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Abstract

Little string theories (LSTs) are UV complete non-local 6D theories decoupled from
gravity in which there is an intrinsic string scale. In this paper we present a systematic
approach to the construction of supersymmetric LSTs via the geometric phases of F-theory.
Our central result is that all LSTs with more than one tensor multiplet are obtained by a mild
extension of 6D superconformal field theories (SCFTs) in which the theory is supplemented
by an additional, non-dynamical tensor multiplet, analogous to adding an affine node to an
ADE quiver, resulting in a negative semidefinite Dirac pairing. We also show that all 6D
SCFTs naturally embed in an LST. Motivated by physical considerations, we show that in
geometries where we can verify the presence of two elliptic fibrations, exchanging the roles
of these fibrations amounts to T-duality in the 6D theory compactified on a circle.
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1 Introduction

One of the concrete outcomes from the post-duality era of string theory is the wealth of

insights it provides into strongly coupled quantum systems. In the context of string com-

pactification, this has been used to argue, for example, for the existence of novel interacting

conformal field theories in spacetime dimensions D > 4. In a suitable gravity-decoupling

limit, the non-local ingredients of a theory of extended objects such as strings are instead

captured by a quantum field theory with a local stress energy tensor.

String theory also predicts the existence of novel non-local theories. Our focus in this

work will be on 6D theories known as little string theories (LSTs).1 For a partial list of

LST constructions, see e.g. [1–7]. In these systems, 6D gravity is decoupled, but an intrinsic

string scale Mstring remains. At energies far below Mstring, we have an effective theory which

is well-approximated by the standard rules of quantum field theory with a high scale cutoff.

However, this local characterization breaks down as we reach the scale Mstring. The UV

completion, however, is not a quantum field theory.2

The mere existence of little string theories leads to a tractable setting for studying many

of the essential features of string theory –such as the presence of extended objects– but with

fewer complications (such as coupling to quantum gravity). It also raises important concep-

tual questions connected with the UV completion of low energy quantum field theory. For

example, in known constructions these theories exhibit T-duality upon toroidal compactifi-

cation [4, 5, 9] and a Hagedorn density of states [10], properties which are typical of closed

string theories with tension set by M2
string.

Several families of LSTs have been engineered in the context of superstring theory by

using various combinations of branes probing geometric singularities. The main idea in

many of these constructions is to take a gravity-decoupling limit where the 6D Planck scale

Mpl → ∞ and the string coupling gs → 0, but with an effective string scale Mstring held

fixed. Even so, an overarching picture of how to construct (and study) LSTs has remained

somewhat elusive.

Our aim in this work is to give a systematic approach for realizing LSTs via F-theory

and to explore its consequences.3 To do this, we will use both a bottom up characterization

of little string theories on the tensor branch (i.e. where all effective strings have picked up

a tension), as well as a formulation in terms of compactifications of F-theory. To demon-

strate UV completeness of the resulting models we will indeed need to use the F-theory

characterization.

1We leave open the question of whether non-supersymmetric little string theories exist.
2In fact, all known properties of LSTs are compatible with the axioms for quasilocal quantum field

theories [8].
3More precisely, we focus on the case of geometric phases of F-theory, ignoring the (small) list of possible

models with “frozen” singularities (see e.g. [11–13]). We return to this point later in section 10 when we
discuss the mismatches between field theory motivated LST constructions and their possible lifts to string
constructions.
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Figure 1: Depiction of how to construct the base of an F-theory model for an LST. All
LST bases are obtained by adding one additional curve to the base for a 6D SCFT. This
additional curve can intersect either one or two curves of the SCFT base. Much as in the
study of Lie algebras, LSTs should be viewed as an “affine extension” of SCFTs.

Recall that in F-theory, we have a non-compact base B of complex dimension two, which

is supplemented by an elliptic fibration to reach a non-compact Calabi-Yau threefold. In

the resolved phase, the intersection pairing of the base coincides with the Dirac pairing for

two-form potentials of the theory on its tensor branch. For an SCFT, we demand that the

Dirac pairing is negative definite. For an LST, we instead require that this pairing is negative

semidefinite, i.e., we allow for a non-trivial null space.

F-theory also imposes the condition that we can supplement this base by an appropriate

elliptic fibration to reach a non-compact Calabi-Yau threefold. In field theory terms, this

is usually enforced by the condition that all gauge theoretic anomalies are cancelled on the

tensor branch of the theory. For 6D gauge theories which complete to LSTs, this condition

was discussed in detail in reference [14]. Even when no gauge theory interpretation is avail-

able, this means that in the theory on the tensor branch, some linear combination of tensor

multiplets is non-dynamical, and instead defines a dimensionful parameter (effectively a UV

cutoff) for the 6D effective field theory.

In F-theory terms, classifying LSTs thus amounts to determining all possible elliptic

Calabi-Yau threefolds which support a base B with negative semidefinite intersection pairing.

One of our results is that all LSTs are given by a small extension of 6D SCFTs, i.e. they

can always be obtained by adding just one more curve to the base of an SCFT so that the

resulting base has an intersection pairing with a null direction. Put in field theory terms,

we find that the string charge lattice of any LST with more than one tensor multiplet is an

affine extension of the string charge lattice of an SCFT, with the minimal imaginary root

of the lattice corresponding to the little string charge. Hence, much as in the case of Lie

algebras, all LSTs arise from an affine extension of SCFTs. See figure 1 for a depiction of

this process.

In fact, the related classification of 6D SCFTs has already been successfully carried out.
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See e.g. the partial list of references [15–21]. What this means is that we can freely borrow

this structure to establish a classification of LSTs. Much as in reference [20], we establish a

similar “atomic classification” of how LSTs are built up from smaller constitutent elements.

We find that the base of an F-theory geometry is organized according to a single spine of

“nodes” which are decorated by possible radicals, i.e. links which attach to these nodes. As

opposed to the case of SCFTs, however, the topology of an LST can be either a tree or a

loop.

Using this characterization of LSTs, we also show that all 6D SCFTs can be embedded

in some LST by including additional curves and seven-branes:

6D SCFTs→ 6D LSTs. (1.1)

Deformations in both Kähler and complex structure moduli for the LST then take us back

to the original SCFT. It is curious to note that although many 6D SCFTs cannot be coupled

to 6D supergravity, they can always be embedded in another theory with an intrinsic length

scale.

A hallmark of all known LSTs is T-duality, that is, by compactifying on a small circle,4

we reach another 6D LST compactified on a circle of large radius. This motivates a phys-

ical conjecture that all LSTs exhibit such a T-duality. In geometries where we can verify

the presence of two elliptic fibrations, we find that exchanging the roles of these fibrations

amounts to T-duality in the 6D theory compactified on a circle.5 In some cases, we find

that T-duality takes us to the same LST. For a recent application of this double elliptic

fibration structure in the study of the correspondence between instantons and monopoles

via compactifications of little string theory, see reference [23].

The rest of this paper is organized as follows. In section 2 we state necessary bottom up

conditions to realize a LST. This includes the core condition that the Dirac pairing for an

LST is a negative semidefinite matrix. After establishing some of the conditions this enforces,

we then turn in section 3 to the rules for constructing LSTs in F-theory. We also explain the

(small) differences between the rules for constructing LSTs versus SCFTs. Section 4 gives

some examples of known constructions of LSTs, and their embedding in F-theory. In section

5 we show how decoupling a tensor multiplet to reach an SCFT leads to strong constraints

on possible F-theory models. In section 6 we present an atomic classification of bases, and

in section 7 we turn to the classification of possible elliptic fibrations over a given base. In

section 8 we demonstrate that every 6D SCFT constructed in F-theory can be embedded into

at least one 6D LST constructed in F-theory. In section 9 we show how T-duality of the LST

shows up as the existence of a double elliptic fibration structure, and the exchange in the

roles of the elliptic fibers. As a consequence, we show that LSTs can acquire discrete gauge

symmetries for particular values of their moduli. In section 10 we discuss the small mismatch

4That is, small when compared with the effective string scale.
5This has been independently observed by Daniel Park [22].
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with possible LST constructions suggested by field theory, and their potential embedding in

a non-geometric phase of an F-theory model. Section 11 contains our conclusions, and some

additional technical material is deferred to a set of Appendices.

2 LSTs from the Bottom Up

In this section we state some of the conditions necessary to realize a supersymmetric little

string theory.

We consider 6D supersymmetric theories which admit a tensor branch (which can be zero

dimensional, as will be the case for many LSTs), that is, we will have a theory with some

dynamical tensor multiplets, and vacua parameterized (at low energies) by vevs of scalars

in these tensor multiplets. We will tune the vevs of the dynamical scalars to zero to reach a

point of strong coupling. Our aim will be to seek out theories in which this region of strong

coupling is not described by an SCFT, but rather, by an LST. In addition to dynamical

tensor multiplets, we will allow the possibility of non-dynamical tensor multiplets which set

mass scales for the 6D supersymmetric theory.

Recall that in a theory with T tensor multiplets, we have scalars SI and their bosonic su-

perpartners B−,Iµν , with anti-self-dual field strengths. The vevs of the SI govern, for example,

the tension of the effective strings which couple to these two-form potentials. In a theory

with gravity, one must also include an additional two-form potential B+
µν coming from the

graviton multiplet. Given this collection of two-form potentials, we get a lattice of string

charges Λstring, and a Dirac pairing:6

Λstring × Λstring → Z, (2.1)

in which we allow for the possibility that there may be a mull space for this pairing. It

is convenient to describe the pairing in terms of a matrix A in which all signs have been

reversed. Thus, we can write the signature of A as (p, q, r) for q self-dual field strengths, p

anti-self-dual field strengths, and r the dimension of the null space.

Now, in a 6D theory with q self-dual field strengths and p anti-self-dual field strengths,

the signature of A is (p, q, 0). For a 6D supergravity theory with T tensor multiplets, the

signature is (T, 1, 0). In fact, even more is true in a 6D theory of gravity: diffeomorphism

invariance enforces the condition found in [24] that detA = −1.

Now, since we are interested in supersymmetric theories decoupled from gravity we arrive

at the necessary condition that the signature of A is (p, 0, r). In this special case, each of

our two-form potentials has a real scalar superpartner, which we denote as SI . The kinetic

term for these scalars is:

Leff ⊃ AIJ∂S
I∂SJ . (2.2)

6Here we ignore possible torsional contributions to the pairing.
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Observe that if A has a zero eigenvector, some linear combinations of the scalars will have

a trivial kinetic term. When this occurs, these tensor multiplets define parameters of the

effective theory on the tensor branch (i.e. they are non-dynamical fields).

This leaves us with two general possibilities. Either A is positive definite (i.e. A > 0), or

it is positive semidefinite (i.e. A ≥ 0). Recall, however, that to reach a 6D SCFT, a necessary

condition is A > 0 [14, 15, 20, 21]. We summarize the various possibilities for self-consistent

6D theories:
6D SUGRA 6D LST 6D SCFT

signature (T, 1, 0) (p, 0, r) (T, 0, 0)

detA : detA = −1 detA = 0 detA > 0

(2.3)

For now, we have simply indicated an LST as any theory where detA = 0.

As already mentioned, when detA = 0, some linear combinations of the scalar fields for

tensor multiplets will have trivial kinetic term. This means that they are better viewed as

defining dimensionful parameters. For example, in the case of a 6D theory with a single

gauge group factor and no dynamical tensor multiplets, this parameter is just the overall

value Snull = 1/g2
YM , with gYM the Yang-Mills coupling of a gauge theory. Indeed, this

Yang-Mills theory contains solitonic solutions which we can identify with strings:

F = − ∗4 F, (2.4)

that is, we dualize in the four directions transverse to an effective string. More generally,

we can expect A to contain some general null space, and with each null direction, a non-

dynamical tensor multiplet of parameters:

−→v null ≡ N1
−→v 1 + ...+NT

−→v T such that A · −→v null = 0. (2.5)

for the two-form potential, and:

Snull = N1S
1 + ...+NTS

T (2.6)

for the corresponding linear combination of scalars. Since they specify dimensionful param-

eters, we get an associated mass scale, which we refer to as Mstring:

Snull = M2
string. (2.7)

Returning to our example from 6D gauge theory, the tension of the solitonic string in equation

(2.4) is just 1/g2
YM = M2

string. At energies above Mstring, our effective field theory is no longer

valid, and we must provide a UV completion.

On general grounds, A ≥ 0 could have many null directions. However, in the case where

where we have a single interacting theory, i.e. when A is simple, there are further strong

restrictions. As explained in reference [25], when A ≥ 0 is simple, all of its minors are

7



positive definite: Aminor > 0. Consequently, there is precisely one zero eigenvalue, and the

eigenvector is a positive linear combination of basis vectors. Consequently, there is only one

dimensionful parameter Mstring. This also means that if we delete any tensor multiplet, we

reach a positive definite intersection pairing, and consequently, a 6D SCFT. What we have

just learned is that if we work in the subspace orthogonal to the ray swept out by Snull, then

the remaining scalars can all be collapsed to the origin of moduli space. When we do this,

we reach the LST limit.

We shall refer to this property of the matrix A as the “tensor-decoupling criterion” for

an LST. As we show in subsequent sections, the fact that decoupling any tensor multiplet

takes us to an SCFT imposes sharp restrictions.

Even so, our discussion has up to now focussed on some necessary conditions to reach a

UV complete theory different from a 6D SCFT. In references [14,21] the specific case of 6D

supersymmetric gauge theories was considered, and closely related consistency conditions

for UV completing to an LST were presented. Here, we see the same consistency condition

A ≥ 0 appearing for any effective theory with (possibly non-dynamical) tensor multiplets.

Indeed, simply specifying the tensor multiplet content provides an incomplete character-

ization of the tensor branch. In addition to this, we will also have vector multiplets and

hypermultiplets. For theories with only eight real supercharges, anomaly cancellation often

imposes tight consistency conditions.

There is, however, an important difference in the way anomaly cancellation operates in a

6D SCFT compared with a 6D LST. The crucial point is that because A has a zero eigenvalue,

there is a non-dynamical tensor multiplet which does not participate in the Green-Schwarz

mechanism. In other words, on the tensor branch of an LST with T tensor multiplets,

at most only T − 1 participate. This is not particularly worrisome since as explained in

reference [24] and further explored in reference [26], there is in general a difference between

the tensor multiplets which participate in anomaly cancellation and those which appear in

the tensor branch of a general 6D theory.

Though we have given a number of necessary conditions that any putative LST must

satisfy, to truly demonstrate their existence we must pass beyond effective field theory,

embedding these theories in a UV complete framework such as string theory. We therefore

now turn to the F-theory realization of little string theories.

3 LSTs from F-theory

In this section we spell out the geometric conditions necessary to realize LSTs in F-theory.

Recall that in a little string theory, we are dealing with a 6D theory which contains strings

with finite tension. As such, they are an intermediate case between the case of a 6D super-

conformal field theory (which only contains tensionless strings), and the full string theory

(i.e., one in which gravity is dynamical).
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Any supersymmetric F-theory compactification to six dimensions is defined by an ellip-

tically fibered Calabi-Yau threefold X → B. Here, X is the total space and B is the base.

The elliptic fibration can be described by a local Weierstrass model

y2 = x3 + fx+ g, (3.1)

where f and g are local functions on B, that globally are sections respectively of OB(−4KB)

and OB(−6KB), KB being the canonical class of B. The discriminant of the elliptic fibration

is:

∆ ≡ 4f 3 + 27g2 (3.2)

which globally is a section of OB(−12KB). The discriminant locus ∆ = 0 is a divisor,

and its irreducible components tell us the locations of degenerations of elliptic fibers. Such

singularities determine monodromies for the complex structure parameter τ of the elliptic

fiber, which is interpreted in type IIB string theory as the axio-dilaton field. In type IIB

language, the discriminant locus signals the location of seven-branes in the F-theory model.

In F-theory, decoupling gravity means we will always be dealing with a non-compact

base B. When all curves of B are of finite non-zero size, we get a 6D effective theory with

a lattice of string charges:

Λstring = Hcpct
2 (B,Z). (3.3)

The intersection form defines a canonical pairing:

Aintersect : Λstring × Λstring → Z, (3.4)

which we identify with the Dirac pairing:

ADirac = Aintersect. (3.5)

We also introduce the “adjacency matrix”

Aadjacency = −ADirac. (3.6)

To streamline the notation, we shall simply denote the adjacency matrix as A. The two-form

potentials of the 6D theory arise from reduction of the four-form potential of type IIB string

theory. Additionally, the volumes of the various compact two-cycles translate to the real

scalars of tensor multiplets:

SI ∝ Vol(ΣI). (3.7)

In the F-theory model, the appearance of a null vector for Aintersect means that some of these

moduli are not dynamical in the 6D effective field theory. Rather, they define dimension-

ful parameters / mass scales. This follows from the Grauert-Artin contractibility criterion

in algebraic geometry [27, 28], which states that any given curve in a complex surface is
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contractible if and only if the intersection matrix of its irreducible components is negative

definite. This simple geometrical criterion gives a necessary condition (A > 0) for engineer-

ing SCFTs and implies that any null eigenvalues of A correspond to non-contractible curves,

which thus define intrinsic energy scales.

To define an F-theory model, we need to ensure that there is an elliptic Calabi-Yau X

in which B is the base. A necessary condition for realizing the existence of an elliptic model

is that the collection of curves entering in a base B are obtained by gluing together the

“non-Higgsable clusters” (NHCs) of reference [29] via P1’s of self-intersection −1.

Recall that the non-Higgsable clusters are given by collections of up to three P1’s in which

the minimal singular fiber type is dictated by the self-intersection number of the P1. The

self-intersection number, and associated gauge symmetry and matter content are as follows:

Self-intersection −3 −4 −5 −6 −7 −8

Gauge Theory su3 so8 f4 e6 e7⊕ 1
2
56 e7

(3.8)

Self-intersection −9 −10 −11 −12

Gauge Theory e8⊕ 3 inst e8⊕ 2 inst e8⊕ 1 inst e8

(3.9)

Self-intersection −3,−2 −2,−3,−2 −3,−2,−2

Gauge Theory g2×su2
⊕ 1

2
(7+1,2)

su2×so7×su2
⊕ 1

2
(2,8,1)⊕ 1

2
(1,8,2)

g2×sp1
⊕ 1

2
(7,2)⊕ 1

2
(1,2)

(3.10)

in addition, we can also consider a single −1 curve, and configurations of −2 curves arranged

either in an ADE Dynkin diagram, or its affine extension (in the case of little string theories).

