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ABSTRACT
We propose a new method to measure the mass of large-scale Ðlaments in galaxy redshift surveys. The

method is based on the fact that the mass per unit length of isothermal Ðlaments depends only on their
transverse velocity dispersion. Filaments that lie perpendicular to the line of sight may therefore have
their mass per unit length measured from their thickness in redshift space. We present preliminary tests
of the method and Ðnd that it predicts the mass per unit length of Ðlaments in an N-body simulation to
an accuracy of D35%. Applying the method to a select region of the Perseus-Pisces supercluster yields a
mass-to-light ratio of h in solar units to within a factor of 2. The method measures theM/L

B
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mass-to-light ratio on mass scales up to 10 times that of clusters of galaxies and could thereby yield new
information on the behavior of the dark matter on large scales.
Subject headings : dark matter È galaxies : clusters : individual (Perseus-Pisces) È

galaxies : distances and redshifts È galaxies : fundamental parameters È
large-scale structure of universe

1. INTRODUCTION

It has long been known that galaxies are not spread
evenly throughout the universe but instead are organized
into larger structures stretching out to scales D100 Mpc

Joeveer, & Saar ° 3). Large(Einasto, 1980 ; Peebles 1993,
redshift surveys (see & Willick for a review)Strauss 1995
mapped this structure in three dimensions and showed that
in addition to the conspicuous clusters of galaxies, there are
also extended one-dimensional Ðlaments & Giova-(Haynes
nelli and two-dimensional sheets Lapparent,1986) (de
Geller, & Huchra & Huchra1986 ; Geller 1989 ; Shectman
et al. The observed geometries can be explained by1996).
gravitational instability theories of structure formation,
both through analytical approximations (ZelÏdovich 1970 ;

Kofman, & Pogosyan & LoebBond, 1995 ; Eisenstein 1995 ;
& Myers and numerical simulations (e.g.,Bond 1996),

& Gelb et al. & OstrikerBertschinger 1991 ; Park 1994 ; Cen
1994).

The Ðlaments and sheets that are observed in galaxy
surveys represent the most massive nonlinear structures in
the local universe. While these structures are painted by the
light emitted from galaxies, their actual mass distribution is
unknown. Determining the mass is particularly difficult
because these systems are still evolving along one or two
axes. Less massive systems such as galaxies and galaxy clus-
ters have generally virialized by now, and their dynamics
unambiguously imply substantial amounts of dark matter

Jones, & Forman(Rubin 1983 ; Trimble 1987 ; David, 1995).
While the dynamical estimates of the mass-to-light ratio of
virialized systems argue for an open universe (e.g., Bahcall,
Lubin, & Dorman it is unknown whether more mass,1995),
sufficient to close the universe, remains undetected outside

1 Also at Physics Department, Harvard University. Present address :
Institute for Advanced Study, Princeton, NJ 08540 ; eisenste=sns.ias.edu.

2 aloeb=cfa.harvard.edu.
3 elt=astro.princeton.edu.

virialized objects. Methods to measure the mass on larger
scales include peculiar velocity studies (see &Strauss
Willick and references within), analyses of super-1995,
clusters Geller, & Huchra(Postman, 1988 ; Raychaudhury
et al. et al. and the inferences based on1991 ; Ba†a 1993),
cosmic microwave background anisotropies et al.(Jungman

In addition to the implications for the value of the1996).
cosmic density parameter ), such measurements provide
insight into the clustering properties of the dark matter and
the degree of biasing in galaxy formation.

In this paper, we present a novel method for measuring
the mass of large-scale Ðlaments that is based purely on the
information available in redshift surveys. The method relies
on the observation that while spherical and planar geome-
tries require both a characteristic velocity and a character-
istic length to estimate mass, a cylindrical system requires
only a velocity dispersion to estimate its mass per unit
length. On dimensional grounds, the mass per unit length
times NewtonÏs constant must be proportional to the trans-
verse velocity dispersion squared of the Ðlament. For Ðla-
ments oriented across the sky, i.e., perpendicular to the line
of sight, the velocity dispersion is measured as the thickness
of the structure in redshift space. Since the length of such a
Ðlament is readily apparent from its angular extent, the
method allows the determination of the mass-to-light ratio
on scales beyond that of clusters, despite the fact that the
objects of interest are neither fully virialized nor in the
linear perturbative regime.

