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THE CATEGORY OF SINGULARITIES AS A CRYSTAL

AND GLOBAL SPRINGER FIBERS

D. ARINKIN AND D. GAITSGORY

Abstract. We prove the ‘Gluing Conjecture’ on the spectral side of the categorical geo-

metric Langlands conjecture. The key tool is the structure of crystal on the category of
singularities, which allows to reduce the conjecture to the question of homological triviality

of certain homotopy types. These homotopy types are obtained by gluing from a global

version of Springer fibers.
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Introduction

0.1. What is done in this paper? The main result of this paper is a proof of the ‘Gluing
Conjecture’ ([Ga3, Conjecture 9.3.7]), which constitutes one of the main steps towards the proof
of the categorical geometric Langlands conjecture. To prove the conjecture, we develop certain
techniques for working with the singular support of (ind)-coherent sheaves. The techniques are
quite general and may be of independent interest.

The paper is divided into three parts; Parts I and II contain general techniques, which are
then used to prove the Gluing Conjecture in Part III. Here is a brief outline of the paper; we
provide a more detailed description below.

0.1.1. In Part I, we study the notion of singular support for coherent sheaves (or complexes)
on a local complete intersection scheme (or, more generally, on a quasi-smooth derived scheme
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or stack). This notion was introduced in our previous paper, [AG]; the main idea of refining
the notion of support of coherent sheaves using cohomological operators originated in [BIK].
Roughly speaking, to a local complete intersection scheme Y , one can attach a scheme Sing(Y )
equipped with a Gm-action, and to any coherent sheaf F one can assign its singular support,
which is a conical (that is, Gm-invariant) subset SingSupp(F) ⊂ Sing(Y ).

Compared to [AG], Part I introduces two ideas:
Firstly, we work with the category of singularities in place of the category of coherent sheaves.

The main effect of this relatively minor change is that while the singular support of a coherent
sheaf is a conical subset of Sing(Y ), the singular support of an object in the category of singu-
larities is a subset of the fiberwise projectivization PSing(Y ). Explicitly, P Sing(Y ) is obtained
from Sing(Y ) by removing the fixed locus of Gm (which is identified with Y ) and then taking
the quotient by Gm.

The second and main new idea is an ‘upgrade’ of the notion of singular support. Specifically,
we show that the category of singularities of Y carries a natural structure of a crystal of cate-
gories over PSing(Y ). (Informally, a crystal of categories is a local system of categories over a
space.) This construction is crucial for the rest of the paper: it provides a way to translate some
complicated questions about ind-coherent sheaves into topological claims concerning PSing(Y ),
which tend to be easier.

0.1.2. In Part II, we develop a gluing formalism, which is motivated by applications to the
geometric Langlands program. Informally, this may be viewed as a kind of descent: given a
covering family fi : Zi → Y (of quasi-smooth stacks) satisfying certain conditions, we show
that one can recover an ind-coherent sheaf F on Y from some extra structure on ind-coherent
sheaves Fi on Zi. There are two key properties of this formalism:

Firstly, there are non-trivial restrictions on the singular support of sheaves F and Fi. Gener-
ally speaking, the singular support of Fi’s is required to be ‘smaller’ than the singular support
of F. In this way, the formalism describes ‘complicated’ (that is, having large singular support)
object F using ‘simple’ (that is, having small singular support) sheaves Fi. In fact, in the
application to the Gluing Conjecture, the singular support of all Fi’s is zero, which means that
Fi’s are usual quasi-coherent sheaves, which describe the more exotic ind-coherent sheaf F.

Secondly, the main condition on the cover fi : Zi → Y has topological nature. Specifically,
the condition concerns the topology of certain natural correspondences between the spaces
Sing(Zi) and Sing(Y ). Thus, questions about ind-coherent sheaves on stacks Zi and Y are
reduced to the more transparent claims about the topology of correspondences between Sing(Zi)
and Sing(Y ). This relies on the crystal structure constructed in Part I.

0.1.3. Finally, in Part III, we prove the Gluing Conjecture. Using the gluing formalism devel-
oped in Part II, we reduce the conjecture to a topological statement concerning (homological)
contractibility of certain homotopy types. These homotopy types are obtained by gluing gener-
alized Springer fibers, which parametrize reductions of a local system together with a nilpotent
infinitesimal symmetry to various parabolic subgroups. If the local system is trivial, we obtain
the usual Springer fibers and then the required homological contractibility follows from the
Springer correspondence. The general case relies on the study of the Bruhat-Tits stratification
on the generalized Springer fibers, which is the main technical result of Part III.

0.1.4. Remark. When one works with the derived category of an algebraic variety or a stack Y ,
one has to make a choice between the ‘large’ derived category (the unbounded quasicoherent
derived category) and the ‘small’ category of perfect complexes. The same choice applies
to various modifications of the derived category: the ‘large’ category of ind-coherent sheaves
versus the ‘small’ category of coherent sheaves (or, more precisely, the bounded coherent derived
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category), and the ‘large’ category of singularities (the quotient of the category of ind-coherent
sheaves by the quasicoherent derived category) versus the ‘small’ category of singularities (the
quotient of the bounded coherent derived category by the category of perfect complexes). If the
stack Y is ‘reasonable’, the ‘large’ categories are compactly generated by the respective ‘small’
categories; for this reason, it is sometimes possible to work with the more explicit ‘small’
categories. However, the crystal structure from Part I, as well as most results of Parts II and
III, make sense only for the ‘large’ categories.

0.2. The goal: the Gluing Conjecture. We now provide more details on the content of the
paper. First, to explain our motivation, let us informally describe the Gluing Conjecture and
its place in the geometric Langlands program. A precise statement of the Gluing Conjecture
can be found in Sect. 4.3.

0.2.1. Let X be a smooth and complete curve, and G a reductive group over an algebraically
closed ground field k of characteristic 0. We work on the spectral side of geometric Langlands
for G, which concerns the stack LocSysG that classifies G-local systems on X.

As was suggested in [AG], the category on the spectral side of geometric Langlands is a
certain modification of the category of quasi-coherent sheaves on LocSysG. Namely, it is the
full subcategory of IndCoh(LocSysG), consisting of objects whose singular support is contained
in the global nilpotent cone. We refer the reader to [AG, Sect. 11], where the precise meaning
of these words is explained.

The resulting category is denoted IndCohNilpglob
(LocSysG); the categorical geometric Lang-

lands conjecture predicts an equivalence between IndCohNilpglob
(LocSysG) and the category

D-mod(BunǦ) of D-modules on the stack BunǦ that classifies principal Ǧ-bundles on X (here

Ǧ is the Langlands dual group of G).

The category IndCohNilpglob
(LocSysG) contains the usual category QCoh(LocSysG) of quasi-

coherent sheaves as a full subcategory.

The Gluing Conjecture aims to express IndCohNilpglob
(LocSysG) in terms of the categories

QCoh(LocSysP ), where P runs through the set of standard parabolic subgroups of G (including
P = G). Essentially, the goal is to compensate for the modification

QCoh(LocSysG) IndCohNilpglob
(LocSysG)

by considering all parabolic subgroups of G, and working with usual quasi-coherent sheaves on
the corresponding moduli stacks.

0.2.2. More precisely, for a standard parabolic P , there is a natural map

(0.1) LocSysP → LocSysG

induced by the embedding P ↪→ G. We consider the category of quasi-coherent sheaves on
LocSysP , equipped with a connection along the fibers of (0.1); denote this category temporarily
by QCoh(LocSysP )conn /LocSysG

.

Below we make a brief digression to explain what exactly we mean by such a category. As this
may appear too technical for an introduction, the reader may choose to skip the explanation,
take the existence of a well-defined category QCoh(LocSysP )conn /LocSysG

on faith, and proceed
to Sect. 0.2.4.
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0.2.3. First off, it is impossible to makes sense of ‘quasi-coherent sheaves on a stack equipped
with a connection along a fibration’ without resorting to derived algebraic geometry1. So, for
the rest of the introduction, when we say ‘scheme’ (reps., ‘algebraic stack’, ‘prestack’), we mean
a derived scheme (reps., derived algebraic stack, prestack within derived algebraic geometry).

It is more natural to consider ind-coherent sheaves first. Given a map of prestacks f : Z→ Y,
we let IndCoh(Z)conn /Y be the category of ind-coherent sheaves on Z equipped with a connection
along the fibers of f , which we define to be

IndCoh(Z)conn /Y := IndCoh(ZdR ×
YdR

Y).

Here IndCoh(W) is the category of ind-coherent sheaves on a prestack W (which is defined for
any prestack locally almost of finite type, see [Ga1, Sect. 10]), and WdR is the de Rham prestack
corresponding to a prestack W (see Sect. 1.3).

Pullback along the map Z→ ZdR ×
YdR

Y defines a functor

IndCoh(ZdR ×
YdR

Y)→ IndCoh(Z),

which can be viewed as the functor of forgetting the connection.

Suppose now that Z is a quasi-smooth algebraic stack (a.k.a. derived locally complete inter-
section); see [AG, Sect. 8.1] for the definition. For example, Z = LocSysP is quasi-smooth. We
then define the full subcategory QCoh(Z)conn /Y ⊂ IndCoh(Z)conn /Y of quasi-coherent sheaves
on Z equipped with a connection along the fibers of f by the condition that it fits into the
following pullback diagram of categories:

QCoh(Z)conn /Y −−−−→ IndCoh(Z)conn /Yy y
QCoh(Z)

ΞZ−−−−→ IndCoh(Z).

Here ΞZ is the tautological functor of embedding QCoh into IndCoh of [Ga1, Sect. 1.5] (ex-
tended to algebraic stacks in [Ga1, Sect. 11.7.3]). Note that the essential image of ΞZ is the
full subcategory of objects with zero singular support, see [AG, Corollary 8.2.8].

0.2.4. Returning to the situation of LocSysG, the assignment

P  QCoh(LocSysP )conn /LocSysG

can be viewed as a diagram of categories, indexed by the poset Par(G) of standard parabolics
of G.

Hence, we can talk about the category

(0.2) Glue(QCoh(LocSysP )conn /LocSysG
, P ∈ Par(G)),

obtained by gluing the categories QCoh(LocSysP )conn /LocSysG
. The definition of the operation

of gluing is reminded in Sect. 4.1.

The name ‘gluing’ is motivated by the following example: given a stratified topological space
Y = ∪

a∈A
Ya for a finite poset A, there is an equivalence between the category Shv(Y ) of sheaves

on Y and the glued category Glue(Shv(Ya), a ∈ A), see Example 4.1.7.

1Unless some very stringent smoothness conditions are satisfied, such as the map being smooth and schematic.
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Informally, an object of (0.2) is a collection of objects

FP ∈ QCoh(LocSysP )conn /LocSysG
for all P ∈ Par(G),

plus a homotopy-coherent system of compatibility maps (but not necessarily isomorphisms)

FP2
|LocSysP1

→ FP1
for all P1 ⊂ P2.

0.2.5. For every P , pullback defines a functor

IndCoh(LocSysG)→ IndCoh(LocSysP )conn /LocSysG
.

Consider the composition

IndCohNilpglob
(LocSysG) ↪→ IndCoh(LocSysG)→

→ IndCoh(LocSysP )conn /LocSysG
→ QCoh(LocSysP )conn /LocSysG

,

where the last arrow is the right adjoint to the inclusion

QCoh(LocSysP )conn /LocSysG
↪→ IndCoh(LocSysP )conn /LocSysG

.

As P ∈ Par(G) varies, we obtain a functor

(0.3) IndCohNilpglob
(LocSysG)→ Glue(QCoh(LocSysP )conn /LocSysG

, P ∈ Par(G)).

The Gluing Conjecture reads:

Conjecture 0.2.6. The functor (0.3) is fully faithful.

As was mentioned earlier, the goal of the present paper is to prove this conjecture.

0.3. The automorphic side of Langlands duality. Let us now explain the counterpart of
the Gluing Conjecture on the automorphic side of the categorical geometric Langlands conjec-
ture.

As the contents of this subsection play a motivational role only, the reader may skip it and
proceed to Sect. 0.4.

0.3.1. On the automorphic side of the categorical Langlands conjecture, we are dealing with
the category D-mod(BunǦ). As explained in [Ga3, Sect. 8], the category is equipped with the
functor of extended Whittaker coefficient

W-coeffext
Ǧ,Ǧ : D-mod(BunǦ)→Whitext(Ǧ, Ǧ),

where Whitext(Ǧ, Ǧ) is the extended Whittaker category.

Recall that the category Whitext(Ǧ, Ǧ) is obtained by gluing:

Whitext(Ǧ, Ǧ) ' Glue(Whit(Ǧ, P̌ ), P ∈ Par(G)),

where for a parabolic P , we denote by Whit(Ǧ, P̌ ) the P -degenerate Whittaker category (see
[Ga3, Sect. 7]).

For example, for P = G, the category Whit(Ǧ, Ǧ) is the usual (that is, non-degenerate)
Whittaker category of [Ga3, Sect. 5], and for P = B, the category Whit(Ǧ, B̌) is the principal
series category I(Ǧ, B̌) of [Ga3, Sect. 6].
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0.3.2. In [Ga3] there were formulated several ‘quasi-theorems’2 that jointly provide a canonically
defined fully faithful functor

Glue(QCoh(LocSysP )conn /LocSysG
, P ∈ Par(G)) ↪→

Glue(Whit(Ǧ, P̌ ), P ∈ Par(G)) 'Whitext(Ǧ, Ǧ).

Assuming the quasi-theorems hold, we obtain a diagram

(0.4)

Glue(QCoh(LocSysP )conn /LocSysG
, P ∈ Par(G)) −−−−→ Whitext(Ǧ, Ǧ)

(0.3)

x xW-coeffext
Ǧ,Ǧ

IndCohNilpglob
(LocSysG) D-mod(BunǦ).

The categorical Langlands conjecture claims that there exists an equivalence

LG : IndCohNilpglob
(LocSysG)→ D-mod(BunǦ)

complementing (0.4) to a commutative diagram.

In [Ga3], the following strategy for proving the categorical Langlands conjecture is suggested.
First, one would show that the vertical arrows of (0.4) are fully faithful. Then, one would
identify the essential images of IndCohNilpglob

(LocSysG) and D-mod(BunǦ) in Whitext(Ǧ, Ǧ)
by using some explicit generators of both categories.

0.3.3. Thus, one of the key steps in the proof of the categorical Langlands conjecture is to show
that the vertical arrows in (0.4) are fully faithful. At this point, we do not know whether the
functor W-coeffext

Ǧ,Ǧ (the right vertical arrow of the diagram) is fully faithful for an arbitrary

group G; for G = GLn, it is a theorem, established in [Be].

On the other hand, the full faithfulness of the functor (0.3) (the left vertical arrow) is precisely
the Gluing Conjecture, which we prove in the present paper.

0.4. The methods: crystal structure. We derive the Gluing Conjecture from a topological
statement. Informally, the key idea is to study both sides ‘microlocally’. The word ‘microlo-
cally’ refers here to the correspondence between ind-coherent sheaves on a quasi-smooth scheme
(or a stack) Y and conical subsets in the ‘scheme of singularities’ Sing(Y ). We then relate cer-
tain categories obtained by gluing categories of ind-coherent (and quasi-coherent) sheaves to
homotopy types obtained by gluing conical subsets of schemes of singularities. In particular,
this applies to the category (0.2): as a result, the Gluing Conjecture reduces to homological
triviality of certain homotopy types. Let us provide some details.

0.4.1. In [AG, Sect. 2.3], we explain how to associate to a quasi-smooth scheme Y a classical
scheme of singularities Sing(Y ) equipped with a Gm-action. The scheme Sing(Y ) measures how
far Y is from being smooth.

The main construction of the paper [AG] assigns to an object F ∈ IndCoh(Y ) its singular
support, denoted SingSupp(F), which is a conical Zariski-closed subscheme of Sing(Y ).

It is technically easier for us to work with the category of singularities
◦

IndCoh(Y ) instead of
IndCoh(Y ), where

◦
IndCoh(Y ) := IndCoh(Y )/QCoh(Y ).

2By ‘quasi-theorems’ we mean plausible statements within reach of current methods.
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To an object F ∈
◦

IndCoh(Y ) we can attach its singular support PSingSupp(F), which is now
a closed subscheme of the projectivization P Sing(Y ) of Sing(Y ), see also [Ste].

A key observation, articulated in Sect. 1 of the present paper is that the assignment

F  P SingSupp(F)

can be upgraded to a certain categorical structure:
◦

IndCoh(Y ) is in fact a crystal of categories
over P Sing(Y ) (Theorem 1.4.2). Here is a reformulation of this statement:

Theorem 0.4.2. There exists a canonical action of the (symmetric) monoidal category

D-mod(P Sing(Y )) on
◦

IndCoh(Y ).

In other words, this theorem says that
◦

IndCoh(Z) can be ‘localized’ onto PSing(Z).

0.4.3. The Gluing Conjecture concerns categories of sheaves with connection along fibers of a

morphism. Let us define versions of the categories IndCoh(Z), QCoh(Z), and
◦

IndCoh(Z) for
sheaves with connection.

Let f : Z → Y be a map of schemes. Consider the category

IndCoh(Z)conn /Y := IndCoh(ZdR ×
YdR

Y ),

introduced above.

In Sect. 3.1 (Proposition 3.1.2), we show that this category identifies with

QCoh(ZdR ×
YdR

Y ) ⊗
QCoh(Y )

IndCoh(Y ),

and therefore contains

QCoh(ZdR ×
YdR

Y ) ' QCoh(ZdR ×
YdR

Y ) ⊗
QCoh(Y )

QCoh(Y )

as a full subcategory.

We are interested in the quotient IndCoh(ZdR ×
YdR

Y )/QCoh(ZdR ×
YdR

Y ), which can be thought

of as a version of the category of singularities.

Assume now that Y is quasi-smooth. In this case, we show in Sect. 3.1 (Proposition 3.1.8),

that the above quotient can be expressed in terms of
◦

IndCoh(Y ) by a topological operation using

the above-mentioned crystal structure on
◦

IndCoh(Y ). Namely, we have

(0.5) IndCoh(ZdR ×
YdR

Y )/QCoh(ZdR ×
YdR

Y ) ' D-mod(Z×
Y
PSing(Y )) ⊗

D-mod(P Sing(Y ))

◦
IndCoh(Y ).

The word ‘topological’ refers to the fact that we are dealing with D-modules rather than
(quasi)-coherent sheaves.
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0.4.4. Assume now that in the above situation the scheme Z is quasi-smooth as well. Recall
from [AG, Sect. 2.4] that in this case we have a canonically defined map

Sing(f) : Z ×
Y

Sing(Y )→ Sing(Z),

called the singular codifferential of f .

Furthermore, recall the category

QCoh(Z)conn /Y ⊂ IndCoh(ZdR ×
YdR

Y ).

We have:

QCoh(ZdR ×
YdR

Y ) ⊂ QCoh(Z)conn /Y ⊂ IndCoh(ZdR ×
YdR

Y ),

where all the inclusions are, generally speaking, strict.

The key point for us is that the quotient

QCoh(Z)conn /Y /QCoh(ZdR ×
YdR

Y ) ⊂ IndCoh(ZdR ×
YdR

Y )/QCoh(ZdR ×
YdR

Y )

can be described explicitly in topological terms using the equivalence (0.5). Namely, in Theo-
rem 3.2.9 we prove:

Theorem 0.4.5. Under the identification (0.5), the full subcategory

QCoh(Z)conn /Y /QCoh(ZdR ×
YdR

Y ) ⊂ IndCoh(ZdR ×
YdR

Y )/QCoh(ZdR ×
YdR

Y )

corresponds to

D-mod(P(Sing(f)−1({0}))) ⊗
D-mod(P Sing(Y ))

◦
IndCoh(Y ) ⊂

D-mod(Z ×
Y
P Sing(Y )) ⊗

D-mod(P Sing(Y ))

◦
IndCoh(Y ).

In particular, we have a canonical equivalence:

(0.6) QCoh(Z)conn /Y /QCoh(ZdR ×
YdR

Y ) '

' D-mod(P(Sing(f)−1({0}))) ⊗
D-mod(P Sing(Y ))

◦
IndCoh(Y ).

0.4.6. We have now set up an abstract framework for handling Conjecture 0.2.6. For simplicity,
we work with schemes rather than stacks.

Let Zi
fi→ Y be a diagram of quasi-smooth schemes, indexed by some category I. Suppose

that the maps fi are proper. Let N ⊂ Sing(Y ) be a fixed conical Zariski-closed subset. For
each i ∈ I, we consider the composition

IndCohN(Y ) ↪→ IndCoh(Y )→ IndCoh(Zi)conn /Y → QCoh(Zi)conn /Y .

Taken together, these functors yield a functor

(0.7) IndCohN(Y )→ Glue(QCoh(Zi)conn /Y , i ∈ I).

We want to determine whether (0.7) is fully faithful.

In Theorem 4.4.5 we prove the following sufficient condition.

Theorem 0.4.7. Suppose the following two conditions hold:
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(1) The corresponding functor

QCoh(Y )→ lim
i

QCoh(Zi,dR ×
YdR

Y )

is fully faithful.
(2) the corresponding functor

(0.8) D-mod(P(N))→ Glue
(
D-mod(P(Sing(fi)

−1({0}))), i ∈ I
)

is fully faithful.

Then the functor (0.7) is fully faithful as well.

Let us note that in the formation of the category Glue
(
D-mod(P(Sing(fi)

−1({0}))), i ∈ I
)
,

the functors

D-mod(P(Sing(fj)
−1({0}))→ D-mod(P(Sing(fi)

−1({0}))
for an arrow i → j in I are not mere pullbacks, but rather are given by pull-push along the
correspondence

Zi ×
Zj

P(Sing(fj)
−1({0}) −−−−→ P(Sing(fi)

−1({0})y
P(Sing(fj)

−1({0}).

0.4.8. Finally, assume that in the above situation, the schemes Zi are proper over Y . In this
case, in Corollary 6.3.8 we show that the question of full faithfulness of the functor (0.8) can
be reduced to that of homological contractibility of certain homotopy types.

Namely, for a k-point ν ∈ N let Wi,ν denote the preimage of ν under the map

Sing(fi)
−1({0}) ↪→ Zi ×

Y
Sing(Y )→ Sing(Y ).

For an arrow i → j in the category of indices I, the schemes Wi,ν and Wj,ν are related by
the correspondence

Zi ×
Zj
Wj,ν −−−−→ Wi,νy

Wj,ν .

In Sect. 6.3.3 we show how such a data gives rise to a prestack, denoted WGlued,ν . Namely,
WGlued,ν is the prestack colimit over the category of strings

i0 → i1 → · · · → in, n ∈ N, ij ∈ I

of the diagram of schemes that assigns to a string as above the scheme

Zi0 ×
Zin

Win,ν .

We will prove:

Theorem 0.4.9. The functor (0.8) is fully faithful if and only if for every ν not in the zero-
section, the prestack WGlued,ν is homologically contractible, i.e., the map

C∗(WGlued,ν)→ k

is an isomorphism.
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Here C∗ stands for homology (with coefficients in k). Note that if a prestack W is the colimit
of schemes

W = colim
a∈A

Wa,

then its homology can be computed as

C∗(W) = colim
a∈A

C∗(Wa).