The local rules for building up an F-theory base compatible with these NHCs amount to

a local gauging condition on the flavor symmetries of a −1 curve: We scan over product

subalgebras of the e8 flavor symmetry which are also represented by the minimal fiber types

of the NHCs. When they exist, we get to “glue” these NHCs together via a −1 curve.

For a general elliptic Calabi-Yau threefold, the curves appearing in a given gluing con-

figuration can lead to rather intricate intersection patterns. For example, two curves may

intersect more than once, and may therefore form either a closed loop, or an intersection with

some tangency. Additionally, we may have three curves all meeting at the same point, as in

the case of the type IV Kodaira fiber. Finally, a single −1 curve may in general intersect

more then just two curves. The possible ways to locally glue together such NHCs has also

been worked out explicitly in reference [29] (see also [30]). The main idea, however, is that

since the −1 curve theory defines a 6D SCFT with E8 flavor symmetry, we must perform a

gluing compatible with gauging some product subalgebra of the Lie algebra e8.

What this means in general is that the adjacency matrix provides only a partial character-

ization of intersecting curves in the base of a geometry. To handle these different possibilities,
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we therefore introduce the following notation:

Normal Intersection: a, b or ab (3.11)

Tangent Intersection: a||b (3.12)

Triple Intersection: a
b

5 c (3.13)

Looplike configuration: //a1...ak//. (3.14)

Now, decoupling gravity to reach an SCFT or an LST leads to significant restrictions

on the possible ways to glue together NHCs. In the case of a 6D SCFT, contractibility of

all curves in the base means first, that all of the compact curves are P1’s, and further, that

a −1 curve can intersect at most two other curves. Additionally, all off-diagonal entries of

the intersection pairing are either zero or one. In the case of LSTs, however, the curves of

the base could include a T 2, and a −1 curve can potentially intersect more than two curves.

Additionally, there is also the possibility that the off-diagonal entries of the adjacency matrix

may be different than just zero or one.

Again, we stress that the intersection pairing provides only partial information. For

example, a curve of self-intersection zero could refer either to a P1, or to a T 2. In the case of

a T 2 of self-intersection zero, the normal bundle need not be trivial, but could be a torsion

line bundle instead. Additionally, an off-diagonal entry in the adjacency matrix which is

two may either refer to a pair of curves which intersect twice, or to a single intersection of

higher tangency. The case of tangent intersections violates the condition of normal crossing

(which is known to hold for SCFTs [15] but fails for LSTs). An additional type of normal

crossing violation appears when we blow down a −1 curve meeting more than two curves. In

Appendix B we determine the types of matter localized when there are violations of normal

crossing.

3.1 Geometry of the Gravity-Decoupling Limit

We now discuss how to obtain limits of F-theory compactifications in which gravity is de-

coupled, following a program initiated in [31], worked out in detail in [32] (see also [33]), and

extended to the case of 6D SCFTs in [34]. For this purpose, we consider F-theory from the

perspective of the type IIB string, with the volume of the base B of the F-theory compacti-

fication providing a Planck scale for the compactified theory. We will see that the quest for

decoupled gravity leads to the same condition on semidefiniteness of the intersection matrix

of the compact curves, and moreover we will see how to ensure that the F-theory base B in

such cases has a metric of the appropriate kind.
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3.1.1 The Case of Compact Base

We begin with the case in which the F-theory base B is a compact surface, and suppose we

have a sequence of metrics (specified by their Kähler forms ωi) which decouple gravity in the

limit i→∞. In particular, the volume must go to infinity: limi→∞ vol(ωi) =∞.

To investigate the geometry of this family of metrics, we temporarily rescale them and

consider the Kähler forms

ω̃i :=
ωi√

vol(ωi)
. (3.15)

The rescaled metrics all have volume 1, and since the closure of the set of volume 1 Kähler

classes on B is compact, there must be a convergenct subsequence of Kähler classes [ω̃ij ]

whose limit

[ω̃∞] = lim
j→∞

[ω̃ij ] (3.16)

lies in the closure of the Kähler cone. If the original sequence was chosen generically, the

limit of the rescaled sequence will be an interior point of the Kähler cone, and in this case all

areas and volumes grow uniformly as we take the limit of the original sequence ωi. Gravity

decouples, but all other physical quantities measured by areas and volumes approach either

zero or infinity, leaving us with a trivial theory.

However, if the rescaled limit (3.16) lies on the boundary of the Kähler cone, more

interesting things can happen. In favorable circumstances, such as those present in Mori’s

cone theorem [35] and its generalizations [36], we can form another complex space B out

of B by identifying pairs of points p and q whenever they are both contained in a curve C

whose area vanishes in the limit. There is a holomorphic map π : B → B for which all such

curves of zero limiting area are contained in fibers π−1(t), t ∈ B.

As already pointed out in [32], there are two qualitatively different cases: B might be a

surface or it might be a curve. (It is not possible for B to be a point since there are some

curves C ⊂ B whose area does not vanish in the limit.) If B is a surface, then the map

π : B → B contracts some curves to points, and may create singularities in B. It is widely

believed, and has been mathematically proven under certain hypotheses [37, 38], that the

limiting metric ω̃∞ can be interpreted as a metric ωB on the smooth part of B.

On the other hand, if B is a curve, so that π has curves Σt, t ∈ B as fibers, then we again

expect the limiting metric ω̃∞ to be induced by a metric on B, although there are fewer

mathematical theorems covering this case. (See [39] for one known theorem of this kind.)

In general, we do not expect the curves contracted by π to necessarily have zero area in

the gravity-decoupling limit. This can be achieved by starting with a reference Kähler form

ω0 on B as well as a (possibly degenerate) Kähler form ωB on B, and constructing a limit

of the form

lim
t→∞

(ω0 + tπ∗(ωB)) . (3.17)

In the case of an SCFT, we wish all curves contracted by π to be at zero area in the limit,
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so in that case we should omit ω0 and simply scale up π∗(ωB)).

3.1.2 The Case of Non-Compact Base

Our discussion of the compact bases makes it clear that the decoupling limit only depends

on the metric in a (finite volume) neighborhood of a collection of curves on the original

F-theory base B, together with a rescaling which takes that neighborhood to infinite volume

and smooths out its features in the process. This analysis can be applied to an arbitrary

base, compact or non-compact.

If the collection of curves is disconnected, the corresponding points on B to which the

collection is mapped will be moved infinitely far apart during the rescaling process, thus

leading to several decoupled quantum theories. So to study a single theory, it suffices to

consider a connected configuration. To reiterate the two cases we have found:

1. We may have a connected collection of curves Σj which can be simultaneously con-

tracted to a singular point on a space B. (The contractibility implies that the in-

tersection matrix is negative definite.) When the metric on B is rescaled, gravity is

decoupled giving a 6D SCFT (in which every curve in the collection remains at zero

area).

Alternatively, we can combine this rescaled metric with another reference metric which

provides finite area to each Σj. This produces a quantum field theory in the Coulomb

branch of the SCFT.

2. Or we may have a connected collection of curves Σj which are all contained in a

single fiber of a map π : B → B, and include all components of that fiber. (This

implies that the intersection matrix is negative semidefinite, with a one-dimensional

zero eigenspace.) We combine a reference metric on B that sets the areas of the

individual Σj’s with a metric on B which is rescaled to decouple gravity, yielding a

little string theory (with the string provided by a D3-brane wrapping the entire fiber).

The overall area of the fibers of π sets the string scale, and the possible areas of the

Σj’s map out the moduli space of the theory. Gravity is decoupled, and we find an

LST.

Note that in the second case, there are two distinct possibilities for the fibers of the map π:

the general fiber can be a curve of genus 0 or a curve of genus 1. In the case of genus 1, it is

possible for the central fiber to have a nontrivial multiplicity, that is, the fiber can take the

form mΣ for some m > 1.
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4 Examples of LSTs

In the previous section we gave the general rules for constructing LSTs. Our plan in this

section will be to show how the F-theory realization allows us to recover well-known examples

of LSTs previously encountered in the literature.

To this end, we begin by first showing how LSTs with sixteen supercharges arise in

F-theory constructions. After this, we turn to known constructions of LSTs with eight

supercharges (i.e. minimal supersymmetry). This will also serve to illustrate how F-theory

provides a single coherent framework for realizing LSTs.

4.1 Theories with Sixteen Supercharges

To set the stage, we begin with little string theories with sixteen supercharges. In this case,

we have two possibilities given by N = (2, 0) supersymmetry or N = (1, 1) supersymmetry.

Note that only the former is possible in the context of 6D SCFTs.

One way to generate examples of N = (2, 0) LSTs is to take k M5-branes filling R5,1

and probing the geometry S1
⊥ × C2 with S1

⊥ a transverse circle of radius R. To reach the

gravity-decoupling limit for an LST we simultaneously send the radius R→ 0 and Mpl →∞
whilst holding fixed the effective string scale. In this case, it is the effective tension of an

M2-brane wrapped over the circle which we need to keep fixed. Performing a reduction along

this circle, we indeed reach type IIA string theory with k NS5-branes. By a similar token, we

can also consider IIB string theory with k NS5-branes. This realizes LSTs with N = (1, 1)

supersymmetry.

T-dualizing the k NS5-branes of type IIA, we obtain type IIB string theory on the local

geometry given by a configuration of −2 curves arranged in the affine Âk−1 Dynkin diagram.

Similarly, we also get an LST by taking type IIA string theory on the same geometry.

Consider next the F-theory realization of these little string theories. First of all, we reach

the aforementioned theories by working with F-theory models whose associated Calabi–Yau

threefold takes the form T 2 × S, in which S → C is an elliptically fibered (non-compact)

Calabi-Yau surface. If we treat the T 2 factor as the elliptic fiber of F-theory, we get IIB

on S, and if we treat the elliptic fiber of S as the elliptic fiber of F-theory, we get (after

shrinking the T 2 factor to small size) F-theory with base T 2 × C, which is dual to IIA on

S. To refer to both cases, it will be helpful to label the auxiliary elliptic curve T 2 as T 2
F (for

fiber) and the other elliptic curve as T 2
S (since it lies in the surface S).

Now, by allowing S to develop a singular elliptic fiber, we can realize the same local

geometries obtained perturbatively. For example, the C2/Zk lifts to a Kodaira fiber of type

Ik. Resolving this local singularity, we find k compact cycles ΣI ' P1’s which intersect

according to the affine Âk−1 Dynkin diagram. In this case the null divisor class is:

[Σnull] = [Σ1] + ...+ [Σk] (4.1)
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Figure 2: Depiction of the tensor branch of the N = (2, 0) Â3 LST. In the top figure, we
engineer this example using spacetime filling M5-branes probing the geometry S1

⊥ × C2. In
the dual F-theory realization, we have four −2 curves in the base, which are arranged as the
affine Â3 Dynkin diagram. The Kähler class of each −2 curve in the F-theory realization
corresponds in the M-theory realization to the relative separation between the M5-branes.

that is, it is the ordinary minimal imaginary root of Âk−1. By shrinking T 2
F to small size,

this engineers in F-theory the N = (2, 0) LST of k M5-branes, or of k NS5-branes in type

IIA. (See figure 2 for a depiction of the A-type N = (2, 0) LSTs.) In the other case, one

obtains F-theory on T 2×C whose fibers have an Ik singularity along T 2×{0}. Then [Σnull]

is precisely the class of the F-theory fiber T 2
S , and supersymmetry enhances to N = (1, 1).

More generally, we can consider any of the degenerations of the elliptic fibration classified

by Kodaira, i.e. the type In, II, III, IV, I
∗
n, II

∗, III∗, IV ∗ fibers and produce a N = (2, 0)

model with that degeneration occuring as a curve configuration on the F-theory base, as

well as a N = (1, 1) model with that same degeneration occurring as the F-theory fiber over

some T 2 in the base.

As a brief aside, a convenient way to realize examples of both the N = (1, 1) and

N = (2, 0) theories is to consider F-theory on the Schoen Calabi-Yau threefold dP9 ×P1 dP9

[40]. Then, we can keep the elliptic fiber on one dP9 factor generic, and allow the other to

degenerate. Switching the roles of the two fibers then moves us from the IIA to IIB case.

Note that although this strictly speaking only yields eight real supercharges (as we are on

a Calabi-Yau threefold), in the rigid limit used to reach the little string theory, we expect

a further enhancement to either N = (2, 0) or N = (1, 1) supersymmetry. The specific

chirality of the supersymmetries depends on which elliptic curve we take to be in the base,

and which to be in the fiber of the corresponding F-theory compactification.

Let us also address whether each of the different Kodaira fiber types leads us to a dif-
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ferent little string theory. Indeed, some pairs of Kodaira fiber types lead to identical gauge

symmetries in the effective field theory. To illustrate, consider the type IV Kodaira fiber,

and compare it with the type I3 fiber. There is a complex structure deformation which moves

the triple intersection appearing in the type IV case out to the more generic type I3 case.

This modulus, however, is decoupled from the 6D little string theory. The reason is that if

we consider a further compactification on a circle, we reach a 5D gauge theory which is the

same for both fiber types. The additional complex structure modulus from deforming IV to

I3 does not couple to any of the modes of the 5D theory. So, there does not appear to be any

difference between these theories. In other words, we should classify all of the N = (2, 0)

little string theories in terms of affine ADE Dynkin diagrams rather than in terms of Kodaira

fiber types.

For the N = (1, 1) little string theories, the absence of a chiral structure actually leads

to more possibilities. For example, if we consider M-theory on an ADE singularity compact-

ified on a further circle, we have the option of twisting by an outer automorphism of the

simply laced ADE Lie algebra [41]. In other words, for the N = (1, 1) theories we have an

ABCDEFG classification according to all of the simple Lie algebras.

To realize these LSTs in F-theory, we make an orbifold of the previous construction.

Suppose that S → C is an elliptically fibered (non-compact) Calabi–Yau surface which has

compatible actions of Zm on the base and on the total space, such that the action on the

total space preserves the holomorphic 2-form. Then Zm acts on T 2
F × S with the action on

T 2 being translation by a point of order m. The quotient X := (T 2
F × S)/Zm is then an

elliptically fibered Calabi–Yau threefold (with two genus one fibrations as before).

The elliptic fibration X → (T 2
F × C)/Zm leads to an F-theory model with N = (1, 1)

supersymmetry. Note that the base (T 2
F ×C)/Zm of the F-theory fibration contains a curve

Σ of genus 1 and self-intersection 0 such that mΣ can be deformed into a one-parameter

family although no smaller multiple can be deformed. Note also that if the action of Zm on

S preserves the section of the fibration S → C, then X → (T 2
F × C)/Zm also has a section

and, as we will explain in section 7.1.1, m ∈ {2, 3, 4, 6} since every elliptic fibration with

section has a Weierstrass model [42].

There is a second fibration X → (S/Zm) which is a genus one fibration without a section

and leads to theories with N = (2, 0) supersymmetry. We discuss additional details about

this second fibration, as well as T-duality for these theories, in section 9.

It is instructive to study the structure of the moduli space of the LSTs with maximal

supersymmetry. Recall that the tensor branch for a N = (2, 0) SCFT of ADE type g is given

by:

M(2,0)[g] = RT
≥0/Wg, (4.2)

where in the above, T is the number of tensor multiplets and Wg is the Weyl group of the

ADE Lie algebra g. That is, the moduli space is given by a Weyl chamber of the ADE Lie

algebra and is therefore non-compact. In the present case of LSTs, we see that the condition
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that we have a string scale leads to one further constraint on this moduli space, effectively

“compactifying” it to the compact Coxeter box for an affine root lattice [5].

Finally, one of the prominent features of these examples is the manifest appearance of

two elliptic fibrations in the geometry. Indeed, in passing from the N = (2, 0) theories to the

N = (1, 1) theories, we observe that we have simply switched the role of the two fibrations.

In section 9, we return to this general phenomenon for how T-duality of LSTs is realized in

F-theory.

4.2 Theories with Eight Supercharges

Several examples of LSTs with minimal, i.e. (1, 0) supersymmetry are realized by mild

generalizations of the examples reviewed above.

To begin, let us consider again the case of k coincident M5-branes filling R5,1 and probing

the geometry S1
⊥×C2. We arrive at a (1, 0) LST by instead taking a quotient of the C2 factor

by a non-trivial discrete subgroup ΓG ⊂ SU(2) so that the geometry probed by the M5-brane

is C2/ΓG. The discrete subgroups admit an ADE classification, and the corresponding simple

Lie group GADE specifies the gauge group factors on the tensor branch. We reach a 6D SCFT

by decompactifying the S1
⊥. In this limit, we have an emergent GL × GR flavor symmetry.

From this perspective, the little string theory arises from gauging a diagonal G subgroup

of the flavor symmetry. In the IIB realization of NS5-branes probing the affine geometry,

applying S-duality takes us to a stack of D5-branes probing an ADE singularity. On its

tensor branch, this leads to an affine quiver gauge theory [43].

The F-theory realization of these LSTs is simply an affine A-type Dynkin diagram of

k curves of self-intersection −2 decorated with In, I
∗
n, IV

∗, III∗, II∗ fibers, respectively for

G = An−1, Dn+4, E6,7,8. We reach a 6D SCFT by decompactifying any of the −2 curves in

the loop, and we recover a 6D SCFT with an emergent GL×GR flavor symmetry. From this

perspective, the little string theory arises from gauging a diagonal G subgroup of the flavor

symmetry. Note that for G 6= An, all these systems involve conformal matter in the sense of

reference [17].

Another class of LSTs is given by taking k M5-branes in heterotic M-theory, i.e. M-

theory on S1/Z2 × C2. In this case, we have two E8 flavor symmetry factors; one for each

endpoint of the interval S1/Z2. In this case, the gravity-decoupling limit requires us to

collapse the size of the interval to zero size (i.e. to reach perturbative heterotic strings),

whilst still holding the effective string scale finite. (The ratios of the lengths of subintervals

between the endpoints and the various M5-branes to the length of the total interval will

remain finite in the gravity-decoupling limit and provide parameters for the tensor branch.)

In perturbative heterotic string theory, we have k NS5-branes probing C2. A related example

is provided by instead working with the Spin(32)/Z2 heterotic string in the presence of k

NS5-branes. Indeed, once suitable Wilson line data has been specified, these two examples

are T-dual to one another.
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Figure 3: Top: Depiction of the LST realized by k M5-branes in between the two Horava-
Witten nine-brane walls of heterotic M-theory (k = 3 above). This leads to an LST with
an E8 × E8 flavor symmetry Bottom: The Corresponding F-theory base given by the
configuration of curves [E8], 1, 2, ..., 2, 1, [E8] for k total compact curves. In this realization,
the E8 flavor symmetry is localized on two non-compact 7-branes, one intersecting each −1
curve.

