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Statistical Methods for Evaluating the Relationships
Among Social, Spatial and Genetic Networks

ABSTRACT

Empirical findings suggest close relationships among social, spatial and genetic net-
works. Information learned from one network would provide beneficial insight on the
others. These relationships offer the flexibility to obtain understanding of networks
that are hard to observe, such as ones for disease transmission.

In Chapter 1, we start from theoretical models and empirical findings which suggest
that the intensity of communication among groups of people declines with their de-
gree of geographical separation. Based on the evidence that rather than decaying uni-
formly with distance, the intensity of communication might decline at different rates
for shorter and longer distances, we introduce a statistical model based on Bayesian
LASSO for estimating the rate of communication decline with geographic distance
that allows for discontinuities in this rate. We apply our method to an anonymized
mobile phone communication dataset and discover some geographic patterns.

Based on the findings in Chapter 1, it becomes clear that methods which can pro-
vide statistical justification for association between communities based on different

networks are important to infer connections in one network based on another network.
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In Chapter 2, we justify the use of a permutation test focusing on testing the null
that there is no association between pairs of nodes in the same community in one as-
signment and they are in the same community according to the other assignment. In
simulation, we evaluate its performances and find that the permutation test preserves
the type I error and has adequate power. The use of the test is then demonstrated on
work and social relations data of a tailor shop in Zambia.

In Chapter 3, with the tools introduced in Chapter 2, we take one step closer to
evaluate association between clusters based on geographic distances and on viral ge-
netic distances. By applying the hypothesis testing framework to analyze this associ-
ation among individuals infected by HIV viral strains, we find significant association
between geographic pattern and viral genetic clusters, which is not greatly affected by
different divergence threshold values used in the construction for viral genetic clusters.

Our findings provide an alternative view and are consistent with previous research.
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Bayesian method for inferring the impact
of geographical distance on intensity of

communication

1.1 PROBLEMS STATEMENT AND MOTIVATION

Observations of one way of communication are generally informative about the use

of others (Eagle et al., 2008; Wang et al., 2011; Hawelka et al., 2014). For example,
people who speak one the phone frequently are also likely to interact in person (Eagle
et al., 2009). For researchers studying infectious diseases, such as HIV or Malaria,
the structure of social interactions in a population can provide valuable insights into
how viruses are transmitted among members of that population (Gregson et al., 2002;
Jones & Handcock, 2003; Helleringer & Kohler, 2007). Because traditional surveys
are resource intensive and scale poorly, mobile phone data, or more specifically call
detail records (CDRs), have emerged as an alternative for inferring the structure of
underlying interpersonal interactions (Onnela et al., 2007; Buckee et al., 2013; Tatem

et al., 2014).



Although user interactions on the mobile phone network are not limited by geogra-
phy, users themselves are subject to spatial constraints that restrict the locations they
may frequent and therefore influence their overall interpersonal and mobile phone
communication patterns. Individual-level analysis in Sailer & McCulloh (2012) demon-
strated a relationship between spatial configuration of offices and social connections
among employees. Overlap of geographical space and information flow network is dis-
cussed in Ter Wal & Boschma (2009) from a perspective of the spread of innovation
and knowledge. The effect of geographic restrictions may differ for locations in differ-
ent regions. For example, Lambiotte et al. (2008) and Expert et al. (2011) found that
in Belgium, cell phone users communicate mostly within language-specific network
communities (Porter et al., 2009) of French and Flemish speakers. In another exam-
ple, Wang et al. (2013) showed that contact patterns between individuals with respect
to disease transmission are location-specific. Potential overlap of the geographical
and social networks on the topological level has also been explored. The connection
between local network topology and tie strength is found to be consistent with the
so-called weak-ties hypothesis (Granovetter, 1973) in Onnela et al. (2007). However,
geographical and community centrality were not found to be related in Onnela et al.
(2011).

In this study, we investigate the impact of spatial distance on cell phone commu-
nication using a statistical approach. Our choice of model is guided by the observa-

tion that the intensity of communication among groups of people tends to decay with
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geographical distance and, further, the rate of decay in intensity appears to differ be-
tween short and long distances. To incorporate this feature, we allow for the existence
of a break-point in the relationship between communication intensity and spatial dis-
tance. As the structure of electronic communication, human mobility and travel, and
in-person social interactions are all related, we make use of existing methods and mod-
els in these areas. Some of the most widely studied models in these fields are the grav-
ity model (Krings et al., 2009; Lambiotte et al., 2008; Balcan et al., 2009a; Noulas

et al., 2012; Csdji et al., 2013), the radiation model (Simini et al., 2012), and the
rank-based friendship model (Liben-Nowell et al., 2005). Both the radiation model
and the rank-based friendship model make explicit mechanistic assumptions regarding
the effect of distance and population sizes, and these models focus on prediction. The
gravity model is simpler and ignores the geographical distribution of the population,
as it uses only the source and destination population sizes and the spatial distance
between them.

We extend the gravity model by relaxing the assumption of homogeneity in dis-
tance effects; its unsatisfactory performance in prediction compared with the radia-
tion model shown in Simini et al. (2012) is mainly due to the assumption of an identi-
cal decay rate for all distances. We explicitly incorporate the potential for heterogene-
ity of distance effects into our model, and we also provide an estimate and an interval
for the break-point between short and long distances.

This paper is organized as follows. Section 2 and 3 introduce notation and the mod-
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els, sampling schemes, diagnosis of convergence and computational complexity. Sec-
tion 4 describes the design of the simulation study and the dataset we analyze. Sec-
tion 5 provides the results of the simulation study, and Section 6 presents the data

analyses. We conclude with a discussion in Section 7.

1.2 NOTATION AND THEORY

Our starting point to investigating the relationship between spatial distance and com-
munication intensity is the so-called gravity model. Using the notation from Krings

et al. (2009), the gravity model can be written as

Gij = K—52, (1.1)

where G;; specifies the communication intensity from source location i to destination
location j, K is a constant, m; is the population of the source location ¢, n; is the
population of the destination location j, r;; is the distance between source i and desti-
nation j.

In Simini et al. (2012), the model is extended to the following:

(1.2)

where f(-) is a function that specifies the decay of G;; with distance 7,5, and it is usu-



ally specified as TZJ Here, we adopt the following form of the model:

mf‘n]’g
Gij =K o (1.3)
ij
Taking the logarithm of this yields
log(Gij) = log(K) + alog(m;) + Slog(nj) — v log(rsj). (1.4)
1.3 A BAYESIAN APPROACH
1.3.1 MODEL
We extend the gravity model shown in Equation 1.4 in the following way:
Yij = p+ Bilog(ni) + Balog(ny) + B3, log(di;) + Bai(log(dij) — 0i)+ + €ijy (ws)
1.5

Lj=1..57#1

where Y;; = ¢(G;;) and g(-) is a transformation function, in the gravity model, g(-) =
log(-); w is the intercept; #; represents the location of the break point measured on
the logarithmic scale for communication initiated from location 7; 83 ; represents the
distance effect before break point 6;; and £, ; specifies the difference of distance effect
before and after the break point. When 34; = 0, the difference is 0, i.e. the rate of

decay does not change over the observed range. We denote the size of the population



at location i as n; and refer the model with §,; as the full model and the model that
sets B4, to 0 as the reduced model. By definition, (d;; — 6;)+ = (dij — 6;)I(dij > 6;),
which takes value 0 before the break point 0; and d;; — 0; after the break point. We
assume that ¢;; N (0,02); S denotes the number of locations, and i and j are in-
dexes. This formulation provides a straightforward way to compare the two nested
models with regard to the effect of distance effect; the reduced model has the con-
straint 84; = 0. In this formulation, model selection becomes a variable selection
problem that can be achieved using a variety of methods, such as LASSO. We are also
interested in estimating #; and quantifying its uncertainty. To achieve these goals, we
employ a Bayesian approach with a Metropolis sampling block for 8 = (01,6, ..., HS)T
and a Bayesian LASSO block dealing with B4 = (841, 842, -, Bas) "

We note that the above model assumes that the full and nested models share the
same intercept and population size effects — an assumption that might not hold
in practice. To address this concern, we consider two distinct settings, or cases. In
what follows, case I refers to the setting where the assumption holds, and case II,
to the setting it does not. For the latter, we extend the model by making use of the
Reversible Jump MCMC (RJMCMC) option in the blasso function in R package
monomvn. This approach allows for statistical inference using Bayesian LASSO. Briefly,
RJMCMC sampling procedure permits a change in the model matrix based on the
variable selection results from the previous iteration; the intercept and population

size effects are modeled separately for the two models. We provide details in the next
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section.

1.3.2 SAMPLING ALGORITHM

INITIAL VALUES

To speed up convergence and prevent the algorithm from converging to a local mode,
we calculate a set of crude initial values for all the parameters as follows:

1. Search through a grid over the distance range of location ¢ for 8; and choose the
grid point that maximizes the likelihood function of the crude full model 6(®).

2. For case I, the preliminary values for the parameters are obtained by linear re-

gression treating the break points as known. Substituting in the value of 8(9) from

T T T
Step 1 leads to crude parameter estimates ,u(o), B = (ﬂio), 650)7@(;0) , 510) )

and 0(20). For case 11, we fit two models for each source location: Model 1 has a break
point at 8 estimated in Step 1 and Model 2 has no break point. We then assign

77@(0) = 1 if Model 1 has a lower BIC than Model 2, and assign n(o) = 0 otherwise.

i
We use BIC to account for the fact that Model 1 has more parameters than Model 2.

