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Cross-Species Analysis of RNA-seq Data, and Bias in Gene

Coexpressmn

ABSTRACT

In this dissertation, we propose methods for gene expression focused on three problems in func-
tional genomics: describing relationships between biological pathways, comparing tissues from
different species, and accounting for biases in gene coexpression.

In chapter 1, we present a pathway coexpression network that systematically quantifies and es-
tablishes a reference for high-level relationships between pathways. The method uses 3,207 microar-
rays from 72 normal human tissues and 1,330 of the most well established pathway annotations to
describe global relationships between pathways. The pathway coexpression network accounts for
shared genes to estimate correlations between pathway with related functions rather than with re-
dundant annotations.

In chapter 2, we propose a method to adjust RNA-seq expression estimates from human and
mouse tissues for differences between the genomic annotations. Previous studies using gene expres-
sion data to compare homologous genes across different species concluded that gene expression
was more similar between homologous tissues of different species than between different tissues
from the same species. Recently, the Mouse ENCODE consortium reached the opposite conclu-
sion reporting that gene expression data from humans and mice samples cluster by species rather
than by tissue. We showed that these results were driven by differences between species annota-

tion. Our method uses ortholog probes, genomic regions within human-mouse orthologs with the
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same length and almost identical sequences, to quantify gene expression data. The ortholog probes
showed that the human and mouse samples cluster by tissue rather than by species.

In chapter 3, we used a linear model framework to estimates the correlation between genes tak-
ing into account the experimental factors from gene expression data sets. The correlation based on
gene expression data has been a popular choice to describe relationships between genes. However,
interpreting these correlation estimates is challenging since they can arise from biological as well
as non-biological sources. We used a linear mixed model to quantify the influence of the variation
within experimental factors on the observed correlation, and a linear model to estimate the correla-

tion between the gene-specific effects of the experimental factors.
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The Pathway Coexpression Network:

Revealing Pathway Relationships

I INTRODUCTION

A goal of functional genomics is to understand the relationships between biological processes. Path-

ways contribute to functional interplay within biological processes through complex but poorly



understood interactions. However, limited functional references for global pathway relationships
exist. Pathways from databases such as KEGG and Reactome provide discrete annotations of bio-
logical processes. Their relationships are currently either inferred from gene set enrichment within
specific experiments, or by simple overlap, linking pathway annotations that have genes in common.
Here, we provide a unifying interpretation of functional interaction between pathways by system-
atically quantifying coexpression between 1,330 canonical pathways from the Molecular Signatures
Database (MSigDB) to establish the Pathway Coexpression Network (PCxN). We estimated the
correlation between canonical pathways valid in a broad context using a curated collection of 3,207
microarrays from 72 normal human tissues. PCxN accounts for shared genes between annotations
to estimate significant correlations between pathways with related functions rather than with sim-
ilar annotations. We demonstrate that PCxN provides novel insight into mechanisms of complex
diseases using an Alzheimer’s Disease (AD) case study. PCxN retrieved pathways significantly cor-
related with an expert curated AD gene list. These pathways have known associations with AD and
were significantly enriched for genes independently associated with AD. As a further step, we show
how PCxN complements the results of gene set enrichment methods by revealing relationships be-
tween enriched pathways, and by identifying additional highly correlated pathways. PCxN revealed
that correlated pathways from an AD expression profiling study include functional clusters involved
in cell adhesion and oxidative stress. PCxN provides expanded connections to pathways from the
extracellular matrix. PCxN provides a powerful new framework for interrogation of global pathway
relationships. Comprehensive exploration of PCxN can be performed at http://pcxn.org/.

The advancement of high throughput, high dimensional ‘omic’ technology has enabled quantifi-


http://pcxn.org/

cation of a vast array of cellular components. Inducing phenotypic changes, through mutations or
perturbations, and observing their impact on genomic, proteomic and metabolomic assays has al-
lowed us to assign roles to sets of genes and gene products *'9**°". We now appreciate that cell states
are controlled by cascades of interactions coordinated into protein complexes and pathways™*+*%,
Thus pathways have become the functional building blocks on which we base interpretation of cell
state. However, systems approaches to interpret the relationships between omic components have
focused upon development of gene based interrogation through gene-gene networks. Pathways
drive biological processes through complex and poorly understood interactions, and only limited
functional references for global pathway relationships exist. Mapping out pathway relationships is a

fundamental challenge as we strive to influence cell development and disease™*°7.

.1 PATHWAY ANALYSIS

The development of databases such as KEGG**#, Reactome'*#*# and Biocarta™s have provided
curated lists of pathway membership. These gene lists enable systematic mapping of genomic scale
data to biological processes. Gene expression profiling provides the most common basis for describ-
ing experimental changes in pathway terms. Usually, differentially expressed genes between a pair
of conditions are used to highlight enriched pathways. Well established gene set enrichment meth-
ods such as GSEA**, SAFE™, PAGE™ and GSA™%® produce lists of pathways that are significantly

181,98

enriched in an individual experiment . Gene set enrichment methods test relationships between

phenotypes and pathways. These methods test if a pathway is overrepresented in genes differentially

181

expressed between two phenotypes™ %%, The results from pathway enrichment analysis do not pro-



vide insight into the relationships between pathways because they only determine association of
each individual pathway with a particular phenotype change. Furthermore, the results are unique to
the combination of samples compared **® .

A characteristic of these approaches is that pathways are analyzed independently, the co-enrichment
of other pathways considered only insofar as necessitating multiple hypothesis testing. Significant
gene membership overlap exists between pathways; and similar but not identical names exist for
equivalent, but differently constituted, pathways in separate databases. Describing the relationships
between pathways with redundant annotations from different sources might capture high-content

210,252

similarity rather than truly related biological mechanisms . In hierarchical database structures

such as GO?, gene sets corresponding to one process may be fully contained within subset of a par-

ent process. The development of multi-set approaches such as GenGO*°

, Markov chain ontology
analysis (MCOA)”", model-based gene set analysis (MGSA)*®, and Selection via LASSO Penalized
Regression (SLPR)7° allows joint testing of pathways for enrichment. Multi-set methods alleviate
problems relating to overlap and redundancy, and multifunctional, or pleiotropic, genes that play
roles in different biological processes*°°. However, pathways are still treated as independent units
without accounting for, or determining, expression correlation arising from biological interaction.
Co-enrichment of pathways can either be a reflection of closely related functions or a consequence of

overlapping annotation. Pathways also operate in networks, and so pathway-pathway relationships

affect their constituent gene expression signatures.



1.I.2  PATHWAY NETWORKS

A natural extension to gene-centric analysis is to consider the interactions between biological path-
ways, taking into account relationships between higher level systemic functions of the cell and the
organism’?'%. The key to existing approaches for mapping pathway relationships has been recog-
nition that genes and their products interact with each other, resulting in combinations of gene
network relationships, annotation, functional or semantic classification overlaps™”%7, protein inter-

actions, and gene and network enrichment69#55187:2,51,

1.3 NETWORKS BASED ON ANNOTATION

Several methods for connecting pathways rely solely on annotation, using gene overlap to describe
the relationships between gene sets. Methods such as Onto-Express** and BINGO*® use Gene On-
tology (GO)? as their only source of curated gene sets and identify parent-child relationships of GO
gene sets of interest via gene overlap. Since these methods were developed specifically for GO an-
notations, their applicability is limited to functional annotation within this hierarchical structure.
More recent annotation-based methods such as the Molecular Concepts Maps (MCM)*?, the En-
richment Map7>*** and the Constellation Map *#' are not restricted to GO. These methods build
networks in which the nodes are gene sets and the edge weights are based on shared genes or an intra-

experiment similarity score.



1.4 NETWORKS BASED ON CURATED INTERACTIONS

Pathway interaction networks can also be defined using distance measures based on aggregating
curated gene level connections, such as protein-protein interactions (PPIs) 2% or empirically,
based on gene coexpression data®”*. Methods based on PPI such as the pathway crosstalk network
(PCN) ™ and the characteristic sub pathway network (CSPN)*° determine relationships between
pathways based on the assumption that two pathways are likely to interact if they share a significant
number of PPIs. PCN identifies pathway relationships based on the number of shared interactions
from a background PPI network to build a global network of pathway interactions™*. CSPN iden-
tifies pathway interactions for a specific phenotype by counting the number of active PPIs defined
from differentially expressed genes and a curated PPI background network®®. Methods based on
PPIs have important limitations; when two pathways share only a few PPIs between them but are
still significantly related by other interactions, their functional relationship may be missed by the
PPI approach. Moreover, these methods rely heavily on the background network structure, whose
comprehensiveness, accuracy and importantly, context, bias the results. Issues with PPIs can be al-
leviated by integrating additional sources of curated relationships. Network Enrichment Analysis
(NEA)" and CrossTalkZ'® use a background gene network that complements PPIs with GO an-
notations and a network of functional coupling? to relate pathways based on the extent of their

connectivity.



..y NETWORKS BASED ON GENE EXPRESSION

Systems approaches to interpret the relationships between differentially expressed genes have fo-
cused upon development of gene coexpression networks, where these genes are related to each other
by known coexpression in extensive large scale assays %>, These methods have been adapted to
quantify pathway correlations. For instance, the gene-set coexpression level (GSCoL) method es-
tablishes pathway interactions based on sparse canonical correlation analysis of fold change levels
derived from gene expression data®*”. The Constellation Map provides an enhanced visualization
of GSEA results, by defining a distance between pathway pairs. This distance is based on the per-
sample similarity of their enrichments across the experimental data. The similarity is based on nor-
malized mutual information rather than the correlation coefficient to capture nonlinear associations.
A limiting issue in these methods is that results are unique to the combination of samples compared,
restricting conclusions to a specific context, usually a single experiment. Also, experimental and plat-

form biases can drown out changes in biological signal >3

and complicate cross experiment com-
parison. Thus far, only limited pathway networks have been constructed and existing approaches
are not designed for creating a global reference network that can be used for discovery and mining of
pathway relationships. Public omics data archives such as the Gene Expression Omnibus (GEO)*°
and ArrayExpress* contain genome-wide gene expression data from a growing number of exper-
iments*?. These large collections of microarray data allow meta analyses on gene expression that

extend the use of thousands of data sets beyond their initial experimental design 228,552,223 Harness-

ing the scope of these repositories is increasingly being realised as a powerful tool for identifying



universal genomic features 5.,

1.1.6 THE PATHWAY COEXPRESSION NETWORK

In this work, we address the need for a consistent functional map of pathway interactions. A refer-
ence network of global relationships between pathways serves two purposes: it allows deeper explo-
ration of basic cell biology, and serves as a tool to discover novel mechanisms and targets in disease
while building testable models of pathway interaction. Our aim has been to create a network that
delineates the global relationships between canonical pathways in as broad a context as possible.

To achieve this goal, we have developed the Pathway Coexpression Network (PCxN). For each ex-
periment from a curated collection of normal human tissue microarrays™® from publicly available
experiments in GEO, we estimated the correlation between pathway summaries based on the mean
expression ranks of their gene members along with the corresponding p-value. In the presence of
shared genes between the pathway annotations, we adjusted the correlation using the mean expres-
sion ranks of the shared genes. Finally, we combined the experiment-level correlation estimates and
their corresponding p-values to determine which correlations were significant across all experiments.
PCxN significantly expands the scope of pathway methods by estimating global relationships be-
tween a wide range of curated pathway annotations, based on coexpression across an expansive gene
expression collection. The growing number of available pathway annotations from different sources
extends their coverage of biological processes. However, as pathway collections get larger and more
complex, the redundancy between the contents of the pathway annotations increases. Pathway coex-

pression based relationships are often dominated by shared genes. Thus, we have taken into account



the shared genes between pathways so the pathway relationships reflect actual related functions
rather than similarities in annotations.

Here we report how PCxN effectively captures intra-pathway relationships within known path-
ways such as the ribosome pathway. Then, we show how PCxN finds pathways associated with a
complex disease: Alzheimer’s disease (AD). PCxN determines well known pathways related to AD,
including those that influence amyloid pathology and innate immune response. Finally, we show
how use of PCxN can complement and expand the results of gene set enrichment analysis within an
AD gene expression profiling study. PCxN helps to interpret the results by describing the relation-
ships between the enriched pathways, and provides the opportunity to discover novel relationships
by revealing pathways which are highly correlated with the enrichment results. PCxN addresses the
need to describe relationships between pathways present across diverse tissues and conditions. These
relationships provide a pathway interaction model for a biologically driven phenotype, provide a
reference to prioritize targets of biological processes, and provide a powerful enhancement for in-
terpretation of results from gene set enrichment methods. We have built a comprehensive web tool
for PCxN to explore novel relationships and to aid with the interpretation of results from gene set
enrichment methods (http://pcxn.org/). In addition, PCxN is available as a Bioconductor pack-

age (http://bioconductor.org/packages/pcxn/).


http://pcxn.org/
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1.2 RESULTS

1.2.1 PCxN OVERVIEW

PCxN is a weighted undirected network where the nodes represent pathways and the edges are based
on the correlation between the expression of the pathways. We built PCxN using 1,330 pathways
from the Molecular Signatures Database (MSigDB v.5.1)*** and 3,207 human microarrays from 72
normal human tissues from GEO curated in Barcode 3.0™%4*"%. The network was created by first
ranking normalized gene expression levels to provide a uniform scale for all samples, an approach
similar to pathprint’. Ranks provide robust summary statistics to calculate expression scores that

do not depend on the dynamic range of an array*°

72, Pathways were assigned an expression sum-
mary in each array based on the mean rank of its constituent genes. Since our gene expression back-
ground is composed of several experiments representing different tissues, for each pair of canonical
pathways we estimated the correlation between their expression summaries and tested for signifi-
cance in every experiment. Then we combined the experiment-level estimates into global estimates.
Two pathways are connected in the coexpression network if the correlation coefficient between
them is significant after adjusting for multiple comparison. Our goal is to describe the relationships
between canonical pathways when their functions are related, rather than when their annotations
have similar content. The pathway correlations in the network were adjusted to account for the

shared genes between pathway pairs. If a pathway pair shares genes, we estimate the correlation be-

tween the pathway summaries conditioned on the summary for the shared genes (Figure 1.1).

10



Figure 1.1 ﬁllowingpﬂge). Pathway Coexpression Network (PCxN) Overview. (1) Human gene expression
arrays for normal human tissues curated from GEO in Barcode 3.0 (2) The gene expression levels were replaced by
their ranks so all arrays share a common scale. (3) For each microarray experiment, we first estimated the pathway
expression based on the mean of the expression ranks, then the pathway correlation adjusted for shared genes, and
tested the significance of the correlation. (4) We aggregated the experiment-level estimates to get the global pathway
correlation and its corresponding significance. (5) We built a pathway coexpression network based on the significant
pathway correlations.
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Figure 1.1. (continued)
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SIGNIFICANT CORRELATIONS WITHIN THE RIBOSOME PATHWAY

To determine how effectively PCxN captures tightly related biological functions we analysed the
ribosome pathway (KEGG accession hsaozoro). The KEGG Ribosome pathway is a gene set that rep-
resents a well characterized, meaningful and ubiquitous biological function 47?4255 We compared
the pathway correlation coefficients and the corresponding p-values estimates from permuted gene
sets generated from within the ribosome pathway with estimates from random gene sets. Since our
method accounts for the contribution of shared genes to estimate the pathway correlation, we con-
sidered cases where the gene sets shared no genes, and cases with different degrees of gene overlap.

In the no overlap case, we created ribosome gene sets by permuting the genes in the ribosome path-
way (126 genes) and splitting them into two separate gene sets. The corresponding random gene sets
were created by sampling 126 genes at random and splitting them into two. For the overlap cases, the
gene sets were split into two gene sets sharing genes. We used the overlap coefficient to describe the
overlap between gene sets represented as pathways. The overlap coefficient between two sets is the
size of the intersection divided by the size of the smaller of the two sets. Unlike other measures of
set overlap, the overlap coefficient between two sets is always 1 whenever one of the sets is a subset of
the other, and always o whenever the two sets are disjoint. A key feature of PCxN is to estimate the
correlation between gene sets taking into account their shared genes, so we decided to use the over-
lap coefhicient to describe the degree of overlap between the pathway annotations. We considered 9
different overlap cases, ranging from low overlap (overlap coefficient 0 45 = 0.0469 ) to high overlap

(overlap coefficient 045 = 0.8532).

3
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Figure 1.2.. Significant Correlations between the Ribosome Pathway and Impact of Gene Overlap. (A)
Boxplots of the correlation estimates between the Ribosome gene sets and random gene sets, and receiver operating
characteristic (ROC) curves under different degrees of overlap: no overlap, low overlap (overlap coefficient 0.0469,
AUC = 1), medium overlap (overlap coefficient 0.5517, AUC = 0.9915) and high overlap (overlap coefficient 0.8532,
AUC = 0.9528). The shape of the node in the following networks corresponds to the pathway database. For
coexpression networks, the edge color indicates the value of the correlation and edge width is proportional to the
correlation magnitude. For the overlap networks, the edge width is proportional to the overlap coefficient. (B) Pathway
coexpression and overlap network for the KEGG and Reactome annotations of the Cell Cycle and DNA Replication
pathways. These pathways have related functions and share genes between them. (C) Pathway coexpression network
and overlap network for different versions of the Wnt Signaling pathway. In the coexpression network, missing edges
correspond to correlations that are not significant. These pathway annotations are redundant and represent the same
function (D) The stacked bar plot shows the number of pathways pairs with only significant correlations in red, with
only significant overlaps in yellow, and with both in orange. The boxplots show the distribution of the correlation
coefficients with pathway pairs with only significant correlations (red) and with both significant overlaps and
significant correlations (orange). (E) Pathway coexpression network for the Reactome pathways related to the mitotic
metaphase of the cell cycle with significant correlations but no shared genes. (F) Overlap network for Reactome
pathways related to the mitotic cell cycle with significant overlaps but no significant correlations. (G) Pathway
coexpression network and overlap network for cell cycle phases and related processes from Reactome with both
significant correlations and significant overlaps.

14



The correlation estimates from the ribosome gene sets are positive while the estimates for the ran-
dom gene sets are smaller in magnitude and closer to zero (Figure 1.2A). Under the assumption that
a significant p-value for ribosome gene sets is a true positive while a significant p-value for random
gene sets is a false positive, we assessed the ability of our method to identify truly significant corre-
lation coefhicients. All the p-values from the ribosome gene sets were significant, while most of the
p-values for the random gene sets were not significant. This trend is evident in the receiver operating

characteristic (ROC) curves for the no overlap and overlap cases (Figure 1.2A).

1.2.2 ACCOUNTING FOR GENE OVERLAP

Pathway annotations from different sources present challenges when relating pathways: equiva-
lent pathways with different annotations have similar but not identical names, annotations exist
for equivalent but differently constituted pathways in separate databases, and pathways with com-

210,252

pletely different names share genes . The MSigDB canonical pathways collection is a curated

selection of pathway annotations from other databases: Reactome™°, KEGG™, the Pathway Inter-

action Database (PID)**°, Biocarta™, and the Matrisome Project™°.

PCxN AND REDUNDANT PATHWAYS

An example of pathway annotation redundancy within MSigDB includes annotations from Reac-
tome and KEGG for both the Cell Cycle and the DN A Replication pathways (Figure 1.2B). These
pathways share genes between each other because they represent the same processes, and DNA repli-

cation is a function related to the cell cycle. In the Reactome annotations, the DN.A Replication
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pathway is a subset of the Cell Cycle pathway. The pathway correlation is significant and positive for
these pathways. In other cases, there is more than one annotation for the same pathway. MSigDB
has annotations from KEGG, Biocarta, Reactome and the Pathway Interaction Database (PID) for
the Wnt signaling pathway. These annotations share genes among each other. Unlike the previous
example, the correlation estimates between the Wnt signaling pathways have a small magnitude and
most of them are not significant (Figure 1.2C). Our motivation to account for shared genes between
pathways is to assign significant correlation coeflicients between pathways representing related func-
tions and non-significant correlation coefhicients for pathways with redundant annotations repre-

senting the same function.

ImrPACT OF GENE OVERLAP

In order to understand the trade-offs resulting from discarding shared genes in estimating the corre-
lation in PCxN, we compared significantly correlated pathways with pathways where the amount
of shared genes is significant according to Fisher’s exact test. We decided to use Fisher’s exact test
because this test has been widely used to describe relationships between gene sets based on shared
genes in methods such as POSOC™ Ontologizer83, GOstats®. Furthermore, the Molecular Con-
cepts Map (MCM)?* uses Fisher’s exact test as similarity score between gene sets to build networks
for gene sets. Of all canonical pathway pairs, 19% have only significant correlation coefficients, 52%
have only significant overlaps and 29% have both (Figure 1.2D).