The F-theory realization of the theory of k M5-branes is given by a non-compact base

with a configuration of curves:

[E8]1, 2, ..., 2, 1︸ ︷︷ ︸
k

[E8] (4.3)

where we have indicated the flavor symmetry factors in square brackets. In this configuration,

we reach the LST limit by holding fixed the volume of the null divisor (given by a sum over

each divisor with multiplicity one), and collapse all other Kähler moduli to zero size. The

construction of the T-dual characterization is somewhat more involved, and so we defer a

full discussion to section 9 and Appendix F. See figure 3 for a depiction of the M-theory and

F-theory realizations of this LST.

We can also combine the effects of different orbifold group actions. For example, we can

consider k M5-branes filling R5,1 and probing the geometry S1/Z2 × C2/ΓG. In F-theory

terms, this is given by the geometry:

[E8]
g

1,
g

2, ...,
g

2,
g

1︸ ︷︷ ︸
k

[E8] (4.4)

i.e. we decorate by a g-type ADE gauge symmetry over each curve of self-intersection −1

or −2. This geometry was studied in detail in reference [3]. Further blowups in the base

are needed for all fibers to remain in Kodaira-Tate form. This leads to conformal matter

between each simply laced gauge group factor [17].

Summarizing, we have seen in the above that the various LSTs which have been con-

structed via perturbative string theory and M-theory all have a natural embedding in the

context of specific F-theory constructions. With this in mind, we now turn to a systematic
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construction of all 6D LSTs in F-theory.

5 Constraints from Tensor-Decoupling

As a first step towards the classification of LSTs, we now show how to classify possible bases

using the “tensor-decoupling criterion,” that is, the requirement that decoupling any tensor

multiplet from an LST must take us to an SCFT. In geometric terms, deleting any curve of

the base (with possible fiber enhancements along this curve) must take us back to an SCFT

base (with possibly disconnected components). Since all SCFTs have the structure of a tree-

like graph of intersecting curves [20], our task reduces to scanning over the list of connected

SCFTs, and asking whether adding an additional curve (with possible fiber enhancements

on this curve) will produce an LST. This inductive approach to classification will allow us

to effectively constrain the overall structure of bases for LSTs.

In this section we show how the tensor-decoupling criterion constrains many candidate

bases for LSTs. We first use this criterion to limit the possible graph topologies of curves in

the base. Next, we give a general inductive rule for how to take an SCFT and verify whether

it enhances to an LST. We shall refer to this as an inductive classification, since it implicitly

accounts for all possible structures for LSTs. In section 6 we use these constraints to present

a more explicit construction of possible bases for LSTs.

5.1 Graph Topologies for LSTs

For any compact curve Σ in the base which remains in the gravity-decoupling limit, the

self-intersection Σ2 must be −n for 0 ≤ n ≤ 12. Moreover, since having an F-theory model

requires that −4K, −6K, and −12K be effective divisors, if K ·Σ+Σ2 > 0 (so that K ·Σ > 0),

then −4K would have multiplicity at least 4 along Σ, −6K would have multiplicity at least

6 along Σ, and −12K would have multiplicity at least 12 along Σ. Since this is not allowed

in the Kodaira classification, we conclude that 2g− 2 = K ·Σ + Σ2 ≤ 0, in other words, that

Σ is either P1 or T 2. We now use the tensor-decoupling criterion to argue that the possible

topologies of LST bases are limited to tree-like structures and appropriate degenerations of

an elliptic curve.

Let us first show that a curve Σ of self-intersection zero (of topology P1 or T 2) can only

appear in isolation, i.e. it cannot intersect any other curve. If it met another curve and we

decoupled everything that this curve touches, we would be left with an SCFT base containing

a curve of self-intersection zero, a contradiction. If Σ has genus 0, then the base takes the

form C × Σ, while if Σ has genus 1, then the base takes the form (C × Σ)/Zm, with Zm
acting on Σ by a translation and on C by multiplication by a root of unity. Note that if

either g = 0 or m = 1, the base is just a product. Hence, to get a six-dimensional theory we

must wrap seven-branes over Σ, i.e. we must include a non-trivial fiber enhancement over
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this curve, unless g = 1 and m > 1. (We will see examples of this latter case in section 9.)

Consider next adjacency matrices in which the off-diagonal entries are different from

zero or one. For example, this can occur when a −4 and −1 curve form a closed loop (i.e.

intersect twice), or when the same curves intersect along a higher order tangency. Again,

this possibility is severely limited because if this were to a occur in a configuration with three

or more curves, we would contradict the tensor-decoupling criterion. By the same token, the

value of all off-diagonal entries are bounded below by two:

− 2 ≤ AIJ ≤ 0 for I 6= J, (5.1)

and in the case where −2 appears, we are limited to just two curves. The only possibilities

for a rank one LST base (i.e. with two curves) are therefore:

1, 1 or //2, 2// or //4, 1// or 2||2 or 4||1. (5.2)

In Appendix B we analyze the possible fiber enhancements which can occur when the two

curves meet along a tangency (i.e. do not respect normal crossing), as is the case in the last

two configurations.

For all other LST bases, we see that all curves must be constructed from P1’s of self-

intersection −x for 1 ≤ x ≤ 12, which all intersect with normal crossings, i.e. all off-diagonal

entries of the adjacency matrix are either zero or one.

To further constrain the structure, we next observe that the base of any 6D SCFT is

always tree-like [15]. This means that the graph associated to an LST adjacency matrix

can admit at most one loop, and when it contains a loop, there can be no additional curves

branching off. This is because the tensor-decoupling criterion would be violated by joining a

loop of curves to anything else. We are therefore left with two general types of configurations:

• Tree-like LSTs

• Loop-like LSTs.

Note that some of the tree-like structures we shall encounter can also be viewed as loops,

that is, as degenerations of an elliptic curve.

5.2 Inductive Classification

To proceed further, we now present an inductive strategy for constructing the base of any

LST with three or more curves. The main idea is that we simply need to sweep over the

list of SCFT bases and ask whether we can append an additional curve of self-intersection

−y to such a base. By the remarks on decoupling already noted, we see that this additional

curve can intersect either one curve or two curves of an SCFT base. In the latter case,

we obtain a loop-like configuration of curves in the base. The latter possibility can only

occur for an SCFT base which consists of a single line of curves (i.e. no branches emanating
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off of the primary spine of the base). The main condition we need to check is that after

adding this curve, we obtain a positive semidefinite adjacency matrix. In particular, the

determinant must vanish. Implicit in this construction is that we only append an additional

curve compatible with the gluing rules for bases.

Consider first the case of an LST with adjacency matrix ALST which describes a tree-like

base given by adding a single curve of self-intersection −y to some SCFT with adjacency

matrix ASCFT :

AtreeLST =




y −1 0 0 ... 0 0 0

−1

0 ASCFT
...

...

0




(5.3)

Let ASCFT ′ be the matrix obtained from ASCFT by removing the 1st column and the 1st

row. Evaluating the determinant of AtreeLST , we obtain the condition:

0 = det(AtreeLST ) = y det(ASCFT )− det(ASCFT ′). (5.4)

or:

y = det(ASCFT ′)/det(ASCFT ). (5.5)

Consider now the case of a loop-like LST. In this case, the only SCFTs we need consider

are those constructed from a single line of curves (i.e. no trivalent vertices at all), and we

can only add the additional curve to the leftmost and rightmost ends of a candidate SCFT.

The adjacency matrix is then of the form:

AloopLST =




y −1 0 0 ... 0 0 −1

−1

0
... ASCFT

...

0

−1




(5.6)

To have an LST we must have

0 = y det(ASCFT )− (ASCFT )(1,1) − (ASCFT )(N−1,N−1) + 2(−1)N+1(ASCFT )(1,N−1) (5.7)

where we have denoted the (i, j)th minor of ASCFT by an appropriate subscript. Solving for

y, we obtain:

y =
(ASCFT )(1,1) + (ASCFT )(N−1,N−1) − 2(−1)N+1(ASCFT )(1,N−1)

det(ASCFT )
. (5.8)
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SCFT 12 13 14 15 16 17 18 19 1(10) 1(11) 1(12) 22 23

det(A) 1 2 3 4 5 6 7 8 9 10 11 3 5

y 5 3 7/3 2 9/5 5/3 11/7 3/2 13/9 7/5 15/11 2 7/5

Table 1: Candidate loop-like rank two LSTs from adding an additional curve to a rank two
SCFT.

The above algorithm allows us to systematically classify LSTs: From this structure, we

see that the locations of where we can add an additional curve to an existing SCFT are quite

constrained. Indeed, in order to not produce another SCFT, but instead an LST, we will

typically only be able to add our extra curve at the end of a configuration of curves, or at

the second to last curve. Otherwise, we could not reach an SCFT upon decoupling other

curves in the base.

5.3 Low Rank Examples

To illustrate how the algorithm works in practice, we now give some low rank examples. In

table 1 we list all of the rank two SCFT bases which we attempt to enhance to loop-like

LST. Of the cases where y is an integer, some are further eliminated since the resulting base

requires further blowups.7 The full list of rank two LST bases is then:

Three curve LST bases:

2
2

5 2 and 121 and 212 and //222//
(5.9)

where the first entry denotes a triple intersection of −2 curves (that is, a type IV Kodaira

degeneration), and //x1x2...xn+1// denotes a loop in which the two sides are identified.

6 Atomic Classification of Bases

In principle, the remarks of the previous section provide an implicit way to characterize

all LSTs. Indeed, we simply need to sweep over the list of bases for SCFTs obtained in

reference [20] and then determine whether there is any place to add one additional curve to

reach an LST. The self-intersection of this new curve is constrained by the condition that

the determinant of the adjacency matrix vanishes, and the location of where we add this

curve is likewise constrained by the tensor-decoupling criterion.

7For example, configurations such as //512// and //313// require a further blowup. Doing this, we
instead reach a four curve LST base, respectively given by //6131// and //4141//.
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In this section we use the atomic classification of 6D SCFTs presented in [20] to perform

a corresponding atomic classification of bases for LSTs. We now use the explicit structure of

6D SCFTs found in [20] to further cut down the possibilities. It is helpful to view the bases

as built out of smaller “atoms” and “radicals”. In particular, we introduce the convention of

a “node” referring to a single curve in which the minimal fiber type leads to a D or E-type

gauge algebra. We refer to a “link” as any collection of curves which does not contain any

D or E-type gauge algebras for the minimal fiber type. The results of [20] amount to a

classification of all possible links, as well as all possible ways of attaching links to the nodes.

Quite remarkably, the general structure of the resulting bases is quite constrained. For all

6D SCFTs, we can filter the theories according to the number of nodes in the graph. These

nodes are always arranged along a single line joined by links:

S0,1
S1
g1L12

I⊕s

g2L2,3g3...gk−2Lk−2,k−1
I⊕t

gk−1Lk−1,k
I⊕u

gk Sk,k+1, (6.1)

here, the gi’s denote the nodes, the Li,i+1’s denote interior links (since they join to two

nodes) and the S’s are side links as they can only join to one node. The notation I⊕m refers

to decorating by m small instantons, these are further classified according to partitions of

m (i.e. how many of the small instantons are coincident with one another). One of the

key points is that for k ≥ 6, there is no decoration on any of the interior nodes, i.e. for

3 ≤ i ≤ k − 2. This holds both for the types of links which can attach to these nodes

(which are always the minimal ones forced by the resolution algorithm of reference [15]),

as well as the possible fiber enhancements (there are none). When k = 5, it is possible to

decorate the middle node g3 by a single −1 curve. In reference [20], the explicit form of all

such sequences of g’s, as well as the possible side links and minimal links was classified. An

additional important property is that all of the interior links blow down to a trivial endpoint,

the blowdown of a single −1 curve.

Turning now to LSTs, we can ask whether we can add one more curve to the base quiver,

resulting in yet another tree-like graph, or in a loop-like graph. By inspection, we can either

add this additional curve to a side link, an interior link, or a base node.

Restrictions on Loop-like Graphs: In fact, a general loop-like graph which is an

LST is tightly constrained by the tensor-decoupling criterion. The reason is that if we

consider the resulting sequence of nodes, we must have a pattern of the form:

//g1L12g2L2,3g3...gk−2Lk−2,k−1gk−1Lk−1,kgkLk,1// (6.2)

where the notation “//” indicates that the left and the right of the base quiver are joined

together to form a loop. Now, another important constraint from reference [20] is that the

minimal fiber type on the nodes obeys a nested sequence of containment relations. But

in a loop, no such ordering is possible. We therefore conclude that all of the nodes for a

loop-like LST must be identical, and moreover, that the interior links must all be minimal.
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We therefore can specify all such loops simply by the type of node (i.e. a −4 curve, a −6

curve, a −8 curve or a −12 curve), and the number of such nodes.

For this reason, we now confine our attention to tree-like graphs, i.e. where we add an

additional curve which intersects only one other curve in the base. The main restriction we

now derive is that the resulting configuration of curves is basically the same as that of line

(6.1). Indeed, we will simply need to impose further restrictions on the possible side links

and sequences of nodes which can appear in an LST base.

Restrictions on Adding to Interior Links: Our first claim is that we can only

possibly add an extra curve to an interior link in a base with two or fewer nodes. Indeed,

suppose to the contrary. Then, we will encounter a configuration such as:

...gi
y

Li,i+1gi+1... (6.3)

where y denotes our additional curve attached in some way to the link. The notation “...”

denotes the fact that there is at least one more curve in the base. Now, since the interior

link blows down to a single −1 curve, we will get a violation of normal crossing. This is

problematic if we have one additional curve (as denoted by the “...”), since deleting that

curve would produce a putative SCFT with a violation of normal crossing, a contradiction.

By the same token, in a two node base, if any side links are attached to this node, then we

cannot add anything to the interior link. This leaves us with the case of just:

g1

y

L1,2g2. (6.4)

In this case, it is helpful to simply enumerate once again all of the possible interior links,

and ask whether we can attach an additional curve. This we do in Appendix D, finding that

the options are severely limited. Summarizing, then, we find that we can attach an extra

curve to an interior link only in the case where there are two nodes, and then only if these

two nodes do not attach to any side links.

Restrictions on Adding to Nodes: Let us next turn to restrictions on adding an

extra curve to a node in a base. If we add a curve to a node, we observe that this extra

curve must have self-intersection −1. Note that the endpoint of the SCFT must therefore be

trivial in these cases. We now ask which of the nodes of the base can support an additional

−1 curve. Since we must be able to delete a single curve and reach a collection of SCFTs, we

cannot place this −1 curve too far into the interior of the configuration. More precisely, we

see that for k ≥ 7 nodes, we are limited to adding a −1 curve to the first three, or last three

nodes. In the specific case where we attach a −1 curve to the third interior node, we see that

there cannot be any side links whatsoever. Otherwise, we would find a subconfiguration of

curves which is not a 6D SCFT.
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Restrictions on Adding to Side Links: Consider next restrictions on adding an

extra curve to a side link. In the case of a small instanton link such as 1, 2..., 2, we can

append an additional −1 curve to the rightmost −2 curve, but then it can no longer function

as a side link (via the tensor-decoupling criterion). In Appendices D and E we determine the

full list of LSTs comprised of just adding one more curve to a side link. If we instead attempt

to take an existing SCFT and add an additional curve to a side link to reach an LST, then

we either produce a new side link (i.e. if the curve has self-intersection −1,−2,−3 or −5),

or we produce a base quiver with one additional node (i.e. if the curve has self-intersection

−4,−6,−7,−8,−9,−10,−11,−12). Phrased in this way, we see that the rules for which

side links can join to an SCFT are slightly different, but cannot alter the overall topology of

a base quiver from the case of an SCFT.

Summarizing, we see that unless we have precisely two nodes, and no side links, we cannot

decorate any interior link. Moreover, we can only decorate the three leftmost and rightmost

node in special circumstances. So in other words, the general structure of a tree-like LST

base is essentially the same as that of a certain class of SCFTs. All that remains is for us

to determine the possible sequences of nodes (with no decorations) which can generate an

LST, and to also determine which of our side links can be attached to an SCFT such that

the resulting configuration is an LST.

Overview of Appendices: This final point is addressed in a set of Appendices. In

the appendices we collect a full list of the building blocks for constructing LSTs. The tensor-

decoupling criterion prevents a direct gluing of smaller LSTs to reach another LST. Rather,

we are always supplementing an SCFT to reach an LST. Along these lines, in Appendix C

we collect the list of bases which are comprised of a single spine of nodes with no further

decoration from side links. In Appendix D we collect the full list of bases in which no nodes

appear. Borrowing from the terminology used for 6D SCFTs, these links are “noble” in

the sense that they cannot attach to anything else in the base. Finally, in Appendix E we

give a list of LSTs given by attaching a single side link to a single node. Much as in the

classification of 6D SCFTs, the further task of sweeping over all possible ways to decorate

a base quiver by side links is left implicit (as dictated by the number of blowdowns induced

by a given side link). All of these rules follow directly from reference [20].

This completes the classification of bases for LSTs. We now turn to the classification of

elliptic fibrations over a given base.

7 Classifying Fibers

Holding fixed the choice of base, we now ask whether we can enhance the singularities over

curves of the base whilst keeping all fibers in Kodaira-Tate form. As this is a purely local

question (i.e. compatible with the matter enhancements over the neighboring curves), most
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of the rules for adding extra gauge groups / matter are fully specified by the rules spelled

out in reference [20]. Rather than repeat this discussion, we refer the interested reader to

these cases for further discussion of the “standard” fiber enhancement rules for curves which

intersect with normal crossings.

There are, however, a few cases which cannot be understood using just the SCFT con-

siderations of reference [20]. Indeed, we have already seen that a curve of self-intersection

zero, an elliptic curve, tangent intersections and triple intersections of curves can all occur

in the base of an LST. We have also seen, however, that all of these cases are comparatively

“rare” in the sense that they do not attach to larger structures. Our plan in this section

will therefore be to deal with all of these low rank examples. In Appendix A we give general

constraints from anomaly cancellation in F-theory models and in Appendix B we present

some additional technical material on matter content in the case of singular curves in the

base. Finally, compared with the case of 6D SCFTs, the available fiber enhancements over

a given base are also comparatively rare. To illustrate this point, we give some examples in

which the base is an affine Dynkin diagram of −2 curves. In these cases, the presence of the

additional imaginary root (and the constraints from anomaly cancellation) typically dictate

a small class of possible fiber enhancements.

7.1 Low Rank LSTs

In this subsection we give a complete characterization of fiber enhancements for low rank

LSTs. To begin, we consider the case of the rank zero LSTs, i.e. those where the F-theory

base consists of a single compact curve. In these cases, we only get a 6D theory once we wrap

some 7-branes over the curve unless the normal bundle of the curve is a torsion line bundle.

