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PARAMETERS AND DUALITY FOR THE

METAPLECTIC GEOMETRIC LANGLANDS THEORY

D. GAITSGORY AND S. LYSENKO

Abstract. We introduce the space of parameters for the metaplectic Langlands theory as fac-
torization gerbes on the affine Grassmannian, and develop metaplectic Langlands duality in the
incarnation of the metaplectic geometric Satake functor.

We formulate a conjecture in the context of the global metaplectic Langlands theory, which is
a metaplectic version of the “vanishing theorem” of [Ga5, Theorem 4.5.2].

Introduction

0.1. What is this paper about? The goal of this paper is to provide a summary of the metaplectic
Langlands theory. Our main objectives are:

–Description of the set (rather, space) of parameters for the metaplectic Langlands theory;

–Construction of the metaplectic Langlands dual (see Sect. 0.1.6 for what we mean by this);

–The statement of the metaplectic geometric Satake.

0.1.1. The metaplectic setting. Let F be a local field and G an algebraic group over F. The classical
representation theory of locally compact groups studies (smooth) representations of the group G(F) on
vector spaces over another field E. Suppose now that we are given a central extension

(0.1) 1→ E× → G̃(F)→ G(F)→ 1.

We can then study representations of G̃(F) on which the central E× acts by the tautological char-
acter. We will refer to (0.1) as a local metaplectic extension of G(F), and to the above category of
representations as metaplectic representations of G(F) corresponding to the extension (0.1).

Let now F be a global field, and let AF be the corresponding ring of adèles. Let us be given a central
extension

(0.2) 1→ E× → G̃(AF)→ G(AF)→ 1,

equipped with a splitting over G(F) ↪→ G(AF).

We can then study the space of E-valued functions on the quotient G̃(AF)/G(F), on which the
central E× acts by the tautological character. We will refer to (0.2) as a global metaplectic extension of
G(F), and to the above space of functions as metaplectic automorphic functions on G(F) corresponding
to the extension (0.2).

There has been a renewed interest in the study of metaplectic representations and metaplectic
automorphic functions, e.g., by B.Brubaker–D.Bump–S.Friedberg, P.McNamara, W.T.Gan–F.Gao.

M. Weissman has initiated a program of constructing the L-groups corresponding to metaplectic
extensions, to be used in the formulation of the Langlands program in the metaplectic setting, see
[We].

Date: September 11, 2017.
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2 D. GAITSGORY AND S. LYSENKO

0.1.2. Parameters for metaplectic extensions. In order to construct metaplectic extensions, in both the
local and global settings, one starts with a datum of algebro-geometric nature. Namely, one usually
takes as an input what we call a Brylinski-Deligne datum, by which we mean a central extension

(0.3) 1→ (K2)Zar → G̃→ G→ 1,

of sheaves of groups on the big Zariski site of F, where (K2)Zar is the sheafification of the presheaf of
abelian groups that assigns to an affine scheme S = Spec(A) the group K2(A).

For a local field F, let f denote its residue field and let us choose a homomorphism

(0.4) f× → E×.

Then taking the group of F-points of G̃ and pushing out with respect to

K2(F)
symbol−→ f× → E×,

we obtain a central extension (0.1). A similar procedure applies also in the global setting.

0.1.3. The geometric theory. Let k be a ground field and let G be a reductive group over k.

In the local geometric Langlands theory one considers the loop group G((t)) along with its action
on various spaces, such as the affine Grassmannian GrG = G((t))/G[[t]]. Specfically one studies the
behavior of categories of sheaves1 on such spaces with respect to this action.

In the global geometric Langlands theory one considers a smooth proper curve X, and one studies
the stack BunG that classifies principal G-bundles on X. The main object of investigation is the
category of sheaves on BunG.

There are multiple ways in which the local and global theories interact. For example, given a
(k-rational) point x ∈ X, and identifying the local ring Ox of X at x with k[[t]], we have the map

(0.5) GrG → BunG,

where we interpret GrG as the moduli space of principal G-bundles on X, trivialized over X − x.

0.1.4. The setting of metaplectic geometric Langlands theory. Let E denote the field of coefficients of
the sheaf theory that we consider. Recall (see Sect. 1.7.4) that if Y is a space2 and G is a E×-gerbe on
Y, we can twist the category of sheaves on Y, and obtain a new category, denoted

ShvG(Y).

In the local metaplectic Langlands theory, the input datum (which is an analog of a central extension
(0.1)) is an E×-gerbe over the loop group G((t)) that behaves multiplicaively, i.e., one that is compatible
with the group-law on G((t)).

Similarly, whenever we consider an action of G((t)) on Y, we equip Y with E×-gerbe that is compatible
with the given multiplicative gerbe on G((t)). In this case we say that the category ShvG(Y) carries a
twisted action of G((t)), where the parameter of the twist is our gerbe on G((t)).

In the global setting we consider a gerbe G over BunG, and the corresponding category ShvG(BunG)
of twisted sheaves.

Now, if we want to consider the local vs. global interaction, we need a compatibility structure on
our gerbes. For example, we need that for every point x ∈ X, the pullback along (0.5) of the given
gerbe on BunG be a gerbe compatible with some given multiplicative gerbe on G((t)).

So, it is natural to seek an algebro-geometric datum, akin to (0.3), that would provide such a
compatible family of gerbes.

1See Sect. 1.1 for what we mean by the category of sheaves.
2By a “space” we mean a scheme, stack, ind-scheme, or more generally a prestack, see Sect. 1.1.3 for what the latter

word means.
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0.1.5. Geometric metaplectic datum. It turns out that such a datum (let us call it “the geometric
metaplectic datum”) is not difficult to describe, see Sect. 2.4.1 below. It amounts to the datum of a
factorization gerbe with respect to E× on the affine Grassmannian3 GrG of the group G.

In a way, this answer is more elementary than (0.3) in that we are dealing with étale cohomology
rather than K-theory.

Moreover, in the original metaplectic setting, if the global field F is the function field corresponding
to the curve X over a finite ground field k, a geometric metaplectic datum gives rise directly to an
extension (0.2).

Finally, a Brylinski-Deligne datum (i.e., an extension (0.3)) and a choice of a character k× → E×

gives rise to a geometric metaplectic datum.

Thus, we could venture into saying that a geometric metaplectic datum is a more economical way,
sufficient for most purposes, to encode also the datum needed to set up the classical metaplectic
representation/automorphic theory.

0.1.6. The metaplectic Langlands dual. Given a geometric metaplectic datum, i.e., a factorization gerbe
G on GrG, we attach to it a certain reductive group H, a gerbe GZH on X with respect to the center
ZH of H, and a character ε : ±1→ ZH . We refer to the triple

(H,GZH , ε)

as the metaplectic Langlands dual datum corresponding to G.

The datum of GZH determines the notion of twisted H-local system of X. Such twisted local systems
are supposed to play a role vis-à-vis metaplectic representations/automorphic functions of G parallel
to that of usual Ǧ-local systems vis-à-vis usual representations/automorphic functions of G.

For example, in the context of the global geometric theory (in the setting of D-modules), we will pro-

pose a conjecture (namely, Conjecture 8.6.2) that says that the monoidal category QCoh
(

LocSys
GZH
H

)
of quasi-coherent sheaves on the stack LocSys

GZH
H classifying such twisted local systems, acts on the

category ShvG(BunG).

The geometric input for such an action is provided by the metaplectic geometric Satake functor, see
Sect. 8.

Presumably, in the arithmetic context, the above notion of twisted H-local system coincides with
that of homomorphism of the (arithmetic) fundamental group of X to Weissman’s L-group.

0.2. “Metaplectic” vs ”Quantum”. In the paper [Ga4], a program was proposed towards the quan-
tum Langlands theory. Let us comment on the terminological difference between “metaplectic” and
“quantum”, and how the two theories are supposed to be related.

0.2.1. If Y is a scheme (resp., or more generally, a prestack) we can talk about E×-gerbes on it. As
was mentioned above, such gerbes on various spaces associated with the group G and the geometry of
the curve X are parameters for the metaplectic Langlands theory.

Let us now assume that k has characteristic 0, and let us work in the context of D-modules. Then,
in addition to the notion of E×-gerbe on Y, there is another one: that of twisting (see Sect. 1.9.5 for
what the word “twisting” means).

There is a forgetful map from twistings to gerbes. Roughly speaking, a gerbe G on Y defines the
corresponding twisted category of sheaves (=D-modules) ShvG(Y) = D-modG(Y), while if we lift our
gerbe to a twsiting, we also have a forgetful functor

D-modG(Y)→ QCoh(Y).

3Here the affine Grassmannian appears in its factorization (a.k.a, Beilinson-Drinfeld) incarnation. I.e., it is a
prestack mapping to the Ran space of X, rather than G((t))/G[[t]], which corresponds to a particular point of X.
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0.2.2. For the quantum Langlands theory, our parameter will be a factorizable twisting on the affine
Grassmannian, which one can also interpret as a Kac-Moody level ; we will denote it by κ.

Thus, for example, in the global quantum geometric Langlands theory, we consider the category

D-modκ(BunG),

which is the same as ShvG(BunG), where G is the gerbe corresponding to κ.

As was mentioned above, the additional piece of datum that the twisting “buys” us is the forgetful
functor

D-modκ(BunG)→ QCoh(BunG).

In the TQFT interpretation of geometric Langlands, this forgetful functor is called “the big brane”.
It allows us to relate the category D-modκ(BunG) to representations of the Kac-Moody algebra attached
to G and the level κ.

0.2.3. Consider the usual Langlands dual group Ǧ of G, and if κ is non-degenerate, it gives rise to a
twisting, denoted −κ−1, on the affine Grassmannian GrǦ of Ǧ.

In the global quantum geometric theory one expects to have an equivalence of categories

(0.6) D-modκ(BunG) ' D-mod−κ−1(BunǦ).

We refer to (0.6) as the global quantum Langlands equivalence.

0.2.4. How are the two theories related? The relationship between the equivalence (0.6) and the meta-
plectic Langlands dual is the following:

Let G (resp., Ǧ) be the gerbe on GrG (resp., GrǦ) corresponding to κ (resp., −κ−1). We conjecture

that the metaplectic Langlands dual data (H,GZH , ε) corresponding to G and Ǧ are isomorphic.

Furthermore, we conjecture that the resulting actions of

QCoh
(

LocSys
GZH
H

)
on D-modκ(BunG) and D-mod−κ−1(BunǦ), respectively (see Sect. 0.1.6 above) are intertwined by the
equivalence (0.6).

0.3. What is actually done in this paper? Technically, our focus is on the geometric metaplectic
theory, with the goal of constructing the metaplectic geometric Satake functor.

0.3.1. The mathematical content of this paper is the following:

–We define a geometric metaplectic datum to be a factorization gerbe on the (factorization version) of
affine Grassmannian GrG. This is done in Sect. 2.

–We formulate the classification result that describes factorization gerbes on GrG in terms of étale
cohomology on the classifying stack BG of G. This is done in Sect. 3.

This classification result is inspired by an analogous one in the topological setting, explained to us
by J. Lurie.

–We study the relationship between factorization gerbes on GrG and those on GrM , where M is the
Levi quotient of a parabolic P ⊂ G. This is done in Sect. 5.

The main point is that the naive map from factorization gerbes on GrG to those on GrM needs to be
corrected by a gerbe that has to do with signs. It is this correction that is responsible for the fact that
the usual geometric Satake does not quite produce the category Rep(Ǧ), but rather its modification
where we alter the commutativity constraint by a canonical character ±1→ Z(Ǧ).

–We define the notion of metaplectic Langlands dual datum, denoted (H,GZH , ε), attached to a given
geometric metaplectic datum G. We introduce the notion of GZH -twisted H-local system on X; when
we work with D-modules, these local systems are k-points of a (derived) algebraic stack, denoted

LocSys
GZH
H . This is done in Sect. 6.
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–We show that a factorization gerbe on GrG gives rise to a multiplicative gerbe over the loop group
G((t)) for every point x ∈ X. Moreover, these multiplicative gerbes also admit a natural factorization
structure when instead of a single point x we consider the entire Ran space. This is done in Sect. 7.

–We define metaplectic geometric Satake as a functor between factorization categories over the Ran
space.

–We formulate a conjecture about the action of the monoidal category QCoh
(

LocSys
GZH
H

)
on

ShvG(BunG). This is done in Sect. 8.

0.3.2. A disclaimer. Although most of the items listed in Sect. 0.3.1 have not appeared in the previously
existing literature, this is mainly due to the fact that these earlier sources, specifically the paper [FL] of
M. Finkelberg and the second-named author and the paper [Re] of R. Reich, did not use the language
of ∞-categories, while containing most of the relevant mathematics.

So, one can regard the present paper as a summary of results that are “almost known”, but formu-
lated in the language that is better adapted to the modern take on the geometric Langlands theory4.

We felt that there was a need for such a summary in order to facilitate further research in this area.

Correspondingly, our focus is on statements, rather than proofs. Most of the omitted proofs can be
found in either [FL] or [Re], or can be obtained from other sources cited in the paper.

Below we give some details on the relation of contents of this paper and some of previously existing
literature.

0.3.3. Relation to other work: geometric theory. As was just mentioned, a significant part of this paper
is devoted to reformulating the results of [FL] and [Re] in a way tailored for the needs of the geometric
metaplectic theory.

The paper [Re] develops the theory of factorization gerbes on GrG (in loc. cit. they are called
“symmetric factorizable gerbes”). One caveat is that in the setting of [Re] one works with schemes
over C and sheaves in the analytic topology, while in the present paper we work over a general ground
field and étale sheaves.

The main points of the theory developed in [Re] are the description of the homotopy groups of the
space of factorization gerbes (but not of the space itself; the latter is done in Sect. 3 of the present
paper), and the fact that a factorization gerbe on GrG gives rise to a multiplicative gerbe on (the
factorization version of) the loop group (we summarize this construction in Sect. 7 of the present
paper).

The proofs of the corresponding results in [Re] are obtained by reducing assertions for a reductive
group G to that for its Cartan subgroup, and an explicit analysis for tori. We do not reproduce these
proofs in the present paper.

In both [FL] and [Re], metaplectic geometric Satake is stated as an equivalence of certain abelian
categories. In [FL], this is an equivalence of symmetric monoidal categories (corresponding to a chosen
point x ∈ X), for a particular class of gerbes (namely, ones obtained from the determinant line bundle).

In [Re] more general gerbes are considered and the factorization structure on both sides of the
equivalence is taken into account. Our version of metaplectic geometric Satake is a statement at the
level of DG categories; it is no longer an equivalence, but rather a functor in one direction, between
monoidal factorization categories. In this form, our formulation is a simple consequence of that of [Re].

0.3.4. Relation to other work: arithmetic theory. As was already mentioned above, our notion of the
metaplectic Langlands dual datum is probably equivalent to the datum constructed by M. Weissman
in [We] for his definition of the L-group.

4This excludes, however, the material in Sect. 8.5 and the statement of Conjecture 8.6.2 (the latter is new, to the
best of our knowledge)
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0.4. Structure of the paper. The paper begins with a section that contains some background on
prestacks, ∞-categories, sheaf theories, etc. The reader who has a rudimentary familiarity with this
material can safely skip it.

As has been mentioned already, our geometric metaplectic datum is a gerbe on the affine Grassman-
nian, denoted GrG. We will need the factorization (a.k.a. Beilinson-Drinfeld, Ran space) version of the
affine Grassmannian. Its key feature is that it is not a scheme, and not even an ind-scheme. Rather,
this version of the affine Grassmannian is what we call a prestack. In Sect. 1 we recall the definition of
what a prestack is, and what gerbes on a prestack are.

In addition, in the same section we recall what we mean by the category of sheaves on a prestack,
and by a sheaf of categories over a prestack. Both these notions are necessary for the statement of
metaplectic geometric Satake.

0.4.1. In Sect. 2 we recall the definition of the Ran space of a given curve X (denoted Ran). We define
the notions of a factorization prestack over Ran, a factorization gerbe over a factorization prestack and
a (pre)factorization sheaf of categories over Ran.

Our main example of a factorization prestack is the affine Grassmannian GrG. Factorization gerbes
over GrG are the main object of study in this paper; they provide an input data for the metaplectic
geometric Langlands theory.

0.4.2. In Sect. 3 we discuss the parameterization of the set (more precisely, space) of factorization
gerbes on GrG in terms of étale cohomology of the classifying stack BG of G.

We will see that to a factorization gerbe we can associate a combinatorial invariant, denoted q,
which a quadratic form on the coweight lattice Λ of G with coefficients in E× (here E is our field of
coefficients), invariant with respect to the Weyl group.

The space of factorization gerbes with a fixed parameter q is of local nature with respect to our
curve X. More precisely, it is acted on simply transitively by (the commutative group in spaces of)
gerbes on X with respect to the group Hom(π1,alg(G), E×).

0.4.3. In Sect. 4 we make our analysis of factorization gerbes on GrG more explicit in the case when
G is a torus. In fact, most of proofs of statements left unproved in this paper go by reduction to this
case.

0.4.4. In Sect. 5 we study the interaction between factorization gerbes on GrG and those on GrM ,
where M is the Levi quotient of a parabolic P ⊂ G.

The two affine Grassmannians are related by the diagram

GrG
p←− GrP

q−→ GrM ,

where the map q has contractible fibers. Hence, given a gerbe on GrG, we can restrict it to GrP , and
the resulting gerbe will uniquely come from a gerbe on GrM .

This procedure gives a map from the space of gerbes GrG to that on GrM . However, this map is
not quite what we want. Namely, it differs from the “right” one by a certain gerbe that has to do with
signs.

0.4.5. In Sect. 6 we explain how the datum of a factorization gerbe G on GrG gives rise to a metaplectic
Langlands dual datum, i.e., a reductive group H, a gerbe GZH on X with respect to the center ZH of
H, and a character ±1→ ZH .

