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We study certain properties of six-dimensional tensionless E-strings (arising from zero

size E8 instantons). In particular we show that n E-strings form a bound string which

carries an E8 level n current algebra as well as a left-over conformal system with c =

12n−4− 248n
n+30 , whose characters can be computed. Moreover we show that the characters

of the n-string bound state are captured by N = 4 U(n) topological Yang-Mills theory on
1
2
K3. This relation not only illuminates certain aspects of E-strings but can also be used

to shed light on the properties of N = 4 topological Yang-Mills theories on manifolds with

b+
2 = 1. In particular the E-string partition functions, which can be computed using local

mirror symmetry on a Calabi-Yau three-fold, give the Euler characteristics of the Yang-

Mills instanton moduli space on 1
2
K3. Moreover, the partition functions are determined

by a gap condition combined with a simple recurrence relation which has its origins in a

holomorphic anomaly that has been conjectured to exist for N = 4 topological Yang-Mills

on manifolds with b+
2 = 1 and is also related to the holomorphic anomaly for higher genus

topological strings on Calabi-Yau threefolds.
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1. Introduction

One of the interesting new results in string theory has been the discovery of various

kinds of strings in addition to the fundamental string. Among these, there are strings

where the tension is large, and these have applications in the counting of microstates

of blackholes [1]. At the other extreme there are constructions in which the string can

become tensionless, and one typically ends up with a critical conformal theory. There are

several natural questions one could ask about the physical properties of such strings: How

are they different from fundamental strings? What are their excitations? Do tensionless

strings bind together?

One of the commonalities between fundamental and non-critical strings is that, for

a sufficient number of compactified dimensions, all of these strings can be related to M5

branes wrapped around a four cycle N (for applications to black hole counting in this

context see [2,3]). For example, the type II string can be viewed as an M5 brane wrapped

around T 4, and the heterotic string can be viewed as an M5 brane wrapped around K3.

There are two well-known examples of non-critical strings in six dimensions, one with (0, 2)

(space-time) supersymmetry [4] and the other with (0, 1) (space-time) supersymmetry. The

second is dual to the heterotic string with an E8 instanton of zero size [5,6], which in F-

theory corresponds to a particular P1 shrinking to zero size [7,8]. The (0, 2) non-critical

string can be viewed as an M5 brane wrapped around P1×T 2, while the (0, 1) non-critical

string can be viewed as an M5 brane wrapped around 1
2K3. The purpose of this paper is

to continue the study of the BPS states of the (0, 1) non-critical string, initiated in [9] and

further studied in detail in [10,11]. We will call such strings, E-strings, for their association

with the shrinking E8 instanton. These strings have less world-sheet supersymmetry,

(0, 4), in comparison to the other string, which has (4, 4) world-sheet supersymmetry. The

generalized elliptic genus, which counts BPS states weighted by (−1)F , vanishes for the

(0, 2) string, but it is much more informative for the (0, 1) string, and will be discussed

extensively in this paper1.

1 Note that P
1
× T 2 can be viewed as 1

2
T 4 in the sense that P

1 = T 2/Z2. It turns out that

the low energy degrees of freedom on the (4, 4) string is exactly half of the degrees of freedom of

the type II string (in the lightcone) which in turn corresponds to an M5 brane wrapped around

T 4. Similarly for the (0, 4) case, which corresponds to an M5 brane wrapped around 1

2
K3, the

degrees of freedom of the single E-string is half that of the E8 ×E8 heterotic string, which in turn

corresponds to the M5 brane wrapped around K3. So perhaps another set of suitable names for

these strings are 1

2
type II strings and 1

2
heterotic strings!
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The study of the BPS states suggest many new things about the E-strings. It shows

that n of them form bound states at threshold and that they carry an E8 level n Kac-Moody

algebra. Moreover, there are additional left-over degrees of freedom on the left-movers for

which we compute the corresponding characters.

One of the key observations in this paper is to use the connection of such BPS counts

with the computation of N = 4 topological Yang-Mills [12]. This relation shows, in

particular that the number of BPS states consisting of n wrapped E-strings with total

momentum k around the circle, which is given by counting holomorphic curves on 1
2K3,

is related (by an application of mirror symmetry) to the partition function of N = 4

topological U(n) Yang-Mills on 1
2K3 with instanton number k. Using this observation we

relate the holomorphic anomaly discovered for N = 4 SU(2) Yang-Mills on manifolds with

b+
2 = 1 [12], to the holomorphic anomaly in the BPS state partition function derived in

[11]. In [11] the holomorphic anomaly was derived for arbitrary n, and it now gives us the

holomorphic anomaly of SU(n) N = 4 gauge theories. We will also give an interpretation

of the holomorphic anomaly from the viewpoint of counting holomorphic curves, which

thus connects to the holomorphic anomaly of Kodaira-Spencer theory [13]. Furthermore

we interpret the existence of this holomorphic anomaly as coming from the fact that n

E-strings form bound states at threshold.

The organization of this paper is as follows: In section 2 we review various intercon-

nected ways of looking at the E-strings. We also relate the BPS count with the N = 4

topological partition function. In section 3 we discuss general aspects of N = 4 topological

Yang-Mills theory on four manifolds, and we develop the N = 4 U(n) Yang-Mills theory on

K3 in detail (generalizing the results in [12] from SU(2) to U(n)). We then discuss aspects

of N = 4 Yang-Mills on 1
2K3 which follow from general principles and a few conjectures.

In section 4 we discuss the general results concerning the BPS state partition function for

E-strings. In section 5 we review, and re-derive in a new way, the mirror of 1
2K3 which

is needed for the BPS count. In section 6 we write very explicitly the partition function

for low winding numbers (up to 4). The results are compared with the predictions based

on N = 4 Yang-Mills. In section 7 we try to interpret some aspects of the BPS partition

function as well as the meaning of the anomaly in terms of the E-string. We conclude, in

section 8, with some suggestions for further study.
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2. F-theory, M-theory, Yang-Mills theory and E-strings

In this section we will review the various descriptions of solitonic strings in F-theory

and M-theory. We start with the N = 1 supersymmetric compactification of F-theory to six

dimensions, and then we discuss how the same string looks from the M-theory perspective.

That is, upon a further compactification to five dimensions on an S1, such a string theory

has two dual descriptions in M-theory that depend upon whether the string wraps S1 or

not. Both descriptions are relevant for us and will be reviewed here. However it is the

M5-brane description of the string that enables us to connect the partition function of the

string with that of topologically twisted N = 4 supersymmetric Yang-Mills theory.

2.1. General overview

Consider compactification of F-theory down to six dimensions on an elliptic Calabi-

Yau threefold, K, with a section, i.e. with a two complex dimensional base sub-manifold

B [14,7]. Let Σ ⊂ B denote a Riemann surface in the base. Let Σ̂ denote the complex two

dimensional elliptic manifold consisting of Σ and the elliptic fiber of K over each point.

Consider the 3-brane of type IIB wrapped around Σ, which gives rise to a string in six

dimensions. One is interested in the low energy degrees of freedom on this string. One

aspect of these degrees of freedom is reflected in the BPS states that result upon further

wrapping of this string n times around a circle, carrying some momenta p. This gives rise

to BPS particles in five dimensions. From the M-theory perspective these are described as

follows: The compactification of F-theory on K ×S1, where S1 has radius R, is equivalent

to an M -theory compactification on K in which the Kähler class of the elliptic fiber is

1/R. In M -Theory, the BPS states described above correspond to M2 branes wrapped

around K whose H2 class is given by n[Σ] + p[T 2], where [T 2] denotes the class of the

elliptic fiber. Thus counting the BPS states of the six-dimensional string wrapped around

the circle amounts to counting holomorphic curves on K, which in turn can be done using

mirror symmetry techniques. This was the method exploited in [9] and will be discussed

further in sections 4 and 5.

The counting of these five-dimensional BPS states can be related to another compu-

tation. Consider a string that remains a string in five dimensions, that is a string that

does not wrap the circle. In terms of M-theory this is described by wrapping an M5 brane

around Σ̂. Now compactify one more dimension on a circle of radius R′ and wrap this

string around the new circle so that the M5 brane is wrapped around Σ̂ × S1. The BPS

states of this wrapped state can be computed by its partition function, i.e. by taking
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the world-volume of the M5 brane to be Σ̂ × T 2. Moreover if we are interested in strings

wound n times around the second S1 we should consider n M5 branes whose world-volume

is given by Σ̂ × T 2. However as is well known n M5 branes wrapped around T 2 give rise

to N = 4 U(n) Yang-Mills in four dimensions [4,15,16], (where the momentum number p

gets mapped to the instanton number). We are thus left with the partition function of an

N = 4 Yang-Mills theory on Σ̂. More precisely we end up with a topologically twisted

version of N = 4, as is expected on general grounds [17]. In the next section we show that

the relevant twist is the one already considered in [12].

Putting this all together, we are relating the number of holomorphic curves2 wrapped

around n[Σ] + p[T 2] to the partition function of N = 4 U(n) Yang-Mills theory on Σ̂.

This final result has a relatively simple alternative explanation in terms of the type IIA

description of the same states coming from a further compactification on a circle: Consider

n D4 branes wrapped around Σ̂ and consider the number of cohomology elements in the

instanton moduli space with instanton number p. This is the same as the number of bound

states of n D4 branes with p D0 branes [18,19]. Now, recall that Σ̂ is elliptic and we are

considering the limit where the size of the elliptic fiber is small. In this limit we can go to

the T-dual description where the D4 branes become n D2 branes wrapped around [Σ] and

the D0 branes become p D2 branes wrapped around [T 2]. For BPS states we are interested

in their bound states, which are represented by a holomorphic curve in Σ̂ in the class

n[Σ]+ p[T 2]. Which thus brings us to the same conclusion via a more direct argument. In

fact this T-duality, relating rank n-bundles on elliptic manifolds to holomorphic curves is

also well known mathematically and is known as the spectral curve and has been studied

in the context of F-theory in [20,21].

We can take this result one step further by a second application of mirror symmetry.

Namely, we can use (local version of) mirror symmetry [9,22,23] to count the number of

holomorphic curves in Σ̂. We thus conclude that the partition function of topologically-

twisted N = 4, U(n) Yang-Mills on an elliptic four-dimensional manifold Σ̂, can be com-

puted by a double application of mirror symmetry. Moreover, this partition function counts

the BPS states of n times wrapped strings obtained in M-theory by wrapping M5 branes

around Σ̂ or in F-theory of D3 branes wrapped around Σ.

2 More precisely, an appropriate Euler characteristic for their moduli spaces.
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2.2. Tensionless E-strings from F-theory

In the foregoing description we have described how one gets a string in six dimensions

for every holomorphic curve Σ ⊂ B in an F-theory compactification on a 3-fold. However

to get an interesting critical theory the resulting string will have to be tensionless. Since

the tension of the string is proportional to the volume of Σ, a tensionless string will arise

only if that Σ is shrinkable. This can only happen if Σ is a P1. Moreover the normal bundle

of P1 in the base B should be negative [7]. Denote its normal bundle in B by O(−k).

The fact that c1 of the 3-fold is zero implies that the tangent direction on the elliptic fiber

over P1 will then correspond to an O(k − 2) bundle. We restrict our attention to the

situation where the elliptic fibration is generically non-singular. (Singular fibrations are

also interesting and have also been considered in the literature [7,24,25]). Non-singularity

requires that the cotangent bundle of the elliptic fiber have a section over P1 which can

happen only if k = 1, 2. Before discussing these two cases, we note that the choice, k = 0,

which is not shrinkable at finite distance in moduli, corresponds to Σ̂ = K3, and the

corresponding string is the heterotic string.

For k = 2, the elliptic fibration is trivial over P1, i.e. , Σ̂ = P1 × T 2, and we get the

tensionless string corresponding to (4, 4) susy on the worldsheet (and is the same as the

tensionless string that appears for type IIB theory near an A1 singularity [4]). The choice

k = 1 corresponds to Σ̂ = 1
2K3. The reason for this terminology is that, one gets K3 as

the elliptic fibration over P1 with k = 0, and then the modulus of the torus covers the

fundamental domain 24 times (corresponding to 24 cosmic strings), the 1
2
K3 corresponds

to an elliptic manifold over P1 whose modulus covers the fundamental domain 12 times.

More explicitly, it can be described as

y2 = x3 + f(z)x + g(z) , (2.1)

where f and g denote polynomials of degree 4 and 6 in z respectively, where z parameterizes

the P1. The elliptic fiber is thus described by (x, y) subject to the equation (2.1). The

weights are such that y belongs to an O(3) bundle and x to an O(2) bundle on P1, and so

the cotangent bundle of the elliptic fiber is an O(1) bundle [dy/x] over P1.

The non-zero hodge numbers for this manifold are

h0,0 = h2,2 = 1 , h1,1 = 10

In particular this implies that b+
2 = 1 (for a Kähler manifold of complex dimension 2 we

have b+
2 = 1 + 2h2,0). This manifold can also be obtained by blowing up P2 at 9 points
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(the position of the ninth point is determined by the other eight points). For this reason

the manifold 1
2K3 is a del Pezzo surface sometimes denoted by B9, and we will use this

notation interchangeably.

We will call the resulting string the E-string. The reason for this terminology is that

the E-string arises in a dual description of an E8 instanton in heterotic string theory

shrinking to zero size. This connection is explained in [8,7].

Since the E-string constructed here lives in six-dimensions, and has (0, 4) world-sheet

supersymmetry, it is natural to define the following generalized form of the elliptic genus

for such a string:

Z =
τ2
2

V4
Tr
[

(−1)F F 2
R qL0 qL0

]
. (2.2)

Here we are imagining computing the partition function on a torus with q = exp(2πiτ).