If the ground field k is C, we can assign to W the homotopy type

Wtop := colim
a∈A

W top
a

(here the colimit is taken in the∞-category of spaces, and for a scheme Wa we denote by W top
a

the underlying analytic space). In this case we have

C∗(W) ' C∗(W
top).

So, the homology C∗(WGlued,ν) appearing in Theorem 0.4.9 is indeed the homology of a
canonically defined homotopy type.

0.4.10. The above discussion applies to the case when Y is a quasi-smooth algebraic stack rather
than a scheme, and Zi’s are quasi-smooth algebraic stacks proper and schematic over Y .

The upshot is that the question of fully faithfulness of the functor

IndCohN(Y )→ Glue(QCoh(Zi)conn /Y , i ∈ I)

is equivalent to that of homological contractibility, as stated in Theorem 0.4.9.

0.5. The methods: global Springer fibers.

0.5.1. Recall that our goal is to show that the functor (0.3) is fully faithful. According to
Sect. 0.4.10, this follows from homological contractibility of certain homotopy types constructed
using the maps

LocSysP ×
LocSysG

Sing(LocSysG) −−−−→ Sing(LocSysP )y
Sing(LocSysG).

Namely, fix a k-point Nilpglob. We can think of such a point as a pair (σ,A), where σ is a
G-local system on X, and A is a horizontal section of the vector bundle gσ associated with the
adjoint representation.

Then, the corresponding scheme Wi,ν of Sect. 0.4.8 for i = P and ν = (σ,A) is that of
reductions of σ to P for which A is contained in the sub-bundle u(P )σ, where u(P ) denotes the
Lie algebra of the unipotent radical of P . We denote this scheme by

Sprσ,AP,unip .

In addition, we consider the schemes

(0.9) Sprσ,AP,unip ⊂ Sprσ,AP ⊂ SprσP ,

where SprσP is that of reductions of σ to P , and Sprσ,AP is the subscheme that corresponds to
those reductions for which A is contained in pσ.

All three of the above schemes can be viewed as global versions of the Springer fiber.
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0.5.2. For P1 ⊂ P2, the schemes Sprσ,AP1,unip and Sprσ,AP2,unip are related by the correspondence

SprσP1
×

SprσP2

Sprσ,AP2,unip −−−−→ Sprσ,AP1,unipy
Sprσ,AP2,unip

and the colimit described in Sect. 0.4.8 yields a prestack, denoted Sprσ,AGlued,unip.

Combining the results of Sect. 0.4, we obtain that Conjecture 0.2.6 follows from the next
result (it appears in the paper as Theorem 7.1.8):

Theorem 0.5.3. For any (σ,A) with a nilpotent A, the prestack Sprσ,AGlued,unip is homologically
contractible.

0.5.4. Although Theorem 0.5.3 is a concrete statement, it involves the prestack Sprσ,AGlued,unip,
which is defined by a complicated procedure using correspondences. However, in Sect. 7, we
show that Theorem 0.5.3 is equivalent to a statement about simpler objects.

Namely, let Sprσ,AGlued be the colimit of the diagram of schemes

P 7→ Sprσ,AP ,

taken over the poset of standard proper parabolics of G (where Sprσ,AP is as in (0.9)).

We show, assuming that Theorem 0.5.3 holds for proper Levi subgroups of G, that Theo-
rem 0.5.3 is equivalent to the next assertion (it appears in the paper as Theorem 7.2.5):

Theorem 0.5.5. For any (σ,A) with a non-zero nilpotent A, the prestack Sprσ,AGlued is homo-
logically contractible.

0.5.6. Theorem 0.5.5 is an essentially combinatorial statement that is proved in Sect. 8. The
idea of the proof is the following:

By the Jacobson-Morozov Theorem, the section A defines a reduction of σ to a canonically

defined parabolic P0. This reduction gives rise to a stratification of each Sprσ,AP by elements of
the Weyl group that measure the relative position of a given reduction to P with the canonical
reduction to P0.

For each w ∈W , let

Sprσ,A,<wGlued ⊂ Sprσ,A,≤wGlued ⊂ Sprσ,AGlued

be the corresponding substacks. Consider also

Sprσ,A,≤wGlued / Sprσ,A,<wGlued := Sprσ,A,≤wGlued t
Sprσ,A,<wGlued

pt .

We prove, by an analysis of the Weyl group combinatorics, that the prestack

Sprσ,A,≤wGlued /Sprσ,A,<wGlued

is homologically contractible for every w.

This implies Theorem 0.5.5 by induction on the length of w.

0.6. Contents. The present paper is naturally divided into three parts.
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0.6.1. In Part I we discuss the crystal structure on the category of singularities of a quasi-smooth
scheme or algebraic stack, and its corollaries.

In Sect. 1 we state the main result of Part I, Theorem 1.4.2, which says that for a quasi-
smooth scheme Z, there exists a canonically defined crystal of categories over P Sing(Z), denoted
◦

IndCoh(Z)∼, such that the category of singularities of Z, denoted

◦
IndCoh(Z) := IndCoh(Z)/QCoh(Z),

is recovered as the category of global sections of
◦

IndCoh(Z)∼.

As was mentioned above, this theorem can be viewed as saying that
◦

IndCoh(Z) can be
‘localized’ onto P Sing(Z). Due to the 1-affineness property of de Rham prestacks, this theorem
can be equivalently phrased as saying that the (symmetric) monoidal category

D-mod(PSing(Z)) := QCoh(P(Sing(Z))dR)

acts on
◦

IndCoh(Z).

In Sect. 2 we prove Theorem 1.4.2. Let us emphasize that it is naturally proved in the ‘crystal
of categories’ formulation, rather than in the ‘action of the category of D-modules’ one.

In Sect. 3 we study the category IndCoh(Z)conn /Y , defined for a morphism Z → Y , and its
various subcategories that can be described in terms of the crystal structure.

0.6.2. In Part II of the paper we state our main result, Theorem 4.3.4, and reduce it to the
assertion that certain homotopy types are homologically contractible, namely, Theorem 7.1.8.

In Sect. 4 we recall the general paradigm of gluing of DG categories and state Theorem 4.3.4,
which says that the Gluing Conjecture holds. In addition, we state Theorem 4.4.5, which says
that a certain fully faithfulness condition purely at the level of D-modules implies a fully
faithfulness result for ind-coherent sheaves.

It is fair to say that Theorem 4.4.5 contains the main idea of the present paper: it allows us
to reduce the Gluing Conjecture to the question of homological contractibility.

Sect. 5 is devoted to the proof of Theorem 4.4.5.

In Sect. 6 we reformulate the condition of Theorem 4.4.5 (the pullback functor to the category
obtained by gluing certain categories of D-modules is fully faithful) as homological contractibil-
ity of certain prestacks.

0.6.3. In Part III of the paper we prove Theorem 7.1.8, which verifies the required homological
contractibility condition for the Gluing Conjecture.

In Sect. 7 we introduce global Springer fibers, state Theorem 7.1.8, and show that it is
equivalent to a simpler homological contractibility statement (Theorem 7.2.5).

In Sect. 8 we prove Theorem 7.2.5 using an analysis of Weyl group combinatorics and Schu-
bert strata.

Finally, in Sect. 9, we give an alternative proof of a special case Theorem 7.2.5, using the
Springer correspondence.

0.7. Conventions.
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0.7.1. DG categories and ∞-categories. This paper uses the language of ∞-categories. For ex-
ample, the main result, Theorem 4.3.4, concerns the lax limit of∞-categories. Our conventions
regarding ∞-categories follow those of [AG]. In particular, the reader does not need to know
how the theory of ∞-categories is constructed, but rather how to use it.

The primary object of study in this paper is DG categories (e.g., Theorem 4.3.4 says that
a certain functor between DG categories is fully faithful). Again, the conventions pertaining
to DG categories follow those of [AG]. Thus, all DG categories are assumed to be presentable,
and in particular cocomplete (i.e., containing arbitrary direct sums); all functors are assumed
continuous (i.e., preserving colimits).

0.7.2. We let DGCatcont denote the (∞, 1)-category of (presentable) DG categories and con-
tinuous functors. This (∞, 1)-category has a natural symmetric monoidal structure, given by
tensor product

C1,C2 → C1 ⊗C2.

Thus, we can talk about monoidal DG-categories (i.e., algebra objects in DGCatcont with
respect to the above (symmetric) monoidal structure), and modules over them.

Given a monoidal DG category O, we denote by O - mod the category of O-modules. Thus,
C ∈ O - mod means that C is a DG category equipped with an action of O

O⊗C→ C.

0.7.3. Derived algebraic geometry. This paper concerns quasi-coherent and ind-coherent sheaves
on derived stacks. This puts us in the framework of derived algebraic geometry.

Our conventions regarding derived algebraic geometry follow those of [AG].

By a prestack we mean an arbitrary contravariant functor form the∞-category of affine DG
schemes to that of ∞-groupoids. (In particular, we say ‘prestack’ rather than ‘DG prestack’.)
By an ‘algebraic stack’ we mean a derived algebraic stack. For a prestack Y there is a canonically
defined category QCoh(Y) of quasi-coherent sheaves on Y.

All DG schemes and prestacks considered in this paper are locally almost of finite type. For
such schemes and prestacks, one has the theory of ind-coherent sheaves. The key tenets of this
theory are recorded in [Ga1]. However, the main construction of this theory, namely that of the
!-pullback, does not as yet appear in the published literature. A book-in-progress that contains
this, as well as some other fundamental constructions of this theory, is available in the form of
[GR2].

The following notation is used throughout the paper: for a prestack Y (assumed as always
to be locally almost of finite type) there is a canonically defined object

ωY ∈ IndCoh(Y),

the dualizing sheaf. We have a canonically defined functor

ΥY : QCoh(Y)→ IndCoh(Y), F 7→ F ⊗ ωY.

0.7.4. Sheaves of categories. In Part I of the paper, we use the notion of sheaf of categories
over a prestack and some fundamental results about it (such as the notion of 1-affineness, its
implications and its criteria). The reader is referred to [Ga2, Sects. 1 and 2] for a summary.
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Part I: Crystals and singular support.

1. The category of singularities as a crystal

Let Z be an affine DG scheme almost of finite type. In this section, we study the singularity
category of Z

◦
IndCoh(Z) := IndCoh(Z)/QCoh(Z).

The category
◦

IndCoh(Z) obviously ‘lives over’ Z, in the sense that its objects can be tensored
by quasi-coherent sheaves on Z.

In this section we show that if Z is quasi-smooth, then the category
◦

IndCoh(Z) has a richer
structure. Namely, it ’lives over’ the relative de Rham prestack of Sing(Z), where the latter is
the classical scheme measuring how far Z is from being smooth.

1.1. Recollections: singular support.

1.1.1. Let Z be an affine quasi-smooth DG scheme. Consider the DG categories IndCoh(Z)
and QCoh(Z). Recall that according to [AG, Sect. 4.2.4], there is a canonically defined fully
faithful functor

ΞZ : QCoh(Z) ↪→ IndCoh(Z),

which admits a (continuous) right adjoint, denoted ΨZ .

We identify QCoh(Z) with the full subcategory ΞZ(QCoh(Z)) ⊂ IndCoh(Z) using the func-
tor ΞZ .

Remark 1.1.2. Recall there is another canonically defined functor

ΥZ : QCoh(Z)→ IndCoh(Z), F 7→ F ⊗ ωZ ,

where ωZ ∈ IndCoh(Z) is the dualizing sheaf. Fortunately, when Z is quasi-smooth, the functors
ΞZ and ΥZ differ by tensoring by a line bundle. Hence their essential images in IndCoh(Z)
coincide.

1.1.3. Define the singularity category of Z to be the quotient DG category

◦
IndCoh(Z) := IndCoh(Z)/QCoh(Z).

Note that
◦

IndCoh(Z) identifies with the full subcategory3 QCoh(Z)⊥ ⊂ IndCoh(Z) (which
equals ker(ΨZ)).

Recall also that IndCoh(Z) is naturally a module category over QCoh(Z), and both functors

ΞZ and ΨZ are compatible with the QCoh(Z)-actions. Hence,
◦

IndCoh(Z) also acquires a
natural structure of QCoh(Z)-module category.

3Here and elsewhere, for a full subcategory C′ ⊂ C, we denote by (C′)⊥ ⊂ C its right orthogonal, i.e., the
full subcategory consisting of objects that receive no non-zero maps from objects of C′.
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1.1.4. Recall (see [AG, Sect. 2.3]) that to the DG scheme Z one attaches the classical scheme
Sing(Z) equipped with

• a Gm-action,
• a projection Sing(Z)→ Z,
• a zero section clZ → Sing(Z).

By a slight abuse of notation, we denote the image of the zero section by {0} ⊂ Sing(Z).

The action of Gm on Sing(Z)− {0} is free. Put

P Sing(Z) := (Sing(Z)− {0})/Gm.

1.1.5. The main construction of the paper [AG] (namely, [AG, Defn. 4.1.4], which is essentially
borrowed from [BIK]) assigns to an object F ∈ IndCoh(Z) a Zariski-closed conical subset

SingSupp(F) ⊂ Sing(Z).

Conversely, a Zariski-closed conical subset N ⊂ Sing(Z) yields a full subcategory

IndCohN(Z) := {F | SingSupp(F) ⊂ N} ⊂ IndCoh(Z).

The following is [AG, Theorem 4.2.6]:

Theorem 1.1.6. The full subcategories IndCoh(Z){0} and QCoh(Z) of IndCoh(Z) coincide.

1.1.7. From Theorem 1.1.6 we obtain that to an object F ∈
◦

IndCoh(Z) we can assign a Zariski-
closed subset

PSingSupp(F) ⊂ PSing(Z).

Conversely, a Zariski-closed subset N ⊂ P Sing(Z) yields a full subcategory

◦
IndCohN(Z) := {F |P SingSupp(F) ⊂ N} ⊂

◦
IndCoh(Z).

1.2. Recollections: sheaves of categories.

1.2.1. Recall the notion of a quasi-coherent sheaf of categories over a prestack introduced in
[Ga2, Sect. 1.1]. For a prestack Y, a quasi-coherent sheaf of categories C over Y consists of the
following data:

• A QCoh(S)-module CS,y ∈ QCoh(S) - mod for every (S, y) ∈ (Schaff)/Y;
• An identification of QCoh(S′)-modules

CS′,y′ ' QCoh(S′) ⊗
QCoh(S)

CS,y

for every morphism S′
f→ S, where (S, y) ∈ (Schaff)/Y and y′ = y ◦ f ;

• A homotopy-coherent system of compatibilities between the identifications for higher-
order compositions.

Denote the category of quasi-coherent sheaves of categories over Y by ShvCat(Y).

1.2.2. If C ∈ ShvCat(Y), the category of global sections of C is defined as

Γ(Y,C) := lim
(S,y)∈PreStk/Y

CS,y.

It is a DG category equipped with a natural action of the (symmetric) monoidal category
QCoh(Y) (see [Ga2, Sect. 1.2]); indeed, QCoh(Y) acts on each term CS,y.
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1.2.3. The category ShvCat(Y) is naturally enriched over DGCatcont. Using this structure, we
can think of of Γ(Y,C) as the DG category of maps from QCoh/Y to C, where QCoh/Y is the
unit sheaf of categories given by

(QCoh/Y)S,y := QCoh(S) for all (S, y) ∈ (Schaff)/Y.

Note that Γ(Y,QCoh/Y) ' QCoh(Y).

1.2.4. Recall (see [Ga2, Definition 1.3.7]) that a prestack Y is said to be 1-affine if the above
functor

Γ(Y,−) : ShvCat(Y)→ QCoh(Y) - mod

is an equivalence of categories.

1.2.5. For future reference, recall the following constructions. Let g : Z → Y be a map of
prestacks. In this case, we have a tautologically defined functor

coresg : ShvCat(Y)→ ShvCat(Z),

given by restriction: for (S, z) ∈ (Schaff)/Z we have

(coresg(C))S,z := CS,g◦z.

Note that coresg(QCoh/Y) ' QCoh/Z.

Slightly abusing the notation, we sometimes write

Γ(Z,C) := Γ(Z, coresg(C)) for C ∈ ShvCat(Y).

We sometimes write for (S, y) ∈ (DGSchaff)/Y and C ∈ ShvCat(Y)

Γ(S,C) := CS,y.

1.2.6. The above functor coresg admits a right adjoint, which we denote by

coindg : ShvCat(Z)→ ShvCat(Y).

It can be explicitly described as follows:

(coindg(C))S,y = Γ(S ×
Y
Z,C) for all (S, y) ∈ (Schaff)/Y,

see [Ga2, Sect. 3.1.3]. Here C ∈ ShvCat(Z)

By adjunction and using Sect. 1.2.3, we have

Γ(Y, coindg(C)) ' Γ(Z,C).

1.3. Recollections: the de Rham prestack.

1.3.1. Recall (see e.g., [GR1, Sect. 1.1.1]) that the de Rham prestack YdR of a prestack Y is
defined by

Maps(S,YdR) = Maps(redS,Y), S ∈ DGSchaff .

We have a tautological projection

pY,dR : Y→ YdR.

For this paper, we only consider YdR for prestacks Y of locally (almost) finite type4. In this
case, it is shown in [GR1, Proposition 1.3.3] that YdR is classical and also locally almost of finite
type.

4The word ‘almost’ is parenthesized because YdR only depends on the classical prestack underlying Y.
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The basic fact concerning YdR is a canonical equivalence of categories

QCoh(YdR) ' D-mod(Y),

which, properly speaking, must be taken as the definition of the category D-mod(Y).

1.3.2. The main object of study in this paper is sheaves of categories over prestacks of the form
YdR. They can be alternatively called ‘crystals of categories over Y’.

Let us now list several useful facts about crystals of categories. The first is the following (see
[Ga2, Theorem 2.6.3]):

Proposition 1.3.3. Let Y be a (DG) scheme of finite type. Then YdR is 1-affine.

Remark 1.3.4. We should warn the reader that not all prestacks one encounters in practice
are 1-affine. For example, although it is shown in [Ga2, Theorem 2.2.6] that a quasi-compact
algebraic stack Y is 1-affine under some mild technical assumptions, the de Rham prestack YdR

is typically not 1-affine (see [Ga2, Proposition 2.6.5]).

1.3.5. For the rest of this subsection we fix a prestack Y and a closed embedding i : Z → Y.

Note that by the finite type assumption, the complementary open embedding j :
◦
Y ↪→ Y is a

quasi-compact morphism.

We have the following assertion (see [Ga2, Sect. 4]):

Proposition 1.3.6. Consider the maps

ZdR
idR−→ YdR

jdR←−
◦
YdR.

(a) The functor

coindidR
: ShvCat(ZdR)→ ShvCat(YdR)

is fully faithful. Its essential image consists of those objects that are annihilated by the functor
coresjdR

.

(b) For C ∈ ShvCat(YdR), the functor

Γ(YdR,C)→ Γ(ZdR,C)

induces an equivalence

ker

(
Γ(YdR,C)→ Γ(

◦
YdR,C)

)
→ Γ(ZdR,C).

1.3.7. From now on, we use claim (b) of Proposition 1.3.6 to identify Γ(ZdR,C) and

ker

(
Γ(YdR,C)→ Γ(

◦
YdR,C)

)
. Thus, we consider Γ(ZdR,C) as a full subcategory of Γ(YdR,C).

We also have the following (tautological) assertion:

Lemma 1.3.8. If in the situation of Proposition 1.3.6(b) the prestack YdR is 1-affine, then the
full subcategory

Γ(ZdR,C) ⊂ Γ(YdR,C)

consists of objects annihilated by the monoidal ideal

ker (QCoh(YdR)→ QCoh(ZdR)) ⊂ QCoh(YdR).



20 D. ARINKIN AND D. GAITSGORY

1.4. Statement of the result. Return now to the setup of Sect. 1.1. Thus, Z is an affine
quasi-smooth DG scheme. The notion of singular support provides natural assignments

F ∈
◦

IndCoh(Z)  PSingSupp(F) ⊂ PSing(Z)

and

N ⊂ P Sing(Z)  
◦

IndCohN(Z) ⊂
◦

IndCoh(Z)

(see Sect. 1.1). The goal of this section is to refine the assignments to a richer structure.

1.4.1. Consider the prestack (P Sing(Z))dR. We will prove:

Theorem-Construction 1.4.2. There exists a canonically defined object
◦

IndCoh(Z)∼ ∈ ShvCat((PSing(Z))dR),

equipped with an identification

Γ((P Sing(Z))dR,
◦

IndCoh(Z)∼) '
◦

IndCoh(Z).

This construction has the following properties:

(a) For a Zariski-closed subset N ⊂ P Sing(Z), the full subcategory
◦

IndCohN(Z) ⊂
◦

IndCoh(Z)
coincides with

Γ(NdR,
◦

IndCoh(Z)∼) ⊂ Γ((P Sing(Z))dR,
◦

IndCoh(Z)∼).

(b) The action of QCoh(ZdR) on Γ((P Sing(Z))dR,
◦

IndCoh(Z)∼) coming from the (symmetric)
monoidal functor

QCoh(ZdR)→ QCoh((P Sing(Z))dR)

and the natural action of the latter on Γ((P Sing(Z))dR,
◦

IndCoh(Z)∼) identifies with the action

of QCoh(ZdR) on
◦

IndCoh(Z) coming from the (symmetric) monoidal functor

QCoh(ZdR)→ QCoh(Z),

and the action of the latter on
◦

IndCoh(Z) ⊂ IndCoh(Z).

Remark 1.4.3. Note that Theorem 1.4.2 relates the category of singularities
◦

IndCoh(Z) := IndCoh(Z)/QCoh(Z)

and the projectivization PSing(Z) of Sing(Z). It would be interesting to find a similar structure
on IndCoh(Z) itself.

1.4.4. According to Lemma 1.3.8 and Proposition 1.3.3, Theorem 1.4.2 is equivalent to the
following:

Corollary 1.4.5. The category
◦

IndCoh(Z) carries a canonically defined action of the (sym-
metric) monoidal category QCoh((P Sing(Z))dR) such that:

(a) For a Zariski-closed subset N ⊂ P Sing(Z), the full subcategory
◦

IndCohN(Z) ⊂
◦

IndCoh(Z)
coincides with the full subcategory of objects annihilated by the monoidal ideal

ker(QCoh((P Sing(Z))dR)→ QCoh(NdR)).

(b) The action of QCoh(ZdR) on
◦

IndCoh(Z) coming from the (symmetric) monoidal functor

QCoh(ZdR)→ QCoh((P Sing(Z))dR)
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identifies with the action of QCoh(ZdR) on
◦

IndCoh(Z) coming from the (symmetric) monoidal
functor

QCoh(ZdR)→ QCoh(Z)

and the action of QCoh(Z) on
◦

IndCoh(Z) ⊂ IndCoh(Z).