PCxN has an advantage over overlap based approaches when we consider pathways with related

functions but without shared genes. For example considering the Reactome pathways, the Miroric
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Prometaphase pathway describes a function related to the cell cycle, is significantly correlated with
other Reactome pathways involved in cell cycle, but does not have genes in common with them (Fig-
ure 1.2E). On the other hand, the correlation from PCxN is not significant between pathways with

a very high gene overlap even though these pathways might represent closely related functions. For
instance, pathway annotations from Reactome representing different aspects of the mitotic cell cycle
as well as other closely related cell cycle processes have a significant gene overlap with the general Cell
Cycle Mitotic pathway but are not significantly correlated (Figure 1.2F). However, some pathways
with related functions have both significant correlations and significant overlaps. For instance, we
identified Reactome pathways for mitotic cell cycle phases and related processes that are significantly
correlated and have significant overlap among them (Figure 1.2G). The APC/C CDCzo0 Mediated
Degradation of Mirotic Proteins pathway is both significantly correlated and has significant overlaps
with the Synthesis of DN A, S Phase, M/Gr Transition and G1/S Transition pathways. The ubiqui-
tin ligase anaphase-promoting complex or cyclosome (APC/C) initiates chromatid separation and
entrance into anaphase’?, and the cell-division cycle protein 20 (CDC20) is an essential regulator

of cell division that activates APC/C*7*%. The E2F Mediated Regulation of DNA Replication
pathway is significantly correlated and has a significant overlap with the Mirotic Prometaphase path-
way which in turn is significantly correlated and has a significant overlap with the G1/S Transition
pathway. The E2F family of transcription factors play a major role during the Gi/S transition in

mammalian and plant cell cycle””.
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1.2.3 CASE STUDY: ALZHEIMER’S DISEASE (AD)

With the goal of determining the value of our approach in understanding pathway relationships in
complex disease, we chose an important disease for which there is abundant transcriptomic data, es-
tablished genetic associations, and the need for better understanding of the roles of pathways and
their relationships is fundamental to the prioritisation of drugs and drug targets. AD is a progressive

multifarious neurodegenerative disorder”***

and the most common type of dementia. AD is one
of the great health-care challenges of the 21st century**>. Pathologically it is characterized by intra-
cellular neurofibrillary tangles and extracellular amyloidal protein deposits contributing to senile
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plaques™®. While the neuropathological features of AD are recognized, little is known about the
causes of the disease and no curative treatments are available**»™. We chose this disease to illustrate
how the PCxN can reveal important or even novel functional relationships underlying a complex
pathological phenotype. We performed a series of additional analyses that bring together genes that
have been identified by totally independent assays: genetic and transcriptomic surveys associated
with AD.

We used genes within an AD curated list (ADCL) as the disease gene signature. The ADCL is a
set of association-derived and experimental-derived genes related to AD. Consisting of 68 genes of
which 61 genes were present in the PCxN gene expression background (Appendix A.8). The ADCL
is the result of expert assessment of the current understanding of AD from a combination of key

genes from genome-wide association studies and from functional analyses. We integrated the ADCL

to PCxN first by estimating all the pairwise correlations between the summary for its constituent
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genes and the summaries for the canonical pathways adjusted for overlap across each experiment in
the gene expression background along with the corresponding p-values. Then, we aggregated the ex-
periment level correlation estimates and combined the p-values. Finally, we adjusted the combined
p-values from the correlations with the ADCL with the rest of the combined p-values from the cor-
relations between the canonical pathways for multiple comparison using FDR. PCxN allowed us to
identify canonical pathways significantly correlated with the curated AD gene list. The top 10 cor-
related pathways (Figure 1.3A) are all known to be related to Alzheimer’s disease or amyloid pathol-
ogy 972 7217047175:268124:37:21 and the majority of the top 25 correlated pathways (Appendix A.9) are
related to immune responses. The top correlated pathway to ADCL, GPVI Mediated Activation
Cascade, is associated with regulation of Amyloid beta (Af). GPVI and FCER1 initiate platelet acti-
vation that leads to activation of Syk. Syk enhances the formation of stress granules that are preva-
lentin AD affected brains. The stress granules produce reactive oxygen and nitrogen species that are
toxic to neuronal cells. Downregulation of Syk expression reduces A8 production and increases the
clearance of AB across the blood-brain barrier™”. Since PCxN does not rely on shared genes, PCxN
uncovers relationships that would have been missed by methods that rely only on gene overlap to de-
scribe the relationships between pathways. All of the top ten correlated pathways (Figure 1.3B) have

no genes in common with the ADCL (Appendix A.9).
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Figure 1.3. Canonical Pathways Correlated with the Alzheimer’s Disease Curated List. The ADCL s colored in
blue. Neighbors without genes in common with the ADCL are highlighted in green. The shape of the node corresponds
to the pathway database. For the coexpression network, the edge color indicates the value of the correlation and the
edge width is proportional to the correlation magnitude. For the overlap network, the edge width is proportional to the
overlap coefficient. (A) Pathway coexpression network for the top pathways correlated with the ADCL (by correlation
magnitude). All correlated pathways have established associations with AD: GPVI Mediated Activation Cascade *’, IL-3,
5 and GM-CSF signalling 2’2, Antigen Processing Cross Presentation *’°, PDGFRB Pathway 17>, Toll Pathway ?*®, Regulation
of Signaling by CBL**’, Toll-like Receptor Signaling 1>, Activation of IRF3/IRF7 Mediated by TBK1/IKK Epsilon*?*, Cell
Surface Interactions at the Vascular Wall®”, FCER1 Pathway >*. (B) Shared genes (overlap coefficient) between the top
pathways correlated with the ADCL. (C) Correlation magnitude of all canonical pathways correlated with the ADCL
sorted by the magnitude of their correlation and split in bins of increasing size. (D) Proportion of canonical pathways
enriched for the genes within the ADCL (p < 0.001, adjusted with FDR) present in the canonical pathways correlated
with the ADCL (E) Proportion of canonical pathways enriched for genes associated with AD from the Genetic
Association Database present in the pathways correlated with the ADCL (p < 0.001, adjusted with FDR). The red line
indicates the proportion of all 1,330 canonical pathways enriched for genes within the ADCL.

To explore novel insights resulting from the use of PCxN, and as a complement to enrichment
methods based on gene overlap, we compared the top ADCL correlated pathways with pathways sig-

nificantly enriched for genes in the ADCL. First, we ordered all pathways correlated with the ADCL
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(Appendix A.9) by the magnitude of their correlation and split the pathways into bins of increasing
size (Figure 1.3C). We began with a bin including the 1o most correlated pathways. Every following
bin includes 10 additional correlated pathways, so the last bin contains all pathways correlated with
the ADCL. For each bin, we calculated the proportion of pathways significantly enriched for the
ADCL. As we move across bins, the proportion of ADCL enriched pathways increases (Figure 1.3D).

Furthermore, none of the top 30 correlated pathways was enriched for genes in the ADCL.

ENRICHMENT FOR AD ASSOCIATED GENES IN ADCL CORRELATED PATHWAYS

To assess the validity of the ADCL correlation results, we tested the enrichment of genes associated
with AD in pathways correlated with the ADCL using independent methods'”*#. We assessed rela-
tionships using genetic association by retrieving genes inferred to be associated with AD from the
Genetic Association Database (updated August 18, 2014). The Genetic Association Database (GAD)
is a comprehensive archive of published genetic association studies that provides a repository of ge-
netic association by data aggregation from genome-wide association and other genetic association
studies”. We retrieved 668 genes associated with Alzheimer’s disease of which 534 are present in the
gene expression data from GEO (Appendix A.10). We used Fisher’s exact test to determine which of
the canonical pathways in PCxN correlated with the ADCL are significantly enriched for genes asso-
ciated with Alzheimer’s. The ADCL has 14 genes in common with genes associated with Alzheimer’s
in GAD, and the overlap is highly significant (p = 7.34 X 107?).

Of the top 10 pathways correlated with the ADCL, 6 out of 10 were significantly enriched with

genes related to Alzheimer’s found by genetic association. We sorted the ADCL neighbors by the
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magnitude of their correlation with the ADCL and split them into bins of increasing size (Fig-

ure 1.3C). As we move across the bins, the proportion of pathways significantly enriched for genes
related to Alzheimer’s in the neighbors of the Alzheimer’s curated list was higher compared to all

of canonical pathways; out of 1330 canonical pathways, 403 (30%) were significantly enriched af-

ter adjusting for multiple comparison using FDR and p-value cut-oft of 0.001 (Appendix A.11, Fig-
ure 1.3E). The enrichment results demonstrate a significant link between the correlation of pathways

with curated AD genes and genes found independently by genetic association with Alzheimer’.

12.4 CoMPLEMENT TO GSEA: REVEALING RELATIONSHIPS BETWEEN ENRICHED PATH-

WAYS

PCxN can be used effectively to determine relationships between pathways as a complement to in-
terpret gene set enrichment (GSE) methods. A typical GSE result is a list of gene sets that are signif-
icantly enriched by a list of query genes. PCxN can describe the relationships between the enriched
gene sets using the global pathway correlation estimates. To explore correlation between gene sets
enriched with a set of query genes, we used Gene Set Enrichment Analysis (GSEA)** to find path-
ways from the MSigDB canonical pathways collection enriched for genes differentially expressed in
an AD expression dataset (GSEs281) consisting of genes expressed in post mortem samples of AD in
the superior frontal gyrus (Appendix A.12). The expression data set consisted of 34 superior frontal

gyrus samples: 11 controls (clinically and histopathologically normal aged human brains) and 23 af-

fected with AD™ (Appendix A.13).
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Figure 1.4. Pathway Coexpression for GSEA Enriched Canonical Pathways. GSEA enriched pathways are
colored in blue, correlated pathways are yellow. The shape of the node corresponds to the pathway database, the edge
color indicates the value of the correlation and the edge width is proportional to the correlation magnitude. (A)
Pathway coexpression network for the top 10 GSEA enriched canonical pathways. (B) Hierarchical clustering using
average linkage and 1 — |PathCor\ as the distance between the top 10 GSEA enriched canonical pathways. (C)

Pathway coexpression network for the GSEA enriched pathways and their top 10 correlated pathways (by | PathCor\).
(D) Hierarchical clustering using average linkage and 1 — \PathCor| as the distance between the top 10 GSEA enriched
canonical pathways and their top 10 correlated pathways.

We chose to examine the functional relationships among the top ten enriched pathways iden-

tified by GSEA. Functionally, they all appear to be consistently associated with the AD literature
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(e.g. the PS1 Pathway role in AD**). We retrieved significant correlations between the enriched
pathways to explore their functional relationships as revealed by PCxN (Figure 1.4A). To explore

the most closely functionally related pathways, we clustered the enriched pathways based on their
correlations (Figure 1.4B). The cluster containing the highest correlations consists of pathways in-
volved in cell adhesion and oxidative stress response (Focal Adhesion, A Tetrasaccharide Linker Se-
quence s Required for GAG Synthesis, Angiopoietin Recepror and SM.AD2/3 Nuclear Pathway (Ap-
pendix A.14)). These pathways shared reported functions. Focal adhesions have been implicated in
regulating A8 signalling and cell death in AD*. As part of cell adherence to the extracellular matrix
(ECM), integrins are activated and the focal adhesion pathway is activated. The ECM/integrin/focal
adhesion pathway is involved in the regulation of anchorage-dependent cell survival. Cell adhesion
to ECM and overexpressing FAK (focal adhesion kinase), member of Focal Adbesion Pathway, is
protective against oxidative stress, which has been observed in AD brains™®. FAK also has the ability
to regulate several other cell-death or survival pathways®*°. Members of 4 Tetrasaccharide Linker
Sequence is Required for GAG Synthesis are also involved in cell adhesion, which plays an important
role in cell death/survival. Members of this pathway include neurocan and brevican, whose expres-
sion is mostly restricted to neuronal tissues***. Loss of brevican is associated with loss of synapses'7®,
while AB has been shown to increase neurocan expression in astrocytes>®. In addition to adhesion
molecules, angiopoietins (members of the clustered Angiopoietin Receptor Pathway) share function
as they are activated in response to oxidative stress. Elevated Angiopoietin-1 serum levels can be ob-
served in patients with AD?*#. The closely clustered SAM.AD2/3 Nuclear Pathway contains SMAD3

which regulates expression of angiogenic molecules in tumor cells and vascularization in tumor le-
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sions™?. SMAD:s transduce extracellular signals from Transforming Growth Factor 8 (TGFp) to
the nucleus™. SMAD3, one of the key members of the SMAD2/3 nuclear pathway, is down regu-
lated in AD*?, while TGF@ is upregulated. The imbalance between SMAD3 and TGFAR signalling,
shifts the regulatory signalling towards a dysregulated inflammatory activation potentially leading to
neurodegenerative changes, such as decreased A8 clearing .

The other top ten pathways identified in this GSEA have also been associated with AD and some
show documented functional relationships. PSr is well known as a common cause of familial AD™7.
Dorso-ventral Axis Formation has been suggested as one of the pathways regulated by miRNAs iden-
tified in a bioinformatics study of Drosophila AD models™. Notch is coexpressed with PSr and
altered in AD affected brains™, YAPr and WWTR1/TAZ mediate gene transcription induced by the
AR protein precursor and its paralogues'”. Finally, increased levels of hyperphosphorylated RB pro-

tein have been observed in AD*" indicating that neurons in AD attempt to re-enter the cell cycle*4.

2.5 COMPLEMENT TO GSEA: EXPANDED ENRICHED GENE SETS

In addition to providing relationships between the GSEA results, PCxN can provide potentially
novel relationships by retrieving canonical pathways significantly correlated with the pathways
identified as enriched. We retrieved the top 10 canonical pathways which were the most correlated
with the AD GSEA enriched gene sets, and clustered the correlated pathways along with the re-
sults from GSEA (Figure 1.4C-D). Most of the top correlated neighbors are components of extra-
cellular matrix (ECM) and form a highly-correlated cluster (Figure 1.4D) with the top correlated

GSEA pathways. The ECM components revealed by PCxN have been highly studied in relation to
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Alzheimer’s 5425917846 The ECM changes significantly during the early stages of AD"*, but only

a limited number of individual ECM components have been studied so far*?7.

1.2.6 ExpPLoRING PCxN

We created a user-friendly webtool (http: //pcxn.org) that can be used to interactively explore
and visualise pathway relationships found in PCxN. The tool allows a user to query the various
pathway databases using one or more pathways and retrieve correlation estimates, p-values and over-
lap coefhicients. Since the correlations adjusted for shared genes are a complementary perspective

to relationships based on gene overlap, the webtool also provides the option to view coexpression
networks based on correlation coefficients not adjusted for shared genes in addition to the PCxN
coexpression network that is based on the adjusted correlation. The results are presented through
heatmaps (which also offer clustering of pathways), interactive networks (with multiple pre-made
structures) and data tables. Pathway members are also retrievable along with their descriptions. In
addition, PCxN is available as Bioconductor software (http://bioconductor.org/packages/
pcxn/)and data(http://bioconductor.org/packages/pcxnData/) packages which contain

the same exploratory/visualization functionality and data as the webtool.

1.3 DiscussioN

We have developed and described PCxN, a coexpression method to describe global relationships be-
tween pathways. PCxN estimates the correlation between 1,330 canonical pathways using a curated

collection of 3,207 microarrays in 134 experiments from 72 normal human tissues. We integrated a
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wide range of experiments by estimating the correlation between summaries of the pathway expres-
sion, testing their significance in every experiment, and then aggregating the experiment-level esti-
mates into global estimates. We used gene sets derived from permutations of the Ribosome pathway
(KEGG) and random gene sets to show that PCxN effectively captures relationships between gene
sets with related functions while discarding relationships from random gene sets. The correlation es-
timates between the ribosome gene set were positive and significant, while the correlation estimates
for random gene sets were not significant and with a magnitude close to zero. These results suggest
that the correlation between two pathways with related functions is significant.

The influence of redundant annotations across pathways databases is often overlooked. Pathway
databases often include pathways that share genes with one another to varying degrees. Shared genes
between pathways can either be a consequence of closely related functions or redundant annotation
from different sources. Ignoring such redundancies during pathway analysis can lead to identifying
pathways relationships due to high content-similarity, rather than truly related biological mecha-
nisms. PCxN adjusts the correlation between pathways by conditioning on the shared genes. The
correlations between redundant annotations for the Wt signaling pathway had a small magnitude
and were mostly not significant. When pathways share genes due to related functions, the correla-
tions between them might be significant depending on the degree of the overlap. For instance, we
found pathways for mitotic cell cycle and related processes that were significantly correlated and had
significant overlaps between them. The significant correlations and significant overlaps between
these pathways revealed known relationships between ADC/C, CDCz0 and the E2F family of tran-

scription factors with the mitotic cell cycle. However, the correlations between a different set of
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pathways representing other aspects of the mitotic cell cycle, such as the Mirotic Cell Cycle and the
Gr1 Phase pathways and related processes, such as the Recruitment of Mitotic Centromere Proteins
and Complexes, were not significant while the overlap was highly significant. PCxN was successful
in uncovering relationships between the Mitotic Prometaphase pathway and other cell cycle related
pathways such as the G2/M Checkpoints and the S Phase that do not have genes in common.

PCxN provides powerful means to generate models for complex diseases by providing pathways
significantly correlated with an assay-independent disease gene signature. We used PCxN to iden-
tify key processes related to Alzheimer’s disease (AD) using an AD curated list (ADCL). The top
pathways correlated with the ADCL have known relationships with AD or amyloid pathology. Fur-
thermore, the correlated pathways were significantly enriched for genes associated with AD inde-
pendently derived from genome wide association studies. These results show the value of PCxN in
finding biological processes associated with complex diseases using gene signatures. PCxN provides
a powerful contribution to the interpretation of the gene set enrichment methods by describing
the relationships between enriched pathways independent of gene overlap. We used PCxN to de-
scribe the relationships between pathways identified as enriched by GSEA in a published microarray
gene expression experiment profiling the effect of AD in the superior frontal gyrus. We expanded
the scope of gene set enrichment results by retrieving pathways correlated with the enriched path-
ways. The top pathways correlated with the enriched pathways are components of extracellular
matrix (ECM) and form a highly correlated cluster. We note that the ECM undergoes significant
changes during the early stages of AD, but only a few ECM components have been studied. The

relationships between the ECM pathways from PCxN could provide leads to future studies of the
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individual ECM components.

PCxN relies on the completeness and correctness of pathway annotations to relate biological
processes. Also, PCxN only considers a pathway as a gene list, omitting any knowledge of the inter-
action between its members. PCxN is also limited by the gene expression data used to estimate the
correlations. The current implementation only uses one microarray platform and a curated expres-
sion background. It is widely accepted that pathway activation is phenotype dependent. Using the
PCxN approach it will be possible to explore whether pathway-pathway relationships change in re-
lationship to a phenotype, or if consistent functional links prevail irrespective of cell state. Further
work is required to investigate how network topology changes with expression background, and in
particular into whether pathway networks are significantly disrupted in disease. This implementa-
tion of PCxN does not take advantage of the growing number of publicly available RNA-seq data.
In future, the method will be expanded to include a wider range of pathway annotations and to use
gene expression data from other platforms such as RNA-seq.

PCxN establishes the utility of describing relationships between pathways in a broad context.
By using a diverse set of gene expression experiments, PCxN leverages correlation estimates across
various human tissues effectively capturing relationships regardless of shared genes. We expect that
PCxN can serve as a basis for a high-level map of the relationships between biological process. We
built an interactive web-tool that provides a user-friendly portal to explore the PCxN at http:
//pcxn.org/,as well as a Bioconductor software (http://bioconductor.org/packages/

pcxn/)and data (http://bioconductor.org/packages/pcxnData/) package.
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1.4 MATERIALS AND METHODS

.41 Data COLLECTION

GENE EXPRESSION DATA RETRIEVAL

We used 134 experiments with 3,207 Affymetrix Human Genome U133 Plus 2.0 microarrays from 72
normal human tissues manually curated in Barcode 3.0"% (Appendix A.s). The curated microarrays
in Barcode 3.0 were filtered to exclude poor quality samples™®”*°. We used the R package GEO-
query® to retrieve raw CEL files from the Gene Expression Omnibus (GEO)®. We processed the
raw data with fRMA™. We obtained the annotation for the array platform from?®. To resolve re-
dundancies, multiple probes were mapped to unique Entrez Gene IDs by their mean expression

level.

PATHWAY ANNOTATIONS

We retrieved the C2: Canonical Pathways collection from MSigDB** (vs.1 updated January 2016,
Appendix A.6). The canonical pathways collection from MSigDB is a curated selection of path-

way annotations from other databases: Reactome’®°®

, Kyoto Encyclopedia of Genes and Genomes
(KEGG)™, the Pathway Interaction Database (PID)**°, Biocarta™, the Matrisome Project™°, the
IUBMB-Sigma-Nicholson Metabolic Pathway Charts™*, UCSD Signaling Gateway'?, Science’s Sig-

nal Transduction Knowledge Environment®, and the annotation for a Wnt Signaling Pathway PCR

array from QIAGEN (Table r.1).
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Table 1.1. Pathway Annotation Sources for MSigDB Canonical Pathways Collection.

Source Pathways
Reactome 674
Biocarta 217
Pathway Interaction Database 196
Kyoto Encyclopedia of Genes and Genomes 186
Science’s Signal Transduction Knowledge Environment 28
Matrisome Project 10
IUBMB-Sigma-Nicholson Metabolic Pathway Charts 10
UCSD Signaling Gateway 8
QIAGEN I

Sources for the pathway annotations in MSigDB Canonical Pathways collection.

1.4.2 EXPERIMENT-LEVEL ESTIMATES

Since the microarrays from the gene expression background belong to different experiments rep-
resenting different tissues, pooling the microarrays to estimate the correlation between pathways
would ignore the underlying structure of the data. Even if the correlations are homogeneous, pool-
ing the data is not a valid procedure in general. The pooled estimates may be severely biased due to
the heterogeneity of the experiments>*". Instead of pooled estimates, we first estimated the pathway

correlation coefficients and their corresponding p-values for each experiment, and then we com-
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bined the experiment-level estimates into global estimates.

1.4.3 PATHWAY EXPRESSION

We represent an experiment with L samples as the K x L matrix X where Kis the total number of
genes in the array. Thus, the element xy; of the matrix X corresponds to the expression for gene £ in
array [. For each array, the genes were ranked by their expression level. Rank normalizations do not

depend on the dynamic range of an array and provide a common range.

arrays arrays
X X1z XL RII RIZ T RIL
Xox X2zt XaL Ry R, -+ Ry
genes — genes
Xk XK2 " XKL Rxi Rk -+ Rrp

We represent the expression ranks as the K X L matrix S, where L is the total number of arrays and K
is the total number of genes in the array. Since within each array the genes are ranked by expression
level, from 1 (low expression) to K (high expression), the entries of the matrix S are

Sp = rank
kl ISZSL(XH)

where xp; is the expression level for gene k in array /.
In this approach pathways are represented as gene sets: groups of functionally related genes.