The factor of F 2
R has been inserted to soak up the fermion zero-modes, and we have divided

by the volume, V4, of the four non-compact bosons representing transverse position of the

string. We have also multiplied by a factor of τ2
2 , where τ2 = Im(τ), so as to cancel

the factor of 1/τ2
2 coming from the integration over the momenta of the string in the

transverse directions. This partition function, Z, has (holomorphic, anti-holomorphic)

modular weight (−2, 0): Without the factor of τ2
2 and without the insertion of F 2

R, Z

would be a modular invariant. Each factor of FR increases the anti-holomorphic weight by

one unit, and each factor of τ2 shifts the weight (−1,−1). We will discuss this partition

function more extensively below.

2.3. Yang-Mills partition functions from M5-branes

Consider n parallel M5 branes whose world-volume is given by a six-dimensional sub-

manifold of spacetime

M6 = T 2 ×N 4

As is well known, compactification of n parallel M5 branes on T 2 yields a U(n) N = 4

supersymmetric Yang-Mills on the left-over world-volume, where the complex structure τ

of T 2 gets identified with the complexified U(n) Yang-Mills coupling τ = 4πi
g2 + θ

2π . In

this description, the Montonen-Olive duality is a consequence of the classical SL(2,Z)

symmetry of T 2 [26,4].

This relation with N = 4 Yang-Mills implies that the partition function of n five-

branes on T 2 × N 4 is the same as that of U(n) N=4 Yang-Mills on N 4. We can also

view this slightly differently: We can think of n parallel five-branes wrapped around N 4
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as giving rise to a string, and then the partition function of this theory is the same as

the partition function of the effective (1 + 1)-dimensional theory on the T 2 with modular

parameter τ . This viewpoint has been suggested before in [27].

Depending upon the situation in which this arises in the string theory, one typically

ends up with a topologically twisted version of N = 4 Yang-Mills theory [17]. There

are three possible twistings for N = 4 [12], and we need to determine the relevant one

here. For us the N 4 is embedded in a Calabi-Yau 3-fold, and the five scalars of the five-

brane, correspond to normal deformations of N 4. The normal bundle will be trivial only

in the uncompactified directions (i.e. the normal directions that are not in the Calabi-

Yau) and so three of the scalars must continue to transform as scalars after twisting. The

other two will be a section of the canonical bundle on N 4, i.e. a section of the form

f(z1, z2, z1, z2)dz1 ∧ dz2. The last scalar of Yang-Mills in four dimensions comes from

giving the anti-symmetric 2-form of the five-brane worldvolume an expectation value on

the T 2. The result is thus a periodic scalar. The three uncompactified scalars correspond

to the transversal position of the left-over string of the M5 branes in uncompactified five-

dimensional spacetime. This uniquely fixes the twisting of the N = 4 Yang-Mills and is

the one already studied in detail in [12]. This also fixes the supersymmetry on the effective

(1 + 1)-dimensional theory to be generically (0, 4) (for K3 the supersymmetry is (0, 8)).

Strictly speaking, in such a supersymmetric theory the partition function of n parallel

M5 branes on T 2 ×N 4 is zero. This is because of the supersymmetric degree of freedom

associated with the translations in the uncompactified space. Equivalently, in the Yang-

Mills language, this is related to the zero modes coming from the U(1) ⊂ U(n). Suppressing

translations, by absorbing the correponding fermion zero modes, will result generically in

a non-vanishing partition function. In the (1+1)-dimensional, effective theory, this means

that we really need to compute the generalized form of the elliptic genus described earlier:

Z =
τ

3/2
2

V3
Tr
[

(−1)F F 2
R qL0 qL0

]
, (2.3)

where q = exp(2πiτ). Once again we divide by the volume of the space tranverse to

the string, and introduce factors of τ2 to cancel those coming from the integration of the

corresponding momenta. This transverse space is three-dimensional since we now have

the E-string in five-dimensions, or equivalently, only three of the five scalars of the M5-

brane are non-compact. This partition function, Z, is expected to be a modular form of

(holomorphic,anti-holomorphic) weight (−3/2, 1/2) (which is (0, 2) shifted by (−3/2,−3/2)

coming from the factors of τ2). If the corresponding (1 + 1)-dimensional theory has a

discrete spectrum then one can argue that the only τ dependence of Z comes from the
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bosonic zero modes. This is because the N = 4 supersymmetry for the right-movers implies

that the right-moving oscillator contributions cancel. In the gauge language these bosonic

zero-modes are related to the bosonic modes in U(1) ⊂ U(n). In particular the SU(n)

part of the partition function is expected to be a function of τ only.

For K3 one has eight right-moving bosons and eight right-moving fermions. This

means that the generalized elliptic genus (2.3) has to have an insertion of F 4
R (as opposed

to F 2
R) to absorb the fermion zero-modes. Moreover, in the compactification of M -theory

on K3 one is in seven dimensions, with five dimensions tranverse to the string, and hence

one has to divide by the volume, V5, of this transverse space. Following the practice above,

we will also multiply by τ
5/2
2 to compensate for the transverse momentum integrations,

and so the partition function Z then has a weight of (0, 4) + (−5/2,−5/2) = (−5/2, 3/2).

As discussed above, the function Z has another interpretation: it is the partition

function of the BPS states obtained by wrapping a string coming from n parallel M5-

branes on N 4 around another circle. In this interpretation the coefficients of qp in Z

count the BPS states which have momentum p around the circle. From the Yang-Mills

point of view, p is the same as the instanton number (up to a fixed shift of −nχ(N 4)/24).

Moreover, for n parallel M5 branes the resulting string can be viewed as bound states of

n singly wound strings around the circle.

3. The partition functions for N = 4 Yang-Mills

The partition function, Z, of topologically twisted N = 4 Yang-Mills was studied for

various manifolds in [12]. The most concrete results were for an SU(2) gauge group on

Kähler manifolds with b+
2 > 1, where b+

2 denotes the dimension of the self-dual 2-forms.

Moreover, general considerations led to certain predictions for all SU(n) on these manifolds.

The more difficult problem of SU(2) gauge theory on P2 was also considered in [12]. The

difficulty lies in the fact that b+
2 = 1, and so there are no holomorphic deformations of the

canonical bundle. This means that one cannot deform the theory to give masses to the

adjoint fields in a manner that preserves N = 1 supersymmtery. We will review N = 4

Yang-Mills on P2 later in this section and also give a more detailed discussion of Yang-Mills

theories and M5-branes on manifolds lacking holomorhic deformations of their canonical

bundles.
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Evidence was provided in [12] that for an SU(n) gauge group on an arbitrary four

manifold, N 4, with b+
2 > 1, Z is a modular form of an SL(2, Z) subgroup with (holomor-

phic, anti-holomorphic) weight (−χ/2, 0), where χ denotes the Euler characteristic of N 4.

The partition function Z has an expansion of the form

Z = q−
nχ

24

∞∑

k=0

ck qk (3.1)

where ck denotes the contribution of the instanton number k sector to the partition func-

tion. The overall shift of q−
nχ

24 is needed to make Z a modular form. It was also noted in

[12] that when the manifold is P2 (and conjectured more generally for Kähler manifolds

with b+
2 = 1), Z can only be made modular by adding τ dependence to Z. Having done

this, the expansion above is valid if one considers τ and τ as formal variables, and τ is

kept fixed while τ → ∞.

The partition functions for SU(n)/Zn gauge groups were also studied in [12]. For such

quotients we can also have non-trivial ‘t Hooft fluxes through the two cycles of the manifold

[28]. Hence, one can write a partition function Zα for each ‘t Hooft flux α ∈ H2(M, Zn).

Furthermore, for each Zα we get an expansion of the form (3.1), except that the instanton

numbers are shifted by α2

2n − α2

2 , and are hence generically fractional. It was also shown

that under τ → −1/τ the Zα mix according to

Zα → ±n−b2/2(τ/i)−χ/2
∑

β

exp

(
2πiα · β

n

)
Zβ , (3.2)

where b2 denotes the second betti number of N 4. In the next sub-section we discuss some

of the results of [12] for K3. This will set the stage for the generalization to 1
2K3, which

is the main focus of this paper.

3.1. Partition functions for K3

We begin by describing the result for K3, with gauge group SU(2), and we will

generalize the result of [12] by considering a U(2) gauge theory. This is straightforward as

it merely involves the addition of a trivially computable free U(1) theory. In fact, given

that we have already suppressed the fermionic degrees of freedom, this only includes the

volume factor from bosons, together with the U(1) fluxes through 2-cycles. In particular

we can view this theory as
SU(2) × U(1)

Z2
,
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and so we just have to combine the partition functions of SU(2)/Z2 corresponding to

various ‘t Hooft fluxes with the corresponding U(1) fluxes.

To get started we first consider the U(1) theory by itself, which corresponds to a

single five-brane. The self-dual field strength antisymmetric field Bij on the five-brane

leads to 19 left-moving and 3 right-moving bosonic modes, all of which are periodic. The

three uncompactified scalars give 3 additional left- and right-movers. The other two scalars

transform according to the canonical bundle on K3, which is in turn trivial, so this will give

an additional two left- and two right-moving scalars. All together we have 24 left-moving

and 8 right-moving bosonic degrees of freedom. Finally, there are also 8 right-moving

fermionic modes. This is indeed the oscillator content of the heterotic string.

Since the effective (1 + 1)-dimensional theory has an (0, 8) supersymmetry, we need

to consider the generalized elliptic genus

Z1 =
τ

5/2
2

V5
Tr
[
(−1)FRFR

4qL0 q̄L0
]

(3.3)

in order to get a non-zero result. As we remarked earlier, the factor of τ
5/2
2 /V5 comes from

the five uncompactified bosons transverse to the string, and the modular weight of Z is

(−5/2, 3/2).

The result is then made up of two parts: (i) A lattice partition function of the U(1)

fluxes through each 2-cycle, and (ii) the partition function of the 24 bosonic zero modes

of the single five-brane on K3[29]:

Z1 = G(q) θΓ19,3(q, q) ,

where

G(q) =
1

η(q)24
=

(
1

q
1
24

∏
n(1 − qn)

)24

and

θΓ19,3(q, q) =
∑

PL,PR∈Γ19,3

q
1
2 P 2

L q
1
2 P 2

R .

The lattice, Γ19,3, is the even, self-dual, integral lattice with signature (19, 3) with a choice

of polarization (the standard Narain sum). The U(1) gauge fluxes of the N = 4 gauge

theory correspond to self-dual H-fluxes on the five-brane. Note that Z1 has the desired

modular weight of (−5/2, 3/2) with (19/2, 3/2) coming from the θ-function of the Γ19,3

lattice, and (−12, 0) coming from the η-functions.
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Now we consider the U(2) theory, i.e. the theory of two five-branes wrapped on

K3 × T 2. The coupling constant of U(2) relative to that of U(1) is naturally halved via

τ → τ/2. This means that if we were considering the U(1) theory we would replace (q, q)

with (q
1
2 , q

1
2 ) in the lattice theta function. However this is not quite correct because the

corresponding fluxes are correlated with the SU(2)/Z2 ’t Hooft fluxes. These come in

three categories: trivial, even and odd. The trivial flux is correlated with those lattice

vectors of Γ19,3 that are twice another vector. The even ’t Hooft fluxes correlate with U(1)

fluxes with 1
2(P 2

L − P 2
R) even, but where (PL, PR) is not twice another vector. The odd

fluxes correlate with U(1) fluxes where 1
2
(P 2

L −P 2
R) is odd. The three pieces of U(1) fluxes

correspond to

θ0 = θΓ19,3(q2, q2) ,

θeven =
1

2
(θΓ19,3(q

1
2 , q

1
2 ) + θΓ19,3(−q

1
2 ,−q

1
2 )) − θΓ19,3(q2, q2) ,

θodd =
1

2
(θΓ19,3(q

1
2 , q

1
2 ) − θΓ19,3(−q

1
2 ,−q

1
2 )) .

Note that the sum of these three terms is simply θΓ19,3(q
1
2 , q

1
2 ) as it should be. The

correlation between SU(2)/Z2 ‘t Hooft fluxes and the U(1) fluxes now imply that the

partition function of U(2) is given by

Z2 = Z0θ0 + Zevenθeven + Zoddθodd

where Z0, Zeven and Zodd denote the corresponding SU(2)/Z2 partition functions. From

the results in [12] we have

Z0 = 1
4G(q2) + 1

2 [G(q
1
2 ) + G(−q

1
2 )] ,

Zeven = 1
2 [G(q

1
2 ) + G(−q

1
2 )] , Zodd =

1

2
[G(q

1
2 ) − G(−q

1
2 )] .

Therefore we obtain:

Z2 = 1
4
G(q2)θΓ19,3(q2, q2) + 1

2
[G(q

1
2 )θΓ19,3(q

1
2 , q

1
2 ) + G(−q

1
2 )θΓ19,3(−q

1
2 ,−q

1
2 )] . (3.4)

Note that the partition function Z2 is a modular form of SL(2, Z). Moreover it has the

same weight as Z1, namely it has weight (wL, wR) = (−5
2 , 3

2 ). The fact that it is a modular

form of SL(2, Z) is consistent with Montonen-Olive self-duality for a U(2) gauge group.

