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Abstract

Complex, multi-exposure problems arise in many forms. In this dissertation, we delve
into three disparate forms of complex, multi-exposure questions, from the safety of combination
antiretroviral (ARV) regimens to the complexities arising from repeated measures data to
statistical genetics.

In Chapter 1, we evaluate a hierarchical model that groups ARVs by drug class, while
still providing individual ARV effect estimates, to screen for the safety of ARV exposures during
pregnancy. In simulations, we compare the statistical operating characteristics of the hierarchical
approach to the standard approaches of separate regression models for each ARV and a full,
fixed effect model. We illustrate the characteristics of the hierarchical approach in an
application evaluating risk of preterm delivery using a study including over 2,000 pregnancies
representing over 100 antiretroviral combinations, each involving up to three drug classes.

Chapter 2 explores estimation of the relative excess risk due to interaction (RERI) in
clustered data settings. The RERI is a measure of additive interaction for binary outcomes that
can be calculated from multiplicative regression models. We evaluate the RERI for the setting of
clustered data using both population-averaged and cluster-conditional models. In simulation
studies, we find that estimation and inference for the RERI using population-averaged models is

straightforward. However, frequentist implementations of cluster-conditional models including
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random intercepts often fail to converge or produce degenerate variance estimates. We develop
a Bayesian implementation of log binomial random intercept models, which represents an
attractive alternative for estimating the RERI in cluster-conditional models. We apply the
methods to an observational study of adverse birth outcomes in mothers with HIV infection, in
which mothers are clustered within clinical research sites.

In Chapter 3, we introduce a computationally efficient algorithm for permutation testing
between a single rare genetic variant and affection status which also allows for adjustment of
covariates. To demonstrate the feasibility of the algorithm, we apply the method to a study of
chronic obstructive pulmonary disease. In simulations, we show that the permutation test
maintains a Type I error rate closer to the nominal level than the asymptotic and saddlepoint

approximation tests for rare variants.
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Introduction

Complex, multi-exposure problems arise in many forms. In this dissertation, we delve
into three disparate forms of complex, multi-exposure questions, from the safety of combination
antiretroviral regimens to the complexities arising from repeated measures data to statistical
genetics. Each of these statistical challenges is driven by a pressing, underlying clinical
question; and ultimately with this dissertation, I aim to provide statistical approaches that clinical
researchers can implement in their research for sound statistical practice.

In Chapter 1, we investigate a hierarchical modeling approach for assessing the safety of
antiretroviral drug regimens taken during pregnancy by women with HIV. Combination
antiretroviral regimens have achieved tremendous success in reducing perinatal HIV
transmission, and have become standard of care in pregnant women with HIV. However, the
large variety of combination antiretroviral regimens utilized in practice raises the question of
whether some of these highly potent drugs pose other risks to the pregnancy or infant. While
pregnant women with HIV are almost always exposed to multiple antiretrovirals concurrently,
standard safety screening strategies typically consider each individual antiretroviral separately,
which fails to account for potential confounding due to simultaneous exposure to other
antiretrovirals. We evaluate a hierarchical modeling approach which groups antiretrovirals by
drug class, while still providing individual antiretroviral drug effect estimates. We illustrate the
characteristics of the hierarchical approach in an application evaluating risk of preterm birth
using a study including over 2,000 pregnancies representing over 100 antiretroviral

combinations, each involving up to three drug classes.



In addition to screening for adverse individual antiretroviral effects, it is important to
consider possible drug-drug and drug-covariate interactions. In particular, for binary outcomes,
the risk difference scale and additive interaction effects are often of greater clinical relevance
than the ratio scale and multiplicative interaction effects. Yet, the models typically used for
binary outcomes implicitly measure interaction on the multiplicative scale. One measure to
assess additive interaction from multiplicative models is the Relative Excess Risk due to
Interaction (RERI). Extending the hierarchical model assessed in Chapter 1 to screen for
additive interactions induces a distribution on the RERIs for each drug-drug or drug-covariate
interaction. Furthermore, for common, binary outcomes, it is important to estimate the RERI
using relative risks, not odds ratios. Log binomial regression can be unstable, and a hierarchical
log binomial regression model with random slopes for each drug and each interaction proved
difficult to implement in a frequentist setting.

In Chapter 2, we consider estimating the RERI in more general clustered data settings.
The RERI measure has been applied in many contexts, but one limitation of previous approaches
is that clustering in data has rarely been considered. We evaluate the RERI metric for the setting
of clustered data using both population-averaged and cluster-conditional models. In simulation
studies, we find that estimation and inference for the RERI using population-averaged models is
straightforward. However, frequentist implementations of cluster-conditional models including
random intercepts often fail to converge or produce degenerate variance estimates. We develop
a Bayesian implementation of log binomial random intercept models, which represents an
attractive alternative for estimating the RERI in cluster-conditional models. We apply the
methods to an observational study of adverse birth outcomes in mothers with HIV infection, in

which mothers are clustered within clinical research sites.



In Chapter 3, we turn our focus to a setting where the multitude of exposures explodes —
statistical genetics. With the rapid advancement in DNA sequencing technologies over the last
decade, cost-effective identification of rare and very rare single-nucleotide polymorphisms
(SNPs) has become possible. Yet, the standard statistical methods used to test these rare variants
rely on asymptotic, large sample theory, which likely does not hold when the minor allele count
is so low. However, the computational burden of permutation testing in a logistic regression
setting can be prohibitive. We develop a computationally efficient algorithm for permutation
testing of individual rare genetic variants that allows for adjustment of covariates. To
demonstrate the feasibility of the algorithm, we apply the method to a study of chronic
obstructive pulmonary disease. In simulations, we show that the permutation test maintains a
Type I error rate closer to the nominal level than the asymptotic and saddlepoint approximation
tests.

We conclude this dissertation with a few suggestions for avenues of further research.



1. A hierarchical modeling approach for assessing the safety of
exposure to complex antiretroviral drug regimens during pregnancy

The use of combination antiretroviral (ARV) therapy during pregnancy has been a public
health success, reducing the risk of perinatal human immunodeficiency virus (HIV) transmission
to less than 2% (CDC, 2006; Suksomboon et al., 2007). Despite widespread use of ARVs during
pregnancy, there is a dearth of adequate and well-controlled human studies evaluating the safety
of ARVs in pregnancy, leading to a need to monitor potential adverse effects that these highly
potent drugs may have on the pregnancy or infant (Zash et al., 2016). Given the large number of
available and effective ARVs, identification of individual ARVs with increased risks is critical,
so that pregnant women can be advised to take ARV with the safest profile.

The difficulty in assessing the safety of ARVs during pregnancy is due in part to the large
number of different drugs available, yielding hundreds of possible combinations of ARV drugs
that women can be exposed to during pregnancy. When prior research findings are suggestive or
in settings with limited variability in regimens, a comparative effectiveness strategy may be used
to compare two regimens against each other (Caniglia et al., 2016). However, such approaches
may not be useful for general safety screening across many ARVs or regimens. In most cases,
safety screening for a larger number of ARV drugs has been conducted by considering one drug
at a time as part of a screening strategy. That is, studies have either restricted analysis to a single
drug or drug class, or analyzed exposure to one drug or drug class at a time, and repeated the
analysis for each drug and/or drug class (Tuomala et al., 2002; Cotter et al., 2006; Grosch-
Woerner et al., 2008; Sibiude et al., 2012; Watts et al., 2013; Koss et al., 2014; Bisio et al., 2015;
Perry et al., 2016; Vannappagari et al., 2016; Williams et al., 2016). Such analyses fail to adjust
for exposure to other ARV drugs, and thus could be confounded by other ARV use. On the other

4



hand, with so many different ARV exposures, it can become prohibitive to include all exposures
at once in the statistical models ordinarily used.

As an alternative to these conventional approaches, hierarchical modeling has been
advocated to address the multiple-exposure issues inherent to many epidemiologic investigations
(Greenland, 1992; Greenland, 1993; Witte et al., 1994). It has been used in areas such as
nutrition, occupational health and genetics (Greenland, 1992; Witte et al., 1994; Witte and
Greenland, 1996; Witte et al., 2000; Greenland, 1997; Aragaki et al., 2003; Conti and Witte,
2003; Hung et al., 2008; Capanu et al., 2008; Capanu and Begg, 2011; Brenner et al., 2013).
Hierarchical models have also previously been used in evaluating outcomes among HIV-infected
adults, but have not been utilized in the context of addressing safety of ARV use during
pregnancy (Young et al., 2009; Wang et al., 2013; Young et al., 2016).

In this paper, we investigate a hierarchical model safety screening approach that includes
first-stage effects for each drug class (nucleoside reverse transcriptase inhibitors (NRTI), non-
nucleoside reverse transcriptase inhibitors (NNRTTI), and protease inhibitors (PI)), and second-
stage effects for individual drugs. In essence, this model assumes that the effect of each drug is
the summation of the (fixed) effect of its drug class and a residual effect specific to the
individual drug. The effect for drugs less commonly used will be pulled toward the “mean”
effect averaged over other, more common drugs from its same drug class. We would thus expect
the hierarchical modeling method to perform well when drugs from the same drug class do
indeed have similar effects on the outcome of interest.

The assumption of a similar effect for drugs within the same drug class can be justified
by the fact that each class of antiretroviral medications has a different mechanism of action.

NRTIs are analogs of naturally-occurring deoxynucleotides and terminate DNA chain formation



(Kalkut, 2005; Cihlar and Ray, 2010). NNRTIs bind to the HIV reverse transcriptase enzyme
and cause a structural change that impairs further DNA synthesis (Kalkut, 2005; De Bethune,
2010). PIs prevent the processing of viral proteins into their functional form, such that release of
active virus particles is inhibited (Kalkut, 2005; Wensin et al., 2010). As a result of their
mechanism of action, PIs as a class have been linked to increased rates of dyslipidemia in both
children and adults with HIV infection (Stein, 2003; Tassiopoulos et al., 2008), and have also
been associated with increased rates of preterm birth (Mesfin et al., 2016; Watts et al., 2013),
particularly when taken by HIV-infected women early in pregnancy (Uthman et al., 2017). In
contrast, NRTIs have been linked to potential mitochondrial dysfunction and lactic acidosis
based on evidence from both animal and human studies (Cote et al., 2002). While their common
mechanism of action supports an assumption that drugs within a class would behave similarly,
and some studies have documented similar rates of outcomes (Perry et al., 2016), there are also
specific individual drugs which may confer increased or decreased risk as compared to others
within the same class (CDC, 2006; Smith et al., 2016; Abers et al., 2014). For example, the drug
efavirenz (EFV) has been more commonly associated with psychiatric adverse effects than other

drugs within the NNRTI class (Abers et al., 2014).

Given a plausible biological justification, the hierarchical modeling approach thus seems
appealing. However, while a limited number of prior applications have utilized this approach,
there is little information on how well this method will perform under various possible scenarios
reflecting ARV drug effects. For example, this approach may not perform well when drugs from
the same class do not behave similarly. Furthermore, previous research studies utilizing this
approach considered multiple continuous exposures with considerably more variability than

observed within our context (Witte and Greenland, 1996; Witte et al., 2000). Thus, examination



of whether the hierarchical modeling approach is advantageous within the context of multiple
binary exposures with many zero counts is warranted. ~Given the lack of prior knowledge
regarding expected effects in these types of screening studies, we sought to quantify how much is
gained by using the hierarchical model when the drug class assumption is correct, and also how
much is lost by using the hierarchical model when the drug class assumption contradicts the true
underlying data mechanism.

In Section 1.2, we detail the three screening approaches to be compared, and consider the
analytical bias of the separate models approach and the hierarchical approach. In Section 1.3, we
present a simulation study conducted to compare the conventional approaches and the
hierarchical modeling approach under various true exposure-outcome scenarios in the context of
screening the safety of ARV exposures during pregnancy. In Section 1.4, we illustrate the
hierarchical modeling approach using data from the Surveillance Monitoring of ART Toxicities
(SMARTT) study within the Pediatric HIV/AIDS Cohort Network Study (PHACS). In Section
1.5, we conclude with a discussion of the relative merits and limitations of the hierarchical

approach for safety screening, and avenues of further research.

