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Abstract

Currently, most flavor development is performed by chemists who experimentally iterate
many times to find flavors that best fit specified requirements. In this study, three potential
algorithms for automating and accelerating this process are examined and implemented,
and the results are analyzed. The apriori algorithm, which generates probabilistic associ-
ation rules, fails because it only predicts the coexistence of high-frequency features. The
generative adversarial network (GAN) fails because the generator only exploits a small part
of the solution space. However, the variational autoencoder (VAE) successfully recovers
purposely omitted features 95.6% of the time, making it the most promising algorithm.
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1 Introduction

1.1 Motivation and Impact

Currently, large food manufacturers hire teams of flavor scientists to optimize the flavors
that are used in commercial food products [1], [2]. These scientists use a slow, laborious
process of trial and error to determine the combination of chemicals that best represents
a desired flavor [3]. At a very high level, this project aims to automate and accelerate
the process of flavor development using software. The accomplishment of this high level
goal will occur when humans taking a "flavor Turing test" can no longer distinguish sets
of human generated flavors from sets of machine generated flavors. The author strongly
believes that the future of computation lies in the automation of laborious tasks that hu-
mans currently perform, thereby freeing humans to engage in only the most meaningful,
creative, or emotionally taxing activities for which machines are poor or inadequate sub-
stitutes. An algorithm for flavor development would represent a small but significant step
toward this ideal.

In addition to food manufacturers seeking to replace slow and expensive human la-
bor with fast and cheap machines, other potential customers for such an algorithm include
chemical companies developing new metal alloys or synthetic material blends [4], pharma-
ceutical companies discovering and developing new drug compounds [5], and any other
entities that currently develop combinations of things for given purposes.

1.2 Background

A recently formed startup called Analytical Flavor Systems seeks to take flavor preferences
that users submit through an app and send those preferences to food manufacturers seek-
ing to develop new flavors and refine existing flavors [6]. The service differs from the
goal of this project in that the app seeks primarily to build a data pipeline for flavor de-
velopment, while this project seeks to take existing data and automate flavor development
itself. More relevantly (but in a different field), scientists have automated parts of the
metal alloy development process, thereby creating a more rapid, repeatable cyclical work-
flow for discovery and trial of new steel substitutes [4]. In this workflow, experimental
data and theoretical results are fed into machine learning models, which generate predic-
tions that guide experimental searches, which in turn produce experimental data that can
be fed back into the models. This workflow, despite being fast, still involves significant
experimental iteration because of the initial discrepancies between the machine learning
predictions and experimental results, which makes this paradigm an unsuitable method
for the end-to-end automation that we are trying to achieve in this project.

What also makes the aforementioned algorithm unsuitable for this project is that it
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is discriminative; in other words, it takes a set of features and gives it a label. In order
for our flavor development algorithm to take a label and return a novel set of features,
we need to use a generative model. (Note here that the adjective “novel” refers to a
new combination of features, not the use of new features in combinations.) Recently, a
variety of generative models have shown promise in the artificial, automatic generation
of objects like images and audio from a given label (e.g. generating a picture of a cat
or a meow sound from merely inputting the word “cat”) [7]. More relevantly to our
project, generative models have also generated novel chemical structures (representing
a combination of features) from a sparse set of desired properties (which can be viewed
as a multi-element “label”), and these novel structures have shown significant promise in
achieving the desired properties based on theoretical analyses [8]. These recent findings
suggest that some kind of generative model could produce reasonably accurate suggestions
of new feature combinations for new labels.

Given a set of possible ingredients, the space of all possible flavors that can be de-
rived using subsets of those ingredients has been shown to be combinatorial [9], which
means that performing a brute-force search of the entire space is NP-hard [10]. Beyond
developing flavors from scratch, it is also beneficial to understand this space so that it can
be exploited for the purpose of adjusting and perfecting flavor compositions. The need
to make the search space more tractable and the desire to exploit the space in a mean-
ingful way motivate us to examine three specific generative algorithms for assistance. In
particular, the apriori algorithm, the variational autoencoder (VAE), and the generative
adversarial network (GAN), satisfy both criteria and are the candidate algorithms that we
will adapt, develop, and test in this project.

1.2.1 Apriori Algorithm

The apriori algorithm is the least mathematically sophisticated of these algorithms and
requires the least computation time and power. It is by far the oldest algorithm (first pub-
lished in [11] in 1994, compared to 2013 for VAEs and 2014 for GANs), but it warrants
investigation because of its simplicity and its relevance to this project. A cursory analysis
suggests the apriori algorithm is a promising candidate because it analyzes the frequencies
at which different items appear in a set of transactions T (each transaction consists of a
set of items) and formulates association rules based on those transactions. An association
rule A → B consists of an antecedent A and a consequent B, each of which is a subset of
all items that occur in T . Associated with each association rule are two measures called
support and confidence. The support of A → B is defined as the percentage of transac-
tions in T that contain both the items in A and the items in B and can be represented
probabilistically over the entire sample space as P (A ∩ B). The confidence of A → B is
defined as the percentage of transactions in T containing the items in A that also contain
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the items in B. The confidence can be represented probabilistically over the entire sample
space as P (B | A). The thresholds for acceptable values of the support and confidence are
set by the implementer of the apriori algorithm.

In this project, the “transactions” for the apriori algorithm are given combinations of
features, the items are the presence or absence of features, and the association rules specify
which sets of features occur frequently in the presence of other sets of features.

The apriori algorithm satisfies all of the criteria that we set for potential candidates for
this project. Because it produces suggestions in the form of a consequent, it is generative,
and it provides a direct way to navigate and exploit the feature space. Furthermore, its use
of probabilistic methods to determine association rules constitutes an effective method of
narrowing the size of the search space.

The apriori algorithm has been proven to be effective in a variety of different appli-
cations, ranging from intrusion detection in cybersecurity [12] to computational biology
[13]. The earliest, most classic, and most successful application of the apriori algorithm
is market basket analysis, in which supermarkets compute association rules to determine
which products customers are most likely to buy together, thereby facilitating marketing
decisions such as promotional pricing and product placements [14].

1.2.2 Variational Autoencoder (VAE)

Variational autoencoders (VAEs) [15] are a stronger generative model for this project be-
cause of their ability to more closely “mold” to specific sets of features. Whereas the apriori
algorithm strictly relies on the frequencies (i.e. proportions) of different items in different
transactions, VAEs use neural networks to more accurately account for the relationships
between features and labels. A generalized diagram of the architecture of a VAE is shown
in Figure 1.1.

Figure 1.1: [16] Variational autoencoder architecture
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The first component of a VAE is its encoder qθ(z|x), which is a neural network trained
to have weights and biases θ that map a particular combination of features x to a lower-
dimensional latent representation z (i.e. a vector that provides a more compact repre-
sentation of a combination of features by using fewer elements than the original vector x
denoting the presence/absence of features.) The second component of a VAE is its decoder
pφ(x|z), which is a neural network trained to have weights and biases φ that map one of the
aforementioned latent representations z back to the original representation x (in our case,
the original combination of features). If the latent representations are n-dimensional, then
we define the n-dimensional latent space as the region in n-dimensional space in which
latent vectors corresponding to combinations of features can occur.

The encoder and decoder neural networks are determined by minimizing a loss func-
tion using stochastic gradient descent. The loss function is a sum of the individual losses li
for each of the N training data points, i.e.

∑N
i=1 li. The individual loss function li is defined

as
li(θ, φ) = −Ez∼qθ(z|xi)[log(pφ(xi | z)] + KL(qθ(z | xi) || p(z)), (1.1)

where the first term is the binary cross-entropy reconstruction loss and the second term is
the Kullback-Leibler divergence. This choice of loss function ensures that the latent space
representations of combinations of features satisfy the following two properties:

1. Combinations of features that are in the same category (e.g. two recipes that both
have the Mexican cuisine label) are clustered near each other. This property is en-
sured by the binary cross-entropy component of the loss function.

2. Second, different clusters are situated close to each other, such that the resulting
scatterplot in the latent space allows for continuous interpolation between different
clusters. This property is ensured by the Kullback-Leibler divergence component of
the loss function.

The second property, continuity, is particularly useful because interpolating between
existing combinations of features can result in new, potentially useful combinations of
features. More specifically, interpolation permits us to move in the latent space from one
combination of features to another combination with one additional feature by computing
the difference between their latent vector representations.

These properties of the latent space fulfills all three of the criteria we set forth for a
suitable algorithm for this project. We can generate new combinations of features and ex-
ploit the feature space by manipulating latent vectors through interpolation. Furthermore,
clustering different combinations of features in the latent space according to their labels
allows us to impose structure on the feature space, thereby reducing the effective search
space size.
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One of the initial proof-of-concept applications of VAEs was generating digits from
scratch [15]. Figure 1.2 shows examples of digits that were solely "written" by a VAE
that was trained on the standard Modified National Institute of Standards and Technology
(MNIST) handwritten digits database.

Figure 1.2: [17] Digits generated by variational autoencoder

Later applications of the VAE have successfully accomplished a wide range of tasks,
from generating realistic-looking fake human faces [18] to producing completely synthetic
music [19].