(0) (0) (0))T

Based on n(®) = (m My 5.-smg )", we create a new corresponding model matrix,

removing the column of By ; if 17-(0)

, - = 0, and obtain the crude parameter estimates

1,30 and o2 ) from linear regression. For cases where 771(0)

© = 0, we assign 4; = 0.



METROPOLIS BLOCK AND BAYESIAN LASSO

CASE I: ASSUMING SAME INTERCEPT AND POPULATION SIZE EFFECTS ACROSS ALL

SOURCE LOCATIONS With Bayesian LASSO, the model is specified as

Yij = p+ Bilog(n;) + Balog(ng) + Bs,ilog(dij) + Bai(log(dij) — 6i)+ + €,
(1.6)

0; € (mjinlog(dij),mjaxlog(dij)),i,j =1,...,58,j #1,
which can be written as Y = pl + X3 + € using matrix notation. p is not included
in the Bayesian LASSO penalty term (Park & Casella, 2008); 1 is the vector of 1s; X
is the model matrix consisting of logarithmic population sizes and distances, and 3 is
the vector of Ss.
In general, LASSO (Tibshirani, 1996) solves an unconstrained optimization prob-
lem subject to a given bound on the L; norm of the parameter vector that is equiva-

lent to

min (Y — XB)"(Y — XB) + 23 13| (L.7)

j=1

where Y =Y — 11 is the centered outcome vector; p is the number of parameters
after excluding the intercept. In the Bayesian setting, solution to Equation 1.7 pro-
vides the posterior mode estimates when (; has i.i.d. double exponential priors. As

explained in Park & Casella (2008), conditional double exponential priors are used in



the formulation to avoid multiple modes. They can be expressed hierarchically as

Y|p, X, B8,0° ~ N(ul + XB3,0°I),

2 2 2 2 . 2 2
Bli, ..., 7,,0° ~ N(0,0°D;.), where D, = diag(7y,...,7,), (1.8)
2 _2 2 2 2p>‘2—)\2’r-2/2 2 2 2 2
0% Ty ey Ty ~ (07)do H?e 3T, 0% Ty e T, > 0.
j=1

The entire sampling procedure is available using function blasso in R package
monomvn with the option for RIMCMC specified as False. To incorporate a Metropo-
lis block for break point estimation, we alternate between the Metropolis and Bayesian
LASSO blocks. Validity of this approach is established by regarding it as two compo-
nents of a Gibbs sampling algorithm. In summary, conditional on break points, our
problem is one of a variable selection; conditional on other parameters, break point
sampling is a straightforward application of a Metropolis algorithm.

Thus after obtaining the initial values u(®), 8(9), 9(®) and 0(20), we proceed as fol-

lows:

(t+1)

1. At iteration ¢ for each source location ¢, update break point 6, using Metropo-

()

lis algorithm with a normal proposal N (6, ,ag). The range of 6; is determined em-

pirically from data, i.e., the posterior likelihood of 6; has an indicator function term

in the product that is 0 if the proposed 92(t+1) is out of the observed empirical log-
distance range, thereby assuring that any out-of-range proposal will be rejected.

2. For each location i, if there are fewer than 5% of data points on either side of

10



0§t+1) for the subset of data, i.e., Y;, we consider it to be on the boundary, specify
L(fj D _ 0, and remove it from the model in the next estimation step. We denote the
number of locations belonging to the boundary sets as b(+1).

3. Create the corresponding s(s — 1) x (2 4 2s — b(+1)) covariate matrix (intercept
column is not included) based on 0(t+1)  Together with the data, 3 (after ﬁg;rl) =
0 are removed), 0(®? and A®), input the covariate matrix into the blasso function for
h iterations (2 or more). The output intercept is **1). From the output we also get
B+ (8D = 0 are put back), ot+12 and A+

X3

4. Repeat steps 1-3 until convergence (see below).

CASE II: ALLOWING DIFFERENT INTERCEPTS AND POPULATION SIZE EFFECTS FOR
MODELS WITH AND WITHOUT BREAK-POINTS When there is evidence of the pres-
ence of break-points, we estimate these parameters separately in two different models.
In this case, estimates of intercepts and population size effects depend on the set of
source locations whose data contribute to the estimation in any given iteration. We
denote the mean model as n(® for iteration ¢ to maintain consistency with the nota-
tion we introduced earlier.

Estimation can be done using the Reversible Jump MCMC option in the blasso
function, which allows sampling from different models. In our case, different models
imply different specification of zeros in ,Bflt) , and are characterized by n®, where

! =1(8{) >0).
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RJMCMC is a general version of the Metropolis-Hastings algorithm introduced by
Green (1995), which allows transitions between different states or models of different
dimensions. In RJIMCMC, trans-dimensional moves are possible through dimension
matching by augmenting the parameter vector with a random component. The differ-
ence compared to the usual Metropolis-Hastings procedure is the addition of a Jaco-
bian term in the acceptance probability. A thorough review of RIMCMC with more
recent comments can be found in Green & Hastie (2009).

Use of RIMCMC yields the following sampling scheme:

1. The first two steps are the same as in case I: At iteration ¢, for each source loca-

(t+1)

tion ¢, update break point ¢, using Metropolis algorithm with a normal proposal
N (91@, 03). For each location i, if there are fewer than 5% of data points on either
side of 0§t+1) for Y;, we specify Bgzr Y — 0 and remove it from the model in the next
estimation step.

2. Conditional on 811 create the s(s — 1) x (5 + 25 — b(!F1)) covariate matrix
(intercept column is not included). Data from each source location contribute to their

)

own group’s estimation of intercept and population size effects, which depends on n;
All data and parameter values from the previous iteration ¢ (including ¢®? and A(®))
are used in the blasso function with RIMCMC for 3 iterations. 3 is the minimum
number of iterations to avoid the situation in which zeros in the previous iteration are

carried forward.

3. From Step 2 we get the updated g¢+1) g(t+D2 (041 and \E+HD) | Now update
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the nt+1). ngtﬂ) =1 if Bg;rl) > 0; otherwise 0.

4. Repeat steps 1-3 until convergence.

1.3.3 DIAGNOSTICS OF CONVERGENCE

The usual diagnostic framework for Bayesian LASSO (Gelman & Rubin, 1992; Brooks
& Gelman, 1998; Gelman et al., 2014) includes trace plots for different chains and cal-
culation of the Potential Scale Reduction Factor (PSRF). Diagnostics for RIMCMC
can be developed by extending that framework to include within model and between
model variations of the parameters.

We make use of the work of Castelloe & Zimmerman (2002) who define two PSRFs
in the assessment. For a chosen parameter, PSRF; is the ratio between total varia-
tions V and variation within chains W.; PSRF5 is the ratio between variations within
models W, and variations within models and chains W,,,W.. ‘7, We, W, and W, W,

are defined as follows:
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R C M Rem
7o CT_lzz;

c=1 r=1

C M Rem
Wel®) = a1y 2= 2 2 em
ccl li ’;%Crln (19)
%wOTMzzz
¢ M Rcm
c—lm 1r= 1

where 07,00, ,0.,, and 0., are the r'" appearance of § in model m chain ¢, mean
0 across all models and chains, mean 6 within chain ¢ across all models in that chain,
mean 6 within model m across all chains, mean 6 within chain ¢ and model m respec-
tively. Ry, is number of € in chain ¢ model m. C' and M are the number of chains
and distinct models, respectively.

We follow the strategy given in Castelloe & Zimmerman (2002) to assess conver-
gence and, for simplicity, illustrate this approach by considering a scalar. We choose
o2, the variance of the error terms, for this illustration, as its interpretation remains
the same across the models. Each chain is divided into batches of equal length. A se-
quence of PSRF; and PSRF5 is calculated for each batch. A desirable result is that
the two quantities move toward 1 as the iteration proceeds. In the simulation study

below, we illustrate the use of diagnostic graphs for evaluating convergence; further

details on this subject can be found in Brooks & Giudici (1998).
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1.3.4 INTERPRETATION

Under the assumption that intercept and population size effects are identical across
source locations, we obtain a sample of 4 ; as well as its 95% credible interval rather
than an estimate of the probability that each source locations has a break point. In-
tervals that do not cover 0 imply the presence of a break point by providing evidence
against the null hypothesis that the difference of the two slopes is zero. The interpre-
tation of other parameters is straightforward. Approaches that allow variability in in-
tercepts and population size effects yield a sample of models and their corresponding
parameter estimates. For prediction, we make use of the collection of models; the es-
timated mean for predicted outcomes is a weighted average of the predicted outcomes

of all models.

1.3.5 COMPUTATIONAL COMPLEXITY

Because of the computational burden of these methods, we consider an analysis of

a subset of data. Simulation studies (Figure A.1 in Appendix A) show that compu-
tation time for the Bayesian LASSO function blasso increases sharply as the num-
ber of locations increases. We note that the size of the covariate matrix increases at
O(s®) where s specifies the number of locations. Efron et al. (2004) showed that for
the least angle regression formulation of the problem, the computational complexity is

O(m?+m?n), where m is the number of features and n is the number of the outcomes.
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In our setting, the situation is even more challenging in that the number of outcomes

grows quadratically with s, which renders the computational complexity to be O(s?).

