A Platform for the Discovery of New Lincosamide Antibiotics

Permanent link

http://nrs.harvard.edu/urn-3:HUL.InstRepos:40050042

Terms of Use

This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http:// nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use\#LAA

Share Your Story

The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story.

Accessibility

HARVARD UNIVERSITY Graduate School of Arts and Sciences

(4y)

DISSERTATION ACCEPTANCE CERTIFICATE

The undersigned, appointed by the
Department of Chemistry \& Chemical Biology
have examined a dissertation entitled:

A Platform for the Discovery of New Lincosamide Antibiotics
presented by : Matthew J. Mitcheltree
candidate for the degree of Doctor of Philosophy and hereby certify that it is worthy of acceptance.

Signature

Typed name: Professor Andrew Myers

Typed name: Professor Christina Woo

A Platform for the Discovery of New Lincosamide Antibiotics

A dissertation presented by
Matthew J. Mitcheltree
to

The Department of Chemistry and Chemical Biology
in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in the subject of

Chemistry

Harvard University
Cambridge, Massachusetts
May 2018
© 2018 - Matthew J. Mitcheltree
All rights reserved

A Platform for the Discovery of New Lincosamide Antibiotics

Abstract

This dissertation presents a flexible synthetic approach to the lincosamide antibiotics, developed with the aim of rejuvenating an underexploited class to combat multidrug-resistant bacterial pathogens. The only clinically relevant lincosamide, clindamycin (1.3), has been in continuous clinical use for nearly half a century, though its utility is limited by a narrow spectrum of action and a liability to promote life-threatening C. difficile infections. Prior campaigns to address these concerns have relied largely upon semi-synthetic approaches, owing in part to the lack of practical synthetic routes to the two molecular hemispheres - a "northern" aminooctose and a "southern" cyclic amino acid - that constitute the class. Exploiting the lincosamides' natural modularity, I developed synthetic routes to both moieties, enabling diversification at strategic sites identified by analysis of X-ray crystal structures of canonical lincosamides bound to the bacterial ribosome, as well as by existing structure-activity relationship (SAR) data.

Three synthetic routes are exhibited in this dissertation, beginning with the preparation of β-oxygenated prolines as rationally designed variants of clindamycin's southern half. In this work, a novel annulation of pseudoephenamine glycinamide (2.3) is described, marrying prior methods developed in the Myers laboratory for C, N-bis-alkylation and aldolization of chiral glycine equivalents. This chemical innovation led to the discovery of a bicyclic southern-half scaffold amenable to further optimization, displaying particular promise in our search for candidates with improved in vitro antimicrobial activity and diminished risk for colitis relative to clindamycin.

Also presented are two independent routes to the northern-half component. In the first, a pivotal nitroaldol coupling enabled the component-based synthesis of methylthiolincosamine (1.11) from non-carbohydrate building blocks 3.28 and 3.29. Adaptation of this route permitted the synthesis and evaluation of 41 lincosamides bearing modifications to the strategic positions C 1 and C6, offering actionable insights into the SAR of this residue. Consequently, a secondgeneration synthesis to northern-half variants was developed, enabling more expedient exploration of this hemisphere, and facilitating the synthesis of clindamycin (1.3) in 4 steps from the versatile N-tert-butanesulfinimine intermediate 4.10. Through building-block exchange and adaptation of the routes described here, I have prepared 92 novel lincosamides as part of a growing library of >330 candidates our team has evaluated to date. Most of these are active antibiotics, and some, we hope, hold the potential to impact those aims of efficacy and safety identified at the outset of our work.

Table of Contents

Abstract iii
Table of Contents v
Acknowledgements viii
List of Abbreviations xi
Chapter 1. Introduction 1
Chemical synthesis and antibiotic discovery 2
Introduction to the lincosamides 5
Mechanism of action 8
Mechanisms of resistance 14
Clinical utility and limitations 22
The structure-activity relationship of the lincosamides 25
A fully synthetic approach to the lincosamide antibiotics 43
Chapter 2. Southern-half variants bearing 3' oxygenation 47
Introduction 48
Annulation of pseudoephenamine glycinamide by aldol-cyclization 50
Synthesis and evaluation of 3'-hydroxy and 3'-alkoxy lincosamide analogs 54
Oxazolidinone-lincosamide hybrid antibiotics 58
Discovery of a novel oxepinoproline southern-half scaffold 63
Oxepinoprolinamide analogs bearing 7-arylthio substitution 71
Secondary screening of active oxepinoprolinamides 76
Summary and conclusion 80
Experimental section 82
Chapter 3. A nitroaldol-based route to methylthiolincosamine 189
Introduction 190
Original retrosynthesis and discovery of a nitroaldol-cyclization reaction 194
A fully synthetic route to methylthiolincosamine 199
C-Glycosidic lincosamide analogs 203
8-Norlincomycin and its derivatives 215
Summary and conclusion 222
Experimental section 223
Chapter 4. A sulfinimine-based route to methylthiolincosamine variants 421
Introduction 422
Synthesis of 6-modified propylhygramides by a sulfinimine-based route 423
Design and synthesis of C6-modified azepanamides by the same strategy 429
Synthesis of clindamycin by radical hydrochlorination of a 6-vinyl lincosamide precursor 436
Summary and conclusion 438
Experimental section 439
Appendix A. Catalog of X-ray crystal structures 543
Appendix B. Catalog of synthetic lincosamide structures 578
Appendix C. Minimum inhibitory concentrations of synthetic lincosamides 598
Appendix D. Secondary in vitro profiling of FSA-213064 607
Appendix E. Catalog of spectra 617

Acknowledgements

When in 2012 my undergraduate advisor, Prof. Seth Herzon, expressed that I could find no better match in a doctoral advisor than with Prof. Andrew Myers, I couldn't have known how right he was. It is with great pride and an even greater debt of gratitude that I may count Prof. Myers among those mentors who have shaped my thinking - both scientific and otherwise - very much for the better. Over the five years that I have studied under him, Prof. Myers has entrusted me with an abundance of enriching opportunities to grow as a young scientist and has steadfastly conveyed invaluable lessons in scientific research and leadership, which I hope may form the basis of a long, productive, and fulfilling career in chemistry to follow.

My earlier mentors deserve equal recognition for their selfless labor to instill in me those skills that were most essential to my success in graduate school. These include Profs. Seth Herzon and Christina Woo, who above all else impressed upon me the merits of truly committed chemical research - I'll not forget Prof. Herzon's maxim to "grab the bull by the horns," nor Prof. Woo's less quotable but equally enduring lesson that one's work can be both joy and solace. I am grateful to Dr. Ian Bell for introducing me to the world of medicinal chemistry, a vocation for which I didn't have a name before I had lived it; and perhaps most of all I am grateful to Drs. Shyam Srinivas and Steve Huang, whose irrational investment in an eager high schooler helped a new scientist take root. Beyond voicing my gratitude for these advisors and others, I can only hope to one day pay such a valuable gift forward.

The work that is presented in this thesis constitutes only a small portion of a collaborative effort, performed by a team of colleagues and friends with whom I've had the good fortune of working. Ioana Moga's keen scholarship of chemical literature has more than once impacted the project through the design of enabling routes and the uncovering of important SAR, while

Katherine Silvestre, endowed with an enviable work ethic and an undeniable love for chemistry, has made pivotal discoveries through difficult sequences that would make less devoted chemists shiver. It would be difficult to overstate the outsize impact that Dr. Amarnath Pisipati has had on the project, and on me personally, through his marvelous blend of collegiality, deep expertise, and commitment to scientific integrity. Lastly, Jack Stevenson, whom I'm lucky to call both a mentee and a friend, deserves recognition not only for his contributions to the work presented here, but also for his reciprocal lessons in la gourmandise, imparted over nights of cooking numerous enough to almost outstrip my vivid memories of each dish we made.

In many respects, the lincosamide team encompasses a broader cast of contributors than those listed above. Our laboratory administrator, Tracey Schaal, is among them, for her partnership in grant writing and logistics, without which the project would have foundered before it even began. Likewise, the collated insights of Barry Wohl, Dr. Su Chiang, Dr. Vivian Berlin, Irit BenChelouche, and Dr. Thomas Dougherty substantially shaped the strategic priorities of our project. Drs. Michael Gilmore and François Lebreton deserve our thanks for their continued support, which has taken the form of illuminating discussions, generous access to bacterial strains, and geneticsequencing labor. William Weiss, Dr. Dean Shinabarger, Dr. Chris Pillar, and Prof. Michael Cameron are likewise gratefully acknowledged for their biological-profiling work, and Dr. Hardwin O'Dowd deserves thanks for sharing his personal experience with lincosamide research in the early days of our program. Prof. Eric Jacobsen, who has served on my committee from the beginning, also deserves special recognition for his unwavering personal support, tough questions, and open office door, all of which I've been fortunate to profit from.

I have been the grateful recipient of financial support through the National Science Foundation's Graduate Research Fellowship Program, and am indebted to the Blavatnik

Biomedical Accelerator, the Gustavus and Louise Pfeiffer Research Foundation, and Alistair and Celine Mactaggart for supporting the research which formed the basis of my graduate studies.

It's a lovely thing to take stock of those friendships that have sustained me since I moved to Boston. Dr. Robin Sussman and Prof. Ian Seiple were among my first friends and mentors here, who readily folded me into the social fabric of the department. It's no secret that those I share meals with are closest of all, and I've been delighted to spend some thousand-plus lunches (and some dinners, too!) with the likes of Dr. Ziyang Zhang, Dr. Jon Mortison, Dr. Fan Liu, Jack Stevenson, and Ethan Magno, whose minds have enriched my life both in and out of lab through their shared virtues of brilliant wit, compassion, and depth of character. The Myers laboratory has no monopoly on such people, either - I find myself particularly grateful for the companionship of Jeff Bessen, Greg Certo, Dr. Nick Calandra, Charlie Margarit, Dr. Anna Klöckner, and Clara Messina, scientists all; but first and foremost, dear friends. And among the many I've met in Boston's artistic orbit, Chando Ao, Yve Yang, and Eric Lee deserve special recognition as some of my closest companions - although they've since moved away, it's to them that I owe the feeling that Boston can be a place where all my facets find expression.

Finally, I owe an ineffable and continuously compounding debt of gratitude to my parents, Pat and Hal Mitcheltree, to whose efforts all of my accomplishments may be attributed. From science journal subscriptions, to summer camps, to trips to the dollar store and Radio Shack, they have kindled my decades-long love affair with science from the start and have presented me with more opportunities to grow than I can count.

List of Abbreviations

A	adenosine
Å	ångstrom
A. baumanii	Acinetobacter baumanii
Ac	acetyl
Bn	benzyl
Boc	tert-butoxycarbonyl
BSTFA	N, O-bis(trimethylsilyl)trifluoroacetamide
Bu	butyl
Bz	benzoyl
C	cytosine
${ }^{\circ} \mathrm{C}$	degrees Celsius
CAM	cerium ammonium molybdate
calc'd	calculated
CDAD	Clostridium difficile-associated diarrhea
C. difficile	Clostridium difficile
cLogD	calculated decimal logarithm of distribution coefficient
d	day
Da	dalton
DABCO	1,4,-diazabicyclo[2.2.2]octane
DBU	1,8-diazabicyclo[5.4.0.]undec-7-ene
DCE	1,2-dichloroethane
DCM	dichloromethane

DEAD	diethyl azodicarboxylate
DET	diethyl tartrate
DIAD	diisopropyl azodicarboxylate
DIBAL-H	diisobutylaluminum hydride
DMAP	4-dimethylaminopyridine
DMDO	dimethyldioxirane
DMF	N, N-dimethylformamide
DMP	Dess-Martin periodinane
DMS	dimethyl sulfide
DMSO	dimethyl sulfoxide
dr	diastereomeric ratio
D. radiodurans	Deinococcus radiodurans
E. coli	Escherichia coli
E. faecalis	Enterococcus faecalis
EDC	1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
ee	enantiomeric excess
equiv	molar equivalent
erm	erythromycin ribosome methyltransferase gene
ESI	electrospray ionization
Et	ethyl
FIA	flow injection analysis
FSA	fully synthetic antibiotic
FTIR	Fourier-transform infrared spectroscopy

g	gram
G	guanosine
Grubbs II	second-generation Grubbs catalyst
h	hour
$\mathrm{h} v$	irradiation with visible or ultraviolet light
HATU	1-[bis(dimethylamino)methylene]-1H-1,2,3-triazolo[4,5-b]pyridinium 3-
	oxide hexafluorophosphate
H. influenzae	Haemophilus influenzae
H. marismortui	Haloarcula marismortui
HMDS	hexamethyldisilazane, hexamethyldisilazide
HPLC	high-pressure liquid chromatography
HRMS	high-resolution mass spectrometry
Hz	hertz
${ }^{\text {i }}$	iso
imid.	imidazole
J	coupling constant
K. pneumoniae	Klebsiella pneumoniae
L	liter
LCMS	liquid chromatography-mass spectrometry
M	molar
m	meter
m	mass
mef	macrolide efflux gene

Mes	mesityl (2,4,6-trimethylphenyl)
MIC	minimum inhibitory concentration
min	minute
$\mathrm{MLS}_{\text {B }}$	macrolide, lincosamide, and streptogramin B
mol	mole
MRSA	methicillin-resistant Staphylococcus aureus
MS	mass spectrometry, or molecular sieves
Ms	methanesulfonyl
$m s r$	macrolide-streptogramin resistance gene
MW	molecular weight
n	normal
NMR	nuclear magnetic resonance spectroscopy
NT	not tested
PAA	p-anisaldehyde
P. acnes	Propionibacterium acnes
P. aeruginosa	Pseudomonas aeruginosa
P. berghei	Plasmodium berghei
PET	peptide exit tunnel
P. falciparum	Plasmodium falciparum
Ph	phenyl
pH	decimal negative logarithm of proton activity
$\mathrm{p} K_{\mathrm{a}}$	decimal negative logarithm of acid dissociation constant
$\mathrm{p} K_{\mathrm{a}}{ }^{\prime}$	decimal negative logarithm of conjugate-acid dissociation constant

PMA	phosphomolybdic acid
ppm	parts per million
Pr	propyl
PTC	peptidyltransferase center
PTFE	polytetrafluoroethylene
P. vulgaris	Proteus vulgaris
Pyr	pyridine
R	rectus (Cahn-Ingold-Prelog system)
rac	racemic
R_{f}	retention factor
R_{t}	retention time
RNA	ribonucleic acid
S	sinister (Cahn-Ingold-Prelog system)
S	second
S	secondary
S. aureus	Staphylococcus aureus
S. epidermidis	Staphylococcus epidermidis
S. pneumoniae	Streptococcus pneumoniae
S. pyogenes	Streptococcus pyogenes
S. schottmeulleri	Salmonella schottmeulleri
Su	succinimidyl
T	thymidine
t	tertiary

TBAF	tetra- n-butylammonium fluoride
TBDPS	tert-butyldiphenylsilyl
TBS	tert-butyldimethylsilyl
Teoc	2-(trimethylsilyl)ethoxycarbonyl
Tf	trifluoromethanesulfonyl
TFE	2,2,2-trifluoroethanol
T. gondii	tetrahydrofuran
THF	triisopropylsilyl
TIPS	thin-layer chromatography
TLC	2,2,6,6-tetramethylpiperidide
TMP	trimethylsilyl
TMS	uridine
Ts	ultraviolet
U	charge
UV	chemical shift, in parts per million

Chapter 1. Introduction

Chemical synthesis and antibiotic discovery

That the academic tradition of complex-molecule synthesis may directly serve the pragmatic aims of human medicine has been demonstrated perhaps no more consistently than in the case of antibiotics discovery. ${ }^{1}$ Many antibiotics - indeed, most of those used in the clinic today - present unique and formidable challenges to the classically trained chemist, making the endeavor of synthesizing them a rewarding scholarly pursuit in its own right. At the same time, a rare nearconvergence of evolutionary incentives exists between those microbial producers of natural antibiotics and the humans who would use them to treat disease - these fruits of ancient industry are, after all, endowed with the ability to kill those same organisms that would do humans harm. A near-convergence, but not a perfect one, as one important parameter was missing among the evolutionary pressures that forged biosynthetic machineries within producing organisms: the suitability of these products for direct administration to humans. In response to this particular problem, chemists have reliably intervened, marshalling the tactics and strategies of chemical synthesis to transform molecules of promise into those of practical use. Thus, the histories of today's antibiotics largely trace the same arc as countless other medicinal chemistry campaigns, but for the fact that those critical early-stage tasks of "target validation" and "lead discovery" were in fact performed by countless generations of microbes, struggling for dominance in anonymous patches of soil.

Natural products are excellent starting points for the development of medicines, as the contemporary armamentarium against bacterial pathogens can attest - since the discovery of penicillin in 1928, nearly all antibiotics introduced to the clinic have represented structural classes

[^0]with naturally occurring embodiments. Time and again, chemical approaches have proven well suited to address the pharmacokinetic, pharmacodynamic, and toxicological liabilities of natural products, delivering derivatives with improved biological activity and diminished side-effect profiles. Likewise, the inevitable emergence of antibiotic resistance to a diverse host of structural classes has been met successfully with chemical innovations to overcome resistance without abandoning the classes altogether - this decades-long molecular arms race is illustrated by the β lactams, for example, where no fewer than 4 generations of penicillins (and no fewer than 5 generations of cephalosporins) have undergone development to counteract new forms of resistance.

Owing to an historical reliance on semisynthetic strategies, however, this latter point regarding the suitability of existing classes to keep pace with rising resistance is challenged. When complex fermentation products serve as physical - rather than conceptual - starting points for antibiotics discovery, the chemical space available for exploration can be substantially limited. Not only do increasingly lengthy and costly routes become necessary in order to continue the exploration of a class once the "low-hanging fruit" has been picked, but indeed the very complexity of the starting material fundamentally limits the nature of modifications that can be performed practically (if at all). The 16 -step, linear synthesis of the ketolide clinical candidate solithromycin from erythromycin, ${ }^{2}$ or the 7 -step synthesis of the aminoglycoside candidate plazomicin (proceeding in 0.16% overall yield) from sisomicin ${ }^{3}$ stand as stark examples of the costs incurred by a reliance on semisynthesis to advance the frontiers of anti-infective medicine.

[^1]Fully synthetic approaches have emerged as promising alternatives to semisynthesis, fueled by steady progress in the capabilities of modern organic chemistry, as well as by programmatic endorsement by researchers in the field, including my doctoral advisor, Professor Andrew G. Myers. Prior to my own graduate studies, his laboratory had demonstrated the viability of this approach applied toward the discovery of new members of the tetracycline ${ }^{4}$ and macrolide ${ }^{5}$ classes. This work was in turn preceded by other notable examples of fully synthetic antibioticdiscovery campaigns, leading most notably to the development of novel β-lactam, ${ }^{6}$ quinolone, and oxazolidinone antibiotics. ${ }^{7}$ These approaches hinge on the synthesis of clinically validated antibiotic scaffolds from simple commercial chemicals, ideally assembled by convergent sequences that enable the generation of orders of magnitude more structural diversity within a given class, through simple substitution of the building blocks that feed into such platforms. The realization of such an approach applied toward the lincosamide family of antibiotics forms the subject of this dissertation.

[^2]
Introduction to the lincosamides

Figure 1.1. Examples of lincosamide antibiotics.

The lincosamides are a class of molecules typified by an unusual carbohydrate-alkaloid framework linking a northern thiooctose residue to a southern cyclic amino acid via a central amide bond. They take their name from their prototypical member, lincomycin (1.1), which researchers at The Upjohn Company recovered from the soil microbe Streptomyces lincolnensis var. lincolnensis found growing in Gering, Nebraska, some 400 miles from Lincoln. ${ }^{8}$ As early as 1955, celesticetin (1.2) - another natural product isolated from the related organism Streptomyces caelestis - had been known, but it wasn't until a team of Upjohn scientists rigorously established the structure of lincomycin in 1964 that the familial identity of these two antibiotic substances was cemented. ${ }^{9}$ That same year, lincomycin was approved for human use by the U.S. Food and Drug Administration (FDA), followed six years later by its semisynthetic derivative clindamycin (1.3). ${ }^{10}$

[^3]The striking fact that no new lincosamides have entered clinical use since 1970 has prompted some experts to dub them an underexploited family within today's armamentarium. ${ }^{11}$

Scheme 1.1. The biosynthetic precursors of lincomycin.

Inquiries into the biosynthesis of the lincosamides - motivated by these molecules' clinical utility as much as by their peculiar structures - have afforded a number of valuable insights, with implications for the discovery of new members of the class. Early stable-isotope feeding studies performed by Upjohn's fermentation research and development team established the provenance of all carbon atoms within lincomycin (Scheme 1.1). ${ }^{12}$ The northern-half octose arises through transaldolase-catalyzed $\mathrm{C}_{3}-\mathrm{C}_{5}$ carbohydrate fragment coupling, they found; while the propylhygric acid motif derives from L-tyrosine, through extradiol oxidative cleavage of its downstream metabolite, L-dihydroxyphenylalanine (L-DOPA). Three remaining carbons within lincomycin were traced to S-adenosyl methionine, namely the S-methyl and N-methyl groups, as

[^4]well as the $\mathrm{C} 8^{\prime}$ methyl terminus of the n-propyl chain. The origin of the sulfur atom, however, remained a mystery until 2015, when Wen Liu and coworkers demonstrated the dual involvement of ergothioneine and mycothiol in the installation of the anomeric substituent of naturally occurring lincosamides. Differential processing of cysteinyl-S-glycoside intermediates (1.6a/b) was found to underlie the variation in sulfur appendages observed between lincomycin and celesticetin (Scheme 1.2) - an insight that enabled the preparation of a library of S-alkyl analogs, including lincomycin-celesticetin hybrid analogs, through engineered biosynthesis (vide infra).

Scheme 1.2. Selected enzymes involved in the biosynthetic processing of S-glycosidic intermediates en route to lincomycin and celesticetin.

Mechanism of action

Lincosamide antibiotics target the bacterial ribosome, blocking protein synthesis by interfering with the proper positioning of aminoacyl-tRNA within the ribosomal A site. Unlike several other important ribosome-targeting antibiotics, ${ }^{13}$ the lincosamides do not interfere with the action of eukaryotic ribosomes, whether cytosolic or mitochondrial; ${ }^{14}$ and in the case of the eukaryotic parasite T. gondii, clindamycin's target is in fact the ribosome of the apicoplast, an organelle believed to have descended from secondary endosymbiosis of an alga. ${ }^{15}$ The lincosamide ribosomal binding site overlaps with those of other widely used antibiotic classes including the phenicols, oxazolidinones, mutulins, and macrolides (Figure 1.2) - all of which occupy an axis extending from the catalytically active peptidyltransferase center (PTC) through the proximal end of the nascent peptide exit tunnel (PET), although subtle differences in structure and relative positioning cause these classes to diverge with respect to the details of their action. ${ }^{16}$ Consequential to their activity as protein-synthesis inhibitors, the lincosamides are bacteriostatic, meaning that exposure to these antibiotics does not directly lead to cell death. This has its advantages, as lincosamides effectively suppress toxin production even at sub-inhibitory concentrations and do not cause lytic release of bacterial cell contents, differentiating them from other classes such as the

[^5]β-lactams in applications such as the treatment of toxic shock syndrome and necrotizing infections. ${ }^{17}$

Figure 1.2. Gross structure and cross-section of the 70S bacterial ribosome, showing the binding site of clindamycin (red) relative to antibiotics targeting the PTC (CC-puromycin, cyan) and PET (azithromycin, green). Color code: 30S rRNA, cornflower; 50S rRNA, wheat; ribosomal proteins, gray. Compiled from PDB entries 4V7V, 3CD6, and 1YHQ.

X-ray crystallographic studies of lincosamides bound to the ribosomes or ribosomal subunits of no fewer than four distinct bacterial species have illuminated with atomic precision the means by which these antibiotics engage their cellular target. In 2001, Ada Yonath, François Franceschi, and co-workers published the first such report, wherein clindamycin was studied in complex with the 50S large ribosomal subunit of the extremophilic eubacterium D. radiodurans. ${ }^{18}$

[^6]This study validated earlier chemical footprinting work ${ }^{19}$ that had proposed a lincosamide binding site within the peptide exit tunnel (PET), bridging the peptidyltransferase center (PTC) and the canonical macrolide binding site (Figure 1.3A). This co-crystal structure defined the binding pose of clindamycin as roughly longitudinal to the PET, whereby the thiooctose moiety, overlapping with the macrolides' desosamine binding site, resides downstream of the propylhygric acid subunit. Upon comparison with the apo structure, it was found that lincosamide binding involves displacement of a divalent magnesium ion by the pyrrolidine ring, whose positive charge under physiological pH likely compensates for the loss of this A-site scaffolding element. ${ }^{20}$ In addition to this important electrostatic interaction, Yonath's work also identified an extensive hydrogenbonding network involving all three pyranose hydroxyls and the central amide group, which together anchor clindamycin to the PET surface, and thus drive molecular recognition between drug and target.

In 2005, a team of researchers at Yale University led by Thomas Steitz (who would later share the 2009 Nobel Prize in Chemistry with Ada Yonath and Venkatraman Ramakrishnan for his work on ribosomal structure and function) reported the co-crystal structure of clindamycin bound to a large ribosomal subunit of another extremophile - the Archaeon H. marismortui - and observed some striking differences compared to the D. radiodurans structure. ${ }^{21}$ The H. marismortui ribosomal subunit used in Steitz's study contained the mutation G2099A, introduced

[^7]in order to more closely resemble the native structure of the eubacterial ribosome, particularly in light of the fact that mutations to this position (A2058 in E. coli; this numbering system is used hereafter) are known to confer resistance to many PET-targeting antibiotics, including the lincosamides. In this system, the binding pose adopted by clindamycin's northern half coincides closely with the D. radiodurans structure, but the propylhygric acid moiety is rotated nearly 180° around the $\mathrm{C} 6-\mathrm{N}$ bond. (Figure 1.3B) The s-trans conformation Steitz and co-workers observed more closely recapitulates ribosome-free structures of clindamycin solved by single-crystal X-ray diffraction, and in the H. marismortui co-crystal structure places the n-propyl terminus in the same A-site cleft occupied by CC-puromycin, indicating that clindamycin acts primarily by blocking proper positioning of A-site aminoacyl-tRNA.

Figure 1.3. The lincosamides bind the neck of the PET, adjacent to the PTC. (A) Clindamycin (salmon, PDB: 1YJN) binds upstream of azithromycin (gray, PDB: 1M1K) within the PET, its thiooctose moiety overlapping with the desosamine residue of the macrolides. (B) Overlay ribosome-bound lincosamide structures reals an anomalous 180° rotation of the prolyl subunit in the first reported structure. D. radiodurans 50S-clindamycin (green, PDB: 1JZX); H. marismortui 50S-clindamycin (salmon, PDB: 1YJN); E. coli 70S-clindamycin (blue, PDB: 4V7V); S. aureus 50S-lincomycin (gray, PDB: 5HKV).

Two additional studies using ribosomes from clinically germane bacterial pathogens would later bolster this revised binding pose (Figure 1.3B), and together with earlier reports would enable
the coalescence of a useful model to describe mechanisms of lincosamide action and resistance. The first of these, led by Professors Alexander Mankin and Jamie Cate, afforded the co-crystal structure of clindamycin bound to the 70S ribosome of the Gram-negative bacillus E. coli. ${ }^{22}$ This report reinforced the role of the n-propyl chain in obstructing the A site, and identified key differences (relative to H. marismortui) in E. coli ribosomal structure, particularly in the region abutting clindamycin's southern half. Likewise, in 2017, Yonath and co-workers reported the structures of the S. aureus 50 S ribosomal subunit in complex with both lincomycin and a semisynthetic analog termed $\operatorname{RB} 02(\mathbf{1 . 1 0}),{ }^{23}$ in which the aminoacyl moiety of the natural product is replaced by a neutral p-nitrobenzamide group (Figure 1.4). Lacking a basic amine in its southern half, RB02 binds the ribosome in an analogous fashion to lincomycin, but lacks the ability to compensate electrostatically for the displacement of a structural magnesium ion: Accordingly, in an in vitro S. aureus ribosomal translation assay, RB02 is roughly 600 -fold less potent than lincomycin $\left(\mathrm{IC}_{50}=19.2 \pm 1.1 \mu \mathrm{~g} / \mathrm{mL}\right.$, versus $\left.0.030 \pm 0.002 \mu \mathrm{~g} / \mathrm{mL}\right)$, and only $10-20$-fold more potent than methylthiolincosamine (MTL, 1.11, $\mathrm{IC}_{50} \sim 300 \mu \mathrm{~g} / \mathrm{mL}$), the aminooctose portion of lincomycin lacking a southern half altogether.

[^8]

Figure 1.4. In-vitro activities of clindamycin, lincomycin, and simplified analogs in cell-free translation-inhibition assays using ribosomes from S. aureus and E. coli. Adapted from Reference 23.

Taken together, these studies suggest three orthogonal driving forces, conserved among all species studied, forming the basis for lincosamide affinity for the ribosome: (1) a well-ordered hydrogen-bond network involving the substituents of C2-C6, providing molecular recognition between ligand and target; (2) an electrostatic interaction between an aminium ion in the southern half and the phosphodiester backbone of A-site rRNA, compensating for the displacement of a structural magnesium ion upon lincosamide binding; and (3) hydrophobic interactions between the A-site residues A2451 and C2452, leading to favorable desolvation of lipophilic appendages on the southern half (Figure 1.5).

Figure 1.5. Detailed depiction of the lincosamide ribosomal binding site. The hydrophobic faces of residues A2451 and C2452 (lilac) form an interaction with the aliphatic southern-half motif of clindamycin (green), while a network of hydrogen bonds (yellow dashed lines) anchors the thiooctose moiety. Residues A2058 (yellow) and A2503 (light green) are highlighted - mutation or modification of these nucleotides confers resistance to lincosamides. Model constructed from PDB entry 1YJN. ${ }^{21}$

Mechanisms of resistance

Within the lincomycin biosynthetic gene cluster of S. lincolnensis can be found two resistance determinants, whose orthogonal actions to protect the producing organism appear to anticipate common forms of lincosamide resistance encountered in the clinic. ${ }^{24}$ The first of these putative genes, $\operatorname{lm} A$, is believed to encode a proton-dependent transport protein, based on the predicted presence of 12 transmembrane domains, and close sequence homology with known multidrug efflux proteins such as the Mmr protein from the producing organism of methylenomycin (Streptomyces caelicolor) and the QacA multidrug transporter from S. aureus.

[^9]The other, $\operatorname{lm} B$, likewise shows similarity to ribosome methyltransferase genes whose products are known to perform N^{6} mono- or dimethylation of A2058 in rRNA - a residue identified both by chemical footprinting ${ }^{19 a}$ and ribosome X-ray crystallography ${ }^{18,21-23}$ as essential for proper targeting by the lincosamides. Surprisingly, while bearing close correspondence with genes known to produce multidrug-resistant phenotypes, $l m r A$ and $\operatorname{lmr} B$ do not confer resistance to lincomycin's close relatives clindamycin and celesticetin. ${ }^{24}$

Mirroring the strategies used by the producing organism to evade the action of lincomycin, the most commonly encountered forms of lincosamide resistance in the clinic are driven by target modification and drug efflux. Post-transcriptional modification of 23S rRNA accounts for the majority of acquired resistance encountered today, most commonly occurring through acquisition of transferrable elements encoding members of the erythromycin resistance methyltransferase (Erm) family of enzymes, of which over 40 have been discovered so far. ${ }^{25}$ Members of this family operate in an S-adenosyl methionine-dependent fashion to dimethylate N^{6} of A2058 (Figure 1.6), analogously to the purported action of LmrB , and confer cross-resistance to macrolides, lincosamides, and streptogramin B - a multidrug-resistance phenotype commonly abbreviated as MLS $_{\mathrm{B}}$, which may be inducible (iErm) or constitutive (cErm). ${ }^{26}$ Since the discovery of the first Erm proteins in the years following the introduction of erythromycin to the clinic, members of this family have been found in a wide array of common pathogens, including S. aureus, S. pneumoniae, S. pyogenes, E. faecalis, C. difficile, and E. coli. The rising prevalence of erm genes, found particularly among hospital-acquired infections, accordingly threatens to curtail the clinical utility

[^10]of contemporary macrolides and lincosamides, prompting the U.S. Centers for Disease Control and Prevention to call for action against MLS $_{\mathrm{B}}$-resistant streptococcal infections specifically in their widely circulated 2013 Threat Report. ${ }^{27}$

Figure 1.6. Pseudo-base pairing interaction of clindamycin with rRNA residue A2058. Ermmediated N^{6} methylation confers cross-resistance to macrolide, lincosamide, and streptogramin A antibiotics. ${ }^{21}$

Erm-mediated ribosome methylation forms the basis of the now-famous D test for inducible MLS $_{B}$ resistance, first reported by Griffith and coworkers in 1965 (Figure 1.7). ${ }^{28}$ In this solid agar susceptibility test, a D-shaped zone of inhibition forms around lincosamide-loaded disks if an erythromycin disk is placed nearby. Subsequent studies of this so-called "erythromycin antagonizability" would later show that inducible expression of erm genes is controlled through a translation-attenuation mechanism, wherein ribosomal binding of macrolide antibiotics causes sequence-specific translation arrest at leader open reading frames; global mRNA rearrangement

[^11]leading to displacement of a stem-loop structure that otherwise sequesters the Shine-Dalgarno sequence of the methyltransferase-encoding mRNA; and consequent translation of the Erm protein. Importantly, because lincosamides bind upstream of the macrolides within the PET and thus typically arrest translation at the initiation codon ${ }^{29}$ (versus the ninth or tenth codon in the case of erythromycin), ${ }^{30}$ they are able to elude detection by this common ribo-regulatory apparatus -a key advantage of the class.

Figure 1.7. D test for inducible MLS $_{B}$ resistance in S. aureus. Erythromycin disks (labeled "E," right and left) produce a diminished zone of inhibition surrounding lincomycin ("l," top and bottom) disks placed nearby. From Griffith, L. J.; Ostrander, W. E.; Mulins, C. G.; Beswick, D. E. Science 1965, 147, 746-747. Reprinted with permission from AAAS.

Another increasingly common mode of resistance is driven by post-transcriptional modification of rRNA at a site approximately $8 \AA$ upstream of A2058 at the neck of the PET, giving rise to phenicol, lincosamide, oxazolidinone, pleuromutilin, and streptogramin A $\left(\mathrm{PhLOPS}_{\mathrm{A}}\right)$ cross-resistance. The gene responsible for this phenotype, cfr (chloramphenicolflorfenicol resistance), was discovered in 2000 by a team surveilling florfenicol resistance among

[^12]staphylococcal veterinary isolates in Germany. ${ }^{31}$ Homologous to the housekeeping ribosome methyltransferase RlmN, which methylates C2 of the A-site residue A2503 (and does not substantially impact antibiotic susceptibility), Cfr instead methylates the C8 position of this same rRNA residue, altering the local structure of PET floor, and sterically blocking molecular recognition between PhLOPS $_{\text {A }}$ drugs and their target (cf. Figure 1.5). ${ }^{32}$ Importantly, cfr has been shown to carry only a small associated fitness cost upon expression, is almost always found on plasmids or together with insertion sequences, and readily undergoes horizontal transfer between pathogenic hosts, ${ }^{33}$ all with clear epidemiologic consequences. While current estimates indicate that $c f r$ is not particularly widespread, recent reports of $c f r$-mediated multidrug-resistant S. aureus, E. faecalis, and S. epidermidis outbreaks ${ }^{34}$ present further evidence of rising resistance to clinical standbys like clindamycin.

In addition to post-transcriptional modification of the ribosome, mutations to rRNA primary structure are known to confer lincosamide resistance as well. Indeed, some of the first known lincosamide-resistant strains of S. aureus, obtained deliberately through repeated passage on lincomycin- or clindamycin-treated growth media, ${ }^{35}$ are believed to have arisen through

[^13]accumulated mutations in 23S rRNA sequence. ${ }^{11}$ While point mutations such as A2058G are known to produce $\mathrm{MLS}_{\mathrm{B}}$ resistance phenotypes - in the case of clindamycin, by disrupting the pseudo-base-paired interaction normally formed between the C2,C3-diol motif of clindamycin and A2058 (Figure 1.6) - this mechanism of resistance is not commonly encountered in most pathogenic bacteria, which carry multiple copies of ribosomal DNA. ${ }^{36}$ One notable exception is that of T. pallidum, the organism that causes syphilis, which harbors only two copies of the rRNA gene: ${ }^{37}$ In 2015, a survey of T. pallidum clinical isolates $(\mathrm{n}=109)$ in Shanghai revealed a staggering 95.4% prevalence of the A2058G mutation in both copies of the 23 S rRNA gene, explaining high rates of treatment failure with azithromycin, a macrolide antibiotic. ${ }^{38}$ Similarly, prolonged topical administration of clindamycin for the treatment of acne vulgaris is believed to partially underlie an increase in MLS $_{\mathrm{B}}-$ resistant P. acnes, many isolates of which harbor the A2058G ribosomal mutation. ${ }^{39}$

Bacteria expressing lincosamide-modifying enzymes have also been reported, although the clinical significance of drug modification-based resistance is not well known. All of the lincosamide-modifying enzymes reported to date function as adenylyltransferases and fall into two main groups based on sequence similarity with other nucleotidyltransferase families. The first group, typically found in staphylococci, comprise LinA and its relatives LnuC and LnuD; these enzymes are homologous to $\operatorname{ANT}\left(2^{\prime \prime}\right)-1 \mathrm{a}$, an enzyme known to function similarly in the

[^14]nucleotidylative deactivation of aminoglycoside antibiotics. ${ }^{40}$ The second, including LinB and LnuF, appear to derive instead from bacterial DNA polymerase, and are observed in enterococci (Figure 1.8). ${ }^{41}$ Intriguingly, while LinB selectively modifies the 3-hydroxyl group of both clindamycin and lincomycin, LinA shows more pronounced substrate sensitivity, producing upon exposure to lincomycin the corresponding 3-(5'-adenylate), whereas clindamycin is modified at the 4-position. ${ }^{42}$ As with the enzymes responsible for target modification-mediated resistance, these drug-inactivating enzymes are often encoded on transmissible elements. ${ }^{11}$

Figure 1.8. Structures of lincosamide adenylyltransferases solved by X-ray crystallography. Left: LinA in complex with lincomycin (magenta; PDB: 4WH5). Right: LinB bound to clindamycin (green) and an ATP mimetic (cyan; PDB: 3JZ0).

While no lincosamide-specific efflux pumps have been well characterized (besides perhaps LmrA, the transporter protein encoded in the lincomycin biosynthetic gene cluster), nonspecific drug efflux nonetheless represents a major driver of lincosamide resistance. In Gram-negative

[^15]organisms particularly, chromosomally encoded multidrug transporters such as the AcrAB-TolC complex in E. coli confer intrinsic resistance to lincosamides, as evidenced by a ≥ 16-fold increase in susceptibility to clindamycin upon deletion of the tolC gene (encoding the outer-membrane portion of the AcrAB-TolC pump assembly) in otherwise isogenic E. coli strains. This intrinsic resistance represents a general challenge to the class, as even next-generation lincosamides effective against cErm-expressing Gram-positive pathogens display extensive efflux from Gramnegative organisms.

Indeed, even in some Gram-positive organisms, including strains of staphylococcal species typically susceptible to lincosamides, ATP-binding cassette (ABC) transporters conferring lincosamide resistance have been identified. ${ }^{43}$ More recently, in work showcasing a newly developed method for high-throughput ribo-regulator discovery, Israeli and French researchers uncovered a lincomycin-dependent regulatory apparatus operating in L. monocytogenes, which controls expression of an ABC transporter-type resistance determinant. ${ }^{44}$ This ribo-regulator, lmo0919, specifically senses translational stalling of lincomycin-bound ribosomes on a 9-base upstream open reading frame, leading to reorganization of a downstream mRNA termination structure and consequent translation of the downstream ABC transporter gene. This attenuationbased regulatory system closely recalls the canonical mechanism underlying the iErm phenotype, demonstrating that while the lincosamides arrest translation at an earlier stage than macrolides, ribosomal detection - and consequent expression of multidrug-resistance determinants - is possible for both classes.