1.2.3 Generative Adversarial Network (GAN)

The final candidate algorithm for this project is the generative adversarial network (GAN)
[20]. A GAN consists of two neural networks, a discriminator D and a generator G. The
discriminator D is trained to discern the probability that a sample is a real sample from the
training dataset and not a synthetic sample produced by the generator G. The generator
G takes as its input a randomly sampled noise input z and outputs a synthetic sample; it
is trained so that the synthetic samples it produces are as real as possible to "tricking" the
discriminator into generating a higher probability. The training process is a zero sum game
in which the generator tries its best to fool the discriminator, while the discriminator tries
its best to not be fooled by the generator. The architecture of a GAN is shown in Figure
1.3.

Denote by pz the data distribution over the noise input z, pg the generator’s distri-
bution over the data x, and pr the data distribution over the real sample x. To maxi-
mize the accuracy of the discriminator when considering real data, we seek to maximize
Ex∼pr(x)[logD(x)]. To maximize the accuracy of the discriminator when considering a fake
sample G(z) from the generator, we seek to maximize Ez∼pz(z)[log(1 − D(G(z)))]. On the
other hand, in order to fool the discriminator as often as possible, the generator seeks to
minimize Ez∼pz(z)[log(1−D(G(z)))]. Combining these objectives means that the game that
D and G are playing is a minimax game in which the following loss function should be
optimized:

min
G

max
D

L(D,G) = Ex∼pr(x)[logD(x)] + Ez∼pz(z)[log(1−D(G(z)))]. (1.2)
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Figure 1.3: [21] Generative adversarial network architecture

Equation 1.2 can be simplified as

min
G

max
D

L(D,G) = Ex∼pr(x)[logD(x)] + Ex∼pg(x)[log(1−D(x))]. (1.3)

The minimax game has been successfully "played" by D and G when Nash equilibrium is
achieved.

GANs easily satisfy two of the three criteria we put forth for our desired algorithm. They
are clearly generative and their training process reduces the size of the effective search
space. However, it is not immediately clear how they allow for a better understanding and
exploitation of the feature space, especially considering that the input z to the generator
is random noise. This issue can be solved using an analysis technique that makes the
feature space "transparent" by using a coupled feature extractor network (in the form of a
convolutional neural network) to discover feature axes in the latent space of an already-
trained GAN [22].

The inaugural proof-of-concept application for GANs was generation of images, includ-
ing human faces [20]. For example, the face in Figure 1.4 was completely synthetically
generated by a GAN.

In addition to excelling at generating human faces, GANs have also proven effective at
tasks ranging from text-to-image generation [25] to drug development [8]. For example,
GANs were used in the promising chemical structure development algorithm described in
section 1.2 [8]. Given the empirically verified successes of GANs for purposes similar to
flavor development, they are a prime candidate for the generative model in this project.
In addition, GANs have some key advantages over VAEs. For example, GANs don’t intro-
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Figure 1.4: [23], [24] Human face produced by generative adversarial network

duce any deterministic bias, whereas VAEs do; practically speaking, this means that VAEs
produce “blurrier” results than GANs [26]. In the case of images, a “blurrier” result means
that the resulting image is literally blurrier than a comparable one generated by a GAN. In
this project, a “blurrier” result implies less accurate interpolation in the latent space. Fur-
thermore, GANs work better with discrete features than VAEs [26], and the combinations
of features in this project are discrete.
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2 Design

In section 1, we set forth the high level goal of this project, and we introduced and ex-
plained why three specific machine learning algorithms would be suitable candidates for
attaining our goal. In this section, we introduce the specific dataset we used to test each
algorithm, followed by the quantitative specifications by which we measured the extent to
which each algorithm did or did not attain our high level goal.

2.1 Kaggle What’s Cooking? Dataset

Since this project was conducted in a university setting and its results were destined to be
public, it would have not only been difficult to obtain but also difficult to keep confidential
any proprietary dataset for this project. Thus, we only sought freely available datasets
for use in this project. In addition, we sought a dataset that was high quality, large,
easily usable, and easily accessible. The Kaggle What’s Cooking? dataset [27] (hereby
referred to as "Kaggle dataset"), whose data was provided by Yummly, fit all these criteria.
Kaggle is a prominent, large online platform where data scientists and machine learning
practitioners openly share data, collaborate with others, and compete in problem solving
contests using machine learning [28]. Yummly is a large online and mobile service that
provides personalized recipe recommendations, a recipe search tool, and other tools based
on recipes [29]. The data released by Yummly was previously proprietary and used in a
robust commercial context, which attests to the quality, usability, and accessibility of the
data. Its publication on Kaggle made it open source and available for all to use freely.

The Kaggle dataset contains 39774 recipes, each belonging to 1 specific geo-ethnic
cuisine group (out of 20 possible such groups) and whose ingredients comprise a subset
of 1860 possible base ingredients. The first five elements (in no particular order) of the
dataset are shown in Table 2.1.

Table 2.1: First five elements of Kaggle dataset

Thus, the first recipe in the datset belongs to the Greek cuisine group and its first 3
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ingredients are romaine lettuce, black olives, and grape tomatoes. While each recipe also
has its own unique ID number (e.g. 10259 for the first recipe), the ID numbers do not
provide any meaningful information about the recipes themselves, so we ignore them in
our design and subsequent analysis.

Even though the explicitly stated goal of this project is to automate flavor development
(and not recipe development), the use of recipes instead of flavors as data is acceptable
because the underlying topology of the data is the same in both cases. In particular, a
recipe is analogous to a flavor, an ingredient is analogous to a constituent chemical or
functional group of a flavor, and a cuisine group is analogous to flavor (e.g. sweet or
bitter). To generalize the concept of an ingredient, recipe, and cuisine group, we introduce
the abstract terms "feature," "combination of features," and "label." (Throughout the rest of
this paper, the two sets of terms may be used interchangeably.) The relationship between
these abstract terms is codified in the following definition.

Definition 2.1 (Combination of features). A single combination of features c is a tuple

(l, {f1, f2 . . . , fn−1, fn}), (2.1)

where l is a label, and fi is a feature for each 1 ≤ i ≤ n. The set {f1, f2 . . . , fn−1, fn} can
be abbreviated as F (c).

Rather than consider the set F (c), we can alternatively consider a features vector FV (c)

of length I, where I is the total number of distinct features in all combinations of features.
The features vector is defined as follows.

Definition 2.2 (Features vector). Denote by SI the vector representation of the set of all
distinct features that occur in at least one set F (ci), as ci ranges over all combinations of
features under consideration. For each integer 0 ≤ i < I, we define

FV (c)[i] =

1 if SI [i] ∈ F (c)

0 otherwise.
(2.2)

An initial analysis of the Kaggle dataset without using any of the candidate algorithms
reveals that the dataset is extremely sparse. This means that a small number of ingredients
occur in many recipes, while the vast majority of ingredients occur in few or no recipes.
The sparseness of the Kaggle dataset is illustrated in Figure 2.1, in which the ingredients
in the dataset are sorted by the number of recipes in which they occur, with the ingredient
occurring in the most recipes coming first. The code used to generate Figure 2.1 is available
in appendix A.1.

Sparseness presents a challenge because it means that most ingredients (and especially
those that are unique or uncommon) occur so rarely in recipes that there is very little
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Figure 2.1: Number of occurrences of Kaggle dataset ingredients in recipes from greatest
to least

context in which the machine learning algorithms can learn their relationships with other
ingredients.

To ensure that we do not train and test an algorithm on the same data, we use the
standard machine learning split to allocate 80% of the recipes in the dataset for training
each algorithm and 20% of the recipes in the dataset for testing each algorithm. In absolute
terms, this means 31819 recipes are used for training and 7955 recipes are used for testing.

2.2 Specifications

Based on the author’s review of the publicly available literature and discussions with his
advisor, there are no pre-existing metrics that can be used to simultaneously assess the
efficacy of all three of the candidate algorithms in this project. Thus, we specify separate
specifications for the evaluation of each of the three algorithms.

When machine learning algorithms are used in applications like generating images or
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sounds, we do not require any specialized metrics to evaluate the performance of the al-
gorithms; instead, it merely suffices to directly observe the results (e.g. view an image or
hear a sound) and make a quick subjective and intuitive conclusion. However, when ma-
chine learning is used to generate flavors (or other analogous combinations of features),
it is extremely costly and time-consuming to make such direct observations. For example,
directly "observing" (i.e. tasting) an algorithmically-generated flavor would require a hu-
man to first produce the flavor in a lab or kitchen. To overcome this hurdle to testing each
algorithm in this project, we introduce a new method for validating each algorithm. The
overarching idea behind this method is that an algorithm’s performance can be determined
by removing a single feature from a combination of features and assessing whether the al-
gorithm can predict the missing feature based on the remaining truncated combination of
features.

This idea can be naturally implemented for a VAE because of the structure of a latent
space and for the apriori algorithm because of the structure of an association rule. How-
ever, it requires adaptation when applied to a GAN because the default structure of a GAN
only permits the generator to take random noise vectors as inputs. This problem is solved
by rendering the feature space of the GAN "transparent" using the process described in
section 1.2.3 [22]. The implementation details of this automated performance assessment
scheme, as tailored to each algorithm, are described in the next few sections.