1.2 Methods

1.2.1 Models

We consider the setting of an observational cohort study with N participants for whom we have
information on ARV exposures during pregnancy and perinatal outcome data. We lety be an N
by / outcome vector, indicating a perinatal or infant outcome. We let X be an N by m matrix of
zeroes and ones indicating the exposure history (no/yes) during pregnancy of each participant to

m individual ARVs under investigation, and we let X be the N by / subvector of X indicating



the exposure history for the jth ARV (j=1,2,..m). Lastly, we let 1y be an N by 1 vector of ones
and W be an N by ¢ matrix of ¢ potential confounding variables. Let g(-) denote the link
function for a generalized linear model. In particular, we investigate the identity link (g(E(y)) =
E(y)) for continuous outcomes and the logit link (g(E(y)) = logit{E(y)}) for binary outcomes.
The standard, separate regression models approach involves running m models, where

each model includes one ARV drug:

g(EQ|X, W) = a1y + X;8; + Wy}, j=12,...,m (1)
In Equation (1), a’ represents the mean outcome (under the identity link) or the log odds of the
outcome (under the logit link) among those unexposed to the j'™ ARV and for which all
covariates in W equal zero. The 5} represent the mean difference in outcome (under the identity
link) or the difference in log odds of the outcome (under the logit link) between women exposed
and unexposed to the j " ARV after adjusting for the covariates in W. The yj is a vector
indicating the mean differences in outcome (under the identity link) or the differences in log
odds of the outcome (under the logit link) for a one unit increase in the covariates, when
adjusting for the j ARV.

The full fixed effect regression model involves running one model with all m ARVs

included at once:

gE@IX,W)) = a1y + XB" + WyF 2)
In Equation (2), a” represents the mean outcome (under the identity link) or the log odds of the
outcome (under the logit link) among those unexposed to all m ARVs and for which all
covariates in W equal zero. The BF vector represents the mean differences (or differences in log
odds) in outcome under the identity link (or logit link) between women exposed and unexposed

to each ARV after adjusting for the other m -1 ARVs and the covariates in W. The y¥ is a vector



indicating the mean differences in outcome (under the identity link) or the differences in log
odds of the outcome (under the logit link) for a one unit increase in the covariates, when

adjusting for all m ARVs.

The hierarchical model adds a prior distribution to the B coefficients in (2), such that

B =Zm+ 6,

8~N,,,(0,7%1,,) (3)
So, B¥~N,,(Zm, t?1,,), where Z is an m by p matrix indicating drug class membership when the
m individual drugs under investigation are from p different drug classes, and m is a p by 1 vector
of the p fixed, drug class-specific mean effects. For example, with m=14 drugs from p=3 drug
classes, Z may look like:

NRTI NNRTI

-0
p—

Abacavir (ABC)
Emtricitabine (FTC)
Tenofovir (TDF)
Zidovudine (ZDV)
Lamivudine (3TC)
Efavirenz (EFV)
Etravirine (ETR)
Nevirapine (NVP)
Rilpivirine (RPV)
Atazanavir (ATV)
Darunavir (DRV)
Fosamprenavir (FPV)
Ritonavir-boosted Lopinavir (LPV/r)
Nelfinavir (NFV)

S O O O O = = = = O O O o o
_ = = ==, O O O O O O OO o O

S O O O O O O O O = == =




6 is an m by I vector of residual effects for each individual drug, and the elements of & are
assumed to be independent normal random variables with mean 0 and variance 2. The
hierarchical model thus becomes:

JEWIX,Z,W,8) = a+XZr+ &) +Wy= aly+XZw+ X6+ Wy,

8~N,,(0,721,,) 4)

From the formulation in (4), we can see that XZ is an N by p matrix indicating the number of
drugs from each drug class that each participant was exposed to during pregnancy. The
elements in 7 represent the effect on the outcome of each additional drug from a particular drug
class that a woman is exposed to during pregnancy, conditional on the individual drugs taken and
covariates in W. The elements of § are the residual effects on the outcome for a particular drug
above and beyond the effects attributed to its drug class. The a parameter represents the mean
outcome (under the identity link) or the log odds of the outcome (under the logit link) among
those unexposed to all m ARVs and for which all covariates in W equal zero; and y is a vector of
the covariate effects conditional on exposure to drug classes and individual drugs.

The variance of the random effects (2) controls the degree of shrinkage of the f’s to
their drug class mean. Smaller values of T2 will result in more shrinkage to the drug class mean,
with the hierarchical model reducing to a model with just fixed effects for drug class when 72=0.
Larger values of 72 correspond to less shrinkage to the drug class mean, and the hierarchical

model becomes equivalent to the ordinary full regression model when 72 = oo.

1.2.2 Brief bias considerations under the linear model
As mentioned earlier, we would expect the hierarchical modeling method to perform well when

drugs from the same drug class have similar effects on the outcome of interest. However, often
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there is little prior knowledge regarding the effects of ARV exposures on reproductive and
perinatal outcomes, and the relative advantages of the hierarchical approach when only a subset
of ARV drugs have an effect requires evaluation. Suppose the true underlying data generating
mechanism is that only one drug, X, has an effect on a continuous outcome Y in the following
form:

yi=a* +X.p;+¢, & ~N(0,0?)
Under the separate models approach, the maximum likelihood estimate (MLE) for 7 will be
unbiased and consistent when fitting drug 1, i.e. the correct model. However, MLE estimates for

the B from the other m -1 models will be biased due to uncontrolled confounding by X;. In

particular, it can be shown that the expected value of ,63}‘ has the form

E[Bf] =&;Br, j=23..m
where & ; is the difference in probability of receiving drug X; between women exposed and
unexposed to drug X;, 1.e:
E[Xi|X;] = P(Xs = 1|X;) = &; + &%, j=23,...m
Thus, the MLE estimators from a separate models approach will be biased for the true null effect

(B; = 0). As the magnitude of the effect of X; on Y (f;) increases, and as the correlation

between exposure to drug X; and drug X; (§;) increases, the bias in I + also increases.
Furthermore, increasing the sample size only exacerbates the problem, as the separate models
approach will show increasing certainty (smaller standard errors) around an incorrect effect
estimate in m-1 of the models.

Often researchers adjust for potential confounders between the drug exposures and the
outcome. However, the confounded effect estimate of X; will remain unless the model controls

for all covariates W* that determine prescribing patterns by physicians such that 7, = 0 under

11



E[X:|X;, W*] = P(X, = 1]X;) = &; + &;X; + W*6. Given the differences in prescribing
patterns across hospitals and physicians, it seems unlikely one could fully account for W*.
Under the hierarchical modeling approach, the estimated drug-specific effects are also
biased, but the bias decreases as the sample size increases. Greenland (1993) and Greenland
(1997) noted that B¥ = BZ# + (I-B) BF, where B=(V* + t2I,,,) "'V*, and V* is the covariance
matrix of BF. For a given 72, as V*— 0 with increasing sample size, BF is given more weight
and BY is a consistent estimator for the true parameters of all m drugs. That is, as N— oo, f —
B1 and B]H - 0 for j=2,3,...m. Asymptotic properties, however, may not be reasonable
approximations for estimators at the sample sizes commonly utilized for studies assessing ARV
exposures and reproductive outcomes. In this paper, we will consider the bias under both
methods at realistic sample sizes to assess finite-sample properties and further consider the bias

under a binary outcome with generalized linear models.

1.3 Simulation Study

A simulation study was performed to investigate the operating characteristics of the three
different approaches under various outcome scenarios. The first approach involved separate
univariate regression models for each drug (Equation 1); the second approach was the full
ordinary regression model with all drugs included at once (Equation 2); and the third approach
was the hierarchical model (Equation 4). We used a semi-Bayes approach for fitting the
hierarchical model by specifying a priori the variance in the random effects (72), as advocated in
prior studies using this approach (Greenland, 1993; Witte et al., 2000; Wang et al., 2013; Young
et al., 2016; Greenland 2000). An empirical Bayes approach (estimating 72 from the data) was

also considered, but T2 was consistently estimated to be zero, which reduces the model to having

12



only fixed effects for drug class and is not helpful in making drug-specific conclusions. We
considered a binary outcome (preterm birth) and a continuous outcome (Bayley-III score of the
infant at 12 months). For each outcome, we considered various true exposure-outcome
relationships, including no true effects, a subtle effect of all drugs within one drug class, a
moderate effect of only one individual drug, and moderate effects of two drugs from the same
class, but in opposite directions. Table 1.1 provides the specific models under which data were
simulated for each scenario.

A number of statistical properties were evaluated, including the percent of models that
converged (for the binary outcome), the percent of false discoveries, the power to detect true
effects, the bias in estimated effects for each exposure, the standard error in estimated effects for
each exposure, and the observed coverage of 95% confidence intervals for the effect for each
exposure.

SAS 9.4 (SAS Institute Inc., Cary, North Carolina) was used for all simulations and
applied data analysis. The SAS-provided GLIMMIX macro

(http://support.sas.com/techsup/notes/v8/25/030.html) was used to implement the hierarchical

modeling method for the binary outcome (Witte et al., 2000). Note that the GLIMMIX
procedure does not yield estimates of the covariances between fixed and random effects, and
thus cannot be used for this approach. The MIXED procedure was used to implement the
hierarchical modeling method for the continuous outcome (programs are available by request to

the author).
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1.3.1 Exposure assignment

We used data from the SMARTT study to inform the ARV exposure distributions within the
simulation study. The SMARTT study is a large cohort study with data on HIV-uninfected
children born to HIV-infected women since 1995 to the present. Patterns in ARV use during
pregnancy have changed dramatically over these years, but HIV-infected women typically
receive a combination regimen during pregnancy consisting of a two-NRTI backbone plus either
a PI or an NNRTI (Griner et al., 2011). We are specifically interested in monitoring the safety of
current combination regimens, and thus used the observed distribution of regimens reported in
SMARTT between 2010 and 2015 to inform the exposure distribution. In particular, regimens
were assigned via a multinomial distribution with 107 categories (for the 107 different observed
regimens over this time period), with each category having the same probability (ranging
between 0.0008-0.2264) as observed in the SMARTT cohort. Exposures to 14 individual drugs
and three drug classes were then derived from the assigned regimen. Specifically, five NRTIs,
four NNRTIs, and five PIs were included in the simulation analysis, as shown in the Z matrix in

Section 1.2.1.

1.3.2 Outcome assignment

We acknowledge that it is improbable the hierarchical model being fit reflects the true
underlying outcome mechanism. Rather, our interest lies in whether a hierarchical model can be
a useful screening approach despite violations to its underlying assumptions. Consequently,
outcomes were assigned randomly via the Bernoulli distribution (for preterm birth) or the
standard Normal distribution (for standardized Bayley-III score) under simple models based on

exposure and outcome scenario (see Table 1.1). Three thousand simulated datasets were created
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in this way. The main simulations were conducted with a sample size of 1,000. Additional
simulations were conducted with sample sizes of 500, 3,000, and 5,000.
For the binary outcome, the hierarchical model was fit specifying a 72 value of 0.125,

which corresponds to 95% of the residual effects of a particular ARV drug (above and beyond

the effects of its drug class) lying between odds ratios of % and 2 ([e~1-96/V8, ¢196/¥8]) " We also
considered 72 values of 0.36 and 0.64, which are equivalent to allowing residual effects to fall
within an expanded 10-fold and 25-fold range, respectively, but simulation results presented for
the binary outcome are for 72 =0.125 (Greenland, 1993). For the continuous outcome, the
hierarchical model was fit specifying a 72 value of 0.26, corresponding to 95% of the residual
effects of a particular drug falling within one standard deviation. Additional analyses considered
values of 1.04 and 2.34, equivalent to allowing residual effects to fall within two and three

standard deviations, respectively.

1.3.3 Simulation results

For the binary outcome, convergence of the model was a sizeable problem with the full model
but a minimal issue with the hierarchical model. At a sample size of 1,000, all of the hierarchical
models converged under each outcome scenario, whereas the full logistic model failed to
converge in 14- 22% of simulations, depending on the outcome scenario. With N=500, the full
model failed to converge in over 75% of the simulations, while the hierarchical model failed to
converge in 0.1% of simulations. The separate model approach converged for all 13 models over
95% of the time; however, results for rare exposures were sometimes nonsensical, with standard

errors exceeding 500. For instance, the simple logistic model failed to yield interpretable results
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for efavirenz (EFV) in up to 24% of the simulations at N=1,000 and in up to 40% of the
simulations at N=500.

The hierarchical model outperformed both the full model and the separate model
approaches in terms of false discoveries, regardless of outcome type and outcome scenario
(Figure 1). With a binary outcome, the hierarchical model had no false discoveries over 80% of
the time. The full model had no false discoveries for 64% (under scenario (1)) to 74% (under
scenario (i1)) of simulations. The separate model approach had false discovery rates comparable
to the full model approach under scenarios (i) and (i), but did quite poorly under scenarios (iii.a)
and (iv). Notably, under the latter two scenarios, the standard approach had at least one false
discovery in over 70% of the simulations, and four or more false discoveries (of twelve truly null
effects) in 40% of simulations under scenario (iv).

For the continuous outcome, false discovery rates were consistently higher than observed
for the binary outcome, though the hierarchical model maintained noticeably lower rates than the
other two methods (Figure 1.1). Under scenarios (iii.a) and (iv), the separate models method
1dentified one or more false discoveries in over 99% of the simulations, and four or more false
discoveries in over 90% of the simulations.

