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Abstract 

Complex, multi-exposure problems arise in many forms.  In this dissertation, we delve 

into three disparate forms of complex, multi-exposure questions, from the safety of combination 

antiretroviral (ARV) regimens to the complexities arising from repeated measures data to 

statistical genetics. 

In Chapter 1, we evaluate a hierarchical model that groups ARVs by drug class, while 

still providing individual ARV effect estimates, to screen for the safety of ARV exposures during 

pregnancy.  In simulations, we compare the statistical operating characteristics of the hierarchical 

approach to the standard approaches of separate regression models for each ARV and a full, 

fixed effect model.  We illustrate the characteristics of the hierarchical approach in an 

application evaluating risk of preterm delivery using a study including over 2,000 pregnancies 

representing over 100 antiretroviral combinations, each involving up to three drug classes. 

Chapter 2 explores estimation of the relative excess risk due to interaction (RERI) in 

clustered data settings.  The RERI is a measure of additive interaction for binary outcomes that 

can be calculated from multiplicative regression models.  We evaluate the RERI for the setting of 

clustered data using both population-averaged and cluster-conditional models.  In simulation 

studies, we find that estimation and inference for the RERI using population-averaged models is 

straightforward.  However, frequentist implementations of cluster-conditional models including 
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random intercepts often fail to converge or produce degenerate variance estimates.  We develop 

a Bayesian implementation of log binomial random intercept models, which represents an 

attractive alternative for estimating the RERI in cluster-conditional models. We apply the 

methods to an observational study of adverse birth outcomes in mothers with HIV infection, in 

which mothers are clustered within clinical research sites.  

In Chapter 3, we introduce a computationally efficient algorithm for permutation testing 

between a single rare genetic variant and affection status which also allows for adjustment of 

covariates.  To demonstrate the feasibility of the algorithm, we apply the method to a study of 

chronic obstructive pulmonary disease.  In simulations, we show that the permutation test 

maintains a Type I error rate closer to the nominal level than the asymptotic and saddlepoint 

approximation tests for rare variants.    
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Introduction 

 

Complex, multi-exposure problems arise in many forms.  In this dissertation, we delve 

into three disparate forms of complex, multi-exposure questions, from the safety of combination 

antiretroviral regimens to the complexities arising from repeated measures data to statistical 

genetics.  Each of these statistical challenges is driven by a pressing, underlying clinical 

question; and ultimately with this dissertation, I aim to provide statistical approaches that clinical 

researchers can implement in their research for sound statistical practice.   

In Chapter 1, we investigate a hierarchical modeling approach for assessing the safety of 

antiretroviral drug regimens taken during pregnancy by women with HIV.  Combination 

antiretroviral regimens have achieved tremendous success in reducing perinatal HIV 

transmission, and have become standard of care in pregnant women with HIV.  However, the 

large variety of combination antiretroviral regimens utilized in practice raises the question of 

whether some of these highly potent drugs pose other risks to the pregnancy or infant.  While 

pregnant women with HIV are almost always exposed to multiple antiretrovirals concurrently, 

standard safety screening strategies typically consider each individual antiretroviral separately, 

which fails to account for potential confounding due to simultaneous exposure to other 

antiretrovirals.  We evaluate a hierarchical modeling approach which groups antiretrovirals by 

drug class, while still providing individual antiretroviral drug effect estimates.  We illustrate the 

characteristics of the hierarchical approach in an application evaluating risk of preterm birth 

using a study including over 2,000 pregnancies representing over 100 antiretroviral 

combinations, each involving up to three drug classes. 
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In addition to screening for adverse individual antiretroviral effects, it is important to 

consider possible drug-drug and drug-covariate interactions.  In particular, for binary outcomes, 

the risk difference scale and additive interaction effects are often of greater clinical relevance 

than the ratio scale and multiplicative interaction effects.  Yet, the models typically used for 

binary outcomes implicitly measure interaction on the multiplicative scale.  One measure to 

assess additive interaction from multiplicative models is the Relative Excess Risk due to 

Interaction (RERI).  Extending the hierarchical model assessed in Chapter 1 to screen for 

additive interactions induces a distribution on the RERIs for each drug-drug or drug-covariate 

interaction.  Furthermore, for common, binary outcomes, it is important to estimate the RERI 

using relative risks, not odds ratios.  Log binomial regression can be unstable, and a hierarchical 

log binomial regression model with random slopes for each drug and each interaction proved 

difficult to implement in a frequentist setting.   

In Chapter 2, we consider estimating the RERI in more general clustered data settings.  

The RERI measure has been applied in many contexts, but one limitation of previous approaches 

is that clustering in data has rarely been considered.  We evaluate the RERI metric for the setting 

of clustered data using both population-averaged and cluster-conditional models.  In simulation 

studies, we find that estimation and inference for the RERI using population-averaged models is 

straightforward.  However, frequentist implementations of cluster-conditional models including 

random intercepts often fail to converge or produce degenerate variance estimates.  We develop 

a Bayesian implementation of log binomial random intercept models, which represents an 

attractive alternative for estimating the RERI in cluster-conditional models. We apply the 

methods to an observational study of adverse birth outcomes in mothers with HIV infection, in 

which mothers are clustered within clinical research sites.  
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In Chapter 3, we turn our focus to a setting where the multitude of exposures explodes – 

statistical genetics.  With the rapid advancement in DNA sequencing technologies over the last 

decade, cost-effective identification of rare and very rare single-nucleotide polymorphisms 

(SNPs) has become possible.  Yet, the standard statistical methods used to test these rare variants 

rely on asymptotic, large sample theory, which likely does not hold when the minor allele count 

is so low.  However, the computational burden of permutation testing in a logistic regression 

setting can be prohibitive.  We develop a computationally efficient algorithm for permutation 

testing of individual rare genetic variants that allows for adjustment of covariates.  To 

demonstrate the feasibility of the algorithm, we apply the method to a study of chronic 

obstructive pulmonary disease.  In simulations, we show that the permutation test maintains a 

Type I error rate closer to the nominal level than the asymptotic and saddlepoint approximation 

tests.  

We conclude this dissertation with a few suggestions for avenues of further research. 
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1. A hierarchical modeling approach for assessing the safety of 

exposure to complex antiretroviral drug regimens during pregnancy 

 

The use of combination antiretroviral (ARV) therapy during pregnancy has been a public 

health success, reducing the risk of perinatal human immunodeficiency virus (HIV) transmission 

to less than 2% (CDC, 2006; Suksomboon et al., 2007).  Despite widespread use of ARVs during 

pregnancy, there is a dearth of adequate and well-controlled human studies evaluating the safety 

of ARVs in pregnancy, leading to a need to monitor potential adverse effects that these highly 

potent drugs may have on the pregnancy or infant (Zash et al., 2016).  Given the large number of 

available and effective ARVs, identification of individual ARVs with increased risks is critical, 

so that pregnant women can be advised to take ARVs with the safest profile.  

The difficulty in assessing the safety of ARVs during pregnancy is due in part to the large 

number of different drugs available, yielding hundreds of possible combinations of ARV drugs 

that women can be exposed to during pregnancy.  When prior research findings are suggestive or 

in settings with limited variability in regimens, a comparative effectiveness strategy may be used 

to compare two regimens against each other (Caniglia et al., 2016).  However, such approaches 

may not be useful for general safety screening across many ARVs or regimens.  In most cases, 

safety screening for a larger number of ARV drugs has been conducted by considering one drug 

at a time as part of a screening strategy.  That is, studies have either restricted analysis to a single 

drug or drug class, or analyzed exposure to one drug or drug class at a time, and repeated the 

analysis for each drug and/or drug class (Tuomala et al., 2002; Cotter et al., 2006; Grosch-

Woerner et al., 2008; Sibiude et al., 2012; Watts et al., 2013; Koss et al., 2014; Bisio et al., 2015; 

Perry et al., 2016; Vannappagari et al., 2016; Williams et al., 2016).
 
 Such analyses fail to adjust 

for exposure to other ARV drugs, and thus could be confounded by other ARV use.  On the other 
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hand, with so many different ARV exposures, it can become prohibitive to include all exposures 

at once in the statistical models ordinarily used.   

As an alternative to these conventional approaches, hierarchical modeling has been 

advocated to address the multiple-exposure issues inherent to many epidemiologic investigations 

(Greenland, 1992; Greenland, 1993; Witte et al., 1994).  It has been used in areas such as 

nutrition, occupational health and genetics (Greenland, 1992; Witte et al., 1994; Witte and 

Greenland, 1996; Witte et al., 2000; Greenland, 1997; Aragaki et al., 2003; Conti and Witte, 

2003; Hung et al., 2008; Capanu et al., 2008; Capanu and Begg, 2011; Brenner et al., 2013).  

Hierarchical models have also previously been used in evaluating outcomes among HIV-infected 

adults, but have not been utilized in the context of addressing safety of ARV use during 

pregnancy (Young et al., 2009; Wang et al., 2013; Young et al., 2016).   

In this paper, we investigate a hierarchical model safety screening approach that includes 

first-stage effects for each drug class (nucleoside reverse transcriptase inhibitors (NRTI), non-

nucleoside reverse transcriptase inhibitors (NNRTI), and protease inhibitors (PI)), and second-

stage effects for individual drugs.  In essence, this model assumes that the effect of each drug is 

the summation of the (fixed) effect of its drug class and a residual effect specific to the 

individual drug.  The effect for drugs less commonly used will be pulled toward the “mean” 

effect averaged over other, more common drugs from its same drug class.  We would thus expect 

the hierarchical modeling method to perform well when drugs from the same drug class do 

indeed have similar effects on the outcome of interest.   

The assumption of a similar effect for drugs within the same drug class can be justified 

by the fact that each class of antiretroviral medications has a different mechanism of action. 

NRTIs are analogs of naturally-occurring deoxynucleotides and terminate DNA chain formation 
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(Kalkut, 2005; Cihlar and Ray, 2010).  NNRTIs bind to the HIV reverse transcriptase enzyme 

and cause a structural change that impairs further DNA synthesis (Kalkut, 2005; De Bethune, 

2010).  PIs prevent the processing of viral proteins into their functional form, such that release of 

active virus particles is inhibited (Kalkut, 2005; Wensin et al., 2010).  As a result of their 

mechanism of action, PIs as a class have been linked to increased rates of dyslipidemia in both 

children and adults with HIV infection (Stein, 2003; Tassiopoulos et al., 2008), and have also 

been associated with increased rates of preterm birth (Mesfin et al., 2016; Watts et al., 2013), 

particularly when taken by HIV-infected women early in pregnancy (Uthman et al., 2017).  In 

contrast, NRTIs have been linked to potential mitochondrial dysfunction and lactic acidosis 

based on evidence from both animal and human studies (Cote et al., 2002).  While their common 

mechanism of action supports an assumption that drugs within a class would behave similarly, 

and some studies have documented similar rates of outcomes (Perry et al., 2016), there are also 

specific individual drugs which may confer increased or decreased risk as compared to others 

within the same class (CDC, 2006; Smith et al., 2016; Abers et al., 2014).  For example, the drug 

efavirenz (EFV) has been more commonly associated with psychiatric adverse effects than other 

drugs within the NNRTI class (Abers et al., 2014).
 

Given a plausible biological justification, the hierarchical modeling approach thus seems 

appealing.  However, while a limited number of prior applications have utilized this approach, 

there is little information on how well this method will perform under various possible scenarios 

reflecting ARV drug effects.  For example, this approach may not perform well when drugs from 

the same class do not behave similarly.  Furthermore, previous research studies utilizing this 

approach considered multiple continuous exposures with considerably more variability than 

observed within our context (Witte and Greenland, 1996; Witte et al., 2000).  Thus, examination 
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of whether the hierarchical modeling approach is advantageous within the context of multiple 

binary exposures with many zero counts is warranted.    Given the lack of prior knowledge 

regarding expected effects in these types of screening studies, we sought to quantify how much is 

gained by using the hierarchical model when the drug class assumption is correct, and also how 

much is lost by using the hierarchical model when the drug class assumption contradicts the true 

underlying data mechanism. 

In Section 1.2, we detail the three screening approaches to be compared, and consider the 

analytical bias of the separate models approach and the hierarchical approach.  In Section 1.3, we 

present a simulation study conducted to compare the conventional approaches and the 

hierarchical modeling approach under various true exposure-outcome scenarios in the context of 

screening the safety of ARV exposures during pregnancy.  In Section 1.4, we illustrate the 

hierarchical modeling approach using data from the Surveillance Monitoring of ART Toxicities 

(SMARTT) study within the Pediatric HIV/AIDS Cohort Network Study (PHACS).  In Section 

1.5, we conclude with a discussion of the relative merits and limitations of the hierarchical 

approach for safety screening, and avenues of further research.     

 

1.2 Methods 

1.2.1 Models 

We consider the setting of an observational cohort study with N participants for whom we have 

information on ARV exposures during pregnancy and perinatal outcome data.  We let y be an N 

by 1 outcome vector, indicating a perinatal or infant outcome.  We let X be an N by m matrix of 

zeroes and ones indicating the exposure history (no/yes) during pregnancy of each participant to 

m individual ARVs under investigation, and we let Xj be the N by 1 subvector of X indicating 
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the exposure history for the j
th

 ARV (j=1,2,..m).  Lastly, we let 𝟏𝑵 be an N by 1 vector of ones 

and W be an N by q matrix of q potential confounding variables.  Let g(·) denote the link 

function for a generalized linear model.  In particular, we investigate the identity link (g(E(y)) = 

E(y)) for continuous outcomes and the logit link (g(E(y)) = logit{E(y)}) for binary outcomes.  

The standard, separate regression models approach involves running m models, where 

each model includes one ARV drug:  

𝑔(𝑬(𝒚|𝑋𝑗 , 𝑾)) =  𝛼𝑆𝟏𝑵 + 𝑿𝒋𝛽𝑗
∗ + 𝑾𝜸𝒋

∗, 𝑗 = 1,2, … , 𝑚  (1) 

In Equation (1), 𝛼𝑆 represents the mean outcome (under the identity link) or the log odds of the 

outcome (under the logit link) among those unexposed to the j
th

 ARV and for which all 

covariates in W equal zero.  The 𝛽𝑗
∗ represent the mean difference in outcome (under the identity 

link) or the difference in log odds of the outcome (under the logit link) between women exposed 

and unexposed to the j
th

 ARV after adjusting for the covariates in W.  The 𝜸𝒋
∗ is a vector 

indicating the mean differences in outcome (under the identity link) or the differences in log 

odds of the outcome (under the logit link) for a one unit increase in the covariates, when 

adjusting for the j
th

 ARV.   

The full fixed effect regression model involves running one model with all m ARVs 

included at once: 

𝑔(𝑬(𝒚|𝑿, 𝑾)) =  𝛼𝐹𝟏𝑵 + 𝑿𝜷𝑭 + 𝑾𝜸𝑭    (2) 

In Equation (2), 𝛼𝐹 represents the mean outcome (under the identity link) or the log odds of the 

outcome (under the logit link) among those unexposed to all m ARVs and for which all 

covariates in W equal zero.  The 𝜷𝑭 vector represents the mean differences (or differences in log 

odds) in outcome under the identity link (or logit link) between women exposed and unexposed 

to each ARV after adjusting for the other m -1 ARVs and the covariates in W.  The 𝜸𝑭 is a vector 
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indicating the mean differences in outcome (under the identity link) or the differences in log 

odds of the outcome (under the logit link) for a one unit increase in the covariates, when 

adjusting for all m ARVs.   

