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Stellar-mass black holes are discovered in X-ray emitting binary systems, where their mass

can be determined from the dynamics of their companion stars1–3. Models of stellar evolution

have difficulty producing black holes in close binaries withmasses> 10M⊙ (ref. 4), which

is consistent with the fact that the most massive stellar black holes known so far2, 3 all have

masses within1σ of 10M⊙. Here we report a mass of15.65 ± 1.45M⊙ for the black hole
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in the recently discovered system M33 X-7, which is located in the nearby galaxy Messier 33

(M33) and is the only known black hole that is in an eclipsing binary 5. In order to produce

such a massive black hole, the progenitor star must have retained much of its outer envelope

until after helium fusion in the core was completed4. On the other hand, in order for the

black hole to be in its present 3.45 day orbit about its70.0± 6.9M⊙ companion, there must

have been a “common envelope” phase of evolution in which a significant amount of mass was

lost from the system6. We find the common envelope phase could not have occured in M33

X-7 unless the amount of mass lost from the progenitor duringits evolution was an order of

magnitude less than what is usually assumed in evolutionarymodels of massive stars7–9.

Optical imaging and spectroscopic observations of M33 X-7 were obtained in service mode

with the 8.2m Gemini North Telescope between 2006 August 18 and November 16. The mean

optical spectrum is shown in Figure 1. The radial velocitiesderived from the 22 usable spectra

show a nearly sinusoidal variation when phased on the orbital period of 3.453014 days determined

from the X-ray eclipses5 (Fig. 2b).

Time series photometry was derived from the Gemini images inthe Sloan g′ and r′ filters (Fig.

3). Additional photometric data were obtained in theB, V , andI filters using the 3.5m WIYN

telescope during 2006 August 18-21 and 2006 September 15-16(see Supplementary Information).

The phased light curves show the characteristic ellipsoidal variations of a tidally distorted star (Fig.

3), which have been reported previously for this source10, 11.

The temperature of the companion star was determined by comparing its averaged spectrum
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(Fig. 1) to a collection of synthetic spectra derived from the OSTAR2002 grid12. As is usually

the case, there is a strong correlation in the library of models between effective temperature,Teff ,

and surface gravity,log g, and thus various combinations of these parameters result in very similar

spectra. Fortunately, the dynamical information stronglyconstrains the allowed value oflog g to

be between 3.65 and 3.75 at the3σ level. A good match to the observed spectrum is provided by

the model withTeff = 35000 K, log g = 3.75, a metalicity of 10% of the solar value (representative

of star clusters in M 33 at this galactocentric distance13), and our measured value of the projected

rotational velocity ofVrot sin i = 250 ± 7 km s−1 (wherei is the orbital inclination angle). The

formal error on the temperature is±200 K for log g = 3.75. However, given the possibility of a

gravity slightly different thanlog g = 3.75 (the grid spacing of the models is 0.25 dex) and the

correlation betweenTeff andlog g, we adopt a temperature in the range34000 ≤ Teff ≤ 36000 K,

which corresponds to a spectral type of O7III to O8III14.

To compute the radius of the O-star, we adopt a distance modulus of 24.62 ± 0.05 mag

(d = 840±20 kpc) to M33 (see the Supplementary Information for details). UsingV = 18.9±0.05,

AV = 0.53±0.06 mag (ref. 10), and the bolometric corrections derived from the OSTAR2002 grid,

we find a radius ofR2 = 19.6± 0.9R⊙ and a luminosity oflog(L/L⊙) = 5.72± 0.07.

The duration of the X-ray eclipseΘ (measured in degrees of orbital phase) strongly con-

strains the available parameter space. Because the size of the compact X-ray source (∼< 1000 km)

is vastly smaller than the secondary star, one might expect the X-ray eclipse profile to be a “square

well” with a flat bottom and very abrupt periods of ingress andegress. However, in M33 X-7
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and other X-ray binaries with massive companions, the observed eclipse profile deviates from this

idealised picture. The transitions into and out of eclipse are more gradual because of absorption

of the X-rays in the stellar wind that thickens near the O-star. The non-zero X-ray intensity in full

eclipse results from X-rays that are scattered by this wind around the O-star into our line-of-sight.