Thus, a pathway is represented by its gene set annotation G = {g, ..., g }. The pathway expres-
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sion £'is a gene set summary statistic based on the expression ranks of the pathway genes; the path-

way expression £ is the mean of the expression ranks of the pathway genes.

i arrays
RII RIZ e RIL
RZI Rzz e RZL
Mean Ranks
genes ' ' ' — | E, E, --- Ep
Rm an RnL
Rii Rk, -+ Rrr

Consider an experiment with L samples, the experiment-level summary for pathway G is given by

the L x 1vector E with entries

E=~ S

266G

To calculate E, first we take the rows from S corresponding to the genes {g;, . . ., g, } to get the ma-
trix of ranks of the pathway constituent genes, and then we take the mean across the columns of this
matrix, producing the L X 1 vector E.

Compared to other summary statistics, the mean is fast to compute and easy to interpret. We
considered several approaches for the pathway summary statistic, but we found that in most cases

the mean performed well. For instance, we considered a summary based on principal components
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analysis (PCA) but the variance explained by the first principal component was less than s0% for all
canonical pathways in the majority of the gene expression experiments from the curated collection

of normal human tissues (Appendix A.2).

1.4.4 PATHWAY CORRELATION

SHRINKAGE ESTIMATOR

We used a shrinkage estimator to compute the experiment-level pathway correlation coefficients. In
our setting, a shrinkage estimator will give more reliable experiment-level correlation estimates for
experiments with few samples and will set correlation coefficients with a small magnitude to 0>
The shrinkage estimator R* is a linear combination of the standard correlation estimator R and a

restricted submodel of the correlation matrix
R =AT+ (1—XMNR

where o < A <1, Ris the empirical correlation matrix and 7'is identity matrix.
The restricted submodel 7T assumes that all of the variables are uncorrelated. The optimal A is
found by minimizing the mean squared error L(A) between the shrinkage estimator R* and the true

correlation matrix P.

pp
L) =R =Pz = AT = (= N)R=Pllp =YD (At + (1= A)r — g,)°

i=1 j=1
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The analytical solution A* for the optimal A
A* = argmin L(A)

is guaranteed to exist and minimize the mean squared error L(A). The solution®” is given by

" Zk;ézvaf(’kl)
Ne="—""F——
Zk;ﬁz’iz

GENE OVERLAP

Since genes can be involved in more than one biological process and often pathways share genes,
we accounted for the gene overlap between pathways to determine the coexpression between two
pathways. Our goal is to describe relationships between patwhays representing related functions
rather than pathways with similar annotations. For pathway 7 with gene set G; and pathway j with

gene set Gj there are two possible cases for shared genes: the gene sets overlap or do not overlap.

NoN-OVERLAPPING GENE SETS

First we calculated the expression summary E; and E; for pathways i and j respectively. Then, we
estimated the pathway correlation as the Spearman correlation between the two pathway expression

summaries
PathCor(i, /) = cor(E;, Ej)
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OVERLAPPING GENE SETS

Our approach to deal with overlapping pathway gene sets was to condition the correlation between
the summaries for the pathways G; and G; on the summary for the genes common to both pathways
(Ginj = G;iN G)).

First, we calculated the summaries £;,E; , and Ejn; corresponding to pathway G; , pathway G; and
the shared genes G . Then we estimated the partial correlation between the pathway summaries

conditional on the summary for the shared genes

PathCor(i, /) = cor(E;, Ej| Eiry)

HyroTHESIS TESTING

We used a t-test to determine which experiment-level correlation coefficients were significantly dif-

ferent from o.

H, : PathCor(7,7) = o H, : PathCor(i,j) # o

For the correlation coefficients between pathways without shared genes, the t-test is given by
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where 7 is the experiment-level correlation estimate.

For the correlation coefficients between pathways with shared genes, the t-test is given by

where 7 is the experiment-level conditional correlation estimate.

1.4.5 META-ANALYSIS ESTIMATES
HUNTER-SCHMIDT ESTIMATOR

We used the experiment-level correlation estimates to compute the overall correlation between two

gene sets with a weighted average

where 7; is the number of samples for experiment 7, 7; is the correlation estimate for experiment £
and N is the total number of experiments?.
LIPTAK P-VALUE AGGREGATION

Since we estimated the correlation coefficients at the experiment level, we first obtained a p-value
from each of the experiments by testing if the experiment-level correlation was significant. In order

to determine the significance of the overall correlation coefficient we combined the p-values from
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each experiment using Liptak’s method#*™#°. The combined p-values across all experiments are

given by

where

@ is the standard normal probability density function, @ is the standard normal inverse cu-
mulative distribution function, #; is the number of samples for experiment 7, p; is the p-value for
experiment Z and N is the total number of experiments.

After aggregating the experiment-level p-values for all pathway pairs, we adjust the combined

p-values for multiple comparison using the Benjamini~Hochberg FDR method .

1.4.6 OVERLAP COEFFICIENT

The overlap coefficient is a similarity measure for the overlap between two sets. For two sets G and

H, the overlap coefficient is given by

[GN A
min{|Gl, [H]}

O0GH —
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where o < ogy < 1. The overlap coefficient is simply the size of the intersection divided by the size
of the smaller of the two sets. We chose the overlap coefficient instead of other measures of overlap
like the Jaccard index because it highlights whenever a pathway is a fully contained within another
pathway. If a set G is a subset of H, the overlap coefficient is always 1. On the other hand, if the sets

G and H are disjoint, the overlap coefficient is always o.

1.4.7 RiBosSOME GENE SETS

The annotation for the Ribosome pathway was retrieved from the KEGG REST server using the
KEGGREST package (v. r.10.1) 727%™ W ran 1000 iterations for the no overlap and each overlap

case using gene sets derived from the ribosome pathway annotation and random gene sets.

No OveErLAP CASE

For the no overlap case, the KEGG Ribosome pathway was split in half. The ribosome pathway
annotation, composed of 126 genes, was split into two non overlapping gene sets with 63 genes each
with the following steps

1. Permute indexes of the genes belonging to the ribosome pathway

2. Split the gene set into two non overlapping gene sets 4 and B

3. Calculate the pathway summaries £4 and Ep for gene sets .4 and B respectively

4. Calculate the pathway correlation using the pathway summaries £,4 and Ep

For the random gene set, we sampled 126 genes present in the gene expression background, and

split them with the following steps
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1. Sample 126 genes from the background
2. Split the genes into two non overlapping gene sets 4" B” with 63 genes each
3. Calculate the pathway summaries £, and E} for gene sets 4" and B’ respectively

4. Calculate the pathway correlation using the pathway summaries £7, and E%

OVERLAP CASES

We created representative cases of gene overlap between two gene sets. In particular, we created two
overlapping sets s; and s, from 7 distinct elements. In the first step, the two sets s; and s, share all but
one element. In each consecutive step, we shift the indexes of one of the sets to decrease the number
of shared elements between 5, and s, until the last step when the two sets s; and s, do not have any

elements in common.
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Step1

Step 2

Step 3

Step 4

Stepn

s={L2,...,(n—1)}
jzz{i,...,(}’l—l),}’l}
—_
s={n2,...,(n—2)}

s=1{152,3,...,(n—2)}

-"z:{ .,(7’1—2),(7’1—1),7[}

3,
A

s={1,...,(n—[n/2])}
s, ={(n—[n/2]+1),...,n}

In order to consider different scenarios for the amount of shared genes between pathways, we

built 9 different configurations of overlapping gene sets. These 9 overlap cases ranged from low

overlap ( 045 = 0.0469) to high overlap (045 = 0.8532).
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For the overlap cases, we split the KEGG Ribosome pathway was split into overlapping gene sets.

1. Permute indexes of the genes belonging to the ribosome pathway.
2. Split the gene set into two overlapping gene sets .4 and B.

3. Get the shared genes .4 N B between sets A4 and B.

4. Calculate the pathway summaries £ 4, £, and E 4.

5. Calculate the partial correlation between the summaries for the genes sets .4 and B, condi-

tional on the shared genes £ 4.

For the random gene sets, we sampled 126 genes present in the gene expression background and
then split them into overlapping gene sets.
1. Sample 126 genes from the background.
2. Split the gene set into two overlapping gene sets 4" and 5" .
3. Get the shared genes 4" N B between the gene sets 4" and 5.
4. Calculate the pathway summaries £ 4, Ep and E ynpr.

5. Calculate the partial correlation between the summaries for the genes sets 4" and 5", condi-

tional on the shared genes £ 4np.

ROC CuUrves BASED ON P-vVALUES

We generated a set of p-values based on the random gene sets and another set of p-values based on
the ribosome gene sets. Assuming that a significant p-value for ribosome gene sets is a true posi-

tive while a significant p-value for random gene sets is a false positive, we assessed the ability of our
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method to identify truly significant correlation coefficients (Table 1.2). We used different p-value
cut-offs for significance to build a receiver operating characteristic (ROC) curve.

Table 1.2. Confusion Matrix for the Ribosome and the Random Gene Sets.

Ribosome Gene Set | Random Gene Set

Significant True Positive (TP) | False Positive (FP)

Not significant | False Negative (FN) | True Negative (TN)

Assignment of true positive (TP) and false positives (FP) based on the different p-value

cut-offs for significance from the ribosome and the random gene sets.

1.4.8 SIGNIFICANT PATHWAY OVERLAP

We used Fisher’s exact test to identify significant overlaps between all pathway pairs. For pathway
with gene set G; and pathway j with gene set Gj, we used a contingency table based on their shared

genes to perform an one-sided Fisher’s exact test (Table 1.3).
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Table 1.3. Contigency Table for Shared Genes between Pathways.

Genesin G; | Genesin G}

Genes in G] Gi N G] Gf N Gj

Genesin G} | G;iN G} GiNG;

The contigency table splits the gene sets of pathways 7 and j into four disjoint sets. The
shared genes between the two pathways, G; N G;, the genes unique to pathway 4, G; N G]‘-,
the genes unique to pathway j, Gi N Gj, and the genes that do not belong to either pathway

iorj,GfﬂG]?.

Then we adjusted the corresponding p-values for multiple comparison using FDR, and consid-

ered an overlap significantif p < o.0s.

1.4.9 PCxN WEBTOOL AND BIoCONDUCTOR PACKAGES

The PCxN webtool is available at http: //pcxn.org/. The webtool was built using open source
software and libraries. The back-end of the website was developed using JSP(JavaServer Pages)
powered by a Tomcat (http://tomcat.apache.org/, version 7.0.52) HTTP-server. MySQL
(https://www.mysql.com/, version s.5.46) was used to manage a relational database contain-
ing pathway correlation coefficients. The front-end user interface was developed using HTML and
specialized libraries. The Jquery.js library (http://jquery.com/, version 2.1.1) was used to han-

dle events. The canvasXpress.js library (https://canvasxpress.org/, version 13.5) was used to
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build heatmaps. The cytoscape.js library (http://js.cytoscape.org/, version 2.7.11) was used
to build networks. PCxN is also available through Bioconductor as two distinct but interacting R

packages. The pcxn package (http://bioconductor.org/packages/pcxn/) contains explo-
ration and visualization wrapper functions that use data matrices stored in the pcxnData package

(http://bioconductor.org/packages/pcxnData/).
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2

Cross-Species Analysis of Gene Expression

Data
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2.1 INTRODUCTION

2.1.1 MOUSE AS A MODEL ORGANISM

For decades the mouse has been the most widely used organism to model human physiology and

disease **

. Despite the divergence of mice and humans from a common ancestor approximately
90 million years ago, mice have close evolutionary affinities with humans®>. On average, the pro-
tein coding regions of the human and mouse genome are 85% identical ***. Furthermore, mice
have numerous properties that facilitate their handling relative to other mammals and vertebrates.
Mice have fast reproduction, short life spans, are inexpensive, easy to handle and can be manipu-

1%°. Hence, the mouse has been used as an animal model in biomedical

lated at the molecular leve
research to study mammalian development, disease, and to test drugs for over 5o years>47:24%:39:¢,
Under the assumption that if two proteins have similar sequences they share similar properties and

functions 26138

, common functions and the elements of the genome that encode them are conserved
and comparable between humans and mice. Despite great progress in understanding the genetics,
anatomy and physiology of the mouse, the attrition rate of compounds tested in Phase II clinical

trials is still high [s], evidencing the lack of a comprehensive knowledge of the molecular differences

between mice and humans that limit the translation of mouse studies to humans*®.

2.1.2  ORTHOLOGOUS GENES

To compare the gene expression data between different species, genes across different species have

to be matched and paired based on shared ancestry. A homolog is a gene inherited in two species by
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a common ancestor *#74, There are two fundamentally distinct types of homologous relationships
between genes according to their mode of descent from their common ancestor: orthologs and par-
alogs®»%. Orthologs are genes in different species that have evolved trough speciation events only
while paralogs arise by duplication events®*74°4. The definition of orthologs is formally based on
evolutionary criteria, but is often taken to imply functional conservation”>*7-*4*, The assumption
of conserved function between orthologs has been supported even between relatively distant species,
by observations of conserved phenotypic effects when orthologs were subject to knock-in exper-

iments ®%%° or in sity 2°%2

, clarifying the role of genes involved in human diseases. On the other
hand, duplication makes room for paralogs to evolve new functions in paralogs 88 Therefore, genes
are usually paired by orthologs to compare gene expression profiles across different species.
Methods to identify orthologs can be classified as similarity-based methods and phylogeny-based
methods®. Similarity-based methods are based on the bidirectional best hit (BBH) assumption.
The BBH assumption is that if a certain function is required in two different species, it is most likely
that this function is carried out by the pair of the most similar genes from these two species in terms
of sequence similarity7#%49%>42_ On the other hand, phylogeny-based methods try to reconcile in-

ferred relationships between genes based on sequence similarity with phylogenetic trees that describe

the evolutionary relationships between different species 64,

2.1.3 GENE EXPRESSION COMPARISONS ACROSS SPECIES

Phenotypic differences between species are often driven by evolutionary adaptations in gene expres-

sion. However, many developmental programs are deeply conserved across species. Gene expression
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comparisons among homologous genes across vertebrate species and tissues have been explored
using microarrays'®”"#*%® and RNA-seq*#"7>". All of these early studies concluded that gene ex-
pression was more similar between homologous tissues of different species than between different
tissues of the same species. These results have been interpreted as a reflection of evolutionarily con-
served transcriptional programs driving the production of major proteins that define specific tissues
such as heart, lung or liver****. Furthermore, these results support the assumption that vertebrate
animal models, such as mouse, serve as useful models of the physiology of specific human organs
despite millions of years of evolutionary divergence.

Early gene expression comparisons between human and mouse tissues were very challenging since
the gene expression was measured with a different platforms for human and mouse samples. In
2005, Yanai et al. analyzed human and mouse gene expression microarray data from different tis-
sues and concluded that “any tissue is more similar to any other human tissue examined than to its
corresponding mouse tissue”**®. Two follow-up papers showed that platform-specific variability

141,262 The results from Yanai et al. suffered

was driving the observed differences between species
from a serious confounding issue, the gene expression was measured using different platforms for
human and mouse samples. The gene expression for the human samples were measured using the
Aftymetrix GeneChip Human Genome UgsA while the mouse samples were measured with the
Aftymetrix GeneChip Mouse Genome U74A. Therefore, the observed differences between human

and mouse tissues could be due to technical differences between the two different microarray plat-

forms rather than actual differences between the two species™.
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Figure 2.1. Probe Effects in Microarrays. Probe effects can result in clustering by species. Raw gene expression
values for neurotransmitter receptor genes for several publicly available human and mouse microarray samples. Box
plots for the (A) human gene GRIA2 (glutamate ionotropic receptor AMPA type subunit 2) raw expression values from
several human tissues, and for the (B) mouse gene Gria2 (glutamate receptor, ionotropic, AMPA2 (alpha 2)) from
several mouse tissues. (C) Density estimator for the distribution of the raw expression values. As expected, these
genes appear to be expressed mainly in the brain samples. Note the overall expression levels for the rest of the tissues
are higher in the mouse samples. This may be because the probes used in the mouse microarray have higher affinity
levels not due to higher expression levels in mouse tissues.

Microarrays measure gene expression using single stranded DNA molecules, referred to as probes,
that hybridize to specific DNA sequences that are proportional to the RNA transcripts in the sam-
ples being assayed‘“. However, it is well known that the sequence of these probes greatly affects the
observed measurement®*'°°. Different types of microarrays are used to measure gene expression
from different species, and these use different probes to measure homologous genes. As a result, ex-
pression levels that are the same in mouse and human samples can result in substantially different
measurements due only to the difference in probe sequence (Figure 2.1). McCall et al. demonstrated
that if one accounts for probe effects, the distance between different tissues from the same species

was much larger than to their corresponding tissue across species™®.
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Figure 2.2. Hierarchical Clustering of ENCODE Data Set. Dendrogram for the ENCODE data set based on
euclidean distance and complete linkage. The color corresponds to species ( , ).

The ENCODE consortium collected RN A-seq data from 13 tissues from human and mouse. Un-
like the previous studies with microarrays, the ENCODE consortium used the same platform, RNA-
seq, to measure the gene expression for both species. The ENCODE consortium concluded that dif-
ferent tissues within the same species are more similar in gene expression than homologous tissues in
different species™** (Figure 2.2). They acknowledged that this result is somewhat unexpected since
previous comparative studies reported that gene expression was more similar between homologous
tissues of different species than between different tissues of the same species. The ENCODE con-
sortium proposed that previous studies might have been biased focusing on a few specialized tissues
expressing mostly tissue-specific genes, while the overall pattern supports less tissue specificity.

Despite using the same platform to measure gene expression for both species, Gilad et al. showed

that the RNA-seq data from the ENCODE consortium were collected using a sequencing design
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which confounded the assignment of sequencing flowcells and lanes with species”® (Table 2.1).

Table 2.1. Sequencing Design for the ENCODE Data Set.

D87PMJNi1:253 D87PM]JNr1:253 D4LHBFN1:276 MONK:312 HWI-ST373:375
D2GUAACXX:7 D2GUAACXX:8 C2HKJACXX:4 C2GR3ACXX:6 C3172ACXX:7

The color corresponds to species ( , ). The labels for each
sequence batch are ordered as  [machine]: [run]:[flow cell]:[lane]

Even with the confounded design, Breschi et al. reported that restricted to five tissues (brain, liver,
kidney, heart, and testes), the observed clustering is by tissue and not by species®. Furthermore,
Breschi et al. analyzed matched samples from six homologous organs (brain, liver, kidney, heart,
cerebellum, and testis) in seven vertebrate species (chicken, chimpanzee, human, mouse, opossum,
platypus, rhesus)™ using a linear model to quantify the amount of expression variation that origi-
nates from variation across tissue and from variation across species. More than 70% of the variance
in gene expression can be explained by either organ or species; the contribution of organ (41%) being
larger than the contribution of species (31%) consistent with the observed global dominated tissue-
dominated clustering. Sudmant et al.?* conducted a meta-analysis of four datasets, including the re-
sequenced ENCODE data set, encompassing s homologous tissues from 11 vertebrate species *#'72'44,
supplemented by st human tissues sequenced by the GTEx consortium #*. Sudmant et al. concluded

that the majority of samples clustered with homologous tissues of different species rather than with
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different tissues of the same species. This observation is consistent with the idea that many develop-
mental gene expression programs are conserved across mammals and supports the utility of rodents
as models of human tissue physiology. The ENCODE consortium argued that these 5 tissues express
a high number of tissue specific genes. Furthermore, the ENCODE consortium reported clustering
by tissue if the data set restricted to these 5 tissues'#*. However, the clustering was by species if they

included all 13 tissues.

Table 2.2. Sequencing Design for the Resequenced ENCODE Data Set.
D93Z3NS1:226 D93Z3NS1:226 D93Z3NS1:226 HWI-ST689:310
C7sWFACXX:2 C7sWFACXX:3 C7sWFACXX:4 C7764ACXX:6

The labels for each sequence batch are ordered as  [machine]: [run]:[flow
cell]:[lane] . The color corresponds to species ( , )-

Since the confounding of the sequencing design with species was near perfect in the ENCODE
data set, we cannot determine if the observed differences between human and mouse samples is due
to differences between species or due to differences between sequencing batches. The ENCODE
consortium repeated a smaller version of the experiment described in the original PNAS paper'#*.
In the revisited experiment, the new experimental design does not confound the assignment to se-
quencing flowcells and lanes with species (Table 2.2). Lin et al. argued that their original result was

not due to sequencing batch since in the resequenced data the samples separated by species (Fig-
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ure 2.3).

Figure 2.3. Hierarchical Clustering of Resequenced ENCODE Data Set. Dendrogram for the ENCODE data
set described by Lin et al based on euclidean distance and complete linkage. The color corresponds to species (

, ).

The observed differences in gene expression between human and mouse tissues reported by Lin
et al. were driven by differences between the human and mouse annotations. The human and
mouse annotations used to quantify gene expression have important differences confounded by
species. First, we provide an overview of the differences between the human and mouse annotations.
Then we show the impact of the differences between the human and mouse annotations on the ob-
served differences in gene expression. In order to account for the differences between the species an-
notations we propose using ortholog probes, genomic regions within the human-mouse orthologs
with the same length and almost identical sequence, to quantify gene expression. In general, the
gene expression estimates based on the orthologs probes are more similar between homologous tis-

sues from different species than between different tissues from the same species. Then, we identify
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differentially expressed orthologs between human and mouse tissues using the gene expression es-
timates from the ortholog probes and corroborating with microarrays. Finally, we show that the
observed differences in histone marks, an independent assay, between human and mouse tissues are

driven by the difference in number of annotated transcripts per gene.
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2.2 REsurts

2.2.1

DiI1FFERENCES BETWEEN HUMAN-MOUSE ORTHOLOGS
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Figure 2.4. Protein vs Nucleotide Similarity. Scatter plot
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of protein vs. nucleotide similarity between the

modENCODE human-mouse orthologs. The grey line is the identity line, and the red line is the LOESS fit regressing the

nucleotide similarity on the protein similarity. Histograms of p
modENCODE human-mouse orthologs.

rotein and nucleotide similarity between the

The modENCODE phylogenomics approach to identify the human-mouse orthologs relied on the

alignment of the longest protein translation for each

when it comes to protein-coding genes, mice are 85%
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human and mouse gene pair**. On average

similar to humans*7*%°. However, RNA-seq



relies on nucleotide sequences rather than protein sequences to quantify gene expression. We ob-
served differences between the protein similarity and the nucleotide similarity between orthologs
(Figure 2.4). The distribution of protein similarity skewed towards higher values (mean =0.8587,
median=0.8848) compared to the distribution of nucleotide similarity (mean = 0.8143, median =
0.8144). The observed differences reflect the rapid accumulation of nucleotide changes in synony-

mous (third base) codon sites followed by a slower mutation rate in non-synonymous sites™”
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Figure 2.5. Differences between Human and Mouse Orthologs. Boxplots for the length of the union of
transcript exons in base pairs, the number of annotated transcripts per gene, and the GC-content of the union of
transcript exons for the human (in red) and the mouse (in blue) orthologs.

