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1. Introduction

Noncommutative field theories have a rich and fascinating structure. The embedding

of these theories into string theory [1] suggests that this structure may be directly

relevant to understanding the inevitable breakdown of our familiar notions of space

and time at short distances in quantum gravity.

Investigations to date have largely concentrated on theories with purely spatial

noncommutativity (see however [2]). While such theories are interestingly nonlocal in

space, they are local in time, admitting familiar notions like that of the hamiltonian

and a quantum state. Noncommutativity of a time-like coordinate should have even

more far-reaching consequences, and it is natural to ask whether or not such theories

exist.

1



J
H
E
P
0
6
(
2
0
0
0
)
0
3
6

In this paper we give one answer to this question by asking another: What is the

strong coupling dual of NCYM (spatially-noncommutative N = 4 Yang-Mills)? This
question can be addressed in the description of NCYM as a scaling limit of three-

branes with a B field in IIB string theory [3]. IIB S-duality induces an S-duality on

the NCYM theory, mapping the strongly coupled NCYM theory to a weakly coupled

open string theory.1 This open string theory can be viewed either as living in a

near critical electric field,2,3 or in a space-time with noncommuting space and time

coordinates. A precise statement of the spacetime noncommutativity in this theory

is that the temporal zero mode X0 on the open string worldsheet does not commute

with the spatial zero modes. The scale associated with this noncommutativity is the

same as the effective open string scale. Thus the effects of the noncommutativity are

inextricably tied up with the usual stringy nonlocalities.

Since the closed string sector of the IIB theory is decoupled in the scaling limit,

the dual open string theory does not have a closed string sector. The appearance

of an open string theory without a closed string sector is striking. Ordinarily closed

string poles appear in open string loop diagrams, and unitarity then requires the

addition of asymptotic closed string states. In order to better understand this point

we analyze (following [11]–[16]) the nonplanar one loop open string diagram for the

bosonic case. We find that the temporally noncommutative phases lead to a precise

cancellation of all the closed string poles, in accord with our expectations. This

cancellation in fact occurs for branes of any dimension, indicating the existence of a

family of non-commutative open string theories.

This paper is organized as follows. In section 2 we derive the S-dual of NCYM,

which we refer to as NCOS (noncommutative open strings), by embedding in string

theory. In section 3 we show that it is a decoupled open string theory with a near-

critical electric field. In section 4 we give evidence at the one loop level for the

decoupling of closed strings by computing the non-planar annulus for bosonic string

theory with two incoming and two outgoing tachyons. Section 5 contains a prelimi-

nary analysis of the general higher loop diagram; no obvious closed string singularities

are found. In section 6 we make some comments regarding the supergravity duals of

our open string theory. We conclude with some discussion in section 7. For simplicity

we concentrate on the U(1) theories but our results generalize easily to U(N).

Related work will appear in [17].

1The low energy sector of the open string theory is ordinary N = 4 YM, and the induced duality
reduces to the standard S-duality.
2The existence of a scaling theory at near critical electric fields, and its relevance to temporal

noncommutativity was emphasized to us by N. Seiberg, L. Susskind and N. Toumbas (private

communications). The scaling to the critical electric field was also considered in [4, 5].
3The critical value of the electric field arises when the force pulling apart the charges at either

end of the string just balances the string tension, so that the string is effectively tensionless [6]–[10].

Beyond this value the spectrum contains a tachyon and the vacuum is unstable.
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2. Inducing S-duality

The Olive-Montonen dual of ordinary N = 4 SYM may be deduced as a consequence
of the S duality of IIB theory in the presence of D3-branes in the zero slope limit. In

this section we will determine the Olive-Montonen dual of spatially noncommutative

N = 4 SYM, using the S duality of IIB theory in flat space in the presence of D3-
branes and a background Bµν field, together with the modified zero slope limit [3].