2.2.1 Apriori Algorithm

As described in section 1.2.1, the apriori algorithm generates association rules based on
an implementer-specified confidence and support. In order to generate a sufficiently large
number of association rules for performing the kind of removal test we described in section
2.2, we must find sufficiently low threshold values for the confidence and support. Such
sufficiently low threshold values must exist because in the extreme limiting case, if the
confidence and support thresholds both approach zero, all possible association rules are
returned by the apriori algorithm.

Having found a sufficiently low confidence and support, we proceed by analyzing the
lengths of the antecedents in the resulting association rules. If their average µa comparable
to the average number of ingredients µr over all recipes, then we might be able to perform
the removal test. If we are able to perform the removal test, we would do so as follows:
For each association rule A → B, we find all recipes that contain all ingredients in A and
find the proportion of those recipes that also contain B. However, if the two averages
differ greatly from each other, we would be unable to use the apriori algorithm in the
removal test. To test whether the averages differ by a statistically significant amount, we
use a 2-sample t-test, with the null hypothesis being H0 : µa − µr = 0 and the alternative
hypothesis being Ha : µa − µr 6= 0.
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2.2.2 Variational Autoencoder (VAE)

As we discussed in section 1.2.2, training a VAE produces a latent space in which combi-
nations of features with the same labels should theoretically be grouped (or "clustered")
together. Each combination of features is represented by a vector in the latent space. To
test how well latent vectors with the same labels are grouped together by the VAE, we
need an "ideal" standard labeling method with which we can compare the VAE’s clustering
ability. We choose k-means clustering for this "ideal" labeling method.

Definition 2.3 (k-means clustering [30], [31]). The k-means clustering of n real vectors
(x1,x2,

. . . ,xn) is defined as the partition of the vectors into k ≤ n sets S = {S1, S2, . . . , Sk} that
equals

argmin
S

k∑
i=1

∑
x∈Si

||x− µi||2 = argmin
S

k∑
i=1

|Si| · Var(Si), (2.3)

where µi denote the mean of the vectors within set Si.

After performing k-means clustering on the test data, we need a measure of how close
the VAE clustering is to the "ideal" k-means clustering. We will use a metric called purity
to quantify the difference between the two clusterings.

Definition 2.4 (Purity [32]). Suppose that a predicted clustering method yields K distinct
clusters, and an "ideal" clustering method yields J distinct clusters. For each 1 ≤ k ≤ K,
denote by ωk the set of objects in predicted cluster k. For each 1 ≤ j ≤ J , denote by cj the
set of objects in "ideal" cluster j. Denote by Ω the set of predicted clusters {ω1, ω2, . . . , ωK}.
Denote by C the set of "ideal" clusters {c1, c2, . . . , cJ}. Let N denote the number of distinct
objets present in all the constituent sets of Ω or C. Then

purity(Ω,C) =
1

N

K∑
k=1

max
1≤j≤J

|ωk ∩ cj| (2.4)

In the context of the VAE, definition 2.4 tells us that to compute purity, each VAE
cluster is assigned to the k-means cluster that occurs most frequently in the VAE cluster,
and the accuracy (i.e. purity) of these assignments is measured by counting the number of
correctly assigned latent vectors and dividing by N . A purity of 0 indicates extremely poor
clustering, and a purity of 1 indicates perfect clustering. An example of purity computation
is illustrated in Figure 2.2.

While 0 is the theoretical lower bound for purity, the worst case VAE performance
actually occurs if the VAE’s clustering is random. Since the number of predicted clusters K
and the number of "ideal" clusters J are both equal to 20 in our application of purity, [33]
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Figure 2.2: [32] Example of purity computation. The three numbered clusters are the
predicted clusters. The "ideal" clusters are x, o, and �. The most frequent "ideal" clusters
in cluster 1 (namely x), cluster 2 (namely o), and cluster 3 (namely �) occur 5, 4, and
3 times respectively. We can see that there are N = 17 objects in total, so the purity is
(5 + 4 + 3)/17 ≈ 0.71.

tells us that the expected value of a random clustering is just 1/J = 1/K = 1/20 = 0.05.
Thus, the VAE is performing better than random clustering if and only if the VAE clustering
purity is greater than 0.05.

In addition to measuring clustering quality, we can also assess the VAE and explore the
role that the latent space plays by computing a removal accuracy and an addition accuracy,
both of which are defined for the first time in this report. The removal accuracy is defined
as follows:

Definition 2.5 (VAE removal accuracy). Denote by C the set of all k combinations of
features {c1, c2, . . . , ck} used to test a VAE. For 1 ≤ i ≤ k, define F (ci) and FV (ci) as set
forth in definitions 2.1 and 2.2. Suppose the VAE being tested has encoder qθ(z|x) and
decoder pφ(x|z) (as defined in section 1.2.2), and let Q : Rdimx → Rdim z and P : Rdim z →
Rdimx denote the deterministic mappings corresponding to q and p, respectively. Then the
total number of feature occurrences N in C is

N =
k∑
i=1

|F (ci)|. (2.5)

Suppose the index of a feature f in each features vector is denoted as IFV (f). For 0 ≤ r ≤
1, define the removal percentile indicator function φ as

φ(r, c, f) =


1 if the element with index IFV (f) in the vector

v = P (Q(FV (c\{f}))) is less than the 100rth-percentile

of all elements in v

0 otherwise.

(2.6)

13



Then for 0 ≤ r ≤ 1, we can define the VAE removal accuracy pR(r) as

pR(r) =
1

N

∑
ci∈C

 ∑
f∈F (ci)

φ(r, ci, f)

 . (2.7)

Intuitively, the VAE removal accuracy can be interpreted as the rate at which the suc-
cessive application of the VAE encoder and decoder (with no manipulation in the latent
space) can successfully detect the removal of a single feature from a combination of fea-
tures, with the difficulty of successful detection increasing as r decreases. Because the VAE
removal accuracy does not exploit the latent space, we expect that it will never perform
better than random guessing, i.e. pR(r) < 0.5.

In order to exploit the latent space, we compute an additional performance metric for
the VAE, called the VAE addition accuracy, which is defined as follows:

Definition 2.6 (VAE addition accuracy). Denote by C the set of all k combinations of
features {c1, c2, . . . , ck} used to test a VAE. For 1 ≤ i ≤ k, define F (ci) and FV (ci) as set
forth in definitions 2.1 and 2.2. Suppose the VAE being tested has encoder qθ(z|x) and
decoder pφ(x|z) (as defined in section 1.2.2), and let Q : Rdimx → Rdim z and P : Rdim z →
Rdimx denote the deterministic mappings corresponding to q and p, respectively.

Denote by U(C) the set ∪ki=1ci, and let S(f) denote the set of all ci such that 1 ≤ i ≤ k

and f ∈ ci. Then the total number of tests N we must complete to compute the VAE
addition accuracy is

N =
∑

f∈U(C)

|S(f)|(|S(f)| − 1) (2.8)

Suppose the index of a feature f in each features vector is denoted as IFV (f). For 0 ≤ r ≤
1, define the addition percentile indicator function φ as

φ(r, ci, cj, f) =


1 if the element with index IFV (f) in the vector

v = P (Q(FV (cj\{f})) +Q(FV (ci))−Q(FV (ci\{f})))
is greater than the 100rth-percentile of all elements in v

0 otherwise.

(2.9)

Then for 0 ≤ r ≤ 1, we can define the VAE addition accuracy pA(r) as

pA(r) =
1

N

∑
1≤i 6=j≤k

 ∑
f∈F (ci)∩F (cj)

φ(r, ci, cj, f)

 . (2.10)

Intuitively, the VAE addition accuracy measures the rate at which VAE can successfully
extract the latent representation of a feature vector corresponding to a single feature f ,
add that latent vector to latent vectors that represent combinations of features from which
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f has been deliberately "deleted," and then convert the resulting latent vector sum back to
a higher dimensional feature vector that once again contains f . As r increases, it becomes
more difficult to achieve success.

Because the VAE addition accuracy fully exploits the compression of information that
occurs in the process of generating the latent representations, we expect that it will per-
form significantly better than random guessing, i.e. pA(r)� 0.5.

2.2.3 Generative Adversarial Network (GAN)

Assessing the quality of a GAN’s output, be it an image or a flavor, is a nontrivial task for
which there are currently many options, both quantitative and qualitative [34]. However,
none of these options are vastly superior to or more standard than the others. In lieu
of wading through these assorted assessment options, we will instead derive some basic
mathematical criteria for the optimal performance of a GAN based on its definition. First,
in order for a GAN to attain Nash equilibrium, the individual losses of the generator and
discriminator must converge after a sufficiently large number of training iterations (which
are also called "epochs" in machine learning parlance) [20]. In addition, a perfectly well-
trained GAN should have a discriminator accuracy that tends to a constant value of 0.5.
This is proven as the following proposition.

Proposition 2.1 (Optimal value of discriminator accuracy [20]). The optimal value of the
discriminator accuracy, such that the combined loss function of a GAN is minimized, is 0.5.

