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Cholera caused by Vibrio cholerae O1 confers at least 3 to 10 years of protection against subsequent disease regardless of age,
despite a relatively rapid fall in antibody levels in peripheral blood, suggesting that memory B cell responses may play an impor-
tant role in protection. The V. cholerae O1-specific polysaccharide (OSP) component of lipopolysaccharide (LPS) is responsible
for serogroup specificity, and it is unclear if young children are capable of developing memory B cell responses against OSP, a T
cell-independent antigen, following cholera. To address this, we assessed OSP-specific memory B cell responses in young chil-
dren (2 to 5 years, n � 11), older children (6 to 17 years, n � 21), and adults (18 to 55 years, n � 28) with cholera caused by V.
cholerae O1 in Dhaka, Bangladesh. We also assessed memory B cell responses against LPS and vibriocidal responses, and plasma
antibody responses against OSP, LPS, and cholera toxin B subunit (CtxB; a T cell-dependent antigen) on days 2 and 7, as well as
days 30, 90, and 180 after convalescence. In all age cohorts, vibriocidal responses and plasma OSP, LPS, and CtxB-specific re-
sponses peaked on day 7 and fell toward baseline over the follow-up period. In comparison, we were able to detect OSP memory
B cell responses in all age cohorts of patients with detectable responses over baseline for 90 to 180 days. Our results suggest that
OSP-specific memory B cell responses can occur following cholera, even in the youngest children, and may explain in part the
age-independent induction of long-term immunity following naturally acquired disease.

Cholera is a severe diarrheal disease that is endemic in 50 coun-
tries and associated with recurrent outbreaks and epidemics,

especially in resource-limited settings (1). Vibrio cholerae can be
classified into approximately 200 serogroups, and epidemic chol-
era can be caused by V. cholerae O1 and O139 serogroups (1, 2). V.
cholerae O1 organisms can be biochemically typed into classical
and El Tor biotypes. The O1 serogroup consists of Ogawa and
Inaba serotypes, depending, respectively, on the presence or ab-
sence of a 2-O-methyl group in the nonreducing (upstream) ter-
minal sugar of the O-specific polysaccharide (OSP) component of
the lipopolysaccharide (LPS) (3, 4). Protection against cholera is
serogroup specific, with serogroup specificity being determined
by the OSP component of LPS (5–10). Previous infection with V.
cholerae O1 provides no protection against cholera caused by V.
cholerae O139 and vice versa (9, 11, 12). Ogawa and Inaba sero-
types frequently fluctuate during cholera outbreaks, switching
most commonly from Ogawa to Inaba (13). Immune responses
against Inaba and Ogawa OSP cross-react, with higher immune
responses targeting the homologous infecting serotype. Currently,
a hybrid strain of V. cholerae O1 El Tor expressing classical cholera
toxin (CT) predominates globally (14, 15).

Children under 5 years of age in regions where cholera is en-
demic have the highest burden of disease (16, 17), although both
children and adults are vulnerable during cholera epidemics (18–
20). We have previously shown that household contacts of cholera
patients who are under 5 years of age have a significantly higher

short-term risk of acquiring cholera infection than older house-
hold contacts in the same family (21). Unfortunately, vaccination
of young children with currently available oral killed cholera vac-
cines results in lower protective efficacy and shorter duration of
protection than those afforded by vaccination of older individuals
(22, 23). Although the mechanism of protection against cholera is
not well understood, epidemiological and challenge studies show
that natural infection with V. cholerae O1 prompts protection
against cholera that can last for at least 3 to 10 years, and protec-
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tion against cholera is independent of age (24–26). The most used
indirect marker of protection against cholera is the serum vibrio-
cidal antibody response, which is a complement-dependent anti-
body assay in serum. However, there is no threshold vibriocidal
level above which protection is ensured (27, 28). We have also
previously shown that baseline plasma IgA antibody levels and
circulating IgG memory B cell (MBC) responses to V. cholerae O1
LPS correlate with protection against cholera in household con-
tacts of cholera patients (21, 29). We have recently developed the
technology to isolate V. cholerae O1 OSP, and since serogroup
specificity is determined by OSP, we have begun evaluating OSP
responses in cholera patients (30–33). We have found that OSP
serum and mucosal responses occur in patients with cholera, that
the OSP response correlates with vibriocidal and LPS responses,
and that the vibriocidal response can be largely adsorbed away by
OSP (30–32).