 

The hierarchical model adds a prior distribution to the 𝜷𝑭 coefficients in (2), such that  

𝜷𝑯 = 𝒁𝝅 +  𝜹,  

𝜹~𝑁𝑚(𝟎, 𝜏2𝑰𝒎)     (3) 

So, 𝜷𝑯~𝑁𝑚(𝒁𝝅, 𝜏2𝑰𝒎), where Z is an m by p matrix indicating drug class membership when the 

m individual drugs under investigation are from p different drug classes, and 𝝅 is a p by 1 vector 

of the p fixed, drug class-specific mean effects.  For example, with m=14 drugs from p=3 drug 

classes, Z may look like:  

  NRTI NNRTI PI  

Abacavir (ABC)  1 0 0  

Emtricitabine (FTC)  1 0 0  

Tenofovir (TDF)  1 0 0  

Zidovudine (ZDV)  1 0 0  

Lamivudine (3TC)  1 0 0  

Efavirenz (EFV)  0 1 0  

Etravirine (ETR)  0 1 0  

Nevirapine (NVP)  0 1 0  

Rilpivirine (RPV)  0 1 0  

Atazanavir (ATV)  0 0 1  

Darunavir (DRV)  0 0 1  

Fosamprenavir (FPV)  0 0 1  

Ritonavir-boosted Lopinavir (LPV/r)  0 0 1  

Nelfinavir (NFV)  0 0 1  
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𝜹 is an m by 1 vector of residual effects for each individual drug, and the elements of 𝜹 are 

assumed to be independent normal random variables with mean 0 and variance 𝜏2.  The 

hierarchical model thus becomes: 

 𝑔(𝑬(𝒚|𝑿, 𝒁, 𝑾, 𝜹)) =  𝛼 + 𝑿(𝒁𝝅 +  𝜹) + 𝑾𝜸 =  𝛼𝟏𝑵 + 𝑿𝒁𝝅 + 𝑿𝜹 + 𝑾𝜸,  

𝜹~𝑁𝑚(𝟎, 𝜏2𝑰𝒎)     (4) 

From the formulation in (4), we can see that 𝑿𝒁 is an N by p matrix indicating the number of 

drugs from each drug class that each participant was exposed to during pregnancy.   The 

elements in 𝝅 represent the effect on the outcome of each additional drug from a particular drug 

class that a woman is exposed to during pregnancy, conditional on the individual drugs taken and 

covariates in W.  The elements of 𝜹 are the residual effects on the outcome for a particular drug 

above and beyond the effects attributed to its drug class.  The 𝛼 parameter represents the mean 

outcome (under the identity link) or the log odds of the outcome (under the logit link) among 

those unexposed to all m ARVs and for which all covariates in W equal zero; and 𝜸 is a vector of 

the covariate effects conditional on exposure to drug classes and individual drugs. 

The variance of the random effects (𝜏2) controls the degree of shrinkage of the 𝛽𝐻’s to 

their drug class mean.  Smaller values of 𝜏2 will result in more shrinkage to the drug class mean, 

with the hierarchical model reducing to a model with just fixed effects for drug class when 𝜏2=0.  

Larger values of 𝜏2 correspond to less shrinkage to the drug class mean, and the hierarchical 

model becomes equivalent to the ordinary full regression model when 𝜏2 = ∞.    

 

1.2.2 Brief bias considerations under the linear model 

As mentioned earlier, we would expect the hierarchical modeling method to perform well when 

drugs from the same drug class have similar effects on the outcome of interest.  However, often 
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there is little prior knowledge regarding the effects of ARV exposures on reproductive and 

perinatal outcomes, and the relative advantages of the hierarchical approach when only a subset 

of ARV drugs have an effect requires evaluation.  Suppose the true underlying data generating 

mechanism is that only one drug, X1, has an effect on a continuous outcome Y in the following 

form: 

𝑦𝑖 = 𝛼∗ + 𝑋1𝛽1
∗ + 𝜀𝑖,      𝜀𝑖 ~𝑁(0, 𝜎2)                      

Under the separate models approach, the maximum likelihood estimate (MLE) for 𝛽1
∗ will be 

unbiased and consistent when fitting drug 1, i.e. the correct model.  However, MLE estimates for 

the 𝛽𝑗
∗ from the other m -1 models will be biased due to uncontrolled confounding by X1.  In 

particular, it can be shown that the expected value of �̂�𝑗
∗ has the form 

𝐸[�̂�𝑗
∗] = 𝜉1𝑗𝛽1

∗,     𝑗 = 2, 3, … , 𝑚 

where 𝜉1𝑗 is the difference in probability of receiving drug X1 between women exposed and 

unexposed to drug Xj, i.e:   

𝐸[𝑋1|𝑋𝑗] = 𝑃(𝑋1 = 1|𝑋𝑗) = 𝜉0𝑗 + 𝜉1𝑗𝑋𝑗 ,     𝑗 = 2, 3, … , 𝑚 

Thus, the MLE estimators from a separate models approach will be biased for the true null effect 

(𝛽𝑗
∗ = 0).  As the magnitude of the effect of X1 on Y (𝛽1

∗) increases, and as the correlation 

between exposure to drug X1 and drug Xj (𝜉1𝑗) increases, the bias in �̂�𝑗
∗ also increases.  

Furthermore, increasing the sample size only exacerbates the problem, as the separate models 

approach will show increasing certainty (smaller standard errors) around an incorrect effect 

estimate in m-1 of the models. 

Often researchers adjust for potential confounders between the drug exposures and the 

outcome.  However, the confounded effect estimate of Xj will remain unless the model controls 

for all covariates 𝑾∗ that determine prescribing patterns by physicians such that 𝜉1𝑗
∗ = 0 under 



12 
 

𝐸[𝑋1|𝑋𝑗, 𝑾∗] = 𝑃(𝑋1 = 1|𝑋𝑗) = 𝜉0𝑗
∗ + 𝜉1𝑗

∗ 𝑋𝑗 + 𝑾∗𝜽.  Given the differences in prescribing 

patterns across hospitals and physicians, it seems unlikely one could fully account for 𝑾∗. 

Under the hierarchical modeling approach, the estimated drug-specific effects are also 

biased, but the bias decreases as the sample size increases.  Greenland
 
(1993) and Greenland 

(1997) noted that �̂�𝑯 = BZ�̂� + (I-B) �̂�𝑭, where B=(𝑽∗ + 𝜏2𝑰𝒎)−1𝑽∗, and V* is the covariance 

matrix of �̂�𝑭.  For a given 𝜏2, as V*→ 𝟎 with increasing sample size, �̂�𝑭 is given more weight 

and �̂�𝑯 is a consistent estimator for the true parameters of all m drugs.  That is, as N→ ∞, �̂�1
𝐻  →

 𝛽1
∗ and �̂�𝑗

𝐻 → 0 for j=2,3,…m.  Asymptotic properties, however, may not be reasonable 

approximations for estimators at the sample sizes commonly utilized for studies assessing ARV 

exposures and reproductive outcomes.  In this paper, we will consider the bias under both 

methods at realistic sample sizes to assess finite-sample properties and further consider the bias 

under a binary outcome with generalized linear models.   

. 

1.3 Simulation Study 

A simulation study was performed to investigate the operating characteristics of the three 

different approaches under various outcome scenarios.  The first approach involved separate 

univariate regression models for each drug (Equation 1); the second approach was the full 

ordinary regression model with all drugs included at once (Equation 2); and the third approach 

was the hierarchical model (Equation 4).  We used a semi-Bayes approach for fitting the 

hierarchical model by specifying a priori the variance in the random effects (𝜏2), as advocated in 

prior studies using this approach (Greenland, 1993; Witte et al., 2000; Wang et al., 2013; Young 

et al., 2016; Greenland 2000).  An empirical Bayes approach (estimating 𝜏2 from the data) was 

also considered, but 𝜏2 was consistently estimated to be zero, which reduces the model to having 
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only fixed effects for drug class and is not helpful in making drug-specific conclusions.  We 

considered a binary outcome (preterm birth) and a continuous outcome (Bayley-III score of the 

infant at 12 months).  For each outcome, we considered various true exposure-outcome 

relationships, including no true effects, a subtle effect of all drugs within one drug class, a 

moderate effect of only one individual drug, and moderate effects of two drugs from the same 

class, but in opposite directions.  Table 1.1 provides the specific models under which data were 

simulated for each scenario. 

A number of statistical properties were evaluated, including the percent of models that 

converged (for the binary outcome), the percent of false discoveries, the power to detect true 

effects, the bias in estimated effects for each exposure, the standard error in estimated effects for 

each exposure, and the observed coverage of 95% confidence intervals for the effect for each 

exposure.     

SAS 9.4 (SAS Institute Inc., Cary, North Carolina) was used for all simulations and 

applied data analysis.  The SAS-provided GLIMMIX macro 

(http://support.sas.com/techsup/notes/v8/25/030.html) was used to implement the hierarchical 

modeling method for the binary outcome (Witte et al., 2000).  Note that the GLIMMIX 

procedure does not yield estimates of the covariances between fixed and random effects, and 

thus cannot be used for this approach. The MIXED procedure was used to implement the 

hierarchical modeling method for the continuous outcome (programs are available by request to 

the author). 

 

 

http://support.sas.com/techsup/notes/v8/25/030.html


14 
 

  



15 
 

1.3.1 Exposure assignment  

 We used data from the SMARTT study to inform the ARV exposure distributions within the 

simulation study.  The SMARTT study is a large cohort study with data on HIV-uninfected 

children born to HIV-infected women since 1995 to the present.  Patterns in ARV use during 

pregnancy have changed dramatically over these years, but HIV-infected women typically 

receive a combination regimen during pregnancy consisting of a two-NRTI backbone plus either 

a PI or an NNRTI (Griner et al., 2011).  We are specifically interested in monitoring the safety of 

current combination regimens, and thus used the observed distribution of regimens reported in 

SMARTT between 2010 and 2015 to inform the exposure distribution.  In particular, regimens 

were assigned via a multinomial distribution with 107 categories (for the 107 different observed 

regimens over this time period), with each category having the same probability (ranging 

between 0.0008-0.2264) as observed in the SMARTT cohort.  Exposures to 14 individual drugs 

and three drug classes were then derived from the assigned regimen.  Specifically, five NRTIs, 

four NNRTIs, and five PIs were included in the simulation analysis, as shown in the Z matrix in 

Section 1.2.1.  

 

1.3.2 Outcome assignment 

We acknowledge that it is improbable the hierarchical model being fit reflects the true 

underlying outcome mechanism.  Rather, our interest lies in whether a hierarchical model can be 

a useful screening approach despite violations to its underlying assumptions.  Consequently, 

outcomes were assigned randomly via the Bernoulli distribution (for preterm birth) or the 

standard Normal distribution (for standardized Bayley-III score) under simple models based on 

exposure and outcome scenario (see Table 1.1).  Three thousand simulated datasets were created 
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in this way.  The main simulations were conducted with a sample size of 1,000.  Additional 

simulations were conducted with sample sizes of 500, 3,000, and 5,000.     

For the binary outcome, the hierarchical model was fit specifying a 𝜏2 value of 0.125, 

which corresponds to 95% of the residual effects of a particular ARV drug (above and beyond 

the effects of its drug class) lying between odds ratios of ½ and 2 ([𝑒−1.96/√8, 𝑒1.96/√8]).  We also 

considered 𝜏2 values of 0.36 and 0.64, which are equivalent to allowing residual effects to fall 

within an expanded 10-fold and 25-fold range, respectively, but simulation results presented for 

the binary outcome are for 𝜏2 =0.125 (Greenland, 1993).  For the continuous outcome, the 

hierarchical model was fit specifying a 𝜏2 value of 0.26, corresponding to 95% of the residual 

effects of a particular drug falling within one standard deviation. Additional analyses considered 

values of 1.04 and 2.34, equivalent to allowing residual effects to fall within two and three 

standard deviations, respectively. 

 

1.3.3 Simulation results 

For the binary outcome, convergence of the model was a sizeable problem with the full model 

but a minimal issue with the hierarchical model.  At a sample size of 1,000, all of the hierarchical 

models converged under each outcome scenario, whereas the full logistic model failed to 

converge in 14- 22% of simulations, depending on the outcome scenario.  With N=500, the full 

model failed to converge in over 75% of the simulations, while the hierarchical model failed to 

converge in 0.1% of simulations. The separate model approach converged for all 13 models over 

95% of the time; however, results for rare exposures were sometimes nonsensical, with standard 

errors exceeding 500.  For instance, the simple logistic model failed to yield interpretable results 
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for efavirenz (EFV) in up to 24% of the simulations at N=1,000 and in up to 40% of the 

simulations at N=500. 

The hierarchical model outperformed both the full model and the separate model 

approaches in terms of false discoveries, regardless of outcome type and outcome scenario 

(Figure 1).  With a binary outcome, the hierarchical model had no false discoveries over 80% of 

the time.  The full model had no false discoveries for 64% (under scenario (i)) to 74% (under 

scenario (ii)) of simulations.  The separate model approach had false discovery rates comparable 

to the full model approach under scenarios (i) and (ii), but did quite poorly under scenarios (iii.a) 

and (iv).  Notably, under the latter two scenarios, the standard approach had at least one false 

discovery in over 70% of the simulations, and four or more false discoveries (of twelve truly null 

effects) in 40% of simulations under scenario (iv).    

For the continuous outcome, false discovery rates were consistently higher than observed 

for the binary outcome, though the hierarchical model maintained noticeably lower rates than the 

other two methods (Figure 1.1).  Under scenarios (iii.a) and (iv), the separate models method 

identified one or more false discoveries in over 99% of the simulations, and four or more false 

discoveries in over 90% of the simulations.   

Detection of true effects is irrelevant to scenario (i).  With N=1,000, the true effects of the 

five PIs under a common drug class assumption (scenario (ii)) were detected most often by the 

hierarchical model for both outcome types (Figure 1.2).  This result was to be expected because 

the hierarchical model assumes drugs from the same class behave similarly, which corresponds 

to the true underlying data mechanism in this scenario.  For the remaining scenarios, detection of 

true effects differed depending on outcome type.  With a binary outcome, the hierarchical model 

performed similarly to the full fixed effect model but substantially worse than the separate 
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models method in detecting the true effects of the ARVs in scenarios (iii.a), (iii.b), (iii.c), and 

(iv).  This result also was to be expected given that the hierarchical model assumes similar 

effects for drugs from the same class, which is not correct in scenarios (iii) and (iv).  

Interestingly, however, under the continuous outcome, all three methods detected the true effects 

of the ARVs almost 100% of the time in scenarios (iii.a), (iii.b), and (iv).  Under scenario (iii.c), 

the separate models method detected the true effect of efavirenz (EFV) more often than the other 

two methods, though the differences were not as large as under the binary outcome (Figure 1.2). 

The additional simulations showed that as the sample size increases, the hierarchical 

model continued to detect the true effects of the PIs under scenario (ii) considerably more often  

than the separate models method, while also continuing to minimize the number of false 

discoveries.  With the continuous outcome, all three methods detected the true effects of the 

ARVs equally under the other scenarios by N=3,000 (Figure 1.2).  With a binary outcome, the 

hierarchical model detected the true effects about as well as the other methods at N=5,000 for 

scenarios (iii.a), (iii.b) and (iv), but failed to detect the true effect of efavirenz (EFV) as often as 

the other methods under scenario (iii.c) even for N=5,000 (Figure 1.2). 