Proof. We can rewrite the loss function in equation 1.3 as

L(G,D) =

∫
x

(pr(x) log(D(x)) + pg(x) log(1−D(x))) dx. (2.11)

Since the integral is taken over all possible samples x, we can ignore the integral and
instead optimize the function f such that

f(D(x)) = (pr(x) log(D(x)) + pg(x) log(1−D(x))) . (2.12)

Now let D(x) = y, pr(x) = Ar, and pg(x) = Ag, so that we have

f(y) = Ar log y + Ag log(1− y) (2.13)

Since Ar and Ag are not functions of D(x), it follows that

∂f(y)

∂y
=

Ar
y ln 10

+
Ag

(1− y) ln 10
=

1

ln 10

Ar − (Ar + Ag)y

y(1− y)
(2.14)

If y(1 − y) = 0, then D(x) ∈ {0, 1}, which means mode collapse has occurred. Mode
collapse means the GAN fails because the generator produces the same small set of low
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variety outputs for all inputs, thereby always fooling the discriminator but failing to gen-
erate the novel outputs that we want [20]. Since we are looking for the optimal value of
y, we assume y(1− y) 6= 0.

To find the optimal y, we set the partial equal to 0. Since we assume y(1 − y) 6= 0, it
follows that the optimal value of y is

y =
Ar

Ar + Ag
=

pr(x)

pr(x) + pg(x)
.

An optimally trained generator will have pr(x) ≈ pg(x), the global optimum of y = D(x) is
0.5, as desired.

Intuitively, the optimal value of the discriminator accuracy being 0.5 makes sense be-
cause we want our generator’s fake outputs to be so realistic that the discriminator’s deci-
sions are essentially random guesses, i.e. the discriminator can’t distinguish between real
outputs and the generator’s fake outputs at all.
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3 Implementation, Results, and Analysis

This section provides the details of the implementation of each of the three algorithms,
in addition to the consequent measurement and analysis of the performance of each al-
gorithm, with a focus on whether each result matches or differs from the corresponding
design specification.

3.1 Apriori Algorithm

In order to generate a sufficient number of association rules, we need the confidence and
support to be low enough that the number of association rules generated by the apriori
algorithm is as close to the number of recipes as possible. This is to ensure the statistical
accuracy t-test for comparing the average antecedent length and the average number of
ingredients in a test recipe. Testing a range of threshold confidence and suppport values,
with each value ranging from 1 to 0.05 inclusive with a step size of 0.05, tells us that the
number of association rules closest to 7955 (the number of test recipes) is 8246, which
occurs when the confidence and support thresholds are 0.1 and 0.05, respectively. The
distribution of the size of the antecedents of the 8246 association rules is shown in Figure
C.1. The average number of ingredients in an antecedent is 1.90± 0.86.

The distribution of the number of ingredients in the test recipes is shown in Figure C.2.
The average number of ingredients in a test recipe is 10.29± 4.01.

Performing a 2 sample t-test on these two distributions yields a t-value of -372.53 and
a p-value that is so close to 0 that Python can’t distinguish it from 0. Thus, we reject
our null hypothesis, and conclude that the antecedent lengths are so much shorter than
the number of ingredients in recipes that it is impossible to perform an further analysis
of the apriori algorithm, including the removal test described in section 2.2.1. The code
for implementing the apriori algorithm and performing the relevant statistical analysis is
available in appendix A.2.

3.2 Variational Autoencoder (VAE)

We train the VAE on 31819 recipes in the Kaggle dataset (as mentioned in section 2.1),
each corresponding to a features vector (defined in definition 2.2) of length 1860. The
VAE is trained for 100 epochs using Keras with a TensorFlow backend on a Harvard FAS
Research Computing Tesla V100-SXM2-16GB GPU with 16 GB of memory and 1.53 GHz
clock speed. The VAE training process is completely unsupervised, with no consideration
of the 20 possible labels/cuisine groups at any point in the training process.

We set up the encoder neural network to take vectors in R1860 as inputs, send the vectors
through 2 intermediate layers, and output latent vectors in R2. The first intermediate layer
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maps vectors in R1860 to vectors in R512, with the rectifier function f(x) = max(0, x) as
the activation function. 1 The second intermediate layer consists of 2 separate neural
networks that each take the R512 input of the first intermediate layer and both use the
sigmoid activation function. One of these neural networks maps the R512 input to a vector
in R2 that represents the two means of the two latent vector distributions. The other neural
network maps the R512 input to a vector in R2 that represents the two variances of the two
latent vector distributions. The final latent vector output in R2 is computed by sampling
from the 2 neural networks comprising the second intermediate layer. A diagram of the
encoder architecture is shown in Figure B.1.

On the other hand, the decoder is set up to take a latent vector in R2 as its input, send
the input through two successive intermediate layers, and produce a predicted features
vector in R1860 as its output. The first intermediate layer maps vectors in R2 to vectors in
R512, while the second intermediate layer maps vectors in R512 to output vectors in R1860.
Both intermediate layers used the rectifier function as their activation function. A diagram
of the decoder architecture is shown in Figure B.2.

After training the VAE on the training subset, we input the features vectors of the 7955
test recipes into the encoder and plot in 2-dimensional space the resulting latent vectors
outputted by the encoder as points, with different colored points corresponding to different
labels (i.e. cuisines). This plot is depicted in Figure C.3.

In order to compute purity (defined in section 2.2.2), we first perform k-means cluster-
ing (defined in definition 2.3) on the same 7955 test recipes. The resulting labels for each
recipe (shown as different colors) are plotted in Figure C.4 in the appendix. The purity
between the "ideal" k-means clustering and the "true" VAE clustering is 49.7%, which is
nearly 10 times the expected value of a random clustering, indicating that the VAE far
exceeds our clustering performance specifications.

Implementing and performing the VAE removal accuracy test (as defined in 2.5) gives
a VAE removal accuracy of 0.0037%, which is far less than a random accuracy of 50%,
indicating our expectations were resoundingly met. Implementing and performing the
VAE addition accuracy test (as defined in 2.6) gives a VAE addition accuracy of 95.6%,
which is far greater than the random accuracy of 50% and thus meets our expectations.

The code for k-means clustering of the test data, training the VAE, computing purity,
and performing the VAE addition and removal tests is available in appendix A.3.

1First introduced to a dynamic network in 2000 [35], the rectifier function was shown in 2011 to result in
better trained neural networks than earlier activation functions, such as the logistic sigmoid and hyperbolic
tangent functions [36]. In 2017, it was the most popular activation function for neural network training
[37], [38].
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3.3 Generative Adversarial Network (GAN)

We train the GAN on 31819 recipes in the Kaggle dataset (as mentioned in section 2.1),
each corresponding to a features vector (defined in definition 2.2) of length 1860. The
GAN is trained using Keras with a TensorFlow backend on a Harvard FAS Research Com-
puting Tesla V100-SXM2-16GB GPU with 16 GB of memory and 1.53 GHz clock speed.
The code for training the GAN is available in appendix A.4.

Following the neural network parameters that were presented in the original GAN pa-
per, we use 10 intermediate layers for the generator, whose architecture is shown in Figure
B.3, and we use 5 intermediate layers for the discriminator, whose architecture is shown
in Figure B.4.

Figure 3.1 shows the generator and discriminator losses after every one of the 10000
training epochs we use to train the GAN. The discriminator loss converges to 5 ·10−6, while
the generator loss converges to 16.12. Thus, the requirements that the discriminator and
generator losses converge (which we presented in section 2.2.3) is met.

Figure 3.1: GAN generator and discriminator losses after every epoch

The evolution of the GAN discriminator accuracy over the course of all 10000 training
epochs is shown in Figure 3.2. The discriminator accuracy converges to 1, which differs
from the requirement set forth in proposition 2.1 that the discriminator accuracy converge
to 0.5 in order for the GAN to be considered successfully trained. In particular, mode
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collapse occurs, meaning that the generator produces the same small set of low variety
outputs for all inputs, thereby always fooling the discriminator but failing to generate the
novel outputs that we want. Because of mode collapse, we are thus unable to success-
fully train the GAN, which means we are unable to perform further analysis, such as the
methods described in [34].

Figure 3.2: GAN discriminator accuracy after every epoch
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4 Conclusions and Future Work

Conclusions

Based on the tests we described in section 2.2 and implemented in section 3, we find that
neither the apriori algorithm nor the GAN is suitable for the high level goal of automati-
cally generating new flavors. The apriori algorithm fails because the antecedents are too
short, thereby rendering it impossible to perform the removal test to determine the apriori
algorithm’s efficacy. The GAN fails because of mode collapse, which precludes any pos-
sibility of extracting and manipulating structures in a derived latent space. However, the
VAE meets all 3 of our specifications. In particular, the VAE is highly effective at clustering
together recipes of the same cuisine, and exploiting the VAE latent space provides an auto-
mated way of verifying the effectiveness of the VAE in correctly inferring ingredients that
have been deliberately removed from recipes.

Future Work

In order to avoid mode collapse, future researchers may attempt to use the Wasserstein
GAN (WGAN) [39] instead of the regular GAN that we used in this project. WGAN is based
on the Wasserstein distance, which is a measure of the distance between two probability
distributions. It is also called Earth Mover’s distance (EMD) because it can intuitively
be interpreted as the minimum energy cost of moving and transforming a pile of dirt in
the shape of one probability distribution to the shape of the other distribution [40]. The
Wasserstein distance has the key advantage (over the regular GAN loss function) of being
a smooth metric, meaning it induces no discontinuities and thus provides a far more stable
training process for the GAN [39].