[^16]
Clinical utility and limitations

Clindamycin, which replaced lincomycin as the only clinically relevant member of the lincosamide class upon FDA approval in 1970, has been in continuous use for nearly half a century. Listed as an essential medicine by the World Health Organization, clindamycin's quarterly unit sales have doubled over a 12 -year period, ${ }^{45}$ tracking with the growing rate of antibiotic use. ${ }^{46}$ The lincosamides have a spectrum of activity similar to the macrolides, typically limited to Grampositive cocci such as S. aureus, S. pneumoniae, and S. pyogenes; ${ }^{47}$ some Gram-positive bacilli such as L. monocytogenes and B. anthracis; and select Gram-negative bacteria such as N. gonorrhoehae and B. fragilis. As such, clindamycin (Cleocin, Pfizer) is commonly prescribed to patients allergic to β-lactams or macrolides (or in pediatric cases, where tetracycline administration is inappropriate) for the treatment of staphylococcal or streptococcal infections, where its mechanism of action has the added benefit of suppressing bacterial exotoxin production. ${ }^{17}$ Owing to its excellent distribution into bones and joints upon systemic administration, clindamycin is also recommended for the treatment of osteomyelitis. ${ }^{48}$ Likewise, its oral bioavailability, excellent staphylococcal activity, and inability to trigger iErm have made clindamycin part of the standard

[^17]of care in methicillin-resistant S. aureus (MRSA) infections. In a troubling development perhaps deriving directly from this success, however, up to 50% of MRSA isolates in some settings now display clindamycin resistance. ${ }^{49}$ Interestingly, owing to its activity against the eukaryotic pathogen P. falciparum, clindamycin has also found limited use as an antimalarial agent, typically as a component of combination therapies. ${ }^{50}$

Topical formulations of clindamycin have been developed as well, primarily for the treatment bacterial infections of the skin and mucosa. One such indication is acne vulgaris, for which more than 866,000 total prescriptions (amounting to $\$ 442$ million in sales) are filled annually. ${ }^{51}$ Formulated as the corresponding 2-phosphoester prodrug in combination with tretinoin (Ziana, Valeant) or benzoyl peroxide (Acanya and Onexton, Valeant), clindamycin nominally targets the Gram-positive bacillus P. acnes, though destruction of other constituents of the skin flora almost certainly occurs as well. Likewise, intravaginal delivery of clindamycin-2-phosphate (Clindesse, Perrigo) is indicated for the treatment of bacterial vaginosis. ${ }^{52}$

The greatest liability associated with the use of clindamycin is its tendency to promote intestinal infections by the opportunistic pathogen C. difficile, leading to potentially lifethreatening colitis. ${ }^{53}$ This risk of C. difficile-associated diarrhea (CDAD) is significantly higher

[^18]for clindamycin than for other common antibiotics, ${ }^{54}$ and appears to arise through clindamycin's particular spectrum of action against commensal anaerobes that make up the colonic flora. Indeed, so pronounced is this hazard that clindamycin bears an FDA-mandated boxed warning for CDAD, and concerns of similar risks have hampered the discovery and development of new lincosamides to replace clindamycin. ${ }^{11}$ Recent work led by Dr. Eric Pamer of Memorial Sloan Kettering Cancer Center traced the phenomenon of antibiotic-associated diarrhea down to the destruction of the obligate anaerobe Clostridium scindens, a metabolically active constituent of the gut microbiome and close relative of C. difficile, which acts to produce secondary bile acids conferring host resistance to C. difficile infection (CDI). ${ }^{55}$ While compelling, these findings describe only one of what is likely to be a compendium of operative mechanisms by which antibiotic treatment leads to C. difficile overgrowth - other studies have noted, for example, that antibiotics with little reported effect on anaerobic flora nonetheless can promote pseudomembranous colitis; ${ }^{54}$ and no confident consensus exists yet to map the spectrum of action of an antibiotic to its associated CDAD risk.

The continued use of clindamycin despite limitations in antibacterial spectrum of action, associated CDAD risk, and rising resistance strongly suggests that the lincosamide class represents an historically underexploited class of antibiotics. Indeed, no new members have been introduced to the clinic in nearly 50 years - a discovery void that extends for longer than that of virtually any other class. Accordingly, an unmet medical need for novel lincosamides addressing one or more

[^19] 1981, 8, 383-393.

[^20]of the current shortcomings facing the class has prompted several lincosamide discovery campaigns to take on the challenge. These efforts and their findings are discussed in the section that follows.

The structure-activity relationship of the lincosamides

Many of the most impactful insights into the structure-activity relationship (SAR) of the lincosamides were made in the first two decades following their discovery. Using a hydrazinolytic method to separate lincomycin into its constituent propylhygric acid and methylthiolincosamine (MTL, 1.11) fragments - a transformation that figured prominently in the team's earlier work to solve the structure of the natural product - scientists at Upjohn performed independent modification of both molecular hemispheres, leading to pivotal discoveries that would prove general over subsequent decades of lincosamide research (Scheme 1.3). The earliest such reports described modifications to the 4^{\prime} position of the cyclic amino acid motif, whereby the native $2^{\prime}, 4^{\prime}$ trans relationship native to the natural product proved favorable to the cis alternative (1.16a). More importantly, a survey of linear alkyl substituents at the 4^{\prime} position was performed, establishing that increased lipophilicity at this position is beneficial for activity. n-Pentyl and n-hexyl substitutions were shown to be ideal, conferring a 3- to 5 -fold improvement in potency against the Grampositive bacterium S. lutea ${ }^{56}$ (a result that would be reproduced through mutasynthetic studies as late as 2010), ${ }^{57}$ whereas isosteric replacement of the 6^{\prime} methylene carbon of lincomycin with an oxygen atom, affording 4'-depropyl-4'-ethoxylincomycin (1.16d), nearly abolished all

[^21]antimicrobial activity. ${ }^{58}$ In light of contemporary crystallographic understanding of how lincomycin binds its target, these findings come into clearer focus: Site-specific inclusion of lipophilic functionality at the tail portion of lincosamides likely drives target engagement directly through favorable interactions with the hydrophobic cleft comprising A2451 and C2452.

Activity reative
to lincomycin:
0.5

Scheme 1.3. Early studies at Upjohn focused on C^{\prime} ' and N -alkyl derivatization of the southern half using hydrazinolysis to generate the northern-half MTL residue from lincomycin. Relative activities were measured against the test organism S. lutea. ${ }^{56}$

In concert with this survey of 4^{\prime}-alkyl modifications, changes to the aminosugar component were also explored. These studies would cement the role of the pyranose hydroxyls (positions 24) as a "conserved" motif necessary for activity and would identify the 7 position as a strategic

[^22]site by which several properties could be favorably influenced. In a series of transactions from Brian Bannister in the 1970s, modifications to the core of MTL were detailed, ${ }^{59}$ including the evaluation of 2-O-methyllincomycin (1.17), 2-deoxylincomycin (1.18), 4-epilincomycin (1.19), and a group of 2,3-di-epi-3-substituted derivatives (1.21) arising through Fürst-Plattner attack of an intermediate 2,3 -anhydrolincosamide, 1.20. Each of these semisynthetic analogs was devoid of activity, as might be expected given the key role that the pyranose hydroxyls play in establishing a hydrogen-bond network with the ribosome. Indeed, in an early example of SAR deconvolution in the class, the enzymatic activity of isolated ribosomes was measured in the presence of 2deoxylincomycin (1.18): No significant inhibition of amino acid incorporation was observed, proving that poor target engagement, rather than cell penetration, was to blame for the lack of biological activity.

Figure 1.9. Northern-half variants bearing changes to the $\mathrm{C} 1-\mathrm{C} 4$ substituents (Upjohn). ${ }^{59}$

Within their first reports of analogs bearing southern-half modifications, Barney Magerlein, Robert Birkenmeyer, and Fred Kagan of Upjohn noted that 7-deoxychlorination of lincomycin and its 4^{\prime} analogs potentiated the in vitro activities of the resulting antibiotics. ${ }^{58}$ What's more, it was shown that in an animal model of infection with S. aureus, orally dosed 7-

[^23]deoxychlorinated analogs were substantially more efficacious. Among these analogs was 7-deoxy-7-chloro lincomycin - clindamycin (1.3) - whose $7(S)$ stereochemistry would later be established by Magerlein and Kagan in 1969. ${ }^{60}$ This single-atom substitution, achieved industrially in a single semisynthetic step through the action of a Vilsmeier reagent on lincomycin, ${ }^{61}$ had far-reaching consequences: Relative to the parent compound, clindamycin was found to have superior human oral bioavailability; improved potency in vitro; and, for the first time within the class, anti-malarial activity, including against strains of chloroquine- and quinine-resistant P. berghei. What's more, modifications to the C7 position had dramatic effects on Gram-negative activity, with 7(S)-halo substitution providing \geq-fold diminution in minimum inhibitory concentrations (MICs) measured against E. coli, P. vulgaris, and S. schottmeulleri (Figure 1.10). Together with the observation that the preferred stereochemical configuration at C 7 was dependent upon its chemical substitution, these results offered compelling evidence that targeted modifications to this position could deliver lincosamides with substantially improved properties. ${ }^{62}$

[^24]

Figure 1.10. Minimum inhibitory concentrations ($\mu \mathrm{g} / \mathrm{mL}$) of selected C7-modified lincomycin derivatives against a panel of three Gram-positive (G^{+}) and three Gram-negative (G-) bacterial strains. Adapted from Reference 62 (Upjohn).

Following the commercial launch of clindamycin, efforts at Upjohn focused once again on the southern half, where azetidine-, pipiridine-, and azepane-based scaffolds (together with acyclic amino acids) were evaluated. From this work emerged pirlimycin (1.30), a second-generation lincosamide unifying the $7(S)$-chloro methylthiolincosamine fragment of clindamycin (7-Cl-MTL, 1.29) with cis-4-ethyl-L-pipecolic acid (Scheme 1.4). While roughly equipotent to clindamycin in in vitro susceptibility assays, pirlimycin featured reduced median protective doses (ED_{50} 's) in murine models of S. aureus, S. pneumoniae, B. fragilis, and P. berghei infection. ${ }^{63}$ Low acute toxicity, high oral bioavailability, and remarkable pharmacokinetic/pharmacodynamic (PK/PD) properties conspired to distinguish pirlimycin from clindamycin, which over the course of the intervening decade had cemented the lincosamides' place in medicine. Pirlimycin displayed excellent metabolic stability ${ }^{64}$ and increased serum drug exposure over time - particularly valuable characteristics in light of the fact that the key $\mathrm{PK} / \mathrm{PD}$ driver of lincosamide efficacy is the duration

[^25]of time that serum drug concentration exceeds the MIC (T>MIC). ${ }^{65}$ Despite these promising attributes, however, pirlimycin was ultimately diverted into veterinary medicine as concerns ostensibly mounted over the CDI liability that had come to be associated with the class. ${ }^{11,66}$ The story of pirlimycin thus serves to illustrate the central importance of $\mathrm{PK} / \mathrm{PD}$ and safety considerations - independent of antimicrobial activity - for their role in the successful development of new members of the class.

Scheme 1.4. Synthesis of lincosamide analogs bearing 4-, 6-, and 7-membered southern halves proceeded through the intermediacy of the semisynthetic intermediate 7-Cl-MTL (Upjohn). Routes to 7-Cl-MTL are described in References 60 and 68.

Following a merger of Upjohn and Pharmacia in 1995 and subsequent acquisition of the resulting company in 2003, Pfizer acquired the rights to market clindamycin and pirlimycin; ${ }^{67}$

[^26]meanwhile, in the early 2000s, scientists at Vicuron Pharmaceuticals began their own lincosamide discovery campaign. ${ }^{11,68}$ This work initially hinged on the replacement of Upjohn's invention, the 7-chloro group, with a methyl isostere - a "patent-busting" strategy that allowed Vicuron to identify an early lead, VIC-105555 (1.41, Scheme 1.5). This compound, which bears a striking resemblance to pirlimycin, featured a similar spectrum of activity, together with improved PK parameters that would come to typify the pipecolamides (Table 1.1). Compared to clindamycin, VIC-105555 displayed longer serum half-life in all four animals studied and was more orally bioavailable in higher-order animals (dog and monkey), with important implications toward projected clinical efficacy.

Scheme 1.5. Synthesis of VIC-105555 employing a formal C7-deoxymethylation sequence (Vicuron). ${ }^{11}$

[^27]Table 1.1. Comparison of pharmacokinetic parameters measured for clindamycin and VIC105555 in four animals. Adapted from Reference 11. IV = intravenous; PO = oral.

	Species	Clindamycin (1.3)				VIC-105555 (1.41)			
		Mouse	Rat	Dog	Monkey	Mouse	Rat	Dog	Monkey
\geq	Dose (mg/kg)	2	2	2	2	2	2	2	2
	$\mathrm{C}_{\text {max }}(\mathrm{mg} / \mathrm{L})$	0.49	0.69	2.77	1.28	0.52	0.51	1.15	1.74
	$\mathrm{T}_{1 / 2}(\mathrm{~h})$	0.24	1.1	3.52	10.8	2.84	3.72	16.5	14.4
	AUC ($\mathrm{mg} \mathrm{h} / \mathrm{L}$)	0.14	0.53	7.94	1.42	0.49	0.81	1.89	2.1
O	Dose (mg/kg)	8	8	10	10	8	8	10	10
	$\mathrm{C}_{\text {max }}(\mathrm{mg} / \mathrm{L})$	0.105	0.277	5.13	0.382	0.015	0.015	1.07	1.03
	$\mathrm{T}_{\text {max }}(\mathrm{h})$	0.25	0.33	0.37	0.75	2	0.83	0.37	1
	Bioavailability	7\%	23\%	43\%	10\%	3\%	2\%	76\%	48\%

With VIC-105555 advancing through preclinical evaluation as a benchmark compound, the Vicuron team shifted their attention to the northern half, where C1-modified variants of this lead compound were sought. Toward this end, a route to lincosamine originally reported by Dondoni and co-workers ${ }^{69}$ was adapted to install the desired C6-isopropyl substituent. With subsequent activation of the anomeric position, a number of O-, S-, and C-glycosides were prepared, and the resulting aminosugars were paired with previously optimized pyrrolidine- and pipiridine-based southern fragments (Figure 1.11).

[^28]

Figure 1.11. Northern-half variants pursued by Vicuron. While generally well tolerated, none of these modifications conferred substantial gains in activity. ${ }^{11,68}$

This route was readily adapted to enable similar exploration of the C6 position, another site of the lincosamide scaffold that Vicuron scientists had identified as a high priority, based on analysis of available crystallographic data and prior SAR on the related C7 position. By engaging nitrone intermediate $\mathbf{1 . 4 2}$ with various Grignard reagents (in the presence of diethylaluminum chloride, in order to impart diastereoselectivity, Scheme 1.6), a small library of C6-modified lincosamides were prepared as well (Figure 1.11). ${ }^{70}$ As was found in the case of those C 1 variants the team explored, modifications to C6 were generally well tolerated, but did not provide any tractable improvements in activity or spectrum of action.

[^29]

Scheme 1.6. Synthesis of a C6-modified northern-half component through adaptation of a route to lincosamine (Vicuron). ${ }^{70} \mathrm{HMPA}=$ hexamethylphosphoramide; TFAA = trifluoroacetic anhydride; 2,6-lut. $=2,6$-lutidine .

Thorough exploration of southern-half scaffolds was met with more encouraging results. While Upjohn had investigated azetidines and azepanes as early as 1982, these examples did not feature substitution of the heterocyclic ring. Identifying these scaffolds as comparatively underexplored, the Vicuron team performed a survey of 3^{\prime}-alkylazetidine and 5'-alkylazepane analogs. From the azetidine series, a trans-3'-n-butyl compound (1.54, Figure 1.12) emerged, featuring superior inhibition of E. coli ribosomal activity in a cell-free transcription/translation assay ($\mathrm{IC}_{50}=0.36 \mathrm{~nm}$, versus 2.70 nm for clindamycin) and offering a roughly 2-fold improvement in in vivo efficacy in a murine septicemia model, dosed either orally (PO) or intravenously (IV). ${ }^{71}$ However, the in vitro potency, spectrum of action, and PK profile of $\mathbf{1 . 5 4}$ were similar to clindamycin, rendering it unlikely to outperform VIC-105555 (1.41) in projected clinical trials. ${ }^{11}$

[^30]

Figure 1.12. Synthesis of 3^{\prime}-alkyl azetidine analogs and their corresponding in vitro and in vivo data (Vicuron). ${ }^{71}$ HBTU $=$ (2-(1H-benzotriazol-1-yl)-1,1,3,3-tetramethyluronium hexafluorophosphate; $\mathrm{TT}=$ transcription/translation.

The real breakthrough for Vicuron came upon the discovery of cis-5'-substituted azepane analogs, which demonstrated an unexpectedly broadened spectrum of action against both enterococci and Gram-negative pathogens like H. influenzae and E. coli. These analogs were prepared by a flexible sequence employing ring-closing metathesis to forge the 7-membered ring, which enabled preliminary exploration of the 5^{\prime} substituent (Figure 1.13), and ultimately prompted the development of a second-generation route employing a ring-expanding Beckmann rearrangement to provide the desired $2^{\prime}, 5^{\prime}$-cis stereochemistry. ${ }^{72}$ These chemical innovations led to the discovery that subtle perturbations to the azepane 5^{\prime} substituent altered the spectrum of

[^31]action of the resulting lincosamides, particularly against the normally commensal gut anaerobe B. fragilis. This led researchers to believe that precise installation of polar functionality at this position could be used to influence the anaerobic spectrum of activity, offering a possible handle by which to control the CDAD liability of resulting antibiotics. Despite these promising advances, parallel programs in Vicuron's pipeline - most notably, the clinical evaluation of dalbavancin, a lipoglycopeptide antibiotic, for the treatment of bloodstream and skin and soft tissue infections caused by Gram-positive bacteria - prompted Pfizer to acquire the company in 2005; the lincosamide program was terminated shortly thereafter.

1.65a

1.65b

1.65c

1.65d

1.65e

Species	Description	Clindamycin	1.65a	1.65b	1.65c	1.65d	1.65e
+ S. aureus	ATCC 25923	0.125	0.06	0.03	0.06	0.25	0.5
\bigcirc E. faecalis	ATCC 29212	16	0.125	0.06	0.06	1	4
1 B. fragilis	ATCC 25285	2	0.125	0.5	1	8	>8
\bigcirc (1) influenzae	ATCC 31517	8	0.5	0.25	0.25	0.5	2

Figure 1.13. 5'-Substituted azepanes discovered by Vicuron demonstrate an expanded spectrum of activity and feature tunable potency against anaerobic species such as B. fragilis. ${ }^{11}$ DIAD $=$ diisopropyl azodicarboxylate; $\mathrm{Ns}=2$-nitrobenzenesulfonyl.

Most recently, researchers under the leadership of Dr. Keiichi Ajito of Japan’s Meiji Seika Pharma Co. have revisited the C7 position, achieving dramatic gains in activity against multidrugresistant Gram-positive streptococci through semisynthetic modification. ${ }^{73}$ The team's focus on streptococci is unusual from a Western perspective, where recent antibiotics discovery efforts have centered around Gram-negative species and ESKAPE pathogens (E. faecium, K. pneumoniae, A. baumanii, P. aeruginosa, and Enterobacter spp.); however the staggeringly high incidence of drug-resistant pneumococcal disease in East Asia, where the MLS $_{B}$ phenotype is found in up to 96% of clinical isolates, undoubtedly influenced the team's objectives with the project. ${ }^{74}$

[^32]${ }^{74}$ (a) Cheng, A. C.; Jenney, A. W. Pneumonia 2016, 8, doi:10.1186/s41479-016-0010-1. (b) Song, J. H.; Jung, S. I.; Ko, K. S.; Kim, N. Y.; Son, J. S.; Chang, H. H.; Ki, H. K.; Oh, W. S.; Suh, J. Y.; Peck, K. R.; Lee, N. Y.; Yang, Y.; Lu, Q.; Chongthaleong, A.; Chiu, C.-H.; Lalitha, M. K.; Perera, J.; Yee, T. T.; Kumarasinghe, G.; Jamal, F.; Kamarulzaman, A.; Parasakthi, N.; Van, P. H.; Carlos, C.; So, T.; Ng, T. K.; Shibl, A. Antimicrob. Agents. Chemother. 2004, 48, 2101-2107. (c) Zhang, B.; Gertz, R. E., Jr.; Liu, Z.; Li, Z.; Fu, W.; Beall, B. J. Med. Microbiol. 2012, 61, 42-48.

Scheme 1.7. Synthesis of a C7-arenesulfide derivative effective against MLS ${ }_{B}$-resistant Grampositive organisms (Meiji Seika). ${ }^{73 \mathrm{j}} \mathrm{DCC}=N, N^{\prime}$-dicyclohexylcarbodiimide; HOBt $=N$ hydroxybenzotriazole; dba = dibenzylideneacetone.

Relying on $\mathrm{S}_{\mathrm{N}} 2$ displacement chemistry to install 7(S)-arenyl (or azetidinyl) sulfide appendages in combination with previously reported southern halves, the team identified two lead compounds (1.72 and 1.73, Scheme 1.7), selected for their excellent in vitro activities against S. pneumoniae (MIC_{90} 's $\leq 0.25 \mu \mathrm{~g} / \mathrm{mL}, \mathrm{n}=60$), S. pyogenes, H. influenzae, and Mycoplasma pneumoniae. These leads both bear a 4-(5-pyrimidinyl)phenyl side chain identified through extensive optimization of this residue and differ only in the N -methylation pattern of the pipecolamide southern half. In a mouse model of pneumonia using S. pneumoniae harboring both macrolide efflux pump (mef) and erm genes, a 3-log reduction in colony forming units (CFUs) recovered from lung tissue was observed upon subcutaneous dosing with 1.72 (a ca. 2-log reduction was seen in the case of the N -methylated congener, 1.73). In the course of their work, Meiji Seika scientists identified a number of other potent antibiotics bearing 7-thio substitution, including propylhygramides $\mathbf{1 . 7 5}$ and $\mathbf{1 . 7 6}$, and morpholino derivatives $\mathbf{1 . 7 7}$ and $\mathbf{1 . 7 8}$ (Figure 1.14), further reinforcing the strategic value of C 7 modification. These breakthroughs come with
an important caveat, however, as questions of oral bioavailability and first-pass metabolism of the sulfur-rich analogs generated through this semisynthetic approach presently remain unaddressed.

1.74

$1.75(\mathrm{X}=\mathrm{CH})$
$1.76(\mathrm{X}=\mathrm{N})$

1.77

1.78

Figure 1.14. Structures of 7-thio-modified lincosamides discovered by Meiji Seika Pharma Co, displaying improved activity against Gram-positive MLS $_{\mathrm{B}}$-resistant organisms.

In addition to these industrial programs, academic research groups have probed selected aspects of lincosamide SAR as well. In one particularly impressive example of early structurebased drug design, a team led by Stephen Hanessian of the University of Montreal (in collaboration with Upjohn) designed and synthesized "quantamycin" (1.79), a hybrid nucleoside-lincosamide compound based on an early working hypothesis of lincomycin's binding mode with the ribosome (Figure 1.15). ${ }^{75}$ This amounted to the replacement of the α-methylthio substituent of the northern fragment with a β-C-glycosidic linkage in order to fuse a pseudo-adenosyl motif to the pyranose ring of lincomycin - a structural change that required a sequence of >18 semisynthetic steps to realize (Scheme 1.8). Intriguingly, while quantamycin displayed no antibacterial activity, it did demonstrate moderate ribosomal binding ability in competition experiments with ${ }^{14} \mathrm{C}$-labeled lincomycin - a puzzling result given contemporary understanding of lincomycin's binding orientation (cf. Figure 1.3A), which is the reverse of that which formed the basis of quantamycin's design.

[^33]

Figure 1.15. Structural analogy between the charged P-site amino acyl-tRNA residue (tRNA-f-Met-A) and lincomycin led to the design of quantamycin by Hanessian and co-workers. ${ }^{75}$

Scheme 1.8. Synthesis of quantamycin via sequential C - and N-glycosylation. $\mathrm{NMM}=N$ methylmorpholine. ${ }^{75}$

Two studies published by Andrea Vasella and his co-workers at ETH Zurich serve to reinforce the model of lincosamide target engagement that emerged in the post-crystallographic period. In the first, replacement of the central amide linkage of lincomycin with a bioisosteric

1,2,3-triazolyl motif was explored (Scheme 1.9). ${ }^{76,77}$ Hydrazinolysis of lincomycin, followed by transformation of the two subunits to a corresponding azide-alkyne pair allowed the preparation of $\mathbf{1 . 9 3}$ by copper-catalyzed cycloaddition. This analog possessed no detectible antimicrobial activity, as might be expected in light of the hydrogen bond-donor role that the native amide group plays in its interaction with the 4^{\prime} oxygen atom of G2505 (Figure 1.5). The second study, by contrast, targeted the C1 position, which does not directly interface with the PEC in X-ray cocrystal structures. Vasella and co-workers' semisynthetic preparation of C1-arylthio, alkylthio, and C1-disubstituted thioglycoside analogs (e.g., 1.94a-e, 1.95a-e) served to reinforce Vicuron's findings that that modifications to this site are often well tolerated; however, just as before, no substantial improvements in antibiotic activity were realized (Figure 1.16). ${ }^{78}$

Scheme 1.9. Vasella and co-workers' synthesis of a lincomycin derivative possessing a bioisosteric 1,2,3-triazole in place of the native amide. ${ }^{76}$

[^34]

$1.94 b$

1.94c

1.94d

$1.94 e$

Figure 1.16. Minimum inhibitory concentrations ($\mu \mathrm{g} / \mathrm{mL}$) of selected analogs bearing C 1 modifications, introduced semisynthetically by Andrea Vasella and co-workers. ${ }^{78}$

The recent discovery of "odcelin" (1.96, Figure 1.17), a hybrid antibiotic uniting the C1 substituent of celesticetin with the C6 (propylhygramide) and C7 (hydroxyl) substituents of lincomycin, represents an exception, albeit minor, to this rule. This non-natural lincosamide was prepared alongside a small library of other lincomycin-celesticetin chimeras through in vitro processing of cysteinyl S-glycoside $\mathbf{1 . 6 b}$ by appropriate recombinant enzymes obtained from the celesticetin biosynthetic pathway. Compared to lincomycin, odcelin proved moderately more active in a disk-diffusion assay against the Gram-positive organism Kocuria rhizophila, ${ }^{79}$ signaling that modification of the C 1 substituent in concert with certain C 6 and C 7 appendages can indeed afford antibiotics with superior activity compared to their 1- α-methylthio congeners.

[^35]

Figure 1.17. Structural characteristics and antimicrobial activities (disk diffusion assay against K. rhizophila) of natural and bio-engineered lincosamides, demonstrating additive effects of selected $\mathrm{C} 1, \mathrm{C} 7$, and C^{\prime} modifications. ${ }^{79}$

Taken together, the body of research surrounding the lincosamide class suggests strongly that through continued chemical innovation, the discovery of improved alternatives to clindamycin is possible, particularly if considerations of $\mathrm{PK} / \mathrm{PD}$ and CDAD-related safety are taken into account. These prior efforts have identified powerful new southern-half scaffolds that provide gains in $\mathrm{PK} / \mathrm{PD}$ performance, potency, and spectrum of activity; and likewise have demonstrated that modifications to key positions in the northern hemisphere can favorably impact these same parameters. Nonetheless, the lincosamides remain underexplored relative to other families of similar clinical utility, owing in part to a lack of practical and flexible synthetic routes for the discovery of new members of the class.

A fully synthetic approach to the lincosamide antibiotics

In 2013, upon joining the Myers laboratory, I began work on a program for the discovery of new lincosamides as part of the research group's ongoing efforts to develop fully synthetic platforms toward clinically validated antibiotic classes. I was later joined on this project by two graduate researchers, Katherine Silvestre and Ioana Moga; Jack Stevenson, an undergraduate student; and Dr. Amarnath Pisipati, a post-doctoral microbiologist. Together, our crossdisciplinary team was tasked with establishing and implementing new chemical routes to the
lincosamides' key pharmacophores with the ultimate goal of identifying candidates with potential for clinical development.

My work, which forms the subject of this dissertation, sought to identify practical chemical routes to both hemispheres of the lincosamide antibiotics, enabling specifically the exploration of novel β-oxygenated proline scaffolds in the south, as well as northern-half variants bearing modification to C 1 and C6. Such modifications were targeted based on careful analysis of prior SAR, as well as X-ray crystallographic analysis; and in some cases required the development of new chemistry. The chemical enablements and synthetic strategies that emerged from this work in turn led to the discovery of unprecedented scaffolds, including an oxepinoproline construct demonstrating particular promise in in vitro microbiological susceptibility experiments, and provided valuable insight into those structural elements within the northern half that contribute favorably to the activity of the antibiotic class. Each of the routes described here was devised so as to facilitate modifications brought about through building-block exchange and the incorporation of diversifiable elements - a tactic whose utility had been demonstrated before by our group in the synthesis of other ribosome-targeting antibiotics by fully synthetic means.

The second chapter of this dissertation describes my development of an aldol-based annulation reaction of pseudoephenamine glycinamide to provide β-hydroxyproline derivatives, their incorporation into synthetic lincosamide candidates, and subsequent studies leading to the discovery of the aforementioned oxepinoprolinamide series. The third and fourth chapters present the analogous development of routes to the aminosugar component - the former illustrating the suitability of nitroaldol logic to assemble the heteroatom-rich stereochemical array present within this glycoside in a de novo sense, while the latter provides a concise, component-based synthesis of northern-half variants bearing modifications to the acyclic portions of this moiety.

The aim of this work was to enable chemical modifications to the lincosamides whose consequences directly address those aspects of the class that have hampered their more widespread development and clinical implementation. Namely, we sought to identify antibiotics with (1) increased activity against MLS $_{\mathrm{B}}$-resistant pathogens, (2) a diminished projected CDAD liability, and (3) an expanded spectrum of action against Gram-negative organisms. Through the combined efforts of the lincosamide team, >330 novel candidates have been prepared and subjected to antimicrobial evaluation, leading to the identification of several series of particular promise, and enabling the coalescence of a more complete picture of lincosamide SAR. Importantly, many of these analogs would be difficult or impossible to produce by traditional semisynthesis, engineered biosynthesis, or previously reported fully synthetic routes; and as such we hope this work may form the basis for the discovery of new antibiotic candidates with potential to meet those challenges facing the clinic today.

Page intentionally left blank

Chapter 2. Southern-half variants bearing 3' oxygenation

Introduction

My earliest goal in the lincosamide project involved incorporation of a hydroxyl group at the 3^{\prime} position of clindamycin's proline motif, stereochemically disposed cis to the adjacent 2^{\prime} carboxamide group (Scheme 2.1). This particular modification was targeted for a number of reasons, not least of which was that our laboratory had recently reported a practical method for direct syn addition of pseudoephenamine glycinamide (2.3), ${ }^{80}$ a chiral glycine equivalent, to aldehyde and ketone substrates, affording β-hydroxy- α-amino acid motifs in high yield and diastereomeric purity. ${ }^{81}$ This transformation, discovered by Dr. Ian Seiple and improved substantially with respect to scope and practicality by Jaron Mercer, Dr. Robin Sussman, and Dr. Ziyang Zhang, had proven indispensable in its application toward the synthesis of new macrolide antibiotics, and - it was hoped - could be of similar utility in the context of other antibiotic classes. Paired with an earlier discovery from the Myers laboratory demonstrating that sequential C - and N-alkylation of the closely related pseudoephedrine glycinamide (2.6) could forge cyclic amino acid motifs such as pipecolamide $\mathbf{2 . 8},{ }^{82}$ we expected that the desired β-hydroxy proline could be prepared from a suitable coupling partner (2.2) containing an aldehyde as one of its two electrophilic foci. Anticipating that modification of the 4^{\prime} appendage might be sought, we targeted a more readily diversifiable allyl group at this position (rather than the native n-propyl chain).

[^36]

1995

Scheme 2.1. Target structure and retrosynthesis, drawing on earlier results from the Myers laboratory demonstrating amino acid synthesis by bis-alkylation and aldolization of chiral glycine equivalents.

Analysis of clindamycin-ribosome X-ray co-crystal structures encouragingly indicated that the $3^{\prime} R$ configuration in target structure $\mathbf{2 . 1}$ was likely preferable to the epimeric alternative. The pro-R hydrogen atom of clindamycin's 3 ' position, unlike its geminal counterpart, does not directly engage the surface of the binding pocket, and extends along a vector that transverses the neck of the PET. Further, early docking studies indicated that $3^{\prime} R$ hydroxylation might increase ribosome affinity through hydrogen bonding with the adjacent 2'-hydroxyl group of G2505 (Figure 2.1). Our motivation to hydroxylate this position of clindamycin additionally arose from the observation that, particularly within a given class, polarity often correlates positively with Gram-
negative activity; ${ }^{83}$ and, as such modifications had not been pursued before, 3^{\prime}-hydroxylated lincosamides would represent novel composition of matter.

Figure 2.1. Computed structure 3'-hydroxylated lincosamide 2.1 (green) docked to the bacterial ribosome, illustrating the potential for hydrogen bonding to the 2^{\prime}-hydroxyl group of G2505 (orange). Docking and visualization performed using Schrödinger Suite 2017, using a grid generated from PDB entry 1YJN.

Annulation of pseudoephenamine glycinamide by aldol-cyclization

In order to test the hypothesis that sequential aldolization and cyclization of a biselectrophilic building block could indeed form the desired β-hydroxyproline nucleus, I first prepared aldehyde 2.2a in racemic form. ${ }^{84}$ When introduced to a slight molar excess of the lithium enolate generated upon exposure of glycinamide $\mathbf{2 . 3}$ to lithium hexamethyldisilazide (in the presence of excess lithium chloride), complete consumption of electrophile was observed within 5 minutes at $-78^{\circ} \mathrm{C}$. After aqueous workup, a complex mixture of products was separated by flash-

[^37]column chromatography. Among them, the desired $3^{\prime} R, 4^{\prime} S$ annulation product 2.9 (lincomycin numbering) was obtained, and was successfully crystallized, thus permitting unambiguous structural assignment (Scheme 2.2). It is notable that while the yield of this product was low, its successful preparation, purification, and crystallographic characterization were established in a single experiment, highlighting the practicality and robustness of the pseudoephenamine chiralauxiliary platform. ${ }^{80}$

Scheme 2.2. Synthesis of the desired β-hydroxyproline nucleus via a novel aldol-cyclization reaction.

With this proof of principle in hand, I then sought to increase the yield of prolinamide $\mathbf{2 . 9}$ empirically, through modulation of key reaction parameters (Table 2.1). The most obvious of these was the optical purity of the bis-electrophilic substrate - unexpectedly, preparation of aldehyde (S)-2.2a in optically active form (93% ee by Mosher analysis of the precursor alcohol ${ }^{85}$) and subjection of this enantiomerically enriched building block to the same reaction conditions did not immediately lead to increased yield of $\mathbf{2 . 9}$ (Entry 2). ${ }^{86}$ Indeed, when tosyloxy aldehyde 2.2a was used, yields were often variable, and sensitive both to reaction scale and concentration effects;

[^38]nonetheless, even for this capricious substrate, dilution of the reaction mixture by half (from 130 mM to 67 mM with respect to $(S) \mathbf{- 2 . 2 a})$ reliably led to increased yields (Entry 3).

Table 2.1. Optimization of the glycinamide annulation reaction.

Entry	 (1. Substrate	 2.3 equiv) Substrate ee			Base LiCl (excess) THF, Temp.[2.2] (mM)	 2.9 Scale (mmol)	Yield 2.9
			Base	Temp. $\left({ }^{\circ} \mathrm{C}\right)$			
1	2.2a	0\%	LiHMDS	-78	130	0.77	27\%
2	2.2a	93\%	LiHMDS	-78	130	3.8	27\%
3	2.2a	93\%	LiHMDS	-78	67	0.37	48\%
4	2.2b	93\%	LiHMDS	-78	67	0.36	73\%
5	2.2b	93\%	LiHMDS	-78	67	3.2	50\%
6	2.2b	93\%	LiHMDS	-90	67	10.1	64\%
7	2.2c	93\%	LiHMDS	-90	67	4.1	64\%
8	2.2c	93\%	LiTMP	-90	67	0.53	66\%

It is believed that base-induced decomposition of β-(arenesulfonyl)oxyaldehyde starting material via an E1cB mechanism principally accounts for the mass balance when optically pure electrophile is used in the reaction. Based on this hypothesis, I probed the effects of structural changes to the arenesulfonate leaving group on reaction efficiency (Figure 2.2). 2,4,6Trimethylbenzenesulfonate and 2,4,6,-triisopropylbenzenesulfonate analogs of (S)-2.2a were prepared on the basis that increased steric bulk at the ortho positions might disfavor base-promoted elimination pathways and might increase steric differentiation of competing aldol transition state assemblies, leading to higher observed diastereomeric ratios. Indeed, both $(S) \mathbf{- 2 . 2 b}$ and (S)-2.2c provided improved yields in the annulation reaction (Table 2.1, entries 4-8), thus supporting the
hypothesis that steric perturbation of the leaving group could suppress non-productive consumption of electrophile under the reaction conditions. It should be noted that solutions of triisopropylbenzene derivative (S)-2.2c had a tendency to crystallize upon cooling; for this reason mesitylenesulfonate (S)-2.2b was selected for subsequent scale-up of this preliminarily optimized coupling reaction.

(S)-2.2a

(S)-2.2b

(S)-2.2c

Figure 2.2. Electrophilic substrates evaluated in the pseudoephenamine glycinamide annulation reaction.

This novel annulation reaction was reliably scaled to provide up to 2.45 grams of $\mathbf{2 . 9}$ in a single batch, without significant deterioration in yield. In order to remove the chiral auxiliary from this product and suitably protect the resulting amino acid, a three-step telescoped sequence was developed. First, (R, R)-pseudoephenamine (2.10) was liberated under the action of sodium hydroxide (1 molar equivalent) in a tetrahydrofuran-methanol mixture. Consistent with our group's earlier findings, this reaction proceeded under much milder conditions than those required to hydrolyze pseudoephenamine amides lacking β-hydroxyl groups - an observation ascribed to hydrogen bonding between the amide carbonyl and the β-hydroxy substituent, facilitating $N \rightarrow O$ acyl transfer. ${ }^{81}$ Pseudoephenamine auxiliary was recovered at this stage by partitioning the reaction mixture between water and dichloromethane; separation and concentration of the two phases afforded $\mathbf{2 . 1 0}$ in $>99 \%$ yield, alongside the desired proline derivative as its corresponding sodium salt (2.11). Sequential protections of the amine and carboxylate functional groups within this material were then performed to provide N-Boc-amino methyl ester $\mathbf{2 . 1 2}$ in 85% overall yield.

Scheme 2.3. Scalable synthesis of a diversifiable β-hydroxyproline derivative.

Synthesis and evaluation of 3'-hydroxy and 3'-alkoxy lincosamide analogs

With this sequence established, I prepared a series of novel lincosamides in order to test the original hypothesis that $3^{\prime} R$ hydroxylation of clindamycin would improve its antibiotic activity. I first prepared 3^{\prime}-hydroxy-4'-depropyl-4'-allylclindamycin (FSA-21141) ${ }^{87}$ through a sequence involving N-methylation of proline 2.11 by reductive amination, followed by coupling of the resulting hygric acid derivative with 7-Cl-MTL (1.29) under standard amide bond-forming conditions (HATU, diisopropylethylamine, N, N-dimethylformamide, $23^{\circ} \mathrm{C}$).

Scheme 2.4. Synthesis of FSA-21134.

[^39]N-Desmethyl variants of this analog were prepared by coupling the crude carboxylic acid $\mathbf{2 . 1 2}$ obtained upon N-Boc protection of 2.11 (vide supra) with 7-Cl-MTL (1.29) in the same fashion (Scheme 2.5). Deprotection of the resulting N-Boc-protected lincosamide $\mathbf{2 . 1 3}$ under standard conditions (trifluoroacetic acid-dichloromethane, $23{ }^{\circ} \mathrm{C}$) provided FSA-21141, while hydrogenation of $\mathbf{2 . 1 3}$ followed by analogous deprotection provided the saturated analog FSA21147. Reductive amination of this analog provided the original target compound, 3'hydroxyclindamycin (FSA-21193).

Scheme 2.5. Synthesis of 3'-hydroxyclindamycin (FSA-21193) and related analogs.

In vitro microbiological susceptibility testing of these analogs against a panel of Grampositive and Gram-negative organisms displaying a range of resistance phenotypes was performed in collaboration with William Weiss at the UNT Health Science Center (Figure 2.3). None of these analogs displayed superior activity relative to clindamycin, though valuable observations emerged nonetheless. In particular, N-desmethyl-3'-hydroxyclindamycin (FSA-21147) was equipotent to clindamycin in some Gram-positive organisms (S. pneumoniae, S. pyogenes, and E. faecalis), while wild-type S. aureus displayed a 256 -fold shift in MIC - an early example of a trend that further experimentation would bear out regarding the sensitivity of S. aureus to the polarity and
N-methylation state of proline-based lincosamides (prolinamides). Notably, despite similarities in Gram-positive potency and spectra of activity, all 3'-hydroxylated lincosamides demonstrated poor Gram-negative activity.