Simulation results under scenario (iv) for the bias and standard errors (SE) in estimated 

coefficients and coverage of 95% confidence intervals (CI) among the three approaches are 

presented in Table 1.2 for the binary outcome and Table 1.3 for the continuous outcome.  

Scenario (iv) represents the “worst-case” type scenario for the hierarchical model since the prior 

being fit (assuming drugs from the same class behave similarly) contradicts the true underlying 

exposure-outcome relationship.   Still, some patterns in these results remain consistent across 

scenarios (see Tables A1.1-A1.10 in Appendix).  First, SEs were consistently largest under the 

full model.  For rare exposures (<5% exposed), the SEs were smallest under the hierarchical  
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Figure 1.1. The percent of simulations with at least one false discovery at a sample size of 1000 

under three statistical approaches and six different true outcome-exposure relationships, by 

outcome type (a) binary; or (b) continuous.  Each scenario considers 14 different antiretroviral 

drugs.  See Table 1.1 for Scenario specifications.  Results based on 3,000 simulations. 
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Figure 1.2. The power to detect true effects of antiretroviral (ARV) exposures on preterm birth 

and standardized Bayley-III score as a function of sample size under three statistical approaches 

and six different true outcome-exposure relationships.  Results are based on 3,000 simulations.  

Each panel reflect the power to detect the true effect of an ARV drug under a specific scenario as 

outlined in Table 1.1.  
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model, but for the more common exposures (>15% exposed), they were smallest under the 

separate models method.  Second, the bias in estimated coefficients tended to be minimized 

under the hierarchical model, the main exception being for when an uncommon drug was the 

only drug with a true effect (e.g. abacavir (ABC) in scenario (iii.b) and efavirenz (EFV) in 

scenario (iii.c)).  Third, the nominal coverage rates of the 95% CIs were quite poor for some of 

the ARVs under the separate models method.  The poor coverage rates tended to be for more 

common drugs that had relatively high bias (due to uncontrolled confounding by other ARV 

exposures) and relatively small SEs.  For example, under scenario (iv), the 95% CI for 

zidovudine (ZDV) captured its true effect (null) in only 59% of the simulations for the binary 

outcome (Table 1.2) and in only 1% of the simulations for the continuous outcome (Table 1.3).  

Additional simulations were conducted to assess how results may vary for binary 

outcomes that are much rarer or much more common than the moderate baseline prevalence 

(0.12) considered in the main simulations.  In particular, baseline prevalences of 0.25 and 0.05 

were considered.  Although power increased for the more common outcome and decreased for 

the less common outcome, the relative differences across the three approaches remained similar 

to results from the main simulations and thus results are not shown here. 

 

1.4 Illustrative example 

We applied the hierarchical modeling approach to evaluate ARV use and preterm birth in the 

SMARTT cohort.  The SMARTT study has been approved by the research ethics committee at 

Harvard T.H. Chan School of Public Health and all research sites, and study participants 

provided written informed consent.  The SMARTT cohort has enrolled over 3,000 HIV-infected 

pregnant women from 22 sites around the United States, as described elsewhere (Watts et al.,  
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2013).  Consistent with prior analyses, we controlled for birth cohort (1995-2004, 2005-2009, 

2010-2012, and 2013-2015), annual income <$20,000, and black race (Watts et al., 2013).  

Our analysis included 2,660 singleton pregnancies with ARV exposures and preterm birth 

outcomes available.  The majority of women (71%) received only one ARV regimen during their 

pregnancy.  For this analysis, we classified the maternal ARV regimen as that taken for the 

longest duration during pregnancy, and considered a woman exposed to a particular drug if that 

drug was included in her most common regimen.  We assessed 18 individual drugs, including 

seven NRTIs, four NNRTIs, and seven PIs.  

Table 1.4 presents odds ratios (OR) and 95% CIs from the hierarchical model under three 

different values of 𝜏2 and from the full logistic model (equivalent to the hierarchical model at 

𝜏2 = ∞).  Consistent with results from the simulation study, as 𝜏2 increased, the CIs tended to 

widen, with the CIs widest under the full logistic model.  The shrinkage effect of the hierarchical 

model can be observed for rarely used ARVs, for which estimated ORs in the hierarchical model 

are further from their estimated ORs under the full model (i.e. they are being pulled more toward 

their drug class mean effect), whereas the estimated ORs for common drugs were more similar.  

For example, the estimated OR for the least common PI (indinavir (IDV)) was 1.24 (95% CI: 

0.66, 2.31) in the hierarchical model with  𝜏2 = 0.125 and 1.51 (95% CI: 0.61, 3.73) in the full 

model.  In comparison, the estimated ORs from those models for the most common PI (ritonavir-

boosted lopinavir (LPV/r)) were 1.51 (95% CI: 1.10, 2.06) and 1.50 (95% CI: 1.08, 2.09), 

respectively.  In addition, as 𝜏2 increases, the estimated ORs from the hierarchical model get 

closer to the estimated ORs from the full model.  For example, for indinavir (IDV), the estimated 

ORs are 1.24 (95% CI: 0.66, 2.31), 1.34 (95% CI: 0.62, 2.89), and 1.39 (95% CI: 0.61, 3.17) 

under 𝜏2 values of 0.125, 0.36, and 0.64, respectively. 
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Results from the hierarchical model with 𝜏2=0.125 suggest that further studies should 

focus on the possible detrimental associations between saquinavir (SQV) and ritonavir-boosted 

lopinavir (LPV/r) and preterm birth (Table 1.4), as both these drugs have relatively high 

estimated odds ratios (>1.5) with fairly little variability around the estimates (95% CIs: 1.01, 

2.89 and 1.10, 2.06, respectively).  The estimated odds ratio for etravirine (ETR) is also 

relatively high (OR=1.58), but with just 8% of women exposed to etravirine (ETR) in pregnancy, 

there is much more variability around that estimate (95% CI: 0.77, 3.23), suggesting follow-up 

on etravirine (ETR) would take lower priority than follow-up on saquinavir (SQV) and ritonavir-

boosted lopinavir (LPV/r).   

 

1.5 Discussion 

We evaluated how a hierarchical modeling approach to screening ARV use in pregnancy would 

operate in practice under various conditions.  In theory, a hierarchical model offers a 

compromise between evaluating individual ARV drugs one at a time (which is the current 

method of choice for assessing the safety of ARV exposures in pregnancy) and fitting a full fixed 

effect model.  It has the benefit of adjusting for other ARV exposures like the full model, but has 

less convergence problems, smaller standard errors, and more stable estimates than a full fixed 

effect model approach.  However, the hierarchical model groups ARVs from the same drug class 

together, when there is often little prior knowledge regarding possible effects and the underlying 

biological mechanisms that ARVs have on perinatal and infant outcomes.  If drugs from the 

same class have disparate effects on an outcome, adopting a hierarchical model approach for 

ARV safety screening could potentially undermine the screening approach. 
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In this study, we compared the performance of three different approaches under six 

different underlying true exposure-outcome relationships.  Our results suggest that the 

hierarchical model that groups ARVs by drug class is almost always advantageous with a large 

enough sample (e.g. 5,000).  It minimizes the number of false negatives under each scenario as 

compared to both the full and separate models; it is able to detect the true effects substantially 

better than the separate models method and as well as or slightly better than the full model 

method when drugs from the same class behave similarly; and is still able to detect true effects 

similarly to the other methods even when drugs from the same class have opposite effects, except 

in the case of a binary outcome with a rare exposure.   

In reality, however, these types of safety screening studies usually have smaller sample 

sizes, and the implications of the simulation study for use of the hierarchical model in smaller 

samples are less straightforward.  If we wish to optimize the  detection of true effects regardless 

of the expense in false discovery, then determining which approach to employ may involve 

taking into account the strength of one’s prior belief regarding effects of drugs from the same 

class, the sample size, and the outcome type (binary or continuous).  However, perhaps one of 

the surprising results from the simulations was just how high the false discovery rate can be 

when evaluating ARV drugs individually, with four or more false discoveries (among 12 drugs) 

over 90% of the time, and abysmal nominal coverage rates of 95% confidence intervals for some 

drugs in certain scenarios.  Its poor performance in these areas is largely due to biased effect 

estimates from uncontrolled confounding by other ARV exposures.  Power considerations in 

such settings become irrelevant when there are numerous false signals detected, and as a result 

evaluating ARVs individually may not allow identification of safety signals to appropriately 

focus future studies (see Figures A1.1 and A1.2 in Appendix).   
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We present the hierarchical modeling approach as a screening approach, where little prior 

knowledge is available regarding possible exposure-outcome relationships.  However, if there is 

evidence of differing effects for drugs belonging to the same class, then the full model may be 

suggested as a first choice for model fit.  Particularly for rare drugs and a binary outcome, the 

full model has more power to detect the true effects if drugs from the same class do not have 

similar effects on the outcome; the full model also exhibits less bias in the effect estimates for 

the drugs with the true effects and better nominal coverage rates for the 95% confidence intervals 

for the drugs with true effects.  Thus, presuming the model converges, the full model has 

advantages over the hierarchical model when drugs from the same class do not behave similarly 

on an outcome.  Nonetheless, if the full model does not converge, the hierarchical model 

specified with a large variance for the random effects (𝜏2) to allow larger residual effects for 

individual drugs is an appropriate alternative. 

Our simulations and applied data analysis considered drugs from three drug classes 

(NRTIs, NNRTIs, and PIs).  The number of drug classes has expanded in recent years, and as 

new drugs from new drug classes are made available (e.g. fusion inhibitors, entry inhibitors), 

some drugs may be the only drug of their drug class.  For these drugs, the advantages of the 

hierarchical model are limited.  Drugs unique to their class could still be included in a 

hierarchical model as fixed effects, but they would not be able to “borrow” information from 

other drugs in their class.  Alternatively, Wang et al grouped rare drugs unique to their class 

together in an “other” category (Wang et al., 2013).  The drug class effect for this “other” group 

does not have any clinical meaning, but it may still improve the reliability of the estimates for 

those rare drugs.  In particular, based on our simulation results, it may be an advantageous option 

so long as drugs in the “other” group do not have opposite effects.  
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We did not consider any interactions between ARVs in this study.  Further research is 

needed to characterize how the hierarchical model performs when interactions are present.  

This study highlights the shortcomings – in particular, the inherent bias – of the separate 

models approach that is currently used to screen the safety of ARVs used during pregnancy.  A 

hierarchical modeling approach can be a superior alternative to the current method, particularly 

when considering a binary outcome in large samples (N >3,000), a continuous outcome in 

moderate or large samples (N > 500), and/or when there is prior evidence suggesting drugs from 

the same class behave similarly on the outcome of interest. 
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2. Estimating the relative excess risk due to interaction in clustered 

data settings 

 

The risk difference scale is often of primary interest when evaluating public health 

impacts of interventions on binary health outcomes, and particularly when considering 

interaction effects between exposures (Rothman et al, 1980; Rothman, 1998; Rothman et al., 

2008; Aschengrau et al., 2014; Vanderweele, 2015).  Estimates of additive interaction are more 

useful than those of multiplicative interaction in order to identify target subpopulations for most 

effective use of resources (Vanderweele, 2015).  Vanderweele (2015) provides a thorough 

discussion on additive and multiplicative interaction, including examples demonstrating why 

additive interaction is the more relevant measure for assessing public health relevance (pages 

252-253 and section 9.5).  Despite the importance of assessing interaction as departure from 

additivity, models most often used for binary outcomes implicitly measure interaction on the 

multiplicative scale. Very few studies have incorporated additive interaction into presentation of 

findings, although recommendations support reporting both measures (Vanderweele, 2015; Knol 

et al., 2009; Knol et al., 2012).   

One measure to assess additive interaction from multiplicative models is the relative 

excess risk due to interaction (RERI).  The RERI measure has been applied in many contexts, 

including hypertension research (Timpka et al., 2017; Jian et al., 2017), cardiology (Meng et al., 

2015; Vart et al., 2015; Zhang et al., 2015; Gustavsson et al., 2016; Crump et al., 2017; Hagihara 

et al., 2017), oncology (Menvielle et al., 2016; Oh et al., 2016; Simons et al., 2016; White et al., 

2017), and genetics (Gustavsson et al., 2016; Simons et al., 2016; Wang et al., 2017).  However, 
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one limitation of current approaches is that clustering in data has rarely been considered (Chen et 

al., 2006; Aanerud et al., 2015; Jabbarpoor et al., 2016; Mao et al., 2017; Jabbarpoor et al., 

2017).  In practice, data are often clustered such that outcomes among observations within the 

same cluster are not independent.  Clustering in epidemiological research arises in many forms, 

including clustering of patients by clinical center or health care provider (Bermedo-Carrasco et 

al., 2015; Dupont et al., 2017; Raifman et al., 2017; Goyette et al., 2018), clustering of 

individuals by spatial location (Gemperli et al., 2004; Kloog et al., 2015; Lin et al., 2017), 

repeated measures taken on the same individual (Hajat et al., 2015; Tsai et al., 2015; Chiu et al., 

2018; Madden et al., 2018), and meta-analyses (Cook et al., 2005; White et al., 2008).     

In an effort to further encourage the reporting of additive interaction measures for binary 

outcomes, we evaluate the RERI metric in both population-averaged models and cluster-

conditional models in clustered data settings, with a particular focus on more common outcomes.  

We present results from simulation studies across a range of outcome prevalences to assess the 

statistical operating characteristics of various approaches. We apply the methods to an 

observational study of adverse birth outcomes in mothers with HIV infection, in which enrolled 

mothers were clustered within clinical research sites.   

 

2.2 Approaches for estimating the RERI 

The RERI is defined as: 

𝑅𝐸𝑅𝐼 = 𝑅𝑅11 − 𝑅𝑅10 − 𝑅𝑅01 + 1,              (1) 

where 𝑅𝑅𝑎𝑏 is the relative risk (RR) in the group with X1 exposure status a (1=exposed; 

0=unexposed) and X2 exposure status b (1=exposed; 0=unexposed) as compared to the doubly 

unexposed group.  If we denote pab to be the probability of the outcome among the group of 
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subjects with X1 equal to a and X2 equal to b, then (1) can equivalently be written as the absolute 

risk due to interaction divided by the baseline risk (the risk in the doubly exposed group):     

𝑅𝐸𝑅𝐼 =
𝑝11

𝑝00
−

𝑝10

𝑝00
−

𝑝01

𝑝00
+

𝑝00

𝑝00
=

𝑝11 − 𝑝10 − 𝑝01 + 𝑝00

𝑝00
 

An RERI value of 0 implies no additive interaction, whereas values greater than 0 imply super-

additive (positive) interaction and values less than 0 imply sub-additive (negative) interaction. 

Although the RERI is defined in terms of relative risks (RRs), much of the literature 

evaluating the RERI uses odds ratios (ORs) from logistic regression models to approximate the 

relative risks (Hosmer et al., 1992; Assman et al., 1996; Vanderweele et al., 2012).  This 

approximation is appropriate in studies where the outcome is rare, as is often true in case-control 

studies, or where incident cases are selected from a fixed cohort, controls are selected at the 

beginning of follow-up and censoring is unrelated to exposure (Knol et al., 2008).  However, the 

OR overestimates the RR in other cases, and even slight overestimation of each RR can result in 

severe overestimation of the RERI (Zou et al., 2008).  Thus, in many settings, it is important that 

RRs are used in estimating the RERI for assessing additive interaction.   