Detection of true effects is irrelevant to scenario (i). With N=1,000, the true effects of the
five PIs under a common drug class assumption (scenario (ii)) were detected most often by the
hierarchical model for both outcome types (Figure 1.2). This result was to be expected because
the hierarchical model assumes drugs from the same class behave similarly, which corresponds
to the true underlying data mechanism in this scenario. For the remaining scenarios, detection of
true effects differed depending on outcome type. With a binary outcome, the hierarchical model

performed similarly to the full fixed effect model but substantially worse than the separate
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models method in detecting the true effects of the ARVs in scenarios (iii.a), (iii.b), (iii.c), and
(iv). This result also was to be expected given that the hierarchical model assumes similar
effects for drugs from the same class, which is not correct in scenarios (iii) and (iv).
Interestingly, however, under the continuous outcome, all three methods detected the true effects
of the ARVs almost 100% of the time in scenarios (iii.a), (iii.b), and (iv). Under scenario (iii.c),
the separate models method detected the true effect of efavirenz (EFV) more often than the other
two methods, though the differences were not as large as under the binary outcome (Figure 1.2).

The additional simulations showed that as the sample size increases, the hierarchical
model continued to detect the true effects of the PIs under scenario (ii) considerably more often
than the separate models method, while also continuing to minimize the number of false
discoveries. With the continuous outcome, all three methods detected the true effects of the
ARVs equally under the other scenarios by N=3,000 (Figure 1.2). With a binary outcome, the
hierarchical model detected the true effects about as well as the other methods at N=5,000 for
scenarios (iii.a), (iii.b) and (iv), but failed to detect the true effect of efavirenz (EFV) as often as
the other methods under scenario (iii.c) even for N=5,000 (Figure 1.2).

Simulation results under scenario (iv) for the bias and standard errors (SE) in estimated
coefficients and coverage of 95% confidence intervals (CI) among the three approaches are
presented in Table 1.2 for the binary outcome and Table 1.3 for the continuous outcome.
Scenario (iv) represents the “worst-case” type scenario for the hierarchical model since the prior
being fit (assuming drugs from the same class behave similarly) contradicts the true underlying
exposure-outcome relationship. Still, some patterns in these results remain consistent across
scenarios (see Tables A1.1-A1.10 in Appendix). First, SEs were consistently largest under the

full model. For rare exposures (<5% exposed), the SEs were smallest under the hierarchical
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Figure 1.1. The percent of simulations with at least one false discovery at a sample size of 1000
under three statistical approaches and six different true outcome-exposure relationships, by

outcome type (a) binary; or (b) continuous. Each scenario considers 14 different antiretroviral

drugs. See Table 1.1 for Scenario specifications. Results based on 3,000 simulations.
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Figure 1.2. The power to detect true effects of antiretroviral (ARV) exposures on preterm birth
and standardized Bayley-III score as a function of sample size under three statistical approaches
and six different true outcome-exposure relationships. Results are based on 3,000 simulations.
Each panel reflect the power to detect the true effect of an ARV drug under a specific scenario as

outlined in Table 1.1.
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model, but for the more common exposures (>15% exposed), they were smallest under the
separate models method. Second, the bias in estimated coefficients tended to be minimized
under the hierarchical model, the main exception being for when an uncommon drug was the
only drug with a true effect (e.g. abacavir (ABC) in scenario (iii.b) and efavirenz (EFV) in
scenario (iii.c)). Third, the nominal coverage rates of the 95% Cls were quite poor for some of
the ARVs under the separate models method. The poor coverage rates tended to be for more
common drugs that had relatively high bias (due to uncontrolled confounding by other ARV
exposures) and relatively small SEs. For example, under scenario (iv), the 95% CI for
zidovudine (ZDV) captured its true effect (null) in only 59% of the simulations for the binary
outcome (Table 1.2) and in only 1% of the simulations for the continuous outcome (Table 1.3).
Additional simulations were conducted to assess how results may vary for binary
outcomes that are much rarer or much more common than the moderate baseline prevalence
(0.12) considered in the main simulations. In particular, baseline prevalences of 0.25 and 0.05
were considered. Although power increased for the more common outcome and decreased for
the less common outcome, the relative differences across the three approaches remained similar

to results from the main simulations and thus results are not shown here.

1.4 lllustrative example

We applied the hierarchical modeling approach to evaluate ARV use and preterm birth in the
SMARTT cohort. The SMARTT study has been approved by the research ethics committee at
Harvard T.H. Chan School of Public Health and all research sites, and study participants
provided written informed consent. The SMARTT cohort has enrolled over 3,000 HIV-infected

pregnant women from 22 sites around the United States, as described elsewhere (Watts et al.,
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2013). Consistent with prior analyses, we controlled for birth cohort (1995-2004, 2005-2009,
2010-2012, and 2013-2015), annual income <$20,000, and black race (Watts et al., 2013).

Our analysis included 2,660 singleton pregnancies with ARV exposures and preterm birth
outcomes available. The majority of women (71%) received only one ARV regimen during their
pregnancy. For this analysis, we classified the maternal ARV regimen as that taken for the
longest duration during pregnancy, and considered a woman exposed to a particular drug if that
drug was included in her most common regimen. We assessed 18 individual drugs, including
seven NRTIs, four NNRTIs, and seven PlIs.

Table 1.4 presents odds ratios (OR) and 95% Cls from the hierarchical model under three
different values of 72 and from the full logistic model (equivalent to the hierarchical model at
72 = o). Consistent with results from the simulation study, as 72 increased, the CIs tended to
widen, with the CIs widest under the full logistic model. The shrinkage effect of the hierarchical
model can be observed for rarely used ARVs, for which estimated ORs in the hierarchical model
are further from their estimated ORs under the full model (i.e. they are being pulled more toward
their drug class mean effect), whereas the estimated ORs for common drugs were more similar.
For example, the estimated OR for the least common PI (indinavir (IDV)) was 1.24 (95% CI:
0.66, 2.31) in the hierarchical model with 72 =0.125 and 1.51 (95% CI: 0.61, 3.73) in the full
model. In comparison, the estimated ORs from those models for the most common PI (ritonavir-
boosted lopinavir (LPV/r)) were 1.51 (95% CI: 1.10, 2.06) and 1.50 (95% CI: 1.08, 2.09),
respectively. In addition, as T2 increases, the estimated ORs from the hierarchical model get
closer to the estimated ORs from the full model. For example, for indinavir (IDV), the estimated

ORs are 1.24 (95% CI: 0.66, 2.31), 1.34 (95% CI: 0.62, 2.89), and 1.39 (95% CI: 0.61, 3.17)

under 72 values of 0.125, 0.36, and 0.64, respectively.
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Results from the hierarchical model with 72=0.125 suggest that further studies should
focus on the possible detrimental associations between saquinavir (SQV) and ritonavir-boosted
lopinavir (LPV/r) and preterm birth (Table 1.4), as both these drugs have relatively high
estimated odds ratios (>1.5) with fairly little variability around the estimates (95% Cls: 1.01,
2.89 and 1.10, 2.06, respectively). The estimated odds ratio for etravirine (ETR) is also
relatively high (OR=1.58), but with just 8% of women exposed to etravirine (ETR) in pregnancy,
there is much more variability around that estimate (95% CI: 0.77, 3.23), suggesting follow-up
on etravirine (ETR) would take lower priority than follow-up on saquinavir (SQV) and ritonavir-

boosted lopinavir (LPV/r).

1.5 Discussion

We evaluated how a hierarchical modeling approach to screening ARV use in pregnancy would
operate in practice under various conditions. In theory, a hierarchical model offers a
compromise between evaluating individual ARV drugs one at a time (which is the current
method of choice for assessing the safety of ARV exposures in pregnancy) and fitting a full fixed
effect model. It has the benefit of adjusting for other ARV exposures like the full model, but has
less convergence problems, smaller standard errors, and more stable estimates than a full fixed
effect model approach. However, the hierarchical model groups ARVs from the same drug class
together, when there is often little prior knowledge regarding possible effects and the underlying
biological mechanisms that ARVs have on perinatal and infant outcomes. If drugs from the
same class have disparate effects on an outcome, adopting a hierarchical model approach for

ARV safety screening could potentially undermine the screening approach.
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In this study, we compared the performance of three different approaches under six
different underlying true exposure-outcome relationships. Our results suggest that the
hierarchical model that groups ARVs by drug class is almost always advantageous with a large
enough sample (e.g. 5,000). It minimizes the number of false negatives under each scenario as
compared to both the full and separate models; it is able to detect the true effects substantially
better than the separate models method and as well as or slightly better than the full model
method when drugs from the same class behave similarly; and is still able to detect true effects
similarly to the other methods even when drugs from the same class have opposite effects, except
in the case of a binary outcome with a rare exposure.

In reality, however, these types of safety screening studies usually have smaller sample
sizes, and the implications of the simulation study for use of the hierarchical model in smaller
samples are less straightforward. If we wish to optimize the detection of true effects regardless
of the expense in false discovery, then determining which approach to employ may involve
taking into account the strength of one’s prior belief regarding effects of drugs from the same
class, the sample size, and the outcome type (binary or continuous). However, perhaps one of
the surprising results from the simulations was just #Zow high the false discovery rate can be
when evaluating ARV drugs individually, with four or more false discoveries (among 12 drugs)
over 90% of the time, and abysmal nominal coverage rates of 95% confidence intervals for some
drugs in certain scenarios. Its poor performance in these areas is largely due to biased effect
estimates from uncontrolled confounding by other ARV exposures. Power considerations in
such settings become irrelevant when there are numerous false signals detected, and as a result
evaluating ARVs individually may not allow identification of safety signals to appropriately

focus future studies (see Figures Al.1 and A1.2 in Appendix).
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We present the hierarchical modeling approach as a screening approach, where little prior
knowledge is available regarding possible exposure-outcome relationships. However, if there is
evidence of differing effects for drugs belonging to the same class, then the full model may be
suggested as a first choice for model fit. Particularly for rare drugs and a binary outcome, the
full model has more power to detect the true effects if drugs from the same class do not have
similar effects on the outcome; the full model also exhibits less bias in the effect estimates for
the drugs with the true effects and better nominal coverage rates for the 95% confidence intervals
for the drugs with true effects. Thus, presuming the model converges, the full model has
advantages over the hierarchical model when drugs from the same class do not behave similarly
on an outcome. Nonetheless, if the full model does not converge, the hierarchical model
specified with a large variance for the random effects (72) to allow larger residual effects for
individual drugs is an appropriate alternative.

Our simulations and applied data analysis considered drugs from three drug classes
(NRTIs, NNRTIs, and PIs). The number of drug classes has expanded in recent years, and as
new drugs from new drug classes are made available (e.g. fusion inhibitors, entry inhibitors),
some drugs may be the only drug of their drug class. For these drugs, the advantages of the
hierarchical model are limited. Drugs unique to their class could still be included in a
hierarchical model as fixed effects, but they would not be able to “borrow” information from
other drugs in their class. Alternatively, Wang et al grouped rare drugs unique to their class
together in an “other” category (Wang et al., 2013). The drug class effect for this “other” group
does not have any clinical meaning, but it may still improve the reliability of the estimates for
those rare drugs. In particular, based on our simulation results, it may be an advantageous option

so long as drugs in the “other” group do not have opposite effects.
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We did not consider any interactions between ARVs in this study. Further research is
needed to characterize how the hierarchical model performs when interactions are present.

This study highlights the shortcomings — in particular, the inherent bias — of the separate
models approach that is currently used to screen the safety of ARVs used during pregnancy. A
hierarchical modeling approach can be a superior alternative to the current method, particularly
when considering a binary outcome in large samples (N >3,000), a continuous outcome in
moderate or large samples (N > 500), and/or when there is prior evidence suggesting drugs from

the same class behave similarly on the outcome of interest.

29



2. Estimating the relative excess risk due to interaction in clustered

data settings

The risk difference scale is often of primary interest when evaluating public health
impacts of interventions on binary health outcomes, and particularly when considering
interaction effects between exposures (Rothman et al, 1980; Rothman, 1998; Rothman et al.,
2008; Aschengrau et al., 2014; Vanderweele, 2015). Estimates of additive interaction are more
useful than those of multiplicative interaction in order to identify target subpopulations for most
effective use of resources (Vanderweele, 2015). Vanderweele (2015) provides a thorough
discussion on additive and multiplicative interaction, including examples demonstrating why
additive interaction is the more relevant measure for assessing public health relevance (pages
252-253 and section 9.5). Despite the importance of assessing interaction as departure from
additivity, models most often used for binary outcomes implicitly measure interaction on the
multiplicative scale. Very few studies have incorporated additive interaction into presentation of
findings, although recommendations support reporting both measures (Vanderweele, 2015; Knol
et al., 2009; Knol et al., 2012).