FSA-21141

FSA-21134

FSA-21147

FSA-21193

	Species	Description	Clinda	21141	21134	21147	21193
	S. aureus	ATCC 29213	0.25	4	8	16	8
	S. aureus	BAA-1556; USA 300	>32	>32	>32	>32	>32
	S. aureus	UNT96; USA100	>32	>32	>32	>32	>32
	S. aureus	UNT-146; ErmA	>32	>32	>32	>32	>32
	S. aureus	UNT-120; USA 600; GISA	>32	>32	>32	>32	>32
	S. pneumoniae	ATCC 49619	0.12	0.0625	0.5	<0.0313	0.5
$\stackrel{+}{E}$	S. pneumoniae	UNT-038; MefA	≤ 0.0313	<0.0313	0.25	<0.0313	0.5
-	S. pneumoniae	UNT-039; MefA	≤ 0.0313	<0.0313	0.0625	<0.0313	0.25
	S. pneumoniae	TP 1579; ErmB+Tet(M,O)	≤ 0.0313	<0.0313	0.125	<0.0313	0.5
	S. pneumoniae	TP 1537; ErmB+MefA	>32	>32	>32	>32	>32
	S. pyogenes	ATCC 19615	0.06	0.0625	0.25	<0.0313	0.25
	S. pneumoniae	UNT-014; MacRes	≤ 0.0313	0.125	1	0.0625	0.5
	E. faecalis	ATCC 29212	16	32	>32	16	>32
	E. faecalis	UNT-039; VRE	>32	>32	>32	>32	>32
	K. pneumoniae	ATCC 10031	8	>32	>32	>32	>32
	E. coli	ATCC 25922	>64	>32	>32	>32	>32
E	P. aeruginosa	ATCC 27853	>64	>32	>32	>32	>32
-	H. influenzae	ATCC 49247	16	>32	>32	>32	>32
	H. influenzae	UNT	2	>32	>32	8	>32
	A. baumanii	ATCC 19606	64	>32	>32	>32	>32

Figure 2.3. Minimum inhibitory concentrations ($\mu \mathrm{g} / \mathrm{mL}$) of selected 3^{\prime} '-hydroxy prolinamides against a panel of standard and clinically derived bacterial strains. MIC data by William Weiss.

Reasoning that 3'-hydroxylation might diminish cell permeability, I targeted O-methylated analogs of FSA-21141 and FSA-21193 in order to evaluate whether masking the hydrogen bonddonor ability of the 3^{\prime}-hydroxy substituent could improve activity (Scheme 2.6). ${ }^{88}$ Toward this end, alcohol 2.12 was treated with methyl iodide and silver(I) oxide as a mild base, effecting methylation with no detectable elimination of the β substituent. The resulting ester, 2.15, was saponified with methanolic lithium hydroxide, and the acid thus obtained was coupled with 7-ClMTL (1.29) to form the protected lincosamide intermediate $\mathbf{2 . 1 6}$ in 64% yield after flash-column

[^40]chromatography. Subjection of this material to acidic conditions for the removal of the N-Boc protecting group resulted in an unexpected scrambling of stereochemistry at C^{\prime} and C^{\prime} in a process likely involving retroaldol-type fragmentation of the pyrrolidine ring followed by reclosure, giving rise to a mixture of three separable and independently characterized isomers, FSA-22090a-c. At this point it is not known whether this putative retroaldol fragmentation occurs before or after the N-Boc group is removed.

2.12

2.15

2.16

$\downarrow \begin{gathered}\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H} \\ \mathrm{CH}_{2} \mathrm{Cl}_{2}\end{gathered}$

FSA-22090c
(17\%)

Scheme 2.6. Synthesis of 3'-methoxy analogs, and proposed mechanism for acid-induced stereochemical scrambling. $\mathrm{R}=\mathrm{Boc}$ or H .

Figure 2.4 shows the results of $3^{\prime}-O$-methylation on antimicrobial activity. Direct comparison of FSA-21147 with its congener FSA-22090c reveals a global diminution in potency upon O-methylation, with the exception of wild-type S. aureus activity, which does not show significant change, ${ }^{89}$ consistent with the observation that lipophilicity and S. aureus activity are generally positively correlated. Likewise, $\left(3^{\prime} R\right)$-methoxyclindamycin (FSA-23005, prepared by sequential N-methylation and hydrogenation of FSA-22090c by the methods described above)

[^41]demonstrates a ≥ 128-fold increase in MIC relative to clindamycin, further reinforcing the deleterious effect of proline β-oxygenation on biological activity. While discouraging, these data did offer one additional, important insight: The unexpected stereochemical scrambling observed upon deprotection of $\mathbf{2 . 1 6}$ enabled independent evaluation of both 3'-methoxy epimers FSA$\mathbf{2 2 0 9 0} \mathbf{b} / \mathbf{c}$. The ≥ 64-fold difference in relative potencies lent support to our earlier supposition that $2^{\prime}, 3^{\prime}$-cis diastereomeric configurations would be better suited for ribosomal binding, and thus would offer superior biological activity.

FSA-21141

FSA-22090a

FSA-22090b

FSA-22090c

FSA-23005

	Species	Description	Clinda	21141	22090a	22090b	22090c	23005
	S. aureus	ATCC 29213	0.25	4	>32	>32	8	32
	S. aureus	BAA-1556; USA 300	>32	>32	>32	>32	>32	>32
	S. pneumoniae	ATCC 49619	0.12	0.0625	16	16	0.25	8
	S. pneumoniae	UNT-038; MefA	≤ 0.0313	<0.0313	16	16	0.125	8
	S. pneumoniae	UNT-039; MefA	≤ 0.0313	<0.0313	32	16	0.5	16
¢	S. pneumoniae	TP 1579; ErmB+Tet(M,O)	≤ 0.0313	<0.0313	16	16	0.125	16
\bigcirc	S. pneumoniae	TP 1537; ErmB+MefA	>32	>32	>32	>32	>32	>32
	S. pyogenes	ATCC 19615	0.06	0.0625	32	32	0.5	16
	S. pyogenes	UNT-014; MacRes	≤ 0.0313	0.125	>32	>32	1	16
	E. faecalis	ATCC 29212	16	32	>32	>32	>32	>32
	E. faecalis	UNT-039; VRE	>32	>32	>32	>32	>32	>32
	K. pneumnoniae	ATCC 10031	8	>32	>32	>32	>32	>32
,	E. coli	ATCC 25922	>64	>32	>32	>32	>32	>32
¢	P. aeruginosa	ATCC 27853	>64	>32	>32	>32	>32	>32
\bigcirc	H. influenzae	ATCC 49247	16	>32	>32	>32	>32	>32
	A. baumanii	ATCC 19606	64	>32	>32	>32	>32	>32

Figure 2.4. Minimum inhibitory concentrations ($\mu \mathrm{g} / \mathrm{mL}$) of 3'-methoxy analogs alongside comparators. MIC data by William Weiss.

Oxazolidinone-lincosamide hybrid antibiotics

Linezolid (2.17)

Tedizolid (2.18)

Figure 2.5. Examples of oxazolidinone antibiotics

Oxazolidinone antibiotics such as linezolid (2.17) and tedizolid (2.18) bind the PTC of the bacterial ribosome, their A and B rings overlapping with the propylhygric acid moiety of clindamycin. As Figure 2.6 demonstrates, the n-propyl terminus of clindamycin nearly coincides with the proximal atom of the oxazolidinone C ring (the nitrogen atom of the morpholine ring, in the case of linezolid), suggesting that synergistic gains in activity might be realized if the AB-ring system of these oxazolidinones were replaced with an appropriate lincosamide-based scaffold. ${ }^{90}$ I therefore sought to prepare analogs bearing an ethylene linker between the pyrrolidine ring of clindamycin and the C rings of linezolid and tedizolid.

Figure 2.6. Overlay of the X-ray crystal structures of clindamycin (gray; PDB: 1YJN) and linezolid (2.17, green; PDB: 3CPW) shows close correspondence between the n-propyl terminus of the former and the $\mathrm{C}(\mathrm{D})$-ring system of the oxazolidinones.

[^42]In the former case, this was readily accomplished by ozonolysis of the allyl group within 2.12, reductive workup with sodium thiodipropionate, ${ }^{91}$ and reductive amination of the resulting aldehyde with morpholine. This sequence provided 2.19, which was transformed into hybrid analog FSA-22097 by the standard saponification-coupling sequence described earlier. To enable more direct comparison of these bifunctional analogs with their parent compounds, deoxygenation of the 3^{\prime} position of hydroxyproline $\mathbf{2 . 1 2}$ was performed using Barton's process; conversion of the resulting product, 2.20, to linezolid-clindamycin hybrid analogs FSA-22095 and FSA-23003 was then performed analogously to the sequence used to prepare the corresponding 3^{\prime} 'hydroxy chimera.

$$
\sim_{2}, \mathrm{OH}_{3}, \mathrm{DBU}
$$

$$
\text { DMSO, } 23^{\circ} \mathrm{C} \text { (98\%) }
$$

$$
\text { 2. } \mathrm{AIBN}, n-\mathrm{Bu}_{3} \mathrm{SnH}
$$

($88 \%, 2$ steps)

2.20

2.19

 $\xrightarrow[\substack{\left.\text { 3. } \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H} \\ \text { (9\%, } 3 \text { steps }\right)}]{\substack{\text { 2. } \\ \text { HATU }}}$
(9\%, 3 steps)

FSA-22097

FSA-23003

Scheme 2.7. Synthesis of linezolid-clindamycin hybrid analogs.

The synthesis of a tedizolid-lincosamide hybrid analog was less straightforward, as it was necessary to shorten the three-carbon allyl group present in $\mathbf{2 . 1 2}$ to a suitable two-carbon linker.

[^43]This was ultimately achieved using an isomerization-ethenolysis route conceived by my coworker at the time, Dr. Daniel Hog. In the first step of this sequence, I found that the terminal olefin of $\mathbf{2 . 1 2}$ was transformed to its internal isomer under the catalytic action of a bulky palladium(II)-hydride species, formed in situ from palladium bis(dibenzylideneacetone), tri-tertbutylphosphine, and isobutyryl chloride according to a method developed by Professor Troels Skrydstrup and co-workers. ${ }^{92}$ This reaction proceeded reliably in good yield, and with good (albeit inconsequential) selectivity for the E product isomer. Ruthenium-catalyzed ethenolysis of this internal olefin was then performed, providing γ-vinyl proline $\mathbf{2 . 2 3}$ in 88% yield. Following protection of this suitably truncated intermediate as the corresponding trimethylsilyl ether, a tandem hydroboration-B-alkyl Suzuki coupling with bromopyridine 2.24 was finally performed, providing the chimeric southern-half fragment 2.25. This intermediate was converted to tedizolidlincosamide hybrid analogs FSA-23010 and FSA-23011 using the same saponification, coupling, and N -methylation methods described earlier.

[^44]

Scheme 2.8. Synthesis of a 3'-hydroxy tedizolid-clindamycin hybrid analog.

These hybrid analogs did not perform favorably to clindamycin in in vitro susceptibility screening (Figure 2.7). Morpholino analogs belonging to the linezolid-clindamycin hybrid series displayed virtually no antimicrobial activity, particularly in the case of 3^{\prime}-hydroxylated example FSA-22097. Tedizolid-based analogs FSA-23010 and FSA-23011 performed marginally better against clindamycin-susceptible S. aureus and streptococcal strains, but nonetheless were ≥ 32-fold less active than clindamycin. One possible explanation for the failure of these analogs to display activities surpassing those of their parent compounds may be that the C^{\prime} ' ethylene bridge used to link the two chimeric hemispheres may have provided insufficient rigidity, improper spacing, or poor alignment of the oxazolidinone fragments, such that the heterocyclic ring system could not recapitulate the ribosomal binding pose normally adopted by the oxazolidinones. A series of additional tedizolid-clindamycin hybrid analogs featuring saturated and unsaturated three-carbon linkers were prepared using analogous procedures in order to test this hypothesis; these compounds likewise failed to demonstrate substantial activity (see Appendices B and C).

FSA-22097

FSA-22095

FSA-23003

FSA-23010

FSA-23011

Species	Description	Clinda	22097	22095	23003	23010	23011
S. aureus	ATCC 29213	0.25	>32	>32	>32	32	32
S. aureus	BAA-1556; USA 300	>32	>32	>32	>32	>32	>32
S. pneumoniae	ATCC 49619	0.12	>32	4	32	1	2
+ S. pneumoniae	UNT-038; MefA	≤ 0.0313	>32	>32	32	8	8
E S. pneumoniae	UNT-039; MefA	≤ 0.0313	>32	16	>32	2	4
O S. pneumoniae	TP 1579; ErmB+Tet(M, O)	≤ 0.0313	>32	8	32	2	4
S. pyogenes	ATCC 19615	0.06	32	4	16	1	0.5
S. pyogenes	UNT-014; MacRes	≤ 0.0313	>32	4	16	0.25	0.5
E. faecalis	ATCC 29212	16	>32	32	>32	>32	>32
E. faecalis	UNT-039; VRE	>32	>32	>32	>32	>32	>32
K. pneumnoniae	ATCC 10031	8	>32	>32	>32	>32	>32
E E. coli	ATCC 25922	>64	>32	>32	>32	>32	>32
© P. aeruginosa	ATCC 27853	>64	>32	>32	>32	>32	>32
H. influenzae	ATCC 49247	16	>32	>32	>32	>32	>32

Figure 2.7. Minimum inhibitory concentrations of selected oxazolidinone-lincosamide hybrid analogs. MIC data by William Weiss.

Discovery of a novel oxepinoproline southern-half scaffold

An important breakthrough in the project came when a novel bicyclic southern-half scaffold was discovered, following the realization that the β and γ substituents of 2.1, which had been modified independently before, could be connected to produce a rigid structure with potential for further structural diversification. Accordingly, I developed an O-allylation-ring-closing metathesis sequence to generate oxepinoproline $\mathbf{2 . 2 7}$ efficiently from $\mathbf{2 . 1 2}$ (Scheme 2.9). This enabled the preparation of FSA-24035, an early example of a oxepinoproline-based lincosamide, whose energy-minimized structure closely corresponds to the conformation that clindamycin adopts when bound to the bacterial ribosome (Figure 2.8). ${ }^{21}$

Scheme 2.9. Synthesis of oxepinoprolinamide analog FSA-24035.

Figure 2.8. Overlay of the energy-minimized structure of FSA-24035 (green) with the structure of clindamycin bound to the bacterial ribosome (PDB entry 1YJN).

The antimicrobial activities of FSA-24035 and its saturated derivative FSA-22091 are listed in Figure 2.9. For the first time, equipotency to clindamycin against Gram-positive organisms had been achieved with a 3^{\prime}-oxygenated prolinamide; even more encouragingly, against strains of the Gram-negative species K. pneumoniae and H. influenzae, FSA-24035 and FSA22091 displayed moderate improvements in activity, signaling that further exploration of this novel southern-half scaffold might provide broader potency against Gram-negative organisms. Compared to acyclic 3'-hydroxy, 3'-methoxy, and 3'-ethoxy derivatives (the last of which, FSA506006, was prepared by my colleague Katherine Silvestre), oxepinoprolinamides display
substantially improved activity, supporting the claim that structural rigidification underlies these compounds' superior performance. ${ }^{93}$

FSA-24035

FSA-22091

FSA-21141

FSA-22090c

FSA-506006

Species	Description	Clinda	24035	22091	21141	22090c	506006
S. aureus	ATCC 29213	0.25	0.12	0.125	4	8	>32
S. aureus	BAA-1556; USA 300	>32	>32	>32	>32	>32	NT
S. aureus	UNT-146; ErmA	>32	>32	>32	>32	>32	NT
S. pneumoniae	ATCC 49619	0.12	≤ 0.06	<0.0313	0.0625	0.25	16
S. pneumoniae	MMX 3028 cErmB	>64	64	NT	NT	NT	>32
+ S. pneumoniae	UNT-038; MefA	≤ 0.0313	≤ 0.0313	<0.0313	<0.0313	0.125	NT
E S. pneumoniae	UNT-039; MefA	≤ 0.0313	≤ 0.0313	<0.0313	<0.0313	0.5	NT
© S. pneumoniae	TP 1579; ErmB+Tet(M,O)	≤ 0.0313	≤ 0.0313	<0.0313	<0.0313	0.125	NT
S. pneumoniae	TP 1537; ErmB+MefA	>32	32	32	>32	>32	NT
S. pyogenes	ATCC 19615	0.06	≤ 0.0313	<0.0313	0.0625	0.5	16
S. pyogenes	MMX 946; MLS ${ }_{\text {B }}$	>64	16	NT	NT	NT	>32
S. pyogenes	UNT-014; MacRes	≤ 0.0313	≤ 0.0313	<0.0313	0.125	1	NT
E. faecalis	ATCC 29212	16	16	>32	32	>32	>32
E. faecalis	UNT-039; VRE	>32	>32	>32	>32	>32	NT
K. pneumnoniae	ATCC 10031	8	>64	8	>32	>32	NT
, K. pneumnoniae	IHMA 658692; KPC-2	>32	32	>32	>32	>32	NT
E E. coli	ATCC 25922	>64	>64	32	>32	>32	>32
$\stackrel{0}{0}$ E. coli	GUEST131; NDM-1	>32	>32	>32	>32	>32	NT
P. aeruginosa	ATCC 27853	>64	>64	>32	>32	>32	>32
H. influenzae	ATCC 49247	16	1	8	>32	>32	16

Figure 2.9. Minimum inhibitory concentrations ($\mu \mathrm{g} / \mathrm{mL}$) of selected analogs bearing 3^{\prime} oxygenation. MIC data by William Weiss, Micromyx LLC, and Dr. Amarnath Pisipati. NT = not tested; KPC = K. pneumoniae carbapenemase; NDM-1 = New Delhi metallo- β-lactamase 1.

Following up on this discovery, I prepared a number of bicyclic derivatives to probe the SAR of this novel scaffold. In addition to oxepine saturation and N-methylation, I also performed formal ring contraction of the 7-membered ring present in FSA-24035 (Scheme 2.10). This was achieved by O-allylation of the olefin-migration product 2.22 prepared earlier en route to

[^45]oxazolidinone-lincosamide hybrid analogs, followed by ring-closing metathesis as before. This sequence furnished the 5,6-trans-fused bicycle 2.29, albeit in lesser yield than was observed for the 5,7-fused system - a potential indication of relative strain energies within the two related scaffolds. As in the oxepinoprolinamide series, both saturated (FSA-24041) and unsaturated (FSA24039) manifestations of this 5,6-bicyclic scaffold were investigated.

Scheme 2.10. Synthesis of FSA-24039, an analog bearing a trans-5,6-fused bicyclic southern half.

Valuable insights can be gained through careful analysis of the in vitro antimicrobial activities of lincosamides bearing simple, unsubstituted bicyclic southern halves (Figure 2.10). ${ }^{94}$ While both 5,6- and 5,7-bicycles impart comparable activity against clindamycin-susceptible Gram-positive organisms for example, the latter scaffold was substantially more active against Gram-negative species. Methylation of the pyrrolidine nitrogen atom likewise had negligible effects on most organisms, but S. aureus (ATCC 29213) proved uniquely sensitive to this modification: N-methylated analog FSA-24040 demonstrated \geq-fold greater potency against this strain compared to its N-desmethyl congener. Analogously, the enterococcal pathogen E. faecalis demonstrated an intriguing sensitivity toward oxepine saturation, as against this organism FSA22091 was ≥ 4-fold less potent compared to its $\Delta^{7^{\prime}}$ relative FSA-24035. Perhaps most importantly, however, was the substantial impact on the anaerobic spectrum of activity that this new scaffold

[^46]displayed - whereas clindamycin potently inhibits the growth of the normally commensal gut anaerobe B. fragilis and is only moderately active against the opportunistic pathogen C. difficile, FSA-24035 showed a complete reversal in these relative activities. This trend would prove general among oxepinoprolinamides and signaled to us that this novel scaffold may hold promise to overcome the CDAD liability that dogged prior lincosamide discovery campaigns. ${ }^{11}$

FSA-24035

	Species	Description	Clinda	24035	22091	24040	24039	24041
	S. aureus	ATCC 29213	0.25	0.12	0.125	≤ 0.0313	1	0.5
	S. aureus	BAA-1556; USA 300	>32	>32	>32	>32	>32	>32
	S. aureus	UNT-146; ErmA	>32	>32	>32	>32	>32	>32
	S. pneumoniae	ATCC 49619	0.12	≤ 0.06	<0.0313	≤ 0.0313	0.0625	0.0625
	S. pneumoniae	UNT-038; MefA	≤ 0.0313	≤ 0.0313	<0.0313	≤ 0.0313	0.125	0.0625
$+$	S. pneumoniae	UNT-039; MefA	≤ 0.0313	≤ 0.0313	<0.0313	≤ 0.0313	≤ 0.0313	≤ 0.0313
\%	S. pneumoniae	TP 1579; ErmB+Tet(M, O)	≤ 0.0313	≤ 0.0313	<0.0313	≤ 0.0313	0.0625	≤ 0.0313
\bigcirc	S. pneumoniae	TP 1537; ErmB+MefA	>32	32	32	>32	>32	>32
	S. pyogenes	ATCC 19615	0.06	≤ 0.0313	<0.0313	≤ 0.0313	0.125	≤ 0.0313
	S. pyogenes	UNT-014; MacRes	≤ 0.0313	≤ 0.0313	<0.0313	≤ 0.0313	0.125	0.0625
	E. faecalis	ATCC 29212	16	16	>32	32	32	32
	E. faecalis	UNT-039; VRE	>32	>32	>32	>32	>32	>32
	C. difficile	BAA 1805	8	2	NT	NT	NT	NT
	B. fragilis	ATCC 25285	0.5	8	NT	NT	NT	NT
	K. pneumnoniae	ATCC 10031	8	>64	8	8	>32	>32
E	K. pneumnoniae	IHMA 658692; KPC-2	>32	32	>32	>32	>32	>32
¢	E. coli	ATCC 25922	>64	>64	32	>32	>32	>32
	H. influenzae	ATCC 49247	16	1	8	8	32	32
	A. baumanii	ATCC 19606	64	>32	>32	>32	>32	>32

Figure 2.10. Minimum inhibitory concentrations ($\mu \mathrm{g} / \mathrm{mL}$) of analogs bearing unsubstituted bicyclic southern halves. MIC data by William Weiss and Micromyx, LLC.

The results emerging from this promising new scaffold led me to develop a means by which to functionalize it, so as to further explore its potential. Structural overlay of FSA-24035 with clindamycin bound to the bacterial ribosome revealed close shape complementarity between much of the oxepane ring and the ribosomal surface - a phenomenon that likely underlies the effectiveness of the scaffold, but which limits the opportunities available for modification, given that most perturbations would likely disrupt this close structural correspondence (Figure 2.11). One position on the oxepine ring, however, did not appear to interact directly with the ribosome,
and thus presented an appealing site for derivatization. This position, C^{\prime} ', abuts the "hydrophobic wedge" comprising residues A2451 and C2452, and projects toward the PTC from the neck of the PET, presenting an appealing vector along which to build.

Figure 2.11. Overlay of energy-minimized structure of FSA-24035 (green) with the X-ray cocrystal structure of clindamycin (gray) bound to the bacterial ribosome (PDB: 1YJN) identifies C7' as a strategic site for modification of the oxepinoprolinamide scaffold. The hydrophobic pocket formed by PTC residues A2451 and C2452 is highlighted in rose.

I reasoned that within oxepinoproline $\mathbf{2 . 3 0}$, the 7^{\prime} position could be functionalized regioselectively via Wacker oxidation, owing to the σ-withdrawing effect of the oxygen atom embedded within the 7-membered ring, which acts to make C 8 ' (the olefinic position proximal to this oxygen atom) comparatively less electron-rich. Application of an oxidation method originally reported by Morandi, Wickens, and Grubbs (palladium(II) acetate, tetrafluoroboric acid, benzoquinone, water-acetonitrile, $\left.23{ }^{\circ} \mathrm{C}\right)^{95}$ achieved the desired transformation, providing ketone 2.31 in 80% yield as a single regioisomer. This intermediate underwent exceptionally efficient

[^47]deoxydifluorination under the action of diethylaminosulfur trifluoride, ${ }^{96}$ affording C7'-gemdifluoro analog FSA-24036 following typical saponification, aminosugar coupling, and N-Boc deprotection. Likewise, my colleague Katherine Silvestre identified a sequence for C7' arylation relying on chemoselective enolization of $\mathbf{2 . 3 1}$ with lithium hexamethyldisilazide, trapping of the resulting enolates with Comins' reagent, and subjection of the resulting vinyl triflate regioisomers to palladium-catalyzed Suzuki cross-coupling with arylboronic acids (Scheme 2.12).

Scheme 2.11. Regioselective $C 7^{\prime}$ functionalization by Wacker oxidation, and synthesis of 7'difluoro oxepanoprolinamide analog FSA-24036 by deoxydifluorination. BQ = benzoquinone; DAST $=$ diethylaminosulfur(IV) trifluoride.

Scheme 2.12. Synthesis of C7'-aryl oxepanoprolinamide analogs via an enolization-triflationSuzuki coupling sequence (Katherine Silvestre). $\mathrm{Ar}=$ arenyl.

[^48]Oxepanoprolinamides bearing C7' modifications are among the most potent antibiotics to emerge from our lincosamide program to date (Figure 2.12). Notably, lipophilic substitution at C7' confers considerable gains in potency against E. faecalis, against which clindamycin is not typically effective: C7'-gem-difluoro analog FSA-24036 and C7'-aryl analogs such as FSA509018 (designed and prepared by Katherine Silvestre) are 2- to >256-fold more potent against this species compared both to clindamycin and to unsubstituted oxepinoprolinamides. What's more, C7'-arylated analogs display remarkable potency against clinically derived strains of S. pneumoniae and S. pyogenes constitutively expressing erm methyltransferase genes, as well as measurable activity against similarly $\mathrm{MLS}_{\mathrm{B}}$-resistant strains of S. aureus and E. faecalis. In cases where MICs against a trio of genetically matched E. coli strains (wild-type, ATCC-25922; efflux pump knockout mutant, $\Delta \mathrm{TolC}$; and outer-membrane permeabilized LptD mutant) were measured, it appears that both low outer-membrane permeability and ABC transporter-dependent efflux are to blame for these analogs' lack of activity in Gram-negative organisms.

FSA-24036

FSA-24036

FSA-509018

FSA-507061

	Species	Description	Clinda	24035	24036	509018	507061
	S. aureus	ATCC 29213	0.25	0.12	0.25	≤ 0.06	0.12
	S. aureus	BAA 977; iErmA	0.25	0.25	0.5	0.25	0.25
	S. aureus	MP-549; USA 300; MsrA	0.125	0.5	NT	0.25	0.125
	S. aureus	Micromyx USA 300	0.25	0.12	0.12	NT	≤ 0.06
	S. aureus	MMX 3035; cErmA	>64	>64	>64	>64	64
	S. pneumoniae	ATCC 49619	0.12	≤ 0.06	≤ 0.06	≤ 0.06	≤ 0.06
E	S. pneumoniae	MMX 3028 cErmB	>64	64	64	16	4
0	S. pneumoniae	MMX 3031 cMefA	0.06	≤ 0.06	≤ 0.06	0.125	≤ 0.06
	S. pyogenes	ATCC 19615	0.06	≤ 0.0313	≤ 0.0313	≤ 0.06	≤ 0.06
	S. pyogenes	MMX 946; cErmB	>64	16	4	>64	4
	E. faecalis	ATCC 29212	16	16	4	≤ 0.06	≤ 0.06
	E. faecalis	MMX 847; cErmB	>64	>64	>64	>64	32
	C. difficile	BAA 1805	8	2	2	NT	2
	C. difficile	ATCC 700057	8	NT	NT	32	8
	B. fragilis	ATCC 25285	0.5	8	4	32	64
	K. pneumnoniae	ATCC 10031	8	>64	16	16	16
	E. coli	ATCC 25922	>64	>64	>64	64	64
1	E. coli	MP-9 Δ TolC	8	8	NT	16	4
ह10	E. coli	LptD mutant	2	NT	NT	16	8
\bigcirc	P. aeruginosa	ATCC 27853	>64	>64	>64	NT	>64
	H. influenzae	ATCC 49247	16	1	4	16	4
	H. influenzae	MMX 565Δ AcrB	4	0.5	1	NT	0.25
	A. baumanii	ATCC 19606	64	>32	>32	>64	>64

Figure 2.12. Minimum inhibitory concentrations ($\mu \mathrm{g} / \mathrm{mL}$) of selected C7'-modified oxepanoprolinamides, including C7'-aryl analogs designed and prepared by Katherine Silvestre. MIC data by Micromyx, LLC and Dr. Amarnath Pisipati.

Oxepinoprolinamide analogs bearing 7-arylthio substitution

In a series of communications to the Journal of Antibiotics beginning in 2013, Meiji Seika chemists described novel lincosamides discovered through semisynthetic modification of lincomycin, including propylhygramides $\mathbf{2 . 3 6}$ and 2.37; and pipecolamides $\mathbf{1 . 7 2}$ and $\mathbf{1 . 7 4}$ (Figure 2.13). ${ }^{73}$ These analogs displayed potent in vitro growth inhibition of Gram-positive bacteria expressing the $\mathrm{MLS}_{\mathrm{B}}$ phenotype, owing to the installation of biarylsulfide appendages to C 7 of the northern half. Based on docking studies performed by Meiji Seika, ${ }^{73 \mathrm{~d}}$ these side chains are believed to engage in additional contacts with domain V of the bacterial ribosome in a manner analogous -
though not identical - to the purported action of biaryl side-chain motifs in the ketolides telithromycin and solithromycin (which in some cases engage domain-II rRNA residues). ${ }^{22,97}$

2.36

2.37

1.72

1.74

Figure 2.13. Semisynthetic lincomycin derivatives bearing 7-biarylthio side chains discovered by Meiji Seika Pharma Co., Ltd.

The success of the oxepinoproline southern-half scaffold, paired with its close structural correspondence with the propylproline moiety present in 2.36 and $\mathbf{2 . 3 7}$, prompted me to pursue oxepinoprolinamide analogs bearing the same C7-arenesulfide appendages. Accordingly, I prepared the corresponding 7-modified aminosugars via manipulation of semisynthetic MTL trifluoroacetamide $\mathbf{1 . 2 6}$ (Scheme 2.13). Adapting procedures originally reported by Meiji Seika, global silylation, regioselective 7-desilylation, and mesylation of the resulting alcohol were performed. Stereospecific substitution of $\mathbf{2 . 3 8}$ with appropriate arenethiolate nucleophiles and global deprotection (desilylation and trifluoroacetamide cleavage; lithium hydroxide, methanoltetrahydrofuran, $23-40^{\circ} \mathrm{C}$) provided MTL derivatives 2.41a and 2.41b. In situ O-silylation of these aminosugars with N, O-bis(trimethylsilyl)trifluoroacetamide and coupling of the protected intermediates with oxepinoproline 2.27 was performed using conditions originally reported by the Vicuron team. ${ }^{68}$ Following global deprotection and optional N-methylation using standard

[^49]methods, ${ }^{98}$ C7-modified analogs FSA-27049, FSA-212034, FSA-213061, and FSA-213064 were obtained.

1.26

FSA-212034 ($\mathrm{X}=\mathrm{N} ; 49 \%$) FSA-213064 ($\mathrm{X}=\mathrm{CH}$; 66\%)

2.38

FSA-27049 ($\mathrm{X}=\mathrm{N} ; 102 \%$)
FSA-213061 ($\mathrm{X}=\mathrm{CH} ; 79 \%$)

2.41a ($\mathrm{X}=\mathrm{N} ; 93 \%$) 2.41b ($\mathrm{X}=\mathrm{CH} ; 85 \%$)

Scheme 2.13. Synthesis of 7-arylthio oxepinoprolinamide analogs by semisynthetic modification of MTL derivative 1.26.

As part of an ongoing effort to improve the Gram-negative activity of our lincosamide candidates, I sought to modulate the basicity of the oxepinoproline nucleus through alternative N alkyl substitution. This work was motivated by an evolving hypothesis in our lab that ribosometargeting antibiotics bearing moderately basic amino groups ($\mathrm{p} K_{\mathrm{a}}{ }^{\prime} \sim 6-8$), by virtue of their ability to adopt both charged and uncharged states under physiologically relevant conditions, are better able to transverse both the inner and outer membranes of Gram-negative bacteria so as to engage their intracellular target. Indeed, steric hindrance and σ-withdrawal by the adjacent carboxamide already imbue the amino group of lincomycin with a relatively low $\mathrm{p} K_{\mathrm{a}}{ }^{\prime}$ of $7.5,{ }^{\text {a }}$ and β oxygenation within the pyrrolidinooxepine scaffold is expected to further depress this value

[^50]through σ-withdrawing effects (FSA-24035 calculated $\left.\mathrm{p} K_{\mathrm{a}}{ }^{\prime}=6.9\right) .{ }^{99}$ Nevertheless, introduction of an N -cyclopropyl group was targeted in order to lower amine basicity further still, while imposing minimal steric demands. ${ }^{100}$ Treatment of FSA-213061 with [(1-ethoxycyclopropyl)oxy]trimethylsilane (2.42) and sodium cyanoborohydride provided the desired N-cyclopropylamine analog FSA-214009a, together with an unexpected by-product, ethyl propionate derivative FSA214009b (Scheme 2.14). The later was structurally identified thanks to the insight of my colleague Ioana Moga and is believed to have arisen through in situ generation of ethyl acrylate by aerobic fragmentation of 2.42.

FSA-213061

FSA-214009a (34\%)

FSA-214009b (29\%)

Scheme 2.14. Synthesis of N-cyclopropanated analog FSA-214009a and an unexpected byproduct arising by oxidative cleavage of the cyclopropanation reagent.

Figure 2.14 lists the antimicrobial activities of these C7-modified oxepinoprolinamide analogs relative to clindamycin (1.3) and Meiji Seika biarylsulfide 2.37. Notably, whereas clindamycin and FSA-24035 - a matched pair of lincosamides differing only in southern-half architecture - displayed nearly identical Gram-positive activities (Figure 2.10), propylhygramide 2.37 was far more potent than the matched oxepinoprolinamide FSA-213064, illustrating that modifications to the northern and southern hemispheres are not necessarily additive.

[^51]Complementary to this observation, C7-arylthio oxepinoprolinamides showed a scaffold-specific reversal in anaerobic spectrum of action relative to the propylhygramides (clindamycin and 2.37), with important implications for the design of lincosamides with diminished CDAD risk. While no clear trends emerged to distinguish pyrimidine- and pyridine-based 7-arylthio decoration, N methylation in both series had a pronounced effect on S. aureus activity, with methylation conferring a roughly 4 -fold gain in potency against a clinically derived strain of S. aureus constitutively expressing an erm A resistance gene. Other N-alkyl substituents, such as those found in FSA-214009a and FSA-214009b, abolished nearly all activity even against clindamycinsusceptible strains.

FSA-27049

FSA-213064

FSA-212034

FSA-214009a

FSA-213061

FSA-214009b

	Species	Description	Clinda	2.37	27049	212034	213061	213064	214009a	214009b
	S. aureus	ATCC 29213	0.25	≤ 0.06	1	0.25	0.25	0.25	64	≥ 64
	S. aureus	BAA 977; iErmA	0.25	≤ 0.125	2	0.25	0.25	0.25	NT	NT
	S. aureus	MP-549; USA 300; MsrA	0.125	NT	0.25	0.5	0.5	0.25	NT	NT
	S. aureus	MMX 3035; cErmA	>64	2	>64	32	64	16	NT	NT
	S. pneumoniae	ATCC 49619	0.12	≤ 0.06	≤ 0.06	≤ 0.06	≤ 0.06	≤ 0.125	4	32
\pm	S. pneumoniae	MMX 3028; cErmB	>64	0.5	32	4	8	8	NT	NT
든	S. pneumoniae	MMX 3031; cMefA	0.06	≤ 0.06	≤ 0.06	≤ 0.06	0.125	0.125	NT	NT
\bigcirc	S. pyogenes	ATCC 19615	0.06	≤ 0.06	≤ 0.06	≤ 0.06	≤ 0.06	≤ 0.125	4	8
	S. pyogenes	MMX 946; cErmB	>64	0.25	2	2	4	2	NT	NT
	E. faecalis	ATCC 29212	16	1	64	16	16	32	>64	>64
	E. faecalis	MMX 847; cErmB	>64	4	>64	>64	>64	>64	NT	NT
	C. difficile	BAA 1805	8	0.06	1	0.5	NT	NT	NT	NT
	C. difficile	ATCC 700057	8	NT	0.5	NT	4	0.5	NT	NT
	B. fragilis	ATCC 25285	0.5	≤ 0.06	>64	1	32	1	NT	NT
	K. pneumoniae	ATCC 10031	8	NT	64	64	32	64	NT	NT
	E. coli	ATCC 25922	>64	>64	>64	>64	>64	>64	>64	>64
	E. coli	MP-9 Δ TolC	8	4	32	16	8	8	NT	NT
हॉ	E. coli	LptD mutant	2	NT	32	NT	8	4	NT	NT
\bigcirc	P. aeruginosa	ATCC 27853	>64	>64	>64	>64	NT	>64	NT	NT
	H. influenzae	ATCC 49247	16	2	32	4	32	2	NT	NT
	H. influenzae	MMX $565 \triangle$ AcrB	4	≤ 0.06	0.5	≤ 0.06	NT	NT	NT	NT
	A. baumanii	ATCC 19606	64	NT	>64	NT	>64	NT	NT	NT

Figure 2.14. Minimum inhibitory concentrations ($\mu \mathrm{g} / \mathrm{mL}$) of C7-modified oxepinoprolinamide analogs. MIC data by Micromyx, LLC and Dr. Amarnath Pisipati.

Secondary screening of active oxepinoprolinamides

As 7-arylthio oxepinoprolinamide analogs displayed activity against clindamycin-resistant pathogens and featured a reversed anaerobic spectrum of activity, a number of follow-up experiments were performed in order to probe other key parameters related to the developability of these antibiotics. A post-doctoral researcher on the team, Dr. Amarnath Pisipati, found that pyridine-based analogs FSA-213061 and FSA-213064 did not lyse human red blood cells at
concentrations up to $200 \mu \mathrm{M}$ - a gratifying result in light of the fact that Meiji Seika researchers had observed hemolytic activity from the closely related pipecolamide analog 1.74. ${ }^{73 \mathrm{j}}$ Accordingly, Dr. Pisipati found that FSA-213061 was non-toxic to human cells, displaying no detectable growth inhibition of A549 lung adenocarcinoma cells at a concentrations up to $200 \mu \mathrm{M}$. These results provided evidence that the antibiotic activities of these novel compounds could be attributed to improved engagement with the bacterial ribosome, rather than to a distinct and non-selective mechanism of action. ${ }^{101}$

Figure 2.15. Time-kill kinetics of clindamycin and FSA-213064 versus S. aureus ATCC 29213, demonstrating the bacteriostatic effects of both antibiotics at $4 \times$ MIC $(1 \mu \mathrm{~g} / \mathrm{mL})$. Experiment was designed and performed by Dr. Amarnath Pisipati.

Secondary in vitro microbiological profiling conducted by Dr. Pisipati on FSA-213064 illuminated the pharmacodynamic basis for this candidate's improved activity. ${ }^{102}$ Namely, while FSA-213064 demonstrated identical (bacteriostatic) ${ }^{103}$ time-kill kinetics to clindamycin against S.

[^52]aureus ATCC 29213 (against which both antibiotics display the same MIC $=0.25 \mu \mathrm{~g} / \mathrm{mL}$; Figure 2.15), the former induced a post-antibiotic effect (PAE) nearly twice that of clindamycin (3.65 h , versus 1.85 h , following antibiotic exposure at $4 \times$ MIC for 1 hour), offering evidence of increased persisting effects (Figure 2.16A). What's more, the post-antibiotic sub-MIC effect (PA-SME) of FSA-213064 represented a dramatic improvement over the comparator (Figure 2.16B). In this experiment, an inoculum of S. aureus ATCC 29213 containing $\sim 1 \times 10^{6}$ colony-forming units (CFUs) per milliliter of broth was exposed to $4 \times$ MIC $(1 \mu \mathrm{~g} / \mathrm{mL})$ of either clindamycin or FSA213064 for 1 hour; the inoculum was then diluted 1000 -fold (to $\sim 1 \times 10^{3} \mathrm{CFU} / \mathrm{mL}$), and was supplemented with antibiotic at concentrations of either $0.25 \times$ MIC or $0.5 \times$ MIC. Bacterial counts were taken periodically for a duration of 30 hours, revealing that while clindamycin exhibited a bacteriostatic effect under both sub-MIC regimes, only after 24 hours at $0.5 \times$ MIC did clindamycin achieve a reduction of bacterial counts below the limit of detection $\left(1 \times 10^{2} \mathrm{CFU} / \mathrm{mL}\right)$. Regrowth of clindamycin-treated bacteria was observed by the 30 -hour time point. By contrast, FSA-213064 achieved functional elimination of bacterial counts within 6 hours at $0.5 \times \mathrm{MIC}$ (within 9 hours at $0.25 \times$ MIC $)$, and these counts remained below the limit of detection for the duration of the experiment. The superior performance of FSA-213064 indicated that this candidate, or others like it, could likely demonstrate better efficacy compared to the contemporary clinical standard, clindamycin. We are hopeful that further screening of oxepinoprolinamides with potent in vitro activity profiles in animal infection models may further validate the potential of this scaffold.