A number of methods for deriving a confidence interval (CI) for the RERI have also been 

proposed, including the delta method (Hosmer et al., 1992), bootstrapping (Assman et al., 1996), 

and the method of variance estimates recovery (MOVER) (Zou et al., 2008).  In simulations, 

Assman et al. (1996) found the symmetric delta method CIs were often completely below the 

true value in the scenarios with strong positive additive interaction, due to the right skewness of 

the RERI in this setting.  The MOVER method is much less computationally intensive than the 

bootstrap procedure, and performed almost as well as the bootstrap in simulations (Zou et al., 

2008).  All of these approaches were studied in the independent data setting, and generally with 

very rare outcomes (e.g. p00 = 0.00002 in Assman et al.).  As the prevalence of the outcome 
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increases, the RERI parameter space becomes more constrained (see A.1 in Appendix), which 

limits the extent of asymmetry in the sampling distribution.  As a result, the delta method may 

provide appropriate coverage rates as long as outcomes are not extremely rare. 

 

2.2.1 Extensions to population-averaged models 

One approach for accounting for clustering in estimating the RERI is to utilize 

population-averaging models, in which the dependence among repeated measurements within 

clusters is considered a nuisance parameter.  Accounting for this dependence structure can be 

accomplished via generalized estimating equations (GEEs) (Liang et al., 1986).  Let K denote the 

number of clusters, nk denote the number of observations for cluster k, k=1,..., K, and N denote 

the total sample size (𝑁 = ∑ 𝑛𝑘
𝐾
𝑘=1 ).  Let yik denote the binary outcome value for the i

th
 

observation within the k
th 

cluster, and  X1ik and X2ik denote the exposure status for two binary 

exposures of interest for the i
th

 observation within the k
th

 cluster (0=unexposed; 1=exposed).  

Lastly, let Cik denote a vector of covariate values for the i
th

 observation within the k
th

 cluster.  

We assume the following form for the mean model: 

log(𝐸(𝑦𝑖𝑘)) = 𝛽0 + 𝛽1𝑋1𝑖𝑘 + 𝛽2𝑋2𝑖𝑘 + 𝛽3𝑋1𝑖𝑘𝑋2𝑖𝑘 + 𝑪𝑖𝑘𝜸  (2) 

 

Under this model, the RERI is defined as 𝑒𝛽1+𝛽2+𝛽3 − 𝑒𝛽1 − 𝑒𝛽2 + 1.  Previous research  

reported convergence problems for a log binomial model fit under a GEE framework (Pedroza et 

al., 2016).  Alternatively, a modified Poisson approach can be used in clustered data settings,  

and provides reliable estimated RRs for studies with correlated binary data (Yelland et al. 2011; 

Zou et al., 2013).  However, empirical coverage levels for CIs  tend to be lower than the nominal 

level, particularly as the RRs and the within-cluster correlation increase.  Thus, better 
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characterization of these models’ performance in yielding appropriate estimates of the RERI is 

warranted. 

 

2.2.2 Extensions to cluster-conditional models 

In many clustered data settings, interest lies in characterizing variability across clusters or 

making cluster-specific predictions.  Toward this aim, we fit a random intercept log binomial 

model, allowing the baseline probability p00 to vary by cluster: 

log(𝐸(𝑦𝑖𝑘)) = 𝛽0
∗ + 𝛽1

∗𝑋1𝑖𝑘 + 𝛽2
∗𝑋2𝑖𝑘 + 𝛽3

∗𝑋1𝑖𝑘𝑋2𝑖𝑘 + 𝑪𝑖𝑘
∗ 𝜸 + 𝑏0𝑘,   (3) 

𝑏0𝑘~𝑁(0, 𝜎𝑏
2) 

where 𝑏0𝑘 is the random deviation in intercept for cluster k.  Assuming no unmeasured 

confounding conditional on cluster, the RERI is defined as in the population-averaged model: 

𝑒𝛽1
∗+𝛽2

∗+𝛽3
∗

− 𝑒𝛽1
∗

− 𝑒𝛽2
∗

+ 1.  Note that the RERI from the log binomial random intercepts model 

can be interpreted as a population-averaged RERI.  That is, the cluster-conditional slope 

parameters are numerically equivalent to their respective marginal parameters under a log link, 

and therefore the cluster-conditional RERI is numerically equivalent to the marginal RERI (see 

A.2 in Appendix).  This is an advantage of a log binomial random intercepts model over the 

logistic random intercepts model, even in the context of rare outcomes, since  the cluster-

conditional parameters are magnified relative to the marginal parameters under a logistic model 

(logit link) (Zeger et al., 1988; Neuhaus, 1992).  

We are unaware of any literature exploring estimation of the RR for binary data under 

generalized linear mixed effects models to account for clustering in the frequentist setting.  

Torman and Camey successfully applied a Bayesian analysis of a log binomial random intercepts 



35 
 

model to a dataset for which the frequentist approach failed to converge, but did not investigate 

the operating characteristics of this approach under other settings (Torman et al., 2015). 

In cluster-conditional models, including random slopes to allow the effects of particular 

covariates to vary by cluster may also be desirable.  However, addition of such random slopes for 

the exposures would induce a distribution for the RERI measure itself; the RERI would vary by 

cluster and follow an unidentified distribution (the difference between two log normal 

distributions).  This extension is beyond the scope of this paper.  

 

2.3 Simulation Study 

We performed a simulation study to investigate (1) what standard software packages 

could be used to reliably estimate the RERI from population-averaged and cluster-conditional 

regression models; (2) the bias of the estimated RERI as well as coverage and width of two 

different CI estimates for the RERI under the population-averaged log binomial and Poisson 

approximation models; and (3) the bias of the estimated RERI and the estimated standard 

deviation (SD) of the random intercept, as well as validity of inference on the RERI, across 

various implementations of the cluster-conditional model. 

 We assessed the performance of the different approaches across a range of baseline 

outcome prevalences.  Table 2.1 defines the exposure/outcome scenarios.  For each 

exposure/outcome scenario, 2,000 datasets were generated for 20, 50, and 275 clusters.  Cluster 

sizes were generated from uniform distributions on (80, 200), (40, 80), and (1, 20), respectively, 

to give an average total sample size of 2,800-3,000.  Additional simulations were performed on 

275 clusters with cluster sizes generated from uniform distributions on (5, 20) and (30,50) to 

assess the effect of increasing cluster size while holding number of clusters constant.    
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For each parameter combination, we generated the i
th

 outcome from the k
th

 cluster from 

𝑦𝑖𝑘|𝑋1𝑖𝑘 = 𝑥𝑖𝑘 , 𝑋2𝑖𝑘 = 𝑥2𝑖𝑘~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝜋(𝑥1𝑖𝑘, 𝑥2𝑖𝑘)) with the event probability  

𝜋(𝑥1𝑖𝑘, 𝑥2𝑖𝑘) = exp (𝛽0 + 𝛽1𝑥1𝑖𝑘 + 𝛽2𝑥2𝑖𝑘 + 𝛽3𝑥1𝑖𝑘𝑥2𝑖𝑘 + 𝑏0𝑘), where 𝑏0𝑘 was generated under 

a Normal distribution with mean 0 and SD based on the scenario (see Table 2.1).  Both 𝑋1 and 

𝑋2 vary within cluster, and were assigned such that the proportion of being in the doubly 

exposed group, exposed only to 𝑋1, and exposed only to 𝑋2 were 0.10, 0.20, and 0.10, 

respectively.   

 

2.3.1 Software implementations 

To promote reporting of additive interaction effects for binary data in clustered data 

settings, we aimed to identify easy-to-use procedures and functions within familiar software 

programs.  The population-averaged models were fit using a log binomial or modified Poisson 

model with an exchangeable covariance structure, implemented using the GENMOD procedure 

in SAS 9.4 (SAS Institute Inc., Carey, NC, USA).  Final simulations for evaluating cluster-

conditional models focused on a log binomial random intercept model and a Poisson random 

intercept model, both fit using the GLIMMIX procedure in SAS.  Both pseudo-likelihood and 

Laplace approximation estimation techniques were considered (SAS/STAT User’s Guide).  

Preliminary simulations also considered extending the COPY method
 
(Deddens et al., 2003) and 

the McLaurin series approximation for estimation of the RR (Fitzmaurice et al., 2014) to cluster-

conditional models with interaction, but convergence was no better than that of the frequentist 

standard log binomial random intercept model in preliminary simulations and they were not 

considered further.  
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Given the poor performance of the frequentist approaches to estimating the RERI in a 

mixed effect model including a random intercept, we also considered Bayesian methods.  In 

particular, we jointly used the “brms”(Bürkner, 2017) and “rstan”(Stan Development Team) 

packages in R to fit a Bayesian log binomial random intercepts model in Stan using an R 

interface (see A.3 in Appendix).  Two different weakly informative prior distributions were 

placed on the SD for the random intercepts: a half-Cauchy(0,5) and a Gamma(2,0.1) (Gelman, 

2006; Chung, 2013).    

Due to the increased computational resources required to fit the Bayesian models, they 

were fit on 500 simulated datasets for two specific scenarios.  One scenario demonstrated poor 

convergence under frequentist methods (𝑝00=0.20, RR10=2, RR01=2 ,RR11=4, RERI=1, 𝜎𝑏=0.05) 

and one scenario demonstrated relatively good convergence under frequentist methods 

(𝑝00=0.20, RR10=1, RR01=1 ,RR11=2, RERI=1, 𝜎𝑏=0.23).  We then fit the Bayesian model on the 

first 100 simulated datasets for all remaining scenarios.  We ran four chains, each consisting of a 

1,000 iteration burn-in period and a subsequent 1,000 iterations to estimate the posterior 

distribution.  Simulation code in SAS and R is available online at: 

https://github.com/katcorr/Estimating-the-RERI-in-Clustered-Data-Settings. 

 

2.3.2 Simulation results for population-averaged models 

Both the log binomial and the Poisson GEE models converged for all scenarios with 

common outcomes (𝑝00≥0.10).  The mean estimated RERIs and empirical coverage rates of 95% 

CIs for the RERI using the delta and MOVER methods for  simulations with 275 clusters are 

shown in Table 2.2.  Results from simulated datasets with 20 and 50 clusters are summarized in 

the Appendix (Table A2.1).  The mean estimated RERIs were the same for the Poisson 

https://github.com/katcorr/Estimating-the-RERI-in-Clustered-Data-Settings
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approximation and the log binomial model, across cluster sizes and exposure/outcome scenarios.  

In general, they were unbiased, even with as few as 20 clusters.  The exceptions were for rare 

outcomes and relatively large RERIs, where some upward bias was exhibited.   

 

Table 2.2 The Mean Estimated Relative Excess Risk due to Interaction (RERI) and Empirical 

Coverage Rates of 95% Confidence Intervals for the RERI as Estimated From Generalized 

Estimating Equations.
a
  

  Log Binomial GEE Poisson GEE 

   
95% CI 

Coverage 
 

95% CI 

Coverage 

Baseline 

Outcome 

Prevalence 

RERI  

(RR01/RR10/RR11) 

Mean 

𝑹𝑬𝑹�̂� 
Delta MOVER 

Mean 

𝑹𝑬𝑹�̂� 
Delta MOVER 

0.01 5 (2/3/9) 5.25 94.7 94.1 5.25 94.7 94.1 

10 (2/3/14) 10.60 95.4 93.7 10.60 95.4 93.8 

0.1 1 (1/1/2) 1.00 95.1 95.5 1.00 95.1 95.5 

1 (2/3/5) 0.98 95.5 95.5 0.98 95.5 95.6 

3 (1/2/5) 3.00 95.5 95.4 3.00 95.5 95.4 

0.2 1 (1/1/2) 1.00 95.5 95.5 1.00 95.5 95.5 

1 (1/2/3) 0.99 94.9 95.1 0.99 95.0 95.0 

1 (2/2/4) 1.00 94.9 95.0 1.00 95.0 95.1 

0.4 1 (1/1/2) 1.00 95.2 95.1 1.00 95.1 95.2 

0.5 (1/1/1.5) 0.50 95.3 95.2 0.50 95.2 95.2 

0.6 0.5 (1/1/1.5) 0.50 95.2 95.5 0.50 95.2 95.4 

 

Abbreviations: CI, confidence interval; GEE, generalized estimating equations; MOVER, 

method of variance estimates recovery; RERI, relative excess risk due to interaction; RR01, 

relative risk of outcome in the group unexposed to X1 and exposed to X2 as compared to the 

doubly unexposed group; RR10, relative risk of outcome in the group exposed to X1 and 

unexposed to X2 as compared to the doubly unexposed group; RR11, relative risk of outcome in 

the doubly exposed group as compared to the doubly unexposed group. 
a
 Generalized estimating equations estimated specifying an exchangeable working correlation, 

log link, and either binomial or Poisson distribution, with robust variance estimates.  Results are 

based on 2,000 simulated datasets, each with 275 clusters. 
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The empirical coverage rates of the 95% CIs for the RERI were very similar between the 

marginal log binomial and Poisson models, regardless of whether the delta method or MOVER 

method for CIs was employed. Coverage tended to be too low (in the 92-93% range) with 20 

clusters, but was at the nominal level across all scenarios for simulations with 275 clusters.  For 

baseline prevalences of 0.10 or more, the sampling distributions of the RERI were symmetric. 

Thus, the purported advantage of the MOVER method may not materialize when considering 

common outcomes.  Furthermore, the MOVER CIs were slightly wider on average than the delta 

CIs for less common outcomes (𝑝00 < 0.40) and had the same width for more common outcomes 

(𝑝00 ≥0.40) (data not shown).   

Results from naive models (ignoring the clustering) suggested that more harm is done in 

using logistic regression than in ignoring the clustering, at least when there are two cluster-

varying covariates.  That is, among naive logistic models and marginal logistic models, there was 

substantial bias in the estimated RERIs and very poor nominal coverage rates for the 95% CIs.  

In contrast, the naïve log binomial model showed minimal bias in the estimated RERIs and 95% 

CIs contained the true values around the nominal level for the scenarios considered (Web Table 

2).  However, the naïve log binomial model had wider CIs than the marginal log binomial model 

(Web Table 3).  Thus, when the exposures of interest vary within cluster, there is a gain in 

efficiency around the RERI estimate when accounting for the clustering.  

 

2.3.3 Simulation results for cluster-conditional models 

Convergence of the frequentist fit of the log binomial random intercept model was 

variable across cluster sizes and scenarios (Figure 2.1).  Depending on the scenario, convergence 

occurred in between 49% and 99% of the simulations under 20 clusters, 33% and 98% of the 
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simulations under 50 clusters, and <1% to 74% under 275 clusters.  The particularly poor 

convergence with 275 clusters (all but one scenario experienced <35% convergence) was 

presumed to be due to the small cluster sizes.  Additional simulations conducted with increasing 

cluster size for simulations including 275 clusters (average cluster sizes of 21 and 40) showed 

improved convergence as cluster size increased, though the convergence under these larger 

sample sizes was still worse than with 20 and 50 clusters for some scenarios (data not shown).  

When using pseudo-likelihood estimation, the Poisson random intercept model occasionally 

failed to converge, whereas it converged consistently using Laplace estimation.   