1.5. Upgrade to a relative crystal of categories. We postpone the proof of Theorem 1.4.2
until Sect. 2. Let us state a slight refinement of the theorem concerning the structure of a
relative crystal of categories on the category of singularities. This refined structure naturally
allows us to extend the theory from the case of an affine DG scheme Z to that of an algebraic
stack.

1.5.1. Consider the (classical reduced) scheme PSing(Z), and the prestack

(P Sing(Z))dR ×
ZdR

Z.

Informally, this prestack can be thought of as the ‘relative’ de Rham stack of PSing(Z) over
the base Z. Let (id×pdR,Z) denote the tautological map

(P Sing(Z))dR ×
ZdR

Z → (P Sing(Z))dR.

Consider the corresponding functor

coind(id×pdR,Z) : ShvCat((P Sing(Z))dR ×
ZdR

Z)→ ShvCat((PSing(Z))dR).

Proposition-Construction 1.5.2. There exists a canonically defined object

◦
IndCoh(Z)∼,rel ∈ ShvCat((PSing(Z))dR ×

ZdR

Z),

equipped with an identification

coind(id×pdR,Z)(
◦

IndCoh(Z)∼,rel) '
◦

IndCoh(Z)∼.

Let us now derive Proposition 1.5.2 from Theorem 1.4.2.

1.5.3. First, we claim:

Lemma 1.5.4. The prestack (P Sing(Z))dR ×
ZdR

Z is 1-affine.

Proof. We can realize P Sing(Z) as a closed subscheme of Z × Pn. Hence, we have a map

(P Sing(Z))dR ×
ZdR

Z → (Pn)dR × Z,

which is a closed embedding. Hence, by [Ga2, Corollary 3.2.7], it suffices to show that (Pn)dR×Z
is 1-affine. However, the latter follows from [Ga2, Corollary 3.2.8].

�

1.5.5. By Lemma 1.5.4, we obtain that in order to prove Proposition 1.5.2, we need to extend

the action of the (symmetric) monoidal category QCoh((PSing(Z))dR) on
◦

IndCoh(Z) to that
of the (symmetric) monoidal category

QCoh((P Sing(Z))dR ×
ZdR

Z).

We now claim:
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Lemma 1.5.6. For any map of DG schemes almost of finite type Z ′ → Z, the functor

QCoh(Z ′dR) ⊗
QCoh(ZdR)

QCoh(Z)→ QCoh(Z ′dR ×
ZdR

Z)

is an equivalence.

Proof. Follows from [Ga2, Proposition 3.1.9].
�

In particular, we obtain that the symmetric monoidal functor

QCoh((P Sing(Z))dR) ⊗
QCoh(ZdR)

QCoh(Z)→ QCoh((P Sing(Z))dR ×
ZdR

Z)

is an equivalence.

Now, the action of QCoh((P Sing(Z))dR ×
ZdR

Z) on
◦

IndCoh(Z) is obtained by combining

Lemma 1.5.6 and the compatibility statement Theorem 1.4.2(b).
�(Proposition 1.5.2)

1.6. Extension to algebraic stacks.

1.6.1. Let now Z be a quasi-smooth algebraic stack with an affine diagonal (see [AG, Sect.
8.1.1] for the definition).

Let Sing(Z) be the corresponding (classical) algebraic stack, constructed in [AG, Sect. 8.1.5],
and consider the corresponding stack P Sing(Z).

1.6.2. Consider the category IndCoh(Z), the subcategory QCoh(Z)
ΞZ
↪→ IndCoh(Z), and the

quotient category
◦

IndCoh(Z) := IndCoh(Z)/QCoh(Z),

which identifies with the full subcategory

QCoh(Z)⊥ = ker(ΨZ : IndCoh(Z)→ QCoh(Z)) ⊂ IndCoh(Z).

The constructions of Sect. 1.1.7 and [AG, Sect. 8.2] generalize to define for every F ∈
◦

IndCoh(Z) the Zariski-closed subset

PSingSupp(F) ⊂ PSing(Z),

and for a Zariski-closed subset N ⊂ PSing(Z), the full subcategory
◦

IndCohN(Z) ⊂
◦

IndCoh(Z).

1.6.3. We claim:

Proposition 1.6.4. There exists a canonically defined object
◦

IndCoh(Z)∼,rel ∈ ShvCat((P Sing(Z))dR ×
ZdR

Z),

equipped with the following system of identifications:

(a) For an affine DG scheme Z equipped with a smooth map Z → Z, we have a canonical
identification

Γ

((
(PSing(Z))dR ×

ZdR

Z

)
×
Z
Z,

◦
IndCoh(Z)∼

)
'

◦
IndCoh(Z),

as categories equipped with an action of QCoh(Z).
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(b) For a smooth map g : Z1 → Z2 of affine DG schemes smooth over Z, the diagram

Γ

((
(P Sing(Z))dR ×

ZdR

Z

)
×
Z
Z2,

◦
IndCoh(Z)∼

)
−−−−→

◦
IndCoh(Z2)y yg!

Γ

((
(PSing(Z))dR ×

ZdR

Z

)
×
Z
Z1,

◦
IndCoh(Z)∼

)
−−−−→

◦
IndCoh(Z1)

commutes.

Proof. The proof is completely formal:

Let (DGSchaff)smooth /Z be the category of affine DG schemes Z equipped with a smooth

map to Z. By [Ga2, Theorem 1.5.7], in order to construct
◦

IndCoh(Z)∼,rel, it is sufficient to
construct an assignment

Z ∈ (DGSchaff)smooth /Z  
◦

IndCoh(Z)∼,rel|Z ∈ ShvCat

((
(P Sing(Z))dR ×

ZdR

Z

)
×
Z
Z

)
equipped with a coherent system of identifications

g : Z1 → Z2  coresid×g(
◦

IndCoh(Z)∼,rel|Z2
) '

◦
IndCoh(Z)∼,rel|Z1

.

Given Z ∈ (DGSchaff)smooth /Z, we set

◦
IndCoh(Z)∼,rel|Z :=

◦
IndCoh(Z)∼,rel.

Note that (
(PSing(Z))dR ×

ZdR

Z

)
×
Z
Z ' (P Sing(Z))dR ×

ZdR

Z.

It remains to construct an identification

(1.1) coresid×g(
◦

IndCoh(Z2)∼,rel) '
◦

IndCoh(Z1)∼,rel

for a morphism g : Z1 → Z2 in (DGSchaff)smooth /Z. Since (P Sing(Z))dR ×
ZdR

Z is 1-affine, an

identification (1.1) amounts to an identification

Γ

(
(P Sing(Z2))dR ×

(Z2)dR

Z2,
◦

IndCoh(Z2)∼,rel

)
⊗

QCoh(Z2)
QCoh(Z1) '

' Γ

(
(P Sing(Z1))dR ×

(Z1)dR

Z1,
◦

IndCoh(Z1)∼,rel

)
in QCoh

(
(P Sing(Z1))dR ×

(Z1)dR

Z1

)
- mod.

Since

Γ

(
(PSing(Zi))dR ×

(Zi)dR

Zi,
◦

IndCoh(Zi)
∼,rel

)
'

◦
IndCoh(Zi),

it remains to construct an identification
◦

IndCoh(Z2) ⊗
QCoh(Z2)

QCoh(Z1) '
◦

IndCoh(Z1).

Such identification is given by the functor g!, see [Ga1, Corollary 7.5.7]. �
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1.6.5. We now claim:

Proposition 1.6.6. There exists a canonical identification

Γ

(
(P Sing(Z))dR ×

ZdR

Z,
◦

IndCoh(Z)∼,rel

)
'

◦
IndCoh(Z).

Moreover, for a Zariski-closed subset N ⊂ P Sing(Z), the full subcategory

◦
IndCohN(Z) ⊂

◦
IndCoh(Z)

equals

Γ

(
NdR ×

ZdR

Z,
◦

IndCoh(Z)∼
)
⊂ Γ

(
(P Sing(Z))dR ×

ZdR

Z,
◦

IndCoh(Z)∼
)
.

Proof. Follows by combining Theorem 1.4.2(a) and [AG, Proposition 8.3.4].
�

2. Proof of Theorem 1.4.2

2.1. Idea of the proof. Before we give the proof, let us explain informally its main idea.

2.1.1. To specify a sheaf of categories C over (P Sing(Z))dR, we need to assign a category Γ(S,C)
to any affine DG scheme S equipped with a map

redS → P Sing(Z).

In the case of the sheaf C =
◦

IndCoh(Z)∼, we take Γ(S,
◦

IndCoh(Z)∼) to be a certain full
subcategory in

QCoh(S)⊗
◦

IndCoh(Z).

2.1.2. Namely, for an object F ∈ QCoh(S)⊗ IndCoh(Z) we can talk about its singular support,
which is a closed subset in S × Sing(Z), conical with respect to the Gm-action on the second
factor. Note that if F ∈ QCoh(S)⊗QCoh(Z), then its singular support is contained in S×{0}.
Hence, to an object of

QCoh(S)⊗
◦

IndCoh(Z)

we can attach its singular support, which is a closed subset of S × P Sing(Z).

Now, let

Γ(S,
◦

IndCoh(Z)∼) ⊂ QCoh(S)⊗
◦

IndCoh(Z)

be the full subcategory of objects whose singular support is contained (set-theoretically) in the
graph of the given map redS → P Sing(Z).

2.1.3. To prove that the above construction works, we need to do two things:

(i) Show that the assignment S  Γ(S,
◦

IndCoh(Z)∼) is indeed a sheaf of categories. This will
not be difficult.

(ii) Show that a naturally constructed functor
◦

IndCoh(Z) → Γ(P Sing(Z),
◦

IndCoh(Z)∼) is an
equivalence. To do so, we will reduce to the case when Z is a global complete intersection and
use some explicit analysis.
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2.1.4. Rather than giving the proof specifically for
◦

IndCoh(Z), below we do it in an abstract
setting, by isolating the relevant pieces of structure.

Namely, instead of IndCoh(Z) we have an arbitrary DG category C, and the role of the E2-
algebra of Hochschild cochains (whose action on IndCoh(Z) gives rise to the notion of singular
support), we use an arbitrary E2-algebra A.

2.2. Abstract setting for Theorem 1.4.2.

2.2.1. Let C be a DG category, equipped with an action of an E2-algebra A (see [AG, Sect.
3.5] for what this means). Let A be a commutative finitely generated algebra, graded by even
non-negative integers, equipped with a grading-preserving homomorphism

A→ H•(A) := ⊕
n
Hn(A).

According to [AG, Sect. 3.5] (by the construction going back to [BIK]), to any c ∈ C we
can attach its support, denoted suppA(c), which is a conical Zariski-closed subset of Spec(A).

Vice versa, to a conical Zariski-closed subset N ⊂ Spec(A) we assign the full subcategory

CN ⊂ C,

consisting of objects with support in N.

2.2.2. Let A0 be the degree 0 component of A. The projection Spec(A) → Spec(A0) admits a
canonically defined section Spec(A0)→ Spec(A), because we can identify A0 with the quotient
algebra of A by the ideal A>0.

Let {0} denote the subset of Spec(A) equal to the image Spec(A0) under the above section.
Let C{0} be the corresponding full subcategory of C. Define

◦
C := C/C{0}.

We can also think of
◦
C as the kernel of the co-localization functor C→ C{0}, right adjoint

to the tautological embedding; this is the same as (C{0})
⊥ ⊂ C.

2.2.3. Consider the scheme Proj(A). The assignment

c ∈ C  suppA(c) ⊂ Spec(A)

gives rise to an assignment

c ∈
◦
C  PsuppA(c) ⊂ Proj(A).

Vice versa, to a Zariski-closed subset N ⊂ Proj(A) we assign the full subcategory

◦
CN = {c ∈

◦
C |PsuppA(c) ⊂ N} ⊂

◦
C.

2.3. Plan of this section.
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2.3.1. In Sect. 2.4, we attach a certain sheaf of categories CA ∈ ShvCat(Proj(A)dR) to the data
(C,A, A) as above.

In Sect. 2.5, we show that CA comes equipped with a functor

(2.1)
◦
C→ Γ(Proj(A)dR,CA).

More generally, for a Zariski-closed subset N ⊂ Proj(A), there is a functor

(2.2)
◦
CN → Γ(NdR,CA).

We then provide additional conditions on the triple (C,A, A) (in Sect. 2.6.4) that guarantee
that the functor (2.2), and in particular (2.1), is an equivalence. The proof of this claim
(Proposition 2.6.5) occupies Sects. 2.8–2.10.

2.3.2. In Sect. 2.7 we apply this discussion to

C := IndCoh(Z), A := HC(Z), A := Γ(Sing(Z),OSing(Z)).

In the above formula, HC(Z) is the E2-algebra of Hochschild cochains on Z, or, which is the
same, the E2-center of the DG category IndCoh(Z), see [AG, Appendix F].

The resulting sheaf of categories category CA is the sought-for

◦
IndCoh(Z)∼ ∈ ShvCat((P Sing(Z))dR).

The equivalence (2.2) proves point (a) of Theorem 1.4.2.

2.3.3. To establish point (b) of Theorem 1.4.2, we study the interaction of the construction

(C,A, A) CA

with some pre-existing monoidal actions; this is done in Sect. 2.11.

2.4. Construction of the sheaf of categories.

2.4.1. For S ∈ DGSchaff consider the category

QCoh(S)⊗C.

The action of A on C and the action of the E∞-algebra Γ(S,OS), viewed as a E2-algebra,
on QCoh(S) give rise to the action of the E2-algebra Γ(S,OS)⊗A on QCoh(S)⊗C.

Note that we have a canonical map of commutative algebras

AS := H0(Γ(S,OS))⊗A→ H•(Γ(S,OS)⊗A).
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2.4.2. Consider the corresponding categories (QCoh(S)⊗C){0} ⊂ QCoh(S)⊗C and

QCoh(S)⊗C/(QCoh(S)⊗C){0}.

By [AG, Proposition 3.5.7], we have

(QCoh(S)⊗C){0} = QCoh(S)⊗C{0},

as full subcategories in QCoh(S)⊗C.

Hence,

QCoh(S)⊗C/(QCoh(S)⊗C){0} ' QCoh(S)⊗
◦
C.

Note that Proj(AS) ' S × Proj(A). Thus, to a Zariski-closed subset N′ ⊂ S × Proj(A), we
can attach the full subcategory

(QCoh(S)⊗
◦
C)N′ ⊂ QCoh(S)⊗

◦
C.

2.4.3. Assume now that S is equipped with a map to Proj(A)dR, i.e., redS is equipped with a
map f to Proj(A).

Define

Γ(S,CA) := (QCoh(S)⊗
◦
C)Graphf ,

where Graphf is the Zariski-closed subset of S × Proj(A) equal to the graph of the map f .

2.4.4. For a map S1 → S2 we have a tautological identification

QCoh(S1) ⊗
QCoh(S2)

(QCoh(S2)⊗
◦
C)) ' QCoh(S1)⊗

◦
C.

It is easy to see that under this identification we have an inclusion

(2.3) QCoh(S1) ⊗
QCoh(S2)

(QCoh(S2)⊗
◦
C)Graphf2

⊂ (QCoh(S1)⊗
◦
C)Graphf1

,

where f2 : redS2 → Proj(A) and f1 is the composition of redS1 → redS2 and f2.

We claim:

Lemma 2.4.5. The inclusion (2.3) is an equality.

Proof. Follows by combining [AG, Proposition 3.5.5 and Lemma 3.3.12]. �

2.4.6. From Lemma 2.4.5 we obtain that the assignment

(S, f) (QCoh(S)⊗
◦
C)Graphf

defines an object of ShvCat(Proj(A)dR).

We denote this object by CA. Thus by definition,

Γ(S,CA) := (QCoh(S)⊗
◦
C)Graphf

for any (S, f) ∈ (DGSchaff)/Proj(A)dR
.

2.5. A functor to the category of global sections.
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2.5.1. For (S, f) ∈ (DGSchaff)/Proj(A)dR
, we define a functor

(2.4)
◦
C→ (QCoh(S)⊗

◦
C)Graphf = Γ(S,CA)

as follows.

It is the composition of the tautological functor
◦
C→ QCoh(S)⊗

◦
C, c 7→ OS ⊗ c,

followed by the co-localization functor

QCoh(S)⊗
◦
C→ (QCoh(S)⊗

◦
C)Graphf ,

which is right adjoint to the tautological embedding

(QCoh(S)⊗
◦
C)Graphf ↪→ QCoh(S)⊗

◦
C.

2.5.2. The functors (2.4) are clearly compatible under the maps S1 → S2 in the category

(DGSchaff)/Proj(A)dR
.

Hence, they give rise to a functor

(2.5)
◦
C→ Γ(Proj(A)dR,CA).

2.5.3. Let now N ⊂ Proj(A) be a Zariski-closed subset. Consider the corresponding full sub-
category

◦
CN ⊂

◦
C.

On the other hand, consider NdR ⊂ Proj(A)dR. By Sect. 1.3.7, the category Γ(NdR,CA)
is naturally a full subcategory of Γ(Proj(A)dR,CA). The following assertion results from the
construction (see Proposition 1.3.6(b)):

Lemma 2.5.4. The essential image of the subcategory
◦
CN ⊂

◦
C under the functor (2.5) is

contained in Γ(NdR,CA) ⊂ Γ(Proj(A)dR,CA).

Thus, from Lemma 2.5.4, for every N as above, we obtain a functor

(2.6)
◦
CN → Γ(NdR,CA).

2.6. Imposing additional conditions. In this subsection we will recall the setting of [AG,
Sect. 3.6], where the notion of support is particularly explicit.

2.6.1. First, we recall that the symmetric monoidal category Vectgr := VectGm of Z-graded
objects of Vect has a canonical automorphism,

(2.7) M 7→M shift

that applies the cohomological shift by [2k] to the k-th graded component, i.e.,

(M shift)k := Mk[2k].

Let B be an E2-algebra in Vectgr. Consider the corresponding E2-algebra Bshift, and assume
that it is classical, i.e., is concentrated in cohomological degree 0. Thus, we can regard Bshift

as a graded commutative algebra, which we can identify with

B := ⊕
n
H2n(B),
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and the functor (2.7) gives rise to a monoidal equivalence

(2.8) (B-mod)gr := (B-mod)Gm ' QCoh(Spec(B)/Gm).

2.6.2. Let C be a DG category, equipped with an action of B. Using the forgetful functor

(B-mod)gr → B-mod

and the equivalence (2.8), we obtain that C is acted on by the (symmetric) monoidal category
QCoh(Spec(B)/Gm).

Let N be a conical closed subset N ⊂ Spec(B). Then, on the one hand, we can attach to
it the full subcategory CN, singled out by the cohomological support condition, see Sect. 2.2.1
above. On the other hand, we can consider the full subcategory

C ⊗
QCoh(Spec(B)/Gm)

QCoh(Spec(B)/Gm)N/Gm ⊂ C ⊗
QCoh(Spec(B)/Gm)

QCoh(Spec(B)/Gm) ' C.

The following assertion is [AG, Corollary 3.6.5]:

Proposition 2.6.3. The full subcategories

CN ⊂ C ⊃ C ⊗
QCoh(Spec(B)/Gm)

QCoh(Spec(B)/Gm)N/Gm

coincide.

2.6.4. We now return to the general setting of Sect. 2.2 and make the following additional
assumption on the pair (A, A):

Suppose there exists an E2-algebra B, equipped with a homomorphism

B→ A,

such that:

• B is equipped with a grading such that Bshift is classical;
• The resulting map B := H•(B)→ H•(A) can be factored as

B → A→ H•(A),

where B → A is a surjection modulo nilpotents.

We claim:

Proposition 2.6.5. Under the above assumptions on the pair (A, A), the functor (2.6) is an
equivalence.

We prove Proposition 2.6.5 in Sections 2.8–2.10.

2.7. The case of ind-coherent sheaves. In this subsection we deduce Theorem 1.4.2 from
Proposition 2.6.5.

2.7.1. Let Z be an affine quasi-smooth DG scheme. In the setting of Sect. 2.2 we take

C = IndCoh(Z), A := HC(Z), A := Γ(Sing(Z),OSing(Z)).

In this case Proj(A) = P Sing(Z). The construction of Sect. 2.4 defines a sheaves of categories

CA over (P Sing(Z))dR; this is the sought-for
◦

IndCoh(Z)∼.
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2.7.2. The functor (2.5) gives rise to a functor

(2.9)
◦

IndCoh(Z)→ Γ

(
(P Sing(Z))dR,

◦
IndCoh(Z)∼

)
.

Furthermore, for a Zariski-closed subset N ⊂ PSing(Z) we obtain a functor

(2.10)
◦

IndCohN(Z)→ Γ

(
NdR,

◦
IndCoh(Z)∼

)
.

To prove Theorem 1.4.2(a), we need to show that the functor (2.10), and in particular,
(2.9) is an equivalence. We do so by reducing to the situation when Proposition 2.6.5 becomes
applicable.

2.7.3. First, we notice that the fact that (2.10) is an equivalence can be checked Zariski-locally
on Z. Hence, can (and will) assume that Z is a global derived complete intersection. This means
that Z fits into a Cartesian square

(2.11)

Z −−−−→ Uy y
pt −−−−→ V,

where U is smooth, and V is a vector space.

We claim that in this case the additional assumptions of Sect. 2.6.4 are satisfied.

Indeed, for Z fitting into the diagram (2.11), we take B to be the E2-algebra

Γ(U,OU )⊗ Sym(V [−2]),

see [AG, Sect. 5.3.2]. The required pieces of structure on B are described in [AG, Formula
(5.9) and Sect. 5.4], respectively.

2.8. Proof of Proposition 2.6.5, Step 1. Let (A, A) and (B, B) be as in Sect. 2.6.4. Let us
prove that (2.5) is an equivalence in the special case (A, A) = (B, B).

2.8.1. According to [AG, Sect. 3.6.2], the category
◦
C has a natural structure of module over

QCoh(Proj(B)).

Let C′B denote the object of ShvCat(Proj(B)) equal to

LocProj(B)(
◦
C),

where

LocProj(B) : QCoh(Proj(B)) - mod→ ShvCat(Proj(B))

is the left adjoint functor to Γ(Proj(B),−), see [Ga2, Sect. 1.3.1]. Explicitly, for an affine DG
scheme S mapping to Proj(B), we have

Γ(S,C′B) := QCoh(S) ⊗
QCoh(Proj(B))

◦
C.
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2.8.2. Recall that pdR,Proj(B) denotes the tautological map Proj(B) → Proj(B)dR. The key
observation is provided by the following lemma, which expresses the set-theoretic nature of
singular support:

Lemma 2.8.3. There exists a canonical isomorphism

CB ' coindpdR,Proj(B)
(C′B)

in ShvCat(Proj(B)dR); under this identification, the composite map

◦
C→ Γ(Proj(B),C′B) ' Γ(Proj(B)dR, coindpdR,Proj(B)

(C′B)) ' Γ(Proj(B)dR,CB)

identifies with (2.5).

Proof. Fix S
f−→ Proj(B), and let (S×Proj(B))∧Graphf

be the formal completion of S×Proj(B)

along the graph of f , i.e.,

(S × Proj(B))∧Graphf
:= (S × Proj(B)) ×

(S×Proj(B))dR

(Graphf )dR.

