
Vacuum states for AdS2 black holes

Citation
Spradlin, Marcus, and Andrew Strominger. 1999. “Vacuum States for AdS2 Black Holes.” Journal 
of High Energy Physics 1999 (11): 021–021. https://doi.org/10.1088/1126-6708/1999/11/021.

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:41417227

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:41417227
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Vacuum%20states%20for%20AdS2%20black%20holes&community=1/1&collection=1/2&owningCollection1/2&harvardAuthors=77ac037b3ef8e02b145af46312a70216&department
https://dash.harvard.edu/pages/accessibility


Journal of High Energy Physics
     

Vacuum states for AdS2 black holes

To cite this article: Marcus Spradlin and Andrew Strominger JHEP11(1999)021

 

View the article online for updates and enhancements.

Related content
Anti-de Sitter fragmentation
Juan Maldacena, Jeremy Michelson and
Andrew Strominger

-

Alpha-vacua, black holes and AdS/CFT
Andrew Chamblin and Jeremy Michelson

-

What do CFTs tell us about anti-de Sitter
spacetimes?
Vijay Balasubramanian, Steven B.
Giddings and Albion Lawrence

-

Recent citations
Hawking Effect of AdS2 Black Holes in the
Jackiw-Teitelboim Model
Wontae Kim

-

Towards black hole evaporation in Jackiw-
Teitelboim gravity
Thomas G. Mertens

-

Bulk view of teleportation and traversable
wormholes
Dongsu Bak et al

-

This content was downloaded from IP address 65.112.8.139 on 27/09/2019 at 16:39

https://doi.org/10.1088/1126-6708/1999/11/021
http://iopscience.iop.org/article/10.1088/1126-6708/1999/02/011
http://iopscience.iop.org/article/10.1088/0264-9381/24/6/013
http://iopscience.iop.org/article/10.1088/1126-6708/1999/03/001
http://iopscience.iop.org/article/10.1088/1126-6708/1999/03/001
http://dx.doi.org/10.3938/jkps.75.430
http://dx.doi.org/10.3938/jkps.75.430
http://dx.doi.org/10.1007/JHEP07(2019)097
http://dx.doi.org/10.1007/JHEP07(2019)097
http://dx.doi.org/10.1007/JHEP08(2018)140
http://dx.doi.org/10.1007/JHEP08(2018)140


J
H
E
P
1
1
(
1
9
9
9
)
0
2
1

Received: October 26, 1999, Accepted: November 16, 1999
HYPER VERSION

Vacuum states for AdS2 black holes

Marcus Spradlin and Andrew Strominger

Department of Physics, Harvard University

Cambridge, MA 02138

E-mail: spradlin@feynman.harvard.edu, andy@planck.harvard.edu

Abstract: An AdS2 black hole spacetime is an AdS2 spacetime together with a

preferred choice of time. The Boulware, Hartle-Hawking and SL(2,R) invariant

vacua are constructed, together with their Green functions and stress tensors, for

both massive and massless scalars in an AdS2 black hole. The classical Beken-

stein-Hawking entropy is found to be independent of the temperature, but at one

loop a non-zero entanglement entropy arises. This represents a logarithmic violation

of finite-temperature decoupling for AdS2 black holes which arise in the near-horizon

limit of an asymptotically flat black hole. Correlation functions of the SL(2,R) in-

variant boundary quantum mechanics are computed as functions of the choice of

AdS2 vacuum.
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1. Introduction

Two-dimensional anti-de Sitter space (AdS2) has arisen in at least three distinct but

related contexts within string/black hole physics. The first is as the near-horizon ge-

ometry (together with an S2 factor) of the extremal Reissner-Nordstrom solution [1].

AdS2 is a stable attractor solution of the equations which govern how the geometry
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changes as the horizon is approached [2], and as such is expected to play a central

role in the physics of black holes. AdS2 made a second appearance in studies of

two-dimensional quantum gravity, where it provides an SL(2,R) invariant ground

state for Liouville gravity [3, 4], and a rich arena for the study of two-dimensional

black holes [5, 6, 7, 8, 9]. Most recently it is the black sheep in the family of

AdS/CFT dualities [10], having so far resisted a fully satisfactory realization of the

duality [11, 12, 13, 14, 15, 16]. One hopes that this can be remedied and that in the

process a clearer relation between the different aspects of AdS2 physics will emerge.

In this paper we investigate properties of both massive and massless quantum

field theory on an AdS2 background. In section 2 we review the appearance of AdS2
in near-horizon black hole geometries. This motivates the definition of an AdS2 black

hole as an AdS2 spacetime together with a preferred choice of time. In section 3 it

is shown in the quantum theory that the choice of time affects the vacuum state.

We discuss the Hartle-Hawking, Boulware and SL(2,R) invariant AdS2 black hole

vacua and the Hawking temperature measured by various families of observers. It is

shown that the vacua defined with respect to Poincaré or global time are equivalent

to one another and to the Hartle-Hawking vacuum. The Boulware vacuum, which is

associated to the preferred choice of time, is not in general equivalent. Section 4 con-

cerns the entropy of an AdS2 black hole. The classical Bekenstein-Hawking entropy

is temperature-independent. At one loop there is an entanglement entropy which

depends logarithmically on the Hawking temperature. This represents a violation

of low-energy decoupling between the asymptotically flat and near-horizon regions

of the black hole at finite temperature. In section 5 we analyze processes in which

the temperature is changed by sending matter into the black hole. In section 6 we

turn to massive fields, and give explicit expressions for the Green functions in the

Boulware and Hartle-Hawking vacua. The stress-energy expectation values in these

vacua are computed in section 7. In section 8, motivated by the AdS/CFT dual-

ity, we compute correlation functions of the SL(2,R) invariant boundary quantum

mechanics in the various AdS2 vacua.

2. AdS2 black holes in the near-horizon limit

In three dimensions, all negative curvature spaces are locally equivalent to AdS3.

Because of this, for many years it was believed that black holes did not exist for

pure gravity in three dimensions. However, BTZ showed that black holes do exist

which differ from AdS3 only by global identifications [17]. The local geometry at the

black hole horizon is the same as everywhere else, but it is globally characterized as

the surface from behind which nothing can communicate with infinity. This differs

from higher dimensional examples in which the geometry has special features at the

horizon.
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In two dimensions, all negative curvature spaces are locally AdS2. We will argue

that, much as in three dimensions, AdS2 black holes nevertheless exist in pure gravity

(without dilatons). Similar discussions have appeared in [5, 18]. One way to describe

this is that an AdS2 black hole is AdS2 together with a choice of (Killing) time t at

infinity for which the full region −∞ < t < ∞ does not cover all of the boundary
of AdS2. The black hole horizon is then the surface from behind which nothing can

escape to the region −∞ < t <∞. We will see that the black holes so defined have
characteristic thermodynamic properties.

AdS2 black holes naturally arise in the near-horizon limits of Reissner-Nordstrom

black holes. Following the discussion of [12], the full magnetically-charged solution is

ds2 = −(r − r+)(r − r−)
r2

dt2 +
r2

(r − r+)(r − r−)dr
2 + r2dΩ22 ,

F = Qε2 , (2.1)

where ε2 is the volume element on the unit S
2. The locations of the inner and outer

horizons are related to the Hawking temperature TH and charge via

Q2 =
r+r−
L2p

,

TH =
r+ − r−
4πr2+

, (2.2)

where Lp is the Planck length.

We now consider, as in [12], the near-horizon limit

Lp → 0 , (2.3)

with

U =
r − r+
L2p

, Q, TH fixed . (2.4)

The metric then reduces to

ds2

Q2L2p
= −U(U + 4πQ

2TH)

Q4
dt2 +

1

U(U + 4πQ2TH)
dU2 + dΩ22 . (2.5)

We note that both the ADM energy 2M = r+ + r− and the entropy SBH = πr2+/L
2
p

go to TH-independent constants (M = Q and SBH = πQ
2) in this limit.