In we present an exact solution to the Jeans equation° 2,
for the case of an isothermal, axisymmetric, steady state
Ðlament. This derivation extends the well-known hydrody-
namic solutions for isothermal gases (Stodo� ¡kiewicz 1963 ;

to collisionless systems. With this solution atOstriker 1964)
hand, we present tests of the method in focusing pri-° 3,
marily on Ðlaments selected in real space from an N-body
simulation. While not deÐnitive, the results are encour-
aging, suggesting that accuracy D35% in mass is attainable.
In we conclude with a discussion of the ingredients of° 4
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more elaborate scheme to calibrate the method and demon-
strate its robustness. We also apply the method as it stands
to the Perseus-Pisces supercluster and estimate a B-band
mass-to-light ratio of 450 h in solar units.

2. ANALYTIC RESULTS

Let us Ðrst derive an exact analytical solution to the
Jeans equations for the case of an axisymmetric, isothermal,
steady state Ðlament that is translationally invariant along
its symmetry axis. Solutions for isothermal gaseous Ðla-
ments in hydrostatic equilibrium (Stolo� ¡kiewicz 1963 ;

lead the way. We begin with the Jeans equa-Ostriker 1964)
tions in cylindrical coordinates (R, h, z) and assume axial
symmetry and no bulk velocity in the radial (transverse)
direction. The radial Jeans equation is

L(lSv
R
2T)

LR
] l

Sv
R
2T [ Svh2T

R
\ [l

L'
LR

, (1)

where l is the number density of particles, andSv
R
2T Svh2Tare the ensemble averages of the squares of the radial veloci-

ties and tangential velocities, respectively, and ' is the
gravitational potential. All of these quantities are functions
of R only. Gravity is determined from the Poisson equation

1
R

L
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R
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LR
B

\ 4nGo , (2)

where G is NewtonÏs constant and o P l is the mass density.
We now assume that and are related by aSv

R
2T Svh2Tconstant As in the case of analysis ofb \ 1 [ Svh2T/Sv

R
2T.

spherical systems & Tremaine b \ 1 indi-(Binney 1987),
cates purely radial orbits, b \ 0 indicates isotropic orbits,
and b \ [O indicates purely tangential orbits. The intro-
duction of b reduces toequation (1)
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We now assume that the Ðlament is isothermal, so that
This yieldsSv

R
2T(R) \p2.

p2
AL log o
L log R

] b
B

\ [R
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LR

. (4)

Note that this equation is scale-free in radius.
We next introduce the mass per unit length enclosed

within a radius R

k(R) \ 2n
P
0

R
R3 o(R3 )dR3 . (5)

Inserting yieldsequation (2)

k \ 1
2G

R
L'
LR

, (6)

which in turn may be used in to yieldequation (4)

p2
2G
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o
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B
\ [k , (7)

where primes indicate di†erentiation with respect to R.
From we Ðnd k@ \ 2nRo, which we use toequation (5),
eliminate o in favor of k. The resulting equation is

RkA ] (b [ 1)k@] 2G
p2 kk@\ 0 . (8)

Since RkA \ d(Rk@ [ k)/dR, we may integrate equation (8)
to get

Rk@] (b [ 2)k ] Gk2
p2 \ 0 ; (9)

since k(0)\ 0, the constant of integration is zero. We may
then integrate again and solve for k to Ðnd

k(R) \ (2 [ b)
p2
G

R2~b
R2~b] R02~b

, (10)

where is an arbitrary scale factor. Therefore, the massR0per unit length at radii much larger than is Ðnite andR0approaches (2[ b)p2/G.
We may di†erentiate k(R) to Ðnd the density proÐle

o \ (2[ b)2p2
2nGR02

x~b
(x2~b] 1)2 , (11)

where Hence, o P x~b at small radii andx \ R/R0.o P xb~4 at large radii. The small radii behavior is
unphysical for b \ 0 (i.e., predominantly tangential orbits).