1.4 APPLICATION: ANALYSIS OF CALL DETAIL RECORDS

We apply our method to call detail records (CDRs) for a 3-month period to study the
impact of geographical distance on communication intensity. The dataset consists of
daily number of calls between distinct pairs of users. Each user is represented by a
unique identifier created by the operator that made the dataset available for research.
The actual phone numbers were available or recoverable from the dataset. Three co-
variates were made available for each person: billing zip code, sex, and age, though we
only use zip code in our analysis here. We aggregated the dataset in two ways. First,
we aggregated the daily call counts over the 3-month period, resulting in a single call
count for each distinct pair of users. We distinguish between the caller and the re-
ceiver, so the count for each pair is directed. Second, we aggregated the data from
the level of individuals to the level of counties. The resulting dataset describes com-
munication intensity for calls among the counties. There were records for a total of
2,511,035 users; 359,759 of them resided in the largest county and 136 in the smallest
one. The number of calls from one county to another ranged from 0 to 266,199, with
21,016,548 calls in total. There were 2,646 distinct zip codes nested within 427 coun-

ties. The geographical location of each county was calculated by first identifying the
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latitude and longitude of each zip code and then taking the mean of the these coordi-
nates over all zip codes that were nested within a given county. For each county we
thus obtained the number of users residing in that county, and for each pair of coun-
ties we obtained the spatial distance between them and the number of calls made and
received by users of those counties over the 3-month period. To reduce computational
burden, we selected a subset of data that arose from 65 counties with the greatest
number of users. The number of users in this subgroup of counties ranged from 7,879
to 359,759. The corresponding number of calls among pairs of counties ranged from 2

to 266,226.

1.5 SIMULATION

We conducted the following simulations to access the performance of our models com-
paring with naive approaches as well as to check the effects of different tuning param-
eter O'g. The values of the parameters in the data generation process are selected to
be the estimates from the preliminary data analysis using 03 = 0.03. Actual geograph-
ical distances between counties are used. We assess the performance of the gravity
model, the naive fit based on BIC and grid search, and the Bayesian LASSO model

on scenarios with low (0.30), medium (0.38) and high (0.45) error variances (¢2). This
division is selected such that the medium scenario matches the estimates from the pre-

liminary analyses. For each scenario, we simulate 2 data sets and apply our algorithm

17



with 4 chains. We also evaluate the effect of the tuning parameter for the Metropo-
lis algorithm by specifying a series of different values for it: 0.015, 0.02, 0.025, 0.03,
0.04, 0.05, 0.06, 0.08, 0.1, 0.12, 0.15, 0.2, 0.25, 0.3, 0.4, 0.6. The diagnostic graphs in
Appendix show that convergence is generally achieved. We assess the model fit and
the effect of the tuning parameter based on the prediction error. One hundred new
datasets were generated using the same covariates and parameters for each variance
category. The findings are shown in Table 1.1.

As expected, estimates based both on BIC and Bayesian LASSO model perform
better than those of the gravity model with respect to prediction error in low, medium
and high error variances. The choice of tuning parameter had little effect; use of 0.2
in data analysis appears reasonable as this choice leads to a mean acceptance rate for
the Metropolis algorithm on break-points in the range of 20% to 25% (Gelman et al.,
2014), as shown in Table 1.2. The 95% credible interval coverages for break points
also reach high values at tuning parameter 0.2. The crude model based on BIC and
Bayesian LASSO estimates are comparable. An advantage of the latter is its ability
to provide interval estimates on the break points and its smaller number of required
parameters. These results imply that that we did not compromise predictive power
because of the estimation of location of breakpoints, though Bayesian LASSO requires
greater computational time. Computation time for 15,000 iterations takes around 9 to

10 hours, whereas the BIC approach requires only a few minutes.
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Table 1.1: Prediction error of 3 models (2 trials each).

Variance of error term o

2

0.30 0.38 0.45
Gravity model
0.807 0.807 0.887 0.887 0.956 0.956
Crude model based on BIC
0.331 0.327 0.412 0.435 0.485 0.486
Bayesian LASSO with breakpoints
g

0.015 0.321 0.329 0.403 0.411 0.479 0.486

0.020 0.322 0.329 0.405 0.413 0.479 0.487

0.025 0.319 0.329 0.404 0.411 0.479 0.486

0.030 0.321 0.326 0.407 0.411 0.479 0.485

0.040 0.318 0.323 0.409 0.409 0.481 0.486

0.050 0.317 0.323 0.411 0411 0.480 0.487

0.060 0.318 0.321 0.411 0411 0.481 0.487

0.080 0.318 0.321 0.411 0.410 0.482 0.487

0.100 0.318 0.320 0.411 0.409 0.482 0.488

0.120 0.320 0.320 0.410 0.412 0.481 0.485

0.150 0.319 0.320 0.411 0414 0.486 0.487

0.200 0.321 0.319 0.413 0.414 0.486 0.490

0.250 0.321 0.320 0.415 0.416 0.489 0.488

0.300 0.320 0.321 0.413 0.417 0.490 0.489

0.400 0.321 0.321 0.417 0.420 0.496 0.489

0.600 0.325 0.322 0.414 0.419 0.494 0.489
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Table 1.2: Mean acceptance rate for Metropolis algorithm on break points.

Variance of the error terms o
o3 0.30 0.38 0.45

0.015 | 0.544 0.543 0.550 0.546 0.561 0.561
0.020 | 0.518 0.516 0.522 0.521 0.527 0.534
0.025 | 0.493 0.495 0.501 0.498 0.509 0.509
0.030 | 0.471 0.471 0.482 0.470 0.495 0.486
0.040 | 0.442 0.433 0.443 0.447 0.463 0.455
0.050 | 0.410 0.412 0.420 0.417 0.439 0.433
0.060 | 0.388 0.388 0.394 0.395 0.410 0.415
0.080 | 0.341 0.346 0.359 0.354 0.373 0.370
0.100 | 0.300 0.313 0.322 0.321 0.338 0.333
0.120 | 0.277 0.283 0.292 0.292 0.308 0.304
0.150 | 0.243 0.245 0.254 0.260 0.273 0.270
0.200 | 0.194 0.198 0.208 0.207 0.222 0.227
0.250 | 0.166 0.167 0.179 0.173 0.185 0.189
0.300 | 0.143 0.144 0.154 0.156 0.161 0.162
0.400 | 0.110 0.110 0.122 0.118 0.127 0.129
0.600 | 0.075 0.073 0.083 0.084 0.090 0.088
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Table 1.3: 95% credible interval coverage for break points.

Variance of the error terms o?

o3 0.30 0.38 0.45
0.015 | 0.585 0.585 0.523 0.492 0.462 0.492
0.020 | 0.631 0.615 0.554 0.523 0.508 0.569
0.025 | 0.662 0.631 0.554 0.523 0.585 0.600
0.030 | 0.677 0.677 0.615 0.554 0.600 0.631
0.040 | 0.723 0.723 0.662 0.631 0.615 0.615
0.050 | 0.754 0.692 0.692 0.692 0.677 0.646
0.060 | 0.754 0.708 0.692 0.692 0.646 0.646
0.080 | 0.754 0.754 0.677 0.738 0.692 0.677
0.100 | 0.785 0.785 0.692 0.754 0.723  0.692
0.120 | 0.769 0.815 0.708 0.738 0.769 0.708
0.150 | 0.769 0.815 0.723 0.738 0.738 0.692
0.200 | 0.785 0.877 0.723 0.738 0.769 0.677
0.250 | 0.785 0.862 0.662 0.738 0.754 0.708
0.300 | 0.769 0.862 0.708 0.738 0.738 0.692
0.400 | 0.769 0.862 0.677 0.708 0.708 0.708
0.600 | 0.785 0.831 0.708 0.738 0.692 0.708
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Figure 1.1: Estimated 95% credible intervals of break point #; (when true break
points exist) under low (top), medium (middle) and high (bottom) error variance o
with tuning parameter ag = 0.2; orange color of the 95% credible interval indicates
that the true value is not covered; no 95% credible interval showing indicates none
available, i.e. estimates are from model without break points.
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Figure 1.2: Left: scatter plot of natural log number of calls v.s. distances; Right: his-
togram of natural log number of calls.

1.6 ANALYSIS OF CALL RECORDS DATA

First, we observe that Figure 1.2 is consistent with our assumptions of continuous
calling intensity and normality of natural log of the number of calls.

Second, We use the preliminary binary assignments of break points group based on
BIC in a simple linear regression to assess whether there is variability in intercepts
and population size effects. Both models with only main effects (indicator variable of
group assignments, log population sizes, log distance-before/after break point) and
those with main effects and interaction terms show evidence (p-value<0.05) of vari-
ability. Hence we apply the method shown in the simulation study for the analysis

of the cell phone data. The difference in intercepts and population size effects is true
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Figure 1.3: Top left: slope estimates for locations without break points; Top right: log
distance of the estimated break points for locations with break points; Bottom: Slopes
estimates before and after break points for different locations.
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Figure 1.4: Initial and final estimates of the existence of the break points.

both for the general population from all 427 counties, and for the user subpopulation
we described above.

In the analysis of call records (CDRs) data (Figure 1.3 and 1.4), we observe that
the slopes for source locations in the northeast appear to be less steep. Locations near
the capital city, where the population is dense, are more likely to have breakpoints
in the relationship of communication and distance . No such patterns were observed
for slopes of other locations, both before and after the break points. Model estimates
revealed that locations with no break point tend to be in the north while those with
breakpoints are concentrated in the south. For diagnosis on convergence, Figure 1.5

shows a trend of PSRFs approaching 1 very quickly and a PSRF; fluctuating below
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1.5, which is acceptable.
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Figure 1.5: Left: diagnostic graph based on intercept estimates; Right: diagnostic
graph based on ¢?; solid line: PSRF{, dashed line: PSRF5.

