingly permeate our society and are already 
involved in everything from credit scoring to algorithmic trading, from local policing to parole 
decisions, from driving to online dating to drone warfare 2,3. Commentators and scholars from 
diverse fields, including but not limited to cognitive systems engineering, human computer 
interaction, human factors, science technology and society, and safety engineering, are raising 
the alarm about the broad, unintended consequences of AI agents that can exhibit behaviours 
and produce downstream societal effects -- both positive and negative -- unanticipated by their 
creators 4–7 . 
 
In tandem with this lack of predictability surrounding the consequences of AI, there is fear of 
potential loss of human oversight over intelligent machines 4 and of the potential harms 
associated with the increasing use of machines for tasks once performed directly by humans 8. 
At the same time, researchers describe the benefits that AI agents can offer society by 
supporting and augmenting human decision making 9,10. While discussions of these issues have 
led to many important insights in many separate fields of academic inquiry 11, with some 
highlighting safety challenges of autonomous systems 12 or others studying implications in 
fairness, accountability, and transparency 13, many questions remain. 
 
This review article frames and surveys the emerging interdisciplinary field of machine behaviour: 
the scientific study of behaviour exhibited by intelligent machines. Here we outline the key 
research themes, questions, and landmark research studies that exemplify the new field. We 
start by providing background on the study of machine behaviour and the necessarily 
interdisciplinary nature of this science. We then provide a framework for the conceptualization of 
studies of machine behaviour. We close with a call for the scientific study of machine and 
human-machine ecologies and discuss some of the technical, legal, and institutional barriers 
facing the field. 

Motivation for the study of machine behaviour 
There are three primary motivations for the new scientific discipline of machine behaviour. First, 
a variety of different algorithms permeate our society and play an ever-increasing role in our 
daily activities. Second, because of the complex properties of these algorithms and the 
environments in which they operate, some of their attributes and behaviours can be difficult or 
impossible to formalize analytically. Third, because of their ubiquity and complexity, predicting 
the impacts of intelligent algorithms on humanity -- whether positive or negative -- poses a 
substantial challenge. 

Ubiquity of algorithms 
The current prevalence of diverse algorithms in society is unprecedented 4 (see Fig. 1). News 
ranking algorithms and social media bots influence the information seen by citizens 14–18. Credit 
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scoring algorithms determine loan decisions 19–22. Online pricing algorithms shape the cost of 
products differentially across consumers 23–25. Algorithmic trading software transacts in financial 
markets at rapid speed 26–29. Algorithms shape the dispatch and spatial patterns of local policing 
30, and programs for algorithmic sentencing affect time served in the penal system 6. 
Autonomous cars traverse our cities, 31 while ride-sharing algorithms alter the travel patterns of 
conventional vehicles 32. Machines map our homes, responding to verbal commands 33 and 
performing regular household tasks 34. Algorithms shape romantic matches via online dating 
35,36. Machines are likely to increasingly substitute for humans in the raising of our young 37 and 
the care for our old 38 . And autonomous agents are increasingly likely to affect collective 
behaviours, from group-wide coordination to sharing 39. Furthermore, although the prospect of 
developing autonomous weapons is highly controversial, with many in the field voicing their 
opposition 5,40, if such weapons end up being deployed, then machines could determine who 
lives and who dies in armed conflict 41,42. 
 

 
Figure 1: Examples of questions that fall into the domain of machine behaviour.  
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Complexity and opacity of algorithms 
The extreme diversity of these AI systems, coupled with their ubiquity, would alone ensure that 
studying the behaviour of such systems would pose a formidable challenge, even if the 
individual algorithms themselves were relatively simple. The complexity of individual AI agents is 
currently high and rapidly increasing. Although the code for specifying architectures and training 
a model can be simple, the results can be very complex, oftentimes effectively resulting in “black 
boxes” 43. They are fed input and produce output, but the exact functional process for generating 
this output is hard to interpret even to the very scientists who generate the algorithms 
themselves 44, though some progress in interpretability is being made 45,46. Further, when 
systems learn from data, their failures are linked to imperfections in data or how data was 
collected, leading some to argue for adapted reporting mechanisms for datasets 47 and models 
48. The dimensionality and size of data add another layer of complexity to understanding 
machine behaviour 49.  
 