In future work, the VAE, as the most promising of the three candidate algorithms con-
sidered in this project, could be trained on alternative datasets. The Kaggle dataset we
used in this project only specified the presence or absence of any given ingredient. It did
not specify the quantity (e.g. mass or volume) in which an ingredient occurred in a recipe.
If an alternative dataset with such quantity information is available, then the VAE could be
trained on continuous, rather than discrete, data, which may enhance the VAE’s clustering
ability.

In addition, the VAE’s performance could be tested in applications analogous to flavor
development. As we described in section 1.1, flavor development is topologically equiva-
lent to tasks such as drug and alloy development. Thus, testing the VAE on databases of
drug compositions or alloy compositions could yield a potent new exploration and devel-
opment tool in those fields.

Future researchers may also seek to study the robustness of the VAE. In the removal and
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addition tests that we use in testing the VAE, we always assume that we have a baseline
features vector that anchors the general location of a recipe in the latent space. Random
sampling in the latent space, which would not involve any such baseline, may lead to
discovering unnoticed parts of the latent space which correspond to unique and previously
unknown combinations of features. Robustness can be assessed by determining whether
the combinations of features generated by random sampling are similar to neighboring
combinations of features that are already known.

The VAE removal and accuracy tests only involve removing and adding ingredients
that we already know to exist in recipes. The latent vector corresponding to a single
ingredient has a fixed direction in latent space. By rotating such latent vectors to have
different directions, we can effectively generate new features. The robustness of the VAE
can then be assessed by determining how much these new features differ from the feature
corresponding to the latent vector with the original fixed direction. If the features differ
to an extent that is proportional to the angle of rotation, then we have shown the VAE to
be robust in another way. If the features generated by rotation differ greatly, then the VAE
might require adjustments to smooth discontinuities and improve robustness.

Any future work should always strive to ultimately pass the flavor Turing test, as de-
scribed in section 1.1, whereby the vast majority of humans cannot distinguish between
a set of flavors generated by a machine and another set of flavors produced by a human.
In particular, automatically computable metrics like the VAE removal and addition tests
presented in definitions 2.5 and 2.6 should first be optimized on a promising candidate al-
gorithm before the laborious and time-consuming, but definitive, flavor Turing test is used
to render a final judgment on the efficacy of a particular algorithm.
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Appendix

A Code

A.1 Kaggle Dataset

preprocess.py

1 import numpy as np
2 import pandas as pd
3 from mlxtend.preprocessing import TransactionEncoder
4 from random import sample
5 import math
6

7 # Data pre-processing
8 data_path=’../’
9 df_master = pd.read_json(data_path+’train.json’)

10

11 def label_and_feature_generator(df_input):
12 feature_combination_list = []
13 label_list = []
14 df_input_dimensions = df_input.shape
15

16 for count in range(df_input_dimensions[0]):
17 feature_all_words_list = df_input.iloc[count, 2]
18 feature_final_word_list = list(map(lambda feature:
19 feature.split()[-1],
20 feature_all_words_list))
21 feature_combination_list.append(feature_final_word_list)
22 label_list.append(df_input.iloc[count, 0])
23

24 te_feature = TransactionEncoder()
25 te_feature_ary_boolean = te_feature.fit(feature_combination_list) \
26 .transform(feature_combination_list)
27 feature_combination_int = te_feature_ary_boolean.astype("int")
28 features_names = te_feature.columns_
29
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30 label_int_tuple = pd.factorize(label_list)
31

32 label_int = label_int_tuple[0]
33 label_names = label_int_tuple[1]
34

35 return feature_combination_int, features_names, label_int, label_names
36

37 master_recipes_array, ingredients_names, master_cuisine_array, \
38 cuisine_names_array = label_and_feature_generator(df_master)
39

40 num_recipes = master_recipes_array.shape[0]
41 train_indices = np.asarray(sample(range(num_recipes),
42 int(math.floor(0.8 * num_recipes))))
43

44 train_recipes_array = master_recipes_array[train_indices,:]
45 train_recipes_array = train_recipes_array.astype(’float32’)
46 train_cuisine_array = master_cuisine_array[train_indices]
47

48 test_recipes_array = np.delete(master_recipes_array, train_indices, 0)
49 test_recipes_array = test_recipes_array.astype(’float32’)
50 test_cuisine_array = np.delete(master_cuisine_array, train_indices)
51

52 np.save("train_recipes_array_file", train_recipes_array)
53 np.save("test_recipes_array_file", test_recipes_array)
54 np.save("train_cuisine_array_file", train_cuisine_array)
55 np.save("test_cuisine_array_file", test_cuisine_array)
56 np.save("cuisine_names_array_file", cuisine_names_array)
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visualize_sparseness.py

1 import numpy as np
2 import matplotlib.pyplot as plt
3 from scipy.interpolate import interp1d
4 from scipy.signal import savgol_filter
5

6 # Load train and test data from npy file generated earlier by
7 # preprocess.py
8

9 train_recipes_array = np.load("test_recipes_array_file.npy")
10 test_recipes_array = np.load("test_recipes_array_file.npy")
11

12 master_recipes_array = np.concatenate((train_recipes_array,
13 test_recipes_array), axis=0)
14

15 ingredient_freqs = np.count_nonzero(master_recipes_array, axis=0)
16 descending_ingredient_freqs = np.sort(ingredient_freqs)[::-1]
17 ingredient_counts = np.arange(1, descending_ingredient_freqs.size + 1)
18

19 number_to_truncate = 925
20

21 ingredient_counts_subset = \
22 np.arange(1, descending_ingredient_freqs.size - number_to_truncate)
23

24 # Perform a cubic polynomial fit of the data and smooth
25 # resulting fit function using a Savitzky-Golay filter
26

27 polynomial_fit = \
28 interp1d(ingredient_counts_subset, \
29 descending_ingredient_freqs[:-(number_to_truncate + 1)], \
30 kind=’cubic’, \
31 assume_sorted=True)
32 window_size, poly_order = 11, 3
33 smooth_polynomial_fit = \
34 savgol_filter(polynomial_fit(ingredient_counts_subset), \
35 window_size, poly_order)
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36

37 plt.figure(figsize=(18, 18))
38 plt.plot(ingredient_counts, descending_ingredient_freqs, ’o’)
39 plt.plot(ingredient_counts_subset, smooth_polynomial_fit, ’-’)
40 plt.xlabel("Feature Index", fontsize=22)
41 plt.xticks(fontsize=20)
42 plt.ylabel("Count of Feature in Combinations", fontsize=22)
43 plt.yticks(fontsize=20)
44 plt.savefig("sparseness_plot.png", bbox_inches=’tight’, pad_inches=0)
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A.2 Apriori Algorithm

apriori_test.py

1 import pandas as pd
2 from efficient_apriori import apriori
3 import re
4 import nltk
5 from nltk.corpus import wordnet as wn
6 from nltk.stem import WordNetLemmatizer
7 import numpy as np
8 from collections import Counter
9 import matplotlib.pyplot as plt

10 import scipy.stats as stats
11 import math
12

13 data_path = ’’
14 master_df = pd.read_json(data_path+’train.json’)
15 dimensions = master_df.shape
16 num_recipes = dimensions[0]
17

18 # Natural language processing (NLP) to eliminate non-core
19 # components of ingredient names
20

21 def is_noun(tag):
22 return tag in [’NN’, ’NNS’, ’NNP’, ’NNPS’]
23

24 def is_verb(tag):
25 return tag in [’VB’, ’VBD’, ’VBG’, ’VBN’, ’VBP’, ’VBZ’]
26

27 def is_adverb(tag):
28 return tag in [’RB’, ’RBR’, ’RBS’]
29

30 def is_adjective(tag):
31 return tag in [’JJ’, ’JJR’, ’JJS’]
32

33 def penn_to_wn(tag):
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34 if is_adjective(tag):
35 return wn.ADJ
36 elif is_noun(tag):
37 return wn.NOUN
38 elif is_adverb(tag):
39 return wn.ADV
40 elif is_verb(tag):
41 return wn.VERB
42 return 0
43

44 def lemmatize(l):
45 expression = re.sub(’[^A-Za-z]’, ’ ’,’ ’.join(l).lower())
46 tags = nltk.pos_tag(nltk.word_tokenize(expression))
47 reduced = [nltk.stem.WordNetLemmatizer().lemmatize(t[0], penn_to_wn(t[1]))
48 for t in tags if penn_to_wn(t[1]) !=0 ]
49 return reduced
50

51 master_df[’ingredients_clean’] = master_df[’ingredients’].apply(lemmatize)
52

53 transactions_tuples_clean = []
54

55 for count in range(num_recipes):
56 transactions_tuples_clean.append(tuple(master_df.iloc[count, 3]))
57

58 # Find pair of support and confidence thresholds at which the number
59 # of association rules and test recipes are approximately the same
60

61 min_difference = num_recipes + 1
62 final_rules = []
63

64 for min_support in np.arange(1,0,-0.05):
65 for min_confidence in np.arange(1,0,-0.05):
66 _, rules = apriori(transactions_tuples_clean,
67 min_support=min_support,
68 min_confidence=min_confidence)
69 current_difference = abs(len(rules) - num_recipes
70 + int(math.floor(0.8 * num_recipes)))
71 if current_difference < min_difference:
72 min_difference = current_difference
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73 final_rules = rules
74

75 lhs_lengths = np.asarray(list(map(lambda rule: len(rule.lhs),
76 final_rules)))
77