 Among models that converged, both the frequentist log binomial and Poisson random 

intercept models underestimated the variability in the random intercepts.  In many of the 

scenarios, the variability (SD) was estimated at zero, which reduces the model to a fixed-effects 

model and is not helpful toward (a) accounting for the within-cluster dependencies or (b) 

classifying the across-cluster variability (Figure 2.1).  As the baseline outcome prevalence 

increased, the proportion of Poisson models that estimated the variability of the random 

intercepts to be greater than zero decreased, with 0% of the Poisson models being useable when 

the baseline outcome prevalence was 0.60.  In fact, none of the log binomial models were 

useable when the baseline outcome prevalence was 0.60 for simulations with 275 clusters (and 

less than 15% were useable with 20 and 50 clusters).   

Among the log binomial models that converged, the percent bias in the estimated RERI 

was generally negligible (mean bias <5%), except in the scenarios where there were very few 

useable models.  For instance, the scenario with the largest absolute mean percent bias (-16%) 

was with 275 clusters, a baseline prevalence of 0.20, and an RERI of 3.0, where only 5% of the 

log binomial models converged and estimated 𝜎𝑏
2 to be greater than 0. 
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Figure 2.1  Convergence and degenerate estimates for the standard deviation of random 

intercepts in the frequentist log binomial (FLB) and frequentist Poisson (FP) random intercept 

models for Scenarios described in Table 2.1.  Please refer to Table 2.1 to see the full scenario 

descriptions.  Results are based on 2,000 simulated datasets per scenario.  p00 is the outcome 

prevalence in the doubly unexposed group.  For example, the fifth bar in panel D for scenario S7 

is showing the results for the frequentist log binomial (FLB) random intercepts model for 

datasets simulated with 275 clusters (275/FLB): in 1,703 simulations, the model did not 

converge and, among the remaining models that did converge, 191 had a degenerate estimate for 

the variance of the random intercepts.  
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For simulations implementing the Bayesian fit of the log binomial random intercept model, the 

mean posterior RERIs and the mean posterior SDs in the random intercept were well calibrated 

(close to the true value) in most cases (Figures 2.2 and 2.3).  For the scenario of a baseline 

prevalence of 0.20 and RRs of 1, 1 and 2 (RERI=1, Scenario (6)), the Bayesian fit  always 

sampled and the mean posterior RERIs and SDs were estimated to be close to their true values.  

Moreover, for the scenario of a baseline prevalence of 0.20 and RRs of 2, 2, and 4 (RERI=1, 

Scenario (8)), the frequentist approach rarely yielded a model that converged and had a 

nondegenerate SD estimate. In contrast, the Bayesian posterior means for the RERI and SD were 

well-calibrated and the 95% credible intervals exhibited empirical coverage rates close to the 

nominal level.  For instance, the true SD in the latter scenario was 0.05, and the mean of the 

posterior SD means ranged between 0.046 and 0.074 depending on the number of clusters and 

the prior distribution placed on the SD. 

  

2.4 Application 

Pregnant women with HIV are at higher risk for preterm delivery as compared to HIV-

uninfected women, and exposure to certain antiretroviral therapies may increase the risk further 

(Watts et al., 2013).  Globally, nevirapine is one of the most common therapies used in pregnant 

women, although it has been contraindicated in women with healthy immune function due to 

increased risk of hepatotoxicity (Fowler et al., 2016; U.S. Department of Health and Human 

Services).  We consider data from the Surveillance Monitoring of ART Toxicities (SMARTT) 

study within the Pediatric HIV/AIDS Cohort Study (PHACS) network to evaluate potential 
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Figure 2.2  The mean % bias in estimated RERI across exposure/outcome scenarios and cluster 

sizes by model type for Scenarios described in Table 2.1.  Please refer to Table 2.1 to see the full 

scenario descriptions.  p00 is the outcome prevalence in the doubly unexposed group.  BC 

indicates Bayesian log binomial random intercept with a half-Cauchy(0,5) prior distribution on 

the standard deviation (SD) for the random intercepts; BG indicates Bayesian log binomial 

random intercept with a Gamma(2,0.1) prior distribution on the SD; FLB indicates frequentist 

log binomial random intercept fit; and FP indicates frequentist Poisson random intercept model.  

# Note that some scenarios/clusters do not have markers for FLB/FP because there were no 

models that converged and had nondegenerate SD estimates under these fits.   
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Figure 2.3 The mean estimated standard deviation (SD) in random intercepts across 

exposure/outcome scenarios and cluster sizes by model type for Scenarios described in Table 

2.1.  Please refer to Table 2.1 to see the full scenario descriptions.  p00 is the outcome prevalence 

in the doubly unexposed group.  BC indicates Bayesian log binomial random intercept with a 

half-Cauchy(0,5) prior distribution on the SD; BG indicates Bayesian log binomial random 

intercept with a Gamma(2,0.1) prior distribution on the SD; FLB indicates frequentist log 

binomial random intercept fit; and FP indicates frequentist Poisson random intercept fit.  # Note 

that some scenarios/clusters do not have markers for FLB/FP because there were no models that 

converged and had nondegenerate SD estimates under these fits. 
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additive interaction between nevirapine exposure at conception and poor immunological health 

during pregnancy (earliest available CD4 count < 350 cells per cubic millimeter) on the risk of 

preterm delivery.  The SMARTT cohort has enrolled over 3,000 HIV-infected pregnant women 

from 22 sites around the United States (Watts et al., 2013).  A total of 3,202 women had 

information available on gestational age, antiretroviral therapy at conception, immunological 

health during pregnancy, and race, and were included in the analysis.  The preterm delivery rates 

varied between 8.3% and 35.7% across sites (SD=6%), with between 14 and 335 women 

enrolled at a given site (average cluster size = 146).   

Results from the unadjusted models suggested a strong positive additive interaction 

between nevirapine use at conception and poor immune function during pregnancy on preterm 

delivery (Table 2.3).  In particular, the estimated RERI from the GEE log binomial model with a 

compound symmetry covariance structure was 1.78 (95% delta CI =0.69, 2.94); with a baseline 

risk of 17% in the doubly unexposed group, this amounts to an absolute risk due to interaction of 

30% (17%*1.78).  Observed results were consistent with expectations given the simulation 

results -- namely, (1) the CIs for the RERI from the naïve log binomial model (ignoring the 

clustering) were considerably wider than those from the GEE model (that is, precision was 

gained by accounting for the within-site correlations); (2) the MOVER CIs were wider than the 

delta method CIs across frequentist methods; (3) the CIs from the Poisson random intercept 

model were substantially wider than those from the log binomial random intercepts model, 

though the estimated SD for the random intercepts was only slightly lower; and (4) in the 

Bayesian analyses, the results were similar regardless of whether a half-Cauchy(0,5) or a 

Gamma(2,0.1) prior distribution was placed on the SD of the random intercepts, with the mean 



47 
 

of the estimated posterior distribution for the SD being slightly larger under the latter (Table 

2.3).  

 

Table 2.3 The Estimated Relative Excess Risk due to Interaction (RERI) between Nevirapine 

Use at Conception and Poor Immunological Health During Pregnancy on the Risk of Preterm 

Delivery Among 3,202 HIV-Infected Pregnant Women Across 22 Sites From the Surveillance 

Monitoring of ART Toxicities (SMARTT) Study Within the Pediatric HIV/AIDS Cohort Study 

(PHACS) Network, 1995-2015. 

Model 𝑹𝑬𝑹�̂� �̂�𝒃 95% Confidence/Credible 

Intervals  

for RERI 

Frequentist Marginal   Delta CI MOVER CI 

Naïve log binomial 1.87 N/A 0.44, 3.29 0.57, 3.57 

GEE log binomial 1.78 N/A 0.58, 2.99 0.51, 3.06 

Adjusted GEE log binomial
a 

1.82 N/A 0.83, 2.81 0.69, 2.77 

Frequentist Conditional     

Log binomial random intercept 1.68 0.182 0.34, 3.01 0.43, 3.24 

Poisson random intercept 1.75 0.165 -0.21, 3.70 0.13, 4.38 

Adjusted Poisson random intercept
a 

1.45 0.163 -0.34, 3.23 -0.05, 3.85 

Bayesian
 
Conditional

b 
  Posterior Credible Interval 

Log binomial random intercept (Cauchy
c
) 1.49 0.193 0.19, 2.70 

Log binomial random intercept (Gamma
d
) 1.46 0.213 0.23, 2.64 

Adjusted log binomial random intercept 

(Cauchy
c
) 

1.12 0.192 0.01, 2.23 

Adjusted log binomial random intercept 

(Gamma
d
) 

1.05 0.205 0.02, 2.10 

Abbreviations: �̂�𝑏, estimated standard deviation in random intercepts; CI, confidence interval; 

GEE, generalized estimating equations with exchangeable correlation structure; MOVER, 

method of variance estimates recovery; N/A, not applicable 
a
 Adjusted for black race and maternal age (<30, 30-39, 40+).  The adjusted frequentist log 

binomial random intercept model did not converge. 
b 

Results from unadjusted models are from four chains, each with 1,000 warmup samples and 

1,000 post-warmup samples.  Results from adjusted models are from four chains, each with 

5,000 warmup samples and 5,000 post-warmup samples.  𝑅𝐸𝑅�̂� is the mean posterior RERI and 

�̂�𝑏is the mean posterior standard deviation in the random intercepts. 
c 
A half-Cauchy(0,5) prior distribution was placed on the standard deviation of the random 

intercepts.   
d 

A Gamma(2,0.1) prior distribution was placed on the standard deviation of the random 

intercepts.   
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 After adjusting for black race and maternal age at conception (<30, 30-39, 40+), the 

estimated RERI from the GEE model remained similar to that of the unadjusted model (RERI = 

1.82 vs. 1.78).  The adjusted frequentist log binomial random intercepts model did not converge.    

The adjusted Bayesian log binomial random intercepts model did not produce results when initial 

values were generated randomly using the default setting, but did sample when initial values 

were specified using informed estimates (see A.4 in Appendix).  Additional iterations were 

required for chain convergence as assessed via potential scale reduction factors; 5,000 warm up 

and 5,000 post warm-up samples were used.  Adjusted Bayesian results were attenuated 

compared to the unadjusted model (e.g. 1.46 versus 1.05 under a Gamma(2,0.01) prior on the 

SD). 

 

2.5 Discussion 

In examining the RERI metric for additive interaction in clustered data settings, it was 

important to consider that many dependent data settings assess outcomes with a much higher 

prevalence than the very rare outcomes assumed in previous RERI simulation studies.  As such, 

it was important to estimate the RERI using RRs rather than ORs.  While there has been much 

literature dedicated to estimating adjusted RRs for binary data, it has focused on the independent 

data setting and not in the context of estimating interaction effects (Wacholder, 1986; Deddens et 

al., 2003; McNutt et al., 2003; Barros et al., 2003; Carter et al., 2005; Spiegelman, et al., 2005; 

Yu et al., 2008; Chu et al., 2010; Marschner et al., 2012; Fitzmaurice et al., 2014; Lipsitz et al., 

2015).  

We found that estimating the RERI in log binomial or modified Poisson GEE models in 

clustered data settings was straightforward and efficient.  In simulations and an application, there 
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were no problems with model convergence, and accounting for the within-cluster correlation 

increased precision around the RERI estimates as compared to a naïve model.  We also found 

that the delta method provided valid CIs when the number of clusters was moderate to large.  

Given that the delta method requires less computation than the MOVER method and yields CIs 

that are generally slightly narrower yet provide similar coverage as the MOVER method, it 

appears that computing confidence limits for the RERI using the delta method is appropriate and 

advantageous in the clustered data setting for population-averaged models.  When the number of 

clusters is small (20-50), the coverage rates are lower than desirable; bootstrapping may be 

advantageous in these settings if the computational resources and time required to bootstrap is 

not prohibitive for a given application. 

 In contrast to the marginal models, there were difficulties in fitting the frequentist log 

binomial models with random intercepts.  The observed patterns suggest that convergence is 

affected by both number of clusters and cluster size.  We found worse convergence with 

increasing number of clusters, which is opposite what we had expected.  A possible explanation 

is that, with increased number of clusters, there is more opportunity for very large (or very small) 

random intercepts, which could push some observed probabilities outside the parameter space.   

The Poisson approximation with robust standard errors has been a common approach to 

estimating RRs for binary data.  However, we found that a Poisson random intercepts model 

often severely underestimated the SD in the random effects, frequently reducing it to a fixed 

effects model.  Furthermore, it produced overly conservative confidence intervals for the RERI, 

even when using robust standard errors for the regression parameters.        

 Despite the additional computational resources required, the Bayesian approach to fitting 

the log binomial random intercepts model offers several advantages.  In the simulation study, 
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there were no issues with sampling, the posterior mean RERI was well-calibrated (unbiased), the 

posterior mean SD for the random intercepts exhibited less bias than the frequentist approaches, 

and Bayesian inference was straightforward with valid credible intervals for the RERI.  In the 

data application, the adjusted frequentist log binomial model did not converge, but with 

additional work – specifying informed initial values for the chains and increasing the number of 

iterations per chain --  the adjusted Bayesian log binomial random intercepts model sampled and 

yielded reasonable results.   

Our simulations had not considered any confounding factors, and the instability of the log 

binomial random intercepts model is likely to increase with the addition of covariates.  

Furthermore, all models assumed that the random intercepts were normally distributed, as 

assumed in PROC GLIMMIX.  Assuming a normal distribution for the random intercepts in a 

log binomial model ignores the parameter constraints on the log probabilities.  A different prior 

distribution that recognizes that constraint may be more appropriate.  It would be difficult to fit a 

frequentist model using existing software assuming a non-Normal distribution for the random 

intercepts, but the Bayesian approach is more amenable to such updates.  More research is 

warranted on estimating the RERI from cluster-conditional models with random slopes and 

additional covariates.   

In summary, when assessing interaction between exposures in clustered data settings, the 

RERI can be estimated from frequentist log binomial GEE models or Bayesian log binomial 

random intercept models, depending on additional aims of the analysis (e.g. estimation of 

cluster-to-cluster variability).  Using the log linear as opposed to logit link model is particularly 

important for accurate estimation of the RERI, even when the background outcome prevalence is 

as low as 10%.



51 
 

3. A computationally efficient algorithm for permutation testing of 

rare genetic variants 

 

3.1 Introduction 

With the rapid advancement in DNA sequencing technologies over the last decades, cost-

effective identification of rare and very rare single-nucleotide polymorphisms (SNPs) has 

become technically feasible and reliable in large scale association studies. Yet, detecting 

associations between single rare variants and specific diseases remains a challenge (Lee et al., 

2014; Auer et al, 2015; Zhang, 2015).  Rare and very rare variants are typically defined as an 

observed minor allele frequency of <5% and <1%, respectively.  Consequently, unless a study 

has a very large number of participants or there is a very strong association between a variant 

and disease, standard statistical tests will inherently have low statistical power to detect 

associations with single rare variants.  Furthermore, asymptotic tests that rely on large sample 

theory may not be able to maintain the specified type I error. 

Statistical methods have been proposed to assess associations between rare variants and 

disease which address these issues by collapsing genotypes across variants or grouping rare 

variants by location (Morgenthaler 2007; Li 2008; Wu 2011).  However, such methods could 

adversely impact power if a single underlying disease susceptibility locus is grouped together 

with null-loci.  Moreover, grouping variants does not allow for identification of specific variant-

disease associations. 