Compounding this challenge is the fact that much of the source code and model structure for 
the most frequently used algorithms in society are proprietary, as is the data on which these 
systems are trained. Industrial secrecy and legal intellectual property protection often surround 
source code and model structure. In many settings, the only factors publicly observable about 
industrial AI systems are their inputs and their outputs. 
 
Even when available, the source code or model structure of an AI agent can provide insufficient 
predictive power over its output. AI agents can also demonstrate novel behaviours via their 
interaction with the world and other agents that are impossible to predict with precision 50. Even 
when the analytical solutions are mathematically describable, they can be so lengthy and 
complex as to be indecipherable 51,52. Further, when the environment is changing, perhaps as a 
result of the algorithm itself, anticipating and analyzing behaviour is made much harder. 
 

Algorithms’ beneficial and detrimental impact on humanity 

The ubiquity of algorithms, coupled with their increasing complexity, tends to amplify the 
difficulty of estimating the effects of algorithms on human individuals and society. AI agents can 
shape human behaviours and societal outcomes in both intended and unintended ways. For 
example, some AI agents are designed to aid learning outcomes for children 53 while others are 
designed to assist aging seniors 38,54 . These AI systems may benefit their intended humans by 
nudging those humans into better learning or safer mobility behaviours. However, with the 
power to nudge human behaviours in positive or intended ways comes the risk that human 
behaviours may be nudged in costly or unintended ways -- children could be influenced to buy 
certain branded products and elders could be nudged to watch certain television programming.  
 
The way that such algorithmic influence on individual humans scales into society-wide impacts, 
both positive and negative, is of critical concern. As an example, the exposure of a small 
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number of individuals to political misinformation may have little effect on society as a whole. 
However, the effect of the insertion and propagation of such misinformation into social media 
may have more substantial societal consequences 55–57. Further, issues of algorithmic fairness 
or bias 58,59 have been already documented in diverse contexts, including computer vision 60, 
word embeddings 61,62, advertising 63, policing 64, criminal justice 6,65, and social services 66. To 
address these issues, practitioners will sometimes be forced to make value tradeoffs between 
competing and incompatible notions of bias 58,59 or between human versus machine biases. 
Additional questions regarding the impact of algorithms include: How are online dating 
algorithms altering the societal institution of marriage 35,36? Are there systemic effects of 
increasing interaction with intelligent algorithms on the stages and speed of human 
development 53? These questions become more complex in “hybrid systems” composed of 
many machines and humans interacting and manifesting collective behaviour 39,67. In order for 
society to have input into and oversight of the downstream consequences of AI, scholars of 
machine behaviour must provide insight into how these systems work and the benefits, costs, 
and tradeoffs presented by the ubiquitous use of AI in society. 

The interdisciplinary study of machine behaviour 
To study machine behaviour -- especially the behaviours of black box algorithms in real world 
settings -- we must integrate knowledge from across a host of scientific disciplines (see Fig. 2). 
This integration is currently in its nascent stages and has happened largely in an ad-hoc fashion 
in response to the growing need for understanding machine behaviour. Currently, the scientists 
who most commonly study the behaviour of machines are the computer scientists, roboticists, 
and engineers who create these machines in the first place. These scientists may be expert 
mathematicians and engineers but are typically not trained behaviourists. They rarely receive 
formal instruction on experimental methodology, population-based statistics and sampling 
paradigms, or observational causal inference, let alone neuroscience, collective behaviour, or 
social theory. Conversely, while behavioural scientists are more likely to possess training in 
these scientific methods, they are less likely to possess the expertise required to proficiently 
evaluate the underlying quality and appropriateness of AI techniques for a given problem 
domain, or to mathematically describe the properties of particular algorithms. 
 