The TH dependence of the metric can be eliminated by a coordinate transforma-

tion. Defining

t′ ± Q2

U ′
= tanh

[
πTH

(
t± 1

4πTH
ln

U

U + 4πQ2TH

)]
, (2.6)

the metric reduces to

ds2

Q2L2p
= −U

′2

Q4
dt′2 +

1

U ′2
dU ′2 + dΩ22 . (2.7)
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(a) (b)
(a) (b)

Figure 1: (a) Penrose diagram cor-

responding to the extremal Reissner-

Nordstrom black hole. The dashed

line is the black hole horizon, and the

shaded strip is the near-horizon AdS2 re-

gion. (b) Near-extremal Reissner-Nord-

strom black hole and corresponding near-

horizon AdS2 region.

Figure 2: Penrose diagram for AdS2.

The dashed lines are the horizons inher-

ited from the embedding in extremal (a)

or near-extremal (b) Reissner-Nordstrom

(compare with figure 1). The arrows in-

dicate the flow of asymptotic time “t”.

In terms of

τ ± σ ± π

2
= 2 tan−1

(
t′ ± Q2

U ′

)
, (2.8)

the metric becomes
ds2

Q2L2p
=
−dτ 2 + dσ2
cos2 σ

+ dΩ22 . (2.9)

This is known as the Robinson-Bertotti geometry on AdS2 × S2. As illustrated in
figures 1a and 1b for the extremal and near extremal cases, the AdS2 × S2 region of
the full Reissner-Nordstrom geometry is a ribbon which zigzags its way up through

the infinite chain of universes.

Since TH can be eliminated by a coordinate transformation, the classical near

horizon theory is independent of TH . We shall see in the next section that this is not

the case in the quantum theory, because the definition of a vacuum state in general

depends on a choice of time, or equivalently a preferred family of observers. An

AdS2 spacetime which arises as the near horizon geometry of Reissner-Nordstrom is

indeed endowed with a preferred choice of time “t”, namely, the one associated to

the Killing vector which generates unit time translations in the asymptotically flat

spatial infinity of the Reissner-Nordstrom geometry. As is evident from figure 2, as

this preferred time coordinate t runs over the full range −∞ < t < +∞, only part of
the timelike boundaries of AdS2 is covered. We shall refer to this boundary region as

spatial infinity. The future black hole horizon can then be defined as the boundary

of the region from which nothing can escape to spatial infinity. The past horizon
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is then the boundary of the region which cannot be accessed from spatial infinity.

These horizons coincide with the Killing horizon of the preferred Killing vector.

In the extremal case TH = 0 depicted in figure 2a, the exterior of the black hole

is a wedge, the corner of which extend to the far boundary of AdS2. For TH 6= 0
(figure 2b), the exterior of the black hole is still a wedge, but it extends only halfway

across AdS2.

3. AdS2 black hole thermodynamics

In this section we discuss the thermal properties of AdS2 black holes. We consider

mainly the case of a free massless scalar field, deferring the massive case to section 6.

3.1 The quantum state

In order to define a vacuum state we need a metric with a timelike Killing vector.

The vacuum is then defined as the state annihilated by positive frequency modes of

the field operator. Observers at a fixed spatial coordinate x, in a coordinate system

in which the metric is time-independent, then detect no particles.

For AdS2 there are inequivalent choices of time coordinates or equivalently con-

formal gauge coordinates. For one such coordinate choice the metric takes the form

ds2

Q2L2p
=
−dτ 2 + dσ2
cos2 σ

. (3.1)

The coordinates (τ, σ) are referred to as global coordinates because they cover all

of (the universal cover of) AdS2 for −π/2 ≤ σ ≤ π/2 and −∞ < τ < ∞. Spatial
infinity is at σ = ±π/2, and the horizons are at τ ± σ = 0. The corresponding

vacuum |0Global〉, annihilated by modes which are positive frequency with respect to
τ , is the familiar SL(2,R) invariant vacuum for a free scalar field on the strip. We

shall see shortly that this is equivalent to the Hartle-Hawking black hole vacuum as

well as the Poincaré vacuum.

A second coordinate system is the “Schwarzschild” coordinates, which uses the

time t appearing in (2.5). t coincides with the time coordinate inherited from the

decoupled asymptotically flat region and, as discussed above, defines the black hole

horizon. Eq. (2.5) can be transformed to conformal gauge by

x =
1

4πTH
ln

U

U + 4πQ2TH
, (3.2)

in which
ds2

Q2L2p
=

[
2πTH

sinh(2πTHx)

]2
(−dt2 + dx2) . (3.3)

Since the coordinate transformation (3.2) involves only the spatial coordinate

and does not change the choice of time, it does not affect the associated vacuum

|0Schwarzschild〉.

5
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The Schwarzschild coordinates (t, x) and global coordinates (τ, σ) are related by

the coordinate transformation

tan
1

2
(τ ± σ) = ∓e∓2πTH (t±x) . (3.4)

A natural family of observers are those moving along worldlines of fixed U .

This corresponds to trajectories which remain a fixed distance from the black hole

horizon. Since the proper time along such worldlines equals Schwarzschild time (up

to a constant), such observers will not detect any particles in the state |0Schwarzschild〉.
The vacuum with this property is known as the Boulware vacuum. Hence we conclude

that

|0Schwarzschild〉 = |0Boulware〉 . (3.5)

We will see in section 7 that this vacuum has the property that the expectation value

of the stress tensor diverges on the horizon.

Since Schwarzschild and global time do not agree, constant-U observers will

detect particles in the global vacuum. The transition probabilities for a detector

on a constant U -worldline are determined from the Green functions in the global

(τ, σ) vacuum |0Global〉. It follows from (3.4) that with respect to the proper time
τD along the detector worldline these are thermal Green functions, simply because

the (τ, σ) coordinates are invariant under imaginary shifts t→ t+ i/TH . Accounting

for the difference between t and proper time τD, the detector sees a thermal bath

of particles at temperature
√
g00TH =

1
2πQ
sinh(2πTHx). The vacuum with this

property is known as the Hartle-Hawking vacuum. Hence we conclude that

|0Global〉 = |0Hartle−Hawking〉 . (3.6)

Yet another way to define a vacuum is as the state annihilated by modes which

are positive frequency in the Poincaré metric

ds2

Q2L2p
=
−dT 2 + dy2

y2
. (3.7)

We use capital T to distinguish the Poincaré time T from the Schwarzschild time t.

For −∞ < T < ∞ and 0 < y < ∞ these coordinates cover only the patch defined
by τ + σ < π/2 and τ − σ > −π/2, and hence only the boundary at σ = −π/2 (the
various coordinate systems are illustrated in figure 3). These coordinates are related

to the global coordinates by the transformation

T ± y = tan 1
2

(
τ ± σ ± π

2

)
. (3.8)

The (Klein-Gordon) overlap between a positive frequency mode in Poincaré coor-

dinates φP+ω =
1√
πω
e−iωT sin(ωy) and a mode φGn =

1√
π|n|e

−inτ sin(n(σ + π/2)) with
positive (n = 1, 2, . . .) or negative (n = −1,−2, . . .) frequency in global coordinates is

〈φP+ω|φGn 〉 = i
∫ ∞
0

dy
[
φP−ω(∂Tφ

G
n )− φGn (∂TφP−ω)

]
T=0

, (3.9)

6
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y=
8

y=
8

x=
8

x=
8

(c)(b)(a)

τ

−π/2 +π/2
−π

π

0

t

σ

T

y=
0

x=
0

Figure 3: Three coordinate systems on AdS2. (a) Global coordinates, −π/2 ≤ σ ≤ π/2
and −∞ < τ <∞. (b) Poincaré coordinates, −∞ < T <∞, 0 < y <∞. (c) Schwarzschild
coordinates, −∞ < t <∞, 0 < x <∞.

where φP−ω = (φ
P
+ω)

∗. On the slice T = 0 one has σ+π/2 = 2 tan−1 y and ∂T = 2
y2+1

∂τ .