We have also found that OSP serum responses are much more
prominent following naturally acquired disease than following
vaccination with oral killed cholera vaccine, especially in young
children (30, 31). This may in part be due to the fact that OSP is a
polysaccharide and as such is a T cell-independent antigen. We
have also previously found that OSP memory B cell responses
develop in adults following naturally acquired cholera, but
whether such responses develop in young children is uncertain
and of import, since young children are afforded long-term pro-
tection against cholera similarly to adults following naturally ac-
quired disease through an unclear mechanism. As such, the aim of
this current study was to characterize memory B cell responses to
OSP, in young children, older children, and adults with cholera
caused by V. cholerae O1 in Dhaka, Bangladesh.

MATERIALS AND METHODS
Ethics statement. The study and all sample collections and analyses were
approved by the research review and the ethical review committees of the
International Centre for Diarrhoeal Disease Research, Bangladesh (ICD-
DR,B), and the Institutional Review Board of the Massachusetts General
Hospital. We obtained written informed consent from all adult partici-
pants �18 to 55 years of age and from parents or guardians of children 2
to 17 years of age. We also acquired assent from participants 11 to 17 years
of age.

Study participants and specimen collection. We enrolled 11 younger
children (aged 2 to 5 years), 21 older children (aged 6 to 17 years), and 28
adults (aged 18 to 55 years) with cholera who were admitted to the Interna-
tional Centre for Diarrheal Disease Research in Dhaka, Bangladesh (ICD-
DR,B), with acute watery diarrhea from whom stool cultures were positive for
Vibrio cholerae O1 between February 2012 and April 2014. Patients were
treated with intravenous cholera saline solution and/or oral rehydration
solution and azithromycin at the discretion of the attending physician
(34), and all recovered. We collected venous blood samples from study
participants following clinical stabilization at the acute stage of illness (day
2) and then again at convalescence on day 7, day 30, day 90, and day 180.

Isolation of PBMCs. We isolated peripheral blood mononuclear cells
(PBMCs) by centrifugation of diluted heparinized blood on Ficoll-
Isopaque (Pharmacia, Piscataway, NJ) and stored plasma at �20°C for
subsequent immunological analysis. We suspended freshly separated
PBMCs at a concentration of 107 cells/ml in RPMI complete medium
(Gibco, Carlsbad, CA) containing 10% heat-inactivated fetal bovine se-
rum (FBS; HyClone, Logan, UT). We used the resuspended cells for a
6-day culture assay to measure antigen-specific memory B cells by using
an enzyme-linked immunosorbent spot assay (ELISPOT) method (de-
scribed below).

Vibriocidal antibody assay. We assessed vibriocidal antibody re-
sponses in plasma as previously described, using guinea pig complement

(Sigma-Aldrich Chemie GmbH) and V. cholerae O1 Ogawa (X-25049) as
the target organism (9). We defined the vibriocidal titer as the reciprocal
of the highest dilution resulting in �50% reduction of the optical density
compared to that of control wells without plasma (12). We considered
those individuals responders who showed a �4-fold increase in vibrio-
cidal titer from baseline.