1.7 DISCUSSION

To analyze the decline in communication intensity with geographical distance, we ex-
tended the gravity model by allowing for break-points in this relationship. We ad-
dressed the issue of the existence of break-points for each source location and quantify
associated uncertainty using a Bayesian model. We also provided estimates of the
slopes before and after each breakpoint. We investigated the geographical pattern of

the existence of break-points and noted differences in these patterns between rural
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and urban areas.

As an application of our method, we made use of an anonymized dataset of call de-
tail records, using the number of mobile phone calls in our analysis as the measure
of communication intensity between a pair of counties. The range of the outcomes
is a count N before log transformation, and the regression model we specify treats
the transformed outcomes as continuous, which is most appropriate when the num-
ber of calls between two locations is large (Figure 1.2). In settings were there may be
0 or very low counts, one could consider alternative models (e.g. negative binomial)
or the addition of an arbitrary small positive number to 0, although the latter ap-
proach can add bias (Flowerdew & Aitkin, 1982; Burger et al., 2009). In this setting,
a negative binomial model might be a better fit, though the interpretation of the pa-
rameters is less straightforward. Using Bayesian methods in a setting where the data
are assumed to be negative binomial distributed requires non-standard approaches
even without inclusion of break-points into models. Zhou et al. (2012); Pillow & Scott
(2012), and Polson et al. (2013) provide some useful tools for sequentially updating
the parameters using Gibbs sampler by augmenting the posterior distribution with
auxiliary parameters. When the number of counts is large, the negative binomial ap-
proach may not be computationally feasible; fitting negative binomial outcomes in
Bayesian LASSO needs further investigation. One possible direction is to extend the
methods based on the conditional normal distribution in Polson et al. (2013) by trans-

forming the variance matrix so that normal-distribution based LASSO method can be
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employed.

Another extension of our methods would allow for aggregation of results across
different subsamples; currently the number of locations we can analyze is limited by
computational concerns. Developing a method to obtain consistent results from differ-
ent overlapping sets of nodes-perhaps in a meta-analysis framework— would alleviate
the computational concerns, but is challenging. Some potentially useful approaches
are provided by Politis & Romano (1994); Politis et al. (2001); Geyer (2006) and
Fitzenberger (1998). In particular, the stability selection in Meinshausen & Biithlmann
(2010) may be used to assess the properties of the meta-analytic results. An example
of the use of LASSO in analyses that combine across subsamples arose from analyses
intended to discover adverse drug reactions provided by Ahmed et al. (2016). Another
potentially useful approach is the use of path of partial posteriors in Strathmann
et al. (2015). In this approach, the resampling procedure resembles the bootstrap,
but with smaller resampling sizes. Because standard bootstrapping the LASSO esti-
mator of the regression parameter for variance inference is known to yield inconsistent
estimates (Knight & Fu, 2000; Chatterjee & Lahiri, 2010), modified bootstrapping
must be used (Chatterjee & Lahiri, 2011). Nonetheless, Bayesian LASSO procedures
provide straightforward and valid estimates for standard errors.

The findings from our analysis of mobile phone communication illustrate how such
information might be used, should such communication networks prove to be accurate

proxies for contact networks along which infectious diseases or other communicable
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processes spread. If so, such analyses might help guide designs of cluster randomized
trials. Randomized trials ideally enroll participants in a way that minimizes the ex-
tent to which treatment assignment of one subject affects outcome of another. For
interventions in which such interference occurs at the individual but not cluster level
(e.g. through contacts among randomized subjects), cluster randomization can be use-
ful (Campbell et al., 2007). Clusters may be comprised of participants in the same
geographical location, institution (e.g. school) or administrative unit (village). Cell
phone data could potentially aid in the identification of appropriate clusters by pro-
viding information about the probability of interference. When mixing across clusters
cannot be eliminated, identification of treatment effects requires models of the mix-
ing process (Carnegie et al., 2016). Staples et al. (2015) and Wang et al. (2014) in-
vestigated the impact of interference across randomized units on power of a clinical
trial to detect effects of an intervention in preventing spread of infectious disease. As
geographical distance is likely to affect contact networks, knowing the relationship
between communication and distance may be useful not only for identification of clus-

ters, but also to aid in development of appropriate mixing models.
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Investigating associations among network

structures

2.1 PROBLEMS STATEMENT AND MOTIVATION

In analyses of network community detection, three questions may arise. The first

question is whether there is a community structure in the network; the null hypoth-
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esis is that there is no community structure. This question has been explored by fo-
cusing on automatically determining the number of clusters in community detection
(Zhao et al., 2011; Bickel & Sarkar, 2016).The second question arises in settings where
there are two ways to define community membership for the same set of nodes. The
question is whether the existence of a pair of nodes in the same community in one
assignment implies that they are in the same community according to the other as-
signment. A corresponding null hypothesis is that it does not imply they are in the
same community. The third question arises after we reject the second hypothesis. It
asks whether the two assignments are the same, with the null being that they are the
same. The third question has been explored in Tang et al. (2014) using random dot
product graphs based on spectral embedding of the adjacency matrix. Some theoret-
ical properties of the random dot product graphs and the asymptotic property of the

corresponding eigenvectors are described in Tang & Priebe (2016).

Figure 2.1: Latent community structure C7 and C5 generate adjacency matrice A;
and Ao, question 2 asks whether C7 and C5 are informative of each other; question 3
asks that if C1 and Cs are informative of each other, whether they are the same.
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In this paper, we focus on the second question, i.e. testing whether two community
detection results imply each other. We specify the null as above. In our setting, com-
munity detection may result from two different algorithms applied to the same net-
work, or from the same community detection methods applied on different networks
that share the same set of nodes. One example of the latter situation is demonstrated
by community detection results obtained from two networks, one based on cell phone
communication and second, on viral genetic linkage. To use cell phone communities
as proxies for viral genetic clusters, it would be useful to show that inference on com-
munity structure from one network is informative regarding the structure of the other.
The hypothesis testing framework we propose is relevant for this purpose.

Our proposed approach uses existing community detection methods to assign com-
munity memberships to nodes. In general, a network or a graph can be represented
by its node set and its edge set. The node set consists of all the nodes in the network,
and the edge set specifies those pairs of nodes that are connected with an edge. A
community can be defined as a set of densely connected nodes (Porter et al., 2009;
Fortunato, 2010). Community detection methods aim at discovering communities in
a network. There is large literature on various community detection methods(Clauset
et al., 2004; Newman, 2006b; Richardson et al., 2009), and their performances and
comparisons (Fortunato & Barthélemy, 2007; Bader & McCloskey, 2009; Lancichinetti
& Fortunato, 2009; Fortunato, 2010; Good et al., 2010; Leskovec et al., 2010). We em-

phasize that our testing framework applies to most community detection settings re-
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gardless of which specific community detection method is employed as long as the de-
tection method is (1) appropriate for the graph or network considering its properties
(e.g. weighted, directed, etc.) and (2) satisfies the assumption introduced in the paper,
which indicates that the possibility of obtaining one specific detection result only de-
pends on the topological properties of the graph and the detection method. We also
note the differences and connections between our methods and those on multislice net-
works in Mucha et al. (2010), where community detection methods are extended to
time-dependent settings with network slices of different types of links and scales. Our
analysis framework complements the estimation model and provides insights from a
hypothesis testing perspective.

The sections of this paper are organized as follows: section 2.2 introduces the setup
and notation; section 2.3 describes the distributions of test statistics under the null
hypothesis; section 2.4 describes the simulation study and provides results; section 2.5
provides results of an analysis on data with two types of connections among a group

of workers at two different time points; section 2.6 is the conclusion and discussion.

2.2 NOTATION

Following the notation in Bondy et al. (1976) and Abbe (2017), let G; = (V4, E1)
and Gy = (Va, E3) be two undirected graphs generated from stochastic block model

(SBM (n,p, W)) with node or vertex sets V1, Vo and edge sets Eq, Fy, where V] =
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Vo = V, |V| = n, p is a probability vector on integers from 1 to k, W is the k x k
symmetric matrix of the connectivity probabilities. Let A1, As be the corresponding
adjacency matrices. Denote Cq, C2 as the vectors of community assignments in G
and G3. We note that (Cq,G1) pair and (Cg, G2) pair are drawn under the model we

specified. Both C; and Cs are vectors of random variables.

2.3 DISTRIBUTION OF TEST STATISTICS UNDER THE NULL

The null hypothesis is described in terms of network community memberships of pairs
of nodes. This approach can be used regardless of the number of communities for
each detection method or network. The null hypothesis is that pairs of nodes being
in the same communities in network 1 is not associated with their being in the same

communities in network 2. Formally,

P((S(OQZ‘,CQ]‘) = k‘(S(ClS,Clt) = l) = P((S(CQZ, ng) = k),Vi,j,S,t S {1, ,n} (2.1)

where C; and Cy; are the elements in Cz indicating community assignments for node
i and j in network 2; C15 and Cy; are the elements in C; indicating community assign-

ments for node i and j in network 1; 6(+, ) is Kronecker delta; k& and [ take values in

{01},

For simplicity, we use A to represent the n(n2_1) vector of all 6(Cs,C1) for s < t

and s,t € {1,...,n}. Ag to represents comparable quantities in network 2. By clas-
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sifying pairs of nodes to be in the same community (or not) in network 1 and 2, we
construct the 2 by 2 contingency table shown in Table 2.1.