We define the notion of GZH -twisted local system on X, and when we work with D-modules over a

field of characteristic 0, we construct the (derived) algebraic stack LocSys
GZH
H that classifies such local

systems.
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0.4.6. In Sect. 7 we introduce (the factorization version of) the loop group, denoted L(G). We explain
a construction that, starting from a factorization gerbe G on GrG, produces a multiplicative structure
on the pullback of G to L(G). This multiplicative structure is what allows us to define the convolution
product on the metaplectic spherical Hecke category.

0.4.7. In Sect. 8 we state the existence of the metaplectic geometric Satake functor, which maps the fac-
torization category, built out of (Rep(H),GZH , ε) (here Rep(H) denotes the category of representations
of H), to the metaplectic spherical Hecke category.

Finally, we state our “metaplectic vanishing conjecture”, Conjecture 8.6.2 about the action of

QCoh
(

LocSys
GZH
H

)
on ShvG(BunG)

0.5. Conventions.

0.5.1. Algebraic geometry. In the main body of the paper we will be working over a fixed ground field
k, assumed algebraically closed.

For arithmetic applications one would also be interested in the case of k being a finite field Fq.
However, since all the constructions in this paper are canonical, the results over Fq can be deduced

from those over Fq by Galois descent.

We will denote by X a smooth connected algebraic curve over k (we do not need X to be complete).

For the purposes of this paper, we do not need derived algebraic geometry, with the exception of
Sects. 6.6 and 8.6 (which are devoted to the D-module situation).

We let Schaff denote the category of (classical!) affine schemes over k, and by Schaff
ft its full subcat-

egory consisting of affine schemes of finite type.

In the main body of the paper we will make an extensive use of algebro-geometric objects more
general than schemes, namely, prestacks. We recall the definition of prestacks in Sect. 1.1.3, and refer
the reader to [GR2, Chapter 2] for a more detailed discussion.

0.5.2. Coeffients. We will work with various sheaf theories on schemes, see Sect. 1.1.

Our sheaves will have coefficients in E-vector spaces, where E is a field of coefficients, assumed
algebraically closed and of characteristic zero.

0.5.3. Groups. We will work with a fixed connected algebraic group G over k; our main interest is the
case when G is reductive.

We will denote by Λ the coweight lattice of G and by Λ̌ its dual, i.e., the weight lattice.

We will denote by αi ∈ Λ (resp., α̌i ∈ Λ̌) the simple coroots (resp., roots), where i runs over the set
of vertices of the Dynkin diagram of G.

If G is reductive, we denote by Ǧ its Langlands dual, viewed as a reductive group over E.

0.5.4. The usage of higher category theory. Although, as we have said above, we do not need derived
algebraic geometry, we do need higher category theory. However, we only really need ∞-categories
for one type of manipulation: in order to define the notion of the category of sheaves on a given
prestack (and a related notion of a sheaf of categories over a prestack); we will recall the corresponding
definitions in Sects. 1.1.3 and 1.6), respectively. These definitions involve the procedure of taking the
limit, and the language of higher categories is the adequate framework for doing so.

In their turn, sheaves of categories on prestacks appear for us as follows: the metaplectic spherical
Hecke category, which is the recipient of the metaplectic geometric Satake functor (and hence is of
primary interest for us), is a sheaf of categories over the Ran space.
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0.5.5. Glossary of∞-categories. We will now recall several most common pieces of notation, pertaining
to∞-categories, used in this paper. We refer the reader to [Lu1, Lu2] for the foundations of the theory,
or [GR2, Chapter 1] for a concise summary.

We denote by Spc the ∞-category of spaces. We denote by ∗ the point-space. For a space S, we
denote by π0(S) its set of connected components. If S is a space we can view it as an ∞-category; its
objects are also called the points of S.

For an ∞-category C and two objects c0, c1 ∈ C, we let MapsC(c0, c1) ∈ Spc denote the mapping
space between them.

For an object c ∈ C we let Cc/ (resp., C/c) denote the corresponding under-category (resp., over-
category).

In several places in the paper we will need the notion of left (resp., right) Kan extension. Let
F : C→ D be a functor, and let E is an ∞-category with colimits. Then the functor

(0.7) Funct(D,E)
◦F−→ Funct(C,E)

admits a left adjoint, called the functor of left Kan extension along F .

For Φ ∈ Funct(C,E), the value of its left Kan extension on d ∈ D is calculated by the formula

colim
(c,F (c)→d)∈C×

D
D/d

Φ(c).

The notion of right Kan extension is obtained similarly: it is the right adjoint of (0.7); the formula
for it is given by

lim
(c,d→F (c))∈C×

D
Dd/

Φ(d).

We let DGCat denote the ∞-category of DG categories over E, see [GR2, Chapter 1, Sect. 10].
We assume all our DG categories to be cocomplete and we allow only colimit-preserving functors as
1-morphisms.

0.5.6. Prestacks. By definition, a prestack is a functor

(Schaff)op → Spc .

There will be two types of prestacks in this paper: the “source” type and the “target” type. The
source type will be various geometric objects associated to the group G and the curve X, such as the
Ran space, affine Grassmannian GrG, the loop group L(G), etc. These prestacks have the feature that
the corresponding functors on (Schaff)op take values in the full subcategory

Sets ⊂ Spc .

There will be a few other source prestacks (such as BunG or quotients of GrG by groups acting on
it) and they will have the feature that the corresponding functors on (Schaff)op take values in the full
subcategory of Spc spanned by 1-groupoids (these are spaces S, for which for any choice of s : ∗ → S,
the homoropy groups πi(S, s) vanish for i > 1).

When we talk about the category of sheaves on a prestack, the prestack in question will be typically
of the source type.

The target prestacks will be of the form Bn(A) (see Sect. 1.3.7 below), where A is a prestack that
takes a constant value A, where A is a discrete abelian group (or its sheafification in, say, the étale
topology, denoted Bnet(A)). Such prestacks take values in n-truncated spaces and they form a (n+ 1)-
category. When n is small, they can be described in a hands-on way by specifying objects, 1-morphisms,
2-morphisms, etc; in this paper n will be ≤ 4, and in most cases ≤ 2.

For example, we will often use the notion of a multiplicative A-gerbe on a group-prestack H. Such
an object is the same as a map of group-prestacks

H→ B2
et(A).
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1. Preliminaries

This section is included for the reader’s convenience: we review some constructions in algebraic
geometry that involve higher category theory. The reader having a basic familiarity with this material
should feel free to skip it.

1.1. The sheaf-theoretic context. Although most of this paper is devoted to the study of gerbes,
we need to discuss categories of sheaves on various geometric objects because they appear in the
formulation of metaplectic geometric Satake.

1.1.1. This note takes as an input a sheaf theory in the sense of [Ga2, Sect. 1.1] . A sheaf theory is a
right-lax symmetric monoidal functor (see [GR2, Chapter 1, Sect. 3.2] for what this means)

(1.1) Shv : (Schaff
ft )op → DGCat,

where DGCat is the ∞-category of (presentable) DG categories over a fixed field of coeffiecients E,
assumed algebraically closed and of characteristic 0. We stipulate that

Shv(pt) = Vect,

where Vect is the DG category of vector spaces over E. We also require that the functor (1.1) satifies
étale descent.

Thus, to an affine scheme of finite type S we assign a DG-category Shv(S), and to a morphism
f : S1 → S2 a colimit-preserving pullback functor

f ! : Shv(S2)→ Shv(S1).

The right-lax symmetric monoidal structure on Shv amounts to a compatible collection of functors

� : Shv(S1)⊗ Shv(S2)→ Shv(S1 × S2).

1.1.2. The examples of sheaf theories that we are interested in are:

(a) For any ground field k let E = Q`, where ` is assumed to be invertible in k. First, for a finite
extension E′ of Q` we consider the category Shv(S,E′) equal to the ind-completion of the category of
constructible étale sheaves on S with E′-coefficients, see [GL1, Sect. 2.3]. We take Shv(S) to be the
colimit of these categories over E′ ⊂ E.

(b) When the ground field is C, then for an arbitrary algebraically closed field E of characteristic
0, we can take Shv(S) to be the ind-completion of the category of constructible sheaves5 on S with
E-coefficients.

(c) When the ground field k has characteristic 0, and E = k, we take Shv(S) to be the category of
D-modules on S.

5By a constructible sheaf on S we mean a complex F of sheaves, for which there exists an algebraic stratification
Sα of S, such that the restrictions F|Sα are locally constant (in the analytic topology) with finite-dimensional fibers.
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1.1.3. The category of prestacks locally of finite type, denoted PreStklft, is by definition that of all
functors

(Schaff
ft )op → Spc .

Yoneda embedding is a fully faithful functor

Schaff
ft ↪→ PreStklft .

The right Kan extension of Shv along the (opposite of the) Yoneda embedding (Schaff
ft )op →

(PreStk)op defines a functor
Shv : (PreStklft)

op → DGCat .

Thus, if Y ∈ PreStklft is written as

Y = colim
−→
i

Si, Si ∈ Schaff
ft ,

we have by definition
Shv(Y) = lim

←−
i

Shv(Si).

1.2. What about non-finite type? At a certain point in this paper we will encounter the loop
group G((t)), along with its various subgroups N((t)), G[[t]]. In order to extend our sheaf theory to these
objects, we proceed as follows.

1.2.1. We consider the category Schaff of all affine schemes. Note that Schaff identifies with Pro(Schaff
ft ).

The operation of left Kan extension of (1.1) along (Schaff
ft )op ↪→ (Schaff)op defines a functor

(1.2) Shv : (Schaff)op → DGCat .

Thus, if an affine scheme S is written as a (filtered) limit

S = lim
←−
α

Sα, Sα ∈ Schaff
ft ,

we have by definition
Shv(S) = colim

−→
α

Shv(Sα).

The functor (1.2) inherits a right-lax symmetric monoidal structure.

1.2.2. Let PreStk denote the category of all (accessible6) functors

(Schaff)op → Spc .

We define the functor
Shv : (PreStk)op → DGCat

to be the right Kan extension of (1.2) along the Yoneda embedding Schaff ↪→ PreStk.

1.3. Digression: some higher algebra. To facilitate the reader’s task, in this subsection we will
review some notions from higher algebra that will be used in this paper. The main reference for this
material is [Lu2].

1.3.1. Monoids and groups. In any ∞-category C that contains finite products (including the empty
finite product, i.e., a final object), it makes sense to consider the category Monoid(C) of monoid-objects
in C. This is a full subcategory in the category of simplicial objects of C (i.e., Funct(∆op,C)) that
consists of objects, satisfying the Segal condition. Similarly, one defines the category commutative
monoids ComMonoid(C) in C.

For example, take C = ∞ -Cat. In this way we obtain the notion of monoidal (resp., symmetric
monoidal) category.

6Ignore this adjective if you do not want to worry about set theory.
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1.3.2. If c is an object of an∞-category C, then MapsC(c, c) has a natural structure of monoid in Spc.

For H ∈ Monoid(Spc), an action of H on c is by definition a homomorphism H → MapsC(c, c) of
monoid objects in Spc.

1.3.3. The ∞-category Monoid(C) (resp., ComMonoid(C)) contains the full subcategory of group-like
objects, denoted Grp(C) (resp., ComGrp(C)).

Let Ptd(C) be the category of pointed objects in C, i.e., C∗/, where ∗ denotes the final object in
C. We have the loop functor

Ω : Ptd(C)→ Grp(C), (∗ → c) 7→ ∗ ×
c
∗.

The left adjoint of this functor (if it exists) is called the functor of the classifying space and is
denoted

H 7→ B(H).

1.3.4. For C = Spc (or C = Funct(D, Spc) for some other category D, or any topos), the functor B
does exist and is fully faithful. The essential image of B : Grp(Spc)→ Ptd(Spc) consists of connected
spaces.

For an object S ∈ Ptd(Spc), its i-th homotopy group πi(S) is defined to be

π0(Ωi(S)),

where Ωi(S) is viewed as a mere object of Spc.

1.3.5. For C as above, an object c ∈ C and H ∈ Grp(C), one defines the notion of action of H on C.
By definition, such a data consists of an object c̃ ∈ C/B(H) together with an identification

c ' ∗ ×
B(H)

c̃.

For C = Spc, this coincides with the notion from Sect. 1.3.2.

1.3.6. For k ≥ 0, we introduce the category Ek(C) of Ek-objects in C inductively, by setting

E0(C) = Ptd(C)

and

Ek(C) = Monoid(Ek−1(C)).

Let Egrp-like
k (C) ⊂ Ek(C) the full subcategory of group-like objects, defined to be the preimage of

Grp(C) ⊂ Monoid(C) = E1(C)

under any of the k possible forgetful functors Ek(C)→ E1(C).

We have a pair of mutually adjoint functors

B : Egrp-like
k (C)� Egrp-like

k−1 (C) : Ω

for any k ≥ 2.

For i ≤ k we let Bi denote the resulting functor

Egrp-like
k (C)→ Egrp-like

k−i (C).
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1.3.7. One shows that the forgetful functor

Monoid(ComMonoid(C))→ ComMonoid(C)

is an equivalence.

This implies that for every k we have a canonically defined functor

ComMonoid(C)→ Ek(C),

and these functors are compatible with the forgetful functors Ek(C) → Ek−1(C). Thus, we obtain a
canonically defined functor

(1.3) ComMonoid(C)→ E∞(C) := lim
←−

Ek(C).

It is known (see [Lu2, Remark 5.2.6.26]) that the functor (1.3) is an equivalence.

The category

ComGrp(Spc) ' Egrp-like
∞ (Spc)

identifies with that of connective spectra.

For any i ≥ 0, we have the mutually adjoint endo-functors

Bi : ComGrp(Spc)� ComGrp(Spc) : Ωi

with Bi being fully faithful.

1.3.8. Let A be an object of Egrp-like
2 (Spc), so that B(A) is an object of Grp(Spc).

By an action of A on an ∞-category C we shall mean an action of B(A) on C as an object of
∞ -Cat.

For example, taking A = E× ∈ ComGrp(Spc), we obtain an action of E× on any DG category.
Explicitly, we identify B(E×) with the space of E×-torsors, i.e., lines, and the action in question sends
a line ` to the endofunctor

c 7→ `⊗ c.

1.4. Gerbes.

1.4.1. Let Y be a prestack, and let A be a group-like En-object in the category PreStk/Y, for n ≥ 1. In

other words, for a given (S
y→ Y) ∈ (Schaff)/Y, the space

(1.4) Maps(S,A) ×
Maps(S,Y)

{y}

is a group-like En-object of Spc, in a way functorial in (S, y).

We include the case of n =∞, when we stipulate that A is a commutative group-object of PreStk/Y.
I.e., (1.4) should be a commutative group-object of Spc, i.e., a connective spectrum.

For any 0 ≤ i ≤ n, we let Bi(A) denote the i-fold classifying space of A. This is a group-like
En−i-object in PreStk/Y. For i = 1 we simply write B(A) instead of B1(A).

1.4.2. We let Biet,/Y(A) (resp., BiZar,/Y(A)) denote the étale (resp., Zariski) sheafification of Bi(A) in

the category (Schaff)/Y (see [GR2, Chapter 2, Sect. 2.3]). We will be interested in spaces of the form

(1.5) Maps/Y(Y, Biet,/Y(A)),

where Maps/Y(−,−) is short-hand for MapsPreStk/Y
(−,−).

Note that (1.5) is naturally a group-like En−i-space (resp., a commutative group object in Spc if
n =∞).
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1.4.3. In most examples, we will take A to be of the form A × Y, where A is a torsion abelian group,
considered as a constant prestack. In this case

Maps/Y(Y, Biet,/Y(A)) ' Maps(Y, Biet(A)).

Note that

πj
(

Maps(Y, Biet(A))
)

=

{
Hi−j

et (Y, A), j ≤ i;
0, j > i.

Here H•et(Y, A) refers to the étale cohomology of Y with coefficients in A. In other words, it is the
cohomology of the object

C•et(Y, A) := lim
←−

(S,y)∈Schaff /Y

C•et(S,A),

see [GL2, Sect. 2.3].

Note also that in this case the functor

S 7→ Maps(S,Biet(A)), (Schaff)op → Spc

identifies with the left Kan extension of its restriction to (Schaff
ft )op. I.e., if an affine scheme S is written

as a (filtered) limit

S = lim
←−
α

Sα, Sα ∈ Schaff
ft ,

then the map

colim
−→
α

Maps(Sα, B
i
et(A))→ Maps(S,Biet(A))

is an isomorphism7.

1.4.4. For k = 1, the points of the space

(1.6) TorsA(Y) := Maps/Y(Y, Bet,/Y(A))

are by definition A-torsors on Y.

1.4.5. Our primary interest is the cases of k = 2. We will call objects of the space

(1.7) GeA(Y) := Maps/Y(Y, B2
et,/Y(A)).

A-gerbes on Y.

When A is of the form A× Y (see Sect. 1.4.3 above), we will simply write GeA(Y).

1.5. Gerbes coming from line bundles. In this subsection we will be studying gerbes for a constant
commutative group-prestack, corresponding to a torsion abelian group A.

1.5.1. Let A(−1) denote the group

colim
−→
n

Hom(µn, A).

Here µn is the group of n-th roots of unity in k, where the integer n is assumed invertible in k. The
above colimit is taken with respect to the maps

µn′
x 7→x

n′
n

� µn, for n | n′.

For future reference, denote also

A(1) = colim
n

µn ⊗
Z
A,

where colimit is taken with respect to the maps

µn ↪→ µn′ , for n | n′.

7The latter assertion means that Biet(A) is locally of finite type as a prestack.
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1.5.2. We claim that to any line bundle L on a prestack Y and an element a ∈ A(−1) one can canonically
associate an A-gerbe, denoted La, over Y.