One measure to assess additive interaction from multiplicative models is the relative
excess risk due to interaction (RERI). The RERI measure has been applied in many contexts,
including hypertension research (Timpka et al., 2017; Jian et al., 2017), cardiology (Meng et al.,
2015; Vart et al., 2015; Zhang et al., 2015; Gustavsson et al., 2016; Crump et al., 2017; Hagihara
et al., 2017), oncology (Menvielle et al., 2016; Oh et al., 2016; Simons et al., 2016; White et al.,

2017), and genetics (Gustavsson et al., 2016; Simons et al., 2016; Wang et al., 2017). However,
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one limitation of current approaches is that clustering in data has rarely been considered (Chen et
al., 2006; Aanerud et al., 2015; Jabbarpoor et al., 2016; Mao et al., 2017; Jabbarpoor et al.,
2017). In practice, data are often clustered such that outcomes among observations within the
same cluster are not independent. Clustering in epidemiological research arises in many forms,
including clustering of patients by clinical center or health care provider (Bermedo-Carrasco et
al., 2015; Dupont et al., 2017; Raifman et al., 2017; Goyette et al., 2018), clustering of
individuals by spatial location (Gemperli et al., 2004; Kloog et al., 2015; Lin et al., 2017),
repeated measures taken on the same individual (Hajat et al., 2015; Tsai et al., 2015; Chiu et al.,
2018; Madden et al., 2018), and meta-analyses (Cook et al., 2005; White et al., 2008).

In an effort to further encourage the reporting of additive interaction measures for binary
outcomes, we evaluate the RERI metric in both population-averaged models and cluster-
conditional models in clustered data settings, with a particular focus on more common outcomes.
We present results from simulation studies across a range of outcome prevalences to assess the
statistical operating characteristics of various approaches. We apply the methods to an
observational study of adverse birth outcomes in mothers with HIV infection, in which enrolled

mothers were clustered within clinical research sites.

2.2 Approaches for estimating the RERI
The RERI is defined as:

RERI = RRy; — RRyy — RRy; + 1, (1)
where RR, is the relative risk (RR) in the group with X; exposure status a (1=exposed;
O=unexposed) and X, exposure status b (1=exposed; 0=unexposed) as compared to the doubly

unexposed group. If we denote p,; to be the probability of the outcome among the group of
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subjects with X; equal to a and X; equal to b, then (1) can equivalently be written as the absolute

risk due to interaction divided by the baseline risk (the risk in the doubly exposed group):

Poo Poo Poo Poo Poo

An RERI value of 0 implies no additive interaction, whereas values greater than 0 imply super-
additive (positive) interaction and values less than 0 imply sub-additive (negative) interaction.

Although the RERI is defined in terms of relative risks (RRs), much of the literature
evaluating the RERI uses odds ratios (ORs) from logistic regression models to approximate the
relative risks (Hosmer et al., 1992; Assman et al., 1996; Vanderweele et al., 2012). This
approximation is appropriate in studies where the outcome is rare, as is often true in case-control
studies, or where incident cases are selected from a fixed cohort, controls are selected at the
beginning of follow-up and censoring is unrelated to exposure (Knol et al., 2008). However, the
OR overestimates the RR in other cases, and even slight overestimation of each RR can result in
severe overestimation of the RERI (Zou et al., 2008). Thus, in many settings, it is important that
RRs are used in estimating the RERI for assessing additive interaction.

A number of methods for deriving a confidence interval (CI) for the RERI have also been
proposed, including the delta method (Hosmer et al., 1992), bootstrapping (Assman et al., 1996),
and the method of variance estimates recovery (MOVER) (Zou et al., 2008). In simulations,
Assman et al. (1996) found the symmetric delta method Cls were often completely below the
true value in the scenarios with strong positive additive interaction, due to the right skewness of
the RERI in this setting. The MOVER method is much less computationally intensive than the
bootstrap procedure, and performed almost as well as the bootstrap in simulations (Zou et al.,
2008). All of these approaches were studied in the independent data setting, and generally with

very rare outcomes (€.g. poo = 0.00002 in Assman et al.). As the prevalence of the outcome
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increases, the RERI parameter space becomes more constrained (see A.1 in Appendix), which
limits the extent of asymmetry in the sampling distribution. As a result, the delta method may

provide appropriate coverage rates as long as outcomes are not extremely rare.

2.2.1 Extensions to population-averaged models

One approach for accounting for clustering in estimating the RERI is to utilize
population-averaging models, in which the dependence among repeated measurements within
clusters is considered a nuisance parameter. Accounting for this dependence structure can be
accomplished via generalized estimating equations (GEEs) (Liang et al., 1986). Let K denote the
number of clusters, ny denote the number of observations for cluster k, k=1,..., K, and N denote
the total sample size (N = Y.K_, n;). Let y; denote the binary outcome value for the i
observation within the k™ cluster, and Xy and X,y denote the exposure status for two binary
exposures of interest for the i™ observation within the k™ cluster (O=unexposed; 1=exposed).
Lastly, let Cix denote a vector of covariate values for the i"™ observation within the k™ cluster.

We assume the following form for the mean model:

og(E (i) = Bo + BiXvix + BaXaik + BsXviXaix + Cix¥ ()

Under this model, the RERI is defined as ef1+P2+Bs — ¢B1 — ¢B2 4 1. Previous research
reported convergence problems for a log binomial model fit under a GEE framework (Pedroza et
al., 2016). Alternatively, a modified Poisson approach can be used in clustered data settings,
and provides reliable estimated RRs for studies with correlated binary data (Yelland et al. 2011;
Zou et al., 2013). However, empirical coverage levels for CIs tend to be lower than the nominal

level, particularly as the RRs and the within-cluster correlation increase. Thus, better
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characterization of these models’ performance in yielding appropriate estimates of the RERI is

warranted.

2.2.2 Extensions to cluster-conditional models

In many clustered data settings, interest lies in characterizing variability across clusters or
making cluster-specific predictions. Toward this aim, we fit a random intercept log binomial
model, allowing the baseline probability poo to vary by cluster:

log(E(Va)) = Bo + BiXvuc + B3 Xz + B3X1uXaik + Ci¥ + bor, 3)
bor~N (0, o)

where by, is the random deviation in intercept for cluster £&. Assuming no unmeasured
confounding conditional on cluster, the RERI is defined as in the population-averaged model:
eP1+P2+Ps — eBi — eB2 4+ 1. Note that the RERI from the log binomial random intercepts model
can be interpreted as a population-averaged RERI. That is, the cluster-conditional slope
parameters are numerically equivalent to their respective marginal parameters under a log link,
and therefore the cluster-conditional RERI is numerically equivalent to the marginal RERI (see
A.2 in Appendix). This is an advantage of a log binomial random intercepts model over the
logistic random intercepts model, even in the context of rare outcomes, since the cluster-
conditional parameters are magnified relative to the marginal parameters under a logistic model
(logit link) (Zeger et al., 1988; Neuhaus, 1992).

We are unaware of any literature exploring estimation of the RR for binary data under
generalized linear mixed effects models to account for clustering in the frequentist setting.

Torman and Camey successfully applied a Bayesian analysis of a log binomial random intercepts
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model to a dataset for which the frequentist approach failed to converge, but did not investigate
the operating characteristics of this approach under other settings (Torman et al., 2015).

In cluster-conditional models, including random slopes to allow the effects of particular
covariates to vary by cluster may also be desirable. However, addition of such random slopes for
the exposures would induce a distribution for the RERI measure itself; the RERI would vary by
cluster and follow an unidentified distribution (the difference between two log normal

distributions). This extension is beyond the scope of this paper.

2.3 Simulation Study

We performed a simulation study to investigate (1) what standard software packages
could be used to reliably estimate the RERI from population-averaged and cluster-conditional
regression models; (2) the bias of the estimated RERI as well as coverage and width of two
different CI estimates for the RERI under the population-averaged log binomial and Poisson
approximation models; and (3) the bias of the estimated RERI and the estimated standard
deviation (SD) of the random intercept, as well as validity of inference on the RERI, across
various implementations of the cluster-conditional model.

We assessed the performance of the different approaches across a range of baseline
outcome prevalences. Table 2.1 defines the exposure/outcome scenarios. For each
exposure/outcome scenario, 2,000 datasets were generated for 20, 50, and 275 clusters. Cluster
sizes were generated from uniform distributions on (80, 200), (40, 80), and (1, 20), respectively,
to give an average total sample size of 2,800-3,000. Additional simulations were performed on
275 clusters with cluster sizes generated from uniform distributions on (5, 20) and (30,50) to

assess the effect of increasing cluster size while holding number of clusters constant.
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For each parameter combination, we generated the i outcome from the &” cluster from

Vil X1ik = Xik, Xk = xZik~Bern0ulli(Tt(x1ik,le-k)) with the event probability

T(X1ik, X2i1) = €Xp(Bo + Bix1ik + BaXoik + B3X1ikX2ik + bor), where by, was generated under
a Normal distribution with mean 0 and SD based on the scenario (see Table 2.1). Both X; and
X, vary within cluster, and were assigned such that the proportion of being in the doubly
exposed group, exposed only to X;, and exposed only to X, were 0.10, 0.20, and 0.10,

respectively.

2.3.1 Software implementations

To promote reporting of additive interaction effects for binary data in clustered data
settings, we aimed to identify easy-to-use procedures and functions within familiar software
programs. The population-averaged models were fit using a log binomial or modified Poisson
model with an exchangeable covariance structure, implemented using the GENMOD procedure
in SAS 9.4 (SAS Institute Inc., Carey, NC, USA). Final simulations for evaluating cluster-
conditional models focused on a log binomial random intercept model and a Poisson random
intercept model, both fit using the GLIMMIX procedure in SAS. Both pseudo-likelihood and
Laplace approximation estimation techniques were considered (SAS/STAT User’s Guide).
Preliminary simulations also considered extending the COPY method (Deddens et al., 2003) and
the McLaurin series approximation for estimation of the RR (Fitzmaurice et al., 2014) to cluster-
conditional models with interaction, but convergence was no better than that of the frequentist
standard log binomial random intercept model in preliminary simulations and they were not

considered further.
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Given the poor performance of the frequentist approaches to estimating the RERI in a
mixed effect model including a random intercept, we also considered Bayesian methods. In
particular, we jointly used the “brms”(Biirkner, 2017) and “rstan”(Stan Development Team)
packages in R to fit a Bayesian log binomial random intercepts model in Stan using an R
interface (see A.3 in Appendix). Two different weakly informative prior distributions were
placed on the SD for the random intercepts: a half-Cauchy(0,5) and a Gamma(2,0.1) (Gelman,
2006; Chung, 2013).

Due to the increased computational resources required to fit the Bayesian models, they
were fit on 500 simulated datasets for two specific scenarios. One scenario demonstrated poor
convergence under frequentist methods (py=0.20, RRp=2, RR¢;=2 ,RR;=4, RERI=1, 7,=0.05)
and one scenario demonstrated relatively good convergence under frequentist methods
(p00=0.20, RR;0=1, RR¢1=1 ,RR =2, RERI=1, 0,=0.23). We then fit the Bayesian model on the
first 100 simulated datasets for all remaining scenarios. We ran four chains, each consisting of a
1,000 iteration burn-in period and a subsequent 1,000 iterations to estimate the posterior
distribution. Simulation code in SAS and R is available online at:

https://github.com/katcorr/Estimating-the-RERI-in-Clustered-Data-Settings.

2.3.2 Simulation results for population-averaged models

Both the log binomial and the Poisson GEE models converged for all scenarios with
common outcomes (pyp=>0.10). The mean estimated RERIs and empirical coverage rates of 95%
ClIs for the RERI using the delta and MOVER methods for simulations with 275 clusters are
shown in Table 2.2. Results from simulated datasets with 20 and 50 clusters are summarized in

the Appendix (Table A2.1). The mean estimated RERIs were the same for the Poisson
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approximation and the log binomial model, across cluster sizes and exposure/outcome scenarios.
In general, they were unbiased, even with as few as 20 clusters. The exceptions were for rare

outcomes and relatively large RERIs, where some upward bias was exhibited.

Table 2.2 The Mean Estimated Relative Excess Risk due to Interaction (RERI) and Empirical
Coverage Rates of 95% Confidence Intervals for the RERI as Estimated From Generalized
Estimating Equations.*

Log Binomial GEE Poisson GEE
95% CI 95% CI
Coverage Coverage
Baseline RERI Mean M
P?:\f;fer:llse (RRy/RR,/RR,) RERI D¢t MOVER cpr; Delta MOVER

0.01 5(2/3/9) 525 947 94.1 525 947 94.1
10 (2/3/14) 10.60 954 93.7 10.60 95.4 93.8
0.1 1 (1/1/2) 1.00  95.1 95.5 1.00  95.1 95.5
1(2/3/5) 0.98 955 95.5 0.98 955 95.6
3 (1/2/5) 3.00 955 95.4 3.00 955 95.4
0.2 1(1/1/2) 1.00 955 95.5 1.00 95.5 95.5
1 (1/2/3) 099 9409 95.1 099 950 95.0
1(2/2/4) 1.00 949 95.0 1.00 95.0 95.1
0.4 1 (1/1/2) 1.00  95.2 95.1 1.00  95.1 95.2
0.5 (1/1/1.5) 0.50 953 95.2 0.50 952 95.2
0.6 0.5 (1/1/1.5) 0.50 952 95.5 0.50 952 95.4

Abbreviations: CI, confidence interval; GEE, generalized estimating equations; MOVER,
method of variance estimates recovery; RERI, relative excess risk due to interaction; RRy;,
relative risk of outcome in the group unexposed to X; and exposed to X, as compared to the
doubly unexposed group; RRy, relative risk of outcome in the group exposed to X; and
unexposed to X as compared to the doubly unexposed group; RR, relative risk of outcome in
the doubly exposed group as compared to the doubly unexposed group.