The erratic X-ray variability prior to eclipse (Fig. 2a) is presumably caused by absorption in the

gas that is streaming from the O-star to the black hole. The period of egress is free of such effects,

and we focus our attention there. We identify the eclipse width of Θ = 53 ± 2.2◦ (ref. 5) as the

onset of the steep egress feature (solid line in Fig. 2a). In the Supplementary Information, we show

that the eclipse width ofΘ = 53◦ is consistent with absorption in the stellar wind, whereas the true

eclipse by the stellar photosphere corresponds toΘ = 46± 1◦ (dashed-dotted line in Fig. 2a).

We used a light curve synthesis code15 to find the optimal model of the binary system. Fig.

3 shows the synthetic light curves for the best-fitting model, which is schematically illustrated in

Fig. 4. The best-fitting model parameters and derived astrophysical parameters are summarised

in Table 2. The mass of the compact object isM = 15.65 ± 1.45M⊙, and the mass of the

O-star isM2 = 70.0 ± 6.9M⊙, which puts it among the most massive stars whose masses are

well-determined16. The effective radii of the Roche lobes are21.8R⊙ and10.8R⊙ for the O-star

and black hole, respectively. From evolutionary models ofsingle stars7–9 the age of the O-star is

estimated to be between about 2 and 3 million years. We also note in passing that the O-star is

roughly a factor of three less luminous than expected from the evolutionary models.

With M = 15.65 ± 1.45M⊙, M33 X-7 is the most massive stellar black hole known (see

4



Table 1). The mass of V404 Cyg is12 ± 2M⊙ and the masses of the 18 other black holes, save

one, are∼< 10M⊙, or they are quite imprecise. The one contender is GRS 1915+105 with a mass of

14.0±4.4M⊙ (refs. 17, 18). However, the 30% precision of the measurement is poor. Furthermore,

there are reasons for questioning the reliability of this impressive and pioneering result on a difficult

system. For example, the spectroscopic orbital period17 is 9% longer than the recently-determined

and precise photometric period19. Furthermore, because of the large X-ray luminosity, the late-

type secondary star contributes “only a few per cent of the K-band brightness17;” hence, the radial

velocity curve may be significantly distorted20. By comparison, the mass estimate and eclipse

ephemeris for M33 X-7 are exceptionally precise, and X-ray heating is a minor effect.

M33 X-7 is a key system in the study of high mass stars, high mass X-ray binaries, and high

mass black holes. A≈ 16M⊙ black hole paired with a≈ 70M⊙ secondary with a separation of

only≈ 42R⊙ is very difficult to explain using stellar evolutionary models. Since the radius of the

black hole progenitor would have been much larger than the current orbital separation7–9, the two

stars must have been brought closer together via some kind of“common envelope” phase which

results in a significant amount of mass lost from the progenitor, and very little mass gained by

the secondary6. On the other hand, in order for the core mass to remain large enough to produce a

≈ 16M⊙ black hole, the outer envelope of the progenitor needs to be intact until core He burning is

completed4. Hence we require that the common envelope phase begins onlyafter core He burning

in the progenitor is complete (case C mass transfer6). There are two requirements for a common

envelope phase to start during case C mass transfer. First, the mass donor needs to be at least

1.2 times more massive than the secondary at the start of masstransfer21. Second, the radius of
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the mass donor at the end of core He burning needs to be larger than its radius at the end of core

H burning. If the second condition is not met, the CE phase begins before core He burning is

complete, and the stripped core loses much of its mass via strong winds in its subsequent evolution

and thus cannot make a massive black hole4.