We now try to interpret the Z2 partition function from the five-brane point of view. If

we have two copies of K3× T 2 in spacetime then this can be viewed as a single five-brane

wrapped twice over K3 × T 2. This can be done in several ways by taking coverings over
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K3 or over T 2. As a hint we can use the fact that a five-brane wrapped around K3 is

equivalent to the heterotic string. For two copies of the heterotic string all one has to do

is double cover the worldsheet. This suggests that we should consider the two five-brane

worldvolume to be K3×T 2 but with the T 2 wrapping twice around the original spacetime

T 2. This means that the complex structure of the torus is now going to be different from

that of the T 2 in spacetime, depending on how the world-volume T 2 wraps the spacetime

T 2. There are three inequivalent ways in which a T 2 can double cover another T 2, resulting

in one of the following complex moduli:

τ̃ = 2τ,
τ

2
,

τ

2
+

1

2
. (3.5)

We would thus expect

Z2(τ) = 1
4Z1(2τ) + 1

2Z1

(τ
2

)
+ 1

2Z1

(τ
2

+
1

2

)
(3.6)

where the constant in front of the Z1 terms is fixed by modularity, up to an overall constant

of proportionality which can be fixed by viewing the five-brane partition function as the

counting of BPS states. This is in clear agreement with (3.4). It is now easy to generalize

this to the case of n parallel fivebranes with worldvolume K3 × T 2, which should be

equivalent to U(n) gauge theory on K3 (this is similar and related to the observation in

[30]). We first have to recall how to enumerate the inequivalent ways in which a T 2 can

cover another T 2 n times: One chooses a basis of 2-cycles on T 2, and then the inequivalent

n-fold covers are given by the GL(2) transformations that can be written in the form

(
a b
0 d

)
,

with ad = n and b < d and a, b, d ≥ 0. Note that for n = 2 this gives the three possibilities

in (3.5). Thus, taking into account the modularity of the partition function we find that

Zn =
1

n2

∑

a,b,d

d Z1

(
aτ + b

d

)
, (3.7)

where the sum is over a, b, d satisfying the conditions given above. The modular form

Zn in (3.7) is known as a Hecke transformation of order n [31], which maps a modular

form of weight k to another modular form of weight k. For a general modular form with

holomorphic/anti-holomorphic weights (wL, wR), the powers of n and d that appear in the

Hecke transformation are nwL+wR−1 and d−wL−wR .
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This general structure is in agreement with what was conjectured in [12]. Namely,

it was observed that for manifolds with b+
2 > 1 one can deform the Yang-Mills theory by

adding masses to the three chiral fields, so that locally one has an N = 1 theory, without

changing the topological partition function3. In terms of N = 1 chiral fields the deformed

superpotential takes the form

W = Tr[[X, Y ], Z] − m

2
Tr(X2 + Y 2 + Z2)

where X, Y and Z denote the chiral superfields in the adjoint of SU(n). It was argued

that for SU(n) gauge theory these deformations lead to a number of inequivalent vacua,

parameterized by how SU(n) is broken in each vacuum. Namely the critical points of W

are found by solving

[X, Y ] = mZ, [Y, Z] = mX, [Z, X ] = mY,

which after suitable rescaling, implies that X, Y and Z form an n dimensional representa-

tion of SU(2). Typically, choosing such vacua results in gauge groups containing at least

one unbroken U(1). But these vacua contain extra fermion zero modes and so cannot con-

tribute to the partition function. Hence, we only need to consider those vacua that have

no unbroken U(1) groups. If n = ad, then this can be done by choosing the n dimensional

representation to be d copies of the a-dimensional irreducible representation of SU(2). In

this case we find an N = 1 theory with SU(d) gauge symmetry. This will have d vacua,

which we label by b = 0, 1, ..., d − 1. Moreover each vacuum is expected to contribute to

the total partition function and shifting τ by a constant mixes the different vacua [12].

Thus we find a partition function that matches the Hecke structure of (3.7).

The Hecke structure of (3.7) has a nice interpretation in the five-brane picture. The

GL(2) transformation implied by (3.7) rescales the spatial size of the string by d units and

the temporal size by a units, in addition to shifting the temporal direction into the spatial

direction by b units. This is equivalent to having d wrapped M5-brane strings on top of

each other and results in an SU(d) gauge symmetry as expected from field theory analysis.

The factor of a in the temporal direction rescales the gauge coupling and the shift by b

picks out one of the d vacua by shifting the θ angle.

3 In fact (b+

2 − 1)/2 is the complex dimension of moduli of holomorphic deformations of N 4.

In the five-brane description the existence of these deformations means N
4 can be moved holo-

morphically in the Calabi-Yau, i.e. the five-branes can be moved off of each other.
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As an example, consider the case n = p, where p is prime. In this case the partition

function takes the particularly simple form

Zp =
1

p2
Z1(pτ) +

1

p

[
Z1

(τ
p

)
+ Z1

(τ
p

+
1

p

)
+ ... + Z1

(τ
p

+
p − 1

p

)]
, (3.8)

which correctly counts the BPS states for p-th wound heterotic string. This also agrees

with the prediction made in [12] for SU(p) on K3.

3.2. Comments about Coincident M5 branes and Extensions

In the previous sub-section we have suggested that to compute the partition function

of n M5 branes whose world-volume is K3×T 2, we simply use the result of one M5 brane

on K3 × T̃ 2 where T̃ 2 is n-times wrapped over T 2. As discussed above this is consistent

with the view that heterotic string emerges as an M5 brane wrapped around K3. However

it would be nice to try and justify this step directly from the viewpoint of M5 branes. The

potential problem is that the n M5 branes could interact non-trivially and perhaps have

non-trivial bound states, whereas the foregoing result implies that the M5 branes do not

interact, but simply concatenate to produce an n-fold wrapping. From the perspective of

the M5 branes, the main indication that the interactions will be topologically trivial is that

n M5 branes on K3 can be holomorphically separated: the number of (supersymmetric)

normal deformations of M5 brane in the Calabi-Yau 3-fold is h2,0(K3) = 1. Thus if we use

an element u ∈ H2,0 we can holomorphically move branes off one another. It would be nice

to make this argument rigorous directly in the context of branes. It is also natural to try

to extend this argument to manifolds with h2,0 > 1 as was done in [12]. Once again, the

deformation in normal direction to the M5 branes can also be done by choosing a u ∈ h2,0

of the manifold. However, in general the deformations will intersect each other along some

divisors Di. So we would expect the answer for the partition function be similar to that of

K3 modulo corrections coming from the M5 branes intersecting over Di, leading to new

field theory subsectors. This structure matches the results found in [12] for SU(2), and it

is natural to expect to be able to justify the results conjectured in [12] in connection with

Montonen-Olive duality using the M5-branes.
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3.3. Manifolds with b+
2 = 1

The partition functions of N = 4 Yang-Mills on manifolds with b+
2 = 1 are not so

easy to compute. From the Yang-Mills point of view it is on such manifolds that the

gauge theory cannot be deformed to an N = 1 theory by giving masses in a topologically

invariant way. From the five-brane point of view, this is reflected by the fact that n five-

branes wrapped around such a manifold cannot be seperated in a supersymmetric manner

since there are no moduli for holomorphic deformations. The only such case that has been

previously studied is SU(2)/Z2 on P2. The partition function of SU(2) gauge theory on

P2 is naively expected to be a holomorphic function of the coupling, τ , however it was

found in [12] that the partition function displays a holomorphic anomaly and thus also

depends on τ .

There are two choices of ‘t Hooft fluxes for P2. We denote the partition function for

each of these two choices by G0 = F0/η6 (trivial flux) and G1 = F1/η6 (non-trivial flux).

It was found in [12] that

∂τF0 =
3

16πi
τ
− 3

2
2

∑

n∈Z

qn2

,

∂τF1 =
3

16πi
τ
− 3

2
2

∑

n∈Z

q(n+ 1
2 )2 .

(3.9)

Note that the power of τ2 in (3.9) is fixed by modular properties. The existence of this

anomaly was interpreted in [12] as the contribution of reducible SU(2) connections in the

form of U(1) ⊂ SU(2) gauge field configurations. Although this has not yet been verified,

it seems to be a reasonable conjecture. Note that the theta-function sum on the right

hand side of the anomaly has the interpretation of U(1) fluxes for P 2 (which has a single

non-trivial 2-cycle). From the viewpoint of two five-branes wrapped around P2, this would

correspond to the reduction U(2) → U(1)×U(1), which comes from seperation of the two

five-branes in spacetime. Thus we interpret the existence of anomalies as a reflection of the

existence of non-trivial bound states at threshold, and these are counted by the five-brane

partition function. This aspect will be discussed more extensively later in this paper when

we interpret the results found for the BPS states of the E-string.

From the mathematical properties of instanton moduli space on Kähler manifolds

with b+
2 = 1 it has become clear that there are various chambers for the partition function

of topological Yang-Mills. While this has been studied mostly for N = 2 theories (see

in particular the recent papers [32,33]), the N = 4 case should parallel the N = 2 case.

Namely one expects that the topological partition function of N = 4 Yang-Mills will
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depend on the choice of the Kähler class, which is b2-dimensional. Thus, in general we

expect that the N = 4 partition function for SU(n)/Zn Yang-Mills on a Kähler manifold

with b+
2 = 1 depends not only on τ but also on the Kähler class of the manifold.

It is natural to conjecture the following form as a generalization of the holomorphic

anomaly formula: Let θ(q, q) denote the partition function of U(1) fluxes on a manifold

with b+
2 = 1. This can be written in the form

θ(q, q) =
∑

PL,PR

q
1
2P 2

L q
1
2 P 2

R

where P = (PR, PL) ∈ H2(N ,Z), and P is split to PR and PL by projecting H2 on to self-

dual and anti-self-dual parts using the Kähler form on N . In particular, the topological

self-intersection number is given by P 2
R−P 2

L. The signature of the lattice is (1, b2−1), and

θ is a modular form of Γ(2) (the lattice is integral, but not necessarily even). Once again we

decompose the U(1) according to fluxes based on how they are paired with the SU(2)/Z2

’t Hooft fluxes. Let α denote the choices of inequivalent fluxes. They are correlated with

particular subspaces Γα of H2(N ,Z) (in a similar, but more complicated manner than

K3). Let

Gα = Fα/η2χ

denote the partition function of SU(2)/Z2 with ’t Hooft flux α, where χ is the Euler

characteristic of the manifold. Then there is a natural generalization for the holomorphic

anomaly of P 2, which we conjecture to be

∂τFα = const. τ
− 3

2
2

∑

P∈Γα

qP 2
L/4 qP 2

R/4 , (3.10)

for some constant of proportionality which may depend on the Kähler moduli of the man-

ifold.

3.4. The partition function of 1
2K3

As noted before, the interesting low energy limit occurs for E-strings when they can

become tensionless, and this happens in the F-theory compactification when the Calabi-

Yau has a vanishing four cycle, 1
2K3 = B9. This manifold has b+

2 = 1 and is elliptic.

We will be interested in the properties of multi five-branes wrapped around 1
2K3, and in

particular, we will show how the the BPS states of the E-string wrapped around a circle

are enumerated by the partition function of U(n) Yang-Mills on 1
2K3.
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The homology group, H2(
1
2K3,Z), is generated the hyperplane section of P2, which

we will denote by e0, and the nine blow-ups ej , j = 1, . . . , 9. (We will use the conventions

of [34] in which the blow-ups are, more correctly, −ej .) The intersection form is thus

ei · ej = gij, with gij = diag(1,−1,−1,−1,−1,−1,−1,−1,−1,−1), and thus H2(
1
2K3,Z)

is a hypercubic, Lorentzian, self-dual, integral lattice with (1, 9) signature, and we will

denote it by Γ9,1.

The lattice, Γ9,1, is isomorphic to the cubic integral self-dual (but not even) (1, 1)

lattice, Γ1,1 plus the E8 lattice Γ8, i.e.

H2(
1
2
K3,Z) = Γ1,1 ⊕ Γ8 .

To see this explicitly, introduce the vectors a0, a1 and bi, i = 1, . . . , 8, defined by:

a0 = 3e0 +
8∑

i=1

ei , a1 = −e9 ,

bi = ei − ei+1 , 1 ≤ i < 8 , b8 = e0 + e6 + e7 + e8

(3.11)

We will now show that this is an integral, unimodular change of basis. To see this, first

note that a0, a1 and bi are integer linear combinations of the ei. Conversely, one has

e9 = −a1 and e8 = 3b8 + b7 +3b6 +5b5 +4b4 +3b3 +2b2 + b1 −a0. The other ei, i > 0, can

then easily be obtained by adding integer multiples of the bi to e8. Using these expressions

for e6, e7 and e8 and subtracting them from b8, we obtain an integer linear combination

for e0. Thus the partition function of Γ9,1 can be obtained by summing over all integer

linear combinations of the basis vectors (3.11).

The new basis vectors satisfy a0 · a0 = 1, a1 · a1 = −1 and ai · bj = 0. We also have

that bi · bi = −2, bi · bi+1 = 1 for i = 1, . . . , 7, and b5 · b8 = 1. All other inner products are

zero. Hence the bi vectors are the Dynkin vectors for the E8 lattice and H2(
1
2K3,Z) splits

into Γ1,1 ⊕ Γ8. Since Γ9,1 is an odd, self-dual lattice, and Γ8 is even self-dual, it follows

that the Γ1,1 lattice is an odd, self-dual lattice. For later use we note that the elliptic class

[E] and the base of the elliptic fibration [B] can be identified with

[E] = 3e0 +

9∑

i=1

ei = a0 − a1

[B] = −e9 = a1

and that

[E] · [B] = 1 [B] · [B] = −1 [E] · [E] = 0 (3.12)
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Once again we start by considering the partition function for a single five-brane on
1
2K3×T 2. The degrees of freedom on the string obtained by wrapping a five-brane around
1
2K3 involve twelve left-moving bosonic modes (9 = b2 −1 left-moving modes coming from

the anti-symmetric field and the other three coming from the three non-compact scalars)

and four right-movers (three non-compact coming from the three scalars and one compact

coming from the anti-symmetric field corresponding to b+
2 = 1). The right movers are

accompanied by four fermions giving a (0, 4) supersymmetry. If we compute the partition

function of a single five-brane we obtain

Z1 =
τ

3/2
2

V3
Tr

[
(−1)F F 2

R qL0 qL0

]
=

θ(q, q)

η(q)12
,

where, as before, θ(q, q̄) is a theta function over the H2(
1
2
K3,Z), which does depend on the

choice of the Kähler class of 1
2
K3. We have defined the partition function by dividing out

the volume of the three non-compact scalars which corresponds to the transverse position

of the five-dimensional string obtained by wrapping the five-brane over 1
2
K3. As usual we

have multiplied by the factor τ
3/2
2 to cancel that coming from the transverse momentum

integrations. The modular weight of Z1 is (9/2, 1/2) + (−6, 0) = (−3/2, 1/2) as it should

be.