Finally, we consider what velocity dispersion is measured
along a line of sight perpendicular to the axis of symmetry.
Assuming that the Ðlament is axisymmetrically sampled, we
Ðnd that the measured one-dimensional velocity dispersion
orthogonal to the symmetry axis is

p
M
2 \ Sv

R
2T ] Svh2T

2
. (12)

Inserting our assumptions concerning the ratio of the
velocity dispersions and isothermality, this becomes p

M
2 \

Hence, we Ðnd that the total mass per unitp2(1[ b/2).
length of the Ðlament (deÐned for isR?R0)

k \ 2p
M
2

G
\ 7.4] 1013 M

_
Mpc~1

A p
M

400 km s~1
B2

. (13)

The dependence on b has canceled out. Indeed, the assump-
tions of isothermality and constancy of b may prove unim-
portant, since shows that they can beMilgrom (1997)
relaxed in the limit of axisymmetry.

3. NUMERICAL TESTS ON REAL-SPACE FILAMENTS

Based on the discussion in we propose to use the° 2,
observed velocity dispersion as a means of calibrating the
mass per unit length of a Ðlament of galaxies in a galaxy
redshift survey. Here one would study Ðlaments that are
aligned perpendicular to the line of sight ; the velocity dis-
persion then manifests itself as the thickness of the Ðlament
in redshift space. By measuring the mass per unit length of
such structures, one can Ðnd their mass-to-light ratios and
thereby probe the properties of dark matter on large scales.
However, the analytic results of the last section were
derived under a particular set of idealized assumptions. The
Ðlaments of galaxies in a redshift survey do not satisfy all
these assumptions, and therefore the validity of equation

needs to be checked against one-dimensional structures(13)
in numerical simulations.

The most drastic violation of the assumptions underlying
is due to omnipresent substructure, often in the form of° 2

fragmentation along the Ðlament & Fermi(Chandrasekhar
What one takes as1953 ; Stodo� ¡kiewicz 1963 ; Larson 1985).

a Ðlament actually more resembles a chain of di†erently
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sized beads. Substructure tends to cause an overestimation
of the mass per unit length, essentially because vacant areas
along the Ðlament are credited with having mass when in
fact they are empty. For example, if a ““ Ðlament ÏÏ were
actually a string of N widely spaced isothermal spheres of
velocity dispersion p and radius R, then the true mass
would be 2 p2NR/G. But the Ðlamentary mass estimate is
2 p2L /G, where L is the length of the Ðlament, an overesti-
mate by a factor of L /NR, or twice the Ðlling fraction of the
isothermal spheres.

Another key di†erence is that the Ðlaments are not iso-
lated but instead are subject to continuing infall and pertur-
bations from neighboring mass concentrations. The
transverse crossing time across the Ðlament is much shorter
than the Hubble time, and so the Ðlament core may viria-
lize. However, the infalling material violates the assumption
of steady state radial equilibrium; moreover, due to the
associated redshift distortion & Turner(Sargent 1977 ;

it makes the Ðlament look thinner (i.e., have aKaiser 1987),
lower p) than it actually is. Self-similar infall solutions for
Ðlamentary geometries have been found in both collision-
less and collisional systems & Goldreich(Fillmore 1984 ;

& Miyama et al. and so oneInutsuka 1992 ; Gehman 1996),
could imagine deriving the equivalent of forequation (13)
these collapse solutions. However, because the mass inside a
particular radius diverges as the radius increases in these
infall models, it is unclear how to deÐne the total mass per
unit length of a redshift space Ðlament. Moreover, if the
background cosmology is not scale-free, then the self-
similar solution loses its justiÐcation. All solutions, infalling
or isolated, will produce k P p2/G by dimensional analysis,
and so we see no compelling reason to disfavor the coeffi-
cient of 2 found in the isolated case relative to other approx-
imations. Instead we calibrate this coefficient using N-body
simulations.

Finally, real Ðlaments are not inÐnitely long, exactly
straight, or perfectly isothermal and axisymmetric. The
e†ects of Ðnite length or curvature may be characterized by
a length scale, either the length or radius of curvature,
which are then compared to the characteristic width of the
Ðlament. In either case, the fact that this length scale is
larger than the length scale we expect to be associated with
fragmentation suggests that these e†ects will be smaller
than the deviations caused by fragmentation. The isother-
mal assumption has worked well in spherical systems but
remains to be tested in this case. Deviations from axisym-
metry will cause variations in the inferred mass per unit
length as a function of viewing angle ; we will estimate the
magnitude of the variations later in this section.