* Generalized estimating equations estimated specifying an exchangeable working correlation,
log link, and either binomial or Poisson distribution, with robust variance estimates. Results are
based on 2,000 simulated datasets, each with 275 clusters.
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The empirical coverage rates of the 95% Cls for the RERI were very similar between the
marginal log binomial and Poisson models, regardless of whether the delta method or MOVER
method for CIs was employed. Coverage tended to be too low (in the 92-93% range) with 20
clusters, but was at the nominal level across all scenarios for simulations with 275 clusters. For
baseline prevalences of 0.10 or more, the sampling distributions of the RERI were symmetric.
Thus, the purported advantage of the MOVER method may not materialize when considering
common outcomes. Furthermore, the MOVER Cls were slightly wider on average than the delta
Cls for less common outcomes (pgo < 0.40) and had the same width for more common outcomes
(poo =0.40) (data not shown).

Results from naive models (ignoring the clustering) suggested that more harm is done in
using logistic regression than in ignoring the clustering, at least when there are two cluster-
varying covariates. That is, among naive logistic models and marginal logistic models, there was
substantial bias in the estimated RERIs and very poor nominal coverage rates for the 95% Cls.
In contrast, the naive log binomial model showed minimal bias in the estimated RERIs and 95%
CIs contained the true values around the nominal level for the scenarios considered (Web Table
2). However, the naive log binomial model had wider ClIs than the marginal log binomial model
(Web Table 3). Thus, when the exposures of interest vary within cluster, there is a gain in

efficiency around the RERI estimate when accounting for the clustering.

2.3.3 Simulation results for cluster-conditional models
Convergence of the frequentist fit of the log binomial random intercept model was
variable across cluster sizes and scenarios (Figure 2.1). Depending on the scenario, convergence

occurred in between 49% and 99% of the simulations under 20 clusters, 33% and 98% of the
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simulations under 50 clusters, and <1% to 74% under 275 clusters. The particularly poor
convergence with 275 clusters (all but one scenario experienced <35% convergence) was
presumed to be due to the small cluster sizes. Additional simulations conducted with increasing
cluster size for simulations including 275 clusters (average cluster sizes of 21 and 40) showed
improved convergence as cluster size increased, though the convergence under these larger
sample sizes was still worse than with 20 and 50 clusters for some scenarios (data not shown).
When using pseudo-likelihood estimation, the Poisson random intercept model occasionally
failed to converge, whereas it converged consistently using Laplace estimation.

Among models that converged, both the frequentist log binomial and Poisson random
intercept models underestimated the variability in the random intercepts. In many of the
scenarios, the variability (SD) was estimated at zero, which reduces the model to a fixed-effects
model and is not helpful toward (a) accounting for the within-cluster dependencies or (b)
classifying the across-cluster variability (Figure 2.1). As the baseline outcome prevalence
increased, the proportion of Poisson models that estimated the variability of the random
intercepts to be greater than zero decreased, with 0% of the Poisson models being useable when
the baseline outcome prevalence was 0.60. In fact, none of the log binomial models were
useable when the baseline outcome prevalence was 0.60 for simulations with 275 clusters (and
less than 15% were useable with 20 and 50 clusters).

Among the log binomial models that converged, the percent bias in the estimated RERI
was generally negligible (mean bias <5%), except in the scenarios where there were very few
useable models. For instance, the scenario with the largest absolute mean percent bias (-16%)
was with 275 clusters, a baseline prevalence of 0.20, and an RERI of 3.0, where only 5% of the

log binomial models converged and estimated o to be greater than 0.
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Figure 2.1 Convergence and degenerate estimates for the standard deviation of random
intercepts in the frequentist log binomial (FLB) and frequentist Poisson (FP) random intercept
models for Scenarios described in Table 2.1. Please refer to Table 2.1 to see the full scenario
descriptions. Results are based on 2,000 simulated datasets per scenario. p00 is the outcome
prevalence in the doubly unexposed group. For example, the fifth bar in panel D for scenario S7
is showing the results for the frequentist log binomial (FLB) random intercepts model for
datasets simulated with 275 clusters (275/FLB): in 1,703 simulations, the model did not
converge and, among the remaining models that did converge, 191 had a degenerate estimate for
the variance of the random intercepts.
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For simulations implementing the Bayesian fit of the log binomial random intercept model, the
mean posterior RERIs and the mean posterior SDs in the random intercept were well calibrated
(close to the true value) in most cases (Figures 2.2 and 2.3). For the scenario of a baseline
prevalence of 0.20 and RRs of 1, 1 and 2 (RERI=1, Scenario (6)), the Bayesian fit always
sampled and the mean posterior RERIs and SDs were estimated to be close to their true values.
Moreover, for the scenario of a baseline prevalence of 0.20 and RRs of 2, 2, and 4 (RERI=1,
Scenario (8)), the frequentist approach rarely yielded a model that converged and had a
nondegenerate SD estimate. In contrast, the Bayesian posterior means for the RERI and SD were
well-calibrated and the 95% credible intervals exhibited empirical coverage rates close to the
nominal level. For instance, the true SD in the latter scenario was 0.05, and the mean of the
posterior SD means ranged between 0.046 and 0.074 depending on the number of clusters and

the prior distribution placed on the SD.

2.4 Application

Pregnant women with HIV are at higher risk for preterm delivery as compared to HIV-
uninfected women, and exposure to certain antiretroviral therapies may increase the risk further
(Watts et al., 2013). Globally, nevirapine is one of the most common therapies used in pregnant
women, although it has been contraindicated in women with healthy immune function due to
increased risk of hepatotoxicity (Fowler et al., 2016; U.S. Department of Health and Human
Services). We consider data from the Surveillance Monitoring of ART Toxicities (SMARTT)

study within the Pediatric HIV/AIDS Cohort Study (PHACS) network to evaluate potential
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Figure 2.2 The mean % bias in estimated RERI across exposure/outcome scenarios and cluster
sizes by model type for Scenarios described in Table 2.1. Please refer to Table 2.1 to see the full
scenario descriptions. p00 is the outcome prevalence in the doubly unexposed group. BC
indicates Bayesian log binomial random intercept with a half-Cauchy(0,5) prior distribution on
the standard deviation (SD) for the random intercepts; BG indicates Bayesian log binomial
random intercept with a Gamma(2,0.1) prior distribution on the SD; FLB indicates frequentist
log binomial random intercept fit; and FP indicates frequentist Poisson random intercept model.
# Note that some scenarios/clusters do not have markers for FLB/FP because there were no
models that converged and had nondegenerate SD estimates under these fits.

44



A) S3: p00=0.10, RERI=1 B) S4: p00=0.10, RERI=1 C) S5: p00=0.10, RERI=3
ol n
04+ + —OQF —~F —
A A ¢
0.3
0.2
W\ TT‘H i
o
g 00
= D) S6: p00=0.20, RERI=1 E) S7: p00=0.20, RERI= F) S8: p00=0.20, RERI=1
5
s
5 0.4 # Hi
o
il ] —
2 o3
= _
= . ®
o 0.2
_ —OTX ToT.
AN
2 ' i) :l (A -
: oo P LT Fetaretreet
E G) S9: pD0=0.40, RERI=1 H) S10: p00=0.40, RERI=0.5 | 1) S11: p00=0.60, RERI=0.5
= 0.4+ i # # # HH
0.3
0.2
) . B R ) )
N i i i T [ Loty oty ot
[ [ [ [ [ [ [ [ [
20 50 275 20 50 275 20 50 275

Number of Clusters
Model (O BC + BG X FLB A\ FP

Figure 2.3 The mean estimated standard deviation (SD) in random intercepts across
exposure/outcome scenarios and cluster sizes by model type for Scenarios described in Table
2.1. Please refer to Table 2.1 to see the full scenario descriptions. p00 is the outcome prevalence
in the doubly unexposed group. BC indicates Bayesian log binomial random intercept with a
half-Cauchy(0,5) prior distribution on the SD; BG indicates Bayesian log binomial random
intercept with a Gamma(2,0.1) prior distribution on the SD; FLB indicates frequentist log
binomial random intercept fit; and FP indicates frequentist Poisson random intercept fit. # Note
that some scenarios/clusters do not have markers for FLB/FP because there were no models that
converged and had nondegenerate SD estimates under these fits.
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additive interaction between nevirapine exposure at conception and poor immunological health
during pregnancy (earliest available CD4 count < 350 cells per cubic millimeter) on the risk of
preterm delivery. The SMARTT cohort has enrolled over 3,000 HIV-infected pregnant women
from 22 sites around the United States (Watts et al., 2013). A total of 3,202 women had
information available on gestational age, antiretroviral therapy at conception, immunological
health during pregnancy, and race, and were included in the analysis. The preterm delivery rates
varied between 8.3% and 35.7% across sites (SD=6%), with between 14 and 335 women
enrolled at a given site (average cluster size = 146).

Results from the unadjusted models suggested a strong positive additive interaction
between nevirapine use at conception and poor immune function during pregnancy on preterm
delivery (Table 2.3). In particular, the estimated RERI from the GEE log binomial model with a
compound symmetry covariance structure was 1.78 (95% delta CI =0.69, 2.94); with a baseline
risk of 17% in the doubly unexposed group, this amounts to an absolute risk due to interaction of
30% (17%*1.78). Observed results were consistent with expectations given the simulation
results -- namely, (1) the CIs for the RERI from the naive log binomial model (ignoring the
clustering) were considerably wider than those from the GEE model (that is, precision was
gained by accounting for the within-site correlations); (2) the MOVER ClIs were wider than the
delta method Cls across frequentist methods; (3) the Cls from the Poisson random intercept
model were substantially wider than those from the log binomial random intercepts model,
though the estimated SD for the random intercepts was only slightly lower; and (4) in the
Bayesian analyses, the results were similar regardless of whether a half-Cauchy(0,5) or a

Gamma(2,0.1) prior distribution was placed on the SD of the random intercepts, with the mean
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of the estimated posterior distribution for the SD being slightly larger under the latter (Table

2.3).

Table 2.3 The Estimated Relative Excess Risk due to Interaction (RERI) between Nevirapine
Use at Conception and Poor Immunological Health During Pregnancy on the Risk of Preterm
Delivery Among 3,202 HIV-Infected Pregnant Women Across 22 Sites From the Surveillance
Monitoring of ART Toxicities (SMARTT) Study Within the Pediatric HIV/AIDS Cohort Study
(PHACS) Network, 1995-2015.

Model RERI 0o, 95% Confidence/Credible
Intervals
for RERI
Frequentist Marginal Delta CI MOVER CI
Naive log binomial 1.87 N/A 0.44,3.29 0.57,3.57
GEE log binomial 1.78  N/A 0.58,2.99 0.51, 3.06
Adjusted GEE log binomial® 1.82 N/A 0.83,2.81 0.69,2.77
Frequentist Conditional
Log binomial random intercept 1.68 0.182 0.34,3.01 0.43,3.24
Poisson random intercept 1.75 0.165 -0.21,3.70 0.13,4.38
Adjusted Poisson random intercept® 1.45 0.163 -0.34,3.23 -0.05, 3.85
Bayesian Conditional” Posterior Credible Interval
Log binomial random intercept (Cauchy®) 1.49  0.193 0.19,2.70
Log binomial random intercept (Gamma®) 146 0.213 0.23,2.64
Adjusted log binomial random intercept 1.12 0.192 0.01,2.23
(Cauchy®)
Adjusted log binomial random intercept 1.05 0.205 0.02,2.10
(Gammad)

Abbreviations: g3, estimated standard deviation in random intercepts; CI, confidence interval,
GEE, generalized estimating equations with exchangeable correlation structure; MOVER,
method of variance estimates recovery; N/A, not applicable

* Adjusted for black race and maternal age (<30, 30-39, 40+). The adjusted frequentist log
binomial random intercept model did not converge.

® Results from unadjusted models are from four chains, each with 1,000 warmup samples and
1,000 post-warmup samples. Results from adjusted models are from four chains, each with
5,000 warmup samples and 5,000 post-warmup samples. RERI is the mean posterior RERI and
0p1s the mean posterior standard deviation in the random intercepts.