Despite the high average nucleotide and protein similarity between human and mouse orthologs,
these genes have important differences. Human genes on average (5,100 bp) are longer than mouse
genes (4,200 bp), have more annotated transcripts per gene on average (8 transcripts) than mouse
genes (4 transcripts), and have different GC-content than mouse genes (Figure 2.5). These differ-
ences are likely to impact the relationships between the human-mouse orthologs. For instance, con-

served proteins tend to be longer than non-conserved ones™>77.
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Figure 2.6. Transcript Annotation vs. Ortholog Similarity. (a) Proportion of human-mouse ortholog pairs
where both have more than one annotated transcript binned by ortholog similarity measured as the protein sequence
similarity between orthologs. (b) Number of annotated transcripts from human-mouse ortholog pairs with the same
number of exons binned by ortholog similarity measured as the protein sequence similarity between orthologs.

The number of annotated transcripts is related with ortholog similarity and the number of anno-
tated transcripts, and with the number of exons as previously described by Morata et al. 77. As the
ortholog similarity increases, the number of ortholog pairs where both genes have more than one

annotated transcript increases. Also as the ortholog similarity increases, ortholog pairs have more

annotated transcripts with the same number of exons (Figure 2.6).
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2.2.2

SPECIES EFFECT CORRELATED WITH DIFFERENCES BETWEEN ORTHOLOGS

Species Effect (r,=0.1475, r;=0.1553)
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Figure 2.7. Species Effect vs. Differences between Orthologs. The species effect is the observed difference in
means between the human and mouse normalized FPKM values from the resequenced ENCODE RNA-seq data set. (a)
Absolute value of the species effect binned by the protein similarity between the human-mouse orthologs. In the
following boxplots, 7p denotes the Pearson correlation coefficient and 7; denotes the Spearman correlation coefficient.
Species effect binned by (b) the differences in the logm lengths of the union of transcript exons, (c) the difference in
number of annotated transcripts, (d) the difference in GC-content of the union of transcript exons between the human

and mouse orthologs.
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The species effect, the observed differences in expression between the human and mouse tissues, is
correlated with the differences between the human-mouse orthologs. We used the FPKM values pro-
cessed by Lin et al. for the resequenced ENCODE RNA-seq data set to estimate the species effect.
The magnitude of the species effect decreases as the similarity between the orthologs increases (Fig-
ure 2.7). Moreover, the species effect is positively correlated with differences in length, number of

transcripts, and GC-content between the human-mouse orthologs (Figure 2.7).
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2.2.3 ACCOUNTING FOR DIFFERENCES BETWEEN ORTHOLOGS REDUCES SYSTEMATIC

Biaskes

1.

TCTGACTCCAGCCA-AAGCATGAATGGCCTTGAAGTGGCTCCCCCAG...

TCTG-CAAGAGCCACAAG-ATGAACGGTCTGGAGGCAGCCCTACCGA...

Hs CTCCAGCCA ATGAATGGCCTTGAAGTGGCTCCCCCAG...
Mm TCTG |CAAGAGCCA ATGAACGGTCTGGAGGCAGCCCTACCGA...

Hs [ ] [ | L |

T T T T T T T
128404000 128405000 128406000 128407000 128408000 128409000 128410000

[ ] [
0 rtholog 1 284(‘)4000 1 284(‘)5000 1 28466000 1 284(‘)7000 1 28468000 1 28459000 12841‘ 0000
Probes
N 1
31 94‘5000 31 94‘4000 31 94‘5000 31 94‘6000 31 94‘7000 31 94‘8000 31 94‘9000
Mm I —— ]
31 94‘3000 31 94‘4000 31 94‘5000 31 94‘6000 31 94‘7000 31 94‘8000 31 94‘9000

Figure 2.8. Ortholog Probes. Procedure to align the human-mouse orthologs to find the ortholog probes. (1) Get
the sequences for the union of exons from the human (Hs) and mouse (Mm) genes. The color of corresponds to the
strand orientation; blue for positive (+), and red for negative (-). (2) Concatenate the human (Hs) and mouse (Mm)
sequences after arranging them in the same orientation. (3) Align the concatenated sequences using the
Smith-Waterman local alignment algorithm. (4) Split the alignments to remove all gaps (insertions/deletions) in the
aligned sequences. (5) Map the alignment segments to their corresponding genomic positions. The mapped alignment
segments are the ortholog probes. The ortholog probes are genomic regions with the same length and similar
sequences for both species.
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As a consequence of the inherent differences between the human and mouse annotations, the EN-
CODE consortium used genomic regions with different characteristics between the two species to
quantify the gene expression for each pair of human-mouse orthologs. In this manner, the gene ex-
pression estimates are confounded by the differences between the human and mouse annotations.
In order to account for the differences between species annotations, we revisit the idea of using
probes for gene expression to account for the differences between the human-mouse orthologs. In
microarrays, a probe is a small fragment of DNA sequence (25 bp in Affymetrix microarrays) used
to quantify gene expression. We use genomic regions within the union of transcript exons from the
human-mouse orthologs with the same length and almost identical sequence as probes to quantify
the gene expression (Figure 2.8). We use these probes to account for the differences between the
human and mouse annotations in estimating the gene expression for the resequenced ENCODE
RNA-seq data set.

For instance, in the human-mouse ortholog pair LARS2/Lars2 (leucyl-tRNA synthetase 2) the
human gene is longer (5,393 bp) than the mouse gene (3,881 bp) (Figure 2.9A-B). Moreover, the hu-
man gene has 8 annotated transcripts while the mouse gene has only 1 annotated transcript. Despite
the differences between the human and mouse annotations, both genes have the same function.
The human LARS2 gene encodes for the mitochondrial leucyl-tRNA synthetase enzyme. This en-
zyme plays an important role in the synthesis of proteins in the mitochondria™®>°»**, The LARS2
gene is conserved in the mouse as well as in chimpanzee, Rhesus monkey, dog, rat, chicken, ze-
brafish, fruit fly, mosquito, C.elegans, S.cerevisiae, K.lactis, E.gossypii, S.pombe, M.oryzae, N.crassa,

A thaliana 2°19:270:85237:18%2° The mouse Lars2 gene has the same function as its corresponding hu-
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man LARS2 ortholog 7%,
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Figure 2.9. Ortholog Probe for LARS2/Lars2. Diagram for the union of transcript exons of the human (A) and
mouse (B) genes. The regions in gray below the exons correspond to the ortholog probe. Coverage plots for the union
of transcript exons excluding the intronic regions for the human (C) and mouse (D) genes. The dashed lines are the exon
boundaries and the shaded areas correspond to the ortholog probes. Coverage lots for the human (E) and mouse (F)
ortholog probes. Scatter plots for the normalized FPKM values (G), the normalized Salmon estimates corrected for
GC-content bias (I), and the normalized probe values (J) for the resequenced ENCODE RNA-seq data set. Scatter plot
for the normalized Barcode 3.0 microarray values.

Based on the normalized FPKM values, the expression for the human-mouse ortholog LARS2/Lars2
is higher in the mouse tissues than in the human tissues. However, with the normalized probe val-
ues the difference in expression between the human and mouse tissues is lower (Figure 2.9). Fur-

thermore, the species effect estimate from the normalized probe values (-0.18) is closer to the species

effect effect estimates from a collection of curated microarray samples™® (-0.38).
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FPKM Probes

0.5 0.8

Figure 2.10. Hierarchical Clustering of Resequenced ENCODE Data Set. Dendrogram for the resequenced
ENCODE RNA-seq data set based on hierarchical clustering with complete linkage and Euclidean distance. The
dendrogram on the right (FPKM) is based on the normalized FPKM values, and the dendrogram on the right (Probes) is
based on the normalized ortholog probe counts. The circles (o) correspond to pairs of human and mouse tissues where
the type match, while the crosses (X ) correspond to pairs of human and mouse tissues where the type does not match.
The numbers at the bottom of each dendrogram are the proportion of human and mouse tissue pairs where the tissue
type matches.

We compared the clustering of the resequenced ENCODE RNA-seq data set using the normal-
ized FPKM values with the normalized probe values (Figure 2.10). The clustering with the normal-
ized FPKM values resembles the results reported by the ENCODE consortium; the samples cluster
by species rather than by tissue. However, in the clustering with the normalized probe values ac-
counting for the annotation differences, the samples pair by tissue type rather than by species.

We also considered the influence of tissue type in the clustering results by leaving out one tissue
type and repeating the clustering (Figure B.11). In the resulting clusterings we observed the same
pattern; in the clustering based on the FPKM values the samples cluster by mostly by species rather
than by tissue and in the clustering based on the probe values the samples cluster by tissue rather

than by species.
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Figure 2.11. Species and Effect T-statistics. Boxplots of the t-statistics comparing the observed difference in
means between the human and mouse tissues in the resequenced ENCODE RNA-seq data set using the normalized
FPKM values, the normalized Salmon estimated adjusted for GC-content bias and the normalized probe values. The
red lines correspond to the significance threshold at a 0.05 level.

We computed the t-statistics for the species effect using the normalized FPKM values, expression
estimates adjusted for GC-content bias using Salmon™?, and the normalized probe values to adjust
the for the differences in variances between the different tissue and species effect estimates. Adjust-
ing for systematic biases such as GC-content reduces the observed differences between species as

expected from the hierarchical clustering results (Figure 2.11).
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2.2.4 DIFFERENCES BETWEEN TiSSUES REPLICATED IN MICROARRAYS, DIFFERENCES BE-

TWEEN SPECIES NOT REPLICATED

Tissue Effect (heart) (r,=0.9472, r,=0.9485) Tissue Effect (heart) (r,=0.6414, r,=0.5552) Tissue Effect (heart) (r,=0.6404, ;=0.5536)
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Figure 2..12.. Species and Tissue Effect T-statistics Comparison. The species t-statistics are the t-statistics
comparing the observed difference in means between the human and mouse normalized expression values from the
resequenced ENCODE RNA-seq data set. In this case, the tissue t-statistics for heart are the t-statistics comparing the
observed difference in means between the human and mouse heart samples and the rest of the human and mouse
tissues. Comparison between the tissue t-statistics from the (a) FPKM and the probe normalized values, the (b) FPKM
and the microarray normalized values, and the (c) probe and microarray normalized values. Comparison between the
species t-statistics from the (d) FPKM and the probe normalized values, the () FPKM and the microarray normalized
values, and the (f) probe and microarray normalized values. The purple dashed line is x = 7, and the pink dashed line is
x = —y. The number in each corner indicates the proportion of points in each quadrant defined by x = oand y = o.

For each tissue we computed the difference in expression for each gene between that given tissue

and all others. Note that this difference will be large for genes that are uniquely expressed in that
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tissue. If these differences are due to real biological signal, we should see a similar pattern using an
assay other than RNA-seq. We therefore estimated these differences using a microarray data set (Ta-
ble B.3). The difference between tissues with both platforms correlate strongly. In this section, we
use as an example the tissue effect for the heart samples (Figure 2.12). The difference in expression
for the other tissues also correlate strongly in both microarrays and RNA-seq (Figure B.13). On the
other hand, the correlation between the species effect in both platforms is lower than the tissue ef-

tect (Figure 2.12).



2.2.5 DIFFERENTIALLY EXPRESSED ORTHOLOGS

Species Effect (r,=0.2680, r;=0.2774)
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Figure 2.13. Differentially Expressed Orthologs. The species effect is the observed difference in means between
the human and mouse normalized expression values. Species effect estimates based on the normalized microarray
values (d;”) and the probe normalized values from the resequenced ENCODE RNA-seq data set (dgmbes). The shaded
region is defined by the threshold on the species effect estimates from microarrays (|dg’cr| > () and from the probes
(|d§r°bes\ > (). The points in green and red are orthologs with 4 < 0.05 and species effect estimates above the
threshold C'in both platforms. The points in green correspond to the differentially expressed orthologs. On the other
hand, we consider the points in red as false positives since the sign of the species effect estimates depends on the
platform. The number of differentially expressed orthologs and false positives are colored accordingly, with the
proportion in parenthesis. The number in each corner is the proportion of points in each quadrant defined by dg” =o0

and dzrobes = o.

We used a collection of curated microarray samples from normal human and mouse tissues™® to esti-
mate the species effect and to identify the differentially expressed orthologs between the human and
mouse tissues. Since the platform effect from the microarray samples is independent from RNA-
seq, we used them to corroborate the differentially expressed orthologs. Thus, we have three sets of

species effect estimates from two different platforms: from RNA-seq the estimates from the normal-
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ized FPKM values and from the normalized probe values, and the estimates from the normalized
microarray values.

Table 2.3. Differentially Expressed Orthologs in both the Resequenced ENCODE RNA-seq Data Set and
the Barcode 3.0 Microarrays for Different FDR Cut-Offs.

Cut-Off ||4|| ||B| Differentially Expressed FDR

0.9400 940 187 753 0.1989
2.4500 60 6 54 0.1000
3.1500 18 1 17 0.0556
3.3800 12 o 12 < 0.01

A is the set of orthologs with 4 < 0.05 and |d,| > Cin both the normalized probe values
from the resequenced ENCODE RNA-seq data set and the Barcode 3.0 normalized
microarray values, B is the set of orthologs where the sign of the species eftect 4, is different

between the platforms, and FDR is the false discovery rate estimate based on .4 and B.

We use the normalized probe values from the resequenced RNA-seq data set and the normalized
microarray values to identify the differentially expressed orthologs in the human and mouse tissues.
We select the human-mouse orthologs where the species effect was significant and had the same sign

in both platforms (Figure 2.13).
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Table 2.4. Differentially Expressed Orthologs.

Ensembl (Hs:Mm) Symbol (Hs) Name (Hs) Symbol (Mm) Name (Mm)
ras homolog family . RIKEN cDNA
ENSG00000067560:ENSMUSGoo000036463 RHOA member A 4930544G11Rik 4930544G11 gene
ENSGo0000129538: ENSMUSGoo000035896 RNASE1 ribonuclease A faml?y Rnaser rlbo.nuclease, RNa.se A
member 1, pancreatic family, 1 (pancreatic)
ENSGoo000136943:ENSMUSGoooooo21477 CTSV cathepsin V Cusl cathepsin L
ENSGooo00100814:ENSMUSGoooooo71470  CCNB1lIP1 Cydm, Brinteracting Cenbripr Cydm, Brinceracting
protein 1 protein 1
ENSGoooo005 1620: ENSMUSGoooooo19853 HEBP2 heme binding protein2  Hebpz heme binding protein 2
i acyl-Coenzyme A
ENSGooooo115361:ENSMUSGoooooco26003 ACADL acyl COA dehydrogenase Acadl dehydrogenase,
long chain ) ;
ong-chain
cytochrome P4so family cytochrome P4so,
ENSGo0000197446:ENSMUSGoooo0052974 CYP2F1 > subfamily F member 1 Cypafa family 2, .subfamlly f,
polypeptide 2
- chymotrypsin-like
ENSGo0000139610:ENSMUSGoooo0023031  CELA1 chymotryps'l n like Celar elastase family, member
elastase family member 1 :
ENSGo0000164039:ENSMUSGoo000028167 BDH2 3-hydroxybutyrate Bdh2 3-hydroxybutyrate
dehydrogenase 2 dehydrogenase, type 2
high mobility group high mobility group
ENSGooooo118418:ENSMUSGoo000066456 HMGN3 nucleosomal binding Hmgn3 nucleosomal binding
domain 3 domain 3
ENSGo0000165568: ENSMUSGoooooo45410  AKR1E2 aldo'-keto reductase Akrrer aldo.-keto reductase
family 1 member E2 family 1, member Ex
ENSGo00000176903: ENSMUSGoooo0054383 PNMA1 II)NMA family member Pnmar Kzz?eoplasnc antigen
X-ray repair
ENSGo00000196419:ENSMUSGoooooo22471  XRCC6 X-ray repair .cross Xree6 Compl.ementlr.lg'
complementing 6 defective repair in
Chinese hamster cells 6
GINS complex subunit . GINS complex subunit
ENSGooo00147536: ENSMUSGooooo031546  GINS4 4 Gins4 4 (Slds homolog)
ENSG00000074935:ENSMUSGoooooo19845 TUBE1 tubulin epsilon 1 Tuber epsilon-tubulin 1
integrin subunit beta integrin beta 3 binding
ENSGooo00142856:ENSMUSGoo000028549 ITGB3BP ey . 3 Itgbsbp protein
binding protein .
(betaz-endonexin)
ENSGo00000196465:ENSMUSGoooo0039824 MYLGB myosin light chain 6B Myleb myosin, light

polypeptide 6B

Differentially expresed orthologs based in both the normalized probe values from the
resequenced ENCODE RNA-seq data set and the Barcode 3.0 normalized microarray

values atan FDR =~ o.0s.

We indentify 17 differentially expressed orthologs using the normalized probe values and cor-

roborated by microarrays at an FRD of o.05 (Table 2.4). Our analysis results in less differentially
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expressed orthologs between species less than originally reported by the ENCODE consortium
and identified using the normalized FPKM values. They originally reported 4,767 differentially
expressed human-mouse orthologs. Furthermore, we tested the differences in means between the
human and mouse normalized FPKM values with LIMMA ** adjusting for multiple comparison

with qvalue®®° and identified 2,719 differentially expressed human-mouse orthologs (7 < o.05).

Table 2.5. Enriched GO Slim Terms in Differentially Expressed Orthologs.

FDR = o0.05
GOID Term Annotated Significant Expected OddsRatio p-value
GO s secondary metabolic s
:001 I 0.0500 24. 0.0
974 process 39 S 47549 404
GO:0051276 chromosome 1.2400 6.051 0.0061
05127 organization 977 5 24 0515 '
FDR < o.01
GOID Term Annotated  Significant Expected OddsRatio p-value
d taboli
GO:0019748 }Soict)()c:ssary metabotic 39 I 0.0300 36.0191  0.0344
anatomical structure
GO:0048646 formation involved in 912 3 0.8200 5.2017  0.0437
morphogenesis
GO:0002376 immune system process 2158 5 1.9400 42933  0.0319

GO Slim terms significantly enriched in the differentially expressed orthologs at different
FDR cut-offs. The enrichment test was conducted using Fisher’s exact test.

We examined the differentially expressed orthologs at an FDR of 0.05 and o.o1 for enrichments in
Gene Ontology (GO) biological process terms® to determine the type of genes that are differentially
expressed between species (Table 2.5).

The ENCODE consortium reported more than so enriched GO terms related to basic cellular
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function™*. On the other hand, we identify 2 enriched GO terms at an FDR of 0.05 and 3 enriched
GO terms at an FDR of o.01. These GO terms are related to well known differences between hu-
mans and mice. In both sets of differentially expressed orthologs, the top enriched term was sec-
ondary metabolic process (GO:0019748). As mice are significantly smaller than humans, their basal
metabolic rate, the rate of energy production over a set period of time under constant conditions, is
much less than that of humans, because mice simply have less body mass and less total energy pro-
duction. However, the basal metabolic rate per gram of body weight is seven times greater in mice
than in humans*°.

The other term enriched in the differentially expressed orthologs at an FDR of 0.05 was chromo-
some organization (GO:00s1276). Mice have 20 pairs of chromosomes while humans have 23 pairs,
but the mouse haploid genome is about 3 picograms similar to the human haploid genome®7. The
gene order (synteny) of the mouse and human genomes is conserved although there are several rear-
rangements per chromosome™*. However, mouse chromosomes have undergone an unusually high
number of genomic rearrangements per unit of evolutionary time 82,

With a more stringent FDR cut-oft, the terms anatomical structure formation involved in mor-
phogenesis (GO:0048646) and immune system process (GO:0002376) are significantly enriched. Al-
though mice share genes, organ systems and systemic physiology with humans, the two species differ
significantly in terms of morphometry, physiology and life history. Humans are about 3,000 times
larger than mice, and this size difference imposes constraints on physiology and life history with sig-
nificant effects on the species’ ability to adapt to environmental conditions*>7’. One of the most

obvious differences between mouse and human morphogenesis is the time of birth. The mouse em-
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bryo is born almost immediately after all the organs develop (19—20 days post conception). On the
other hand at the end of organogenesis, the human embryo has a disproportionally large head rela-
tive to the whole body and other organs. The embryo continues to stay in the uterus for a few more
months, a period termed as the fetal stage. During this stage, many organs continue to grow and
eventually develop into their proper sizes for birth *.