We see two methods for testing the applicability of
First, we may select Ðlamentary structures inequation (13).

real space from N-body simulations. This procedure utilizes
information that is not available in redshift surveys, but it
does allow us to test whether this dynamical mass estima-
tion formula holds for systems that stretch the idealizations
under which it was derived. In particular, we may investi-
gate the role of substructure within the Ðlament. Second, we
may select the Ðlaments in redshift space from mock surveys
culled from simulations. This allows one to examine the
e†ects of contamination from foreground and background
galaxies, to experiment with selection e†ects, and to cali-
brate the method in a robust way. We focus on the Ðrst of
these methods in this paper, although we will devote some
discussion to the second.

For our testing, we use an open CDM particle-mesh
(PM) N-body simulation provided by C. Park and J. R.
Gott et al. The simulation has 2403\(Park 1994).
13.8] 106 particles and a 4803 mesh ; the background cos-
mology is )\ 0.4, "\ 0, and km s~1 Mpc~1. TheH0\ 50
simulation volume is 576 h~3 Mpc3, yielding a particle mass
of 1.5 ] 1012 h~1 where km s~1M

_
, h \ H0/(100

Mpc~1)\ 0.5. We use only the z\ 0 output. Typical Ðla-
ments have masses around 3 ] 1015 h~1 and lengths ofM

_order 50 h~1 Mpc. They are generally a few, but rarely more
than 10, mesh cells thick ; the mass per unit length is such
that there are on average 30 particles per lengthwise mesh
spacing.

3.1. Real-Space Selected Filaments
For our tests on real-space selected Ðlaments, we select

Ðlaments by eye from cross-sectional slices. We look for
candidates that appear to be roughly linear arrangements of
particles. By looking at orthogonal cross sections, we verify
that the object is indeed a Ðlament rather than a chance
superposition. We then choose two endpoints of a line
segment to describe the center of the Ðlament ; the Ðlament
is deÐned as a cylindrical volume of a particular radius
around this line segment.

The choice of the ÐlamentÏs boundary radius is not
unique. While one might expect the steady state assumption
in the idealized derivation to apply only to the densest
regions, where the particles have executed several radial
crossings of the Ðlament, this is not the region that will be
picked out in a redshift survey. Redshift-space distortions
will cause objects infalling onto the Ðlament to be confused
with those in the collapsed region. For example, a particle
at turnaround has zero radial velocity relative to the center
of the Ðlament and therefore has the same redshift. To pick
a radius characteristic of this infall region, we select the
radius at which the average density within that cylinder is
5.7 times the background density. This is the value for the
density at turnaround of a collapsing homogeneous Ðla-
ment in an )\ 0.4 universe (for reference, the value would
be 3.5 for )\ 1 and 8.9 for )\ 0.2). As we show later, our
density deÐnition indeed selects the turnaround radius of
actual Ðlaments in an N-body simulation. We denote this
radius by R

ta
.

Small Ðlaments may be underresolved by the PM code ;
we therefore require that within the radius the ÐlamentR

tacontains at least 500 particles and has an average linear
density exceeding 12.5 particles per lengthwise mesh
spacing. This leaves us with 23 Ðlaments ; the largest ones
are 6 times more massive than the minimum mass require-
ment.

We next consider ““ observing ÏÏ these particles from a
direction orthogonal to the Ðlament axis. Because we are
interested in the velocity dispersion of the particles rather
than in their bulk motions, we do not want variations in
bulk velocity along the Ðlament to be included in its redshift
““ thickness.ÏÏ In particular, a Ðlament that is orthogonal to
the viewerÏs line of sight in real space may be slightly tilted
or warped in redshift space, and we do not want such varia-
tions to enter the velocity dispersion. Therefore, we break
the Ðlament lengthwise into 20 equal pieces and remove the
mean velocity in each piece from the velocity of the particles
in the section before calculating the velocity dispersion.