It suffices to perform this construction for A = µn and a coming from the identity map µn → µn.

In this case, the corresponding µn-gerbe will be denoted L
1
n .

By definition, for an affine test scheme S over Y, the value of L
1
n on S is the groupoid of pairs

(L′, (L′)⊗n ' L|S),

where L′ is a line bundle on S.

Note that if L admits an n-th root L′, then this L′ determines a trivialization of L
1
n .

Remark 1.5.3. We emphasize the notational difference between the µn-gerbe L
1
n , and the line bundle

L⊗
1
n , when the latter happens to exist. Namely, a choice of L⊗

1
n defines a trivialization of the gerbe

L
1
n .

1.5.4. Let Y be a smooth scheme, and let Z ⊂ Y be a subvariety of codimension one. Let Zi, i ∈ I
denote the irreducible components of Z. For every i, let O(Zi) denote the corresponding line bundle
on Y , trivialized away from Z.

We obtain a homomorphism

(1.8) Maps(I, A(−1))→ GeA(Y ) ×
GeA(Y−Z)

∗, (I 7→ ai) 
⊗
i

O(Zi)
ai

Lemma 1.5.5. Assuming that the orders of elements in A are prime to char(k), i.e., that A has no
p-torsion, where p = char(k). Then the map (1.8) is an isomorphism in Spc.

Proof. The assertion follows from the fact that the étale cohomology group Hi
et,Z(Y,A) identifies with

Maps(I, A(−1)) for i = 2 and vanishes for i = 1, 0. �

1.6. Presheaves of categories. (Pre)sheaves of categories appear in this paper as a language in
which we formulate the metaplectic geometric Satake functor. The reader can skip this subsection on
the first pass, and return to it when necessary.

The discussion in this section is essentially borrowed from [Ga1, Sect. 1.1].

1.6.1. Note that the diagonal morphism for affine schemes defines on every object of (Schaff)op a
canonical structure of commutative algebra.

Hence, the right-lax symmetric monoidal structure on Shv naturally gives rise to a functor

(Schaff)op → ComAlg(DGCat) =: DGCatSymMon .

In particular, for every S ∈ Schaff , the category Shv(S) has a natural symmetric monoidal structure,
and for every f : S1 → S2, the functor f ! : Shv(S2)→ Shv(S1) is symmetric monoidal.

1.6.2. By a presheaf of DG categories C over Y ∈ PreStk we will mean a functorial assignment

(S
y→ Y) ∈ ((Schaff)/Y)op  C(S, y) ∈ Shv(S)-mod,

where Shv(S)-mod denotes the category of modules in the (symmetric) monoidal category DGCat for
the (commutative) algebra object Shv(S).

A basic example of a sheaf of categories is Shv/Y, defined by setting

Shv/Y(S, y) := Shv(S).

1.6.3. An example. Let Z be a prestack over Y. We define a presheaf of categories Shv(Z)/Y over Y by

setting for S
y→ Y,

Shv(Z)/Y(S, y) = Shv(S ×
Y
Z).
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1.6.4. Part of the data of a presheaf of DG categories is a compatibility of actions for morphisms
between affine schemes:

For f : S1 → S2, y2 : S2 → Y and y1 = y2 ◦ f , the corresponding functor

(1.9) C(S2, y2)→ C(S1, y1)

must intertwine the action of Shv(S2) on C(S2, y2) with the action of Shv(S1) on C(S1, y1) via the
monoidal functor f ! : Shv(S2)→ Shv(S1).

In particular, the functor (1.9) gives rise to a functor of Shv(S1)-module categories

(1.10) Shv(S1) ⊗
Shv(S2)

C(S2, y2)→ C(S1, y1),

where ⊗ is the operation of tensor product of DG categories (see, e.g., [GR2, Chapter 1, Sect. 10.4]).

1.6.5. We will say that a presheaf of DG categories is quasi-coherent if the functors (1.10) are equiva-
lences for all f : S1 → S2.

Typically, presheaves of categories of the form of Sect. 1.6.3 are not quasi-coherent, even if the
morphism Z → Y is schematic. This is because in the context of `-adic sheaves, for a pair of affine
schemes S1 and S2, the functor

Shv(S1)⊗ Shv(S2)→ Shv(S1 × S2)

is fully faithful, but not an equivalence (however, it is an equivalence in the context of D-modules).

1.6.6. Forgetting the module structure, a presheaf of DG categories C over Y defines a functor

(1.11) ((Schaff)/Y)op → DGCat .

We shall say that C is a sheaf if it satisfies étale descent, i.e., if the functor (1.11) satisfies étale
descent.

For example, presheaves of categories arising as in Sect. 1.6.3 are sheaves of categories.

1.6.7. Applying to the functor (1.11) the procedure of right Kan extension along

((Schaff)/Y)op → ((PreStk)/Y)op,

we obtain that for every prestack Z over Y there is a well-defined DG category C(Z).

Namely, if

Z ' colim
−→
i

Si, (Si, yi) ∈ (Schaff)/Y,

then

C(Z) = lim
←−
i

C(Si, yi).

We will refer to C(Z) as the “category of sections of C over Z”. By construction the DG category
C(Z) is naturally an object of Shv(Z)-mod.

1.6.8. When Z is Y itself, we will refer to C(Y) as the “category of global sections of C”.

For C as in Sect. 1.6.3, we have

C(Y) ' Shv(Z).

1.7. Some twisting constructions. The material in this subsection may not have proper references
in the literature, so we provide some details. The reader is advised to skip it and return to it when
necessary.
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1.7.1. Twisting by a torsor. Let Y be a prestack, and let H (resp., F) a group-like object in PreStk/Y
(resp., an object in PreStk/Y, equipped with an action of H). In other words, these are functorial
assignments

(S, y) ∈ (Schaff)/Y  H(S, y) ∈ Grp(Spc), (S, y) ∈ (Schaff)/Y  F(S, y) ∈ Spc,

and an action of H(S, y) on F(S, y).

Let T be an H-torsor on Y. In this case, we can form a T-twist of F, denoted FT , and which is an
étale sheaf. Here is the construction8:

Consider the category Split(T) formed by (S, y) ∈ (Schaff)/Y equipped with a datum of a lift of the

map S
y→ Y

T→ Bet(H) to a map z : S → B(H). The forgetful functor Split(T) → (Schaff)/Y forms a
basis of the étale topology, so it is sufficient to specify the restriction of FT to Split(T).

We interpret the data of the action of H on F as an object F̃ ∈ PreStk/B(H) (see Sect. 1.3.5). The
sought-for functor FT |Split(T) is given by sending (S, y, z) to

∗ ×
B(H)(S,y)

F̃(S, y),

where ∗ ∈ B(H)(S, y) corresponds to the given map z.

1.7.2. A twist of a presheaf of categories by a gerbe. Let now C be a presheaf of DG categories over Y,
and let A be a group-like E2-object in PreStk/Y.

Let us be given an action of A on C. In other words, we are given a functorial assignment for every
(S, y) ∈ (Schaff)/Y of an action of A(S, y) on C(S, y), see Sect. 1.3.8. In particular, we obtain that the
prestack of groups B(A) acts on C.

Let G be a A-gerbe on Y, i.e., a B(A)-torsor. Repeating the construction of Sect. 1.7.1, we obtain
that we can form the twist CG of C by G, which is a sheaf of DG categories over Y.

Explicitly, for every (S
y→ Y) ∈ (Schaff)/Y and a trivialization of G|S we have an identification

CG(S, y) ' C(S, y).

The effect of change of trivialization by a point a ∈ A(S, y) has the effect of action of

a ∈ End(IdC(S,y)).

1.7.3. Let E×,tors denote the subgroup of elements of E× that have a finite order prime to char(k).

Let us take A to be the constant group-prestack Y×E×,tors. In this case, the tautological embedding
E×,tors → E× gives rise to an action of A on any presheaf of DG categories.

Thus, for every G ∈ GeE×,tors(Y) and any presheaf of categories C over Y, we can form its twisted
version CG.

1.7.4. The category of sheaves twisted by a gerbe. We apply the above construction to C := Shv/Y.

Thus, for any (S, y) ∈ (Schaff)/Y we have the twisted version of the category Shv(S), denoted ShvG(S).

As in Sect. 1.6.7, the procedure of right Kan extension defines the category

ShvG(Z)

for any Z ∈ PreStk/Y.

1.8. Character sheaves and twisted equivariance.

8Note that when T is the trivial torsor, the output of this construction is the étale sheafification of F.
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1.8.1. Recall that for S ∈ Schaff , the category Shv(S) has a natural symmetric monoidal structure.

By a graded local system on S we will mean an object of Shv(S) that is invertible in the sense of the
above symmetric monoidal structure.

By a local system on S we will mean a graded local system all of whose fibers are lines in cohomo-
logical degree 0.

(Graded) local systems on S form a Picard category, i.e., a symmetric monoidal category in which
every object is invertible.

1.8.2. Let LS denote the group object of PreStk that assigns to S ∈ Schaff the Picard category of
1-dimensional local systems (within Shv(S)).

Let H be another group-object of PreStk. By a character sheaf on H we will mean a map of group
prestacks H → LS.

Let Y be a prestack acted on by H, which we interpret as a prestack Ỹ, equipped with a map to

B(H). Given a chracter sheaf χ on H, we can thus view Ỹ as equipped with a map to B(LS), i.e., with
an LS-torsor, denoted Tχ.

Note that the presheaf of categories Shv/Ỹ is naturally acted on by LS. Applying a variant of the

twisting construction of Sect. 1.7.1, we obtain a twist of this sheaf of categories by the above LS-torsor
Tχ.

In particular, for (S, y) ∈ (Schaff)/Ỹ, we obtain a well-defined category ShvTχ(S). By applying the

procedure of right Kan extension, we obtain a well-defined category ShvTχ(Z) for any Z ∈ PreStk/Ỹ,

and in particular for Z = Ỹ.

We define the category of (H,χ)-twisted equivariant sheaves on Y as

Shv(Y)H,χ := ShvTχ(Ỹ).

1.8.3. The above construction and one in Sect. 1.7.2 are interrelated. Namely, note that we have a
tautological map of group prestacks

B(E×,tors)→ LS,

which extends to a map

Bet(E
×,tors)→ LS,

since LS satisfies étale descent.

In particular, there exists a tautological character sheaf χtaut over B(E×,tors).

Given a prestack Y′ and a E×,tors-gerbe G over Y′, we can form the prestack

Y := pt ×
B2

et(E
×,tors)

Y
′,

equipped with an action of Bet(E
×,tors); this is the “total space” of G;

We have

ShvG(Y′) ' Shv(Y)Bet(E
×,tors),χtaut .
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1.8.4. An example. Let n be an integer invertible in k and let a be an element of order n in
(E×,tors)(−1), see Sect. 1.5.1.

The Kummer cover

Gm
x7→xn−→ Gm

defines a group homomorphism

Gm → Bet(µn).

Using the element a we obtain a homomorphism

Gm → Bet(E
×,tors).

Let χa := χtaut|Gm denote the corresponding character sheaf (known as the Kummer sheaf) on Gm.

Let L be a line bundle over a prestack Y. Let La be the corresponding E×,tors-gerbe over Y. Then
the category ShvLa(Y) can be explicitly described as follows:

ShvLa(Y) ' Shv(L− {0})Gm,χa ,

where L− {0} is the total space of L with zero-section removed, viewed as a Gm-torsor over Y.

1.9. Other sheaf-theoretic contexts.

1.9.1. Suppose for a moment that our ground field k is C, and our sheaf theory is that of constructible
sheaves with E-coefficients. When working with schemes of finite type, instead of considering the group
E×,tors and gerbes locally trivial in the étale topology, one can consider E×-gerbes locally trivial in the
analytic topology.

For a prestack Y, we denote the corresponding 2-groupoid of E×-gerbes by GeE×(Y).

Given a prestack Y and G ∈ GeE×(Y), we have a well-defined functor

ShvG : (PreStk/Y)op →∞ -Cat .

If L is a line bundle on a prestack Y and a is an element of E×, we let La denote the corresponding
E×-gerbe on Y.

The assertion of Lemma 1.5.5 holds mutatis mutandis. The rest of the theory is unchanged.

1.9.2. For a finite type scheme S we have a canonical map

(1.12) GeE×,tors(S)→ GeE×(S).

At the level of π0, the image of this map consists of torsion elements in H2
an(S,E×).

Note, however, that the map (1.12) is not fully faithful: at the level of π1 it corresponds to the map

H1
et(S,E

×,tors) ↪→ H1
an(S,E×),

whose image consists of torsion elements. In other words, automorphisms of a given E×-gerbe is the
Picard category of all E×-torsors (i.e., 1-dimensional local systems with coefficients in E), and for a
E×,tors-gerbe we allow those local systems that become trivial when raised to some power.

Note that in this case we can identify E×,tors(−1) with E×,tors itself; this is because the fundamental
group of Gm is identified with Z via the exponential map.



PARAMETERS FOR METAPLECTIC LANGLANDS THEORY 19

1.9.3. Let now k be an arbitrary field of characteristic 0, and let our sheaf theory be that of D-
modules, so that E = k. Recall that for a scheme S of finite type, the category Shv(S) = D-mod(S) is
by definition

QCoh(SdR),

where SdR is the de Rham prestack of S.

In this case, the counterpart of the notion of E×-gerbe from Sect. 1.9.1 is the notion of O×-gerbe
on SdR.

For a prestack Y we denote the corresponding 2-groupoid by GeO×(YdR).

Given a prestack Y and G ∈ GeO×(YdR), we have a well-defined functor

ShvG : (PreStk/Y)op →∞ -Cat .

If L is a line bundle on a prestack Y and a is an element of k/Z, the construction of [GR1, Example
6.4.6] defines an object La ∈ GeO×(YdR). The assertion of Lemma 1.5.5 holds mutatis mutandis. The
rest of the theory is unchanged.

1.9.4. For a finite type scheme S we have a canonical map

(1.13) Gek×,tors(S)→ GeO×(SdR).

It has the same properties as the map (1.12).

Note that in this case, k×,tors(−1) identifies with Q/Z, which we regard as a subgroup in k/Z.

1.9.5. In addition to O×-gerbes on YdR for a scheme Y, one can consider the notion of twisting on Y in
the sense of [GR1, Sect. 6]. By definition, this is a O×-gerbe on YdR, equipped with a trivialization of
its pullback to Y. We denote the space of twistings on Y by Tw(Y).

Let L be again a line bundle on Y, and let κ be an element of k. To this data the construction of
[GR1, Sect. 6] attaches an object Lκ ∈ Tw(Y). The image of Lκ under the tautological projection

Tw(Y)→ GeO×(YdR)

is La, where a is the image of κ under k → k/Z.

1.9.6. In what follows we will stay in the context of étale sheaves and gerbes, leaving it to the reader
to make appropriate modifications for the other sheaf-theoretic contexts.

2. Factorization gerbes on the affine Grassmannian

In this section we introduce our main object of study: factorization gerbes on the affine Grassman-
nian, which we stipulate to be the parameters for the metaplectic Langlands theory.

2.1. The Ran space. The Ran space of a curve X is an algebro-geometric device (first suggested in
[BD1]) that allows us to talk about factorization structures relative to our curve.

2.1.1. Let X be a fixed smooth algebraic curve. We let Ran ∈ PreStk be the Ran space of X. By
definition, for an affine test scheme S, the space Maps(S,Ran) is discrete (i.e., is a set), and equals the
set of finite non-empty subsets of the (set) Maps(S,X).

For a finite set J we have a map

(2.1) RanJ → Ran

given by the union of the corresponding finite subsets.

This operation makes Ran into a (non-unital) semi-group object in PreStk (see [Lu2, Definition
5.4.1.1] for what this means).
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2.1.2. The Ran space admits the following explicit description as a colimit (as an object of PreStk):

Ran = colim
−→
I

XI ,

where I runs through the category opposite to that of non-empty finite sets and surjective maps9. For
a surjection φ : I1 → I2, the corresponding map XI2 → XI1 is the corresponding diagonal morphism,
denoted ∆φ.

2.1.3. We denote by

(Ran×Ran)disj ⊂ Ran×Ran

the open substack corresponding to the following condition:

For an affine test scheme S, and two points

I1, I2 ∈ Maps(S,Ran),

the point I1 × I2 ∈ Maps(S,Ran×Ran) belongs to (Ran×Ran)disj if the corresponding subsets

I1, I2 ⊂ Maps(S,X)

satisfy the following condition: for every i1 ∈ I1, i2 ∈ I2, the corresponding two maps S ⇒ X have
non-intersecting images.

2.1.4. We give a similar definition for any power: for a finite set J we let

RanJdisj ⊂ RanJ

be the open substack corresponding to the following condition:

An S-point of RanJ , given by

Ij ⊂ Maps(S,X), j ∈ J
belongs to RanJdisj if for every j1 6= j2 and i1 ∈ Ij1 , i2 ∈ Ij2 , the corresponding two maps S ⇒ X have
non-intersecting images.

2.2. Factorization patterns over the Ran space. Let Z be a prestack over Ran. At the level of
k-points, a factorization structure on Z is the following system of isomorphisms:

For a k-point x of Ran corresponding a finite set x1, ..., xn of k-points of X, the fiber Zx of Z over
the above point is supposed to be identified with∏

i

Z{xi},

where {xi} are the corresponding singleton points of Ran.

We will now spell this idea, and some related notions, more precisely.

2.2.1. By a factorization structure on Z we shall mean an assignment for any finite set J of an isomor-
phism

(2.2) ZJ ×
RanJ

RanJdisj

γJ' Z ×
Ran

RanJdisj,

where the morphism RanJ → Ran is given by (2.1).