The metric on 1
2K3 will induce a polarization on Γ9,1 lattice, which is a decomposition

into ‘left and right momenta’ as is familiar from Narain compactifications. One of the

Kähler moduli on 1
2K3 is 1/R, the size of the elliptic fiber. The resulting polarization

on H2(
1
2
K3,Z) respects the splitting to Γ1,1 ⊕ Γ8. Choosing a metric that induces a

polarization on Γ1,1, we write (pL, pR) =
(

n+m
2R

+ n−m
2

R, n+m
2R

− n−m
2

R
)
. One can easily

see that this is a basis for such an integral, odd self-dual lattice. First, pL
2−pR

2 = n2−m2,

and so the lattice is integral and odd. One can easily show that if a vector (p′L, p′R) is to

have integer dot product with all vectors (pL, pR), then the former must also have the form

(p′L, p′R) =
(

n′+m′

2R
+ n′−m′

2
R, n′+m′

2R
− n′−m′

2
R
)
. Thus, the lattice is self-dual.

We therefore have:

θ(q, q) =
[ ∑

n,m∈Z

q
1
2 ( n+m

2R
+

(n−m)R

2 )2 q
1
2 ( n+m

2R
+

(m−n)R

2 )2
]

θE8
(q) , (3.13)

where θE8
denotes the theta function for the E8 lattice. Note that the contribution of Γ1,1

to the θ-function does not have the usual Narain form for a string on a circle. The reason

for the difference is that the Narain lattice is even and self-dual, while Γ1,1 is only odd

self-dual.
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As was noted in section 2, we will be interested in the F-theory limit, where the size

of the elliptic fiber shrinks to zero, 1/R → 0. This is the limit that corresponds to the six-

dimensional tensionless string. One should note that U(1) fluxes in the left-over E8 lattice

can still be non-zero and will correspond to Kähler classes of the 1
2K3 for infinitesimal,

but non-zero size of the elliptic fiber. In the limit R → ∞ the sum over n, m reduces to

a single sum over the null direction, n = m. This sum can be computed and gives R√
2τ2

.

Thus one finds that for R → ∞,

Z1 =
R√
2τ2

θE8
(q)

η(q)12
.

Note that if we view R as the radius of a circle that takes us from F-theory in six dimensions

down to five dimensions, then the extra factor of R is the volume factor that comes from

string compactification on this extra circle. Moreover, the factor of 1/
√

τ2 is manifestly

coming from the continuum momentum integration in the decompactified direction. Now

recall that we have adopted the convention of defining the F -theory partition function,

(2.2), with a prefactor of τ2
2 /V4 while the M theory partition function has a prefactor

of τ
3/2
2 /V3. The factor R/

√
τ2 represents precisely this difference in these prefactors.

Thus dropping the factor of R/
√

τ2 should yield the partition function of a string in six

dimensions. Doing this, we then view

Z1 =
θE8

(q)

η(q)12
. (3.14)

as the partition function for a six dimensional E-string. Note that this is a holomorphic

modular form of weight (−2, 0) as we had anticipated earlier.

We would now like to generalize this to n five-branes wrapped around 1
2K3, and we

start by considering n = 2. As already mentioned, since we are considering a Kähler

manifold with b+
2 = 1 there is no conjectured answer coming from the U(n) Yang-Mills

theory. Based on the foregoing, we should expect a holomorphic anomaly, as well as some

dependence on the choices of Kähler classes. However, since we have gone to a particular

degenerate limit of the Kähler class, we have effectively frozen out all the Kähler class

dependence which is responsible for the existence of various chambers, and so we should

only expect a holomorphic anomaly.

The U(2) theory on 1
2K3 requires a rescaling τ → τ/2 as on K3. The partition

function will decompose, as discussed above, in terms of SU(2) × U(1)/Z2 where the ’t

Hooft fluxes for SU(2)/Z2 are correlated with the U(1) fluxes. In the limit R → ∞, all

U(1) fluxes reside in a particular null direction (m = n) on the Γ1,1 lattice. Following the
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decomposition (3.13) of the Γ9,1 lattice, we write the ‘t Hooft fluxes α = (λ, i, j) where λ

is a vector on the E8 lattice, and i, j = 0, 1 denote the even/odd terms along the space-like

and time-like directions of Γ1,1. Since we are restricting to m = n on Γ1,1, we are only

interested in the SU(2)/Z2 partition functions Zλ,j,j. For a given set of U(1) fluxes, both

even and odd values of j give the same result in the limit R → ∞, since one is simply

taking the continuum limit of the sum. Therefore, we effectively get the sum of ‘t Hooft

fluxes in this direction, and so we define:

Ẑλ =
1

2
(Zλ,0,0 + Zλ,1,1) . (3.15)

Let β = (λ′, k, ℓ), then one has (λ, j, j) ·β = λ ·λ′ + j(k− ℓ) (remember this is a Lorentzian

inner product). Using the modular transformation (3.2) on Ẑλ we therefore see that Zβ

has an overall coefficient of
∑

j exp(2πi(λ · λ′ + j(k − ℓ))/2), which projects onto a sum of

those Zβ with k = ℓ. It follows that Ẑλ maintains its form under SL(2, Z) transformations,

and indeed transforms with phases that depend only on the E8 label λ. Henceforth we will

drop the hats on Ẑλ with the understanding that Zλ means (3.15). (Similarly, for SU(n)

we consider Ẑλ = 1
n

∑
m Zλ,m,m.)

After the rescaling by the volume factor, the partition function of two five-branes on
1
2
K3 × T 2, including U(1) fluxes, becomes

Z2 =
∑

Zλ θE8,λ(q
1
2 )

where λ denotes the inequivalent Z2 fluxes on the the E8 part of H2, and θE8,λ denotes

the theta function for the corresponding U(1) fluxes. There are three inequivalent choices

for λ: 0, even and odd, exactly as there were with K3. One can thus readily write down

the corresponding θE8,λ. The question remains as to how to determine Zλ.

What properties do we expect of Z2? The list includes: i) Z2 is the partition function of

U(2) and so, using Montonen-Olive duality, we expect it to be a modular form of SL(2,Z).

ii) The total modular weight of Z2 should be the sum of the weight (−χ/2, 0) = (−6, 0)

which is the SU(2) contribution and the weight (4, 0) which is the contribution of the U(1)

fluxes. Hence, the total weight is (−2, 0), which is consistent with the partition function in

(2.3). iii) From [12] the smallest power in its q expansion is expected to be q−2χ/24 = q−1.

iv) The instanton expansion should have a “gap” since the first non-vanishing instanton

number is 2 [35] v) Zλ should have a holomorphic anomaly in the form

∂τZλ =
i

2πτ2
2

Cλ
θE8,λ(q

1
2 )

η24
, (3.16)
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where the extra power of τ
− 1

2
2 as compared to (3.10) comes from the theta function in the

limit R → ∞. Note that the modular weight on both sides of (3.16) is (−6, 2). These

conditions go a long way towards fixing Z2. In fact if we knew the constants Cλ, together

with modularity properties and the gap for Z2 it would fix it completely. In the next

section we will derive the constants, and compute Zλ explicitly. It turns out that the

holomorphic anomaly is most conveniently stated for Z2, and we find that

∂τZ2 =
const.

τ2
2

Z2
1 (3.17)

This has the interpretation of two five-branes wrapped around 1
2K3 forming bound states

at threshold. We will discuss this later in the paper. Also note that the modular weight

on both sides of (3.17) is (−2, 2).

What should we expect for Zn, the partition function for n five-branes wrapped around
1
2
K3? First, in taking the F -theory limit to get the six-dimensional partition function,

there will now be n terms in the sum (3.15). The argument above easily generalizes to show

that these sums close under the modular transformation (3.2). These coefficient functions

are then to be combined with appropriate θ-functions of the suitably scaled E8 lattice, and

result is expected to be a modular form of SL(2,Z) of weight (−2, 0), whose holomorphic

part (i.e. fixing τ and sending τ → ∞) starts at q−n/2. We also expect there to be a gap

of n units in the q-expansion because the first non-zero instanton number is n. In other

words, the next non-zero term will be the qn/2 term. Furthermore, we expect there to be

a generalization of the holomorphic anomaly corresponding to reducible connections. For

U(n) the natural reducible connections correspond to U(n) → U(k) × U(n − k), so we

expect ∂τZn to involve a weighted sum over Zk · Zn−k. As we will explicitly show, this is

correct and the equation is

∂τZn =
const.

τ2
2

∑
k(n − k) ZkZn−k (3.18)

From the five-brane point of view this can be interpreted as the possible ways k bound

strings can bind with n − k bound strings in a pairwise manner to form n bound strings.

4. Counting BPS states of the Compactified E-string

In this section we summarize the basic approach in counting the BPS states of the

E-string, continuing the discussion in section 2, and sketch some of the properties of what

we shall find. In this section we try to avoid the technical aspects of this computation,

postponing them to the subsequent section.
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4.1. Computing the pre-potential

We consider here the E-string compactified on a circle to five dimensions and count

the BPS states with a given winding number and momentum. Comparing this to the

structure and form of the Yang-Mills partition functions, one can read off the Ẑλ.

The basic approach that we will use for counting the BPS states was first employed

in [9], and further developed in [22,10,11]. The basic idea is that if we consider type

IIA theory on a Calabi-Yau threefold, the pre-potential of the four-dimensional N = 2

theory only receives world-sheet instanton corrections. Indeed the pre-potential can be

represented as a sum over holomoprhic curves, and can thus be computed using mirror

symmetry techniques. One actually needs a local version of the mirror symmetry to do

this counting because the relevant part of the Calabi-Yau geometry, in the limit of turning

off the gravity, is a non-compact manifold corresponding to a Calabi-Yau singularity and

its immediate neighborhood. Such a non-compact specialization was used in [9,22] while

more general aspects of local mirror symmetry and geometric engineering were developed

in [23,36,37], where it was used to solve the Coulomb branch of N = 2 theories in four

dimensions.

Let ti denote the complexified Kähler moduli of Calabi-Yau threefold corresponding

to the i-th 2-cycle and N[ni] denote the number of holomorphic curves wrapped around

the i-th cycle ni times, then the third derivative of the pre-potential is given by

∂3
ijkF(ti) =

∑

[ni]

ninjnkN[ni]

∏
i qni

i

1 −∏i qni

i

(4.1)

where qi = exp(−ti). Applying this to 1
2
K3 embedded in a Calabi-Yau manifold, and given

the relation between holomorphic curves and the BPS states of the E-strings, discussed in

section 2, this will amount to the computation of the BPS states of the multiply wrapped

E-string around a circle. This expression also includes the contribution of multi-wound

states (in the form of the denominator above) and is natural to view this function itself as

the partition function of BPS states (from which the primitively wound BPS string states

can be obtained). Note also that (4.1) fixes F up to a quadratic function of ti, and the

latter can be viewed as the classical contribution to the pre-potential.

Of the ten Kähler moduli of 1
2
K3, the two that index the winding state and momentum

state of the compactified string can be thought of as the moduli of the base and fiber

respectively of the elliptic fibration. There are in addition eight remaining Kähler moduli.

The intersection matrix is an integral inner product in a ten dimensional lattice with
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signature (1, 9) and it includes a sublattice on which the intersection matrix is that of

the Cartan Matrix of E8. For future reference, we will label these moduli by φ, τ and

mi, i = 1, . . . , 8 where φ and τ correspond to the base and fiber moduli and the mi label

the E8 moduli. In the next section we will review the construction of mirror map for 1
2K3

and also present a simple new derivation for it based on R → 1/R duality of tori, very

much in the spirit of examples studied in [38]. The basic aspect of the new derivation

is that 1
2K3 arises in a self-mirror Calabi-Yau 3-fold and thus the Kähler moduli of it

are mirror to its own complex moduli. In other words, roughly speaking, studying the

complex moduli of 1
2K3 amounts to obtaining the pre-potential. More precisely 1

2K3 is

an elliptic manifold and the corresponding Seiberg-Witten curve for the N = 2 theory is

simply obtained from the complex structure of 1
2K3 where the coordinate of the base of

1
2K3 is promoted to a moduli parameter.