The overall structure of the immune system in mice and humans is quite similar®”. Despite this
conservation there exist significant differences between mice and humans in immune system de-
velopment, activation, and response to challenge. Such differences should not be surprising as the
two species diverged somewhere between 65 and 75 million years ago, differ hugely in both size and
lifespan, and have evolved in quite different ecological niches where widely different pathogenic
challenges need to be met'7?. These are not trivial differences. For instance, leukocyte transit times
may be quite different in mice and humans, and a larger, broader repertoire of B and T cells must be
maintained for many years in humans (up to so mouse lifetimes)7>. Neutrophils are a rich source
of leukocyte defensins in humans, but defensins are not expressed by neutrophils in mice (14). In
contrast, Paneth cells, which are present in the crypts of the small intestine, express more than 20 de-
fensins (cryptdins) in mice but only two in human, likely reflecting different evolutionary pressures

related to microorganism exposure through food intake *#.
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2.2.6 HisToNE PEaKS DIFFERENCE CORRELATED WITH DIFFERENCE IN ANNOTATED TRAN-

SCRIPTS

The ENCODE consortium used ChIP-seq as an independent assay to confirm the differences in ex-
pression between human and mouse tissues. The observed differences between the ChIP-seq are also
affected by differences between the human and mouse annotations. We used histone modifications
ChIP-seq data from the human REMC and the mouse ENCODE projects as an independent assay
to examine the influence of the differences between the human and mouse annotation on the ob-
served differences between human and mouse tissues (Table B.3). Following Lin et al. *#, we used
H3K4me3 and H3K27ac histone modification levels in the 1 kb flanking regions of the transcription
start sites. The H3K4me3 (trimethylation of kysine 4 on the histone H3 protein subunit) modifi-
cation is commonly associated with active transcription®*. The H3K27ac (acethylation at the 27th
lysene residue of the histone H3 protein subunit) modification is associated with higher activation
of transcription . Hence, the H3K4me3 and the H3K27ac modifications are active marks associated
with gene expression.

The ENCODE consortium tested the differences in histone peak intensities for the set of or-
thologs reported as differentially expressed using a Wilcoxon test. They split the differentially ex-
pressed orthologs into two separate sets: where the gene expression is higher in the human tissues
than in the mouse tissues (Hs > Mm) and where the gene expression is higher in the mouse tissues
than in the human tissues (Hs < Mm). The differences between the gene-associated peak intensities

for the differentially expressed orthologs in the original ENCODE RNA-seq data set were signifi-
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cant for both H3K4me3 and H3K27ac across all human-mouse tissue pairs (Table B.s, Figure B.2x).
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Figure 2.14. Histone Peak Intensities for Differentially Expressed Orthologs in the Resequenced ENCODE
RNA-seq Data Set. Fold Enrichment over control of H3K4me3 and H3K27ac present at promoters of the
differentially expressed orthologs based on the normalized FPKM values from the resequenced ENCODE RNA-seq
data set. The differentially expressed orthologs are separated into orthologs where the gene expression is higher in
the human tissues than in the mouse tissues (Hs > Mm), and where the gene expression is higher in the mouse tissues
than in the human tissues (Hs << Mm). The p-values and Z-statistics were generated by the nonparametric paired
Wilcoxon test between the human and mouse gene-associated histone peak intensities, 7 is the number of
human-mouse orthologs where at least one of them has a gene-associated peak intensity.

In our analysis, we excluded the ChIP-seq spleen samples to match our analysis of the resequenced

ENCODE RNA-seq data set. The differences between the histone peaks for the differentially ex-
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pressed orthologs based on the normalized FPKM values from the resequenced ENCODE RNA-seq

data set were also significant for both H3K4me3 and H3K27ac across all human-mouse tissue pairs

(Table B.6, Figure 2.14).
H3K4me3: heart left ventricle (Hs), heart (Mm) H3K27ac: heart left ventricle (Hs), heart (Mm)
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Figure 2.15. Differences between Histone Peak Intensities vs. Differences between the Number of
Transcripts. Differences between the gene-associated histone peak intensities and the number of annotated
transcripts for the human-mouse orthologs in the human (Hs) heart (left ventricle) and the mouse (Mm) heart samples.

7p denotes the Pearson correlation and 7; denotes the Spearman correlation.

We found that the observed differences between the gene-associated histone peak intensities for
the active promoter marks H3K4me3 and H3K27ac were correlated with the differences between
the number of annotated transcripts per gene (Figure 2.15). The number of transcription start sites
depends on the number of annotated transcripts per gene. Since the human genes and the mouse
genes from each ortholog pair do not always have the same number of annotated transcripts, the
number of transcription start sites is confounded with species. However, if we only consider the
human-mouse orthologs with the same number of annotated transcripts to account for the differ-
ences between the human and mouse annotations, the differences between the histone peaks for the

differentially expressed orthologs reported by Lin et al. are not significant for neither H3K4me3 and
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H3Kz7ac (Table B.8, Figure B.23).
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Figure 2.16. Histone Peak Intensities for Differentially Expressed Orthologs in the Resequenced ENCODE
RNA-seq Data Set with the Same Number of Annotated Transcripts Fold Enrichment over control of H3K4me3
and H3K27ac present at promoters of the differentially expressed orthologs with the same number of transcripts
based on the normalized FPKM values from the resequenced ENCODE RNA-seq data set. The differentially expressed
orthologs are separated into orthologs where the gene expression is higher in the human tissues than in the mouse
tissues (Hs > Mm), and where the gene expression is higher in the mouse tissues than in the human tissues (Hs < Mm).
The p-values and Z-statistics were generated by the nonparametric paired Wilcoxon test between the human and
mouse gene-associated histone peak intensities, 7 is the number of human-mouse orthologs where at least one of

them has a gene-associated peak intensity.
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For the differentially expressed orthologs based on the FPKM values from the resequenced EN-
CODE RNA-seq data set, only in 2 of the 12 human-mouse tissue pairs the difference between the
histone peaks is significant considering only human-mouse orthologs with the same number of an-
notated transcripts (Table B.o, Figure 2.16).

We could not determine whether the differences in histone peaks for the differentially expressed
orthologs based on both the normalized probe values and the normalized microarray values where
the human-mouse orthologs have the same number of transcripts was significant due to the low
number of histone peaks present. Even with a higher FDR cut-off for the differentially expressed
orthologs (1?151/1 ~ 0.20), only a small number of orthologs had gene-associated peak intensities

(Table B.1o, Figure 2.17).
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Figure 2.17. Histone Peak Intensities for Differentially Expressed Orthologs in both the Resequenced
ENCODE RNA-seq Data Set and the Microarrays from Barcode 3.0 with the Same Number of Annotated
Transcripts. Fold enrichment over control of H3K4me3 and H3K27ac present at promoters of the differentially
expressed orthologs with the same number of transcripts based on both the normalized probe values from the
resequenced ENCODE RNA-seq data set and the normalized microarray values from Barcode 3.0. The black lines are
the median peak intensities. The differentially expressed orthologs are separated into orthologs where the gene
expression is higher on average in the human tissues than in the mouse tissues (Hs > Mm), and where the gene
expression is higher on average in the mouse tissues than in the human tissues (Hs < Mm). The p-values and
Z-statistics were generated by the nonparametric paired Wilcoxon test between the human and mouse
gene-associated histone peak intensities, 7 is the number of human-mouse orthologs where at least one of them has a
gene-associated peak intensity.
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2.3 DiscussioN

The modENCODE consortium relied on protein alignments to identify human-mouse orthologs.
However, gene expression quantification relies on nucleotide sequences rather than protein se-
quences to estimate gene expression. The similarity between the orthologs based on protein se-
quences (mean=0.8587,median=0.8848) is skewed towards higher values than the similarity based
on nucleotide sequences (mean=0.8143, median=0.8144). Moreover, the gene annotations are differ-
ent between species. For instance, on average human genes are longer (5,100 bp) than mouse genes
(4,200 bp), and have more transcripts annotated per gene (8 transcripts) then mouse genes (4 tran-
scripts). As a consequence the genomic regions used to quantify gene expression are inherently dif-
ferent between species. Hence, the gene expression estimates are confounded by differences between
the species annotations.

The observed differences between human and mouse tissues in gene expression are driven in part
by differences between the human and mouse annotations. The species effect is positively correlated
with differences in length, number of annotated transcripts per gene, and GC-content between the
human-mouse orthologs. We found that the differences in expression between tissues in the rese-
quenced ENCODE RNA-seq data set correlate strongly with the estimates from our microarray
data set. This result suggests that the differences between tissues are real biological signal rather than
technical artifacts. On the other hand, the correlation between the species effect in the resequenced
ENCODE RNA-seq data set and in the microarray data set was lower than the tissue effect.

We proposed using ortholog probes, genomic regions within the union of transcript exons from

8o



the human-mouse orthologs with the same length and similar sequence, to account for the differ-
ences between the species annotations in gene expression quantification. We clustered the rese-
quenced ENCODE data set using the gene expression estimates from our ortholog probes. In our
clustering results, the samples paired by homologous tissues rather than by species in agreement
with previous studies with microarrays7#*#* and RNA-seq*#"7>"*. Our results support the as-
sumption that the mouse is a useful model of the physiology of specific human organs despite mil-
lions of years of evolutionary divergence and the existence of evolutionarily conserved transcrip-
tional programs driving the production of major proteins that define specific tissues>%*.

We identified orthologs differentially expressed between the human and mouse tissues using
the gene expression estimates from the ortholog probes and corroborating with microarrays. In
our analysis, we identified significantly less differentially expressed orthologs (17) than originally
reported by Lin et al. (4,767), and less than we identified using the normalized FPKM values from
the resequenced ENCODE data set (2,719). We used microarrays because the platform effect of mi-
croarrays is independent from RNA-seq, and the sample size of the resequenced RNA-seq data set is
small. In the resequenced ENCODE data set, each species there is only one sample per tissue.

Lin et al. used histone marks as an independent assay as supporting evidence for differentially
expressed orthologs between species. We showed that the differences in histone marks between hu-
man and mouse tissues were biased by the difference in number of annotated transcripts per gene
between the human and mouse annotations. The observed differences between the gene-associated

histone peak intensities for the active promoter marks H3K4me3 and H3K27ac are correlated with

the differences between the number of annotated transcripts per gene. The assignment of gene-
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associated histone peak intensities is based on transcription start sites which depends on the number
of annotated transcripts per gene. The human and mouse genes from each ortholog pair do not
always have the same number of annotated transcripts.

The ortholog probes relied on alignments between the nucleotide sequences of the human-
mouse orthologs. In some instances, poor alignments result in a ortholog probes which inflate
the observed differences between human and mouse tissues. For instance, the ortholog probe for
BLOCiS6/BlociS6 is very short (110 bp) compared to the human gene (6,812 bp) and the mouse
gene (3,899 bp). The ortholog probe increases the species effect (4.77) compared to the species effect
based on FPKM (-0.27) and microarrays (-0.90) because the region covered by the mouse ortholog
probes includes very few reads compared to the human ortholog probe (Figure B.10). Moreover the
ortholog probes rely on the accuracy and completeness of the ortholog annotation, the gene annota-
tion and the genome build.

Similar to union exon based approaches for RNA-seq gene expression quantification, the or-
tholog probes ignore the complexity of genes with multiple transcript isoforms®”7. We noticed that
as the ortholog similarity increases, the number of ortholog pairs where both genes have more than
one annotated transcript increase and have more annotated transcripts with the same number of ex-
ons. Another related major issue is that functional and evolutionary analyses of genes are usually per-
formed on one or few representatives of their expression products, i.e. transcripts and proteins.*”".
Alternative splicing give rise to multiple transcript isoforms from the same gene. Alternative splic-
ing affects over 90% of genes in humans and mice™®9$3%9%254 "and accounts for the increase of at

least one order of magnitude in transcriptomic and proteomic complexity. A typical human gene,
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then, produces multiple transcript isoforms that can differ both in their coding and untranslated re-
gions. Different transcript isoforms may play different, and even antagonistic, functional roles that

240

can also be species-specific*#°. Differences between organisms in the fraction of genes with multiple

transcript isoforms may contribute to explain the observed phenotypic differences ™*»*71*

. Moving
towards ortholog relationships at the transcript level is challenging. The functionality of gene iso-
forms and their amount is still an unsolved problem"***°*, Moreover, recent proteomics studies 62
show that a fraction of transcripts do not reach the protein level, and for this reason are less likely to
be functional.

The human-mouse orthologs have different characteristics depending on the species annotation.
The differences between the species annotations can drive the observed differences between species
in gene expression and histone marks. Because the human and mouse annotations used to quan-
tify gene expression and histone peak intensities have important differences confounded by species.

We revisited the idea of probes to take into account the differences between species annotations to

estimate the gene expression and compare samples from different species.

2.4 MATERIALS AND METHODS

2.40 HUMAN-MOUSE ORTHOLOG ANNOTATION

Following Lin et al.***, we used 15,106 protein coding human-mouse orthologs generated by by
the modENCODE and mouse ENCODE consortia*®". The modENCODE and mouse ENCODE

consortia identified the orthologs using a phylogenomics-based approach.
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2.4.2 GENOME AND GENE ANNOTATION

We used the same genome build and gene annotation as Lin et al."**. For the human samples we
used the ENSEMBL**7 genome build Homo sapiens GRCh37.58 and the GENCODE Release 14
transcript annotation. We downloaded the human genome build from the Illumina iGenomes page
(http://support.illumina.com/sequencing/sequencing_software/igenome.html),
and the transcript annotation from GENCODE® (ftp://ftp.sanger.ac.uk/pub/gencode/
release_i4/gencode.vi4.annotation.gtf.gz). For the mouse samples, we used the EN-
SEMBL**7 genome build Mus musculus GRCm38.68 and its corresponding transcript annotation.
We downloaded both the mouse genome build (ftp://ftp.ensembl.org/pub/release-68/
fasta/mus_musculus/dna/Mus_musculus.GRCm38.68.dna_sm.toplevel.fa.gz)and the
transcript annotation (ftp://ftp.ensembl.org/pub/release-68/gtf/mus_musculus/

Mus_musculus.GRCm38.68.gtf.gz) from the ENSEMBL page.

2.4.3 ORTHOLOG SIMILARITY

We estimated the ortholog similarity using the same definition as the modENCODE consortium:
the fraction of paired residues with a positive BLOSUMG62 score from a BLASTP alignment*®".
First, we retrieved the protein sequences from ENSEMBL with biomaRt v.2.28.0°%% using the
ENSEMBL gene identifiers from the ortholog annotation; the mouse protein sequences from
mmusculus_gene_ensembl and the human protein sequences from hsapiens_gene_ensembl.

Following Wu et al., whenever an ENSEMBLE gene ID mapped to more than one protein sequence,
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we keep the longest protein sequence.

Then we aligned the human and mouse protein sequences corresponding to the human-mouse
ortholog pairs with BLASTP using the BLOSUMé2 scoring matrix, and the optimal penalties (gap
opening cost of 11 and gap extension cost of 1)*°>*. The ortholog protein alignment based similar-

ity**? is given by

PID — identical positions

aligned positions

We also estimated the ortholog similarity based on nucleotide alignments. First, we took the union
of the transcript exons as the genomic region corresponding to each gene. Then, we retrieved the
genomic sequences for each gene. We aligned the mouse and human nucleotide sequences using
BLASTN?°° with the default parameters, and estimated the similarity based on the resulting nu-

cleotide alignments.

2.4.4 RNA-seQ Data SETS

Lin et al.*** analyzed previously published and newly generated RN A-seq data from human and
mouse tissues. The previously published data consisted of data from ENCODE, the Roadmap to
Epigenomics Mapping Consortium, and the Illumina BodyMap 2.0. These data sets have a clear
batch effect to compare species, since the human and mouse samples were analyzed by different lab-
oratories at different times. Lin et al. addressed this limitation of the previously published data sets

by focusing on the analysis of the newly collected data, RNA-seq data from 13 human and mouse
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tissues collected by the same lab, using the same processing protocol (Table B.1).

As described earlier, Gilad et al.”® described the confounding between sequencing batch (the
assignment of samples to sequencing flowcells and lanes) with species present in the data used by
Lin et al. Lin et al resequenced 12 of the 13 tissues with the sequencing batches balanced by species.
We focused on the gene expression data from the resequenced original library preparations from Lin

etal.”** (Table B.2).

2.4.5 QUALITY ASSESSMENT OF RNA-sEQ DATA SETS

We used FastQC version o.10.1 (https://www.bioinformatics.babraham.ac.uk/projects/
fastqc/) to assess the quality of the individual FASTQ files, and the mapping statistics from the

STAR alignments (version 2.5.0c*).
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Flgure 2.18. STAR Mapping Statistics for the Resequenced ENCODE Data Set.

We only considered 10 out of the 12 tissues resequenced by Lin et al. **4, because the mouse pan-
creas and spleen samples had issues with GC-content bias and short fragment lengths. Both FASTQ
files (ENCFF859] TH, ENCFF432KKN) from the mouse spleen sample had the highest number of
QC fails reported by FastQC, followed by one FASTQ file from the human pancreas (ENCFF849WWH)
and from the mouse pancreas (ENCFFs41KUW) (Table B.4). Furthermore, the mouse spleen sam-
ple had the lowest percentage of uniquely mapped reads among the mouse samples, a high percent-
age of unmapped reads, and a high percentage of reads mapped to too many loci (Figure 2.18). Both

the mouse pancreas and spleen samples had a lower median fragment length compared to the rest of
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the mouse samples (Figure 2.18).
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Figure 2.19. GC-Content Distribution for Resequenced RNA-seq Data Set. Distribution of GC-content over
all reads for the human and mouse tissues. The pancreas and spleen samples are colored in purple and pink
respectively.

Furthermore, the distribution of GC-content over all the reads from the FASTQ files from the

human and mouse spleen samples, as well as the mouse pancreas sample had unusually shaped distri-

butions (Figure 2.19).

GENE ExPrEss1OoN FOR ENCODE RNA-seQ DaTta SETS

The FPKM values for the original and resequenced ENCODE RNA-seq data sets were kindly pro-
vided by Lin et al.**#. In the ENCODE consrotium pipeline, the FASTQ files were aligned using
Tophat*#® to ENSEMBL genome build Homo sapiens GRCh37.58 for the human samples and

to Mus musculus GRCm38.68 % for the mouse samples. The FPKM values were assigned using
Cufflinks>4® with the GTF files Gencode Release 145 or Mus_musculus.GRCm38.68.gtf% for

humans and mice, respectively.
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Following Lin et al.*** we took the log, of the FPKM values after adding pseudo count of 1
(log,(FKPM + 1)). After pairing the log-transformed FPKM values for the human and mouse
samples using the ortholog annotation, we normalized the transformed FPKM values using quantile
normalization with the function normalize.quantiles from the Bioconductor preprocessCore
version 1.34.0%%.

Additionally, we quantified the expression adjusted for fragment GC-content bias using Salmon
v.0.8.0™ of the resequenced ENCODE RNA-seq data set with the following settings: --gcBias
-1 ISR.We then used tximport v..6.0° to summarize the transcript-level abundances into gene-
level abundances. As with the FPKM values, we normalized the gene-level abundances using quan-
tile normalization with the function normalize.quantiles from the Bioconductor preprocessCore

version 1.34.0 7.

2.4.6 ORTHOLOG PROBES

We used BSgenome version 1.40.1'9

to import the genome annotations in R, and GenomicFeatures
version 1.40.1"% to import the gene annotation in R. For each ortholog, we retrieved its trancripts,
and we took the union of the transcript exons to represent the gene. Then, we retrieved the ge-

nomic sequence for each gene. If the gene has a positive strand orientation, then we concatenated

the sequences for the union of exons into a single sequence. If the gene has a negative strand orienta-
tion, we first reverse the orientation of the sequences from each exon, and then we concatenated. In

this manner, the concatenated sequence as a whole will match the gene negative strand orientation.

Then, we used the Smith-Waterman algorithm implemented in Biostrings version 2.40.2 to
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align the concatenated sequences for each pair of orthologs. Since we want to have the same num-

ber of bases in both human and mouse alignments, we split the resulting alignments into segments
excluding all insertions and deletions. Then, we removed the segments less than 10 base pairs long.
Finally, we mapped the alignments to their corresponding genomic locations to get the ortholog

probes.

2.4.7 ALIGNMENT PARAMETERS SELECTION

The Smith-Waterman algorithm uses a score function where matches increase the overall score of an
alignment while mismatches decrease it. The score is given by the number of matches, the number

251

of mismatches, and the number of insertions or deletions*". Specifically, out score is defined as

No{matches} — u x No{mismatches} — & x No{insertions/deletions}

where w is the mismatch penalty and J the gap penalty. Thus, a good alignment has a positive score
and a poor alignment a negative score. The local algorithm finds an alignment with the highest score
by considering only alignments that score positive and picking the best one from those*"79. The
optimal alignment maximizes this score.

86,179

Since there is considerable disagreement on the choice of alignment parameters , we consid-

ered the following settings for the alignment parameters
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We chose the alignment parameters based on the following features of the alignments: the num-
ber of aligned positions excluding the gaps (Figure B.3), the proportion of the human and mouse

gene present in the alignment (Figures B.4,B.s)

length of gene
aligned positions

and the following similarity metrics**? (Figures B.6,B.7,B.8,B.9)

identical positions

PID1 = — — - ”
aligned positions + internal gap positions
PIDs — id(?ntical po?ifions
aligned positions
PID; — identical positions
length of shorter sequence
PID4 = identical positions

average length of two sequences
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For a given set of alignment parameters, we aligned all human-mouse orthologs, and took the
median of each of the features for all the resulting alignments. Then for each set of alignment pa-
rameters (u, d) we took the rank of the median of every feature. We picked the alignment parame-
ters with the highest mean rank across all features. The highest scoring alignment parameters were

w = 1, d = 2 (Figure 2.20).
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Figure 2.20. Alignment Parameters Score. Score for each set of alignment parameters, gapExt (d) and
mismatch (u), based on the mean ranks of the median length, median proportion of human gene and mouse gene
present in the alignment, and median sequence similarity. (Top) Histogram with the color palette for alignment

parameters score, and (bottom) heat map for the score for all alignment parameters considered.
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2.4.8 GENE EXPRESSION WITH ORTHOLOG PROBES

We aligned the RN A-seq reads to their respective genomes using STAR version 2.5.0c” with the
default parameters. From these alignments, we obtained the coverage using the BAM files with

bamsignals v.L.10.0° . Then, we used the function featureCounts from Rsubread version
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1.22.3'#? to assign the read counts to the ortholog probes with the following settings: useMetaFeatures=TRUE,
allowMultiOverlap=FALSE, isPairedEnd=TRUE, and requireBothEndsMapped=TRUE.
We normalized the probe read counts for sequencing depth and length based on the transcripts

per kilobase million (TPM) normalization *7*®. For each probe p,

R,
106
where
RPK, =2
/
14

7p is the read counts for probe p, and J, is the length in base pairs for probe p.