Using these facts and tan−1 y = 1
2i
log(1+iy

1−iy ) one can put (3.9) into the form

〈φP+ω|φGn 〉 =
1

π

√
|n|
ω

∫ ∞
−∞

dy eiωy(1 + iy)−n−1(1− iy)n−1 . (3.10)

The contour must be closed in the upper half plane. When n is negative there is no

pole in the upper half plane and so the integral vanishes. When n is positive there

is a pole at y = i, and the result of the integration is

〈φP+ω|φG+n〉 = (−1)n
√
n

ω
e−ωL−1n (2ω) ,

〈φP+ω|φG−n〉 = 0 , (3.11)

where Lαn is the associated Laguerre polynomial. We conclude that the Bogoliubov

transformation is block diagonal, and it follows that the Poincaré annihilation opera-

tors are linear combinations of the global annihilation operators and have no overlap

with the global creation operators, and hence

|0Global〉 = |0Poincaré〉 . (3.12)

This result will be confirmed by the computation of the Green functions for massive

scalars in section 6. The equivalence of the global and Poincaré vacua in AdSn has

been discussed in [19].

We note that in the limit TH → 0, the Schwarzschild metric (3.3) reduces to the
Poincaré form

ds2

Q2L2p
=
−dt2 + dx2

x2
. (3.13)

7
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Hence the vacuum associated to the coordinates (3.3) reduces to the SL(2,R) in-

variant Poincaré vacuum associated to the coordinates (3.13) in the limit TH → 0.
The Hawking temperature TH can be thought of as a measure of the non-SL(2,R)

invariance of the vacuum state associated to (3.3).

4. Entanglement entropy

The presence of a thermal bath of particles around an AdS2 black hole would normally

imply an associated temperature-dependent entropy. However in the near-horizon

limit (2.3), (2.4) one finds that

SBH → πQ2 , (4.1)

independently of TH . This means that there is no classical temperature-dependent

entropy. However at the one loop level there is a quantum correction to the entropy

from the entanglement of the near-horizon AdS2 Hilbert space with the Hilbert space

of the decoupled asymptotically flat region. (Strictly speaking when this entropy is

nonzero the asymptotically flat region is not fully decoupled.)

In order to compute this entropy one needs to be more precise about how the

near-horizon AdS2 region of the Reissner-Nordstrom black hole is separated from the

asymptotically flat region in the Lp → 0 limit. Before taking Lp all the way to zero
let us choose a fixed value of radial coordinate U = Umax which divides the spacetime

so that the AdS2 region is 0 < U < Umax while the flat region is Umax < U < ∞.
Umax should be in the mouth region where the geometry changes from AdS2 to flat,

so we take Umax = c0
Q
Lp
. The arbitrary constant c0 can be taken to be very small so

that the boundary is deep in the AdS2 region, but is held fixed as Lp → 0, so that
Umax → ∞. We then erect the Hilbert space of, e.g., a scalar field on both regions,
with bases denoted |ψiAdS〉 and |ψJFlat〉. A generic state of the quantum field on the
Reissner-Nordstrom spacetime – including the vacuum state – is a sum of product

states of the form

|ψ〉 =
∑
iJ

ciJ |ψiAdS〉|ψJFlat〉 . (4.2)

The state on the AdS2 region is then a density matrix

ρAdS = TrFlat|ψ〉〈ψ| =
∑
ijK

ciKc
∗
jK |ψiAdS〉〈ψjAdS| . (4.3)

Alternately the state on the flat region is

ρFlat = TrAdS|ψ〉〈ψ| =
∑
IJk

ckIc
∗
kJ |ψIFlat〉〈ψJFlat| . (4.4)

The entanglement entropy is then defined by

Sent = −Trρ ln ρ , (4.5)

and takes the same value for either ρFlat or ρAdS. Sent is a measure of the correlation

between the portions of the quantum state on the two regions.

8
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Entanglement entropy for black holes has been discussed in [20]–[26]. In general

there are divergences arising from the entanglement of arbitrarily short wavelength

modes which overlap the dividing line Umax. We are interested in finite, temperature-

dependent contributions to Sent for the vacuum state on the Reissner-Nordstrom

geometry. Such a term arises from the S-wave modes of scalar fields, which reduces

to a conformal field on AdS2. The vacuum entanglement entropy for a conformal

field theory of central charge charge c in curved space was derived in [24, 27] as

Sent =
c

6
ρ(σmax)− c

6
ln∆ . (4.6)

In this expression, ρ(σmax) is the metric conformal factor in the coordinate system

used to define the vacuum evaluated at the dividing line between the two regions,

and ∆ is a non-universal short-distance cutoff.

The Hartle-Hawking vacuum for an AdS2 black hole is defined with respect to

the global coordinates (3.1), in which

ρ = − ln cosσ . (4.7)

For small Lp, Umax is large and from (2.6) and (2.8) we have

σmax +
π

2
∼ 2πQ

2TH

Umax
. (4.8)

It follows that

Sent = −c
6
ln(QTH) + non-universal . (4.9)

Related (although not obviously equivalent) results were obtained with euclidean

methods in [9].

Expression (4.9) represents a logarithmic violation of decoupling in the near

horizon limit at finite temperature between the flat region and the AdS2 region.

Additional contributions to the entanglement entropy could arise from massive fields

as well as higher angular modes of massless fields. However it is not clear if these

contributions will survive the near horizon limit since the modes of such fields vanish

rapidly near the boundary of AdS2. It would be interesting to compute Sent in string

theory examples and to investigate its origin in the D-brane picture.

5. Making an AdS2 black hole

In this section we consider simple processes which change the temperature of the

black hole. A general spherically symmetric solution of Einstein-Maxwell gravity

corresponding to null matter falling in to a Reissner-Nordstrom black hole is

ds2 = −(r − r+(v))(r − r−(v))
r2

dv2 + 2drdv + r2dΩ22 ,

F = Qε2 , (5.1)

9
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with r+r− = L2pQ
2. The null matter has only one nonzero component of its stress

tensor:

Tvv =
∂vr+(v) + ∂vr−(v)

4πL2pr
2

. (5.2)

Let us start with an extreme Reissner-Nordstrom black hole (r− = r+) and send in

a null shockwave of the form

Tvv =
πQ3T 20Lpδ(v)

r2
, (5.3)

where T0 is a constant with units of temperature. The meaning of this particular

form will shortly be clear. From (5.2) we see that this leads to

r+ + r− = 2QLp v < 0 ,

r+ + r− = 2QLp + 4π2Q3T 20L
3
p v > 0 . (5.4)

Using r+r− = Q2L2p one can solve to find

r± = QLp v < 0 ,

r± = QLp [1± 2πQT0Lp] +O(L3p) v > 0 , (5.5)

where the higher-order corrections in Lp will not be important. We see then that the

Hawking temperature TH = (r+ − r−)/4πr2+ is
TH = 0 v < 0 ,

TH = T0 +O(Lp) v > 0 . (5.6)

The shockwave (5.3) increases the Hawking temperature of the black hole from

zero to TH , at least in the Lp → 0 limit.
Now we consider a near horizon limit

Lp → 0 , (5.7)

with

U =
r − r+
L2p

, Q, T0 fixed . (5.8)

The two-dimensional metric then reduces to

ds2

L2p
= −U(U + 4πQ

2T0Θ(v))

Q2
dv2 + 2dU dv . (5.9)