We require the isomorphisms (2.2) to be compatible with surjections of finite sets in the sense that

for I
φ
� J the diagram

9We note that this category is not filtered, and hence Ran is not an ind-scheme.
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(2.3)

ZI ×
RanI

RanIdisj

γI−−−−−→ Z ×
Ran

RanIdisj

∼
y x∼(∏

j∈J
ZIj ×

Ran
Ij

Ran
Ij
disj

)
×∏

j∈J
Ran

Ij
disj

RanIdisj (Z ×
Ran

RanJdisj) ×
RanJ

disj

RanIdisj

∏
j∈J

γIj

y xγJ(∏
j∈J

Z ×
Ran

Ran
Ij
disj

)
×∏

j∈J
Ran

Ij
disj

RanIdisj (ZJ ×
RanJ

RanJdisj) ×
RanJ

disj

RanIdisj

∼
y ∼

x(
ZJ ×

RanJ

∏
j∈J

Ran
Ij
disj

)
×∏

j∈J
Ran

Ij
disj

RanIdisj
∼−−−−−→ ZJ ×

RanJ
RanIdisj,

where Ij := φ−1(j), is required to commute. Furthermore, if Z takes values in ∞-groupoids (rather
than sets), we require a homotopy-coherent system of compatibilities for higher order compositions, see
[Ras1, Sect. 6].

2.2.2. Let C be a presheaf of DG categories over Ran. By a pre-factorization structure on C we shall
mean a functorial assignment for any finite set J and an S-point of RanJdisj, given by

Ij ⊂ Maps(S,X), j ∈ J
of a fully faithful functor

(2.4)
⊗

j,Shv(S)

C(S, Ij)→ C(S, I),

where I = t
j∈J

Ij .

We require the functors (2.4) to be compatible with surjections J1 � J2 via the commutative
diagrams analogous to (2.3). A precise formulation of these compatibilities is given in [Ras1, Sect. 6].

We will say that prefactorization structure on C is a factorization structure if the functors (2.4) are
equivalences.

2.2.3. For example, let Z be a factorization prestack over Ran. Then the presheaf of categories
Shv(Z)/Ran, given by

Shv(Z)/Ran : (S, I ⊂ Maps(S,X)) Shv(S ×
Ran

Z),

has a natural prefactorization structure.

Typically, this prefactorization structure is not a factorization structure, for the same reason as one
given in Sect. 1.6.5.

2.2.4. Let Z be a factorization prestack over Ran, and let A be a torsion abelian group. Let G be an
A-gerbe on Z. By a factorization structure on G we shall mean a system of identifications

(2.5) G
�J |ZJ ×

RanJ
RanJ

disj
' G|Z ×

Ran
RanJ

disj
,

where the underlying spaces are identified via (2.2).

The identifications (2.5) are required to be compatible with surjections J1 � J2 via the commutative
diagrams (2.3). Note that since gerbes form a 2-groupoid, we only need to specify the datum of (2.5)
up to |J | = 3, and check the relations up to |J | = 4.
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Factorization gerbes over Z naturally form a space (in fact, a 2-groupoid), equipped with a structure
of commutative group in Spc (i.e., connective spectrum), to be denoted FactGeA(Z).

Remark 2.2.5. Note that the diagrams (2.2) include those corresponding to automorphisms of finite
sets. I.e., the datum of factorization gerbe includes equivariance with respect to the action of the
symmetric group. For this reason what we call “factorization gerbe” in [Re] was called “symmetric
factorizable gerbe”.

2.2.6. Let Z be a factorization prestack over Ran, and let G be a factorization E×,tors-gerbe over it.
Then the presheaf of categories ShvG(Z)/Ran defined by

(S, I ⊂ Maps(S,X)) ShvG(S ×
Ran

Z)

is a sheaf of categories, and has a natural prefactorization structure.

2.2.7. By a similar token, we can consider factorization line bundles over factorization prestacks, and
also Z- or Z/2Z-graded line bundles10.

If L is a (usual, i.e., not graded) factorization line bundle and a ∈ A(−1), we obtain a factorization
gerbe La.

2.3. The Ran version of the affine Grassmannian. In this subsection we introduce the Ran
version of the affine Grassmannian, which plays a crucial role in the geometric Langlands theory.

2.3.1. For an algebraic group G, we define the Ran version of the affine Grassmannian of G, denoted
GrG, to be the following prestack.

For an affine test scheme S, the groupoid (in fact, set) Maps(S,GrG) consists of triples

(I,PG, α),

where I is an S-point of Ran, PG is a G-bundle on S × X, and α is a trivialization of PG over the
open subset UI ⊂ S × X equal to the complement of the union of the graphs of the maps S → X
corresponding to the elements of I ⊂ Maps(S,X).

2.3.2. The basic feature of the prestack GrG is that it admits a natural factorization structure over
Ran, obtained by gluing bundles.

Hence, for a torsion abelian group A, it makes sense to talk about factorization A-gerbes over GrG.
We denote the the resulting space (i.e., in fact, a connective 2-truncated spectrum) by

FactGeA(GrG).

2.3.3. An example. Let L be a factorization line bundle on GrG, and let a be an element of A(−1).
Then the A-gerbe

L
a

of Sect. 1.5.1 is naturally a factorization gerbe on GrG.

This example is important because there is a canonical factorization line bundle on GrG, denoted
detG; we will encounter it in Sect. 5.2.1.

10Note that in the latter case, the compatibility involved in the factorization structure (arising from the diagrams
(2.3) for automorphisms of finite sets J) involves sign rules. I.e., a factorization Z/2Z-graded line bundle does not give
rise to a factorization line bundle by forgetting the grading.
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2.3.4. Assume for a moment that X is proper.

Let BunG denote the moduli stack of G-bundles on X. Note that we have a tautological projection

(2.6) GrG → BunG .

Recall now that [GL2, Theorem 3.2.13] says11 that the map (2.6) is a universal homological equiva-
lence. This implies that any gerbe on GrG uniquely descends to a gerbe on BunG.

In particular, this is the case for factorization gerbes.

2.4. The space of geometric metaplectic data.

2.4.1. We stipulate that the space

FactGeE×,tors(GrG)

is the space of parameters for the metaplectic Langlands theory. We also refer to it as geometric
metaplectic datum.

This includes both the global case (when X is complete), and the local case when we take X to be
a Zariski neighborhood of some point x.

2.4.2. Given an E×,tors-factorization gerbe G on GrG, we can thus talk about the prefactorization sheaf
of categories, denoted

ShvG(GrG)/Ran,

whose value on S, I ⊂ Maps(S,X) is

ShvG(S ×
Ran

GrG).

3. Parameterization of factorization gerbes

From now on we let A be a torsion abelian group whose elements have orders prime to char(k). The
main example is A = E×,tors.

The goal of this section is to describe the set of isomorphism classes (and, more ambitiously, the
space) of A-factorization gerbes on GrG in terms of more concise algebro-geometric objects.

3.1. Parameterization via étale cohomology. In this subsection we will create a space, provided
by the theory of étale cohomology, that maps to the space FactGeE×,tors(GrG), thereby giving a pa-
rameterization of geometric metaplectic data.

3.1.1. Let Bet(G) := pt /G be the stack of G-torsors. I.e., this is the sheafification in the étale topology
of the prestack B(G) that attaches to an affine test scheme S the groupoid

∗/Maps(S,G).

3.1.2. Consider the space of maps

Maps(Bet(G)×X,B4
et(A(1))),

which is the same as Maps(B(G)×X,B4
et(A(1))).

We claim that there is a naturally defined map

(3.1) Maps
(
Bet(G)×X,B4

et(A(1))
)

×
Maps(X,B4

et(A(1)))
∗ → FactGeA(GrG),

where the map

Maps
(
Bet(G)×X,B4

et(A(1))
)
→ Maps(X,B4

et(A(1)))

corresponds to evaluation on the base point of Bet(G).

11This assertion was proved in loc.cit. under the additional assumption that G be semi-simple and simply connected.
However, in the case of constant groups-schemes, the statement is known to hold in general: see [Ga3, Theorem 4.1.6].
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3.1.3. The construction of the map (3.1) proceeds as follows. Let us be given a map

(3.2) Bet(G)×X → B4
et(A(1)),

equipped with a trivialization of the composition

X → Bet(G)×X → B4
et(A(1)).

For an affine test scheme S and an S-point (I,PG, α) of GrG, we need to construct a A-gerbe GI on
S.

Moreover, for φ : I � J , such that the point

{φ−1(j) ⊂ Maps(S,RanJ), j ∈ J}

hits RanJdisj, we need to be given an identification

(3.3) GI '
⊗
j∈J

GIj .

3.1.4. Let us interpret the datum of PG as a map

S ×X → Bet(G)×X.

Composing with (3.2), we obtain a map

(3.4) S ×X → B4
et(A(1)),

and a trivialization of the resulting map

(3.5) UI → B4
et(A(1)),

where UI is as in Sect. 2.3.1.

We claim that such a datum indeed gives rise to a A-gerbe GI on S, equipped with identifications
(3.3).

3.1.5. First off, since

Hi
et(S ×X,A(1)) and Hi−1

et (UI , A(1))

for i = 3 and i = 4 vanish étale-locally on S, we obtain that the prestack that sends S to the space of
maps (3.4), equipped with a trivialization of (3.5), identifies with B2

et of the prestack that sends S to
the space of maps

(3.6) S ×X → B2
et(A(1)),

equipped with a trivialization of

(3.7) UI → B2
et(A(1)).

3.1.6. Thus, given a map (3.6), equipped with a trivialization of (3.7), we need to construct a locally
constant map

S → A

whose dependence on (3.6) and the trivialization of (3.7) respects the structure of commutative group
on A(1).

Let ΓI denote the complement of UI (the scheme structure on ΓI is irrelevant). We need to construct
the trace map

(3.8) H2
et,ΓI (S ×X,A(1))→ H0

et(S,A).

Consider the maps

ΓI
ι−−−−−→ S ×X

π

y
S.
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The map (3.8) follows by taking H0
et(S,−) of the canonical map of sheaves

(3.9) π∗ ◦ ι!(AS×X)(1)[2]→ AS ,

where for a scheme Y , we denote by AY the constant étale sheaf on Y with value A.

3.1.7. In its turn, the map (3.9) is obtained by the (π∗, π
!)-adjunction from the isomorphism

ι!(AS×X)(1)[2] ' π!(AS),

where the latter comes from the identification

(pX)!(Apt) ' AX(1)[2],

where pX : X → pt is the projection.

3.2. Analysis of homotopy groups of the space of factorization gerbes.

3.2.1. We have the following assertion that results from [Re, Theorem II.7.3] and the computation of
the homotopy groups of the left-hand side of (3.1) (the latter is given below):

Proposition 3.2.2. The map (3.1) is an isomorphism.

Remark 3.2.3. As was explained to us by J. Lurie, the assertion of Proposition 3.2.2 is nearly tauto-
logical if one works over the field of complex numbers and in the context of sheaves in the analytic
topology.

3.2.4. From Proposition 3.2.2 we will obtain the following more explicit parameterization of the 2-
groupoid FactGeA(GrG).

Namely,

πi(FactGeA(GrG)) = H4−i
et (B(G)×X; pt×X,A(1)).

Let us analyze what these cohomology groups look like. For the duration of this subsection we will
assume that A is divisible, unless G is a torus.

3.2.5. Let π1,alg(G) denote the algebraic fundamental group of G. Explicitly, π1,alg(G) can be described
as follows:

Choose a short exact sequence

1→ T2 → G̃1 → G→ 1,

where T2 is a torus and [G̃1, G̃1] is simply connected. Set T1 = G̃1/[G̃1, G̃1]. Let Λ1 and Λ2 be the
coweight lattices of T1 and T2, respectively. Then π1,alg(G) ' Λ1/Λ2.

3.2.6. We have:

H2i+1
et (B(G), A(1)) = 0;

H2
et(B(G), A(1)) ' Hom(π1,alg(G), A);

H4
et(B(G), A(1)) ' Quad(Λ,Z)W ⊗

Z
A(−1),

where Quad(Λ,Z)W is the abelian group of W -invariant integer-valued quadratic forms on Λ.

Remark 3.2.7. We note that the natural map

Quad(Λ,Z)W ⊗
Z
A(−1)→ Quad(Λ, A(−1))W

is injective, but in general it is not surjective.
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3.2.8. By Künneth formula, we obtain:

π0(FactGeA(GrG)) =

(
Quad(Λ,Z)W ⊗

Z
A(−1)

)
×Hom(π1,alg(G), A(−1))

if X is proper, and just

Quad(Λ,Z)W ⊗
Z
A(−1)

otherwise.

Next,

π1(FactGeA(GrG)) = H1
et(X,Hom(π1,alg(G), A)).

Finally,

π2(FactGeA(GrG)) = Hom(π1,alg(G), A).

3.2.9. For a given q ∈ Quad(Λ,Z)W ⊗
Z
A(−1) ⊂ Quad(Λ, A(−1))W , let

FactGeqA(GrG)

denote the fiber of the map

FactGeA(GrG)→ Quad(Λ,Z)W ⊗
Z
A(−1)

over q.

In particular, we can consider the commutative group in Spc

FactGe0
A(GrG).

In Corollary 4.4.7 we will construct a canonical isomorphism:

(3.10) FactGe0
A(GrG) ' Maps(X,B2

et(Hom(π1,alg(G), A))).

3.3. Parametrization of factorization line bundles. This subsection is included for the sake of
completeness, in order to make contact with the theory of metaplectic extensions developed in [We].

Recall from Sect. 2.3.3 that given a factorization line bundle L on GrG and an element a ∈ A(−1)
we can produce a factorization gerbe La. In this subsection we will describe a geometric data that
gives rise to factorization line bundles12 on GrG.

3.3.1. Let K2 denote the prestack over X that associates to an affine scheme S = Spec(A) mapping to
X the abelian group K2(A). Let (K2)Zar be the sheafification of K2 in the Zariski topology.

On the one hand, we consider the space CExt(G, (K2)Zar) (in fact, an ordinary groupoid) of
Brylinski-Deligne data, which are by definition central extensions

1→ (K2)Zar → G̃→ G×X → 1

of the constant group-scheme G×X by (K2)Zar.

The operation of Baer sum makes CExt(G, (K2)Zar) into a commutative group in spaces, i.e., into
a Picard category.

On the other hand, consider the Picard category

FactPic(GrG)

of factorizable line bundles on GrG.

We are going to construct a map of Picard categories

(3.11) CExt(G, (K2)Zar)→ FactPic(GrG).

12We emphasize that this construction produces just factorization line bundles, and not Z/2Z-graded ones.
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3.3.2. The construction of the map (3.11) proceeds along the lines parallel to Sect. 3.1. We interpret
the datum of an object of CExt(G, (K2)Zar) as a map

(3.12) BZar(G)×X → B2
Zar(K2),

equipped with a trivialization of the composition

X → BZar(G)×X → B2
Zar(K2).

Given such a map, for an affine scheme S and an S-point (I,PG, α) of GrG, we need to construct
a line bundle LI on S. By [DrSi, Theorem 2], after passing to an étale cover of S, the G-bundle PG
becomes Zariski locally trivial. Hence, we can assume that (I,PG, α) is a map

(3.13) S ×X → BZar(G),

equipped with a trivialization of the composition

(3.14) UI → S ×X → BZar(G),

where UI is as in Sect. 2.3.1.

3.3.3. Composing (3.13) with (3.12) we obtain a map

(3.15) S ×X → B2
Zar(K2),

equipped with a trivialization of the composition

(3.16) UI → S ×X → B2
Zar(K2).

To this data we need to associate a line bundle LI on S.

3.3.4. As in Sect. 3.1.5, it suffices to construct an invertible function on S, starting from the data of a
map

(3.17) S ×X → BZar(K2),

equipped with a trivialization of the composition

(3.18) UI → S ×X → BZar(K2).

The desired map comes from the residue map

(3.19) K2(UI)/K2(S ×X)→ K1(S) ' Γ(S,O×S ),

constructed as follows (Zariski sheafification is automatic since ΓI = S ×X − UI is finite over S).

3.3.5. Consider the exact triangle of categories

Perf(S ×X)ΓI → Perf(S ×X)→ Perf(UI),

where

Perf(S ×X)ΓI ⊂ Perf(S ×X)

is the full subcategory spanned by objects set-theoretically supported on ΓI .

The long exact cohomology sequence gives rise to a map

(3.20) K2(UI)/K2(S ×X)→ K1(Perf(S ×X)ΓI ).

Now, the direct image functor

π∗ : QCoh(S ×X)→ QCoh(S)

has the property that it sends Perf(S ×X)ΓI to Perf(S). Thus, we obtain a map

(3.21) K1(Perf(S ×X)ΓI )→ K1(S).

Composing (3.20) and (3.21), we obtain the sought-for map (3.19).
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3.3.6. We propose:

Conjecture 3.3.7. The map (3.11), constructed above, is an isomorphism.

Remark 3.3.8. One can show that it follows from [BrDe, Theorem 3.16] combined with Sect. 4.1.5 that
Conjecture 3.3.7 holds when G = T is a torus.

3.4. Relationship between the two parameterizations. This subsection is also included for the
sake of completeness; its contents will not be used in the sequel.

We will give a cohomological construction a map

CExt(G, (K2)Zar)→ Maps(B(G)×X,B4
et(µn(1))) ×

Maps(X,B4
et(µn(1)))

∗,

where the left-hand side is the space of Brylinski-Deligne data, and the right-hand side is the space
parameterizing factorization gerbes on the affine Grassmannian.

3.4.1. Let n be an integer invertible in k. Then the construction of [Sou] defines a map

(3.22) K2(S)→ H2
et(S, µ

⊗2
n ),

that depends functorially on S ∈ Schaff .

As was explained to us by D. Clausen, the map (3.22) cannot be lifted to a map of commutative
group objects in PreStk

(3.23) K2 → B2
et(µ

⊗2
n ).