An interesting feature of this and related examples is that because the corresponding tensor

multiplet is non-dynamical it cannot participate in the Green-Schwarz mechanism and we

must cancel the anomaly using just the content of the gauge theory sector. We then turn

to the other low rank examples where other violations of normal crossing appear. In all of

these cases, the F-theory geometry provides a systematic tool for determining which of these

structures can embed in a UV complete LST.

7.1.1 Rank Zero LSTs

In a rank zero LST, we have a single compact curve, which must necessarily have self-

intersection zero. There are only a few inequivalent configurations consisting of a single

curve with self-intersection zero:

Σnull = P, I0, I1, II,mI0,mI1. (7.1)

Here I0 (resp. P ) is shorthand for a base B consisting of a smooth torus (resp. two sphere)

with trivial normal bundle T 2×C (respectively P1×C), while I1 (resp. II) is a curve with a
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node (resp. a cusp) singularity and trivial normal bundle. These configurations can give rise

to LSTs only if 7-branes wrap Σnull. Otherwise, we do not have a genuine 6D model. The

variants mI0 and mI1 describe curves whose normal bundle is torsion of order m > 1; these

can also support 6D theories for m ∈ {2, 3, 4, 6} as discussed below. Observe also that if we

apply the tensor-decoupling criterion in these cases, we find that the resulting 6D SCFT is

empty, i.e. trivial.

As curves of self-intersection zero do not show up in 6D SCFTs, it is important to

explicitly list the possible singular fiber types which can arise on each curve of line (7.1).8

We begin with the “multiple fiber phenomenon” – a genus one curve Σ whose normal

bundle is torsion of order m > 1. The F-theory base B is a (rescaled) small neighborhood of

Σ, and its canonical bundle OB(KB) must also be torsion of the same order by the adjunction

formula. Now to construct a Weierstrass model, we need sections f and g of OB(−4KB)

and OB(−6KB), respectively, but nontrivial torsion bundles do not have nonzero sections.

Thus, in order to have a nonzero f , the order m of the torsion must divide 4, while to have

a nonzero g, the order m must divide 6. There are thus three cases:

1. If m = 2, then both f and g may be nonzero.

2. If m = 3 or 6, then f must be zero but g may be nonzero.

3. If m = 4, then g must be zero but f may be nonzero.

For any other value of m > 1, Weierstrass models do not exist (since f and g are not both

allowed to vanish identically).

Note that the fact that some quantities obtained from coefficients in a Weierstrass model

are sections of torsion bundles also provides the possibility that those sections do not exist

(if they are known to be nonzero). As described in Table 4 of [45], the criterion for deciding

whether a given Kodaira type leads to a gauge algebra whose Dynkin diagram is simply laced

or not simply laced reduces in almost every case to a question of whether a certain quantity

has a square root.9 If the desired square root is in fact a section of a 2-torsion bundle, then

it cannot exist.

We can give explicit examples of this phenomenon which do not involve enhanced gauge

symmetry, using the framework outlined in section 4.1. We start with S = T 2
S ×C, where T 2

S

admits an automorphism of order m which acts faithfully on the holomorphic 1-form. If we

8In what follows we focus on those cases where the fiber enhancement leads to a non-abelian gauge
symmetry, i.e. a gauge theory description. In the cases where we have a type I1 or type II fiber enhancement,
the resulting 6D theory will consist of some number of weakly coupled free hypermultiplets, where the precise
number depends on whether the base curve has non-trivial arithmetic and / or geometric genus. Much as
in the case of 6D SCFTs, these cases can be covered through a mild extension of the analysis presented in
reference [20]. See also [44] for additional information about these theories.

9In the remaining case, one must consider a more complicated cubic equation, but in the situation being
described here, the question in that case boils down to the existence or non-existence of a cube root. If the
bundle of which the desired cube root is a section is a 3-torsion bundle, the cube root cannot exist.
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Base Curve Matter Content

I0 Any simple Lie algebra, nAdj = 1

I1,II su(N), nsym = 1, nΛ2 = 1

su(6), nf = 1, nsym = 1, nΛ3 = 1
2

P su(N), N ≥ 2, nf = 16, nΛ2 = 2

su(6), nf = 17, nΛ2 = 1, nΛ3 = 1
2

su(6), nf = 18, nΛ3 = 1

sp(N), N ≥ 1, nf = 16, nΛ2 = 1

sp(3), nf = 171
2
, nΛ3 = 1

2

so(N), N = 6, ..., 14, nf = N − 4, ns = 64
ds

g2, nf = 10

f4, nf = 5

e6, nf = 6

e7, nf = 4

e8, ninst = 12

Table 2: Rank zero LSTs. In the above, Adj refers to the adjoint representation, sym
refers to a two-index symmetric representation, and Λn refers to an n-index anti-symmetric
representation.

extend the action to include multiplication by an appropriate root of unity on C, then the

holomorphic 2-form on S is preserved. As is well-known, such automorphisms exist exactly

for m ∈ {2, 3, 4, 6}. As explained in section 4.1, the quotient (T 2
F × S)/Zm has an elliptic

fibration (T 2
F ×S)/Zm → (T 2

F ×C)/Zm whose fibers over T 2
F ×{0} are all nonsingular elliptic

curves, but with Zm acting upon them as loops are traversed on T 2
F . This same geometry

has a second fibration (T 2
F × S)/Zm → S/Zm with no section and some multiple fibers in

codimension two, which will be further discussed in section 9.

Turning now to enhancements of fibers, from the relation between anomaly cancellation

and enhanced singular fibers [46, 47, 45, 48] we find all possible gauge theories compatible

with a given choice of base curve. This is summarized in table 2. We find that in general,

such theories can support hypermultiplets in the adjoint representation (denoted Adj), the

two-index symmetric representation (denoted sym) and the n-index anti-symmetric repre-

sentation (denoted Λn).
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The greatest novelty here relative to the case of 6D SCFTs are the theories with nAdj = 1

or su(N) gauge algebra, nsym = 1, nΛ2 = 1 or, in the special case of su(6), nf = 1, nsym = 1,

nΛ3 = 1/2. The first of these cases, with nAdj = 1, corresponds simply to a smooth curve of

genus 1 in the base. The cases with symmetric representations of su(N), on the other hand,

arise when the base curve is of Kodaira type I1 (i.e. has a nodal singularity). As reviewed

in Appendix B, the notion of genus is ambiguous for singular curves. A type I1 curve has

topological genus 0 but arithmetic genus 1, and as a result it must support a hypermultiplet

in the two-index symmetric representation, rather than one in the adjoint representation.

For LSTs, these are the only examples in which a curve of (arithmetic) genus 1 shows

up, and a curve of genus g ≥ 2 is never allowed. Note also that a curve of genus 0 and self-

intersection 0 cannot itself support an e8 gauge algebra: it must be blown up at 12 points,

resulting in an e8 theory with 12 small instantons:

(12), 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2 (7.2)

7.1.2 Rank One LSTs

Consider next the case of rank one LSTs, i.e. those in which there are two compact curves

in the base. As we have already remarked, in this and all higher rank LSTs, all the curves of

the base will be P1’s, and moreover, they will have self-intersection −x for 1 ≤ x ≤ 12. Now,

in the case of two curves, we can have various violations of normal crossing. For example,

we can have curves which intersect along a tangency which occurs in 4||1. Observe that in

this cases, there is a smoothing deformation which takes us from an order two tangency to a

loop, i.e. we can deform to //4, 1//. In addition to these rank one LSTs, there are two more

configurations given by 1, 1 and //2, 2//. The former configuration 1, 1 is in some sense the

most “conventional” possibility (as all intersections respect normal crossing).

To this end, let us first discuss fiber enhancements for the 1, 1 configuration. We shall then

turn to the cases where there is either a violation of normal crossing or a loop configuration.

Whenever curves with gauge algebras intersect, matter charged under each gauge algebra

will pair up into a mixed representation of the gauge algebras. The mixed anomaly condition

places strong constraints on which representations are allowed to pair up. The allowed set

of mixed representations for two curves intersecting at a single point is given in section 6.2

of reference [20]. Consider for example, the 1, 1 base. We have:

gL
1

gR
1 (7.3)

with the following list of allowed gauge algebras:

• gL = so(M), gR = sp(N), M = 7, ..., 12, M − 5 ≥ N , 4N + 16 ≥M .

• gL = so(M), gR = sp(N), M = 7, N ≤ 6.
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• gL = g2, gR = sp(N), N ≤ 7.

• gL = sp(M), gR = sp(N), 2M + 8 ≥ 2N , 2N + 8 ≥ 2M .

• gL = sp(M), gR = su(N), 2M + 8 ≥ N , N + 8 + δN,3 + δN,6 ≥ 2M .

• gL = su(M), gR = su(N), M + 8 + δM,3 + δM,6 ≥ N , N + 8 + δN,3 + δN,6 ≥M .

• gL = f4, e6, e7 or e8, gR = ∅.

Here, it is understood that sp(0) is the same as an empty −1 curve, and e8 on a −1 curve

implies that 11 points on the −1 curve have been blown up.

Consider next the configuration //2, 2//, i.e. a loop of two −2 curves. In this case the

only gauge algebra enhancement is given by

//
su(N)

2
su(N)

2 // (7.4)

with a bifundamental localized at each intersection point.

Finally, we turn to the case of the bases //4, 1// and 4||1. In both cases, the only

enhancement possible is an SO-type algebra over the −4 curve and an Sp-type or SU-type

algebra over the −1 curve. The matter content of the theory, however, depends on the type

of intersection. Consider first the case of

//
so(2N+8)

4
sp(N)

1 // (7.5)

with a half hypermultiplet localized at each intersection point. Indeed, we can reach this

theory by starting from the 6D SCFT:

[so(2N + 8)]
sp(N)

1 [so(2N + 8)] (7.6)

and gauging the diagonal subalgebra of the flavor symmetry.

In the case of the tangential intersection 4||1, we again find novel configurations of matter

which are missing from the case of normal crossing. First, we can consider a configuration

in which the gauge algebras are the same as those of (7.5):

so(2N+8)

4 ||
sp(N)

1 (7.7)

However, there is now a single full hypermultiplet in the bifundamental of the two gauge

algebras rather than two half hypermultiplets. This configuration cannot be realized in F-

theory, since the tangential intersection removes the monodromy from the I2N locus leading

to gauge algebra su(2N) instead. It would be interesting to find a field-theoretic reason for

excluding this case.
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Second, there is a similar configuration with a unitary rather than symplectic gauge

algebra:
so(2N+8)

4 ||
su(2N)

1 (7.8)

with a hypermultiplet in the bifundamental of the two gauge algebras, as well as a hyper-

multiplet in the two index anti-symmetric representation of the su(n) factor, all of which are

located at the collision point between the two branes. This configuration can be realized in

F-theory.

7.1.3 Rank Two LSTs

We now turn to the case of rank two LSTs, i.e. those with three curves. Here, we can have

no tangential intersections. In this case, the adjacency matrix again provides only partial

information about the geometry of intersecting curves. In the case where we have normal

crossings for all pairwise intersections, the rules of enhancing fiber enhancements follow from

reference [20] and are also reviewed in Appendix A. There is, however, also the possibility

of a Kodaira type IV configuration of −2 curves, i.e. 2
2

5 2. We shall therefore confine our

attention to fiber decorations with this base.

To illustrate, suppose the gauge algebra localized on each of the three −2 curves is

su(2)i, i = 1, 2, 3. Anomaly cancellation dictates that in such a case there must be a single

half-trifundamental 1
2
(2,2,2) plus two fundamentals charged under each su(2). We note

in passing that the loop-like configuration //222// also admits a similar enhancement in

the gauge algebras, i.e. with su(2)i, i = 1, 2, 3 gauge groups, but that the corresponding

matter content is given by three bifundamentals (2,2,1), (2,1,2), (1,2,2). These two

configurations have the same anomaly polynomials.

But in contrast to the //222// configuration, for 2
2

5 2, no other gauge algebra enhance-

ments are possible. To see this, suppose we su(N) factors on each −2 curve. We would then

need N2 fundamentals of each su(N) to get a (N,N,N) representation. However, anomaly

cancellation considerations constrain us to 2N such fundamentals. In other words, we are

limited to N ≤ 2.

7.2 Higher Rank LSTs

Turning next to the case of LSTs with at least four curves in the base, all of these local

violations of normal crossing do not appear. Nevertheless, we encounter such violations

when we attempt to blow down −1 curves which touch more than two curves. Even so, the

local rules for fiber enhancements follow the same algorithm already spelled out in detail in

reference [20]. In some cases, however, there can be additional restrictions compared with

the fiber enhancements which are possible for 6D SCFTs. To illustrate, we primarily focus on
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some simple examples, i.e. the affine ADE bases, fiber decorations for the base 1, 2, ..., 2, 1,

and fiber decorations for the loop-like bases.

7.2.1 Affine ADE Bases

Let us next consider the case of fiber enhancements in which the base is given by an affine

Dynkin diagram of −2 curves. If we assume that no further blowups are introduced in the

base, we will be limited to just su(N) gauge algebras over each curve. In the case of 6D

SCFTs, it is typically possible to obtain a rich class of possible sequences of gauge group

factors, because 6D anomaly cancellation can be satisfied by introducing an appropriate

number of additional flavor symmetry factors. This in turn leads to a notion of a “ramp” in

the increase in the ranks [17] (see also [6]). For an affine quiver, this is much more delicate,

since all of these cases can be viewed as a degeneration of an elliptic curve. For example,

in the case of an affine Âk base (i.e. the Ik Kodaira type), anomaly cancellation tells us

that all of the gauge algebra factors are the same su(N). By a similar token, 6D anomaly

cancellation tells us that the gauge algebra of any of these cases is su(Ndi), where di is the

Dynkin label of the node in the affine graph, and N ≥ 1 is an overall integer.10 In F-theory

language, we have fiber enhancements INdi over each node. Indeed, at a formal level we can

think of anomaly cancellation being satisfied by introducing su(1) gauge algebras.

7.2.2 The 1, 2, ..., 2, 1 Base

Compared with the case of affine ADE bases, there are comparatively more options available

for fiber enhancements of the base 1, 2, ..., 2, 1. In some sense, this is because these bases do

not directly arise from the degeneration of a compact elliptic curve, but are better viewed

as the degeneration of a cylinder.

With this in mind, we now explain how fiber enhancements work for this choice of base.

For a large number of −2 curves, the allowed enhancements take a rather simple form,

whereas there are outlier LSTs for smaller numbers of −2 curves. In particular, when there

are more than five −2 curves, the −2 curves necessarily hold su(Ni) gauge algebras:

gL
1

su(N1)

2
su(N2)

2 ...
su(Nk−1)

2
su(Nk)

2
gR
1

The Ni are subject to the convexity conditions 2Ni ≥ Ni−1 + Ni+1, with the understanding

that Ni = 1 for a curve without a gauge algebra.

The −1 curves in this configuration may hold either sp(M) or su(M) gauge algebra. If

the leftmost −1 curve holds sp(M), anomaly cancellation imposes the additional conditions

2N1 ≥ 2M +N2, 2M + 8 ≥ N1. If the leftmost −1 curve holds su(M), anomaly cancellation

10This same observation has already been made in the context of 4D superconformal N = 2 quiver gauge
theories [49]. Indeed, in this special case the condition of vanishing beta functions is identical to the condition
that 6D anomalies cancel.
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imposes 2N1 ≥ M + N2, M + 8 + δM,3 + δM,6 ≥ N1. Finally, the −1 curve may be empty

provided N1 ≤ 9. The story is mirrored for the rightmost −1 curve at the other end of the

chain.

When there are exactly five −2 curves, we have two additional configurations:

1 2
su(2)

2
so(7)

2
su(2)

2 2 1

and

1 2
su(2)

2
g2
2

su(2)

2 2 1

When there are four −2 curves, we similarly have

1
su(2)

2
so(7)

2
su(2)

2 2 1

and

1
su(2)

2
g2
2

su(2)

2 2 1

When there are three −2 curves, we have several new configurations:

1
su(2)

2
so(7)

2
su(2)

2 1

1
su(2)

2
g2
2

su(2)

2 1

gL
1

so(7)

2
su(2)

2 2 1

and
gL
1

g2
2

su(2)

2 2 1

with gL = sp(M),M ≤ 3 in each of the last two cases.

When there are two −2 curves, we have:

gL
1

so(7)

2
su(2)

2 1

and
gL
1

g2
2

su(2)

2 1

with gL = sp(M),M ≤ 3 in each of the last two cases.

When there is only a single −2 curve, there are even more possibilities:

gL
1

so(8)

2
gR
1
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with gL = sp(ML),ML ≤ 2, gR = sp(MR),MR ≤ 2.

gL
1

so(7)

2
gR
1

with gL = sp(ML), gR = sp(MR), ML +MR ≤ 4 or ML = 4, MR = 1.

gL
1

g2
2

gR
1

with gL = sp(ML), gR = sp(MR), ML +MR ≤ 4.

gL
1

su(2)

2 1

with gL = g2 or so(7).

7.3 Loop-like Bases

Finally, let us turn to the case of fiber enhancements for the loop-like bases. We have

already discussed the case of an affine Âk base of −2 curves in which we the allowed fiber

enhancements are just a uniform IN fiber. Otherwise, we induce some blowups. Now, if

we allow for blowups, we can reach more general loop-like configurations. However, as we

have already discussed near line (6.2), all of these cases consist of a single type of base node

suspended between minimal links. This is a consequence of the fact that in a general 6D

SCFT, there are nested containment relations on the minimal fiber types [20]:

gmin1 ⊆ ... ⊆ gminm ⊇ ... ⊇ gmink . (7.9)

However, in a 6D LST, we must also demand periodicity of the full configuration. This

forces a uniform fiber enhancement on each such node.

As a consequence, we can summarize all of these cases by keeping implicit the blowups

associated with conformal matter. We have:

//
g

2, ...,
g

2// (7.10)

where we allow for a general fiber enhancement to an ADE type simple Lie algebra g over

each of the −2 curves. For all cases other than the su(N) gauge algebras, this in turn requires

further blowups in the base, i.e. we have a configuration with conformal matter in the sense

of references [17,18]. So in other words, all of these loop-like configurations are summarized

by stating the number of −2 curves, and the choice of fiber type over any of the −2 curves.
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8 Embeddings and Endpoints

In the previous sections we presented a general classification of LSTs in F-theory. One of

the crucial ingredients we have used is that decompactifying any curve must return us to a

collection of (possibly disconnected) SCFTs. Turning the question around, it is natural to

ask whether all SCFTs embed in LSTs.