[^53]

Figure 2.16. Post-antibiotic effect profiling of FSA-213064 reveals a prolonged PAE compared to clindamycin (A), as well as more rapid and durable clearance in PA-SME experiments. Experiments were designed and performed by Dr. Amarnath Pisipati.

Consequently, and with an eye toward in vivo evaluation of these compounds, we aimed to study the microsomal stability of oxepinoprolinamide analogs, as we had concerns that sulfur(II)rich embodiments bearing 7-arylthio substitution might not be well tolerated from the metabolic point of view. A preliminary pharmacokinetic assessment of representative lincosamides was therefore undertaken in collaboration with Professor Michael Cameron of the Scripps Research Institute in Jupiter, Florida. The in vitro human liver microsomal stabilities of FSA-213061, FSA213064, FSA-507061, and FSA-509018 were measured alongside those of clindamycin (1.3) and 2.37 as experimental controls. As Figure 2.17 illustrates, among the 7 -chloro-substituted lincosamides, FSA-507061 $\left(\mathrm{T}_{1 / 2}=20\right.$ minutes) and FSA-509018 ($\mathrm{T}_{1 / 2}=22$ minutes) representatives of a series of 7'-arylated oxepanoprolinamides pioneered by my teammate Katherine Silvestre - demonstrated a nearly twofold enhancement in stability relative to clindamycin (1.3, $\mathrm{T}_{1 / 2}=13$ minutes). Conversely, 7-arylthio oxepinoprolinamides FSA-213061 and FSA-213064 demonstrated low chemical resilience, with the latter N-methylated analog undergoing particularly rapid degradation ($\mathrm{T}_{1 / 2}$'s $=7$ and 3 minutes, respectively). Importantly,
these data strongly suggested that the 7 -arylthio group present in these molecules - rather than the oxepinoproline motif - was directly responsible for this metabolic instability, as propylhygramide $2.37\left(\mathrm{~T}_{1 / 2}=3\right.$ minutes) was degraded at the same rate as its oxepinoprolinamide counterpart, FSA213064. Thus, while the low microsomal stability of 7 -arylthio analogs counterbalances their high antimicrobial potency, these pharmacokinetic data were broadly encouraging, as they implicated factors other than the bicyclic southern-half motif, and thus cleared the way for further optimization of the 7'-aryl-oxepanoprolinamide series.

Clindamycin (1.3)

FSA-213061

FSA-507061

FSA-213064

FSA-509018

Figure 2.17. Human liver microsomal stability data for selected lincosamide analogs, demonstrating that 7 -arylthio substitution leads to rapid metabolism, whereas oxepanoprolinamides bearing 7-chloro substitution in the north show increased resilience relative to clindamycin. Data by Prof. Michael Cameron.

Summary and conclusion

In this chapter, I described my efforts to prepare 3^{\prime}-oxygenated lincosamide analogs via the development of a novel pseudoephenamine glycinamide annulation reaction involving sequential aldol-cyclization with a bis-electrophilic coupling partner. The product of this transformation (2.9) enabled me to probe the SAR of the 3^{\prime} position of clindamycin for the first time, as well as to synthesize and evaluate novel oxazolidinone-lincosamide hybrid antibiotics.

Through elaboration of this key β-hydroxy- γ-allyl proline derivative, I uncovered a novel bicyclic scaffold and developed a means by which to functionalize it regioselectively, clearing the way for the discovery of some of the most potent lincosamides to emerge from our research program to date.

Taken together, the experiments described in this chapter indicate that this oxepinoproline scaffold represents a promising new avenue for lincosamide discovery. Two distinct series emerging from this work -7-arylthio oxepinoprolinamides and 7-chloro-7'-aryl oxepanoprolinamides - have demonstrated remarkable gains against Gram-positive bacteria, including MLS $_{\mathrm{B}}$-resistant strains. The bicyclic amino acid motif underpinning these analogs appears to be intrinsically stable toward hepatic metabolism, and in many cases substantially alters the anaerobic spectrum of activity of those lincosamides which incorporate it. These properties have the potential to directly impact several of clindamycin's major shortcomings, namely its propensity to promote opportunistic bowel infections, its relatively short serum elimination halflife (2.4 hours in adults, dominated by hepatic metabolism), ${ }^{104}$ and the global emergence of MLS $_{B}$ resistance.

[^54]
Experimental section

General Experimental Procedures. All reactions were performed in oven- or flame-dried roundbottomed or modified Schlenk flasks fitted with rubber septa under a positive pressure of argon (dried by passage through a column of Drierite calcium sulfate desiccant), unless otherwise noted. Air- and moisture-sensitive liquids and solutions were transferred via syringe or stainless-steel cannula. When necessary (so noted), solutions were deoxygenated by three cycles of freezing (liquid nitrogen), evacuation, and thawing under static vacuum. Organic solutions were concentrated by rotary evaporation (house vacuum, ~ 60 Torr) at $23-30{ }^{\circ} \mathrm{C}$. Flash-column chromatography was performed as described by Still et al., ${ }^{105}$ employing silica gel ($60-\AA \AA$ pore size, 230-400 mesh, Agela Technologies, Chicago, IL; or RediSep silica cartridges, Teledyne Isco, Lincoln, NE). Analytical thin-layer chromatography (TLC) was performed using glass plates precoated with silica gel ($0.25 \mathrm{~mm}, 60-\AA$ pore size, $230-400$ mesh, Merck KGA) impregnated with a fluorescent indicator (254 nm). In special cases (so noted), analytical TLC was performed with aminopropyl-modified silica gel $\left(\mathrm{NH}_{2}\right.$ silica gel, $60-\AA$ pore size, Wako Chemicals USA) impregnated with a fluorescent indicator (254 nm). TLC plates were visualized by exposure to ultraviolet light (UV) and/or exposure to iodine vapor (I_{2}), basic aqueous potassium permanganate solution $\left(\mathrm{KMnO}_{4}\right)$, acidic ethanolic para-anisaldehyde solution (PAA), acidic aqueous ceric ammonium molybdate solution (CAM), or ethanolic solution of phosphomolybdic acid (PMA) followed by brief heating on a hot plate as needed $\left(\sim 200{ }^{\circ} \mathrm{C}, \leq 15 \mathrm{~s}\right) \cdot{ }^{106}$ In some cases, reaction

[^55]monitoring was carried out by analytical liquid chromatography-mass spectrometry (LCMS), or by flow-injection analysis-high-resolution mass spectrometry (FIA-HRMS).

Materials. Commercial reagents and solvents were used as received, unless mentioned otherwise. Dichloromethane, diethyl ether, tetrahydrofuran, 1,4-dioxane, N, N-dimethylformamide, toluene, and benzene were purified by passage through $\mathrm{Al}_{2} \mathrm{O}_{3}$ under argon, according to the method of Pangborn and co-workers. ${ }^{107}$ 7-Chloro-methylthiolincosamine (MTL, 1.29) was prepared as described by Lewis and co-workers. ${ }^{68}$ Mesitylenesulfonyl chloride, trifluoroacetic acid, DessMartin periodinane, hexamethyldisilazane, di-tert-butyl dicarbonate, and HATU were purchased from Oakwood Products, Inc. (Estill, SC, USA). 4-(tert-Butylthio)phenylboronic acid was purchased from Alchem Pharmtech, Inc. (Monmouth Junction, NJ, USA). Ethylene gas (ultra-high purity) was purchased from Airgas (Radnor, PA, USA). Allyl ethyl carbonate was purchased from TCI America (Portland, OR, USA). All other chemicals and reagents were purchased from SigmaAldrich Corporation (Natick, MA, USA).

Instrumentation. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra and carbon nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were recorded on Varian Mercury $400(400 \mathrm{MHz} / 100$ $\mathrm{MHz})$, Varian Inova 500 ($500 \mathrm{MHz} / 125 \mathrm{MHz}$), or Varian Inova 600 ($600 \mathrm{MHz} / 150 \mathrm{MHz}$) NMR spectrometers at $23{ }^{\circ} \mathrm{C}$. Proton chemical shifts are expressed in parts per million (ppm, δ scale) and are referenced to residual protium in the NMR solvent $\left(\mathrm{CHCl}_{3}, \delta 7.26 ; \mathrm{CHD}_{3} \mathrm{OD}, \delta 3.31\right.$;

[^56]$\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{D}, \delta$ 7.16). Carbon chemical shifts are expressed as parts per million (ppm, δ scale) and are referenced to the carbon resonance of the NMR solvent $\left(\mathrm{CDCl}_{3}, \delta 77.2 ; \mathrm{CD}_{3} \mathrm{OD}, \delta 49.0 ; \mathrm{C}_{6} \mathrm{D}_{6}, \delta\right.$ 128.1). Data are reported as follows: Chemical shift, multiplicity ($\mathrm{s}=\operatorname{singlet}, \mathrm{d}=\operatorname{doublet}, \mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{qn}=$ quintet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{td}=$ triplet of doublets, $\mathrm{ABq}=\mathrm{AB}$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad, app = apparent $)$, integration, and coupling constant (J) in Hertz (Hz). Infrared transmittance (IR) spectra were obtained using a Bruker ALPHA FTIR spectrophotometer referenced to a polystyrene standard. Data are represented as follows: Frequency of absorption $\left(\mathrm{cm}^{-1}\right)$, and intensity $(\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{br}=$ broad). Melting points were determined using a Thomas Scientific capillary melting point apparatus. High-resolution mass spectrometry (including FIA-HRMS reaction monitoring) was performed at the Harvard University Mass Spectrometry Facility using a Bruker micrOTOF-QII mass spectrometer. X-ray crystallographic analysis was performed at the Harvard University X-Ray Crystallographic Laboratory by Dr. Shao-Liang Zheng. High-performance liquid chromatography-mass spectrometry (LCMS) was performed using an Agilent Technologies 1260-series analytical HPLC system in tandem with an Agilent Technologies 6120 Quadrupole mass spectrometer; a Zorbax Eclipse Plus reverse-phase C_{18} column $(2.1 \times 50 \mathrm{~mm}, 1.8 \mu \mathrm{~m}$ pore size, 600 bar rating; Agilent Technologies, Santa Clara, CA) was employed as stationary phase. LCMS samples were eluted at a flow rate of $650 \mu \mathrm{~L} / \mathrm{min}$, beginning with 5% acetonitrile-water containing 0.1% formic acid, grading linearly to 100% acetonitrile containing 0.1% formic acid over 3 minutes, followed by 100% acetonitrile containing 0.1% formic acid for 2 minutes (5 minutes total run time).

For clarity, intermediates that have not been assigned numbers in the preceding text are numbered sequentially in the following section, beginning with $\mathbf{S 2 . 1}$.

Sulfonate ester S2.2.

A magnetically stirred solution of (-)-S2.1 $(15.0 \mathrm{~g}, 65.1 \mathrm{mmol}, 1 \text { equiv })^{85}$ in dichloromethane (325 mL) was cooled to $0^{\circ} \mathrm{C}$ before it was treated sequentially with triethylamine ($11.8 \mathrm{~mL}, 85.0 \mathrm{mmol}, 1.3$ equiv), 4 -(dimethylamino)pyridine ($795 \mathrm{mg}, 6.51 \mathrm{mmol}, 0.100$ equiv), and 2,4,6-trimethylbenzenesulfonyl chloride ($17.1 \mathrm{~g}, 78.0 \mathrm{mmol}, 1.20$ equiv). The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min before the ice-water cooling bath was removed, and the mixture was allowed to warm to $23{ }^{\circ} \mathrm{C}$ overnight. After 15 h , TLC analysis (20% ethyl acetate-hexanes, KMnO_{4}) showed that no starting material remained. The mixture was poured into a separatory funnel containing water, and the mixture was shaken vigorously. The layers were separated, and the aqueous layer was extracted with ether $(4 \times 300 \mathrm{~mL})$. The combined organic phases were then washed with saturated aqueous sodium bicarbonate solution (200 mL), dried over sodium sulfate, filtered, and concentrated to give tert-butyldimethylsilyl mesitylenesulfonate ester intermediate as a milky yellow oil.

This crude residue was transferred to a $2000-\mathrm{mL}$ round-bottomed flask, where it was dissolved in dichloromethane (650 mL). Water (7.20 mL) was added, and the mixture was chilled to $0^{\circ} \mathrm{C}$ before trifluoroacetic acid $(36.0 \mathrm{~mL})$ was introduced. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 minutes before the ice-water cooling bath was removed and the mixture was allowed to warm to $23{ }^{\circ} \mathrm{C}$. After 1.5 h , TLC (20% ethyl acetate-hexanes, $\mathrm{UV}+\mathrm{KMnO}_{4}$) showed that no tertbutyldimethylsilyl ether intermediate remained. The mixture was diluted with toluene (250 mL), and the diluted mixture was concentrated in vacuo. The residue thus obtained was purified by
flash-column chromatography (1.0 kg silica gel, eluting with 20% diethyl ether-hexanes, grading to 50% diethyl ether-hexanes) to furnish the product as a colorless oil ($13.3 \mathrm{~g}, 68 \%, 2$ steps $)$.
$\mathrm{R}_{f}=0.28$ (30\% ethyl acetate-hexanes, $\mathrm{UV}+\mathrm{KMnO}_{4}$).
${ }^{1}{ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.98(\mathrm{~s}, 2 \mathrm{H}), 5.70(\mathrm{ddt}, J=17.4,9.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-5.01(\mathrm{~m}$, $2 \mathrm{H}), 4.05(\mathrm{dd}, J=9.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=9.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=11.2,4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=11.1,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.63(\mathrm{~s}, 6 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.06(\mathrm{~m}, 2 \mathrm{H})$, 1.97-1.89 (m, 1H).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 143.5,140.0,135.2,131.9,130.6,117.6,68.9,61.9,40.4,32.1$, 22.8, 21.2.

FTIR (neat, cm^{-1}): 3420 (br), 2940 (w), 1604 (2), 1351 (m), 1190 (m), 1173 (s), 1036 (m), 966 (m), 814 (m), 664 (m).

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{4} \mathrm{~S}$, 299.1312; found 299.1322.

Aldehyde 2.2b.

A magnetically stirred solution of alcohol $\mathbf{S 2 . 2}(3.00 \mathrm{~g}, 10.1 \mathrm{mmol}, 1$ equiv) in dichloromethane (50.3 mL) was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice-water bath before Dess-Martin periodinane ($4.26 \mathrm{~g}, 10.1 \mathrm{mmol}, 1.00$ equiv) was added in one portion. After stirring for 5 min at $0^{\circ} \mathrm{C}$, the cooling bath was removed, and the mixture was allowed to warm to $23^{\circ} \mathrm{C}$. After 30 min , TLC analysis (40% ethyl acetate-hexanes, UV +KMnO 4) indicated that no starting material remained. Saturated aqueous sodium bicarbonate (25 mL) was added, and the mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 3 min before aqueous sodium thiosulfate solution ($4.0 \mathrm{M}, 25 \mathrm{~mL}$) was added. The resulting mixture was stirred vigorously at $23{ }^{\circ} \mathrm{C}$ for 30 min before it was transferred to a separatory funnel, where the layers were separated. The aqueous phase was extracted with dichloromethane $(2 \times 20 \mathrm{~mL})$, and the combined organic layers were washed sequentially with fresh saturated aqueous sodium bicarbonate solution (20 mL) and saturated aqueous sodium chloride solution (20 mL). The washed organic solution was then dried over sodium sulfate, filtered, and concentrated to provide the product as a cloudy oil ($3.01 \mathrm{~g}, 101 \%$). This material analytically pure and was suitable for use without further processing.
$\mathrm{R}_{f}=0.54$ (40\% ethyl acetate-hexanes, UV+KMnO4).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.63(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.98(\mathrm{~s}, 2 \mathrm{H}), 5.67(\mathrm{ddt}, J=17.2,10.3,7.0$
$\mathrm{Hz}, 1 \mathrm{H}), 5.10-5.06(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{dd}, J=10.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=10.2,5.0 \mathrm{~Hz}$,
$1 \mathrm{H}), 2.76-2.71(\mathrm{~m}, 1 \mathrm{H}), 2.59(\mathrm{~s}, 6 \mathrm{H}), 2.49(\mathrm{dtt}, 14.6,6.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.29(\mathrm{~m}, 1 \mathrm{H})$, $2.31(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}{ }^{13} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 200.5,143.7,140.1,133.1,131.9,130.2,118.9,66.1,50.2,29.9$, 22.7, 21.2.

FTIR (neat, cm-1): 1727 (m), 1604 (w), 1355 (s), 1190 (s), 1175 (s), 977 (m), 929 (m), 807 (m), 663 (m).

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{Na}]^{+}$calc'd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{O}_{4} \mathrm{~S}, 319.0975$; found 319.0971.

Pseudoephenamine $\boldsymbol{\beta}$-hydroxyprolinamide 2.9.

An oven-dried $500-\mathrm{mL}$ round-bottomed flask was charged with a magnetic stir bar and anhydrous lithium chloride ($6.23 \mathrm{~g}, 147 \mathrm{mmol}, 15.6$ equiv). The vessel was then evacuated (0.1 mmHg , heated with a gentle flame for 2 min in order to drive off any residual moisture from the lithium chloride, and allowed to cool to room temperature before it was back-filled with argon. Next, (R, R)-pseudoephenamine glycinamide (2.3, $3.48 \mathrm{~g}, 12.3 \mathrm{mmol}, 1.30$ equiv) and tetrahydrofuran (131 mL) were added, and the mixture was stirred for 5 min at $23{ }^{\circ} \mathrm{C}$, until all pseudoephenamine glycinamide had dissolved (lithium chloride does not completely dissolve). The mixture was then chilled to $-78^{\circ} \mathrm{C}$ in a dry ice-acetone bath, and a freshly prepared solution of lithium hexamethyldisilazide (1.00 M in tetrahydrofuran, $23.6 \mathrm{~mL}, 23.6 \mathrm{mmol}, 2.50$ equiv) was added dropwise over a period of 3-4 min. The resulting yellow mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 min before it was warmed to $0^{\circ} \mathrm{C}$ for a period of 30 min . The glycinamide enolate solution was then chilled to $-90^{\circ} \mathrm{C}$ in an acetone bath cooled with liquid nitrogen, and a solution of aldehyde 2.2b ($2.79 \mathrm{~g}, 9.42 \mathrm{mmol}$, 1 equiv) in tetrahydrofuran $(10.1 \mathrm{~mL}$) was added via cannula over 2 min . After stirring at $-90^{\circ} \mathrm{C}$ for 5 min following complete addition of the electrophile, the reaction was quenched with the addition of half-saturated aqueous ammonium chloride solution (1.00 mL), causing the vibrant yellow color to darken to orange-yellow. The cooling bath was removed, and the mixture was warmed to $23^{\circ} \mathrm{C}$ before the mixture was transferred to a separatory funnel containing half-saturated aqueous ammonium chloride solution (200 mL) and ethyl acetate (200 mL). The layers were shaken, then separated, and the aqueous phase was extracted with additional
portions of ethyl acetate $(3 \times 100 \mathrm{~mL})$. The combined organic extracts were washed with saturated sodium chloride solution, dried over sodium sulfate, filtered, and concentrated to provide a foaming straw-colored solid, which was purified by flash-column chromatography (330 g silica gel, eluting with 1% ammonium hydroxide- 3% methanol-dichloromethane initially, grading to 1% ammonium hydroxide- 4% methanol-dichloromethane) to provide the product as a snowwhite, foaming solid $(2.31 \mathrm{~g}, 64 \%)$, along with recovered pseudoephenamine glycinamide (1.28 g).

Crystals suitable for single-crystal X-ray diffraction analysis were prepared as follows: In a 1mL glass sample vial, pure $2.9(10 \mathrm{mg})$ was deposited, and this material was dissolved in a minimal quantity of methanol. A drop of benzene was added to this solution, and the vial was partially sealed with a screw cap, leaving the cap slightly ajar so as to allow slow evaporation of solvent. After several days of standing at $23^{\circ} \mathrm{C}$, needle-shaped crystals had formed (see Appendix A for X-ray crystal structure data).

Melting point: $135-137^{\circ} \mathrm{C}$.
$\mathrm{R}_{f}=0.21$ (1% ammonium hydroxide -10% methanol-dichloromethane, UV + PMA $)$.
${ }^{1} \mathrm{H}$ NMR (52:48 mixture of rotamers, asterisks [*] denote minor rotameric signals that could be resolved, $\left.600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.40-7.32(\mathrm{~m}, 4 \mathrm{H}), 7.24-7.12(\mathrm{~m}, 6 \mathrm{H}), 5.93(\mathrm{ddt}, J=17.0$, $10.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{*} 5.81(\mathrm{ddt}, J=16.9,10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{*} 5.46$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), * 5.45(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\operatorname{app} \mathrm{dq}, J$ $=17.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.10(\mathrm{ddt}, J=10.4,2.2,1.1 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{*} 5.07(\operatorname{app~dq}, J=16.9,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.01(\mathrm{ddt}, J=10.2,2.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{dd}, J=5.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), * 4.36(\mathrm{~d}, J=5.8$ $\mathrm{Hz}, 1 \mathrm{H}),{ }^{*} 4.18(\mathrm{dd}, J=6.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{dd}, J=11.6,7.3$
$\mathrm{Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=12.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{*} 3.08(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{~s}, 3 \mathrm{H}), * 2.48(\mathrm{dd}, J=11.6$, $8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.43(\mathrm{dd}, J=11.4,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.42-2.37(\mathrm{~m}, 1 \mathrm{H}),{ }^{*} 2.30-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.17$ (app pd, $J=74,3.9 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{*} 2.08-2.03(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (52:48 mixture of rotamers, asterisks [*] denote rotameric signals that could be resolved, $\left.126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 172.6,171.2,{ }^{*} 143.3, * 142.5,138.6,{ }^{*} 138.0,137.7,137.3,{ }^{*} 130.3,129.9$, $129.6,{ }^{*} 129.4,129.2(2 \times \mathrm{C}),{ }^{*} 129.1(2 \times \mathrm{C}), 128.6(2 \times \mathrm{C}), 128.6, * 128.3,116.7, * 116.6$, $79.0,{ }^{*} 78.3,73.3,72.6, * 66.9,{ }^{*} 65.9,64.3,50.8,{ }^{*}, 50.1,49.9,49.9, * 37.2,{ }^{*} 36.9,32.1,{ }^{*}$ 29.0.

FTIR (neat, cm^{-1}): 3292 (br), 2930 (w), 1639 (s), 1453 (m), 1394 (m), 1087 (m), 1062 (m), 699 (m).

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}$, 381.2173; found 381.2182.

Auxiliary cleavage and synthesis of protected proline 2.12.

A magnetically stirred solution of hydroxyprolinamide 2.9 ($2.31 \mathrm{~g}, 6.07 \mathrm{mmol}, 1$ equiv) in $50 \% \mathrm{v} / \mathrm{v}$ methanol-tetrahydrofuran (30.4 mL) was chilled to $0^{\circ} \mathrm{C}$ before aqueous sodium hydroxide solution ($1.00 \mathrm{M}, 6.19 \mathrm{~mL}, 6.19 \mathrm{mmol}, 1.02$ equiv) was added dropwise. The cooling bath was then removed, and the mixture was allowed to warm to $23^{\circ} \mathrm{C}$ overnight. After 18 h , LCMS analysis showed that not all starting material had been consumed (estimated 80% conversion), and the mixture was heated to $40^{\circ} \mathrm{C}$ for 5 h to drive the reaction to completion. Once it was confirmed that no starting material remained, the reaction mixture was concentrated in vacuo to give a tan-colored sludge, which was re-dissolved in water $(100 \mathrm{~mL})$. In order to recover the chiral auxiliary, this aqueous mixture was extracted with dichloromethane ($4 \times 25 \mathrm{~mL}$), and the combined dichloromethane extracts were dried over sodium sulfate, filtered, and concentrated to provide analytically pure (R, R)-pseudoephenamine $(\mathbf{2 . 1 0}, 1.31 \mathrm{~g}, 95 \%) .{ }^{5}$ The aqueous mixture was concentrated separately, and residual water was removed by azeotropic distillation from methanol in vacuo. This provided the sodium pyrrolidinecarboxylate salt as a dull brown solid (1.21 g, 103\%).

A portion of this this crude residue $(0.900 \mathrm{~g}, 4.66 \mathrm{mmol})$ was transferred to a $200-\mathrm{mL}$ round-bottomed flask, where it was dissolved in $50 \% \mathrm{v} / \mathrm{v}$ 1,4-dioxane-water (38.8 mL). Aqueous sodium hydroxide ($1.00 \mathrm{M}, 6.99 \mathrm{~mL}, 6.99 \mathrm{mmol}, 1.50$ equiv) and di-tert-butyl dicarbonate (2.16 $\mathrm{mL}, 9.32 \mathrm{mmol}, 2.00$ equiv) were added, and the mixture was stirred at $23^{\circ} \mathrm{C}$. After 2.5 h, LCMS analysis showed that N-Boc protection was complete, and the mixture was diluted with water (100
$\mathrm{mL})$. The diluted mixture was washed with ether $(3 \times 30 \mathrm{~mL})$ in order to remove excess di-tertbutyl dicarbonate before the washed aqueous solution was chilled to $0^{\circ} \mathrm{C}$. The aqueous solution was acidified to $\mathrm{pH}=2$ with the dropwise addition of 1 N aqueous hydrogen chloride solution, and the acidified mixture was extracted with ethyl acetate $(4 \times 25 \mathrm{~mL})$ to recover N-Boc-protected amino acid as a white solid.

This material was finally transferred to a $100-\mathrm{mL}$ round-bottomed flask, where it was dissolved in N, N-dimethylformamide (17.2 mL). Cesium carbonate $(1.59 \mathrm{~g}, 4.88 \mathrm{mmol}, 1.05$ equiv) was added in one portion, followed by methyl iodide ($348 \mu \mathrm{~L}, 5.57 \mathrm{mmol}, 1.20$ equiv), which was added dropwise at $23^{\circ} \mathrm{C}$. After 1 h of stirring, LCMS analysis showed that methylation of the starting material was complete, and the mixture was diluted with ethyl acetate (50 mL), causing a white precipitate to form. This suspension was transferred to a separatory funnel containing saturated aqueous sodium bicarbonate solution (50 mL), and the layers were shaken. The layers were then separated, the aqueous phase was extracted with additional ethyl acetate (3 $\times 20 \mathrm{~mL}$), and the combined organic layers were washed with saturated aqueous sodium chloride $(2 \times 20 \mathrm{~mL})$. The washed organic solution was then dried over sodium sulfate, filtered, and concentrated to provide a viscous oil, which was purified by flash-column chromatography (80 g silica gel, eluting with 30% ethyl acetate-hexanes initially, grading to 40% ethyl acetate-hexanes) to furnish N-Boc-protected hydroxyproline methyl ester $\mathbf{2 . 1 2}$ as a colorless, highly viscous oil ($1.29 \mathrm{~g}, 97 \%, 2$ steps).
$\mathrm{R}_{f}=0.30\left(40 \%\right.$ ethyl acetate-hexanes, $\left.\mathrm{KMnO}_{4}\right)$.
${ }^{1} \mathrm{H}$ NMR (60:40 mixture of rotamers, asterisks [*] denote minor rotameric signals that could be resolved, $\left.600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.80(\mathrm{ddt}, J=16.9,10.0,7.34 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=17.0 \mathrm{~Hz}$,
$1 \mathrm{H}), 5.06(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), * 4.38(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.18$ (app dtd, $J=12.9,7.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=10.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{~s}, 3 \mathrm{H}),{ }^{*} 3.76(\mathrm{~s}$, $3 \mathrm{H}), 3.72(\mathrm{dd}, J=10.8,7.7 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{*} 3.07(\mathrm{dd}, J=10.7,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{dd}, J=8.6$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{*} 2.39-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.13-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H})^{*}$ $1.40(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (60:40 mixture of rotamers, asterisks [*] denote minor rotameric signals that could be resolved, $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.3,171.2, * 154.4, * 153.9,135.6, * 135.5,117.0,116.9$,* 80.4, 80.3,* 75.8, 75.0,* 63.5, 62.9,* 52.2,* 52.0, 49.2,* 48.7, 35.1, 28.4,* 28.3.

IR (neat, cm^{-1}): 3439 (br), 2977 (m), 1749 (m), 1701 (s), 1677 (s), 1402 (s), 1368 (m), 1207 (m), 1177 (s), 915 (w).

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{Na}]^{+}$calc'd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{5}, 308.1468$; found 308.1476.

Synthetic lincosamide FSA-21134.

To a solution of sodium carboxylate $2.11(10.8 \mathrm{mg}, 52.1 \mu \mathrm{~mol}, 1$ equiv) in N, N dimethylformamide ($522 \mu \mathrm{~L}$) was added $\operatorname{HATU}\left(21.8 \mathrm{mg}, 57.4 \mu \mathrm{~mol}, 1.10\right.$ equiv) at $23{ }^{\circ} \mathrm{C}$. After stirring the resulting colorless solution for $10 \mathrm{~min}, 7-\mathrm{Cl}-\mathrm{MTL}(\mathbf{1 . 2 9}, 21.3 \mathrm{mg}, 78.3 \mathrm{mg}, 1.50$ equiv) was added. After the resulting yellow solution was stirred for 20 min , diisopropylethylamine (22.8 $\mu \mathrm{L}, 131 \mu \mathrm{~mol}, 2.50$ equiv) was added. After 1 h, LCMS analysis indicated that coupling was complete, and the mixture was concentrated to dryness in vacuo. The residue was purified by flashcolumn chromatography (10 g silica gel, eluting with 1% ammonium hydroxide -5% methanoldichloromethane initially, grading to 1% ammonium hydroxide -10% methanol-dichloromethane) to provide FSAS-21134 as a colorless film ($9.7 \mathrm{mg}, 42 \%$).
$\mathrm{R}_{f}=0.22$ (1\% ammonium hydroxide- 10% methanol-dichloromethane, PMA).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 5.84(\mathrm{ddt}, J=16.9,10.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.10(\mathrm{dq}, J=16.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{dq}, J=10.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{qd}, J=6.8,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.42(\mathrm{dd}, J=9.5,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.16(\mathrm{~m}, 2 \mathrm{H}), 4.07(\mathrm{dd}, J=10.2,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.03(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=10.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{br}, 1 \mathrm{H}), 3.21(\mathrm{br}, 1 \mathrm{H}), 2.46$ (br, 3H), 2.38-2.34(m, 1H), 2.21-2.16(m, 1H), $2.14(\mathrm{~s}, 3 \mathrm{H}), 2.12-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~d}$, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{ClN}_{2} \mathrm{O}_{6} \mathrm{~S}, 439.1664$; found 439.1667.

Protected lincosamide S2.3.

 dissolved in N, N-dimethylformamide ($673 \mu \mathrm{~L}$). To this solution was added HATU ($56.3 \mathrm{mg}, 148$ $\mu \mathrm{mol}, 1.10$ equiv); the resulting solution was stirred for 10 min at $23^{\circ} \mathrm{C}$ before 7 -Cl-MTL (1.29, $54.8 \mathrm{mg}, 202 \mu \mathrm{~mol}, 1.50$ equiv) was added as well. After 20 min , diisopropylethylamine ($58.7 \mu \mathrm{~L}$, $336 \mu \mathrm{~mol}, 2.50$ equiv) was finally added, which caused the solution to gradually attain a canaryyellow color. After 3 h of stirring at $23^{\circ} \mathrm{C}$, LCMS analysis indicated that the reaction was complete, and the mixture was partitioned between saturated aqueous sodium chloride solution (8 $\mathrm{mL})$ and ethyl acetate $(10 \mathrm{~mL})$. The layers were shaken, then separated, and the aqueous layer was extracted with fresh portions of ethyl acetate $(2 \times 10 \mathrm{~mL})$. The combined organic extracts were dried over sodium sulfate, filtered, and concentrated. The crude product mixture was then purified by flash-column chromatography (6 g silica gel, eluting with 10% methanol-dichloromethane) to provide the product as a white solid ($39.5 \mathrm{mg}, 56 \%$).
$\mathrm{R}_{f}=0.15$ (10% methanol-dichloromethane, PMA).
${ }^{1} \mathrm{H}$ NMR (complex rotameric mixture, asterisks [*] denotes rotameric signals that could be resolved, $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.83(\mathrm{ddt}, J=17.0,9.6,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.09(\mathrm{dt}, J=17.2,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.04(\mathrm{dd}, J=10.3,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.64-4.56(\mathrm{~m}, 1 \mathrm{H})$, $4.50-4.46(\mathrm{~m}, 1 \mathrm{H}),{ }^{*} 4.42(\mathrm{br} \mathrm{d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{br} \mathrm{d}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), * 4.24(\mathrm{br} \mathrm{d}, J$
$=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{brd}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{*} 4.15(\operatorname{app~t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.05(\mathrm{~m}$, $2 H), 3.96-3.91(\mathrm{~m}, 1 \mathrm{H}),{ }^{*} 3.74-3.64(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.13-3.10(\mathrm{~m}, 1 \mathrm{H}), 2.45-$ $2.28(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}),{ }^{*} 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.00-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.59-1.53(\mathrm{~m}, 3 \mathrm{H}), 1.47(\mathrm{~s}$, 9H).

MS (ESI-, m / z): $[\mathrm{M}-\mathrm{H}]^{-}$calc'd for $\mathrm{C}_{22} \mathrm{H}_{37} \mathrm{ClN}_{2} \mathrm{O}_{8} \mathrm{~S}, 523.2$; found 523.2.

Synthetic lincosamide FSA-21141.

In a 4-mL glass vial fitted with a magnetic stir bar, N-Boc-protected lincosamide $\mathbf{S 2 . 3}$ ($15.5 \mathrm{mg}, 29.5 \mu \mathrm{~mol}$, 1 equiv) was dissolved in $20 \% \mathrm{v} / \mathrm{v}$ trifluoroacetic acid-dichloromethane (600 $\mu \mathrm{L}$) at $23{ }^{\circ} \mathrm{C}$. After stirring at $23{ }^{\circ} \mathrm{C}$ for 2 h , LCMS analysis indicated that N-Boc removal was complete The mixture was diluted with toluene $(1 \mathrm{~mL})$ and the diluted mixture was concentrated to dryness in vacuo. The dried residue was triturated with dichloromethane ($2 \times 1 \mathrm{~mL}$) to provide FSA-21141 $\cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(11.9 \mathrm{mg}, 75 \%)$ as a white solid.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 5.85(\mathrm{ddt}, J=17.2,10.3,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.18(\operatorname{app~dq}, J=17.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{ddt}, J=10.2,2.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.55(\mathrm{~m}$, $2 \mathrm{H}), 4.46(\mathrm{dd}, J=5.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=10.0,1.2 \mathrm{~Hz}$, $1 \mathrm{H}), 4.10(\mathrm{dd}, J=10.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=3.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\mathrm{dd}, J=11.9,7.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=10.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{dd}, J=11.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.46-2.41(\mathrm{~m}$, $1 \mathrm{H}), 2.32-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.

Synthetic lincosamide FSA-21147

In a 4-mL glass vial fitted with a magnetic stir bar, olefin $\mathbf{S} 2.3$ ($11.1 \mathrm{mg}, 21.1 \mathrm{mg}$, 1 equiv) was dissolved in methanol $(420 \mu \mathrm{~L})$. To this solution was added palladium on carbon $(10 \% \mathrm{w} / \mathrm{w}$, 5 mg), and hydrogen gas was bubbled through the resulting black suspension. After 5 min , bubbling was discontinued, and the mixture was stirred rapidly (700 rpm) under 1 atm of hydrogen gas (supplied by a balloon). After 2 h , LCMS analysis indicated that hydrogenation was complete, and the mixture was filtered through a pad of Celite to remove the heterogeneous catalyst. The filter cake was rinsed with fresh portions of methanol ($3 \times 1 \mathrm{~mL}$), and the filtrate was concentrated to give 4'-n-propyl N-Boc-protected lincosamide intermediate.

This intermediate was transferred to a clean 4-mL glass vial, where it was dissolved in 20\% v / v trifluoroacetic acid-dichloromethane $(500 \mu \mathrm{~L})$. The resulting solution was stirred at $23{ }^{\circ} \mathrm{C}$ for 2 h , at which point LCMS analysis indicated that N-Boc removal was complete. Toluene (1 mL) was added, and the diluted mixture was concentrated to dryness in vacuo. The dried residue was purified by flash-column chromatography (6 g silica gel, eluting with 1% ammonium hydroxide8% methanol-dichloromethane) to provide the product as a colorless film ($6.8 \mathrm{mg}, 75 \%, 2$ steps).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.29(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{qd}, J=6.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}$, $J=10.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20-4.17(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{dd}, J=10.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=3.5$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=10.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.69(\mathrm{dd}, J=10.8$,
$4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.07-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.49(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.43-1.37(\mathrm{~m}, 3 \mathrm{H})$, $1.30-1.24(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 175.0,89.6,79.0,71.8,71.1,69.6(2 \times \mathrm{C}), 66.3,59.2,54.3,50.8$, 35.1, 22.8, 22.1, 14.5, 13.3.

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{ClN}_{2} \mathrm{O}_{6} \mathrm{~S}, 426.2$; found 426.2.

Protected lincosamide 2.16.

In a 4-mL glass vial fitted with a magnetic stir bar, hydroxyproline $\mathbf{2 . 1 2}(50.0 \mathrm{mg}, 175$ $\mu \mathrm{mol}, 1$ equiv) was dissolved in acetonitrile (1.46 mL). To this solution, silver(I) oxide (207 mg , $894 \mu \mathrm{~mol}, 5.10$ equiv) and iodomethane ($112 \mu \mathrm{~L}, 1.79 \mathrm{mmol}, 10.2$ equiv) were added sequentially; the reaction vial was then capped with a PTFE-lined screw cap and was shielded from light with aluminum foil. After 2 d of stirring at $23{ }^{\circ} \mathrm{C}$, TLC analysis (50% ethyl acetate-hexanes, KMnO_{4}) demonstrated that all starting material had been consumed. The mixture was filtered through a $0.2-$ $\mu \mathrm{m}$ PTFE filter in order to remove all insoluble silver salts, and the filtrate was concentrated in vacuo to provide O-methylated intermediate ($47.3 \mathrm{mg}, 158 \mu \mathrm{mmol}, 90 \%$).

This material was transferred to a clean 4-mL glass vial, where it was dissolved in $50 \% \mathrm{v} / \mathrm{v}$ methanol-tetrahydrofuran $(786 \mu \mathrm{~L})$. Aqueous lithium hydroxide solution ($1.00 \mathrm{M}, 157 \mu \mathrm{~L}, 157$ μ mol, 1.00 equiv) was then added at $23^{\circ} \mathrm{C}$, and the mixture was stirred for 2 d , until LCMS analysis indicated that saponification was complete. The reaction mixture was then diluted with water (3 mL), cooled to $0^{\circ} \mathrm{C}$, and acidified to $\mathrm{pH}=2$ with the addition of aqueous hydrogen chloride solution (1 N). The acidified solution was extracted with ethyl acetate ($4 \times 3 \mathrm{~mL}$), and the combined organic extracts were dried over sodium sulfate. The dried organic product solution was then filtered, and the filtrate was concentrated to provide carboxylic acid intermediate (46.8 mg , 104\%).

This material was transferred to a $2-5 \mathrm{~mL}$ glass microwave vial fitted with a magnetic stir bar, where it was dissolved in N, N-dimethylformamide $(820 \mu \mathrm{~L})$. To this solution, HATU (68.6 $\mathrm{mg}, 180 \mu \mathrm{~mol}, 1.10$ equiv) was added, followed by 7-Cl-MTL (1.29, $66.9 \mathrm{mg}, 246 \mu \mathrm{~mol}, 1.50$ equiv) 10 minutes later. Finally, diisopropylethylamine ($71.6 \mu \mathrm{~L}, 410 \mu \mathrm{~mol}, 2.50$ equiv) was added to the canary-yellow solution, and the mixture was stirred for 1 h , at which point LCMS analysis indicated that the amide coupling reaction was complete. The mixture was concentrated in vacuo, and the dried residue was purified by flash-column chromatography (10 g silica gel, eluting with dichloromethane initially, grading to 5% methanol-dichloromethane) to provide N-Boc lincosamide product $\left(\mathrm{R}_{f}=0.50,10 \%\right.$ methanol-dichloromethane, PMA$)$ as a white solid (54.4 mg , $58 \%, 3$ steps). This material was carried forward through N-Boc removal without further purification or characterization.

Synthetic lincosamides FSA-22090a, FSA-22090b, and FSA-22090c.