3.4.2. Let us consider B2
et(µ

⊗2
n ) as a sheaf of commutative group objects in Spc on the big Zariski site.

Let us consider its Postnikov truncation τ≤1(B2
et(µ

⊗2
n )), again as a sheaf on the big Zariski site. We

have the following fiber sequence

B2
Zar(µ

⊗2
n )→ B2

et(µ
⊗2
n )→ τ≤1(B2

et(µ
⊗2
n )).

As was explained to us by A. Beilinson, the map (3.22) does lift to a map of presheaves

(3.24) K2 → τ≤1(B2
et(µ

⊗2
n )).

The map (3.24) gives rise to a map

(3.25) B2
Zar(K2)→ τ≤3(B4

et(µ
⊗2
n )).

3.4.3. Note now that we have a fiber sequence

B4
Zar(µ

⊗2
n )→ B4

et(µ
⊗2
n )→ τ≤3(B4

et(µ
⊗2
n )),

from which it follows that the induced map

Maps(B(G)×X,B4
et(µ

⊗2
n )) ×

Maps(X,B4
et(µ

⊗2
n ))

∗ →

→ Maps(B(G)×X, τ≤3(B4
et(µ

⊗2
n ))) ×

Maps(X,τ≤3(B4
et(µ

⊗2
n )))

∗

is an isomorphism.

Combining with (3.25) we obtain a map

(3.26) CExt(G, (K2)Zar) ' Maps(B(G)×X,B2
Zar(K2)) ×

Maps(X,B2
Zar(K2))

∗ →

→ Maps(B(G)×X,B4
et(µ

⊗2
n )) ×

Maps(X,B4
et(µ

⊗2
n ))

∗ = Maps(B(G)×X,B4
et(µn(1))) ×

Maps(X,B4
et(µn(1)))

∗.

We propose:
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Conjecture 3.4.4. The following diagram commutes:

CExt(G, (K2)Zar)
(3.26)−−−−−→ Maps(B(G)×X,B4

et(µn(1))) ×
Maps(X,B4

et(µn(1)))

∗

(3.11)

y y(3.1)

FactPic(GrG)
L 7→La−−−−−→ FactGeµn(GrG).

Remark 3.4.5. The assertion of Conjecture 3.4.4 should follow from the compatibility of the map (3.24)
with the trace/symbol map.

4. The case of tori

In this section we let G = T be a torus. We will perform an explicit analysis of factorization gerbes
on the affine Grassmannian GrT , and introduce two related objects (multiplicative and commutative
factorization gerbes) that would play an important role in the sequel.

4.1. Factorization Grassmannian for a torus. In this section we will show that the affine Grass-
mannian of a torus can be approximated by a prestack assembled from (=written as a colomit of)
powers of X.

4.1.1. Recall that Λ denotes the coweight lattice of G = T . Consider the index category whose objects
are pairs (I, λI), where I is a finite non-empty set and λI is a map I → Λ; in what follows we will
denote by λi ∈ Λ is the value of λI on i ∈ I.

A morphism (J, λJ)→ (I, λI) is a surjection φ : I � J such that

(4.1) λj = Σ
i∈φ−1(j)

λi.

Consider the prestack

GrT,comb := colim
(I,λI )

XI .

The prestack GrT,comb endowed with its natural forgetful map to Ran, also has a natural factorization
structure.

There is a canonical map

(4.2) GrT,comb → GrT ,

compatible with the factorization structures.

Namely, for each (I, λI) the corresponding T -bundle on XI ×X is⊗
i∈I

λi · O(∆i),

where ∆i is the divisor on XI ×X corresponding to the i-th coordinate being equal to the last one.

4.1.2. As in [Ga2, Sect. 8.1] one shows that the map (4.2) induces an isomorphism of the sheafifications
in the topology generated by finite surjective maps. In particular, for any S → Ran, the map

GeA(S ×
Ran

GrT )→ GeA(S ×
Ran

GrT,comb)

is an isomorphism, and hence, so is the map

FactGeA(GrT )→ FactGeA(GrT,comb).

Furthermore, for a given G ∈ FactGeE×,tors(GrT ), the corresponding map of sheaves of categories

ShvG(GrT )/Ran → ShvG(GrT,comb)/Ran

is also an isomorphism.
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4.1.3. The datum of a factorization gerbe on GrT,comb can be explicitly described as follows:

For a finite set I and a map

λI : I → Λ

we specify a gerbe GλI on XI .

For a surjection of finite sets I
φ
� J such that (4.1) holds, we specify an identification

(4.3) (∆φ)∗(GλI ) ' GλJ .

The identifications (4.3) must be compatible with compositions of maps of finite sets in the natural
sense.

Let now I
φ
� J be a surjection of finite sets, and let

XI
φ,disj ⊂ XI , xi1 6= xi2 whenever φ(i1) 6= φ(i2)

be the corresponding open subset. For j ∈ J , let λIj be the restriction of λI to Ij .

We impose the structure of factorization that consists of isomorphisms

(4.4) (GλI )|XI
φ,disj

'

(⊗
j∈J

G
λ
Ij

)
|XI
φ,disj

.

The isomorphisms (4.4) must be compatible with compositions of maps of finite sets in the natural
sense.

In addition, the isomorphisms (4.4) and (4.3) must be compatible in the natural sense.

4.1.4. For a factorization gerbe G on GrT,comb, the value of the category ShvG(GrT,comb)/Ran on XI

corresponding to a given λI identifes with

ShvG
λI

(XI).

This description implies that the sheaf of categories ShvG(GrT )/Ran is quasi-coherent (see Sect. 1.6.5
for what this means), and that its prefactorization structure is actually a factorization structure.

Note that the corresponding facts would be false for a group G that is not a torus.

4.1.5. The case of factorization line bundles. The datum of a factorization Z/2Z-graded line bundle on
GrT,comb can be described in a way similar to that of factorization gerbes. This description recovers
the notion of what in [BD1, Sect. 3.10.3] is called a θ-datum.

We note that a factorization Z/2Z-graded line bundle is evenly (i.e., trivially) graded if and only if
the corresponding θ-datum is even, i.e., if the corresponding symmetric bilinear Z-valued form on Λ
comes from a Z-valued quadratic form.

We also note that [BD1, Proposition 3.10.7] says that restriction along

GrT,comb → GrT

defines an equivalence between the Picard categories of factorization (Z/2Z-graded) line bundles.

4.2. Making the parameterization explicit for tori. In this subsection we will show explicitly
how a multiplicative A-gerbe on GrT gives rise to an A-valued quadratic form

q : Λ→ A(−1).
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4.2.1. We first describe the bilinear form

b : Λ× Λ→ A(−1).

Given two elements λ1, λ2 ∈ Λ, consider I = {1, 2} and the map

λI : I → Λ; 1 7→ λ1, 2 7→ λ2.

Consider the corresponding gerbe
Gλ1,λ2 := GλI

over X2. By (4.4) it is identified with Gλ1 � Gλ2 over X2 − ∆(X). By Lemma 1.5.5, there exists a
well-defined element a ∈ A(−1) such that

Gλ1,λ2 ' (Gλ1 � Gλ2)⊗ O(∆(X))a.

We let
a =: b(λ1, λ2).

4.2.2. It is easy to see that the resulting map

b : Λ× Λ→ A(−1)

is symmetric. The fact that it is bilinear form can be seen as follows. For a triple of elements λ1, λ2, λ3

consider the corresponding gerbes

Gλ1,λ2,λ3 and (Gλ1,λ2 � Gλ3)⊗ O(∆1,3)⊗B(λ1,λ3) ⊗ O(∆2,3)⊗B(λ2,λ3)

over X3.

They are identified away from the main diagonal ∆1,2,3, and hence this identification extends to all
of X3, since ∆1,2,3 has codimension 2. Restricting to ∆1,2, we obtain an identification

Gλ1+λ2,λ3 ' (Gλ1+λ2 � Gλ3)⊗ O(∆)⊗B(λ1,λ3) ⊗ O(∆)⊗B(λ2,λ3)

as gerbes over X2. Comparing with the identification

Gλ1+λ2,λ3 ' (Gλ1+λ2 � Gλ3)⊗ O(∆)⊗b(λ1+λ2,λ3),

we obtain the desired
b(λ1, λ3) + b(λ2, λ3) = b(λ1 + λ2, λ3).

4.2.3. Finally, let us recover the quadratic form

q : Λ→ A(−1).

For a given λ ∈ Λ, consider the gerbes Gλ,λ and Gλ � Gλ on X2. They are both equipped with a
structure of S2-equivariance, and they are identified as such over X2 − ∆. In addition, the induced
equivariance structure on both

Gλ,λ|∆ and (Gλ � Gλ)∆

is the tautological one.

We note that the datum of a gerbe on X2, equipped with a structure of S2-equivariance, whose
restriction to ∆ is the tautological equivariance structure is equivalent to the datum of a gerbe on X(2),
where the latter is the symmetric square of X. Hence, we obtain a well-define gerbe Gλ(2) over X(2),
trivialized away from the diagonal, so that

Gλ,λ ' (Gλ � Gλ)⊗ Gλ(2) |X×X ,
compatibly with the trivializations on X2 −∆.

By Lemma 1.5.5, G is canonically of the form O(∆′)a
′

for some a′ ∈ A(−1), and where ∆′ denotes

the diagonal in X(2).

Set
a′ =: q(λ).

By construction,

Gλ(2) |X×X ' (O(∆))b(λ,λ),
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compatibly with the trivializations on X2 −∆.

Since O(∆′)|X2 = O(∆)⊗2, we have

b(λ, λ) = 2 · q(λ).

The relation
q(λ1 + λ2) = q(λ1) + q(λ2) + b(λ1, λ2)

is checked in a way similar to Sect. 4.2.2.

4.3. The notion of multiplicative/commutative factorization gerbe. In order to be able to
state the metaplectic version of geometric Satake, we will need to discuss the notion of multiplica-
tive/commutative factorization gerbe, first on GrT , and then when the lattice Λ = Hom(Gm, T ) is
replaced by a general finitely generated abelian group.

4.3.1. Note that since T is commutative, GrT is naturally a (commutative) group-prestack over Ran.
Hence, along with FactGeA(GrT ), we can consider the corresponding spaces (in fact, commutative
groups in spaces)

(4.5) FactGemult
A (GrT ) and FactGecom

A (GrT )

that correspond to gerbes that respect the group (resp., commutative group structure) on GrT over
Ran.

We have the evident forgetful maps

(4.6) FactGecom
A (GrT )→ FactGemult

A (GrT )→ FactGeA(GrT ).

4.3.2. Let us regard B(T ) and B4
et(A) as (commutative) group objects in PreStk. From Proposi-

tion 3.2.2, we obtain:

Corollary 4.3.3.

(a) We have a canonical isomorphism

(4.7) MapsGrp(PreStk/X )(B(T )×X,B4
et(A(1))×X) ' FactGemult

A (GrT ).

(b) We have a canonical isomorphism

(4.8) MapsComGrp(PreStk/X )(B(T )×X,B4
et(A(1))×X) ' FactGecom

A (GrT ).

In the above corollary, the notation Grp(−) (resp., ComGrp(−)) means group-objects (resp., com-
mutative group-objects) in a given ∞-category.

We are going to use Corollary 4.3.3 to describe the spaces

FactGemult
A (GrT ) and FactGecom

A (GrT )

more explicitly.

4.3.4. Note that the Kummer map
A×Gm → Bet(A(1)),

which is a map of commutative group-prestacks, gives rise to a map

Hom(Λ, A)× T → Bet(A(1)),

and hence

Maps(X,B2
et(Hom(Λ, A)))→ MapsComGrp(PreStk/X )(T ×X,B

3
et(A(1))×X).

We also note that the looping map

MapsComGrp(PreStk/X )(B(T )×X,B4
et(A(1))×X)→ MapsComGrp(PreStk/X )(T ×X,B

3
et(A(1))×X)

is an isomorphism.

Combining with Corollary 4.3.3(b), we obtain a map

(4.9) Maps(X,B2
et(Hom(Λ, A)))→ FactGecom

A (GrT ).
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We claim:

Corollary 4.3.5. The map (4.9) is an isomorphism.

The proof follows from the description of factorization gerbes in Sect. 4.1, or alternatively from
Sect. 4.3.9 below.

4.3.6. We now claim:

Proposition 4.3.7. The forgetful maps

FactGecom
A (GrT )→ FactGemult

A (GrT )→ FactGeA(GrT )

are fully faithful. Moreover:

(a) The essential image of the composition

FactGecom
A (GrT )→ FactGemult

A (GrT )→ FactGeA(GrT )

equals FactGe0
A(GrT ).

(b) The essential image of

FactGemult
A (GrT )→ FactGeA(GrT )

is the preimage of the subset of Quad(Λ, A), consisting of those quadratic forms, whose associated
bilinear form is zero.

Proof. Follows from Corollary 4.3.3, combined with the following lemma:

Lemma 4.3.8.

(a) Hi
et(B

2(T ), A) = 0 for i = 1, 2, 4. The map

H3
et(B

2(T ), A)→ H2
et(B(T ), A) ' Hom(Λ, A(−1))

is an isomorphism. The map

H5
et(B

2(T ), A)→ H4
et(B(T ), A) ' Quad(Λ, A(−2))

is injective and has as its image the set of quadratic forms whose associated bilinear form vanishes.

(b) For k ≥ 2, we have Hi+k
et (B1+k(T ), A) = 0 for all positive integers i up to 4 + k except i = 2. The

natural map

H2+k
et (B1+k(T ), A)→ H2

et(B(T ), A) ' Hom(Λ, A(−1))

is an isomorphism.

�

4.3.9. Let us compute the homotopy groups of the spaces (4.5). We obtain:

π0(FactGemult
A (GrT )) ' Hom(Λ, A(−1))2 -tors ×Hom(Λ, A(−1))

if X is proper, and just Hom(Λ, A(−1))2 -tors otherwise. Similarly,

π0(FactGecom
A (GrT )) ' Hom(Λ, A(−1))

if X is proper, and 0 otherwise.

Next,

π1(FactGemult
A (GrT )) ' π1(FactGecom

A (GrT )) ' H1
et(X,Hom(Λ, A)).

Finally

π2(FactGemult
A (GrT )) ' π2(FactGecom

A (GrT )) ' Hom(Λ, A).

4.4. More general abelian groups. In this section we generalize the discussion of Sect. 4.3 to the
case when instead of a lattice Λ (thought of as a lattice of cocharacters of a torus) we take a general
finitely generated abelian group.

We need this in order to state the metaplectic version of geometric Satake.
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4.4.1. Let Γ be a finitely generated abelian group. We define the commutative group-prestack over
Ran

GrΓ⊗Gm

as follows. Write Γ as Λ1/Λ2, where Λ1 ⊃ Λ2 are lattices. Let T1 and T2 be the corresponding tori.
We define GrΓ⊗Gm as a quotient of GrT1 by GrT2 , viewed as commutative group-prestacks over Ran.

It is easy to see that this definition (as well as other constructions we are going to perform) is
canonically independent of the presentation of Γ as a quotient.

The group-prestack GrΓ⊗Gm has a natural factorization structure over Ran.

4.4.2. Let now G be a connective reductive group. Let Γ = π1,alg(G). The description in Sect. 3.2.5
implies that there is a canonically defined map

(4.10) GrG → GrΓ⊗Gm ,

compatible with the factorization structure.

4.4.3. Since GrΓ⊗Gm is a commutative group-prestack over Ran, along with FactGeA(GrΓ⊗Gm), we can
consider the corresponding spaces (in fact, commutative groups in spaces)

(4.11) FactGemult
A (GrΓ⊗Gm) and FactGecom

A (GrΓ⊗Gm)

that correspond to gerbes that respect that group (resp., commutative group structure) on GrΓ⊗Gm
over Ran.

The following results from Proposition 4.3.7:

Corollary 4.4.4. Let Γ be written as a quotient of two lattices as in Sect. 4.4.1. Let G1 be a fac-
torization A-gerbe on GrT1 , and let b1 and q1 be the associated bilinear and quadratic forms on Λ1,
respectively.

Then the datum of descent of the gerbe G1 to a factorization gerbe G on GrΓ⊗Gm exists only if the
restriction of q1 to Λ2 is trivial, and in the latter case is equivalent to the trivialization of G2 := G1|GrT2
as a factorization gerbe on GrT2 . Moreover:

(a) The gerbe G admits a multiplicative structure if and only if b1 is trivial. In the latter case, the
multiplicative structure is unique up to a unique isomorphism.

(b) The gerbe G admits a commutative multiplicative structure if and only if q1 is trivial. In the latter
case, the commutative multiplicative structure is unique up to a unique isomorphism.

From here we obtain:

Corollary 4.4.5.

(a) There is a canonical equivalence

Maps(X,B2
et(Hom(Γ, A))) ' FactGecom

A (GrΓ⊗Gm).

(b) There is a diagram of fiber sequences

FactGecom
A (GrΓ⊗Gm) −−−−−→ FactGeA(GrΓ⊗Gm) −−−−−→ Quad(Γ, A(−1))

id

x x x
FactGecom

A (GrΓ⊗Gm) −−−−−→ FactGemult
A (GrΓ⊗Gm) −−−−−→ Hom(Γ, A(−1))2 -tors,

where Hom(Λ, A(−1))2 -tors is identified with the kernel of the map

Quad(Γ, A(−1))→ Bilin(Γ, A(−1)).



PARAMETERS FOR METAPLECTIC LANGLANDS THEORY 35

4.4.6. Let now Γ be the algebraic fundamental group π1,alg(G) of a reductive group G, and recall the
map (4.10)

GrG → Grπ1,alg(G)⊗Gm .

Consider the composite map

(4.12) FactGecom
A (Grπ1,alg(G)⊗Gm)→ FactGeA(Grπ1,alg(G)⊗Gm)→ FactGeA(GrG).