Assessing OSP-, LPS-, and CtxB-specific IgA, IgG, and IgM antibod-
ies in plasma. We assessed OSP-, LPS-, and CtxB-specific IgA, IgG, and
IgM antibody responses in plasma by using enzyme-linked immunosor-
bent assay (ELISA) procedures, as previously described (9, 31, 32, 35).
Briefly, we coated 96-well polystyrene plates (Nunc F; Nunc, USA) with V.
cholerae O1 Ogawa OSPc-bovine serum albumin (BSA) (1 �g/ml) dis-
solved in carbonate buffer (pH 9.6 to 9.8), or O1 Ogawa LPS (2.5 �g/ml)
dissolved in phosphate-buffered saline (PBS) (pH 7.2 to 7.4) or coated
with 0.3 nmol of ganglioside GM1/ml, followed by recombinant CtxB
subunit (0.5 �g/ml) (gift from A. M. Svennerholm, University of Gothen-
burg, Gothenburg, Sweden) (36–38). We added 100 �l of plasma (diluted
1:50 for OSP and LPS and 1:100 for CtxB in 0.1% bovine serum albumin
in phosphate-buffered saline– 0.05% Tween) per well and detected re-
sponses using horseradish peroxidase-conjugated secondary antibodies to
human IgG, IgA, or IgM (Jackson ImmunoResearch, West Grove, PA;
1:1,000 dilution). After incubation at 37°C and washing, we developed the
plates with orthophenylene diamine (Sigma, St. Louis, MO) in 0.1 M
sodium citrate buffer (pH 4.5) and 0.012% hydrogen peroxide followed
by reading the plates kinetically at 450 nm for 5 min (30, 39). We normal-
ized the maximal rate of change in optical density in milli-absorbance
units per minute across plates by calculating the ratio of the test sample to
a standard of pooled convalescent-phase sera from previously infected
cholera patients that was included on each plate. We considered individ-
uals who showed a �2-fold increase in OSP, LPS, and CtxB responses
compared to baseline values at study day 2 to be responders.

Memory B cell culture and ELISPOT. We quantified memory B cells
on days 2, 30, 90, and 180 by using an enzyme-linked immunospot assay
(ELISPOT), as previously described (36, 40–42). Briefly, we placed 5 �
105 PBMCs/well in cell culture plates (BD Biosciences, San Jose, CA)
containing RPMI 1640, 10% FBS, 200 U of penicillin/ml, 200 �g of strep-
tomycin/ml, 2 mM L-glutamine, and 50 �M �-mercaptoethanol. To stim-
ulate antigen-independent proliferation and differentiation of memory B
cells into antibody-secreting cells (ASC), we added a mixture of three B
cell-specific mitogens containing 6 �g/ml CpG oligonucleotide (Operon,
Huntsville, AL), a 1/100,000 dilution of crude pokeweed mitogen (PWM)
extract, and a 1/10,000 dilution of fixed Staphylococcus aureus Cowan
(Sigma, St. Louis, MO) to all wells except those being used as negative
controls, to which only medium was added. Plates were incubated at 37°C
in 5% CO2 for 5 to 6 days, after which the cells were harvested and washed.

To measure antigen-specific memory B cell responses by ELISPOT, we
coated nitrocellulose-bottom plates (MSHAN-4550; Millipore, Bedford,
MA) with OSPc-BSA (10 �g/ml), LPS (25 �g/ml), and GM1 ganglioside
(3 nmol/ml) followed by recombinant CtxB (2.5 �g/ml), 5 �g/ml affinity-
purified goat anti-human immunoglobulin (Jackson Immunology Re-
search, West Grove, PA) as a positive control, or 2.5 �g/ml keyhole limpet
hemocyanin (KLH) (Pierce Biotechnology, Rockford, IL) as a negative
control. After completion of blocking with RPMI 1640 containing 10%
FBS, we added 20% of the cells from each culture plate well to assess total
ASC in wells coated with anti-human immunoglobulin, and 80% were
used to assess for antigen-specific ASC responses. Plates were incubated
for 5 h at 37°C in 5% CO2. We then washed the plates and added alkaline
phosphatase-conjugated goat anti-human IgG, horseradish peroxidase-
conjugated goat anti-human IgA (Southern Biotech, Birmingham, AL),
or horseradish peroxidase-conjugated mouse anti-human IgM (Hybrid-
oma Reagent Laboratory, Baltimore, MD) at 1:500 dilutions. After an
overnight incubation at 4°C, we developed the IgG plates with BCIP
(5-bromo-4-chloro-3-indolylphosphate)-nitroblue tetrazolium (NBT)
(Sigma) and the IgA and IgM plates with 3-amino-9-ethylcarbazole
(AEC) (Sigma). The number of memory B cell ASC per well was indepen-
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dently counted by two people in a sample-blinded fashion using a stereo-
microscope, and the counts were averaged. We expressed the results as the
percentage of antigen-specific memory B cells per total IgA, IgG, or IgM
memory B cells. We used inclusion and exclusion criteria for data analysis
as previously described (43, 44).