We note that in this limit the energy density (5.2) vanishes. In terms of the coordi-

nates s± defined by

s− = v , s+ = v +
2

U
, for v < 0 ,

s− =
1

2πQ2T0
(e2πT0v − 1) , s+ = s− +

2

U
e2πT0v , for v > 0 , (5.10)

10
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the metric (5.9) takes the Poincaré form

ds2

Q2L2p
= − 4ds

+ds−

(s+ − s−)2 . (5.11)

A detector at fixed U = U0 hence has a worldline

s+ = s− +
2

U0
, s− < 0 ,

s+ = s−
(
1 +
4πQ2T0
U0

)
+
2

U0
, s− > 0 . (5.12)

The proper time τD along the detector worldline is

τD = QU0s
− , s− < 0 ,

τD =
1

2πQT0

√
U0(U0 + 4πQ2T0) ln(1 + 2πQ

2T0s
−) , s− > 0 . (5.13)

Since Poincaré time and worldline time are proportional prior to the shock wave,

there will be no particle detection in this region. However, after the shock wave, it

follows from (5.10) that s− is periodic under imaginary shifts of detector proper time.
This implies that the detector will detect a thermal bath of radiation at temperature

T = T0
Q√

U0(U0 + 4πQ2T0)
. (5.14)

The first factor of T0 is the black hole temperature, while the second is the Tolman

factor representing the usual position-dependent temperature for thermal equilibrium

in a gravitational field.

In conclusion, (5.9) represents an AdS2 black hole whose temperature grows as

a function of the null coordinate v because matter is being thrown in. A detector

stationed at fixed U outside the black hole detects a thermal bath of radiation whose

temperature grows as the matter is thrown in.

6. Massive fields and vacua

In this section we extend the previous discussion to the case of massive fields. For

the remainder of this paper we set QLp = 1. The proper dependence may be restored

using dimensional analysis.

6.1 Green functions

We consider a massive scalar field φ with action

S = −1
2

∫
d2x
√−g [(∇φ)2 +m2φ2] . (6.1)
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The vacuum |0〉 is completely specified by the two-point function G(x,y) =
〈0|φ(x)φ(y)|0〉. In lorentzian spacetimes there are many Green functions.1 We focus
on the Hadamard function

G(1)(x,y) = 〈0|{φ(x), φ(y)}|0〉 , (6.2)

which is related to the familiar Feynman propagator GF (x,y) = i〈0|Tφ(x)φ(y)|0〉 by
G(1) = 2 ImGF . To construct the Hadamard function explicitly for a given vacuum

one first finds a complete set of positive frequency solutions (i.e. φω ∼ e−iωt where t
is the chosen time variable) of the massive wave equation

∇2φω = m2φω , (6.3)

normalized with respect to the Klein-Gordon inner product, which in conformal

gauge takes the form

〈φω|φ′ω〉 = i
∫
Σ

[φ∗ω(∂tφω′)− (∂tφ∗ω)φω′ ] , (6.4)

where the integral is taken over a constant-time slice Σ. We encounter bases {φω(y)}
defined on the half-plane y ≥ 0 which oscillate as y → ∞ and hence are not inte-
grable. These modes are normalized by requiring that

φω(y)→ 1√
πω
sin(ωy + δω) , as y →∞ . (6.5)

This gives the correct relativistic delta-function normalization

〈φω|φω′〉 = 2ω
∫ ∞
0

dy φ∗ωφω′ = δ(ω − ω′) . (6.6)

Once the modes are known, the Hadamard function is given by

G(1)(x,y) = 2Re

∫
dω φ∗ω(x)φω(y) . (6.7)

If the spectrum of ω is discrete then the integrals should be replaced by sums.

6.2 The global vacuum

In this subsection we construct the Green function associated with the global vacuum.

The wave equation for a massive scalar in global coordinates is[
cos2 σ (−∂2τ + ∂2σ)− h(h− 1)

]
φ = 0 , (6.8)

where we write m2 = h(h− 1). The normalized positive-frequency solutions are [13]

φn = Γ(h)2
h−1
√

n!

πΓ(n+ 2h)
e−i(n+h)τ (cosσ)hChn(sin σ) , n = 0, 1, . . . (6.9)

1A discussion can be found in [28, chapter 4].
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where Chn is the Gegenbauer polynomial [29, 8.930]. The Hadamard function (6.7)

for the global vacuum is therefore

G
(1)
Global(τ1, σ1; τ2, σ2) =

Γ(h)222h−1

π
(cosσ1 cosσ2)

h × (6.10)

×
∞∑
n=0

n!

Γ(n+ 2h)
cos [(n+ h)(τ1 − τ2)]Chn(sin σ1)Chn(sin σ2) .

This sum appears in [30] (the mode sum for AdSn is calculated in [31]) and gives

G
(1)
Global(τ1, σ1; τ2, σ2) =

Γ(h)2

2πΓ(2h)
Re

[(
2

dGlobal

)h
F

(
h, h; 2h;− 2

dGlobal

)]
, (6.11)

where

dGlobal(τ1, σ1; τ2, σ2) =
cos(τ1 − τ2)− cos(σ1 − σ2)

cos σ1 cos σ2
(6.12)

is the SL(2,R) invariant distance function on AdS2, in global coordinates. This is

the known result [32] for the SL(2,R) invariant Green function of a massive scalar

on AdS2. This function has the desired properties: it satisfies the massive wave

equation (6.8), has the correct short-distance singularity, G
(1)
Global ∼ − 1π ln |ε| for two

points separated by a distance ε, and G
(1)
Global ∼ (cosσ)h as cosσ → 0. For a massless

scalar h = 1 we recover

G
(1)
Global =

1

2π
ln

∣∣∣∣1 + 2

dGlobal

∣∣∣∣ = − 12π ln
∣∣∣∣cos(τ1 − τ2)− cos(σ1 − σ2)cos(τ1 − τ2) + cos(σ1 + σ2)

∣∣∣∣ , (6.13)

which is the correct massless Green function on the strip, as may be seen by summing

the massless Green function on the plane over a collection of image field sources. This

is required by the conformal invariance of a massless scalar.

One may explicitly check that the the same Green function is obtained in Poin-

caré coordinates (3.7), as expected from the equivalence of the corresponding vacua.

The massive wave equation in Poincaré coordinates for a positive-frequency mode

φ = e−iωTχ(y) is [
∂2

∂y2
+ ω2 − h(h− 1)

y2

]
χ(y) = 0 . (6.14)

The normalized positive-frequency modes (which vanish at the boundary y = 0) are

φω(T, y) = e
−iωT
√
y

2
Jh−1/2(ωy) , (6.15)

so that the Hadamard function for the Poincaré vacuum is

G
(1)
Poincaré(T1, y1;T2, y2) =

√
y1y2

∫ ∞
0

dω cos [ω(T1 − T2)] Jh−1/2(ωy1)Jh−1/2(ωy2)

=
Γ(h)2

2πΓ(2h)
Re

[(
2

dPoincaré

)h
F

(
h, h; 2h;− 2

dPoincaré

)]
, (6.16)
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(the integral appears in [30]) where

dPoincaré(T1, y1;T2, y2) =
−(T1 − T2)2 + (y1 − y2)2

2y1y2
(6.17)

is the SL(2,R) invariant distance function in Poincaré coordinates. Equation (6.16)

agrees precisely with (6.11) as anticipated. For a massless scalar (h = 1) we recover

G
(1)
Poincaré = −

1

2π
ln

∣∣∣∣−(T1 − T2)2 + (y1 − y2)2−(T1 − T2)2 + (y1 + y2)2
∣∣∣∣ , (6.18)

which is the usual massless Green function on the half plane, as required by conformal

invariance. The term in the denominator can be thought of as coming from an image

field source at y′2 = −y2.