The sheaf of categories coindpdR,Proj(B)
(C′B) assigns to (S, f) as above the category

QCoh
(

(S × Proj(B))∧Graphf

)
⊗

QCoh(Proj(B))

◦
C.

which tautologically identifies with

QCoh
(

(S × Proj(B))∧Graphf

)
⊗

QCoh(S×Proj(B))
(QCoh(S)⊗

◦
C) '

' QCoh(S × Proj(B))Graphf ⊗
QCoh(S×Proj(B))

(QCoh(S)⊗
◦
C).

Now, the latter category identifies with (QCoh(S)⊗
◦
C)Graphf by Proposition 2.6.3 above.

�

2.8.4. From Lemma 2.8.3, we obtain that in order to prove that (2.5) is an isomorphism, it
suffices to show that the map

◦
C→ Γ(Proj(B),C′B) = Γ(Proj(B),LocProj(B)(

◦
C))

is an isomorphism.

However, the latter follows from the fact that Proj(B) is 1-affine, being a quasi-compact DG
scheme, see [Ga2, Theorem 2.1.1].

2.9. Proof of Proposition 2.6.5, Step 2. Suppose now that for (A, A) as in Sect. 2.6.4, the
map (2.5) is an equivalence.

2.9.1. Applying the construction of Sects. 2.4-2.5 to (B, B), we obtain

CB ∈ ShvCat(Proj(B)),

and a functor

(2.12)
◦
C→ Γ(Proj(B)dR,CB).
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2.9.2. By assumption, the homomorphism B → A induces a map g : Proj(A)→ Proj(B), which
is moreover a closed embedding of the underlying classical reduced schemes.

Consider the corresponding map gdR : Proj(A)dR → Proj(B)dR and the resulting adjoint
pair of functors functor

coresgdR
: ShvCat(Proj(B)dR)� ShvCat(Proj(A)dR) : coindgdR

.

Tautologically, we have:
coresgdR

(CB) ' CA.

Moreover, under this identification, the composite map
◦
C→ Γ(Proj(B)dR,CB)→ Γ(Proj(A)dR, coresgdR

(CB)) ' Γ(Proj(A)dR,CA)

identifies with (2.5).

By adjunction, we obtain a map in ShvCat(Proj(B)dR):

(2.13) CB → coindgdR
(CA).

We claim:

Lemma 2.9.3. The map (2.13) is an isomorphism.

Proof. Clearly, PsuppB(c) ⊂ Proj(A) ⊂ Proj(B) for any c ∈
◦
C. Hence the restriction of CB to

Proj(B)dR − Proj(A)dR

vanishes. Now the claim follows from Proposition 1.3.6(a). �

2.9.4. As we showed in Step 1 of the proof, the functor (2.12) is an equivalence. Since

Γ(Proj(B)dR, coindgdR
(CA)) ' Γ(Proj(A)dR,CA),

Lemma 2.9.3 implies that (2.5) is an equivalence, as claimed.

2.10. Proof of Proposition 2.6.5, Step 3.

2.10.1. To complete the proof, it remains to show that the functor
◦
CN → Γ(NdR,CA)

of (2.6) is an equivalence.

2.10.2. Let N′ be the conical Zariski-closed subset of Spec(A) such that N′ ⊃ {0} and N =
P(N′). Consider the corresponding full subcategory C′ := CN′ ⊂ C. We have an equality

◦
C′ =

◦
CN

of full subcategories of
◦
C.

Consider the corresponding sheaf of categories C′A over Proj(A)dR. We have a canonical
identification

Γ(Proj(A)dR,C
′
A) ' Γ(NdR,CA),

such that the diagram
◦
CN −−−−→ Γ(NdR,CA)

∼
x x∼
◦
C′ −−−−→ Γ(Proj(A)dR,C

′
A)
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commutes.

As shown on Step 2 of the proof (applied to C′), the bottom arrow of this diagram is an
equivalence. Hence, the top arrow is an equivalence as well. This completes the proof.

2.11. Compatibility of monoidal actions.

2.11.1. We now enhance the setting of Sect. 2.2 to include certain pre-existing monoidal actions.

Suppose Ã is a commutative (i.e., E∞) algebra and Ã→ A is a homomorphism of E2-algebras.
Assume that

• Ã is connective, i.e., Hn(Ã) = 0 for n > 0;

• We are given a factorization of the homomorphism H0(Ã)→ H0(A) as

H0(Ã)→ A0 → H0(A).

The homomorphism Ã → A and the action of A on C define an action of Ã on C. In

particular, the (symmetric) monoidal category Ã-mod = QCoh(Spec(Ã)) acts on C, and hence

on
◦
C.

2.11.2. Thus, on the one hand, the category QCoh(Spec(Ã)dR) acts on
◦
C via the monoidal

functor
QCoh(Spec(Ã)dR)→ QCoh(Spec(Ã)) = Ã-mod→ A-mod

(where the first arrow corresponding to the tautological projection Spec(Ã)→ Spec(Ã)dR), and

the action of A-mod on
◦
C ⊂ C.

On the other hand, we have the (symmetric) monoidal functor

QCoh(Spec(Ã)dR) ' QCoh(Spec(H0(Ã))dR)→ QCoh(Spec(A0)dR)→ QCoh(Proj(A)dR),

while QCoh(Proj(A)dR) acts on Γ(Proj(A)dR,CA).

We claim:

Proposition 2.11.3. The functor (2.5) intertwines the above actions of QCoh(Spec(Ã)dR) on
◦
C and Γ(Proj(A)dR,CA), respectively.

2.11.4. We apply Proposition 2.11.3 as follows. We take Ã = Γ(Z,OZ), which is equipped
with a canonical map to HC(Z). The conclusion of Proposition 2.11.3 in this case implies the
compatibility statement in Theorem 1.4.2(b).

The rest of this subsection is devoted to the proof of Proposition 2.11.3.

2.11.5. The action of QCoh(Spec(Ã)dR) on Γ(Proj(A)dR,CA) amounts to a compatible family

of actions of QCoh(Spec(Ã)dR) on the categories

Γ(S,CA) = (QCoh(S)⊗
◦
C)Graphf ,

for (S, f) ∈ (DGSchaff)/Proj(A)dR
.

For every (S, f), the action in question is obtained as the composition of the (symmetric)
monoidal functor

(2.14) QCoh(Spec(Ã)dR) ' QCoh(Spec(H0(Ã))dR)→ QCoh(Spec(A0)dR)→

→ QCoh(Proj(A)dR)→ QCoh(S)→ QCoh(S)⊗ Ã-mod
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and the action of QCoh(S) ⊗ Ã-mod on (QCoh(S) ⊗
◦
C)Graphf , obtained from the monoidal

functor QCoh(S)⊗ Ã-mod→ QCoh(S)⊗A-mod.

We need to show that the functor
◦
C→ (QCoh(S)⊗

◦
C)Graphf

of (2.4) intertwines the above action with the action of QCoh(Spec(Ã)dR) on
◦
C, obtained from

QCoh(Spec(Ã)dR)→ QCoh(Spec(Ã)) = Ã-mod,

and the action of Ã-mod on
◦
C ⊂ C, obtained from the monoidal functor Ã-mod→ A-mod.

Tautologically, the functor (2.4) intertwines the action of QCoh(Spec(Ã)dR) on
◦
C with its

action on (QCoh(S)⊗
◦
C)Graphf obtained from the composition of (symmetric) monoidal functor

(2.15) QCoh(Spec(Ã)dR)→ QCoh(Spec(Ã)) = Ã-mod
OS⊗−−→ QCoh(S)⊗ Ã-mod

and the action of QCoh(S) ⊗ Ã-mod on (QCoh(S) ⊗
◦
C)Graphf obtained from the monoidal

functor QCoh(S)⊗ Ã-mod→ QCoh(S)⊗A-mod.

2.11.6. Note, however, that the action of QCoh(S) ⊗ Ã-mod on (QCoh(S) ⊗
◦
C)Graphf factors

through

(2.16) QCoh(S)⊗ Ã-mod = QCoh(S)⊗QCoh(Spec(Ã)) '

' QCoh(S × Spec(Ã))→ QCoh((S × Spec(Ã))∧Graph
f̃
),

where (S × Spec(Ã))∧Graph
f̃

is the formal completion of S × Spec(Ã) along the graph of the

composite map, denoted f̃ :

redS → Proj(A)→ Spec(A0)→ Spec(H0(Ã))→ Spec(Ã).

Thus, we need to show that the compositions of both (2.14) and (2.15) with (2.16) are canoni-
cally identified as (symmetric) monoidal functors. However, this follows from the commutativity
of the next diagram of prestacks:

(S × Spec(Ã))∧Graph
f̃
−−−−→ S × Spec(Ã)

pr2−−−−→ Spec(Ã)y y
S × Spec(Ã)

pr1−−−−→ S
f̃−−−−→ Spec(Ã)dR.

3. Relative crystals

Let f : Z → Y be a map of DG schemes almost of finite type. We are interested in the
category

IndCoh(ZdR ×
YdR

Y ).

Objects of this category can be viewed as ind-coherent sheaves on Z equipped with a con-
nection along the fibers of the map Z → Y . When the map is smooth, the words ‘connection
along the fibers’ can be understood literally. In general, the definition requires the language of
de Rham prestacks.
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When Z is quasi-smooth, one can use singular support to construct subcategories of
IndCoh(ZdR ×

YdR

Y ). In this section we study the interaction of this construction with the

crystal structure on the category of singularities studied in Sect. 1.

3.1. Relative crystals as a tensor product. Let f : Z → Y be a map of DG schemes almost
of finite type. Let us describe the category IndCoh(ZdR ×

YdR

Y ) in terms of IndCoh(Y ).

3.1.1. First, we claim:

Proposition 3.1.2. The functor

(3.1) QCoh(ZdR ×
YdR

Y ) ⊗
QCoh(Y )

IndCoh(Y )→ IndCoh(ZdR ×
YdR

Y ),

induced by the QCoh(Y )-linear functor

(fdR × id)! : IndCoh(Y )→ IndCoh(ZdR ×
YdR

Y ),

is an equivalence.

3.1.3. Proof of Proposition 3.1.2, Step 0. First, it is easy to see that the assertion is Zariski-local
with respect to Z. Hence, we can assume that the map f can be factored as

Z
i
↪→ Z ′ → Y,

where i is a closed embedding, and Z ′ is of the form W × Y .

Let
◦
Z

j
↪→ Z ′ be the embedding of the complementary open.

3.1.4. Proof of Proposition 3.1.2, Step 1. We claim that the assertion of the proposition holds
for Z ′. Indeed, we have:

Z ′dR ×
YdR

Y 'WdR × Y,

and hence

QCoh(Z ′dR ×
YdR

Y ) ⊗
QCoh(Y )

IndCoh(Y ) ' QCoh(WdR)⊗ IndCoh(Y ).

Similarly,

IndCoh(Z ′dR ×
YdR

Y ) ' IndCoh(WdR)⊗ IndCoh(Y ).

Now, the functor

QCoh(Z ′dR ×
YdR

Y ) ⊗
QCoh(Y )

IndCoh(Y )→ IndCoh(Z ′dR ×
YdR

Y )

identifies with

ΥWdR
⊗ Id : QCoh(WdR)⊗ IndCoh(Y )→ IndCoh(WdR)⊗ IndCoh(Y ),

which is an equivalence by [GR1, Proposition 2.4.4].
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3.1.5. Proof of Proposition 3.1.2, Step 2. Note that the map ZdR ×
YdR

Y → Z ′dR ×
YdR

Y is an

isomorphism from ZdR ×
YdR

Y to its own formal completion inside Z ′dR ×
YdR

Y .

Hence, we have a localization sequence

QCoh(ZdR ×
YdR

Y )� QCoh(Z ′dR ×
YdR

Y )� QCoh(
◦
ZdR ×

YdR

Y ),

which gives rise to the localization sequence

QCoh(ZdR ×
YdR

Y ) ⊗
QCoh(Y )

IndCoh(Y )� QCoh(Z ′dR ×
YdR

Y ) ⊗
QCoh(Y )

IndCoh(Y )�

� QCoh(
◦
ZdR ×

YdR

Y ) ⊗
QCoh(Y )

IndCoh(Y ).

Similarly, we have a localization sequence

IndCoh(ZdR ×
YdR

Y )� IndCoh(Z ′dR ×
YdR

Y )� IndCoh(
◦
ZdR ×

YdR

Y ).

Combined with the fact that

QCoh(Z ′dR ×
YdR

Y ) ⊗
QCoh(Y )

IndCoh(Y )→ IndCoh(Z ′dR ×
YdR

Y )

is an equivalence, this implies that (3.1) is fully faithful.

Thus, we have proved that the functor (3.1) is fully faithful for any Z; in particular, it is

fully faithful, and in particular, conservative, for
◦
Z. Comparing the localization sequences, this

implies that the functor (3.1) is essentially surjective for the initial Z, as required.
�(Proposition 3.1.2)

3.1.6. Assume now that Y is quasi-smooth. Consider the category

QCoh(ZdR ×
YdR

Y ) ⊗
QCoh(Y )

IndCoh(Y ),

appearing on the left-hand side of the equivalence in Proposition 3.1.2. It contains as a full
subcategory

QCoh(ZdR ×
YdR

Y ) '

' QCoh(ZdR ×
YdR

Y ) ⊗
QCoh(Y )

QCoh(Y )
Id⊗ΞY
↪→ QCoh(ZdR ×

YdR

Y ) ⊗
QCoh(Y )

IndCoh(Y ).

The resulting embedding

QCoh(ZdR ×
YdR

Y )→ QCoh(ZdR ×
YdR

Y ) ⊗
QCoh(Y )

IndCoh(Y ) ' IndCoh(ZdR ×
YdR

Y )

differs from the canonical embedding ΥZdR ×
YdR

Y (given by the action of the left-hand side on

ωZdR ×
YdR

Y ) by tensoring by the pullback of ωY . In particular, the two embeddings have the

same essential image.

Set
◦

IndCoh(ZdR ×
YdR

Y ) := IndCoh(ZdR ×
YdR

Y )/QCoh(ZdR ×
YdR

Y ).
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We view it as a full subcategory of IndCoh(ZdR ×
YdR

Y ) by identifying it with

QCoh(ZdR ×
YdR

Y )⊥ ⊂ IndCoh(ZdR ×
YdR

Y ).

In terms of the equivalence of Proposition 3.1.2, we have
◦

IndCoh(ZdR ×
YdR

Y ) = QCoh(ZdR ×
YdR

Y ) ⊗
QCoh(Y )

◦
IndCoh(Y ),

as full subcategories of

IndCoh(ZdR ×
YdR

Y ) ' QCoh(ZdR ×
YdR

Y ) ⊗
QCoh(Y )

IndCoh(Y ).

3.1.7. We now claim:

Proposition 3.1.8. There exist canonical equivalences

(3.2)
◦

IndCoh(ZdR ×
YdR

Y ) ' QCoh((Z ×
Y
P Sing(Y ))dR) ⊗

QCoh((P Sing(Y ))dR)

◦
IndCoh(Y ) '

' Γ

(
(Z ×

Y
PSing(Y ))dR,

◦
IndCoh(Y )∼

)
3.1.9. Proof of Proposition 3.1.8. Let us show that we have a canonical isomorphism

QCoh(ZdR ×
YdR

Y ) ⊗
QCoh(Y )

CY ' QCoh((Z ×
Y
P Sing(Y ))dR) ⊗

QCoh((P Sing(Y ))dR)
CY

for any CY ∈ QCoh((P Sing(Y ))dR ×
YdR

Y ) - mod.

First, the fact YdR is 1-affine implies that

QCoh(ZdR) ⊗
QCoh(YdR)

QCoh(Y )→ QCoh(ZdR ×
YdR

Y )

is an isomorphism, see Lemma 1.5.6.

Hence,
QCoh(ZdR ×

YdR

Y ) ⊗
QCoh(Y )

CY ' QCoh(ZdR) ⊗
QCoh(YdR)

CY .

Next, we rewrite

QCoh(ZdR) ⊗
QCoh(YdR)

CY '

'
(

QCoh(ZdR) ⊗
QCoh(YdR)

QCoh((P Sing(Y ))dR)

)
⊗

QCoh((P Sing(Y ))dR)
CY .

Now, the fact that both ZdR and YdR are 1-affine implies that the functor

QCoh(ZdR) ⊗
QCoh(YdR)

QCoh((PSing(Y ))dR)→

→ QCoh(ZdR ×
YdR

(PSing(Y ))dR) = QCoh((Z ×
Y
P Sing(Y ))dR)

is an equivalence.

Hence,

QCoh(ZdR) ⊗
QCoh(YdR)

CY ' QCoh((Z ×
Y
PSing(Y ))dR) ⊗

QCoh((P Sing(Y ))dR)
CY ,

as desired.
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Finally, the fact that

QCoh((Z×
Y
PSing(Y ))dR) ⊗

QCoh((P Sing(Y ))dR)

◦
IndCoh(Y )→ Γ

(
(Z ×

Y
PSing(Y ))dR,

◦
IndCoh(Y )∼

)
is an equivalence follows from the fact that both PSing(Y ))dR and (Z ×

Y
PSing(Y ))dR are

1-affine.
�

3.2. Relative crystals with prescribed singular support. Let f : Z → Y be as before.
We now assume that Z is quasi-smooth and that f has a perfect relative cotangent complex
(this is automatic if Y is also quasi-smooth).

In this subsection we show how conical subvarieties on Sing(Z) give rise to subcategories of
IndCoh(ZdR ×

YdR

Y ).

3.2.1. The tautological map pdR/Y,Z : Z → ZdR ×
YdR

Y gives rise to the forgetful functor

(pdR/Y,Z)! : IndCoh(ZdR ×
YdR

Y )→ IndCoh(Z).

According to [GR2, Chapter III.3, Proposition 3.1.2], the functor (pdR/Y,Z)! is conservative

and admits a left adjoint, denoted (pdR/Y,Z)IndCoh
∗ . Informally, if one views ind-coherent sheaves

on ZdR ×
YdR

Y as (relative) D-modules for the morphism Z → Y , then (pdR/Y,Z)IndCoh
∗ is the

induction functor from ind-coherent sheaves on Z to relative D-modules.

The composition ((pdR/Y,Z)!◦(pdR/Y,Z)IndCoh
∗ ) acquires a natural structure of a monad acting

on IndCoh(Z). Denote by

((pdR/Y,Z)! ◦ (pdR/Y,Z)IndCoh
∗ )-mod(IndCoh(Z))

the category of modules over this monad. The Barr-Beck-Lurie theorem provides an equivalence

IndCoh(ZdR ×
YdR

Y ) ' ((pdR/Y,Z)! ◦ (pdR/Y,Z)IndCoh
∗ )-mod(IndCoh(Z)).

(The assumption that Z is quasi-smooth is not required for this equivalence.)

3.2.2. Now fix a conical Zariski-closed subset N ⊂ Sing(Z). Let

IndCohN(ZdR ×
YdR

Y ) ⊂ IndCoh(ZdR ×
YdR

Y )

denote the preimage of

IndCohN(Z) ⊂ IndCoh(Z)

under the functor (pdR/Y,Z)!.

We claim:

Proposition 3.2.3. The functor (pdR/Y,Z)IndCoh
∗ sends IndCohN(Z) to IndCohN(ZdR ×

YdR

Y ).

Proof. The assertion of the proposition is equivalent to the fact that

((pdR/Y,Z)! ◦ (pdR/Y,Z)IndCoh
∗ ),

viewed as a plain endofunctor of IndCoh(Z), preserves the full subcategory IndCohN(Z).
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Recall that according to [GR2, Chapter IV.5, Theorem 6.1.2], ((pdR/Y,Z)! ◦ (pdR/Y,Z)IndCoh
∗ )

admits a filtration whose n-th associated graded is isomorphic to the functor

(3.3) Symn(T (Z/Y ))
!
⊗−,

where Symn is taken in the symmetric monoidal category (IndCoh(Z),
!
⊗), and T (Z/Y ) ∈

IndCoh(Z) is as in [GR2, Chapter III.1, Sect. 4.3.8].

Thus, it suffices to show that the functor (3.3) preserves the subcategory IndCohN(Z).

Let T ∗(Z/Y ) ∈ QCoh(Z) be the cotangent complex of Z. The assumption that T ∗(Z/Y )
be perfect implies that T (Z/Y ) ∈ IndCoh(Z) is canonically isomorphic to

ΥZ((T ∗(Z/Y ))∨),

where (T ∗(Z/Y ))∨ ∈ QCoh(Z) is the monoidal dual of T ∗(Z/Y ), and where ΥZ is as in [GR2,
Chapter II.3, Sect. 3.2.5].

Therefore,
Symn(T (Z/Y )) ' ΥZ (Symn((T ∗(Z/Y ))∨)) ,

where Symn is now taken in the symmetric monoidal category (QCoh(Z),⊗). Hence, the
functor (3.3) is given by

Symn((T ∗(Z/Y ))∨)⊗−,
where ⊗ denotes the action of QCoh(Z) on IndCoh(Z), and therefore preserves IndCohN(Z),
see [AG, Lemma 4.2.2]. �

3.2.4. As a corollary of Proposition 3.2.3, we obtain:

Corollary 3.2.5. There exists a canonical equivalence

IndCohN(ZdR ×
YdR

Y ) ' ((pdR/Y,Z)! ◦ (pdR/Y,Z)IndCoh
∗ )-mod(IndCohN(Z)),

commuting with the forgetful functors to IndCohN(Z).

3.2.6. Let us now assume that Y is quasi-smooth as well. Let N ⊂ Sing(Z) be a Zariski-closed
conical subset that contains the zero-section. We have

QCoh(ZdR ×
YdR

Y ) ⊂ IndCohN(ZdR ×
YdR

Y ),

as follows from the commutative diagram

QCoh(ZdR ×
YdR

Y )

ΥZdR ×
YdR

Y

−−−−−−−→ IndCoh(ZdR ×
YdR

Y )y y
QCoh(Z)

ΥZ−−−−→ IndCoh(Z).

Let us denote by

(3.4)
◦

IndCohN(ZdR ×
YdR

Y )

the quotient
IndCohN(ZdR ×

YdR

Y )/QCoh(ZdR ×
YdR

Y ),

considered as a full subcategory of
◦

IndCoh(ZdR ×
YdR

Y ) ⊂ IndCoh(ZdR ×
YdR

Y ).
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3.2.7. Recall now the map

Sing(f) : Z ×
Y

Sing(Y )→ Sing(Z),

see [AG, Sect. 2.4.1]. For {0} ⊂ N ⊂ Sing(Z) as above, consider the closed subset

Sing(f)−1(N) ⊂ Z ×
Y

Sing(Y ).

Consider the corresponding closed subset

P(Sing(f)−1(N)) ⊂ Z ×
Y
P Sing(Y ).

