

Machine Behaviour

Citation

Rahwan, Iyad, Manuel Cebrian, Nick Obradovich, Josh Bongard, Jean-François Bonnefon, Cynthia Breazeal, Jacob W. Crandall, Nicholas A. Christakis, Iain D. Couzin, Matthew O. Jackson, Nicholas R. Jennings, Ece Kamar, Isabel M. Kloumann, Hugo Larochelle, David Lazer, Richard McElreath, Alan Mislove, David C. Parkes, Alex 'Sandy' Pentland, Margaret E. Roberts, Azim Shariff, Joshua B. Tenenbaum, and Michael Wellman. 2019. Machine Behaviour. Nature 568: 477–486.

Permanent link

http://nrs.harvard.edu/urn-3:HUL.InstRepos:42251131

Terms of Use

This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story

The Harvard community has made this article openly available. Please share how this access benefits you. <u>Submit a story</u>.

Accessibility

Machine behaviour

Iyad Rahwan,^{1,2,3,*,**} Manuel Cebrian,^{1,**} Nick Obradovich,^{1,**} Josh Bongard,⁴ Jean-François Bonnefon,⁵ Cynthia Breazeal,¹ Jacob W. Crandall,⁶ Nicholas A. Christakis,⁷ Iain D. Couzin,^{8,9} Matthew O. Jackson,^{10,11,12} Nicholas R. Jennings,¹³ Ece Kamar,¹⁴ Isabel M. Kloumann,¹⁵ Hugo Larochelle,¹⁶ David Lazer,^{17,18} Richard McElreath,^{19,20} Alan Mislove,²¹ David C. Parkes,²² Alex 'Sandy' Pentland,¹ Margaret E. Roberts,²³ Azim Shariff,²⁴ Joshua B. Tenenbaum,²⁵ Michael Wellman²⁶

¹ The Media Lab, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

² Institute for Data, Systems & Society, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

³ Center for Humans and Machines, Max Planck Institute for Human Development, Lentzeallee 94, 14195, Berlin, Germany

⁴ Department of Computer Science University of Vermont 205 Farrell Hall, Burlington, VT 05405, USA

⁵ Toulouse School of Economics (TSM-R), CNRS, Université Toulouse Capitole, Toulouse, France

⁶ Computer Science Department, Brigham Young University, 3361 TMCB, Provo UT, 84602, USA

⁷ Department of Sociology, Department of Statistics and Data Science, Department of Ecology and Evolutionary Biology, and Yale Institute for Network Science, Yale University, P.O. Box 208263, New Haven, CT, 06520-8263, USA

⁸ Department of Collective Behaviour, Max Planck Institute for Ornithology, 78464 Konstanz, Germany.

⁹ Department of Biology, University of Konstanz, 78464 Konstanz, Germany

¹⁰ Department of Economics, Stanford University, Stanford, CA 94305, USA

¹¹ Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada

¹² The Sante Fe Institute, Santa Fe, NM 87501, USA

¹³ Departments of Computing and Electrical and Electronic Engineering, Imperial College London, London SW7 2AZ, UK

¹⁴ Microsoft Research, One Microsoft Way, Redmond WA 98052, USA

¹⁵ Facebook AI, Facebook Inc., 770 Broadway, New York, NY 10003, USA

¹⁶ Google Brain, Montreal, Canada

¹⁷ Department of Political Science and College of Computer & Information Science, Northeastern University, Boston, MA 02115, USA

¹⁸ Institute for Quantitative Social Science, Harvard University, Cambridge MA 02138

¹⁹ Max Planck Institute for Evolutionary Anthropology, Leipzig, Germany

²⁰ Department of Anthropology, University of California, Davis, Davis, CA, USA

²¹ College of Computer & Information Science, Northeastern University, Boston, MA 02115, USA

²² School of Engineering and Applied Sciences, Harvard University, Cambridge, MA 02138, USA; Harvard Data Science Initiative, Harvard University, Cambridge, MA 02138, USA

²³ Department of Political Science, University of California, San Diego, Social Sciences

Building 301, 9500 Gilman Drive, #0521, La Jolla, CA 92093-0521, USA

²⁴ Department of Psychology, University of British Columbia, Vancouver, BC V6T 1Z4, Canada

²⁵ Department of Brain and Cognitive Sciences, Massachusetts Institute of Technology, Cambridge, MA 02139, USA

²⁶ Computer Science & Engineering, University of Michigan, Ann Arbor, MI 48109-2121 USA

- * Correspondence: irahwan@mit.edu;
- ** These authors contributed equally to the manuscript

Preface

Machines powered by Artificial Intelligence (AI) increasingly mediate our social, cultural, economic, and political interactions. Understanding the behaviour of AI systems is essential to our ability to control their actions, reap their benefits, and minimize their harms. We argue this necessitates a broad scientific research agenda to study machine behaviour that incorporates but expands beyond the discipline of computer science and requires insights from across the sciences. Here we first outline a set of questions fundamental to this emerging field. We then explore the technical, legal, and institutional constraints facing the study of machine behaviour.

Introduction

In his landmark 1969 book, *Sciences of the Artificial*, ¹ Nobel Laureate Herbert Simon wrote: *"Natural science is knowledge about natural objects and phenomena. We ask whether there cannot also be 'artificial' science—knowledge about artificial objects and phenomena."* In line with Simon's vision, we describe the emergence of a new interdisciplinary field of scientific study. This new field is concerned with the scientific study of intelligent machines, not as engineering artefacts, but as a new class of actors with particular behavioural patterns and ecology. This field overlaps with but is distinct from computer science and robotics. It treats machine behaviour empirically. This is akin to how ethology and behavioural ecology study animal behaviour by integrating physiology and biochemistry -- intrinsic properties -- with the study of ecology and evolution -- properties shaped by the environment. Animal and human behaviours cannot be fully understood without study of the contexts in which behaviours occur. Machine behaviour likewise cannot be fully understood without the integrated study of algorithms and the social environments in which algorithms operate.

At present, the scientists who study the behaviours of these virtual and embodied artificial intelligence (AI) agents are predominantly the same scientists who have created the agents themselves (throughout we use the term "AI agents" liberally to refer to both complex and simple algorithms used to make decisions). As these scientists create agents to solve particular tasks, they most often focus on ensuring the agents fulfill their intended function (though these respective fields are much broader than the specific examples listed here). For example, AI agents should meet a benchmark of accuracy in document classification, face recognition, or visual object detection. Autonomous cars must navigate successfully in a variety of weather conditions. Game playing agents must defeat a variety of human or machine opponents. And data mining agents must learn which individuals to target in advertising campaigns on social media.

These AI agents have the potential to augment human welfare and well-being in myriad ways. Indeed, that is typically the vision of their creators. But a broader consideration of the behavior of AI agents is now critical. AI agents will increasingly permeate our society and are already involved in everything from credit scoring to algorithmic trading, from local policing to parole decisions, from driving to online dating to drone warfare ^{2,3}. Commentators and scholars from diverse fields, including but not limited to cognitive systems engineering, human computer interaction, human factors, science technology and society, and safety engineering, are raising the alarm about the broad, unintended consequences of AI agents that can exhibit behaviours and produce downstream societal effects -- both positive and negative -- unanticipated by their creators ^{4–7}.

In tandem with this lack of predictability surrounding the consequences of AI, there is fear of potential loss of human oversight over intelligent machines ⁴ and of the potential harms associated with the increasing use of machines for tasks once performed directly by humans ⁸. At the same time, researchers describe the benefits that AI agents can offer society by supporting and augmenting human decision making ^{9,10}. While discussions of these issues have led to many important insights in many separate fields of academic inquiry ¹¹, with some highlighting safety challenges of autonomous systems ¹² or others studying implications in fairness, accountability, and transparency ¹³, many questions remain.

This review article frames and surveys the emerging interdisciplinary field of machine behaviour: the scientific study of behaviour exhibited by intelligent machines. Here we outline the key research themes, questions, and landmark research studies that exemplify the new field. We start by providing background on the study of machine behaviour and the necessarily interdisciplinary nature of this science. We then provide a framework for the conceptualization of studies of machine behaviour. We close with a call for the scientific study of machine and human-machine ecologies and discuss some of the technical, legal, and institutional barriers facing the field.

Motivation for the study of machine behaviour

There are three primary motivations for the new scientific discipline of machine behaviour. First, a variety of different algorithms permeate our society and play an ever-increasing role in our daily activities. Second, because of the complex properties of these algorithms and the environments in which they operate, some of their attributes and behaviours can be difficult or impossible to formalize analytically. Third, because of their ubiquity and complexity, predicting the impacts of intelligent algorithms on humanity -- whether positive or negative -- poses a substantial challenge.