Taking the axis of the Ðlament to be the z axis, we con-
sider observing the Ðlament from directions in the x-y
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plane. Di†erent viewing angles yield di†erent estimates for
the line-of-sight velocity dispersion ; however, these varying
answers are in fact only di†erent combinations of p

xx
, p

yy
,

and where for examplep
xy

,

p
xy
2 \ 1

N
;

particles
v
x
@ v

y
@ , (14)

where is the ith component of the velocity of a particlev
i
@

after the mean velocity of its section of the Ðlament has been
subtracted, and N is the total number of particles. Forming
the matrix

&\
Ap

xx
2

p
xy
2

p
xy
2

p
yy
2
B

, (15)

and considering an observer at inÐnite distance from direc-
tion in the x-y plane, the velocity dispersion in that direc-nü
tion is simply Therefore, by diagonalizing &, we(nü T&nü )1@2.
Ðnd the largest and smallest possible measurements of p

M
2

that can result from di†ering viewing angles. The Ðgures
show these two extremal estimates for the mass per unit
length ; the ratio between them is usually [2.

In we show the comparison for the 23 ÐlamentsFigure 1,
between the true mass per unit length within R

ta
, ktrue(Rta

),
and the two extreme estimates based on thekest(Rta

)
measurement of shows the ratiop

M
2 . Figure 2 k8 \

versus Here we see that the esti-kest(Rta
)/ktrue(Rta

) ktrue(Rta
).

mate is in almost all cases within a factor of 2 of the true
value, and with this sample there is no obvious correlation
between and Taking all viewing angles as equallyktrue k8 .
likely, this ensemble of 23 Ðlaments yields a distribution of k8
with a mean of 1.17 and a 1 p error of 0.39. In other words,
the estimate of k from is biased 17% high ;equation (13)
with this removed, one Ðnds a mass estimate with 33%
accuracy.

FIG. 1.ÈMass per unit length as estimated from the velocity dispersion
of the particles within radius plotted against the actual mass per unitR

talength within radius The plot shows the full range of possible estimatesR
ta
.

if one considers all viewing angles in the plane perpendicular to the axis of
the Ðlament.

FIG. 2.ÈSame as but shown is the ratio of the estimated massFig. 1,
per unit length k to the true value vs. the true k.

Because the Ðlament is laid out across the sky, the sub-
structure and clumpiness along its length are observable.
We would expect that applying our method to Ðlaments
with more substructure would produce larger estimates of
the mass per unit length, essentially because one is crediting
the lower density regions with the velocity dispersion of the
higher density regions. We consider several di†erent sta-
tistics to measure the degree of substructure. First, we break
the Ðlament into 20 lengthwise pieces, count the number of
particles in each piece, and take the ratio of the standard
deviations of these 20 numbers to their mean as one sta-
tistic. Next, we bin the particles into 128 lengthwise bins
and perform the cosine transform et al. on the(Press 1992)
vector of occupation numbers. We then add up the power in
the 10, 15, or 20 lowest modes (normalizing away the depen-
dence on the number of bins and the number of particles)
and use these as measures of substructure.

In we plot the power in the 10 lowest cosineFigure 3,
modes, versus the ratio of the estimated to true massS10, k8
per unit length. There is a fair correlation (r \ 0.53) in the
expected direction. The other substructure statistics
produce very similar results. In applying this program to
real survey data, one might plan to reject Ðlaments with
large measures of substructure. If we remove the six Ðla-
ments with larger than 0.9, then the remaining 17 Ðla-S10ments produce a distribution of with mean 1.07 and errork8
0.31 (29%).

Next, we examine the dependence of the velocities on
radius. In we show the azimuthally averaged pro-Figure 4,
Ðles for the mean radial velocity and radial velocitySv

R
T(R)

dispersion for several particular Ðlaments. We alsop
R
(R)

show the average value of that can be measured from thep
Mparticles within the given radius. The proÐles tendSv

R
T(R)

to cross zero near showing that is indeed a reason-R
ta
, R

taable choice for the turnaround radius. The proÐles of p
R
(R)

show deviations from isothermality at large radii ; because
is a cumulative statistic, these deviations do not a†ect thep

Mmeasured velocity dispersion much. For the full sample of
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FIG. 3.ÈRatio of the estimated mass per unit length to the true value
vs. a measure of substructure within the Ðlament. The statistic is theS10sum of the power in the lowest 10 modes of the cosine transform; larger
values indicate more substructure.