6.3 The Boulware vacuum

In this subsection we construct the Boulware Green function. For convenience we

temporarily set 2πTH = 1. One can restore TH simply by taking (t, x)→ 2πTH(t, x).
The massive wave equation for a positive frequency solution φω = e

−iωtφ(x) reads[
∂2

∂x2
+ ω2 − h(h− 1)

sinh2 x

]
φω(x) = 0 . (6.19)

The solution which vanishes at x = 0 is

φω(t, x) =

√
ω

2

Γ(h+ iω)

Γ(1 + iω)
e−iωt(sinh x)1/2P

1
2
−h
− 1
2
−iω(cosh x) , (6.20)

where P is the associated Legendre function and we have normalized according

to (6.5). This gives the Hadamard function

G
(1)
Boulware(t1, x1; t2, x2) = (sinh x1 sinh x2)

1/2 × (6.21)

×
∫ ∞
0

ω dω

∣∣∣∣Γ(h + iω)Γ(1 + iω)

∣∣∣∣
2

cos [ω(t1 − t2)]P
1
2
−h
− 1
2
−iω(cosh x1)P

1
2
−h
− 1
2
+iω
(cosh x2) .

This integral cannot be evaluated in terms of elementary functions. For the

massless case h = 1 we have

(sinh x)1/2P
− 1
2

− 1
2
±iω(cosh x) =

√
2

π

sinωx

ω
, (6.22)

and hence

G
(1)
Boulware(t1, x1; t2, x2) =

2

π

∫ ∞
0

dω

ω
cos [ω(t1 − t2)] sinωx1 sinωx2

= − 1
2π
ln

∣∣∣∣−(t1 − t2)2 + (x1 − x2)2−(t1 − t2)2 + (x1 + x2)2
∣∣∣∣ , (6.23)
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which again is the correct massless Green function on the half plane. Since it is

impossible to rewrite (6.23) as a function of the SL(2,R) invariant distance

dBoulware(t1, x1; t2, x2) =
− cosh(2πTH(t1 − t2)) + cosh(2πTH(x1 − x2))

sinh(2πTHx1) sinh(2πTHx2)
, (6.24)

we discover that the Boulware vacuum is not SL(2,R) invariant. In particular, it is

distinct from the global vacuum.

Using a recursion relation satisfied by the Legendre functions one can write down

a (very complicated) expression which gives the value of the integral (6.23) for any

positive integer h in terms of sums of logarithms and exponential-integral functions

Ei(z) [29, 8.211]. The formulas involved are lengthy and not illuminating. For

example, for h = 2 one finds

G
(1)
Boulware = (coth x1 coth x2)G

(1)
B,(h=1)−

1

4π

∑
a,b,c=±1

Ei(a(t1 − t2) + bx1 + cx2)
ea(t1−t2) sinh bx1 sinh cx2

. (6.25)

One can check that G
(1)
Boulware constructed in this way satisfies the massive wave

equation (6.19), has the correct short-distance singularity G
(1)
Boulware ∼ − 1π ln |ε|, and

vanishes as xh when x→ 0. These properties ensure that the Boulware vacuum is a
‘good’ vacuum, although it is singular along the horizon at x =∞.
Furthermore, by restoring (t, x) → 2πTH(t, x) one can verify that in the limit

TH → 0, the Hadamard function for the Boulware vacuum reduces to that of the
global vacuum (6.16) (with (T, r) replaced by (t, x)), in agreement with the fact that

the coordinate systems coincide for TH = 0 (3.13). Thus the Hawking temperature

TH is a measure of the non-SL(2,R) invariance of the Boulware vacuum.

7. The stress tensor

The various vacua in AdS2 are characterized by differing stress tensor expectation

values. In this section we compute these expectation values for both the massless

and the massive case.

7.1 Two-dimensional Rindler and Minkowski space

We begin with a review of some well-known features of the thermodynamics of two-

dimensional Rindler space. This will clarify the meaning of the various AdS2 expres-

sions. Readers familiar with this topic should skip to the next subsection.

The Rindler metric

ds2 = −eκ(U+−U−)dU+dU− (7.1)

is related to the Minkowski metric ds2 = −du+du− by the coordinate transformation

U± = ±1
κ
ln(±κu±) , (7.2)
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where κ is a constant. Lines of constant U+ − U− correspond to the worldlines of
observers undergoing constant proper acceleration κ (see figure 4).

Consider a massless scalar field in Minkowski space. We may construct the stress

tensor operator Tµν normal-ordered with respect to Minkowski coordinates, u
±, or

with respect to Rindler coordinates U±. These two operators are related by the
well-known formula

T++(U
+) =

(
∂u+

∂U+

)2
T++(u

+) +
1

12π

√
∂u+

∂U+
∂2

∂U+2

√
∂U+

∂u+
. (7.3)

Here and henceforth the stress tensor in a given coor-

uu

Figure 4: Rindler spacetime.

The “right Rindler wedge”

(u− < 0 and u+ > 0) is ac-
cessible to a Rindler observer

that accelerates uniformly to

the right. The dashed lines

show the past and future hori-

zon (the “Rindler horizon”)

seen by such an observer.

dinate system is always normal-ordered with respect

to that coordinate system. The difference in the two

stress tensors reflects the fact that observers which are

stationary with respect to different coordinate systems

detect different particle densities. Plugging in (7.2)

gives

T++(U
+) = e2κU

+

T++(u
+) +

κ2

48π
. (7.4)

Taking the expectation value of (7.4) in the Minkowski

vacuum gives

〈T++(U+)〉M = κ2

48π
, (7.5)

which is the stress-energy density of a thermal bath

of particles at temperature T = κ/2π.2 This may

be interpreted as radiation coming from the Rindler

horizon. On the other hand, taking the expectation

value of (7.4) in the Rindler vacuum gives

〈T++(u+)〉R = − 1

48π(u+)2
, (7.6)

which can be viewed as a divergent Casimir energy arising from the presence of a

boundary at the Rindler horizon u+ = 0.

So far we have ignored the other independent component of 〈Tµν〉, which is
determined by the trace anomaly formula

〈T+−〉 = 1
2
g+−〈T 〉 = R

48π
g+− . (7.7)

This vanishes for Rindler/Minkowski space but plays a role in AdS2, where R = −2.
The stress tensor for massive scalars in Rindler space has been constructed in [33].

2This temperature is related to the fact that the coordinate transformation (7.2) is periodic

in imaginary Rindler time with periodicity β = 2π/κ, so that any Green function constructed in

Rindler coordinates would also be periodic in imaginary Rindler time and would therefore corre-

spond to a thermal Green function at temperature β−1.
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7.2 Massless scalar in AdS2

We now calculate the stress energy for a massless scalar in AdS2. The results are

essentially identical to those we obtained in the previous subsection. It is convenient

to work in null coordinates in which the Poincaré and Schwarzschild coordinate

systems take the form

ds2 = − 4du
+du−

(u+ − u−)2 = −
(2πTH)

2dU+dU−

sinh2 [πTH(U+ − U−)]
, (7.8)

where the null coordinates are defined by

2πTHU
± = 2πTH(t± x) = ln(T ± y) = lnu± . (7.9)

From the coordinate transformation (7.9) we find

T++(U
+) = (2πTHu

+)2T++(u
+) +

πT 2H
12

, (7.10)

where T++(U
+) is the stress tensor normal-ordered in the Schwarzschild coordinates

and T++(u
+) is the stress tensor normal-ordered in the Poincaré coordinates. Taking

the expectation of this equation in the global vacuum gives

〈T++(U+)〉Global = πT 2H
12

, (7.11)

which is the stress-energy density of a thermal bath of particles at temperature TH
(again this is to be expected by virtue of the periodicity of the coordinate trans-

formation (7.9) in imaginary Schwarzschild time). On the other hand, taking the

expectation value of (7.10) in the Boulware vacuum gives

〈T++(u+)〉Boulware = − 1

48π(u+)2
, (7.12)

which may be viewed as Casimir energy arising from a boundary at the black hole

horizon.