From Corollary 4.4.5 and the calculation of homotopy groups in Sect. 3.2.8 we obtain:

Corollary 4.4.7. The map (4.12) is fully faithful and is an isomorphism into FactGe0
A(GrG), thereby

inducing an isomorphism

Maps(X,B2
et(Hom(π1,alg(G), A))) ' FactGe0

A(GrG).

4.5. Splitting multiplicative gerbes. In this subsection we will assume that char(k) 6= 2. We will
need to perform one more manipulation: it turns out that the fiber sequence

FactGecom
A (GrΓ⊗Gm)→ FactGemult

A (GrΓ⊗Gm)→ Hom(Γ, A(−1))2 -tors

of Corollary 4.4.5(b) admits a canonical splitting.

4.5.1. Note that

Hom(Γ, A(−1))2 -tors ' Hom(Γ, A(−1)2 -tors) ' Hom(Γ, A2 -tors),

since the group µ2 is canonically ±1 = Z/2Z.

In order to define the sought-for splitting, by functoriality, it suffices to consider the case of Γ = Z/2Z,
A = ±1 and we need to produce a multiplicative factorization gerbe on GrZ/2Z⊗Gm that gives rise to
the tautological map Z/2Z→ ±1.

4.5.2. We will first construct the corresponding multiplicative factorization gerbe on GrGm , i.e., for
Γ = Z. It will be clear from the construction that its pullback under the isogeny

Z 2·−−→ Z
is canonically trivial. This will give rise to the sought-for gerbe for Γ = Z/2Z by Corollary 4.4.4(a).

4.5.3. In order to perform the construction we will choose a datum of a Z/2Z-graded factorization line
bundle L on GrGm,Ran.

We require that the restriction of L to X ⊂ Ran be such that its further restriction to the connected
component of

GrGm,X := X ×
Ran

GrGm ,

corresponding to 1 ∈ Z, is odd. An example of such an L is the determinant line bundle, corresponding
to the tautological action of Gm on a 1-dimensional vector space.

We now consider the line bundle L⊗2, and the ±1-gerbe (L⊗2)
1
2 (see Remark 1.5.3 for our notational

convention). By unwinding the construction of the quadratic form in Sect. 4.2.3, it is easy to see that
this factorization gerbe has the required property.

4.5.4. We now claim that the gerbe (L⊗2)
1
2 is canonically independent of the choice of L. Indeed,

let L1 and L2 be two different choices for L. We note that their ratio L̃ := L1 ⊗ L⊗−1
2 is a usual

factorization line bundle (i.e., it is Z/2Z-graded, but the grading is even). So, the gerbe

(L̃⊗2)
1
2

is canonically trivialized by means of the line bundle (L̃⊗2)⊗
1
2 = L̃.

Remark 4.5.5. We note that, by construction, the gerbe (L⊗2)
1
2 admits a canonical trivialization. But

this factorization is not compactible with the factorization structure.

4.5.6. In what follows, for a given element ε ∈ Hom(Γ, A(−1))2 -tors, we will denote by Gε the resulting
multiplicative factorization gerbe on GrΓ⊗Gm .
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4.5.7. For a given object G ∈ FactGemult
A (GrΓ⊗Gm) let us denote by ε the map

Γ→ A(−1)2 -tors

that measures the obstruction of G to belong to FactGecom
A (GrΓ⊗Gm).

We obtain that, canonically attached to G, there exists an object

G
com ∈ FactGecom

A (GrΓ⊗Gm),

such that

G ' G
com ⊗ G

ε,

where Gε is as in Sect. 4.5.6.

5. Jacquet functors for factorization gerbes

In this section we take G to be reductive. We will study the interaction between factorization gerbes
on GrG and those on GrM , where M is the Levi quotient of a parabolic of G.

5.1. The naive Jacquet functor. Let P be a parabolic subgroup of G, and we let P � M be its
Levi quotient. Let NP denote the unipotent radical of P .

5.1.1. Consider the diagram of the Grassmannians

GrG
p←− GrP

q−→ GrM .

We claim that pullback along q defines an equivalence,

(5.1) GeA(S ×
Ran

GrM )→ GeA(S ×
Ran

GrP )

for any S → Ran, in particular, inducing an equivalence

FactGeA(GrM )→ FactGeA(GrP ).

5.1.2. To show that (5.1) is an equivalence, let us choose a splitting M ↪→ P of the projection P �M .
In particular, we obtain an adjoint action of M on NP . Hence, we obtain an action of the group-prestack
L+(M) (see Sect. 7.1.3 for the definition of this group-prestack) over Ran on GrNP .

We can view GrM as a quotient L(M)/L+(M) (see Sect. 7.2.2), and hence we can view the map

L(M)→ GrM

as a L+(M)-torsor. Then GrP , when viewed as a prestack over GrM is obtained by twisting GrNP by
the above L+(M)-torsor.

Now, the equivalence in (5.1) follows from the fact that for any S → Ran, pullback defines an
isomorphism

Hi
et(S,A)→ Hi

et(S ×
Ran

GrNP , A)

for all i.

5.1.3. In terms of the parameterization given by Proposition 3.2.2, the map

FactGeA(GrG)→ FactGeA(GrM )

can be interpreted as follows:

It corresponds to the map

Maps(B(G)×X,B4
et(A(1))) ×

Maps(X,B4
et(A(1)))

∗ →

→ Maps(B(P )×X,B4
et(A(1))) ×

Maps(X,B4
et(A(1)))

∗ ∼←− Maps(B(M)×X,B4
et(A(1))) ×

Maps(X,B4
et(A(1)))

∗,

where the second arrow is an isomorphism since the map B(P ) → B(M) induces an isomorphism an
étale cohomology with constant coefficients.
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Thus, if GG is a factorization A-gerbe on GrG, and GM is the corresponding the factorization A-gerbe
on GrM , the corresponding quadratic forms

q : Λ→ A(−1)

coincide.

5.1.4. We now take A := E×,tors. Given a factorization E×,tors-gerbe GG over GrG, consider its pullback
to GrP , denoted GP . We let GM denote the canonically defined factorization gerbe on GrM , whose
pullback to GrP gives GP .

By construction, for any S → Ran, we have a well-defined pullback functor

p! : ShvPG(S ×
Ran

GrG)→ ShvPP (S ×
Ran

GrP ).

Furthermore, since the morphism q is ind-schematic, we have a well-defined push-forward functor

q∗ : ShvGP (S ×
Ran

GrP )→ ShvGM (S ×
Ran

GrM ).

Thus, the composite q∗ ◦ p! defines a map between prefactorization sheaves of categories

(5.2) ShvGG(GrG)/Ran → ShvGM (GrM )/Ran.

We will refer to (5.2) as the naive Jacquet functor.

5.2. The critical twist. The functor (5.2) is not quite what we need for the purposes of geometric
Satake. Namely, we will need to correct this functor by a cohomological shift that depends on the
connected component of GrM (this is needed in order to arrange that the corresponding functor on
the spherical categories maps perverse sheaves to perverse sheaves). However, this cohomological shift
will destroy the compatibility of the Jacquet functor with factorization, due to sign rules. In order
to compensate for this, we will apply an additional twist of our categories by the square root of the
determinant line bundle.

The nature of this additional twist will be explained in the present subsection.

For the rest of this subsection we will assume that char(k) 6= 2.

5.2.1. Let detG denote the determinant line bundle on GrG, corresponding to the adjoint representation.
It is constructed as follows. For an affine test scheme S and an S-point I ⊂ Maps(S,X) of Ran, consider
the corresponding G-bundle PG on S ×X, equipped with an isomorphism

α : PG ' P
0
G

over UI ⊂ S×X. Consider the corresponding vector bundles associated with the adjoint representation

gPG |UI ' gP0
G
|UI .

Then

(5.3) det. rel.(gPG , gP0
G

)

is a well-defined line bundle13 on S.

This construction is compatible with pullbacks under S′ → S, thereby giving rise to the sought-for
line bundle detG on GrG.

It is easy to see that detG is equipped with a factorization structure over Ran.

13Note that the line bundle (5.3) is a priori Z-graded, but since G is reductive, and in particular, unimodular, this
grading is actually trivial (i.e., concentrated in degree 0).
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5.2.2. Taking A = ±1, we will consider the factorization gerbe det
1
2
G over GrG.

From now on we will choose a square root, denoted ω
⊗ 1

2
X of the canonical line bundle ωX on X (see

again Remark 1.5.3 for our notational conventions).

Let P be again a parabolic of G. Consider the factorization gerbes det
1
2
G |GrP and det

1
2
M |GrP over

GrP . We claim that the choice of ω
⊗ 1

2
X gives rise to an identification of gerbes

(5.4) det
1
2
G |GrP ' det

1
2
M |GrP .

However, this identification will be compatible with the factorization structures only up to a sign.

In fact, we claim that the ratio of the line bundles

detG |GrP and detM |GrP

admits a square root, to be denoted det
⊗ 1

2
P , which is a Z-graded (and, in particular, Z/2Z-graded)

factorization line bundle on GrP . The Z/2Z-grading on det
⊗ 1

2
P is responsible for the sign defect in the

identification of the gerbes (5.4).

Remark 5.2.3. In fact, more is true: the construction of [BD2, Sect. 4] defines a square root of detG

itself, again viewed as a factorization graded line bundle. This allows to trivialize the gerbe det
1
2
G. But

again, this trivialization is compatible with the factorization structure only up to a sign.

5.2.4. The graded line bundle det
⊗ 1

2
P is constructed as follows. For an S-point (I,PP ,PG|UI ' P0

G|UI )

of GrP we set the value of det
⊗ 1

2
P on S to be

rel.det.(n(P )PP , n(P )P0
P

).

Let us construct the isomorphism

(det
⊗ 1

2
P )⊗2 ⊗ detM |GrP ' detG |GrP .

Let us identify the vector space g/p with the dual of n(P ) (say, using the Killing form). For an
S-point (I,PP ,PG|UI ' P0

G|UI ) of GrP , denote

E := n(P )PP and E0 := n(P )P0
P
.

Then the ratio of detG |S and detM |S identifies with the line bundle

rel. det.(E,E0)⊗ rel.det.(E∨,E∨0 ).

Note, however, that for any line bundle L on S ×X, we have

rel. det.(E,E0)⊗ rel. det.(E∨,E∨0 ) ' rel. det.(E⊗ L,E0 ⊗ L)⊗ rel.det.(E∨ ⊗ L,E∨0 ⊗ L).

Letting L be the pullback of ω
⊗ 1

2
X , we thus need to construct an isomorphism

rel. det.(E⊗ ω⊗
1
2

X ,E0 ⊗ ω
⊗ 1

2
X ) ' rel.det.(E∨ ⊗ ω⊗

1
2

X ,E∨0 ⊗ ω
⊗ 1

2
X ).

However, this follows from the (relative to S) local Serre duality on S ×X:

DSerre
/S (E⊗ ω⊗

1
2

X ) ' E
∨ ⊗ ω⊗

1
2

X [1] and DSerre
/S (E0 ⊗ ω

⊗ 1
2

X ) ' E
∨
0 ⊗ ω

⊗ 1
2

X [1].

5.3. The corrected Jacquet functor. We will now use the square root gerbe det
⊗ 1

2
P from the previous

subsection in order to introduce a correction to the naive Jacquet functor from Sect. 5.1.4.

5.3.1. Let ΛM/[M,M ] be cocharacter lattice of the torus M/[M,M ]. We have a canonical map from the
set of connected components of GrM/[M,M ] (and hence also GrM and GrP ) to ΛM/[M,M ]. Let 2ρ̌G,M
be the character of M/[M,M ] equal to the determinant of the action of M on n(P ).

Coupling with 2ρ̌G,M we obtain a (locally constant map)

dG,M : GrM → Z.
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5.3.2. Given a factorization E×,tors-gerbe GG on GrG and the corresponding factorization gerbe GM on
GrM (see Sect. 5.1.4), we will now define the corrected Jacquet functor as a map between prefactoriza-
tion sheaves of categories:

(5.5) JGM : Shv
GG⊗det

1
2
G

(GrG)/Ran → Shv
GM⊗det

1
2
M

(GrM )/Ran.

Namely, for an affine test scheme S and an S-point of Ran, the corresponding functor is the com-
position of the following four operations:

(i) The pullback functor

p! : Shv
PG⊗det

1
2
G

(S ×
Ran

GrG)→ Shv
PG⊗det

1
2
G

(S ×
Ran

GrP );

(ii) The identification

Shv
PG⊗det

1
2
G

(S ×
Ran

GrP ) ' Shv
GM⊗det

1
2
M

(S ×
Ran

GrP ),

given by the isomorphism of gerbes (5.4);

(iii) The pushforward functor

q∗ : Shv
GM⊗det

1
2
M

(S ×
Ran

GrP )→ Shv
GM⊗det

1
2
M

(S ×
Ran

GrM );

(iv) The cohomological shift by [−dG,M ] (depending on the connected component of GrM ).

5.3.3. We claim that the functor (5.5) is a functor between factorization categories. This follows

from the fact that the natural grading on the line bundle det
⊗ 1

2
P is such that it equals dG,M on the

corresponding connected component of GrP .

6. The metaplectic Langlands dual datum

In section we take G to be reductive. Given a factorization gerbe G on GrG, we will define the
metaplectic Langlands dual datum attached to G, and the corresponding notion of twisted local system
on X.

6.1. The metaplectic Langlands dual root datum. The first component of the metaplectic Lang-
lands dual datum is purely combinatorial and consists of a certain root datum that only depends on
the root datum of G and q. This is essentially the same as the root datum defined by G. Lusztig as a
recipient of the quantum Frobenius.

6.1.1. Given a factorization A-gerbe GG on GrG, let

q : Λ→ A(−1)

b : Λ× Λ→ A(−1)

be the associated quadratic and bilinear forms, respectively. Let Λ] ⊂ Λ be the kernel of b.

Following [Lus], we will now define a new root datum

(6.1) (∆] ⊂ Λ], ∆̌] ⊂ Λ̌]).
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6.1.2. We let ∆] be equal to ∆ as an abstract set. For each element α ∈ ∆, we let the corresponding
element α] ∈ ∆] be equal to

ord(q(α)) · α ∈ Λ,

and the corresponding element α̌] ∈ ∆̌] be

1

ord(q(α))
· α̌ ∈ Λ̌⊗

Z
Q.

The fact that q ∈ Quad(Λ, A(−1)) lies in the image of the map

Quad(Λ,Z)W ⊗
Z
A(−1)→ Quad(Λ, A(−1))W

(see Remark 3.2.7) implies that α] and α̌] defined in this way indeed belong to Λ] ⊂ Λ and Λ̌] ⊂ Λ̌⊗
Z
Q,

respectively.

6.1.3. Since q was W -invariant, the action of W on Λ preserves Λ]. Moreover, for each α ∈ ∆, the
action of the corresponding reflection sα ∈W on Λ] equals that of sα] .

This implies that restriction defines an isomorphism from W to the group W ] of automorphisms of
Λ] generated by the elements sα] .

Hence, (6.1) is a finite root system with Weyl group W ], isomorphic to the original Weyl group W .

It follows from the constriction that if αi are the simple coroots of ∆, then the corresponding
elements α]i ∈ Λ] form a set of simple roots of ∆].

6.1.4. We let G] denote the reductive group (over k) corresponding to (6.1).

6.2. The “π1-gerbe”. Let GG be as above. In this subsection we will show that in addition to the
reductive group G], the datum of GG defines a certain multiplicative factorization gerbe on the affine
Grassmannian corresponding to the abelian group π1,alg(G]).

6.2.1. Let GT be the factorization gerbe on GrT , corresponding to GG via Sect. 5.1.4. Consider the
corresponding torus T ].

Let GT
]

be the factorization gerbe on GrT ],Ran equal to the pullback of GT under T ] → T . By

Proposition 4.3.7(b), the gerbe GT
]

carries a canonical multiplicative structure.

Consider the algebraic fundamental group π1,alg(G]) of G], and the projection Λ] → π1,alg(G]).
Consider the corresponding map

(6.2) GrT ] → Grπ1,alg(G])⊗Gm .

We claim that there exists a canonically defined multiplicative factorization A-gerbe Gπ1,alg(G])⊗Gm

on Grπ1,alg(G])⊗Gm , whose pullback under (6.2) identifies with GT
]

.

6.2.2. By Corollary 4.4.4, we need to show that for every simple coroot αi, the pullback of GT to GrGm
under

Gm
α
]
i−→ T

is naturally trivialized.

By the transitivity of the construction in Sect. 5.1.4, we can replace G by its Levi subgroup Mi of
semi-simple rank 1, corresponding to αi. Furthermore, using the map SL2 →Mi, we can thus assume
that G = SL2.
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6.2.3. Note that by Sect. 3.2.8, any factorizable A-gerbe on GrSL2 is canonically of the form (detSL2)a

for some element a ∈ A(−1).

Let us first calculate the resulting A-gerbe on GrGm , where we think of Gm as the Cartan subgroup
of SL2.

For an integer k let detGm,k denote the determinant line bundle on GrGm associated with the action
of Gm on the one-dimensional vector space given by the k-th power of the tautological character. This
a Z-graded factorization line bundle, and we note that the grading is even if k is even.

By Sect. 5.2.4, the factorization gerbe on GrGm , corresponding to (detSL2)a is given by (detGm,2)2a.
The associated quadratic form

q : Z→ A

takes value 4a on the generator 1 ∈ Z. Let n := ord(4a).

We need to show that the pullback of (detGm,2)2a under the isogeny

Gm
x 7→xn−→ Gm

is canonically trivial as a factorization gerbe on GrGm,Ran.

6.2.4. Note that the pullback of detGm,2 under the above isogeny is the factorization line bundle
detGm,2n. We need to provide a canonical trivialization of the factorization gerbe

(detGm,2n)2a.