Recasting the mirror map in terms of periods of a torus enables one to easily study the

modular properties of the partition functions as a function of τ , and by making asymptotic

expansions for large Im(φ), one can explicitly obtain a series, indexed by the winding

number, n, of the E-string, whose coefficients are functions of the moduli, mi and τ . Let

F be the pre-potential of the theory, and suppose that it has an expansion of the form:

F = Fclassical +
∞∑

n=1

qn/2 Zn(mi; τ) e2πinφ , (4.2)

where q = e2πiτ , and the function Fclassical is a cubic in the moduli, whose third derivative

gives the classical intersection form. The functions Zn(mi; τ) count the rational curves

in the 1
2
K3 which wrap n-times around the base. For mi = 0, the functions Zn(0; τ) are

(almost) modular forms4 of weight −2: That is, they can be written in the form:

Zn(0; τ) =
1

η12n
pn(E2(τ), E4(τ), E6(τ)) , (4.3)

where pn is some (quasi-) homogeneous polynomial of weight 6n − 2, and E2m are the

Eisenstein modular forms of weight 2m. The function E2(τ) is holomorphic, but transforms

with the usual modular anomaly. This modular anomaly, and the fact that η12 changes sign

under τ → τ +1 define the sense in which we mean that F is almost a modular form. One

can remove the modular anomaly from E2 by adding to it a suitable multiple of 1/Im(τ)

to yield the function Ê2. In this way we can “ignore” the modular anomaly, but at the

cost of introducing a rather mild anti-holomorphicity. We will denote the corresponding

modified form of Zn in this section by Ẑn. In the subsequent section we revert back to the

Zn notation for the partition function, including the τ2 piece.

4 To arrange this one has to use the somewhat unusual normalization factor of qn/2 in (4.2).
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4.2. The recursion relation

It was shown in [11,39] that the E2 content of Zn is, in fact, entirely determined by

the recurrence relation:

∂Zn

∂E2
=

1

24

n−1∑

m=1

m(n − m) ZmZn−m . (4.4)

The corresponding equation for Ẑn is

∂Ẑn

∂τ̄
= − i

16π

1

(Im(τ))2

n−1∑

m=1

m(n − m) ẐmẐn−m . (4.5)

Note also that if we kept the φ dependence in the partition funcation and consider Z =
∑

n Ẑnexp(2πinφ) then the foregoing equation takes the form

∂Z

∂τ
=

i

64π3(Imτ)2
∂Z

∂φ

∂Z

∂φ

It is clear from [39] that such a recurrence relation is a very general feature of an effective

action of a theory with a parameter given by the modulus of a torus. In particular, the

proof of [39] is easily generalized to incorporate the Kähler moduli, mi. The non-zero

parameters, mi, mean that the Zn transform like group characters:

Zn(mi, τ + 1) = (−1)n Zn(mi, τ) ,

Zn

(mi

τ
,−1

τ

)
= τ−2 e

iπ
τ

∑
j

n m2
j Zn(mi, τ) ,

(4.6)

where we have ignored all the modular anomalies coming from E2 (which can be done by

promoting it to Ê2).

From the Yang-Mills point of view, (4.5), is the SU(n) generalization of the holo-

morphic anomaly equation (3.10) anticipated in [12], which was conjectured to arise from

reducible connections. Given that the BPS counting of E-strings is related to the counting

of holomorphic curves, it is also natural to try interpreting the foregoing anomaly equation

from this viewpoint. Indeed there turns out to be a simple interpretation from this angle:

Recall that Zm denotes the number of holomorphic curves which wrap m times around

the base of 1
2
K3 and an arbitrary number of times around the elliptic fiber (which gives

the τ dependence of Zm). Given the T-duality of the fiber torus, we would expect Zm to

be a modular form of τ . However, there is a natural way in which we can obtain bound

states of holomorphic curves corresponding to Zm and Zn−m and that is by joining them
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along a fiber at two different points along the fiber; due to translation invariance of the

torus only the relative position of these two points is relevant. The resulting holomorphic

curve will wind around the base of 1
2K3, m +(n−m) = n times. Note that we can attach

the torus in m ways to the first curve, because there are m leaves of the first holomorphic

curve around the sphere, and n−m ways to the second one. So if we consider how we may

remove a torus from Zn so as to obtain Zm and Zn−m, we expect to have an equation of

the form
∂Zn

∂F1
=
∑

m

m(n − m)ZmZn−m , (4.7)

where F1 is the partition function of the torus. That is, F1 is the number of ways we

can wrap the torus around the fiber torus (modulo translation and the choice of a point

on it). This function is known to be [13] E2/24 (up to the holomorphic anomaly term).

Using this, we see that (4.7) is precisely the recusrion relation (4.4). Thus the holomorphic

anomaly here has exactly the same origin as that observed in [13]5.

4.3. The “gap”

The other key property of the Zn is its “gap:” That is, its q-expansion (q = e2πiτ )

has the form:

Zn(mi; τ) =
1

n3
q−

n
2 + O(q+ n

2 ) . (4.8)

One way of understanding the “gap” comes from recalling how F counts rational curves

[9]. This is the equation given in (4.1) which we now specialize to the case at hand. The

quantum part of F , Fquantum = F −Fclassical, has an expansion of the form:

Fquantum =
∞∑

j,k,ℓ1,...,ℓ8=0

Nj,k,ℓ1,...,ℓ8

∞∑

r=1

1

r3
e2πir(jφ+kτ+~ℓ·~m) , (4.9)

where Nj,k,ℓ1,...,ℓ8 is the number of irreducible rational curves with winding numbers

j, k, ℓ1, . . . , ℓ8 on the cycles with Kähler moduli φ, τ, mi.

5 We should recall that we have been using genus zero curves to count the holomorpic curves

in the Calabi-Yau. These do seem to receive contributions which also look like higher genus

curves. The reason that this is not surprising is that the genus zero partition function gives the

pre-potential of the N = 2 theory and that has the information about all the charged BPS states.

This is also presumably why the configuration involving connecting Zi’s around a ring with T 2

fibers is not contributing to the BPS states. These would look like genuinely higher genus curves

and will only modify gravitational corrections.
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To see the gap property, one has to note that the intersection of two distinct holomor-

phic curves is always positive (since they are holomorphic the intersection points all have

the same relative orientation). So let us consider the holomorphic curve corresponding

to j[B] + k[E] where [B] denotes the class of the base and [E] denotes the elliptic fiber.

Consider another holomorphic curve which is [B] itself. As long as k 6= 0 these two curves

are distinct and we should thus have

(j[B] + k[E]) · [B] ≥ 0

Now we use the fact (3.12) that [B] · [B] = −1 and [B] · [E] = 1 and learn that

k − j ≥ 0 if k 6= 0

This establishes the existence of the gap.

One can calculate the Zn directly by computing the expansion (at large Im(φ)) of the

period integrals of the appropriate torus. This will be done in the next section to obtain

Z1(mi, τ). We have also derived Z2(mi, τ) in the same manner, but such direct calculations

rapidly becomes unwieldy. As was seen in [11,39], the most powerful method for explicitly

computing the Zn is to use the recurrence relation (4.4) and the gap condition (4.8). That

is, once one has Z1, one can make an Ansatz for Zn that is consistent with the modular

properties (4.6) and the E8 Weyl invariance, and then fix the coefficients using (4.4) and

(4.6). This generically yields a highly overdetermined system of equations which give a

unique result for Zn. We illustrate this in some detail for Zn in section 6 for small values

of n.

5. Deriving the Wound E-String BPS States

In this section we spell out in a bit more detail the technique used in counting the

BPS states of multiply wound E-strings. Note that as discussed before this corresponds to

partition function of N = 4 topological U(n) Yang-Mills on 1
2
K3 where n corresponds to

winding number of E-string around the circle. In the next section we apply the method to

explicitly write down the BPS state for E-strings with low winding numbers.

The appropriate mirror maps were constructed in [9] for subsets of the moduli. Non-

compact Calabi-Yau manifolds that modelled the non-critical string were constructed in

[22] and the construction of mirror map was reduced to computing periods of a Seiberg-

Witten torus. The models of [22] gave a subset of the BPS spectrum (those states with
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winding number equal to the momentum) and only involving the modulus φ. In [10] the

Calabi-Yau models of [22] were extended to incorporate all the BPS states and both the τ

and φ moduli. Moreover, after reducing the periods of the Calabi-Yau to periods of various

differentials on a torus, it was shown in [10,11] how to incorporate the complete set of ten

Kähler moduli. Thus, in [10,11] the construction of the complete mirror map, involving

all moduli, was reduced to computing periods of a Seiberg-Witten differential on a torus.

This torus had also been constructed by other authors [40] in order to get effective actions

of gauge theories arising out of the E-string.

It was shown in [22,40,10,11,39] that the pre-potential of the E-string could be derived

from a Seiberg-Witten curve of the form:

y2 = x3 − f(u, mi, τ)x + g(u, mi, τ) , (5.1)

where u is a parameter that essentially sets the overall size of the del Pezzo surface (an

overall scale has been set to one). This curve in fact describes the del-Pezzo surface B9.

The Seiberg-Witten curve depends on u, the eight mass parameters mi and a parameter

τ , which is the Kähler modulus of the elliptic fiber. The masses are inversely related to

the Kähler moduli for the blow-up moduli of the B9. That is, taking masses to infinity is

equivalent to blowing down some of these points. We first present a simple new derivation

of the above local mirror, and then discuss how one computes the instanton expansions

from it.

5.1. The Mirror Map for 1
2K3

In order to present a simple derivation of these results we need to find a Calabi-Yau

threefold for which 1
2
K3 is embedded. Consider a Calabi-Yau threefold which is a double

elliptic fibration over a sphere:

y2
1 = x3

1 − f1(z)x1 + g1(z)

y2
2 = x3

2 − f2(z)x2 + g2(z) (5.2)

where (yi, xi), subject to the above equations, define the two tori and z denotes the coor-

dinate on the sphere. Moreover fi are functions of degree 4 and gi are functions of degree 6

in z. This is a Calabi-Yau threefold with Hodge numbers h1,1 = h1,2 = 19. There is a 1
2K3

embedded in the Calabi-Yau of (5.2), since each of the equations in (5.2) describes a 1
2
K3

surface in three complex dimensions. equation. The local model, i.e. the isolated 1
2K3, is

obtained by enlarging the second torus, in other words by sending the Kähler class of the
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second torus to infinity. For a particular choice of fi, gi this manifold can be obtained as

a Z2 × Z2 orbifold of T 2 × T 2 × T 2: Let ζ1, ζ2, ζ3 denote the coordinates of the three tori.

Consider the generators of the two Z2 actions,

α : ζ1 → ζ1 +
1

2
, ζ2,3 → −ζ2,3 ;

β : ζ2 → ζ2 +
1

2
, ζ1,3 → −ζ1,3 ;

where for definiteness we have taken the dζi to have periods 1 and τi. It is easy to check

using standard orbifold techniques, that this orbifold has hodge numbers h1,1 = h1,2 =

19. Moreover, it corresponds to a double elliptic fibration over a base P1. Namely, we

can identify ζ1 with the (x1, y1) torus, ζ2 with the (x2, y2) torus and ζ3 with z (which

parameterizes P1). To see this note that modding out by α leads to an elliptic (ζ1)

fibration over the sphere (ζ3 modded by Z2) and modding out by β leads to another

elliptic fibration (ζ2) over P1 (again parameterized by ζ3 modulo the Z2 action). The

double elliptic fibration, together with the equivalence of hodge numbers, identifies the

orbifold with the Calabi-Yau in (5.2). Now we apply mirror symmetry as in [38], by T

dualizing one circle from each of the three tori. As explained in [38] this leads to the

mirror manifold if in addition one includes a non-trivial Z2 discrete torsion ǫ(α, β) = −1.

Since there are no mutual fixed points for α, β or αβ, this will not change the geometry

of the massless modes. Hence, we obtain the same manifold (5.2) , at least as far as the

pre-potential is concerned, but now with the complex moduli playing the role of what were

the Kähler moduli. Note in particular that the Kähler and complex moduli of each of the

two tori ζ1,2 are exchanged. The description of the manifold in terms of (5.2) is now quite

useful because the Kähler moduli of the original Calabi-Yau now appear explicitly in the

coefficients of fi and gi.

On the mirror side the interesting object is the holomorphic 3-form, the periods of

which encode the holomorphic curves (see for example [41]). In this case, the holomorphic

3-form Ω is given by

Ω =
dx1

y1

dx2

y2
dz (5.3)

which is regular for large z. As noted before we are interested in a large Kähler class for

the second torus, which from the mirror perspective, corresponds to a degenerate complex

structure for this same torus. Suppose the second torus becomes degenerate at z = u.

Locally this means that the torus is parameterized as

y2 − x2 = x̃ỹ = (z − u) (5.4)
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where x̃ and ỹ are the re-defined coordinates on the second torus, emphasizing its degen-

erate structure. At z = u the torus is strictly degenerate since one of its cycles has shrunk

to zero. Using the local model in (5.4) when z 6= u means that the complex structure of

the second torus remains degenerate away from z = u.

We now investigate the relevant periods. The holomorphic three-form, Ω, takes the

form
dx1

y1
dz

dx̃

x̃
(5.5)

in the local limit. There are two types of 3-cycles. One type corresponds to taking a cycle

of the form C2 × S1 where C2 is a two cycle supported on the mirror 1
2
K3 given by the

variables (x1, y1, z), and S1 is a cycle of the degenerate torus. The other type of three

cycle is an S3, which can be thought of as S1 × S1 over an interval, where on one end of

the interval the first circle shrinks to zero and on the other end the second circle shrinks to

zero. We choose one of these two circles to be the small cycle of the second torus which is

zero at z = u, and we choose the second cycle to be the a or the b cycle of the first torus.

(This construction and computation of the period integrals is very similar to that of [22].)

Since we have only one non-degenerate torus we remove the subscripts from x1, y1

and f1, g1 and denote them by x, y and f, g. We first consider cycles of the form C2 × S1.

Integrating Ω over the small cycle of this torus gives a constant, multiplied by the left-over

2-form ∫

1−cycle

Ω = Ω′ =
dx

y
dz .