In this section we show that this is indeed the case. Moreover, there can often be more

than one way to complete an SCFT to an LST. To demonstrate such an embedding, we will

need to show that there exists a deformation of a given LST F-theory background which

takes us to the requisite SCFT. This can involve both Kähler deformations, i.e. motion

onto a partial tensor branch, and may also include complex structure deformations, i.e. a

Higgsing operation.

With this in mind, we first demonstrate that all of the bases for 6D SCFTs embed in

an LST base. A suitable tensor branch flow then takes us from the LST base back to the

6D SCFT base. Then, we proceed to show that the available fiber decorations for LSTs

can be Higgsed down to the fiber decorations for an SCFT. The latter issue is somewhat

non-trivial since the fiber decorations of an ADE-type base is comparatively less constrained

when compared with their affine counterparts.

8.1 Embedding the Bases

We now show that all bases for 6D SCFTs embed in LST bases. To demonstrate that

such an embedding is possible, it is convenient to use the terminology of “endpoints” for

SCFTs introduced in reference [15], which we can also extend to the case of LSTs. Given

a collection of curves for an SCFT base, we can consider blowdowns of all of the −1 curves

of the configuration. Doing so, we shift the self-intersection of all curves touching this −1

curve according to the rule x→ (x−1) for a curve of self-intersection −x. In the case where

a −1 curve is interposed in between two curves, we have x, 1, y → (x − 1), (y − 1). After

this first stage of blowdowns, we can then sometimes generate new −1 curves. Iteratively

blowing down all such −1 curves, we eventually reach a configuration of curves which we

shall refer to as an “endpoint.” The set of all endpoints has been classified in reference [15],

and they split up according to four general types:

Trivial Endpoint: 1→ C2 (8.1)

A-type Endpoint: x1...xk (8.2)

D-type Endpoint: 2
2
x1...xk (8.3)

E-type Endpoint: 22
2

222, 22
2

2222, 22
2

22222 (8.4)
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In fact, starting from such an endpoint we can generate all possible bases of 6D SCFTs

by further blowups. Sometimes such blowups are required to define an elliptic Calabi-Yau,

while some can be added even when an elliptic fibration already exists. By a similar token,

we can also take a fixed base, and then decorate by appropriate fibers.

Now, a central feature of this procedure is that the resulting adjacency matrix retains

the important property that it is positive definite. Similarly, if we instead have a positive

semidefinite adjacency matrix, the resulting matrix will retain this property under further

blowups (or blowdowns) of the base.

To demonstrate that we can always embed an SCFT in an LST, it will therefore suffice

to show that there is some way to add additional curves to an SCFT endpoint such that

the resulting LST defines a base. To illustrate the idea, suppose we have a 6D SCFT with a

trivial endpoint. Then, before the very last stage of blowdowns, we have a single −1 curve,

which we shall call Σ. If we return to the original SCFT, this curve will also be present, but

its self-intersection will be different. Hence, to get an LST we can simply attach one more −1

curve to Σ. For example, the configuration 1, 1 defines the base of an LST. Supplementing

the fibers can always be done to realize the case of fiber decorations.

Consider next the case of A-type endpoints. Here, we can always attach a suitable number

of “tails” of the form 1, 2..., 2 to each curve such that blowing down these instanton links

leads us to k curves of self-intersection −2, i.e. 2, ..., 2. Attaching an additional −1 curve to

the left and to the right, we get a base of the form 1, 2, ..., 2, 1. We therefore conclude that

adding such tails again allows an embedding in an LST.

By a similar token, we can append such tails to a D-type endpoint until we reach the

Dynkin diagram with just −2 curves. Adding one more −1 curve to this configuration:

D-type Endpoint = 2
2

2...2, 1 (8.5)

leads to a blowdown eventually to the configuration 2, 1, 2, which in turn blows down to 1, 1.

So again, we conclude that the adjacency matrix is positive semidefinite and we have arrived

at an LST.

This leaves us with the E-type endpoints. In these cases, we just have a configuration

of −2 curves, and the possible blowups are severely limited [15]. For example, there are no

blowups of the E8 Dynkin diagram. It therefore suffices to add one additional −2 curve to

this configuration to reach its affine extension. Similar considerations also apply for the E6

and E7 configurations when no additional blowups are present, i.e. we simply proceed from

the Dynkin diagram to its affine extension.

To round out the analysis, we need to demonstrate that if we perform any blowups of an

E6 or E7 endpoint, we can again attach a −2 curve at the same location, without inducing

any further blowups.11 That this is indeed the case is conveniently summarized by simply

11Note that attaching a −1 curve will not work since we would then blowdown to a configuration where
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writing down the possible blowups. For E6, there are two other consistent bases, and for E7

there is one. In both cases, we can indeed still add our −2 curve without inducing extraneous

blowups:

2321

2
3
2
1

81232→ 231

2
3
1

5132→ 22

2
2

222 (8.6)

2231

3
1

51322→ 222
2

2222. (8.7)

Summarizing, we have just demonstrated that all bases for 6D SCFTs embed in an LST

base.

LST Endpoints As a brief aside, one of the interesting features of this argument is

that we have implicitly relied on the notion of an LST endpoint. Given that we have already

classified all such bases, we can also ask about the possible endpoints for LSTs. Compared

with the case of 6D SCFTs, the number of distinct endpoints are comparatively small.

Roughly speaking, this is because of the positive semidefinite condition for our adjacency

matrix, which in turn means that many configurations will blow down to a single curve of

self-intersection zero (as in the 1, 2, ..., 2, 1 configurations).

Combining the tensor-decoupling criterion with the demand that we have a positive

semidefinite adjacency matrix means that the total number of endpoints are given by the

Kodaira type intersections of −2 curves, an elliptic curve, as well as a single P1 of self-

intersection zero, which we denote by P . In the latter two cases, we note that we only

obtain a 6D LST by having a non-trivial elliptic fibration. Thus, we find the following list

of LST endpoints:12

LST Endpoints: P, In, II, III, IV, I
∗
n, II

∗, III∗, IV ∗ (8.8)

for n ≥ 0.

8.2 Embedding the Fibers

Suppose next that we have supplemented a base by an additional curve. When we do

this, additional non-trivial fibers are sometimes inevitable, and can in turn force additional

structure on the elliptic fibers. To give a concrete example, consider the case of a 6D SCFT

with base given by the E6 Dynkin diagram of −2 curves. Fiber decorations for this model

were studied in reference [20] where it was found that typically, additional flavors can be

the adjacency matrix is not positive semidefinite – a contradiction.
12Here we neglect the possibility of torsion in the normal direction to the compact curves of the base.
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added so that an appropriate convexity condition on the ranks is obeyed. To extend this

to an LST base, we cannot add a −1 curve (as the blowdown is inconsistent). Rather,

we must add an additional −2 curve to reach the affine Ê6 Dynkin diagram of −2 curves.

When we do this, we must remember that the elliptic fibration of the resulting F-theory

model also becomes rigid. So in other words, the available elliptic fibrations are further

constrained. It is at this stage that we must include the effects of Higgsing as well as tensor

branch deformations to reach the original 6D SCFT. That this is always possible follows

from the fact that all representations of the Lie algebra e6 embed in representations of its

affine extension ê6. Similar considerations apply for the fiber decorations of all of the E-type

bases.

In the case of the A- and D-type bases, the analysis is comparatively simpler. The reason

is that we can just add additional tails of the form 1, 2, ..., 2 with trivial fibers and leave the

fibers above the curves in the SCFT base as they were. One might worry here about the fact

that curves of self-intersection −1 and −2 are not always allowed to have trivial fibers. For

instance, the −1 curve in the sequence 2, 2, 3, 1, 5 necessarily has a type II fiber. However,

such subtleties do not arise in this case: one can always add small instanton links of the

form 1, 2, ..., 2 with trivial fibers to an A- or D-type base to get an LST.

Putting together our analysis of tensor branch flows and Higgs branch flows, we conclude

that all 6D SCFTs embed in some LST. Indeed, it is also clear that there can sometimes be

more than one such embedding.

9 T-duality

In the previous sections we used the geometry of F-theory compactifications to tightly con-

strain the structure of LSTs. In this section we turn the analysis around and show how the

physics of little string theories suggests non-trivial geometric structures for elliptic Calabi-

Yau threefolds in which the non-compact base has a negative semidefinite intersection form.

In physical terms, one of the key features of LSTs is that the description as a local

quantum field theory must break down near the string scale. A sharp way to probe this

structure is by compactifying on a circle. Recall that in T-duality, the theory compactified

on a small S1 of radius R is dual to another string theory compactified on an S1 of radius

R̃ ∼ α′eff/R. Based on this, it is natural to expect that all LSTs have a similar T-duality.

This expectation suggests a non-trivial constraint on the geometry of an F-theory real-

ization of an LST. Recall that F-theory compactified on an elliptically fibered Calabi-Yau

threefold X → B leads, upon further compactification on an S1, to M-theory compactified

on the same Calabi-Yau threefold. In the M-theory description, the Kähler class becomes

a dynamical modulus (which is taken to zero size to reach the F-theory limit). On the

other hand, T-duality tells us that if we take this circle to be very small, we should expect

to obtain another LST, this time compactified on a large radius circle. For this to be so,
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we must have available to us more than one way to reach an F-theory background from a

given compactification of M-theory on X. In other words, physical considerations suggest

the existence of another elliptic fibration for our Calabi-Yau threefold X → B̃, and the lift

from M-theory to F-theory involves collapsing the Kähler class of this other elliptic fiber to

zero size.

Our plan in this section will be to give further evidence that T-duality is realized in

F-theory constructions of LSTs through the presence of a double elliptic fibration. We shall,

however, mainly focus on particular examples of how T-duality is realized geometrically.

After this, we give a sketch for how we expect this correspondence to work in general,

leaving a complete proof to future work.

9.1 Examples

As a first example consider the T-duality between the LST of k ≥ 2 NS5-branes in IIA (the

N = (2, 0) A-type LSTs), and that of k NS5-branes in IIB string theory (the N = (1, 1)

A-type LSTs). The IIA realization just follows from a base with −2 curves arranged in a

loop, i.e. as the type Ik−1 degeneration of an elliptic curve. The F-theory elliptic curve is

then a smooth T 2, i.e. an I0 fiber. Switching the roles of these two curves, we get the type

IIB N = (1, 1) LST, i.e. we have (k − 1) D7-branes wrapped over a T 2. There is a clear

extension of this case to all of the ADE N = (2, 0) LSTs in terms of the corresponding ADE

7-branes wrapped over a T 2.

Another class of examples we have already encountered several times involves the LSTs

realized by M5-branes filling R5,1 and probing the geometry S1
⊥ × C2/Γ for Γ an ADE

subgroup of SU(2). Compactifying on a further circle, we can shrink the S1
⊥ factor to reach

IIA string theory. T-duality is then inherited from that of the physical superstring theory.

In the F-theory realization of these systems, we have a base quiver with conformal matter

suspended in between the nodes:

//g ⊕ g ⊕ ...⊕ g ⊕ g︸ ︷︷ ︸
k

//. (9.1)

As we have already remarked in the classification of such structures, all fiber types and

conformal matter are necessarily minimal; no deviations from this rigid structure are possible.

This actually means that we can readily identify the other elliptic fiber of this model: It

is given by a suitable multiple of an Ikdi fiber, where the di denote the Dynkin labels of

the affine extension of the g-type Lie algebra. Another consequence of this analysis is that

sometimes, the absence of other fiber decorations for say the E-type affine bases means we

cannot arbitrarily combine these two structures. Rather, since the only fiber enhancements

over the E-type bases are Ik-type fibers (i.e. without inducing further blowups), there is

again a clear exchange between the roles of the two (singular) elliptic curves.
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Quite strikingly, this also entails the existence of several infinite classes of models which

are self-T-dual upon toroidal reduction. These are models which have a double elliptic

structure consisting of two copies of the same Kodaira fiber. For example, models which

have an IN Kodaira base, with gauge groups su(N) on each −2 curve and bifundamentals

at the intersections. As a more exotic example consider the blown up type IV degeneration:

3
3

13. On each −3 curve in this configuration there is an su(3) gauge sector which arises

precisely from a type IV fiber. Clearly, contracting the -1 curve, switching fiber and base,

and then blowing up we obtain back the same model.13

As a final class of examples, consider the F-theory models with base:

[E8]1, 2, ..., 2, 1︸ ︷︷ ︸
k

[E8]. (9.2)

This is realized in heterotic M-theory by a collection of k M5-branes in between the two

heterotic walls. compactifying on a further circle and activating appropriate Wilson lines for

the background E8×E8 flavor symmetry, we reach –via T-duality of the physical superstring–

the case of k NS5-branes of the Spin(32)/Z2 heterotic string theory. This system can be

analyzed in perturbative string theory, and the T-dual LST is therefore realized by an sp(k)

gauge theory with 32 half hypermultiplets in the fundamental representation, and a single

hypermultiplet in the two-index anti-symmetric representation.

Demonstrating the presence of the extra elliptic fibration for the F-theory model is some-

what more subtle in this case, but we can see it as descending from a Z2 quotient of the

I2k-type Kodaira configuration of −2 curves:

//2, 2, ..., 2, 2︸ ︷︷ ︸
2k

//
Z2→ 1, 2, ..., 2, 1︸ ︷︷ ︸

k

. (9.3)

In Appendix F we present an explicit analysis of this case of the base 1, 1, and also explain its

extension to the configuration 1, 2, ..., 2, 1. The corresponding F-theory model is realized by a

base given by P , a single P1 with self-intersection zero, with a fiber enhancement Ins2k , i.e. we

get an sp(k) 7-brane wrapped over P . We have already classified the matter enhancements

for this case in section 7, and indeed, we find agreement with the purely heterotic analysis.

Note that the sp-type algebra originates from the Z2 quotient of an A2k algebra via its outer

automorphism.

In fact, a similar observation allows us to extend this to some of the models in which we

have a P1 of self-intersection zero. For example, under a further Z2 quotient, we can reach

some of the gauge theories already encountered via more direct methods:

[su8]
suN
1 ,

suN
1 [su8]

Z2→ [su16]
suN
0 [su2], (9.4)

13See [44] for a further analysis of this case.
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where the su16 flavor symmetry acts on the sixteen hypermultiplets in the fundamental

representation, and the su2 flavor symmetry acts on the hypermultiplets in the two index

anti-symmetric representation. From this perspective, we can still recognize the quotient of

an additional elliptic fiber. Schematically, we have:

//2, 2//
Z2→ 1, 1

Z2→ 0. (9.5)

9.2 Examples Involving Curves with Torsion Normal Bundle

Recall that in section 4 we found that the N = (1, 1) LSTs admitted an ABCDEFG classi-

fication according to their corresponding affine Lie algebras. In the F-theory realization of

these models, we also saw that the base contained a genus 1 curve with a torsion normal

bundle. We encountered torsion normal bundles again in section 7.1.1 in our discussion of

rank zero LSTs. We will now explain these examples in more detail.

By construction, examples in this class admit two genus one fibrations: (T 2
F × S)/Zm →

(T 2
F ×C)/Zm, and (T 2

F ×S)/Zm → S/Zm. The first fibration has a section with monodromy

over the central fiber of π : (T 2
F ×C)/Zm → C. The second fibration does not have a section

(i.e., it is not an elliptic fibration, in the terminology of [50]), and we discuss its structure

here.

Recall that for a genus one fibration X → B without a section, there is an associated

“Jacobian fibration” J(X/B) → B which has a section, and which has precisely the same

τ function describing the fibers.14 As explained in [12, 50, 51], the set of X’s which share

a common Jacobian fibration (and are equipped with an action by the Jacobian fibration,

as stressed in [52]) forms a group15 which should be identified with the group of connected

components of the gauge group in F-theory. That is, compactifying the F-theory model on

a circle, there is a discrete choice of one of these X’s to serve as the compactification space

for M-theory, which is the hallmark of a discrete gauge choice.

In our examples, the action of Zm on S has fixed points, leading to Am−1 singularities

on the quotient S/Zm. (More generally, there can be A`−1 singularities for any ` dividing

m, due to fixed points of subgroups.) Over an A`−1 point, we have taken the quotient of the

fiber by a translation of order `, so that fiber has multiplicity `. Notice that even though

the fiber is multiple, the total space is smooth.

This is precisely the situation analyzed by Mark Gross in [54], who showed that the

14A more common notation is J(X), but since we are studying Calabi–Yau threefolds with more than one
genus one fibration, we indicate the fibration for emphasis.

15This group has been incorrectly called the Tate–Shafarevich group in the literature [50, 51], for which
the fourth author apologizes. The group contains the Tate–Shafarevich group [53], but it can also contain
fibrations with isolated multiple fibers [54], a fact which arose in the proof of the finiteness theorem for
elliptic Calabi–Yau threefolds [55, 56]. The examples presented here have such isolated multiple fibers, and
so do not belong to the Tate–Shafarevich group but rather to the larger group of Calabi–Yau threefolds
sharing a common Jacobian fibration.
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Jacobian fibration is fibered over the same base, still with A`−1 singularities. But once the

Jacobian fibration has been taken, it is possible to resolve those singularities of the base

(which corresponds physically to giving an expectation value to scalars in the corresponding

tensor multiplets). We thus find that these theories are part of a larger family of LSTs, but at

special values of the tensor moduli in the larger family, a finite gauge group appears, leading

to additional 5D vacua (i.e., the fibrations without a section) corresponding to distinct sectors

of Wilson line expectation values.

Let us illustrate this with two concrete examples drawn from Appendix G, where we work

out the N = (1, 1) theories of BCFG type in detail. As a first example, consider a partially

blown down graph of type Ê8, illustrated here (and in Figure 4):

(i.e., it is not an elliptic fibration, in the terminology of [50]), and we discuss its structure

here.

Recall that for a genus one fibration X ! B without a section, there is an associated

“Jacobian fibration” J(X/B) ! B which has a section, and which has precisely the same

⌧ function describing the fibers.14 As explained in [12, 50, 51], the set of X’s which share

a common Jacobian fibration (and are equipped with an action by the Jacobian fibration,

as stressed in [52]) forms a group15 which should be identified with the group of connected

components of the gauge group in F-theory. That is, compactifying the F-theory model on

a circle, there is a discrete choice of one of these X’s to serve as the compactification space

for M-theory, which is the hallmark of a discrete gauge choice.

In our examples, the action of Zm on S has fixed points, leading to Am�1 singularities

on the quotient S/Zm. (More generally, there can be A`�1 singularities for any ` dividing

m, due to fixed points of subgroups.) Over an A`�1 point, we have taken the quotient of the

fiber by a translation of order `, so that fiber has multiplicity `. Notice that even though

the fiber is multiple, the total space is smooth.