Consider the corresponding full subcategory

(3.5) Γ

(
(P(Sing(f)−1(N)))dR,

◦
IndCoh(Y )∼

)
⊂ Γ

(
(Z ×

Y
P Sing(Y ))dR,

◦
IndCoh(Y )∼

)
,

or, which is the same,

(3.6) QCoh
(
(P(Sing(f)−1(N)))dR

)
⊗

QCoh((P Sing(Y ))dR)

◦
IndCoh(Y ) ⊂

⊂ QCoh((Z ×
Y
PSing(Y ))dR) ⊗

QCoh((P Sing(Y ))dR)

◦
IndCoh(Y ).

3.2.8. Using Proposition 3.1.8, we identify

(3.7)
◦

IndCoh(ZdR ×
YdR

Y ) ' Γ

(
(Z ×

Y
P Sing(Y ))dR,

◦
IndCoh(Y )∼

)
or, equivalently,

(3.8)
◦

IndCoh(ZdR ×
YdR

Y ) ' QCoh((Z ×
Y
P Sing(Y ))dR) ⊗

QCoh((P Sing(Y ))dR)

◦
IndCoh(Y ).

We claim:

Theorem 3.2.9. The full subcategory

◦
IndCohN(ZdR ×

YdR

Y ) ⊂ IndCohN(ZdR ×
YdR

Y )

of (3.4) corresponds under the identifications (3.7) and (3.8) to the full subcategory

Γ

(
(P(Sing(f)−1(N)))dR,

◦
IndCoh(Y )∼

)
⊂ Γ

(
(Z ×

Y
P Sing(Y ))dR,

◦
IndCoh(Y )∼

)
from (3.5), or, equivalently, to the full subcategory

QCoh
(
(P(Sing(f)−1(N)))dR

)
⊗

QCoh((P Sing(Y ))dR)

◦
IndCoh(Y ) ⊂

⊂ QCoh((Z ×
Y
P Sing(Y ))dR) ⊗

QCoh((P Sing(Y ))dR)

◦
IndCoh(Y ).

from (3.6).
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3.2.10. An example. Let us take N = {0}. In this case we have the following three full subcat-
egories of IndCoh(ZdR ×

YdR

Y ). The largest is IndCoh(ZdR ×
YdR

Y ) itself.

The smallest is

QCoh(ZdR ×
YdR

Y ) ⊂ IndCoh(ZdR ×
YdR

Y ).

The middle category is IndCoh{0}(ZdR ×
YdR

Y ), i.e., the preimage of QCoh(Z) ⊂ IndCoh(Z)

under the forgetful functor

IndCoh(ZdR ×
YdR

Y )→ IndCoh(Z).

In terms of the identification

◦
IndCoh(ZdR ×

YdR

Y ) = IndCoh(ZdR ×
YdR

Y )/QCoh(ZdR ×
YdR

Y ) '

' QCoh((Z ×
Y
PSing(Y ))dR) ⊗

QCoh((P Sing(Y ))dR)

◦
IndCoh(Y ).

of Proposition 3.1.8, the subcategory

◦
IndCoh{0}(ZdR ×

YdR

Y ) ⊂
◦

IndCoh(ZdR ×
YdR

Y )

corresponds to subscheme

P(Sing(f)−1({0})) ⊂ Z ×
Y
P Sing(Y ).

3.3. Proof of Theorem 3.2.9, Step 1. We first show that the assertion of the theorem holds
when f : Z → Y is a closed embedding.

3.3.1. Note that in this case ZdR ×
YdR

Y is the formal completion Y ∧Z of Y along Z. In particular,

IndCoh(ZdR ×
YdR

Y ) identifies with the full subcategory

IndCoh(Y )Z ⊂ IndCoh(Y ),

consisting of objects that are set-theoretically supported on Z ⊂ Y .

Recall that the categories IndCoh(Z) and IndCoh(ZdR ×
YdR

Y ) are related by a pair of adjoint

functors

(pdR/Y,Z)IndCoh
∗ : IndCoh(Z)� IndCoh(ZdR ×

YdR

Y ) : (pdR/Y,Z)!

(the induction functor and the forgetful functor). Under the equivalence

IndCoh(ZdR ×
YdR

Y ) ' IndCoh(Y )Z ,

they are identified with the pair of adjoint functors

f IndCoh
∗ : IndCoh(Z)� IndCoh(Y )Z : f !|IndCoh(Y )Z .

Under the identification of (3.1), the full subcategory

QCoh(ZdR ×
YdR

Y ) ⊗
QCoh(Y )

◦
IndCoh(Y ) ⊂ QCoh(ZdR ×

YdR

Y ) ⊗
QCoh(Y )

IndCoh(Y )
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corresponds to

IndCoh(Y )Z ∩
◦

IndCoh(Y ) ⊂ IndCoh(Y )Z ' IndCoh(ZdR ×
YdR

Y ).

Furthermore, the diagram

QCoh(ZdR ×
YdR

Y ) ⊗
QCoh(Y )

◦
IndCoh(Y )

Proposition 3.1.8−−−−−−−−−−−→
∼

Γ

(
(Z ×

Y
P Sing(Y ))dR,

◦
IndCoh(Y )∼

)
y∼ y

IndCoh(Y )Z ∩
◦

IndCoh(Y ) Γ

(
(P Sing(Y ))dR,

◦
IndCoh(Y )∼

)
y y∼
◦

IndCoh(Y )
Id−−−−→

◦
IndCoh(Y )

commutes.

3.3.2. Set

M := Sing(f)−1(N) ⊂ Z ×
Y

Sing(Y ) ⊂ Sing(Y ).

Let PM denote the corresponding Zariski-closed subset of P Sing(Y ).

Then, by Theorem 1.4.2(a),

Γ

(
PMdR,

◦
IndCoh(Y )∼

)
⊂ Γ

(
(Z ×

Y
PSing(Y ))dR,

◦
IndCoh(Y )∼

)
⊂

◦
IndCoh(Y )

identifies with the full subcategory of
◦

IndCoh(Y ) equal to

◦
IndCohPM(Y ) =

◦
IndCoh(Y ) ∩ IndCohM(Y ).

Therefore, in order to establish the assertion of the theorem, it is sufficient to show that

IndCohM(Y ) = IndCohN(ZdR ×
YdR

Y ),

as subcategories of IndCoh(ZdR ×
YdR

Y ) ' IndCoh(Y )Z .

3.3.3. Thus, we need to show that IndCohM(Y ) ⊂ IndCoh(Y )Z equals the preimage of
IndCohN(Z) under the functor f ! : IndCoh(Y )Z → IndCoh(Z).

We note that the inclusion

IndCohM(Y ) ⊂ (f !)−1(IndCohN(Z))

follows from [AG, Proposition 7.1.3(a)].

For the opposite inclusion, by Corollary 3.2.5, it suffices to show that the essential image of
IndCohN(Z) under the functor

f IndCoh
∗ : IndCoh(Z)→ IndCoh(Y )Z

is contained in IndCohM(Y ). However, this follows from [AG, Proposition 7.1.3(b)].

3.4. Proof of Theorem 3.2.9, Step 2. We now consider the case of a general morphism
f : Z → Y .
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3.4.1. It is easy to see that the assertion of the theorem is Zariski-local on Z. Hence, we can
assume that the morphism f factors as

Z
f ′→ Y ′

g→ Y,

where Z → Y ′ is a closed embedding, and g is smooth. Furthermore, we can assume that Y ′ is
isomorphic to Y ×W with W smooth.

By Step 1, we know that the statement of the theorem holds for the morphism Z → Y ′.

3.4.2. Consider the (forgetful) functor

(3.9) (id×g)! : IndCoh(ZdR ×
YdR

Y )→ IndCoh(ZdR ×
Y ′dR

Y ′).

By definition,

IndCohN(ZdR ×
YdR

Y ) ⊂ IndCoh(ZdR ×
YdR

Y )

is the preimage under (3.9) of

IndCohN(ZdR ×
Y ′dR

Y ′) ⊂ IndCoh(ZdR ×
Y ′dR

Y ′).

3.4.3. The fact that g is smooth implies that

Sing(g) : Y ′ ×
Y

Sing(Y )→ Sing(Y ′)

is an isomorphism. In particular,

Z ×
Y

Sing(Y ) ' Z ×
Y ′

Sing(Y ′).

Under this identification, the loci

Sing(f)−1(N) ⊂ Z ×
Y

Sing(Y ) and Sing(f ′)−1(N) ⊂ Z ×
Y ′

Sing(Y ′)

correspond to one another.

Under the identifications of Proposition 3.1.8 for Y and Y ′, respectively, the pullback functor

QCoh(ZdR ×
YdR

Y ) ⊗
QCoh(Y )

◦
IndCoh(Y )→ QCoh(ZdR ×

Y ′dR

Y ′) ⊗
QCoh(Y ′)

◦
IndCoh(Y ′)

corresponds to the functor

(3.10) QCoh((Z ×
Y
P Sing(Y ))dR) ⊗

QCoh((P Sing(Y ))dR)

◦
IndCoh(Y )→

→ QCoh((Z ×
Y ′

PSing(Y ′))dR) ⊗
QCoh((P Sing(Y ′))dR)

◦
IndCoh(Y ′),

Hence, we obtain that in order to prove the theorem, it suffices to show that the preimage of

(3.11) QCoh((P(Sing(f ′)−1(N)))dR) ⊗
QCoh((P Sing(Y ′))dR)

◦
IndCoh(Y ′) ⊂

⊂ QCoh((Z ×
Y ′

PSing(Y ′))dR) ⊗
QCoh((P Sing(Y ′))dR)

◦
IndCoh(Y ′).
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under the functor (3.10) equals

(3.12) QCoh((P(Sing(f)−1(N)))dR) ⊗
QCoh((P Sing(Y ))dR)

◦
IndCoh(Y ) ⊂

⊂ QCoh((Z ×
Y
PSing(Y ))dR) ⊗

QCoh((P Sing(Y ))dR)

◦
IndCoh(Y ).

I.e., it suffices to show that the functor

QCoh((P(Sing(f)−1(N)))dR)⊥ ⊗
QCoh((P Sing(Y ))dR)

◦
IndCoh(Y )→

→ QCoh((P(Sing(f ′)−1(N)))dR)⊥ ⊗
QCoh((P Sing(Y ′))dR)

◦
IndCoh(Y ′)

is conservative.

3.4.4. Since g is smooth, the functor g! induces an equivalence

QCoh(Y ′) ⊗
QCoh(Y )

IndCoh(Y )→ IndCoh(Y ′).

Hence,

QCoh((P(Sing(f ′)−1(N)))dR)⊥ ⊗
QCoh((P Sing(Y ′))dR)

◦
IndCoh(Y ′)

is obtained from

QCoh((P(Sing(f)−1(N)))dR)⊥ ⊗
QCoh((P Sing(Y ))dR)

◦
IndCoh(Y )

by the procedure

− ⊗
QCoh(Y ′dR) ⊗

QCoh(YdR)
QCoh(Y )

QCoh(Y ′).

Now, we claim that for any C ∈ QCoh(Y ′dR ×
YdR

Y ) - mod, the resulting functor

(3.13) C→ C ⊗
QCoh(Y ′dR) ⊗

QCoh(YdR)
QCoh(Y )

QCoh(Y ′)

is conservative.

To show this, it is enough to prove that the pullback functor

(3.14) QCoh(Y ′dR) ⊗
QCoh(YdR)

QCoh(Y )→ QCoh(Y ′)

admits a left adjoint, which is compatible with the action of QCoh(Y ′dR) ⊗
QCoh(YdR)

QCoh(Y ),

and whose essential image generates QCoh(Y ′dR) ⊗
QCoh(YdR)

QCoh(Y ) as a DG category.

Indeed, such a left adjoint implies the existence of a left adjoint to (3.13), whose essential
image generates C.



THE CATEGORY OF SINGULARITIES AS A CRYSTAL 45

3.4.5. To establish the required property of (3.14), we use the assumption that Y ′ = Y ×W
with W smooth.

We write
QCoh(Y ′dR) ⊗

QCoh(YdR)
QCoh(Y ) ' QCoh(Y )⊗QCoh(WdR)

and
QCoh(Y ′) ' QCoh(Y )⊗QCoh(W ).

Thus, our assertion follows from the fact that the forgetful functor

QCoh(WdR)→ QCoh(W )

does admit a left adjoint with the required properties.
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Part II: Gluing.

4. A paradigm for gluing

In this section we formulate the main result of this paper, Theorem 4.3.4.

4.1. Gluing and lax limits: a reminder.

4.1.1. Let I be an index ∞-category, and let

i 7→ Ci, (α : i→ j) 7→ (Φα : Ci → Cj).

be a functor I → DGCatcont.

Let CI be the corresponding co-Cartesian fibration over I. The lax limit

lax-lim
i∈I

Ci

is the object of DGCatcont equal to the category of all (i.e., not necessarily co-Cartesian)
sections I → CI of the projection CI → I.

We have a fully faithful embedding

lim
i∈I

Ci ↪→ lax-lim
i∈I

Ci

that corresponds to taking co-Cartesian sections.

4.1.2. Objects of lax-lim
i∈I

Ci can be concretely described as follows: An object of lax-lim
i∈I

Ci is

a collection

ci ∈ Ci for all i ∈ I,
equipped with a family of morphisms (but not necessarily isomorphisms)

Φα(ci)→ cj for all α : i→ j,

compatible with compositions of α’s, and endowed with a homotopy-coherent system of com-
patibilities for multi-fold compositions.

An object as above belongs to lim
i∈I

Ci if and only if the above maps Φα(ci) → cj are all

isomorphisms.

4.1.3. Unwinding the definitions, for a given D ∈ DGCatcont, the datum of a functor

F : D→ lax-lim
i∈I

Ci

consists of a collection of functors

Fi : D→ Ci for all i ∈ I

equipped with a compatible family of natural transformations (but not necessarily isomor-
phisms)

Φα ◦ Fi → Fj for all α : i→ j.

In particular, by taking D = Vect, we obtain the description of objects of lax-lim
i∈I

Ci, given

above.
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4.1.4. We think of lax-lim
i∈I

Ci as glued from the categories Ci using the functors Φα.

For this reason, we also denote

lax-lim
i∈I

Ci =: Glue(Ci, i ∈ I).

Remark 4.1.5. The category Glue(Ci, i ∈ I) can be defined in a more general situation. Namely,
we do not need

i 7→ Ci, I → DGCatcont

to be a functor, but only (either left or right) lax functor. I.e., we do not need to have an
isomorphism between Φα ◦ Φβ and Φα◦β , but only a morphism in one direction.

We do not need this more general set-up in the present paper.

4.1.6. Example. Let Y be a topological space, and let Y0
j
↪→ Y be an open subset and Y1

i←↩ Y
be the complementary closed. Let I be the category 0→ 1, and set

C0 = Shv(Y0), C1 = Shv(Y1), Φ0→1 = i! ◦ j!.
Then the functor

Shv(Y )→ Glue(Ci, i ∈ I), F 7→ (j!(F), i!(F), i! ◦ j! ◦ j!(F)→ i!(F))

is an equivalence. The inverse functor sends

(F0,F1, i
! ◦ j!(F0)→ F1) 7→ Cone

(
i!(ker(i! ◦ j!(F0)→ F1))→ j!(F0)

)
.

4.1.7. Example. Example 4.1.6 can be generalized to arbitrary stratified topological spaces, but
this requires taking lax limits over lax functors, as in Remark 4.1.5. Namely, let Y =

⋃
a∈A Ya

be a stratification of a topological space Y indexed by a finite poset A. Thus, the subspaces
Ya ⊂ Y are disjoint and locally closed, and

Ya ⊂
⋃
a′≥a

Ya′ ⊂ Y

for all a ∈ A. Denote the embedding Ya ↪→ Y by ιa.

For every pair a1, a2 ∈ A with a1 ≤ a2, consider the functor

Φa1→a2
:= ι!a2

◦ ιa1,! : Shv(Ya1
)→ Shv(Ya2

).

For a triple a1, a2, a3 ∈ A with a1 ≤ a2 ≤ a3, the adjunction between ι!a2
and ιa2,! yields a

natural transformation

(Φa2→a3 ◦ Φa1→a2)→ Φa1→a3 .

In this way, we obtain a lax functor I → DGCatcont (here I is the category corresponding to
the poset A) sending a ∈ A to the category Shv(Ya). Similarly to Example 4.1.6, there is a
natural equivalence between the resulting glued category and Shv(Y ).

4.1.8. For every i0 ∈ I we let evi0 denote the natural evaluation functor

lax-lim
i∈I

Ci → Ci0 .

The functor evi0 admits a left adjoint, denoted insi0 . Explicitly, for ci0 ∈ Ci0 and i ∈ I, we
have

evi ◦ insi0(ci0) ' colim
α∈MapsI(i0,i)

Φα(ci0).

Remark 4.1.9. The latter expression for evi ◦ insi0 is a feature of lax limits of DG categories; it
is false for usual limits.
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4.1.10. Subcategories. Let i 7→ Ci be as before. Suppose now that for every i ∈ I we chose a
full subcategory

C′i ⊂ Ci.

These subcategories define a full subcategory C′I ⊂ CI .

Assume that the following condition holds: for every (α : i → j) ∈ I, the functor Φα sends
C′i to C′j . In this case, the composition

C′I ↪→ CI → I

is a co-Cartesian fibration, and hence gives rise to a functor

i 7→ C′i, I → DGCatcont .

Consider the corresponding category

lax-lim
i∈I

C′i =: Glue(C′i, i ∈ I).

By construction, we have a canonical fully faithful functor

(4.1) Glue(C′i, i ∈ I)→ Glue(Ci, i ∈ I),

that commutes with the evaluation functors evi0 .

Finally, assume that in the above setting, each of the embeddings C′i ↪→ Ci admits a continu-
ous right adjoint. In this case, it is easy to show that the functor (4.1) also admits a continuous
right adjoint.

The resulting right adjoint Glue(Ci, i ∈ I) → Glue(C′i, i ∈ I) also commutes with the
evaluation functors evi0 .

4.2. Gluing of IndCoh.

4.2.1. Consider the following set-up. Let Y be an algebraic stack. Let I be an index category,
and let

i 7→ Zi, (α : i→ j) 7→ (fα : Zj → Zi).

be an Iop-diagram of algebraic stacks over Y. We denote by fi the corresponding morphisms
Zi → Y.

We assume that Y and all Zi are quasi-smooth.

4.2.2. We consider

i 7→ IndCoh((Zi)dR ×
YdR

Y), (α : i→ j) 7→ ((fα)dR × idY)!

as a functor I → DGCatcont.

Let now

Ni ⊂ Sing(Zi)

be conical Zariski-closed subsets. We assume that for every α : i→ j the map

Sing(fα) : Zj ×
Zi

Sing(Zi)→ Sing(Zj)

sends Zj ×
Zi

Ni to Nj .

Consider the corresponding full subcategories

IndCohNi((Zi)dR ×
YdR

Y) ⊂ IndCoh((Zj)dR ×
YdR

Y).
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According to [AG, Lemma 8.4.2], the above condition on fα implies that the functor

((fα)dR × idY)!

sends IndCohNi((Zi)dR ×
YdR

Y) to IndCohNj ((Zj)dR ×
YdR

Y).

4.2.3. We consider the corresponding pair of adjoint functors

(4.2) Glue(IndCohNi((Zi)dR ×
YdR

Y), i ∈ I)� Glue(IndCoh((Zi)dR ×
YdR

Y), i ∈ I).

The functors ((fi)dR × idY )! define a functor

IndCoh(Y)→ lim
i∈I

IndCoh((Zi)dR ×
YdR

Y).

Thus, for a given conical Zariski-closed subset N ⊂ Sing(Y) we obtain the functor

(4.3) IndCohN(Y) ↪→ IndCoh(Y)→ lim
i∈I

IndCoh((Zi)dR ×
YdR

Y) ↪→

↪→ Glue(IndCoh((Zi)dR ×
YdR

Y), i ∈ I)→ Glue(IndCohNi((Zi)dR ×
YdR

Y), i ∈ I),

where the last arrow is the right adjoint from (4.2). This functor is our main object of interest.

Remark 4.2.4. Note that the image of (4.3) is usually not contained in the full subcategory

lim
i∈I

IndCohNi((Zi)dR ×
YdR

Y) ⊂ Glue(IndCohNi((Zi)dR ×
YdR

Y), i ∈ I).

4.3. The setting for the main theorem.

4.3.1. We now consider a particular case of the above situation. Let G be a reductive group.

We let Iop be the category corresponding to the poset Par(G) of standard parabolics in G
(i.e., the set of subsets of vertices of the Dynkin diagram of G).

Given a curve X, we let Y := LocSysG be the algebraic stack of G-local systems on X. We
consider the functor

P ∈ Par(G) 7→ ZP := LocSysP .

We take

N := Nilpglob ⊂ Sing(LocSysG)

to be the global nilpotent cone, see [AG, Sect. 11.1.1]. See also Sect. 7.1.3 for an explicit
description of Nilpglob.

For every P ∈ Par(G), we take NP ⊂ Sing(LocSysP ) to be the zero-section {0}.

4.3.2. The following conjecture was made by us (it was recorded as [Ga3, Conjecture 9.3.7]):

Conjecture 4.3.3. The functor

IndCohNilpglob
(LocSysG)→ Glue(IndCoh{0}((LocSysP )dR ×

(LocSysG)dR

LocSysG), P ∈ Par(G)op)

of (4.3) is fully faithful.

The main result of this paper is:

Theorem 4.3.4. Conjecture 4.3.3 holds.

The rest of this paper is devoted to the proof of this theorem.
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4.4. Gluing for D-modules. In this subsection we formulate another gluing situation, in the
context of D-modules. We then state a result that says that (under certain circumstances) the
full faithfulness of the functor (4.3) is equivalent to the full faithfulness of a certain functor in
the context of D-modules.

4.4.1. In what follows, for a prestack Y locally almost of finite type we consider the category
D-mod(Y). By definition,

D-mod(Y) := QCoh(YdR),

and thus can be viewed as a symmetric monoidal category.

Recall also that according to [GR1, Proposition 2.4.4], the functor ΥYdR
defines an equiva-

lence

QCoh(YdR)→ IndCoh(YdR).

For a morphism g : Y1 → Y2 we denote by gdR,! the corresponding pullback functor

D-mod(Y2)→ D-mod(Y1).

By definition, gdR,! identifies with either of the vertical arrows in the following diagram:

QCoh((Y1)dR)
Υ(Y1)dR−−−−−→ IndCoh((Y1)dR)

(gdR)∗
x x(gdR)!

QCoh((Y2)dR)
Υ(Y2)dR−−−−−→ IndCoh((Y2)dR).

If g is schematic and quasi-compact, we denote by gdR,∗ the corresponding direct image
functor

D-mod(Y1)→ D-mod(Y2).

4.4.2. Let Y′ be a prestack locally almost of finite type. Let I be again an index category, and
let

i 7→ Z′i, (α : i→ j) 7→ (f ′α : Z′j → Z′i).

be an Iop-diagram of algebraic stacks over Y. We denote by f ′i the corresponding morphisms
Z′i → Y′.

We consider

i 7→ D-mod(Z′i), (α : i→ j) 7→ (f ′α)dR,!

as a functor I → DGCatcont.

Let now

Mi ⊂ Z′i

be Zariski-closed subsets. We assume that for every α : i→ j we have

(f ′α)−1(Mi) ⊂Mj .