This 2-form is then integrated over 2-cycles of 1
2K3. Even though there are ten 2-cycles

on this space, Ω′ vanishes on two of them, namely the 2-cycles corresponding to the fiber

torus and the base sphere. So this type of cycle gives eight non-zero parameters. This

is the kind of structure we expect from Seiberg-Witten geometry for masses [42], so we

identify these periods with eight mass parameters mi (These can be viewed as the dual to

the Cartan subalgebra of E8). To get cycles of the second type we have to integrate Ω′

from z = u to one of the points where the first torus degenerates. Call that point P . We

thus have

φ =

∫ u

P

dz

∫

a

dx

y
.

Which point P we choose is irrelevant because the difference between two choices amounts

to an integral over a 2-cycle of the first type, which means shifting φ by integral multiples

of mi. This is also familiar from Seiberg-Witten geometry. We can similarly define φD by

integrating over a b cycle of the torus and choosing a point where the b cycle vanishes. To
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make contact with the usual notation of Seiberg-Witten, we re-define the dummy variable

z by u and summarize the periods by

mi =

∫

Ci

du
dx

y

φ =

∫ u

P

du

∫

a

dx

y

where

y2 = x3 − f(u)x + g(u)

Note also that the τ which is mirror to the Kähler class of the original 1
2K3 is now

mapped to the complex structure of the torus defined above. The functions f and g are

now implicitly a function of f(u, mi, τ), g(u, mi, τ).

5.2. Computing the periods

In order to count BPS states, we need to compute the above periods for the Seiberg-

Witten curve. We also want to group the BPS states into E8 Weyl orbits. This is ac-

complished by turning on the mass parameters and expressing the instanton expansion in

terms of E8 characters. This was done for the special case τ → i∞ in [10]. Now we want

to consider the more general case for finite τ .

There is one major issue that needs to be addressed. For general mi and τ the functions

f(u, mi, τ) and g(u, mi, τ) are not known explicitly. In principle, they can be determined

from the curve in [40], but in order to do so, one needs to first perform a non-trivial SL(3)

transformation on that curve. In [10] it was shown how to compute these functions in

the Im(τ) → ∞ limit explicitly from the instanton expansion. Essentially one assumes

that the instanton expansion will give E8 characters and one then works backwards to find

the curve. The key point is that one does not need really need all of the masses to be

non-zero in order to find the characters, if one assumes that the characters are actually E8

characters. At least for relatively low instanton numbers two non-zero mass parameters

are enough.

The functions f and g, for two non-zero masses, were derived in [10]. In this case the

Seiberg-Witten curve has the relatively simple form

y2 = x3 + γu2x2 + k2u4x − 2u(u2 + s+
2x)(u2 + s−

2x) , (5.6)

30



where γ = 1 + k2,

k =
ϑ2

2(0)

ϑ2
3(0)

, s± = sn(m±) =
ϑ3(0)

ϑ2(0)

ϑ1(m±)

ϑ4(m±) ,
(5.7)

and where m± = (m1 ± m2)/2. We can then shift x in (5.6) to obtain the canonical form

in (5.1). If we shift x → x − 1
3γu2 + 2

3s+
2s−

2u and rescale u to u → uϑ12
3 , one can recast

(5.6) into the form of (5.1). The actual expressions for f(u, m1, m2, τ) and g(u, m1, m2, τ)

are given in appendix A.

An elliptic curve with modulus τ̃ , up to a rescaling has the canonical form

y2 = x3 − 1

3ω4
Ẽ4x +

2

27ω6
Ẽ6 (5.8)

where Ẽn = En(τ̃) is the Eisenstein series of modular weight n and ω is the period for the

elliptic curve. Comparing the curves in (5.8) and (5.1), we find that

ω =

(
Ẽ4

f(u, m1, m2, τ)

)1/4

. (5.9)

The coordinate φ is then found by integrating ω over u, with the result

φ = − 1

2πi

∫
du

(
Ẽ4

f(u, m1, m2, τ)

)1/4

, (5.10)

while the dual coordinate φD is found by integrating ωτ̃ over u, leaving

φD = − 1

2πi

∫
du

(
Ẽ4

f(u, m1, m2, τ)

)1/4

τ̃ . (5.11)

The variable τ̃ is solved by equating the series expansion of Ẽ3
4/Ẽ2

6 with f(u,m1,m2,τ)3

g(u,m1,m2,τ)2
and

then inverting the series. The pre-potential, F is then obtained by integrating φD(φ, τ ; mi)

with respect to φ.

6. BPS States of E-string With Low Winding Numbers

In this section we apply the methods of the previous section to the problem of com-

puting the BPS states of E-strings with low winding numbers.
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6.1. The singly wound E-string

Using the equations (5.10) and (5.11) we find that, to leading order in 1/u and up to

an integration constant, φ = − 1
2πi

log u and the difference of the dual coordinate with τφ

is

φD − τφ = − 54ϑ4
4

4π2∆χ(m1, m2)

[
ϑ3

6ϑ3(m1)ϑ3(m2) + ϑ2
6ϑ2(m1)ϑ2(m2)

+ ϑ4
6ϑ4(m1)ϑ4(m2)

]
e2πiφ + O(e4πiφ) ,

(6.1)

where ∆ = E4
3 − E6

2 = 1728η24 and

χ(m1, m2) = ϑ3
2ϑ3(m1)ϑ3(m2) − ϑ2

2ϑ2(m1)ϑ2(m2) + ϑ4
2ϑ4(m1)ϑ4(m2) . (6.2)

More details of this calculation can be found in appendix A. The term inside the square

brackets is the contribution of the E8 lattice with two non-zero Wilson lines. To match

(6.1) to the results of [9], we should multiply this result by 16χ(m1, m2)η
12/ϑ4

4, which

is equivalent to changing the integration constant in (5.10). This shift in the integration

constant means that each term in the phi-expansion of φD − τφ will transform with a

certain modular phase, the implications of which will be discussed in the next subsection.

The Yukawa coupling is now found by taking two φ derivatives on φD and can be written

as

∂2φD

∂φ2
=

∞∑

n=1

n3 Zn e2πinφ . (6.3)

Therefore, the first instanton contribution to the Yukawa coupling, which counts the holo-

morphic curves of degree one on the del Pezzo surface, is

Z1 =
1

η4(τ)

P (mi; τ)

η8(τ)
=

χ1,0

η4(τ)
, (6.4)

where P (mi; τ) is the E8 lattice contribution for generic mi:

P (mi; τ) =
1

2

[ 4∑

ℓ=1

8∏

j=1

ϑℓ(mj)

]
. (6.5)

The function χ1,0 is the E8 level one character. We thus recover the proper E-string

partition function (3.14).
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6.2. The doubly wound E-string; U(2) Yang-Mills on 1
2K3

We could find the contribution to the doubly wound E-string by carrying out the

u-expansions in (5.10) and (5.11) to next order. However, this turns out to be laborious.

Instead we will utilize the recursion relation (4.4) and the existence of gaps. From the

recursion relation we see that

Z2 = 1
8

Z
(0)
2 + 1

24
E2 (Z1)

2 , (6.6)

where Z
(0)
2 has no E2 dependence. The first term in the right hand side of (6.6) is modular

invariant with weight −2, except for a modular phase coming from the non-zero mi. Recall

that ϑ-functions with non-zero arguments pick up extra phases under modular transfor-

mations. Hence, under a modular transformation P (mi; τ) transforms as:

P

(
mi

cτ + d
;
aτ + b

cτ + d

)
= (cτ + d)4 exp

(
i

cτ + d

∑

i

m2
i

)
P (mi; τ) . (6.7)

The modular “phase” can be compensated for in the Yukawa coupling if, under the modular

transformation, φ is shifted by
∑

m2
i /(cτ +d). Indeed, one should recall from the last sub-

section that the origin of the modular phase is precisely because of the choice of a “constant

of integration” in φ. This means that the modular phase for Z
(0)
2 has to be the same as the

modular phase for (Z1)
2. More generally, this is one way of seeing that the nth-instanton

contribution, Zn, must transform as in (4.6).

We now look for generic expressions for Z
(0)
2 that have the correct modular weight

and modular phase.

Notice that P (nmi; nτ) has the same modular phase as (P (mi; τ))n. Ignoring the

modular phase, P (nmi; nτ) is obviously not a modular form of SL(2, ZZ), but it can be

viewed as a modular form of weight four for the subgroup Γ1(n) of SL(2, ZZ). This sub-

group is comprised of matrices

(
a b
c d

)
where ad − bc = 1 and a, d = 1 mod n and

c = 0 mod n. If n is prime, then under the full modular group P (nmi; nτ) can be trans-

formed to P (mi; τ/n+ℓ/n) where ℓ is an integer with 0 ≤ ℓ < n. P (mi; τ/n) is not a Γ1(n)

form, but it is a form for the smaller subgroup Γ(n), which has the additional requirement

that b = 0 mod n.

Hence, for the second instanton, we take the Ansatz for Z
(0)
2 :

Z
(0)
2 =

1

η24

(
f(τ) P (2mi; 2τ) +

1

16τ6
f(−1/τ) P (mi; τ/2)

+
1

16(τ − 1)6
f(−1/(τ − 1)) P (mi; τ/2 + 1/2)

)
.

(6.8)
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In order that Z
(0)
2 have modular weight −2, f(τ) must have weight six. The factors of

1/16 appear from the transformation of P (2mi; 2τ) while the factors of τ−6 come from

transforming f(τ). Since the instanton expansion has integer coefficients and since Z2 is

a modular form (up to the modular phase), the function f(τ) must be a weight six form

of Γ1(2). The Γ1(2) forms are generated by the weight two form ϑ3
4 + ϑ4

4 and the weight

four form ϑ2
8. Hence f(τ) is determined up to two coefficients and has the form

f(τ) =
(
ϑ3

4 + ϑ4
4
) (

a1

(
ϑ3

4 + ϑ4
4
)2

+ a2ϑ2
8
)

, (6.9)

while the other terms in the orbit are given by

f(−1/τ) = −τ6
(
ϑ3

4 + ϑ2
4
) (

a1

(
ϑ3

4 + ϑ2
4
)2

+ a2ϑ4
8
)

f(−1/(τ − 1)) = −(τ − 1)6
(
ϑ4

4 − ϑ2
4
) (

a1

(
ϑ4

4 − ϑ2
4
)2

+ a2ϑ3
8
)

.
(6.10)

The q expansion of Z2 has the form Z2 = q−1 +O(q), that is, there is a gap for the q0

term. The coefficients a1 and a2 in (6.8) can be adjusted to match the first two terms in

the expansion. The unique choice for these coefficients is a1 = 1
12 , a2 = − 1

12 . Thus, f(τ)

is

f(τ) =
1

3
ϑ3

4ϑ4
4
(
ϑ3

4 + ϑ4
4
)

. (6.11)

We have also checked this result by making the direct computation of the second order

term in the pre-potential.

The Z1
2 term that appears in Z2 can be linearized in terms of invariant Weyl orbits.

The number of inequivalent Weyl orbits is equal to the number of level 2 E8 characters,

which is three. As with K3, the three orbits are the trivial, even and odd, with

P0(mi, τ) = P (2mi; 2τ) ,

Peven(mi, τ) =
1

2

(
P (mi; τ/2) + P (mi; τ/2 + 1/2)

)
− P (2mi; 2τ) ,

Podd(mi, τ) =
1

2

(
P (mi; τ/2) − P (mi; τ/2 + 1/2)

)
,

(6.12)

where the trivial orbit is the contribution from lattice vectors that are twice another

lattice vector, the even orbit is the contribution from lattice vectors that have length

squared 0 mod 4 and which are not twice another lattice vector, and the odd orbit is the

contribution from lattice vectors with length squared 2 mod 4. The Z1
2 term is basically
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the tensor product of two level one characters, hence this term is expressible in terms of

the level two Weyl orbits. The result has the very simple form

Z1
2 =

1

η24(τ)

(
P0(0, τ) P0(mi, τ) +

1

135
Peven(0, τ) Peven(mi, τ)

+
1

120
Podd(0, τ) Podd(mi, τ)

)
.

(6.13)

Notice that (6.13) has the structure of a reducible connection of U(2) → U(1)×U(1). The

Pα denote the three types of U(1) fluxes on the del Pezzo surface, with a Pα factor for

each U(1).

The Z
(0)
2 term in (6.8) can also be expressed in terms of the invariant Weyl orbits.

Hence, the entire Z2 term can be written as

Z2 = Z0(τ)P0(mi, τ) + ZevenPeven(mi, τ) + ZoddPodd(mi, τ) , (6.14)

where

Z0(τ) =
1

24η24

(
Ê2P0(0, τ) +

(
ϑ3

4ϑ4
4 − 1

8
ϑ2

8

)(
ϑ3

4 + ϑ4
4
))

Zeven(τ) =
1

24η24

(
1

135
Ê2Peven(0, τ) − 1

8
ϑ2

8
(
ϑ3

4 + ϑ4
4
))

Zodd(τ) =
1

24η24(τ)

(
1

120
Ê2Podd(0, τ) − 1

8
ϑ2

4E4

)
.