¢ A half-Cauchy(0,5) prior distribution was placed on the standard deviation of the random
intercepts.

A Gamma(2,0.1) prior distribution was placed on the standard deviation of the random
intercepts.
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After adjusting for black race and maternal age at conception (<30, 30-39, 40+), the
estimated RERI from the GEE model remained similar to that of the unadjusted model (RERI =
1.82 vs. 1.78). The adjusted frequentist log binomial random intercepts model did not converge.
The adjusted Bayesian log binomial random intercepts model did not produce results when initial
values were generated randomly using the default setting, but did sample when initial values
were specified using informed estimates (see A.4 in Appendix). Additional iterations were
required for chain convergence as assessed via potential scale reduction factors; 5,000 warm up
and 5,000 post warm-up samples were used. Adjusted Bayesian results were attenuated
compared to the unadjusted model (e.g. 1.46 versus 1.05 under a Gamma(2,0.01) prior on the

SD).

2.5 Discussion

In examining the RERI metric for additive interaction in clustered data settings, it was
important to consider that many dependent data settings assess outcomes with a much higher
prevalence than the very rare outcomes assumed in previous RERI simulation studies. As such,
it was important to estimate the RERI using RRs rather than ORs. While there has been much
literature dedicated to estimating adjusted RRs for binary data, it has focused on the independent
data setting and not in the context of estimating interaction effects (Wacholder, 1986; Deddens et
al., 2003; McNutt et al., 2003; Barros et al., 2003; Carter et al., 2005; Spiegelman, et al., 2005;
Yu et al., 2008; Chu et al., 2010; Marschner et al., 2012; Fitzmaurice et al., 2014; Lipsitz et al.,
2015).

We found that estimating the RERI in log binomial or modified Poisson GEE models in

clustered data settings was straightforward and efficient. In simulations and an application, there
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were no problems with model convergence, and accounting for the within-cluster correlation
increased precision around the RERI estimates as compared to a naive model. We also found
that the delta method provided valid CIs when the number of clusters was moderate to large.
Given that the delta method requires less computation than the MOVER method and yields Cls
that are generally slightly narrower yet provide similar coverage as the MOVER method, it
appears that computing confidence limits for the RERI using the delta method is appropriate and
advantageous in the clustered data setting for population-averaged models. When the number of
clusters is small (20-50), the coverage rates are lower than desirable; bootstrapping may be
advantageous in these settings if the computational resources and time required to bootstrap is
not prohibitive for a given application.

In contrast to the marginal models, there were difficulties in fitting the frequentist log
binomial models with random intercepts. The observed patterns suggest that convergence is
affected by both number of clusters and cluster size. We found worse convergence with
increasing number of clusters, which is opposite what we had expected. A possible explanation
is that, with increased number of clusters, there is more opportunity for very large (or very small)
random intercepts, which could push some observed probabilities outside the parameter space.

The Poisson approximation with robust standard errors has been a common approach to
estimating RRs for binary data. However, we found that a Poisson random intercepts model
often severely underestimated the SD in the random effects, frequently reducing it to a fixed
effects model. Furthermore, it produced overly conservative confidence intervals for the RERI,
even when using robust standard errors for the regression parameters.

Despite the additional computational resources required, the Bayesian approach to fitting

the log binomial random intercepts model offers several advantages. In the simulation study,
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there were no issues with sampling, the posterior mean RERI was well-calibrated (unbiased), the
posterior mean SD for the random intercepts exhibited less bias than the frequentist approaches,
and Bayesian inference was straightforward with valid credible intervals for the RERI. In the
data application, the adjusted frequentist log binomial model did not converge, but with
additional work — specifying informed initial values for the chains and increasing the number of
iterations per chain -- the adjusted Bayesian log binomial random intercepts model sampled and
yielded reasonable results.

Our simulations had not considered any confounding factors, and the instability of the log
binomial random intercepts model is likely to increase with the addition of covariates.
Furthermore, all models assumed that the random intercepts were normally distributed, as
assumed in PROC GLIMMIX. Assuming a normal distribution for the random intercepts in a
log binomial model ignores the parameter constraints on the log probabilities. A different prior
distribution that recognizes that constraint may be more appropriate. It would be difficult to fit a
frequentist model using existing software assuming a non-Normal distribution for the random
intercepts, but the Bayesian approach is more amenable to such updates. More research is
warranted on estimating the RERI from cluster-conditional models with random slopes and
additional covariates.

In summary, when assessing interaction between exposures in clustered data settings, the
RERI can be estimated from frequentist log binomial GEE models or Bayesian log binomial
random intercept models, depending on additional aims of the analysis (e.g. estimation of
cluster-to-cluster variability). Using the log linear as opposed to logit link model is particularly
important for accurate estimation of the RERI, even when the background outcome prevalence is

as low as 10%.
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3. A computationally efficient algorithm for permutation testing of

rare genetic variants

3.1 Introduction

With the rapid advancement in DNA sequencing technologies over the last decades, cost-
effective identification of rare and very rare single-nucleotide polymorphisms (SNPs) has
become technically feasible and reliable in large scale association studies. Yet, detecting
associations between single rare variants and specific diseases remains a challenge (Lee et al.,
2014; Auer et al, 2015; Zhang, 2015). Rare and very rare variants are typically defined as an
observed minor allele frequency of <5% and <1%, respectively. Consequently, unless a study
has a very large number of participants or there is a very strong association between a variant
and disease, standard statistical tests will inherently have low statistical power to detect
associations with single rare variants. Furthermore, asymptotic tests that rely on large sample
theory may not be able to maintain the specified type I error.

Statistical methods have been proposed to assess associations between rare variants and
disease which address these issues by collapsing genotypes across variants or grouping rare
variants by location (Morgenthaler 2007; Li 2008; Wu 2011). However, such methods could
adversely impact power if a single underlying disease susceptibility locus is grouped together
with null-loci. Moreover, grouping variants does not allow for identification of specific variant-
disease associations.

For single rare variants, Ma et al. (2011) recommended Firth’s likelihood ratio test for low
count variants, while acknowledging that the test is not well calibrated in studies with extremely

rare variants (expected minor allele count < 40; minor allele frequency (MAF) <0.001) (Ma
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2011; Firth 1993). Recently, Dey et al. (2017) proposed a score-based test that uses the
saddlepoint approximation to estimate the null distribution of the score statistic when it is far
from the mean. They showed that their test, which allows for covariate adjustment, is much
faster than Firth’s test and controls the type I error even with extremely unbalanced case-control
ratios. Although better than the normal approximation, the test still relies upon an
approximation. Furthermore, the test was developed for phenome-wide association studies
which often have extremely unbalanced case-control ratios, and it was not developed particularly
for rare variant testing.

In this paper we introduce a computationally efficient algorithm for permutation testing
between a single rare variant and affection status, which also allows inclusion of covariates (e.g.
principal components to adjust for population substructure and epidemiological variables such as
age, sex, etc.). A special feature of the proposed algorithm is that the implementation of the
random permutation of the genotype vector has only a numerical complexity of O(N*p), where
the parameter N is the sample size and p is the allele frequency. This, in combination with a
very efficient computation of the score functions, enables permutation testing at a genome-wide
level with the required significance level of 10™® and smaller. To illustrate the feasibility of the
approach, we apply the method to a study of chronic obstructive pulmonary disease (COPD). In
simulations, we show that the permutation test maintains a type I error rate closer to the nominal

level than the asymptotic and saddlepoint approximation tests.

3.2 Materials and Methods
We consider the setting of a case-control study in which N subjects are sequenced on m rare
genetic variants (MAF < 0.05). For each genetic variant, we are interested in testing Hy: §; = 0

versus Hy: B # 0 (j=1, 2, ... m) in the following model:
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logit(p;j) = claj + B;Gi;,
where p;; is the probability of being a case (P(y; = 1)) for the i™ individual, conditional on the
allele count for the jth genetic variant and the covariates in c; G;; is the number of minor alleles
for the i” individual and the jth genetic variant; and c; is a p X 1 column vector of covariate
values for the i”" individual, including an intercept term. Note that, although the proportion of
cases may not reflect the population prevalence of disease, logistic regression is suitable to test a

genetic variant in a case-control study (Prentice et al., 1979). The score function with respect to

B; is:

N
Ui = z Gi;(yi — Pij)
i=1

The variance of the score under H is:
Var(Uy) = g/Wg; — giWC(C"TWC) 1 C"Wg;,

where g; is the N x [ vector of minor allele counts for the ;™ genetic variant, W is an N x N

diagonal matrix with Var(y;)|y,=p;(1 — ;) on the i" diagonal element, ; is the probability of

being a case for the i individual in the null model (conditional on only the covariates in c), and

C=[ci¢5...c,]".

uj

___ under the null
Var(Uj)

We can test Hy: f; = 0 by evaluating the score statistic S; =

hypothesis. Asymptotically, S; follows a chi-square distribution with one degree of freedom.
However, with rare variants, large sample theory may not hold and p-values relying on the
assumption that S;~ x% may be invalid. Instead, we propose testing Hy: Bj =0viaa
computationally efficient permutation test of the score function for ;. That is, the distribution

of sz under the null is empirically estimated by permuting G;;, calculating the permuted score
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U]-Z,P ry for each permutation, and comparing the observed value of sz (based on the observed

data) to the empirical null distribution. Alternatively, one could use standardized score tests, i.e.

2
Yj
Var(Uj)

(see Appendix A.6). The standardized score could potentially be more powerful when

the true null distribution and the asymptotic distribution become similar, but it comes at a cost of
substantially increased numerical complexity during the permutation tests. We investigated the
power of U jz and the standard score test. Our results suggest that there is no advantage of using
the standardized score over U jz for rare variant data. Given the substantially higher numerical
burden of the standardized score, we recommend the use of U ]-2 and implemented the proposed
algorithm accordingly.

The number of rare variants is often quite large (>10°), and the number of permutations
per variant will need to be large (generally on the order of 10° to investigate the small levels
around genome-wide significance) in order to reliably estimate the null distribution and obtain
valid p-values. An advantage of using the score statistic to test f; is that the score test is
evaluated under the constrained model (where ; = 0) and thus does not involve fitting a logistic
regression model with g;. The estimated constrained risk is independent of the genetic variant
being tested. Furthermore, we only permute the genetic variant in the permutations so that the
relationship between disease and confounding variables in the observed dataset is preserved in
the replicate datasets. The p;s used in calculating the permuted score statistics are thus also the
same as the p;s used in computing the observed score statistic. That is, only one logistic
regression model needs to be fit, regardless of the number of variants being tested and the

number of permutations being conducted.
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Nevertheless, repeating a permutation test requiring 10° permutations across a large
number of variants will be computationally intensive and could become prohibitive for the large
numbers of rare variants often assessed in genetic studies today. Hecker et al. (2018, manuscript
in preparation) proposed a sequential testing approach to permutation-based association testing
that directly tests the permutation-based p-value against a pre-specified significance level. This
approach can drastically reduce the number of permutations required for the majority of variants;
for instance, using a significance level of 5 x 10, they found that the 99.92% of least significant
variants needed an average of 22 permutations per variant. We developed an algorithm that is
efficient and robust in terms of the numerical and computational aspects, e.g. drawing m out of N
without replacement. In conjunction with the sequential testing approach, this algorithm enables
permutation testing between a single rare variant and affection status, adjusting for covariates, to

be implemented on a whole-genome wide scale.

3.2.1. The algorithm
The fact that we are analyzing rare variants implies that g; is a sparse vector. We use this to our
advantage in calculating the permuted scores. In particular, note that:

N

Ui = Z Gij(yi —pij) = Z Vi—pi) +2x Z i — o),

i=1 i €M, i EM,;
where M, ; is the set of n; ; subjects with one minor allele on the jth genetic variant and M,; is the
set of n,; subjects with two minor alleles on the ;™ genetic variant. The j index is dropped from
pij since the constrained disease risks do not depend on the genetic variant as noted above.