23 Ðlaments, the ratio of to the value of for allp
R
(R

ta
) p

Rparticles within has a mean of 0.80 with error 0.247 ;R
ta
/2

that is, the velocity dispersion at is roughly 80% of theR
tavalue in the central regions. Finally, we Ðnd that the

average value of the velocity anisotropy parameter b is zero
(isotropic) at all radii but with signiÐcant scatter (1 p D
0.3).

In summary, the method of predicting the mass per unit
length of a Ðlament from its observed velocity dispersion
does reasonably well in real-space tests of an N-body simu-
lation. Because the procedures of this section did not con-
front the confusion caused by redshift distortions and
foreground/background galaxies or the missteps possible in
picking one-dimensional structures from a discrete set of
points, we do not consider these tests deÐnitive. Neverthe-
less, it is encouraging that the method performs to an accu-
racy of despite signiÐcant substructure, departures[40%
from axisymmetry and isothermality, and some inclusion of
infall.

3.2. A First Step into Redshift Space
We next apply the method to a simulated redshift survey.

Using the same PM simulation as above, we select a mock
survey by giving each particle an equal chance to be a
galaxy, assuming a Schechter luminosity function, and
applying an apparent magnitude cuto†. The survey
geometry is chosen to be a slice thick and 90¡ wide, and1¡.5
the depth is similar to that of the Las Campanas Redshift
Survey (LCRS) et al. et al.(Shectman 1996 ; Lin 1996 ;

et al. We use the adjacent slices to verify thatLandy 1996).
our Ðlaments are not cuts through sheets. The real-space
plot of the particles in shown in the plot of theFigure 5 ;
mock redshift survey drawn from the slice is shown in
Figure 6.

Within the slice, two large transverse Ðlaments are appar-
ent. We Ñag the ““ galaxies ÏÏ that appear as part of the Ðla-
ment. The galaxies selected this way are highlighted in

FIG. 4.ÈVelocity proÐles of four Ðlaments from the sample. For each
radial bin, we show the mean radial velocity (squares) and the radial veloc-
ity dispersion (crosses). Also shown is the average transverse velocity dis-
persion of all particles within the stated radius (solid line). The vertical
dashed lines mark in each case. The third and fourth panels show theR

taregions marked in as Ðlaments A and B, respectively.Fig. 5

Within a set of galaxies, we Ðt a straight line inFigure 6.
redshift space and measure the residual velocity spread
around the line to Ðnd the velocity dispersion Becausep

M
.

the Ðlaments have rather little extent in redshift, we neglect
variations in the selection function across the set and give
each galaxy equal weight in the velocity dispersion. We also
neglect the small angle between the observed line of sight
and the direction perpendicular to the axis of the Ðlament.
More reÐned analyses could include these e†ects. Our mea-
surement of then gives the mass per unit length, whichp

Mwe multiply by the length (angular length times distance) to
get the total mass.

In order to compare the mass estimate to the true answer,
we Ðnd it most convenient to use our knowledge of the
luminosity function in order to convert our result to an
estimate of ). Taking the Ðlament to be at a single distance,
we Ðnd ) as the ratio between the estimated mass per
observed galaxy and the critical mass per observable
galaxy, which is the critical density divided by the number
density of galaxies observable at that distance given the
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FIG. 5.ÈSlice of the simulation displaying the particle positions. The slice is thick.1¡.5

chosen luminosity function. This measured ) may then be
compared to the true value in the simulation, )\ 0.4.

Filament A has 296 galaxies at a distance of 22,000 km
s~1. We measure a velocity dispersion km s~1 andp

M
\ 400

a length of 110 h~1 Mpc. This yields a mass of 7.9] 1015
h~1 and )\ 0.65. Filament B has 305 galaxies at aM

_distance of 14,000 km s~1. We measure km s~1p
M

\ 450
and a length of 40 h~1 Mpc, yielding a mass of 3.6] 1015
h~1 and )\ 0.58.M

_

These two cases therefore yield overestimates of ) by
about 50%. The agreement between the estimated mass and
the true mass is surprisingly good, bearing in mind the
somewhat ambiguous choice of the member galaxies of the
Ðlament. In fact, by restricting ourselves to a slice, we1¡.5
may have clipped out some galaxies that would have been
included in the Ðlament in a less two-dimensional survey ;
such galaxies lie just above or below the slice. Because the
““ Ðngers of God ÏÏ are preferentially in the slice rather than