Assuming no large change in the present-day mass loss rate of2.6×10−6 M⊙ yr−1 (see Sup-

plementary Information), the secondary star has lost between about5.2M⊙ and7.8M⊙, thereby

putting its initial mass near≈ 80M⊙. For a common envelope phase to occur, the progenitor star

should have been more massive than≈ 80 × 1.2 = 96M⊙, which is problematic. According to

evolutionary models7–9, massive stars lose much of their initial mass via winds, andthe mass loss

rate generally increases with increasing initial mass. Forexample, even in the extreme case of an

initial mass of120M⊙ and a metallicity of 20% solar, the mass after H burning is≈ 52.9M⊙ and

after He burning is≈ 17.2M⊙ (ref. 9). Furthermore, owing to the large amount of mass loss, the

radius of the star after core He burning issmaller than the radius after core H burning. For these

reasons, a common envelope phase during case C mass transferseems very unlikely. It would

appear that the progenitor star of M33 X-7 lost roughly an order of magnitude less mass before the

common envelope phase ensued than is predicted by the evolutionary models. Finally we note that

there is an additional complication: even if a common envelope is formed, the most likely outcome

would be a merger since the envelopes of massive stars are tightly bound21. However, the most

massive star considered in ref. 21 was50M⊙, so the detailed computations should be extended to

the higher masses relevant for M33 X-7.
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The determination of an accurate mass for M33 X-7 – located ata distance of more than 16

times that of any other confirmed stellar black hole – marks a major advance in our capability to

study black holes in Local Group galaxies beyond the Milky Way.
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X-ray source Optical/IR counterpart Black hole mass (M⊙) Secondary star mass (M⊙)
GRS 1915+105 V1487 Aql 14.0± 4.4 0.81± 0.53
GS 2023+338 V404 Cyg 12± 2 0.6

A0620-00 V616 Mon 10± 5 0.6
GS 2000+25 QZ Vul 10± 4 0.5

XTE J1550-564 V381 Nor 9.6± 1.2 ...
4U 1543-47 IL Lup 9.4± 1.1 2.5

Cyg X-1 HDE 226868 > 4.8 > 11.7
LMC X-1 ... 8− 20 ...

Table 1: Recent dynamical measurements of massive stellar black holes. Masses for
GRS 1915+105 are from ref. 18, and all others are taken from the compilation in ref. 2
and citations therein. The uncertainties correspond to one standard deviation. There
are three key “observables” that can be used to determine the mass M of the compact
object in an X-ray binary. (1) The radial velocity semiamplitude of the secondary star K2,
along with the orbital period P and eccentricity e, determines the mass function: f(M) =
PK3

2(1 − e2)3/2/(2πG) = M3 sin3 i/(M +M2)
2, where M2 is the mass of the secondary

star, i is the orbital inclination angle and G is the gravitational constant. In order to solve
for M , we must determine M2 (or M2/M) and i, for which we use (2) the rotational velocity
of the secondary star Vrot sin i, and (3) the amplitude of the ellipsoidal light curve. The two
preceding observables depend on i, M2/M and the Roche-lobe filling f2, which is the
radial fraction of the secondary’s Roche equipotential lobe along the line of centers that
is occupied by the star.

parameter value parameter value
Θ (deg) 46± 1 M2 (M⊙) 70.0± 6.9
Teff (K) 34000− 36000 rd 0.45± 0.03