This is precisely the situation analyzed by Mark Gross in [54], who showed that the

Jacobian fibration is fibered over the same base, still with A`�1 singularities. But once the

Jacobian fibration has been taken, it is possible to resolve those singularities of the base

(which corresponds physically to giving an expectation value to scalars in the corresponding

tensor multiplets). We thus find that these theories are part of a larger family of LSTs, but at

special values of the tensor moduli in the larger family, a finite gauge group appears, leading

to additional 5D vacua (i.e., the fibrations without a section) corresponding to distinct sectors

of Wilson line expectation values.

Let us illustrate this with two concrete examples drawn from Appendix G, where we work

out the N = (1, 1) theories of BCFG type in detail. As a first example, consider a partially

blown down graph of type bE8, illustrated here (and in Figure 4):
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where we blow down each solid circle to an A1 singularity. As shown in Appendix G, there

14A more common notation is J(X), but since we are studying Calabi–Yau threefolds with more than one
genus one fibration, we indicate the fibration for emphasis.

15This group has been incorrectly called the Tate–Shafarevich group in the literature [50, 51], for which
the fourth author apologizes. The group contains the Tate–Shafarevich group [53], but it can also contain
fibrations with isolated multiple fibers [54], a fact which arose in the proof of the finiteness theorem for
elliptic Calabi–Yau threefolds [55, 56]. The examples presented here have such isolated multiple fibers, and
so do not belong to the Tate–Shafarevich group but rather to the larger group of Calabi–Yau threefolds
sharing a common Jacobian fibration.
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where we blow down each solid circle to an A1 singularity. As shown in Appendix G, there

is a genus 1 fibration X over this base B with a fiber of multiplicity 2 at each A1 singularity.

The fiber never degenerates over this locus.

The Jacobian fibration J(X/B) is simply a Weierstrass fibration over B whose fibers do

not degenerate. There is no obstruction to resolving the singularities of B, moving out into

the rest of the moduli space. In fact, this is part of the moduli space of the N = (2, 0)

theory of type E8, and we claim that when the tensors are tuned to blow down precisely

the curves corresponding to solid nodes, a Z2 gauge symmetry appears in the theory. That

gauge symmetry is necessary to explain the additional 5D models which appear when the

A1’s are blown down and a twist of the Jacobian fibration is possible. Presumably, moving

away from this locus amounts to Higgsing the Z2 gauge symmetry. Incidentally, this example

is the T-dual of the N = (1, 1) model with group F4.

As a second example (which is the T-dual of the N = (1, 1) model with group G2),

consider another partially blown down graph of type Ê8, illustrated here (and in Figure 5):

is a genus 1 fibration X over this base B with a fiber of multiplicity 2 at each A1 singularity.

The fiber never degenerates over this locus.

The Jacobian fibration J(X/B) is simply a Weierstrass fibration over B whose fibers do

not degenerate. There is no obstruction to resolving the singularities of B, moving out into

the rest of the moduli space. In fact, this is part of the moduli space of the N = (2, 0)

theory of type E8, and we claim that when the tensors are tuned to blow down precisely

the curves corresponding to solid nodes, a Z2 gauge symmetry appears in the theory. That

gauge symmetry is necessary to explain the additional 5D models which appear when the

A1’s are blown down and a twist of the Jacobian fibration is possible. Presumably, moving

away from this locus amounts to Higgsing the Z2 gauge symmetry. Incidentally, this example

is the T-dual of the N = (1, 1) model with group F4.

As a second example (which is the T-dual of the N = (1, 1) model with group G2),

consider another partially blown down graph of type bE8, illustrated here (and in Figure 5):
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where this time, we blow down each lined pair of solid circles to an A2 singularity. There

is a fibration with multiple fibers of multiplicity 3 over each of those points. The Jacobian

fibration is again part of the N = (2, 0) theory, with a di↵erent tuning of the moduli. With

this tuning, we find a Z3 gauge symmetry.

A related example was given in section 7.1.1 using the action of Z6 on a nonsingular

elliptic curve with j = 0. The quotient S/Z6 has central fiber which is a rational curve

passing through surface singularities of types A1, A2, and A5 with fibers of multiplicity 2, 3,

and 6 over those points. Resolving the singularities leads to another a�ne bE8 diagram:

t t
t

t t t t t

where again the solid circles represent the curves being blown down. Tuning the moduli of

the N = (2, 0) E8 theory to blow down those curves leads to a locus in moduli with a Z6

gauge symmetry. Notice that this is the intersection of the previous two loci with Z2 and Z3

gauge symmetry.
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where this time, we blow down each lined pair of solid circles to an A2 singularity. There

is a fibration with multiple fibers of multiplicity 3 over each of those points. The Jacobian

fibration is again part of the N = (2, 0) theory, with a different tuning of the moduli. With

this tuning, we find a Z3 gauge symmetry.
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A related example was given in section 7.1.1 using the action of Z6 on a nonsingular

elliptic curve with j = 0. The quotient S/Z6 has central fiber which is a rational curve

passing through surface singularities of types A1, A2, and A5 with fibers of multiplicity 2, 3,

and 6 over those points. Resolving the singularities leads to another affine Ê8 diagram:

is a genus 1 fibration X over this base B with a fiber of multiplicity 2 at each A1 singularity.

The fiber never degenerates over this locus.

The Jacobian fibration J(X/B) is simply a Weierstrass fibration over B whose fibers do

not degenerate. There is no obstruction to resolving the singularities of B, moving out into

the rest of the moduli space. In fact, this is part of the moduli space of the N = (2, 0)

theory of type E8, and we claim that when the tensors are tuned to blow down precisely

the curves corresponding to solid nodes, a Z2 gauge symmetry appears in the theory. That

gauge symmetry is necessary to explain the additional 5D models which appear when the

A1’s are blown down and a twist of the Jacobian fibration is possible. Presumably, moving

away from this locus amounts to Higgsing the Z2 gauge symmetry. Incidentally, this example

is the T-dual of the N = (1, 1) model with group F4.

As a second example (which is the T-dual of the N = (1, 1) model with group G2),

consider another partially blown down graph of type bE8, illustrated here (and in Figure 5):

t t d
d

t t t t

where this time, we blow down each lined pair of solid circles to an A2 singularity. There

is a fibration with multiple fibers of multiplicity 3 over each of those points. The Jacobian

fibration is again part of the N = (2, 0) theory, with a di↵erent tuning of the moduli. With

this tuning, we find a Z3 gauge symmetry.

A related example was given in section 7.1.1 using the action of Z6 on a nonsingular

elliptic curve with j = 0. The quotient S/Z6 has central fiber which is a rational curve

passing through surface singularities of types A1, A2, and A5 with fibers of multiplicity 2, 3,

and 6 over those points. Resolving the singularities leads to another a�ne bE8 diagram:

t t
t

t t t t t

where again the solid circles represent the curves being blown down. Tuning the moduli of

the N = (2, 0) E8 theory to blow down those curves leads to a locus in moduli with a Z6

gauge symmetry. Notice that this is the intersection of the previous two loci with Z2 and Z3

gauge symmetry.
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where again the solid circles represent the curves being blown down. Tuning the moduli of

the N = (2, 0) E8 theory to blow down those curves leads to a locus in moduli with a Z6

gauge symmetry. Notice that this is the intersection of the previous two loci with Z2 and Z3

gauge symmetry.

9.3 Towards T-Duality in the More General Case

In the examples from the previous two subsections, we saw that the expected appearance of

T-duality for an LST motivates the search for a double elliptic fibration structure in such

F-theory models. When the base has a fibration by curves of genus 1, the origin of this

second fibration is clear. When the fibration on the base is by curves of genus 0, however,

the T-duality is not as readily manifest.

Example (9.2) does have manifest T-duality, as further analyzed in Appendix F. In this

case, the Weierstrass model y2 − F (x, ψ, [s, t]) can be regarded as a double cover of a P1-

bundle over the base B, where x denotes the coordinate on the P1. Since the double cover

is branched at 4 points along each fiber P1
F of this fibration, the total space gets a fibration

by curves of genus 1.

Now the base B of that F-theory model has a fibration π : B → C of its own whose

general fiber is another P1 which we shall call P1
B. In Appendix F, after making a birational

modification of the base (i.e., blowing it up and down), we find that the double cover is

branched along 4 points of each fiber P1
B as well, and this implies that there is a second

genus 1 fibration on the total space. Note that this echoes the discovery made in [3] that

heterotic T-duality, when viewed from the perspective of F-theory, exchanges the roles of

base and fiber in the heterotic weak coupling limit.

It is therefore natural to seek out a more general geometric exchange symmetry in LSTs

with T-duality. We leave a more complete investigation of this possibility to future work.
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10 Outliers and Non-Geometric Phases

Much as in the case of the classification of SCFTs achieved in reference [20], we view the

F-theory realization of LSTs as providing a systematic approach to the construction of such

models. In some cases, however, we indeed find a few small gaps between what is expected

based on field theory considerations, and what can be obtained in geometric phases of F-

theory.

Our plan in this short section will be to proceed mainly by effective field theory consid-

erations to give a list of such outlying behavior, both for 6D SCFTs and LSTs. We hasten

to add that some of these putative theories may end up being inconsistent due to the lack of

an embedding in an F-theory (or other string) construction.16 In some cases, however, this

also points to a few additional novel possibly non-geometric structures. Though we shall

comment on possible ways to realize these models in F-theory, we leave a more complete

analysis to future work.

10.1 Candidate LSTs and SCFTs

From a bottom up perspective, the primary constraints on the construction of consistent

LSTs are the existence of a lattice of string charges with a negative semidefinite Dirac

pairing, and possible gauge groups “decorating” the associated tensor multiplets.

In some cases, there is a clear indication from F-theory that certain bottom up consider-

ations are too weak; For example, the phenomenon of a −n curve for n ≥ 3 always implies

the existence of a non-trivial gauge group factor, a condition which is not obvious from any

anomaly cancellation condition.

There are, however, three intermediate cases suggested by field theory which also have

a potential realization in string theory. The first case deals with the gauge-gravitational

anomaly cancellation condition (see (A.7)) imposed in all geometrically realized 6D SCFTs

and LSTs. This condition has no field theoretic analog in flat space as there are no a priori

restrictions on one-loop contribution to mixed gauge-gravitational anomaly. Non-vanishing

of total mixed gauge-gravitational anomaly implies that the theory is inconsistent when put

on a fixed curved spacetime background. It would clearly be troublesome if 6D SCFTs were

anomalous in this way. Fortunately, it is always possible to cancel the one-loop contribution

to this anomaly against a Green-Schwarz contribution, as was demonstrated in [58]. This

argument does not apply to 6D LSTs, and indeed it can be checked explicitly in many

examples of 6D LSTs that there is no way to cancel the one-loop mixed gauge-gravitational

anomaly using the Green-Schwarz mechanism. This means that 6D LSTs cannot always be

put on a fixed curved spacetime.

16For a recent example of a seemingly consistent 6D SCFT which is actually inconsistent, see e.g. Appendix
A of reference [57].
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One class of such models would arise on:

12...21 (10.1)

where we decorate all the tensors with su-type gauge groups along with anti-symmetric

matter for the last su gauge group and symmetric matter for the first su gauge group. With

the presence of this symmetric representation, (A.7) is violated. Nonetheless, this model

can be constructed by putting type IIA on an interval S1/Z2 with an O8− orientifold plane

on each fixed point, D6s stretched along the interval, NS5s embedded in the D6s at various

points along the interval, and two of the NS5s stuck respectively at the two fixed points.

More generally, to construct new examples of 6D SCFTs and LSTs which violate the

1-loop mixed gauge-gravitational anomaly condition (A.7) we can do the following: take any

F-theory model having a −1 curve or P base curve associated with su-type gauge group and

at least one anti-symmetric hyper and 16 fundamental hypers not transforming under any

other gauge group. Then, replace this set of hypermultiplets with a single hypermultiplet in

the symmetric representation. The resulting theory will satisfy gauge anomaly cancellation,

but it will have a non-vanishing 1-loop gauge-gravitational anomaly.

The second case has to do with the condition of “normal crossing” which is present in

all geometrically realized 6D SCFTs, and is only mildly violated in LSTs. For example, we

have seen that an intersection with an order two tangency 4||1 leads to a consistent LST

base. In the bottom up perspective, we have a negative semidefinite Dirac pairing which

has 2 on the off-diagonal entries, and −4 and −1 on the diagonals. Generalizing, we can

consider constructions such as:

4||2...2 (10.2)

4||2...21 (10.3)

4||2...2||4 (10.4)

all of which have a negative definite Dirac pairing. Though we have not encountered these

possibilities in our discussion of geometric phases of F-theory, the first two have been realized

in IIA string theory via appropriate suspended brane configurations (see e.g. [6]), at least

when there are non-trivial gauge group factors over the associated tensor multiplets. For

example, we can have su-type on the −2 charge tensors, and so-type gauge groups on the

−4 tensors, with sp-type gauge groups on the −1 tensors. The crucial ingredient appearing

in these suspended brane models is an O8+-orientifold, rather than an O8−-orientifold. The

T-dual description in IIB string theory involves O7+-orientifold planes, a case which leads to

some non-geometric behavior, a point we shall return to later. The last example 4||2...2||4
resists an embedding in IIA string theory, since it would appear to involve twoO8+-orientifold

planes. Indeed, if we attempt to decorate these tensor multiplets by so-type algebras on

the −4 tensors, and su-type algebras on the −2 tensors, we cannot cancel gauge theoretic
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anomalies.

Assuming that configurations such as 4||2 can indeed occur in the construction of LSTs,

it is natural to ask how many additional models can be obtained, at least from a bottom up

perspective. Pairing each tensor multiplet with a simple gauge algebra, these are as follows:

so(M)

4 ||
su(N1)

2
su(N2)

2 ...
su(Nk)

2
sp(NR)

1 (10.5)

sp(N1)

1

sp(NT )
1

so(M1)

4 ...
sp(Nk)

1
so(Mk)

4 ||
su(NR)

2 (10.6)

su(N ′)

2
sp(N1)

1
so(M1)

4 ...
so(Mk)

4 ||
su(NR)

2 (10.7)

It should be noted that gauge and mixed anomalies strongly constrain the allowed gauge

algebras in the above list. In particular, the configuration
so(M)

4 ||
su(N)

2 is constrained by mixed

anomalies to have a bifundamental (M,N), requiring N ≤M−8, 2N ≥M . These conditions

lead to strong constraints on the rest of the gauge algebras in the aforementioned theories,

as discussed in [21].

If one also relaxes the condition that there is a gauge group paired with each tensor, even

more constructions are possible. In most of these cases, no known embedding in a string

construction is available, so we suspect that at least some of these theories are actually

inconsistent. Nevertheless, for the sake of completeness, we list them here:

2 || 4 1 4 ... 4 1 4|| 2 (10.8)

4 1 4 || 2 2 (10.9)

4 || 2 2 ... 2 || 4 (10.10)

4 || 2 2 ... 2 1 (10.11)

4 || 2 2 ...
2

2 2 (10.12)

1
1

4 1 ... 4 1 4 || 2 (10.13)

1 3 1 ... 4 1 4 || 2 (10.14)

1 2 3 1 4 ... 4 1 4 || 2 (10.15)

1 2 2 3 1 4 ... 4 1 4 || 2 (10.16)

2 1 4 ... 4 1 4 || 2. (10.17)

The third case can be viewed as a limit of (10.8)

2 || 2 (10.18)
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with the following gauge algebras
so(7)

2
[Sp(1)]

||
su(4)

2

so(8)

2
[Sp(2)]

||
su(4)

2

g2
2 ||

su(4)

2

so(12)

2
[Ns=1]

||
su(6)

2

so(13)

2
[Ns=1/2]

||
su(7)

2

Their omission has to do with the fact that the su(N) for N = 4, 6, 7 appearing above is con-

structed by an IN singularity on a −2 curve. But an IN singularity on a −2 curve cannot con-

sistently intersect17 an I∗M type singularity required to construct so(7), so(8), so(12), so(13), g2

above.

It is worth mentioning that a violation of normal crossing and a violation of gauge-

gravitational anomaly cancellation do not appear simultaneously in any of these examples.

The lists of LSTs and putative LSTs arising from these violations are small and tightly

constrained.

This perspective on LSTs also points to the existence of some additional novel structures

for 6D SCFTs. Indeed, starting from an LST, we can consider a combination of tensor-

decoupling and Higgsing to reach some additional candidate SCFTs.

The theories of this type, which are consistent with anomaly cancellation and with no

unpaired tensors, take the form:

so(M)

4 ||
su(N1)

2
su(N2)

2 ...
su(Nk)

2 (10.19)

sp(N ′)

1
so(M)

4 ||
su(N1)

2
su(N2)

2 (10.20)

so(M1)

4
sp(N1)

1 ...
so(Mk)

4 ||
su(NR)

2 (10.21)

sp(N1)

1
so(M1)

4 ...
so(Mk)

4 ||
su(NR)

2 (10.22)

Notice that (10.20) does not admit a known type IIA construction, whereas the other three

do. Another curious thing to notice is that this model does not admit an embedding in a

putative LST. The obvious examples of attaching an so group to the left or attaching an su

17This is because the order of vanishing of f for an IN singularity is zero. If the IN singularity wraps a
−2 curve C in the base B, then the number of points on C where f vanishes is computed as −4KB · C = 0
where KB is the canonical divisor on B. This is in contradiction with the fact that C intersects another
curve D carrying an I∗M singularity on which f vanishes at least to order two.
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group to the right are pathological because they necessarily have non-vanishing quartic part

of gauge anomaly. Although we have only proved that every 6D SCFT can be embedded in

a 6D LST for models arising geometrically within F-theory, we expect this statement to be

true in general. Hence, we suspect that the putative SCFT (10.20) is inconsistent. Finally,

concentrating only on positive-definiteness, we have the 4||2 configurations:

1 4 || 2 2 (10.23)

4 || 2 2 ... 2 (10.24)

1 4 1 ... 4 1 4 || 2 (10.25)

4 1 4 ... 4 1 4 || 2 (10.26)

3 1 ... 4 1 4 || 2 (10.27)

2 3 1 4 ... 4 1 4 || 2 (10.28)

2 2 3 1 4 ... 4 1 4 || 2 (10.29)

10.2 Towards an Embedding in F-theory

In the above, we encountered some additional candidate SCFTs and LSTs which appear to

be consistent with effective field theory considerations. Additionally, some of these models

admit an embedding in type IIA suspended brane constructions.