Ubiquity of algorithms

The current prevalence of diverse algorithms in society is unprecedented ⁴ (see Fig. 1). News ranking algorithms and social media bots influence the information seen by citizens ^{14–18}. Credit

scoring algorithms determine loan decisions ^{19–22}. Online pricing algorithms shape the cost of products differentially across consumers ^{23–25}. Algorithmic trading software transacts in financial markets at rapid speed ^{26–29}. Algorithms shape the dispatch and spatial patterns of local policing ³⁰, and programs for algorithmic sentencing affect time served in the penal system ⁶. Autonomous cars traverse our cities, ³¹ while ride-sharing algorithms alter the travel patterns of conventional vehicles ³². Machines map our homes, responding to verbal commands ³³ and performing regular household tasks ³⁴. Algorithms shape romantic matches via online dating ^{35,36}. Machines are likely to increasingly substitute for humans in the raising of our young ³⁷ and the care for our old ³⁸. And autonomous agents are increasingly likely to affect collective behaviours, from group-wide coordination to sharing ³⁹. Furthermore, although the prospect of developing autonomous weapons is highly controversial, with many in the field voicing their opposition ^{5,40}, if such weapons end up being deployed, then machines could determine who lives and who dies in armed conflict ^{41,42}.

NEWS RANKING ALGORITHMS Does the algorithm create filter bubbles? Does the algorithm disproportionately censor content?

ALGORITHMIC JUSTICE

Does the algorithm discriminate against a racial group in granting parole? Does a predictive policing system increase the false conviction rate?

KINETICS

EMOCRAC

AUTONOMOUS VEHICLES

How aggressive is the car's overtaking? How does the car distribute risk between passengers & pedestrians?

AUTONOMOUS WEAPONS

Does the weapon respect necessity and proportionality in its use of force? Does the weapon distinguish between combatants and civilians?

ALGORITHMIC TRADING

Do algorithms manipulate markets? Does the algorithm's behaviour increase systemic risk of market crash?

ALGORITHMIC PRICING

Do competitors' algorithms collude to fix prices? Does the algorithm exhibit price discrimination?

Does the matching algorithm use facial features? Does the matching algorithm amplify or reduce homophily?

ONLINE DATING

CONVERSATIONAL ROBOTS

Does the robot promote products to children? Does the algorithm affect collective behaviours?

Figure 1: Examples of questions that fall into the domain of machine behaviour.

Complexity and opacity of algorithms

The extreme diversity of these AI systems, coupled with their ubiquity, would alone ensure that studying the behaviour of such systems would pose a formidable challenge, even if the individual algorithms themselves were relatively simple. The complexity of individual AI agents is currently high and rapidly increasing. Although the code for specifying architectures and training a model can be simple, the results can be very complex, oftentimes effectively resulting in "black boxes" ⁴³. They are fed input and produce output, but the exact functional process for generating this output is hard to interpret even to the very scientists who generate the algorithms themselves ⁴⁴, though some progress in interpretability is being made ^{45,46}. Further, when systems learn from data, their failures are linked to imperfections in data or how data was collected, leading some to argue for adapted reporting mechanisms for datasets ⁴⁷ and models ⁴⁸. The dimensionality and size of data add another layer of complexity to understanding machine behaviour ⁴⁹.

Compounding this challenge is the fact that much of the source code and model structure for the most frequently used algorithms in society are proprietary, as is the data on which these systems are trained. Industrial secrecy and legal intellectual property protection often surround source code and model structure. In many settings, the only factors publicly observable about industrial AI systems are their inputs and their outputs.

Even when available, the source code or model structure of an AI agent can provide insufficient predictive power over its output. AI agents can also demonstrate novel behaviours via their interaction with the world and other agents that are impossible to predict with precision ⁵⁰. Even when the analytical solutions are mathematically describable, they can be so lengthy and complex as to be indecipherable ^{51,52}. Further, when the environment is changing, perhaps as a result of the algorithm itself, anticipating and analyzing behaviour is made much harder.

Algorithms' beneficial and detrimental impact on humanity

The ubiquity of algorithms, coupled with their increasing complexity, tends to amplify the difficulty of estimating the effects of algorithms on human individuals and society. Al agents can shape human behaviours and societal outcomes in both intended and unintended ways. For example, some Al agents are designed to aid learning outcomes for children ⁵³ while others are designed to assist aging seniors ^{38,54}. These Al systems may benefit their intended humans by nudging those humans into better learning or safer mobility behaviours. However, with the power to nudge human behaviours in positive or intended ways comes the risk that human behaviours may be nudged in costly or unintended ways -- children could be influenced to buy certain branded products and elders could be nudged to watch certain television programming.

The way that such algorithmic influence on individual humans scales into society-wide impacts, both positive and negative, is of critical concern. As an example, the exposure of a small

number of individuals to political misinformation may have little effect on society as a whole. However, the effect of the insertion and propagation of such misinformation into social media may have more substantial societal consequences ^{55–67}. Further, issues of algorithmic fairness or bias ^{58,59} have been already documented in diverse contexts, including computer vision ⁶⁰, word embeddings ^{61,62}, advertising ⁶³, policing ⁶⁴, criminal justice ^{6,65}, and social services ⁶⁶. To address these issues, practitioners will sometimes be forced to make value tradeoffs between competing and incompatible notions of bias ^{58,59} or between human versus machine biases. Additional questions regarding the impact of algorithms include: How are online dating algorithms altering the societal institution of marriage ^{35,36}? Are there systemic effects of increasing interaction with intelligent algorithms on the stages and speed of human development ⁵³? These questions become more complex in "hybrid systems" composed of many machines and humans interacting and manifesting collective behaviour ^{39,67}. In order for society to have input into and oversight of the downstream consequences of AI, scholars of machine behaviour must provide insight into how these systems work and the benefits, costs, and tradeoffs presented by the ubiquitous use of AI in society.

The interdisciplinary study of machine behaviour

To study machine behaviour -- especially the behaviours of black box algorithms in real world settings -- we must integrate knowledge from across a host of scientific disciplines (see Fig. 2). This integration is currently in its nascent stages and has happened largely in an *ad-hoc* fashion in response to the growing need for understanding machine behaviour. Currently, the scientists who most commonly study the behaviour of machines are the computer scientists, roboticists, and engineers who create these machines in the first place. These scientists may be expert mathematicians and engineers but are typically not trained behaviourists. They rarely receive formal instruction on experimental methodology, population-based statistics and sampling paradigms, or observational causal inference, let alone neuroscience, collective behaviour, or social theory. Conversely, while behavioural scientists are more likely to possess training in these scientific methods, they are less likely to possess the expertise required to proficiently evaluate the underlying quality and appropriateness of AI techniques for a given problem domain, or to mathematically describe the properties of particular algorithms.

Integrating scientific practices from across multiple fields is not easy. Up to this point, the main focus of those who create AI systems has been on crafting, implementing, and optimizing intelligent systems to perform specialized tasks. Excellent progress has been made on benchmark tasks, from board games like Chess ⁶⁸, Checkers ⁶⁹, and Go ^{70,71} to card games like Poker ⁷², to computer games like those on the Atari platform ⁷³, to artificial markets ⁷⁴, to Robocup Soccer ⁷⁵, as well as standardized evaluation data such as the ImageNet data for object recognition ⁷⁶ and the Microsoft Common Objects in Context data for image captioning tasks ⁷⁷. Success has also been achieved in speech recognition, language translation, and autonomous locomotion. These benchmarks couple with metrics to quantify performance on standardized tasks ^{78–81} and are used in service of improved performance, a proxy that enables AI builders to aim for better, faster, and more robust algorithms.

But methodologies aimed at maximized algorithmic performance are not optimal for conducting scientific observation of the properties and behaviours of AI agents. Rather than employing metrics in the service of optimization against benchmarks, scholars of machine behaviour are interested in a broader set of indicators, much as social scientists explore a wide range of human behaviours in the realm of social, political, or economic interaction ⁸². As such, scholars of machine behaviour spend considerable effort in defining new measures of micro and macro outcomes to enable answering broad questions. How might these algorithms behave in different environments? How might human interaction with these algorithms alter societal outcomes? Randomized experiments, observational inference, and population-based descriptive statistics -- methods employed heavily in the quantitative behavioural sciences -- must be central to the study of machine behaviour. Incorporating scholars from outside of the disciplines that traditionally produce intelligent machines can lend knowledge of important methodological tools, scientific approaches, alternative conceptual frameworks, and new perspectives on the economic, social, and political phenomena that machines will increasingly come to influence.

Figure 2: **The interdisciplinarity of machine behaviour.** Machine behaviour lies at the intersection of the fields that design and engineer AI systems and the fields that traditionally employ the scientific method to study the behaviour of biological agents. The insights from machine behavioural studies provide new quantitative evidence that can help inform those fields that study the potential impacts of technology on social and technological systems. In turn, those fields can provide useful new engineering practices and new scientific questions to fields that examine machine behaviours. Finally, the scientific study of behaviour helps AI scholars make more precise statements about what AI systems can and cannot do.