Our algorithm proceeds as follows:
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1. Fit the constrained logistic regression model, and compute the residual vector 7 =
y-p.
2. For each variant (j=1,2, ..., m):
a. Generate a vector q; of length n,; + n,;, with n,; ones and n,; twos
b. Compute the square of the observed score.
i. Subset ¥ on the M;; and M;; indices; call this subset vector U
ii. Compute U = [q]#U?]?
c. Compute the square of the permuted scores. For k in 1 to K (where K is the
number of permutations):
1. Randomly select without replacement n, ; + n,;values between 1 and N
using a modified Durstenfeld shuffle (Durstenfeld, 1964; see Appendix
A.S5)
ii. Subset # on the randomly selected values; call this subset vector #U*)
iii. Calculate the square of the permuted score for the k" permutation for the
™ variant: [U]-',‘P}-‘,I\,,]2 = [q]TT”(jk)]2

d. Calculate the p-value as the proportion of permuted scores that are as extreme or
Theq 11U pru]*2U})
(K+1)

more extreme than the observed score: p — value; =

Analyses were performed in R 3.2.1 (R Core Team). The saddlepoint approximation test
was conducted using the SPAtest package (Dey et al., 2017) ScoreTest SPA function. Code

is available at: https://github.com/katcorr/Permutation-Test-for-Rare-Genetic-Variants.
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3.3 Results

3.3.1 COPD Study: Feasibility

To demonstrate the feasibility of our permutation algorithm, we used the whole genome-
sequencing data available on 1,794 participants enrolled in two COPD studies, the COPDgene
study (Regan et al., 2010) and the Boston Early-Onset COPD (BEOCOPD) study (Silverman et
al, 2013). The COPDgene study has enrolled over 10,000 smokers with and without COPD
between 45 and 80 years old. The BEOCOPD study has enrolled over 200 severe, early-onset
COPD patients (less than 53 years old with forced expiratory volume in one second (FEV1) <
40%) and their family members. As part of a Trans-Omics for Precision Medicine (TOPMed)
program sponsored by the National Heart, Lung and Blood Institute, cases were selected from
the COPDgene study and the BEOCOPD study and controls were selected from the COPDgene
study for sequencing. We analyzed 631,244 genetic variants on the 22" chromosome for 821
cases and 973 controls.

Almost half of the variants had only one minor allele (MAF=0.00028). An additional 9%
of the variants had only two minor alleles (MAF=0.00056), and 80% of the variants had a MAF
< 1%.

We fit the constrained logistic regression model adjusting for 10 principal components
based on the Jaccard index to identify population stratification (Prokopenko et al., 2018,
manuscript in preparation). Since our sample only included 1,794 participants, we were able to
compute the exact null distribution of the score statistic for variants with one or two non-zero
minor alleles. We computed the null distributions using the same computations as in the
permutation algorithm, except instead of generating random values for each permutation, we ran

the algorithm through every possible genetic variant vector. For the remaining SNPs, we ran the
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algorithm as described in the Methods section. In addition to the permutation test, we calculated
p-values from the standard asymptotic test (assuming a y? distribution for the score statistic) and
the fastSPA-2 test (Dey et al., 2017).

The distributions of p-values as generated by the fastSPA-2 test versus the permutation
test are compared in Figure 3.1 for variants with one non-zero minor allele count. For permuted
p-values < 0.05, the fastSPA-2 p-values were more conservative than necessary. Note that the
fastSPA-2 p-value and the asymptotic p-value were equivalent for all variants with MAC=1, as
the observed score statistic did not fall outside two standard deviations of the mean.

Although we cannot expect to identify extremely rare variants at a genome-wide
significance level given our sample size, we could discover a suggestion of a global contribution
of very rare variants to COPD if the observed score distribution for the rare variants shows an
unusual number of large score statistics relative to the null distribution. We did not find such a
suggestion between COPD and variants on chromosome 22 with MACs of one or two alleles
(Figure 3.2).

For other variants with MAF < 1%, the fastSPA-2 p-values were not consistently above
or below the respective permutation p-values. For variants with MAF between 1 and 5% and for

common variants (MAF > 5%), the asymptotic, fastSPA-2 and permuted p-values were similar.
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Figure 3.1 P-values from the fastSPA-2 test versus the permutation test for variants on

chromosome 22 with minor allele counts of one to three with permuted p-values < 0.05.
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Figure 3.2 QQ-plots comparing the distribution of the score statistic under the null hypothesis

and the observed score statistics for variants with one (A) or two (B) minor allele counts.
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3.3.2 Simulation study

We conducted a simulation study to demonstrate the feasibility of our permutation algorithm and
to identify scenarios where the approximate tests fail to control Type I error. We generated
100,000 replicate datasets with sample size 20,000 and overall disease prevalence of 10%. We
varied the case-control ratio (1:1, 1:2, 1:4, 1:16, 1:100, and 1:400) and the minor allele frequency
(between 0.00005 and 0.01). We also generated datasets under the alternative hypothesis
(OR=1.05, 1.5 and 2.0) at various sample sizes to assess power. For each permutation test, 10’
permutations were used.

The type I error rates at the 5% level across scenarios and tests are shown in Table 3.1.
Under extremely unbalanced case-control ratios, the type I error rate for the asymptotic and
fastSPA-2 tests were inflated. For instance, with a MAF of 1% and a case-control ratio of 1:400,
the type I error rates for the asymptotic and fastSPA-2 tests were 0.0601 and 0.0590,
respectively. In this scenario, the permutation test remained valid, although conservative (type I
error rate=0.0183 at 5% level). With a MAF of 0.1% and a case-control ratio of 1:400, the type [
error rates for the asymptotic and fastSPA-2 tests were severely inflated at 0.0964 and 0.0962,
respectively. The permutation test again remained valid and conservative (type I error
rate=0.0050 at 5% level).

For extremely rare variants (MAF < 0.05%) and reasonably balanced case-control ratios,
the fastSPA-2 and permutation tests maintained the type I error rate better than the asymptotic
test. For example, under a MAF of 0.005% and a 1:4 case-control ratio, the type I error rate for
the asymptotic test was > 0.10, but < 0.05 for the fastSPA-2 and permutation tests. With a MAF

0f 0.05% and a 1:1 case-control ratio, the type I error rate was 0.0520 for both the asymptotic
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and fastSPA-2 tests, 0.0297 for the conservative permutation test, and 0.0457 for the permutation

test that weighted equality of permuted and observed scores at one-half.

Table 3.1 A comparison of observed type I error rates for the asymptotic test, fastSPA-2 test,

and permutation test, across 100,000 simulated datasets of sample size 20,000.

MAF Case-Control Type I Error, a=0.05

Ratio Asymptotic fastSPA-2 Permuted

0.01 1:1 0.0488 0.0488 0.0434
1:2 0.0492 0.0492 0.0492

1:4 0.0489 0.0489 0.0492

1:16 0.0490 0.0491 0.0500

1:100 0.0540 0.0533 0.0510

1:400 0.0601 0.0589 0.0182

0.005 1:1 0.0490 0.0490 0.0411
1:2 0.0504 0.0504 0.0516

1:4 0.0503 0.0503 0.0519

0.001 1:1 0.0495 0.0495 0.0350
1:2 0.0497 0.0497 0.0511

1:4 0.0486 0.0486 0.0517

1:16 0.0399 0.0399 0.0329

1:100 0.0596 0.0596 0.0175

1:400 0.0964 0.0961 0.0050

0.0005 1:1 0.0520 0.0520 0.0297
1:2 0.0490 0.0490 0.0443

1:4 0.0458 0.0458 0.0492

0.0001 1:1 0.0423 0.0072 0.0053
1:2 0.0394 0.0239 0.0223

1:4 0.0615 0.0412 0.0194

0.00005 1:1 0.0164 0.0006 0.0006
1:2 0.0456 0.0108 0.0107

1:4 0.1029 0.0276 0.0177

Abbreviations: fastSPA-2, fast saddlepoint approximation test; MAF, minor allele frequency
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A comparison of the power of each test at a sample size of 5,000 and true OR of 1.5 is
shown in Table 3.2. The power of the permutation test based on U; alone is the same as the
power of the permutation test based on the standardized score, S;. With a 1:2 case-control ratio,
the power of the permutation test is higher than that of the fastSPA-2 test. In particular, at a

MAF of 0.005, the power is about 42% under the permutation test and only 34% under the

fastSPA-2 test.

Table 3.2 A comparison of power for the asymptotic test, fastSPA-2 test, and permutation tests,

across 100,000 simulated datasets of sample size 5,000 with OR=1.5.

Case- Power
MAF  Control Asymptotic fastSPA-2 Permutation Test
Ratio
U [ Si S
0.01 1:1 0.5868 0.5868 0.5505 0.5841 0.5505 0.5841
1:2 0.6475 0.5591 0.6493 0.6493 0.6493  0.6493
1:4 0.4559 0.4559 0.4833 0.4833 0.4833  0.4833
0.005 1:1 0.3354 0.3354 0.2909 0.3310  0.2909  0.3310
1:2 0.3949 0.3360 0.4162 0.4165 0.4162 0.4165
1:4 0.2726 0.2726 0.2743 0.2752  0.2743  0.2752

Abbreviations: fastSPA-2, fast saddlepoint approximation test; MAF, minor allele frequency
Siéz1 IV pru]*2U;%)
(K+1)
YRt (U prm]2>U ) +0.5 S8 1([Ufpru]?=U?)
(K+1)

“Based on Uj and calculated as

® Based on Uj and calculated as

K k
Yk=11(SjprM=S))
(K+1)
K k K k
Zk:l I(Sj,PRM>Sj)+0'5*Zk=1 I(Sj,PRMzsj)
(K+1)

‘Based on S; and calculated as

4 Based on S; and calculated as
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3.4 Discussion

For rare genetic variants, asymptotic tests that depend on large sample theory can have inflated
type I error rates. Estimating the distribution of a test statistic using permutations is a suitable
alternative, but permutation tests can be computationally expensive and the amount of time and
resources required can become prohibitive. We developed a computationally efficient algorithm
to perform permutation testing of rare genetic variants that allows for adjustment of covariates.
The algorithm takes advantage of the sparsity of exposure; with decreasing MAF, the
computation time of the permutation algorithm decreases. Thus, the algorithm is fastest where
needed most -- in cases where the asymptotic and approximate tests are most questionable
(extremely rare variants).

In a COPD sequencing study and in simulations, we showed the feasibility of the
permutation testing algorithm. Although we cannot expect to identify extremely rare variants at
a genome-wide significance level under reasonable sample sizes, the permutation test could
allow the discovery of a global contribution of very rare variants on an outcome if the observed
score distribution for the rare variants shows an unusual number of large score statistics relative
to the permuted sampling distribution.

In the simulation study we observed scenarios where both the asymptotic and fastSPA-2
tests break down (e.g. MAF of 0.1% and 1:400 case-control ratio observed type I error rates of
>9% at the 5% level). In contrast, the permutation test maintained the type I error level at or
below 0.05, even under extremely rare MAF. Due to the discrete nature of the null distribution
of the score statistic in the case of extremely rare variants, the empirical type I error levels for the

permutation test were often well below 0.05.
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Additional work toward further speeding up the permutation algorithm is of
interest, including implementing the algorithm in C/C++ and integrating a sequential testing
strategy into the permutation algorithm (Hecker et al., 2018, manuscript in preparation) to

discard clearly non-significant variants early.
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Conclusions

There are many avenues of further research that spawn from this dissertation research. In
Chapter 1, we observed the importance of adjusting for other spontaneous drug exposures in
screening the safety of antiretroviral therapies taken during pregnancy by women with HIV
infection. The hierarchical modeling approach as studied was implemented using a frequentist
approach. After having observed the advantages a Bayesian approach can offer in mixed effect
regression settings with common, binary outcomes in Chapter 2, it may be worthwhile to
evaluate the Chapter 1 model (without interactions) in a Bayesian framework and with a log
(rather than logit) link. Whereas the frequentist implementation is limited by software options
(e.g. must assume a Normal distribution for the random effects in PROC GLIMMIX), a Bayesian
approach can be more flexible.

Another logical next step is to extend the hierarchical model from Chapter 1 to screen for
additive drug-drug or drug-covariate interactions -- as originally intended -- under a Bayesian
framework. Another bridging of the research in Chapters 1 and 2 could involve incorporating
clustered outcomes into a hierarchical model that groups drugs by drug class. That is, in the
motivating application presented in Chapter 1, we accounted for other ARV exposures in
screening the safety of individual ARVs taken during pregnancy on the risk of preterm delivery,
but we did not account for the fact that patients were clustered by clinic. In the example
application presented in Chapter 2, we accounted for the clustering of patients within clinics —
and assessed the variability in preterm delivery across clinics — but our model only included the
ARYV of interest (nevirapine) and did not account for other ARV exposures. Further research

could focus on methods which both adjust for other ARV exposures and account for correlated
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outcomes. Correlated outcomes could arise from patients clustered within clinic and/or multiple
pregnancies from the same woman.

Lastly, there is still room to reduce the computational time and resources required to
implement the permutation testing algorithm presented in Chapter 3 on a genome-wide scale. In
addition to coding the algorithm in C/C++, which is much faster than R — or using an R interface
to C++ (e.g., Repp) -- incorporating a sequential testing strategy into the permutation algorithm

to discard clearly nonsignificant variants early would reduce the computational burden.
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Appendices

A.1 The parameter space of the RERI

Poo Poo Poo

Assuming exposures are coded such that the baseline group represents the group with the lowest

risk (Knol et al., 2011), the lower and upper bounds of the RERI can be derived as:

2 1
2— —<RERI <——1.
Poo Poo

The minimum possible RERI is attained when RR;; is at its minimum and RR;, and
RR,; are at their maximums. Assuming as noted above, that the baseline group represents the
group with the lowest risk (pgo < Po1, P10, P11), the minimum value of RRy; is 1.0 and occurs

when p;; = poo. The maximum values of RR,, and RR; are attained when p,; and p;, are at

their maximum value (equal to 1). Therefore, a lower bound for the RERI is: 1 — pi - pL +
00 00
1=2-2
Poo

Similarly, the maximum possible RERI is attained when RR is at its maximum and
RR; and RRy; are at their minimums. Assuming again that poo < Po1, P10, P11, the maximum

value of RR; o0ccurs when p;; = 1. The minimum values for RR;, and RR; occur when

P10 = Po1 = Poo- Thus, an upper bound for the RERI is: ——1-1+1=—-1.