So far we have discussed the stress tensor in Schwarzschild and Poincaré coordi-

nates. In null global coordinates

1

2

(
τ ± σ ± π

2

)
= τ± = tan−1 u± , (7.13)

the stress tensor picks up a term

T++(τ
+) =

(
∂u+

∂τ+

)2
T++(u

+)− 1

12π
, (7.14)

so that

〈T++(τ+)〉Global = − 1
12π

, (7.15)
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which is the familiar zero-point shift of a c = 1 theory on the strip. Curiously, normal-

ordering in Poincaré and global coordinates lead to different shifts even though the

associated vacua are identical. This is possible because in the former case one uses a

continuous set of modes, while in the latter one uses a discrete set, and so the infinite

zero-point energy sums are regulated differently. The fact that the expectation value

of the stress tensor in the global vacuum vanishes in Poincaré coordinates but not

in global coordinates also follows from SL(2,R) invariance, together with the obser-

vation that the inhomogenous term in (7.3) vanishes for SL(2,R) transformations in

Poincaré coordinates but not in global coordinates.

7.3 Point-splitting regularization of massive scalars

The calculation of 〈Tµν〉 for a massive scalar is significantly more difficult as there
is no simple formula such as (7.3). The calculation is complicated by the fact that

the expectation value of an operator such as Tµν which is quadratic in the field φ

is formally divergent and must be regularized and renormalized. We implement the

regularization by using the point-splitting technique3, reviewed briefly below.

The stress tensor for a massive scalar field φ is

Tµν(x) = ∂µφ∂νφ− 1
2
gµν
(
gρσ∂ρφ∂σφ+m

2φ2
)
. (7.16)

In conformal gauge

ds2 = −e2ρdw+dw− , (7.17)

one has

T++ = ∂+φ∂+φ ,

T−− = ∂−φ∂−φ ,

T+− = T−+ = −1
2
g+−m2φ2 . (7.18)

Following [35], we define the point-split stress tensor operator as follows. Con-

sider any non-null geodesic through x, and let xµ(ε) = (w+(ε), w−(ε)) be the point on
the geodesic at a proper distance ε > 0 from x. The geodesic may be characterized

by its normalized tangent vector at x, τµ0 ≡ τµ(0), where

dxµ(ε)

dε
= τµ(ε) , τµτ

µ = −e2ρτ+τ− ≡ Σ = ±1 . (7.19)

The geodesic equations may be solved for w+ in a power series in ε, giving

w+(ε) = w+0 + ετ
+
0 − ε2(∂+ρ)(τ+0 )2 +

+
1

3
ε3
[
(4(∂+ρ)

2 − ∂2+ρ)(τ+0 )3 − ∂−∂+ρτ−0 (τ+0 )2
]
+O(ε4) , (7.20)

3See [34] for a detailed discussion.
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where ρ on the right-hand side is always evaluated at w0. Switching + and − in
this expression yields the solution for w−(ε). We define the point-split stress tensor
operator by

T++(x; ε, τ
µ
0 ) = UεU−ε

1

2
{∂+φ(x(ε)), ∂+φ(x(−ε))} ,

T+−(x; ε, τ
µ
0 ) = −

1

2
m2g+− {φ(x(ε)), φ(x(−ε))} , (7.21)

and similarly for T−−. In this expression

Uε ≡
(
dw+(0)

dε

)−1
dw+(ε)

dε
. (7.22)

These factors arises because ∂+φ(x(±ε)) must be parallel transported back to x(0)
in order to obtain a quantity which transforms as a tensor [34]. Upon taking the

expectation value of both sides in some vacuum V , we find that

〈T++(x; ε, τµ0 )〉V =
[
UεU−ε

∂

∂w+1

∂

∂w+2

1

2
G
(1)
V (x1,x2)

]
x1 = x(ε)
x2 = x(−ε)

,

〈T+−(x; ε, τµ0 )〉V =
[
−m

2

2
g+−
1

2
G
(1)
V (x1,x2)

]
x1 = x(ε)
x2 = x(−ε)

, (7.23)

and similarly for 〈T−−〉.

7.4 Application of the point splitting procedure

In all of the cases we consider the Hadamard function has the usual short-distance

behavior

G(1)(w+1 , w
−
1 ;w

+
2 , w

−
2 ) = −

1

2π
ln
∣∣(w+1 − w+2 )(w−1 − w−2 )∣∣ + · · · , (7.24)

where the dots denote terms which are finite as x2 approaches x1, and the point-split

stress tensors have the general form

〈T++(x; ε, τµ)〉 = − 1
4π

[
1

ε2
− 16Σπf2(x)

]
τ+τ+ + f1(x) +O(ε ln ε),

〈T+−(x; ε, τµ)〉 = m2

4π
g+− [ln ε+ f3(x)] +O(ε ln ε) , (7.25)

where the three functions f1, f2, and f3, which depend only on the point x and not

on ε or τ±, encode all of the physical information in the point-split stress tensor. To
simplify the notation we here and henceforth drop the subscript 0 on τµ. Finally,

making use of the fact that g++ = 0 and

−1
2
e2ρ = g+− = 2Στ+τ− , (7.26)
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we can combine both expressions in (7.25) into a single covariant expression for the

point-split stress tensor,

〈Tµν(x; ε; τµ)〉 = 1
8π

[
Σ

ε2
− 16πf2(x)

]
(gµν − 2Στµτν) + θµν(x) +

+
m2

4π
gµν [ln ε+ f3(x)] +O(ε ln ε) , (7.27)

where θµν is the traceless tensor whose components in the w
± coordinate system are

θ++ = θ−− = f1(x) ,

θ+− = θ−+ = 0 . (7.28)

The regularized stress tensor 〈Tµν(x; ε, τµ)〉 diverges in the limit ε→ 0, and fur-
thermore the precise behavior of the divergence depends on the direction of approach

τµ. The renormalized stress tensor is obtained [35] by discarding all of the terms

in (7.27) which depend explicitly on either ε or τµ,

〈Tµν(x)〉 = gµν
[
m2

4π
f3(x)− 2f2(x)

]
+ θµν(x) . (7.29)

From (7.27) we see that the terms which diverge as ε → 0 are universal and do
not depend upon the particular state under investigation (i.e. they do not depend

on the fi). Therefore the divergent terms always cancel out when we calculate the

differences between stress tensors in different vacua.

7.5 Energy of the global vacuum

We begin by calculating 〈Tµν(u+, u−)〉Global for the SL(2,R) invariant global vacuum
in Poincaré coordinates. The only rank 2 symmetric, conserved, SL(2,R) invariant

tensor is gµν , so we expect that 〈Tµν〉Global = cgµν for some constant c. In the notation
of the previous subsection we find

f1 = 0 , f2 =
1 + 3h(h− 1)

48π
, f3 = ψ(h) + γ. (7.30)

where ψ(z) = ∂ ln Γ(z)/∂z and γ = −ψ(1) is Euler’s constant. Hence the renormal-
ized stress tensor (7.29) is

〈Tµν〉Global = gµν

2π

[
− 1
12
− h(h− 1)

2

(
1

2
− ψ(h)− γ

)]
. (7.31)

We have obtained the same result by applying Pauli-Villars regularization. Note that

when h = 1 we recover

〈Tµν〉 = − gµν
24π

, (7.32)

which is the massless Weyl anomaly 〈Tµν〉 = R
48π
gµν , with R = −2 for AdS2.
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7.6 Energy of the Boulware vacuum

This calculation is significantly more complicated. In particular, we cannot use

SL(2,R)-invariance to argue that 〈Tµν〉Boulware is proportional to gµν , and indeed
we find that this is not the case. To simplify the resulting expressions slightly we

introduce

〈Tµν〉′ = 〈Tµν〉Global − 〈Tµν〉Boulware, (7.33)

with 〈Tµν〉Global given by (7.31), which is the energy difference between the global and
Boulware vacua. (Note that 〈T++〉′ = −〈T++〉Boulware since 〈T++〉Global = 0.) Using
the Hadamard function (6.21) constructed above, we find for h = 1, 2, 3 the result