Integrating scientific practices from across multiple fields is not easy.  Up to this point, the main 
focus of those who create AI systems has been on crafting, implementing, and optimizing 
intelligent systems to perform specialized tasks. Excellent progress has been made on  
benchmark tasks, from board games like Chess 68, Checkers 69, and Go 70,71 to card games like 
Poker 72, to computer games like those on the Atari platform 73, to artificial markets 74, to 
Robocup Soccer 75, as well as standardized evaluation data such as the ImageNet data for 
object recognition 76 and the Microsoft Common Objects in Context data for image captioning 
tasks 77. Success has also been achieved in speech recognition, language translation, and 
autonomous locomotion. These benchmarks couple with metrics to quantify performance on 
standardized tasks 78–81 and are used in service of improved performance, a proxy that enables 
AI builders to aim for better, faster, and more robust algorithms. 
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But methodologies aimed at maximized algorithmic performance are not optimal for conducting 
scientific observation of the properties and behaviours of AI agents. Rather than employing 
metrics in the service of optimization against benchmarks, scholars of machine behaviour are 
interested in a broader set of indicators, much as social scientists explore a wide range of 
human behaviours in the realm of social, political, or economic interaction 82. As such, scholars 
of machine behaviour spend considerable effort in defining new measures of micro and macro 
outcomes to enable answering broad questions. How might these algorithms behave in different 
environments? How might human interaction with these algorithms alter societal outcomes? 
Randomized experiments, observational inference, and population-based descriptive statistics -- 
methods employed heavily in the quantitative behavioural sciences -- must be central to the 
study of machine behaviour. Incorporating scholars from outside of the disciplines that 
traditionally produce intelligent machines can lend knowledge of important methodological tools, 
scientific approaches, alternative conceptual frameworks, and new perspectives on the 
economic, social, and political phenomena that machines will increasingly come to influence. 

 
Figure 2: The interdisciplinarity of machine behaviour. Machine behaviour lies at the 
intersection of the fields that design and engineer AI systems and the fields that traditionally 
employ the scientific method to study the behaviour of biological agents. The insights from 
machine behavioural studies provide new quantitative evidence that can help inform those fields 
that study the potential impacts of technology on social and technological systems. In turn, 
those fields can provide useful new engineering practices and new scientific questions to fields 
that examine machine behaviours. Finally, the scientific study of behaviour helps AI scholars 
make more precise statements about what AI systems can and cannot do. 
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Type of question and object of study 
Nikolaas Tinbergen, who won the 1973 Nobel Prize in Physiology or Medicine alongside Karl 
von Frisch and Konrad Lorenz for founding the field of Ethology, identified four complementary 
dimensions of analysis for explaining animal behaviour 83. These dimensions concern questions 
of a behaviour’s function, mechanism, development, and evolutionary history and provide an 
organizing framework for the study of animal and human behaviour. For example, this 
conceptualization distinguishes the study of how a young animal or human develops a 
behaviour, from the evolutionary trajectory that selected for such behaviour in the population. 
The goal of these distinctions is not division but rather integration. While it is not wrong to say 
that, for example, a bird’s song is explained by learning or by its specific evolutionary history, a 
complete understanding of the song will require both. 
 
Despite fundamental differences between machines and animals, the behavioural study of 
machines can benefit from a similar classification. Machines have mechanisms which produce 
behaviour, undergo development that integrates environmental information into behaviour, 
produce functional consequences that cause specific machines to become more or less 
common in specific environments, and embody evolutionary histories through which past 
environments and human decisions continue to influence machine behaviour. Scholars of 
computer science have already achieved substantial gains in understanding the mechanisms 
and development of AI systems, though many questions remain. Relatively less emphasis has 
been placed on the function and evolution of AI systems. We discuss these four topics in the 
next subsections and provide Table 1 as a summary 84. 
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Table 1: Tinbergen’s Type of Question and Object of Study modified for the study of 
machine behaviour. The four categories Tinbergen proposed for the study of animal behaviour 
can be adapted to the study of machine behaviour 83,84. Tinbergen’s framework proposes two 
types of question, how versus why, as well as two views of these questions, dynamic versus 
static. Each question can be examined at three scales of inquiry, individual machines, 
collectives of machines, and hybrid human-machine systems. 

Mechanism for generating behaviour 
The proximate causes of a machine’s behaviour have to do with how the behaviour is 
observationally triggered and generated in specific environments. For example, early algorithmic 
trading programs used simple rules to trigger buying and selling behaviour 85. More 
sophisticated agents may compute strategies based on adaptive heuristics or explicit 
maximization of expected utility 86. The behaviour of a reinforcement learning algorithm that 
plays Poker could be attributed to the particular way in which it represents the state space or 
evaluates the game tree 72, and so on.  
 