Type of question and object of study

Nikolaas Tinbergen, who won the 1973 Nobel Prize in Physiology or Medicine alongside Karl von Frisch and Konrad Lorenz for founding the field of *Ethology*, identified four complementary dimensions of analysis for explaining animal behaviour ⁸³. These dimensions concern questions of a behaviour's function, mechanism, development, and evolutionary history and provide an organizing framework for the study of animal and human behaviour. For example, this conceptualization distinguishes the study of how a young animal or human develops a behaviour, from the evolutionary trajectory that selected for such behaviour in the population. The goal of these distinctions is not division but rather integration. While it is not wrong to say that, for example, a bird's song is explained by learning or by its specific evolutionary history, a complete understanding of the song will require both.

Despite fundamental differences between machines and animals, the behavioural study of machines can benefit from a similar classification. Machines have mechanisms which produce behaviour, undergo development that integrates environmental information into behaviour, produce functional consequences that cause specific machines to become more or less common in specific environments, and embody evolutionary histories through which past environments and human decisions continue to influence machine behaviour. Scholars of computer science have already achieved substantial gains in understanding the mechanisms and development of AI systems, though many questions remain. Relatively less emphasis has been placed on the function and evolution of AI systems. We discuss these four topics in the next subsections and provide Table 1 as a summary ⁸⁴.

Scale of I		Ruiny Hybrid Collective Individual Object of Study		
		Dynamic view Explanation of current form in terms of a historical sequence	Static view Explanation of the current behaviour of a machine	
Type of Question	Proximate view How a particular type of machine functions	Development (Ontogeny) Developmental explanations of how a type of machine acquires its behaviour, from deliberate engineering and supervised learning based on specific benchmarks, to online learning and reinforcement learning in a particular environment.	Mechanism (causation) Mechanistic explanations for what the behaviour is, and how it is constructed, including computational mechanisms or external stimuli that trigger it.	
	Ultimate (evolutionary) view <i>Why</i> a type of machine evolved the behaviours it has	Evolution (Phylogeny) Incentives and market forces that describe why the behaviour evolved and spread, whether by programming or learning, subject to computational and institutional constraints.	Function (Adaptive Value) The consequences of the machine's behaviour in the current environment that cause it to persist, either by appeal for particular stakeholders (users, companies etc.) or fit to some other aspect of the environment.	

Table 1: **Tinbergen's Type of Question and Object of Study modified for the study of machine behaviour.** The four categories Tinbergen proposed for the study of animal behaviour can be adapted to the study of machine behaviour ^{83,84}. Tinbergen's framework proposes two types of question, *how* versus *why*, as well as two views of these questions, *dynamic* versus *static*. Each question can be examined at three scales of inquiry, *individual* machines, *collectives* of machines, and *hybrid* human-machine systems.

Mechanism for generating behaviour

The proximate causes of a machine's behaviour have to do with *how* the behaviour is observationally triggered and generated in specific environments. For example, early algorithmic trading programs used simple rules to trigger buying and selling behaviour ⁸⁵. More sophisticated agents may compute strategies based on adaptive heuristics or explicit maximization of expected utility ⁸⁶. The behaviour of a reinforcement learning algorithm that plays Poker could be attributed to the particular way in which it represents the state space or evaluates the game tree ⁷², and so on.

A mechanism depends upon both an algorithm and its environment. A more sophisticated agent, such as a driverless car, may exhibit particular driving behaviour -- e.g. lane switching, overtaking, signaling to pedestrians. These behaviours would be generated according to the algorithms that construct driving policies ⁸⁷, but are also shaped fundamentally by features of the car's perception and actuation system including the resolution and accuracy of its object detection and classification system and the responsiveness and accuracy of its steering, among other factors. With many of today's AI systems being derived from machine learning (ML) methods applied to increasingly complex data, study of the mechanism behind a machine's behaviour such as those mentioned above will require continued work on interpretability methods for ML ^{46,88,89}.

Development of behaviour

In the study of animal or human behaviour, development refers to how an individual acquires a particular behaviour, for example through imitation or environmental conditioning. This is distinct from longer-term evolutionary changes.

In the context of machines, we can ask how machines acquire (develop) a specific individual or collective behaviour. Behavioural development could be directly attributable to human-engineering or design choices. Architectural design choices made by the programmer (e.g. the value of a learning rate parameter, the acquisition of the representation of knowledge and state, or a particular wiring of a convolutional neural network) determine or influence the kinds of behaviours the algorithm exhibits. In a more complex AI system, such as a driverless car, the behaviour of the car develops, over time, from software development and changing hardware components that engineers incorporate into its overall architecture. Behaviours can

also change as a result of algorithmic upgrades pushed to the machine by its designers after deployment.

A human engineer may also shape the behaviour of the machine by exposing it to particular training stimuli. For instance, many image and text classification algorithms are trained to optimize accuracy on a specific set of human-labeled datasets. The choice of dataset -- and those features it represents ^{60,61} -- can substantially influence the behaviour exhibited by the algorithm.

Finally, a machine may acquire behaviours via its own experience. For instance, a reinforcement learning agent trained to maximize long-term profit can learn peculiar short-term trading strategies based on its own past actions and concomitant feedback from the market ⁹⁰. Likewise, product recommendation algorithms make recommendations based on an endless stream of choices made by customers, updating their recommendations accordingly.

Function

In the realm of animal behaviour, adaptive value describes how a behaviour contributes to an animal's lifetime reproductive fitness. For example, a particular hunting behaviour may be more or less successful than another at prolonging the animal's life and, relatedly, the number of mating opportunities, resulting offspring born, and the offsprings' probable reproductive success. The focus on function helps to understand why some behavioural mechanisms spread and persist while others decline and vanish. Function depends critically upon fit to environment.

In the case of machines, we may talk of how the behaviour fulfills a contemporaneous function for particular human stakeholders. The human environment creates selective forces that may make some machines more common. Behaviours that are successful ("fitness" enhancing) get copied by developers of other software and hardware or are sometimes engineered to propagate among the machines themselves. These dynamics are ultimately driven by the success of institutions -- corporations, hospitals, municipal governments, universities, etc. -- that build or utilize AI. The most obvious example is provided by algorithmic trading, in which successful automated trading strategies could be copied as their developers move from company to company, or are simply observed and reverse engineered by rivals.

These forces can produce unanticipated effects. For example, objectives like maximizing engagement on a social media site may lead to so-called filter bubbles ⁹¹, which may increase political polarization or without careful moderation could facilitate the spread of fake news. Yet, websites that do not optimize for user engagement may not be as successful in comparison with ones that do, or may go out of business altogether. Likewise, in the absence of external regulation, autonomous cars that do not prioritize the safety of their own passengers may be less attractive to consumers, leading to fewer sales ³¹. Sometimes the function of machine behaviour is to cope with the behaviour of other machines. Adversarial attacks -- synthetic inputs that fool a system into producing a undesired output ^{44,92–94} -- on AI systems and the

subsequent responses of those who develop AI to these attacks ⁹⁵ may produce complex predator-prey dynamics that are not easily understood by studying each machine in isolation.

These examples highlight how incentives created by external institutions and economic forces can have indirect but significant effects on the behaviours exhibited by machines ⁹⁶. Understanding the interaction between these incentives and AI is relevant to the study of machine behaviour. These market dynamics would, in turn, interact with other processes to produce evolution among machines and algorithms.

Evolution

In the study of animal behaviour, phylogeny describes how a behaviour evolved. In addition to current function, behaviour is influenced by past selective pressures and previously evolved mechanisms. For example, the human hand evolved from the fin of a bony fish. Its current function is no longer for swimming, but its internal structure is explained by its evolutionary history. Non-selective forces, such as migration and drift, also play strong roles in explaining relationships among different forms of behaviour.

In the case of machines, evolutionary history can also generate path dependence, explaining otherwise puzzling behaviour. At each step, aspects of the algorithms are reused in new contexts, both constraining future behaviour and making possible additional innovations. For example, early choices about microprocessor design continue to influence modern computing, and traditions in algorithm design—neural networks and Bayesian state-space models, for example—build in many assumptions and guide future innovations by making some new algorithms easier to access than others. As a result, some algorithms may attend to certain features and ignore others because those features were important in early successful applications. Some machine behaviour may spread because it is "evolvable", easy to modify and robust to perturbations, similar to how some traits of animals may be common because they facilitate diversity and stability ⁹⁷.