(6.15)

Thus, we obtain the partition function of N = 4 SU(2) Yang-Mills on 1
2
K3, corresponding

to three inequivalent types of ‘t Hooft flux on the E8 part of H2(
1
2K3) and subject to

the Kähler limit described in section 3. We now learn from (6.15) that the holomorphic

anomaly in this case is

∂Zλ =
i

2πτ2
2

Cλ

η24(τ)
Pλ(0, τ), (6.16)

where

C0 = 1 Ceven =
1

135
Codd =

1

120
. (6.17)

Pλ(0, τ) corresponds to the class of U(1) ⊂ SU(2) fluxes in H2(
1
2
K3) corresponding to the

’t Hooft flux denoted by λ. Note that there are 28 distinct ‘t Hooft fluxes and that Cλ
−1 is

the number of fluxes for each class λ. We thus conclude that the weight factors Cλ are the

inverses of the number of ‘t Hooft fluxes in each class.6 Each Zλ is the contribution to the

6 The holomorphic anomaly for SU(2)/Z2 on P
2 has a similar dependence on the flux degen-

eracy. In this case there are two classes, each with a prefactor of 1. These correspond to the two

possible choices of ’t Hooft flux, one trivial and one nontrivial.
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SU(2)/Z2 partition function for one particular flux in the class λ. To find the full partition

function, one should sum over each flux in the class. This will cancel out the degeneracy

factors Cλ in (6.16), and so for the full partition function each class comes with an equal

weight in the anomaly equation and is a natural setup to explain the above result.

The three functions P0(mi, τ), Peven(mi, τ) and Peven(mi, τ) can also be written in

terms of level two characters of E8. To determined the characters we note that

E
(1)
8 × E

(1)
8 = (Ising model) E

(2)
8 , (6.18)

where the superscript in parentheses denotes the level of the current algebra. The branch-

ing functions are given by the chracters of the Ising models. After some straight forward

algebra it is easy to check that the level two characters for E8 are given by

χ248 =
1

2

η(τ)

η(2τ)

(
(P (mi, τ))2

η(τ)16
− P (2mi, 2τ)

η(2τ)8

)

χ0 =
1

2

η(τ)

η(τ/2)

(
P (mi, τ)2

η(τ)16
− P (mi/2, τ/2)

η(τ/2)8

)
+

1

2

η(τ + 1)

η(τ/2 + 1/2)

(
P (mi, τ)2

η(τ + 1)16
− P (mi/2 + 1/2, τ/2 + 1/2)

η(τ/2 + 1/2)8

)

χ3875 =
1

2

η(τ)

η(τ/2)

(
P (mi, τ)2

η(τ)16
− P (mi/2, τ/2)

η(τ/2)8

)
−

1

2

η(τ + 1)

η(τ/2 + 1/2)

(
P (miτ)2

η(τ + 1)16
− P (mi/2 + 1/2, τ/2 + 1/2)

η(τ/2 + 1/2)8

)
.

(6.19)

Inverting these equations we have

P0(mi, τ)

η(τ)8
=

η(2τ)8

η(τ)8
(χ0χ1,1 − χ248χ1,2 + χ3875χ2,1)

Peven(mi, τ)

η(τ)8
=

η(τ/2)8

η(τ)8
((χ0 + χ3875)(χ1,1 + χ2,1) + χ248χ1,2)−

η(τ/2 + 1/2)8

η(τ)8
((χ0 − χ3875)(χ1,1 − χ2,1) + χ248χ1,2)+

η(2τ)8

η(τ)8
(χ0χ1,1 − χ248χ1,2 + χ3875χ2,1)

Podd(mi, τ)

η(τ)8
=

η(τ/2)8

η(τ)8
((χ0 + χ3875)(χ1,1 + χ2,1) + χ248χ1,2)+

η(τ/2 + 1/2)8

η(τ)8
((χ0 − χ3875)(χ1,1 − χ2,1) + χ248χ1,2) ,

(6.20)
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where χ1,1, χ1,2 and χ2,1 are the characters of the Ising model.

One can now substitute this into (6.15) and (6.14), and expand to obtain an explicit

expression for Z2 in terms of level 2 characters of E8 and “branching functions” of some

conformal field theory with central charge c = 9/2. Similarly, for the Zn case we end

up with an E8 current algebra at level n, 4 transverse bosonic oscillator and a leftover

conformal system with central charge c = 12n − 4 − 248n
n+30 .

Note that the combinations of η-functions that multiplies the E8 characters can be

written in terms SU(2)1 characters χ
su(2)
0 and χ

su(2)
1 :

η(2τ)8

η(τ)8
= (χ

su(2)
0 − χ

su(2)
1 )4 . (6.21)

6.3. Expressions for Z3 and Z4

We now continue the foregoing computations to obtain the partition functions of the

three- and four-times wrapped E-string, corresponding to SU(3) and SU(4) Yang-Mills on
1
2K3. In this section we give the explicit formulae for Z3 and Z4, and discuss the Ansatz

that is appropriate at higher orders. Even though the techniques we have discussed yield

answers for all n it becomes more and more laborious to write the explicit form for higher

n’s. As we have seen, the higher functions Zn have the form Zn(mi; τ) = gn(mi; τ)/η12n,

where gn(mi; τ) is a modular form of weight 6n − 2 (but with a modular phase of the

form (4.6)). The functions gn(mi; τ) have two types of component: E8 root lattice terms,

containing the mi dependence and coefficient functions for each of these terms. To get Zn

for n ≥ 3 we once again make an Ansatz and use the recurrence relation (4.4) and the gap

condition (4.8). Here we will describe the first Ansatz that we made, present the results,

and in the next sub-section we will justify why the Ansatz is correct, and improve upon it.

The E2-dependent parts of gn are determined by (4.4), and so we need only make an

Ansatz for the E2-independent part. As in the last section, we start with the E8 building

blocks: P (nmi; nτ), and P (mi; (τ + j)/n), j = 0, 1, . . . , (n− 1), since these functions have

the proper periodicity, and the correct mi-dependent phases under modular inversion. The

coefficient functions must be modular forms of Γ(n), and have weight 6(n− 1). Moreover,

since P (nmi; nτ) is invariant under τ → τ + 1, its coefficient must be a modular form of

Γ1(n). We therefore make an Ansatz for this coefficient function, and then determine all

the other terms by taking the orbit under the full modular group. For g2, such an Ansatz
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was sufficient, but not for the higher gn. One must also allow E8-building blocks of the

form:
∏

k

P (nkmi; nkτ)
∏

ℓ

P (mi; (τ + jℓ)/nℓ) , (6.22)

where
∑

nk +
∑

nℓ = n. When all such terms are included the system is highly overdeter-

mined for almost all the coefficients, but there are apparently one or two underdetermined

constants in the final result. Upon closer inspection, it turns out that these undeter-

mined coefficients actually multiply an expression that is identically zero by virtue of some

peculiar identity.

We find the following results for Z3:

Z3 =
1

864 η36

[
A0(τ) P (3mi; 3τ) + A1(τ) P

(
mi;

τ

3

)
+ A1(τ + 1) P

(
mi;

(τ + 1)

3

)

+ A1(τ + 2) P
(
mi;

(τ + 2)

3

)
− 3 E4(τ) (P (mi; τ))3

]

+
1

6
E2(τ) Z1(mi; τ)Z2(mi; τ) − 1

288
(E2(τ))2 (Z1(mi; τ))3 ,

(6.23)

where

A0(τ) = 20
η36(τ)

η12(3τ)
+ 972 η24(τ) ,

A1(τ) = 12

[
15

η36(τ)

η12(τ/3)
+ η24(τ)

]
.

(6.24)

For Z4 we obtain:

Z4 =
1

1152 η48

[
B0(τ) P (4mi; 4τ) + B1(τ) E

(
mi;

τ

4

)
+ B1(τ + 1) E

(
mi;

(τ + 1)

4

)

+ B1(τ + 2) E
(
mi;

(τ + 2)

4

)
+ B1(τ + 3) E

(
mi;

(τ + 3)

4

)

+ B2(τ) E
(
2mi; τ +

1

2

)
+ E6(τ) η24(τ) P (2mi; τ)

]

+
1

12
E2(τ) (3 Z1(mi; τ) Z3(mi; τ) + 2 (Z2(mi; τ))2)

− 1

36
((E2(τ))2 + E4(τ)) (Z1(mi; τ))2 Z2(mi; τ)

+
1

2592
((E2(τ))3 + 3 E2(τ) E4(τ) − E6(τ)) (Z1(mi; τ))4 ,

(6.25)
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where
B0(τ) = ϑ3(0|2τ)4 ϑ4(0|2τ)24

[
32 ϑ3(0|2τ)8

− 20 ϑ3(0|2τ)4 ϑ4(0|2τ)4 − ϑ4(0|2τ)8
]

,

B1(τ) = − 1

226
ϑ3(0|τ/2)4 ϑ2(0|τ/2)24

[
11 ϑ3(0|τ/2)8

+ 22 ϑ3(0|2τ)4 ϑ4(0|τ/2)4 − ϑ4(0|τ/2)8
]

,

B2(τ) =
1

16
ϑ2(0|2τ)4 ϑ4(0|2τ)24

[
11 ϑ2(0|2τ)8

+ 22 ϑ2(0|2τ)4 ϑ3(0|2τ)4 − ϑ3(0|2τ)8
]

.

(6.26)

6.4. The Structure of the Partition Functions: Weyl Orbits

To understand and generalize the Ansätze above, we note several properties of the

partition functions. First, as functions of the mi, the parammeters of the torus are doubly

periodic under translations mi → mi + αi and mi → mi + ταi, where αi is a root of E8.

It follows that the mi dependence of the partition functions must appear as a sum over a

scaled version of the E8-root lattice. The precise scale is set by the modular phase and the

modular invariance. We also know that the function Zn(mi; τ) must contain a part that is

Z1(nmi; nτ) = P (nmi; nτ), coming from the multiple windings of the base of the elliptic

fibration of 1
2
K3. This leads fairly unambiguously to a generic E8 root lattice term in gn

of the form:

Pn,λ(mi; τ) =
∑

w∈W (E8)

∑

α∈Λ(E8)

q
1
2n

(λ+nα)2 e2πi~m·w(~λ+n~α) , (6.27)

where Λ(E8) and W (E8) are, respectively, the root lattice and Weyl group of E8. The

sum over the Weyl group is included since the rational curves of 1
2K3 have an E8 Weyl

invariance, and so the partition functions must have this invariance. While the individual

Pn,λ are not modular invariant, they transform into one another with a modular weight of

4 and a modular phase of the form (4.6).

To count the number of independent functions Pn,λ, one views them as the partition

functions of the diagonal U(1)8 in a product of n copies E8, or equivalently, one thinks

of them as the U(1)8 part of the partition function of the a representation of the current

algebra E
(n)
8 . The number of independent functions, Pn,λ, is thus equal to the number of

characters of E
(n)
8 . For n = 1, 2, 3, 4 this number is 1, 3, 5, 10.

The function gn is then given by:

gn(mi; τ) =
∑

λ

Zλ(τ) Pn,λ(mi; τ) , (6.28)
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where the functions Zλ(τ) are modular forms of weight 6(n− 1) in Γ(n). In particular Z0

must be a modular form of Γ1(n).

One can now understand the role of the general building blocks of the form (6.22).

There are n + 1 functions of the form P (nmi; nτ), and P (mi; (τ + j)/n), but for n ≥ 3

there are more than n + 1 functions Pn,λ. We therefore need to find ways to weight the

characters of independent Weyl orbits in different ways. This can be done explicitly as in

(6.28), or implicitly using expressions like (6.22).

Rewriting the partition functions as weighted sums over Weyl orbits is very natural

from the Yang-Mills perspective, and is also natural in finding universal properties of the

characters [10]. One can thus rewrite the partition function Z3 as follows.

Introduce the functions:

h0(τ) =

∞∑

n1,n2=−∞
qn2

1+n2
2−n1n2 , h1(τ) =

1

2
(h0(τ/3) − h0(τ)) ,

h2(τ) =
η9(τ)

η3(3τ)
; h3(τ) = 27

η9(3τ)

η3(τ)
.

(6.29)

Note that: (i) h0, h2 and h3 are modular forms of Γ1(3) of weights 1, 3 and 3 respecively;

(ii) h0 and h0(τ/3) are, respectively, the partition functions of the root and weight lattice

of SU(3); and (iii) one has h3
0 = h2 + h3. Define the functions Qj as follows:

Q0(mi, τ) = P (3mi; 3τ) = P3,λ=0 ,

Qj(mi, τ) =
1

3

(
P
(
mi;

τ

3

)
+ ωj−1 P

(
mi;

(τ + 1)

3

)
+ ω2(j−1)P

(
mi;

(τ + 2)

3

))
,

j = 1, 2, 3 ,

Q4(mi, τ) =
∑

β∈∆(E8)

∑

α∈Λ(E8)

q
1
6 (β+3α)2 e2πi~m·(~β+3~α) ,

(6.30)

where ω = e2πi/3, and ∆(E8) and Λ(E8) are, respectively, the roots and root lattice

of E8. Note that Qj represents the projection of the root lattice onto those vectors of

(length)2 ≡ 2(j − 1) mod 6. The functions P3,λ are then: Q0, Q4, Q3, (Q1 − Q0) and

(Q2 − Q4).
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One then has:

Z3(mi; τ) =
1

864 η36

[
h2

2

[
(17 h2

2 + 6h2h3 − 27h2
3) + 12 E2 h0h2 + 3 E2

2 h2
0

]
Q0

+ h3

[
( 2
3

h3
2 + 57 h2

2h3 + 204h2h
2
3 + 153h3

3)

− 12 E2 h0 ( 1
9 h2

2 + 7
3 h2h3 + 3 h2

3) + 3 E2
2 h2

0 ( 2
9h2 + h3)

]
Q1

+ h3h
2
1

[
h0 (24 h3

2 + 153 h2h3 + 153 h2
3)

− 4 E2 h2
0 (4 h2 + 9 h3) + E2

2 ( 8
3

h2 + 3 h3)
]

Q2

+ h3h1

[
h2

0 (5 h3
2 + 102 h2h3 + 153 h2

3)

− 4
3 E2 (5 h2

2 + 30h2h3 + 27 h2
3) + 1

3 E2
2 h0 (5 h2 + 9 h3)

]
Q3

− h2
2h

2
1

[
h0 (h2 + 9 h3) − E2

2

]
Q4

]
.