Consider a D3-brane, extended in the 0, 1, 2, 3 directions, in a background geom-

etry

g′µν = ηµν , g′ij = α
′2k1δij , g′MN = δMN , B′ij = −Bεij , g′str = α

′k2 .
(2.1)

in the limit α′→0, keeping k1, k2, B fixed (we will refer to this as the NCYM limit).
Here µ, ν = 0, 1 with i, j = 2, 3 and M,N = 4, . . . , 9. (We will reserve unprimed no-

tation for the S-dual variables to be introduced in the next sub-section.) It was shown

in [3] that the decoupled theory on the brane is noncommutative U(1) SYM propa-

gating on a four dimensional space with (open string) metric (we use the conventions

of [3]) G′µν = ηµν , G
′
ij =

(2πB)2

k1
δij , noncommutativity parameter θ

′ij = εij/B, and
gauge coupling g2YM = 2πG

′2
o , where G

′2
o = 2πk2B/k1. In order to obtain noncommu-

tative field theory propagating on a space with unit metric we choose k1 = (2πB)
2.

In terms of the field theory couplings θ
′
and G′o, B = 1/θ

′
and k2 = (2π)G

′2
o /θ

′
.

In order to obtain a weakly-coupled dual description of the noncommutative

gauge theory at large G′o we will consider the NCYM limit described above in an
S-dual picture. Before describing this in detail we note that the S-dual version has

two potentially unpleasant features:

a) It seems to involve branes in the presence of an an RR 2 form potential (the

S-dual of B′ij).

b) The S-dual of the NCYM limit takes the closed string coupling gstr to infinity,

seeming to indicate that any description of brane dynamics obtained in this

picture will be strongly rather than weakly coupled, independent of Go.

These difficulties may both be circumvented. In order to avoid having to deal

with RR fields, we gauge away the constant bulk NS-NS potential before performing

the S-duality. This gauge transformation induces a magnetic field F ′23 = B on the
the D3-branes, which is converted into an electric field by the S-duality; in fact

an electric field that approaches its critical value in the scaling limit. This electric

field may in turn be gauged into a constant background NS-NS two form potential

B01 = F01 in the bulk. But, in such a background, the open string coupling that

governs the strength of interactions between brane modes is not directly related

to the closed string coupling. It turns out that the open string coupling in this

background is Go = 1/G
′
o, i.e. it is the inverse of the original open string coupling,

3
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and therefore remains finite despite the fact that gstr → ∞. Thus at large G′o, the
effective description is a weakly coupled noncommutative open string theory, with

noncommutativity in the time direction!

We now consider this limit in more detail. We could consider any finite number

of branes, N , but we will mostly stick to the case N = 1 for simplicity.

2.1 Born-Infeld S-duality

S-duality transforms a constant magnetic field on the three-brane to a constant

electric field. Constant fields on a single D3-brane are governed by the Born-Infeld

action

SBI =
1

(2π)3α′2gstr

∫
d4x
√
− det(gµν − 2πα′Fµν) . (2.2)

The action of S duality on SBI will be reviewed in this subsection (see [18]).

Consider a gauge theory on a torus. The flux of the magnetic field on any nontrivial

two cycle of the torus is integrally quantized, and so must, under electromagnetic

S-duality, map to a quantized electric flux. Recall why electric flux on a torus

is quantized. The constant piece (zero momentum mode) of a gauge field in flat

infinite space is physically unmeasurable, as it can be gauged away. This is not true,

however, on a torus, as the Wilson line ei
∫
Adx over any nontrivial cycle of the torus

is a gauge invariant observable, implying that the zero momentum piece of the gauge

field Ai is a periodic physical ‘coordinate’, with period 2π/Li (Li is the size of the

ith spatial direction). Consequently, the momentum conjugate to the zero mode of

Ai is quantized in integral units of Li. This quantized momentum is the electric flux

that is interchanged with the quantized magnetic flux under S duality.

In order to work out the expression for the quantized electric flux, consider the

theory (2.2) on a rectangular torus, with spatial coordinate radii L1, L2, L3. We are

interested in background field configurations in which F01 is nonzero and constant,

but Fij is zero. Since Ȧ1 appears in the lagrangian only through F01, it is sufficient,

for the purposes of computing canonical momenta in such backgrounds, to set Fij
to zero in the lagrangian. For a diagonal metric the Born Infeld action simplifies to

(recall g00 is negative)

S =
1

(2π)3α′2gstr

∫
d4x
√−g

√
1 + (2πα′)2g11g00F 201 . (2.3)