To be sure, machine behaviour evolves quite differently than animal behaviour. Most animal inheritance is simple—two parents, one transmission event. Algorithms are much more flexible, and they have a designer with an objective in the background. The human environment strongly influences how algorithms evolve by changing their inheritance system. Al replication behaviour may be facilitated through a culture of open source sharing of software, the details of network architecture, or underlying training datasets. For instance, companies that develop software for driverless cars may share enhanced open source libraries for object detection or path planning as well as the training data underlying these algorithms to enable safety-enhancing software to spread throughout the industry. It is possible for a single adaptive "mutation" in the behaviour of a particular driverless car to propagate instantly to millions of other cars through a software update. However, other institutions apply limits as well. For example, software patents may impose constraints on the copying of particular behavioural traits. And regulatory constraints --- like privacy protection laws -- can prevent machines from accessing, retaining, or otherwise

using particular information in their decision-making. These peculiarities highlight that machines may exhibit very different evolutionary trajectories as they are not bound by the mechanisms of organic evolution.

Figure 3: **Scale of inquiry in the machine behaviour ecosystem.** Al systems represent the amalgamation of humans, data, and algorithms. Each of these domains influences the other in both well-understood and still unknown ways. Data, filtered through algorithms created by humans, impacts individual and collective machine behaviour. Al systems are trained on the data, in turn influencing how humans generate new data. Al systems collectively interact with and impact one another. Human interactions can be altered by the introduction of these Al systems. Studies of machine behaviour tend to occur at the individual, the collective, or the hybrid human-machine scale of inquiry.

Scale of inquiry

With the framework outlined above and in Table 1, we now catalog examples of machine behaviour at the three scales of inquiry: individual machines, collectives of machines, and groups of machines embedded in a social environment with groups of humans in "hybrid" or "heterogeneous" systems (see Fig. 3).³⁹ Individual machine behaviour emphasises the study of the algorithm itself, collective machine behaviour emphasises the study of interactions between

machines, and hybrid human-machine behaviour emphasises the study of interactions between machines and humans. Here we can draw an analogy to the study of a particular species, the study of interactions amongst species members, and the interactions of the species with their broader environment. Analyses at any of these scales may address any or all of the questions in Table 1.

Individual machine behaviour

The study of individual machine behaviour focuses on specific intelligent machines by themselves. Often these studies focus on properties intrinsic to the individual machines, properties that are driven by their source code or design. The fields of machine learning and software engineering currently conduct the majority of these studies. There are two general approaches to the study of individual machine behaviour. The first focuses on profiling the set of behaviours of any specific machine agent using a within-machine approach, comparing the behaviour of a particular machine across different conditions. The second, between-machine, approach examines how a variety of individual machine agents behave in the same condition.

A within-machine approach to the study of individual machine behaviours asks questions such as: Are there constants that characterize the within-machine behaviour of any particular AI across varied contexts? How does a particular AI's behaviour progress over time in the same, or different, environments? Which environmental factors lead to the expression of particular behaviours by machines?

For instance, an algorithm may only exhibit certain behaviours if trained on particular underlying data ^{98–100} (Development, Table 1). Does an algorithm that scores probability of recidivism in parole decisions ⁶ behave in unexpected ways when presented with evaluation data that diverge substantially from its training data? Other studies related to the characterization of within-machine behaviour include the study of individual robotic recovery behaviours ^{101,102}, the 'cognitive' attributes of algorithms and the utility of employing techniques from psychology in the study of algorithmic behaviour ¹⁰³, and the examination of bot-specific characteristics like those designed to 'influence' human users ¹⁰⁴.

The second approach to the study of individual machine behaviour examines the same behaviours as they vary between machines. For example, those interested in examining advertising behaviours of intelligent agents ^{63,105,106} may investigate a variety of advertising platforms (and underlying algorithms) and examine the between-machine effect of performing experiments with the same set of advertising inputs across platforms. The same approach could be adopted for investigations of dynamic pricing algorithms ^{23,24,32} across platforms. Other between-machine studies might look at the different behaviours employed by autonomous vehicles in their overtaking patterns or at the varied foraging behaviours exhibited by search and rescue drones ¹⁰⁷.

Collective machine behaviour

In contrast to individual machine behaviour, collective machine behaviour focuses on the interactive and system-wide behaviours of collections of machine agents. In some cases, the implications of individual machine behaviour may make little sense until the collective level is considered. Some investigations of these systems have been inspired by natural collectives, like swarms of insects, or mobile groups such as flocking birds or schooling fish. For example, animal groups are known to exhibit both emergent sensing of complex environmental features ¹⁰⁸ and effective consensus decision-making ¹⁰⁹. In both scenarios, groups exhibit an awareness of the environment that does not exist at the individual level. Fields like multi-agent systems and computational game theory provide useful examples of the study of this area of machine behaviour.

Robots that employ simple algorithms for local interactions between bots can nevertheless produce interesting behaviour once aggregated into large collectives. For example, scholars have examined the swarm-like properties of micro-robots that combine into aggregations that resemble swarms found in systems of biological agents ^{110,111}. Additional examples include the collective behaviours of algorithms both in the lab (in the Game of Life ¹¹²) as well as in the wild (as seen in Wikipedia editing bots ¹¹³). Still other examples include the emergence of novel algorithmic languages ¹¹⁴ between communicating intelligent machines as well as the dynamic properties of fully autonomous transportation systems. Ultimately, many interesting questions in this domain remain to be examined.

The vast majority of work on collective animal behaviour and collective robotics has focused on how interactions among simple agents can create higher-order structures and properties. While important, this neglects that fact that many organisms, and increasingly also AI agents ⁷⁵, are sophisticated entities whose behaviours and interactions may not be well-characterized by simplistic representations. Revealing what extra properties emerge when interacting entities are capable of sophisticated cognition remains a key challenge in the biological sciences and may have direct parallels in the study of machine behaviour. For example, like animals, machines may exhibit "social learning". Such social learning need not be limited to machines learning from machines, but we may expect machines to learn from humans, and *vice versa* for humans to learn from the behaviour of machines. The feedback processes introduced may fundamentally alter the accumulation of knowledge, including across generations, directly impacting human and machine "culture".

In addition, human-made AI systems do not necessarily face the same constraints as do organisms, and collective assemblages of machines provide new capabilities, like instant global communication, that can lead to entirely new collective behavioural patterns. Studies in collective machine behaviour examine the properties of assemblages of machines as well as the unexpected properties that can emerge from these complex systems of interactions.

For example, some of the most interesting collective behaviour of algorithms has been observed in financial trading environments. These environments operate on tiny time scales, such that algorithmic traders can respond to events and each other ahead of any human trader ¹¹⁵. Under certain conditions, high-frequency capabilities can produce inefficiencies in financial markets ^{26,115}. In addition to the unprecedented response speed, the extensive use of machine learning, autonomous operation, and ability to deploy at scale are all reasons to believe that the collective behaviour of machine trading may be qualitatively different than that of human traders. Further, these financial algorithms and trading systems are necessarily trained on certain historic data sets and react to a limited variety of foreseen scenarios. How will they react to situations that are new and unforeseen in their design? Flash crashes are examples of clearly unintended consequences of (interacting) algorithms ^{116,117}. Might algorithms interact to create a larger market crisis?

Hybrid human-machine behaviour

Humans increasingly interact with machines ¹⁶. They mediate our social interactions,³⁹ shape the news ^{14,17,55,56} and online information ^{15,118} we see, and form relationships with us that can alter our social systems. Because of their complexity, these hybrid human-machine systems pose one of the most technically difficult yet simultaneously most important areas of study for machine behaviour.

Machines shape human behaviour

One of the most obvious -- but nonetheless vital -- domains of machine behavioural study concerns the ways in which the introduction of intelligent machines into social systems can alter human beliefs and behaviours. As in the introduction of automation to industrial process ¹¹⁹, intelligent machines can create new social problems in the processes of improving existing problems. Do matching algorithms used for online dating alter the distributional outcomes of the dating process? Do news filtering algorithms alter the distribution of public opinion? Might small errors in algorithms or the data they employ compound to produce society-wide impacts? How do intelligent robots in our schools, hospitals ¹²⁰, and care centers alter human development ¹²¹ and quality of life ⁵⁴ and affect outcomes for the disabled ¹²²?

Other questions in this domain relate to the potential for machines to alter the social fabric in more fundamental ways. To what extent and in what manners are governments using machine intelligence to alter the nature of democracy, political accountability and transparency, or civic participation? To what degree are intelligent machines influencing policing, surveillance, and warfare? How large an effect have bots had on the outcomes of elections ⁵⁶? Can AI systems that aid in the formation of human social relationships enable collective action?

Importantly, studies in this area also examine how humans perceive the use of machines as decision aids ^{7,123}, human preferences for and against making use of algorithms ¹²⁴, and the degree to which human-like machines produce or reduce discomfort in humans ^{39,125}. An important question in this area includes how humans respond to the increasing coproduction of

economic goods and services in tandem with intelligent machines ¹²⁶. Ultimately, understanding how human systems can be altered by the introduction of intelligent machines into our lives is a vital component of the study of machine behaviour.