Statistical analysis. We assessed the differences in the magnitudes of
responses using the Wilcoxon signed-rank test and Mann-Whitney U test,
as appropriate. We used Spearman’s correlation to assess the relationship
between immune responses. All reported P values were two-tailed, with a
cutoff of P � 0.05 considered a threshold for statistical significance. Data
analysis and figure preparation were performed using GraphPad Prism
5.0 (GraphPad Software, Inc., La Jolla, CA) and SPSS 14 (SPSS Inc., Chi-
cago, IL).

RESULTS
Study population. We enrolled 11 younger children, 21 older
children, and 28 adults who were admitted with cholera at the
ICDDR,B. During the study period, Ogawa was the predominant
serotype, and all cholera patients enrolled in this study were in-
fected with V. cholerae O1 El Tor Ogawa. Baseline demographic
and clinical characteristics of study participants are shown in
Table 1.

Vibriocidal responses. We assessed Ogawa vibriocidal titers
on days 2, 7, 30, 90, and 180 (Fig. 1). The baseline geometric mean
(GM) reciprocal vibriocidal titer (GMT) in younger children was
31 (95% confidence interval [CI], 8 to 117); in older children, it
was 24 (95% CI, 10 to 59); and in adults, it was 26 (95% CI, 16 to
42). All but one patient increased their vibriocidal titer �4-fold
from the acute to the convalescent phase of illness. Com-
pared to baseline, responses peaked on day 7 (younger chil-
dren, GMT, 4,238; 95% CI, 2,118 to 8,479; P � 0.01; older
children, GMT, 2,032; 95% CI, 1,038 to 3,978; P � 0.0001; and
adults, GMT, 1,787; 95% CI, 1,218 to 2,621; P � 0.0001) and
remained elevated up to day 180 in older children (GMT, 114;
95% CI, 56 to 230; P � 0.05) and adults (GMT, 109; 95% CI, 61 to
197; P � 0.001). Vibriocidal responses on day 7 were higher in
young children than in adults (young children, GMT, 4,238; 95%
CI, 2,118 to 8,479; adults, GMT, 1,787; 95% CI, 1,218 to 2,621;
P � 0.01) but fell back to baseline by day 90.

OSP-, LPS-, and CtxB-specific antibody responses in plasma.
We assessed Ogawa OSP- and LPS-specific IgA, IgG, and IgM
antibody responses in plasma at the initial stage of infection
(day 2) and at other time points during convalescence in all age
groups of patients (Fig. 2). All age groups developed prominent
OSP and LPS responses in all three antibody isotypes that

peaked on day 7 compared to baseline levels (P � 0.01). OSP
and LPS responses closely correlated with each other (Spear-
man r � 0.71, 0.57, and 0.56, respectively, for IgA, IgG, and
IgM; all P values, �0.0001 [see Fig. S1 in the supplemental
material]), and OSP responses correlated with vibriocidal re-
sponses over 6 months of follow-up (Spearman r � 0.46, 0.50,
and 0.58 for IgA, IgG, and IgM, respectively; all P values,
�0.0001 [see Fig. S2 in the supplemental material]). Anti-OSP
and -LPS responses fell toward baseline after peaking on day 7,
although the responses were more prolonged in adults and
older children than in younger children.