Thus, for constant F01, the momentum conjugate to A1 is

P 1 = NL1 =
1

2πgstr
L1L2L3

√−g g11g00F01√
1 + (2πα′)2g11g00F 201

. (2.4)

Thus the constant F ′23 background of the spatially noncommutative theory maps,
under S duality, to a background with constant F01, whose value is given by the

4
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solutions to the equations
√−g
gstr

g11g00F01√
1 + (2πα′)2g11g00F 201

= F ′23 =
1

θ′
, (2.5)

where gµν and Fµν are the background metric and field strength in the S dual de-

scription. In terms of the critical value of the electric field

F crit01 =

√−g00g11
2πα′

(2.6)

one finds

F01 =
F crit01√

1 + g22g33(θ
′/2πα′gstr)2

. (2.7)

2.2 The scaling limits

Consider IIB theory with a D3-brane in the presence of a background NS-NS 2-form

potential, Bµν . Prior to any scaling limit, an open string metric G̃
AB (the symbol

GAB will be reserved for a rescaled open string metric defined below) and a non-

commutativity parameter Θ can be deduced from disk correlators on the open string

worldsheet boundaries

XA(0)XB(τ) = −α′G̃AB ln(τ)2 + i
2
ΘABε(τ) , A, B = 0, 1, 2, 3 . (2.8)

The open string coupling Go is similarly read off from the coefficient of the gauge

theory action. These are related to closed string quantities by the formulae [3]

2πα′G̃AB +ΘAB = (2πα′)
(

1

g + 2πα′B

)AB
,

G2o = gstr
det1/2(g + 2πα′B)

det1/2(g)
. (2.9)

As discussed above, in the NCYM limit, α′ → 0 while the open string metric
G
′AB, open string coupling G′o and the (spatial) non-commutativity matrix Θ

′AB are

held fixed. We would now like to study this scaling limit in the S-dual description of

type-IIB theory. We will call this the NCOS limit. Under an S-Duality, the type-IIB

closed string backgrounds transform in the usual fashion, g
′
str = 1/gstr, g

′
µν = gµν/gstr

(α′ is unchanged). The associated open string quantities may then be read from their
definitions in (2.9). The results, in the limit α′→0, are summarized in table 1.
Here

µ, ν = 0, 1 , i, j = 2, 3 , A, B = 0, 1, 2, 3 , M,N = 4, 5, 6, 7, 8, 9 .

In table 1 we have expressed all open and closed string quantities as functions of θ

and Go, the noncommutativity parameter and open string coupling in the (S-dual)

NCOS theory. We have also defined the quantities, α′eff the effective open string scale
and the rescaled open string metric GAB = α′

α′eff
G̃AB of the NCOS theory.

5
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The NCYM limit The S-dual NCOS limit

g
′
µν = ηµν gµν =

θG4o
2πα′ ηµν

g
′
ij =

(2πα′)2

θ
′2 δij gij =

2πα′
θ
δij

B′µν = F
′
µν = 0 Bµν = Fµν = F

crit
µν

(
1− 1

2

(
2πα′
θG2o

)2)
B′ij = F

′
ij = − 1θ′ εij Bij = Fij = 0

g
′
str = G

′2
o
2πα′
θ
′ gstr =

θ
′

G
′2
o 2πα

′ =
G4oθ

2πα′

G
′AB = ηAB α′

α′eff
G̃AB ≡ GAB = ηAB

G
′MN = g

′MN = δMN GMN = gMN = 2πα′
θG4o
δMN

Θ
′µν = 0 Θµν = −θ′G′2o εµν = −θεµν
Θ
′ij = −θ′εij Θij = 0

G
′
o = G

′
o Go =

1
G′o

α′ = α′ α′eff =
θ
2π

Table 1

Note that

1. In the limit α′→0, the electric field F01 of the NCOS theory attains its critical
value

F crit01 =
θG4o
(2πα′)2

. (2.10)

2. The energy per unit coordinate length of an NCOS open string stretched in

the 1 direction is given by (recall that the ends of an open string are charged)

p0 =
ε01

2π

(
1

α′
− 2πε01F01

)
∆x1 =

1

4πα′eff
∆x1 (2.11)

so these open strings have an effective tension set by α′eff . As a consequence, it
will turn out that in the NCOS limit excited open string oscillator states are

part of the decoupled theory on the brane in the NCOS limit, and that their

mass scale is also set by α′eff .