For single rare variants, Ma et al. (2011) recommended Firth’s likelihood ratio test for low 

count variants, while acknowledging that the test is not well calibrated in studies with extremely 

rare variants (expected minor allele count < 40; minor allele frequency (MAF) < 0.001) (Ma 
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2011; Firth 1993).  Recently, Dey et al. (2017) proposed a score-based test that uses the 

saddlepoint approximation to estimate the null distribution of the score statistic when it is far 

from the mean.  They showed that their test, which allows for covariate adjustment, is much 

faster than Firth’s test and controls the type I error even with extremely unbalanced case-control 

ratios.  Although better than the normal approximation, the test still relies upon an 

approximation.  Furthermore, the test was developed for phenome-wide association studies 

which often have extremely unbalanced case-control ratios, and it was not developed particularly 

for rare variant testing. 

In this paper we introduce a computationally efficient algorithm for permutation testing 

between a single rare variant and affection status, which also allows inclusion of covariates (e.g. 

principal components to adjust for population substructure and epidemiological variables such as 

age, sex, etc.).  A special feature of the proposed algorithm is that the implementation of the 

random permutation of the genotype vector has only a numerical complexity of O(N*p), where 

the parameter N is the sample size and p is the allele frequency.  This, in combination with a 

very efficient computation of the score functions, enables permutation testing at a genome-wide 

level with the required significance level of 10
-8

 and smaller. To illustrate the feasibility of the 

approach, we apply the method to a study of chronic obstructive pulmonary disease (COPD).  In 

simulations, we show that the permutation test maintains a type I error rate closer to the nominal 

level than the asymptotic and saddlepoint approximation tests.   

 

3.2 Materials and Methods 

 

We consider the setting of a case-control study in which N subjects are sequenced on m rare 

genetic variants (MAF < 0.05).  For each genetic variant, we are interested in testing 𝐻0: 𝛽𝑗 = 0 

versus 𝐻𝐴: 𝛽𝑗 ≠ 0  (j = 1, 2, … m) in the following model: 
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𝑙𝑜𝑔𝑖𝑡(𝑝𝑖𝑗) = 𝒄𝒊
𝑻𝜶𝒋 +  𝛽𝑗𝐺𝑖𝑗, 

where 𝑝𝑖𝑗 is the probability of being a case (P(𝑦𝑖 = 1 )) for the i
th

 individual, conditional on the 

allele count for the j
th

 genetic variant and the covariates in 𝒄; 𝐺𝑖𝑗 is the number of minor alleles 

for the i
th

 individual and the j
th

 genetic variant; and 𝒄𝒊 is a p x 1 column vector of covariate 

values for the i
th

 individual, including an intercept term.  Note that, although the proportion of 

cases may not reflect the population prevalence of disease, logistic regression is suitable to test a 

genetic variant in a case-control study (Prentice et al., 1979).  The score function with respect to 

𝛽𝑗 is: 

𝑈𝑗 = ∑ 𝐺𝑖𝑗(𝑦𝑖 − 𝑝𝑖𝑗)

𝑁

𝑖=1

 

The variance of the score under 𝐻0 is:  

𝑉𝑎𝑟(𝑈𝑗) = 𝒈𝒋
𝑻𝑾𝒈𝒋 − 𝒈𝒋

𝑻𝑾𝑪(𝑪𝑻𝑾𝑪)−𝟏𝑪𝑻𝑾𝒈𝒋, 

where 𝒈𝒋 is the N x 1 vector of minor allele counts for the j
th

 genetic variant, 𝑾 is an N x N 

diagonal matrix with 𝑉𝑎𝑟(𝑦𝑖)|𝐻0
= 𝑝𝑖(1 − 𝑝𝑖)  on the i

th
 diagonal element, 𝑝𝑖 is the probability of 

being a case for the i
th

 individual in the null model (conditional on only the covariates in 𝒄), and 

𝑪 = [𝒄𝟏 𝒄𝟐 … 𝒄𝒏]𝑻.   

We can test 𝐻0: 𝛽𝑗 = 0 by evaluating the score statistic 𝑆𝑗 =
𝑈𝑗

2

𝑉𝑎𝑟(𝑈𝑗)
 under the null 

hypothesis.  Asymptotically, 𝑆𝑗 follows a chi-square distribution with one degree of freedom.  

However, with rare variants, large sample theory may not hold and p-values relying on the 

assumption that 𝑆𝑗~𝜒1
2 may be invalid.  Instead, we propose testing 𝐻0: 𝛽𝑗 = 0 via a 

computationally efficient permutation test of the score function for 𝛽𝑗.  That is, the distribution 

of 𝑈𝑗
2 under the null is empirically estimated by permuting 𝐺𝑖𝑗, calculating the permuted score 
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𝑈𝑗,𝑃𝑅𝑀
2  for each permutation, and comparing the observed value of 𝑈𝑗

2 (based on the observed 

data) to the empirical null distribution.  Alternatively, one could use standardized score tests, i.e. 

𝑈𝑗
2

𝑉𝑎𝑟(𝑈𝑗)
 (see Appendix A.6).  The standardized score could potentially be more powerful when 

the true null distribution and the asymptotic distribution become similar, but it comes at a cost of 

substantially increased numerical complexity during the permutation tests. We investigated the 

power of 𝑈𝑗
2and the standard score test.  Our results suggest that there is no advantage of using 

the standardized score over 𝑈𝑗
2for rare variant data. Given the substantially higher numerical 

burden of the standardized score, we recommend the use of 𝑈𝑗
2and implemented the proposed 

algorithm accordingly.  

 The number of rare variants is often quite large (>10
6
), and the number of permutations 

per variant will need to be large (generally on the order of 10
9
 to investigate the small levels 

around genome-wide significance) in order to reliably estimate the null distribution and obtain 

valid p-values.  An advantage of using the score statistic to test 𝛽𝑗 is that the score test is 

evaluated under the constrained model (where 𝛽𝑗 = 0) and thus does not involve fitting a logistic 

regression model with 𝒈𝒋.  The estimated constrained risk is independent of the genetic variant 

being tested.  Furthermore, we only permute the genetic variant in the permutations so that the 

relationship between disease and confounding variables in the observed dataset is preserved in 

the replicate datasets.  The 𝑝𝑖s used in calculating the permuted score statistics are thus also the 

same as the 𝑝𝑖s used in computing the observed score statistic.  That is, only one logistic 

regression model needs to be fit, regardless of the number of variants being tested and the 

number of permutations being conducted. 
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 Nevertheless, repeating a permutation test requiring 10
9
 permutations across a large 

number of variants will be computationally intensive and could become prohibitive for the large 

numbers of rare variants often assessed in genetic studies today.  Hecker et al. (2018, manuscript 

in preparation) proposed a sequential testing approach to permutation-based association testing 

that directly tests the permutation-based p-value against a pre-specified significance level.  This 

approach can drastically reduce the number of permutations required for the majority of variants; 

for instance, using a significance level of 5 x 10
-8

, they found that the 99.92% of least significant 

variants needed an average of 22 permutations per variant.  We developed an algorithm that is 

efficient and robust in terms of the numerical and computational aspects, e.g. drawing m out of N 

without replacement.  In conjunction with the sequential testing approach, this algorithm enables 

permutation testing between a single rare variant and affection status, adjusting for covariates, to 

be implemented on a whole-genome wide scale. 

   

3.2.1. The algorithm  

The fact that we are analyzing rare variants implies that 𝒈𝒋 is a sparse vector.  We use this to our 

advantage in calculating the permuted scores.  In particular, note that: 

𝑈𝑗 = ∑ 𝐺𝑖𝑗(𝑦𝑖 − 𝑝𝑖𝑗) =

𝑁

𝑖=1

∑ (𝑦𝑖 − 𝑝𝑖)

𝑖 ∈𝑀1𝑗

+ 2 ∗ ∑ (𝑦𝑖 − 𝑝𝑖)

𝑖 ∈𝑀2𝑗

, 

where 𝑀1𝑗 is the set of 𝑛1𝑗 subjects with one minor allele on the j
th

 genetic variant and 𝑀2𝑗 is the 

set of 𝑛2𝑗 subjects with two minor alleles on the j
th

 genetic variant. The j index is dropped from 

𝑝𝑖𝑗 since the constrained disease risks do not depend on the genetic variant as noted above.   

Our algorithm proceeds as follows:    
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1. Fit the constrained logistic regression model, and compute the residual vector  �̃� =

(𝒚 − �̃�). 

2. For each variant (j=1,2, …, m): 

a. Generate a vector 𝒒𝒋 of length 𝑛1𝑗 + 𝑛2𝑗, with 𝑛1𝑗 ones and 𝑛2𝑗 twos 

b. Compute the square of the observed score. 

i. Subset �̃� on the 𝑀1𝑗 and 𝑀2𝑗 indices; call this subset vector �̃�(𝑗0) 

ii. Compute 𝑈𝑗
2 = [𝒒𝒋

𝑻�̃�(𝑗0)]𝟐  

c. Compute the square of the permuted scores.  For k in 1 to K (where K is the 

number of permutations): 

i. Randomly select without replacement 𝑛1𝑗 + 𝑛2𝑗values between 1 and N 

using a modified Durstenfeld shuffle (Durstenfeld, 1964; see Appendix 

A.5)  

ii. Subset �̃� on the randomly selected values; call this subset vector �̃�(𝑗𝑘) 

iii. Calculate the square of the permuted score for the k
th 

permutation for the 

j
th

 variant: [𝑈𝑗,𝑃𝑅𝑀
𝑘 ]𝟐 = [𝒒𝒋

𝑻�̃�(𝑗𝑘)]𝟐   

d. Calculate the p-value as the proportion of permuted scores that are as extreme or 

more extreme than the observed score: 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑗 =
∑ 𝐼([𝑈𝑗,𝑃𝑅𝑀

𝑘𝐾
𝑘=1 ]2≥𝑈𝑗

2) 

(𝐾+1)
 

 

 

Analyses were performed in R 3.2.1 (R Core Team).  The saddlepoint approximation test 

was conducted using the SPAtest package (Dey et al., 2017) ScoreTest_SPA function.  Code 

is available at: https://github.com/katcorr/Permutation-Test-for-Rare-Genetic-Variants.   
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3.3 Results 

 

3.3.1 COPD Study: Feasibility  

 

To demonstrate the feasibility of our permutation algorithm, we used the whole genome-

sequencing data available on 1,794 participants enrolled in two COPD studies, the COPDgene 

study (Regan et al., 2010) and the Boston Early-Onset COPD (BEOCOPD) study (Silverman et 

al, 2013).  The COPDgene study has enrolled over 10,000 smokers with and without COPD 

between 45 and 80 years old.  The BEOCOPD study has enrolled over 200 severe, early-onset 

COPD patients (less than 53 years old with forced expiratory volume in one second (FEV1) < 

40%) and their family members.  As part of a Trans-Omics for Precision Medicine (TOPMed) 

program sponsored by the National Heart, Lung and Blood Institute, cases were selected from 

the COPDgene study and the BEOCOPD study and controls were selected from the COPDgene 

study for sequencing.  We analyzed 631,244 genetic variants on the 22
nd

 chromosome for 821 

cases and 973 controls.    

 Almost half of the variants had only one minor allele (MAF=0.00028).  An additional 9% 

of the variants had only two minor alleles (MAF=0.00056), and 80% of the variants had a MAF 

< 1%. 

We fit the constrained logistic regression model adjusting for 10 principal components 

based on the Jaccard index to identify population stratification (Prokopenko et al., 2018, 

manuscript in preparation).  Since our sample only included 1,794 participants, we were able to 

compute the exact null distribution of the score statistic for variants with one or two non-zero 

minor alleles.  We computed the null distributions using the same computations as in the 

permutation algorithm, except instead of generating random values for each permutation, we ran 

the algorithm through every possible genetic variant vector.  For the remaining SNPs, we ran the 
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algorithm as described in the Methods section.  In addition to the permutation test, we calculated 

p-values from the standard asymptotic test (assuming a 𝜒1
2 distribution for the score statistic) and 

the fastSPA-2 test (Dey et al., 2017). 

The distributions of p-values as generated by the fastSPA-2 test versus the permutation 

test are compared in Figure 3.1 for variants with one non-zero minor allele count.  For permuted 

p-values < 0.05, the fastSPA-2 p-values were more conservative than necessary.  Note that the 

fastSPA-2 p-value and the asymptotic p-value were equivalent for all variants with MAC=1, as 

the observed score statistic did not fall outside two standard deviations of the mean.         

Although we cannot expect to identify extremely rare variants at a genome-wide 

significance level given our sample size, we could discover a suggestion of a global contribution 

of very rare variants to COPD if the observed score distribution for the rare variants shows an 

unusual number of large score statistics relative to the null distribution.  We did not find such a 

suggestion between COPD and variants on chromosome 22 with MACs of one or two alleles 

(Figure 3.2). 

For other variants with MAF < 1%, the fastSPA-2 p-values were not consistently above 

or below the respective permutation p-values.  For variants with MAF between 1 and 5% and for 

common variants (MAF > 5%), the asymptotic, fastSPA-2 and permuted p-values were similar.  
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Figure 3.1 P-values from the fastSPA-2 test versus the permutation test for variants on 

chromosome 22 with minor allele counts of one to three with permuted p-values < 0.05. 

 

 

 

 

 
Figure 3.2 QQ-plots comparing the distribution of the score statistic under the null hypothesis 

and the observed score statistics for variants with one (A) or two (B) minor allele counts. 
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3.3.2 Simulation study 

 

We conducted a simulation study to demonstrate the feasibility of our permutation algorithm and 

to identify scenarios where the approximate tests fail to control Type I error.  We generated 

100,000 replicate datasets with sample size 20,000 and overall disease prevalence of 10%.  We 

varied the case-control ratio (1:1, 1:2, 1:4, 1:16, 1:100, and 1:400) and the minor allele frequency 

(between 0.00005 and 0.01).  We also generated datasets under the alternative hypothesis 

(OR=1.05, 1.5 and 2.0) at various sample sizes to assess power.  For each permutation test, 10
5
 

permutations were used. 

 The type I error rates at the 5% level across scenarios and tests are shown in Table 3.1.  

Under extremely unbalanced case-control ratios, the type I error rate for the asymptotic and 

fastSPA-2 tests were inflated.  For instance, with a MAF of 1% and a case-control ratio of 1:400, 

the type I error rates for the asymptotic and fastSPA-2 tests were 0.0601 and 0.0590, 

respectively.  In this scenario, the permutation test remained valid, although conservative (type I 

error rate=0.0183 at 5% level).  With a MAF of 0.1% and a case-control ratio of 1:400, the type I 

error rates for the asymptotic and fastSPA-2 tests were severely inflated at 0.0964 and 0.0962, 

respectively.  The permutation test again remained valid and conservative (type I error 

rate=0.0050 at 5% level).   

 For extremely rare variants (MAF ≤ 0.05%) and reasonably balanced case-control ratios, 

the fastSPA-2 and permutation tests maintained the type I error rate better than the asymptotic 

test.  For example, under a MAF of 0.005% and a 1:4 case-control ratio, the type I error rate for 

the asymptotic test was > 0.10, but < 0.05 for the fastSPA-2 and permutation tests.  With a MAF 

of 0.05% and a 1:1 case-control ratio, the type I error rate was 0.0520 for both the asymptotic 
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and fastSPA-2 tests, 0.0297 for the conservative permutation test, and 0.0457 for the permutation 

test that weighted equality of permuted and observed scores at one-half.    

 

Table 3.1 A comparison of observed type I error rates for the asymptotic test, fastSPA-2 test, 

and permutation test, across 100,000 simulated datasets of sample size 20,000. 