Vrot sin i (km s−1) 250± 7 e 0.0185± 0.0077
R2 (R⊙) 19.6± 0.9 ω (deg) 140± 27

logL2 (L⊙) 5.72± 0.07 Ω 0.903± 0.037
∆φ 0.0045± 0.0014 f2 0.777± 0.017

i (deg) 74.6± 1.0 a (R⊙) 42.4± 1.5
K2 (km s−1) 108.9± 5.7 M (M⊙) 15.65± 1.45

Table 2: Selected parameters for M33 X-7. The uncertainties correspond to one standard
deviation. For the determination of Θ, see the Supplementary Information. The mea-
surements of Teff and Vrot sin i were derived directly from the spectra. R2 and logL2 were
derived from the temperature, apparent magnitude, extinction, and the distance. The next
nine parameters were determined by fitting the radial velocity curve and light curves si-
multaneously using the ELC code15. The final two parameters are fixed by those given
above.
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Figure 1 Mean optical spectrum of M33 X-7. The spectrum shown here (connected
dots), which was extracted with the SPECRES package in IRAF22, is the sum of the 22
individual spectra that have been velocity-shifted to the rest frame of the secondary star.
The solid line is the model spectrum described in the text. The data were obtained us-
ing the GMOS instrument on the 8.2m Gemini-North Telescope with the B1200 grating
(λc = 4650 Å) and a 0.5 arcsecond slit rotated to a position angle of 215.6 degrees, which
was defined by M33 X-7 and a nearby pair of stars 0.9 arcseconds to the southwest
(see Supplementary Information). Twenty-four 40-minute spectra were acquired in ser-
vice mode between 2006 August 18 and November 16 in good seeing of always < 0.8
arcseconds. The two observations obtained on 2006 September 17 are suspect and will
not be considered here. The initial bias subtraction, flat-fielding, and wavelength calibra-
tions were performed using the GMOS package in IRAF. In the two-dimensional spectra,
the overlap of the profiles of M33 X-7 and the nearby pair of stars was modest. The opti-
mal extraction of one-dimensional spectra was done two ways. (1) Routines in the GMOS
package were used with the spectral extraction aperture adjusted so that light from the
nearby pair of stars was not included, which resulted in at most about a 20% loss of light
from M33 X-7 (see Supplementary Information). The final extracted spectra had signal-
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to-noise ratios of 20 or more per 0.47 Å pixel near Hβ. Numerous nebular emission lines
from the surrounding HII region23 are seen in these spectra, including the Balmer lines
Hβ through Hǫ, [O III] near 4363, 4969 and 5007 Å, and weak He I lines near 4026, 4471,
4921 and 5015 Å. The He II line near 4686 Å and the N III lines near 4640 Å are also
in emission. The quality of the wavelength stability was checked by measuring the radial
velocity of the brightest nebular line, [O III] 5007Å. Its average heliocentric velocity in the
22 spectra is −131.2 ± 1.5 km s−1 (std. dev.); for comparison, the velocity of M33 in the
NASA Extragalactic Database is −179±3 km s−1. (2) Routines in the SPECRES package
were used to deblend the spatial profiles of M33 X-7 and the nearby pair of stars and to
remove the nebular lines before optimally extracting one-dimensional spectra. However,
the resulting spectra have lower signal-to-noise ratios than the spectra extracted with the
GMOS routines (see Supplementary Information).
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Figure 2 Phased X-ray light curve and radial velocity curve for M33 X-7. (a) The Chan-
dra ACIS light curve in the 0.5 − 5 keV energy band. The error bars 1σ (s.d.) statistical.
Complete orbital phase coverage is achieved here using all 17 available ACIS observa-
tions, including five observations (ObsIDs 1730, 6376, 6385, 6387 and 7344) not present
in Figure 1 of ref. 5. The count rates are corrected for vignetting and for the difference be-
tween the responses of the ACIS-S and ACIS-I detectors for the single ACIS-I observation
(ObsID 6378). The solid vertical lines denote an X-ray eclipse duration of Θ = 53◦ (ref.
5), which incudes the effects of an extended wind from the O-star. The dash-dotted ver-
tical lines denote an eclipse duration of Θ = 46◦, which corresponds solely to an eclipse
by the photosphere of the O-star. (b) The radial velocity curve derived from the Gem-
ini spectra (extracted using the GMOS IRAF package) with the best-fitting model shown