For that it is sufficient to show that the factorization line bundle detGm,2n on GrGm admits a
canonical 2n-th root.

6.2.5. Note that, as in Corollary 4.3.5 (see also [BD1, Lemma 3.10.3]), a line bundle on X gives rise to
a factorization line bundle on GrGm . Denote this construction by

L 7→ Fact(L).

Now, we have:

detGm,2n ' ((detGm,1)⊗2n)⊗2n ⊗ (Fact(ω
⊗ 2n−1

2
X ))⊗2n.

Thus, the line bundle (detGm,1)⊗2n ⊗ Fact(ω
⊗ 2n−1

2
X ) gives the desired 2n-th root.

6.2.6. Example. Suppose that GG is trivial, in which case T ] = T and G] = G. In this case

Gπ1,alg(G])⊗Gm is also trivial.

6.3. The metaplectic Langlands dual datum as a triple. Until the end of this section we will
assume that char(k) 6= 2. We take A to be E×,tors.

6.3.1. By Sect. 4.5, to Gπ1,alg⊗Gm we can canonically attach a commutative factorization gerbe
(Gπ1,alg⊗Gm)com on Grπ1,alg(G])⊗Gm , and a map

ε : π1,alg(G])→ ±1.

6.3.2. Let H denote the Langlands dual of G], viewed as an algebraic group over E. Note that the
group

Hom(π1,alg(G]), E×,tors)

identifies with ZH(E)tors, where ZH denotes the center of H.

Using Corollary 4.3.5, we interpret (Gπ1,alg⊗Gm)com as a ZH(E)tors-gerbe, denoted GZ . Furthermore,
we interpret the above map ε as a homomorphism

(6.3) ε : ±1→ ZH(E)tors.
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6.3.3. We will refer to the triple

(6.4) (H,GZ , ε)

as the metaplectic Langlands dual datum corresponding to GG.

6.3.4. Recall the twisting construction of Sect. 1.7.2. Applying it to the constant sheaf of (symmetric
monoidal) categories over X with value Rep(H), i.e.,

Rep(H)⊗ Shv/X

and A being the constant commutative group-prestack with value ZH(E)tors, i.e.,

ZH(E)tors ×X,
we obtain a new sheaf of (symmetric monoidal) categories over X, denoted

Rep(H)GZ .

Let Rep(H)GZ (X) denote the (symmetric monoidal) category of its global sections (see Sect. 1.6.8).
The category Rep(H)GZ (X) carries a naturally defined t-structure.

6.3.5. We now introduce the notion of twisted local system for the metaplectic Langlands dual datum,
understood as a triple (6.4). Namely, this is by definition a symmetric monoidal t-exact functor

Rep(H)GZ (X)→ Shv(X).

In Sect. 8.5 we will formulate a precise relationship between twisted local systems in the above sense
and objects appearing in the global metaplectic geometric theory.

Remark 6.3.6. Presumably, twisted local systems as defined above are the same as Galois representa-
tions into the metaplectic L-group, as defined in [We].

6.4. Digression: (pre)factorization categories arising from symmetric monoidal categories.
In this subsection we will explain a procedure that produces prefactorization categories from symmetric
monoidal categories. The source of the metaplectic geometric Satake functor will be a factorization
category obtained in this way.

For a more detailed discussion see [Ras2, Sect. 6].

6.4.1. Let C be a symmetric monoidal DG category.

We define the sheaf of categories Fact(C) on Ran as follows. For an affine test scheme S and an
S-point of Ran given by I ⊂ Maps(S,X), let Tw(I) be the category whose objects are pairs

(6.5) I � J � K

(here J and K are sets (automatically, finite and non-empty)), and whose morphisms are commutative
diagrams

(6.6)

I −−−−−→ J −−−−−→ K

id

y y x
I −−−−−→ J ′ −−−−−→ K′.

(Note that the arrows between the K’s go in the opposite direction.)

Consider the functor

(6.7) Tw(I)→ DGCat

that sends an object (6.5) to

Shv(S ×
XI

XK)⊗ C
⊗J ,

and a morphism (6.6) to

Shv(S ×
XI

XK)⊗ C
⊗J → Shv(S ×

XI
XK′)⊗ C

⊗J → Shv(S ×
XI

XK′)⊗ C
⊗J′ ,
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where the first arrow is direct image along

S ×
XI

XK → S ×
XI

XK′ ,

and the second arrow is the functor C⊗J → C⊗J
′

given by the symmetric monoidal structure on C.

Finally, we let the value of Fact(C) on (S, I) be the object of DGCat equal to the colimit of the
functor (6.7) over Tw(I).

By construction, Fact(C) admits a prefactorization structure as a sheaf of symmetric monoidal DG
categories.

Remark 6.4.2. One can show that Fact(C), regarded as a presheaf on Ran is in fact quasi-coherent, and
that its prefactorization structure is actually a factorization structure.

6.4.3. Let Fact(C)(Ran) denote the category of global sections of Fact(C) over Ran.

As in [Ga5, Sect. 4.2], the (symmetric) monoidal structure on Fact(C) and the operation of union
of finite sets makes Fact(C)(Ran) into a non-unital (symmetric) monoidal category.

6.4.4. Let A be a group acting by automorphisms of the symmetric monoidal structure of C.

Let GA be an A-gerbe over X. We can twist the construction of Fact(C) and consider the sheaf on
Ran of symmetric monoidal DG categories Fact(C)GA .

6.4.5. Let now ε be a 2-torsion element of A. Using the gerbe Gε from Sect. 4.5.1, we can further twist
Fact(C)GA to obtain a (pre)factorization sheaf of monoidal DG categories, denoted Fact(C)εGA .

Note, however, that by Remark 4.5.5, we have a canonical identification

Fact(C)GA(Ran) ' Fact(C)εGA(Ran),

as monoidal categories.

6.5. The (pre)factorization category of representations.

6.5.1. We apply the construction in Sect. 6.4 to

C = Rep(H), A = ZH(E)tors, GA = GZ ,

and ε from (6.4).

We obtain the sheaves of monoidal categories over Ran

Fact(Rep(H))GZ and Fact(Rep(H))εGZ ,

and the corresponding monoidal categories

(6.8) Fact(Rep(H))GZ (Ran) ' Fact(Rep(H))εGZ (Ran).

6.5.2. Example of tori. Let GT be a multiplicative factorization gerbe on GrT . In this case,

ShvGT (GrT )/Ran

is naturally a sheaf of monoidal DG categories on Ran, equipped with a (pre)factorization structure.

Note also that by Proposition 4.3.7(a), we have T ] = T , and so H ' Ť . It is straightforward to
show explicitly (see [Re, Proposition IV.5.2]) that we have a canonical isomorphism

(6.9) Fact(Rep(Ť ))εGZ ' ShvGT (GrT )/Ran

as sheaves of (pre)factorization monoidal categories.

6.5.3. Unwinding the construction, we obtain that the category of sections of Fact(Rep(H))GZ on X
(with respect to the canonical map X → Ran(X)) is the category

Rep(H)GZ (X)

introduced in Sect. 6.3.4.

Dennis
Sticky Note
abelian

Dennis
Sticky Note
idenity functor
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6.5.4. Let now σ be a twisted local system on X as defined in Sect. 6.3.5. The functoriality of the
construction in Sect. 6.4 defines a (symmetric) monoidal functor

Fact(Rep(H))GZ (Ran)→ Shv(Ran).

Assume now that X is complete. Composing with the functor of direct image

Shv(Ran)→ Vect,

we thus obtain a functor

(6.10) Evσ : Fact(Rep(H))GZ (Ran)→ Vect .

We will use the functor (6.10) for the definition of the notion of twisted Hecke eigensheaf with
respect to σ.

6.6. The (derived) stack of twisted local systems. In this subsection we will assume that
char(k) = 0, and that our sheaf-theory is that of D-modules (in particular, the field of coefficients E
equals k).

Assume that X is complete. Starting from the pair (H,GZ) appearing in the triple (H,GZ , ε) of the

metaplectic dual datum, we will construct the derived stack LocSysGZH of GZ-twisted local systems on
X. Its k-points will be the twisted local systems as defined in Sect. 6.3.5.

6.6.1. We will follow the strategy of [AG, Sect. 10.2]. For a derived affine scheme S, we set

Maps(S,LocSysGZH )

to be the space of right t-exact symmetric monoidal functors

Rep(H)GZ (X)→ QCoh(S)⊗ Shv(X).

One shows that LocSysGZH defined in this way is representable by a quasi-smooth derived algebraic
stack (see [AG, Sect. 8.1] for what this means).

6.6.2. As in [Ga5, Sect. 4.3], we have a canonically defined (symmetric) monoidal functor

(6.11) Loc : Fact(Rep(H))GZ (Ran)→ QCoh
(

LocSysGZH

)
.

The following is proved in the same way as [Ga5, Proposition 4.3.4]14:

Proposition 6.6.3. The functor (6.11) is a localization, i.e., it admits a fully faithful right adjoint.

7. Factorization gerbes on loop groups

In this section we will perform a crucial geometric construction that will explain why our definition
of geometric metaplectic datum was “the right thing to do”:

We will show that a factorization gerbe on GrG give rise to a (factorization) gerbe on (the factor-
ization version of) the loop group of G.

7.1. Digression: factorization loop and arc spaces.

14The proof is reproduced in [Ro, Sect. 1.3].
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7.1.1. For an affine test scheme S and an S-point of Ran, given by a finite set I ⊂ Maps(S,X), let D̂I

be the corresponding relative formal disc:

By definition, D̂I is the formal scheme equal to the completion of S × X along the union of the
graphs of the maps S → X corresponding to the elements of I.

Note that for a finite set J and a point

{Ij , j ∈ J} ∈ RanJdisj,

we have

(7.1) D̂I ' t
j
D̂Ij ,

where I = t
j
Ij .

7.1.2. Since S was assumed affine, D̂I is an ind-object in the category Schaff . Let DI be the affine

scheme corresponding to the formal scheme D̂I , i.e., the image of D̂I under the functor

colim : Ind(Schaff)→ Schaff .

In other words, if

D̂I ' colim
α

Zα,

where Zα = Spec(Aα) and the colimit is taken in PreStk, then DI = Spec(A), where

A = lim
α
Aα.

Let
◦
DI be the open subscheme of DI , obtained by removing the closed subscheme equal to the union

of the graphs of the maps S → X corresponding to the elements of I.

7.1.3. Let Z be a prestack. We define the prestacks L+(Z) (resp., L(Z)) over Ran as follows.

For an affine test scheme S and an S-point of Ran, given by a finite set I ⊂ Maps(S,X), its lift to

an S-point of L+(Z) (resp., L(Z)) is the datum of a map DI → Z (resp.,
◦
DI → Z).

The isomorphisms (7.1) imply that L+(Z) and L(Z) are naturally factorzation prestacks over Ran.

7.1.4. Assume for a moment that Z is an affine scheme. Note that in this case the definition of L+(Z),

the datum of a map DI → Z is equivalent to that of a map of prestacks D̂I → Z.

Assume now that Z is a smooth scheme of finite type (but not necessarily affine). Then one shows
that for every S → Ran, the fiber product

S ×
Ran

L+(Z)

is a projective limit (under smooth maps) of smooth affine schemes over S.

7.2. Factorization loop and arc groups.

7.2.1. Let us recall that the Beauville-Laszlo Theorem says that the definition of GrG can be rewritten

in terms of the pair
◦
DI ⊂ DI .

Namely, given I as above, the datum of its lift to a point of GrG is a pair (PG, α), where PG is a

G-bundle on DI , and α is the trivialization of PG| ◦
DI

. (Note that restriction along D̂I → DI induces

an equivalence between the category of G-bundles on DI and that on D̂I .)

In other words, the Beauville-Laszlo says that restriction along

(
◦
DI ⊂ DI)→ (UI ⊂ S ×X)

induces a bijection on the corresponding pairs (PG, α). In the above formula, the notation UI is as in
Sect. 2.3.1.
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7.2.2. This interpretation of GrG shows that the group-prestack L(G) acts naturally on GrG, with the
stabilizer of the unit section being L+(G). Furthermore, the natural map

(7.2) L(G)/L+(G)→ GrG,

is an isomorphism, where the quotient is understood in the sense of stacks in the étale topology.

The isomorphism (7.2) implies that for every S → Ran, the fiber product

S ×
Ran

L(G),

is an ind-scheme over S.

7.2.3. Recall that given a group-prestack H over a base Z, we can talk about a gerbe over H being
multiplicative, i.e., compatible with the group-structure.

In particular, we can consider the spaces

FactGemult
A (L(G)) and FactGemult

A (L+(G))

of multiplicative factorization gerbes on L(G) and L+(G), respectively.

7.2.4. The isomorphism (7.2) defines a map

(7.3) FactGemult
A (L(G)) ×

FactGemult
A

(L+(G))

∗ → FactGeA(GrG).

The following result is established in [Re, Theorem III.2.10]:

Proposition 7.2.5. The map (7.3) is an isomorphism.

We will sketch the proof of this proposition in Sect. 7.5. It consists of explicitly constructing the
inverse map.

7.2.6. Let us restate Proposition 7.2.5 in words. It says that, given a factorization gerbe on GrG, its
pullback under the projection

L(G)→ GrG,

carries a uniquely defined multiplicative structure that is compatible with that of factorization and the
trivialization of the further restriction of our gerbe to L+(G).

7.3. The L+(G)-equivariant structure. The main step in constructing the map

(7.4) FactGeA(GrG)→ FactGemult
A (L(G)) ×

FactGemult
A

(L+(G))

∗,

inverse to (7.3), consists of constructing a (canonical) structure of equivariance with respect to L+(G)
on a given factorization gerbe G on GrG. We will explain this construction in the present subsection.

7.3.1. For a non-negative integer n, let

G̃rnG → Rann

be the n-fold convolution diagram. I.e., for an S-point of Rann

{Ij , 1 ≤ j ≤ n} ∈ Rann, Ij ⊂ Hom(S,X),

its lift to an S-point of G̃rnG consists of a string of G-bundles

(7.5) P
1
G,P

2
G, ...,P

n
G

on S ×X, together with identifications

P
0
G|UI1

α1' P
1
G|UI1 , P

1
G|UI2

α2' P
2
G|UI2 , ...,P

n−1
G |UIn

αn' P
n
G|UIn ,

where P0
G denotes the trivial G-bundle.

We have a naturally defined map

(7.6) G̃rnG → GrG ×
Ran

Rann
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that sends the above data to

(I := t
j
Ij , PG = P

n
G, α = αn ◦ .... ◦ α1).

This map is an isomorphism over Ranndisj.

7.3.2. In Sects. 7.3.3-7.3.5 below we will explain that for a decomposition n = n1 + n2, we can view

G̃rnG as a twisted product

G̃rn1+n2
G ' G̃rn1

G ×̃G̃rn2
G ,

which identifies with the usual product G̃rn1
G × G̃rn2

G when restricted to (Ran×Ran)disj, where

Rann ' Rann1 ×Rann2 → Ran×Ran

corresponds to the projection Rann1 → Ran on the last coordinate and the projection Rann2 → Ran
on the first component.

This is a well-known construction and the reader familiar with it can safely skip it.

7.3.3. Denote I := t
j
Ij . Using the Beauville-Laszlo theorem, we can rewrite the data involved in G̃rnG

by letting our G-bundles (7.5) be defined on DI , and αj be defined on the open subscheme obtained
by removing the closed subscheme equal to the union of the graphs of the maps S → X corresponding
to the elements of Ij .

This description shows that G̃rnG carries an action of the group-prestack

L(G) ×
Ran

Rann,

where the map Rann → Ran is the projection on the first component.

7.3.4. For n = n1 +n2, consider the prestack over Ran×Ran equal to Ran×G̃rn2
G ; where G̃rn2

G → Ran
is the projection on the first component. The above prestack is equipped with an action of the group-
prestack Ran×L(G), and in particular Ran×L+(G).

Consider the prestack G̃rn1
G ×Ran over Ran×Ran, where G̃rn1

G → Ran is the projection on the last

component. Consider the Ran×L+(G)-torsor, denoted Rn1,n2 , over G̃rn1
G × Ran, that sends

(I1, ..., In1 ,P
1
G,P

2
G, ...,P

n1
G , α1, ..., αn1 , I

′)

to the set of trivializations of the G-bundle P
n1
G over DI′ .

Note the above torsor is canonically trivialized over (Ran×Ran)disj.

7.3.5. Consider the projection

G̃rn1+n2
G → G̃rn1

G × Ran

that sends

(I1, ..., In1+n2 ,P
1
G,P

2
G, ...,P

n1+n2
G , α1, ..., αn1+n2) 7→ (I1, ..., In1 ,P

1
G,P

2
G, ...,P

n1
G , α1, ..., αn1 , In2).

We observe that G̃rn1+n2
G , viewed as a prestack over G̃rn1

G ×Ran, is obtained by twisting Ran×G̃rn2
G ,

viewed as a prestack over Ran×Ran, equipped with an action of Ran×L+(G), by means of the
Ran×L+(G)-torsor Rn1,n2 .

In other words, we can think of G̃rn1+n2
G as a twisted product

(7.7) G̃rn1+n2
G ' G̃rn1

G ×̃G̃rn2
G ,

where we use the Ran×L+(G)-torsor Rn1,n2 over G̃rn1
G ×Ran and the Ran×L+(G)-action on Ran×G̃rn2

G

to form the twisted product.
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Note that we have a commutative diagram
(7.8)

G̃rn1+n2
G ×

Rann1+n2

(Rann1+n2)disj
(7.7)−−−−−→
∼

(G̃rn1
G ×̃G̃rn2

G ) ×
Rann1+n2

(Rann1+n2)disj

(7.6)

y∼ ∼
ytrivialization ofRn1,n2 on (Ran×Ran)disj

GrG ×
Ran

(Rann1+n2)disj (G̃rn1
G × G̃rn2

G ) ×
Rann1+n2

(Rann1+n2)disj

factorization

y (7.6)

y∼
(GrG)×n1+n2 ×

Rann1+n2

(Rann1+n2)disj
=−−−−−→ ((GrG)×n1 × (GrG)×n2) ×

Rann1+n2

(Rann1+n2)disj.