〈T++〉′h=1 =
πT 2H
12

,

〈T+−〉′h=1 = 0 ,

〈T++〉′h=2 =
πT 2H
12

[
1− 6 csch2z + 12F (z) csch4z] ,

〈T+−〉′h=2 =
g+−
2π

[
1− ln

∣∣∣∣sinh zz

∣∣∣∣− 2F (z) csch2z
]
,

〈T++〉′h=3 =
πT 2H
12

[
1− 18 csch2z − 36F (2z) csch6z + 18F (z)(3 cosh 2z + 5) csch6z] ,

〈T+−〉′h=3 =
3g+−
2π

[
3

2
− ln
∣∣∣∣sinh zz

∣∣∣∣+ 32F (2z) csch4z − 6F (z) coth2 z csch2z
]
, (7.34)

where we write z = 2πTHx for simplicity. We have introduced the function

F (w) =

∫ w
0

du

u
sinh2 u . (7.35)

A conjectured expression for a general value of h is

〈T++〉′
πT 2H

=
1

12
− h(h− 1)
4 sinh2 z

[
1− h(h− 1)

∫ z
0

du

u

sinh2 u

sinh2 z
F

(
h+ 1, 2− h, 3, sinh

2 u

sinh2 z

)]
,

〈T+−〉′ = h(h− 1)g+−
4π

{
ψ(h) + γ −

∫ z
0

du

[
coth u− 1

u
F

(
h, 1− h, 1, sinh

2 u

sinh2 z

)]}
,

(7.36)

where again z = 2πTHx. Note that when h is an integer the hypergeometric se-

ries terminates, giving a polynomial which can be explicitly integrated with relative

ease (although the result is not be expressible in terms of elementary functions but

again involves the exponential-integral function Ei(z)). One can also check that both

components (7.36) vanish as TH → 0, as should be expected. Figures 5 and 6 show
〈T++(x)〉′ and 〈T+−(x)〉′ for some values of h.
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Figure 5: Energy of a massive scalar in

the Boulware vacuum. This plot shows
12
πT 2H
〈T++(x)〉′, as defined in (7.33), as a

function of z=2πTHx, for scalar fields of

mass h=1, 2, 3, 4, 5 (from top to bottom).

Figure 6: This plot shows 12
πT 2H
〈T+−(x)〉′

as a function of z = 2πTHx for scalar

fields of mass h = 2, 3, 4, 5 (from left to

right). It vanishes identically for h = 1.

The scales are the same as in figure 5.

Evidence that (7.36) is the correct expression for all values of h is

a) Special cases. It correctly reduces to (7.34) for h = 1, 2, 3.

b) Conservation. The stress tensor should satisfy ∇µTµν = 0, which in Schwarz-
schild coordinates gives one nontrivial equation,4

π2T 2H
sinh2(2πTHx)

∂

∂x
〈T 〉+ ∂

∂x
〈T++〉 = 0 , (7.37)

where 〈T 〉 = 2g+−〈T+−〉, which is indeed obeyed by (7.36).

c) Behavior near the boundary. We saw earlier that the Schwarzschild modes

behave like φ ∼ xh near the boundary x = 0. Therefore the stress tensor,

which is quadratic in ∂φ, should vanish as 〈Tµν〉 ∼ x2(h−1) as x → 0. Again,
this can be checked explicitly for (7.36). In particular, the physical requirement

that 〈Tµν〉 vanishes at the boundary fixes any overall additive constant, and the
fact that gµν diverges as x

−2 precludes us from adding any constant multiple
of the metric to 〈Tµν〉.

d) Behavior near the horizon. Finally we can consider the behavior near the hori-

zon at x →∞. Everything becomes massless sufficiently close to the horizon.
To see this, note that gµν ∝ (sinh x)−2 → 0, in which case the lagrangean
density becomes

L = −1
2

√−g [(∇φ)2 +m2φ2] ∼ −1
2
ηµν∂µφ∂νφ , (7.38)

4The other equation essentially says that 〈Tµν〉 should be time-independent.
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where the inverse metric in the kinetic term (∇φ)2 cancels the zero coming
from

√−g. Thus one should expect, and we indeed find, that for x � 1 and
any h the expressions (7.36) tend to the massless values

〈T++〉′ → πT 2H
12

, 〈T+−〉′ → 0 , x� 1 . (7.39)

This fixes the overall normalization of 〈T++〉, which in turn fixes the normal-
ization of 〈T+−〉 through the conservation equation (7.37).

8. Boundary correlation functions

It is expected [10] that string theory on AdS2 can be described as conformally invari-

ant quantum mechanics on the boundary of AdS2. The conformal invariance of the

1-dimensional boundary theory is a consequence of the SO(2, 1) isometry group of

AdS2. Boundary correlation functions evaluated in any vacuum other than the nat-

ural SO(2, 1) invariant vacuum, such as the Boulware vacuum, will therefore not be

conformally invariant. However, we have seen that the parameter TH is a measure of

the non-SL(2,R) invariance of the Boulware vacuum, so we expect the nonconformal

corrections to boundary correlation functions in the Boulware vacuum to vanish as

TH → 0. In this section we derive these boundary correlators and verify that this is
the case.

8.1 Brief review

In order to fix our conventions and notation we begin with a very quick overview

of the calculation of boundary correlation functions using the bulk propagator. The

AdS/CFT duality [10] states that for every bulk field φ there is a corresponding

local operator O on the boundary B, with

Zeff(φ) = e
iSeff (φ) = 〈Tei

∫
B φbO〉 , (8.1)

where Seff is the effective action in the bulk and φb is the field φ restricted to the

boundary [36, 37]. Let Oh be the boundary operator of conformal weight h which
couples to the bulk scalar φ of mass m2 = h(h − 1), and let GV (y, z; y′, z′) be
the bulk two-point function of φ in coordinates where the boundary lies at y = 0

and is parametrized by z. This could be Poincaré coordinates with (y, z) = (y, T ),

Schwarzschild coordinates with (y, z) = (x, t), or global coordinates with (y, z) =

(cos σ, τ). The subscript V is a reminder that the two-point function GV expresses

a choice of vacuum. Boundary correlation functions will depend on the choice of

vacuum in the AdS2 bulk [38, 39].
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The two-point function should vanish as yh as either point approaches the bound-

ary, and we define the bulk-boundary propagator for the corresponding vacuum state

by [40]

KV (y, z; z
′) = lim

y′→0
[
(y′)−hGV (y, z; y′, z′)

]
. (8.2)

(We ignore overall constants throughout this section). If we are given some boundary

data φ0(z
′) for the field φ, then we can use (8.2) to extend φ0 into the bulk by writing

φ(y, z) =

∫
dz′KV (y, z; z′)φ0(z′) . (8.3)

Then φ(y, z) satisfies the equation of motion in the bulk because K satisfies the

equation of motion in the variables (y, z). Next we plug the solution (8.3) into the

action (6.1). Upon integrating by parts, the action can be expressed as the boundary

term

S = lim
y→0

[
1

2

∫
dz φ(y, z)∂yφ(y, z)

]
. (8.4)

In the limit as we take the cutoff y → 0 the bulk-boundary propagator should

approach a delta-function

KV (y, z; z
′)→ y−h+1δ(z − z′) (8.5)

so we can replace

φ(y, z)→ y−h+1φ0(z) . (8.6)

Then (8.4) becomes

S =
1

2

∫
dz dz′ φ0(z)φ0(z′)

[
lim
y→0

y−h+1∂yKV (y, z; z′)
]
. (8.7)