Table 2.1: Contingency table with counts of pairs, where O;; denotes number of
counts in corresponding row and column.

Az

same different

A,  same O11 O19 O1.
different 021 022 OQ.

OF) O O

Assume the true community membership vectors C; and Cg are known. Table 2.1
reminds us of two statistics: Pearson’s Chi-squared test statistic and likelihood ratio
test statistic. The former is written as

O:: — E::)2
xX2=Y" (O3 — Ey)” (2.2)

EA .
i K

The latter is

Dev = Z O;; log (g”) (2.3)
i, k

where E;; is the expected counts in cell row 7, column j, m;; is the probability of the

corresponding cell in Table 2.1. We note the connection of the latter with mutual in-

35



formation as defined in information theory, which can be written:

MutI(Ay, Ag) = wa log ( i ) Z i 14 <
1 Oij
TN ZOU os (Em>
2Y)

Equation 2.4 is the deviance of a Poisson (or multinomial) sampling scheme (Agresti,

)

2013) divided by 2N. The deviance corresponds to a likelihood ratio test statistic
comparing the saturated model and the nested null model. Under the null, the test
statistics has an asymptotic x? distribution with df = N — p for large mii N = pj
when observations are independent.

Observations are not independent in our setting. Elements in A; are not randomly
assigned and are subject to constraints. It means that there must be a community
membership assignment C; to which Aj corresponds. Consider a triad of 3 nodes,
(r,s,t), where r,s,t € V, from which we create 3 pairs: (r,s), (r,t), (s,t). Without
loss of generality, let us assume in detection 1, i.e. the row of Table 2.1, nodes r and
s are classified to the same community while t is in a different community. Hence,
pair (r,s) will be in row “same” and pairs (r,t), (s,t) are in row “different”. However,
knowing the status of 2 out of 3 pairs in this triad specifies the category of the third
as well. Because of this complex deterministic mechanism, the observations in two
rows are not independent. From another viewpoint, the effective number of observa-

tions in the samples is smaller than the observed number. This will tend to produce a
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Pearson’s Chi-square statistic with a liberal p-value if treated as independent, which
is confirmed in the simulation.

We claim that the permutation is still valid under the null. In the following two
theorems, we state and prove that by permuting the community labels, we are able
to obtain a test which preserves type I error. The null hypothesis in both theorems
is defined as above, i.e. pairs of nodes being in the same or in different communities
in network (or detection method) 1 is not associated with their being in the same or

different communities in network 2.

Theorem 1. Assume Cyp and Cqo are observed, and marginally each element is in-
dependently and identically distributed from multinomial distribution Multinom(p1)
and Multinom(pg) respectively, where p1 and pz are the vectors of probability which
sum to 1. Aq is the % vector of all 6(Chs,C1y) for s <t and s,t € {1,...,n}. Ag
corresponds to that of Ca.

The null hypothesis Hy: P(A1,A2) = P(A1)P(A2).

Let Cy(xy be a permutation of C1. Ay(y) corresponds to the vector of pairs for
Ci(r)- Qe denotes the set of all permutations of Cy(xy. a denotes the set of all cor-
responding Aq (). Construct test statistic T(A1, Az). Keep Az fized, calculate T for

all elements in QA and rank them.

tD <@ < < (RaD
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For fized level o > 0, let t* = min{t®) : P(T > t®)) < o,k € {1,...,|Qa|}. Reject Hy
Zf T(Al,Ag) = t*. Then

P(reject Hy|Hp) < «

PrROOF: The proof is straightforward once it is proved that under Hy, the joint dis-
tribution f(Aq(r), Az) remains the same under permutations of Cy.

First, we note the correspondence between C; and Ay, which implies VA ) €
Qa,3Cq(r) € Qc such that Cy(r) generates the Ay (y). For C1 with distinct number
of members in each community, the relationship between C; and Aj is one-to-one.
When there are communities which have the same number of nodes, the correspon-
dence is c-to-one, where ¢ is a constant which only depends on C;. Specifically, c¢ is
the product of the factorial of the number of communities which have the same num-
ber of nodes.

Given fixed C1, we have P(Aq(;) = x) = c¢P(Cy(y) = 2z). Under Hp, we have
P(A1,A2) = P(A1)P(Az) = cP(C1)P(A2).

For any permutation of Cq, we have

P(A1(r), A2) = P(Aq(x))P(A2) = cP(Cy(r)) P(A2) = cP(C1)P(A2) 25)

= P(A1)P(A2) = P(A1,Az2)

Hence, under Hy, the joint distribution f (Al(ﬁ), A2) remains the same under the

permutation of Cy. It follows that for a chosen test statistic T'(A1, Az), which is a
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function of (A1, Ag), the distribution is the same under the permutation. The permu-
tation distribution is a discrete uniform distribution with equal probability mass on

each t*) for k € {1,...,|Qal}.

P(reject Ho|Hy) = P(T(A1, Ag) > t*|Hy) < (2.6)

Therefore the permutation test is valid and exact when C; and Cg are observed. [

We note that the assumption in Theorem 1 is consistent with the network generat-
ing process for the Stochastic Block Model shown in Abbe (2017).

When C; and Cg need to be estimated, the following assumption is required. We
assume that the probability of getting a detection result depends only on the topolog-
ical properties of the graph and the detection method. It is possible for one detection
method used on the same graph to produce different detection results when the algo-
rithm is run multiple times.

We note that the above assumption is very weak and should hold for any reason-

able community detection methods.

Theorem 2. Following the scenario in Theorem 1, now assume instead of being
known, Cq1 and Co need to be estimated. Denote them as (/3\1 and (/3\2 Correspond-
ingly, /A\l and 2\2 are the vectors of indicator function which indicates whether pairs
of nodes are in the same community. (/3\1 and (/3\2 are estimated from adjacency ma-

trices A1 and Az, i.e. if detection method is denoted as function v (-), it follows that
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é\l = Y1(A1) and é\z = 19(As). We assume that the detection method satisfies the
above mentioned assumption. Also A1 and As are both generated independently from
true membership Cy1 and Csz following a Stochastic Block Model, we have A1 = ¢1(Ch)
and Ay = ¢o(C3).

The null hypothesis Hy: P(A1,A2) = P(A1)P(Ag).

Let (/JE(F) be a permutation of (/3\1 Z\l(ﬂ) corresponds to the vector of pairs for
(/3\1(7r). Qs denotes the set of all permutations of (/3\1(#). Q3 denotes the set of all cor-
responding Z\l(w). Construct test statistic T(E, 2\2) Keep 2\2 fized, calculate T for

all elements in Qﬁ and rank them.

+(D < +(2) <..< TGUN))

For fized level a > 0, let t* = min{t®) : P(T > t®)) < a, k € {1,...,|Qal}. Reject Hy
if T(E, 2\2) > t*. Then

P(reject Hy|Hp) < «

PROOF: Since A; is generated from true membership C; from a Stochastic Block

Model, for a permutation matrix @, it follows that

P(A1|C1) = P(QA1|QC1) = P(Ay ()| C1(m) (2.7)
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Marginalized over membership, we have

P(A;) =Y P(A|C1)P(C1) = Y P(Ayn)|Cim)P(Cim) = P(Aym)  (28)
C1 Ci(m

as P(C1) = P(Cy(r)) and Cyp, Cy(y) are from the same sample space.
We note that for the detection method satisfying the previously mentioned assump-

tion, the following must hold
P(A1|41) = P(A1 ()| Aim) (2.9)

as the network structure remains the same while the node labels are permuted. Marginal-

ized over Ay and A () respectively, we have
P(A1) = P(Ay(n) (2.10)

Under the null, we have Hy: P(A1,A2) = P(A1)P(A2). It follows that as func-
tions of Ay and Ag respectively, Z\l and Z; are also independent, i.e., we have un-
der the null:

P(A1,Az) = P(A1)P(Ay) (2.11)
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Together with Equation 2.10, we have

P(A1,Az) = P(A1)P(Az) = P(A1()P(Az) = P(Aq(r), Az) (2.12)

Thus, under the null the joint probability of (Z\l, Z\z) is also invariant under permu-
tations. Following the same logic in Theorem 1, the permutation test is also valid and
exact. U

The permutation test yields an exact p-value, by which we mean the actual proba-
bility of a Type I error is less than or equal to the « level of the test. As part of our
exploration in the simulation section, we also exam the performance of another widely
used resampling methods—bootstrap—to compare with that of the permutation test.
In general, the bootstrap test is not exact, but should be asymptotically valid, given
what is demonstrated by Equation 2.8.

The null hypothesis that there is no association between two sets of community
assignments is different from the assertion that there is no community structure in
the graph. As has been pointed out in both network science (Fortunato, 2010) and
statistical literature (Zhao et al., 2011; Bickel & Sarkar, 2016), a precise definition of
graphs with no community structure is yet to be established. When the graph is an
Erdos-Rényi (ER) graph, no community structure are expected. In Lancichinetti &
Fortunato (2009), the ER graph is selected as one type of random graph to evaluate

the performance of different community detection methods. Theoretically, the ER
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graph has only one community and a good detection method should ideally discover
only one. However, in practice, certain pseudocommunities may still be identified due
to specific realizations of random graphs(Lancichinetti & Fortunato, 2009); this is
also illustrated in our simulation. However, detection results from two ER graphs are
not associated. For graphs with community structure, such as two graphs generated
from SBM with unassociated community membership assignments, detection results
are not expected to be associated with each other. In Section 2.4, we simulate the
null hypothesis by generating ER graphs and graphs from two unrelated community

structures using SBM, and evaluate the performance of our tests in both situations.