In a $2-5 \mathrm{~mL}$ glass microwave vial fitted with a magnetic stir bar, $\mathbf{2 . 1 6}(54.0 \mathrm{mg}, 100 \mu \mathrm{~mol}$, 1 equiv) was dissolved in $10 \% \mathrm{v} / \mathrm{v}$ trifluoroacetic acid-dichloromethane (1.10 mL) at $23{ }^{\circ} \mathrm{C}$. After stirring for 1 h , LCMS analysis indicated that N-Boc removal was complete, and that several diastereomeric products had been formed. Toluene (1 mL) was added, and the mixture was concentrated to dryness in vacuo. The residue thus obtained was purified by preparative HPLC on a Waters SunFire prep C_{18} column ($5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acidwater initially, grading to 0.1% trifluoroacetic acid- 40% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 210 nm) to provide in order of elution, the diastereomeric products FSA-22090a $\cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\left(14.6 \mathrm{mg}, \mathbf{2 6 \%}\right.$), FSA-22090b $\cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ ($4.6 \mathrm{mg}, 8 \%$), and FSA-22090c $\cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(9.6 \mathrm{mg}, 17 \%)$ as white solids. The relative $\mathrm{C}^{\prime}{ }^{\prime}$ and C3' configurations were established by 1D nuclear Overhauser effect ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis (data not shown).

FSA-22090a $\cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}:$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 5.82$ (dddd, $\left.J=17.2,10.1,7.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 531(\mathrm{~d}, J=5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 5.18(\operatorname{app~dq}, J=17.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.12(\operatorname{app} \mathrm{dq}, J=10.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.59-4.56$ $(\mathrm{m}, 2 \mathrm{H}), 4.40(\mathrm{dd}, J=9.7,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=10.1,5.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.91(\operatorname{app~t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=10.2,3.3 \mathrm{~Hz}$,
$1 \mathrm{H}), 3.56(\mathrm{dd}, J=11.7,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{~s}, 3 \mathrm{H}), 3.33-3.31(\mathrm{~m}, 1 \mathrm{H}), 2.55-2.37(\mathrm{~m}, 1 \mathrm{H})$, 2.34 (app dtt, $J=14.2,6.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR (126 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 168.4,136.2,118.2,89.8,89.0,72.1,703,70.1,69.4,66.3,59.2$, 58.2, 55.1, 50.3, 44.1, 35.9, 23.1, 13.5.

FTIR (neat, cm^{-1}): 3339 (br), 1673 (s), 1542 (w), 1201 (s), 1135 (s).
HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{Na}]^{+}$calc'd for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{ClN}_{2} \mathrm{O}_{6} \mathrm{~S}, 461.1484$; found 461.1487.

FSA-22090b $\cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$:

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 5.85(\mathrm{ddt}, J=17.1,10.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.14(\operatorname{app~dq}, J=17.4,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\operatorname{app~dq}, J=10.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.56(\mathrm{~m}, 2 \mathrm{H})$, $4.40(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=10.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ (dd, $J=3.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=10.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=11.1,8.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.52(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{appt}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.25-$ $2.20(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.

FTIR (neat, cm ${ }^{-1}$): 3339 (br), 1672 (s), 1201 (s), 1137 (s).
HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{ClN}_{2} \mathrm{O}_{6} \mathrm{~S}, 439.1664$; found 439.1680.

FSA-22090c • $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$:

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 5.85(\mathrm{ddt}, J=17.1,10.2,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.14(\operatorname{app} \mathrm{dq}, J=17.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.08(\mathrm{dd}, J=10.2,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.56(\mathrm{~m}, 2 \mathrm{H})$, $4.40(\mathrm{~d}, J=10.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=10.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ (dd, $J=3.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=10.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=11.1,8.6 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.52(\mathrm{~s}, 3 \mathrm{H}), 3.06(\mathrm{appt}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.25-$ $2.20(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 166.1,135.8,118.7,89.8,85.2,72.2,70.4,69.7,69.5,64.8,59.5$, 57.6, 54.5, 43.2, 36.4, 22.7, 13.4.

FTIR (neat, cm^{-1}): 3331 (br), 1674 (s), 1201 (s), 1134 (m).
HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{ClN}_{2} \mathrm{O}_{6} \mathrm{~S}$, 439.1664; found 439.1682.

Morpholino compound 2.19.

In a $25-\mathrm{mL}$ round-bottomed flask fitted with a magnetic stir bar, a solution of olefin $\mathbf{2 . 1 2}$ ($40.0 \mathrm{mg}, 140 \mu \mathrm{~mol}, 1$ equiv) in methanol (4.67 mL) was chilled to $-78^{\circ} \mathrm{C}$ in a dry ice-acetone cooling bath. Through this solution, an ozone-dioxygen gas mixture from an ozone generator was bubbled for approximately 5 minutes, until the reaction solution attained a persistent ultramarine coloration. Nitrogen was then bubbled through the mixture for 5 minutes in order to sparge the solution of residual ozone before sodium thiodipropionate ($62.3 \mathrm{mg}, 280 \mu \mathrm{~mol}, 2.00$ equiv) was added at $-78{ }^{\circ} \mathrm{C}$. The mixture was then removed from the cooling bath, and the mixture was allowed to warm to $23{ }^{\circ} \mathrm{C}$ gradually. After 8 h , LCMS analysis indicated that no trioxolane intermediate remained, and the mixture was diluted with saturated aqueous sodium bicarbonate solution $(20 \mathrm{~mL})$. The resulting mixture was extracted with dichloromethane $(3 \times 15 \mathrm{~mL})$, and the combined organic extracts were washed with saturated aqueous sodium chloride solution (15 mL). The organic product solution was then dried over sodium sulfate, filtered, and concentrated to provide crude aldehyde as a colorless oil. This material was carried forward without further purification.

This crude aldehyde observed by ozonolytic cleavage was transferred to a $10-\mathrm{mL}$ roundbottomed flask, where it was dissolved in 1,2-dichloroethane ($679 \mu \mathrm{~L}$). To this solution, morpholine ($35.5 \mu \mathrm{~L}, 407 \mu \mathrm{~mol}, 3.00$ equiv) was added, followed by sodium cyanoborohydride ($17.1 \mathrm{mg}, 271 \mu \mathrm{~mol}, 2.00$ equiv). After stirring for $1 \mathrm{~h}, \mathrm{LCMS}$ analysis indicated that no aldehyde remained. The mixture was directly subjected to flash-column chromatography (6 g silica gel,
eluting with 1% ammonium hydroxide- 5% methanol-dichloromethane) to provide the product as a white, foaming solid ($51.3 \mathrm{mg}, 104 \%, 2$ steps).
$\mathrm{R}_{f}=0.50$ (1% ammonium hydroxide -10% methanol-dichloromethane, KMnO_{4}).
${ }^{1} \mathrm{H}$ NMR (55:45 rotameric mixture, asterisk [*] denotes minor rotameric signals that could be resolved, $\left.600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.50(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), * 4.41(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.96$ (ddd, $J=9.7,8.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=12.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=10.7,8.5 \mathrm{~Hz}$, $1 \mathrm{H}),{ }^{*} 3.77(\mathrm{~s}, 3 \mathrm{H}), * 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.74-7.71(\mathrm{~m}, 2 \mathrm{H}), 3.69-3.65(\mathrm{~m}, 2 \mathrm{H}), 3.14(\mathrm{app} \mathrm{dd}, J=$ $13.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-3.76(\mathrm{~m}, 1 \mathrm{H}), 2.64(\mathrm{br}, 2 \mathrm{H}), 2.56-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.43-2.34(\mathrm{~m}, 3 \mathrm{H})$, $1.73-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}),{ }^{*} 1.38(\mathrm{~s}, 9 \mathrm{H})$.

MS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{6}, 359.2$; found 359.2.

Synthetic lincosamide FSA-22097.

To a solution of ester 2.19 ($50 \mathrm{mg}, 140 \mu \mathrm{~mol}, 1$ equiv) in $50 \% \mathrm{v} / \mathrm{v}$ methanoltetrahydrofuran $(700 \mu \mathrm{~L})$, an aqueous solution of sodium hydroxide $(1.0 \mathrm{M}, 140 \mu \mathrm{~L}, 140 \mu \mathrm{~mol}$, 1.0 equiv) was added. The mixture was then warmed to $40^{\circ} \mathrm{C}$ in a pre-heated oil bath. The mixture was stirred at that temperature for 3 d , at which point LCMS analysis indicated that saponification was complete. The mixture was concentrated in vacuo to afford crude sodium carboxylate salt, which was used in the next transformation without purification.

This material was transferred to a $2-5 \mathrm{~mL}$ glass microwave vial, where it was dissolved in N, N-dimethylformamide $(530 \mu \mathrm{~L})$. To this solution was added HATU ($45 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.1$ equiv) at $23{ }^{\circ} \mathrm{C}$, followed by 7 -Cl-MTL ($\mathbf{1 . 2 9}, 43 \mathrm{mg}, 0.16 \mathrm{mmol}, 1.5$ equiv) 10 min later. The resulting yellow suspension was stirred for 1.5 h , at which point the amide coupling reaction was judged to be complete by LCMS analysis. The mixture was concentrated in vacuo, and the residue was purified by flash-column chromatography (6 g silica gel, eluting with dichloromethane initially, grading to 1% ammonium hydroxide -10% methanol-dichloromethane) to provide N -Boc-protected lincosamide product $\left(\mathrm{R}_{f}=0.31,1 \%\right.$ ammonium hydroxide -10% methanoldichloromethane, PMA) as a white film ($18 \mathrm{mg}, 28 \%, 2$ steps). Owing to significant rotamerism, this product was not characterized at this point, but was instead advanced through N-Boc removal.

Accordingly, the N-Boc lincosamide intermediate ($18 \mathrm{mg}, 30 \mu \mathrm{~mol}, 1$ equiv) was dissolved in $10 \% \mathrm{v} / \mathrm{v}$ trifluoroacetic acid-dichloromethane $(300 \mu \mathrm{~L})$ at $23^{\circ} \mathrm{C}$. After 3 h , LCMS analysis indicated that N-Boc removal was complete, and toluene (1 mL) was added. The diluted mixture was concentrated in vacuo, and the dried residue was purified by preparative HPLC on a Waters SunFire prep C_{18} column $(5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid-water initially, grading to 0.1% trifluoroacetic acid- 20% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 210 nm) to provide $\mathbf{F S A}-\mathbf{2 2 0 9 7} \cdot 2 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as a white solid ($9.5 \mathrm{mg}, 44 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.31(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.55(\mathrm{~m}, 2 \mathrm{H}), 4.48(\mathrm{~d}, J=2.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.30(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=10.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{br}, 2 \mathrm{H}), 3.86(\mathrm{~d}, J=$ $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\mathrm{br}, 2 \mathrm{H}), 3.73(\mathrm{dd}, J=11.8,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=10.2,3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.50(\mathrm{br}, 2 \mathrm{H}), 3.28(\mathrm{dd}, J=10.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=12.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), .16(\mathrm{br}, 2 \mathrm{H})$, $3.13(\mathrm{dd}, J=11.9,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.37-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.04-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.93-$ $1.86(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 167.2,152.2(\mathrm{q}, J=36.3 \mathrm{~Hz}), 117.7(\mathrm{q}, J=290.7 \mathrm{~Hz}), 89.8,76.2$, $72.1,70.7,69.8,69.6,65.0,64.1,59.2,56.4,54.8,44.9,25.9,22.7,13.5$. Four carbon signals were not well resolved: Two trifluoroacetate carbon signals were partially obscured by coupling to ${ }^{19} \mathrm{~F}$ nuclei, and two signals from the morpholine ring were not observed due to peak broadening.

FTIR (neat, cm^{-1}): 3355 (br), 1673 (s), 1200 (s), 1134 (m).
HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{ClN}_{3} \mathrm{O}_{7} \mathrm{~S}, 287.5613$; found 287.5696.

Xanthate ester S2.4.

Methyl xanthate formation was performed following the procedure described by Bartley and Coward. ${ }^{108}$ To a solution of hydroxyproline $2.12(50.0 \mathrm{mg}, 175 \mu \mathrm{~mol}, 1$ equiv) in dimethyl sulfoxide (350 $\mu \mathrm{L}$) were added 1,8-diazabicyclo[5.4.0]undec-7-ene (29.1 $\mu \mathrm{L}, 193 \mu \mathrm{~mol}, 1.10$ equiv) and carbon disulfide ($69.7 \mu \mathrm{~L}, 1.16 \mathrm{mmol}, 6.60$ equiv) at $23^{\circ} \mathrm{C}$. Upon addition of carbon disulfide, the reaction solution immediately changed from colorless to auburn-colored. After 75 min of stirring at $23^{\circ} \mathrm{C}$, methyl iodide ($21.9 \mu \mathrm{~L}, 350 \mu \mathrm{~mol}$, 2.00 equiv) was added, causing the auburn color to change to canary yellow. After 1.5 h , LCMS analysis indicated that methyl xanthate formation was complete. The reaction mixture was diluted with ethyl acetate (30 mL), and the diluted organic solution was washed with water $(3 \times 10 \mathrm{~mL})$. The combined aqueous washes were extracted with a fresh portion of ethyl acetate (15 mL), and the combined organic layers were washed with saturated aqueous sodium chloride solution $(10 \mathrm{~mL})$. The organic product solution was then dried over sodium sulfate, filtered, and concentrated to provide analytically pure product as a yellow, viscous oil ($64.5 \mathrm{mg}, 98 \%$).
$R f=0.67\left(30 \%\right.$ ethyl acetate - hexanes, $\left.\mathrm{UV}+\mathrm{KMnO}_{4}\right)$.
${ }^{1} \mathrm{H}$ NMR (60:40 rotameric mixture, asterisk [*] denotes minor rotameric signals that could be resolved, $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.91-5.86(\mathrm{~m}, 1 \mathrm{H}), 5.73(\mathrm{ddt}, J=17.1,10.2,7.0 \mathrm{~Hz}, 1 \mathrm{H})$,

[^57]$5.08-5.02(\mathrm{~m}, 2 \mathrm{H}), 4.75(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), * 4.65(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=10.8$, $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75-3.71(\mathrm{~m}, 1 \mathrm{H}),{ }^{*} 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.15(\mathrm{dd}, J=10.5,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.75-2.69$ $(\mathrm{m}, 1 \mathrm{H}), 2.54(\mathrm{~s}, 3 \mathrm{H}), 2.31-2.26(\mathrm{~m}, 1 \mathrm{H}), 2.14-2.06(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}), * 1.38(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (60:40 rotameric mixture, asterisk [*] denotes minor rotameric signals that could be resolved, $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 215.3,215.2, * 169.7,169.5,{ }^{*} 154.2, * 153.5,134.5, *$ 134.4, $117.6,117.6, * 83.5,82.9, *$ 80.7, 80.6,* 60.2, 59.8,*52.4,*, $52.3,48.6,{ }^{*} 48.1,41.2, * 40.4$, 34.7, 28.5,*28.3, 19.3.

FTIR (neat, cm^{-1}): 1749 (m), 1699 (s), 1393 (s), 1366 (m), 1175 (s), 1144 (s), 1065 (s).
HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{5} \mathrm{~S}_{2}, 376.1247$; found 376.1247.

Proline derivative 2.20.

Barton reduction was performed according to the method reported by Robbins, Wilson, and Hansske. ${ }^{109}$ In a $2-5 \mathrm{~mL}$ glass microwave vial, a solution of methyl xanthate $\mathbf{S} 2.4(64.5 \mathrm{mg}$, $172 \mu \mathrm{~mol}, 1$ equiv), $2,2^{\prime}$-azobis(2-methylpropionitrile) ($5.64 \mathrm{mg}, 34.3 \mu \mathrm{~mol}, 0.200$ equiv), and tri-n-butylstannane ($69.3 \mu \mathrm{~L}, 258 \mu \mathrm{~mol}, 1.50$ equiv) in toluene (4.29 mL) was sparged of molecular oxygen by bubbling argon through it for 10 min . The mixture was then heated to $75^{\circ} \mathrm{C}$ in a preheated oil bath; over the course of 30 min , the yellow color of the reaction mixture gradually dissipated as starting material was consumed. After 3.5 h , TLC analysis (30% ethyl acetatehexanes, UV+PMA) revealed that no starting material remained. The mixture was allowed to cool to ambient temperature before it was concentrated in vacuo. The crude residue was purified by flash-column chromatography (4 g silica gel, eluting with hexanes initially, grading to 40% ethyl acetate-hexanes) to provide the product as a colorless oil ($22.8 \mathrm{mg}, 49 \%$).
$\mathrm{Rf}=0.41$ (30% ethyl acetate-hexanes, PMA).
${ }^{1} \mathrm{H}$ NMR (60:40 rotameric mixture, asterisk [*] denotes minor rotameric signals that could be resolved, $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.73$ (dddd, $\left.J=18.5,10.1,7.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.05-4.99(\mathrm{~m}$, $2 \mathrm{H}), 4.35(\mathrm{dd}, J=9.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{*} 4.25(\mathrm{dd}, J=8.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.69(\mathrm{~m}, 1 \mathrm{H})$, $3.71(\mathrm{~s}, 3 \mathrm{H}),{ }^{*} 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{dd}, J=10.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), * 3.04(\mathrm{dd}, J=10.6,8.1 \mathrm{~Hz}$,

[^58]$1 \mathrm{H}), 2.97(\mathrm{dd}, J=10.4,8.4 \mathrm{~Hz}, 1 \mathrm{H}), * 2.41-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.15-2.03(\mathrm{~m}, 3 \mathrm{H}), 1.92-1.80$ (m, 1H), 1.44 (s, 9H),* 1.39 (s, 9H).
${ }^{13} \mathrm{C}$ NMR (60:40 rotameric mixture, asterisk [*] denotes minor rotameric signals that could be resolved, $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.7,173.5,{ }^{*} 154.5,{ }^{*} 153.8,136.0,{ }^{*} 135.9,116.7,116.6,{ }^{*}$ 80.0, 59.1, $58.8,{ }^{*} 52.2, * 52.1,51.7, * 51.4,37.3,37.2,37.1, * 36.2, * 36.2,35.5, * 28.6, *$ 28.4.

FTIR (neat, cm^{-1}): 2976 (w), 1749 (m), 1699 (s), 1395 (s), 1366 (m), 1161 (m), 1120 (m).
HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{4}, 270.1700$; found 270.1704 .

Morpholino compound 2.21.

A solution of olefin $\mathbf{2 . 2 0}(22.8 \mathrm{mg}, 84.7 \mu \mathrm{~mol}, 1$ equiv $)$ in methanol $(2.82 \mathrm{~mL})$ was cooled to $-78{ }^{\circ} \mathrm{C}$ in a dry ice-acetone bath before an ozone-dioxygen mixture from an ozone generator was bubbled through it. Ozone addition was continued until the reaction mixture attained a persistent ultramarine color, at which point nitrogen gas was bubbled through the mixture for 5 \min in order to sparge it of excess oxidant. Sodium thiodipropionate ($37.6 \mathrm{mg}, 169 \mu \mathrm{~mol}, 2.00$ equiv) was added at $-78^{\circ} \mathrm{C}$, the cooling bath was removed, and the mixture was allowed to warm to $23{ }^{\circ} \mathrm{C}$ with stirring. Reductive consumption of the trioxolane intermediate was monitored by LCMS, and after 2 h , the reaction was complete. The mixture was diluted with saturated aqueous sodium bicarbonate solution (15 mL), and the resulting mixture was extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined extracts were dried over sodium sulfate, filtered, and concentrated to provide crude aldehyde intermediate as a colorless oil.

This material was transferred to a $2-5 \mathrm{~mL}$ glass microwave vial fitted with a magnetic stir bar, where it was dissolved in 1,2-dichloroethane ($424 \mu \mathrm{~L}$). Morpholine ($22.1 \mu \mathrm{~L}, 254 \mu \mathrm{~mol}, 3.00$ equiv) was added to this mixture, followed by sodium cyanoborohydride ($10.7 \mathrm{mg}, 169 \mu \mathrm{~mol}, 2.00$ equiv) at $23{ }^{\circ} \mathrm{C}$. After 1 h of stirring, LCMS analysis indicated that no aldehyde remained, and the mixture was concentrated in vacuo. Purification of the resulting residue by flash-column chromatography (6 g silica gel, eluting with 1% ammonium hydroxide- 7% methanoldichloromethane) provided the product as a colorless film ($25.4 \mathrm{mg}, 88 \%$, 2 steps).
$\mathrm{R}_{f}=0.36$ (1% ammonium hydroxide -10% methanol-dichloromethane, KMnO_{4}).
${ }^{1} \mathrm{H}$ NMR (60:40 rotameric mixture, asterisk [*] denotes minor rotameric signals that could be resolved, $\left.600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.35(\mathrm{ddd}, J=9.1,4.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), * 4.25(\mathrm{ddd}, J=9.1,3.9$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=12.8,3.5 \mathrm{~Hz}, 1 \mathrm{H}), * 3.78-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.69-3.67$ $(\mathrm{m}, 3 \mathrm{H}), 3.64(\operatorname{app} \mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, J=13.3 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{*} 3.03-2.91(\mathrm{~m}, 1 \mathrm{H}), 2.82$ (dddd, $J=13.8,11.8,10.6,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.45-2.36(\mathrm{~m}, 3 \mathrm{H}), 2.32-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.13-$ $2.06(\mathrm{~m}, 1 \mathrm{H}), 1.93-1.78(\mathrm{~m}, 2 \mathrm{H}), 1.62(\operatorname{app~q}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}),{ }^{*} 1.54(\operatorname{app~q}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}),{ }^{*} 1.38(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (60:40 rotameric mixture, asterisk [*] denotes minor rotameric signals that could be resolved, $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.7,173.5, * 154.5,{ }^{*} 153.5,80.1,67.1,65.2,{ }^{*} 61.5,{ }^{*} 61.4$, 59.1,*59.1, 58.8,* 58.8, 57.6,* 57.6, 52.3,* 52.2, 52.2,* 52.1, 51.7, 50.9, 36.8, 36.0, 35.9,* $35.0,34.6, * 33.7, * 30.1, * 30.1,28.6, * 28.6$.

FTIR (neat, cm^{-1}): 2952 (w), 1748 (m), 1698 (s$), 1400$ (s$), 1366$ (m), 1163 (m), 1118 (s).
HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{17} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5}, 343.2227$; found 343.2233.

Synthetic lincosamide FSA-22095.

To a solution of methyl ester 2.21 ($25.4 \mathrm{mg}, 74.2 \mu \mathrm{~mol}, 1$ equiv) in $50 \% \mathrm{v} / \mathrm{v}$ methanoltetrahydrofuran $(370 \mu \mathrm{~L})$ was added an aqueous solution of sodium hydroxide ($1.00 \mathrm{M}, 74.2 \mu \mathrm{~L}$, $74.2 \mu \mathrm{~mol}, 1.00$ equiv) at $23^{\circ} \mathrm{C}$. The mixture was heated to $40^{\circ} \mathrm{C}$ in a pre-heated oil bath, and stirring was continued for 7 d . At this point, LCMS analysis showed that saponification was complete, and the mixture was concentrated to dryness in vacuo.

This crude sodium carboxylate salt was transferred to a $2-5 \mathrm{~mL}$ glass microwave vial fitted with a magnetic stir bar, where it was dissolved in N, N-dimethylformamide ($371 \mu \mathrm{~L}$). To this solution was added HATU ($31.0 \mathrm{mg}, 132 \mu \mathrm{~mol}, 1.10$ equiv) at $23^{\circ} \mathrm{C}$, followed 10 minutes later by 7-Cl-MTL (1.29, $30.2 \mathrm{mg}, 111 \mu \mathrm{~mol}, 1.50$ equiv). The resulting yellow suspension was stirred at $23{ }^{\circ} \mathrm{C}$ for 1 h , at which point LCMS analysis indicated that amide coupling was complete. The mixture was concentrated in vacuo, and the crude residue was purified by flash-column chromatography (6 g silica gel, eluting with dichloromethane initially, grading to 1% ammonium hydroxide -8% methanol-dichloromethane) to provide N-Boc protected morpholino lincosamide intermediate $\left(\mathrm{R}_{f}=0.30,1 \%\right.$ ammonium hydroxide -10% methanol-dichloromethane, PMA) as a colorless film (21.1 mg). Owing to substantial rotamerism, the material was subjected to N-Boc removal prior to characterization.

Accordingly, this N-Boc-protected intermediate was dissolved in $10 \% \mathrm{v} / \mathrm{v}$ trifluoroacetic acid-dichloromethane $(300 \mu \mathrm{~L})$ at $23{ }^{\circ} \mathrm{C}$. After 7 h , LCMS analysis indicated that N-Boc removal
was complete, and toluene (1 mL) was added. The diluted mixture was concentrated, and the dried residue was purified by preparative HPLC on a Waters SunFire prep C C_{18} column ($5 \mu \mathrm{~m}, 250 \times 19$ mm ; eluting with 0.1% trifluoroacetic acid-water initially, grading to 0.1% trifluoroacetic acid50% acetonitrile-water over 40 min ; monitored by UV absorbance at 210 nm) to provide FSA$22095 \cdot 2 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as a white powder $(18.0 \mathrm{mg}, 34 \%, 3$ steps $)$.
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.52(\mathrm{~d}, J=9.4 \mathrm{~Hz}$, amide NH), $5.31(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-$ $4.51(\mathrm{~m}, 3 \mathrm{H}), 4.31(\mathrm{dd}, J=10.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=10.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{br}$, $2 \mathrm{H}), 3.84(\mathrm{dd}, J=3.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.76(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{dd}, J=11.5,7.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.59(\mathrm{dd}, J=10.2,3.3 \mathrm{HZ}, 1 \mathrm{H}), 3.50(\mathrm{br} \mathrm{d}, J=11.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.27-3.11(\mathrm{~m}, 4 \mathrm{H}), 3.07$ (dd, $J=11.6,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.44-2.36(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.23(\mathrm{~m}, 2 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.96(\operatorname{app~q}, J$ $=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.45(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 170.4,89.8,72.1,70.5,69.7,69.5,60.6,59.1,56.5,54.6,53.2$, $51.4,37.0,36.2,27.1,23.2,13.4$. Two trifluoroacetate carbon signals were not observed due to coupling to ${ }^{19} \mathrm{~F}$ nuclei.

FTIR (neat, cm^{-1}): 3372 (br), 1672 (s), 1463 (w), 1201 (s), 1132 (m).
HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{ClN}_{3} \mathrm{O}_{6} \mathrm{~S}$, 482.2086; found 482.2089.

Synthetic lincosamide FSA-23003.

In a 4-mL glass vial fitted with a stir bar, FSA-22095•2 $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(8.0 \mathrm{mg}, 11 \mu \mathrm{~mol}, 1$ equiv) was dissolved in methanol $(100 \mu \mathrm{~L})$. To this solution was added an aqueous solution of formaldehyde ($37 \% \mathrm{w} / \mathrm{w}, 1.7 \mu \mathrm{~L}, 23 \mu \mathrm{~mol}, 2.0$ equiv), followed by sodium cyanoborohydride (1.4 $\mathrm{mg}, 23 \mu \mathrm{~mol}, 2.0$ equiv) at $23^{\circ} \mathrm{C}$. After 3 h , LCMS analysis showed that N-methylation was complete. The mixture was concentrated to dryness in vacuo, and the crude residue was purified by preparative HPLC on a Waters SunFire prep C_{18} column $(5 \mu \mathrm{~m}, 19 \times 250 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid-water initially, grading to 0.1% trifluoroacetic acid -30% acetonitrilewater over 30 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 210 nm) to provide $\mathbf{F S A}-23003 \cdot 2 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as a white solid ($7.6 \mathrm{mg}, 93 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.31(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.60-4.56(\mathrm{~m}, 2 \mathrm{H}), 4.34(\mathrm{dd}, J=9.9,1.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.29(\mathrm{dd}, J=9.4,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=10.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{br} \mathrm{d}, J=11.1$ $\mathrm{Hz}, 2 \mathrm{H}), 3.86(\mathrm{dd}, J=11.2,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{dd}, J=3.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.81-3.75(\mathrm{~m}, 2 \mathrm{H})$, $3.59(\mathrm{dd}, J=10.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{br}, 2 \mathrm{H}), 3.25-3.09(\mathrm{~m}, 4 \mathrm{H}), 3.04(\operatorname{app} \mathrm{t}, J=10.6 \mathrm{~Hz}$, $1 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H}), 2.47-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.00(\operatorname{app} \mathrm{dtd}, J=$ $11.0,6.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 168.9,162.0(\mathrm{q}, J=36.6 \mathrm{~Hz}), 117.6(\mathrm{q}, J=290.8 \mathrm{~Hz}), 89.9,72.2$, $70.3,69.7,69.5,69.3,65.0,61.3,59.1,56.3,54.6,53.2,41.0,36.2,35.5,27.6,23.2,13.5$.

FTIR (neat, cm^{-1}): 3323 (br), 1674 (s), 1201 (s), 1129 (m).
HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{ClN}_{3} \mathrm{O}_{6} \mathrm{~S}$, 496.2243; found 496.2262.

Disubstituted olefin 2.22.

Conditions for selective olefin migration were adapted from the report of Gauthier and coworkers. ${ }^{6}$ In a $5-10 \mathrm{~mL}$ glass microwave vial, olefin 2.12 ($450 \mathrm{mg}, 1.58 \mathrm{mmol}, 1$ equiv) and bis(dibenzylideneacetone)palladium(0) ($27.2 \mathrm{mg}, 47.3 \mu \mathrm{~mol}, 0.0300$ equiv) were dissolved in toluene. Argon gas was bubbled through this solution for 5 min in order to sparge it of any dissolved dioxygen, and to the degassed solution were then added tri-tert-butylphosphine solution (1.0 M in toluene, $47 \mu \mathrm{~L}, 47 \mu \mathrm{~mol}, 0.030$ equiv) and isobutyryl chloride solution (0.473 M in toluene, $100 \mu \mathrm{~L}, 47.3 \mu \mathrm{~mol}, 0.0300$ equiv) sequentially at $23^{\circ} \mathrm{C}$. The vial was sealed, and the reaction mixture was heated to $80^{\circ} \mathrm{C}$ in a pre-heated oil bath. Upon heating, the burgundy-colored solution changed to straw-yellow. Progress was monitored by aliquot NMR: Approximately 50$\mu \mathrm{L}$ portions of the reaction solution were periodically removed by syringe, diluted with chloroform- d, and analyzed by ${ }^{1} \mathrm{H}$ NMR. After 16 h , no starting material was observed, and the reaction was judged to be complete. The mixture was cooled to $23^{\circ} \mathrm{C}$, the cooled solution was concentrated in vacuo, and the residue was purified by flash-column chromatography (24 g silica gel, eluting with 30% ethyl acetate-hexanes initially, grading to 40% ethyl acetate-hexanes) to provide the product as a colorless oil ($447 \mathrm{mg}, 99 \%$).
$\mathrm{R}_{f}=0.23$ (30% ethyl acetate-hexanes, KMnO_{4}).
${ }^{1} \mathrm{H}$ NMR (60:40 mixture of rotamers, asterisk [*] denotes minor rotamer signals that could be resolved, $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.60(\mathrm{dq}, J=13.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.26(\mathrm{dd}, J=15.2,8.0 \mathrm{~Hz}$,
$1 \mathrm{H}), 4.40(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), * 4.32(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\operatorname{app} \mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-$ $3.67(\mathrm{~m}, 4 \mathrm{H}), 3.07(\mathrm{ddd}, J=11.8,9.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=14.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.88-$ $2.77(\mathrm{~m}, 1 \mathrm{H}), 1.64(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 9 \mathrm{H}),{ }^{*} 1.35(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (60:40 mixture of rotamers, asterisk [*] denotes minor rotamer signals that could be resolved, $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 171.3, 154.8,* 153.8, 129.3, 129.2,* 128.2,* 128.1, 80.4, 80.3,* $75.9,75.1, * 63.0,62.4, * 52.2, * 52.0,49.2, * 48.6,47.4, * 46.7,28.4, * 28.3,18.1$.

FTIR (neat, cm ${ }^{-1}$): 3435 (br), 2976 (m), 1748 (m), 1700 (s), 1677 (s), 1396 (s), 1367 (s), 1206 (s), 1176 (s), 1137 (m).

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{14} \mathrm{H}_{23} \mathrm{NO}_{5}, 286.1649$; found 286.1654.

Vinyl compound 2.23.

In a $100-\mathrm{mL}$ round-bottomed flask fitted with a magnetic stir bar, olefin $2.22(180 \mathrm{mg}, 631$ μ mol, 1 equiv) was dissolved in dichloromethane (63.1 mL). To this solution was added dichloro[1,3-bis(2,4,6-trimethylphenyl)-2-imidazolidinylidene](benzylidene)(tricyclohexylphosphine)ruthenium(II) (second-generation Grubbs catalyst, $10.7 \mathrm{mg}, 12.6 \mu \mathrm{~mol}, 0.0200$ equiv). Ethylene gas was bubbled through the mauve-taupe colored solution at $23{ }^{\circ} \mathrm{C}$ for 10 min before bubbling was discontinued and the then-brown solution was stirred vigorously (700 rpm) under 1 atm of ethylene gas overnight. After 1 d , LCMS analysis showed $\sim 80 \%$ conversion of the starting material to product. In order to drive the reaction to completion, an additional portion of ruthenium catalyst ($10.7 \mathrm{mg}, 12.6 \mu \mathrm{~mol}, 0.0200$ equiv) was added, and the mixture was placed in a Parr pressure reactor. The sealed reactor was charged with ethylene gas (200 psi, 99.9\%), ${ }^{110}$ and the mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 1 d . After this period, LCMS analysis showed complete disappearance of starting material. The mixture was concentrated in vacuo, and the residue obtained was purified by flash-column chromatography (12 g silica gel, eluting with 30% ethyl acetate-hexanes initially, grading to 40% ethyl acetate-hexanes) to provide γ-vinylproline product as a brown oil ($148 \mathrm{mg}, 86 \%$).

[^59]$\mathrm{R}_{f}=0.19$ (40\% ethyl acetate-hexanes, KMnO_{4}).
${ }^{1} \mathrm{H}$ NMR (55:45 rotameric mixture, asterisk [*] denotes minor rotameric signals that could be resolved, $\left.400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.68(\mathrm{dddd}, J=17.8,10.1,7.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\operatorname{app} \mathrm{ddt}, J$ $=17.3,3.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\operatorname{app~dq}, J=10.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{*}$ $4.35(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.18(\mathrm{~m}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=10.9,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H})$, * $3.72(\mathrm{~s}, 3 \mathrm{H}), 3.18-3.07(\mathrm{~m}, 2 \mathrm{H}), 2.94-2.83(\mathrm{~m}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}),{ }^{*} 1.36(\mathrm{~s}, 9 \mathrm{H})$.

MS (ESI+, m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calc'd for $\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NO}_{5}$, 294.1; found 294.2.

Heterobiaryl compound 2.25.

In a $25-\mathrm{mL}$ round-bottomed flask fitted with a magnetic stir bar, a solution of β-hydroxy-γ-vinylproline 2.23 ($147 \mathrm{mg}, 542 \mu \mathrm{~mol}$, 1 equiv) and diisopropylethylamine ($142 \mu \mathrm{~L}, 813 \mu \mathrm{~mol}$, 1.50 equiv) in tetrahydrofuran (2.71 mL) was chilled to $0^{\circ} \mathrm{C}$. To this cooled solution was then added chlorotrimethylsilane ($83.0 \mu \mathrm{~L}, 650 \mu \mathrm{~mol}, 1.20$ equiv); the mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 min before the ice-water cooling bath was removed, and the mixture was allowed to warm to 23 ${ }^{\circ} \mathrm{C}$. After 2 h , the mixture was diluted with ethyl acetate $(25 \mathrm{~mL})$, and the diluted organic solution was washed with saturated aqueous sodium chloride solution $(3 \times 10 \mathrm{~mL})$. The organic layer was then dried over sodium sulfate, filtered, and concentrated to provide O-trimethylsilylated intermediate as a light brown oil ($150 \mathrm{mg}, 434 \mu \mathrm{~mol}, 80 \%$), which was suitable for use in the subsequent transformation without further purification.

This silylated intermediate was transferred to a $25-\mathrm{mL}$ round-bottomed flask fitted with a magnetic stir bar, where it was dried by azeotropic removal of benzene. The dried material was dissolved in tetrahydrofuran $(450 \mu \mathrm{~L})$, and the resulting solution was chilled to $0^{\circ} \mathrm{C}$ in an icewater bath. A solution of 9-borabicyclo(3.3.1)nonane in tetrahydrofuran ($0.50 \mathrm{M}, 3.5 \mathrm{~mL}, 1.7$ mmol, 4.0 equiv) was then added, the cooling bath was removed, and the reaction mixture was allowed to warm to $23{ }^{\circ} \mathrm{C}$ gradually. After 1 h , aliquot ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis $\left(\mathrm{CDCl}_{3}\right)$ showed complete disappearance of the olefin signals corresponding to the starting material. N, N Dimethylformamide (3.15 mL), cesium carbonate ($283 \mathrm{mg}, 868 \mu \mathrm{~mol}, 2.00$ equiv), 5 -bromo-2-(2-
methyl-2H-tetrazol-5-yl)pyridine (2.24, $208 \mathrm{mg}, \quad 868 \mu \mathrm{~mol}, 2.00$ equiv), and $\left[1,1^{\prime}-\right.$ bis(diphenylphosphino)ferrocene]dichloropalladium(II)-dichloromethane complex (7.08 mg, $8.68 \mu \mathrm{~mol}, 0.0200$ equiv) were added sequentially. The resulting mixture was heated to $50^{\circ} \mathrm{C}$, and after 1 h , LCMS analysis indicated that B-alkyl Suzuki coupling was complete. The mixture was diluted with ethyl acetate $(50 \mathrm{~mL})$, and the diluted mixture was washed with saturated aqueous sodium bicarbonate solution (10 mL). The washed organic solution was then dried over sodium sulfate, filtered, and concentrated. In order to remove the trimethylsilyl protecting group, the residue was re-dissolved in methanol (3.00 mL), and potassium carbonate ($30.0 \mathrm{mg}, 217 \mu \mathrm{~mol}$, 0.500 equiv) was added. After stirring at $23^{\circ} \mathrm{C}$ for 1 h, LCMS analysis indicated that desilylation was complete. The mixture was filtered to remove undissolved salts, and the filtrate was concentrated. The crude residue was purified by flash-column chromatography (6 g silica gel, eluting with 0.1% ammonium hydroxide -1% methanol-dichloromethane initially, grading to 0.4% ammonium hydroxide- 4% methanol-dichloromethane) to provide the product as an off-white, foaming solid ($105 \mathrm{mg}, 56 \%$).
$\mathrm{Rf}=0.45$ (1% ammonium hydroxide -10% methanol-dichloromethane, UV).
${ }^{1} \mathrm{H}$ NMR (60:40 rotameric mixture, asterisk [*] denotes minor rotameric signals that could be resolved, $\left.600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.55(\mathrm{dd}, J=8.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.10(\mathrm{dd}, J=7.9,6.3 \mathrm{~Hz}, 1 \mathrm{H})$, 7.65 (ddd, 10.3, 7.9, 2.3 Hz, 1H), $4.42(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), * 4.40(\mathrm{~s}, 3 \mathrm{H}), 4.36(\mathrm{~d}, J=7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.24-4.18(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=10.7,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=10.5,8.2 \mathrm{~Hz}$, $1 \mathrm{H}),{ }^{*} 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.58(\mathrm{br}, 1 \mathrm{H}), * 3.51(\mathrm{br}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=10.7,9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{app}$ $\mathrm{t}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), * 2.79-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.40-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.04-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.57$ (m, 1H), 1.41 (s, 9H),* 1.37 (s, 9H).
${ }^{13} \mathrm{C}$ NMR (60:40 rotameric mixture, asterisk [*] denotes minor rotameric signals that could be resolved, $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 171.2, 164.9, 154.3,* 153.8, 150.2, 144.6, 138.8,* 138.8, $137.0,136.9, * 122.2,80.5,76.3,75.5, * 63.5,62.9,{ }^{*} 52.2, * 52.1,49.6, * 49.0,43.3, * 42.7$, 39.7, 32.8,* 32.8, 31.3, 28.4,* 28.3 .

FTIR (neat, cm^{-1}): 3392 (br), 2949 (w), 1744 (m), 1695 (s), 1396 (s), 1367 (m), 1208 (m), 1177 (m), 729 (m).

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{20} \mathrm{H}_{28} \mathrm{~N}_{6} \mathrm{O}_{5}, 433.2194$; found 433.2209.

Synthetic lincosamide FSA-23010.

In a $2-5 \mathrm{~mL}$ glass microwave vial fitted with a magnetic stir bar, a solution of methyl ester $\mathbf{2 . 2 5}$ ($105 \mathrm{mg}, 242 \mu \mathrm{~mol}$, 1 equiv) in $50 \% \mathrm{v} / \mathrm{v}$ methanol-tetrahydrofuran (1.21 mL) was treated with an aqueous solution of sodium hydroxide ($1.00 \mathrm{M}, 254 \mu \mathrm{~L}, 254 \mu \mathrm{~mol}, 1.05$ equiv) at $23{ }^{\circ} \mathrm{C}$. The mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 18 h , during which time the mixture changed from a light straw-colored solution to an off-white, thick paste. LCMS analysis at this point indicated that saponification was complete; the mixture was concentrated to dryness, and residual water was removed by azeotropic removal of benzene.