A mechanism depends upon both an algorithm and its environment. A more sophisticated 
agent, such as a driverless car, may exhibit particular driving behaviour -- e.g. lane switching, 
overtaking, signaling to pedestrians. These behaviours would be generated according to the 
algorithms that construct driving policies 87, but are also shaped fundamentally by features of the 
car’s perception and actuation system including the resolution and accuracy of its object 
detection and classification system and the responsiveness and accuracy of its steering, among 
other factors. With many of today’s AI systems being derived from machine learning (ML) 
methods applied to increasingly complex data, study of the mechanism behind a machine’s 
behaviour such as those mentioned above will require continued work on interpretability 
methods for ML 46,88,89. 

Development of behaviour 
In the study of animal or human behaviour, development refers to how an individual acquires a 
particular behaviour, for example through imitation or environmental conditioning. This is distinct 
from longer-term evolutionary changes. 
 
In the context of machines, we can ask how machines acquire (develop) a specific individual or 
collective behaviour. Behavioural development could be directly attributable to 
human-engineering or design choices. Architectural design choices made by the programmer 
(e.g. the value of a learning rate parameter, the acquisition of the representation of knowledge 
and state, or a particular wiring of a convolutional neural network) determine or influence the 
kinds of behaviours the algorithm exhibits. In a more complex AI system, such as a driverless 
car, the behaviour of the car develops, over time, from software development and changing 
hardware components that engineers incorporate into its overall architecture. Behaviours can 
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also change as a result of algorithmic upgrades pushed to the machine by its designers after 
deployment. 
 
A human engineer may also shape the behaviour of the machine by exposing it to particular 
training stimuli. For instance, many image and text classification algorithms are trained to 
optimize accuracy on a specific set of human-labeled datasets. The choice of dataset -- and 
those features it represents 60,61 -- can substantially influence the behaviour exhibited by the 
algorithm. 
 
Finally, a machine may acquire behaviours via its own experience. For instance, a 
reinforcement learning agent trained to maximize long-term profit can learn peculiar short-term 
trading strategies based on its own past actions and concomitant feedback from the market 90 . 
Likewise, product recommendation algorithms make recommendations based on an endless 
stream of choices made by customers, updating their recommendations accordingly. 

Function 
In the realm of animal behaviour, adaptive value describes how a behaviour contributes to an 
animal’s lifetime reproductive fitness. For example, a particular hunting behaviour may be more 
or less successful than another at prolonging the animal’s life and, relatedly, the number of 
mating opportunities, resulting offspring born, and the offsprings’ probable reproductive 
success. The focus on function helps to understand why some behavioural mechanisms spread 
and persist while others decline and vanish. Function depends critically upon fit to environment. 
 
In the case of machines, we may talk of how the behaviour fulfills a contemporaneous function 
for particular human stakeholders. The human environment creates selective forces that may 
make some machines more common. Behaviours that are successful (“fitness” enhancing) get 
copied by developers of other software and hardware or are sometimes engineered to 
propagate among the machines themselves. These dynamics are ultimately driven by the 
success of institutions -- corporations, hospitals, municipal governments, universities, etc. -- that 
build or utilize AI. The most obvious example is provided by algorithmic trading, in which 
successful automated trading strategies could be copied as their developers move from 
company to company, or are simply observed and reverse engineered by rivals.  
 
These forces can produce unanticipated effects. For example, objectives like maximizing 
engagement on a social media site may lead to so-called filter bubbles 91, which may increase 
political polarization or without careful moderation could facilitate the spread of fake news. Yet, 
websites that do not optimize for user engagement may not be as successful in comparison with 
ones that do, or may go out of business altogether. Likewise, in the absence of external 
regulation, autonomous cars that do not prioritize the safety of their own passengers may be 
less attractive to consumers, leading to fewer sales 31. Sometimes the function of machine 
behaviour is to cope with the behaviour of other machines. Adversarial attacks -- synthetic 
inputs that fool a system into producing a undesired output 44,92–94 -- on AI systems and the 
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subsequent responses of those who develop AI to these attacks 95 may produce complex 
predator-prey dynamics that are not easily understood by studying each machine in isolation. 
 
These examples highlight how incentives created by external institutions and economic forces 
can have indirect but significant effects on the behaviours exhibited by machines 96 . 
Understanding the interaction between these incentives and AI is relevant to the study of 
machine behaviour. These market dynamics would, in turn, interact with other processes to 
produce evolution among machines and algorithms. 