CtxB-specific IgA and IgG antibody responses similarly
peaked on day 7 in all groups except in adults; in adults, CtxB-
specific IgG responses peaked on day 30 compared to day 2
(Fig. 3). CtxB-specific antibody responses lasted for 6 months
in adults (P � 0.05), returned to baseline level by day 180 in
older children, and returned to baseline by day 30 in younger
children (P � 0.02). Adults had lower baseline (day 2) CtxB-
specific IgG antibody responses than did children (P � 0.01),
and younger children developed higher responses on day 7
than did adults.

Antigen-specific memory B cell responses. We assessed OSP-
and LPS-specific memory B cell responses at four time points
(days 2, 30, 90, and 180) in the three age groups of patients. Due to
limited PBMC quantities, especially in the youngest children,
preference was given to assessing IgG and IgA memory B cell re-
sponses over IgM responses and assessing OSP over LPS re-
sponses. Not all isotypes and antigens could be assessed in each
patient. We did not assess CtxB memory responses.

Compared to baseline values, IgA OSP-specific (Fig. 4) and
LPS-specific (see Fig. S3 in the supplemental material) memory B
cell responses were detected in younger children, older children,
and adults by day 30. OSP IgA responses were detectable through
day 180 in the youngest children and day 90 in older children and
adults. OSP-specific IgG and IgM memory B cell responses were

TABLE 1 Demographic and clinical characteristics of cholera patients in
study

Characteristic

Value for age group:

2–5 yr
(n � 11)

6–17 yr
(n � 21)

18–55 yr
(n � 28)

Mean age, yr (range) 3.7 (2–5) 9.4 (6–17) 33.9 (19–51)
No. (%) of female subjects 3 (27) 8 (38) 10 (36)

No. (%) of subjects with
ABO blood group

A 2 (18) 7 (33) 7 (25)
B 3 (27) 7 (33) 10 (36)
AB 1 (9) 1 (5) 2 (7)
O 5 (45) 6 (29) 8 (29)

FIG 1 Vibriocidal antibody responses in plasma in Bangladeshi cholera pa-
tients by age group. The columns indicate geometric mean reciprocal end
titers, and error bars represent 95% confidence intervals. An asterisk denotes a
statistically significant difference (P � 0.05) from the baseline (day 2) titer.
Mean fold changes and responder frequencies are also shown. # indicates sta-
tistically significant differences between the study groups (P � 0.05). The x axis
in all figures shows day of illness or convalescence.
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also detectable in samples collected during convalescence (day 30,
OSP-specific IgG in adults; day 180, OSP-specific IgG in young
children; and day 90, OSP-specific IgM in older children). Inter-
estingly, we found a negative association of the presence of an IgA

memory B cell (MBC) response on day 30 and increasing age (IgA
r � �0.55, P � 0.0005 [Fig. 5]), although no such association was
evident for IgG or IgM OSP MBC responses (r � 0.17 and 0.07,
respectively; P � 0.32). The vibriocidal peak on day 7 correlated

FIG 2 Mean plasma IgA, IgG, and IgM antibody responses to OSP and LPS by age group as measured by ELISA, with error bars representing standard errors of
the means. An asterisk denotes a significant difference (P � 0.05) from the baseline (day 2). Mean fold changes and responder frequencies are also shown. #
indicates a statistically significant difference between the study groups (P � 0.05).
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with the development of IgA memory B cell responses on day 30
(IgA r � 0.37; P � 0.028 [see Fig. S4 in the supplemental mate-
rial]) but not IgG or IgM memory responses. We were unable to
demonstrate a correlation of day 7 OSP responses and the subse-
quent development of memory responses (see Fig. S5 in the sup-
plemental material).