FIG. 6.ÈMock redshift survey drawn from the slice displayed in The two Ðlaments analyzed in the text are marked with the letters A and B.Fig. 5.
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above or below, these additional galaxies would most likely
not increase the velocity dispersion but would increase the
““ light ÏÏ associated with the Ðlament, thereby reducing the
estimated value of ). This problem, combined with the diffi-
culties in rejecting sheets, suggests that thin slices like the
LCRS are less appropriate for this method than surveys
with wider sky coverage such as the Sloan Digital Sky
Survey (SDSS) & Knapp The two cases pre-(Gunn 1993).
sented here are merely intended to be illustrative ; we
discuss what is required for a full calibration and testing of
the method in the next section.

4. DISCUSSION AND CONCLUSION

Motivated by the observation that the mass per unit
length of an isothermal Ðlament depends only on its veloc-
ity dispersion and not on its scale radius, we have proposed
a method to measure the dynamical mass of large-scale
Ðlaments in galaxy redshift surveys. A Ðlament aligned
across the plane of the sky would have its velocity disper-
sion easily observable as the thickness of the Ðlament in
redshift space. The degree of substructure along the Ðlament
is also observable and might be used to warn against Ðla-
ments that drastically violate the validity regime of our
method. In a wide-angle redshift survey, such as CfA/SSRS

et al. Costa et al. 2-degree Field(Vogeley 1994 ; da 1994),
or SDSS & Knapp it should be(Taylor 1995), (Gunn 1993),

possible to distinguish between one-dimensional Ðlaments
and two-dimensional sheets. The method could then be
used to estimate the masses and mass-to-light ratios of these
structures, which are up to 10 times more massive than rich
clusters, and thus yield information on the behavior of the
dark matter on these scales.

The bulk of the tests we present are performed on Ðla-
ments selected from cross-sectional real-space slices of an
)\ 0.4 simulation. We pick the radius of the Ðlament to be
the turnaround radius, here found as the radius at which the
enclosed density is 5.7 times the background density. We
Ðnd that the velocity dispersion of those particles, as mea-
sured from a direction perpendicular to the axis of the Ðla-
ment, is a good predictor of the mass contained within that
radius. The ensemble of 23 Ðlaments so treated yields an
estimate that is biased D20% high with a scatter D33%
(1 p).

However, a full test of the robustness of the method must
be done in redshift space and not in real space. To illustrate
the situation in redshift space, we have analyzed two case
studies (see Figs. and However, we leave to a future5 6).
paper the larger task of designing an automated Monte
Carlo scheme to calibrate the method and prove its robust-
ness. Such a program would begin from a cosmological
simulation and extract a mock redshift survey. One would
then apply a quantitative algorithm to this survey in order
to identify Ðlamentary structures and select member gal-
axies. With these Ðlaments in hand, one would compute the
velocity dispersion and convert it to a mass-to-light ratio or
). By considering many systems, one may tune and cali-
brate the selection method and determine the error in its
estimates, possibly as a function of some substructure cri-
teria. One could then repeat this using di†erent cosmo-
logical simulations in order to show that the calibration is
indeed robust against variations in the cosmological model.

Because the steady state assumption used in the deriva-
tion of does not hold in cosmological situ-equation (13)
ations, the coefficient of 2 in is subject toequation (13)

further calibration. Since the amount of infall depends upon
the background cosmology, it is likely that a given cali-
bration will not be unbiased in all cosmologies. In particu-
lar, the higher degree of present-day infall in )\ 1 models
might cause systematic underestimates of the mass relative
to a low ) calibration. It will be important to quantify this
e†ect so as to assess the methodÏs ability to di†erentiate
between cosmological models. Cylindrical self-similar solu-
tions & Goldreich or secondary infall solu-(Fillmore 1984)
tions & Shaham(Gott 1975 ; Gunn 1977 ; Ho†man 1985 ;

& Gunn might provide analytic testbeds forRyden 1987)
understanding the relation between the virialized and infall
regions and for probing the dependence of the results on the
underlying cosmology.