 

MAF 
Case-Control 

Ratio 

Type I Error, α=0.05 

Asymptotic fastSPA-2  Permuted
 

0.01 1:1 0.0488 0.0488 0.0434 

 1:2 0.0492 0.0492 0.0492 

 1:4 0.0489 0.0489 0.0492 

 1:16 0.0490 0.0491 0.0500 

 1:100 0.0540 0.0533 0.0510 

 1:400 0.0601 0.0589 0.0182 

0.005 1:1 0.0490 0.0490 0.0411 

 1:2 0.0504 0.0504 0.0516 

 1:4 0.0503 0.0503 0.0519 

0.001 1:1 0.0495 0.0495 0.0350 

 1:2 0.0497 0.0497 0.0511 

 1:4 0.0486 0.0486 0.0517 

 1:16 0.0399 0.0399 0.0329 

 1:100 0.0596 0.0596 0.0175 

 1:400 0.0964 0.0961 0.0050 

0.0005 1:1 0.0520 0.0520 0.0297 

 1:2 0.0490 0.0490 0.0443 

 1:4 0.0458 0.0458 0.0492 

0.0001 1:1 0.0423 0.0072 0.0053 

 1:2 0.0394 0.0239 0.0223 

 1:4 0.0615 0.0412 0.0194 

0.00005 1:1 0.0164 0.0006 0.0006 

 1:2 0.0456 0.0108 0.0107 

 1:4 0.1029 0.0276 0.0177 

Abbreviations: fastSPA-2, fast saddlepoint approximation test; MAF, minor allele frequency 
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A comparison of the power of each test at a sample size of 5,000 and true OR of 1.5 is 

shown in Table 3.2.  The power of the permutation test based on 𝑈𝑗 alone is the same as the 

power of the permutation test based on the standardized score, 𝑆𝑗.  With a 1:2 case-control ratio, 

the power of the permutation test is higher than that of the fastSPA-2 test.  In particular, at a 

MAF of 0.005, the power is about 42% under the permutation test and only 34% under the 

fastSPA-2 test.  

 

Table 3.2 A comparison of power for the asymptotic test, fastSPA-2 test, and permutation tests, 

across 100,000 simulated datasets of sample size 5,000 with OR=1.5. 

 

MAF 

Case-

Control 

Ratio 

Power   

Asymptotic fastSPA-2  Permutation Test 

    Uj
a 

Uj
b 

Sj
c
 Sj

d
 

0.01 1:1 0.5868 0.5868 0.5505 0.5841 0.5505 0.5841 

 1:2 0.6475 0.5591 0.6493 0.6493 0.6493 0.6493 

 1:4 0.4559 0.4559 0.4833 0.4833 0.4833 0.4833 

0.005 1:1 0.3354 0.3354 0.2909 0.3310 0.2909 0.3310 

 1:2 0.3949 0.3360 0.4162 0.4165  0.4162 0.4165 

 1:4 0.2726 0.2726 0.2743 0.2752 0.2743 0.2752 

Abbreviations: fastSPA-2, fast saddlepoint approximation test; MAF, minor allele frequency 

a 
Based on Uj and calculated as 

∑ 𝐼([𝑈𝑗,𝑃𝑅𝑀
𝑘 ]2𝐾

𝑘=1 ≥𝑈𝑗
2)

(𝐾+1)
   

b
 Based on Uj and calculated as 

∑ 𝐼([𝑈𝑗,𝑃𝑅𝑀
𝑘 ]2𝐾

𝑘=1 >𝑈𝑗
2)+0.5∗∑ 𝐼([𝑈𝑗,𝑃𝑅𝑀

𝑘 ]2𝐾
𝑘=1 =𝑈𝑗

2) 

(𝐾+1)
 

c 
Based on Sj and calculated as 

∑ 𝐼(𝑆𝑗,𝑃𝑅𝑀
𝑘𝐾

𝑘=1 ≥𝑆𝑗)

(𝐾+1)
   

d
 Based on Sj and calculated as 

∑ 𝐼(𝑆𝑗,𝑃𝑅𝑀
𝑘𝐾

𝑘=1 >𝑆𝑗)+0.5∗∑ 𝐼(𝑆𝑗,𝑃𝑅𝑀
𝑘𝐾

𝑘=1 =𝑆𝑗) 

(𝐾+1)
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3.4 Discussion  

For rare genetic variants, asymptotic tests that depend on large sample theory can have inflated 

type I error rates.  Estimating the distribution of a test statistic using permutations is a suitable 

alternative, but permutation tests can be computationally expensive and the amount of time and 

resources required can become prohibitive.  We developed a computationally efficient algorithm 

to perform permutation testing of rare genetic variants that allows for adjustment of covariates.  

The algorithm takes advantage of the sparsity of exposure; with decreasing MAF, the 

computation time of the permutation algorithm decreases.  Thus, the algorithm is fastest where 

needed most -- in cases where the asymptotic and approximate tests are most questionable 

(extremely rare variants). 

 In a COPD sequencing study and in simulations, we showed the feasibility of the 

permutation testing algorithm.  Although we cannot expect to identify extremely rare variants at 

a genome-wide significance level under reasonable sample sizes, the permutation test could 

allow the discovery of a global contribution of very rare variants on an outcome if the observed 

score distribution for the rare variants shows an unusual number of large score statistics relative 

to the permuted sampling distribution. 

 In the simulation study we observed scenarios where both the asymptotic and fastSPA-2 

tests break down (e.g. MAF of 0.1% and 1:400 case-control ratio observed type I error rates of 

>9% at the 5% level).  In contrast, the permutation test maintained the type I error level at or 

below 0.05, even under extremely rare MAF.  Due to the discrete nature of the null distribution 

of the score statistic in the case of extremely rare variants, the empirical type I error levels for the 

permutation test were often well below 0.05.      
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 Additional work toward further speeding up the permutation algorithm is of 

interest, including implementing the algorithm in C/C++ and integrating a sequential testing 

strategy into the permutation algorithm (Hecker et al., 2018, manuscript in preparation) to 

discard clearly non-significant variants early.    
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Conclusions 

 

There are many avenues of further research that spawn from this dissertation research.  In 

Chapter 1, we observed the importance of adjusting for other spontaneous drug exposures in 

screening the safety of antiretroviral therapies taken during pregnancy by women with HIV 

infection.  The hierarchical modeling approach as studied was implemented using a frequentist 

approach.  After having observed the advantages a Bayesian approach can offer in mixed effect 

regression settings with common, binary outcomes in Chapter 2, it may be worthwhile to 

evaluate the Chapter 1 model (without interactions) in a Bayesian framework and with a log 

(rather than logit) link.  Whereas the frequentist implementation is limited by software options 

(e.g. must assume a Normal distribution for the random effects in PROC GLIMMIX), a Bayesian 

approach can be more flexible. 

 Another logical next step is to extend the hierarchical model from Chapter 1 to screen for 

additive drug-drug or drug-covariate interactions -- as originally intended -- under a Bayesian 

framework.  Another bridging of the research in Chapters 1 and 2 could involve incorporating 

clustered outcomes into a hierarchical model that groups drugs by drug class.  That is, in the 

motivating application presented in Chapter 1, we accounted for other ARV exposures in 

screening the safety of individual ARVs taken during pregnancy on the risk of preterm delivery, 

but we did not account for the fact that patients were clustered by clinic.  In the example 

application presented in Chapter 2, we accounted for the clustering of patients within clinics – 

and assessed the variability in preterm delivery across clinics – but our model only included the 

ARV of interest (nevirapine) and did not account for other ARV exposures.  Further research 

could focus on methods which both adjust for other ARV exposures and account for correlated 
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outcomes.  Correlated outcomes could arise from patients clustered within clinic and/or multiple 

pregnancies from the same woman.    

 Lastly, there is still room to reduce the computational time and resources required to 

implement the permutation testing algorithm presented in Chapter 3 on a genome-wide scale.  In 

addition to coding the algorithm in C/C++, which is much faster than R – or using an R interface 

to C++ (e.g., Rcpp) -- incorporating a sequential testing strategy into the permutation algorithm 

to discard clearly nonsignificant variants early would reduce the computational burden.     
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Appendices 

 

A.1 The parameter space of the RERI 

 

Conditional on the baseline probability 𝑝00, the RERI (𝑅𝐸𝑅𝐼 =
𝑝11

𝑝00
−

𝑝10

𝑝00
−

𝑝01

𝑝00
+ 1)  is bounded. 

Assuming exposures are coded such that the baseline group represents the group with the lowest 

risk (Knol et al., 2011), the lower and upper bounds of the RERI can be derived as:  

2 −  
2

𝑝00
≤ 𝑅𝐸𝑅𝐼 ≤

1

𝑝00
− 1. 

The minimum possible RERI is attained when 𝑅𝑅11 is at its minimum and 𝑅𝑅10 and 

𝑅𝑅01 are at their maximums.  Assuming as noted above, that the baseline group represents the 

group with the lowest risk (𝑝00 ≤  𝑝01, 𝑝10, 𝑝11), the minimum value of 𝑅𝑅11 is 1.0 and occurs 

when 𝑝11 = 𝑝00.  The maximum values of 𝑅𝑅10 and 𝑅𝑅01 are attained when 𝑝01 and 𝑝10 are at 

their maximum value (equal to 1).  Therefore, a lower bound for the RERI is: 1 −
1

𝑝00
−

1

𝑝00
+

1 = 2 −
2

𝑝00
.  

Similarly, the maximum possible RERI is attained when 𝑅𝑅11 is at its maximum and 

𝑅𝑅10 and 𝑅𝑅01 are at their minimums.  Assuming again that 𝑝00 ≤  𝑝01, 𝑝10, 𝑝11, the maximum 

value of 𝑅𝑅11occurs when 𝑝11 = 1.  The minimum values for 𝑅𝑅10 and 𝑅𝑅01 occur when 

𝑝10 = 𝑝01 = 𝑝00.  Thus, an upper bound for the RERI is: 
1

𝑝00
− 1 − 1 + 1 =

1

𝑝00
− 1.    

For example, if 𝑝00 = 0.20, then −8 ≤ 𝑅𝐸𝑅𝐼 ≤ 4; and if 𝑝00 = 0.40, then −3 ≤

𝑅𝐸𝑅𝐼 ≤ 1.5.  For rarer outcomes, the possible parameter space of the RERI becomes much 

wider (eg., if 𝑝00 = 0.01, then −198 ≤ 𝑅𝐸𝑅𝐼 ≤ 99). 
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A.2 Numerical equivalence of cluster-conditional RERI and induced 

marginal RERI under log binomial random intercepts model 
 

The cluster-conditional log binomial mean model is: 

log(𝐸(𝑦𝑖𝑘|𝑏0𝑘)) = 𝛽0
∗ + 𝛽1

∗𝑋1𝑖𝑘 + 𝛽2
∗𝑋2𝑖𝑘 + 𝛽3

∗𝑋1𝑖𝑘𝑋2𝑖𝑘 + 𝑪𝑖𝑘
∗ 𝜸 + 𝑏0𝑘,    

𝑏0𝑘~𝑁(0, 𝜎𝑏
2) 

and the cluster-conditional RERI is thus defined as: 

𝑅𝐸𝑅𝐼𝐶𝐶 = exp (𝛽1
∗ + 𝛽2

∗ + 𝛽3
∗) − exp(𝛽1

∗) − exp(𝛽2
∗) + 1 

The induced marginal mean model is: 

𝐸𝑌(𝑦𝑖𝑘) = 𝐸𝑏(𝐸𝑌(𝑦𝑖𝑘|𝑏0𝑘)) 

= 𝐸𝑏(exp(𝛽0
∗ + 𝛽1

∗𝑋1𝑖𝑘 + 𝛽2
∗𝑋2𝑖𝑘 + 𝛽3

∗𝑋1𝑖𝑘𝑋2𝑖𝑘 + 𝑪𝑖𝑘
∗ 𝜸 + 𝑏0𝑘)) 

= 𝐸𝑏(exp(𝛽0
∗ + 𝛽1

∗𝑋1𝑖𝑘 + 𝛽2
∗𝑋2𝑖𝑘 + 𝛽3

∗𝑋1𝑖𝑘𝑋2𝑖𝑘 + 𝑪𝑖𝑘
∗ 𝜸) exp(𝑏0𝑘)) 

= exp(𝛽0
∗ + 𝛽1

∗𝑋1𝑖𝑘 + 𝛽2
∗𝑋2𝑖𝑘 + 𝛽3

∗𝑋1𝑖𝑘𝑋2𝑖𝑘 + 𝑪𝑖𝑘
∗ 𝜸) ∗ 𝐸𝑏(exp(𝑏0𝑘)) 

= exp(𝛽0
∗ + 𝛽1

∗𝑋1𝑖𝑘 + 𝛽2
∗𝑋2𝑖𝑘 + 𝛽3

∗𝑋1𝑖𝑘𝑋2𝑖𝑘 + 𝑪𝑖𝑘
∗ 𝜸) ∗ exp(𝜎𝑏

2 2⁄ ) 

= exp((𝛽0
∗ + 𝜎𝑏

2 2⁄ ) + 𝛽1
∗𝑋1𝑖𝑘 + 𝛽2

∗𝑋2𝑖𝑘 + 𝛽3
∗𝑋1𝑖𝑘𝑋2𝑖𝑘 + 𝑪𝑖𝑘

∗ 𝜸), 

where the second to last line follows from the fact that 𝑏0𝑘~𝑁(0, 𝜎𝑏
2) so exp(𝑏0𝑘) is log-

normally distributed with mean exp(𝜎𝑏
2 2⁄ ).  And, thus, the marginal RERI induced by the 

cluster-conditional model is: 

𝑅𝐸𝑅𝐼𝑀 = exp (𝛽1
∗ + 𝛽2

∗ + 𝛽3
∗) − exp(𝛽1

∗) − exp(𝛽2
∗) + 1 

As the slopes in the cluster-conditional model are the same after averaging over the clusters, the 

induced marginal slopes are numerically equivalent to the cluster-conditional slopes and the 

cluster-conditional RERI is therefore numerically equivalent to the marginal RERI.   