Humans shape machine behaviour

While intelligent machines can alter human behaviour, humans also create, inform, and mold the behaviours of intelligent machines. We shape machine behaviours through the direct engineering of AI systems and through the training of these systems on both active human input and passive observations of human behaviours via the data that we create daily. The choice of which algorithms to use, what feedback to provide to those algorithms ^{2,127}, and upon which data to train them are also, at present, human decisions, and can directly alter machine behaviours. An important component in the study of machine behaviour is understanding how these engineering processes alter the resulting behaviours of AI. Is the training data responsible for a particular machine behaviour? Is it the algorithm itself? Or is it some combination of both algorithm and data? The framework outlined in Table 1 implies that there will be complementary answers to the each of these questions. Examining how altering the parameters of the engineering process can alter the subsequent behaviours of intelligent machines as they interact with other machines and with humans in the wild is central to a holistic understanding of machine behaviour.

Human-machine co-behaviour

While it can be methodologically convenient to separate out studies into the ways that humans shape machines and vice versa, most AI systems function in domains where they co-exist with humans in complex hybrid systems ^{67,39,125,128}. Questions of importance to the study of these systems include those that examine the behaviours that characterize human-machine interactions including cooperation, competition, and coordination. For example, how might human biases combine with AI to alter human emotions or beliefs ^{14,55,56,129,130} ? How might human tendencies couple with algorithms to facilitate the spread of information ⁵⁵? How might traffic patterns be altered in streets populated by large numbers of both driverless and human-driven cars? How might trading patterns be altered by interactions between humans and algorithmic trading agents ²⁹? And which factors can facilitate trust and cooperation between humans and machines ^{88,131}?

Another topic in this area relates to robotic and software-driven automation of human labor ¹³². Here we see two different types of machine-human interaction. One is that machines can enhance a human's efficiency, such as in robotic- and computer-aided surgery. Another is that machines can replace humans, in driverless transportation and package delivery. Will machines end up doing more of the replacing or the enhancing in the longer run? What human-machine co-behaviours will result?

The above examples highlight that many of the questions relating to hybrid human-machine behaviours must necessarily examine the feedback loops between human influence on machine behaviour and machine influence on human behaviour simultaneously. Scholars have begun to

examine human-machine interactions in formal lab environments, observing that interactions with simple bots can increase human coordination ³⁹ and that bots can cooperate directly with humans at levels that rival human-human cooperation ¹³³. However, there remains an urgent need to further understand feedback loops in the wild, where humans are increasingly using algorithms to make decisions ¹³⁴ and subsequently informing the training of the same algorithms via those decisions. Further, across all types of questions in the domain of machine behavioural ecology, there is a need for studies that examine longer-run dynamics of these hybrid systems ⁵³ with particular emphasis on the ways that human social interactions ^{135,136} may be modified by the introduction of intelligent machines ¹³⁷.

Discussion

Furthering the study of machine behaviour is critical to maximizing the potential benefits of AI for society. The consequential choices that we make regarding the integration of AI agents into human lives must be made with some understanding of the eventual societal implications of these choices. To provide this understanding and anticipation, we need a new interdisciplinary field of scientific study: machine behaviour.

For this field to succeed, there are a number of relevant considerations. First, studying machine behaviour does not imply that AI algorithms necessarily have independent agency nor does it imply algorithms should bear moral responsibility for their actions. If a dog bites a passerby, the dog's owner is held responsible. Nonetheless, it is useful to study the behavioural patterns of animals to predict such aberrant behaviour. Machines operate within a larger socio-technical fabric, and their human stakeholders are ultimately responsible for any harms their deployment might cause.

Second, some commentators might suggest that treating AI systems as agents occludes the focus on the underlying data that such AI systems are trained upon. Indeed, no behaviour is ever fully separable from the environmental data on which that agent is trained or developed; machine behaviour is no exception. However, it is just as critical to understand how machine behaviours vary with altered environmental inputs as it is to understand how biological agents' behaviours vary depending upon the environments in which they exist. As such, scholars of machine behaviour should focus on characterizing agent behaviour across diverse environments, much as behavioural scientists desire to characterize political behaviours across differing demographic and institutional contexts.

Third, machines exhibit behaviours fundamentally different from animals and humans, so we must avoid excessive anthropomorphism and zoomorphism. Even if borrowing existing behavioural scientific methods can prove useful for the study of machines, machines may exhibit forms of intelligence and behaviour that are qualitatively different, even alien, from those seen in biological agents. Further, AI scientists can dissect and modify AI systems more easily and more thoroughly than is the case for many living systems. Though parallels exist, the study of AI systems will necessarily differ from the study of living systems.

Fourth, the study of machine behaviour will require cross-disciplinary efforts ^{82,103} and will entail all of the challenges associated with such research ^{138,139}. Addressing these challenges is vital ¹⁴⁰. Universities and governmental funding agencies can play an important role in the design of large scale, neutral, and trusted cross-disciplinary studies ¹⁴¹.

Fifth, study of machine behaviour will often require experimental intervention to study human-machine interactions in real-world settings ^{142,143}. These interventions could alter the overall behaviour of the system, possibly having adverse effects on normal users ¹⁴⁴. Ethical considerations such as these need careful oversight and standardized frameworks.

Finally, studying intelligent algorithmic or robotic systems can result in legal and ethical problems for researchers studying machine behaviour. Reverse engineering algorithms may require violating the terms of service of some platforms, for example, in setting up fake personas or masking true identities. The creators or maintainers of the systems of interest could embroil researchers in legal challenges if the research damages their platforms' reputations. Moreover, it remains unclear whether violating terms of service may expose researchers to civil or criminal penalties (e.g., via the Computer Fraud and Abuse Act in the U.S.), which may further disincentivize this type of research ¹⁴⁵.

Understanding the behaviours and properties of AI agents -- and the impacts they might have on human systems -- is critical. Society can benefit tremendously from the new efficiencies and improved decision making that can come from these agents. At the same time, these benefits may falter without minimizing the potential pitfalls of the incorporation of AI agents into everyday human life.

Acknowledgements

The authors gratefully acknowledge the following support: I.R. from the Ethics & Governance of Artificial Intelligence Fund; J.B. from NSF awards INSPIRE-1344227 and BIGDATA-1447634, DARPA's Lifelong Learning Machines program, ARO contract W911NF-16-1-0304; J.F.B from the ANR-Labex IAST; N.A.C a Pioneer Grant from the Robert Wood Johnson Foundation; I.D.C. from the NSF (IOS-1355061), the ONR (N00014-09-1-1074 and N00014-14-1-0635), the ARO (W911NG-11-1-0385 and W911NF14-1-0431), the Struktur- und Innovationsfunds für die Forschung of the State of Baden-Württemberg, and the Max Planck Society; D.L. from the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA) under contract 2017-17061500006; J.B.T from the Center for Brains, Minds and Machines (CBMM) under NSF STC award CCF – 1231216; M.W from the Future of Life Institute.

The views and conclusions contained herein are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of ODNI, IARPA, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for governmental purposes notwithstanding any copyright annotation therein.

References

1. Simon, H. A. The sciences of the artificial MIT Press. Cambridge, MA (1969).

"Natural science is knowledge about natural objects and phenomena. We ask whether there cannot also be 'artificial' science—knowledge about artificial objects and phenomena."

- Thomaz, A. L. & Breazeal, C. Teachable robots: Understanding human teaching behavior to build more effective robot learners. *Artif. Intell.* **172**, 716–737 (2008).
- 3. Stone, P. *et al.* Artificial intelligence and life in 2030. *One Hundred Year Study on Artificial Intelligence: Report of the 2015-2016 Study Panel* (2016).
- 4. O'Neil, C. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. (Broadway Books, 2016).

This book excellently articulates some of the risks posed by the uncritical use of algorithms in society and provides motivation for the study of machine behavior.