Finally, we took the log, of the probe TPM values after adding a pseudo count of 1 (log, (7P +
1)). After pairing the log-transformed probe TPM values for the human and mouse samples using
the ortholog annotation, we normalized the transformed probe TPM values using quantile nor-
malization with the function normalize.quantiles from the Bioconductor preprocessCore

version 1.34.0%%.

2.4.9 HUMAN AND MOUSE MICROARRAYS

We used 83 Affymetrix Human Genome Ui33 Plus 2.0 microarrays from 10 normal human tissues

and 82 Affymetrix Mouse Genome 430 2.0 Array from 10 normal mouse tissues manually curated
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in Barcode 3.0 (Table B.3). The curated microarrays in Barcode 3.0 were filtered to exclude poor
quality samples™°®. We used the R package GEOquery * to retrieve raw CEL files from the Gene
Expression Omnibus (GEO)". We processed the raw data with fRMA®". We obtained the anno-
tation for the human array platform from hgu133plus2.db?* and the mouse annotation from
mouse4302.db¥. We only keep the probe sets that mapped uniquely to one ortholog. We matched
the normalized values for the human and mouse microarrays using the ortholog annotation, and
normalized them using quantile normalization with the function normalize.quantiles from

the Bioconductor preprocessCore version 1.34.0 2.

2.4.10 SPECIES EFFECT

Let ¥ g1 denote the quantile normalized log (base 2) transformed expression values where s €
{human, mouse} indexes the species, ¢ € {1,..., G} indexes the human-mouse orthologs, # €
{1,..., T} indexes the tissuesand & € {1,..., K} indexes the replicates within tissue. The species
effect is the observed difference between the human and mouse samples for each ortholog. We de-

fined this difference as

dg = Yhuman,g - Ymouse,g

where

~ L K T
Ys,g = Ys,g,t,k
T2 2

k=1 t=1
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2.4.11 T1SSUE EFFECT

For a given tissue 7, the tissue effect is the difference in expression between that tissue and all others

for each ortholog. We defined this difference as

dgyto = ngto - Yg,—to

where

K
j/:g,zz, = i(z Z Ys,g,to,k

k=1 s€{human,mouse}

K
yg,—to = ﬁ(z Z Z Ys,g,to,k

k=t t#t, s€{human,mouse}

2.4.12 T-STATISTICS

We also computed the t-statistics corresponding to the species and tissue effect to account for the
differences in variance between the estimates based on FPKM, ortholog probes, and microarrays.

The t-statistic for the species effect is

using the usual estimate for the pooled standard deviation SAE(dg).
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Similarly, the t-statistic for the tissue effect is

dg sto

2, - =
T SE(dyy,)

where S/E(dg7to) is also the pooled standard deviation estimate.

2.4.13 DIFFERENTIALLY EXPRESSED ORTHOLOGS

To identify the differentially expressed orthologs we used both the resequenced ENCODE RNA-seq
data set and the Barcode 3.0 microarray samples. First, we estimated the species effect, the difference
in means between the human and mouse samples, separately using the microarray samples and the
normalized probe counts from the resequenced ENCODE data set.

Then we identified the differentially expressed orthologs first by testing the difference in means
between the human and mouse samples using LIMMA ** with both platforms, and adjusting for
multiple comparison with qvalue version 2.4.2°°°. Then we selected orthologs with 4 < o.0s and

species effect estimates above a threshold Cin both platforms

b
A={g: ]dg‘cr\ > C, |d§m “l > C, Jmer < 0.05, Gprobes < 0-05}

We considered an ortholog differentially expressed if the species effect estimates have the same sign in
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both platforms. Thus, the set of differentially expressed orthologs is

D={g: |d"g“°r] > C, \d};mbes! > C, gmer < 0.05, Gprobes < 0.05, sign(dg’“) = Sign(dgmbes)}

On the other hand, we considered orthologs whose species effect estimates have different signs de-

pending on the platform as false positives. We define this set of false positives as

B= {gi ’d;ncr‘ > C, ‘dgrobeS’ > C: Jmcr < O.Oiaqprobes < 0.05, Sign(dgmr) 7& Sign(dgrobes)}

We picked the threshold C to control for the false discovery rate based on the set B and the estimate

2.4.14 GENE ONTOLOGY (GO) ENRICHMENT TESTS

We retrieved the Gene Ontology (GO) biological process annotation from GO.db v.3.5.0° , and
org.Hs.eg.db v.3.5.0 to map the human Ensembl gene identifiers to their corresponding GO
terms. We restricted the GO annotation to the GO slim terms. GO slims are cut-down versions of
the GO ontologies containing a subset of the terms in the whole GO. They give a broad overview of

the ontology content without the detail of the specific fine grained terms. We downloaded the GO
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slim generic annotation from the Gene Ontology Consortium?® (http://www.geneontology.
org/ontology/subsets/goslim_generic. obo). We used GSEABase v.1.4o.1? to map the GO
annotation from GO. db to their corresponding GO Slim terms. We performed the enrichment tests

using Fisher’s exact test implemented in topGO v.2.30.1° .

2.4.15 CHIP-sEQ DATA SETS

We downloaded bed narrowPeak files with the peaks called with MACS*° from the ENCODE
page (https://www.encodeproject.org/)*. Following the reccommendations from the EN-
CODE project (https://www.encodeproject.org/chip-seq/histone/), we downloaded
replicated peaks for the mouse tissues and stable peaks for the human tissues. The mouse tissues
have two replicates, the replicated peaks are the set of peak calls from the pooled replicates. These
peaks are observed in both replicates. On the other hand, the human tissues do not have replicates.
The stable peaks for the human tissues are the set of peak calls from two partitions, or pseudorepli-
cates. A pseudoreplicate is a subsample of reads, chosen without replacement, from a single replicate
used as a substitute for replication in the absence of true biological replicates™. We paired the hu-
man and mouse peak calls by histone mark and tissue type (Table B.3).

We assigned peak intensities to each gene following the same procedure as Lin et al. "*#. First
we defined the promoter regions as 1 kb before and after the transcription start site (T'SS). We as-
signed the logz fold changes of enrichment over control from the peaks overlapping with the pro-
moter region as the promoter-associated peak intensity. We used the function findOverlaps from

GenomicRanges version 1.24.3 " to find the peaks overlapping with the promoter regions. If more
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than one peak overlapped with the promoter region, we assigned the sum of the logz fold changes
corresponding to all the overlapping peaks as the promoter-associated peak intensity. For genes with
multiple promoters, we selected the highest promoter-associated peak intensity.

For genes without overlapping peaks, we assigned a peak intensity of o. For our analysis, we only
considered ortholog pairs where at least one of the genes had an assigned peak intensity. For each
histone mark, we normalized the peak intensities using quantile normalization with the function
normalize.quantiles from the Bioconductor preprocessCore version 1.34.0>” for each given
pair of human and mouse tissues.

We also considered only the peak intensities associated with human-mouse orthologs with the
same number of annotated transcripts. First, we subset the gene-associated peak intensities for the
human-mouse orthologs with the same number of annotated transcripts. We assigned a peak inten-
sity of o to genes without overlapping peaks. Then, we selected the human-mouse ortholog pairs
where at least one of them had an assigned peak intensity. Finally for each histone mark, we normal-
ized the peak intensities using quantile normalization with the function normalize.quantiles
from the Bioconductor preprocessCore version 1.34.0>* for each given pair of human and mouse

tissues.
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Linear Models with Applications to Gene

Coexpression

3.1 INTRODUCTION

A major goal of functional genomics is to describe relationships between genes. The advent of mi-

croarrays led to numerous gene expression studies involving large numbers of samples. The increas-

100



ing amount of data from gene expression studies motivated the analysis of relationships between
genes using their correlation based on gene expression data. When the mRNA expression of two or
more genes is correlated across multiple samples, these genes are said to be coexpressed7®. Gene co-
expression networks*#? are networks where the nodes correspond to genes, and the edges are based
on a measure of similarity between the gene expression profiles such as correlation. Studies using
gene coexpression networks usually follow three major steps®7#*35%29_ First, estimate the correla-
tion between all genes. Second, build a network where the genes are nodes and the edges between
them are based on their correlation. Finally, find clusters of genes in the network. Previous work

has shown that many coexpression clusters are conserved across phylogeny236’174’189’231, enriched with
protein-protein interactions7+'*>%, and enriched with specific functional categories of genes includ-
ing ribosomal, mitochondrial, synaptic, immune, hypoxic, mitotic among other categories 7499594,
However, interpreting correlations based on gene expression data is challenging because these cor-
relations can arise from biological as well as non-biological sources. In this work, we use the frame-
work of linear models to quantify the influence of the variation from experimental factors on the
observed correlation, and to correct the observed expression values for the effect of experimental

factors.
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3.2  REsuULTS

3.2.1 SPURIOUS CORRELATION FROM IGNORING EXPERIMENTAL FACTORS

Ignoring experimental factors from gene expression studies can lead to spurious correlations*°. To
illustrate the effects of ignoring the underlying structure of the data, we estimated the correlation
between two known circadian genes, Cry2 and Clock, using data from a time course data set (Ta-
ble C.3)?7#. The time course data set consists of 8 mouse tissues sampled every 2 hours for 2 days
(24 time points). If we pool the gene expression profiles for each gene from all tissues, the observed
correlation is small and positive (0.0449). However, the correlation stratified by tissue across time
points is negative, ranging from -o.4sor in liver to -0.8803 in lung (Figure 3.1a). This is a clear exam-
ple of Simpson’s paradox. By ignoring the presence of different groups, in this case tissues, the sign

of the correlation changes+*°.

r=0.0499 r=0.8612 r=-0.7136

> o cocen 8
o | ° Brain stem (-0.6174) <
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Figure 3.1. Correlation between Cry2 and Clock. Correlation between circadian genes Cry2 and Clock in different
data sets. In the scatter plots, the black dashed line corresponds to the pooled correlation. (a) Time Course. The color
and shape represent the tissue type, and each colored line corresponds to the correlation stratified by tissue. (b) Tissue
Panel. The expression profiles for Cry2 and Clock were aggregated in each tissue by taking the mean. The color and
shape represent the tissue type. (c) Liver Biological Replicates. The color and shape represent the sex of the mice. The
colored lines correspond to the correlation stratified by sex.
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Figure 3.2. Correlation between Cry2 and Clock under different contexts. (a) Time Course. Scatter plots for the
time effect estimates and tissue effect estimates from the time course data set. Pairwise gene expression variance
partition for the time course data set. (b) Tissue panel. Scatter plot for the tissue effect estimate from the tissue panel
data set. Pairwise gene expression variance partition for the curated tissues data set. (c) Liver Biological Replicates.
Scatter plot for the residuals from the liver biological replicates data set. Pairwise gene expression variance partition
for the liver biological replicates data set.

Furthermore, the correlation between Cry2 and Clock changes under different contexts. The cor-
relation between different tissues is positive while the correlation across time within the same tissue
is negative. We used a different data set consisting of s different tissues from biological replicates to
estimate correlation between Cry2 and Clock (Table C.4). As we observed in the time course data
set, the correlation driven by the differences between tissues is positive (Figure 3.1b). On the other

hand, without the context of different tissue types the correlation changes sign. We used a data set
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consisting of liver samples from male and female mice from 1o different strains (Table C.s). The cor-
relation between Cry2 and Clock is negative (-0.7136) across all samples as well as stratified by sex
(Figure 3.1¢).

We estimate the gene-specific effect of tissue and time in the time course data set using a linear
model. The correlation between the Cry2 and Clock time effect estimates is negative (-0.8809) while
the correlation between the tissue effect estimates is positive (0.5838). Moreover, the observed posi-
tive pooled correlation was driven by the variability between tissues (Figure 3.2a). We also estimate
the gene-specific tissue effect in the curated tissues data set. The correlation between the Cry2 and
Clock tissue effect estimates is also positive (0.8612) and the observed positive pooled correlation
is also driven by tissue variability (Figure 3.2b). In the liver biological replicates, the observed neg-
ative correlation between Cry2 and Clock was not driven by the differences between tissues since
all the samples come from the same tissue. After adjusting with our model the expression values of
Cry2 and Clock for the effects of strain and sex, the correlation is negative (-0.9339). Moreover, the
negative observed pooled correlation was not driven by the variability between sexes or strains (Fig-
ure 3.2¢). The negative correlation in the liver biological replicates might reflect the differences in

circadian phase between Cry2 and Clock (Table C.1).

3.2.2 GENE CORRELATION STRUCTURE CONSERVED IN DIFFERENT DATA SETS

We used circadian genes to estimate correlation between genes know to be related 7#. The expres-
sion of these genes oscillates with the circadian rhythm. The data sets that we consider have different

sources of variation that affect the observed correlation between the circadian genes. The observed
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pooled correlation between the circadian genes is similar in the time course data set and in the liver

biological replicates but different in the tissue panel data set (Figure 3.3a-c).
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Figure 3.3. Correlation between circadian genes. Heat maps for the observed correlation in the (a) time course
experiment, (b) tissue panel, and (c) liver biological replicates. Pairwise gene expression variance partition for the (d)
time course data set, the (e) tissue panel, and the (f) liver biological replicates. The box plots are the proportion of

variance explained across all pairs of circadian genes.

In the time course data set the observed pooled correlation is driven by the variability across time
(Figure 3.3d). In the curated tissue data set, the observed pooled correlation is not driven entirely by
tissue variability (Figure 3.3e). Likewise, in the liver biological replicates the correlation is not sorely

driven by the variability between strains or sexes (Figure 3.3).
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Figure 3.4. Circadian gene-specific effects. Heat maps for the correlation between the (a) time effect estimates
from the time course data set, the (b) residuals from the tissue panel, and the (c) residuals from the liver biological
replicates. PCA plots based on the (d) time effect estimates from the time course data set, the (e) residuals from the
tissue panel, the (f) residuals from the liver biological replicates. The color corresponds to the mean phase of the

circadian genes.

We use linear models to take into account context in the correlation between the circadian genes.
The correlation between the gene-specific time effect estimates from the time course data set shows
clearly two groups of circadian genes (Figure 3.4a). We use the residuals from linear models to ad-
just for the gene-specific tissue effect in the tissue panel data set and the gene-specific effects of strain
and sex in the liver biological replicates. The patterns in the correlation between the residuals for the
circadian genes resemble the patterns in the time course data set (Figure 3.4b,c). The groups of cir-

cadian genes in the time course data set have a clear difference in their mean phase (Figure 3.4d, Ta-
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ble C.1). Similarly, the groups of circadian genes in the residuals from the curated tissues data set and

the liver biological replicates resemble the groups observed in the time course data set (Figure 3.4e,f).

L Ll

i

S
Sit22ato
Spink1
leptd
Slci2al

(a) Time Course

Tissue

Aorta

Brain stem
Cerebellum
Heart
Hypothalamus
Kidney

Liver

Lung

oo,

eElb
Slc12al

(b) Tissue Panel

Myom1
(LT AI\S/(?CQ

X7a:
Cptib

€|
Slc12al

Sex

(c) Liver Biological Replicates

Figure 3.5. Tissue-specific genes. Heat maps of the tissue-specific genes for the (a) time course data set, the (b)
tissue panel and the (c) liver biological replicates.

Additionally we used tissue-specific genes; genes highly expressed in brain, heart, lung, kidney

and liver (Figure 3.5). The tissue-specific genes separate the samples by tissues in the time course

data set (Figure 3.52) and in the tissue panel data set (Figure 3.5b). In the liver biological replicates,

the tissue-specific genes separate almost completely the samples by sex (Figure 3.5c). The patterns in

the pooled correlation between the tissue-specific genes are similar in the time course data set (Fig-

ure 3.6a) and in the tissue panel data set (Figure 3.6b) since the similar tissue types are present in

both data sets. On the other hand, there is no clear pattern in the correlation from the liver biologi-

cal replicates (Figure 3.6¢).
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Figure 3.6. Correlation between tissue-specific genes. Heat maps for the observed correlation in the (a) time
course data set. the (b) tissue panel, and the (c) liver biological replicates. Pairwise gene expression variance partition
for the (d) time course data set, the (e) tissue panel, and the (f) liver biological replicates. The box plots are the
proportion of variance explained across all pairs of circadian genes.

In the time course data set, the correlation is completely driven by the variability between tissues
(Figure 3.6d). However, in the tissue panel data set the correlation is not driven mainly by the tissue
variability (Figure 3.6¢). In the absence of different tissues, the correlation in the liver biological
replicates is driven by the residual variability, variability not due to sex or strain (Figure 3.6f). The
patterns observed in the correlation between the gene-specific tissue effect from the time course data
set (Figure 3.7a) and from the tissue panel data set (Figure 3.7b) resemble the patterns observed in

the pooled correlation (Figure 3.6a,b).
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Figure 3.7. Correlation between tissue-specific gene-specific effects. Heat maps for the correlation between the
gene-specific tissue effect estimates from the (a) time course data set and the (b) tissue panel data set.
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3.2.3 GENE COEXPRESSION NETWORKS UNDER DIFFERENT CONTEXTS.
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Figure 3.8. Coexpression network for the circadian and tissue-specific genes. The size of the vertex is proportional
to the degree of the gene (connections to other genes). The color of the genes correspond to their class: green for
circadian genes, blue for tissue specific genes and yellow for randomly selected genes. Coexpression network based on
the (a) observed correlation, the (b) correlation between the gene-specific time effect estimates, and the (c)
gene-specific tissue effect estimates from the time course data set. Coexpression network based on the (d) observed
correlation, the (e) residuals, and the (f) gene-specific tissue effect estimates from the tissue panel data set.

We used WGCNA™° to build coexpression networks based on the observed correlation and the cor-
relation between the gene-specific estimates from the linear models. In the networks, we include

the circadian genes, the tissue-specific genes as well as 40 randomly selected genes. We consider
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the degree of the genes, the number of connections to other genes in the network, as a measure of
importance of a gene in a coexpression network. In the coexpression networks based on the ob-
served correlation and the correlation between the gene-specific tissue effect estimates from the time
course experiment, the randomly selected genes and the tissue-specific genes have higher degrees
than the circadian genes (Figure 3.8a,c). However, in the coexpression network based on the cor-
relation between the gene-specific time effect estimate the circadian genes have the highest degree
(Figures 3.8b,and C.4). In the coexpression networks based on the tissue panel, the randomly se-
lected genes and the tissue-specific genes dominate the network (Figures 3.8d-f, and C.s). On the
other hand, in all coexpression networks based on the liver biological replicates the circadian genes

have the highest degree (Figures 3.9a,b, and C.6).
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Figure 3.9. Coexpression network for the circadian and tissue-specific genes. The size of the vertex is proportional
to the degree of the gene (connections to other genes). The color of the genes correspond to their class: green for
circadian genes, blue for tissue specific genes and yellow for randomly selected genes. Coexpression network based on
the (a) observed correlation and the (b) residuals from the liver biological replicates.
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3.3 DiscussioN

The correlation between gene expression profiles has been widely used as a measure of gene coex-
pression to infer relationships between genes. We need to take into account the drivers of gene ex-
pression variation to interpret correlation from gene expression data. The interpretation of gene
coexpression relationships depends heavily on context™. In a data set consisting of samples from
multiple tissues, coexpressed modules (modules defined by coexpression similarity) will often dis-
tinguish genes that are expressed in tissue-specific patterns™®>'®. On the other hand, in a data set
consisting of samples from a single tissue type, coexpression modules may distinguish genes that

99 Furthermore, in a data

are preferentially expressed in distinct cell types that comprise that tissue
set consisting of samples from a homogeneous cellular population, coexpression modules may cor-
respond more directly to sets of genes that work in tandem to perform various intracellular func-
tions™’.

We used a linear mixed model to partition the observed expression variation among experimental
factors such as time points and tissue types. The linear mixed models offer a framework to describe
the influence of the sources of variation on the observed correlation between a pair of genes. We
used a linear model to estimate and correct for the effect of experimental factors on the expression
profiles. We recovered the correlation structure of known mouse circadian genes driven by changes
in expression across time by accounting for the differences between tissues in three distinct data sets

with different sources of variation using linear models. We proposed an approach to estimate and

interpret the correlation under different contexts. Estimating the correlation without taking into
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account the experimental factors from a given data set might produce spurious correlations. Our ap-
proaches are limited to settings where the experimental factors are known in advance. Furthermore,
the estimates for variance partition only take into account one pair of genes at a time. However,

our results highlight the importance of context for the estimation and interpretation of correlation

based on gene expression data.

3.4 MATERIALS AND METHODS

3.4.1 TIME COURSE DATA SET

We used 192 Affymetrix MoGene 1.0 ST arrays from 9 Cs7/BL6 mouse tissues (aorta, brain stem,
cerebellum, heart, hypothalamus, kidney, liver, and lung) sampled every 2 hours for 2 days (24 sam-
ples per tissue)*7# (Table C.3). We downloaded the CEL files from the Gene Expression Omnibus
(GEO)*® and imported them in R using o1igo v.1.42.0*. We obtained the microarray annota-

tion from pd.mogene.1.0.st.v1 v.3.14.1°* and processed the CEL files using the frozen RMA

(fRMA) implementation™®# in fRMA v.1.30.1'6»McCall & Irizarry,

3.4.2  LIVER BiIoLOGICAL REPLICATES AND T1SSUE PANEL DATA SETS

We used 60 Affymetrix Mouse Genome 430 2.0 arrays from the Novartis 12 Strain Diet Sex Survey
control group (Table C.s). The data set consists of liver tissue harvested from 3 males and 3 females
from 10 mice strains (129S1/SvIm], A/], Cs7BL/6]J, BALB/cJ, C3H/He], DBA/2],1/Ln], MRL/Mp]-

Tnfrsf6lpr/], NZB/BIN], and SM/J).
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For the tissue panel data set, we used so Affymetrix Mouse Genome 430 2.0 arrays from 5 mouse
tissues (brain, heart, kidney, liver, and lung) curated in Barcode 3.0'% (Table C.4).
We used the R package GEOquery # to retrieve raw CEL files from GEO®, and processed the raw

data with the fRMA implementation™ in fRMA v.1.30.1'®* using the annotation from mouse4302.db?*.