It is therefore important to ask to what extent we should expect F-theory to cover this

and related examples. Though we leave a complete characterization to future work, there

are some general ingredients we can already identify which point the way to incorporating

these additional non-geometric structures.

As we have already mentioned, one crucial ingredient in the IIA realization of the 4||2
configuration is the appearance of an O8+-plane, which T-dualizes to a pair of O7+-planes in

type IIB string theory. Such orientifolds lead to the phenomena of “frozen singularities” in

F-theory [11–13]. These are models in which the monodromy of the axio-dilaton around the

brane is consistent with that of an appropriate I∗n singularity, but in which the corresponding

gauge algebra is not so(2n+ 8).

Another not entirely unrelated phenomenon we have encountered in the construction of

the N = (1, 1) LSTs, as well as in some of the low rank LSTs are models in which the normal

bundle of a curve on the base is torsion of finite order. To produce a Weierstrass model, we

have found it necessary to impose specific restrictions on the order of these torsion bundles,

though the M-theory realization of these A-type N = (1, 1) theories suggests a whole family

of models parameterized by rational theta angles [41].

In fact, it is relatively straightforward to engineer all of the A-type N = (1, 1) LSTs in

type IIB, and to lift this back to F-theory. For example, in type IIB language, we have a

stack of N D7-branes wrapped on a T 2. Switching on a background value for a flat RR and

NS two-form potential, we get additional theories parameterized by the ratio of these two
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periods. In F-theory language, we see this by a choice of how we resolve the affine node of

the ÂN+1 Dynkin diagram. In physical terms, this resolution comes from compactifying an

8D model on an additional S1. Going down on a T 2, we have Wilson lines for this affine

node along the A- and B-cycles of the T 2.

The presence of such background B-fields also suggests that similar effects from discrete

group actions may also make an appearance in the construction of the 4||2 type configura-

tions. For example, at the level of the effective field theory, we can consider a base:

2
2

22...2 (10.30)

with IN -type fiber decorations on each −2 curve. Now, this field theory admits a Z2 auto-

morphism in which we combine the outer automorphism of the D-type base with an outer

automorphism on the suN factors on the leftmost −2 curve and the top −2 curve. At the

level of gauge theory, the outer automorphisms of suN can take us to either an so or sp-type

algebra. Combining these two operations, we see that we get an effective field theory where

there is one less tensor multiplet, and in which the BPS charge has doubled, and in which the

Dirac pairing between this Z2 invariant combination and its neighbor is 2, leaving us with a

configuration of tensor multiplets 4||2...2. Taking into account the algebra assignment (i.e.

the would-be fibers), we can in principle have either so or sp -type algebras, of which only

the former is compatible with anomaly cancellation.18 Similar considerations also apply for

the LST tensor multiplet configurations such as 4||2...21.

Let us stress that effective field theory considerations do not directly inform us of the

actual non-geometric realization of these models in F-theory. Indeed, what is particularly

remarkable is that even if we allow these additional structures, the total number of additional

candidate SCFTs and LSTs is quite small, with the vast majority being covered by geometric

phases of F-theory. This suggests that whatever the mild deformation of known F-theory

backgrounds are that produce these models, the structures encountered in this paper and in

earlier work remain quite robust.

11 Conclusions

In this paper we have given a systematic approach to realizing supersymmetric little string

theories via compactifications of F-theory. Much as in the case of 6D SCFTs, these theories

arise from working with F-theory on a non-compact base, in which some collection of curves

18Let us recall that in F-theory, conjugation by an outer automorphism apparently leads to a geometrically
ambiguous assignment for the quotient algebra. This ambiguity has been resolved by appealing to anomaly
cancellation considerations, in which the opposite conclusion is reached, i.e. a non-split IN fiber realizes
an sp-type algebra [59]. However, effective field theory considerations suggest that when combined with a
quotient on the tensor multiplets, there may be a generalization of this construction available in which we
instead reach an so-type algebra. Incorporation of an O7+ plane or of discrete B-fields might provide a route
to such a generalization.
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are simultaneously collapsed to small size. The key difference with a 6D SCFT is that the

intersection pairing for these curves defines a negative semidefinite quadratic form on the

lattice of string charges. So, in contrast to the case of SCFTs the associated theories contain

a dimensionful parameter which is naturally promoted to a non-dynamical tensor multiplet.

After spelling out all necessary conditions to geometrically realize LSTs in F-theory, we have

given a classification of all such theories. On the one hand, these theories can all be viewed

as arising from extending 6D SCFTs by one or more additional curves. As such, they also

admit an atomic classification, much as in reference [20]. We have also seen that the general

expectation that all 6D SCFTs embed in an LST is indeed realized via the explicit embedding

in an F-theory compactification. Finally, we have seen that T-duality of an LST is realized

via a double elliptic fibration in the corresponding F-theory model. In the remainder of this

section we discuss some avenues for future investigation.

Perhaps the most important issue left open by our analysis is the small gap between

theories realized by geometric phases of F-theory, and the list of effective field theories which

can potentially complete to an LST (or SCFT). It would be interesting to establish to what

extent non-geometric deformations can enter in such F-theory models, and conversely, how

many of these putatively consistent LSTs (and SCFTs) are actually excluded by further

non-trivial consistency conditions.

One of the key simplifications in our analysis of LSTs is that decoupling any curve in

the base takes us back to a collection of (possibly decoupled) 6D SCFTs and scale invariant

theories (i.e. when we have free vector multiplets). This strongly suggests that the common

notions of renormalization group flows for local quantum field theories extend to non-local

LSTs. Developing the details of such a structure would provide a rather striking vantage

point on what it means to “UV complete” a quantum field theory in the first place.

As a preliminary step in this direction, it is also natural to ask whether there is a notion

of monotonic loss in the degrees of freedom in such conjectural flows from LSTs to SCFTs.

For example, in many of the cases studied in this paper, we can weakly gauge both diffeo-

morphisms as well as an SU(2) field strength, which in the context of a 6D SCFT would

be identified with the R-symmetry of the theory. It is tempting to conjecture that there is

a formal extension of conformal anomalies to these cases as well. It would be interesting

to study whether an extension of the methods presented in references [60,61] (see also [62])

would provide insight into such generalizations of renormalization group flows.

Finally, one of the hallmarks of the systems we have encountered is the appearance of

an effective T-duality upon compactification on a further circle. Given that there are now

concrete methods for extracting the partition functions for some 6D SCFTs (see e.g. [63]),

it would be quite natural to study this and related structures for LSTs.

50



Acknowledgements

We thank D.S. Park, Y. Tachikawa and A. Tomasiello for helpful discussions. LB thanks

IISc and ICTS, Bangalore for hospitality during the Strings 2015 conference where a part of

this work was completed. MDZ, JJH, TR and CV thank the Simons Center for Geometry

and Physics 2015 summer workshop for hospitality during part of this work. JJH also

thanks the theory groups at Columbia University, the ITS at the CUNY graduate center,

and the CCPP at NYU for hospitality during the completion of this work. The work of

LB is supported by the Perimeter Institute for Theoretical Physics. Research at Perimeter

Institute is supported by the Government of Canada through Industry Canada and by the

Province of Ontario through the Ministry of Economic Development and Innovation. The

work of MDZ, TR and CV is supported by NSF grant PHY-1067976. TR is also supported

by the NSF GRF under DGE-1144152. The work of JJH is supported by NSF CAREER

grant PHY-1452037. JJH also acknowledges support from the Bahnson Fund at UNC Chapel

Hill. The work of DRM is supported by NSF grant PHY-1307513.

A Brief Review of Anomaly Cancellation in F-theory

The allowed gauge algebras and matter content for a given tensor branch structure is heavily

constrained by anomaly cancellation. In 6D, anomalies are related to four-point amplitudes

of external currents Ja associated with continuous symmetry group Ga. In such a four-point

amplitude, insertions of external currents Ja for a given gauge group Ga must come in pairs,

so we need only consider the anomalies related to the four point functions 〈JaJaJaJa〉 (gauge

anomaly cancellation) and 〈JaJaJbJb〉 (mixed gauge anomaly cancellation).

For a representation R of some gauge group G, we introduce constants IndR, xR, and yR
relating the quadratic and quartic Casimirs of G as follows:

TrRF
2 = IndRtrF 2 , TrRF

4 = xRtrF 4 + yR(trF 2)2. (A.1)

Here, tr indicates the trace in a defining representation of the group19.

19For SU(N) and Sp(N), the defining representation is simply the fundamental representation. For SO(5)
and SO(6), it is the spinor representation. For SO(N), N ≥ 7, it is the fundamental representation, though
normalized with an additional factor of 2 so that TrfF

2 = 2trF 2, TrfF
4 = 2trF 4. A complete list including

exceptional gauge groups can be found in Table 2 of [45].
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The constraints on gauge and mixed anomalies take the form [46,64,47,45]

IndAdja −
∑

R

IndRanRa = 6(10− n)
ΩIJa

IbJa
ΩIJaIaJ

(A.2)

yAdja −
∑

R

yRanRa = −3(10− n)
ΩIJb

I
ab
J
a

ΩIJaIaJ
(A.3)

xAdja −
∑

R

xRanRa = 0 (A.4)

∑

R,R′

IndRaIndR′bnRaR′b
= (10− n)

ΩIJb
I
ab
J
b

ΩIJaIaJ
. (A.5)

Here, ΩIJ is the natural metric on the space of antisymmetric tensors, and aI , bJa are related

to the anomaly 8-form I8 via

I8 =
1

2
ΩIJX

IXJ , XI =
1

2
aItrR2 + 2bIatrF

2
a . (A.6)

These field theoretic conditions can be translated into F-theory language as restrictions on

the allowed gauge algebras and matter for a given base. Any gauge algebra summand ga in

the theory is paired with a tensor multiplet, which is in turn associated with a curve Σa in

the base. In these terms, the anomaly cancellation conditions become

IndAdja −
∑

R

IndRanRa = 6(K · Σa) = 6(2ga − 2− Σa · Σa) (A.7)

yAdja −
∑

R

yRanRa = −3(Σa · Σa) (A.8)

xAdja −
∑

R

xRanRa = 0 (A.9)

∑

R,R′

IndRaIndR′bnRaR′b
= Σa · Σb. (A.10)

Here, K is the canonical divisor of the base and ga is the genus of Σa. The adjunction

formula K · Σa = 2(ga − 1)− Σa · Σa has been used in the second equality of (A.7).

Gauge anomaly cancellation may be used to constrain the gauge groups paired with a

given tensor node, and mixed anomaly cancellation constrains the gauge groups allowed on

neighboring tensor nodes. However, tensors need not be paired with gauge groups. In partic-

ular, curves of self-intersection 0, −1, or −2 can be devoid of a gauge group entirely. Curves

of self-intersection 0 cannot touch any other curves, so this case is relatively uninteresting.

Curves of self-intersection −1 and −2, on the other hand, can touch other curves.
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B Matter for Singular Bases

In this Appendix, we review the relationship between matter and singularities. Further

information can be found in [48].

Consider some curve Σ. When this curve becomes singular, there are two distinct no-

tions of genus. Geometric genus, denoted pg, is the topological genus of the curve after all

singularities have been resolved. Arithmetic genus, denoted g, is the quantity related to the

intersection theory of the curve by

2g − 2 = K · Σ + Σ2. (B.1)

The arithmetic genus is the one that shows up in the adjunction formula and hence enters

the anomaly cancellation equation (A.7). These two notions of the genus are related via

g = pg +
∑

P

mP (mP − 1)

2
. (B.2)

Here, the sum runs over all singular points P of the curve and mP is the multiplicity of

the singularity at P . For a curve with a nodal singularity (of Kodaira type I1) or a cusp

singularity (of Kodaira type II), there is a single singular point of multiplicity mP = 2.

Hence, in each of these cases we have g = pg + 1. The only values of g and pg that can

actually arise in our classification are g = 1 and pg = 0.

Although pg does not show up directly in the anomaly cancellation conditions, it still

determines the F-theory matter content. Namely, pg is precisely the number of adjoint

hypermultiplets charged under the gauge algebra paired with this curve. For smooth LST

bases, we see that there is one adjoint whenever the genus g = pg of the curve is 1. For

singular curves, on the other hand, the arithmetic genus g can be 1 even without any adjoint

hypermultiplets. For curves with gauge algebra su(N), one instead finds symmetric and

antisymmetric representations, as noted in [46].

C Novel DE Type Bases

Appendices B and C [20] provided a complete list of DE type bases that can be used to

construct 6D SCFTs. All of these bases can show up in LSTs as well when certain non-DE

type links are suitably attached. However, there are also some novel DE type bases, which

blow down to 0.

We use an abbreviated notation to describe these bases. Namely, we specify curves of
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self-intersection −4, −6, −8, and −12 according to

D ' 4 (C.1)

E6 ' 6 (C.2)

E7 ' 8 (C.3)

E8 ' 12 (C.4)

The allowed types of conformal matter between DE type nodes are represented as follows:

D1D ' D
1,1
⊕ D (C.5)

E6131E6 ' E6

2,2
⊕ E6 (C.6)

E712321E6 ' E7

3,3
⊕ E6 (C.7)

E712321E7 ' E7

3,3
⊕ E7 (C.8)

E71231D ' E7

3,2
⊕ D (C.9)

E812231D ' E8

4,2
⊕ D (C.10)

E61315131E6 ' E6

3,3

© E6 (C.11)

E613151321E7 ' E6

3,4
⊕ E7 (C.12)

E6131513221E8 ' E6

3,5
⊕ E8 (C.13)

E7123151321E7 ' E7

4,4
⊕ E7 (C.14)

E71231513221E8 ' E7

4,5
⊕ E8 (C.15)

E812231513221E8 ' E8

5,5
⊕ E8. (C.16)

We omit the subscripts above the ⊕ when dealing with the minimal type of conformal

matter:

D ⊕D ' D
1,1
⊕ D (C.17)

D ⊕ E6 ' D
2,2
⊕ E6 (C.18)

D ⊕ E7 ' D
2,3
⊕ E7 (C.19)

D ⊕ E8 ' D
2,4
⊕ E8 (C.20)

E6 ⊕ E6 ' E6

2,2
⊕ E6 (C.21)

E6 ⊕ E7 ' E6

3,3
⊕ E7 (C.22)
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E6 ⊕ E8 ' E6

3,5
⊕ E8 (C.23)

E7 ⊕ E7 ' E7

3,3
⊕ E7 (C.24)

E7 ⊕ E8 ' E7

4,5
⊕ E8 (C.25)

E8 ⊕ E8 ' E8

5,5
⊕ E8 (C.26)

Using this notation, we now list the novel DE type bases for LSTs. All of these bases are

positive semi-definite with a single zero eigenvalue. We begin with configurations with only

D nodes:

D
3,3
⊕ D (C.27)

D
3,3

©D (C.28)

The configurations with only E6 nodes:

E6

5,5
⊕ E6 (C.29)

The configurations with D and E6:

D
3,5
⊕ E6 (C.30)

D ⊕ E⊕2
6

3,3
⊕ E6 (C.31)

D ⊕ E⊕2
6

3,3

© E6 (C.32)

D ⊕ E6

3,4
⊕ E6 (C.33)

D ⊕ E6

3,2
⊕ D (C.34)

D⊕2 ⊕ E6 ⊕D (C.35)
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The configurations with D and E7:

D
3,3
⊕ E⊕n7

3,3
⊕ D , n = 1, 2, ... (C.36)

D ⊕ E⊕3
7

4,4
⊕ E7 (C.37)

D ⊕ E⊕2
7

4,5
⊕ E7 (C.38)

D⊕2 ⊕ E7 ⊕D (C.39)

D
2,4
⊕ E7 ⊕D (C.40)

D ⊕ 1
2

321⊕ E7 (C.41)

The configurations with D and E8:

D
3,5
⊕ E⊕n8

5,3
⊕ D , n = 1, 2, ... (C.42)

D⊕3 ⊕ E8 ⊕D⊕2 (C.43)

D⊕4 ⊕ E8 ⊕D (C.44)

The configurations with E6 and E8:

E6

5,5
⊕ E⊕n8

5,5
⊕ E6 , n = 1, 2, ... (C.45)

E6

4,5
⊕ E⊕2

8 ⊕ E⊕2
6 (C.46)

The configurations with D, E6 and E7:

D ⊕ E7

4,4
⊕ E6 (C.47)

D ⊕ E⊕2
7

4,3
⊕ E6 (C.48)

D ⊕ E⊕2
6

3,5
⊕ E7 (C.49)

D ⊕ E⊕3
6

3,4
⊕ E7 (C.50)

D ⊕ E⊕4
6 ⊕ E7 (C.51)

D ⊕ E⊕2
7 ⊕ E⊕2

6 (C.52)

D ⊕ E6 ⊕ E7 ⊕ E⊕2
6 (C.53)
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The configurations with D, E6 and E8:

D
4,5
⊕ E⊕n8

5,5
⊕ E6 , n = 1, 2, ... (C.54)

D ⊕ E⊕6
6 ⊕ E8 (C.55)

D⊕2 ⊕ E⊕2
8 ⊕ E⊕2

6 (C.56)

D⊕3 ⊕ E8

5,4
⊕ E6 (C.57)

The configurations with D, E7 and E8:

D ⊕ E⊕6
7

4,5
⊕ E8 (C.58)

D⊕2 ⊕ E⊕3
8 ⊕ E⊕2

7 (C.59)

The configurations with E6, E7 and E8:

E6

4,5
⊕ E8 ⊕ E7 ⊕ E6 (C.60)

E6

4,5
⊕ E⊕3

8 ⊕ E⊕2
7 (C.61)

The configurations with D, E6, E7 and E8:

D ⊕ E8 ⊕ E⊕2
7 ⊕ E6 (C.62)

D⊕2 ⊕ E8 ⊕ E7 ⊕ E6 (C.63)
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D Novel Non-DE Type Bases

The following is the list of novel bases constructed solely from curves of self-intersection −1,

−2, −3, and −5:

12....21 (D.1)

5⊕ 1⊕5 (D.2)

1
1

5
1
12 (D.3)

21
1

512 (D.4)

1312 (D.5)

1
1

31 (D.6)

131
1

512 (D.7)

131
1

5
1
12 (D.8)

1231
1

512 (D.9)

1231
1

5
1
12 (D.10)

12231
1

512 (D.11)

12231
1

5
1
12 (D.12)

2
1

31512 (D.13)

2
1

31
1

51 (D.14)
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3131512 (D.15)

3131
1

51 (D.16)

215131512 (D.17)

215131
1

51 (D.18)

1
1

5131
1

51 (D.19)