Evolution 
In the study of animal behaviour, phylogeny describes how a behaviour evolved. In addition to 
current function, behaviour is influenced by past selective pressures and previously evolved 
mechanisms. For example, the human hand evolved from the fin of a bony fish. Its current 
function is no longer for swimming, but its internal structure is explained by its evolutionary 
history. Non-selective forces, such as migration and drift, also play strong roles in explaining 
relationships among different forms of behaviour. 
 
In the case of machines, evolutionary history can also generate path dependence, explaining 
otherwise puzzling behaviour. At each step, aspects of the algorithms are reused in new 
contexts, both constraining future behaviour and making possible additional innovations. For 
example, early choices about microprocessor design continue to influence modern computing, 
and traditions in algorithm design—neural networks and Bayesian state-space models, for 
example—build in many assumptions and guide future innovations by making some new 
algorithms easier to access than others. As a result, some algorithms may attend to certain 
features and ignore others because those features were important in early successful 
applications. Some machine behaviour may spread because it is “evolvable”, easy to modify 
and robust to perturbations, similar to how some traits of animals may be common because they 
facilitate diversity and stability 97 . 
 
To be sure, machine behaviour evolves quite differently than animal behaviour. Most animal 
inheritance is simple—two parents, one transmission event. Algorithms are much more flexible, 
and they have a designer with an objective in the background. The human environment strongly 
influences how algorithms evolve by changing their inheritance system. AI replication behaviour 
may be facilitated through a culture of open source sharing of software, the details of network 
architecture, or underlying training datasets. For instance, companies that develop software for 
driverless cars may share enhanced open source libraries for object detection or path planning 
as well as the training data underlying these algorithms to enable safety-enhancing software to 
spread throughout the industry. It is possible for a single adaptive “mutation” in the behaviour of 
a particular driverless car to propagate instantly to millions of other cars through a software 
update. However, other institutions apply limits as well. For example, software patents may 
impose constraints on the copying of particular behavioural traits. And regulatory constraints -- 
like privacy protection laws -- can prevent machines from accessing, retaining, or otherwise 
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using particular information in their decision-making. These peculiarities highlight that machines 
may exhibit very different evolutionary trajectories as they are not bound by the mechanisms of 
organic evolution. 
 

Figure 3: Scale of inquiry in the machine behaviour ecosystem. AI systems represent the 
amalgamation of humans, data, and algorithms. Each of these domains influences the other in 
both well-understood and still unknown ways. Data, filtered through algorithms created by 
humans, impacts individual and collective machine behaviour. AI systems are trained on the 
data, in turn influencing how humans generate new data. AI systems collectively interact with 
and impact one another. Human interactions can be altered by the introduction of these AI 
systems. Studies of machine behaviour tend to occur at the individual, the collective, or the 
hybrid human-machine scale of inquiry. 

Scale of inquiry 
With the framework outlined above and in Table 1, we now catalog examples of machine 
behaviour at the three scales of inquiry: individual machines, collectives of machines, and 
groups of machines embedded in a social environment with groups of humans in “hybrid” or 
“heterogeneous” systems (see Fig. 3).39 Individual machine behaviour emphasises the study of 
the algorithm itself, collective machine behaviour emphasises the study of interactions between 
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machines, and hybrid human-machine behaviour emphasises the study of interactions between 
machines and humans. Here we can draw an analogy to the study of a particular species, the 
study of interactions amongst species members, and the interactions of the species with their 
broader environment. Analyses at any of these scales may address any or all of the questions in 
Table 1. 

Individual machine behaviour 
The study of individual machine behaviour focuses on specific intelligent machines by 
themselves. Often these studies focus on properties intrinsic to the individual machines, 
properties that are driven by their source code or design. The fields of machine learning and 
software engineering currently conduct the majority of these studies. There are two general 
approaches to the study of individual machine behaviour. The first focuses on profiling the set of 
behaviours of any specific machine agent using a within-machine approach, comparing the 
behaviour of a particular machine across different conditions. The second, between-machine, 
approach examines how a variety of individual machine agents behave in the same condition. 
 
A within-machine approach to the study of individual machine behaviours asks questions such 
as: Are there constants that characterize the within-machine behaviour of any particular AI 
across varied contexts? How does a particular AI’s behaviour progress over time in the same, or 
different, environments? Which environmental factors lead to the expression of particular 
behaviours by machines? 
 