7.3.6. The key observation (proved by reduction to the Cartan subgroup) is that a factorization gerbe
G on GrG admits a unique structure of equivariance with respect to L+(G) that has the following
property:

In the setting of Sects. 7.3.4-7.3.5 take n1 = n2 = 1, and consider the twisted product G�̃G, which is

a well-defined gerbe on G̃r2
G due to the identification of (7.7) and the chosen structure of equivariance

with respect to L+(G) on G.

We require that G�̃G should admit an identification with the pullback of G under the map

G̃r2
G

(7.6)−→ GrG ×
Ran

(Ran×Ran)→ GrG,

which extends the already existing identification over

G̃r2
G ×

Ran×Ran
(Ran×Ran)disj,

given by the factorization structure on G via the diagram (7.8) for n1 = n2 = 1:

G̃r2
G ×

Ran×Ran
(Ran×Ran)disj

(7.7)−−−−−→
∼

(GrG×̃GrG) ×
Ran×Ran

(Ran×Ran)disj

(7.6)

y∼ ∼
ytrivialization ofR1,1

GrG ×
Ran

(Ran×Ran)disj (GrG ×GrG) ×
Ran×Ran

(Ran×Ran)disj

factorization

y =

y
(GrG ×GrG) ×

Ran×Ran
(Ran×Ran)disj

=−−−−−→ (GrG ×GrG) ×
Ran×Ran

(Ran×Ran)disj.

7.4. Another view on the bilinear form. The L+(G)-equivariant structure on G gives rise to the
following interpretation of the bilinear form attached to G, when G is a torus T .

7.4.1. Namely, choose an arbitrary point x ∈ X, and consider the restrictions

GrG,x := {x} ×
Ran

GrG and L+(G)x := {x} ×
Ran

L+(G) ' G(Ôx).

We obtain that the A-gerbe restriction G|GrG,x is equivariant with respect to G(Ôx).

7.4.2. For G = T , since T is commutative, the action of T (Ôx) on GrT,x is trivial. Hence, for every

λ ∈ Λ, the action of T (Ôx) on the corresponding point of GrT,x defines a multiplicative A-torsor on

T (Ôx).

Since the elements of A have orders prime to char(k), the above multiplicative A-torsor is pulled
back from T , and by Kummer theory, the latter is given by a homomorphism

Λ→ A(−1).
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Thus, we have constructed a map

(7.9) Λ→ Hom(Λ, A(−1)).

7.4.3. By unwinding the constructions, one shows that (7.9) equals one coming from the bilinear form
attached to G and our chosen element λ ∈ Λ.

7.5. Construction of the inverse map in Proposition 7.2.5.

7.5.1. For a non-negative integer n, consider the prestack

(7.10) Zn := L+(G)\(G̃rn ×
Rann

Ran),

where Ran→ Rann is the diagonal map.

It is easy to see that as n varies, the prestacks (7.10) form a simplicial object in PreStk/Ran; denote
it by Z•. Consider its geometric realization |Z•|, viewed as a prestack over Ran, equipped with a
factorization structure.

By the construction in Sect. 7.3, a factorization A-gerbe on GrG gives rise to a 2-gerbe on |Z•| with
respect to A, i.e., a map

|Z•| → B3
et(A),

equipped with a trivialization of its restriction to

Bet(L
+(G)) = Z0 → |Z•|.

Moreover, the above 2-gerbe is naturally equipped with the factorization structure.

7.5.2. Note now that we have the (simplicial) identification between (7.10) and the Čech nerve of the
map

Bet(L
+(G))→ Bet(L(G)).

Thus, we obtain a 2-gerbe on Bet(L(G)), equipped with a trivialization of its restriction to
Bet(L

+(G)), and equipped with a factorization structure.

The latter datum is equivalent to that of a multiplicative gerbe on L(G), equipped with a (multi-
plicative) trivialization of its restriction to L+(G).

8. Metaplectic geometric Satake

In section we take G to be reductive. We will define the metaplectic geometric Satake functor and
formulate the “metaplectic vanishing conjecture” about the global Hecke action.

We continue to assume that char(k) 6= 2.

8.1. The metaplectic spherical Hecke category. In this subsection we introduce the metaplectic
spherical Hecke category, which is the recipient of the metaplectic geometric Satake functor.

8.1.1. Let GG be a factorization E×,tors-gerbe on GrG. We define the sheaf of categories (SphGG)/Ran

as follows. For an affine test scheme S and an S-point of Ran, we define the corresponding category by

(8.1) SphGG(S) := Shv
GG⊗det

1
2
G
|S

(S ×
Ran

GrG)L
+(G)|S .

In the above formula, L+(G)|S denotes the value on S of the factorization group-scheme L+(G).
The superscript L+(G)|S indicates the equivariant category with respect to that group-scheme 15. Note

that the latter makes sense due to the equivariance structure on the gerbe GG ⊗ det
1
2
G |S with respect

to L+(G)|S that was constructed in Sect. 7.3.

By Proposition 7.2.5, we obtain that the operation of convolution product defines on (SphGG)/Ran

a structure of sheaf of monoidal categories over Ran.

By construction, (SphGG)/Ran carries a natural prefactorization structure, see Sect. 2.2.3.

15For a prestack Y, a group-object H in PreStk/Y and Z ∈ PreStk/Y, equipped with an action of H, the corre-

sponding equivariant category of sheaves is defined by Shv(Z)H := Shv(H\Z).
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Remark 8.1.2. One can show that (SphGG)/Ran, regarded as a sheaf of categories on Ran is in fact
quasi-coherent (see Sect. 1.6.5 for what this means), and that the above prefactorization structure is
actually a factorization structure.

8.1.3. Let P be a parabolic subgroup of G with Levi quotient M . Let us denote by GM the factorization
gerbe on GrM corresponding to GG.

The functor (5.5) naturally upgrades to a functor between sheaves of categories

(8.2) JGM : (SphGG)/Ran → (SphGM )/Ran.

By construction, (8.2) respects the factorization structure, i.e., it is a functor between factorization
sheaves of categories.

Remark 8.1.4. We note that the functor (8.2) is not at all compatible with the monoidal structures!

8.2. The metaplectic geometric Satake functor. Metaplectic geometric Satake is a canonically
defined functor between (pre)factorization sheaves of monoidal DG categories

(8.3) Sat : Fact(Rep(H))εGZ → (SphGG)/Ran.

We will now explain how to obtain this functor from [Re, Theorem IV.8.3]16.

8.2.1. By Sect. 2.1.2, the datum of a functor (8.3) amounts to a compatible collection of functors

(8.4) Sat(I) : Fact(Rep(H))εGZ (XI)→ (SphGG)/Ran(XI),

where I runs over the category of finite non-empty sets and surjective morphisms.

Both sides in (8.4) are equipped with t-structures; moreover one shows that Fact(Rep(H))εGZ (XI)

identifies with the derived category of its t-structure17, i.e., the canonical map of [Lu2, Theorem 1.3.3.2]

D

((
Fact(Rep(H))εGZ (XI)

)♥)
→ Fact(Rep(H))εGZ (XI)

is an equivalence.

Now, [Re, Theorem IV.8.3] constructs an equivalence of abelian categories

(8.5)
(

Fact(Rep(H))εGZ (XI)
)♥
→
(

(SphGG)/Ran(XI)
)♥

.

Applying [Lu2, Theorem 1.3.3.2] again, we obtain a canonically defined functor

D

((
Fact(Rep(H))εGZ (XI)

)♥)
→ (SphGG)/Ran(XI),

thus giving rise to the desired functor (8.4).

The functoriality with respect to the finite sets I, as well as compatibility with factorization is built
into the construction.

8.3. Example: metaplectic geometric Satake for tori. In this subsection we let G = T be a
torus.

16For a more detailed discussion on how to carry out this extension see [Ras2, Sect. 6], where the classical (i.e.,
non-metaplectic situation) is considered, but for this step, there is no difference between the two cases.

17Here, the derived category is understood as a DG category, see [Lu2, Sect. 1.3.2].
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8.3.1. Let Λ] ⊂ Λ denote the kernel of b.

Direct image along the inclusion

(8.6) GrT ] → GrT

is a fully faithful functor

(8.7) Shv
GT

] (GrT ])/Ran → ShvGT (GrT )/Ran,

where we denote by GT
]

the restriction of GT along (8.6).

In this case, it follows from Sect. 7.4 that the forgetful functor

(SphGT )/Ran → ShvGT (GrT )/Ran

factors through the essential image of (8.7), thereby giving rise to a functor

(8.8) (SphGT )/Ran → Shv
GT

] (GrT ])/Ran,

compatible with the factorization structures.

8.3.2. Furthermore, since the action of L+(T ) on GrT is trivial, the functor (8.8) admits a canonically
defined right inverse

(8.9) Shv
GT

] (GrT ])/Ran → (SphGT )/Ran,

which is monoidal and compatible with the factorization structures.

8.3.3. By Proposition 4.3.7(b), the factorization gerbe GT
]

carries a canonical multiplicative structure.
Recall the equivalence

(8.10) Fact(Rep(H))εGZ ' Shv
GT

] (GrT ])/Ran

of (6.9).

The geometric Satake functor for T is the composite of (8.10) and (8.9).

8.4. Compatibility with Jacquet functors.

8.4.1. A key feature of the assignment

G
G  G

π1,alg⊗Gm

of Sect. 6.2.1 is compatibility with parabolics in the following sense.

Note that for a parabolic P of G with Levi quotient M , the corresponding reductive group M ]

identifies with the Levi subgroup of G], attached to the same subset of the Dynkin diagram.

We have a canonical surjection

(8.11) π1,alg(M ])→ π1,alg(G]),

and the corresponding map of factorization Grassmannians

(8.12) Grπ1,alg(M])⊗Gm → Grπ1,alg(G])⊗Gm .

Let GM be the factorization gerbe on GrM that corresponds to GG under the map of Sect. 5.1.4.

Then the multiplicative gerbe Gπ1,alg(M])⊗Gm on Grπ1,alg(M])⊗Gm attached to GM by Sect. 6.2.1 identifies

with the pullback with respect to (8.12) of the multiplicative gerbe Gπ1,alg(G])⊗Gm on Grπ1,alg(G])⊗Gm
attached to GG.
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8.4.2. Let MH be the standard Levi quotient in H corresponding to standard Levi M ] of G]. Corre-
sponding to (8.11) we have the inclusion

ZH → ZMH .

By the above, this inclusion is compatible with the corresponding datum of

ε : ±1→ ZH(E)tors and ε : ±1→ ZMH (E)tors,

and the corresponding ZH(E)tors- and ZMH (E)tors-gerbes on X (we denote both by GZ).

Therefore, restriction along MH → H defines a monoidal functor

ResGM : Fact(Rep(H))εGZ → Fact(Rep(MH))εGZ ,

compatible with the factorization structures.

8.4.3. The key feature of the monoidal functor (8.3) is that it makes the following diagram commute:

Fact(Rep(H))εGZ
Sat−−−−−→ (SphGG)/Ran

ResGM

y yJGM
Fact(Rep(MH))εGZ

Sat−−−−−→ (SphGM )/Ran,

where JGM is the Jacquet functor of (8.2).

8.5. Global Hecke action. In this subsection we will assume that X is complete. We will define the
notion of Hecke eigensheaf on BunG with respect to a given twisted local system.

8.5.1. Consider category of global sections of (SphGG)/Ran over Ran (see Sect. 1.6.8), denote it by

SphGG(Ran),

and note that it identifies with

Shv
GG⊗det

1
2
G

(GrG)L
+(G).

As in [Ga5, Sect. 4.4], the monoidal structure on (SphGG)/Ran, and the operation of union of finite
sets, define a (non-unital) monoidal structure on SphGG(Ran).

Moreover, the Hecke action defines a monoidal action of SphGG(Ran) on Shv
GG⊗det

1
2
G

(BunG), where

by a slight abuse of notation we denote by the same symbols GG and det
1
2
G the corresponding E×,tors-

gerbes on BunG, see Sect. 2.3.4.

8.5.2. Passing to global sections over Ran in (8.3), we obtain a monoidal functor

Fact(Rep(H))εGZ (Ran)→ SphGG(Ran),

where we remind that Fact(Rep(H))εGZ (Ran) denotes the monoidal category of global sections of
Fact(Rep(H))εGZ .

Thus, we obtain a monoidal action of Fact(Rep(H))εGZ (Ran) on Shv
GG⊗det

1
2
G

(BunG).
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8.5.3. Hecke eigensheaves. Let σ be a twisted local system on X, as defined in Sect. 6.3.5. Recall (see
Sect. 6.5.4) that σ gives rise to a (symmetric) monoidal functor

Evσ : Fact(Rep(H))GZ (Ran)→ Vect,

and hence, via the monoidal equivalence (6.8) to a monoidal functor

Fact(Rep(H))εGZ (Ran)→ Vect,

which we will denote by the same symbol Evσ.

We define the category of twisted Hecke eigensheaves with respect to σ to be the DG category of
functors of Fact(Rep(H))εGZ (Ran)-module categories

Vect→ Shv
GG⊗det

1
2
G

(BunG),

where Fact(Rep(H))εGZ (Ran) acts on Vect via Evσ and on Shv
GG⊗det

1
2
G

(BunG) as in Sect. 8.5.2.

8.6. The metaplectic vanishing conjecture. We continue to assume that X is complete. In this
subsection we will assume that k has characteristic 0, and that our sheaf theory is that of D-modules.

Recall (see Sect. 6.6) that in this case we have the (derived) stack LocSysGZH .

We will state a conjecture to the effect that the (non-unital) monoidal category

QCoh(LocSysGZH )

acts on the category

Shv
GG⊗det

1
2
G

(BunG).

8.6.1. Recall (see Proposition 6.6.3) that we have a (symmetric) monoidal functor

Loc : Fact(Rep(H))GZ (Ran)→ QCoh
(

LocSysGZH

)
of (6.11) with a fully faithful right adjoint. Hence, by (6.8), we obtain a monoidal functor, denoted by
the same symbol

Loc : Fact(Rep(H))εGZ (Ran)→ QCoh
(

LocSysGZH

)
,

also with a fully faithful right adjoint.

The following is an analog of [Ga5, Theorem 4.5.2] in the metaplectic case:

Conjecture 8.6.2. If an object of Fact(Rep(H))εGZ (Ran) lies in the kernel of the functor Loc, then
this object acts by zero on Shv

GG⊗det
1
2
G

(BunG).

This conjecture can be restated as follows:

Conjecture 8.6.3. The action of Fact(Rep(H))εGZ (Ran) on Shv
GG⊗det

1
2
G

(BunG) (uniquely) factors

through an action of QCoh
(

LocSysGZH

)
.

Remark 8.6.4. Using Fourier-Mukai transform, one can show that Conjecture 8.6.2 holds when G = T
is a torus.
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8.6.5. Let us assume Conjecture 8.6.3, so that Shv
GG⊗det

1
2
G

(BunG) becomes a module category over

QCoh
(

LocSysGZH

)
.

As in the classical (i.e., non-metaplectic case), one expects that Shv
GG⊗det

1
2
G

(BunG) is “almost” free

of rank one, and the “almost” has to do with temperedness.

More precisely, one expects that the metaplectic geometric Satake functor (8.3) extends to a derived
metaplectic geometric Satake equivalence, generalizing [Ga5, Sects. 4.6 and 4.7], which one can use in
order to define the tempered part of Shv

GG⊗det
1
2
G

(BunG), as in [AG, Sect. 12.8].

Now, one expects that the tempered subcategory of Shv
GG⊗det

1
2
G

(BunG) is free of rank one as a

module over QCoh
(

LocSysGZH

)
.

However, it is not clear whether this module admits a distinguished generator.

8.6.6. Furthermore, one expects that the entire Shv
GG⊗det

1
2
G

(BunG) is non-canonically equivalent to

the category IndCohnilp

(
LocSysGZH

)
, where we refer the reader to [AG, Sect. 11.1] for the IndCohnilp

notation.

8.6.7. When G = T is a torus, we have

IndCohnilp

(
LocSysGZH

)
= QCoh

(
LocSysGZH

)
.

In particular, the equivalence of Sect. 8.6.6 says that for each σ ∈ LocSysGZH , the corresponding
category of Hecke eigensheaves is non-canonically equivalent to Vect. This equivalence can be made
explicit as follows:

A point σ ∈ LocSysGZH gives rise to a trivialization of the pullback of the gerbe GT from BunT to
BunT ] . Hence, it gives rise to a central extension

1→ Gm → Heisσ → Bunker(T ]→T ) → 1,

which is easily seen to be of Heinsenberg type, i.e., corresponding to a non-degenerate symplectic form
on ker(T ] → T ) with values in Gm.

The category of Hecke eigensheaves with respect to σ is canonically equivalent to

(ShvGT (BunT ))Bun
T] ,

where the BunT ] -equivariance makes sense due to the above trivialization of G|Bun
T]

. This category is
canonically equivalent to the category of representations of Heisσ, on which Gm acts by the standard
character.

Since Heisσ is of Heinsenberg type, the above category is non-canonically equivalent to Vect.

8.6.8. At the moment, we do not have a conjecture as to how to explicitly describe the category of
Hecke eigensheaves in the tempered subcategory of Shv

GG⊗det
1
2
G

(BunG) with respect to a given σ for a

general reductive G.
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