78 mean_antecedents = np.average(lhs_lengths)
79 st_dev_antecedents = np.std(lhs_lengths)
80

81 print(mean_antecedents)
82 print(st_dev_antecedents)
83

84 plt.figure(figsize=(14, 14))
85 plt.hist(lhs_lengths, bins=’auto’)
86 plt.title("Distribution of Ingredient Counts over All Apriori Antecedents",
87 fontsize=22)
88 plt.xlabel("Number of Ingredients", fontsize=20)
89 plt.xticks(fontsize=16)
90 plt.ylabel("Number of Antecedents", fontsize=20)
91 plt.yticks(fontsize=16)
92 plt.savefig(’antecedents_histogram.png’)
93

94 # Load test recipes data from npy file generated earlier by
95 # preprocess.py
96

97 test_recipes_array = np.load(’test_recipes_array_file.npy’)
98 num_ingredients_test = np.count_nonzero(test_recipes_array, axis=1)
99

100 mean_test = np.average(num_ingredients_test)
101 st_dev_test = np.std(num_ingredients_test)
102

103 print(mean_test)
104 print(st_dev_test)
105

106 plt.figure(figsize=(14, 14))
107 plt.hist(num_ingredients_test, bins=’auto’)
108 plt.title("Distribution of Ingredient Counts over All Test Recipes",
109 fontsize=22)
110 plt.xlabel("Number of Ingredients", fontsize=20)
111 plt.xticks(fontsize=16)
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112 plt.ylabel("Number of Test Recipes", fontsize=20)
113 plt.yticks(fontsize=16)
114 plt.savefig(’test_ingredients_histogram.png’)
115

116 t_stat, p_val = stats.ttest_ind(lhs_lengths, num_ingredients_test,
117 equal_var=False)
118 print(t_stat)
119 print(p_val)
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A.3 Variational Autoencoder (VAE)

k_means_test.py

1 from __future__ import absolute_import
2 from __future__ import division
3 from __future__ import print_function
4

5 from keras.models import load_model
6 import numpy as np
7 import matplotlib.pyplot as plt
8 from sklearn.cluster import KMeans
9 from sklearn import metrics

10

11 encoder = load_model(’vae_encoder_weights.h5’)
12 decoder = load_model(’vae_decoder_weights.h5’)
13

14 test_recipes_array = np.load("test_recipes_array_file.npy")
15 test_cuisine_array = np.load("test_cuisine_array_file.npy")
16 cuisine_names_array = np.load(’cuisine_names_array_file.npy’)
17

18 test_recipes_latent_means, _, _ = encoder.predict(test_recipes_array)
19

20 num_cuisines = cuisine_names_array.shape[0]
21

22 kmeans = KMeans(n_clusters = num_cuisines).fit(test_recipes_latent_means)
23

24 cuisines_predicted = kmeans.labels_
25

26 # Display a 2D plot of the k-means cuisine labels in the latent space
27 plt.figure(figsize=(20, 20))
28 cmap = plt.get_cmap(’viridis’, num_cuisines)
29 plt.scatter(test_recipes_latent_means[:, 0],
30 test_recipes_latent_means[:, 1],
31 c=cuisines_predicted,
32 cmap=cmap)
33 cbar = plt.colorbar()
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34 tick_locs = (np.arange(num_cuisines)+0.5)*(num_cuisines-1)/num_cuisines
35 cbar.set_ticks(tick_locs)
36 cbar.set_ticklabels(cuisine_names_array.tolist())
37 cbar.ax.tick_params(labelsize=16)
38 plt.title("K-Means Clustering of Kaggle What’s Cooking? Testing Subset "
39 "in 2D Latent Space", fontsize=24)
40 plt.xlabel("Latent Vector Component 1 (unitless)", fontsize=22)
41 plt.xticks(fontsize=20)
42 plt.ylabel("Latent Vector Component 2 (unitless)", fontsize=22)
43 plt.yticks(fontsize=20)
44 plt.savefig("vae_mean_k_means.png", bbox_inches=’tight’, pad_inches=0)
45 plt.show()
46

47 def purity_score(y_true, y_pred):
48 # Compute contingency matrix (also called confusion matrix)
49 contingency_matrix = metrics.cluster.contingency_matrix(y_true, y_pred)
50 # Return purity
51 return np.sum(np.amax(contingency_matrix,
52 axis=0))/np.sum(contingency_matrix)
53

54 print(purity_score(test_cuisine_array, cuisines_predicted))
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VAE_build.py

1 # The following license applies to most of the code
2 # below the "VAE machinery" comment.
3

4 # COPYRIGHT
5

6 # All contributions by Francois Chollet:
7 # Copyright (c) 2015 - 2019, Francois Chollet.
8 # All rights reserved.
9

10 # All contributions by Google:
11 # Copyright (c) 2015 - 2019, Google, Inc.
12 # All rights reserved.
13

14 # All contributions by Microsoft:
15 # Copyright (c) 2017 - 2019, Microsoft, Inc.
16 # All rights reserved.
17

18 # All other contributions:
19 # Copyright (c) 2015 - 2019, the respective contributors.
20 # All rights reserved.
21

22 # Each contributor holds copyright over their respective contributions.
23 # The Keras project versioning (Git) records all such contribution
24 # source information.
25

26 # The MIT License (MIT)
27

28 # Permission is hereby granted, free of charge, to any person
29 # obtaining a copy of this software and associated documentation
30 # files (the "Software"), to deal in the Software without restriction,
31 # including without limitation the rights to use, copy, modify, merge,
32 # publish, distribute, sublicense, and/or sell copies of the Software,
33 # and to permit persons to whom the Software is furnished to do so,
34 # subject to the following conditions:
35
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36 # The above copyright notice and this permission notice shall be
37 # included in all copies or substantial portions of the Software.
38

39 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
40 # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
41 # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
42 # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
43 # ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
44 # CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
45 # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
46

47 from __future__ import absolute_import
48 from __future__ import division
49 from __future__ import print_function
50

51 from keras.layers import Lambda, Input, Dense
52 from keras.models import Model
53 from keras.losses import mse, binary_crossentropy
54 from keras.utils import plot_model
55 from keras import backend as K
56

57 import numpy as np
58 import matplotlib.pyplot as plt
59 import argparse
60 import os
61

62 # Import data
63

64 train_recipes_array = np.load("train_recipes_array_file.npy")
65 train_cuisine_array = np.load("train_cuisine_array_file.npy")
66 test_recipes_array = np.load("test_recipes_array_file.npy")
67 test_cuisine_array = np.load("test_cuisine_array_file.npy")
68 cuisine_names_array = np.load(’cuisine_names_array_file.npy’)
69

70 num_recipes = train_recipes_array.shape[0] + test_recipes_array.shape[0]
71 num_ingredients = train_recipes_array.shape[1]
72 num_clusters = cuisine_names_array.shape[0]
73

74 np.save("train_recipes_array_file", train_recipes_array)
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75 np.save("test_recipes_array_file", test_recipes_array)
76 np.save("train_cuisine_array_file", train_cuisine_array)
77 np.save("test_cuisine_array_file", test_cuisine_array)
78

79 # VAE machinery
80

81 # reparameterization trick
82 # instead of sampling from Q(z|X), sample eps = N(0,I)
83 # z = z_mean + sqrt(var)*eps
84 def sampling(args):
85 """Reparameterization trick by sampling from an isotropic unit Gaussian.
86 # Arguments
87 args (tensor): mean and log of variance of Q(z|X)
88 # Returns
89 z (tensor): sampled latent vector
90 """
91

92 z_mean, z_log_var = args
93 batch = K.shape(z_mean)[0]
94 dim = K.int_shape(z_mean)[1]
95 # by default, random_normal has mean=0 and std=1.0
96 epsilon = K.random_normal(shape=(batch, dim))
97 return z_mean + K.exp(0.5 * z_log_var) * epsilon
98

99 def plot_results(models,
100 data,
101 batch_size=64,
102 model_name="vae_food"):
103 """Plots labels and recipes as function of 2-dim latent vector
104 # Arguments
105 models (tuple): encoder and decoder models
106 data (tuple): test data and label
107 batch_size (int): prediction batch size
108 model_name (string): which model is using this function
109 """
110

111 encoder, decoder = models
112 x_test, y_test = data
113 os.makedirs(model_name, exist_ok=True)
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114

115 filename = os.path.join(model_name, "vae_mean.png")
116 # display a 2D plot of the digit classes in the latent space
117 z_mean, _, _ = encoder.predict(x_test,
118 batch_size=batch_size)
119 plt.figure(figsize=(20, 20))
120 cmap = plt.get_cmap(’viridis’, num_clusters)
121 plt.scatter(z_mean[:, 0], z_mean[:, 1], c=y_test, cmap=cmap)
122 cbar = plt.colorbar()
123 tick_locs = (np.arange(num_clusters) + 0.5)*(num_clusters-1)/num_clusters
124 cbar.set_ticks(tick_locs)
125 cbar.set_ticklabels(cuisine_names_array.tolist())
126 cbar.ax.tick_params(labelsize=16)
127 plt.title("True Labeling of Kaggle What’s Cooking? Testing Subset "
128 "in 2D Latent Space", fontsize=24)
129 plt.xlabel("Latent Vector Component 1 (unitless)", fontsize=22)
130 plt.xticks(fontsize=20)
131 plt.ylabel("Latent Vector Component 2 (unitless)", fontsize=22)
132 plt.yticks(fontsize=20)
133 plt.savefig(filename, bbox_inches=’tight’, pad_inches=0)
134 plt.show()
135