Poo Poo

For example, if pgg = 0.20, then —8 < RERI < 4; and if pyy = 0.40, then —3 <
RERI < 1.5. For rarer outcomes, the possible parameter space of the RERI becomes much

wider (eg., if pgo = 0.01, then —198 < RERI < 99).
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A.2 Numerical equivalence of cluster-conditional RERI and induced
marginal RERI under log binomial random intercepts model

The cluster-conditional log binomial mean model is:
10g(E (yir|bor)) = Bs + BiXaik + B3 Xaix + BsXriXaik + Ci¥ + bog
box~N (0, 03)
and the cluster-conditional RERI is thus defined as:
RERIcc = exp(Bi + B2 + B3) —exp(B1) —exp(B) +1
The induced marginal mean model is:
Ey(yix) = Ep(Ey i |box))
= Ep(exp(Bo + BiX1ik + B2 Xzik + B3 X1 Xzik + Ci¥ + box))
= Ep(exp(Bo + BiXaik + B2 Xaik + B3X1iXaix + Cix¥) exp(bo))
= exp(Bo + BiX1ik + B2 Xaik + BsX1iXaik + Cii¥) * Ep(exp(bo))
= exp(Bs + B X1k + B3 X2k + BiX1u Xz + Ciiy) * exp(ajy /2)
= exp((Bs + 5 /2) + Bi X1ik + BaXzix + B3 X1uXzix + Cix¥),
where the second to last line follows from the fact that by, ~N (0, 62) so exp(bgy) is log-
normally distributed with mean exp(o?/2). And, thus, the marginal RERI induced by the
cluster-conditional model is:
RERIy = exp(Bi + B; + B3) — exp(B1) —exp(B;) + 1
As the slopes in the cluster-conditional model are the same after averaging over the clusters, the
induced marginal slopes are numerically equivalent to the cluster-conditional slopes and the

cluster-conditional RERI is therefore numerically equivalent to the marginal RERI.
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This numerical equivalence is specific to the random intercepts model with log link (e.g.
log binomial or Poisson approximation). If normally-distributed random slopes are included in
the model, or if a different link function is used (e.g. logit link for a logistic random intercepts
model), the induced marginal RERI from the cluster-conditional model may not be the same as
the cluster-conditional RERI. For instance, consider a model with random intercepts and slopes:
log(E (yir|b)) = Bs + BiX1ik + BrXaik + B3X1Xaik + Cix¥ + bor + bueXii + borXaiks

6% 0 0
bk~N O, 0 O-lgl O
0 0 o5

In this case, the induced marginal mean model is:
Ey(yir) = Ep(Ey (i |by))
= Ep(exp(Bo + BiX1ik + B2Xoik + B3 X1k X2ik + Cix¥ + box + b1 X1ix + baxXa2ix))
= Ep(exp(Bo + BiX1ik + B2Xaik + B3 X1k X2ie + Cix¥) €xp(boy) exp(b1xX1ir) €xp(baxXaix))
= exp(Bo + B1Xvik + B2 Xaix + B3 X1uXaix + Cix¥) * Ep(exp(boy)) * Ep(exp(byxXyix))

* Ep(exp(baxXzix))

2

= exp(Bs + BiX1ik + BrXaik + BiX1uXzir + Cix¥) * exp(oy/2) * [exp (71)(121'1«>]

O-Z?Z 2
* [exp — Xaik ]

_ * 2 * * * * 0-51 2 0-52 2
=exp| (Bo + 050/2) + B1X1ik + BrXaik + B3 X1ikXaik + Ciry + 7X1ik + TXZik

2 2

_ ¥ 2 «, 9p1 «, 9b2
=exp| (Bo + 040/2) + (B1+—X1i)X1ix + (B2 +—~

> > Xoik) Xzik + B3 X1ikXoik + C?k)’)
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Clearly, the slopes for the exposures of interest (X;;x, X2;x) in the cluster-conditional model are
not the same as the respective slopes in the induced marginal model, and thus the two RERIs will

not be equivalent either.
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A.3 Implementation of a Bayesian log binomial random intercepts
model

We jointly used the “brms” and “rstan” packages in R to fit a Bayesian log binomial random
intercepts model. The “brms” package provides a user-friendly interface to fit Bayesian
generalized linear mixed models using Stan. The formula syntax is similar to that of R’s popular
“Ime4” package, and the sampling scheme is extremely efficient and thus fast in terms of
Bayesian computation. A log link is not allowed to be specified for a binary outcome in the
“brms” package. However, the “make stanmodel” and “make standata” functions within the
“brms” package were used to help specify the Stan file and data. In particular, the

“make stanmodel” function was used to output Stan model code for a random intercepts logistic
model. The resulting Stan code was updated to change the model from a logit link to a log link
and to calculate the RERI directly. The “make standata” function was used to create a list of the
Stan data for the respective Stan model. Then, the “stan” function within the “rstan” package

was called to run the Stan model on the Stan data.

R Code

library ("brms")

library ("rstan”)
rstan_options (auto write=TRUE)

options (mc.cores=parallel::detectCores())

# make stancode and make standata functions are from BRMS package

stan.logit <- make stancode (outcome ~ x1 + x2 + x1:x2 + (1|Cluster)
, data=simdata

family="bernoulli" (1link="1ogit")

, 1iter=1000
# set gamma (2,0.1) prior on SD
, prior = set prior("gamma(2,0.1)", class = "sd")
)
standata <- make standata(outcome ~ x1 + x2 + xl:x2 + (1|Cluster)

, data=simdata)
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# edit Stan code output from make stancode
# so using log link instead of logit and save file as
# “bayes logbin gamma.stan” (included below)

stfit <- stan(file="bayes logbin gamma.stan"
, data=standata, chains=4, iter=2000)

Stan Code for log binomial random intercepts model with a Gamma(2,0.1) prior on SD

// generated with brms 1.6.1
functions {

}

data {
int<lower=1> N; // total number of observations
int Y[N]; // response variable
int<lower=1> K; // number of population-level effects
matrix [N, K] X; // population-level design matrix

// data for group-level effects of ID 1

int<lower=1> J 1[N];

int<lower=1> N 1;

int<lower=1> M 1;

vector[N] Zz 1 1;

int prior only; // should the likelihood be ignored?
}

transformed data {

int Kc;
matrix [N, K - 1] Xc; // centered version of X
vector[K - 1] means X; // column means of X before centering
Kc = K - 1; // the intercept is removed from the design matrix
for (i in 2:K) {
means X[i - 1] = mean(X[, 1i]);
Xc[, 1 - 1] = X[, 1] - means X[i - 1];
}
}
parameters {
vector[Kc] b; // population-level effects
real temp Intercept; // temporary intercept
vector<lower=0>[M 1] sd 1; // group-level standard deviations
vector[N 1] z 1[M 1]; // unscaled group-level effects

}

transformed parameters ({
// group-level effects
vector ([N 1] r 1 1;
r11=wsd1[1] * (z 1[11);

}

model {
vector [N] mu;
mu = Xc * b + temp Intercept;
for (n in 1:N) {

mu(n] = mu[n] + (r 1 1(J 1[n]]) * 2 1 1[nl;

}
// prior specifications
sd 1 ~ gamma (2,0.1);
z 1[1] ~ normal(0, 1);
// likelihood contribution
if (!prior _only) {
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Y ~ bernoulli (exp(mu)) ;

}
}

generated quantities {
real b Intercept; // population-level intercept
real RERI; // relative excess risk due to interaction
b Intercept = temp Intercept - dot product (means X, b);

RERI = exp(b[1]+b[2]+b[3]) - exp(b[1l]) - exp(b[2]) + 1;
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A.4 Specification of initial values for the adjusted Bayesian log
binomial random intercepts model

Initial estimates for the beta coefficients were generated from a multivariate normal distribution
with means equal to the respective estimated coefficients from the frequentist adjusted modified
Poisson GEE model and covariance matrix equal to the covariance matrix of the coefficients.
The modified Poisson GEE model was used to allow more variability in initial estimates across

chains (as compared to a log binomial GEE model).
The initial values for the standard deviation in the random intercept were generated from a

uniform distribution ranging between the 2.5™ and 97.5™ percentiles for the standard deviation as

estimated from the unadjusted Bayesian log binomial random intercepts model.
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A.5 Randomly select without replacement ny; + n,;values between 1

and N

Since gj is a sparse vector (rare variant), instead of shuffling the entire vector, we
randomly select without replacement n,; ; + n,; values between 1 and N using a modified version
of Durstenfeld’s shuffle (Durstenfeld, 1964) which shuffles in place and has time complexity

O(nyj + nyj). Letm =ny; + ny;.

sample.custom <- function(N,m){

vector <- ¢(1:N) Oo(1)

for (i in 0:(m-1)){ O(m)
num <- round(runif(n=1,min=0,max=1)*(N-1)) 0(1)
vector[c(N-i,num)] <- vector[c(num,N-i)] o(1)

h

return(vector[(N-m+1):N]) o(1)

o)+ [o(m)*0()]+0(1)=01)+0(m)+0(1)
= 0(m),
where the first equality follows from the fact that O(f)*O(g) = O(f*g), and the second equality

follows from the fact that O(f) + O(g) = O(max(f,g)) and m>1.
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A.6 Permutation algorithm based on S;

The calculations for the variance of U; can be reduced by noting that:
Var(Uy) = g/Wg; — giWC(C"WC) ' C"Wg;
=gjWg; - gjAg;,
where A = WC(CTWC)~1CTW, and both W and A are constant across variants and across
permutations. Since W is a diagonal matrix, the first term in Var(U;) can be reduced in a
similar manner as U; above:
N
giwg; = z Gipi(1—pij) = Z pi(1—p;) + 4= Z pi(1—p;)
i=1 i €M, i EM,;
We can further take advantage of the sparsity of g; and note that:
giAg; = g;"A’g;,

where gj is an (ny; + ny;) x I vector of the non-zero minor allele counts for the j’h genetic
variant and 4™ is an (nl jtn; j)x(nl j + n2j) matrix keeping the rows and columns of A
corresponding to the non-zero minor allele counts for the / genetic variant as indexed by M, j
and M,;.

The permutation algorithm based on S; proceeds similar to the permutation algorithm
based on sz, with the additional computations for the variance included:

1. Fit the constrained logistic regression model, and compute the residual vector 7 =
(y — P), the variance vector ¥ = p(1 — p), W=diag(¥), and A = WC(CTWC) 1C"W.
2. For each variant (j=1,2, ..., m):

a. Generate a vector q; of length n,; + n,;, with n,; ones and n,; twos
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b. Calculate q]?, with n,; twos and n,; fours (element-wise squaring of q;)
c. Compute the observed score statistic.
1. Subset 7 on the M;; and M;; indices; call this subset vector U
ii. Subset ¥ on the M, ; and M,; indices; call this subset vector U0
iii. Create AY% by keeping only the rows and columns of A equal to the M, j
and M,; indices
iv. Compute U; = q]Tf(jO) and Var(U;) = (q]z)Ti?(jo) —q;AU0q;

(qjFU)?
(g% ~q] AU g;

v. Compute §; =

d. Compute the permuted score statistics. For k in 1 to K (where K is the number of
permutations):

1. Randomly select without replacement n, ; + n,;values between 1 and N

ii. Subset # on the randomly selected values; call this subset vector #U%)
iii. Subset ¥ on the randomly selected values; call this subset vector HUX)
iv. Create AU% by keeping only the rows and columns of 4 equal to the

randomly selected values

v. Calculate the permuted score for the K" permutation for the jth variant:

Kk (qj7U)?

S: = —= _
J,PRM (qIZ)Tv(]k)_qITA(]k)qI.

Calculate the p-value as the proportion of permuted scores that are as extreme of more extreme

K k
Yk=11(SjprM=S))
(K+1)

than the observed score: p — value; =
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Figure A1.1 The percent of simulations with no false discoveries versus the power to detect the
true effects of antiretroviral exposures on preterm birth. Markers represent the drugs with true
effects under different exposure-outcome scenarios. Results are based on 3,000 simulations.
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Figure A1.2 The percent of simulations with no false discoveries versus the power to detect the
true effects of antiretroviral exposures on standardized Bayley-III score. Markers represent the
drugs with true effects under different exposure-outcome scenarios. Results are based on 3,000
simulations.
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