A portion of this crude sodium carboxylate salt ($50.0 \mathrm{mg}, 114 \mu \mathrm{~mol}, 1$ equiv) was suspended in N, N-dimethylformamide ($568 \mu \mathrm{~L}$), and to this suspension was added HATU (47.5 $\mathrm{mg}, 125 \mu \mathrm{~mol}, 1.10$ equiv) whereupon a canary-yellow homogeneous solution was formed. After stirring for 5 min at $23^{\circ} \mathrm{C}$, 7 -Cl-MTL ($\mathbf{1 . 2 9}, 46.3 \mathrm{mg}, 170 \mu \mathrm{~mol}, 1.50$ equiv) was added. After 1.5 h of stirring, LCMS analysis indicated that the reaction was complete. The reaction mixture was loaded directly onto a silica gel column (6 g , equilibrated with dichloromethane). This column was eluted with dichloromethane initially, grading to 1% ammonium hydroxide -10% methanoldichloromethane, to provide the N-Boc protected product as a white solid $(\operatorname{Rf}=0.31,1 \%$ ammonium hydroxide- 10% methanol-dichloromethane, UV+PMA; $30.4 \mathrm{mg}, 40 \%$). This material was subjected to N-Boc removal prior to full characterization.

In a $2-5 \mathrm{~mL}$ glass microwave vial, N-Boc protected intermediate $(30.4 \mathrm{mg}, 45.2 \mu \mathrm{~mol}, 1$ equiv) was dissolved in $20 \% \mathrm{v} / \mathrm{v}$ trifluoroacetic acid-dichloromethane $(600 \mu \mathrm{~L})$ at $23{ }^{\circ} \mathrm{C}$. After 1.5 h of stirring at $23^{\circ} \mathrm{C}$, LCMS analysis indicated that no starting material remained. The reaction solution was diluted with toluene (1 mL), and the diluted mixture was concentrated in vacuo. The crude residue was purified by preparative HPLC on a Waters SunFire prep C ${ }_{18}$ column ($5 \mu \mathrm{~m}, 250$ $\times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid-water initially, grading to 0.1% trifluoroacetic acid- 50% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 254 nm) to provide $\mathbf{F S A} \mathbf{- 2 3 0 1 0} \cdot 2 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as a fine, snow-white powder (32.7 mg, 90%).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.64(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.33(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}$, amide NH$), 8.23$ $(\mathrm{d}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{dd}, J=8.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.57-4.54(\mathrm{~m}$, $3 \mathrm{H}), 4.50(\mathrm{~d}, J=1 \mathrm{H}), 4.48(\mathrm{~s}, 3 \mathrm{H}), 4.29(\operatorname{app~dt}, J=10.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=10.2$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J=3.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=11.8,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=$ $10.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.18(\mathrm{dd}, J=11.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.42-2.37(\mathrm{~m}$, $1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.95-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.81-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.53(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 167.3,164.6,161.0(\mathrm{q}, J=37.9 \mathrm{~Hz}), 149.9,144.7,141.0,140.5$, $123.9,117.1(\mathrm{q}, J=288.4 \mathrm{~Hz}), 89.7,76.4,72.1,70.7,69.7,69.6,64.8,59.2,54.7,47.8$, 40.2, 33.3, 31.6, 22.7.

FTIR (neat, cm^{-1}): 3333 (br), 1674 (s), 1201 (m), 1133 (m).
HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{ClN}_{7} \mathrm{O}_{6} \mathrm{~S}$, 572.2053; found 572.2065.

Synthetic lincosamide FSA-23011.

In a 4-mL glass vial fitted with a magnetic stir bar, FSA-23010 • $2 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(6.6 \mathrm{mg}, 8.3$ $\mu \mathrm{mol}, 1$ equiv) was dissolved in methanol ($100 \mu \mathrm{~L}$). Aqueous formaldehyde solution ($37 \% \mathrm{w} / \mathrm{w}$, $1.8 \mu \mathrm{~L}, 25 \mu \mathrm{~mol}, 3.0$ equiv) was added, followed by sodium cyanoborohydride ($1.6 \mathrm{mg}, 25 \mu \mathrm{~mol}$, 3.0 equiv) at $23^{\circ} \mathrm{C}$. After 4 h , LCMS analysis of the reaction mixture revealed that N -methylation was complete, and the mixture was concentrated to dryness in vacuo. The crude residue was purified by preparative HPLC on a Waters SunFire prep C_{18} column ($5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid-water initially, grading to 0.1% trifluoroacetic acid- 40% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 254 nm) to provide $\mathbf{F S A}-\mathbf{2 3 0 1 1} \cdot 2 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as a white solid ($6.3 \mathrm{mg}, 94 \%$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.62(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.21(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{dd}, J=$ 8.1, 2.2 Hz, 1H), $5.31(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.62-4.54(\mathrm{~m}, 3 \mathrm{H}), 4.33(\mathrm{dd}, J=10.0,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.29(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=10.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=11.7,7.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.84(\mathrm{dd}, J=3.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=10.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, J=11.8,8.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.97(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.36-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.98$ $(\mathrm{m}, 1 \mathrm{H}), 1.90-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.54(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 165.9,165.0,161.0(\mathrm{q}, J=36.0 \mathrm{~Hz}), 150.4,145.3,140.6,139.7$, $123.8,117.2(\mathrm{q}, J=288.5 \mathrm{~Hz}), 89.9,76.8,73.7,72.2,70.6,69.8,69.5,59.7,59.4,54.6$, $47.7,41.5,40.2,33.9,31.6,22.7,13.5$.

FTIR (neat, cm ${ }^{-1}$): 3344 (br), 1673 (s), 1202 (s), 1135 (m).
HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{ClN}_{7} \mathrm{O}_{6} \mathrm{~S}, 586.2209$; found 586.2222.

Diene 2.26.

In a $50-\mathrm{mL}$ round-bottomed flask containing a magnetic stir bar, alcohol $\mathbf{2 . 1 2 (5 0 0 \mathrm { mg } \text { , }}$ 1.75 mmol , 1 equiv) and allyl ethyl carbonate ($461 \mu \mathrm{~L}, 3.50 \mathrm{mmol}, 2.00$ equiv) were dissolved in tetrahydrofuran $(8.75 \mathrm{~mL})$, and the flask was fitted with a reflux condenser. In a separate pearshaped flask, tetrakis(triphenylphosphine)palladium(0) ($51.0 \mathrm{~g}, 44.2 \mu \mathrm{~mol}, 0.0250$ equiv) was dissolved in tetrahydrofuran $(8.75 \mathrm{~mL})$. The precatalyst solution was then added via cannula to the flask containing the starting materials, the apparatus was shielded from light with aluminum foil, and the reaction mixture was heated to reflux in a pre-heated oil bath ($75^{\circ} \mathrm{C}$ bath temperature). Over 30 min , the reaction mixture changed color from very faint yellow to sunset orange. After 2 h, TLC analysis showed that no starting material remained. The mixture was cooled to $23{ }^{\circ} \mathrm{C}$ before it was passed through a plug of silica gel. Upon exposure to silica gel, the reaction mixture attained a cherry-red color. The filter pad was rinsed with tert-butyl methyl ether $(2 \times 15 \mathrm{~mL})$, and the combined filtrates were concentrated to give a yellow residue. This crude product was purified by flash-column chromatography (30 g silica gel, eluting with hexanes initially, grading to 10% ethyl acetate-hexanes) to furnish the product as a faint yellow viscous oil ($539 \mathrm{mg}, 95 \%$).
$\mathrm{R}_{f}=0.58\left(30 \%\right.$ ethyl acetate-hexanes, $\left.\mathrm{KMnO}_{4}\right)$.
${ }^{1} \mathrm{H}$ NMR (60:40 mixture of rotamers, asterisks [*] denote minor rotameric signals that could be resolved, $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.85(\mathrm{ddt}, J=17.0,10.3,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.80-5.71(\mathrm{~m}, 1 \mathrm{H})$, 5.27 (app dq, $J=17.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{ddt}, J=10.3,2.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.08-5.00(\mathrm{~m}$,
$2 \mathrm{H}), 4.56(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), * 4.47(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dddt}, J=12.4,8.3,5.4,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.99(\mathrm{ddt}, J=12.5,6.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{ddd}, J=16.2,8.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-$ $3.75(\mathrm{~m}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), * 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{dd}, J=10.2,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{td}, J=11.0$, $9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.40-2.34(\mathrm{~m}, 1 \mathrm{H}), 2.05-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}),{ }^{*} 1.39$ ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (60:40 mixture of rotamers, asterisks [*] denote minor rotameric signals that could be resolved, $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.9,154.5, * 153.9,135.6, * 135.4,134.2,117.9,116.9$, $116.8,{ }^{*} 82.4,81.6,{ }^{*} 80.3,72.1,61.8,61.0, * 52.2, * 52.0,48.9, * 48.4,41.5, * 40.9,35.1, *$ 35.0, 28.5,* 28.4 .

FTIR (neat, cm^{-1}): 2930 (w), 1749 (m), 1703 (s$), 1396$ (s$), 1367$ (m), 1179 (m), 1146 (m), 917 (w). HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{NO}_{5}, 326.1962$; found 326.1969.

Oxepinoproline 2.30.

In a $100-\mathrm{mL}$ round-bottomed flask to which a reflux condenser had been affixed, a solution of diene $\mathbf{2 . 1 2} \quad(539 \mathrm{mg}, 1.66 \mathrm{mmol}, 1$ equiv) and dichloro(2isopropoxyphenylmethylene)(tricyclohexylphosphine)ruthenium(II) (first-generation HoveydaGrubbs catalyst, $50.0 \mathrm{mg}, 83.3 \mu \mathrm{~mol}, 0.0500$ equiv) in dichloromethane (33.1 mL) was heated to reflux in a pre-heated oil bath ($55^{\circ} \mathrm{C}$ bath temperature). After 2 h , TLC analysis (30% ethyl acetate-hexanes, KMnO_{4}) showed that no starting material remained. The mixture was cooled to $23^{\circ} \mathrm{C}$ before it was concentrated to dryness to give a thick brown oil. This crude residue was purified by flash-column chromatography (30 g silica gel, eluting with hexanes first, grading to 20% ethyl acetate-hexanes) to provide the product as a leather-brown oil ($499 \mathrm{mg}, 101 \%$).
$\mathrm{R}_{f}=0.39\left(30 \%\right.$ ethyl acetate-hexanes, $\left.\mathrm{KMnO}_{4}\right)$.
${ }^{1} \mathrm{H}$ NMR (60:40 mixture of rotamers, asterisks [*] denote minor rotameric signals that could be resolved, $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.86-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.75-5.69(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=8.3 \mathrm{~Hz}$, $1 \mathrm{H}), * 4.44(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=6.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{*} 4.29(\mathrm{dd}, J=6.2,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.09-4.03(\mathrm{~m}, 1 \mathrm{H}), 3.93-3.88(\mathrm{~m}, 1 \mathrm{H}), 3.88-3.86(\mathrm{~m}, 1 \mathrm{H}),{ }^{*} 3.83-3.78(\mathrm{~m}, 1 \mathrm{H}), 3.76$ $(\mathrm{s}, 3 \mathrm{H}),{ }^{*} 3.74(\mathrm{~s}, 3 \mathrm{H}), 2.91(\operatorname{app} \mathrm{td}, J=10.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.55-2.41(\mathrm{~m}, 2 \mathrm{H}), 2.04-1.96$ $(\mathrm{m}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}),{ }^{*} 1.40(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (60:40 mixture of rotamers, asterisks [*] denote minor rotameric signals that could be resolved, $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.2, * 171.0,154.1,{ }^{*} 153.7,130.2,130.1, * 130.0,86.6$,
$85.9,{ }^{*} 80.4,80.4,{ }^{*} 68.6,62.5,61.9,{ }^{*} 52.3,{ }^{*} 52.1,50.0, * 49.4,41.6, * 40.9,31.1, * 31.0$, 28.5,* 28.4 .

FTIR (neat, cm^{-1}): 2976 (w), 1749 (s), 1703 (s), 1396 (s), 1209 (m), 1174 (m), 1127 (m).
HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calc'd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{5}, 320.1468$; found 320.1477 .

Carboxylic acid 2.27.

To a magnetically stirred solution of methyl ester $\mathbf{2 . 3 0}$ ($73 \mathrm{mg}, 0.25 \mathrm{mmol}, 1$ equiv) in 50% v / v methanol-tetrahydrofuran (1.2 mL) was added aqueous lithium hydroxide solution (1.0 M, $270 \mu \mathrm{~L}, 0.27 \mathrm{mmol}, 1.1$ equiv) at $23^{\circ} \mathrm{C}$. After stirring at ambient temperature for $2 \mathrm{~d}, \mathrm{LCMS}$ analysis showed that saponification was complete. The reaction mixture was diluted with water (2 mL), and the diluted solution was chilled to $0^{\circ} \mathrm{C}$ before being acidified to $\mathrm{pH}=2$ with the dropwise addition of 1 N aqueous hydrogen chloride solution. The acidified aqueous mixture was extracted with ethyl acetate $(5 \times 2 \mathrm{~mL})$, and the combined extracts were dried over sodium sulfate. The dried solution was filtered, and the filtrate was concentrated to provide carboxylic acid saponification product as a dull white solid ($66 \mathrm{mg}, 95 \%$).
${ }^{1} \mathrm{H}$ NMR (70:30 mixture of rotamers, asterisks [*] denote minor rotameric signals that could be resolved, $\left.600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 10.93(\mathrm{br}, 1 \mathrm{H}), 5.82(\operatorname{app~dtt}, J=13.6,8.1,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.72$ (app ddt, $J=11.9,5.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), * 4.43(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.31(\mathrm{ddd}, J=15.1,8.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\operatorname{app~dq}, J=15.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\operatorname{app~td}, J=$ $9.9,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=10.7,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=10.5,8.5 \mathrm{~Hz}, 1 \mathrm{H}), * 2.91$ (app td, $J=10.6,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.51-2.40(\mathrm{~m}, 2 \mathrm{H}), 1.99(\mathrm{ddd}, J=17.0,11.3,2.9 \mathrm{~Hz}, 1 \mathrm{H})$, 1.43 (s, 9H), * 1.39 (s, 9H).
${ }^{13} \mathrm{C}$ NMR (70:30 mixture of rotamers, asterisks [*] denote minor rotameric signals that could be resolved, $151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 176.1,175.5, *$ 154.2,* 153.7, 130.2, 130.1,* 130.0,* 129.9,
$86.4,85.7, * 80.9,80.5, * 68.6,68.5, * 62.3,61.7, * 49.9, * 49.3,41.6, * 40.9,31.0, * 30.9$, 28.5,*28.3.

FTIR (neat, cm^{-1}): 2975 (m), 1745 (m), 1721 (s$), 1698$ (s$), 1395$ (s$), 1368$ (s$), 1248$ (m), 1171 (s), 1127 (s), 912 (m), $730(\mathrm{~m})$.

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{Na}]^{+}$calc'd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{5}, 306.1312$; found 306.1298.

Synthetic lincosamide FSA-24035.

In a $2-5 \mathrm{~mL}$ glass microwave vial, carboxylic acid $2.27(66 \mathrm{mg}, 0.23 \mathrm{mmol}, 1$ equiv) was dried by azeotropic removal of benzene. The dried starting material was then dissolved in N, N dimethylformamide (1.2 mL), and $\mathrm{HATU}\left(98 \mathrm{mg}, 0.26 \mathrm{mmol}\right.$, 1.1 equiv) was added at $23{ }^{\circ} \mathrm{C}$. After stirring this mixture for $10 \mathrm{~min}, 7$-chloro-methylthiolincosamine $\mathbf{(1 . 2 9 , ~} 96 \mathrm{mg}, 0.35 \mathrm{mmol}, 1.5$ equiv) was added next, and the resulting light cream-yellow suspension was stirred at ambient temperature for 20 min . Finally, N, N-diisopropylethylamine ($100 \mu \mathrm{~L}, 0.59 \mathrm{mmol}, 2.5$ equiv) was added dropwise. After stirring an additional 1 h , LCMS analysis indicated that no carboxylic acid or activated-ester intermediate remained, and the reaction mixture was concentrated to dryness in vacuo. The residue was purified by flash-column chromatography (12 g silica gel, eluting with dichloromethane initially, grading to 5% methanol-dichloromethane). Fractions containing product were identified by TLC $\left(\mathrm{R}_{f}=0.34,5 \%\right.$ methanol-dichloromethane, PMA $)$; these fractions were pooled and concentrated to provide N-Boc-protected product as a white film ($100 \mathrm{mg}, 79 \%$). Due to substantial amide and carbamate rotamerism observed in the ${ }^{1} \mathrm{H}$-NMR spectrum, this material was carried forward through N -Boc deprotection prior to full characterization.

The N-Boc-protected lincosamide was finally dissolved in dichloromethane (1.4 mL), and dimethyl sulfide ($140 \mu \mathrm{~L}$) was added. This solution was chilled to $0^{\circ} \mathrm{C}$, whereupon trifluoroacetic acid $(140 \mu \mathrm{~L})$ was added dropwise. The mixture was allowed to warm gradually to $23{ }^{\circ} \mathrm{C}$ over 5 h, at which point LCMS analysis showed that Boc removal was complete. The reaction mixture was consequently diluted with toluene $(2 \mathrm{~mL})$, and the diluted mixture was concentrated in vacuo.

The residue was purified by flash-column chromatography (10 g silica gel, eluting with 1% ammonium hydroxide-5\% methanol-dichloromethane initially, grading to 1% ammonium hydroxide-10\% methanol-dichloromethane) to provide FSA-24035 as a white solid ($35 \mathrm{mg}, \mathbf{3 5 \%}$, 2 steps).
$\mathrm{R}_{f}=0.22$ (1% ammonium hydroxide -10% methanol-dichloromethane, CAM).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 5.84(\mathrm{ddt}, J=12.5,7.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.71(\mathrm{ddt}, J=12.1,6.0,2.9$
$\mathrm{Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{qd}, J=6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dd}, J=10.1,1.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=15.9,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=10.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.04(\mathrm{~m}$, $3 \mathrm{H}), 3.96(\operatorname{app} \mathrm{t}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=3.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=10.2,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.28(\mathrm{dd}, J=10.3,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\operatorname{app} \mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.47(\mathrm{ddd}, J=16.6,7.4$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.10-2.04(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.50(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 174.3,130.8,89.6,88.7,71.9,71.1,69.7,69.6,69.1,63.4,59.2$, $54.4,50.6,45.4,31.3,22.6,13.3$. Only one vinyl signal is observed, due to coincidence of the two vinyl resonances, as confirmed by HSQC.

FTIR (neat, cm^{-1}): 3345 (br), 2919 (m), 1659 (s), 1524 (m), 1442 (m), 1256 (m), 1141 (m), 1082 (s), 1053 (s), $845(\mathrm{~m})$.

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{ClN}_{2} \mathrm{O}_{6} \mathrm{~S}$, 437.1508; found 437.1503.

Oxepanoproline S2.5.

To a magnetically stirred solution of pyrrolidinooxepine $\mathbf{2 . 3 0}$ ($12 \mathrm{mg}, 40 \mu \mathrm{~mol}$, 1 equiv) in methanol (3.0 mL) was added palladium on carbon $(10 \% \mathrm{w} / \mathrm{w}, 2.1 \mathrm{mg})$. Hydrogen gas was bubbled through this mixture at $23{ }^{\circ} \mathrm{C}$ for 15 min , at which point LCMS analysis indicated that hydrogenation was complete. The black suspension was filtered through a pad of Celite in order to remove the heterogeneous catalyst, and the filter cake was rinsed with fresh portions of methanol $(3 \times 1 \mathrm{~mL})$. The filtrate was concentrated to provide oxepanoproline product as a colorless film ($12 \mathrm{mg}, 100 \%$).
${ }^{1} \mathrm{H}$ NMR (60:40 mixture of rotamers, asterisks [*] denote minor rotameric signals that could be resolved, $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.45(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), * 4.36(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-$ $4.03(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=3.85 \mathrm{~Hz}, 1 \mathrm{H}), * 3.81-3.75(\mathrm{~m}, 3 \mathrm{H}), 3.75$ $(\mathrm{s}, 3 \mathrm{H}), * 3.73(\mathrm{~s}, 3 \mathrm{H}), 2.88(\mathrm{app} \mathrm{td}, J=10.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 260-2.44(\mathrm{~m}, 1 \mathrm{H}), 2.00-1.91$ $(\mathrm{m}, 1 \mathrm{H}), 1.86-1.79(\mathrm{~m}, 2 \mathrm{H}), 1.77-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.63-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 9 \mathrm{H}),{ }^{*} 1.39(\mathrm{~s}$, 9H), 1.25-1.16 (m, 2H),
${ }^{13} \mathrm{C}$ NMR (60:40 mixture of rotamers, asterisks [*] denote minor rotameric signals that could be resolved, $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 171.8,{ }^{*} 171.5,154.1,{ }^{*} 153.6,81.8,81.1, * 80.2,80.2, * 70.1$, $70.0, * 62.6,62.0, * 52.2, * 52.0,50.7, * 50.0,42.8, * 42.1,30.6, * 30.5,28.5, * 28.4,25.7,{ }^{*}$ 25.7.

FTIR (neat, cm^{-1}): 2930 (m), 1749 (m), 1703 (s), 1401 (s), 1205 (m), 1177 (m), 1131 (m).

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{Na}]$ calc'd for $\mathrm{C}_{15} \mathrm{H}_{25} \mathrm{NO}_{5}, 322.1625$; found 322.1637.

Synthetic lincosamide FSA-22091.

To a magnetically stirred solution of methyl ester $\mathbf{S} \mathbf{2} .5$ ($12 \mathrm{mg}, 40 \mu \mathrm{~mol}, 1$ equiv) in 50% v / v methanol-tetrahydrofuran $(200 \mu \mathrm{~L})$ was added aqueous lithium hydroxide solution $(1.0 \mathrm{M}, 40$ $\mu \mathrm{L}, 40 \mu \mathrm{~mol}, 1.0$ equiv) at $23^{\circ} \mathrm{C}$. The mixture was then heated to $40^{\circ} \mathrm{C}$ with stirring, and LCMS analysis after 7 h indicated that saponification was not complete. Consequently, an additional portion of aqueous lithium hydroxide solution ($1.0 \mathrm{M}, 40 \mu \mathrm{~L}, 40 \mu \mathrm{~mol}, 1.0$ equiv) was added, and stirring was maintained at $40^{\circ} \mathrm{C}$ for an additional 17 h . At this point, LCMS analysis indicated that no methyl ester remained. The mixture was diluted with water $(2 \mathrm{~mL})$, and the resulting solution was chilled to $0^{\circ} \mathrm{C}$. The ice-cold mixture was acidified to $\mathrm{pH}=2$ with the addition of 1 N aqueous hydrogen chloride solution, and the acidified mixture was extracted with ethyl acetate (5 $\times 2 \mathrm{~mL})$. The combined organic extracts were dried over sodium sulfate, filtered, and concentrated to provide carboxylic acid intermediate as a white powder.

This residue was transferred to a $2-5 \mathrm{~mL}$ glass microwave vial, where it was dissolved in N, N-dimethylformamide ($210 \mu \mathrm{~L}$). To this solution, HATU ($18 \mathrm{mg}, 46 \mu \mathrm{~mol}$, 1.1 equiv) was added, and the mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 10 min . Next, 7-chloro-methylthiolincosamine ($\mathbf{1 . 2 9}, 17 \mathrm{mg}, 63 \mu \mathrm{~mol}, 1.5$ equiv) was added; the resulting light-yellow suspension was stirred for 20 min before N, N-diisopropylamine ($18 \mu \mathrm{~L}, 0.11 \mathrm{mmol}, 2.5$ equiv) was finally added, causing a canary yellow solution to form. After 35 min , LCMS analysis showed that no carboxylic acid or activated-ester intermediate remained, and the reaction mixture was concentrated in vacuo. The residue was purified by flash-column chromatography (4 g silica gel, eluting with dichloromethane
initially, grading to 5% methanol-dichloromethane). Fractions containing N-Boc-protected coupled product were identified by $\mathrm{TLC}\left(\mathrm{R}_{f}=0.41,10 \%\right.$ methanol-dichloromethane, PMA $)$. These fractions were pooled and concentrated to provide N-Boc-protected lincosamide as a white film.

This residue was finally dissolved in dichloromethane ($300 \mu \mathrm{~L}$). The resulting solution was chilled to $0^{\circ} \mathrm{C}$ before trifluoroacetic acid $(30 \mu \mathrm{~L})$ was added; the mixture was stirred at $0^{\circ} \mathrm{C}$ for 4.5 h , at which point LCMS analysis showed that Boc removal was complete. The solution was diluted with toluene (5 mL), and the diluted mixture was concentrated in vacuo. The residue was purified by flash-column chromatography (4 g silica gel, eluting with 1% ammonium hydroxide5% methanol-dichloromethane initially, grading to 1% ammonium hydroxide -10% methanoldichloromethane) to provide FSA-22091 as a white solid ($6.1 \mathrm{mg}, 35 \%, 3$ steps).
$\mathrm{R}_{f}=0.27$ (1% ammonium hydroxide -10% methanol-dichloromethane, PMA).
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.30(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{qd}, J=6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dd}$, $J=10.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=10.0,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\operatorname{app} \mathrm{t}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ (dd, $J=10.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J=3.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.87$ (ddd, $J=11.8,7.6,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{ddd}, J=11.7,5.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=10.2$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=10.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{dd}, J=11.2,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.12$ (m, 1H), $2.14(\mathrm{~s}, 3 \mathrm{H}), 1.94($ app dq, $J=13.4,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.67$ (app ddt, $J=17.5,8.7,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.51(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{dddd}, J=14.0,11.4,9.0,5.3$ $\mathrm{Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 174.7,89.6,84.1,71.9,71.2(2 \times \mathrm{C}), 69.7,69.6,63.9,59.2,54.4$, 51.3, 46.7, 30.2, 29.9, 27.1, 22.6, 13.3.

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{18} \mathrm{H}_{31} \mathrm{ClN}_{2} \mathrm{O}_{6} \mathrm{~S}, 439.1664$; found 439.1678.

Diene 2.28.

In a $2-5 \mathrm{~mL}$ glass microwave vial, alcohol $2.22(17 \mathrm{mg}, 60 \mu \mathrm{~mol}, 1$ equiv) and allyl ethyl carbonate ($16 \mu \mathrm{~L}, 120 \mu \mathrm{~mol}, 2.0$ equiv) were dried together by azeotropic removal of benzene. A separate 4-mL glass vial was charged with tetrakis(triphenylphosphine)palladium(0) ($1.7 \mathrm{mg}, 1.4$ $\mu \mathrm{mol}, 0.025$ equiv), and this precatalyst was dissolved in tetrahydrofuran $(600 \mu \mathrm{~L})$. The precatalyst solution was added to the reaction vial containing the starting materials via cannula, and the reaction vial was sealed. The mixture was heated to $65^{\circ} \mathrm{C}$ in a pre-heated oil bath. After $2 \mathrm{~h}, \mathrm{TLC}$ analysis (30% ethyl acetate-hexanes, $\mathrm{UV}+\mathrm{KMnO}_{4}$) showed that etherification was complete, and the mixture was cooled to $23^{\circ} \mathrm{C}$ before it was concentrated to dryness in vacuo. The crude residue was then purified by flash-column chromatography (4 g silica gel, eluting with 10% ethyl acetatehexanes) to provide the product as a colorless oil ($18 \mathrm{mg}, 93 \%$).
$\mathrm{R}_{f}=0.60$ (30% ethyl acetate-hexanes, KMnO_{4}).
${ }^{1} \mathrm{H}$ NMR (60:40 mixture of rotamers, asterisks [*] denote minor rotameric signals that could be resolved, $\left.600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.87-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.65-5.58(\mathrm{~m}, 1 \mathrm{H}), 5.31-5.27(\mathrm{~m}, 1 \mathrm{H})$, $5.26(\mathrm{dq}, J=17.2,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{ddq}, J=10.5,3.0,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=7.6 \mathrm{~Hz}$, $1 \mathrm{H}), * 4.45(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.12(\mathrm{~m}, 1 \mathrm{H}), 4.05-4.02(\mathrm{~m}, 1 \mathrm{H}), 3.87(\mathrm{ddd}, J=10.8$, $9.1,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.71(\mathrm{~m}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}),{ }^{*} 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.09-3.04(\mathrm{~m}, 1 \mathrm{H}), 3.02-$ $2.92(\mathrm{~m}, 1 \mathrm{H}), 1.68(\mathrm{dd}, J=6.7,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}),{ }^{*} 1.40(\mathrm{~s}, 9 \mathrm{H})$.

Bicyclic compound 2.29.

In a $10-\mathrm{mL}$ round-bottomed flask fused to a reflux condenser, diene $\mathbf{2 . 2 8}$ ($18 \mathrm{mg}, 55 \mu \mathrm{~mol}$, 1 equiv) and dichloro(2-isopropoxyphenylmethylene)(tricyclohexylphosphine)ruthenium(II) (first-generation Hoveyda-Grubbs catalyst, $1.6 \mathrm{mg}, 2.8 \mu \mathrm{~mol}, 0.050$ equiv) were dissolved in dichloromethane (1.1 mL). The resulting solution was heated to reflux in a pre-heated oil bath (55 ${ }^{\circ} \mathrm{C}$ bath temperature), and after 3.5 h , TLC analysis (30% ethyl acetate-hexanes, KMnO_{4}) indicated that no starting material remained. The mixture was concentrated to dryness, and the residue was purified by flash-column chromatography (4 g silica gel, eluting with 20% ethyl acetate-hexanes) to furnish the product as a colorless oil ($8.2 \mathrm{mg}, 52 \%$).
$\mathrm{R}_{f}=0.42$ (30% ethyl acetate-hexanes, KMnO_{4}).
${ }^{1} \mathrm{H}$ NMR (60:40 mixture of rotamers, asterisks [*] denote minor rotameric signals that could be resolved, $\left.600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.99(\operatorname{app~dq}, J=10.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.95(\operatorname{app~dq}, J=10.0$, $2.2 \mathrm{~Hz}, 1 \mathrm{H}), * 5.69-5.66(\mathrm{~m}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), * 4.41-4.39(\mathrm{~m}, 2 \mathrm{H}), 3.92-3.89$ (m, 1H), 3.83-3.79 (m, 1H), $3.78(\mathrm{~s}, 3 \mathrm{H}), * 3.77(\mathrm{~s}, 3 \mathrm{H}), 2.92-2.86(\mathrm{~m}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}),{ }^{*}$ $1.41(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (60:40 mixture of rotamers, asterisk [*] denotes minor rotamer signals that could be resolved, $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 170.8,153.9,153.7,{ }^{*} 127.5, * 127.4,125.0,124.9, *$ 80.6, $80.5,{ }^{*}, 78.8,78.3, * 68.5,68.4, * 59.7,59.1, * 52.5, * 52.3,46.8, * 45.9,37.2, * 36.6,28.5,{ }^{*}$ 28.4.

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calc'd for $\mathrm{C}_{14} \mathrm{H}_{21} \mathrm{NO}_{5}, 306.1312$; found 306.1319

Synthetic lincosamide FSA-24039.

A magnetically stirred solution of methyl ester 2.29 ($45 \mathrm{mg}, 0.16 \mathrm{mmol}, 1$ equiv) in 50% v / v methanol-tetrahydrofuran $(790 \mu \mathrm{~L})$ was treated with aqueous lithium hydroxide solution (1.0 $\mathrm{M}, 190 \mu \mathrm{~L}, 190 \mu \mathrm{~mol}, 1.2$ equiv) at $23^{\circ} \mathrm{C}$. After stirring for 18 h at ambient temperature, LCMS analysis indicated that saponification was complete. The reaction mixture was consequently diluted with water (3 mL), the diluted solution was chilled to $0^{\circ} \mathrm{C}$, and the cooled mixture was acidified to $\mathrm{pH}=2$ with the addition of 1 N aqueous hydrogen chloride solution. The acidified mixture was then extracted with ethyl acetate $(5 \times 2 \mathrm{~mL})$, and the combined extracts were dried over sodium sulfate. The dried organic product solution was filtered, and the filtrate was concentrated to afford carboxylic acid saponification product as a white solid.

This residue was then transferred to a $2-5 \mathrm{~mL}$ glass microwave vial, where it was dried by azeotropic removal of benzene. The dried carboxylic acid was dissolved in $N, N-$ dimethylformamide $(930 \mu \mathrm{~L})$, and the solution was treated with HATU ($78 \mathrm{mg}, 0.20 \mathrm{mmol}, 1.1$ equiv). The colorless solution was stirred at $23{ }^{\circ} \mathrm{C}$ for 10 min before 7-chloromethylthiolincosamine ($\mathbf{1 . 2 9}, 76 \mathrm{mg}, 0.28 \mathrm{mmol}, 1.5$ equiv) was added. A light cream-yellow suspension formed, and this mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 20 min before N, N diisopropylethylamine ($81 \mu \mathrm{~L}, 0.46 \mathrm{mmol}, 2.5$ equiv) was added dropwise. After 30 min of additional stirring at $23^{\circ} \mathrm{C}$, LCMS analysis showed no trace of carboxylic acid or activated-ester intermediate. The mixture was concentrated in vacuo, and the dried residue was purified by flash-
column chromatography (4 g silica gel, eluting with dichloromethane initially, grading to 5% methanol-dichloromethane). Fractions containing the coupled, N-Boc-protected product were identified by $\operatorname{TLC}\left(\mathrm{R}_{f}=0.50,10 \%\right.$ methanol-dichloromethane, PMA$)$; these fractions were pooled and concentrated to provide N-Boc-protected lincosamide as a white film.

Finally, this residue was dissolved in dichloromethane (1.6 mL), and the solution was chilled to $0{ }^{\circ} \mathrm{C}$. Dimethyl sulfide ($120 \mu \mathrm{~L}$) and trifluoroacetic acid (200 $\mu \mathrm{L}$) were added sequentially, and then the mixture was allowed to warm to $23^{\circ} \mathrm{C}$ gradually over 4 h . At this point, LCMS analysis showed that Boc removal was complete. The reaction mixture was diluted with toluene (3 mL), and the diluted mixture was concentrated in vacuo. The residue was then redissolved in methanol (1.5 mL), the solution was chilled to $0^{\circ} \mathrm{C}$, and Amberlyst A26 ion-exchange resin (hydroxide form, 500 mg) was added. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min before the beads were filtered off, and the filtrate was concentrated. The residue obtained was then purified by flash-column chromatography (4 g silica gel, eluting with 1% ammonium hydroxide-5\% methanol-dichloromethane initially, grading to 1% ammonium hydroxide- 10% methanoldichloromethane) to provide FSA-24039 as a white powder ($38 \mathrm{mg}, 56 \%, 3$ steps).
$\mathrm{R}_{f}=0.13$ (1% ammonium hydroxide- 10% methanol-dichloromethane, PMA).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.01(\operatorname{appdq}, J=10.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\operatorname{app} \mathrm{dq}, J=10.1,2.5$ $\mathrm{Hz}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{qd}, J=6.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.44-4.41(\mathrm{~m}, 3 \mathrm{H}), 4.19$ (dd, $J=10.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=10.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-$ $3.80(\mathrm{~m}, 2 \mathrm{H}), 3.56(\mathrm{dd}, J=10.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.25(\mathrm{dd}, J=8.9,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{dd}, J=$ $12.2,8.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.52(\mathrm{br}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 1.49(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 174.5,128.8,126.2,111.4,89.7,81.6,72.0,71.1,69.7,69.6,59.2$, 59.0, 54.4, 46.4, 39.5, 22.6, 13.4.

FTIR (neat, cm^{-1}): 3348 (br), 2923 (m), 1660 (s), 1450 (m), 1389 (m), 1090 (s), 1056 (s), 987 (s), 845 (m).

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{ClN}_{2} \mathrm{O}_{6} \mathrm{~S}, 423.1351$; found 423.1344 .

Synthetic lincosamide FSA-24041.

In a $2-5 \mathrm{~mL}$ glass microwave vial, FSA-24039 $(6.7 \mathrm{mg}, 16 \mu \mathrm{~mol}, 1$ equiv) was dissolved in methanol $(160 \mu \mathrm{~L})$. To this solution was added palladium on carbon $(10 \% \mathrm{w} / \mathrm{w}, 1.0 \mathrm{mg})$, and the headspace of the reaction vial was replaced with hydrogen gas supplied by a balloon. After stirring for 2 h at $23^{\circ} \mathrm{C}$, LCMS analysis showed that hydrogenation was complete, and the mixture was filtered through a pad of Celite to remove the heterogeneous catalyst. The filtrate was concentrated to provide the product as a white film ($7.0 \mathrm{mg}, 104 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.29(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{qd}, J=6.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dd}$, $J=9.8,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.06(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~d}, J=8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.85(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.47(\mathrm{~m}, 3 \mathrm{H}), 3.14(\mathrm{dd}, J=9.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{dd}$, $J=11.5,9.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.06-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.75-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.58(\mathrm{~m}$, $2 \mathrm{H}), 1.50(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.40-1.32(\mathrm{~m}, 1 \mathrm{H})$.

MS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{17} \mathrm{H}_{29} \mathrm{ClN}_{2} \mathrm{O}_{6} \mathrm{~S}, 425.2$; found 425.2.

Bicyclic ketone 2.31.

Conditions for regioselective olefin Wacker oxidation were adapted from the report of Morandi, Wickens, and Grubbs. ${ }^{95}$ In a $25-\mathrm{mL}$ round-bottomed flask, oxepinoproline 2.30 (169 mg , $568 \mu \mathrm{~mol}$, 1 equiv), palladium acetate ($6.38 \mathrm{mg}, 28.4 \mu \mathrm{~mol}, 0.0500$ equiv), and 1,4-benzoquinone ($61.0 \mathrm{mg}, 568 \mu \mathrm{~mol}, 1.00$ equiv) were dissolved in acetonitrile $(2.49 \mathrm{~mL})$. To this solution were then added water $(349 \mu \mathrm{~L})$ and aqueous tetrafluoroboric acid solution $(48 \% \mathrm{w} / \mathrm{w}, 102 \mu \mathrm{~L}, 784$ μ mol, 1.38 equiv). The reaction mixture was stirred at $23^{\circ} \mathrm{C}$, and after 14 h , TLC analysis (30% ethyl acetate-hexanes, KMnO_{4}) indicated that no starting material remained. The mixture was diluted with saturated aqueous sodium chloride solution $(10 \mathrm{~mL})$, and the diluted mixture was extracted with dichloromethane $(3 \times 5 \mathrm{~mL})$. The combined organic extracts were dried over sodium sulfate, filtered, and concentrated. The crude residue thus obtained was subjected to flash-column chromatography (12 g silica gel, eluting with 40% ethyl acetate-hexanes) to provide the product as a pale-yellow oil ($131 \mathrm{mg}, 73 \%$).
$\mathrm{R}_{f}=0.40$ (60% ethyl acetate-hexanes, CAM).
${ }^{1} \mathrm{H}$ NMR (60:40 mixture of rotamers, asterisks [*] denote minor rotameric signals that could be resolved, $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.53(\mathrm{~d}, J=8.3,1 \mathrm{H}), * 4.45(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.08$ $(\mathrm{m}, 1 \mathrm{H}), 3.95-3.89(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{dd}, J=10.4,8.3 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{*} 3.74(\mathrm{~s}, 3 \mathrm{H}),{ }^{*} 3.73(\mathrm{~s}, 3 \mathrm{H})$, 3.65 (app t, $J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), * 3.66(\operatorname{app} \mathrm{t}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.95-2.89(\mathrm{~m}, 2 \mathrm{H}), 2.86-2.69$
(m, 2H), $2.55(\mathrm{dd}, J=15.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{dd}, J=17.8,12.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~s}, 9 \mathrm{H}),{ }^{*}$ 1.37 ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR (60:40 mixture of rotamers, asterisks [*] denote minor rotameric signals that could be resolved, $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 209.1,* 209.0, 171.0,* 170.8, 153.8,* $153.3,86.2,85.6,{ }^{*}$ 80.7, 66.5, 66.5,* 62.2, 61.7,* 52.4,* 52.2, 49.8,* 49.2, 47.8, 44.6,* 44.5, 37.6,* 36.8, 28.4,*28.3.

FTIR (neat, cm^{-1}): 2975 (w), 1745 (m), 1694 (s), 1400 (s$), 1366$ (s$), 1247$ (m), 1208 (s), 1174 (s), 1138 (s), 1123 (s), 1101 (s). 731 (m).