Let M be a Zariski-closed subset of Y′.
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4.4.3. We consider the corresponding pair of adjoint functors

(4.4) Glue(D-mod(Mi), i ∈ I)� Glue(D-mod(Z′i), i ∈ I).

The functors (f ′i)
dR,! define a functor

D-mod(Y′)→ lim
i∈I

D-mod(Z′i).

Consider the composition

(4.5) D-mod(M) ↪→ D-mod(Y′)→ lim
i∈I

D-mod(Z′i) ↪→

↪→ Glue(D-mod(Z′i), i ∈ I)→ Glue(D-mod(Mi), i ∈ I),

where the last arrow is the right adjoint from (4.4).

4.4.4. Consider again the setting of Sect. 4.2. Put

Y′ = P Sing(Y) Z′i = Zi ×
Y
P Sing(Y)

M = P(N) Mi = P
(
Sing(fi)

−1(Ni)
)
⊂ Z′i.

In Sect. 5 we prove:

Theorem 4.4.5. Assume that the maps fi : Zi → Y are schematic and proper. Assume also
that the following conditions hold:

(1) For every index i, we have {0} ⊂ Ni and

Sing(fi)
−1(Ni) ⊂ Zi ×

Y
N.

(2) The functor

QCoh(Y)→ lim
i∈I

QCoh((Zi)dR ×
YdR

Y)

is fully faithful;

(3) The functor

D-mod(M)→ Glue (D-mod (Mi) , i ∈ I)

of (4.5) is fully faithful.

Then the functor

IndCohN(Y)→ Glue(IndCohNi((Zi)dR ×
YdR

Y), i ∈ I)

of (4.3) is fully faithful.

Remark 4.4.6. In Sect. 6.3 we express condition (3) in Theorem 4.4.5 in more concrete terms:
it amounts to acyclicity of certain explicit objects of Vect, or, equivalently, to homological
contractibility of certain homotopy types.

Thus, Theorem 4.4.5 claims that a certain full faithfulness assertion for IndCoh is essentially
of topological nature. The proof of Theorem 4.4.5 is based on Theorem 3.2.9 from Part I of the
paper.

Remark 4.4.7. With a little extra work, one can show that Theorem 4.4.5 holds without the
condition that

Sing(fi)
−1(Ni) ⊂ Zi ×

Y
N.
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4.4.8. We will apply Theorem 4.4.5 to deduce Theorem 4.3.4. We take I = Par(G)op and
Y,Zi,N,Ni as in Sect. 4.3.1.

Note that condition (1) of Theorem 4.4.5 is trivially satisfied. Condition (2) is satisfied
because the category Par(G)op has an initial object (the improper parabolic P = G), so

lim
P∈Par(G)op

QCoh((LocSysP )dR ×
(LocSysG)dR

LocSysG) ' QCoh(LocSysG).

Thus, Theorem 4.3.4 follows from Theorem 4.4.5, combined with the following result:

Theorem 4.4.9. The functor

D-mod
(
P(Nilpglob)

)
→ Glue (D-mod (P(MP )) , P ∈ Par(G)op)

is fully faithful, where

MP ⊂ LocSysP ×
LocSysG

Sing(LocSysG)

is the preimage of {0} ⊂ Sing(LocSysP ) under the map

LocSysP ×
LocSysG

Sing(LocSysG)→ Sing(LocSysP ).

We prove Theorem 4.4.9 in Part III of the paper.

5. Proof of Theorem 4.4.5

5.1. A criterion for fully faithfulness.

5.1.1. Let (Ci,Φα) be as in Sect. 4.1.1. Let C′i ⊂ Ci be full subcategories such that

Φα(C′i) ⊂ C′j , (α : i→ j) ∈ I.

Set
◦
Ci := (C′i)

⊥ ⊂ Ci. Assume that

Φα(
◦
Ci) ⊂

◦
Cj , (α : i→ j) ∈ I.

Denote

C := Glue(Ci, i ∈ I), C′ := Glue(C′i, i ∈ I),
◦
C := Glue(

◦
Ci, i ∈ I).

Thus, we have a pair of full subcategories

C′ ↪→ C←↩
◦
C.

We have an inclusion
◦
C ⊂ (C′)⊥,

which, in general, is not an equality.



THE CATEGORY OF SINGULARITIES AS A CRYSTAL 53

5.1.2. Let now

Fi : D→ Ci

be a family of functors as in Sect. 4.1.3.

Let D′ ⊂ D be a full subcategory, and set

◦
D := (D′)⊥ ⊂ D.

We assume that for every i ∈ I, the functor Fi satisfies:

Fi(D
′) ⊂ C′i, Fi(

◦
D) ⊂

◦
Ci.

These conditions imply that F restricts to well-defined functors

F′ : D′ → C′ and
◦
F :

◦
D→

◦
C.

We claim:

Proposition 5.1.3. Assume that:

(a) Each of the functors Fi admits a left adjoint, denoted FLi , and

FLi (
◦
Ci) ⊂

◦
D for all i ∈ I.

(b) The functors F′ and
◦
F are both fully faithful.

Then F is also fully faithful.

5.1.4. The rest of this subsection is devoted to the proof of Proposition 5.1.3, which is rather
formal.

It is easy to see that the assumption that the functors Fi each admits a left adjoint implies
that the functor F : D→ C admits a left adjoint5 (denoted FL), which satisfies

FL ◦ insi ' FLi for all i ∈ I,

where insi is as in Sect. 4.1.8.

We will need the following:

Lemma 5.1.5. If

FLi (
◦
Ci) ⊂

◦
D for all i ∈ I,

then the diagram

C ←−−−−
◦
C

FL

y y◦FL
D ←−−−−

◦
D

commutes.

5In Sect. 6.2 we give a more explicit description of the functor FL.
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Proof. It is enough to show that for every i ∈ I the diagram

◦
Ciyinsi

C ←−−−−
◦
C

FL

y y◦FL
D ←−−−−

◦
D

commutes. Note, however, that the diagram

Ci ←−−−−
◦
Ci

insi

y yinsi

C ←−−−−
◦
C

commutes. Hence, it is enough to establish the commutativity of

Ci ←−−−−
◦
Ci

FL◦insi

y y◦FL◦insi

D ←−−−−
◦
D.

However, the latter diagram identifies with

Ci ←−−−−
◦
Ci

FLi

y y◦FLi
D ←−−−−

◦
D,

and the commutativity follows from the assumption.
�

5.1.6. Proof of Proposition 5.1.3. It suffices to check that for d′ ∈ D′ and
◦
d ∈

◦
D, the map

(5.1) HomD(
◦
d,d′)→ HomC(

◦
F(
◦
d),F′(d′))

is an isomorphism.

Using Lemma 5.1.5, we can identify (5.1) with the map

HomD(
◦
d,d′)→ HomD(

◦
FL ◦

◦
F(
◦
d),d′),

which comes from the co-unit of the adjunction

◦
FL ◦

◦
F(
◦
d)→

◦
d.

Since, the latter is an an isomorphism (
◦
F was assumed fully faithful), the assertion of the

proposition follows.
�

5.2. Proof of Theorem 4.4.5, Step 0.
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5.2.1. It is easy to see by descent that the property of the functor (4.3) to be fully faithful is
local in the smooth topology on Y. The same is true for conditions (2) and (3) in Theorem 4.4.5.

Hence, we can assume that Y =: Y and Zi =: Zi are DG schemes.

5.2.2. We prove Theorem 4.4.5 by applying Proposition 5.1.3. We take

D = IndCohN(Y ), D′ = QCoh(Y ),
◦
D =

◦
IndCoh(Y ) ∩ IndCohN(Y ).

We take

Ci := IndCohNi((Zi)dR ×
YdR

Y ).

Recall the identification

IndCoh((Zi)dR ×
YdR

Y ) ' QCoh((Zi)dR ×
YdR

Y ) ⊗
QCoh(Y )

IndCoh(Y )

of Proposition 3.1.2.

We take

C′i = QCoh((Zi)dR ×
YdR

Y )) = QCoh((Zi)dR ×
YdR

Y )) ⊗
QCoh(Y )

QCoh(Y ) ⊂

⊂ QCoh((Zi)dR ×
YdR

Y ) ⊗
QCoh(Y )

IndCoh(Y ) ' IndCoh((Zi)dR ×
YdR

Y ).

We have:

C′i ⊂ IndCoh{0}((Zi)dR ×
YdR

Y ) ⊂ IndCohNi((Zi)dR ×
YdR

Y ) = Ci.

Thus,

◦
Ci =

(
QCoh((Zi)dR ×

YdR

Y ) ⊗
QCoh(Y )

◦
IndCoh(Y )

)
∩
(

IndCohNi((Zi)dR ×
YdR

Y )

)
.

The functors Fi are the compositions

(5.2) IndCohN(Y ) ↪→ IndCoh(Y )
((fi)dR×idY )!

−→
→ IndCoh((Zi)dR ×

YdR

Y )→ IndCohNi((Zi)dR ×
YdR

Y ),

where the last arrow is the right adjoint to the embedding

IndCohNi((Zi)dR ×
YdR

Y ) ↪→ IndCoh((Zi)dR ×
YdR

Y ).

It is clear that the above functor sends D′ = QCoh(Y ) to C′i = QCoh((Zi)dR ×
YdR

Y )).

In Steps 1 and 2 below we will verify that the above data satisfies the conditions of Propo-
sition 5.1.3.
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5.3. Proof of Theorem 4.4.5, Step 1. In this subsection we will show the following:

(i) The above functor Fi : D→ Ci

IndCohN(Y )→ IndCohNi((Zi)dR ×
YdR

Y )

admits a left adjoint.

(ii) The left adjoint in (i) sends C′i to D′, i.e.,

QCoh((Zi)dR ×
YdR

Y ) ⊂ IndCohNi((Zi)dR ×
YdR

Y )

to

QCoh(Y ) ⊂ IndCohN(Y ).

Note that (ii) is equivalent to the fact that Fi sends
◦
D to

◦
Ci.

(iii) The left adjoint in (i) sends
◦
Ci to

◦
D.

5.3.1. First, we claim that the functor

IndCoh(Y )
((fi)dR×idY )!

−→ IndCoh((Zi)dR ×
YdR

Y )

admits a left adjoint6. Indeed, we rewrite

IndCoh((Zi)dR ×
YdR

Y ) ' QCoh((Zi)dR ×
YdR

Y ) ⊗
QCoh(Y )

IndCoh(Y ).

So, it is enough to show that the functor

((fi)dR × idY )∗ : QCoh(Y )→ QCoh((Zi)dR ×
YdR

Y )

admits a left adjoint (it automatically commutes with the action of QCoh(Y ), because QCoh(Y )
is rigid as a monoidal category).

We write

QCoh((Zi)dR ×
YdR

Y ) ' QCoh((Zi)dR) ⊗
QCoh(YdR)

QCoh(Y ),

see Lemma 1.5.6.

So, it is enough to show that the functor

(fi)
∗
dR : QCoh(YdR)→ QCoh((Zi)dR)

admits a left adjoint, which commutes with the action of QCoh(YdR).

We interpret the latter functor as

fdR,!
i : D-mod(Y )→ D-mod(Zi).

Since fi is proper, the left adjoint in question is the functor

(fi)dR,∗ : D-mod(Zi)→ D-mod(Y ).

The commutativity with the action of QCoh(YdR) = D-mod(Y ) is given by the projection
formula for (fi)dR,∗.

6More conceptually, the left adjoint in question exists because the map (fi)dR × idY ) is inf-schematic and
nil-proper, see [GR2, Chapter III.3, Proposition 3.2.4].
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5.3.2. Now, the left adjoint to the functor (5.2) is given by the composition

IndCohNi((Zi)dR ×
YdR

Y ) ↪→ IndCoh((Zi)dR ×
YdR

Y )
(((fi)dR×idY )!)L−→ IndCoh(Y ).

We claim that the essential image of the above functor belongs to IndCohN(Y ). Indeed, by
Corollary 3.2.5, it suffices to show that the composition

IndCohNi(Zi)→ IndCohNi((Zi)dR ×
YdR

Y ) ↪→

→ IndCoh((Zi)dR ×
YdR

Y )
(((fi)dR×idY )!)L−→ IndCoh(Y )

maps to IndCohN(Y ). However, the latter functor identifies with

IndCohNi(Zi) ↪→ IndCoh(Zi)
(fi)

IndCoh
∗−→ IndCoh(Y ),

and the desired containment follows from condition (1) in Theorem 4.4.5 and [AG, Proposition
7.1.3(b)].

5.3.3. The fact that the left adjoint to (5.2) sends

QCoh((Zi)dR ×
YdR

Y ) ⊂ IndCohNi((Zi)dR ×
YdR

Y )

to
QCoh(Y ) ⊂ IndCohN(Y )

follows from the construction.

5.3.4. The fact that the left adjoint to (5.2) sends
◦
Ci to

◦
IndCoh(Y ) follows from the fact that

the functor left adjoint to ((fi)dR × idY )! sends

QCoh((Zi)dR ×
YdR

Y ) ⊗
QCoh(Y )

◦
IndCoh(Y )

to
◦

IndCoh(Y ), which follows from the description of this left adjoint in Sect. 5.3.1.

5.4. Proof of Theorem 4.4.5, Step 2. In order to apply Proposition 5.1.3, we need to show

that the functors QCoh(Y )→ C′ and
◦

IndCoh(Y ) ∩ IndCohN(Y )→
◦
C are both fully faithful.

5.4.1. The fact that QCoh(Y )→ C′ is fully faithful is given by condition (2) in Theorem 4.4.5.

5.4.2. It remains to show that the functor

(5.3)
◦

IndCoh(Y ) ∩ IndCohN(Y )→
◦
C

is fully faithful.

We are now going to use the results from Part I of the paper. Namely, according to Theo-
rem 3.2.9, the functor

I → DGCatcont, i 7→
◦
Ci

identifies with the functor

i 7→ D-mod
(
P
(
Sing(fi)

−1(Ni)
))

⊗
D-mod(P Sing(Y ))

◦
IndCoh(Y ).

Similarly, by Theorem 1.4.2,
◦

IndCoh(Y ) ∩ IndCohN(Y ) ' D-mod(PN) ⊗
D-mod(P Sing(Y ))

◦
IndCoh(Y ).
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5.4.3. We have the following general assertion:

Lemma 5.4.4. Suppose that in the setting of Sect. 4.1.1, the functor I → DGCatcont

i 7→ Ci, (α : i→ j) 7→ Φα

upgrades to a functor I → O-mod, where O is a monoidal DG category. Then for a right

O-module category C̃, the functor

C̃⊗
O

Glue(Ci, i ∈ I)→ Glue(C̃⊗
O

Ci, i ∈ I)

is an equivalence.

Proof. Follows from Sect. 4.1.8.
�

Applying Lemma 5.4.4, we obtain that the functor (5.3) identifies with the functor obtained
from

(5.4) FD-mod : D-mod(P(N))→ Glue
(
D-mod

(
P
(
Sing(fi)

−1(Ni)
))
, i ∈ I

)
by tensoring over D-mod(PSing(Y )) with

◦
IndCoh(Y ).

5.4.5. The functor FD-mod admits a left adjoint that commutes with the monoidal action of
D-mod(P Sing(Y )) (by the same argument as in Lemma 5.1.5); denote it by FLD-mod. Hence, the
functor (5.3) also admits a left adjoint that can be identified with

FLD-mod ⊗ Id ◦
IndCoh(Y )

.

We need to show that the co-unit of the adjunction

(FD-mod ⊗ IdIndCoh(Y ))
L ◦ (FD-mod ⊗ IdIndCoh(Y )) '

' (FLD-mod ⊗ IdIndCoh(Y )) ◦ (FD-mod ⊗ IdIndCoh(Y )) ' (FLD-mod ◦ FD-mod)⊗ IdIndCoh(Y ) → Id

is an isomorphism.

For that, it is enough to know that FLD-mod ◦FD-mod → Id is an isomorphism, i.e., that FD-mod

is fully faithful.

However, the latter is given by condition (3) in Theorem 4.4.5.

6. Gluing for D-modules and homological contractibility

For the rest of the paper we work within the usual (as opposed to derived) algebraic geometry.
The reason for this is that for a derived scheme Y , the map clY → Y gives rise to an isomorphism
(clY )dR → YdR (here clY denotes the classical scheme underlying Y ), so the pullback functor
D-mod(Y )→ D-mod(clY ) is an equivalence.

From now on, our goal is to prove Theorem 4.4.9; that is, we need to verify condition (3) in
Theorem 4.4.5 in a particular situation. Condition (3) may appear somewhat obscure. In this
section, we restate it in more concrete terms as homological contractibility of certain homotopy
types.
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6.1. D-modules on prestacks. In this subsection we consider a simplified version of the set-
up of Sect. 4.4, namely, one where Mi = Z′i, and where instead of the glued category we consider
the actual (strict) limit.

Strictly speaking, some of this material is not necessary for the sequel; it is included for
completeness and in order to familiarize the reader with the objects involved. For a more
comprehensive review of the theory, the reader is referred to [Ga4, Sects. 1 and 7.4].

For the duration of the paper, we let Schaff denote the category of (classical) affine schemes
of finite type.

6.1.1. Recall that for a prestack Z, the DG category D-mod(Z) is defined to be

lim
S∈(Schaff

/Z
)op

D-mod(S),

where the limit is formed using !-pullbacks as transition functors.

If Z is written as a colimit over Iop (where I is an index ∞-category) as

(6.1) Z ' colim
i∈Iop

Zi,

where Zi ∈ Sch, then the functor

Iop → Sch/Z, i 7→ Zi

is cofinal, and so the restriction map

D-mod(Z)→ lim
i∈I

D-mod(Zi).

is an equivalence.

6.1.2. A prestack Z is said to be a pseudo-scheme if it admits a presentation (6.1)

Z ' colim
i∈Iop

Zi,

where Zi ∈ Sch, and the transition maps Zi → Zj are proper.

In this case, by [DrGa, Proposition 1.7.5], the evaluation functors

evi : D-mod(Z)→ D-mod(Zi)

admit left adjoints (to be denoted insi), and the resulting functor

(6.2) colim
i∈Iop

D-mod(Zi)→ D-mod(Z),

is an equivalence. In the formation of the above colimit, for an arrow i1
α→ i2 in I and the

corresponding map Zi2
fα−→ Zi1 , the functor

D-mod(Zi2)→ D-mod(Zi2)

is (fα)dR,! = (fα)dR,∗. The functors D-mod(Zi)→ D-mod(Z) in (6.2) are insi.
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6.1.3. Suppose now that Z is a prestack over a scheme Y that admits a presentation (6.1) where
all Zi are proper over Y . We then say that Z is pseudo-proper over Y .

Let f (reps. fi) denote the map Z→ Y (reps. Zi → Y ). Consider the pullback functor

fdR,! : D-mod(Y )→ D-mod(Z).

By Sect. 6.1.2, the functor fdR,! admits a left adjoint, to be denoted fdR,!, which is given in
terms of the equivalence (6.2) by the compatible family of functors

(fi)dR,! = (fi)dR,∗ : D-mod(Zi)→ D-mod(Y ).

That is, fdR,! ◦ insi ' (fi)dR,!.

The properness assumption on the fi’s implies the following base-change property: for a

morphism of schemes Y ′
g−→ Y and the corresponding Cartesian square

(6.3)

Z′
gZ−−−−→ Z

f ′
y yf
Y ′

g−−−−→ Y,

the canonical map

(6.4) (f ′)dR,! ◦ (gZ)dR,! → gdR,! ◦ fdR,!,

arising by adjunction from the isomorphism (gZ)dR,!◦fdR,! ' (f ′)dR,!◦gdR,!, is an isomorphism.

6.1.4. We say that a prestack Z over a scheme Y is homologically contractible over Y if the
pullback functor

(f)dR,! : D-mod(Y )→ D-mod(Z)

is fully faithful.

Since Z is pseudo-proper over Y , the functor fdR,! admits a right adjoint fdR,!. Hence, Z is
homologically contractible over Y if and only if the co-unit of the adjunction

fdR,! ◦ fdR,! → IdD-mod(Y )

is an isomorphism.

The endofunctor fdR,! ◦ fdR,! of D-mod(Y ) can be described explicitly as

(6.5) fdR,! ◦ fdR,!(F) = colim
i∈Iop

(fi)dR,! ◦ (fi)
dR,!(F).

Therefore, Z is homologically contractible over Z if and only if the natural map

colim
i∈Iop

(fi)dR,∗ ◦ (fi)
dR,!(F)→ F

is an isomorphism for every F ∈ D-mod(Y ).

6.1.5. Assume for a moment that Y = pt, so that D-mod(Y ) = Vect. Then the endofunctor
fdR,! ◦ fdR,! of Vect is given by tensor product with the object

fdR,!(ωZ) = fdR,! ◦ fdR,!(k).

(As a side remark, fdR,!(ωZ) is defined even if Z is not pseudo-proper; this is due to the fact
that the value of ωZ on any S ∈ Sch/Z is ωS , which is holonomic.)

Put
fdR,!(ωZ) =: C∗(Z) ∈ Vect .

We call C∗(Z) the homology of Z.
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Remark 6.1.6. When k = C, we can attach to Z a homotopy type Ztop given by

Ztop := colim
S∈Sch/Z

Stop.

Here S 7→ Stop is the functor sending a scheme to the underlying analytic space, and the colimit
is taken in the ∞-category of spaces. The Riemann-Hilbert correspondence yields a canonical
isomorphism

C∗(Z) ' C∗(Z
top, k),

where the right-hand side is the homology of the homotopy type Ztop.

We now claim:

Lemma 6.1.7. Let Z be pseudo-proper over Y . Then the following conditions are equivalent:

(i) The prestack Z is homologically contractible over Y ;

(ii) The prestack Z is universally homologically contractible over Y : for any morphism of
schemes Y ′ → Y , the fiber product Z′ := Z×

Y
Y is homologically contractible over Y ′;

(iii) The map

fdR,!(ωZ) ' fdR,! ◦ fdR,!(ωY )→ ωY

is an isomorphism;

(iv) For every field extension k′ ⊃ k and every k′-point y of Y , the prestack Zy = Spec(k′)×
Y
Z

is homologically trivial over Spec(k′);

(v) For every field extension k′ ⊃ k and every k′-point y of Y , the k′-prestack Zy has trivial
homology: the natural map

C∗(Zy)→ k′

is an isomorphism.

Proof. We have (ii) ⇒ (i) ⇒ (iii) for tautological reasons. The implication (iii) ⇒ (v) follows
from base change (Sect. 6.1.3). The equivalence (iv) ⇔ (v) follows from Sect. 6.1.5. Let us
prove that (iv) ⇒ (ii).

Note first that if for a scheme Y and F ∈ D-mod(Y ), we have F = 0 if and only if for every
field extension k′ ⊃ k and every k′-point y of Y , the !-fiber of

k′ ⊗
k
F ∈ D-mod(k′ ⊗

k
Y )

at y is zero. Using the fact that the formation of F 7→ fdR,! ◦ fdR,!(F) commutes with field
extensions (which follows, for instance, from the description of fdR,! ◦ fdR,! as (6.5)), and the
base-change isomorphism (6.4), we obtain that (ii) is equivalent to each Zy being homologically
contractible, as claimed.