69 
 

This numerical equivalence is specific to the random intercepts model with log link (e.g. 

log binomial or Poisson approximation).  If normally-distributed random slopes are included in 

the model, or if a different link function is used (e.g. logit link for a logistic random intercepts 

model), the induced marginal RERI from the cluster-conditional model may not be the same as 

the cluster-conditional RERI.  For instance, consider a model with random intercepts and slopes:  

log(𝐸(𝑦𝑖𝑘|𝒃)) = 𝛽0
∗ + 𝛽1

∗𝑋1𝑖𝑘 + 𝛽2
∗𝑋2𝑖𝑘 + 𝛽3

∗𝑋1𝑖𝑘𝑋2𝑖𝑘 + 𝑪𝑖𝑘
∗ 𝜸 + 𝑏0𝑘 + 𝑏1𝑘𝑋1𝑖𝑘 + 𝑏2𝑘𝑋2𝑖𝑘,   

𝒃𝒌~𝑁 (𝟎, [

𝜎𝑏0
2 0 0

0 𝜎𝑏1
2 0

0 0 𝜎𝑏2
2

]) 

In this case, the induced marginal mean model is: 

𝐸𝑌(𝑦𝑖𝑘) = 𝐸𝒃(𝐸𝑌(𝑦𝑖𝑘|𝒃𝒌)) 

= 𝐸𝒃(exp(𝛽0
∗ + 𝛽1

∗𝑋1𝑖𝑘 + 𝛽2
∗𝑋2𝑖𝑘 + 𝛽3

∗𝑋1𝑖𝑘𝑋2𝑖𝑘 + 𝑪𝑖𝑘
∗ 𝜸 + 𝑏0𝑘 + 𝑏1𝑘𝑋1𝑖𝑘 + 𝑏2𝑘𝑋2𝑖𝑘)) 

= 𝐸𝒃(exp(𝛽0
∗ + 𝛽1

∗𝑋1𝑖𝑘 + 𝛽2
∗𝑋2𝑖𝑘 + 𝛽3

∗𝑋1𝑖𝑘𝑋2𝑖𝑘 + 𝑪𝑖𝑘
∗ 𝜸) exp(𝑏0𝑘) exp(𝑏1𝑘𝑋1𝑖𝑘) exp(𝑏2𝑘𝑋2𝑖𝑘)) 

= exp(𝛽0
∗ + 𝛽1

∗𝑋1𝑖𝑘 + 𝛽2
∗𝑋2𝑖𝑘 + 𝛽3

∗𝑋1𝑖𝑘𝑋2𝑖𝑘 + 𝑪𝑖𝑘
∗ 𝜸) ∗ 𝐸𝒃(exp(𝑏0𝑘)) ∗ 𝐸𝒃(exp(𝑏1𝑘𝑋1𝑖𝑘))

∗ 𝐸𝒃(exp(𝑏2𝑘𝑋2𝑖𝑘)) 

= exp(𝛽0
∗ + 𝛽1

∗𝑋1𝑖𝑘 + 𝛽2
∗𝑋2𝑖𝑘 + 𝛽3

∗𝑋1𝑖𝑘𝑋2𝑖𝑘 + 𝑪𝑖𝑘
∗ 𝜸) ∗ exp(𝜎𝑏0

2 2⁄ ) ∗ [exp (
𝜎𝑏1

2

2
𝑋1𝑖𝑘

2 )]

∗ [exp (
𝜎𝑏2

2

2
𝑋2𝑖𝑘

2 )] 

= exp ((𝛽0
∗ + 𝜎𝑏0

2 2⁄ ) + 𝛽1
∗𝑋1𝑖𝑘 + 𝛽2

∗𝑋2𝑖𝑘 + 𝛽3
∗𝑋1𝑖𝑘𝑋2𝑖𝑘 + 𝑪𝑖𝑘

∗ 𝜸 +
𝜎𝑏1

2

2
𝑋1𝑖𝑘

2 +
𝜎𝑏2

2

2
𝑋2𝑖𝑘

2 ) 

= exp ((𝛽0
∗ + 𝜎𝑏0

2 2⁄ ) + (𝛽1
∗+

𝜎𝑏1
2

2
𝑋1𝑖𝑘)𝑋1𝑖𝑘 + (𝛽2

∗+
𝜎𝑏2

2

2
𝑋2𝑖𝑘)𝑋2𝑖𝑘 + 𝛽3

∗𝑋1𝑖𝑘𝑋2𝑖𝑘 + 𝑪𝑖𝑘
∗ 𝜸) 
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Clearly, the slopes for the exposures of interest (𝑋1𝑖𝑘, 𝑋2𝑖𝑘) in the cluster-conditional model are 

not the same as the respective slopes in the induced marginal model, and thus the two RERIs will 

not be equivalent either. 



71 
 

A.3 Implementation of a Bayesian log binomial random intercepts 

model 
 

We jointly used the “brms” and “rstan” packages in R to fit a Bayesian log binomial random 

intercepts model.  The “brms” package provides a user-friendly interface to fit Bayesian 

generalized linear mixed models using Stan.  The formula syntax is similar to that of R’s popular 

“lme4” package, and the sampling scheme is extremely efficient and thus fast in terms of 

Bayesian computation.  A  log link is not allowed to be specified for a binary outcome in the 

“brms” package.  However, the “make_stanmodel” and “make_standata” functions within the 

“brms” package were used to help specify the Stan file and data.  In particular, the 

“make_stanmodel” function was used to output Stan model code for a random intercepts logistic 

model.  The resulting Stan code was updated to change the model from a logit link to a log link 

and to calculate the RERI directly.  The “make_standata” function was used to create a list of the 

Stan data for the respective Stan model.  Then, the “stan” function within the “rstan” package 

was called to run the Stan model on the Stan data. 

 

R Code  
 

library("brms") 

library("rstan”) 

rstan_options(auto_write=TRUE) 

options(mc.cores=parallel::detectCores()) 

 

# make_stancode and make_standata functions are from BRMS package 

stan.logit <- make_stancode(outcome ~ x1 + x2 + x1:x2 + (1|Cluster) 

                    , data=simdata 

                    , family="bernoulli"(link="logit") 

                    , iter=1000 

                    # set gamma(2,0.1) prior on SD  

                    , prior = set_prior("gamma(2,0.1)", class = "sd") 

) 

standata <- make_standata(outcome ~ x1 + x2 + x1:x2 + (1|Cluster) 

                                  , data=simdata)  
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# edit Stan code output from make_stancode 

# so using log link instead of logit and save file as  

# “bayes_logbin_gamma.stan” (included below) 

 

stfit <- stan(file="bayes_logbin_gamma.stan" 

               , data=standata, chains=4, iter=2000) 

 

Stan Code for log binomial random intercepts model with a Gamma(2,0.1) prior on SD 

 
// generated with brms 1.6.1 

functions {  

}  

data {  

  int<lower=1> N;  // total number of observations  

  int Y[N];  // response variable  

  int<lower=1> K;  // number of population-level effects  

  matrix[N, K] X;  // population-level design matrix  

  // data for group-level effects of ID 1  

  int<lower=1> J_1[N];  

  int<lower=1> N_1;  

  int<lower=1> M_1;  

  vector[N] Z_1_1;  

  int prior_only;  // should the likelihood be ignored?  

}  

transformed data {  

  int Kc;  

  matrix[N, K - 1] Xc;  // centered version of X  

  vector[K - 1] means_X;  // column means of X before centering  

  Kc = K - 1;  // the intercept is removed from the design matrix  

  for (i in 2:K) {  

    means_X[i - 1] = mean(X[, i]);  

    Xc[, i - 1] = X[, i] - means_X[i - 1];  

  }  

}  

parameters {  

  vector[Kc] b;  // population-level effects  

  real temp_Intercept;  // temporary intercept  

  vector<lower=0>[M_1] sd_1;  // group-level standard deviations  

  vector[N_1] z_1[M_1];  // unscaled group-level effects  

}  

transformed parameters {  

  // group-level effects  

  vector[N_1] r_1_1;  

  r_1_1 = sd_1[1] * (z_1[1]);  

}  

model {  

  vector[N] mu;  

  mu = Xc * b + temp_Intercept;  

  for (n in 1:N) {  

    mu[n] = mu[n] + (r_1_1[J_1[n]]) * Z_1_1[n];  

  }  

  // prior specifications  

  sd_1 ~ gamma(2,0.1);  

  z_1[1] ~ normal(0, 1);  

  // likelihood contribution  

  if (!prior_only) {  
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    Y ~ bernoulli(exp(mu));  

  }  

}  

generated quantities {  

  real b_Intercept;  // population-level intercept  

  real RERI;       // relative excess risk due to interaction 

  b_Intercept = temp_Intercept - dot_product(means_X, b);  

  RERI = exp(b[1]+b[2]+b[3]) - exp(b[1]) - exp(b[2]) + 1; 

}  
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A.4 Specification of initial values for the adjusted Bayesian log 

binomial random intercepts model 

 

 

Initial estimates for the beta coefficients were generated from a multivariate normal distribution 

with means equal to the respective estimated coefficients from the frequentist adjusted modified 

Poisson GEE model and covariance matrix equal to the covariance matrix of the coefficients.  

The modified Poisson GEE model was used to allow more variability in initial estimates across 

chains (as compared to a log binomial GEE model). 

 

The initial values for the standard deviation in the random intercept were generated from a 

uniform distribution ranging between the 2.5
th

 and 97.5
th

 percentiles for the standard deviation as 

estimated from the unadjusted Bayesian log binomial random intercepts model.   
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A.5 Randomly select without replacement 𝒏𝟏𝒋 + 𝒏𝟐𝒋values between 1 

and N 

Since 𝒈𝒋 is a sparse vector (rare variant), instead of shuffling the entire vector, we 

randomly select without replacement 𝑛1𝑗 + 𝑛2𝑗 values between 1 and N using a modified version 

of Durstenfeld’s shuffle (Durstenfeld, 1964) which shuffles in place and has time complexity 

O(𝑛1𝑗 + 𝑛2𝑗).  Let 𝑚 = 𝑛1𝑗 + 𝑛2𝑗. 

 

sample.custom <- function(N,m){  

        vector <- c(1:N) O(1) 

        for (i in 0:(m-1)){ O(m) 

               num <- round(runif(n=1,min=0,max=1)*(N-i))      O(1) 

               vector[c(N-i,num)] <- vector[c(num,N-i)]      O(1) 

        }  

        return(vector[(N-m+1):N]) O(1) 

}  

 

 

𝑂(1) + [𝑂(𝑚) ∗ 𝑂(1)] + 𝑂(1) = 𝑂(1) + 𝑂(𝑚) + 𝑂(1) 

                                           = 𝑂(𝑚), 

where the first equality follows from the fact that O(f)*O(g) = O(f*g), and the second equality 

follows from the fact that O(f) + O(g) = O(max(f,g)) and m≥1. 
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A.6 Permutation algorithm based on 𝑺𝒋 

 

 The calculations for the variance of 𝑈𝑗 can be reduced by noting that: 

𝑉𝑎𝑟(𝑈𝑗) = 𝒈𝒋
𝑻𝑾𝒈𝒋 − 𝒈𝒋

𝑻𝑾𝑪(𝑪𝑻𝑾𝑪)−𝟏𝑪𝑻𝑾𝒈𝒋 

= 𝒈𝒋
𝑻𝑾𝒈𝒋 − 𝒈𝒋

𝑻𝑨𝒈𝒋 , 

where 𝑨 = 𝑾𝑪(𝑪𝑻𝑾𝑪)−𝟏𝑪𝑻𝑾, and both 𝑾 and 𝑨 are constant across variants and across 

permutations.  Since 𝑾 is a diagonal matrix, the first term in 𝑉𝑎𝑟(𝑈𝑗) can be reduced in a 

similar manner as 𝑈𝑗 above: 

𝒈𝒋
𝑻𝑾𝒈𝒋 = ∑ 𝐺𝑖𝑗

2 𝑝𝑖𝑗(1 − 𝑝𝑖𝑗)

𝑁

𝑖=1

= ∑ 𝑝𝑖(1 − 𝑝𝑖)

𝑖 ∈𝑀1𝑗

+ 4 ∗ ∑ 𝑝𝑖(1 − 𝑝𝑖)

𝑖 ∈𝑀2𝑗

 

We can further take advantage of the sparsity of 𝒈𝒋 and note that:  

𝒈𝒋
𝑻𝑨𝒈𝒋 = 𝒈𝒋

∗𝑻𝑨∗𝒈𝒋
∗, 

where 𝒈𝒋
∗ is an (𝑛1𝑗 + 𝑛2𝑗) x 1 vector of the non-zero minor allele counts for the j

th
 genetic 

variant and 𝑨∗ is an (𝑛1𝑗 + 𝑛2𝑗)𝑥(𝑛1𝑗 + 𝑛2𝑗) matrix keeping the rows and columns of 𝑨 

corresponding to the non-zero minor allele counts for the j
th

 genetic variant as indexed by 𝑀1𝑗 

and 𝑀2𝑗.   

The permutation algorithm based on 𝑆𝑗 proceeds similar to the permutation algorithm 

based on 𝑈𝑗
2, with the additional computations for the variance included: 

1. Fit the constrained logistic regression model, and compute the residual vector  �̃� =

(𝒚 − �̃�), the variance vector �̃� = �̃�(𝟏 − �̃�), �̃�=diag(�̃�), and 𝑨 = �̃�𝑪(𝑪𝑻�̃�𝑪)−𝟏𝑪𝑻�̃�. 

2. For each variant (j=1,2, …, m): 

a. Generate a vector 𝒒𝒋 of length 𝑛1𝑗 + 𝑛2𝑗, with 𝑛1𝑗 ones and 𝑛2𝑗 twos 
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b. Calculate 𝒒𝒋
𝟐, with 𝑛1𝑗 twos and 𝑛2𝑗 fours (element-wise squaring of 𝒒𝒋) 

c. Compute the observed score statistic. 

i. Subset �̃� on the 𝑀1𝑗 and 𝑀2𝑗 indices; call this subset vector �̃�(𝑗0) 

ii. Subset �̃� on the 𝑀1𝑗 and 𝑀2𝑗 indices; call this subset vector �̃�(𝑗0) 

iii. Create 𝑨(𝒋𝟎) by keeping only the rows and columns of 𝑨 equal to the 𝑀1𝑗 

and 𝑀2𝑗 indices 

iv. Compute 𝑈𝑗 = 𝒒𝒋
𝑻�̃�(𝑗0) and 𝑉𝑎𝑟(𝑈𝑗) = (𝒒𝒋

𝟐)𝑻�̃�(𝑗0) − 𝒒𝒋
𝑻𝑨(𝒋𝟎)𝒒𝒋 

v. Compute 𝑆𝑗 =
(𝒒𝒋

𝑻�̃�(𝑗0))𝟐

(𝒒𝒋
𝟐)𝑻�̃�(𝑗0)−𝒒𝒋

𝑻𝑨(𝒋𝟎)𝒒𝒋
 

d. Compute the permuted score statistics.  For k in 1 to K (where K is the number of 

permutations): 

i. Randomly select without replacement 𝑛1𝑗 + 𝑛2𝑗values between 1 and N  

ii. Subset �̃� on the randomly selected values; call this subset vector �̃�(𝑗𝑘) 

iii. Subset �̃� on the randomly selected values; call this subset vector �̃�(𝑗𝑘) 

iv. Create 𝑨(𝒋𝒌) by keeping only the rows and columns of 𝑨 equal to the 

randomly selected values    

v. Calculate the permuted score for the k
th 

permutation for the j
th

 variant: 

𝑆𝑗,𝑃𝑅𝑀
𝑘 =

(𝒒𝒋
𝑻�̃�(𝑗𝑘))𝟐

(𝒒𝒋
𝟐)𝑻�̃�(𝑗𝑘)−𝒒𝒋

𝑻𝑨(𝒋𝒌)𝒒𝒋
  

Calculate the p-value as the proportion of permuted scores that are as extreme of more extreme 

than the observed score: 𝑝 − 𝑣𝑎𝑙𝑢𝑒𝑗 =
∑ 𝐼(𝑆𝑗,𝑃𝑅𝑀

𝑘𝐾
𝑘=1 ≥𝑆𝑗) 

(𝐾+1)
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Figure A1.1 The percent of simulations with no false discoveries versus the power to detect the 

true effects of antiretroviral exposures on preterm birth.  Markers represent the drugs with true 

effects under different exposure-outcome scenarios.  Results are based on 3,000 simulations. 
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Figure A1.2 The percent of simulations with no false discoveries versus the power to detect the 

true effects of antiretroviral exposures on standardized Bayley-III score.  Markers represent the 

drugs with true effects under different exposure-outcome scenarios.  Results are based on 3,000 

simulations. 
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