3.4.3 MAPPING PROBE SETS TO GENES

We mapped the probe sets to their corresponding genes with mouse4302 . db v.3.2.3% for the Affymetrix
Mouse Genome 430 2.0 arrays, and with mogenel0stprobeset.db v.8.7.0™ for the Affymetrix
MoGene 1.0 ST arrays. When a gene mapped to multiple probe sets, we assigned the average of the

normalized probe set expression value as the gene-level expression value.

3.4.4 CIRCADIAN GENE SET

The set of circadian genes are core clock genes than oscillate with circadian rhythm in various mouse
tissues reported by Zhang et al 74, We also retrieved the mean phase estimates from JTK_CYCLE®.
We fitted a harmonic regression model to the normalized circadian gene expression values from the

time course experiment using the R package HarmonicRegression v..o™.

3.4.5s TISSUE SPECIFIC GENES

We used the Gene Expression Barcode 3.0 estimates to select probe sets from the Affymetrix Mo-

Gene 1.0 ST array that were highly expressed in the following tissues: brain, heart, lung, kidney and
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liver (Figure C.2). For each tissue, we mapped the probe sets to their corresponding genes using

mogenel@sttranscriptcluster.db v.8.7.0%* and selected 8 genes per tissue.

3.4.6 LINEAR MIXED MODEL FRAMEWORK FOR VARIANCE ESTIMATES

We used a linear mixed model®***°4 for each pair of genes to describe the influence of the sources

of variation on the observed correlation. Consider the model

Kjk:f&+ai+bj+£k+€,jk

where 7 indexes the genes, j and & index covariates of interest such as tissue type, «; is the fixed gene

effect,

b/ ~ N(O, 0";27)

. ~ N(o, %)

are random effects, and ;3 ~ N(o, ¢ ) is the error term. Under this model and assuming indepen-

dence between the random effects, we have

Var(Yip) = o, + o7 + o
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Now consider a pair of genes Yy and Yy sharing the same effect 4;. Then, their covariance is

given by

COV(Yl'/jk/7 Yi"jk") = COV(M —|— 0{,1'/ —|— bj —|— Ck/ —|— Ei/jk/, M —|— (xi// —|— b] + Ck// —|— Ei//jk//)
= Cov(b;, by)

=

Thus,

COI‘(le‘ljk/, Y'i”jk”) =

NNNY

7+t

We can interpret the variance partition above as the contribution of the effect & to the observed cor-

relation. Likewise, for two genes sharing the same ¢,

COI‘(Yi/j/k, Yi”j”k) =

NENE

7+ o+t

can be interpreted as the contribution of the effect ¢ to the observed correlation.
We estimated the variance terms for the random effects with restricted maximum likelihood ®° to

describe the influence of the sources of variation on the observed correlation.
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TimE COURSE MODEL

Yip = p+ ai + bj + o + €

where 7 indexes the genes, j indexes the tissues, k£ indexes the time point, ; is the fixed gene effect,
b; ~ N(o, a}) is the random effect for tissue type, ¢ ~ N(o, ¢7) is the random effect for time, and

gij ~ N(o, 07) is the error term. For a given pair of genes, we estimated the contribution of tissue

type to the observed correlation as

_ %
o+t

and the contribution of time as

LiveEr BioroGgicaL REPLICATES MODEL

Yije = e+ ot + bj + . + Eiju

where 7 indexes the genes, j indexes the strain, k£ indexes the sex, /indexes the replicates, ; is the fixed

gene effect, bj ~ N(o, 73,) is the random effect for strain, ¢ ~ N{(o, ¢7) is the random effect for sex,
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and g;p; ~ N(o, ¢7) is the error term. For a given pair of genes, we estimated the contribution of

strain to the observed correlation as

NYSY

and the contribution of sex as

Tissue PANEL MODEL

Yigr = o+ oti + by + . + di + e

where 7 indexes the genes, j indexes the tissues, £ indexes the strain, /indexes the sex, ; is the fixed
gene effect, bj ~ N(o, 63) is the random effect for tissue type, cx ~ N(o, 67) is the random effect for
strain, dj ~ N(o, %) is the random effect for sex, and ;1 ~ N(o, 73) is the error term. For a given

pair of genes, we estimated the contribution of tissue type to the observed correlation as

%
o+ o+ g+ o
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the contribution of strain as

and the contribution of sex as

i
CEE R

3.4.7 LINEAR MODEL FRAMEWORK FOR EFFECT ESTIMATES

Linear models have been used to model the effect from the different batches™**%. We use this
framework to estimate relationships between genes in a particular context (e.g. across time, between

different tissue types).

TiMmeE COURSE MODEL

Yije = o 4 By + v + Eije

where 7 indexes the genes, j indexes the tissues, £ indexes the time point, «; is the gene-specific mean,
¢ i s the gene-specific tissue effect, 7, is the gene-specific time effect, and g3 ~ N(o, ¢*) is the error

term.
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Liver BioroGgicaL RErLICATES MODEL

Yijur = ati + B + vy + €l

where 7 indexes the genes, j indexes the strains, k indexes the sex, /indexes the replicates, «; is the
gene-specific mean, Bij is the gene-specific strain effect, 7, is the gene-specific sex effect, and €3 ~

N(o, ¢*) is the error term.

TissuE PANEL MODEL

Y = o + B + vy + A + Eiju

where 7 indexes the genes, j indexes the tissues, £ indexes the strain, /indexes the sex, «; is the gene-
specific mean, @, is the gene-specific tissue effect, y;, is the gene-specific strain effect, Ay is the gene-

specific sex effect, and ;3 ~ N(o, ¢*) is the error term.

3.5 COEXPRESSION NETWORKS

We generated the coexpression network from the correlation matrices using the function adjacency. fromSimilarity

from the R package WGCNA v.1.63. The edges between a pair of genes 7 and j in the coexpression net-
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work are given by

|’"ij’

where 7;; is the correlation between genes 7and j. We used the default value of 8 (£ = 6) to generate

the coexpression network.
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Supplementary Materials for Chapter 1

A1 SUPPLEMENTARY FIGURES
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(a) Case1(o4p = 0.0469) (b) Case2(04p = 0.1471) (c) Case3 (o4 = 0.25)
A B A
B A
(d) Case 4 (045 = 0.3553) (e) Cases(04p = 0.4444) (f) Case 6 (048 = 0.5517)
. . B
(g) Case7 (045 = 0.6452) (h) Case 8 (043 = 0.75) (i) Case 9 (045 = 0.8532)

Flgure A.1. Venn Diagrams for No Overlap and Overlap Cases of the Ribosome Gene Sets. Venn diagrams
between the partitions used to separate the (KEGG) Ribos&r@e pathway and random genes into gene sets with
different degrees of shared genes.
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F igure A.2.. Correlations Estimates and ROC Curves for the Ribosome and the Random Gene Sets.
Boxplots of the correlation estimates between the ribosome gene sets and random gene sets under different cases of
gene overlap. ROC curves for the ribosome gene sets and random gene sets under different cases of shared genes. We
assume that a significant p-value (p < 0.05) for aribosome gene set is a true positive, while a significant p-value for a
random gene set is a false positive.
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A2 PATHWAY SUMMARY STATISTIC

In PCxN we use the mean rank as the pathway summary statistic. We considered using the projec-
tion into the first principal component as the summary statistic. However, the variance explained
by the first component was low in most of the curated experiments from normal human tissues. For
each experiment from the curated collection, we estimated the percentage of variance explained by
the first principal component for each of the 1,330 canonical pathways from the MSigDB CP v 5.1
collection. The barplot below shows the proportion of pathway for which the first principal compo-

nent explains more than 0% of the variance.

1.0

0.4
|

Variance Explained (PC1) > 0.5
0.2

0.0
|

Experiment (GSE)

Figure A.g. Proportion of canonical pathways for which the first principal component explains more than 50% of
the variance across all experiments.

A3 ImracT oF GENE OVERLAP (GO:BP)

We compared the number of significantly correlated pathways with the number of pathways which

share a significant number of genes according to Fisher’s exact test for the MSigDB GO:BP v 5.1 gene
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set collection.

Significant
Overlaps
(39,363) o
(=]

] -

Both
(16,904)

Significant !
(5,639) Both Sig Cor
Figure A.4. The stacked bar plot shows the number of pathways pairs with only significant correlations in red, with

only significant overlaps in yellow, and with both in orange. The boxplots show the distribution of the correlation
coefficients with pathway pairs with only significant correlations (red) and with both significant overlaps and

significant correlations (orange).

The results for the GO:BP gene set collection are similar to the results that we reported for the
Canonical Pathways in Figure 2D. We also observed more significant overlaps than significant cor-
relations, and about 30% of the pathway pairs have both significant overlap and significant correla-
tions. For pathway pairs with both significant overlaps and significant correlations, the correlations

are lower on average that for pathway pairs with significant correlations only.

A.4 ROBUSTNEss OF THE CORRELATION ESTIMATES

We used Jackknife statistics to estimate the bias of the aggregated correlation estimates to assess the

robustness of the coexpression network. The Jackknife statistics corresponding to the weighted
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average of the experiment-level correlation estimated leaving out one experiment at a time

D ik M7

W=,

where 7; is the correlation estimate for experiment , and #; is the number of samples in experi-

ment Z.

The estimate for the bias is given by
Bias = (N —1)(7(.y — 7)
where Nis the total number of experiments, 7is the aggregated correlation estimate, and

N
_ I _
70 = 2 22
k=1

The estimate for the bias reflects the influence of each experiment 7 from the curated collection of

normal human tissues on the aggregated correlation estimate 7.

Bias |Bias|
S_ [ ] -
® 8
LD_ —
—
o
S
2>¢© 20
7] ‘B 4
C o c 9
88 3
o
S 837
N
o- o-
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-0.0015 -0.0005 0.0005 0.0000 0.0004 0.0008 0.0012

Figure A.S. Histogram for the bias estimates (left), and the magnitude of the bias (right).
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The overall bias is very low (mean -0.0001462, median -0.0001378, mean magnitude 0.0003480,
median magnitude 0.0002962). The small bias of the correlation estimates of PCxN, demonstrate

the robustness of the pathway coexpression network.

A.s GSM AND GSE AccessioNs OF GENE EXPRESSION DATA.

https://zenodo.org/record/1214588/files/pcbi.1006042.5004.x1sX

A.6 CaANONICAL PATHWAYS ANNOTATION.

https://zenodo.org/record/1214588/files/pcbi.1006042.5005.x1sX

A.7 GENE OVERLAP AND CORRELATION ESTIMATES FOR THE CANONICAL PATHWAYS

IN F1G 1.2.B-G.

https://zenodo.org/record/1214588/files/pcbi.1006042.5006.x1sX

A.8 ArzareIMER’s DISEASE CURATED LisT.

https://zenodo.org/record/1214588/files/pcbi.1006042.s007.docx
Domain expert curated list of genes associated with Alzheimer’s disease identified via genome

wide association studies (GWAS).
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https://zenodo.org/record/1214588/files/pcbi.1006042.s004.xlsx
https://zenodo.org/record/1214588/files/pcbi.1006042.s005.xlsx 
https://zenodo.org/record/1214588/files/pcbi.1006042.s006.xlsx
https://zenodo.org/record/1214588/files/pcbi.1006042.s007.docx

A.9 CANONICAL PATHWAYS CORRELATED WITH THE ALZHEIMER’S DISEASE CURATED
LisT, AND CANONICAL PATHWAYS ENRICHED FOR GENES WITHIN THE ALZHEIMER’S

DisEasE CURATED LIST.

https://zenodo.org/record/1214588/files/pchi.1006042.s008.x1sx

Ao GENES ASSOCIATED WITH ALZHEIMER’S DISEASE FROM THE GENETIC ASSOCIA-

TION DATABASE.

https://zenodo.org/record/1214588/files/pcbi.1006042.5009.x1sx

A1 CaNONICAL PATHWAYS ENRICHED FOR GENES ASSOCIATED WITH ALZHEIMER’S

DiSEASE FROM THE GENETIC ASSOCIATION DATABASE.

https://zenodo.org/record/1214588/files/pcbi.1006042.s010.x1sx

A2 REsSULTS FROM GENE SET ENRICHMENT ANALYSIS ON AN ALZHEIMER’S DISEASE

PROFILING EXPERIMENT.

https://zenodo.org/record/1214588/files/pcbi.1006042.so1r.x1sx

A3 GEO ACCESSIONS FOR THE ALZHEIMER’S DISEASE PROFILING EXPERIMENT.

https://zenodo.org/record/1214588/files/pcbi.1006042.s012.x1sx
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https://zenodo.org/record/1214588/files/pcbi.1006042.s008.xlsx
https://zenodo.org/record/1214588/files/pcbi.1006042.s009.xlsx
https://zenodo.org/record/1214588/files/pcbi.1006042.s010.xlsx
https://zenodo.org/record/1214588/files/pcbi.1006042.s011.xlsx
https://zenodo.org/record/1214588/files/pcbi.1006042.s012.xlsx

A4 CORRELATIONS BETWEEN CANONICAL PATHWAYS IDENTIFIED AS ENRICHED BY GENE
SET ENRICHMENT ANALYSIS AND CANONICAL PATHWAYS CORRELATED WITH PATH-

WAYS IDENTIFIED AS ENRICHED BY GENE SET ENRICHMENT ANALYSIS.

https://zenodo.org/record/1214588/files/pcbi.1006042.s013. xLsX
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Supplementary Materials for Chapter 2

B.1 SUPPLEMENTARY FIGURES
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Figure B.1 Species Effect Magnitude vs. Nucleotide Similarity. The species effect is the observed difference in
means between the human and mouse normlized FPKM values from the resequenced ENCODE RNA-seq data set.
Absolute value of the species effect binned by the nucleotide similarity between the human-mouse orthologs.
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Probes
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Figure B.2. Alignment Parameters and Number of Probes. Median number of valid alignments for each set of
alignment parameters, gapExt (d) and mismatch (). (Top) Histogram with the color palette and (bottom) heat map

for the number of valid alignments.
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Figure B.3. Alignment Parameters and Probe Length. Median alignment length for each set of alignment
parameters, gapExt (d) and mismatch (). (Top) Histogram with the color palette and (bottom) heat map for the

alignment length.
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Gene Coverage (Hs)
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Figure B.4. Alignment Parameters and Human Ortholog Coverage. Median proportion of the human gene
present for each set of alignment parameters, gapExt (d) and mismatch (). (Top) Histogram with the color palette
and (bottom) heat map for the proportion of the human gene present.
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Figure B.S. Alignment Parameters and Mouse Ortholog Coverage. Median proportion of the mouse gene
present for each set of alignment parameters, gapExt (d) and mismatch (). (Top) Histogram with the color palette
and (bottom) heat map for the proportion of the mouse gene present.
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Figure B.6. Alignment Parameters and Probe Similarity (PIDx). Median probe similarity (PID1) for each set of
alignment parameters, gapExt (d) and mismatch (). (Top) Histogram with the color palette and (bottom) heat map
for the probe similarity (PID1).
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Figure B.7. Alignment Parameters and Probe Similarity (PID2). Median probe similarity (PID2) for each set of
alignment parameters, gapExt (d) and mismatch (). (Top) Histogram with the color palette and (bottom) heat map
for the probe similarity (PID2).
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Figure B.S. Alignment Parameters and Probe Similarity (PID3). Median probe similarity (PID3) for each set of
alignment parameters, gapExt (d) and mismatch (). (Top) Histogram with the color palette and (bottom) heat map
for the probe similarity (PID3).
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Figure B.o. Alignment Parameters and Probe Similarity (PID4). Median probe similarity (PID4) for each set of
alignment parameters, gapExt (d) and mismatch (). (Top) Histogram with the color palette and (bottom) heat map
for the probe similarity (PID4).
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Figure B.10. Ortholog Probe for BLOC1S6/BlociS6. Diagram for the union of transcript exons of the human (A)
and mouse (B) genes. The regions in gray below the exons correspond to the ortholog probe. Coverage plots for the

union of transcript exons excluding the intronic regions for the human (C) and mouse (D) genes. The dashed lines are

the exon boundaries and the shaded areas correspond to the ortholog probes. Coverage lots for the human (E) and

mouse (F) ortholog probes. Scatter plots for the normalized FPKM values (G), the normalized Salmon estimates
corrected for GC-content bias (1), and the normalized probe values (J) for the resequenced ENCODE RNA-seq data set.
Scatter plot for the normalized Barcode 3.0 microarray values.
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Figure B.11. Hierarchical Clustering of Resequenced ENCODE Data Set Leaving One Tissue Out.

Dendrogram for the resequenced ENCODE RNA-seq data set based on hierarchical clustering with complete linkage
and Euclidean distance leaving one tissue type out at a time. The dendrogram on the right (FPKM) is based on the
normalized FPKM values, and the dendrogram on the right (Probes) is based on the normalized ortholog probe counts.
The circles (o) correspond to pairs of human and mouse tissues where the type match, while the crosses (X)
correspond to pairs of human and mouse tissues where the type does not match. The numbers at the bottom of each
dendrogram are the proportion of human and mouse tissue pairs where the tissue type matches.
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Figure B.12. Tissue T-statistics Comparison between Probes and FPKM. The tissue t-statistics are the
t-statistic comparing the observed difference in means between the human and mouse samples from a given tissue
type and the rest of the human and mouse tissues. Comparison between the tissue t-statistics from the FPKM and the
probe normalized values. The purple dashed line is x = y, and the pink dashed line is x = —y. The number in each
corner indicates the proportion of points in each quadrant definedby x = oand y = o.
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Figure B.13. Tissue T-statistics Comparison between RNA-seq (FPKM) and Microarrays. The tissue
t-statistics are the t-statistic comparing the observed difference in means between the human and mouse samples
from a given tissue type and the rest of the human and mouse tissues. Comparison between the tissue t-statistics from
the FPKM and the microarray normalized values. The purple dashed line is x = y, and the pink dashed lineisx = —.
The number in each corner indicates the proportion of points in each quadrant defined by x = oand y = o.
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Figure B.14. Tissue T-statistics Comparison between RNA-seq (Probes) and Microarrays. The tissue
t-statistics are the t-statistic comparing the observed difference in means between the human and mouse samples
from a given tissue type and the rest of the human and mouse tissues. Comparison between the tissue t-statistics from
the probe and microarray normalized values. The purple dashed line is x = y, and the pink dashed lineisx = —y. The
number in each corner indicates the proportion of points in each quadrant defined by x = oand y = o.
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Figure B.IS. Species and Tissue Effect Comparison. The species effect is the observed difference in means between
the human and mouse normalized expression values from the resequenced ENCODE RNA-seq data set. In this case,
the tissue effect for heart is the observed difference in means between the human and mouse heart samples and the
rest of the human and mouse tissues. Comparison between the tissue effect estimates from the (a) FPKM and the
probe normalized values, the (b) FPKM and the microarray normalized values, and the (c) probe and microarray
normalized values. Comparison between the species effect estimates from the (d) FPKM and the probe normalized
values, the (e) FPKM and the microarray normalized values, and the (f) probe and microarray normalized values. The
purple dashed line is x = y, and the pink dashed lineisx = —y. The number in each corner indicates the proportion of
points in each quadrant defined by x = oand y = o.
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Figure B.16. Tissue Effect Comparison between Probes and FPKM. The tissue effect is the observed
difference in means between the human and mouse samples from a given tissue type and the rest of the human and
mouse tissues. Comparison between the tissue effect estimates from the FPKM and the probe normalized values. The
purple dashed line is x = ¥, and the pink dashed line isx = —7. The number in each corner indicates the proportion of

points in each quadrant definedbyx = oand y = o.
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Figure B.17. Tissue Effect Comparison between RNA-seq (FPKM) and Microarrays. The tissue effect is the
observed difference in means between the human and mouse samples from a given tissue type and the rest of the
human and mouse tissues. Comparison between the tissue effect estimates from the FPKM and the microarray
normalized values. The purple dashed line is x = y, and the pink dashed line is x = —y. The number in each corner
indicates the proportion of points in each quadrant defined by x = oand y = o.
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Figure B.18. Tissue Effect Comparison between RNA-seq (Probes) and Microarrays. The tissue effect is the
observed difference in means between the human and mouse samples from a given tissue type and the rest of the
human and mouse tissues. Comparison between the tissue effect estimates from the probe and microarray normalized
values. The purple dashed lineis x = y, and the pink dashed line is x = —y. The number in each corner indicates the
proportion of points in each quadrant defined by x = oand y = o.
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Figure B.19. Differences between H3K4me3 Peak Intensities vs.
Differences between the gene-associated H3K4me3 peak intensities from the REMC and mouse ENCODE projects

A(#transcripts)

and the number of annotated transcripts for the human-mouse orthologs.
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Figure B.20. Differences between H3K27ac Peak Intensities vs. Differences between the Number of Transcripts.
Differences between the gene-associated H3K27ac peak intensities from the REMC and mouse ENCODE projects and

the number of annotated transcripts for the human-mouse orthologs.
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Figure B.21. Histone Peak Intensities for Differentially Expressed Orthologs in the ENCODE RNA-seq
Data Set. Fold Enrichment over control of H3K4me3 and H3K27ac present at promoters of the differentially
expressed orthologs based on the normalized FPKM values from the ENCODE RNA-seq data set. The differentially
expressed orthologs are separated into orthologs where the gene expression is higher in the human tissues than in the
mouse tissues (Hs > Mm), and where the gene expression is higher in the mouse tissues than in the human tissues (Hs
< Mm). The p-values and Z-statistics were generated by the nonparametric paired Wilcoxon test between the human
and mouse gene-associated histone peak intensities, 7 is the number of human-mouse orthologs where at least one of

them has a gene-associated peak intensity.
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Figure B.22. Histone Peak Intensities for Differentially Expressed Orthologs in both the Resequenced
ENCODE RNA-seq Data Set and the Microarrays from Barcode 3.0. Fold enrichment over control of H3K4me3
and H3K27ac present at promoters of the differentially expressed orthologs based on both the normalized probe
values from the resequenced ENCODE RNA-seq data set and the normalized microarray values from Barcode 3.0. The
differentially expressed orthologs are separated into orthologs where the gene expression is higher on average in the
human tissues than in the mouse tissues (Hs > Mm), and where the gene expression is higher on average in the mouse
tissues than in the human tissues (Hs < Mm). The p-values and Z-statistics were generated by the nonparametric
paired Wilcoxon test between the human and mouse gene-associated histone peak intensities, 7 is the number of
human-mouse orthologs where at least one of them has a gene-associated peak intensity.
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Figure B.23. Histone Peak Intensities for Differentially Expressed Orthologs in the ENCODE RNA-seq
Data Set with the same Number of Annotated Transcripts. Fold Enrichment over control of H3K4me3 and
H3K27ac present at promoters of the differentially expressed orthologs with the same number of transcripts based on
the normalized FPKM values from the ENCODE RNA-seq data set. The differentially expressed orthologs are
separated into orthologs where the gene expression is higher in the human tissues than in the mouse tissues (Hs >
Mm), and where the gene expression is higher in the mouse tissues than in the human tissues (Hs < Mm). The p-values
and Z-statistics were generated by the nonparametric paired Wilcoxon test between the human and mouse
gene-associated histone peak intensities, 7 is the number of human-mouse orthologs where at least one of them has a
gene-associated peak intensity.