�

6.2. Explicit description of the left adjoint: a digression. Consider the general set-up
of Sect. 4.1.3. Thus, we have an index category I and an I-diagram of categories

i 7→ Ci, (i
α−→ j) 7→ (Ci

Φα−→ Cj).

Let F be the functor

D→ Glue(Ci, i ∈ I)

given by a lax-compatible family of functors Fi : D → Ci. Let us assume that each of the
functors Fi admits a left adjoint, which we denote FLi .
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Let us give an explicit formula for the left adjoint of the functor

F : D→ Glue(Ci, i ∈ I).

6.2.1. Consider the category String(I), whose objects are strings of objects of I:

(6.6) (i0 → i1 → · · · → in),

and whose morphisms are induced by order preserving maps [m] → [n]. In other words,
String(I) is the co-Cartesian fibration in groupoids over ∆op corresponding to the functor

∆op →∞ -Grpd

given by the nerve of I.

6.2.2. There exists a canonically defined functor

FLString : Glue(Ci, i ∈ I)→ Funct(String(I),D).

Namely, given an object

{i 7→ ci, (i
α−→ j) 7→ (Φα(ci)→ cj)} ∈ Glue(Ci, i ∈ I),

the functor FLString sends it to the functor String(I)→ D that sends (6.6) to

FLin(Φi0→in(ci0)).

6.2.3. Consider the composition functor

(6.7) Glue(Ci, i ∈ I)
FLString−→ Funct(String(I),D)

colim−→ D,

where the right arrow is the functor of colimit along String(I). We claim:

Proposition 6.2.4. The functor (6.7) is the left adjoint of the functor F.

Proof. We can factor F as a composition

D→ Glue(D, i ∈ I)→ Glue(Ci, i ∈ I),

where Glue(D, i ∈ I) is formed using the constant functor

(6.8) I → DGCatcont, i 7→ D.

This reduces the statement of the proposition to the case when Ci = D, as in (6.8). We
then identify

Glue(D, i ∈ I) ' Funct(I,D),

and the assertion becomes equivalent to the usual expression of colimits along I via its nerve.
�

6.3. Full faithfulness as homological contractibility. We return to the situation of
Sect. 4.4 (with a slightly simplified notation). Let Y = Y ∈ Sch be a base scheme and

i 7→ (Zi
fi−→ Y ), (i

α−→ j) 7→ (Zj
fα−→ Zi)

an Iop-diagram of schemes over it. Let Mi ⊂ Zi be closed subschemes such that for every

i
α−→ j we have

(fα)−1(Mi) ⊂Mj ,

i.e., we have the diagrams
(fα)−1(Mi) −−−−→ Mj

fα

y
Mi.
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6.3.1. We consider the category

Glue(D-mod(Mi), i ∈ I).

For every i, we let Fi : D-mod(Y )→ D-mod(Mi) be the functor

D-mod(Y )
fdR,!
i−→ D-mod(Zi)→ D-mod(Mi),

where the second arrow is the !-pullback along the embedding Mi ↪→ Zi.

The functors Fi give rise to a functor

F : D-mod(Y )→ Glue(D-mod(Mi), i ∈ I),

and we want to give an explicit criterion for full faithfulness of F.

6.3.2. Let us assume that all Zi are proper over Y .

In this situation, each of the functors Fi admits a left adjoint, and we find ourselves in the
setting of Sect. 6.2. Hence the functor F admits a left adjoint given by (6.7).

Denote the left adjoint of F by

FL : Glue(D-mod(Mi), i ∈ I)→ D-mod(Y ).

The functor F is fully faithful if and only if the co-unit of the adjunction

FL ◦ F → IdD-mod(Y )

is an isomorphism.

Let us describe the functor FL ◦ F explicitly.

6.3.3. Consider the following prestack over Y , denoted MGlued:

The prestack is the colimit over the category String(Iop) of the functor

String(Iop)→ PreStk, (i0 → i1 → · · · → in) 7→ Zi0 ×
Zin

Min .

(Note that the categories String(Iop) and String(I) are naturally equivalent.) Denote by fGlued

the natural map

MGlued → Y.

Note that MGlued is by definition pseudo-proper over Y . By the results of Sect. 6.1.3, the
functor (fGlued)dR,! admits a left adjoint

(fGlued)dR,! : D-mod(MGlued)→ D-mod(Y ).

6.3.4. From Proposition 6.2.4 we obtain:

Corollary 6.3.5. There is a canonical isomorphism of endofunctors of D-mod(Y ) over
IdD-mod(Y ):

FL ◦ F ' (fGlued)dR,! ◦ (fGlued)dR,!.

Hence, we obtain:

Corollary 6.3.6. The functor F is fully faithful if and only if the map fGlued is homologically
contractible, that is, if the functor (fGlued)dR,! is fully faithful.
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6.3.7. Let k′ ⊃ k be a field extension and let y be a k′-point of Y . Let MGlued,y be the fiber of
MGlued over y, that is,

MGlued,y = Spec(k′) ×
y,Y

MGlued.

Explicitly,

MGlued,y ' colim
(i0→i1→···→in)∈String(Iop)

Spec(k′) ×
y,Y

(
Zi0 ×

Zin

Min

)
.

Combining Corollary 6.3.6 and Lemma 6.1.7, we obtain:

Corollary 6.3.8. The functor

F : D-mod(Y)→ Glue(D-mod(Mi), i ∈ I)

is fully faithful if and only if for every field extension k′ ⊃ k and every k′-point y of Y , the
prestack MGlued,y is homologically contractible over k′; that is, the map

C∗(MGlued,y)→ k′

is an isomorphism.
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Part III: Springer fibers.

7. Reduction to a homological contractibility statement

The goal of the remainder of the paper is to prove Theorem 4.4.9 and thereby finish the
proof of Theorem 4.3.4. Recall that we work in the framework of usual (non-derived) algebraic
geometry, which suffices for the study of D-modules. In other words, all (DG) schemes/stacks
are replaced by the corresponding classical subschemes/substacks.

7.1. What do we need to show?

7.1.1. Recall the statement of Theorem 4.4.9. For any P ∈ Par(G), we consider the stack of
P -local systems LocSysP . When P = G, we take the global nilpotent cone

Nilpglob ⊂ Sing(LocSysG).

For every P ∈ Par(G), we put

ZP := LocSysP ×
LocSysG

Sing(LocSysG),

and let

MP ⊂ LocSysP ×
LocSysG

Sing(LocSysG)

be the preimage of {0} ⊂ Sing(LocSysP ) under the singular codifferential map

ZP = LocSysP ×
LocSysG

Sing(LocSysG)→ Sing(LocSysP ).

Theorem 4.4.9 is the statement that the natural functor

D-mod
(
P(Nilpglob)

)
→ Glue (D-mod (P(MP )) , P ∈ Par(G)op)

is fully faithful.

7.1.2. According to Corollary 6.3.8, Theorem 4.4.9 is equivalent to homological contractibility
of the following prestacks. Let k′ ⊃ k be a field extension, and let y be a k′-point of P(Nilpglob).
Construct the prestack MGlued,y as follows.

Consider the category String(Par(G)). By definition, its objects are chains of standard
parabolic subgroups

(P0 ⊂ P1 ⊂ · · · ⊂ Pn) (n ≥ 0, Pi ∈ Par(G)),

and morphisms are induced by order-preserving maps [m] → [n]. Now consider the functor
String(Par(G))→ Sch given by

(P0 ⊂ P1 ⊂ · · · ⊂ Pn) 7→ Spec(k′) ×
y,P(Nilpglob)

(ZP0 ×
ZPn

P(MPn)),

and put

MGlued,y = colim
(P0⊂P1⊂···⊂Pn)∈Strings(Par(G))

Spec(k′) ×
y,P(Nilpglob)

(ZP0
×

ZPn

P(MPn)).

Theorem 4.4.9 is equivalent to homological contractibility of prestacks MGlued,y for every k′

and y. Without loss of generality, we can replace k with its extension k′. Therefore, we need
to verify that MGlued,y is homologically contractible for every k-point y of P(Nilpglob).
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7.1.3. Let us now restate the above condition in explicit terms. First, recall the description of
k-points of the algebraic stack Sing(LocSysG) and of the substack

Nilpglob ⊂ Sing(LocSysG),

see [AG, Sect. 11.1].

Namely, this groupoid of k-points Sing(LocSysG)(k) consists of pairs (σ,A), where σ is a
G-local system on X, and A is a horizontal section of the vector bundle g∗σ associated with the
co-adjoint representation. We identify g∗ with g by means of a G-invariant bilinear form, and
thus think of A as a horizontal section of gσ.

The sub-groupoid of k-points Nilpglob(k) corresponds to pairs (σ,A) with nilpotent A.

7.1.4. Given a k-point (σ,A) of Nilpglob and a standard parabolic P ∈ Par(G), we define
schemes

Sprσ,AP,unip ⊂ Sprσ,AP ⊂ SprσP

as follows.

SprσP is the scheme of reductions of σ (as a local system) to the parabolic P , and Sprσ,AP,unip

and Sprσ,AP are its subschemes corresponding to the condition that A be a section of

u(P )σ ⊂ gσ or pσ ⊂ gσ,

respectively, where u(P ) denotes the Lie algebra of the unipotent radical U(P ) of P .

7.1.5. For fixed σ ∈ LocSysG(k) as above, the diagram

P  SprσP

identifies with the diagram of schemes

P  LocSysP ×
LocSysG

{σ}.

For fixed (σ,A) ∈ Nilpglob(k), the diagram

P  Sprσ,AP,unip

identifies with the diagram of schemes

P  MP ×
Nilpglob

{(σ,A)},

where

MP ⊂ LocSysP ×
LocSysG

Sing(LocSysG)

is as in Theorem 4.4.9.
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7.1.6. Note that

P  Sprσ,AP

is a diagram in the usual sense: for any pair of standard parabolics P1 ⊂ P2, there is a morphism
between the corresponding schemes

Sprσ,AP1
→ Sprσ,AP2

.

On the other hand, in the diagram

P  Sprσ,AP,unip,

the schemes

Sprσ,AP1,unip and Sprσ,AP2,unip (P1 ⊂ P2)

are connected by a correspondence:

Sprσ,AP1
×

Sprσ,AP2

Sprσ,AP2,unip −−−−→ Sprσ,AP1,unipy
Sprσ,AP2,unip .

7.1.7. Explicitly, in the inclusion

SprσP1
×

SprσP2

Sprσ,AP2,unip ⊂ Sprσ,AP1,unip,

the left-hand side (resp. the right-hand side) parametrizes reductions of the local system σ to
the parabolic P1 such that A is a section of

u(P2)σ ⊂ gσ (resp. of u(P1)σ ⊂ gσ).

Let us now form the prestack

Sprσ,AGlued,unip := colim
(P0⊂P1⊂···⊂Pn)∈Strings(Par(G))

SprσP0
×

SprσPn

Sprσ,APn,unip .

Provided A 6= 0, a pair (σ,A) ∈ (σ,A) ∈ Nilpglob(k) projects to a k-point y of P(Nilpglob),

and Sprσ,AGlued,unip identifies with the prestack MGlued,y. We therefore see that Theorem 4.4.9 is
implied by the following assertion:

Theorem 7.1.8. Let (σ,A) be a k-point of Nilpglob. Then the prestack Sprσ,AGlued,unip is homo-
logically contractible, that is, the trace map

C∗(Sprσ,AGlued,unip)→ k

is an isomorphism.

The rest of the paper is devoted to the proof of Theorem 7.1.8.

Remark 7.1.9. Note that Theorem 7.1.8 claims, in particular, that for any such (σ,A),

Sprσ,AGlued,unip is non-empty; this amounts to checking that Sprσ,AP,unip 6= ∅ for some P ∈ Par(G).
This easily follows from the Jacobson-Morozov Theorem, see Sect. 8.3.1.
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Remark 7.1.10. Note that in Theorem 7.1.8 we allow A = 0. The case A = 0 is not needed to
deduce Theorem 4.4.9, but it is used in the inductive step in the proof of Theorem 7.1.8. Note,
however, that the case A = 0 in Theorem 7.1.8 is reasonably easy:

It is not hard to check (see Remark 7.2.2 below) that for A = 0, the prestack Sprσ,AGlued,unip

identifies with

SprσGlued := colim
P∈Par(G)

SprσP .

Now, the category Par(G) has a final object (with P = G), and SprσG = pt. From here,
SprσGlued ' pt.

7.2. Reduction to another contractibility statement. One difficulty with Theorem 7.1.8

is due to a rather complicated colimit used to define the prestack Sprσ,AGlued,unip. We shall now
replace Theorem 7.1.8 by an equivalent statement, namely Theorem 7.2.5, which is simpler
from the combinatorial point of view.

7.2.1. Denote by Par′(G) ⊂ Par(G) the subset of proper parabolics; thus

Par(G) = Par′(G) t {G}.

Consider the assignment

P  Sprσ,AP

as a functor

Par′(G)→ {Schemes}.

Set

Sprσ,AGlued := colim
P∈Par′(G)

Sprσ,AP .

Remark 7.2.2. The stack Sprσ,AGlued is also equal to the (more complicated) colimit over
String(Par′(G)) of the functor

(P0 ⊂ P1 ⊂ · · · ⊂ Pn) 7→ Sprσ,AP0
.

7.2.3. In Sects. 7.3 and 7.4, we prove:

Proposition 7.2.4. Assume the validity of Theorem 7.1.8 for all proper Levi subgroups of G.
Then for A 6= 0 there exists a naturally defined isomorphism

C∗(Sprσ,AGlued,unip) ' C∗(Sprσ,AGlued).

Assuming Proposition 7.2.4, we obtain that Theorem 7.1.8 is equivalent to the following:

Theorem 7.2.5. Let (σ,A) be a k-point of Nilpglob with A 6= 0. Then the prestack Sprσ,AGlued is
homologically contractible.

We prove Theorem 7.2.5 in Sect. 8. In Sect. 9 we give an alternative proof of Theorem 7.2.5
in the special case when σ is the trivial local system.
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7.2.6. Both Theorems 7.1.8 and 7.2.5 have topological counterparts. Let us sketch these counter-
parts in case the reader finds their statement more transparent; they are not logically necessary
for the proof.

Let A be a nilpotent element of g, but instead of a local system σ fix a family {gα} of
elements in G that centralize A.

For every P ∈ Par(G) consider the corresponding partial flag variety FlP ; we think of it as
the scheme classifying parabolics P ′ in the conjugacy class of P . Let

Spr
{gα},A
P,unip ⊂ Spr

{gα},A
P ⊂ Spr

{gα}
P

be the closed subschemes of FlP that correspond to P ′ ∈ FlP that satisfy the conditions

(gα ∈ P ′, A ∈ u(P ′)), (gα ∈ P ′, A ∈ p′), (gα ∈ P ′),
respectively.

We can form the prestacks Sprσ,AGlued,unip and Sprσ,AGlued, and the assertions parallel to Theo-
rems 7.1.8 and 7.2.5 hold in this context as well. We leave it to the reader to verify that the
argument of this paper can be used to prove these topological counterparts of the theorems.

Note that when k = C, Theorems 7.1.8 and 7.2.5, as stated above, follow from their topo-
logical counterparts via the Riemann-Hilbert correspondence.

Namely, fix a base point x ∈ X, and trivialize the fiber of σ at x. Then the monodromy of σ
gives a homomorphism π1(X,x) → G, and we take {gα} to be the images in G of some set of

generators of π1(X,x). Then the analytic spaces corresponding to the schemes Sprσ,AP,unip and

Spr
{gα},A
P,unip (resp., Sprσ,AP and Spr

{gα},A
P ) are canonically identified.

7.2.7. Let us consider some examples of Theorem 7.2.5.

First, we consider the case of G = SL2, in which case Theorem 4.3.4 is already non-obvious.
But all of its complexity is contained in the reduction of Theorem 4.3.4 to Theorem 7.2.5, as
the latter is quite easy:

For G of rank 1, the poset Par′(G) consists of one element, namely, P = B. Since A 6= 0, the

scheme Sprσ,AB is a ‘fat point’: it is a nilpotent thickening of a point. Hence, it is homologically
contractible.

7.2.8. Consider now the case of G = SL3. We distinguish two cases: (a) when A is a regular
nilpotent; (b) when A is a sub-regular nilpotent.

In case (a), for all three parabolics, the corresponding schemes Sprσ,AP are again fat points.
So, the contractibility follows from the fact that the poset Par′(G)

P1 ⊃ B ⊂ P2

is contractible as a category (it has an initial object, namely B).

Case (b) is more interesting. The scheme Sprσ,AB has the shape

Z1 t
pt
Z2,

i.e., its obtained by joining certain subschemes Z1 and Z2 along a common point. (To see
this, use the topological version described in Sect. 7.2.6, first with {gα} being trivial, and then
deduce the general case.)

The projection

Sprσ,AB → Sprσ,AP1
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maps Z1 isomorphically onto its image, and it collapses Z2 onto the image of pt = Z1 ∩ Z2.

Similarly, the projection

Sprσ,AB → Sprσ,AP1

maps Z2 isomorphically onto its image, and it collapses Z1 onto the image of pt = Z1 ∩ Z2.

This description makes the statement of Theorem 7.2.5 manifest.

7.3. Proof of Proposition 7.2.4, Step 1.

7.3.1. Recall that the prestack Sprσ,AGlued,unip is the the following colimit over the index category

Strings(Par(G)) of chains of standard parabolic subgroups

(P0 ⊂ P1 ⊂ · · · ⊂ Pn)

and morphisms are given by order-preserving maps [m]→ [n].

To each (P0 ⊂ P1 ⊂ · · · ⊂ Pn) ∈ Strings(Par(G)) we attach the scheme

SprσP0
×

SprσPn

Sprσ,APn,unip .

In the above diagram, the Pi’s are all standard parabolics. It is possible that Pn = G, but in

this case Sprσ,APn,unip is empty, because A 6= 0. Thus we can work with chains of proper standard
parabolic subgroups

(P0, . . . , Pn) ∈ String(Par′(G)).

Let I1 := String(Par′(G)) be the index category of chains of proper standard parabolic
subgroups. Denote by F1 : I1 → Sch the functor

(P0, . . . , Pn) 7→ SprσP0
×

SprσPn

Sprσ,APn,unip .

Thus

Sprσ,AGlued,unip ' colim
i∈I1

F1(i).

7.3.2. We recall that by definition,

Sprσ,AGlued = colim
i∈I2

F2(i),

where we put I2 := Par′(G) and

F2 : I2 → Sch : P 7→ Sprσ,AP .

7.3.3. Consider now the category I whose objects are collections

(7.1) (P0 ⊂ · · · ⊂ Pn ⊂ P ) (n ≥ 0;P0, . . . , Pn, P ∈ Par′(G)).

A morphism

(P 1
0 ⊂ · · · ⊂ P 1

n1 ⊂ P 1)→ (P 2
0 ⊂ · · · ⊂ P 2

n2 ⊂ P 2)

is specified by an order-preserving map [n2]→ [n1] and an inclusion P 1 ⊂ P 2.

Define a functor F : I → Sch by

F : (P0 ⊂ · · · ⊂ Pn ⊂ P ) 7→ Sprσ,APn,unip ×
SprσPn

SprσP0
,

and put

Sprσ,AGlued,mixed := colim
i∈I

F(i).
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7.3.4. We have canonical forgetful functors

I1
φ1←− I φ2−→ I2.

By construction F ' F1 ◦ φ1. This isomorphism gives rise to a map

(7.2) Sprσ,AGlued,mixed → Sprσ,AGlued,unip .

We claim that the map (7.2) is an isomorphism of prestacks. Indeed, this follows from the
fact that the functor φ1 is a co-Cartesian fibration with contractible fibers (each fiber has an
initial object, namely P = Pn).

Thus, to prove Proposition 7.2.4, we need to construct a homological equivalence between

prestacks Sprσ,AGlued,mixed and Sprσ,AGlued.

7.3.5. Note now that we have a canonically defined natural transformation

(7.3) F→ F2 ◦ φ2.

Indeed, for any (P0 ⊂ · · · ⊂ Pn ⊂ P ) ∈ I, we have a natural map

F(P0 ⊂ · · · ⊂ Pn ⊂ P ) = Sprσ,APn,unip ×
SprσPn

SprσP0
↪→ SprσP0

→

SprσP = F2(P ) = F2 ◦ φ2(P0 ⊂ · · · ⊂ Pn ⊂ P ).

Hence, we obtain a map of prestacks

(7.4) Sprσ,AGlued,mixed → Sprσ,AGlued .

Let us prove that the map

(7.5) C∗(Sprσ,AGlued,mixed)→ C∗(Sprσ,AGlued),

induced by (7.4) is an isomorphism.

7.3.6. Let

F′2 : I2 → Sch

denote the left Kan extension of the functor F along φ2. By adjunction, the natural transfor-
mation (7.3) gives rise to a natural transformation

F′2 → F2.

Composing with the functor

C∗ : Sch→ Vect,

we obtain a natural transformation

(7.6) C∗ ◦F′2 → C∗ ◦F2

of functors I2 → Vect.

The map (7.5) is obtained from (7.6) by taking colimits over I2. Thus, in order to prove that
(7.5) is an isomorphism, it suffices to show that the map (7.6) is an isomorphism of functors
I2 → Vect.

The latter will be done in Step 2, using Theorem 7.1.8 for proper Levi subgroups of G
(including the case A = 0).

7.4. Proof of Proposition 7.2.4, Step 2.
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7.4.1. Note that the functor φ2 is also a co-Cartesian fibration. Hence, the value of C∗ ◦F′2 on
an object P ∈ Par′(G) = I2 is computed as the colimit of the functor C∗ ◦F2 over the fiber of
φ2 over P . I.e., it is the homology of the prestack equal to the colimit of the restriction of F to

the above fiber. Denote this prestack by Sprσ,AGlued,mixed,P .

Note that we have a tautologically defined map

f : Sprσ,AGlued,mixed,P → Sprσ,AP .

We need to show that the above map f induces an isomorphism on homology. It suffices to
check that the trace map

(7.7) fdR,!(ωSprσ,AGlued,mixed,P
)→ ωSprσ,AP

is an isomorphism in D-mod(Sprσ,AP ).

7.4.2. The fact that (7.7) is an isomorphism can be checked at the level of !-fibers at k-points

of Sprσ,AP .

Fix a point σP ∈ Sprσ,AP (k). Thus, σP is a reduction of σ to P that is compatible with A.
Let M be the Levi quotient of P , and let (σM , AM ) be the resulting k-point of Nilpglob for the
group M . (Note that AM may be zero.)

Note that Sprσ,AGlued,mixed,P is a colimit of schemes each of which is proper, and in particular,

maps properly to Sprσ,AP . Hence, by proper base change, the !-fiber of fdR,!(ωSprσ,AGlued,mixed,P
) at

σP is isomorphic to the homology of the fiber of SprGlued,mixed,P over σP ; denote this fiber by

Sprσ,AGlued,mixed,P,σP
.