136 # network parameters
137 input_shape = (num_ingredients, )
138 intermediate_dim = 512
139 batch_size = 64
140 latent_dim = 2
141 epochs = 100
142

143 # VAE model = encoder + decoder
144 # build encoder model
145 inputs = Input(shape=input_shape, name=’encoder_input’)
146 x = Dense(intermediate_dim, activation=’relu’)(inputs)
147 z_mean = Dense(latent_dim, name=’z_mean’)(x)
148 z_log_var = Dense(latent_dim, name=’z_log_var’)(x)
149

150 # use reparameterization trick to push the sampling out as input
151 # note that "output_shape" isn’t necessary with the TensorFlow backend
152 z = Lambda(sampling, output_shape=(latent_dim,), name=’z’)([z_mean,
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153 z_log_var])
154

155 # instantiate encoder model
156 encoder = Model(inputs, [z_mean, z_log_var, z], name=’encoder’)
157 encoder.summary()
158 plot_model(encoder, to_file=’vae_mlp_encoder.png’, show_shapes=True)
159

160 # build decoder model
161 latent_inputs = Input(shape=(latent_dim,), name=’z_sampling’)
162 x = Dense(intermediate_dim, activation=’relu’)(latent_inputs)
163 outputs = Dense(num_ingredients, activation=’sigmoid’)(x)
164

165 # instantiate decoder model
166 decoder = Model(latent_inputs, outputs, name=’decoder’)
167 decoder.summary()
168 plot_model(decoder, to_file=’vae_mlp_decoder.png’, show_shapes=True)
169

170 # instantiate VAE model
171 outputs = decoder(encoder(inputs)[2])
172 vae = Model(inputs, outputs, name=’vae_mlp’)
173

174 models = (encoder, decoder)
175 data = (test_recipes_array, test_cuisine_array)
176

177 # VAE loss
178 reconstruction_loss = binary_crossentropy(inputs, outputs)
179

180 reconstruction_loss *= num_ingredients
181 kl_loss = 1 + z_log_var - K.square(z_mean) - K.exp(z_log_var)
182 kl_loss = K.sum(kl_loss, axis=-1)
183 kl_loss *= -0.5
184 vae_loss = K.mean(reconstruction_loss + kl_loss)
185 vae.add_loss(vae_loss)
186 vae.compile(optimizer=’adam’)
187 vae.summary()
188 plot_model(vae, to_file=’vae_mlp.png’, show_shapes=True)
189

190 # train the autoencoder
191 vae.fit(train_recipes_array,
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192 epochs=epochs,
193 batch_size=batch_size,
194 validation_data=(test_recipes_array, None))
195 vae.save_weights(’vae_mlp_weights.h5’)
196 encoder.save(’vae_encoder_weights.h5’)
197 decoder.save(’vae_decoder_weights.h5’)
198

199 plot_results(models,
200 data,
201 batch_size=batch_size,
202 model_name="vae_mlp")
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VAE_removal_test.py

1 from __future__ import absolute_import
2 from __future__ import division
3 from __future__ import print_function
4

5 from keras.models import load_model
6

7 import numpy as np
8

9 total_tests = 0.0
10 successful_tests = 0.0
11

12 encoder = load_model(’vae_encoder_weights.h5’)
13 decoder = load_model(’vae_decoder_weights.h5’)
14 analyzed_recipes_array = np.load("test_recipes_array_file.npy")
15

16 num_ingredients = analyzed_recipes_array.shape[1]
17

18 for index_ingredient in range(num_ingredients):
19 indices_recipes_with_current_ingredient \
20 = np.flatnonzero(analyzed_recipes_array[:,index_ingredient])
21

22 num_recipes_with_current_ingredient \
23 = indices_recipes_with_current_ingredient.shape[0]
24

25 if num_recipes_with_current_ingredient > 0:
26 ingredients_recipes_with_current_ingredient \
27 = analyzed_recipes_array[indices_recipes_with_current_ingredient,:]
28

29 ingredients_recipes_with_current_ingredient[:,index_ingredient] \
30 = 0
31

32 recipes_modified_latent_means, _, _ \
33 = encoder.predict(ingredients_recipes_with_current_ingredient)
34

35 recipes_modified_latent_means_reshaped \
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36 = recipes_modified_latent_means.reshape(-1,
37 recipes_modified_latent_means.shape[-1])
38

39 recipes_modified_reconstructed \
40 = decoder.predict(recipes_modified_latent_means_reshaped,
41 batch_size=262144)
42

43 total_tests = total_tests + num_recipes_with_current_ingredient
44

45 def reconstruct_is_successful(vector_1d):
46 if vector_1d[index_ingredient] < np.percentile(vector_1d, 2):
47 return 1.0
48 else:
49 return 0.0
50

51 reconstruction_results_by_row \
52 = np.apply_along_axis(reconstruct_is_successful,
53 1, recipes_modified_reconstructed)
54 successful_tests = successful_tests \
55 + np.sum(reconstruction_results_by_row)
56

57 if total_tests > 0:
58 hit_rate = successful_tests / total_tests
59 print(hit_rate)
60

61 with open(’VAE_removal_test_results.txt’, ’a’) as results_file:
62 results_file.write(’%d, %f \n’ % (index_ingredient, hit_rate))
63

64 print(index_ingredient)
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VAE_addition_test.py

1 from __future__ import absolute_import
2 from __future__ import division
3 from __future__ import print_function
4

5 from keras.models import load_model
6 import numpy as np
7

8 total_tests = 0.0
9 successful_tests = 0.0

10

11 encoder = load_model(’vae_encoder_weights.h5’)
12 decoder = load_model(’vae_decoder_weights.h5’)
13 test_recipes = np.load("test_recipes_array_file.npy")
14

15 num_ingredients = test_recipes.shape[1]
16

17 recipes_unmodified_latent, _, _ = encoder.predict(test_recipes)
18

19 for index_ingredient in range(num_ingredients):
20 indices_recipes_with_current_ingredient = np.flatnonzero(
21 test_recipes[:,index_ingredient])
22

23 num_recipes_with_current_ingredient \
24 = indices_recipes_with_current_ingredient.shape[0]
25

26 if(num_recipes_with_current_ingredient > 0):
27

28 ingredients_recipes_with_current_ingredient \
29 = test_recipes[indices_recipes_with_current_ingredient,:]
30

31 ingredients_recipes_with_current_ingredient[:,index_ingredient] \
32 = 0
33

34 recipes_modified_latent, _, _ \
35 = encoder.predict(ingredients_recipes_with_current_ingredient)
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36

37 difference_vectors = \
38 recipes_unmodified_latent[
39 indices_recipes_with_current_ingredient] \
40 - recipes_modified_latent
41

42 latent_sums = recipes_modified_latent[np.newaxis,:,:] \
43 + difference_vectors[:,np.newaxis,:]
44

45 latent_sums_reshaped = latent_sums.reshape(-1,
46 latent_sums.shape[-1])
47

48 latent_sum_indices_to_delete = np.arange(0,
49 (num_recipes_with_current_ingredient
50 * num_recipes_with_current_ingredient) - 1,
51 num_recipes_with_current_ingredient + 1)
52

53 latent_sums_unique = np.delete(latent_sums_reshaped,
54 latent_sum_indices_to_delete, 0)
55

56 reconstructed_sums = decoder.predict(latent_sums_unique,
57 batch_size=262144)
58

59 total_tests = total_tests \
60 + float(num_recipes_with_current_ingredient \
61 * (num_recipes_with_current_ingredient - 1))
62

63 def reconstruct_is_successful(vector_1d):
64 if vector_1d[index_ingredient] > np.percentile(vector_1d, 98):
65 return 1.0
66 else:
67 return 0.0
68

69 reconstruction_results_by_row = np.apply_along_axis(
70 reconstruct_is_successful,
71 1,
72 reconstructed_sums)
73

74 successful_tests = successful_tests \
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75 + np.sum(reconstruction_results_by_row)
76

77 if total_tests > 0:
78 hit_rate = successful_tests/total_tests
79 print(hit_rate)
80

81 with open(’VAE_addition_test_results.txt’, ’a’) as results_file:
82 results_file.write(’%d, %f \n’ % (index_ingredient, hit_rate))
83

84 print(index_ingredient)
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A.4 Generative Adversarial Network (GAN)

GAN_test.py

1 # The following license applies to most of the GAN class:
2

3 # MIT License
4

5 # Copyright (c) 2017 Erik Linder-Noren
6

7 # Permission is hereby granted, free of charge, to any person
8 # obtaining a copy of this software and associated documentation
9 # files (the "Software"), to deal in the Software without restriction,

10 # including without limitation the rights to use, copy, modify, merge,
11 # publish, distribute, sublicense, and/or sell copies of the Software,
12 # and to permit persons to whom the Software is furnished to do so,
13 # subject to the following conditions:
14

15 # The above copyright notice and this permission notice shall be
16 # included in all copies or substantial portions of the Software.
17