For instance, an algorithm may only exhibit certain behaviours if trained on particular underlying 
data 98–100 (Development, Table 1). Does  an algorithm that scores probability of recidivism in 
parole decisions 6 behave in unexpected ways when presented with evaluation data that diverge 
substantially from its training data? Other studies related to the characterization of 
within-machine behaviour include the study of individual robotic recovery behaviours 101,102, the 
‘cognitive’ attributes of algorithms and the utility of employing techniques from psychology in the 
study of algorithmic behaviour 103, and the examination of bot-specific characteristics like those 
designed to ‘influence’ human users 104. 
 
The second approach to the study of individual machine behaviour examines the same 
behaviours as they vary between machines. For example, those interested in examining 
advertising behaviours of intelligent agents 63,105,106 may investigate a variety of advertising 
platforms (and underlying algorithms) and examine the between-machine effect of performing 
experiments with the same set of advertising inputs across platforms. The same approach could 
be adopted for investigations of dynamic pricing algorithms 23,24,32 across platforms. Other 
between-machine studies might look at the different behaviours employed by autonomous 
vehicles in their overtaking patterns or at the varied foraging behaviours exhibited by search and 
rescue drones 107. 
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Collective machine behaviour 
In contrast to individual machine behaviour, collective machine behaviour focuses on the 
interactive and system-wide behaviours of collections of machine agents. In some cases, the 
implications of individual machine behaviour may make little sense until the collective level is 
considered. Some investigations of these systems have been inspired by natural collectives, like 
swarms of insects, or mobile groups such as flocking birds or schooling fish. For example, 
animal groups are known to exhibit both emergent sensing of complex environmental features 
108 and effective consensus decision-making 109 . In both scenarios, groups exhibit an awareness 
of the environment that does not exist at the individual level. Fields like multi-agent systems and 
computational game theory provide useful examples of the study of this area of machine 
behaviour. 
 
Robots that employ simple algorithms for local interactions between bots can nevertheless 
produce interesting behaviour once aggregated into large collectives. For example, scholars 
have examined the swarm-like properties of micro-robots that combine into aggregations that 
resemble swarms found in systems of biological agents 110,111. Additional examples include the 
collective behaviours of algorithms both in the lab (in the Game of Life 112) as well as in the wild 
(as seen in Wikipedia editing bots 113). Still other examples include the emergence of novel 
algorithmic languages 114 between communicating intelligent machines as well as the dynamic 
properties of fully autonomous transportation systems. Ultimately, many interesting questions in 
this domain remain to be examined. 
 
The vast majority of work on collective animal behaviour and collective robotics has focused on 
how interactions among simple agents can create higher-order structures and properties. While 
important, this neglects that fact that many organisms, and increasingly also AI agents 75, are 
sophisticated entities whose behaviours and interactions may not be well-characterized by 
simplistic representations. Revealing what extra properties emerge when interacting entities are 
capable of sophisticated cognition remains a key challenge in the biological sciences and may 
have direct parallels in the study of machine behaviour. For example, like animals, machines 
may exhibit “social learning”. Such social learning need not be limited to machines learning from 
machines, but we may expect machines to learn from humans, and vice versa for humans to 
learn from the behaviour of machines. The feedback processes introduced may fundamentally 
alter the accumulation of knowledge, including across generations, directly impacting human 
and machine “culture”. 
 
In addition, human-made AI systems do not necessarily face the same constraints as do 
organisms, and collective assemblages of machines provide new capabilities, like instant global 
communication, that can lead to entirely new collective behavioural patterns. Studies in 
collective machine behaviour examine the properties of assemblages of machines as well as 
the unexpected properties that can emerge from these complex systems of interactions. 
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For example, some of the most interesting collective behaviour of algorithms has been observed 
in financial trading environments. These environments operate on tiny time scales, such that 
algorithmic traders can respond to events and each other ahead of any human trader 115. Under 
certain conditions, high-frequency capabilities can produce inefficiencies in financial markets 
26,115. In addition to the unprecedented response speed, the extensive use of machine learning, 
autonomous operation, and ability to deploy at scale are all reasons to believe that the collective 
behaviour of machine trading may be qualitatively different than that of human traders. Further, 
these financial algorithms and trading systems are necessarily trained on certain historic data 
sets and react to a limited variety of foreseen scenarios. How will they react to situations that 
are new and unforeseen in their design? Flash crashes are examples of clearly unintended 
consequences of (interacting) algorithms 116,117.  Might algorithms interact to create a larger 
market crisis? 