- Hawking, S., Musk, E., Wozniak, S. & Others. Autonomous weapons: an open letter from AI & robotics researchers. Future of Life Institute. (2015).
- Dressel, J. & Farid, H. The accuracy, fairness, and limits of predicting recidivism. *Sci Adv* 4, eaao5580 (2018).
- Binns, R. *et al.* 'It's Reducing a Human Being to a Percentage': Perceptions of Justice in Algorithmic Decisions. in *Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems* 377:1–377:14 (ACM, 2018). doi:10.1145/3173574.3173951
- Hudson, L., Owens, C. S. & Flannes, M. Drone Warfare: Blowback from the New American Way of War. *Middle East Policy* 18, 122–132 (2011).
- 9. Noise: How to Overcome the High, Hidden Cost of Inconsistent Decision Making. *Harvard Business Review* (2016). Available at: https://hbr.org/2016/10/noise. (Accessed: 10th

September 2018)

- 10. Kleinberg, J., Lakkaraju, H., Leskovec, J., Ludwig, J. & Mullainathan, S. HUMAN DECISIONS AND MACHINE PREDICTIONS. *Q. J. Econ.* **133**, 237 (2018).
- 11. Crawford, K. *et al.* The AI Now report: The social and economic implications of artificial intelligence technologies in the near-term. in *AI Now public symposium, hosted by the White House and New York University's Information Law Institute, July 7th* (2016).
- 12. Amodei, D. et al. Concrete Problems in Al Safety. arXiv [cs.Al] (2016).
- Conference on Fairness, Accountability, and Transparency. FAT* (2018). Available at: https://fatconference.org/. (Accessed: 18th July 2018)
- Bakshy, E., Messing, S. & Adamic, L. A. Exposure to ideologically diverse news and opinion on Facebook. *Science* 348, 1130–1132 (2015).
- Bessi, A. & Ferrara, E. Social Bots Distort the 2016 US Presidential Election Online Discussion. (2016).
- Ferrara, E., Varol, O., Davis, C., Menczer, F. & Flammini, A. The Rise of Social Bots. *Commun. ACM* 59, 96–104 (2016).
- 17. Lazer, D. The rise of the social algorithm. Science 348, 1090–1091 (2015).
- Tufekci, Z. Engineering the public: Big data, surveillance and computational politics. *First Monday* **19**, (2014).
- Lee, T.-S. & Chen, I.-F. A two-stage hybrid credit scoring model using artificial neural networks and multivariate adaptive regression splines. *Expert Syst. Appl.* 28, 743–752 (2005).
- Roszbach, K. Bank Lending Policy, Credit Scoring, and the Survival of Loans. *Rev. Econ. Stat.* 86, 946–958 (2004).
- 21. Huang, C.-L., Chen, M.-C. & Wang, C.-J. Credit scoring with a data mining approach based

on support vector machines. Expert Syst. Appl. 33, 847-856 (2007).

- 22. Tsai, C.-F. & Wu, J.-W. Using neural network ensembles for bankruptcy prediction and credit scoring. *Expert Syst. Appl.* **34**, 2639–2649 (2008).
- Chen, L. & Wilson, C. Observing Algorithmic Marketplaces In-the-wild. SIGecom Exch. 15, 34–39 (2017).
- Chen, L., Mislove, A. & Wilson, C. An Empirical Analysis of Algorithmic Pricing on Amazon Marketplace. in *Proceedings of the 25th International Conference on World Wide Web* 1339–1349 (International World Wide Web Conferences Steering Committee, 2016). doi:10.1145/2872427.2883089
- 25. Hannák, A. *et al.* Bias in Online Freelance Marketplaces: Evidence from TaskRabbit and Fiverr. in *CSCW* 1914–1933 (2017).
- Cartlidge, J., Szostek, C., De Luca, M. & Cliff, D. Too Fast Too Furious-Faster Financial-market Trading Agents Can Give Less Efficient Markets. in *ICAART (2)* 126–135 (2012).
- Kearns, M., Kulesza, A. & Nevmyvaka, Y. Empirical Limitations on High-Frequency Trading Profitability. *The Journal of Trading* 5, 50–62 (2010).
- Wellman, M. P. & Rajan, U. Ethical Issues for Autonomous Trading Agents. *Minds Mach.* 609–624 (2017).
- 29. Farmer, J. D. & Skouras, S. An ecological perspective on the future of computer trading. *Quant. Finance* **13**, 325–346 (2013).
- Perry, W., McInnis, B., Price, C., Smith, S. & Hollywood, J. *Predictive Policing: The Role of Crime Forecasting in Law Enforcement Operations*. (RAND Corporation, 2013). doi:10.7249/RR233
- 31. Bonnefon, J.-F., Shariff, A. & Rahwan, I. The social dilemma of autonomous vehicles.

Science 352, 1573–1576 (2016).

- Kooti, F. *et al.* Analyzing Uber's Ride-sharing Economy. in *Proceedings of the 26th International Conference on World Wide Web Companion* 574–582 (International World Wide Web Conferences Steering Committee, 2017). doi:10.1145/3041021.3054194
- Xiaohua Zeng, Fapojuwo, A. O. & Davies, R. J. Design and performance evaluation of voice activated wireless home devices. *IEEE Trans. Consum. Electron.* 52, 983–989 (2006).
- 34. Hendriks, B., Meerbeek, B., Boess, S., Pauws, S. & Sonneveld, M. Robot Vacuum Cleaner Personality and Behavior. *International Journal of Social Robotics* **3**, 187–195 (2011).
- Hitsch, G. J., Hortaçsu, A. & Ariely, D. Matching and Sorting in Online Dating. *Am. Econ. Rev.* 100, 130–163 (2010).
- Finkel, E. J., Eastwick, P. W., Karney, B. R., Reis, H. T. & Sprecher, S. Online Dating: A Critical Analysis From the Perspective of Psychological Science. *Psychol. Sci. Public Interest* 13, 3–66 (2012).
- Park, H. W., Rosenberg-Kima, R., Rosenberg, M., Gordon, G. & Breazeal, C. Growing Growth Mindset with a Social Robot Peer. in *Proceedings of the 2017 ACM/IEEE International Conference on Human-Robot Interaction* 137–145 (ACM, 2017). doi:10.1145/2909824.3020213
- Bemelmans, R., Gelderblom, G. J., Jonker, P. & de Witte, L. Socially assistive robots in elderly care: a systematic review into effects and effectiveness. *J. Am. Med. Dir. Assoc.* 13, 114–120.e1 (2012).
- Shirado, H. & Christakis, N. A. Locally noisy autonomous agents improve global human coordination in network experiments. *Nature* 545, 370–374 (2017).

This study provides an example of a human-machine hybrid study and finds that simple

algorithms injected into human gameplay can improve coordination outcomes among humans.

- 40. Pichai, S. Al at Google: Our principles. *Google Blog* (2018). Available at: https://blog.google/topics/ai/ai-principles/. (Accessed: 18th June 2018)
- Roff, H. M. The Strategic Robot Problem: Lethal Autonomous Weapons in War. *Journal of Military Ethics* 13, 211–227 (2014).
- 42. Krishnan, A. *Killer robots: legality and ethicality of autonomous weapons*. (Routledge, 2016).
- 43. Voosen, P. The Al detectives. Science 357, 22–27 (2017).
- 44. Szegedy, C. et al. Intriguing properties of neural networks. arXiv [cs.CV] (2013).
- 45. Zhang, Q.-S. & Zhu, S.-C. Visual interpretability for deep learning: a survey. *Frontiers of Information Technology & Electronic Engineering* **19**, 27–39 (2018).
- Doshi-Velez, F. & Kim, B. Towards a rigorous science of interpretable machine learning. (2017).
- 47. Gebru, T. et al. Datasheets for Datasets. arXiv [cs.DB] (2018).
- 48. Mitchell, M. et al. Model Cards for Model Reporting. arXiv [cs.LG] (2018).
- 49. Lakkaraju, H., Kamar, E., Caruana, R. & Horvitz, E. Identifying Unknown Unknowns in the Open World: Representations and Policies for Guided Exploration. in *AAAI* **1**, 2 (2017).
- 50. Johnson, N. *et al.* Abrupt rise of new machine ecology beyond human response time. *Sci. Rep.* **3**, 2627 (2013).
- Appel, K., Haken, W. & Koch, J. Every planar map is four colorable. Part II: Reducibility. *Illinois J. Math.* **21**, 491–567 (1977).
- Appel, K. & Haken, W. Every planar map is four colorable. Part I: Discharging. *Illinois J. Math.* 21, 429–490 (1977).

- Westlund, J. M. K., Park, H. W., Williams, R. & Breazeal, C. Measuring young children's long-term relationships with social robots. in *Proceedings of the 17th ACM Conference on Interaction Design and Children* 207–218 (ACM, 2018). doi:10.1145/3202185.3202732
- Lorenz, T., Weiss, A. & Hirche, S. Synchrony and Reciprocity: Key Mechanisms for Social Companion Robots in Therapy and Care. *International Journal of Social Robotics* 8, 125–143 (2016).
- Vosoughi, S., Roy, D. & Aral, S. The spread of true and false news online. *Science* 359, 1146–1151 (2018).

This study examines the complex hybrid ecology of bots and humans on Twitter and finds that humans spread false information at higher rates than do bots.