18 # THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
19 # EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES
20 # MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT.
21 # IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR
22 # ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF
23 # CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
24 # WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
25

26 from __future__ import print_function, division
27

28 from keras.datasets import mnist
29 from keras.layers import Input, Dense, Reshape, Flatten, Dropout
30 from keras.layers import BatchNormalization, Activation, ZeroPadding2D
31 from keras.layers.advanced_activations import LeakyReLU
32 from keras.layers.convolutional import UpSampling2D, Conv2D
33 from keras.models import Sequential, Model
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34 from keras.utils import plot_model
35 from keras.optimizers import Adam
36

37 import matplotlib.pyplot as plt
38 import numpy as np
39 import csv
40

41 # Load train and test data from npy file generated earlier by VAE code
42

43 data_path = ’../’
44 train_recipes_array = np.load(data_path+’test_recipes_array_file.npy’)
45 test_recipes_array = np.load(data_path+’test_recipes_array_file.npy’)
46

47 num_recipes = train_recipes_array.shape[0] + test_recipes_array.shape[0]
48 total_num_ingredients = train_recipes_array.shape[1]
49

50 class GAN():
51 def __init__(self):
52 self.num_ingredients = total_num_ingredients
53 self.recipe_shape = (self.num_ingredients,1)
54 self.latent_dim = 100
55

56 optimizer = Adam(0.0002, 0.5)
57

58 # Build and compile the discriminator
59 self.discriminator = self.build_discriminator()
60 self.discriminator.compile(loss=’binary_crossentropy’,
61 optimizer=optimizer,
62 metrics=[’accuracy’])
63

64 # Build the generator
65 self.generator = self.build_generator()
66

67 # The generator takes noise as input and generates recipes
68 z = Input(shape=(self.latent_dim,))
69 recipes = self.generator(z)
70

71 # For the combined model we will only train the generator
72 self.discriminator.trainable = False
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73

74 # The discriminator takes generated recipes as input and
75 # determines validity
76 validity = self.discriminator(recipes)
77

78 # The combined model (stacked generator and discriminator)
79 # Trains the generator to fool the discriminator
80 self.combined = Model(z, validity)
81 self.combined.compile(loss=’binary_crossentropy’, optimizer=optimizer)
82

83

84 def build_generator(self):
85

86 model = Sequential()
87

88 model.add(Dense(256, input_dim=self.latent_dim))
89 model.add(LeakyReLU(alpha=0.2))
90 model.add(BatchNormalization(momentum=0.8))
91 model.add(Dense(512))
92 model.add(LeakyReLU(alpha=0.2))
93 model.add(BatchNormalization(momentum=0.8))
94 model.add(Dense(1024))
95 model.add(LeakyReLU(alpha=0.2))
96 model.add(BatchNormalization(momentum=0.8))
97 model.add(Dense(np.prod(self.recipe_shape), activation=’tanh’))
98 model.add(Reshape(self.recipe_shape))
99

100 model.summary()
101 plot_model(model, to_file=’GAN_generator.png’, show_shapes=True)
102

103 noise = Input(shape=(self.latent_dim,))
104 recipes = model(noise)
105

106 return Model(noise, recipes)
107

108 def build_discriminator(self):
109

110 model = Sequential()
111
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112 model.add(Flatten(input_shape=self.recipe_shape))
113 model.add(Dense(512))
114 model.add(LeakyReLU(alpha=0.2))
115 model.add(Dense(256))
116 model.add(LeakyReLU(alpha=0.2))
117 model.add(Dense(1, activation=’sigmoid’))
118

119 model.summary()
120 plot_model(model, to_file=’GAN_discriminator.png’,
121 show_shapes=True)
122

123 recipes = Input(shape=self.recipe_shape)
124 validity = model(recipes)
125

126 return Model(recipes, validity)
127

128 def train(self, epochs, batch_size=128, sample_interval=50):
129

130 # Load the dataset
131 X_train = train_recipes_array
132 X_train = np.expand_dims(X_train, axis=3)
133

134 # Adversarial ground truths
135 valid = np.ones((batch_size, 1))
136 fake = np.zeros((batch_size, 1))
137

138 for epoch in range(epochs):
139

140 # ---------------------
141 # Train Discriminator
142 # ---------------------
143

144 # Select a random batch of recipes
145 idx = np.random.randint(0, X_train.shape[0], batch_size)
146 recipes = X_train[idx]
147

148 noise = np.random.normal(0, 1, (batch_size, self.latent_dim))
149

150 # Generate a batch of new recipes
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151 gen_recipes = self.generator.predict(noise)
152

153 # Train the discriminator
154 d_loss_real \
155 = self.discriminator.train_on_batch(recipes, valid)
156 d_loss_fake \
157 = self.discriminator.train_on_batch(gen_recipes, fake)
158 d_loss = 0.5 * np.add(d_loss_real, d_loss_fake)
159

160 # ---------------------
161 # Train Generator
162 # ---------------------
163

164 noise = np.random.normal(0, 1, (batch_size, self.latent_dim))
165

166 # Train the generator (to have the discriminator label
167 # samples as valid)
168 g_loss = self.combined.train_on_batch(noise, valid)
169

170 # Plot the progress
171 print ("%d [D loss: %f, acc.: %.2f%%] [G loss: %f]" %
172 (epoch, d_loss[0], 100*d_loss[1], g_loss))
173

174 # Save progress to files
175 with open(’D_loss_points.txt’, ’a’) as D_loss_file:
176 D_loss_file.write(’%d, %f \n’ % (epoch, d_loss[0]))
177

178 with open(’G_loss_points.txt’, ’a’) as G_loss_file:
179 G_loss_file.write(’%d, %f \n’ % (epoch, g_loss))
180

181 with open(’D_accuracy_points.txt’, ’a’) as D_accuracy_file:
182 D_accuracy_file.write(’%d, %.2f \n’ % (epoch, d_loss[1]))
183

184

185 if __name__ == ’__main__’:
186 num_epochs = 10000
187

188 gan = GAN()
189 gan.train(epochs=num_epochs, batch_size=32, sample_interval=200)
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190

191 epoch = np.arange(1, num_epochs).astype(’float32’)
192 D_loss = []
193 G_loss = []
194 D_accuracy = []
195

196 with open(’D_loss_points.txt’,’r’) as csvfile:
197 plots = csv.reader(csvfile, delimiter=’,’)
198 for row in plots:
199 D_loss.append(float(row[1]))
200

201 with open(’G_loss_points.txt’,’r’) as csvfile:
202 plots = csv.reader(csvfile, delimiter=’,’)
203 for row in plots:
204 G_loss.append(float(row[1]))
205

206 with open(’D_accuracy_points.txt’,’r’) as csvfile:
207 plots = csv.reader(csvfile, delimiter=’,’)
208 for row in plots:
209 D_accuracy.append(float(row[1]))
210

211 plt.plot(epoch, D_loss, label=’Discriminator Loss’)
212 plt.plot(epoch, G_loss, label=’Generator Loss’)
213 plt.xlabel(’Epoch Number’)
214 plt.ylabel(’Loss Function Value (unitless)’)
215 plt.title("Generator and Discriminator Loss Function Values "
216 "After Every Epoch")
217 plt.legend()
218 plt.savefig(’GAN_loss_results.png’)
219

220 plt.plot(epoch, D_accuracy)
221 plt.xlabel(’Epoch Number’)
222 plt.ylabel(’Accuracy Rate’)
223 plt.title(’Discriminator Accuracy Rate After Every Epoch’)
224 plt.savefig(’GAN_discriminator_accuracy_results.png’)
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B Diagrams

In all diagrams, the "None" parameters are dummy variables that ensure all dimensions
are represented as tuples in Keras.

B.1 Variational Autoencoder (VAE)

Figure B.1: VAE encoder architecture. Although it is technically not a layer, the final sam-
pling step is represented as an intermediate layer due to Keras compatibility requirements.

Figure B.2: VAE decoder architecture
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B.2 Generative Adversarial Network (GAN)

In each GAN component’s diagram, the first box shows the components’s unique Keras
ID and does not provide any actual information about the component’s architecture. In
addition, the final and first "layers" of the generator and discriminator, respectively, are
not true layers but solely means to reshape the final outputs to fulfill Keras requirements.

Figure B.3: GAN generator architecture.
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Figure B.4: GAN discriminator architecture.
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C Outputs

C.1 Apriori Algorithm

Figure C.1: Distribution of sizes of antecedents of 8246 association rules computed by the
apriori algorithm based on the test subset.
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Figure C.2: Distribution of number of ingredients in the 7955 recipes in the test subset.
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C.2 Variational Autoencoder (VAE)

Figure C.3: VAE latent space with true labeling of test subset latent vectors. The label (i.e.
cuisine group) corresponding to each latent vector is specified by its color.

60



Figure C.4: VAE latent space with k-means labeling of test subset latent vectors. The label
(i.e. cuisine group) corresponding to each latent vector is specified by its color.
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D Budget

Since we used a freely available dataset and relied on non-proprietary algorithms that have
been published in the publicly available machine learning literature, this project involved
no purchases or expenditures. However, researchers seeking to use proprietary datasets for
similar studies in the future may have to pay for such datasets. In addition, the execution
of the flavor Turing test with the results of an especially promising candidate algorithm
may require paying humans to compare human and machine generated flavors.
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