7.4.3. Thus, we have to show that the trace map

C∗(Sprσ,AGlued,mixed,P,σP
)→ k

is an isomorphism.

However, we notice that there is a canonical isomorphism

Sprσ,AGlued,mixed,P,σP
' SprσM ,AMGlued,unip,

(the latter prestack taken for the reductive group M).

Hence, the required assertion follows from Theorem 7.1.8, applied to M .

8. Schubert stratification

The goal of this section is to prove Theorem 7.2.5.

8.1. Conventions regarding roots.
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8.1.1. Recall that we fixed a Borel subgroup B ⊂ G and a maximal torus T ⊂ B. Let Λ :=
Hom(T,Gm) be the character lattice of T ; it is a free abelian group, which we write additively.
The standard parabolics P ⊂ G are the parabolic subgroups containing B.

Let t ⊂ b ⊂ g be the Lie algebras of T , B, and G respectively. For every α ∈ Λ, we denote
by gα ⊂ g the corresponding root subspace; in particular, g0 = t. Let

R = {α ∈ Λ− {0} : gα 6= 0}

be the set of roots. Denote by S ⊂ R+ ⊂ R the subsets of simple and positive roots with respect
to B. Thus,

b = t⊕
⊕
α∈R+

gα.

We identify S and the set of the vertices of the Dynkin diagram of G.

8.1.2. We think of Par(G) as the poset of subsets J ⊂ S (ordered by inclusion) via J 7→ PJ.
Explicitly, given J ∈ Par(G), the Lie subalgebras

pJ :=
⊕
{gα : α ∈ R+ ∪ Span(J)}

mJ :=
⊕
{gα : α ∈ Span(J)}

u(PJ) :=
⊕
{gα : α ∈ R+ − Span(J)}

correspond to PJ, the standard Levi subgroup MJ ⊂ PJ, and the unipotent radical U(PJ) of PJ,
respectively. We denote by

RJ := R ∩ Span(J)

the set of roots of MJ, so that J ⊂ RJ is the set of simple roots.

8.1.3. Let N(T ) ⊂ G be the normalizer of T . The Weyl group W = N(T )/T acts on Λ
preserving R. For any J ∈ Par(G), denote by WJ ⊂W the subgroup generated by the reflections
around the roots in J. Thus, WJ is the Weyl group of MJ.

8.1.4. Given J ∈ Par(G), we denote by

FlJ = {P ′ ⊂ G : P ′ is conjugate to PJ}

the flag variety of parabolic subgroups of type J. We have a natural isomorphism FlJ = G/PJ.
If J = ∅, then PJ = B, and we write simply

Fl = FlJ = G/B (J = ∅)

for the complete flag variety.

Whenever J̃ ⊂ J in Par(G), we have a natural morphism

f = fJ̃,J : FlJ̃ → FlJ .
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8.1.5. Given two Borel subgroups B′, B′′ ⊂ G, we denote their relative position by w(B′, B′′) ∈
W. Explicitly, for B′′ = B being the fixed Borel, the equality w = w(B′, B) means that

B′ = Adg(B), g ∈ BwB.

We then expand w to arbitrary pairs (B′, B′′) ∈ Fl×Fl by G-invariance.

More generally, suppose J0, J ∈ Par(G). The relative position of two parabolic subgroups
P ′ ∈ FlJ0

, P ′′ ∈ FlJ is given by the double coset

{w(B′, B′′) ∈W : B′ ⊂ P ′ and B′′ ⊂ P ′′ are Borel subgroups} ∈WJ0
\W/WJ.

This double coset contains a unique minimal element with respect to the Bruhat order on W;
we denote it by w(P ′, P ′′) ∈ W. The condition that w ∈ W is minimal in its double coset
WJ0wWJ is equivalent to the condition

w(J) ⊂ R+ and w−1(J0) ⊂ R+.

8.2. Some Weyl group combinatorics. In this subsection we fix J0 ∈ Par(G) and the
corresponding standard parabolic subgroup P0 := PJ0 .

8.2.1. Put

(8.1) W′ := {w ∈W : w−1(J0) ⊂ R+} = {w ∈W : w is minimal in WJ0
w}.

There is a unique maximal element w′0 ∈W′; it is characterized by the property that

w′0(R+) ∩ R+ = RJ0 ∩ R+.

Explicitly, w′0 is the minimal element of the coset WJ0w0, where w0 ∈W is the longest element;
also, w′0w0 ∈WJ0

is the longest element of the Coxeter group WJ0
.

8.2.2. Fix w ∈W, and consider the partition S = S0
w ∪ S+

w ∪ S−w given by

S0
w := S ∩ w−1(RJ0

)

S+
w := S ∩ w−1(R+ \ RJ0)

S−w := S ∩ w−1(−R+ \ RJ0
).

(For simplicity, the dependence of this partition on J0 is suppressed in the notation.) The
following properties of this partition are clear.

Lemma 8.2.3. Suppose w ∈W. Then

(1) S−w = ∅ if and only if w ∈WJ0
, and

(2) S+
w = ∅ if and only if w ∈WJ0

w0. �

Corollary 8.2.4. Suppose w ∈W′. Then

(1) S−w = ∅ if and only if w = e, and
(2) S+

w = ∅ if and only if w = w′0. �

8.2.5. Let now P ′ be another parabolic subgroup (not necessarily a standard one). Consider
w(P0, P

′) ∈W. Clearly, w(P0, P
′) ∈W′. We need the following easy observation.

Lemma 8.2.6. Let U(P0) ⊂ P0 be the unipotent radical, and let p′ and u(P0) be the Lie algebras
of P ′ and U(P0), respectively. Then w(P0, P

′) = w′0 if and only if p′ ∩ u(P0) = {e}.

Proof. Follows from Corollary 8.2.4(2). �
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8.2.7. Let us now fix J ∈ Par(G), and consider the flag variety FlJ. For w ∈ W, define the
Schubert stratum in FlJ as follows:

FlwJ := {P ′ ∈ FlJ : w(P0, P
′) = w} ⊂ FlJ .

Also, put

Fl≤wJ := {P ′ ∈ FlJ : w(P0, P
′) ≤ w} ⊂ FlJ

and

Fl<wJ := {P ′ ∈ FlJ : w(P0, P
′) < w} ⊂ FlJ .

(One again, we omit the parabolic subgroup P0 from the notation.)

Remark 8.2.8. We emphasize that in the definition of FlwJ , the equality w(P0, P
′) = w takes

place in W and not in WJ0
\W/WJ (and similarly for Fl≤wJ and Fl<wJ ).

Hence, if w 6∈W′, then FlwJ = ∅ and Fl≤wJ = Fl<wJ . Also, Fl
≤w′0
J = FlJ.

8.2.9. Suppose J̃ ⊂ J in Par(G). Consider the natural map f : FlJ̃ → FlJ. Clearly,

f(Fl≤w
J̃

) ⊂ Fl≤wJ and f(Fl<w
J̃

) ⊂ Fl<wJ ;

however, it is not true in general that f(Flw
J̃

) ⊂ FlwJ .

Lemma 8.2.10. Fix w ∈W (and recall that J ∈ Par(G) is also fixed).

(1) If J ∩ S−w 6= ∅, then FlwJ = ∅.
(2) Put J̃ = J \ S+

w. Then the map f : FlJ̃ → FlJ induces an isomorphism Flw
J̃
' FlwJ .

Proof. (1) Indeed, if J∩S−w 6= ∅, then w(J) 6⊂ R+ and w is not the minimal element of WJ0
wWJ.

(2) The inverse map sends P ′ ∈ FlJ to the parabolic subgroup (P ′ ∩ P0)U(P ′) ⊂ P ′, where
U(P ′) ⊂ P ′ is the unipotent radical. �

8.3. Proof of Theorem 7.2.5: setting up the induction.

8.3.1. Recall that in Theorem 7.2.5 we fix a G-local system σ and a non-zero horizontal section
A of gσ.

By the Jacobson-Morozov Theorem, A determines a canonical reduction of σ to a standard
parabolic subgroup, which we denote P0. Moreover, A belongs to the nilradical of this reduction,
in the sense that A lies in u(P0)σ ⊂ gσ. (Here we abuse the notation slightly by writing σ for the

reduction to P0.) Equivalently, the reduction corresponds to a point of Sprσ,AP0,unip. In particular,

since A 6= 0, we have u(P0) 6= 0 and hence P0 6= G.

Remark 8.3.2. For most of the argument, we only need to know that σ is reduced to a proper
parabolic. The fact that A belongs to the nilradical of the reduction is used only in Sect. 8.5.6.

8.3.3. Set P0 = PJ0
; that is, J0 is the type of the standard parabolic P0. Let us use the formalism

of Sect. 8.2 for this choice of J0.

Each of the schemes Sprσ,AP comprising Sprσ,AGlued acquires a stratification by the set W′, where
W′ is given by (8.1); denote the corresponding subschemes by

Sprσ,A,<wP ⊂ Sprσ,A,≤wP ⊃ Sprσ,A,wP .

Explicitly, the stratification is determined by the relative position the reduction of σ to P

(corresponding to a point of Sprσ,AP ) and the fixed reduction of σ to P0.
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Consider the corresponding prestacks

Sprσ,A,<wGlued = colim
P∈Par′(G)

Sprσ,A,<wP

Sprσ,A,≤wGlued = colim
P∈Par′(G)

Sprσ,A,≤wP .

(Note that the schemes Sprσ,A,wP do not form a diagram indexed by P ∈ Par′(G).)

Consider also the quotients

Sprσ,A,≤wP / Sprσ,A,<wP := Sprσ,A,≤wP t
Sprσ,A,<wP

pt

and

Sprσ,A,≤wGlued / Sprσ,A,<wGlued := Sprσ,A,≤wGlued t
Sprσ,A,<wGlued

pt,

the latter being the same as

colim
P∈Par′(G)

Sprσ,A,≤wP /Sprσ,A,<wP ,

since the category Par′(G) is contractible (having an initial object).

In what follows we also use the notation

Sprσ,A,<wJ := Sprσ,A,<wP for P = PJ,

etc.

8.3.4. We need to show that the trace map

C∗(Sprσ,AGlued)→ k

is an isomorphism.

We will prove that for every w ∈W′, the trace map

(8.2) C∗(Sprσ,A,≤wGlued )→ k

is an isomorphism. (That is, Sprσ,A,≤wGlued is a homologically contractible k-prestack.) Applying
this to w = w′0, we obtain the desired result.

8.3.5. The proof that (8.2) is an isomorphism uses the following two statements, proved in
Sections 8.4 and 8.5, respectively:

Case w = 1: the trace map

C∗(Sprσ,A,1Glued)→ k

is an isomorphism;

Case w 6= 1: For any 1 6= w ∈W′, the trace map

C∗(Sprσ,A,≤wGlued / Sprσ,A,<wGlued )→ k

is an isomorphism.

Let us show how the combination of these two statements implies that (8.2) is an isomor-
phism. This will be completely formal.

We argue by induction on the poset W′. The base of the induction is the statement in Case
w = 1. Let us now perform the induction step, so take w 6= 1.
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We have a push-out square of prestacks

Sprσ,A,≤wGlued −−−−→ Sprσ,A,≤wGlued / Sprσ,A,<wGluedx x
Sprσ,A,<wGlued −−−−→ pt .

and hence a cofiber square in Vect:

C∗(Sprσ,A,≤wGlued ) −−−−→ C∗(Sprσ,A,≤wGlued / Sprσ,A,<wGlued )x x
C∗(Sprσ,A,<wGlued ) −−−−→ C∗(pt) ' k.

Taking into account the statement in Case w 6= 1, it suffices to show that the trace map

C∗(Sprσ,A,<wGlued )→ k

is an isomorphism. This is done below.

8.3.6. Consider the prestack

colim
w1<w

Sprσ,A,≤w1

Glued .

We have an isomorphism

colim
w1<w

Sprσ,A,≤w1

Glued → Sprσ,A,<wGlued ,

and hence an isomorphism

C∗

(
colim
w1<w

Sprσ,A,≤w1

Glued

)
→ C∗(Sprσ,A,<wGlued ).

Hence, it remains to show that the trace map

C∗

(
colim
w1<w

Sprσ,A,≤w1

Glued

)
→ k

is an isomorphism. We have

C∗

(
colim
w1<w

Sprσ,A,≤w1

Glued

)
' colim

w1<w
C∗(Sprσ,A,≤w1

Glued ).

Now, by the induction hypothesis, for every w1 < w, the trace map

C∗(Sprσ,A,≤w1

Glued )→ k

is an isomorphism. Hence, the assertion follows from the fact that the index category, i.e., w1

with w1 < w, is contractible (it contains an initial element w1 = 1).

8.4. Verifying Case w = 1.
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8.4.1. Let us show that the prestack Sprσ,A,1Glued itself is isomorphic to pt. By definition,

Sprσ,A,1Glued = colim
J∈Par′(G)

Sprσ,A,1J .

Let M0 denote the Levi quotient of P0. Let Par(M0) be the poset of all standard parabolics
of M0. We identify Par(M0) with the poset of all subsets of J0 (including J0 itself).

The inclusion

(8.3) Par(M0) ↪→ Par′(G)

admits a right adjoint, given by

J 7→ J ∩ J0.

Note now that for any J ⊂ S, the map

Fl1J∩J0
→ Fl1J

is an isomorphism. Indeed, this is a special case of Lemma 8.2.10(2). Therefore, the map

Sprσ,A,1J∩J0
→ Sprσ,A,1J

is an isomorphism as well.

8.4.2. We have the following general assertion:

Let I be an index category, and I ′
φ
↪→ I a full subcategory such that the inclusion φ admits

a right adjoint, which we denote by ψ.

Let F : I → D be a functor with values in some ∞-category D. Assume that for every i ∈ I,
the co-unit of the adjunction

φ ◦ ψ(i)→ i

induces an isomorphism

F ◦ φ ◦ ψ(i)→ F(i).

Lemma 8.4.3. Under the above circumstances, the canonical map

colim
i′∈I′

F ◦ φ→ colim
i∈I

F

is an isomorphism. �

8.4.4. Applying Lemma 8.4.3 to (8.3) and the functor

J Sprσ,A,1J ,

we see that Sprσ,A,1Glued is isomorphic to the prestack

(8.4) colim
J⊂J0

Sprσ,A,1J .

Now, the index category of subsets of J0 has a final object (namely, J = J0), and Sprσ,A,1J0
= pt.

Hence, the colimit in (8.4) is isomorphic to pt.

8.5. Verifying Case w 6= 1.
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8.5.1. We need to show that for w 6= 1, the trace map

(8.5) colim
P∈Par′(G)

C∗(Sprσ,A,≤wJ / Sprσ,A,<wJ )→ k

is an isomorphism. Consider the case of w 6= w′0 first.

Put
Par′w(G) := {J ∈ Par′(G) | J ⊂ S0

w ∪ S−w} ⊂ Par′(G).

Recall (see Sect. 8.2.2) that J ⊂ S0
w ∪ S−w means that for every simple root α ∈ J, w(α) is either

negative, or a root of R0.

8.5.2. We claim that the inclusion Par′w(G) ↪→ Par′(G) satisfies the conditions of Lemma 8.4.3
for the functor

J 7→ C∗(Sprσ,A,≤wJ / Sprσ,A,<wJ ).

Indeed, note that the inclusion Par′w(G) ↪→ Par′(G) admits a right adjoint given by

J 7→ J̃ := J \ S+
w .

Now, we claim that for J and J̃ as above, the map

Sprσ,A,≤w
J̃

/Sprσ,A,<w
J̃

→ Sprσ,A,≤wJ / Sprσ,A,<wJ

induces an isomorphism on homology.

This follows by Lemma 8.2.10(2) from the following general assertion:

Lemma 8.5.3. Let f : Y1 → Y2 be a proper map between schemes. Let Y ′i ⊂ Yi for i = 1, 2
be closed subschemes such that f(Y ′1) ⊂ Y ′2 , and f induces an isomorphism Y1 \ Y ′1 → Y2 \ Y ′2 .
Then the induced map

C∗(Y1 t
Y ′1

pt)→ C∗(Y2 t
Y ′2

pt)

is an isomorphism.

Proof. It is enough to show that the map

Cone (C∗(Y
′
1)→ C∗(Y1))→ Cone (C∗(Y

′
2)→ C∗(Y2)) ,

defined by f , is an isomorphism.

Let ιi (resp. ji) denote the closed embedding Y ′i ↪→ Yi (resp. the open embedding (Yi\Y ′i ) ↪→
Yi). From the excision exact triangle

(ιi)dR,∗(ωY ′i )→ ωYi → (ji)dR,∗(ωYi\Y ′i )

we obtain an isomorphism

Cone (C∗(Y
′
i )→ C∗(Yi)) ' (pYi)dR,!((ji)dR,∗(ωYi\Y ′i )),

where pYi : Yi → pt is the projection to the point.

Now, the fact that f is proper and the assumption of the lemma imply that

fdR,!((j1)dR,∗(ωY1\Y ′1 )) ' (j2)dR,∗(ωY2\Y ′2 ),

implying the desired isomorphism.
�

Remark 8.5.4. The above argument involves the excision exact triangle. For this reason, it

does not imply that the prestack Sprσ,A,≤wJ /Sprσ,A,<wJ itself is isomorphic to pt (and we do
not know whether this is true).
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8.5.5. Thus, by Lemma 8.4.3, the colimit in (8.5) is isomorphic to the colimit

colim
P∈Par′w(G)

C∗(Sprσ,A,≤wJ / Sprσ,A,<wJ ),

and it suffices to show that the trace map from the latter to k is an isomorphism. Let us show
that the prestack

(8.6) colim
P∈Par′w(G)

Sprσ,A,≤wJ / Sprσ,A,<wJ

itself is isomorphic to pt.

By the assumption that w 6= w′0 and Corollary 8.2.4, the poset Par′w(G) contains a maximal
element, namely, J = S−w ∪ S0

w. Hence, the colimit (8.6) is isomorphic to

Sprσ,A,≤w
S−w∪S0

w

/Sprσ,A,<w
S−w∪S0

w

.

Now, by the assumption that w 6= 1 and Lemma 8.2.10(1), we have

Sprσ,A,≤w
S−w∪S0

w

= Sprσ,A,<w
S−w∪S0

w

,

and so

Sprσ,A,≤w
S−w∪S0

w

/ Sprσ,A,<w
S−w∪S0

w

' pt .

8.5.6. Finally, we consider the case of w = w′0. We claim that in this case the prestack

colim
P∈Par′(G)

Spr
σ,A,≤w′0
J / Spr

σ,A,<w′0
J

is isomorphic to pt. In fact, we claim that for every J, we have

Spr
σ,A,w′0
J = ∅,

and so

Spr
σ,A,≤w′0
J / Spr

σ,A,<w′0
J ' pt .

Indeed, the fact that Spr
σ,A,w′0
J is empty follows from Lemma 8.2.6 and the fact that A is a

horizontal section of u(P0)σ, while A 6= 0 by assumption.

9. A proof via the Grothendieck-Springer correspondence

In this section we give an alternative proof of Theorem 7.2.5 in the special case of the trivial
local system σ.

9.1. Making the nilpotent vary.

9.1.1. As was mentioned above, in this section the local system is trivial. Hence, we can think

of A as a nilpotent element of the Lie algebra g, and Sprσ,AP is thus the usual parabolic Springer
fiber

SprAP := {P ′ ∈ FlP |A ∈ p′}.
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9.1.2. For an element P ∈ Par(G), let

g̃P := {(x, P ′) ∈ g× FlP |x ∈ p′} ⊂ g× FlP

be the parabolic Grothendieck-Springer variety. Denote by πP the tautological projection g̃P →
g, and put

SP := (πP )dR,!(ωFlP ) ∈ D-mod(g).

The assignment

P  SP

is a functor Par(G)→ D-mod(g). Consider the colimit

SGlued := colim
P∈Par′(G)

SP ∈ D-mod(g).

9.1.3. Let Nilpg

i
↪→ g be the subvariety of nilpotent elements. Consider the object

i!(SGlued) ∈ D-mod(Nilpg).

By construction, the assertion of Theorem 7.2.5 is equivalent to the following:

Proposition 9.1.4. The trace map

i!(SGlued)→ ωNilpg

is an isomorphism away from 0 ∈ Nilpg.

9.2. Interpretation via the Springer theory. In this subsection we recall some basic facts
about the Springer theory.

9.2.1. Put

S := SB .

It is well known that S[−dim(g)] lies in the heart of the t-structure (note that the usual
t-structure for D-modules corresponds to the perverse t-structure under the Riemann-Hilbert
correspondence), and that it carries a canonically defined action of W.

Here are some well-known facts regarding S:

Lemma 9.2.2.

(a) The trace map S→ ωg induces an isomorphism coinv(W, S)→ ωg. Here coinv(W, S) is the
D-module of coinvariants of the action of W on S.

(b) Let anti-inv(W, S) be the sign isotopic component in S. Then the !-restriction of
anti-inv(W, S) to Nilpg vanishes outside of 0 ∈ Nilpg.

(c) For a parabolic P = PJ, we have SP ' coinv(WJ, S), and for J1 ⊂ J2 the natural map
SP1
→ SP2

is induced by the inclusion WJ1
⊂WJ2

.

9.2.3. In view of the above lemma, Proposition 9.1.4 follows from the next more precise result:

Proposition 9.2.4. There exists a canonical isomorphism in D-mod(Nilpg):

SGlued ' coinv(W, S)⊕ anti-inv(W, S)[rk(g)− 1].

9.3. Proof of Proposition 9.2.4.
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9.3.1. In view of Lemma 9.2.2(c), the object SGlued has the form

M ⊗
k[W]

S,

for M ∈ Rep(W) equal to

colim
J∈Par′(G)

k[W] ⊗
k[WJ]

k.

Thus, it remains to show that

(9.1) M ' k ⊕ sign[rk(g)− 1],

viewed as representations of W.

9.3.2. Instead of proving the isomorphism (9.1) directly, let us provide a more elegant geometric
argument.

Consider the diagram of finite sets equipped with an action of W:

J 7→W/WJ.

Consider the homotopy type

WGlued := colim
J∈Par′(G)

W/WJ.

We have:

M = C∗(WGlued).

9.3.3. We claim that the geometric realization of WGlued is W-equivariantly homotopy equiva-
lent to a (rk(g)− 1)-dimensional sphere in the Euclidean space

tR := Λ⊗
Z
R.

Indeed, fix a generic point γ ∈ tR, and let Bγ be the convex hull of the orbit Wγ. For each
j = 0, . . . , rk(g), the j-faces of the polytope Bγ are indexed by the union∐

|J|=j

W/WJ.

From this, we obtain a W-equivariant homotopy equivalence between Bγ and the geometric
realization of

colim
J∈Par(G)

W/WJ,

and also between the boundary ∂(Bγ) (which is homeomorphic to a sphere) and the geometric
realization of WGlued.

The sign representation W → {±1} identifies with the action of W on the torsor of orienta-
tions of tR, and hence also on the torsor of orientations of ∂(Bγ).

This implies the desired formula for C∗(WGlued).
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