DISCUSSION

In this study, we found that younger children, older children,
and adults develop detectable OSP memory B cell responses in
peripheral blood following cholera in Bangladesh. All age
groups also develop IgA, IgG, and IgM OSP-specific responses
in plasma, and OSP responses correlate with LPS responses and
vibriocidal responses. Although the immunologic mechanism
of protection against cholera is currently unknown, there is a
growing body of evidence that protection is mediated by OSP-
specific antibodies. These data include the fact that protection
against cholera is serogroup specific and that serogroup speci-
ficity is defined by OSP, that vibriocidal antibodies that can be
adsorbed away by OSP correlate with protection (32), that
OSP- and LPS-specific immune responses highly correlate with
each other (33), and that LPS memory B cell and IgA plasma
responses have previously been shown to correlate with protec-
tion against cholera in household contact studies, while mem-
ory B cell responses against cholera toxin (CT) are not associ-
ated with protection (21, 29). Protection against cholera can
persist for at least 3 to 10 years following naturally acquired
disease (24, 26), despite a return to baseline of vibriocidal and
plasma antibody responses within 6 to 12 months of disease
(36, 42). As such, memory responses may play a role in medi-
ating long-term anamnestic responses upon reexposure.

In our current study, prominent vibriocidal responses de-
veloped in all our age cohorts. The highest vibriocidal response
was detected in the youngest children, although it had returned
to baseline by day 90 in this group, but it remained elevated in
older children and adults through day 180. These prolonged
responses in older children and adults may suggest prior expo-
sure. Although the vibriocidal response was highest in the

youngest children, it is of interest that OSP- and LPS-specific
IgM and IgG peak responses were comparable in all age groups
and that OSP- and LPS-specific IgA responses were actually
highest in adults. This may suggest that mucosal IgA responses
may not be fully reflected in the functionality of the antibodies
assessed by the vibriocidal assay. This is of importance since the
serum vibriocidal assay may be a surrogate marker of immu-
nity at the intestinal surface that protects against V. cholerae, a
noninvasive luminal pathogen.

We also detected prominent OSP-specific responses in
plasma across all age groups and antibody isotypes. In general,
IgG and IgM responses persisted longer into convalescence
than did IgA responses, although IgA responses were detected
in late convalescence in adults and older children, perhaps sug-
gesting that IgA responses in serum may also be boosted by
repetitive exposure. This was also the case for the T cell-depen-
dent antigen CtxB.

A number of cholera vaccines are currently available or in de-
velopment, with oral killed cholera vaccines currently being com-
mercially available in a number of countries (45, 46). Oral killed
cholera vaccines are safe and protective and are significant assets
in global cholera control strategies. Unfortunately, protection af-
forded by oral killed cholera vaccines is of lower magnitude and of
shorter duration in children under 5 years of age than that in older
children and adults and than that afforded by naturally acquired
disease in children 5 years of age and younger (22, 23, 31, 43). We
have also previously shown that vaccination with an oral killed
cholera vaccine (Dukoral; whole-cell oral cholera vaccine supple-
mented with 1 mg/dose of recombinant nontoxic cholera toxin B
subunit [CtxB]; WCrBS; Crucell, Sweden) in the youngest chil-
dren is associated with a proregulatory (interleukin-10 [IL-10])
response, versus a proinflammatory (IL-17, interferon gamma,
and IL-13) response seen in young children with naturally ac-
quired cholera (47), and that OSP-specific memory B cell re-
sponses following oral killed cholera vaccination of adults are
markedly blunted following vaccination compared to what occurs
following naturally acquired disease (30). Whether OSP-specific

FIG 3 Mean plasma IgA and IgG antibody responses to CtxB by age group as measured by ELISA, with error bars representing standard errors of the means. An
asterisk denotes a significant difference (P � 0.05) from the baseline (day 2). Mean fold changes and responder frequencies are also shown. # indicates a
statistically significant difference between the study groups (P � 0.05).