B.2 SuPPLEMENTARY TABLES

Table B.1. ENCODE RNA-seq Data.

Experiment accession ~ Species Tissue
ENCSR612HYR Homo sapiens  small intestine
ENCSR2700KS Homo sapiens  sigmoid colon
ENCSR 448VSW Homo sapiens  spleen
ENCSR129K(C] Homo sapiens  lung
ENCSRo8sHNI Homo sapiens  liver
ENCSR274JRR Homo sapiens  brain
ENCSRo46XHI Homo sapiens  female gonad
ENCSR693GGB Homo sapiens  testis
ENCSRoo1UXR Homo sapiens  pancreas
ENCSR680AAZ Homo sapiens  adrenal gland
ENCSR635GTY Homo sapiens  heart
ENCSR23600N Homo sapiens  adipose tissue
ENCSRo71ZMO Homo sapiens  kidney
ENCSR394YLM Mus musculus ~ kidney
ENCSR216KLZ Mus musculus  liver
ENCSR266ESZ Mus musculus  testis
ENCSR170SVO Mus musculus  small intestine
ENCSR518GDK Mus musculus  sigmoid colon
ENCSR248XKS Mus musculus  pancreas
ENCSR288TLO Mus musculus  adipose tissue
ENCSR966]JPL Mus musculus  spleen
ENCSR164BAZ Mus musculus  heart
ENCSR870AQU Mus musculus  lung
ENCSRs16UNF Mus musculus  female gonad
ENCSR7130CQ Mus musculus  adrenal gland
ENCSRs54PHF Mus musculus  brain

Experiment accessions for the human and mouse tissues from 4.
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Table B.2. ENCODE Resequenced RNA-seq Data.

Experiment accession

Species

Tissue

ENCSR23600N
ENCSRG680AAZ
ENCSR274JRR
ENCSR635GTY
ENCSRo71ZMO
ENCSRo8sHNI
ENCSR129K(]
ENCSR2700KS
ENCSR612HYR
ENCSR693GGB
ENCSR288TLO
ENCSR7130CQ
ENCSRs54PHF
ENCSR164BAZ
ENCSR394YLM
ENCSR216KLZ
ENCSR870AQU
ENCSRs18GDK
ENCSR170SVO
ENCSR266ESZ

Homo sapiens
Homo sapiens
Homo sapiens
Homo sapiens
Homo sapiens
Homo sapiens
Homo sapiens
Homo sapiens
Homo sapiens
Homo sapiens
Mus musculus
Mus musculus
Mus musculus
Mus musculus
Mus musculus
Mus musculus
Mus musculus
Mus musculus
Mus musculus
Mus musculus

adipose tissue

adrenal gland

brain

heart

kidney

liver

lung

sigmoid colon
small intestine
testis

adipose tissue

adrenal gland

brain

heart

kidney

liver

lung

sigmoid colon
small intestine
testis
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Table B.3. Human and Mouse Histone Peak Calls.

Experiment (Hs)  Tissue (Hs) Experiment (Mm)  Tissue (Mm)  Histone Mark
ENCFF124AQU  heart right ventricle ENCFF733HUI heart H3K27ac
ENCFF134Z1] heart left ventricle ENCFF733HUI heart H3K27ac
ENCFF755CRA  small intestine ENCFFo47ETI small intestine H3K27ac
ENCFFs29DJT  spleen ENCFFo976VFY spleen H3K27ac
ENCFF491YHG  heartright ventricle ENCFFs99BFW  heart H3K4me3
ENCFF814QSX  heartleftventricle =~ ENCFFs99BFW  heart H3K4mej3
ENCFFo76SMI  spleen ENCFF769BAR  spleen H3K4me3
ENCFF898EJC lung ENCFFso8WEP  lung H3K4mej3

Experiment accessions for the matched human (Hs) and mouse (Mm) tissues histone peak calls for
H3K4me3 and H3K27ac. The peak calls are based on the hgig (GRCh37) genome annotation for the
human samples, and on the mmio (GRCm38) genome annotation for the mouse samples.

Table B.4. Enriched GO Slim Terms in Differentially Expressed Orthologs.

FDR =~ o0.20
GOID Term Annotated  Significant  Expected OddsRatio  p-value
GO0:0006399  tRNA metabolic process 169 15 8.5500 1.8740  0.0245
GO:0006605  protein targeting 312 27 15.7900 1.8358  0.0046
GO:0034655  nucleobase-containing compound catabolic process 395 31 19.9900 1.6501  0.0103
GO:0006259 DNA metabolic process 848 63  42.9100 1.5781  0.0013
GO:0051276  chromosome organization 977 72 49.4400 1.5711  0.0007
GO:0006790  sulfur compound metabolic process 315 23 15.9400 1.5172  0.0496
GO:0006412  translation 540 39 27.3300 1.§102  0.0159
GO0:0034641  cellular nitrogen compound metabolic process 5200 321 263.1500 1.4429  0.0000
GO:0009058  biosynthetic process SI13 294 258.7500 1.2672  0.0025§
GO0:0009056  catabolic process 2061 121  104.3000 1.2250  0.0402

FDR = o.10
GOID Term Annotated  Significant  Expected OddsRatio  p-value
GO:0071554  cell wall organization or biogenesis 10 1 0.0400 31.5367 0.0382
GO:0051276  chromosome organization 977 9 3.8000 2.9099  0.0121

GO Slim terms significantly enriched in the differentially expressed orthologs at different FDR
cut-offs. The enrichment test was conducted using Fisher’s exact test.
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Table B-S- Histone Peak Differences between the Differentially Expressed Orthologs in reported by Lin et al.

H3K4me3 (Hs > Mm)

Human tissue Mouse tissue  Differentially expressed n p.value Z
heart left ventricle ~ heart 2569 669 3.31 X 10 12.4946
heart right ventricle  heart 2569 741 8.04 X10° 3  11.0060
lung lung 2569 630 9.87 Xx10°®  12.8700
spleen spleen 2569 700 2.42 X 10 ¢ 6.2172
H3K4me3 (Hs < Mm)
Human tissue Mouse tissue  Differentially expressed n p.value Z
heart left ventricle heart 2198 642 239 X109 -8.5200
heart right ventricle ~ heart 2198 719 5.93 X 10 *° -9.9276
lung lung 2198 644 1.49 X 10 % -7.1023
spleen spleen 2198 820 4.60X10° %  -7.6246
H3K27ac (Hs > Mm)
Human tissue Mouse tissue  Differentially expressed n p.value Z
heart left ventricle heart 2569 838 8.15 X 10 ?*? 13.4307
heart right ventricle  heart 2569 969 6.70 X 107 %© 9.3044
small intestine small intestine 2569 866 5.19 X 107 >° 11.9405
spleen spleen 2569 994 9.69 X 10°*  10.5260
H3K27ac (Hs < Mm)
Human tissue Mouse tissue  Differentially expressed n p.value Z
heart left ventricle heart 2198 814 502 X10 ° -7.1393
heart right ventricle  heart 2198 898 1.93X10 %  -10.1227
small intestine small intestine 2198 862 2.94 X 10 % -8.8226
spleen spleen 2198 902 1.02 X 10 % -9.6613

Wilcoxon test results for the difference between the fold enrichment over control of H3K4me3 and

H3Kz7ac present at promoters of the differentially expressed orthologs reported by Lin et al. The

differentially expressed orthologs were separated into orthologs where the gene expression is higher

in the human tissues than in the mouse tissues (Hs > Mm), and where the gene expression is higher
in the mouse tissues than in the human tissues (Hs < Mm). The p-values and Z-statistics were
generated by the nonparametric paired Wilcoxon test between the human and mouse

gene-associated histone peak intensities, 7 is the number of human-mouse orthologs where at least

one of them has a gene-associated peak intensity.
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Table B.6. Histone Peak Differences between the Differentially Expressed Orthologs in the Resequenced
ENCODE Data Set.

H3K4me3 (Hs > Mm)

Human tissue Mouse tissue  Differentially expressed n p.value Z
heart left ventricle heart 1422 584 5.59 X 10 8.0410
heart right ventricle  heart 1422 620 2.79 X 10 ? 6.3512
lung lung 1422 579 4.76 X10°7  9.8433
H3K4me3 (Hs < Mm)
Human tissue Mouse tissue  Differentially expressed n p.value Z
heart left ventricle ~ heart 1297 314 185X 10 4 -4.3938
heart right ventricle  heart 1297 348 1.02 X107/ -6.5685
lung lung 1297 304 $§.31X10 4 -3.2987
H3K27ac (Hs > Mm)
Human tissue Mouse tissue  Differentially expressed n p.value Z
heart left ventricle heart 1422 686 1.01 XI10 * 12.14I2
heart right ventricle  heart 1422 774 6.79 X107 9.7264
small intestine small intestine 1422 677 3.91 X 10 B 8.5614
H3K27ac (Hs < Mm)
Human tissue Mouse tissue  Differentially expressed n p.value Z
heart left ventricle heart 1297 421 391X 10 °  -6.2610
heart right ventricle  heart 1297 440 4.72 X 10  -9.5647
small intestine small intestine 1297 422 2.96 X 10 %  -4.4332

Wilcoxon test results for the difference between the fold enrichment over control of H3K4me3 and
H3Kz7ac present at promoters of the differentially expressed orthologs based on the normalized
FPKM values from the resequenced ENCODE RNA-seq data set. The differentially expressed
orthologs were separated into orthologs where the gene expression is higher in the human tissues
than in the mouse tissues (Hs > Mm), and where the gene expression is higher in the mouse tissues
than in the human tissues (Hs < Mm). The p-values and Z-statistics were generated by the
nonparametric paired Wilcoxon test between the human and mouse gene-associated histone peak
intensities, 7 is the number of human-mouse orthologs where at least one of them has a
gene-associated peak intensity.
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Table B.7. Histone Peak Differences between the Differentially Expressed Orthologs in both the Resequenced
ENCODE Data Set and the Microarrays from Barcode 3.0.

H3K4me3 (Hs > Mm)

Human tissue Mouse tissue  Differentially expressed n p.value Z
heart left ventricle ~ heart 391 171 9.78 X 10° %  4.4314
heart right ventricle  heart 391 184 5.36 X 10~ %  3.8841
lung lung 391 165 101X I0 4  4.5705
H3K4me3 (Hs < Mm)
heart left ventricle ~ heart 362 79 6.51 X 10" 0.8933
heart right ventricle  heart 362 86 3.92X10 ' -0.9676
lung lung 362 75 6.48 X 10"  1.0274
H3Kz27ac (Hs > Mm)
Human tissue Mouse tissue  Differentially expressed n p.value Z
heart left ventricle heart 391 187 L75 X 10 S 6.9619
heart right ventricle  heart 391 200 L.07 X10 °  §5.2173
small intestine small intestine 391 175 3.78 X 10 * 42715
H3K27ac (Hs < Mm)
Human tissue Mouse tissue  Differentially expressed n p.value Z
heart left ventricle heart 362 101 2.01 X10 2 -2.2850
heart right ventricle  heart 362 112 2.4 X 10 2  -3.9039
small intestine small intestine 362 104 7.41X 10" 1.1797

Wilcoxon test results for the difference between the fold enrichment over control of H3K4me3 and
H;3Ka7ac present at promoters of the differentially expressed orthologs based on both the
normalized probe values from the resequenced ENCODE RNA-seq data set and the normalized
microarrays values from Barcode 3.0 where the human gene and the mouse gene have the same
number of annotated transcripts. The differentially expressed orthologs were separated into
orthologs where the gene expression is higher in the human tissues than in the mouse tissues (Hs >
Mm), and where the gene expression is higher in the mouse tissues than in the human tissues (Hs <
Mm). The p-values and Z-statistics were generated by the nonparametric paired Wilcoxon test
between the human and mouse gene-associated histone peak intensities, 7 is the number of
human-mouse orthologs where at least one of them has a gene-associated peak intensity.
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Table B.8. Histone Peak Differences between the Differentially Expressed Orthologs in reported by Lin et al. with
the same Number of Annotated Transcripts.

H3K4me3 (Hs > Mm)

Human tissue Mouse tissue  Differentially expressed n p.value Z
heart left ventricle ~ heart 158 31 6.66 X10'  0.5643
heart right ventricle  heart 158 35 2.25 X 10 ' 1.0419
lung lung 158 30 3.49 X10° "  1.3039
spleen spleen 158 31 6.59 X10 ' o0.05I0
H3K4me3 (Hs < Mm)
Human tissue Mouse tissue  Differentially expressed n p.value Z
heart left ventricle heart 338 88 127 XI10 '  -1.9414
heart right ventricle  heart 338 100 $5.59 XI10 ' -0.8020
lung lung 338 88 8.23X10 ' -0.5981I
spleen spleen 338 104 §5.73 X107 ' 0.4475
H3Kz27ac (Hs > Mm)
Human tissue Mouse tissue  Differentially expressed n p.value Z
heart left ventricle heart 158 38 6.90x10 '  0.7775
heart right ventricle  heart 158 45 576 X 107" 1.4932
small intestine small intestine 158 44 195X 10 ° 0.922.4
spleen spleen 158 43 5.83 X107 %  2.1003
H3K27ac (Hs < Mm)
Human tissue Mouse tissue  Differentially expressed n p.value Z
heart left ventricle ~ heart 338 91 3.05 X107 '  -I.1775
heart right ventricle  heart 338 102 4.33 X 10 ' -0.4549
small intestine small intestine 338 109 5.80 X102 -2.1923
spleen spleen 338 109 1.90 XI0 '  -I.4222

Wilcoxon test results for the difference between the fold enrichment over control of H3K4me3 and
H;3Ka7ac present at promoters of the differentially expressed orthologs reported by Lin et al. where
the human gene and the mouse gene have the same number of annotated transcripts. The
differentially expressed orthologs were separated into orthologs where the gene expression is higher
in the human tissues than in the mouse tissues (Hs > Mm), and where the gene expression is higher
in the mouse tissues than in the human tissues (Hs < Mm). The p-values and Z-statistics were
generated by the nonparametric paired Wilcoxon test between the human and mouse
gene-associated histone peak intensities, 7 is the number of human-mouse orthologs where at least
one of them has a gene-associated peak intensity.
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Table B. 9. Histone Peak Differences between the Differentially Expressed Orthologs in the Resequenced
ENCODE Data Set with the same Number of Annotated Transcripts.

H3K4me3 (Hs > Mm)

Human tissue Mouse tissue  Differentially expressed  n p.value Z
heart left ventricle ~ heart 92 36 9.57 X10° '  0.2224
heart right ventricle  heart 92 42 6.03X10 ' 0.8219
lung lung 92 36 8.71X10 ' -0.2114
H3K4me3 (Hs < Mm)
Human tissue Mouse tissue  Differendially expressed  n  p.value Z
heart left ventricle ~ heart 132 31 8.70 X10 ' -0.3437
heart right ventricle  heart 132 32 6.54 X10 ' -0.6682
lung lung 132 31 6.22X10 "  0.8185
H3K27ac (Hs > Mm)
Human tissue Mouse tissue  Differentially expressed  n p.value Z
heart left ventricle heart 92 39 8.61X10 % 1.6374
heart right ventricle  heart 92 44 4.72 X102 2.1433
small intestine small intestine 92 43 331X 10 2 1.6897
H3K27ac (Hs < Mm)
Human tissue Mouse tissue  Differentially expressed  n p.value Z
heart left ventricle heart 132 40 136 XI0 '  -I1.4129
heart right ventricle  heart 132 40 2.48 X10° ' -1.0819
small intestine small intestine 132 41 529 XI0 '  0.8395

Wilcoxon test results for the difference between the fold enrichment over control of H3K4me3 and
H3Kz7ac present at promoters of the differentially expressed orthologs based on the normalized
FPKM values from the resequenced ENCODE RNA-seq data set where the human gene and the

mouse gene have the same number of annotated transcripts. The differentially expressed orthologs
were separated into orthologs where the gene expression is higher in the human tissues than in the
mouse tissues (Hs > Mm), and where the gene expression is higher in the mouse tissues than in the
human tissues (Hs < Mm). The p-values and Z-statistics were generated by the nonparametric
paired Wilcoxon test between the human and mouse gene-associated histone peak intensities, 7 is
the number of human-mouse orthologs where at least one of them has a gene-associated peak
intensity.
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Table B.10. Histone Peak Differences between the Differentially Expressed Orthologs in both the Resequenced
ENCODE Data Set and the Microarrays from Barcode 3.0 with the same Number of Annotated Transcripts.

H3K4me3 (Hs > Mm)

Human tissue Mouse tissue  Differentially expressed  n  p.value Z
heart left ventricle ~ heart 29 10 1.6 X10 ' 2.0854
heart right ventricle  heart 29 12 ILIXIO ' 1.7198
lung lung 29 9 5.7 XI10 " 0.8095
H3K4me3 (Hs < Mm)
heart left ventricle ~ heart 39 3 7.50XI0 '  0.0000
heart right ventricle  heart 39 3 1.00 X 10° 0.0000
lung lung 39 4 875X10 " 0.2958
H3Kz27ac (Hs > Mm)
Human tissue Mouse tissue  Differendially expressed  n  p.value Z
heart left ventricle heart 29 10 1.60 X 10 ' 1.9021
heart right ventricle  heart 20 9 5.47 X107 23197
small intestine small intestine 29 10 3.71X10 2 1.7237
H3K27ac (Hs < Mm)
Human tissue Mouse tissue  Differentially expressed  n p.value Z
heart left ventricle heart 39 13 1.46 X107 ' -2.1381
heart right ventricle  heart 39 14 9.06 X 10 ? -1.9433
small intestine small intestine 39 9 1.95X 10 2 2.1378

Wilcoxon test results for the difference between the fold enrichment over control of H3K4me3 and
H;3Ka7ac present at promoters of the differentially expressed orthologs based on both the
normalized probe values from the resequenced ENCODE RNA-seq data set and the normalized
microarrays values from Barcode 3.0 where the human gene and the mouse gene have the same
number of annotated transcripts. The differentially expressed orthologs were separated into
orthologs where the gene expression is higher in the human tissues than in the mouse tissues (Hs >
Mm), and where the gene expression is higher in the mouse tissues than in the human tissues (Hs <
Mm). The p-values and Z-statistics were generated by the nonparametric paired Wilcoxon test
between the human and mouse gene-associated histone peak intensities, 7 is the number of
human-mouse orthologs where at least one of them has a gene-associated peak intensity.
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B.3 HumanN AND MOUSE MICROARRAY SAMPLES.

https://zenodo.org/record/1242623/files/barcode_mcr_samples.xlsx

B.4 FasTQC REPORT FOR THE RESEQUENCED ENCODE DATA SET.

https://zenodo.org/record/1242623/files/lin2_fastQC_report.xlsx
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https://zenodo.org/record/1242623/files/lin2_fastQC_report.xlsx
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Supplementary Materials for Chapter 3

C.1 SUPPLEMENTARY FIGURES
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Figure C.1. Harmonic regression fits for circadian genes. The regression is based on the time course data set.
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Figure C.2. Tissue Speciﬁc Gene Set. Gene Expression Barcode estimates for the set of tissue specific genes.
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effect estimates, and the correlation based on the gene-specific tissue effect.
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C.2 SUPPLEMENTARY TABLES

Gene Mean.Phase

Arntl 0.0000
Npas2 0.1514
Cry1 4.9948
Nfil3 6.0077
Clock 0.0791
Rorc 5.0495
Nrid1 2.2956
Cry2 3.5008
Bhlhe41 2.9090
HIf 3.4256
Perz 3.8866
Dbp 2.9915
Tef 3.3136
Per1 3.1220
Nrid2 2.9871
Ciart 3.0077
Per3 3.3059

Table C.1. Circadian Genes Mean Phase. Mean phase qgiynates for the mouse circadian genes.



C.3 Time CoURSE DATA SET GEO ACCESSIONS.

https://zenodo.org/record/1243315/files/LiverBiologicalReplicates_samples.

xLsx

C.4 Tissue PaNEL DaTa SET GEO ACCESSIONS.

https://zenodo.org/record/1243315/files/TissuePanel_samples.xlsx

C.s Liver BioroGicaL REPLICATES DATA SET GEO ACCESSIONS.

https://zenodo.org/record/1243315/files/LiverBiologicalReplicates_samples.

x1lsx
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