3. The open string coupling Go is the inverse of the gauge coupling G
′
o in the

NCYM limit.

To summarize, strongly coupled spatially noncommutative Yang-Mills theory has

an effective description as a weakly coupled open string theory living on D3-branes,

in the presence of a near critical electric field. The parameters of this open string

theory are listed in table 1. We will explore this theory in the rest of this paper.

6
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3. The classical NCOS theory

3.1 Spacetime noncommutativity

In the NCOS limit, open strings on the brane propagate in a background electric

field. This results in temporal noncommutativity, in the sense that the open string

zero modes obey

[Xµ, Xν ] = iθεµν , (3.1)

as may easily be seen from (2.8).

Disk diagrams in the NCOS theory are very simple. As argued in [19, 3], open

string correlation functions on the disk in the NCOS theory may be obtained from

the equivalent correlation functions in the theory without the electric field, by the

addition of noncommutative phases in the 0, 1 directions (and using the appropriate

open string metric and coupling). Thus the classical action for open string modes in

the NCOS limit may be obtained by turning all products in the usual open string

classical action into star products. In other words if we think about the open string

field theory action S =
∫
AQA+ A ∗w A ∗w A there the ∗w product is Witten’s star

product [20] then the only change is that we replace Witten’s product by a modified

product which just adds in the Moyal phases, and of course we replace α′ → α′eff .
Since the effective string scale α′eff is the same as that of non-commutativity θ,

the noncommutative phases are non negligible only for energies of the order of those

of string oscillators.

3.2 The free spectrum

In this subsection we will argue that the NCOS limit defines an open string theory on

the 3-brane, as open string oscillators do not decouple in this limit. We will examine

the spectrum in the free NCOS theory and see that the effective scale is indeed set

by α′eff .
We first consider the scaling limit in the NCYM picture. Near the NCYM limit

one has weakly coupled closed strings coupled gravitationally to open strings. Open

string excitations with string frame energies obeying |g00k20| � 1/α′, or equivalently
Einstein frame energies obeying |g00E k20| � m2p, decouple from the closed strings. As
g00 = −1, open string modes with k0 � 1/

√
α′ decouple from closed string modes.

The decoupled theory includes all brane excitations with energies that obey this

inequality, namely just the N = 4 YM multiplet.
Now consider the same limit in the NCOS picture. The argument above ensures

that open string modes with k0 � 1/
√
α′ decouple from closed strings. However, the

open string oscillator states in this picture obey the mass shell condition set by the

open string metric in the RHS of table 1

α′eff
α′
kAG

ABkB =
N

α′
, (3.2)

7



J
H
E
P
0
6
(
2
0
0
0
)
0
3
6

with A,B = 0, 1, 2, 3. This implies

k2 =
N

α′eff
� 1

α′
, (3.3)

with

α′eff =
θ

2π
(3.4)

in the limit α′→0. Thus the decoupled theory on the brane includes all open string
oscillator states! The mass spectrum is exactly the usual free spectrum on the three

brane, except with α′eff replacing α
′.

3.3 Worldsheet correlators

Nontrivial vertex operators are functions of tangential worldsheet derivatives of XA

and normal worldsheet derivatives of XM . Correlation functions of such vertex oper-

ators may be computed given the two point correlators of the free fieldsXA restricted

to the boundary of the world sheet, as well as the two point functions of the free

fields XM .

The boundary correlators of XA are finite in the limit α′→0, and are given by

XA(0)XB(τ) = −α′effGAB ln(τ)2 +
i

2
θABε(τ) , A, B = 0, 1, 2, 3 . (3.5)

On the other hand, correlation functions involving the transverse directions XM

are derived from the sigma model

S =
1

4πα′

∫
GMN∂X

M∂XN =
α′effG

4
0

4πα′2

∫
∂XM∂XNδMN . (3.6)

In terms of the rescaled fields Y M =
G20α

′
eff

α′ X
M

S =
1

4πα′eff

∫
∂Y M∂Y NδMN . (3.7)

The vertex operators representing physically normalized states are functions of

the normal derivatives of Y M .