OSP Memory B Cell Responses in Cholera Patients

May 2016 Volume 23 Number 5 cvi.asm.org 431Clinical and Vaccine Immunology

 on O
ctober 11, 2019 by guest

http://cvi.asm
.org/

D
ow

nloaded from
 

http://cvi.asm.org
http://cvi.asm.org/


memory B cell responses develop following immunization with
other oral cholera vaccines is currently unknown.

How memory B cell responses targeting OSP, a T cell-indepen-
dent antigen, develop in young children following naturally acquired
cholera is unclear. However, it should be recalled that cholera toxin is
a potent immunoadjuvant in addition to being an enterotoxin (48).
CT and LPS may activate mucosal innate immune responses (49),
and abnormalities in innate immune factors have been repetitively

associated with susceptibility to cholera (50–52). We have also re-
cently shown that mucosal invariant intestinal T (MAIT) cells are
activated during cholera and that this response correlates with the
development of antibodies against T cell-independent LPS but not T
cell-dependent CtxB (53). Interestingly, we found a negative associ-
ation of increasing age and presence of OSP-specific IgA memory B
cell responses on day 30, with the youngest children having the most
prominent OSP-specific memory B cell IgA responses in peripheral
blood as a percentage of total IgA cells. This is despite the observation
that adults had higher day 7 and day 30 OSP-specific IgA responses in
plasma than did younger children. It is possible that these observa-
tions are due to our relatively small cohort size. Alternatively, the
lower percentage in adults may represent relative selection of
higher-affinity B cells from previous exposure and B cell matura-
tion. We did not find an association of age and presence of OSP-
specific memory B IgG and IgM cells on day 30. In summary, we
found that memory B cell responses in young children to OSP, a T
cell-independent antigen, were equivalent to or more pronounced
than those detected in older individuals in Dhaka, Bangladesh. We
also found that the vibriocidal response correlated with the devel-
opment of IgA memory B cells targeting OSP (but not IgG and
IgM memory responses), perhaps again suggesting that the vibrio-
cidal response is a marker of an as-yet-poorly defined protective
mucosal immune response.

FIG 4 Mean OSP-specific IgA, IgG, and IgM memory B cell responses by age group, as measured by ELISPOT, expressed as the percent antigen-specific responses
of total isotype-specific memory B cells, with error bars representing standard errors of the means. An asterisk denotes a significant difference (P � 0.05) from
the baseline (day 2). # indicates a statistically significant difference between the study groups (P � 0.05).

FIG 5 Correlation between day 30 memory B cell IgA responses and age of
different age groups of cholera patients (n � 37). The Spearman correlation
coefficient (r) is shown.
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Our study has a number of limitations. Although it involved
detailed immunologic analysis of 60 cholera patients in Bangla-
desh, our cohort size by age was relatively limited, and the volume
of blood that could be drawn necessitated prioritization of analy-
ses, especially from the youngest children. This particularly lim-
ited our ability to fully assess IgM memory responses. Our young-
est children also had a mean age of 3.7 years (range, 2 to 5), and in
this area of cholera endemicity, it is possible that even many of
these children had previously been exposed to V. cholerae. We also
assessed memory B cell responses in blood, and it is possible that
long-term protection may actually be afforded by long-lived
plasma cells or memory B cells residing in intestinal tissue. We also
were able to assess responses only against Ogawa OSP since all of
our patients were infected with this serotype. Finally, we were
unable to stratify responses by other potential influences, includ-
ing blood group, micronutrient deficiency, and innate haplotypes,
although blood group and gender were not significantly different
in our three age cohorts. Despite these limitations, our study is
highly significant. We were able to detect OSP-specific memory B
cell responses in cholera patients regardless of age, suggesting that
long-lived immune responses that target OSP may indeed play a
role in providing long-term protection against cholera, even in the
youngest children.
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