Hybrid human-machine behaviour  
Humans increasingly interact with machines 16. They mediate our social interactions,39 shape 
the news 14,17,55,56 and online information 15,118 we see, and form relationships with us that can 
alter our social systems. Because of their complexity, these hybrid human-machine systems 
pose one of the most technically difficult yet simultaneously most important areas of study for 
machine behaviour. 

Machines shape human behaviour 
One of the most obvious -- but nonetheless vital -- domains of machine behavioural study 
concerns the ways in which the introduction of intelligent machines into social systems can alter 
human beliefs and behaviours. As in the introduction of automation to industrial process 119, 
intelligent machines can create new social problems in the processes of improving existing 
problems. Do matching algorithms used for online dating alter the distributional outcomes of the 
dating process? Do news filtering algorithms alter the distribution of public opinion? Might small 
errors in algorithms or the data they employ compound to produce society-wide impacts? How 
do intelligent robots in our schools, hospitals 120, and care centers alter human development 121 
and quality of life 54 and affect outcomes for the disabled 122? 
 
Other questions in this domain relate to the potential for machines to alter the social fabric in 
more fundamental ways. To what extent and in what manners are governments using machine 
intelligence to alter the nature of democracy, political accountability and transparency, or civic 
participation? To what degree are intelligent machines influencing policing, surveillance, and 
warfare? How large an effect have bots had on the outcomes of elections 56? Can AI systems 
that aid in the formation of human social relationships enable collective action? 
 
Importantly, studies in this area also examine how humans perceive the use of machines as 
decision aids 7,123, human preferences for and against making use of algorithms 124, and the 
degree to which human-like machines produce or reduce discomfort in humans 39,125. An 
important question in this area includes how humans respond to the increasing coproduction of 
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economic goods and services in tandem with intelligent machines 126. Ultimately, understanding 
how human systems can be altered by the introduction of intelligent machines into our lives is a 
vital component of the study of machine behaviour. 

Humans shape machine behaviour 
While intelligent machines can alter human behaviour, humans also create, inform, and mold 
the behaviours of intelligent machines. We shape machine behaviours through the direct 
engineering of AI systems and through the training of these systems on both active human input 
and passive observations of human behaviours via the data that we create daily. The choice of 
which algorithms to use, what feedback to provide to those algorithms 2,127, and upon which data 
to train them are also, at present, human decisions, and can directly alter machine behaviours. 
An important component in the study of machine behaviour is understanding how these 
engineering processes alter the resulting behaviours of AI. Is the training data responsible for a 
particular machine behaviour? Is it the algorithm itself? Or is it some combination of both 
algorithm and data? The framework outlined in Table 1 implies that there will be complementary 
answers to the each of these questions. Examining how altering the parameters of the 
engineering process can alter the subsequent behaviours of intelligent machines as they 
interact with other machines and with humans in the wild is central to a holistic understanding of 
machine behaviour. 

Human-machine co-behaviour 
While it can be methodologically convenient to separate out studies into the ways that humans 
shape machines and vice versa, most AI systems function in domains where they co-exist with 
humans in complex hybrid systems 67,39,125,128. Questions of importance to the study of these 
systems include those that examine the behaviours that characterize human-machine 
interactions including cooperation, competition, and coordination. For example, how might 
human biases combine with AI to alter human emotions or beliefs 14,55,56,129,130 ? How might 
human tendencies couple with algorithms to facilitate the spread of information 55? How might 
traffic patterns be altered in streets populated by large numbers of both driverless and 
human-driven cars? How might trading patterns be altered by interactions between humans and 
algorithmic trading agents 29? And which factors can facilitate trust and cooperation between 
humans and machines 88,131? 
 
Another topic in this area relates to robotic and software-driven automation of human labor 132 . 
Here we see two different types of machine-human interaction. One is that machines can 
enhance a human’s efficiency, such as in robotic- and computer-aided surgery. Another is that 
machines can replace humans, in driverless transportation and package delivery. Will machines 
end up doing more of the replacing or the enhancing in the longer run? What human-machine 
co-behaviours will result? 
 