TEST EVALUATION AND HANDLING OF THE RESAMPLING RISK

The bootstrap and permutation test introduced above are both Monte Carlo tests,
which have the issue of resampling risk. Following the notations in Gandy (2009), the
resampling risk RR,(p) is the probability that p and the true p are on different sides
of the given threshold a.

A P,(p>a) ifp<a
RR,(p) = (2.13)

To address this issue and provide a better evaluation, we adopt the methods of Gandy
(2009) and Gandy et al. (2013) and their R package simctest, which puts an upper

bound on the resampling risk by a sequential implementation. Specifically, they con-
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struct lower and upper bounds for the sum of the binary outcomes (reject the null or
not) in the next step based on previous steps, and stop sampling once the lower or up-
per bound is hit. They prove that when the actual p-value is not 0.05, it takes finite
steps for the algorithm to stop.

We iteratively use the implementation in two loops to evaluate the level of the tests.
Adapted from Gandy (2009), we put an upper bound on the number of steps in the
inner loop at M and use the interim estimated p-value if the maximum number of
steps M is reached. According to their research, the results are (almost) the same
with different M values. We briefly assess the effects of different M values in the sim-
ulation. We note that setting M will render the theoretical results of the upper bound
not applicable, however, it is expedient to avoid infinite steps in the inner loop. Also

less calculation is needed compared with fixed steps in the inner loop.

2.4 SIMULATION

We evaluate the test with a variety of number of nodes (50 to 500 by 50) in two as-
pects: the null case, in which there is no association, and the alternative case when
there is some association. All graphs generated in the simulation section are undi-
rected. For community detections, we employ a modularity-based method using greedy
techniques (Blondel et al., 2008; Fortunato, 2010) which is implemented in R package

igraph. This technique is usually referred as the Louvain method. We choose the
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Louvain method due to the fact that modularity-based detection algorithms are well
studied and widely used in the literature, and the Louvain method has demonstrated
excellent accuracy and faster computation time. This choice makes our simulation

more reasonable and realistic, even though the validity of the hypothesis testing does

not depend greatly on the detection method.

2.4.1 NULL CASE

Two ERDoOS-RENYI GRAPH

We simulate two ER graphs with edge probability p = 0.2 and apply the community

detection method to obtain two detected assignments (/3\1 and (/3\2

TwO NETWORKS FROM SBM WITH RANDOM COMMUNITY MEMBERSHIP ASSIGN-

MENTS

We evaluate and compare the performance of tests in settings with different p and
same W in graph generation using SBM: (i) p = (0.7,0.3); (ii) p = (0.6,0.4); (iii)
p = (0.5,0.5); (iv) p = (0.3,0.3,0.4). W has diagonal elements 0.15 and off diagonal
elements 0.05 for all settings.

1. To evaluate the test under accurate recovery, we generate two random labels Cq
and Cg by permuting community memberships sampled from multinomial(p) and

check the performance of the tests assuming the detection method accurately recovers
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the community structure.
2. We simulate two graphs using SBM with Cq and Cga generated by permuting
community memberships sampled from multinomial(p). Then we apply community

detection method to obtain two detected assignments (/3\1 and (/3\2

2.4.2 ALTERNATIVE CASE

Expecting the tests to have high power when community structures in two graphs
are the same, we simulate settings with weaker association. Specifically, we assess the
performance of the tests in settings with (i) 20% and 30% structural overlap (ii) a
smaller difference in within-community and between-community edge probability:

1. We simulate two graphs using SBM (same p and W as in the null case (i)and
(iii)) with graph 2 matching p percentage (e.g. 20%, 30%) of community member-
ships in graph 1. The remaining community memberships are random permutations
of those in graph 1. Then we obtain (/3\1 and (/3\2 assuming accurate recovery, or using
community detection.

2. We simulate two graphs using SBM with the same community membership la-
bels (within-community edge probability of 0.1 and between-community edge probabil-

ity of 0.05). Then we obtain 6\1 and é\z using community detection.
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Figure 2.2: Size of the permutation and bootstrap tests under the null. The solid line:
the permutation test; the dashed line: the bootstrap test. Dots indicate the estimated
p-value is not significantly different from 0.05.

2.4.3 SIMULATION RESULTS

We found that in both permutation and bootstrap tests, test statistics based on mu-
tual information and Pearson’s Chi-square produce the same p-value. In the figures
below, only the results with Pearson’s Chi-square are shown, as they require slightly
less time to compute.

In Figure 2.2, we observe that both permutation and bootstrap tests have the
right level in different null cases: when the two graphs are ER graphs, and when the

two graphs are from SBM assuming accurate recovery, or from SBM with detection.
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When the number of nodes is small, the permutation test assuming accurate recov-
ery shows conservativeness. As the number of nodes increases, both permutation and
bootstrap tests approach the right size of the test, with fluctuations under all scenar-
ios we specified in the simulation. We note that this trend is observed regardless of
community size differences, number of communities detected, as well as whether de-
tection is used or assuming accurate recovery. Unsurprisingly, we also observe that
as detection introduces uncertainties, the permutation test becomes less conservative
using detection compared with cases assuming accurate recovery. The Chi-squared
test and the LRT have an inflated level in general as the number of nodes increase
towards 500 (Figure B.1 in Appendix), which is consistent with our discussion in the
theory section. We also find that a different maximum number of steps M in the in-
ner loop in the evaluation algorithm does not greatly affect the results.

Figure 2.3 shows the performance of permutation and bootstrap tests under differ-
ent alternative scenarios. We observe that the power of the tests rapidly approaches
1 as the number of nodes increases for all cases. As expected, cases with weaker asso-
ciations have flatter slopes for the trend. The power of both permutation and boot-
strap tests are comparable to Chi-squared tests and LRT as shown in Figure B.2 in

Appendix B.
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2.5 DATA ANALYSIS-KAPFERER’S TAILOR SHOP

We demonstrate our method using the data of interactions in a tailor shop in Zam-
bia (then Northern Rhodesia) over a period of 10 months from Kapferer (1972), avail-
able in Ucinet 5 (Borgatti et al., 1998). The dataset comes from the sociology litera-
ture and it records two types of interaction between 39 workers at two different time
points (T1 and T2, 7 months apart) over a period of 1 month. One type is "instru-
mental” (work and assistance related), the other type is ”sociational” (friendship, so-
cioemotional). Work interactions are directed. Social interactions are undirected. An
abortive strike occurred after T1, and a successful strike took place after T2. In our
analysis, we convert all networks to be undirected considering the fact that complex
interactions between individuals are sometimes hard to identify as reciprocal or unilat-
eral, even though they may be distinguished with careful consideration.

There has been research on identifying and estimating the block structure in the
data (Nowicki & Snijders, 2001) in order to discover the changing patterns over time.
Kapferer (1972) approaches the problem by rearranging columns and rows of the adja-
cency matrix based on a sociometric method by Beum & Brundage (1950) to achieve
greatest clustering. Nowicki & Snijders (2001) employ a statistical method focusing
on the poststrike relations. Both approaches make inferences from the estimation per-
spective. Kapferer (1972) finds more inter-community interactions at T2 compared

with T1 and identifies one individual who plays the crucial role of connecting commu-
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nities, which is also revealed in the statistical analysis in Nowicki & Snijders (2001).
Our perspective distinguishes from both. Considering the close relationship be-

tween strike organizing in work and influences passing through social connections, one
would suspect that there might be changes in the association between the two types
of interactions across time which contribute to the difference in strike results. The hy-
pothesis testing framework we proposed fits in the setting and is able to provide some
statistical insight on the issue. We demonstrate our analysis using two modularity-
based community detection methods, the Louvain method introduced in the simula-

tion section, and the spectral optimization from Newman (2006b).

Table 2.2: Permutation test results for the tailor shop data in Zambia

P-value Proportion agreed
Networks compared Louvain Spectral Louvain Spectral
T1 work v.s. T2 work 0.004 0.444 0.787 0.757

T1 work v.s. T1 social 0 0.152 0.771 0.702
T1 work v.s. T2 social 0 0 0.748 0.734
T2 work v.s. T1 social 0 0.6 0.673 0.605
T2 work v.s. T2 social 0 0 0.750 0.686
T1 social v.s. T2 social 0 0 0.745 0.703

Figure 2.4 shows the community detection results using the Louvain method. Table
2.2 and Figure 2.5 represent pairwise statistical associations between T1 and T2 social
and work relations. We find that all pairwise associations are statistically significant
based on the Louvain method while the test results based on spectral optimization
are insignificant for all pairwise associations involving T2 work. These findings seems

to suggest some structural changes in the work interactions at T2 that affects its re-
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Figure 2.4: Community detection results using the Louvain method. Nodes of the
same color belong to the same community in each subgraph. (a): T1 work interac-

tions; (b): T2 work interactions; (c¢): T1 friend interactions; (d): T2 friend interac-
tions. Vertex 11 is shown in larger node size.
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cates significant association. Red: spectral optimization; Blue: the Louvain method.

lations with other observed networks. Those insignificant results are consistent with
the speculations in Kapferer (1972) and Nowicki & Snijders (2001) where both find
that the emergence of vertex 11 has altered the intra-cluster connections, and there

are more interactions between individuals from different clusters.