Thus all correlation functions of NCOS vertex operators on the disk will be the

same as in usual open string theory except that α′ → α′eff and we have extra non-
commutative phases appearing as in [3]. The open string coupling constant is G0
and it is finite.

4. The one loop diagram

One loop open string graphs usually contain closed string poles, and unitarity then

requires that closed strings be included as asymptotic states. In this section we

8
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consider the nonplanar annulus diagram in the NCOS limit, and show that it has no

physical closed string poles. This demonstrates that an on shell closed string cannot

be produced in collisions of open strings.

Nonplanar diagrams for spatial Θ were computed in [11]–[16] — we will fol-

low [14]. The nonplanar diagram for our case can be obtained by analytic con-

tinuation. For simplicity consider the case of two initial and two final open string

tachyon vertex operators VT = Goe
ikAX

A
in the bosonic string with incoming mo-

menta k1, k2 and outgoing momenta k3, k4. Then we get for a D-3 brane in bosonic

string theory [14, eq. 2.17].

〈VT (k1)VT (k2)VT (k3)VT (k4)〉annulus ∼
∼ i
√
GG4o(4α

′
eff)
−2δ4(k1 + k2 + k3 + k4)

×
∫ ∞
0

ds

2πs11
η

(
is

π

)−24
e−

α′s
2
kAg

ABkB ×

×
∫ 1
0

dν1dν2dν3dν4Ψ1Ψ2Ψ12e
i
2
[k3×k4(2ν34−ε(ν34))−k1×k2(2ν12−ε(ν12))] , (4.1)

with

Ψ1 =

∣∣∣∣θ11(ν12, is/π)θ′11(0, is/π)

∣∣∣∣2α
′
effk1·k2

, Ψ2 =

∣∣∣∣θ11(ν34, is/π)θ′11(0, is/π)

∣∣∣∣2α
′
effk3·k4

,

Ψ12 = e
−s/4 ∏

r=1,2
s=3,4

∣∣∣∣θ10(νrs, is/π)θ′11(0, is/π)

∣∣∣∣2α
′
effkr ·ks

, (νrs = νr − νs) ,

k = k1 + k2 , kr × ks = krAΘABksB , kr · ks = krAGABksB . (4.2)

The expression for the annulus amplitude in (4.1) is written in the closed string

channel. (The expression for the superstring would be similar except that the factor

of s−11 = s−dt/2 → s−3 in (4.1). This factor comes from the number of transverse di-
mensions dt.) Closed string singularities arise in the integral over s in (4.1) as η(is/π)

may be expanded in a series in e−Ns. We thus find non analyticities4 (singularities)
in the amplitude when

α′

2
kAg

ABkB = −N . (4.3)

In the NCOS scaling limit, this condition may be written as

πα′2

θG4o
kµη

µνkν +
θ

4π
kiδ
ijkj = −N . (4.4)

Singularities on the real axis occur at a squared energy

k20 = k
2
1 +

(
G20θ

2πα′

)2(
k22 + k

2
3 +
2N

α′eff

)
4These singularites are 10 dimensional poles integrated over dt transverse momenta.
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that becomes arbitrarily large as α′ is made increasingly small. In the strict limit
α′→0, open string one loop amplitudes factorize on singularities of the form∫

ddtkM
1

k22 + k
2
3 + 2N/α

′
eff + g

MNkMkN
.

As these singularities are never in the physical region, they do not correspond to

physical states.5 Recalling that GAB is fixed in the NCOS limit, it is easy to see that

the amplitude (4.1) is finite (except of course for the tachyon pole which is absent

in the superstring). It is also straightforward using the results of [14] to show that

there are no physical poles for any numbers of initial and final open string tachyon

vertex operators. Higher mass vertex operators involve additional powers of the

Green functions on the annulus. These are finite in the NCOS limit and so will not

spoil the finiteness of the amplitudes. Although we have not worked out the details,

we expect that the behavior of the superstring is similar.