The density-morphology relation of galaxies (Dressler
& Geller may produce a signiÐ-1980, 1984 ; Postman 1984)

cant systematic e†ect on our mass estimate when combined
with the selection criteria of an actual survey. Because ellip-
tical galaxies prefer high-density regions and spirals con-
versely, a survey that favors one type over the other will
weigh the regions of high- and low-velocity dispersion dif-
ferently, thereby producing di†ering estimates of k (see, e.g.,
di†erences between estimates of the bias factor in optical
and IRAS surveys ; & Dodds In extremePeacock 1994).
cases, the skewed selection function may a†ect the per-
formance of the Ðlament-Ðnding algorithm. Similarly, a
survey such as the LCRS, which undersamples close pairs,
would a†ect the calculation of k. Including a parameterized
form of the density-morphology relation in the extraction of
the mock surveys might allow one to treat the systematic
di†erences between redshift surveys.

In this paper, we assumed that the galaxy distribution
followed the mass distribution of the simulation and used
simulation particles as galaxy tracers. Biased galaxy forma-
tion could signiÐcantly a†ect the validity of this treatment.
Velocity bias & Couchman &(Carlberg 1989 ; Couchman
Carlberg Davis, & Evrard1992 ; Carlberg 1994 ; Summers,

may cause the velocity of galaxies to be diminished1995)
relative to the dark matter, especially in denser regions.
Estimates of this e†ect vary but are often D20% for clus-
ters ; however, a comparison between optical and X-ray
observations of clusters seems to indicate that the bias is
less than a 10% e†ect & Bahcall In addition,(Lubin 1993).
there is the possibility that some aspects of biasing are
associated with the Ðlamentary structure itself, e.g., if frag-
mentation of Ðlaments a†ects galaxy formation. This would
not be the case in a hierarchical structure formation model,
in which the galaxy-scale perturbations should collapse well
before the large-scale structure forms, leaving the galaxies
to fall onto the Ðlaments in a manner similar to the dark
matter. Numerical work on velocity bias has focused on
clusters, but could be extended to the Ðlamentary case.

The Perseus-Pisces supercluster is the obvious nearby
candidate to which our method can be applied, since its
central ridge is a prominent linear structure stretching
across the sky in redshift space & Giovanelli(Haynes 1986).
To estimate the mass-to-light ratio, we use the data from
the H I redshift survey of Giovanelli, Haynes, and collabo-
rators Haynes, & Giovanelli and references(Wegner, 1993,
therein). We focus on a restricted portion of the central
ridge with (R.A., d) corners of (0h30m, 27¡), (2h15m, 36¡.5),
(2h15m, and (0h30m, 31¡) in order to avoid the heavily40¡.5),
extincted region near the Perseus cluster. We impose a
heliocentric velocity cut of 4000 km s~1\ v\ 5800 km
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s~1 ; the remaining 307 galaxies have a velocity dispersion
(using 10 lengthwise bins to remove bulk motions) of 423
km s~1 and an average distance of 51 h~1 Mpc. Expanding
the velocity cut by 600 km s~1 on both sides adds only 23
galaxies and increases the velocity dispersion to 490 km
s~1. The change in the mean velocity from one end of the
region to the other is small (see Fig. 5 of et al.Wegner 1993),
indicating that Ðlament is very close to the plane of the sky
and that the contamination of the velocity dispersion by
motions along the Ðlament should be negligible.

Using the Ðrst velocity cut, we infer a mass per unit length
k \ 8.3] 1013 Mpc~1, a length of 21 h~1 Mpc, and aM

_mass M \ 1.7] 1015 h~1 Assuming that all of theM
_

.
selected galaxies are at a distance of 51 h~1 Mpc, imposing
a uniform extinction correction of 0.2 mag (Giovanelli,
Haynes, & Chincarini and assuming based on inte-1986),
grating the luminosity function Huchra, & Geller(Marzke,

that the survey includes 56% of the light, we estimate1994)
the total B-band luminosity to be 3.9 ] 1012 h~2 in solar
units. Hence, we Ðnd h in solar units ; however,M/L

B
B 450

the e†ects described earlier in this section, in particular the
lack of a tested and calibrated redshift-space algorithm for
determining which galaxies are members of the Ðlament as
well as the fact that this estimate is based on a single object,
render this estimate uncertain within a factor of 2. Further
reÐnements of the method and its application to additional
Ðlaments, as will be available with surveys such as the SDSS

& Knapp should substantially reduce these(Gunn 1993),
uncertainties.
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