2.6 DISCUSSION

In this study, we first introduced a series of interrelated scientific questions that are of
interest: whether a network has no community structure; whether underlying commu-
nity structures in two networks are related; whether underlying community structures

in two networks are the same. We then provided some theoretic explorations on per-
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mutation tests focusing on the second issue. We compared the performance of the
test with that of the bootstrap test, the Chi-squared test and the LRT in the simula-
tion section and conclude that the permutation test preserves the type I error and has
good power. We demonstrated the use of the test on work and social relations data of
a tailor shop in Zambia from the sociology literature and compare results with previ-
ous research, where our method provides an alternative view and consistent results.
We note the connection between our permutation test and the discussion on the
randomization test in the presence of interference in Rosenbaum (2007). In the arti-
cle, two nulls are described: the null hypothesis of no primary effect Hy and the null
hypothesis of no effect EIVO. Hj states that with repeating the same randomization
procedure, the outcomes do not change. E) states that the outcomes under the same
randomization procedure do not change and equal those of the “uniformity trial” of a
double blind placebo assignment to all units. Similar nulls can be defined in our set-
ting as well, though the interpretations are different. The “uniformity trial” of a dou-
ble blind placebo assignment to all units in our setting would be the case that there is
no underlying community structure in network 1. The subsequently defined null of no
effect ]f'{vg would then mean the outcome under every randomization assignment equals
the corresponding outcome when network 1 is an Erdds-Rényi graph. ffg = Hj still
holds. Fisher’s randomization test has the correct level for testing either null, though

it cannot differentiate the two.
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Viral genetic linkage and geographic

structure: analysis of data from Mexico

3.1 PROBLEM STATEMENT AND MOTIVATION

Contagious diseases, such as HIV infection, are often transmitted through close in-

terpersonal interactions. As individuals live and interact within spatial and social
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networks, it is interesting and important to investigate the association between dis-
ease transmission and geographical distance. Furthermore, at the group level (village,
town, institution, etc.), investigating this relationship may provide information about
chains of transmission that cannot be inferred from knowledge obtained at the individ-
ual level (e.g. regarding sexual or other forms of behavior). Studies of the effect of hu-
man mobility and geographic connections on viral transmission have been reported in
the literature (Lagarde et al., 2003; Mangili & Gendreau, 2005; Balcan et al., 2009b;
Faria et al., 2014; Bogoch et al., 2015). Demographics, socioeconomics and other bio-
logical, social, and cultural factors also play a role in affecting the probability of trans-
mission among different categories of people (Buvé et al., 2002; Gregson et al., 2002;
Helleringer & Kohler, 2007).

Chaillon et al. (2017) identified clusters of HIV sequences based on genetic distance
among the viral sequences. This study was based on partial HIV pol sequences and
found significant associations between the probability of individuals being clustered
genetically and their various demographic and geographic characteristics. There is a
large degree of variability in the cluster sizes, and the majority of clusters are small,
with only 2 or 3 members. As individuals within a genetic cluster are likely to be
closer to each other in a transmission chain than to those not in the cluster, it is of
interest to assess the factors that might affect the probability of clustering, such as
geographical distance. Large divergence between genetic sequences often implies a

long distance of separation in the phylogenetic tree (Korber et al., 2000; Junqueira
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et al., 2011; Worobey et al., 2016). In Chaillon et al. (2017), a threshold of genetic
distance is chosen to define transmission links (Wertheim et al., 2013, 2016); pairs of
sequences with divergence below the threshold are regarded as implying direct or indi-
rect transmissions within the 5-year period of their study. This research suggests that
transmissions did not likely occur within a given period among people with sequences
in different transmission clusters. These finding support the idea that viral genetic
linkage analysis combined with geographic information may be able to provide insight
into the effect of geographical distance on viral transmission.

In this study, we make use of the hypothesis testing framework discussed in Chap-
ter 2 to analyze the association between clusters based on pairwise viral genetic and
geographical distances among people infected by these viral strains. As a sensitivity

analysis, we demonstrate the test results for various threshold values.

3.2 GENETIC DISTANCE DATA FROM MEXICO

We use the viral genetic sequences from participants in Mexico discussed in Chaillon
et al. (2017), from which the authors obtained pairwise viral genetic distances (GD).
Chaillon et al. (2017) drew up data from the multi-center Mesoamerican Project, in
which 4,192 HIV-1 subtype B pol sequences were sampled from unique Antiretrovi-
ral treatment (ART)-naive HIV-infected individuals from 23 states across Mexico be-

tween 2001 and 2016. Individuals were enrolled at participating clinics prior to expo-
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sure to ART. Participants donated a single blood sample which was processed at the
Center for Research in Infectious Diseases (CIENI) of the National Institute of Respi-
ratory Diseases (INER) in Mexico City, a WHO-designated laboratory for HIV geno-
typing within 72 hours of collection. Partial HIV pol (HXB2 positions 2253-3554) was
bulk sequenced and assembled following the procedures described in Chaillon et al.
(2017). Pairwise genetic distances (GDs) were computed with all sequences aligned

to the HXB2 reference sequence based on a nucleotide substitution model (Tamura &

Nei, 1993; Oster et al., 2015).

3.3 METHODS

To infer viral genetic clusters, Oster et al. (2015) and Chaillon et al. (2017) define
links between subjects as occurring when the Genetic Distance (GD) is < 0.015 substi-
tutions/site. The resulting viral genetic linkage analysis defines a network with edge
weight

Wij = I(GDU < d). (3.1)

where GD;; is the Genetic Distance between sequence ¢ and j, I(-) is the indicator
function, and threshold d is chosen to be 0.015.

Based on Equation 3.1, we note that there are other potential ways to define weight
W. To make more complete use of the genetic distance information rather than sim-

ply dichotomizing it, one can alternatively define an inverse relationship between the
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two which has been studied in other distance matrices, such as the geographical dis-

tances matrix(Lambiotte et al., 2008; Krings et al., 2009), using

1
Wi = ——. 3.2
) GD” ( )
It is also possible to combine the two to yield
1
Wi; = aDy, -1(GDyj < d). (3.3)
With some modifications on the exponent of GD, we can also use
Wi = —— . [(GDy; < d) (3.4)

Network constructions with different threshold values d in Equation 3.1 have been
used for analyses of HIV (Wertheim et al., 2013, 2016; Chaillon et al., 2017). Wertheim
et al. (2013) set the threshold value at 1%. Wertheim et al. (2016) used the value of
1.5% and explored the analysis using 1% and 2% without finding much difference.
Chaillon et al. (2017) selected 1.5% as the threshold. These thresholds are chosen
based on the findings in Wertheim et al. (2016) that the divergence between base-
line and subsequent HIV pol sequences often do not exceed 1% over a 10-year period.
These empirical threshold values for pol gene are similar to the estimates obtained in

Korber et al. (2000) for env(gpl160) and gag. In Korber et al. (2000), the evolution
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rate for env(gpl60) and gag is estimated to be 0.0024 (0.0018 to 0.0028) and 0.0019
(0.0009 to 0.0027) substitutions per base pair per year. These findings provide evi-
dence for the interpretation of a linear relation between time and divergence at least
for a short period of one to two decades on the evolutionary scale, which justifies the
threshold value up to 2.5%.

For a given threshold, we can construct a network of viral genetic clusters, denoted
as G. Without loss of generality, we choose weight Equation 3.1 to demonstrate the
connection between the network and transmission clusters. Following the definition
and notation in Bondy et al. (1976), we use G to denote an undirected graph and we
use V for its vertex set and E for its edge set. As in Bondy et al. (1976), a walk in G
is defined as a finite non-null sequence W of alternating vertices and edges such that
each edge is adjacent to the vertices in the sequence that occur immediately before it
and immediately after it. When the edges and vertices are all distinct, W is called a
path. Two vertices are connected if there is a path in G between them. The vertex set
V of G can be partitioned into nonempty subsets such that two vertices are connected
if and only if they belong to the same subset. The subgraph of G generated from the
partition are the connected components of G. As mentioned above, for our G defined
by viral genetic distance, connected components of G signify transmission clusters of
potential transmission partners (Wertheim et al., 2013).

To test whether there is an association between clusters based on viral genetic dis-

tances and those based on geographical distances among the infected individuals, we
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make use of the hypothesis testing methods developed in Chapter 2, which demon-
strated the use of a permutation test in similar settings. The geographic network is
constructed as a fully connected weighted graph. We use the inverse of the squared
geographical distances between nodes as edge weights in the graph, where the geo-
graphical distances are calculated as the spherical distance in kilometers using the
latitude and longitude of the centroids of the states associated with the geographic
information of the individuals. The weight function is formulated based on previous
research on human mobility (Lambiotte et al., 2008; Balcan et al., 2009a; Krings

et al., 2009). To obtain clusters within the largest connected component of the viral
genetic distance network, we use community detection methods to detect groups of in-
dividuals with viral sequences that are more closely related, which we refer to as com-
munities within transmission clusters. We choose to use a modularity-based greedy
algorithm—the Louvain method, which has been shown to have good performance in

practice (Blondel et al., 2008; Fortunato, 2010) and is available in R package igraph.