1
1

5131512 (D.20)

1
1

5131
1

51 (D.21)

1315131512 (D.22)

1315131
1

51 (D.23)

12315131512 (D.24)

12315131
1

51 (D.25)

122315131512 (D.26)

122315131
1

51 (D.27)

151231512 (D.28)

151231
1

51 (D.29)

512231512 (D.30)

512231
1

51 (D.31)

12321512 (D.32)

12321
1

51 (D.33)

1321512 (D.34)

1321
1

51 (D.35)

13
1

22 (D.36)

2
2

2...21 (D.37)

151
1

322 (D.38)

1512
1

32 (D.39)

512222 (D.40)

151222 (D.41)

3122 (D.42)

1315122 (D.43)
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12315122 (D.44)

122315122 (D.45)

215122 (D.46)

1
1

5122 (D.47)

13151
1

32 (D.48)

123151
1

32 (D.49)

1223151
1

32 (D.50)

2151
1

32 (D.51)

1
1

51
1

32 (D.52)

32132 (D.53)

12231321 (D.54)

23123 (D.55)

12313221 (D.56)

1313221 (D.57)

1512231 (D.58)

13213 (D.59)

123131 (D.60)

13131 (D.61)

312321 (D.62)

3132151 (D.63)

2313151 (D.64)

151232151 (D.65)

1232151321 (D.66)

5123132 (D.67)

3215123 (D.68)

123151231 (D.69)

13151231 (D.70)

1321513221 (D.71)

5131322 (D.72)

13215131 (D.73)

3221513 (D.74)
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1512313 (D.75)

5122313 (D.76)

1231512321 (D.77)

12231512321 (D.78)

131512321 (D.79)

12315132151 (D.80)

1315132151 (D.81)

315123151 (D.82)

122315132215 (D.83)

321513151 (D.84)

315123215 (D.85)

513215132 (D.86)

51223151321 (D.87)

512315123 (D.88)

151231513221 (D.89)

3131513221 (D.90)

1512315131 (D.91)

5122315131 (D.92)

512321513 (D.93)

123151313 (D.94)

13151313 (D.95)

513151232 (D.96)

15131513215 (D.97)

15131513151 (D.98)

12231513151321 (D.99)

12315131513221 (D.100)

1315131513221 (D.101)

123151315131 (D.102)

13151315131 (D.103)

51315131513 (D.104)
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E Novel Gluings

At times, non-DE type side links or noble atoms can attach to DE type nodes in ways they

could not for 6D SCFTs. For instance, the side link 2151321 could never attach to a D node

in a 6D SCFT, since it induces four blow-downs on the −4 curve. However, this is allowed

for LSTs. The full list of these novel gluings of one side link to a single node is as follows:

For gluing to a D-type node (i.e. a −4 curve), we have:

2221⊕D (E.1)

2151321⊕D (E.2)

3215131⊕D (E.3)

1512321⊕D (E.4)

3151231⊕D (E.5)

31
1

5131⊕D (E.6)

22
1

31⊕D (E.7)

1
1

51321⊕D (E.8)

151315131⊕D (E.9)

512315131⊕D (E.10)

For gluing to an E6-type node (i.e. a −6 curve), we have:

222221⊕ E6 (E.11)

2231
1

5131⊕ E6 (E.12)

231512321⊕ E6 (E.13)

232151321⊕ E6 (E.14)

321513221⊕ E6 (E.15)

31
1

513221⊕ E6 (E.16)

231
1

51321⊕ E6 (E.17)

15131513221⊕ E6 (E.18)

51231513221⊕ E6 (E.19)

3151315121⊕ E6 (E.20)

23151315131⊕ E6 (E.21)
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For gluing to an E7-type node (i.e. a −8 curve), we have:

22222221︸ ︷︷ ︸
8

⊕ E7 (E.22)

2231513151321⊕ E7 (E.23)

2231
1

513221⊕ E7 (E.24)

2231
1

513221⊕ E7 (E.25)

while for an E8-type node (i.e. a −12 curve), we have:

222222222221︸ ︷︷ ︸
12

⊕ E8. (E.26)

We remark that in the case of the E7 and E8 nodes, we can also delete some of the afore-

mentioned curves, using instead a “primed” node, (i.e. by adding a small instanton link

elsewhere).

F T-Duality in the 1, 2, . . . , 2, 1 Model

Let us consider the LST whose F-theory base B has a chain of rational curves consisting of

two curves of self-intersection−1 at the ends of the chain, and k ≥ 0 curves of self-intersection

−2 in between meet each other. The union of those k + 2 curves on the base deforms to

a nonsingular rational curve of self-intersection 0, and provides a fibration π : B → C on

the base whose general fiber is P1. The total space of the elliptic fibration looks like a one

parameter family of elliptic K3 surfaces (over general fibers of π) degenerating to a pair

of dP9’s with k intermediate elliptic ruled surfaces (over π−1(0)), which (when k = 0) is

precisely the degeneration which appears in the analysis of heterotic / F-theory duality in

reference [65].

Remarkably, the total space of this elliptic fibration admits a second elliptic fibration,

at least birationally. The computation which shows this was written out in reference [66],

although it has some earlier antecedents in the math literature [67–70].20

Consider a base of the form P1 × C where the homogeneous coordinates on P1 are [σ, τ ]

on the coordinate on C is ψ. We write a Weierstrass equation of the form

Y 2 = X3 + aσ4τ 4X + (ψk+1σ5τ 7 + cσ6τ 6 + σ7τ 5), (F.1)

where a and c are constants. (In [66] only the τ = 1 affine chart appears.) Notice that we get

a small instanton with instanton number k + 1 when ψ = σ = 0, so to get the 1, 2, . . . , 2, 1

20There was a subsequent extension of this computation to a more general case [70–72], which will un-
doubtedly be useful for understanding additional T-dualities of LSTs.
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model we should blowup the point ψ = σ = 0 k + 1 times. We keep this implicit in what

follows.

Note that we have Kodaira type II∗ at both σ = 0 and τ = 0, and since those represent

non-compact curves, we see E8 × E8 global symmetry.

Now there is a remarkable coordinate change:

X = st−5x2 (F.2)

Y = t−8x2y (F.3)

σ = t−3x (F.4)

τ = t. (F.5)

(This is only a “rational map” because of the division by powers of t.) The result of the

substitution is

t−16x4y2 = s3t−15x6 + ast−13x6 + (ψk+1t−8x5 + ct−12x6 + t−16x7). (F.6)

If we multiply the resulting equation by t16/x4, we obtain

y2 = s3tx2 + ast3x2 + (ψk+1t8x+ ct4x2 + x3) (F.7)

= x3 + (s3t+ ast3 + ct4)x2 + ψk+1t8x. (F.8)

We interpret this as a family elliptic curves over P1
[s,t]×C. (Note that this is a very different

base, with coordinates [s, t] which mix the former base and fiber coordinates.) Remarkably,

this is the equation for the F-theory dual of the Spin(32)/Z2 heterotic string with a small

instanton at t = ψ = 0 (as derived in [65, 3])! We have a global symmetry algebra so(32)

along t = 0. Note that we should also blow up t = ψ = 0.

Thus, in a quite subtle way there is T-duality for this pair of models, in which the two

different elliptic fibrations on the semi-local total space are exchanged, after a birational

change. Note that the coordinate change given above is (rationally) invertible. The inverse

is:

x = στ 3 (F.9)

y = σ−2τY (F.10)

s = σ−2τ−1X (F.11)

t = τ. (F.12)
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G F-Theory Construction of N = (1, 1) LSTs

The M-theory construction for little string theories with N = (1, 1) supersymmetry is de-

scribed in [41]. Such a theory can be seen as M-theory compactified on a spacetime of the

form (C2 × S1)/Γ for Γ ⊂ SU(2) a finite subgroup. The action on S1 is by rotations, and

there is a subgroup Γ′ of Γ which acts trivially on S1, leading to a short exact sequence of

groups

0→ Γ′ → Γ→ Zr → 0. (G.1)

Geometrically, there is an action of Zr on the ALE space C2/Γ′ corresponding to an auto-

morphism of the corresponding Lie group; the gauge group of the little string theory is the

subgroup commuting with the outer automorphism.

The mathematical description of these groups has been known for a long time, and is

nicely summarized in a table on p. 376 of [73] which we reproduce as Table 3. We have made

a minor correction to the table (already noted in footnote 15 of [41]), and we have added

the information about the gauge group and theta angle as discussed in [41]. In the table,

the cyclic group action on C3 with coordinates (x, y, z) is described in terms of exponents

(a
r
, b
r
, c
r
) of the generators; the notation also indicates how the equation transforms under the

action.

To construct these theories using F-theory, we use a base B which is a neighborhood of

an elliptic curve Σ whose normal bundle is a torsion line bundle of order r. The base has a

finite unramified cover of degree r which is a product Σ × C, and the cyclic group Zr will

act on the elliptic fibration over Σ × C (which we take to be in Weierstrass form). Thus,

the classification is analogous – we must find cyclic group actions on Weierstrass elliptic

fibrations which induce the corresponding actions on the ADE singularities.

Note that, as observed in section 7.1.1, this construction requires r ∈ {2, 3, 4, 6}, so

that most of the instances of case (1) are ruled out. In fact, we have been unable to find

a conventional F-theory construction of any instance of case (1) (which would correspond,

in the interpretation of [41], to an SU(n) theory with a rational theta angle). Instead, as

r Type ϕ Description Gauge Group θ

(1) any 1
r
(1,−1, 0; 0) xy + zn An−1

r-to-1−→ Arn−1 SU(n) ∈ πQ
(2) 4 1

4
(1, 3, 2; 2) x2 + y2 + z2n−1 A2n

4-to-1−→ D2n+3 Sp(n) π

(3) 2 1
2
(0, 1, 1; 0) x2 + y2 + z2n A2n−1

2-to-1−→ Dn+2 Sp(n) 0

(4) 3 1
3
(0, 1, 2; 0) x2 + y3 + z3 D4

3-to-1−→ E6 G2 0

(5) 2 1
2
(1, 1, 0; 0) x2 + y2z + zn Dn+1

2-to-1−→ D2n SO(2n+ 1) 0

(6) 2 1
2
(1, 0, 1; 0) x2 + y3 + z4 E6

2-to-1−→ E7 F4 0

Table 3: Cyclic actions on ALE spaces
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Type ϕ (X, Y, T ) Φ
(3) 1

2
(0, 1, 1) −y2 + x3 + ux2 + wt2n (t2x, t3y, t2) −Y 2 +X3 + uTX2 + wT n+3

(4) 1
3
(1, 0, 2) −y2 + x3 + wt3 (t4x, t6y, t3) −Y 2 +X3 + wT 5

(6) 1
2
(0, 1, 1) −y2 + x3 + wt4 (t2x, t3y, t2) −Y 2 +X3 + wT 5

Table 4: Group actions on Weierstrass models. Here u and w represent invariant functions
of t which do not vanish at t = 0.

Type ' (X, Y, T ) �
(3) 1

2
(0, 1, 1) �y2 + x3 + ux2 + wt2n (t2x, t3y, t2) �Y 2 + X3 + uTX2 + wT n+3

(4) 1
3
(1, 0, 2) �y2 + x3 + wt3 (t4x, t6y, t3) �Y 2 + X3 + wT 5

(6) 1
2
(0, 1, 1) �y2 + x3 + wt4 (t2x, t3y, t2) �Y 2 + X3 + wT 5

Table 4: Group actions on Weierstrass models. Here u and w represent invariant functions
of t which do not vanish at t = 0.
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mentioned in section 10.2, we anticipate an F-theory construction for these models involving

B-field expectation values.

In Table 4, we present explicit forms of these group actions in cases (3), (4), and (6), using

a Weierstrass equation ' with variables (x, y, t). The quotient can be described in terms of

a Weierstrass equation � whose variables (X, Y, T ) are expressed in terms of (x, y, t) in the

table.

We now explain the geometry of the group actions by means of figures illustrating cases

(2), (3), (4), and (6). We will explain the cases in the reverse order from the one given in

Table 3.

We begin with case (6) leading to gauge symmetry F4, illustrated in Figure 4. The M-

theory construction only involved the Dynkin diagram of the singularities, but here we must

consider the entire Kodaira fiber as represented by the a�ne Dynkin diagram. Thus, in

the bottom half of Figure 4 we see bE6, with the a�ne node represented by a square rather

than a circle. This diagram has been obtained as a double cover of the a�ne E8 diagram

shown in the top half of Figure 4, in which the solid circles represent curves along which

we branch as we construct a double cover. The two curves on the left are duplicated in the
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mentioned in section 10.2, we anticipate an F-theory construction for these models involving

B-field expectation values.

In Table 4, we present explicit forms of these group actions in cases (3), (4), and (6), using

a Weierstrass equation ϕ with variables (x, y, t). The quotient can be described in terms of

a Weierstrass equation Φ whose variables (X, Y, T ) are expressed in terms of (x, y, t) in the

table.

We now explain the geometry of the group actions by means of figures illustrating cases

(2), (3), (4), and (6). We will explain the cases in the reverse order from the one given in

Table 3.

We begin with case (6) leading to gauge symmetry F4, illustrated in Figure 4. The M-

theory construction only involved the Dynkin diagram of the singularities, but here we must

consider the entire Kodaira fiber as represented by the affine Dynkin diagram. Thus, in

the bottom half of Figure 4 we see Ê6, with the affine node represented by a square rather

than a circle. This diagram has been obtained as a double cover of the affine E8 diagram

shown in the top half of Figure 4, in which the solid circles represent curves along which

we branch as we construct a double cover. The two curves on the left are duplicated in the
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bottom half because they don’t meet the trivalent vertex at a branch point of the double

cover. After taking the double cover, the solid curves have become �1 curves and are to be

blown down. (Alternatively, the solid curves can be contracted to A1 singularities prior to

taking the double cover.)

Note that the quotient involves an a�ne E8 diagram rather than an a�ne E7 diagram.

This is because the Z2 action on the “extra” curve in the Kodaira fiber (corresponding to

the image of the a�ne node) has two fixed points, one giving an E7 singularity and the other

giving an A1 singularity. The two together fit into an a�ne E8 diagram.

We next treat case (4) leading to gauge symmetry G2, depicted in Figure 5. The bottom

half of the figure this time is bD4 with the a�ne node again represented by a square. This

diagram has been obtained as a triple cover of the a�ne E8 diagram shown in the top half of

Figure 5, in which the solid circles represent curves along which we branch as we construct

a triple cover. (For an adjacent pair of solid curves, the branching is via 1/3 on one curve

and 2/3 on the other.) The lowest curve in the top half of the diagram is triplicated in

the bottom half because it doesn’t meet the trivalent vertex at a branch point of the triple

cover. After taking the triple cover, the solid curves have become �1, �2 pairs and are to

be blown down. (Alternatively, the solid curves can be contracted to A2 singularities prior

to taking the triple cover.) Note that the Z3 action on the image of the a�ne node has two

fixed points, one giving an E6 singularity and the other giving an A2 singularity; the two

together fit into an a�ne E8 diagram.

Now we consider case (3), depicted in Figure 6. The bottom half is bA2n�1, obtained as a

branched double cover of the top half, which is bDn+4. The square denotes the a�ne node (or

its image), and the solid circles in the top half denote curves along which the double cover is

branched. This time, the Z2 action on the the a�ne node has two fixed points unrelated to

the singularity we are studying, creating the two extra solid curves at the left of the diagram.

Finally, we treat case (2), depicted in Figure 7, which is the most complicated case. Here,

we have a Z4 action on bA2n at the bottom of the figure, and we describe the quotient in
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Figure 5: G2

bottom half because they don’t meet the trivalent vertex at a branch point of the double

cover. After taking the double cover, the solid curves have become −1 curves and are to be

blown down. (Alternatively, the solid curves can be contracted to A1 singularities prior to

taking the double cover.)

Note that the quotient involves an affine E8 diagram rather than an affine E7 diagram.

This is because the Z2 action on the “extra” curve in the Kodaira fiber (corresponding to

the image of the affine node) has two fixed points, one giving an E7 singularity and the other

giving an A1 singularity. The two together fit into an affine E8 diagram.

We next treat case (4) leading to gauge symmetry G2, depicted in Figure 5. The bottom

half of the figure this time is D̂4 with the affine node again represented by a square. This

diagram has been obtained as a triple cover of the affine E8 diagram shown in the top half of

Figure 5, in which the solid circles represent curves along which we branch as we construct

a triple cover. (For an adjacent pair of solid curves, the branching is via 1/3 on one curve

and 2/3 on the other.) The lowest curve in the top half of the diagram is triplicated in

the bottom half because it doesn’t meet the trivalent vertex at a branch point of the triple

cover. After taking the triple cover, the solid curves have become −1, −2 pairs and are to

be blown down. (Alternatively, the solid curves can be contracted to A2 singularities prior

to taking the triple cover.) Note that the Z3 action on the image of the affine node has two

fixed points, one giving an E6 singularity and the other giving an A2 singularity; the two

together fit into an affine E8 diagram.

Now we consider case (3), depicted in Figure 6. The bottom half is Â2n−1, obtained as a

branched double cover of the top half, which is D̂n+4. The square denotes the affine node (or

its image), and the solid circles in the top half denote curves along which the double cover is

branched. This time, the Z2 action on the the affine node has two fixed points unrelated to

the singularity we are studying, creating the two extra solid curves at the left of the diagram.

Finally, we treat case (2), depicted in Figure 7, which is the most complicated case. Here,

we have a Z4 action on Â2n at the bottom of the figure, and we describe the quotient in
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Figure 6: Sp(n), ✓ = 0

two stages: the quotient by the Z2 subgroup (shown in the middle of the figure as an bA4n+1

diagram) and the quotient by the full Z4 (shown at the top of the figure as a bD2n+5 diagram).

The diagram at the top includes a resolved A3 singularity (three connected solid dots), two

resolved A1 singularities (at the far left) which are to be branched along during the first

double cover, and points marked by ⇥ which are A1 singularities not branched during the

first double cover (from top to middle) but branched during the second double cover (from

middle to bottom).
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Figure 6: Sp(n), θ = 0

two stages: the quotient by the Z2 subgroup (shown in the middle of the figure as an Â4n+1

diagram) and the quotient by the full Z4 (shown at the top of the figure as a D̂2n+5 diagram).

The diagram at the top includes a resolved A3 singularity (three connected solid dots), two

resolved A1 singularities (at the far left) which are to be branched along during the first

double cover, and points marked by × which are A1 singularities not branched during the

first double cover (from top to middle) but branched during the second double cover (from

middle to bottom).
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Figure 7: Sp(n), θ = π
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