The generating function for correlation functions of Oh(z) in the boundary theory
coupled to the source φ0(z) is given by the exponential of i times (8.7), so recall-

ing (8.2) we find that (again, up to constants) [41]

〈Oh(z)Oh(z′)〉V = lim
y,y′→0

[
(y′)−hy−h+1∂yGV (y, z; y′, z′)

]
. (8.8)

8.2 Correlation functions in the global vacuum

Substituting the global vacuum two-point function (in Poincaré coordinates) (6.16)

into (8.2) gives the familiar bulk-boundary propagator

K(y, T1;T2) =
yh

(y2 − (T1 − T2)2)h , (8.9)

which leads to the conformally invariant boundary correlation function

〈Oh(T )Oh(0)〉Global = 1

T 2h
. (8.10)
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For purposes of comparison, it will be convenient to write (8.10) in Schwarzschild

coordinates. Recalling that the relation between the Poincaré time T and the

Schwarzschild time t on the boundary is 2πTHt = lnT and using the conformal

transformation law

O′(z′) = (∂zz′)−hO(z) , (8.11)

we can write (8.10) in the form

〈Oh(t)Oh(0)〉Global =
[

TH

sinh (πTHt)

]2h
, (8.12)

As expected, (8.10) is periodic in imaginary Schwarzschild time with periodicity

T−1H and therefore represents a thermal state at temperature TH . For small separa-

tions (8.10) has the universal UV limit 〈Oh(t)Oh(0)〉 ∼ 1/t2h, while in the IR limit
the two-point function is exponentially suppressed due to the thermal background,

〈Oh(t)Oh(0)〉Global ∼ e−2πTHht.

8.3 Correlation functions in the Boulware vacuum

Now we apply (8.8) directly to the Boulware vacuum without first constructing the

Boulware bulk-boundary propagator KBoulware from (8.2). However, one can check

that KBoulware is given by the Poincaré bulk-boundary propagator (8.9) plus cor-

rection terms which are subleading in z − z′, so that (8.5) is still satisfied, and
proportional to positive powers of TH , so that KBoulware reduces to (8.9) as TH → 0.
Using

(sinh x)1/2P
1
2
−h
− 1
2
±iω(cosh x) =

21/2−h

Γ(h+ 1/2)
xh +O(xh+2) (8.13)

and the Boulware vacuum Green function (6.21), we find from (8.8) that

〈Oh(t)Oh(0)〉Boulware =
∫ ∞
0

ωdω

∣∣∣∣Γ(h+ iω)Γ(1 + iω)

∣∣∣∣
2

cosωt , (8.14)

where we have dropped all overall numerical constants. This integral is not conver-

gent but may be defined by analytic continuation. The problem is that the limit (8.8)

does not commute with integration over ω. We present a quick way of getting the an-

swer, which gives perfect agreement with a more careful analysis where one computes

the integral first and then takes the limits.5

5Alternatively, one may insert a factor of e−εω into the integral (8.14). At least when h is an
integer, the integral may be done explicitly, and the result is finite in the limit ε → 0 and agrees
precisely with the result we present.
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Define Fh(t) to be the quantity in (8.14). Then

Fh+1(t) =

∫ ∞
0

ω dω

∣∣∣∣Γ(h+ 1 + iω)Γ(1 + iω)

∣∣∣∣
2

cosωt

=

∫ ∞
0

ω dω

∣∣∣∣Γ(h+ iω)Γ(1 + iω)

∣∣∣∣
2

(h2 + ω2) cosωt

= (h2 − ∂2t )Fh(t) . (8.15)

This should be valid for all h. To start the recursion we evaluate

F1(t) =

[∫ ∞
0

dω ωn cosωt

]
n=1

=
[
−n! t−n−1 sin

(nπ
2

)]
n=1
= − 1

t2
, (8.16)

where the quantity in brackets, which is strictly valid only for −1 < Re(n) < 0,
is analytically continued to n = 1. The solution to (8.16) and (8.15), up to (h-

dependent!) constants, may be summarized by the suggestive expression

〈Oh(t)Oh(0)〉Boulware =
[

TH

sinh(πTHt)

]2h
singular

, (8.17)

where we have restored the proper TH-dependence. The subscript ‘singular’ indicates

that only the singular terms in the expansion of the right-hand side of (8.17) around

t = 0 are to be kept. For example, for h = 3 we find

〈O3(t)O3(0)〉Boulware ∝ 1
t6
− π2T 2H

t4
+
8π4T 4H
15t2

. (8.18)

Acknowledgments

It is a pleasure to thank V. Balasubramanian, R. Britto-Pacumio, A. Chari, F. Lar-

sen, A. Lawrence, Y-H. He, J. Michelson, I. Savonije, J. Maldacena, S. Schmidt and

A. Volovich for many helpful conversations. This work was supported by an NSF

graduate fellowship and DOE grant DE-FG02-91ER40654.

References

[1] B. Carter, in Black Holes, C. de Witt and B.S. de Witt eds., Gordon and Breach, New

York 1973.

[2] S. Ferrara, R. Kallosh and A. Strominger, N = 2 extremal black holes, Phys. Rev. D

52 (1995) 5412 [hep-th/9508072].

[3] E. D’Hoker and R. Jackiw, Classical and quantal Liouville field theory, Phys. Rev. D

26 (1982) 3517.

[4] E. D’Hoker, D.Z. Freedman and R. Jackiw, SO(2, 1)-invariant quantization of the

Liouville theory, Phys. Rev. D 28 (1983) 2583.

26

http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD52%2C5412
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD52%2C5412
http://xxx.lanl.gov/abs/hep-th/9508072
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD26%2C3517
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD26%2C3517
http://www-spires.slac.stanford.edu/spires/find/hep/www?j=PHRVA%2CD28%2C2583


J
H
E
P
1
1
(
1
9
9
9
)
0
2
1

[5] R.B. Mann, Lower dimensional black holes, Gen. Rel. Grav. 24 (1992) 433.

[6] S.P. Trivedi, Semiclassical extremal black holes, Phys. Rev. D 47 (1993) 4233

[hep-th/9211011].

[7] A. Strominger and S. P. Trivedi, Information consumption by Reissner-Nordstrom

black holes, Phys. Rev. D 48 (1993) 5778 [hep-th/9302080].

[8] J.P.S. Lemos, Thermodynamics of the two-dimensional black hole in the Teitelboim-

Jackiw theory, Phys. Rev. D 54 (1996) 6206 [gr-qc/9608016].

[9] V. Frolov, D. Fursaev, J. Gegenberg and G. Kunstatter, Thermodynamics and sta-

tistical mechanics of induced Liouville gravity, Phys. Rev. D 60 (1999) 024016,

[hep-th/9901087].

[10] J. Maldacena, The large-N limit of superconformal field theories and supergravity,

Adv. Theor. Math. Phys. 2 (1998) 231 [hep-th/9711200].

[11] A. Strominger, AdS2 quantum gravity and string theory, J. High Energy Phys. 01

(1999) 007 [hep-th/9809027].

[12] J. Maldacena, J. Michelson and A. Strominger, Anti-de Sitter fragmentation, J. High

Energy Phys. 02 (1999) 011 [hep-th/9812073].

[13] T. Nakatsu and N. Yokoi, Comments on hamiltonian formalism of AdS/CFT corre-

spondence, Mod. Phys. Lett. A 14 (1999) 147 [hep-th/9812047].

[14] M. Cadoni and S. Mignemi, Asymptotic symmetries of AdS2 and conformal group in

d = 1, hep-th/9902040.

[15] G.W. Gibbons and P.K. Townsend, Black holes and Calogero models, Phys. Lett. B

454 (1999) 187 [hep-th/9812034].

[16] P.K. Townsend, The M(atrix) model/AdS2 correspondence, hep-th/9903043.
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