It is instructive to contrast the behaviour of (4.1) in both the NCOS and the

NCYM limits. In the latter case the α′ → 0 limit is manifestly smooth when s/α′ is
held fixed. This forces one into a corner of the moduli space in which the massive open

string states are decoupled [11]–[16]. In the NCOS limit (4.1) receives contributions

from finite s, and so from all open string oscillator states. Apart from the non-

commutative phases the one loop open string diagram (4.1) has almost the same

form as the corresponding diagram in a theory with B = 0, with α′ replaced by α′eff .
However, the exponential term in (4.1) coming from momentum flowing along the

closed string channel has a different α′ dependence from standard string theory with
zero B. This different dependence is responsible for the absence of physical closed

string poles.

The absence of closed string poles in a non-commutative open string theory,

whose non-commutativity parameter θ is 2πα′eff as in our NCOS theories, may be
understood more directly, as we explain below. This line of reasoning also suggests

that a non commutative open string theory with θ < 2πα′eff has closed string poles,
while the theory with θ > 2πα′eff is unstable.
Consider the simple non-planar diagram represented in figure 1, in an open

string field theory. Let the open string theory in question be noncommutative, with

noncommutativity parameter θ. The momentum integral for this diagram takes the

form ∫
d4qe2ip×qIθ=0(q, p) ∼

∫
d4q

∫ ∞
0

dte2ip×qe−2πα
′
eff tq

2+tβp·q+··· (4.5)

5These singularities ∼ (k2i )
dt−2
2 ln(k2i ) are very similar to those induced by one loop graphs in

spatially noncommutative field theories, as found in [21, 22]. Notice that if dt ≥ 2 (p branes with
p < 7 in the supersymmetric case), this amplitude, though non analytic, is finite at k = 0. For

dt ≤ 2 the amplitude diverges at k2i = 0. It is possible that stronger IR singularities appear at
higher loops, specially for high dimensional branes.
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where Iθ=0(p, q) is the integrand at θ = 0 and p×

p

q

t

Figure 1: Nonplanar open string

diagram. In open string field the-

ory we would build it from the cu-

bic vertex and we would consider

states carrying momentum q and

q + p along the loop.

q = pµqµΘ
µν/2. We have exponentiated the prop-

agators in the diagram using a Schwinger proper

time representation, where t is the total proper

time along the loop and we have explicitly given

the form of the leading dependence on q (β is

some other Schwinger parameter, which is also

integrated over; we have supressed this integral

in (4.5) for simiplicity). When q is integrated

over we get the diagram as a function of t and

β. As in [21], the effect of noncommutativity on

this integral is an extra term in the exponent of

the form

e−p◦p/(8πα
′
eff t) . (4.6)

where p ◦ p = −pµΘµνΘνρpρ = −θ2p2. This may be seen by shifting the integral over
q to one over q′µ = qµ + iΘµνp

ν/(4πα′efft). Note that terms of the form q · p in (4.5)
are unaffected by the shift due to the antisymmetry of Θ.

Thus the integrand of (4.5) is modified from its θ = 0 value only by the additional

exponential factor (4.6). On shifting to the s = π/t channel, the integrand has the

usual terms of the form e−s
α′eff
2
(−p20+p21+···) (terms that would produce the s-channel

poles if θ were zero) multiplied by the additional factor e
−s θ2

8π2α′
eff
(p20−p21)

. When θ =

2πα′eff this extra factor exactly cancels the p0, p1 dependence of the exponent. Here
we have used the fact that we are in lorentzian signature so that the final sign of the

exponent in (4.6) is the opposite to the one in euclidean signature. If θ is slightly

less that its critical value, then (4.6) does not cancel the closed string poles. If θ is

bigger than its critical value then all closed string poles turn tachyonic, a reflection

of the instability of the system.

5. Higher loop diagrams

In this section we will examine higher loop string diagrams in the NCOS limit.

We will not attempt to prove that the limit is nonsingular for arbitrary diagrams,

but we will observe that a simple counting of powers of α′ does not reveal any
difficulties. Naively, a genus g surface in the string loop expansion is weighted by

g2g−2str . As gstr diverges in the NCOS limit, a perturbative expansion in genus seems

impossible. However, we shall argue below that both holes and handles are really

weighted by powers of G0 and so high genus surfaces are suppressed at weak open

string coupling.
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5.1 Holes

The addition of a hole in the world sheet is accompanied by one power of gstr. It also

leads to an additional integral over the zero mode momentum circulating around

the loop. As shown in [6], these integrals have a measure factor proportional to

det1/2(g + 2πα′B) det−1/2(g). Hence the total weighting of a hole is

gstr
det1/2(g + 2πα′B)

det1/2(g)
= G2o , (5.1)

and is finite as α′ → 0.