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc' ${ }^{\prime}$ for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{NO}_{6}, 314.1598$; found 314.1599.

Difluoro compound 2.32.

In a $2-5 \mathrm{~mL}$ glass microwave vial, a solution of ketone $2.31(20 \mathrm{mg}, 64 \mu \mathrm{~mol}$, 1 equiv) in dichloromethane $(430 \mathrm{~mL})$ pre-chilled to $-30^{\circ} \mathrm{C}$ was treated with diethylaminosulfur trifluoride (DAST, $51 \mu \mathrm{~L}, 0.38 \mathrm{mmol}, 6.0$ equiv), added dropwise over 30 s . The cooling bath was removed, and the reaction mixture was then allowed to warm to $23^{\circ} \mathrm{C}$. After $2.5 \mathrm{~h}, \mathrm{TLC}$ analysis (60% ethyl acetate-hexanes, CAM) indicated that some starting material remained, so the mixture was chilled to $0^{\circ} \mathrm{C}$, an additional portion of DAST ($42 \mu \mathrm{~L}, 0.32 \mathrm{mmol}, 5.0$ equiv) was added dropwise, and the mixture was then re-warmed to $23^{\circ} \mathrm{C}$ as before. The reaction was judged to be complete by TLC analysis 4 h after this second addition of deoxyfluorinating reagent. The reaction mixture was cooled to $-5^{\circ} \mathrm{C}$, and methanol ($200 \mu \mathrm{~L}$) was added to quench excess DAST. The quenched mixture was stirred at $-5^{\circ} \mathrm{C}$ for 1 min and was then diluted with dichloromethane $(15 \mathrm{~mL})$. The diluted mixture was washed with saturated aqueous sodium bicarbonate solution (5 mL), the organic phase was dried over sodium sulfate, the dried solution was filtered, and the filtrate was concentrated to give a crude residue. This residue was subjected to flash-column chromatography (4 g silica gel, eluting with 20% ethyl acetate-hexanes initially, grading to 40% ethyl acetate-hexanes) to provide the product as a colorless film, $21 \mathrm{mg}, 99 \%$).
$\mathrm{R}_{f}=0.71$ (50% ethyl acetate-hexanes, CAM).
${ }^{1} \mathrm{H}$ NMR (55:45 mixture of rotamers, asterisks [*] denote minor rotameric signals that could be resolved, $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.50(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), * 4.41(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-$
$4.03(\mathrm{~m}, 1 \mathrm{H}), 3.99-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=10.6,8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=10.5,8.4$ $\mathrm{Hz}, 1 \mathrm{H}),{ }^{*} 3.80-3.78(\mathrm{~m}, 1 \mathrm{H}), * 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 3.73-3.70(\mathrm{~m}, 1 \mathrm{H}), 2.95-2.89$ $(\mathrm{m}, 1 \mathrm{H}), 2.81-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.41(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.00(\operatorname{app} \mathrm{dtd}, J=22.3$, $14.6,11.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}),{ }^{*} 1.40(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (55:45 mixture of rotamers, asterisks [*] denote minor rotameric signals that could be resolved, $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 171.2, * 171.0,153.8,{ }^{*} 153.4,124.5(\mathrm{t}, J=241.9 \mathrm{~Hz}), 83.9$, 83.3,* $80.7,63.7(\mathrm{dd}, J=9.3,4.6 \mathrm{~Hz}), 62.5,62.0, * 52.4, * 52.2,49.8, * 49.2,39.9(\operatorname{app} \mathrm{t}, J$ $=26.0 \mathrm{~Hz}), 39.6(\mathrm{td}, J=28.1,4.6 \mathrm{~Hz}),{ }^{*} 36.3(\mathrm{dd}, J=9.1,3.8 \mathrm{~Hz}),{ }^{*} 35.62(\mathrm{dd}, J=8.9,3.8$ Hz), 28.5,* 28.4.
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-82.55$ (app ddtd, $J=247.5,12.4,8.4,4.2 \mathrm{~Hz}, 1 \mathrm{~F}$), -84.96 (ddddd, $J=247.5,21.8,17.5,8.2,5.3 \mathrm{~Hz}, 1 \mathrm{~F})$.

FTIR (neat, cm^{-1}): 2975 (w), 1749 (s$), 1702$ (s), 1404 (s), 1368 (m), 1210 (m), 1179 (m), 1135 (s), 1112 (s), 1059 (m).

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{Na}]^{+}$calc'd for $\mathrm{C}_{15} \mathrm{H}_{23} \mathrm{~F}_{2} \mathrm{NO}_{5}, 358.1437$; found 358.1447.

Synthetic lincosamide FSA-24036.

To a solution of methyl ester 2.32 ($21 \mathrm{mg}, 63 \mu \mathrm{~mol}$, 1 equiv) in $50 \% \mathrm{v} / \mathrm{v}$ methanoltetrahydrofuran $(310 \mu \mathrm{~L})$ was added aqueous lithium hydroxide solution ($1.0 \mathrm{M}, 75 \mu \mathrm{~L}, 75 \mu \mathrm{~mol}$, 1.2 equiv) at $23^{\circ} \mathrm{C}$. After 24 h , LCMS analysis showed that saponification was complete; the reaction mixture was diluted with water $(4 \mathrm{~mL})$, was chilled to $0^{\circ} \mathrm{C}$, and was acidified to $\mathrm{pH}=2$ by the dropwise addition of aqueous hydrogen chloride solution (1.0 N). The acidified solution was then extracted with ethyl acetate $(4 \times 3 \mathrm{~mL})$. The combined extracts were dried over sodium sulfate, filtered, and concentrated to provide carboxylic acid intermediate as a white powder (17 $\mathrm{mg}, 53 \mu \mathrm{~mol}$).

This crude carboxylic acid was then transferred to a $2-5 \mathrm{~mL}$ glass microwave vial, where it was dissolved in N, N-dimethylformamide ($270 \mu \mathrm{~L}$). To this solution was added HATU (22 mg , $58 \mu \mathrm{~mol}, 1.1$ equiv). The mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 10 min before 7-chloromethylthiolincosamine $\left(\mathbf{1 . 2 9}, 22 \mathrm{mg}, 79 \mu \mathrm{~mol}, 1.5\right.$ equiv) ${ }^{7}$ was added, causing a light creamyellow suspension to form. This mixture was stirred for 20 min , during which time it gradually became a homogeneous solution. At this point, N, N-diisopropylethylamine ($23 \mu \mathrm{~L}, 0.13 \mathrm{mmol}$, 2.5 equiv) was added, causing the mixture to attain a vibrant yellow color. After 25 min of additional stirring, LCMS analysis indicated no trace of carboxylic acid or activated-ester intermediate. The mixture was loaded directly onto a column silica gel (4 g), where it was purified by flash chromatography (eluting with dichloromethane initially, grading to 5% methanol-
dichloromethane). Fractions containing the Boc-protected coupling product were identified by TLC $\left(\mathrm{R}_{f}=0.44,10 \%\right.$ methanol-dichloromethane, PMA), pooled, and concentrated to afford a white solid residue.

Finally, this residue was transferred to a clean $2-5 \mathrm{~mL}$ glass microwave vial, where it was dissolved in dichloromethane ($450 \mu \mathrm{~L}$). Dimethyl sulfide ($44 \mu \mathrm{~L}$) and trifluoroacetic acid ($45 \mu \mathrm{~L}$) were added, and the mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 1.5 h , whereupon LCMS analysis showed that Boc removal was complete. The mixture was concentrated under a stream of argon, and the residue was purified by flash-column chromatography (4 g silica gel, eluting with 1% ammonium hydroxide -5% methanol-dichloromethane initially, grading to 1% ammonium hydroxide -10% methanol-dichloromethane) to provide FSA-24036 as a white film ($9.6 \mathrm{mg}, 32 \%, 3$ steps).
$\mathrm{R}_{f}=0.23$ (1% ammonium hydroxide- 10% methanol-dichloromethane, PMA).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.30(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{qd}, J=6.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dd}$, $J=10.0,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=10.0,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\operatorname{apptd}, J=9.0,1.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.08(\mathrm{dd}, J=10.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\operatorname{app} \mathrm{ddt}, J=7.2,3.9,1.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=3.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=10.2,3.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.30(\mathrm{dd}, J=10.2,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.59(\operatorname{app} \mathrm{t}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.28(\mathrm{~m}, 4 \mathrm{H}), 2.14(\mathrm{~s}$, 3H), 2.03 (app dt, $J=20.0,14.9,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 174.3,126.2(\mathrm{t}, J=241.4 \mathrm{~Hz}), 89.6,86.0,71.9,71.1,69.7,69.6$, $64.6(\mathrm{dd}, J=9.2,4.9 \mathrm{~Hz}), 64.1,59.1,54.4,50.7,40.4(\operatorname{app~t}, J=25.5 \mathrm{~Hz}), 40.2(\mathrm{dd}, J=$ $8.2,4.6 \mathrm{~Hz}), 39.7$ (app t, $J=27.7 \mathrm{~Hz}$), 22.7, 13.3.
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-83.40(\operatorname{app} \mathrm{dqd}, J=246.9,6.9,3.7 \mathrm{~Hz}, 1 \mathrm{~F}),-85.69(\operatorname{app} \mathrm{ddq}, J$ $=247.1,11.6,5.4 \mathrm{~Hz}, 1 \mathrm{~F})$.

FTIR (neat, cm^{-1}): 3345 (br), 2929 (m), 1658 (s), 1525 (m), 1442 (m), 1262 (m), 1136 (s), 1082 (s), 1082 (s), 1055 (s), 984 (m), 859 (w).

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{ClF}_{2} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}, 475.1476$; found 475.1462.

Alcohol S2.6.

Conditions for sequential persilylation-regioselective desilylation were adapted from the procedure reported by Ajito and co-workers. ${ }^{73 \mathrm{~b}}$ In a $25-\mathrm{mL}$ round-bottomed flask, N-trifluoroacetyl methylthiolincosamine ($\mathbf{1 . 2 6}, 400 \mathrm{mg}, 1.15 \mathrm{mmol}$, 1 equiv $)^{68}$ was dissolved in pyridine 1.91 mL , and this solution was chilled to $0^{\circ} \mathrm{C}$. Hexamethyldisilazane ($607 \mu \mathrm{~L}, 2.90 \mathrm{mmol}, 2.53$ equiv) and chlorotrimethylsilane ($840 \mu \mathrm{~L}, 6.57 \mathrm{mmol}, 5.74$ equiv) were then added sequentially, dropwise. Addition of chlorotrimethylsilane caused the formation of a white precipitate. The mixture was warmed to $23{ }^{\circ} \mathrm{C}$ and was stirred at that temperature for 2 h before it was concentrated to dryness in vacuo. To the dried, white solid residue were added hexanes (7 mL) and water (7 mL), and the mixture was stirred until both phases were clear and all solids were dissolved. The mixture was then transferred into a separatory funnel containing an additional portion of hexanes (20 mL); the layers were shaken, then separated. The organic phase was then washed with a fresh portion of water (10 mL), dried over sodium sulfate, filtered, and concentrated to provide tetrakis- O trimethylsilylated intermediate as a white solid.

This residue was dissolved in methanol $(850 \mu \mathrm{~L})$, and $80 \% \mathrm{v} / \mathrm{v}$ acetic acid--water $(141 \mu \mathrm{~L})$ was added to this solution at $23{ }^{\circ} \mathrm{C}$. After 24 h of stirring, TLC demonstrated complete consumption of tetrakis- O-trimethylsilyl intermediate $\left(\mathrm{R}_{f}=0.66,20 \%\right.$ ethyl acetate-hexanes, CAM). The mixture was neutralized with the addition of saturated aqueous sodium bicarbonate solution $(400 \mu \mathrm{~L})$. After gas evolution ceased, the neutralized solution was transferred to a separatory funnel containing hexanes $(25 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$. The layers were shaken, then
separated; the organic phase was washed with a fresh portion of saturated aqueous sodium bicarbonate solution $(10 \mathrm{~mL})$, water $(10 \mathrm{~mL})$, and saturated aqueous sodium chloride solution (10 mL). The organic layer was then dried over sodium sulfate, filtered, and concentrated to provide the product as a foaming white, amorphous solid ($535 \mathrm{mg}, 83 \%, 2$ steps).
$\mathrm{R}_{f}=0.34$ (20\% ethyl acetate-hexanes, CAM).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.64(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{dd}, J=6.1$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.14(\mathrm{~m}, 2 \mathrm{H}), 4.06(\mathrm{dd}, J=9.5,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90-3.84(\mathrm{~m}, 1 \mathrm{H}), 3.71$ (dd, $J=9.5,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{br}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.19(\mathrm{~s}, 9 \mathrm{H})$, 0.14 (s, 18H).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 156.9(\mathrm{q}, J=37.0 \mathrm{~Hz}), 115.1(\mathrm{q}, J=287.6 \mathrm{~Hz}), 87.0,72.8,71.2$, $67.8,67.3,67.0,55.9,19.7,11.8,0.0,-0.4,-0.6$.
${ }^{19}$ F NMR (471 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-75.5$ (s, 3F).
FTIR (neat, cm^{-1}): 2958 (w), 1714 (m), 1537 (w), 1250 (m), 1167 (m), 1135 (m), 1068 (m), 891 (s), 835 (s$), 732$ (s$).$

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{20} \mathrm{H}_{42} \mathrm{~F}_{3} \mathrm{NO}_{6} \mathrm{SSi}_{3}$, 566.2065; found 566.2082.

Methanesulfonate ester 2.38.

To a magnetically stirred, ice-cold solution of alcohol S2.6 (399 mg, $705 \mu \mathrm{~mol}, 1$ equiv) and triethylamine ($246 \mu \mathrm{~L}, 1.76 \mathrm{mmol}, 2.50$ equiv) in chloroform (2.20 mL) was added methanesulfonyl chloride ($110 \mu \mathrm{~L}, 1.41 \mathrm{mmol}, 2.00$ equiv) dropwise. After stirring for 5 min at 0 ${ }^{\circ} \mathrm{C}$, TLC analysis (15% diethyl ether-dichloromethane, CAM) showed complete consumption of starting material. The reaction mixture was diluted with dichloromethane (7 mL), and saturated aqueous sodium bicarbonate solution (7 mL) was added to destroy any residual methanesulfonyl chloride. The biphasic mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 5 min before the layers were separated. The aqueous phase was extracted with dichloromethane $(2 \times 15 \mathrm{~mL})$, and the combined organic extracts were dried over sodium sulfate. The dried solution was filtered and concentrated to provide methanesulfonate ester product as a bright white, amorphous solid ($456 \mathrm{mg}, 100 \%$).
$\mathrm{R}_{f}=0.74$ (15\% diethyl ether-dichloromethane, CAM).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\operatorname{app} \mathrm{p}, J=$
6.3 Hz, 1H), $4.48(\operatorname{app~dt}, J=68.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-4.05(\mathrm{~m}$, $2 \mathrm{H}), 3.63(\mathrm{dd}, J=9.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.04(\mathrm{~s}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H}), 1.45(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$, 0.16 (s, 9H), 0.13 (s, 9H), 0.12 (s, 9H).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.7(\mathrm{q}, J=37.3 \mathrm{~Hz}), 115.9(\mathrm{q}, J=287.7 \mathrm{~Hz}), 88.4,72.7,72.0$, $68.5,67.8,53.6,39.0,17.6,13.3,0.8,0.5,0.3$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-75.6(\mathrm{~s}, 3 \mathrm{~F})$.

FTIR (neat, cm^{-1}): 3337 (w), 2958 (w), 1732 (m), 1331 (m), 1168 (m), 1143 (m), 1070 (m), 893 (s), 835 (s), 730 (s).

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{Na}]^{+}$calc'd for $\mathrm{C}_{21} \mathrm{H}_{44} \mathrm{~F}_{3} \mathrm{NO}_{8} \mathrm{~S}_{2} \mathrm{Si}_{3}$, 666.1660; found 666.1673.

tert-Butanesulfide S2.9.

Ligand-free Suzuki coupling was performed according to the method of Liu, Han, Song, and Qiu. ${ }^{111}$ Taking no special precautions to exclude air or moisture, a $25-\mathrm{mL}$ round-bottomed flask was charged with a magnetic stir bar, 5-bromopyrimidine (S2.7, $180 \mathrm{mg}, 1.13 \mathrm{mmol}, 1$ equiv), 4-(tert-butylthio)phenylboronic acid (S2.8, $357 \mathrm{mg}, 1.70 \mathrm{mmol}, 1.50$ equiv), potassium phosphate heptahydrate ($766 \mathrm{mg}, 2.26 \mathrm{mmol}, 2.00$ equiv), palladium(II) acetate ($12.7 \mathrm{mg}, 0.0566$ mmol, 0.0500 equiv), and ethylene glycol $(8.71 \mathrm{~mL})$. The heterogeneous, light-yellow mixture was heated to $80^{\circ} \mathrm{C}$ with stirring in a pre-heated oil bath. After 20 min , the mixture had become a dark gray suspension, and LCMS analysis indicated that no 5-bromopyrimidine remained. The mixture was cooled to room temperature before it was poured into a separatory funnel containing saturated aqueous sodium chloride solution $(25 \mathrm{~mL})$. This mixture was then extracted with diethyl ether ($3 \times 15 \mathrm{~mL}$). In order to remove excess boronic acid coupling partner, the combined organic extracts were washed with 1 N aqueous sodium hydroxide solution $(2 \times 10 \mathrm{~mL})$, and saturated sodium chloride solution (10 mL). The dried organic solution was dried over sodium sulfate, filtered, and concentrated to give off-white milky oil, which was purified by flash-column chromatography (12 g silica gel, eluting with 20% diethyl ether-hexanes initially, grading to 45% diethyl ether-hexanes) to furnish the product as a white crystalline solid ($244 \mathrm{mg}, 88 \%$).

[^60]Melting point: $64-66^{\circ} \mathrm{C}$.
$\mathrm{R}_{f}=0.23(50 \%$ ethyl acetate-hexanes, UV).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.12(\mathrm{~s}, 1 \mathrm{H}), 8.88(\mathrm{~s}, 2 \mathrm{H}), 7.60-7.57(\mathrm{~m}, 2 \mathrm{H}), 7.48-7.45(\mathrm{~m}, 2 \mathrm{H})$, $1.23(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.6,154.8,154.7,138.2,134.4,134.1,133.5,126.8,46.3,30.9$. FTIR (neat, cm-1): 2964 (m) 1563 (s), 1417 (s), 1383 (m), 1354 (m), 1191 (m), 1167 (m), 999 (m), 836 (s), 719 (s), 561 (s).

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{14} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{~S}$, 245.1107; found 245.1117.

Biaryl thiol 2.39a.

Conditions for the acid-promoted cleavage of the tert-butyl blocking group were adapted from the report of Clavier and co-workers. ${ }^{112}$ In a $100-\mathrm{mL}$ round-bottomed flask, concentrated hydrochloric acid ($35 \% \mathrm{w} / \mathrm{v}, 40.9 \mathrm{~mL}$) was added to tert-butane sulfide $\mathbf{S} 2.9(500 \mathrm{mg}, 2.05 \mathrm{mmol}$, 1 equiv). The headspace of the flask was flushed with argon, and the mixture was heated to $90^{\circ} \mathrm{C}$. Upon heating, the mixture became a vibrant yellow, homogeneous solution, and gas bubbling was noted. After 40 min , the bubbling had subsided, and LCMS analysis indicated that the reaction was complete. The mixture was cooled to $23{ }^{\circ} \mathrm{C}$ and was then transferred to a $250-\mathrm{mL}$ roundbottomed flask, where it was chilled to $0^{\circ} \mathrm{C}$. A steady stream of nitrogen was maintained over the mixture in order to minimize oxidative dimerization of the thiol product. A solution of 6 N aqueous sodium hydroxide solution (ca. 60 mL) was added to neutralize excess hydrochloric acid; when all the acid was neutralized, a persistent precipitate had formed. The mixture was diluted with 1 M sodium phosphate buffer solution ($\mathrm{pH} 7.0,50 \mathrm{~mL}$), and the resulting neutral solution was extracted with ethyl acetate $(3 \times 25 \mathrm{~mL})$. The combined organic extracts were dried over sodium sulfate, filtered, and concentrated to give a faint gray crystalline solid. This crude product was purified by flash-column chromatography (12 g silica gel, eluting with 30% ethyl acetate-dichloromethane initially, grading to 50% ethyl acetate-dichloromethane) to furnish the product as a gleaming white crystalline solid (352 mg, 91\%).

[^61]Melting point: $98-100{ }^{\circ} \mathrm{C}$.
$\mathrm{R}_{f}=0.30(30 \%$ ethyl acetate-hexanes, UV).
${ }^{1} \mathrm{H}_{\mathrm{NMR}}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.19(\mathrm{~s}, 1 \mathrm{H}), 8.92(\mathrm{~s}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.41(\mathrm{~d}, J=8.5$ $\mathrm{Hz}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 157.6,154.7,133.7,133.1,131.6,130.1,127.7$.
FTIR (neat, cm^{-1}): 2419 (br), 1598 (m), 1564 (m), 1415 (s), 1398 (m), 1103 (s), 1001 (m), 821 (s), 726 (m).

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{10} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{~S}, 189.0481$; found 189.0482.

Biaryl sulfide 2.40a.

In a $0.5-2 \mathrm{~mL}$ conical glass microwave vial fitted with a magnetic stir bar, methanesulfonate ester 2.38 ($75 \mathrm{mg}, 0.12 \mathrm{mmol}, 1$ equiv) and 4-(pyrimidin-5-yl)benzenethiol (2.39a, $66 \mathrm{mg}, 0.35 \mathrm{mmol}, 3.0$ equiv) were mixed, and these starting materials were dried together by azeotropic removal of benzene. The dried mixture was then dissolved in $\mathrm{N}, \mathrm{N}-$ dimethylformamide ($290 \mu \mathrm{~L}$), and potassium carbonate ($19 \mathrm{mg}, 0.14 \mathrm{mmol}, 1.2$ equiv) was added to the solution, causing a vibrant canary yellow color to evolve. The vial was sealed, and the mixture was heated to $40^{\circ} \mathrm{C}$ for 2 d , at which point TLC analysis (40% ethyl acetate-hexanes, UV+CAM) showed that no electrophile remained. The mixture was diluted with ethyl acetate (30 mL), and the diluted mixture was washed sequentially with saturated aqueous sodium bicarbonate solution $(15 \mathrm{~mL})$ and saturated aqueous sodium chloride solution $(15 \mathrm{~mL})$. The washed organic solution was then dried over sodium sulfate, filtered, and concentrated to give a colorless oil. This residue was subjected to flash-column chromatography (12 g silica gel, eluting with 10% ethyl acetate-hexanes initially, grading to 30% ethyl acetate-hexanes) to furnish the product as a colorless, viscous oil ($84 \mathrm{mg}, 98 \%$).
$\mathrm{R}_{f}=0.34$ (40\% ethyl acetate-hexanes, UV+CAM).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.21(\mathrm{~s}, 1 \mathrm{H}), 8.93(\mathrm{~s}, 3 \mathrm{H}), 7.53(\operatorname{app~d}, J=0.9 \mathrm{~Hz}, 4 \mathrm{H}), 6.93(\mathrm{~d}, J$ $=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{ddd}, J=9.6,8.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=$
$8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=9.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=2.7,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{qd}, J=$ $7.0,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=9.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.17$ (s, 9H), $0.14(\mathrm{~s}, 9 \mathrm{H}), 0.13(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.8,157.4(\mathrm{q}, J=37.2 \mathrm{~Hz}), 154.8,135.0,133.6,133.2,132.5$, $127.7,116.0(\mathrm{q}, ~ J=288.2 \mathrm{~Hz}), 89.2,72.7,72.5,69.4,68.7,54.1,43.2,19.3,13.4,0.8,0.6$, 0.3 .
${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-75.47(\mathrm{~s}, 3 \mathrm{~F})$.
FTIR (neat, cm ${ }^{-1}$): 1729 (m), 1414 (m), 1170 (m), 1135 (m), 888 (s), 834 (s), 727 (s$)$.
HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{30} \mathrm{H}_{48} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}_{2} \mathrm{Si}_{3}$, 736.2368; found 736.2399.

Aminotriol 2.41a.

In a $2-5 \mathrm{~mL}$ glass microwave vial, trifluoroacetamide $\mathbf{2 . 4 0 a}$ ($107 \mathrm{mg}, 145 \mu \mathrm{~mol}$, 1 equiv) was dissolved in $50 \% \mathrm{v} / \mathrm{v}$ tetrahydrofuran-methanol $(1.45 \mathrm{~mL})$. To this solution was added lithium hydroxide ($17.4 \mathrm{mg}, 727 \mu \mathrm{~mol}, 5.00$ equiv) at $23{ }^{\circ} \mathrm{C}$; immediately, the colorless solution attained a canary yellow color. After 2 d , LCMS analysis indicated that global O-desilylation and trifluoroacetamide hydrolysis were complete; the reaction mixture was concentrated directly under a stream of nitrogen. The residue was purified by flash-column chromatography (4 g silica gel, eluting with 1% ammonium hydroxide- 7% methanol-dichloromethane initially, grading to 0.1% ammonium hydroxide -10% methanol-dichloromethane) to provide the product as a white powder (57.0 mg, 93\%).
$\mathrm{R}_{f}=0.34$ (1% ammonium hydroxide -10% methanol-dichloromethane, I_{2}).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 9.12(\mathrm{~s}, 1 \mathrm{H}), 9.07(\mathrm{~s}, 2 \mathrm{H}), 7.68(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=3.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=10.2,5.5$ $\mathrm{Hz}, 1 \mathrm{H}), 3.83(\mathrm{qd}, J=7.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=10.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{dd}, J=8.6$, $2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 3 \mathrm{H}), 1.51(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 157.8,155.8,139.1,135.3,132.8,131.7,128.6,89.9,72.5,72.2$, 70.1, 69.6, 56.7, 45.5, 20.5, 13.6.

FTIR (neat, cm^{-1}): 3347 (br), 2920 (m), 1567 (m), 1417 (s), 1092 (s), 1052 (m), 819 (m), 722 (m).

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{19} \mathrm{H}_{25} \mathrm{~N}_{3} \mathrm{O}_{4} \mathrm{~S}_{2}, 424.1359$; found 424.1369.

Synthetic lincosamide FSA-27049.

To an ice-cold solution of aminotriol $\mathbf{2 . 4 1 a}(41.7 \mathrm{mg}, 98.5 \mu \mathrm{~mol}$, 1 equiv) and triethylamine (43.9 $\mu \mathrm{L}, 315 \mu \mathrm{~mol}, 3.20$ equiv) in N, N-dimethylformamide ($281 \mu \mathrm{~L}$) was added $N, O-$ bis(trimethylsilyl)trifluoroacetamide ($39.6 \mu \mathrm{~L}, 148 \mu \mathrm{~mol}, 1.50$ equiv). The mixture was then warmed to $23{ }^{\circ} \mathrm{C}$ and was stirred for 1 h at this temperature to ensure complete O-silylation. Carboxylic acid 2.27 ($30.7 \mathrm{mg}, 108 \mu \mathrm{~mol}, 1.10$ equiv) and HATU ($48.7 \mathrm{mg}, 128 \mu \mathrm{~mol}, 1.30$ equiv) were then added, and the mixture was stirred at $23{ }^{\circ} \mathrm{C}$. After 3 h , the reaction mixture was diluted with ethyl acetate (35 mL), and the diluted mixture was washed sequentially with $10 \% \mathrm{w} / \mathrm{v}$ aqueous citric acid solution ($2 \times 10 \mathrm{~mL}$), water $(10 \mathrm{~mL})$, half-saturated aqueous sodium bicarbonate solution ($2 \times 10 \mathrm{~mL}$), and saturated aqueous sodium chloride solution (10 mL). The washed organic phase was then dried over sodium sulfate, filtered, and concentrated.

The crude, coupled residue was then transferred to a $25-\mathrm{mL}$ round-bottomed flask, where it was dissolved in dichloromethane (4.02 mL). Water $(80.0 \mu \mathrm{~L})$, dimethyl sulfide ($80.0 \mu \mathrm{~L}$), and trifluoroacetic acid $(803 \mu \mathrm{~L})$ were then added, and the resulting solution was stirred at $23{ }^{\circ} \mathrm{C}$ for 2 h, at which point LCMS analysis indicated that Boc removal was complete. The mixture was diluted with toluene (5 mL), and the diluted mixture was concentrated in vacuo. The residue was subjected to preparative HPLC on a Waters SunFire Prep C ${ }_{18}$ column ($5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid- 10% acetonitrile-water initially, grading to 0.1% trifluoroacetic acid- 40% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV
absorbance at 254 nm) to provide $\mathbf{F S A} \mathbf{- 2 7 0 4 9} \cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as a white solid $(70.1 \mathrm{mg}, 102 \%, 2$ steps).
${ }^{1} \mathrm{H}$ NMR (600 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 9.15(\mathrm{~s}, 1 \mathrm{H}), 9.10(\mathrm{~s}, 2 \mathrm{H}), 8.33(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.69(\mathrm{~d}, J=$ $8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.85(\mathrm{app} \mathrm{ddt}, J=12.5,7.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{app}$ ddt, $J=12.2,5.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\operatorname{app} \mathrm{td}, J=9.9,2.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.64(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J=10.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.19(\mathrm{~m}, 2 \mathrm{H}), 4.11(\mathrm{dd}, J=$ $10.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.67(\mathrm{dd}, J=11.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=10.3$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{dd}, J=12.5,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.55(\mathrm{ddd}, J=16.7,7.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.26$ (app ddtd, $J=16.3,12.5,7.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.08(\mathrm{~m}, 1 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 167.4,167.3,157.7,155.8,139.4,132.6,131.2,131.0,129.9$, $128.6,90.3,85.7,72.1,70.8,70.0,69.5,69.4,61.8,55.0,54.9,45.0,43.8,30.0,20.4,13.9$. Trifluoroacetate carbons were not resolved due to ${ }^{19} \mathrm{~F}$ coupling.

FTIR (neat, cm^{-1}): 3367 (br), 1673 (s), 1417 (m), 1202 (s), 1140 (s), 1094 (m), 1052 (w), 722 (m). HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}, 589.2149$; found 589.2169.

Synthetic lincosamide FSA-212034.

In a 1-mL glass vial fitted with a magnetic stir bar and PTFE-lined screw cap, FSA-27049 - $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ ($5.5 \mathrm{mg}, 7.8 \mu \mathrm{~mol}, 1$ equiv) was dissolved in dichloromethane ($78 \mu \mathrm{~L}$). Formalin (1.2 $\mu \mathrm{L}, 16 \mu \mathrm{~mol}, 2.0$ equiv) was then added by micropipette, followed by sodium triacetoxyborohydride ($3.3 \mathrm{mg}, 16 \mu \mathrm{~mol}, 2.0$ equiv) at $23^{\circ} \mathrm{C}$. After stirring for 1 h , an additional portion for formalin ($1.2 \mu \mathrm{~L}, 16 \mu \mathrm{~mol}, 2.0$ equiv) was added; 1 h later, additional sodium triacetoxyborohydride ($3.3 \mathrm{mg}, 16 \mu \mathrm{~mol}, 2.0$ equiv) was added. LCMS analysis 15 min later indicated that no starting material remained. Excess sodium triacetoxyborohydride solution was quenched with the addition of saturated aqueous sodium bicarbonate solution (1 drop) before the mixture was concentrated to dryness in vacuo. The residue was subjected to preparative HPLC on a Waters SunFire Prep C_{18} column $(5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% formic acid -2% acetonitrile-water initially, grading to 0.1% formic acid -30% acetonitrile-water over 40 min , with a flow rate of $20 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 254 nm) to provide FSA-212034 • $\mathrm{HCO}_{2} \mathrm{H}$ as a colorless film ($2.3 \mathrm{mg}, 49 \%$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 9.13(\mathrm{~s}, 1 \mathrm{H}), 9.08(\mathrm{~s}, 2 \mathrm{H}), 8.24(\mathrm{~s}, 2 \mathrm{H}), 7.72(\mathrm{~d}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $7.59(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.81(\operatorname{app} \mathrm{ddt}, J=9.5,6.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.63(\operatorname{app} \mathrm{ddt}, J=12.4$, $5.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}, J=10.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.37-4.33(\mathrm{~m}$,

2H), 4.14-4.03 (m, 4H), 3.96 (qd, $J=7.4,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=10.3,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.53(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.29(\mathrm{dd}, J=8.8,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.52-2.47(\mathrm{~m}, 1 \mathrm{H}), 2.50(\mathrm{~s}, 3 \mathrm{H})$, $2.41(\operatorname{app} \mathrm{t}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\operatorname{app} \mathrm{tdd}, J=14.4,10.6,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.05(\operatorname{app} \mathrm{t}, J=$ $14.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H})$.

FTIR (neat, cm^{-1}): 3362 (br), 1658 (m), 1595 (s), 1518 (m), 1416 (m), 1349 (m), 1141 (m), 1093 (s), 1054 (m).

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{~N}_{4} \mathrm{O}_{6} \mathrm{~S}_{2}, 603.2306$; found 603.2319.

tert-Butane sulfide S2.11.

Ligand-free Suzuki coupling was performed according to the method of Liu, Han, Song, and Qiu. ${ }^{111}$ Taking no special precautions to exclude air or moisture, a $300-\mathrm{mL}$ round-bottomed flask was charged with a magnetic stir bar, (4-(tert-butylthio)phenyl)boronic acid (S2.7, 4.79 g, $22.8 \mathrm{mmol}, 1.20$ equiv), potassium phosphate heptahydrate ($12.9 \mathrm{~g}, 38.0 \mathrm{mmol}, 2.00$ equiv), palladium(II) acetate ($43.0 \mathrm{mg}, 0.190 \mathrm{mmol}, 0.0100$ equiv), and ethylene glycol (146 mL). 3Bromopyridine ($\mathbf{S 2 . 1 0}, 1.83 \mathrm{~mL}, 19.0 \mathrm{mmol}, 1$ equiv) was added last, stirring was initiated, and the reaction mixture was heated to $80^{\circ} \mathrm{C}$ (open to the atmosphere) in a pre-heated oil bath. Within 30 min, the suspension had clarified, forming an amber-brown homogeneous solution; and after 1 h , the mixture became a light tan, turbid suspension. After 2 h of stirring at $80^{\circ} \mathrm{C}, \mathrm{TLC}$ analysis (60% ethyl acetate-hexanes, UV) showed that no starting material remained. The mixture was cooled to $23^{\circ} \mathrm{C}$ and was then poured into a separatory funnel containing saturated aqueous sodium chloride solution (250 mL). The aqueous suspension was extracted with diethyl ether ($4 \times 50 \mathrm{~mL}$), and the combined organic extracts were washed with a fresh portion of saturated aqueous sodium chloride solution (50 mL). The washed organic product solution was then dried over sodium sulfate, filtered, and concentrated to give a milky, light yellow oil that was purified by flashcolumn chromatography (120 g silica gel, eluting with 10% ethyl acetate-hexanes initially, grading to 40% ethyl acetate-hexanes) to provide the product as a brilliant white, fluffy powder ($3.04 \mathrm{~g}, 66 \%$).

Melting point: $55-57^{\circ} \mathrm{C}$.
$\mathrm{R}_{f}=0.37(60 \%$ ethyl acetate-hexanes, UV).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.86(\mathrm{~d}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), 8.61(\mathrm{dd}, J=4.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.88$ (ddd, $J=7.9,2.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.64(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{ddd}, J=$ $7.8,4.8,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 148.9,148.4,138.2(2 \times \mathrm{C}), 136.0,134.4,133.0,127.2,123.7$, 46.4, 31.1.

FTIR (neat, cm ${ }^{-1}$): 2960 (s), 1573 (w), 1471 (s), 1363 (s), 1168 (m), 1001 (m), 800 (s), 711 (s), 561 (m).

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NS}$, 244.1154; found 244.1167.

Biaryl thiol 2.39b.

In a $500-\mathrm{mL}$ round-bottomed flask containing a magnetic stir bar, tert-butanesulfide $\mathbf{S} \mathbf{2 . 1 1}$ ($3.00 \mathrm{~g}, 12.3 \mathrm{mmol}, 1$ equiv) and concentrated hydrochloric acid ($38 \% \mathrm{w} / \mathrm{w}$ in water, 123 mL) were combined. The headspace was flushed with argon, and the mixture was heated to $90^{\circ} \mathrm{C}$ with constant stirring; the starting material gradually dissolved upon warming. After 5 h , LCMS analysis showed that no starting material remained, and the reaction mixture was cooled to $0{ }^{\circ} \mathrm{C}$. The chilled solution was basified with the careful addition of aqueous 6 N sodium hydroxide solution, until $\mathrm{pH}=8$ was achieved. The aqueous mixture was then extracted with diethyl ether (4 $\times 75 \mathrm{~mL}$), the combined extracts were dried over sodium sulfate, the dried solution was filtered, and the filtrate was concentrated to give a colorless oil. This crude residue was finally purified by flash-column chromatography (80 g silica gel, eluting with 20% ethyl acetate-hexanes initially, grading to 60% ethyl acetate-hexanes) to provide arenethiol product as a light yellow solid (1.92 g, 83\%).

Melting point: $42-44^{\circ} \mathrm{C}$.
$\mathrm{R}_{f}=0.23(60 \%$ ethyl acetate-hexanes, UV).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.79(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{dd}, J=4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.79(\mathrm{dt}, J$ $=7.9,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.42(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.32(\mathrm{dd}, J=7.9,4.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.55(\mathrm{~s}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}) $\delta 148.5,148.0,135.8,135.1,134.0,131.4,129.8,127.7,123.6$.

FTIR (neat, cm^{-1}): 3027 (m), 2398 (br), 1903 (w), 1597 (m), 1468 (s), 1423 (m), 1393 (m), 1185 (m), 1103 (s), 1000 (s), 794 (s), 708 (s), 547 (s).

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{11} \mathrm{H}_{9} \mathrm{NS}$, 188.0528; found 188.0526.

Biaryl sulfide 2.40b.

In a $5-10 \mathrm{~mL}$ glass microwave vial, methanesulfonate ester $2.38(0.400 \mathrm{~g}, 0.621 \mu \mathrm{~mol}, 1$ equiv) and arenethiol $\mathbf{2 . 3 9 b}(233 \mathrm{mg}, 1.24 \mathrm{mmol}, 2.00$ equiv) were dried together by azeotropic removal of benzene. The dried mixture was then dissolved in N, N-dimethylformamide, and potassium carbonate was added. The vial was sealed, and the mixture was heated to $80^{\circ} \mathrm{C}$ in a preheated oil bath. After 3 h, TLC analysis (30% ethyl acetate-hexanes, UV+CAM) showed complete consumption of starting material, and the mixture was diluted with ethyl acetate (30 mL). The diluted mixture was washed successively with saturated aqueous sodium bicarbonate solution (15 mL) and saturated aqueous sodium chloride solution (15 mL). The washed organic solution was then dried over sodium sulfate, filtered, and concentrated to give a colorless oil. This residue was purified by flash-column chromatography (40 g silica gel, eluting with 15% ethyl acetate-hexanes initially, grading to 50% ethyl acetate-hexanes) to provide the product as a bright white, crystalline solid ($242 \mathrm{mg}, 53 \%$).

Melting point: $134-135^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.83(\mathrm{dd}, J=2.4,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{dd}, J=4.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.84$ $(\mathrm{ddd}, J=7.9,2.3,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.51\left(\mathrm{ABq}, \Delta \delta_{\mathrm{AB}}=0.01, J_{\mathrm{AB}}=8.7 \mathrm{~Hz}, 4 \mathrm{H}\right), 7.36(\mathrm{ddd}, J=$ $7.9,4.9,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.02(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\operatorname{app} \mathrm{td}, J=$ $9.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=9.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=2.6$
$\mathrm{Hz}, 1 \mathrm{H}), 3.83(\mathrm{qd}, J=7.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=9.6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 1.33$ $(\mathrm{d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}{ }^{13} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 148.9,148.2,137.1,135.8,134.3,133.4,132.7,127.9,123.8,89.2$, $72.7,72.5,69.5,68.7,54.1,43.4,19.4,13.5,0.8,0.6,0.4$. Trifluoroacetamide carbons were not resolved due to ${ }^{19} \mathrm{~F}$ nuclear coupling.
${ }^{19}$ F NMR (471 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-75.46(\mathrm{~s}, 3 \mathrm{~F})$.
FTIR (neat, cm-1): 1729 (m), 1559 (w), 1250 (m), 1168 (s), 1139 (s), 972 (m), 888 (s), 835 (s). HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{31} \mathrm{H}_{50} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}_{2} \mathrm{Si}_{3}$, 735.2416; found 735.2398.

Aminotriol 2.41b.