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as a solid line. The error bars 1σ (s.d.) statistical. The dashed line is the best-fitting
sinusoid. The radial velocities were derived by cross-correlating the spectra against a
synthetic spectrum (Fig. 1) over the wavelength ranges 4150–4300 and 4521–4578 Å.
These bands include two He II lines, 4200Å and 4541Å, which are uncontaminated by
nebular lines. Radial velocities obtained in 2006 August are denoted by circles, 2006
September by squares, 2006 October by stars, and 2006 November by triangles. Using
the orbital period of 3.453014 days determined from the X-ray eclipses5, a sine fit to the
22 velocities yields K2 = 108.9 ± 6.4 km s−1, systemic velocity γ = −152 ± 5 km s−1, and
T0 = HJD2, 453, 967.157±0.048. Here, T0 is the predicted time of mid-X-ray eclipse, which
is in full agreement with that of ref. 5 – they differ by 95.001 ± 0.014 orbital cycles. The
value of the mass function, which is the absolute minimum mass of the compact object,
is f(M) = 0.46± 0.08M⊙.
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Figure 3 Optical light curves. (a) The B light curve from ref. 10. (b) The V light curve
from ref. 10. (c) Gemini g′ light curve. (d) Gemini r′ light curve. The photometric time se-
ries were derived using the ISIS image subtraction software24 together with DAOPHOT25,
which was used to determine the reference flux. The error bars are 1σ (s.d.) statistical.
The ELC code15 was used to find the optimal binary model. These light curves and the
radial velocities shown in Fig. 2b were used as input data. In addition, we have three
other constraints: the radius of the O-star of R2 = 19.6 ± 0.9R⊙, the projected rotational
velocity of the O-star of Vrot sin i = 250 ± 7 km s−1, and the width of the X-ray eclipse
of Θ = 46 ± 1◦ (see Supplementary Information). We note that the eclipse duration and
known radius are strong constraints that are unavailable for Galactic black hole binaries.
In deriving the models, we initially fitted for six parameters: i, K2, M2 (see the Table 1
caption for definitions), R2, Teff , and a phase shift ∆φ, which is used to account for small
uncertainties in the ephemeris. The first three of these parameters, along with the es-
tablished orbital period P , determine the scale of the binary, including the dimensions of
the Roche equipotential lobes. The value of R2 then determines the Roche-lobe filling
factor f2. With the geometry of the star fully specified, Teff and the gravity darkening law
(T ∝ g1/4) determines the distribution of temperatures over the surface the of the star. No
parameterised limb darkening is required because we computed the specific intensities
from the OSTAR2002 grid. Likewise, X-ray heating has been accounted for, and is anyway
a minor correction (∆T ≤ 100K) because of the star’s extreme luminosity. After several
initial trial runs, we found that the fits were improved by (1) adding a faint accretion disk
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around the compact object with a fractional radius rd, (2) allowing the orbit to be slightly
non-circular (adds eccentricity e and argument of periastron ω as free parameters), and
(3) allowing the O-star to rotate slightly non-synchronously with the orbit, which is pa-
rameterised by Ω = Porb/Prot (we assume the star’s rotation axis is perpendicular to the
orbital plane). The solid lines show the best-fitting model, and the dash-dotted lines show
the best-fitting models with a circular orbit and no accretion disk. The genetic optimiser
code was run five times with different initial random parameter sets and the grid search
optimiser was run many hundreds of times to refine the solution and define confidence
limits on the fitted and derived parameters (see Supplementary Information).
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Figure 4 Schematic diagram of M33 X-7. The companion star and the accretion disk
surrounding the black hole are shown to scale as seen projected onto the plane of the sky
at three orbital phases. The colours on the star represent temperatures (not intensities),
with cooler temperatures shown by darker colours as denoted on the bar. The distance
between the Sun and Mercury is indicated and the figure is scaled in solar radii.
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