5.2 Handles

Consider an open string world sheet A, with open string boundary conditions cor-

responding to a 3-brane. The amplitude on a worldsheet (B) with an additional

handle can be factorized in the closed string channel along the handle. The resultant

amplitude reads schematically as

SB =
∑
SAVa,Vaλ

2
eff

∫
d6k

1

gIJkIkJ +m2a
, (I, J = 0, . . . , 9) .

Here SAVa,Va denotes the amplitude on A with two extra closed string insertions.

The integral is over the momenta of the intermediate states in the transverse direc-

tions (momentum is not conserved in these directions). The effective coupling λ2eff is

determined as follows: A closed string mode φ with spacetime action

S =
1

g2strα
′4

∫
d10x
√
g(∂Iφ∂Jφg

IJ +m2aφ
2)

x xV V
a a

=

A   =

B = 

(a)

(b)

Figure 2: Adding a handle to a worldsheet A, we obtain a worldsheet B, which can be

represented as coming from the propagation of closed string states between two points of

the worldsheet. We sum over all closed string states.

12



J
H
E
P
0
6
(
2
0
0
0
)
0
3
6

has effective coupling

λeff =
gstrα

′2

g1/4
=
α′5/2

G40α
′1/2
eff

in the NCOS limit. The integral∫
d6k

1

gIJkIkJ +m2a
= α′

∫
d6k

1
α′2kMkN δMN
α′effG

4
0
+N + α′eff(k

2
2 + k

2
3) + · · ·

is of order

α′
(
α′effG

4
0

α′2

)3
.

Finally, in the normalization we have adopted, SAVa,Va is of the same order as SA.

Putting it all together, we find that

SB

SA
≈ G40α′2eff . (5.2)

Thus we conclude that extra handles, in the NCOS limit, are neither infinitely sup-

pressed nor enhanced in the NCOS limit. They are instead really weighted by a

factor of G40, as they would have been for an ordinary weakly coupled open string

theory.6

6. Supergravity duals

The considerations of the previous sections generalize to open string theories on N

coincident 3-branes. In that case since we are dealing with a deformation of U(N)

N = 4 SYM we expect that it should have a supergravity dual for large N . The
relevant supergravity solutions were written in [24, 25]. We start from the lorentzian

version of the solution [25, eq. (2.3)], with B23 = 0. Then we do the following scaling

of parameters

r =
√
α′u

cosh θ′ =
b̃′

α′

g =
g̃b̃′

α′

x0,1 =
b̃′√
α′
x̃0,1

x2,3 =
√
α′x̃2,3

R4 = fixed = 4πg̃N (6.1)

6See also [23] for a discussion of diagrams with many holes.
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We obtain7

ds2str = α
′f 1/2

[
u4

R4
(−dx̃20 + dx̃21) + f−1(dx̃22 + dx̃23) + du2 + u2dΩ25

]

2πα′B01 = α′
u4

R4
,

e2φ = g̃2f
u4

R4

A23 = α
′1
g̃
f−1 ,

F0123u = α
′2 1
g̃

4f−1

u

f = 1 +
R4

u4
. (6.2)

The particular scalings that we have to do to reproduce this solution are, up to

constants, the same as those in section 2.2. The only scaling that is not so obvious is

the scaling of the radial coordinate. Notice that in the N = 4 SYM case we rescale
the radial coordinate as r ∼ α′u. The fact that we have r ∼ √α′u in this case is
related to the fact that the closed string metric has a factor of 1/α′ in section 2.2. We
see from (5.2) that for small u we recover the usual AdS5×S5 solution as we expect,
since the open string theory reduces to N = 4 SYM at low energies. In particular we
see that we should identify g̃ = G20. As we increase u the metric becomes different

than the metric of AdS and we also see that the dilaton becomes large. This suggests

that for large u we should do an S-duality to analyze the solution. After we do the

S-duality we obtain a solution which is the same as the supergravity solution which

corresponds to a D3 brane with spatial non-commutativity in the directions 23,

see [25, eq. (2.7)]. This suggests that at very high energies the open string theory

we are studying would have a dual description in terms of the theory with spatial

non-commutativity.