3.4 VIRAL GENETIC AND GEOGRAPHICAL DISTANCES AMONG HIV INFECTED

PARTICIPANTS IN MEXICO

Figure 3.1 shows the relationship between number of connected components in the
viral genetic network and threshold values. The size of the largest connected com-

ponent increases with the threshold, while the size of the second largest connected
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Figure 3.1: Descriptive statistics of the connected components for networks based on
viral genetic distances. Upper left: size of the largest connected component; upper
right: size of the second largest connected component; bottom left: number of con-
nected components in the network; bottom right: number of connected components
(size>5) in the network.
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component increases as the threshold value increases from 1.5% to 1.8%, then fluctu-
ates between 20 and 40 nodes with a peak at 1.9%. The number of connected com-
ponents decreases steadily for threshold values larger than 2%; from about 500 at 2%
to about 460 at 2.5%. These results show that as the value of the threshold increases,
the largest connected component grows larger, as expected. Smaller connected compo-
nents do not grow greatly before they are absorbed.

Figure 3.2 demonstrates the hypothesis testing results for different weight specifi-
cations and threshold values on the largest transmission cluster. Due to the fact that
the test has low power shown in Chapter 2 when the number of individuals is around
20 and that all connected components are small except for the largest one, we first
conduct the test on only the largest connected component. We explore three different
weight specifications in the construction of genetic networks: (a) W;; = I(GD;; < d);

(b) Wi; = G%Z'j - I(GDy; < d); (c) Wiy = - I(GD;; < d). In all three settings,

1
GD};
we observe a bell-shaped curve for the number of detected communities in the largest
connected component as the threshold varies. For weight specification in Equation 3.1,
which dichotomizes genetic distances, the tests are significant at the 0.05 level for all
thresholds between 1.5% and 2.5%. Settings with weights as inverse genetic distance
in Equation 3.3 show similar trends with one exception at the threshold of 1.6%. Set-
tings with weights chosen to be inverse squared genetic distance in Equation 3.4 show

a decreasing p-value as the threshold varies from 1.5% to 2.5%. Test results are signif-

icant for all settings where the threshold exceeds 2%.
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Figure 3.3: Detected communities based on viral genetic distances among individu-

als within the largest transmission cluster. Nodes in the same community in each

subgraph in (a), (b), and (c) are shown in the same color. Weight specifications in
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Comparing these three weight specifications, Equation 3.1 assigns a uniform weight
for all edges, which implies larger weights for distant connections among all three
specifications. Equation 3.3 assigns more weight to shorter genetic distances and
Equation 3.4 amplifies this effect. Setting (b) is between (a) and (c) with regard to
the weighting. It is not surprising that the hypothesis testing results for (b) seem to
show some characteristics from both (a) and (c), with an insignificant result at 1.6%.

Test results across (a), (b), and (c) suggest that tests of the association between
clusters based on viral genetic and geographical distances among individuals within
the largest transmission cluster is sensitive to the specification of weights. For uniform
weights, test results show significant association, while for weights inversely related
to squared genetic distances, the results are insignificant for smaller thresholds. The
difference is explained in Figure 3.3 where communities which are detected based on
different weights are shown for viral genetic networks obtained using thresholds 1.5%,
1.6%, and 1.7%. Nodes in the same community in each subgraph are shown in the
same color, and different communities correspond to different colors. Use of uniform
weights treats all edges equally and the community detection method in this setting
focuses on finding groups of nodes which are more densely connected within each
group. Use of heavier weights on smaller genetic distances tends to favor nodes that
are more closely related even when there is an absence of an edge between them. As
weights increases from top to bottom in Figure 3.3, detected communities extend fur-

ther to include nodes that are close to them with respect to viral genetic distances.
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Figure 3.4: Hypothesis testing results for the association between clusters based on

viral genetic and geographical distances among all participants where viral genetic
clusters are defined as connected components in the viral genetic distance network.

For threshold 1.5%, no difference is observed between (a) and (b), while (c) has a
well-spread blue community. For thresholds 1.6% and 1.7%, we see expanding pur-
ple and green communities in (c). Significances of the test results are similar to those
which use other community detection methods such as spectral optimization (New-
man, 2006a).

In Figure 3.4, we conduct tests for the association between clusters based on geo-
graphical distances and clusters defined as connected components in the viral genetic
distance network. Both the permutation and the bootstrap tests are significant at the
0.05 level for all threshold values from 1.5% to 2.5%; this result suggests a strong as-
sociation of HIV clustering and geographical distance regardless of the value of the
threshold. Test results that combine across all connected components except for the

largest one are similar to those in Figure 3.4.
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3.5 DISCUSSION

In this study, we use a hypothesis testing framework to analyze the association be-
tween clusters based on viral genetic and geographical distances among individuals in-
fected by viral strains. Based on both within-cluster and cluster-wise analyses, signif-
icant associations between geographic pattern and viral genetic clusters are observed,
which in general are not sensitive to the threshold used in the construction of the vi-
ral genetic clusters. Our findings are consistent with the results reported in the litera-
ture, though from a different perspective.

There are several aspects of our findings that might be of interest to pursue in fu-
ture research. First, it would be interesting to investigate the role of different weight
specifications for both geographic and genetic networks. In our study, we explored
three different weight specifications for genetic distances. For clusters from networks
based on geographical distances, because the gravity model tends to overemphasize
model fit for shorter distances (Simini et al., 2012) in Chapter 1, the weights inversely
related to geographical distance could be further modified, or could take a more com-
plex form. For constructing viral genetic clusters from genetic distance networks, an
empirical analysis comparing community detection results obtained using different
weight specifications with structures shown in the phylogenetic tree would also be
helpful. The second aspect of the study that could be expanded concerns a thorough

phylogenetic analysis regarding the evolutionary timeline of the viral sequences and
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its relation to different divergence thresholds. Original sequencing data are needed for
this approach and to test for the validity of the molecular clock assumption (Tajima,
1993; Takezaki et al., 1995; Tamura et al., 2011). The third aspect that could be revis-
ited in future research concerns cases when there are more than one large connected
component of the transmission network. The stepdown procedure for multi-testing in
Romano & Wolf (2005) provides some potentially useful tools. However, the mono-
tonicity assumptions which guarantees preservation of type I error need to be checked

and satisfied.
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COMPUTATIONAL COMPLEXITY

Please see Figure A.1.
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Figure A.1: Computation time (in seconds) versus number of locations in the simula-
tion s. Note that the vertical axis is on logarithmic scale.

DISCUSSION ON TWO MODELS

Other models to study the impact of spatial distance on communication intensity
have been proposed in the literature, such as the radiation model (Simini et al., 2012),
which predicts commuting fluxes between locations, and the rank-based friendship

model proposed in Liben-Nowell et al. (2005), which ranks friendships based on the
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geographical distance between them. Both models reduce to Equation 1.4 with cer-
tain constraints on their parameters or assumptions. The radiation model from Simini
et al. (2012) uses the following specification

mmj
TN = T 7
< ZJ> l(mi —i—sij)(mi—i-nj -l-SZ'j)

(A1)

where (T};) is the average commuting or mobility flux from location i to j (for simplic-

ity, we denote average flux as Tj; to keep the notation consistent), T; = %; T;; is the
j#i

total number of commuters from 4. s;; is the population living in the circle centered

at the source with a radius of r;; (not including m;). Adopting this notation,

m;ng
(mi + Si]’)(mi + n; + Sij) ’

T, =T, (A.2)

Taking the logarithm yields,

log(T3j) = log(T;) + log(m;) + log(n;) — log(m; + s;5) — log(m; +nj + s45).  (A.3)

As in Simini et al. (2012), we note that Equation A.3 reduces to Equation 1.4 with
a+ 8 =1 and v = 4 when the population is uniformly distributed such that m = n
and s;; ~ ml-ri?j. The model is mechanistic and has no parameter to fit.

The rank-based friendship model in Liben-Nowell et al. (2005) is formulated as fol-

lows. Let v and v be two individuals. They define rank, (v) = [{w : d(u,w) <=
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d(u,v)}|, where d(u,w) is the distance between individual v and individual w. The

probability of u and v being friends is modeled as

1

P _
rlu — u] x rank, (0)

(A.4)

As rank, (v) =~ d(u,v)? when the the population is uniformly distributed, Equation
A .4 reduces to Equation 1.4 with m =n =1 and v = 2.

Both the gravity and radiation models are based on strict assumptions of the un-
derlying mechanism, which are hard to validate. The gravity model, which uses the
same parameters for each pair of locations, implicitly assumes a homogeneous effect
of distance for the intensity function. The radiation model addresses this issue by
modeling the intrinsic heterogeneity of the geographical distribution of population
as indicated by the incorporation of s;; in the model. However, subject to its strict
assumption and ‘parameter-free’ property, it does not allow for fluctuations of other
forms or from other sources. The rank-based model deals with the heterogeneity by
substituting distance with rank, which seems to have a similar role as the s;; in the
radiation model. Thus the rank function in Equation A.4 can be regarded as an im-
plicit function of distance and population distribution. We can make Equation A.4 a
parametric model by putting a parameter at the power of the rank, which when as-
suming population is uniformly distributed across the area, would be equivalent to

the gravity model with parameter « for the distance r;;.
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We note here that even though the rank-based approach shed some lights on the
question in which we are interested, to move from resolution at individual level to zip
code or county level requires a completely different set of assumptions. Therefore, a
rank-based gravity model cannot be seen as a simple extension from the rank-based

friendship model.
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Figure B.1: Size of the Chi-squared test and LRT under the null. Solid line: the Chi-
squared test; Dashed line: the LRT. Dots indicate the estimated p-value is not signifi-
cantly different from 0.05.
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Figure B.3: Community detection results using the spectral optimization. Nodes of
the same color belong to the same community in each subgraph. (a): T1 work inter-
actions; (b): T2 work interactions; (c): T1 friend interactions; (d): T2 friend interac-
tions. Vertex 11 is shown in larger node size.
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