The above examples highlight that many of the questions relating to hybrid human-machine 
behaviours must necessarily examine the feedback loops between human influence on machine 
behaviour and machine influence on human behaviour simultaneously. Scholars have begun to 
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examine human-machine interactions in formal lab environments, observing that interactions 
with simple bots can increase human coordination 39 and that bots can cooperate directly with 
humans at levels that rival human-human cooperation 133. However, there remains an urgent 
need to further understand feedback loops in the wild, where humans are increasingly using 
algorithms to make decisions 134 and subsequently informing the training of the same algorithms 
via those decisions. Further, across all types of questions in the domain of machine behavioural 
ecology, there is a need for studies that examine longer-run dynamics of these hybrid systems 
53 with particular emphasis on the ways that human social interactions 135,136 may be modified by 
the introduction of intelligent machines 137. 

Discussion 
Furthering the study of machine behaviour is critical to maximizing the potential benefits of AI for 
society. The consequential choices that we make regarding the integration of AI agents into 
human lives must be made with some understanding of the eventual societal implications of 
these choices. To provide this understanding and anticipation, we need a new interdisciplinary 
field of scientific study: machine behaviour. 
 
For this field to succeed, there are a number of relevant considerations. First, studying machine 
behaviour does not imply that AI algorithms necessarily have independent agency nor does it 
imply algorithms should bear moral responsibility for their actions. If a dog bites a passerby, the 
dog’s owner is held responsible. Nonetheless, it is useful to study the behavioural patterns of 
animals to predict such aberrant behaviour. Machines operate within a larger socio-technical 
fabric, and their human stakeholders are ultimately responsible for any harms their deployment 
might cause. 
 
Second, some commentators might suggest that treating AI systems as agents occludes the 
focus on the underlying data that such AI systems are trained upon. Indeed, no behaviour is 
ever fully separable from the environmental data on which that agent is trained or developed; 
machine behaviour is no exception. However, it is just as critical to understand how machine 
behaviours vary with altered environmental inputs as it is to understand how biological agents’ 
behaviours vary depending upon the environments in which they exist. As such, scholars of 
machine behaviour should focus on characterizing agent behaviour across diverse 
environments, much as behavioural scientists desire to characterize political behaviours across 
differing demographic and institutional contexts. 
 
Third, machines exhibit behaviours fundamentally different from animals and humans, so we 
must avoid excessive anthropomorphism and zoomorphism. Even if borrowing existing 
behavioural scientific methods can prove useful for the study of machines, machines may 
exhibit forms of intelligence and behaviour that are qualitatively different, even alien, from those 
seen in biological agents. Further, AI scientists can dissect and modify AI systems more easily 
and more thoroughly than is the case for many living systems. Though parallels exist, the study 
of AI systems will necessarily differ from the study of living systems. 
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Fourth, the study of machine behaviour will require cross-disciplinary efforts 82,103 and will entail 
all of the challenges associated with such research 138,139. Addressing these challenges is vital 
140. Universities and governmental funding agencies can play an important role in the design of 
large scale, neutral, and trusted cross-disciplinary studies 141. 
 
Fifth, study of machine behaviour will often require experimental intervention to study 
human-machine interactions in real-world settings 142,143.These interventions could alter the 
overall behaviour of the system, possibly having adverse effects on normal users 144. Ethical 
considerations such as these need careful oversight and standardized frameworks. 
 
Finally, studying intelligent algorithmic or robotic systems can result in legal and ethical 
problems for researchers studying machine behaviour.  Reverse engineering algorithms may 
require violating the terms of service of some platforms, for example, in setting up fake personas 
or masking true identities. The creators or maintainers of the systems of interest could embroil 
researchers in legal challenges if the research damages their platforms’ reputations.  Moreover, 
it remains unclear whether violating terms of service may expose researchers to civil or criminal 
penalties (e.g., via the Computer Fraud and Abuse Act in the U.S.), which may further 
disincentivize this type of research 145. 
 
Understanding the behaviours and properties of AI agents -- and the impacts they might have 
on human systems -- is critical. Society can benefit tremendously from the new efficiencies and 
improved decision making that can come from these agents. At the same time, these benefits 
may falter without minimizing the potential pitfalls of the incorporation of AI agents into everyday 
human life. 
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