- 56. Lazer, D. M. J. et al. The science of fake news. Science 359, 1094–1096 (2018).
- 57. Roberts, M. E. *Censored: Distraction and Diversion Inside China's Great Firewall*. (Princeton University Press, 2018).
- Corbett-Davies, S., Pierson, E., Feller, A., Goel, S. & Huq, A. Algorithmic Decision Making and the Cost of Fairness. in *Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining* 797–806 (ACM, 2017). doi:10.1145/3097983.3098095
- 59. Kleinberg, J., Mullainathan, S. & Raghavan, M. Inherent Trade-Offs in the Fair Determination of Risk Scores. *arXiv* [*cs.LG*] (2016).
- Buolamwini, J. & Gebru, T. Gender Shades: Intersectional Accuracy Disparities in Commercial Gender Classification. in *Proceedings of the 1st Conference on Fairness, Accountability and Transparency* (eds. Friedler, S. A. & Wilson, C.) **81**, 77–91 (PMLR, 2018).
- 61. Bolukbasi, T., Chang, K.-W., Zou, J. Y., Saligrama, V. & Kalai, A. T. Man is to computer

programmer as woman is to homemaker? debiasing word embeddings. in *Advances in Neural Information Processing Systems* 4349–4357 (2016).

- 62. Caliskan, A., Bryson, J. J. & Narayanan, A. Semantics derived automatically from language corpora contain human-like biases. *Science* **356**, 183–186 (2017).
- 63. Sweeney, L. Discrimination in Online Ad Delivery. Queueing Syst. 11, 10:10–10:29 (2013).
- Ensign, D., Friedler, S. A., Neville, S., Scheidegger, C. & Venkatasubramanian, S.
 Runaway Feedback Loops in Predictive Policing. *arXiv [cs.CY]* (2017).
- 65. Angwin, J., Larson, J., Mattu, S. & Kirchner, L. Machine bias. ProPublica. (2016).
- Chouldechova, A., Benavides-Prado, D., Fialko, O. & Vaithianathan, R. A case study of algorithm-assisted decision making in child maltreatment hotline screening decisions. in *Proceedings of the 1st Conference on Fairness, Accountability and Transparency* (eds. Friedler, S. A. & Wilson, C.) 81, 134–148 (PMLR, 2018).
- 67. Jennings, N. R. et al. Human-agent Collectives. Commun. ACM 57, 80-88 (2014).
- 68. Campbell, M., Hoane, A. J. & Hsu, F.-H. Deep Blue. Artif. Intell. 134, 57-83 (2002).
- 69. Schaeffer, J. et al. Checkers is solved. Science 317, 1518–1522 (2007).
- Silver, D. *et al.* Mastering the game of Go with deep neural networks and tree search.
 Nature 529, 484–489 (2016).
- Silver, D. *et al.* Mastering the game of Go without human knowledge. *Nature* 550, 354–359 (2017).
- Bowling, M., Burch, N., Johanson, M. & Tammelin, O. Heads-up limit hold'em poker is solved. *Science* 347, 145–149 (2015).
- Bellemare, M. G., Naddaf, Y., Veness, J. & Bowling, M. The Arcade Learning Environment: An Evaluation Platform for General Agents. *1* 47, 253–279 (2013).
- 74. Wellman, M. P. et al. Designing the market game for a trading agent competition. IEEE

Internet Comput. 5, 43–51 (2001).

- Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I. & Osawa, E. RoboCup: The Robot World Cup Initiative. in *Proceedings of the First International Conference on Autonomous Agents* 340–347 (ACM, 1997). doi:10.1145/267658.267738
- Russakovsky, O. *et al.* ImageNet Large Scale Visual Recognition Challenge. *Int. J. Comput. Vis.* **115**, 211–252 (2015).
- Lin, T.-Y. *et al.* Microsoft COCO: Common Objects in Context. in *Computer Vision ECCV 2014* (eds. Fleet, D., Pajdla, T., Schiele, B. & Tuytelaars, T.) 8693, 740–755 (Springer International Publishing, 2014).
- Davis, J. & Goadrich, M. The relationship between Precision-Recall and ROC curves. in *Proceedings of the 23rd international conference on Machine learning* 233–240 (ACM, 2006). doi:10.1145/1143844.1143874
- van de Sande, K. E. A., Gevers, T. & Snoek, C. G. M. Evaluating color descriptors for object and scene recognition. *IEEE Trans. Pattern Anal. Mach. Intell.* 32, 1582–1596 (2010).
- Papineni, K., Roukos, S., Ward, T. & Zhu, W.-J. BLEU: A Method for Automatic Evaluation of Machine Translation. in *Proceedings of the 40th Annual Meeting on Association for Computational Linguistics* 311–318 (Association for Computational Linguistics, 2002). doi:10.3115/1073083.1073135
- Zhou, Z., Zhang, W. & Wang, J. Inception Score, Label Smoothing, Gradient Vanishing and -log(D(x)) Alternative. *arXiv* [*cs.LG*] (2017).
- 82. Epstein, Z. et al. Closing the Al Knowledge Gap. arXiv [cs.CY] (2018).
- 83. Tinbergen, N. On aims and methods of ethology. *Ethology* **20**, 410–433 (1963).
- 84. Nesse, R. M. Tinbergen's four questions, organized: a response to Bateson and Laland.

Trends Ecol. Evol. 28, 681–682 (2013).

- Das, R., Hanson, J. E., Kephart, J. O. & Tesauro, G. Agent-human interactions in the continuous double auction. in *International joint conference on artificial intelligence* **17**, 1169–1178 (Lawrence Erlbaum Associates Ltd, 2001).
- Deng, Y., Bao, F., Kong, Y., Ren, Z. & Dai, Q. Deep Direct Reinforcement Learning for Financial Signal Representation and Trading. *IEEE Trans Neural Netw Learn Syst* 28, 653–664 (2017).
- Galceran, E., Cunningham, A. G., Eustice, R. M. & Olson, E. Multipolicy decision-making for autonomous driving via changepoint-based behavior prediction: Theory and experiment. *Auton. Robots* 41, 1367–1382 (2017).
- Ribeiro, M. T., Singh, S. & Guestrin, C. Why should i trust you?: Explaining the predictions of any classifier. in *Proceedings of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining* 1135–1144 (ACM, 2016).
- 89. Smilkov, D., Thorat, N., Kim, B., Viégas, F. & Wattenberg, M. SmoothGrad: removing noise by adding noise. *arXiv* [*cs.LG*] (2017).
- Nevmyvaka, Y., Feng, Y. & Kearns, M. Reinforcement Learning for Optimized Trade Execution. in *Proceedings of the 23rd International Conference on Machine Learning* 673–680 (ACM, 2006). doi:10.1145/1143844.1143929
- Nguyen, T. T., Hui, P.-M., Harper, F. M., Terveen, L. & Konstan, J. A. Exploring the Filter Bubble: The Effect of Using Recommender Systems on Content Diversity. in *Proceedings* of the 23rd International Conference on World Wide Web 677–686 (ACM, 2014). doi:10.1145/2566486.2568012
- 92. Dalvi, N., Domingos, P., Mausam, Sanghai, S. & Verma, D. Adversarial Classification. in *Proceedings of the Tenth ACM SIGKDD International Conference on Knowledge Discovery*

and Data Mining 99–108 (ACM, 2004). doi:10.1145/1014052.1014066

- Globerson, A. & Roweis, S. Nightmare at Test Time: Robust Learning by Feature Deletion. in *Proceedings of the 23rd International Conference on Machine Learning* 353–360 (ACM, 2006). doi:10.1145/1143844.1143889
- 94. Biggio, B. *et al.* Evasion Attacks against Machine Learning at Test Time. in *Machine Learning and Knowledge Discovery in Databases* 387–402 (Springer Berlin Heidelberg, 2013). doi:10.1007/978-3-642-40994-3_25
- 95. Tramèr, F. *et al.* Ensemble Adversarial Training: Attacks and Defenses. *arXiv* [*stat.ML*] (2017).
- Parkes, D. C. & Wellman, M. P. Economic reasoning and artificial intelligence. *Science* 349, 267–272 (2015).
- 97. Wagner, A. *Robustness and Evolvability in Living Systems*. (Princeton University Press, 2013).
- Edwards, H. & Storkey, A. Censoring Representations with an Adversary. *arXiv* [cs.LG] (2015).
- 99. Zemel, R., Wu, Y., Swersky, K., Pitassi, T. & Dwork, C. Learning Fair Representations. in *International Conference on Machine Learning* 325–333 (2013).
- 100.Feldman, M., Friedler, S. A., Moeller, J., Scheidegger, C. & Venkatasubramanian, S.
 Certifying and Removing Disparate Impact. in *Proceedings of the 21th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining* 259–268 (ACM, 2015).
 doi:10.1145/2783258.2783311
- 101.Cully, A., Clune, J., Tarapore, D. & Mouret, J.-B. Robots that can adapt like animals. *Nature* **521**, 503–507 (2015).

This study characterizes a robot driven by an adaptive algorithm that mimics animalian

adaptation and behavior.