(6.31)

In terms of the Weyl orbits, the function Z3 decomposes as:

Z3(mi; τ) =
1

864 η36

[ [
(17 h4

2 + 20
3

h3
2h3 + 30h2

2h
2
3 + 204h2h

3
3 + 153h4

3)

+ 12 E2 h0(h
3
2 − 1

9h2
2h3 − 7

3h2h
2
3 − 3h3

3)

+ 3 E2
2 h2

0(h
2
2 + 2

9h2h3 + h3)
2
]

P3,λ0

− h2
1

[
h0 (h3

2 − 15 h3
2h3 − 153 h2h

2
3 + 153 h3

3)

− 4 E2 h2
0 (4 h2h3 + 9 h2

3)

− E2
2 (h2

2 + 8
3 h2h3 + 3h2

3)
]

P3,λ1

+ h3h1

[
h2

0 (5 h3
2 + 102 h2h3 + 153 h2

3)

− 4
3 E2 (5 h2

2 + 30h2h3 + 27 h2
3)

+ 1
3 E2

2 h0 (5 h2 + 9 h3)
]

P3,λ2

+ h3

[
( 2
3

h3
2 + 57 h2

2h3 + 204h2h
2
3 + 153h3

3)

− 12 E2 h0 ( 1
9 h2

2 + 7
3 h2h3 + 3 h2

3)

+ 3 E2
2 h2

0 ( 2
9h2 + h3)

]
P3,λ3

+ h3h
2
1

[
h0 (24 h3

2 + 153 h2h3 + 153 h2
3)

− 4 E2 h2
0 (4 h2 + 9 h3) + E2

2 ( 8
3

h2 + 3 h3)
]

P3,λ4

]
.

(6.32)

7. The String Interpretation

We have seen how to compute the number of BPS states for E-strings wrapped n-

times around a circle. In this section we would like to examine the nature of the low-energy
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modes propagating on the E-string. Before doing this, it would be helpful to review the

relationship between multi-wound and singly-wound heterotic strings. It is natural to

compare the E-string to the heterotic string since the heterotic string arises by wrapping

an M5 brane around K3, whereas E-string arises by wrapping an M5 brane around 1
2K3.

7.1. Multi-wound strings in general

It is one of the remarkable properties of M5 branes that when we wrap n of them

around K3 × T 2 we simply obtain the n-wound heterotic string on the torus: One has

started out with n independent objects, but the process of wrapping them results in the

Hilbert space of a single string. The multi-wrapping has effectively resolved itself into a

concatenation of strings. As is well known, the structure of the Hilbert space for multi-

wound heterotic strings can be easily obtained from the Hilbert space of singly wound

strings. In particular if we wish to find BPS states for the heterotic string with momentum

p and winding number n we should consider

pn = NL − 1

For a singly-wound string we have p = NL −1, while for a string wrapped n times we have

p =
NL − 1

n
.

Given that p is an integer, we obtain states with oscillator numbers that are a multiple n

of the basic unit.

Thus, thinking of the heterotic string as arising from an M5-brane wrapping K3, we

see that a “doubled” heterotic string coming from two M5-branes wrapping K3 is in some

sense not a new object but is the same as the original heterotic string merely doubly

wound. Moreover, the BPS states of the doubly wound heterotic string are obtained from

those of the singly-wound string by scaling the torus and doing appropriate projections.

We interpret this as being due to the mild interaction between contiguous heterotic strings.

However, for other types of strings we may not find such simple behavior if there are strong

dynamics between strings (and their parent M5-branes) as they get close to one another.

It is also true that if a heterotic string has some level one group G current algebra as

a symmetry, then the spectrum of BPS states with winding number n has a natural action

under the level n current algebra. This is so because the level one G currents get projected

onto the subset of modes that are 0 mod n in the n-winding sector. It is elementary to

verify that such modes, J i
pn , p ∈ ZZ, satisfy a level n current algebra.
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Now what do our results tell us about the E-string and its dynamics when two or more

strings lie close to one another? For a singly wound E-string the spectrum of BPS states in

(6.4) is consistent with a level one E8 current algebra. Moreover, the low energy dynamics

seems to be that of a free theory, corresponding to the position of the string in transverse

space. The string picture also readily predicts that all BPS partition functions should

have weight (−2, 0). This is because the n bound E-strings have 4 non-compact transverse

modes for their center of mass motion. We also saw that the number of inequivalent flux

classes for n five-branes is equal to the number of inequivalent orbits of Γ8/nΓ8 under the

E8 Weyl group (we mod out by the E8 Weyl group because fluxes which map to each other

under the Weyl group are diffeomorphically equivalent). This matches the number of level

n E8 characters. This suggests that the corresponding n string bound state carries a level

n E8 current algebra. This too agrees with the string picture in the sense that a level n

current algebra appears in the n-wound heterotic string.

However, this is where the similarities end. Namely the partition function we have

found for the BPS states of n-wound E-strings coming from n M5 branes wrapping 1
2K3

cannot be viewed as coming from a simple multi-winding of a one E-string, suggesting that

there are non-trivial strong dynamics between E-strings. In particular our results suggest

that n copies of an E-string can form new bound states, that are new strings in their own

right. We call these E(n)-strings. These should be viewed as bound states of E(i)-strings

at threshold with i < n.

We know that the low energy modes on the E(n)-string seem to have a level n E8

current algebra, along with some other left-over degrees of freedom. Of course, this is only

for the left-movers which couple to the right-moving ground state. The rest of the modes

remain unknown.

7.2. Holomorphic Anomaly and E(n)-String

We have already given an interpretation of holomorphic anomaly from the viewpoint

of N = 4 Yang-Mills in terms of reducible connections U(n) → U(k) × U(n − k). We also

have given an interpretation of the anomaly in terms of holomorphic curve counting. We

would also like to interpret the anomaly from the viewpoint of the E(n)-string. Though a

bit less precise than the other versions, this nevertheless teaches us something about the

spectrum of the Hilbert space of E(n).

It should be clear from the previous discussions that the anomaly is related to the

decomposition E(n) → E(k) + E(n−k). In fact we can see this as follows: The formal

argument that Tr
[
(−1)F F 2

RqL
0 qL0

]
is holomorphic in τ (for non-compact bosons) relies on
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the cancellation of supersymmetric states in pairs to remove all non-holomorphic contri-

butions. However given the existence of a channel E(n) → E(k) + E(n−k), one expects the

Hilbert space of the E(n) string to be gapless. When there is no gap the formal arguments

for holomorphicity can have potential anomalies, basically because the density of states in

a non-compact space may differ between bosons and their fermionic partners. Examples

of this were found in [44]. Thus we find a natural string interpretation for the anomaly.

8. Suggestions for Further Study

We have studied the BPS states of E-strings from various perspectives and thus have

connected the counting of holomorphic curves with the partition functions of N = 4 topo-

logical Yang-Mills on 1
2
K3. We have found that the holomorphic anomaly first observed

for topological strings [13] is related to the holomorphic anomaly for BPS state count-

ing [11,39] which in turn is related to the holomorphic anomaly for topological N = 4

Yang-Mills on manifolds with b+
2 = 1 [12].

The BPS state partition functions can be completely determined using four inputs:

modular invariance, the holomorphic anomaly, the gap, and the winding number 1 partition

function Z1. It is amusing that each of these facts can perhaps be understood from different

perspectives: The holomorphic anomaly is natural from the curve counting viewpoint. The

presence of the gap and SL(2, Z) invariance are natural from both the curve counting and

the N = 4 Yang-Mills viewpoint and the partition function Z1 with a level one E8 current

algebra is natural from the free string description of the single E-string.

There are many possible extensions of this work. We have found the partition func-

tions for left-moving excitations responsible for the BPS states of the E-strings. The

partition functions contain a level n E8 current algebra, along with a computable but not

so easily identifiable piece. It would be nice to associate this extra piece with a specific

two-dimensional quantum field theory.

We have also computed the partition function for N = 4 topological U(n) Yang-Mills

on K3, extending the results in [12]. The derivation has a simple interpretation in terms of

M5 branes, but it is not rigorous, since we assumed that coincident points of M5 branes in

target space do not contribute anything extra to the partition function. It would be nice

to make this statement rigorous by finding a topological deformation that separates the

M5 branes while preserving at least N = 1 supersymmetry. It is also natural to ask if we

can extend these results to other groups. We probably have enough ingredients to actually

do the calculation. It should also be possible to extend the results for K3 to manifolds
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with h2,0 > 1. We gave a heuristic argument in terms of M5 branes that this should be

possible.

We have computed the partition function of N = 4 Yang-Mills on a specific manifold

with b+
2 = 1. There are other manifolds (for example P 2 blown up at n 6= 9 points) for

which we do not know the answer. In fact the case with n < 9 is interesting for counting

BPS states for five-dimensional versions of E-strings [45,46,10]. The count in [9] applies

only to electric M2 branes wrapped inside these del Pezzo surfaces, whereas the N=4

Yang-Mills theory on these spaces computes the magnetic states, which are obtained from

the wrapped 5-brane. Only for 1
2K3, which is elliptic, are these two the same, because

the SL(2, Z) on the fiber generates electric/magnetic self-duality. We can also turn this

around. In particular the computation of the SU(2) partition function on P2 discussed

in [12] (see also [47]) gives the number of BPS bound states of two M5-branes wrapped

around P 2 × S1. Note that this partition function is not related in a simple way to the

partition function of a single M5 brane wrapped around P2 × S1. This shows that also

here new bound strings are appearing at threshold, very much like the E-string story. Also

the fact that the moduli space of instantons on P2 blown up at up to 8 points varies

dramatically as we change the Kähler metric, implies that the N = 4 topological Yang-

Mills partition function on these spaces, which computes the number of BPS states of the

corresponding string, will exhibit similar phenomena. This is then interpreted from the

N = 2 field theory perspective in four dimension as the decay of BPS states as we vary the

vector multiplet moduli of N = 2 theories. It would thus be very interesting to develop

techniques to compute the N = 4 topological U(n) Yang-Mills on these spaces as well.

Note added: After completing this work K. Yoshioka has managed to prove the formula

derived in (6.15) for the partition function of SU(2) on 1
2
K3 [48] using [47] and results

relating differences of Donaldson invariants to Jacobi forms [49].

Acknowledgements

We would like to thank S. Katz, T. Pantev and K. Yoshioka for valuable discussions.

J.M. would like to thank the ITP at Santa Barbara for hospitality during the completion of

this paper. The work of J.M.,D.N. and N.W. was supported in part by funds provided by

the DOE under grant number DE-FG03-84ER-40168. The research of C.V. was supported

in part by NSF grant PHY-92-18167.

45



Appendix A. Computing the BPS States For Singly Wound E-string

Taking the curve in (5.6) and shifting x by x → x − 1
3γu2 + 2

3s+
2s−

2u and rescaling

u to u → uϑ3
12, one is left with a curve in the form of (5.1) with

f(u, m1, m2, τ) =
1

3

(
E4u

4 + (6A − 4γB)u3/ϑ4
3 + 4B2u2/ϑ16

3

)
=

1

3
E4

g(u, m1, m2, τ) =
2

27

(
E6u

6 − 27u5 + 9k2Bu5 + 9γAu5 − 6γ2Bu5 + 12γB2/ϑ12
3

− 18ABu4/ϑ12
3 + 8B3u3/ϑ24

3

)
=

2

27
Ē6 .

(A.1)

The Eisenstein functions, En, can be written in terms of k:

E4 = (1 − k2 + k4) ϑ8
3 , E6 =

1

2
(1 + k2)(1 − 2k2)(2 − k2) ϑ12

3 . (A.2)

The coefficients A and B are given by:

A = s+
2 + s−

2 B = s+
2s−

2 . (A.3)

To leading order in 1/u,
(

Ẽ4

f(u,m1,m2,τ)

)1/4

= 1, however to lowest order τ̃ − τ = 0.

To find the next to leading order contribution to this difference, we equate Ẽ3
4/Ẽ2

6 with

f3/g2. Up to the next to leading order we find that:

Ẽ3
4

Ẽ2
6

=
E4

3

E6
2 +

(
(12A − 4γ)

E4
2

E6
2ϑ3

4 + (54 − (18k2 + 6γ2)B − 18γA)
E4

3

E6
3

)
1

u
+ O(u−2)

(A.4)

Taking a u derivative on both sides of the equation in (A.4) we find

∆E4
2

E6
3

1

q

∂q̃

∂u
= −

(
(12A − 4γ)

E4
2

E6
2ϑ3

4 + (54 − (18k2 + 6γ2)B − 18γA)
E4

3

E6
3

)
1

u2
+ O(u−3),

(A.5)

where q̃ = e2πiτ̃ . Thus,

τ̃−τ =
1

2πi∆

(
(12A − 4γ)

E6

ϑ3
4 + (54 − (18k2 + 6γ2)B − 18γA)E4

)
1

u
+ + O(u−2). (A.6)

If we now substitute (A.6) and (A.3) into (5.11), use the identities

A = 2
ϑ3

2

ϑ2
2

ϑ2
2ϑ3(m1)ϑ3(m2) − ϑ3

2ϑ2(m1)ϑ2(m2)

χ(m1, m2)

B =
ϑ3

4

ϑ2
4

ϑ3
2ϑ3(m1)ϑ3(m2) − ϑ2

2ϑ2(m1)ϑ2(m2) − ϑ4
2ϑ4(m1)ϑ4(m2)

χ(m1, m2)
,

(A.7)

integrate with respect to u, and then make the lowest order approximation u = e−2πiφ, we

find the equation in (6.1).
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