7. Discussion

7.1 Open string dipoles and UV/IR

Free open string states in the NCOS limit behave quite differently from ordinary

open strings propagating in the same metric, despite having the same spectrum. In

the presence of background fields, (as discussed for example in [7, 8, 9] and especially

in [14] for the magnetic case) the mode expansion reads

Xµ(σ, τ) = xµ0 + 2iα
′
effp
µτ +

1

π
Θµνpνσ + (oscillators) . (7.1)

7Here we normalize the B field as in the previous sections, in [25] it was normalized differently

by a factor of 2πα′, BMR = 2πα′Bhere.
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For strings in the NCOS limit this implies that the distance along the direction of

the field between the two ends of the string, as measured in the metric GAB, is

∆X1 = 2πα′effk0 , (7.2)

plus oscillator contributions which time average to zero. (Note that ∆X1 is the

distance between the endpoints of the string worldsheet along a line of constant

worldsheet time rather than along a line of constant X0. As we argue below, the

proper length of the string is given by a formula analogeous to (7.2) with k0 replaced

by the centre of mass energy of the state.)

The invariant energy and proper length of an oscillator state may be estimated

as follows. The tension of an open string aligned with a near critical electric field is

almost canceled by a negative contribution from its dipole interaction with the field.

In the NCOS limit, the effective tension Teff = 1/4πα
′
eff (see (2.11)). The energy of

such a string, with an oscillation number N , is E = TeffL+πN/L. This is minimized

for L = 2π
√
α′effN = 2πα

′
effE, as in (7.2).

7.2 Thermodynamics

At low energies, compared to 1/
√
α′eff the NCOS theory reduces to ordinary N = 4

SYM, and its free energy scales like T 4. At intermediate energies, the thermodynam-

ics of a weakly coupled NCOS theory (λ = G2oN � 1), may be expected to reflect
its Hagedorn density of states.

However, as argued in this paper, the weakly coupled NCOS theory has a dual

description as a strongly coupled NCYM theory. In a spatially noncommutative field

theory, at weak coupling, planar diagrams [26] dominate over nonplanar diagrams [21]

for energies k0 � 1/
√
θ. It is plausible that this result to continues to hold at strong

coupling,8 with a crossover scale renormalized by a function of the coupling. If

true, this assertion implies that, at high temperatures, the free energy of spatially

noncommutative SYM is proportional to the free energy of ordinary large-N SYM,

and so scales with temperature like T 4, even at large G
′2
o .

It would be interesting to investigate this issue further.

7.3 Generalizations to other dimensions

In this paper we have ‘derived’ the existence of a decoupled four dimensional open

string theory, NCOS, by S dualizing spatially noncommutative SYM. We presented

evidence that, independent of this derivation, the resultant theory is well defined,

and weakly coupled over a range of parameters.

It is easy to extend our construction of the NCOS to other dimensions, even

though we do not have an independent (S duality) argument for the decoupling of

8This statement is true at least in the ‘supergravity’ limit λ� 1, G2o � 1; in that limit [25, 24],
supergravity suggests that planar diagrams dominate for k0 � 1/(λθ2)1/4.
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closed strings. The NCOS scaling limit for a p brane is, once again, defined by table

1, where the indices i, j run from 2, . . . , p and A,B from 0, . . . , p. In other words,

this limit still describes a near critical electric field turned on in the 1 direction.

The open string coupling defined in (2.9) and the effective low energy Yang-Mills

coupling constant g2YM ∼ G20α′(p−3)/2eff are finite. In the NCOS limit, open strings

appear to decouple from closed strings for all p. The annulus amplitude is finite in

arbitrary dimension, and always factorizes on unphysical closed string poles. As in

the 3-brane, string diagrams with handles and holes are suppressed by powers of the

open string coupling, and may be neglected at weak coupling.

In fact, these open string theories appear to be non-gravitational UV finite com-

pletions of low energy (supersymmetric) Yang-Mills. This statement appears to be

true even in high dimensions where the gauge theory is non-renormalizable.
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