- 102.Bongard, J., Zykov, V. & Lipson, H. Resilient machines through continuous self-modeling. *Science* **314**, 1118–1121 (2006).
- 103.Leibo, J. Z. *et al.* Psychlab: A Psychology Laboratory for Deep Reinforcement Learning Agents. *arXiv [cs.Al]* (2018).

This study represents an excellent example of using behavioral tools from the life sciences in the study of machine behaviors.

104.Subrahmanian, V. S. et al. The DARPA Twitter Bot Challenge. arXiv [cs.Sl] (2016).

- 105.Carrascosa, J. M., Mikians, J., Cuevas, R., Erramilli, V. & Laoutaris, N. I Always Feel Like Somebody's Watching Me: Measuring Online Behavioural Advertising. in *Proceedings of the 11th ACM Conference on Emerging Networking Experiments and Technologies* 13:1–13:13 (ACM, 2015). doi:10.1145/2716281.2836098
- 106.Datta, A., Tschantz, M. C. & Datta, A. Automated Experiments on Ad Privacy Settings. *Proceedings on Privacy Enhancing Technologies* **2015**, 65 (2015).
- 107.Giusti, A. *et al.* A machine learning approach to visual perception of forest trails for mobile robots. *IEEE Robotics and Automation Letters* **1**, 661–667 (2016).
- 108.Berdahl, A., Torney, C. J., Ioannou, C. C., Faria, J. J. & Couzin, I. D. Emergent sensing of complex environments by mobile animal groups. *Science* **339**, 574–576 (2013).
- 109.Couzin, I. D. *et al.* Uninformed individuals promote democratic consensus in animal groups. *Science* **334**, 1578–1580 (2011).
- 110.Rubenstein, M., Cornejo, A. & Nagpal, R. Robotics. Programmable self-assembly in a thousand-robot swarm. *Science* 345, 795–799 (2014).
- 111.Kernbach, S., Thenius, R., Kernbach, O. & Schmickl, T. Re-embodiment of Honeybee Aggregation Behavior in an Artificial Micro-Robotic System. *Adapt. Behav.* **17**, 237–259

(2009).

- 112.Bak, P., Chen, K. & Creutz, M. Self-organized criticality in the 'Game of Life". *Nature* **342**, 780 (1989).
- 113.Tsvetkova, M., García-Gavilanes, R., Floridi, L. & Yasseri, T. Even good bots fight: The case of Wikipedia. *PLoS One* **12**, e0171774 (2017).
- 114.Lazaridou, A., Peysakhovich, A. & Baroni, M. Multi-Agent Cooperation and the Emergence of (Natural) Language. *arXiv* [cs.CL] (2016).
- 115.Budish, E., Cramton, P. & Shim, J. The High-Frequency Trading Arms Race: Frequent Batch Auctions as a Market Design Response. *Q. J. Econ.* **130**, 1547–1621 (2015).
- 116.Kirilenko, A. A. & Lo, A. W. Moore's Law versus Murphy's Law: Algorithmic Trading and Its Discontents. *J. Econ. Perspect.* **27**, 51–72 (2013).
- 117.Menkveld, A. J. The Economics of High-Frequency Trading: Taking Stock. *Annu. Rev. Financ. Econ.* **8**, 1–24 (2016).
- 118.Mønsted, B., Sapieżyński, P., Ferrara, E. & Lehmann, S. Evidence of complex contagion of information in social media: An experiment using Twitter bots. *PLoS One* **12**, e0184148 (2017).

This study presents an experimental intervention on Twitter using bots and provides evidence that information diffusion is most accurately described by complex contagion. 119.Bainbridge, L. Ironies of automation. *Automatica* **19**, 775–779 (1983).

120.Jeong, S., Breazeal, C., Logan, D. & Weinstock, P. Huggable: The Impact of Embodiment on Promoting Socio-emotional Interactions for Young Pediatric Inpatients. in *Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems* 495:1–495:13 (ACM, 2018). doi:10.1145/3173574.3174069

121.Westlund, K. et al. Flat vs. Expressive Storytelling: Young Children's Learning and

Retention of a Social Robot's Narrative. *Front. Hum. Neurosci.* **11**, 295 (2017).

- 122.Salisbury, E., Kamar, E. & Morris, M. R. Toward Scalable Social Alt Text: Conversational Crowdsourcing as a Tool for Refining Vision-to-Language Technology for the Blind. (2017).
- 123.Awad, E. et al. The Moral Machine experiment. Nature 563, 59–64 (2018).
- 124.Dietvorst, B. J., Simmons, J. P. & Massey, C. Algorithm aversion: people erroneously avoid algorithms after seeing them err. *J. Exp. Psychol. Gen.* **144**, 114–126 (2015).
- 125.Gray, K. & Wegner, D. M. Feeling robots and human zombies: mind perception and the uncanny valley. *Cognition* **125**, 125–130 (2012).
- 126.Brynjolfsson, E. & Mitchell, T. What can machine learning do? Workforce implications. *Science* **358**, 1530–1534 (2017).
- 127.Christiano, P. F. et al. Deep Reinforcement Learning from Human Preferences. in Advances in Neural Information Processing Systems 30 (eds. Guyon, I. et al.) 4299–4307 (Curran Associates, Inc., 2017).
- 128.Tsvetkova, M. *et al.* Understanding Human-Machine Networks: A Cross-Disciplinary Survey. *ACM Comput. Surv.* **50**, 12:1–12:35 (2017).
- 129.Hilbert, M., Ahmed, S., Cho, J., Liu, B. & Luu, J. Communicating with Algorithms: A Transfer Entropy Analysis of Emotions-based Escapes from Online Echo Chambers.
 Commun. Methods Meas. 1–16 (2018). doi:10.1080/19312458.2018.1479843
- 130.Kramer, A. D. I., Guillory, J. E. & Hancock, J. T. Experimental evidence of massive-scale emotional contagion through social networks. *Proceedings of the National Academy of Sciences* 201320040 (2014).
- 131.Kamar, E., Hacker, S. & Horvitz, E. Combining Human and Machine Intelligence in Large-scale Crowdsourcing. in *Proceedings of the 11th International Conference on Autonomous Agents and Multiagent Systems - Volume 1* 467–474 (International

Foundation for Autonomous Agents and Multiagent Systems, 2012).

132.Jackson, M. *The Human Network: How Your Social Position Determines Your Power, Beliefs, and Behaviors.* (Knopf Doubleday Publishing Group, 2019).

133. Crandall, J. W. et al. Cooperating with machines. Nat. Commun. 9, 233 (2018).

This study examines algorithmic cooperation with humans and provides an example of methods that can be used to study the behavior of human-machine hybrid systems.

134.Wang, D., Khosla, A., Gargeya, R., Irshad, H. & Beck, A. H. Deep Learning for Identifying Metastatic Breast Cancer. *arXiv* [*q-bio.QM*] (2016).

135.Pentland, A. Social Physics: How Social Networks Can Make Us Smarter. (Penguin, 2015).

- 136.Lazer, D. *et al.* Life in the network: the coming age of computational social science. *Science*323, 721 (2009).
- 137.Aharony, N., Pan, W., Ip, C., Khayal, I. & Pentland, A. Social fMRI: Investigating and shaping social mechanisms in the real world. *Pervasive Mob. Comput.* **7**, 643–659 (2011).

138.Ledford, H. How to solve the world's biggest problems. *Nature* **525**, 308–311 (2015).

- 139.Bromham, L., Dinnage, R. & Hua, X. Interdisciplinary research has consistently lower funding success. *Nature* **534**, 684–687 (2016).
- 140.Kleinberg, J. & Oren, S. Mechanisms for (mis)allocating scientific credit. in *Proceedings of the forty-third annual ACM symposium on Theory of computing* 529–538 (ACM, 2011).
 doi:10.1145/1993636.1993707
- 141.Kannel, W. B. & McGee, D. L. Diabetes and cardiovascular disease. The Framingham study. *JAMA* **241**, 2035–2038 (1979).
- 142.Krafft, P. M., Macy, M. & Pentland, A. 'sandy'. Bots As Virtual Confederates: Design and Ethics. in *Proceedings of the 2017 ACM Conference on Computer Supported Cooperative Work and Social Computing* 183–190 (ACM, 2017). doi:10.1145/2998181.2998354

- 143.Meyer, M. N. Two cheers for corporate experimentation: The A/B illusion and the virtues of data-driven innovation. *J. on Telecomm. & High Tech. L.* **13**, 273 (2015).
- 144.Xing, X. *et al.* Take This Personally: Pollution Attacks on Personalized Services. in *USENIX Security Symposium* 671–686 (2013).
- 145.Patel, K. Testing the Limits of the First Amendment: How a CFAA Prohibition on Online Antidiscrimination Testing Infringes on Protected Speech Activity. (2017). doi:10.2139/ssrn.3046847