In a $5-10 \mathrm{~mL}$ glass microwave vial fitted with a magnetic stir bar, a solution of trifluoroacetamide 2.40b ($240 \mathrm{mg}, 326 \mu \mathrm{~mol}$, 1 equiv) in methanol $(2.00 \mathrm{~mL}$) was treated with aqueous sodium hydroxide solution $\left(1.00 \mathrm{M}, 2.61 \mathrm{~mL}, 2.61 \mathrm{mmol}, 8.00\right.$ equiv) at $23^{\circ} \mathrm{C}$. A white, frothy mixture resulted as the trimethylsilyl ether groups were rapidly solvolyzed; the mixture was heated to $40^{\circ} \mathrm{C}$, and after 7 h of stirring at that temperature, cleavage of the trifluoroacetamide was complete as well, as indicated by LCMS. The white pasty mixture was chilled to $0{ }^{\circ} \mathrm{C}$ before it was subjected to vacuum filtration; the collected solids were washed with ice-cold water (2×2 $\mathrm{mL})$ and were dried under high vacuum $(0.1 \mathrm{mmHg})$ to provide the product as a brilliant white, crystalline solid (118 mg, 85\%).

Melting point: $157-160^{\circ} \mathrm{C}$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.80(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{dd}, J=4.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.09(\mathrm{dt}$, $J=7.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.52(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.51(\mathrm{dd}, J=7.9$, $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H})$, $4.09(\mathrm{dd}, J=10.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{qd}, J=6.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=10.2,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.28(\mathrm{dd}, J=9.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$.

13C NMR (100 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta 148.7,148.1,138.1,137.9,136.3,136.2,131.8,128.6,125.5$, 89.9, 72.8, 72.2, 70.1, 69.7, 56.7, 45.9, 20.7, 13.7.

FTIR (neat, cm^{-1}): 3346 (br), 1641 (m), 1596 (m), 1472 (m), 1338 (m), 1093 (s), 1054 (m), 802 (m).

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{20} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}_{2}, 423.1407$; found 423.1417.

Synthetic lincosamide FSA-213061.

In a 4-mL glass vial fitted with a magnetic stir bar and a PTFE-lined screw cap, a solution of aminotriol 2.41b ($40 \mathrm{mg}, 95 \mu \mathrm{~mol}, 1$ equiv) and triethylamine ($42 \mu \mathrm{~L}, 0.30 \mathrm{mmol}, 3.20$ equiv) in N, N-dimethylformamide ($270 \mu \mathrm{~L}$) was cooled to $0^{\circ} \mathrm{C}$. To this chilled solution was added N, O bis(trimethylsilyl)trifluoroacetamide ($38 \mu \mathrm{~L}, 0.14 \mathrm{mmol}, 1.5$ equiv); the mixture was then warmed to $23{ }^{\circ} \mathrm{C}$ and stirred for 1 h to ensure complete O-silylation. Carboxylic acid $2.27(30 \mathrm{mg}, 0.10$ mmol, 1.1 equiv) and HATU ($47 \mathrm{~g}, 0.12 \mathrm{mmol}, 1.3$ equiv) were added next, and the mixture was stirred at $23^{\circ} \mathrm{C}$ for 6 h , until LCMS indicated complete consumption of aminotriol starting material and its (oligo)trimethylsilylated congeners. The mixture was diluted with ethyl acetate (10 mL), and the diluted mixture was washed with saturated aqueous sodium chloride solution $(2 \times 5 \mathrm{~mL})$. The washed organic solution was dried over sodium sulfate, filtered, and concentrated; residual N, N-dimethylformamide was removed by repeated concentration of the residue from $10 \% \mathrm{v} / \mathrm{v}$ methanol-toluene ($2 \times 5 \mathrm{~mL}$).

The dried residue was then dissolved in dichloromethane $(900 \mu \mathrm{~L})$. Water $(20 \mu \mathrm{~L})$ and dimethyl sulfide $(20 \mu \mathrm{~L})$ were added, followed by trifluoroacetic acid ($300 \mu \mathrm{~L}$); the resulting solution was stirred at $23^{\circ} \mathrm{C}$ for 30 min , at which point LCMS analysis indicated that Boc removal was complete. The mixture was diluted with toluene (2 mL), and the diluted mixture was concentrated to dryness in vacuo. The residue was subjected to preparative HPLC on a Waters SunFire Prep C_{18} column ($5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% formic acid -5% acetonitrile-
water initially, grading to 0.1% formic acid -40% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 280 nm) to provide $\mathbf{F S A - 2 1 3 0 6 1} \cdot \mathrm{HCO}_{2} \mathrm{H}$ as a white solid (48 mg, 79\%).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.79(\mathrm{~s}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.37(\mathrm{br}, 1 \mathrm{H}), 8.07(\mathrm{~d}, J=$ $8.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.50(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.83(\mathrm{dd}, J=12.5,7.0 \mathrm{~Hz}$, $1 \mathrm{H}), 5.75(\mathrm{ddd}, J=12.5,6.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=10.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.64(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.38(\mathrm{dd}, J=16.0,5.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.21-4.17(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{dd}, J=10.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{qd}, J=$ $7.1,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=11.4,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=10.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.02(\mathrm{app}$ $\mathrm{t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{ddd}, J=17.0,7.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.31-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.10(\operatorname{app} \mathrm{t}, J$ $=13.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.88(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 168.0,148.7,148.0,138.0,137.7,136.2,131.3,131.1,130.0$, $128.7,125.5,90.3,85.9,72.1,70.8,70.0,69.5,69.3,61.8,54.9,45.3,43.9,30.1,20.5,13.9$.

FTIR (neat, cm^{-1}): 1677 (s), 1592 (s), 1470 (m), 1376 (m), 1348 (m), 1141 (m), 1094 (m), 1054 (m), 802 (m).

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}_{2}, 588.2197$; found 588.2193.

Synthetic lincosamide FSA-213064.

To a solution of FSA-213061 $\cdot \mathrm{HCO}_{2} \mathrm{H}(15 \mathrm{mg}, 24 \mu \mathrm{~mol}, 1$ equiv $)$ in methanol $(470 \mu \mathrm{~L})$ was added formalin ($3.5 \mu \mathrm{~L}, 47 \mu \mathrm{~mol}, 2.0$ equiv). After stirring the resulting solution for 5 min at $23^{\circ} \mathrm{C}$, sodium cyanoborohydride ($4.5 \mathrm{mg}, 71 \mu \mathrm{~mol}, 3.0$ equiv) was added. After 20 min , LCMS analysis indicated that no starting material remained. The reaction mixture was directly subjected to preparative HPLC on a Waters SunFire Prep C ${ }_{18}$ column ($5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% formic acid -5% acetonitrile-water initially, grading to 0.1% formic acid -40% acetonitrilewater over 25 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 280 nm) to provide FSA-213064 • $2 \mathrm{HCO}_{2} \mathrm{H}$ as a white solid ($11 \mathrm{mg}, 66 \%$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.81(\mathrm{~s}, 1 \mathrm{H}), 8.52(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.18(\mathrm{~s}, 2 \mathrm{H}), 8.10(\mathrm{app} \mathrm{dq}$, $J=8.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.66(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.56(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{dd}, J=7.9$, $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.83-5.79(\mathrm{~m}, 1 \mathrm{H}), 5.67-5.63(\mathrm{~m}, 1 \mathrm{H}), 5.27(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{app} \mathrm{dt}$, $J=10.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.36(\mathrm{dd}, J=16.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.16-4.11$ $(\mathrm{m}, 2 \mathrm{H}), 4.10(\mathrm{ddd}, J=10.3,5.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=3.3,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{qt}, J=$ 6.9, 1.8 Hz, 1H), $3.74(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{ddd}, J=10.2,3.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}$, $J=9.2,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.56(\mathrm{dd}, J=12.1,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{ddd}, J=17.2$,
7.2, $3.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.29 (app dtdd, $J=14.9,12.0,6.1,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\operatorname{app} \mathrm{t}, J=14.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.95(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 170.0,165.6,148.9,148.1,137.7,136.9,136.8,136.3,132.4$, $130.5,129.5,128.7,125.6,90.3,86.2,72.6,71.9,71.2,70.0,69.6,59.1,54.7,47.2,45.0$, $41.5,30.6,20.6,13.9$.

FTIR (neat, cm^{-1}): 3342 (br), 2919 (m), 2328 (m), 1677 (s), 1591 (m), 1471 (m), 1143 (s), 1094 (s), 1053 (s), 803 (s).

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{30} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}_{2}, 602.2353$; found 602.2353.

FSA-213061

FSA-214009a (34\%)

FSA-214009b
(29\%)

Synthetic lincosamides FSA-214009a and FSA-214009b.

A 1-mL glass vial was charged sequentially with pyrrolidine hydroformate salt FSA$213061 \cdot \mathrm{HCO}_{2} \mathrm{H}(8.5 \mathrm{mg}, 0.013 \mathrm{mmol}, 1$ equiv), methanol ($150 \mu \mathrm{~L}$), activated powdered $4 \AA$ molecular sieves $(10 \mathrm{mg})$, acetic acid $(7.7 \mu \mathrm{~L}, 0.13 \mathrm{mmol}, 10$ equiv), and (1ethoxycyclopropoxy)trimethylsilane ($\mathbf{2 . 4 2}, 16 \mu \mathrm{~L}, 0.080 \mathrm{mmol}, 6.0$ equiv). The vial, originally open to air, was sealed, and the resulting white suspension was stirred at $23^{\circ} \mathrm{C}$ for 10 min . Sodium cyanoborohydride ($3.8 \mathrm{mg}, 0.060 \mathrm{mmol}, 4.5$ equiv) was then added, the vial was re-sealed, and the mixture was heated at $30^{\circ} \mathrm{C}$ for 16 h . At this point LCMS analysis indicated complete consumption of starting material, with concomitant formation of N -cyclopropanated product FSA-214009a and ester FSA-214009b (ca. 2:1 mixture), the latter likely arising through the generation of ethyl acrylate in situ via aerobic ring-opening fragmentation of (1-ethoxycyclopropoxy)trimethylsilane or a derivative thereof. The reaction mixture was diluted with dichloromethane (2 mL), and saturated aqueous sodium bicarbonate solution (2 mL) was added. The mixture was agitated, and the layers were separated. The aqueous phase was extracted with additional dichloromethane ($3 \times$ 2 mL), and the combined organic extracts were dried over sodium sulfate. The dried product solution was filtered, and the filtrate was concentrated to afford a colorless film. This residue was purified by preparative HPLC on a Waters SunFire Prep C ${ }_{18}$ column ($5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid -10% acetonitrile-water, grading to 0.1% trifluoroacetic acid -40%
acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at $\left.280 \mathrm{~nm} ; \mathbf{F S A}-214009 \mathbf{a} \mathrm{R}_{t}=18.3 \mathrm{~min}, \mathbf{F S A}-214009 b \mathrm{R}_{t}=21.5 \mathrm{~min}\right)$ to provide $\mathbf{F S A} \mathbf{2 1 4 0 0 9} \cdot \boldsymbol{2}$ $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(3.9 \mathrm{mg}, 34 \%)$ and FSA-214009b $\cdot 2 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(3.5 \mathrm{mg}, 29 \%)$.

FSA-214009a $\cdot 2 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}:$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 9.07(\mathrm{br}, 1 \mathrm{H}), 8.73(\mathrm{br}, 1 \mathrm{H}), 8.70-8.26(\mathrm{~m}, 1 \mathrm{H}), 8.00-7.93(\mathrm{~m}$, $1 \mathrm{H}), 7.74(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.86-5.80(\mathrm{~m}, 1 \mathrm{H}), 5.73-5.68(\mathrm{~m}$, $1 \mathrm{H}), 5.27(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{dd}, J=10.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.65-4.61(\mathrm{~m}, 1 \mathrm{H}), 4.49(\mathrm{~d}$, $J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.38-4.30(\mathrm{~m}, 2 \mathrm{H}), 4.22(\mathrm{dd}, J=16.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=10.2$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\mathrm{qd}, J=7.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=3.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{dd}, J=$ $10.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=10.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{app} \mathrm{t}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{br}$, $1 \mathrm{H}), 2.55(\mathrm{ddd}, J=17.0,7.3,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{br}, 1 \mathrm{H}), 2.14(\operatorname{app} \mathrm{t}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.87$ (s, 3H), $1.46(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.13-1.09(\mathrm{~m}, 1 \mathrm{H}), 1.05-1.01(\mathrm{~m}, 1 \mathrm{H}), 0.93-0.87(\mathrm{~m}$, $2 \mathrm{H})$.

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc' ${ }^{\text {d for }} \mathrm{C}_{32} \mathrm{H}_{41} \mathrm{~N}_{3} \mathrm{O}_{6} \mathrm{~S}_{2}, 628.2510$; found 628.2509.

FSA-214009b $\cdot 2 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}:$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 9.04(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{~d}, J=5.4,1 \mathrm{H}), 8.63(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.94$ $(\mathrm{dd}, J=8.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.55(\mathrm{dd}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.86-5.81(\mathrm{~m}$, $1 \mathrm{H}), 5.76-5.71(\mathrm{~m}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{dd}, J=10.0,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{dd}$, $J=10.0,4.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{dd}, J=16.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\operatorname{app} \mathrm{t}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-$ $4.19(\mathrm{~m}, 3 \mathrm{H}), 4.10(\mathrm{dd}, J=10.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{qd}, J=7.3,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{~d}, J=$ $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=10.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=10.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.55-3.49(\mathrm{~m}$,
$2 \mathrm{H}), 3.08(\operatorname{app} \mathrm{t}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.56(\mathrm{ddd}, J=16.5,6.7,3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.35-2.25(\mathrm{br}, 1 \mathrm{H}), 2.13(\operatorname{app} \mathrm{t}, J=14.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$.

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{34} \mathrm{H}_{45} \mathrm{~N}_{3} \mathrm{O}_{8} \mathrm{~S}_{2}, 688.2721$; found 688.2724.

Chapter 3. A nitroaldol-based route to methylthiolincosamine

Introduction

Methylthiolincosamine (MTL, 1.11) is the 6 -aminooctose residue that makes up the northern half of the natural product lincomycin (1.1). As described in Chapter 1, X-ray crystallographic studies, prior SAR, and in vitro ribosome-inhibition assays together identify this moiety as essential for the lincosamides' action, its galactopyranosyl core forming the structural basis for ribosomal recognition. Consequently, early semisynthetic work identified the $\mathrm{C} 2-\mathrm{C} 4$ triol motif as inviolate, with deletion, epimerization, and deoxyamination of these hydroxyl groups resulting in near-total ablation of antibacterial activity. ${ }^{59}$ By contrast, modifications to the more exposed positions C1 and C7 have historically produced lincosamide candidates of particular promise (Figure 3.1). Most notable of these, of course, is clindamycin (1.3), whose 7 -chloro substitution provided breakthrough gains in ribosomal engagement, spectrum of action, in-cell and in vivo potency, and $\mathrm{PK} / \mathrm{PD}$ parameter space. Lincosamide candidates subsequently discovered and advanced through preclinical evaluation have all featured some form of C 7 modification, including Vicuron's methyl variant VIC-105555 (1.41) and Meiji Seika's biarylthio lead 1.72. Perhaps owing to the comparative difficulty of introducing modifications to C 1 semisynthetically, examples of anomeric substitution are sparer, though existing reports clearly identify this position as a potential handle by which to modulate key parameters without negatively impacting activity.

Figure 3.1. Examples of lincosamides bearing modifications to the northern-half component.

Since the discovery and structural characterization of lincomycin in the mid-1960s, a number of syntheses of methylthiolincosamine and its derivatives have been reported. ${ }^{113}$ Barney Magerlein of The Upjohn Company described the first such synthesis in 1970, an exceptionally concise if low-yielding sequence beginning with D-galactose (3.1, Scheme 3.1). ${ }^{114}$ Following condensation with methanethiol, site-selective functionalization of the C6-hydroxyl group, and nitroaldol coupling with acetaldehyde, MTL (1.11) and its 7-epi congener (3.3) were prepared in six steps. Notably, this sequence enabled Magerlein and Bannister to deploy the same 6-nitrosugar intermediate 3.2 toward the synthesis of 8 -norlincomycin (3.5) in one of the earliest examples of lincosamide discovery employing a fully synthetic route to the northern-half component. ${ }^{115}$

Magerlein (1970):

D-galactose (3.1)

3.2

1. $\mathrm{HCHO}, \mathrm{NaOCH}_{3}$
2. $\mathrm{H}_{2}, \mathrm{PtO}_{2}$ ($\sim 3 \%, 2$ steps)

3.4

MTL (1.11)

1.88

Scheme 3.1. The first reported synthesis of methylthiolincosamine, developed by Barney Magerlein at Upjohn. This route enabled the preparation of 8-norlincomycin, an early example of a lincosamide candidate possessing a fully synthetic northern-half subunit.

[^62]Other syntheses of lincomycin's northern half include Knapp and Kukkola's 22-step synthesis of MTL (1.11) from methyl α-D-galactopyranoside (3.6), employing as a key step the regioselective opening of epoxide 3.7 with N, N-dimethylcyanamide, directed by the C4-hydroxyl substituent which was left deliberately unprotected (Scheme 3.2). Meanwhile, two syntheses from the groups of Professors Osman Achmatowicz and Samuel Danishefsky, while failing to produce the S-glycoside, nonetheless demonstrated that lincosamine could be prepared from noncarbohydrate precursors, showcasing each group's flagship methods for de novo saccharide synthesis. In the first case, Szechner and Achmatowicz targeted the central C4-C5 bond of the octose framework, developing a stereoselective addition of 2-furyllithium to D-allo-threonine derivative 3.9 that provided a 55:45 diastereomeric mixture of alcohols favoring the desired C5 epimer $\mathbf{3 . 1 0}$ under extensively optimized conditions. Achmatowicz rearrangement and subsequent manipulation of the resulting 3-pyrone ultimately furnished N-acetyl methyl α-lincosamine (3.12). Larson and Danishefsky developed a similarly convergent construction of the C4-C5 bond through a hetero-Diels-Alder coupling of diene $\mathbf{3 . 1 3}$ and crotonaldehyde under Lewis-acid catalysis. After a sequence of 15 steps, peracetylated methyl β-lincosaminide (\pm)- $\mathbf{3 . 1 7}$ was produced.

Scheme 3.2. Other notable routes to methylthiolincosamine and its derivatives.

Scheme 3.3. My colleagues' successful development of nitroaldol couplings en route to the macrolide and aminoglycoside antibiotics served as inspiration for the development of a new synthetic route to methylthiolincosamine.

Owing to the limitations of these and other published routes to MTL and its derivatives, we sought to develop a practical, scalable, component-based route to the aminosugar moiety of the lincosamide antibiotics, alongside C1- and C6-variants thereof. At the same time, Professor Myers
and I desired to demonstrate the general viability of nitroaldol (Henry) coupling reactions applied toward the stereoselective construction of aminosugar motifs, complementary to ongoing work by my then graduate-student colleagues Dr. Ziyang Zhang and Dr. Fan Liu (Scheme 3.3). Specifically, in 2015, Dr. Zhang had demonstrated that the pyranosyl skeleton of D-desosamine the essential aminosugar motif of the macrolide antibiotics, whose ribosomal binding site overlaps with that of the lincosamides' northern half - could be constructed in a single step from (R)-nitro alcohol 3.18 and glyoxal trimer dihydrate (3.19). ${ }^{116}$ Likewise, contemporaneously with my own work on methylthiolincosamine, Dr. Liu had begun developing a synthesis of garosamine that would come to rely upon stereoselective nitroaldol coupling of $\mathbf{3 . 2 2}$ and the chiral glyoxal equivalent 3.23; the resulting nitrogarosamine (3.24) was ultimately incorporated into Dr. Liu's broader platform for aminoglycoside synthesis. ${ }^{117}$ Inspired by these successes, Professor Myers and I envisioned that a suitably flexible synthesis of the lincosamides' northern half might similarly be enabled through application - or development - of appropriate nitroaldol chemistry.

Original retrosynthesis and discovery of a nitroaldol-cyclization reaction

My original retrosynthesis of MTL (1.11) targeted the glycal 3.26 as a strategic intermediate, as I expected that the epoxide derived from it (a 1,2-anhydrosugar, or "Brigl's anhydride") might serve as a particularly flexible intermediate for the stereoselective synthesis of α-disposed S - and C-glycosidic MTL variants (Scheme 3.4). ${ }^{118}$ Reasoning that glycal $\mathbf{3 . 2 6}$ in turn

[^63]might be synthesized from a suitably protected alkynol by transition metal-catalyzed cycloisomerization, I arrived at $\mathbf{3 . 2 7}$ as a potentially tractable synthetic intermediate displaying the full retron for an anti-selective nitroaldol coupling of epoxyaldehyde ($3 S, 4 R$)-3.28 (lincomycin numbering) and nitropropanol derivative 3.29.

Scheme 3.4. Our initial retrosynthesis of MTL.

Each of these building blocks was readily prepared in enantiopure form by a sequence of four or five steps beginning from commercial chemicals (Scheme 3.5). In the case of epoxyaldehyde ($3 S, 4 R$)-3.28, triisopropylethynylsilane (3.30) was first transformed to the allylic alcohol 3.31 by a known sequence, ${ }^{119}$ this alcohol was then subjected to Sharpless asymmetric epoxidation and Dess-Martin oxidation to provide the desired product in modest yield and 90% ee (Mosher ester analysis). Likewise, Henry coupling of nitromethane and acetaldehyde, followed by enzymatic resolution of the resulting racemic alcohol provided (R)-nitropropanol derivative 3.34. ${ }^{120}$ Methanolysis of this intermediate, followed by acid-promoted benzylation of the resulting alcohol provided 3.29, whose enantiopurity was brought to $\geq 99 \%$ ee (HPLC analysis) upon repeated recrystallization from ethyl acetate-hexanes.

[^64]

Scheme 3.5. Scalable synthesis of chiral building blocks.

With these building blocks in hand, I then investigated their proposed coupling to form nitroaldol adduct 3.27. Under a host of conditions commonly used for such transformations (e.g., potassium tert-butoxide-tetrahydrofuran, potassium carbonate-methanol, potassium fluorideisopropanol, silica gel), complex mixtures of products were formed, the isolation and characterization of which was complicated by the inherent instability of these nitroaldol adducts to silica-gel chromatography (data not shown). However, in an early experiment meant to probe whether catalyst control could impart the desired C5-C6 anti configuration in the nitroaldol coupling, a prolinol-ligated copper(II) system first reported by Zhiyong Wang and coworkers was investigated (Scheme 3.6). ${ }^{121}$ In this reaction, an unexpected product isomeric with the desired Henry adduct formed, and was ultimately isolated in 30% yield. One- and two-dimensional TLC analysis revealed that this product was more polar than the nitroaldol adducts observed in prior experiments and was stable toward silica gel chromatography. What's more, this product was crystalline, enabling its unequivocal structural assignment as the isoxazoline N-oxide $\mathbf{3 . 3 6}$ by Xray diffraction analysis. In retrospect, cyclization of the intermediate Henry adduct (which, incidentally, was formed with the desired C5 stereochemistry) might have been expected, as Paolo

[^65]Righi and coworkers have described the highly analogous reaction of ethyl nitroacetate (3.38) with epoxyaldehydes promoted by alumina or imidazole (Table 3.1). ${ }^{122}$

Scheme 3.6. Unexpected formation of a cyclic Henry adduct.
Table 3.1. Selected examples of alumina- and imidazole-promoted nitroaldol-cyclization couplings reported by Paolo Righi and coworkers. ${ }^{122}$
Conditions

[^66]While unanticipated, this result was a turning point in the development of a route to MTL. Namely, the spontaneous cyclization of nitroaldol addition products presented a number of key advantages: In addition to imparting configurational stability toward silica-gel chromatography, the cyclic architecture of isoxazoline N-oxides could be expected to provide an added element of stereocontrol in subsequent transformations - particularly in the establishment of the C1 and C6 stereocenters in downstream glycosylation and $\mathrm{C}=\mathrm{N}$ bond reduction, respectively. The $\mathrm{N}-\mathrm{O}$ linkage between the C 4 and C 6 substituents provided an attractive, atom-economical protecting group strategy; and the nature of the cascade reaction reduced the original problem of double diastereocontrol in nitroaldol addition to a more manageable challenge of rendering the key step diastereoselective with respect to C5 only.

Scheme 3.7. Probing the innate stereoselectivity of the nitroaldol-cyclization reaction.

As it happened, the $(3 S, 4 S)$ configuration (lincomycin numbering) of $\mathbf{3 . 2 8}$ was opposite of what would be desired - a problem easily addressed through the preparation of the enantiomeric epoxyaldehyde building block, $(3 R, 4 S)-\mathbf{3 . 2 8} .{ }^{123}$ Coupling of this building block with $\mathbf{3 . 2 9}$ under the action of ethanolic cesium carbonate at ambient temperature furnished a mixture of C5epimeric isoxazoline N-oxide products $\mathbf{3 . 4 0}$ and $\mathbf{3 . 4 1}$ (Scheme 3.7), providing the first evidence that the C3-C5 stereotriad present in MTL could be established in a single step; and that, while

[^67]unfavorable toward the formation of the desired diastereomer, the innate stereoselectivity of this coupling was modest and thus might succumb to catalyst control.

A fully synthetic route to methylthiolincosamine

In order to overcome the substrate bias of the nitroaldol-cyclization coupling described above, I evaluated a small number of asymmetric catalysts in detail, prioritizing those catalysts which could be prepared readily from commercial materials, and monitoring the diastereoselectivity of the initial nitroaldol addition by aliquot ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis. A copper(II) system employing cyclohexanediamine-based ligand $\mathbf{3 . 4 2}$ demonstrated particular promise (Scheme 3.8), imparting $\sim 95: 5$ dr at C 5 when addition of $\mathbf{3 . 2 9}$ to ($3 \mathrm{R}, 4 \mathrm{~S}$) $\mathbf{- 3 . 2 8}$ was conducted at 4 ${ }^{\circ} \mathrm{C}$ (an inconsequential mixture of C 6 epimers was observed as well, $\mathrm{dr} \sim 85: 15$). ${ }^{124}$ When cesium carbonate ($50 \mathrm{~mol} \%$) was added to the reaction mixture in order to induce cyclization, however, the C5 stereochemical purity of the isoxazoline N-oxide product was degraded to $\leq 73: 27$, very likely through base-promoted retro-nitroaldol fragmentation of 3.43. By contrast, use of the milder, homogeneous base triethylamine (2.00 equiv) effected smooth conversion of linear intermediate 3.43 to the desired product with no observable epimerization at C5. These optimized conditions were readily and reliably scaled to produce up to 16.4 g of $\mathbf{3 . 4 0}$ in 88% isolated yield and $98: 2$ dr. ${ }^{125}$ Tetra- n-butylammonium fluoride-promoted desilylation and regioselective protection of the sterically less encumbered C3-hydroxyl group of $\mathbf{3 . 4 0}$ then afforded products of type 3.44. As it

[^68]happened, the triisopropylsilyl ether 3.44b was crystalline, enabling unequivocal confirmation of the assigned structure by X-ray diffraction analysis.

Scheme 3.8. Optimized conditions for nitroaldol-cyclization, relying on a cyclohexanediaminecopper(II) catalyst system to impart high diastereoselectivity.

With the C3-C5 stereotriad of the target thus established, I then sought to transform alkynols 3.44 to the corresponding glycals by transition metal-catalyzed cycloisomerization (Scheme 3.9). However, application of tungsten(0), ${ }^{126}$ rhodium(I), ${ }^{127}$ and ruthenium(II) ${ }^{128}$ conditions reported for endo-selective cycloisomerization failed both with these substrates and their N-deoxygenated derivatives $\mathbf{3 . 4 6}$, likely owing to catalyst poisoning by the strongly metallophilic nature of these heterocyclic compounds. Notably, gold(I)-catalyzed cycloisomerization of isoxazoline 3.46b proceeded smoothly; however, HSQC-NMR analysis revealed that the product of this transformation resulted from undesired 5-exo cyclization, as can

[^69]be expected for gold(I) catalyst systems. ${ }^{129}$ The desired cycloisomerization was ultimately realized after C5-hydroxyl-directed reduction of isoxazoline 3.46a with sodium triacetoxyborohydride and trifluoroacetic acid (under these acidic conditions, triisopropylsilyl derivative 3.46b underwent competitive desilylation, , ${ }^{130}$ followed by protection of the resulting isoxazolidine as its corresponding 2-(trimethylsilyl)ethoxycarbonyl (Teoc) derivative, 3.50. This sequence, in addition to establishing the desired C6 stereochemistry, also served to mask the metallophilic nitrogen atom of the heterocyclic nucleus, enabling the smooth conversion of $\mathbf{3 . 5 0}$ to glycal $\mathbf{3 . 5 1}$ using tungsten(0)-catalyzed cycloisomerization conditions originally developed by Frank McDonald and coworkers. ${ }^{126 \mathrm{a}, \mathrm{b}}$

Scheme 3.9. Successive reduction events furnish an alkynol substrate suitably protected for tungsten-catalyzed cycloisomerization.

[^70]This route to glycal 3.51 enabled the preparation of methylthiolincosamine (1.11) as anticipated in our original retrosynthesis (Scheme 3.10). Owing to the steric bulk of the adjacent C3-tert-butyldiphenylsilyloxy substituent, as well as the rigid bicyclic structure afforded by the connection of the C 4 and C 6 heteroatom substituents of $\mathbf{3 . 5 1}$, epoxidation of this glycal with dimethyldioxirane (prepared as a solution in acetone according to the protocol of Murray and Singh) ${ }^{131}$ proceeded with perfect facial selectivity, providing Brigl's anhydride $\mathbf{3 . 5 2}$ in quantitative yield. Engagement of this glycosyl donor with trimethyl(methylthio)silane under the action of trimethylsilyl trifluoromethanesulfonate provided the desired cis- $\alpha-S$-glycoside $\mathbf{3 . 5 3}$ in 86% yield and 91:9 dr. ${ }^{132}$ A brief deprotection sequence involving global desilylation followed by 7-Odenzylation under dissolving-metal conditions and $\mathrm{N}-\mathrm{O}$ bond cleavage with zinc in aqueous acetic acid (the latter two steps may be performed sequentially in the same flask) then furnished MTL (1.11) in 82% overall yield from 3.53. This synthetic material was spectroscopically identical to an authentic sample prepared by basic hydrolysis of lincomycin (see Experimental Section), or by established methods. ${ }^{\text {dd }}$

[^71]

Scheme 3.10. Synthesis of methylthiolincosamine and a C-glycoside derivative proceeding through the intermediacy of a key 1,2-anhydrosugar.

Of course, the development of such a route was not motivated by a desire to prepare MTL (1.11) itself, as this particular aminosugar can be obtained much more economically by chemical degradation of lincomycin - instead, it was our hope that access to epoxide $\mathbf{3 . 5 2}$ might enable the preparation of a host of C 1 derivatives not easily accessed by semisynthetic means. Toward this end, I found that stereospecific vinylation of $\mathbf{3 . 5 2}$ could be achieved under the action of vinylzinc trifluoroacetate (prepared in situ by the treatment of divinylzinc with trifluoroacetic acid), an ambiphilic reagent which serves both to activate the glycosyl donor as well as to deliver its vinyl group to the same face of the putative nascent oxocarbenium, providing α-vinyl C-glycoside $\mathbf{3 . 5 4}$ in 80% yield as a single diastereomer. ${ }^{133}$ The C1-modified lincosamides whose synthesis and antimicrobial evaluation were enabled by this chemical sequence form the basis of the section that follows.

C-Glycosidic lincosamide analogs

In humans, cytochrome P450 3A (CYP3A)-mediated metabolism of clindamycin to the corresponding inactive sulfoxide is a major route of drug metabolism, contributing substantially

[^72]to the short in vivo half-life of the drug $\left(\mathrm{T}_{1 / 2}=2.4 \mathrm{~h}\right) .{ }^{134}$ Accordingly, we reasoned that replacement of the sulfur atom of clindamycin with a carbon-based isosteric equivalent might block this route of metabolism. Our interest in preparing C-glycoside lincosamide analogs also stemmed from the fact that while such substitutions were reported to be well tolerated in in vitro susceptibility screening (see Chapter 1), precious little SAR data beyond these qualitative assessments were available. Analysis of the X-ray co-crystal structure of clindamycin bound to the bacterial ribosome suggested that the C1 appendage presented an appealing vector along which to build; therefore, we aimed to incorporate a suitably diversifiable group at this position, so as to prepare a library of analogs to test the hypothesis that appropriately decorated C 1 variants might feature improved in vitro activity and metabolic stability relative to clindamycin.

Using vinyl glycoside 3.54 as a starting point, I prepared two isosteric variants of MTL replacing the methylthio group of the natural product with ethyl (3.56) and cyclopropyl (3.58) groups (Scheme 3.11). Because these compounds lacked the sulfur(II) atom of the natural embodiment, 7-O-debenzylation and $\mathrm{N}-\mathrm{O}$ bond cleavage (e.g. $\mathbf{3 . 5 5} \rightarrow \mathbf{3 . 5 6}$) could be achieved without the use of dissolving-metal conditions; however, the addition of hydrochloric acid was necessary in order to prevent poisoning of the palladium catalyst by the basic nitrogen atom of the isoxazolidine starting materials. In addition to these simple bioisosteric MTL variants, I also prepared the (tosyloxy)methyl analog $\mathbf{3 . 6 0}$ (the structure of which was confirmed by single-crystal X-ray diffraction analysis) through regioselective sulfonylation of the primary alcohol obtained after ozonolysis and reductive workup of $\mathbf{3 . 5 4}$.

[^73]

3.57

3.59

Scheme 3.11. Synthesis of C-glycoside northern-half variants.

This (tosyloxy)methyl C-glycoside provided the opportunity to install a highly flexible azido group following coupling of $\mathbf{3 . 6 0}$ with various southern-half scaffolds (Scheme 3.12). For example, union of $\mathbf{3 . 6 0}$ with oxepinoproline $\mathbf{2 . 2 7}$ provided the N-Boc protected lincosamide 3.61, which I elaborated to the corresponding antibiotic candidate FSA-211030. Alternatively, treatment with sodium azide transformed this same intermediate C 1 derivative to $\mathbf{3 . 6 2}$ in modest yield. Removal of the N-Boc group from 3.62 likewise provided FSA-211064, which together with FSA211030 constituted one of the earliest examples of a fully synthetic lincosamide analog to emerge from our research program.

Scheme 3.12. Synthesis of selected oxepinoproline-based C1-(tosyloxy)methyl and -azidomethyl lincosamide analogs.

I also pursued C1-modified analogs incorporating the 5^{\prime}-fluorobutyl azepane scaffold discovered by Vicuron, using an analogous sequence (Scheme 3.13). Here, coupling of $\mathbf{3 . 6 0}$ with azepine 3.63, ${ }^{68}$ followed by $\mathrm{S}_{\mathrm{N}} 2$ substitution produced the flexible azidomethyl intermediate 3.64. This compound provided access to a host of triazole-based analogs through a short sequence involving copper(II)-catalyzed azide-alkyne cycloaddition, N-Boc deprotection, and stereoselective azepine hydrogenation. Omitting the Huisgen cycloaddition step instead afforded the aminomethyl analog FSA-212023, which underwent regioselective N-acylation with various N-hydroxysuccinimidyl esters (e.g., 3.66) in a sodium bicarbonate-buffered mixed solvent system of acetonitrile and water. ${ }^{135}$

[^74]
3.60

FSA-212023

Scheme 3.13. Synthesis of selected azepane-based C1-modified lincosamide analogs

Figure 3.2 lists the antimicrobial activities of C1-modified oxepinoproline- and azepanebased lincosamides bearing 7-hydroxy substitution prepared by the methods described above. All such analogs displayed substantially diminished activity against both Gram-positive and Gramnegative species relative to clindamycin, with the partial exception of C1-ethyl azepinyl analog FSA-212009, which displayed equal potency to clindamycin against E. faecalis and H. influenzae. This modest potency can be attributed largely to the southern-half residue, however, which is known to confer improved activity against these two species. Paired comparison with S-glycoside analogs was not possible for these examples, all of which featured 7-hydroxy decoration. The modest potency of some C-glycoside analogs such as FSA-212009 nonetheless supplied evidence that certain C 1 modifications did not abolish all antimicrobial activity, and thus encouraged further exploration of the anomeric position in tandem with established C7 modifications.

FSA-211030

FSA-211064

FSA-212023

Species	Description	Clinda	211030	211064	212023	212009	212022	212021	212015	212019	212031	212075	212030
S. aureus	ATCC 29213	0.25	>64	>64	>64	16	>64	64	>64	>64	>64	>64	>64
S. aureus	Micromyx USA 300	0.25	>64	>64	>64	16	>64	64	>64	>64	64	64	>64
${ }_{\text {E }}$ S. pneumoniae	ATCC 49619	0.12	32	16	>64	1	64	64	>64	>64	16	32	32
$\stackrel{\sim}{0}$ S. pneumoniae	MMX 3031 cMefA	0.06	32	16	64	0.5	32	16	>64	>64	8	8	16
S. pyogenes	ATCC 19615	0.06	1	4	32	0.25	32	4	16	>64	1	2	16
E. faecalis	ATCC 29212	16	>64	>64	>64	16	>64	>64	>64	>64	>64	>64	>64
B. fragilis	ATCC 25285	0.5	>64	>64	64	16	>64	>64	>64	>64	>64	>64	>64
E E. coli	ATCC 25922	>64	>64	>64	>64	>64	>64	>64	>64	>64	>64	>64	>64
© P. aeruginosa	ATCC 27853	>64	>64	>64	>64	>64	>64	>64	>64	>64	>64	>64	>64
H. influenzae	ATCC 49247	16	>64	>64	>64	16	>64	>64	>64	>64	>64	>64	>64

Figure 3.2. Minimum inhibitory concentrations ($\mu \mathrm{g} / \mathrm{mL}$) of 7-hydroxy C-glycoside analogs. Data by Micromyx, LLC and Dr. Amarnath Pisipati.

Consequently, I investigated C1-modified lincosamides bearing a 7-arylthio substituent first discovered by Meiji Seika researchers, in order to evaluate whether C1, C7, and southern-half scaffold modifications were additive in this case. Taking the protected azepinamide $\mathbf{3 . 6 5}$ as a starting point, I performed global silylation, regioselective desilylation of the 7-hydroxy group, and mesylation of the same, following procedures originally described by the Meiji Seika team
(Scheme 3.14). ${ }^{73 b}$ Displacement of the resulting methanesulfonate ester with arenethiol $\mathbf{3 . 6 7}$ thus provided 3.68, which I paired with ethynylbenzene derivatives in copper(II)-catalyzed click reactions to provide analogs FSA-212062b and FSA-212066. The C1-cyclopropyl derivative FSA-212052b and S-methyl glycoside FSA-213026b (Figure 3.3) were prepared in an analogous fashion from 3.56 and MTL (1.11) respectively (see Experimental Section for details).

3.68

Scheme 3.14. Synthesis of C-glycoside azepanamide analogs bearing 7-arylthio substitution.

As Figure 3.3 shows, the in vitro antimicrobial activities of these 7-arylthio C-glycoside analogs were considerably greater than their 7-hydroxy counterparts. Comparison of C1-ethyl (FSA-212048) and C1-cyclopropyl (FSA-212052b) analogs revealed that the former was generally more effective as a bioisosteric replacement of the native thiomethyl group. Indeed, against lincosamide-susceptible strains of S. aureus, C1-ethyl analog FSA-212041 demonstrated 2-4-fold greater potency compared the matched S-glycoside counterpart FSA-213026b, possibly owing to the greater lipophilicity of the C-glycoside. However, the most striking observation to emerge from this series was that, against H. influenzae and MLS $_{\mathrm{B}}$-resistant Gram-positive
organisms, the propylhygramide scaffold present in Meiji Seika's candidate $\mathbf{1 . 7 7}$ provided superior activity compared to the corresponding azepanamides, demonstrating that modifications to the northern and southern hemispheres of the lincosamide family are not necessarily additive.

1.77

FSA-213026b

FSA-212048

FSA-212066

	Species	Description	Clindamycin	1.77	213026b	212048	212052b	212062b	212066
	S. aureus	ATCC 29213	0.25	0.5	8	2	8	32	8
	S. aureus	BAA 977; iErmA	0.25	0.5	4	2	8	64	16
	S. aureus	Micromyx USA 300	0.25	0.25	4	2	4	32	8
	S. aureus	MMX 3035; cErmA	>64	32	>64	>64	>64	>64	>64
	S. pneumoniae	ATCC 49619	0.12	≤ 0.06	0.12	≤ 0.06	0.12	2	0.5
$\stackrel{+}{E}$	S. pneumoniae	MMX 3028 cErmB	>64	4	8	32	16	64	16
\%	S. pneumoniae	MMX 3031 cMefA	0.06	≤ 0.06	≤ 0.06	≤ 0.06	0.12	4	0.25
	S. pyogenes	ATCC 19615	0.06	≤ 0.06	≤ 0.06	≤ 0.06	≤ 0.06	4	0.12
	S. pyogenes	MMX 946; cErmB	>64	2	2	8	4	32	4
	E. faecalis	ATCC 29212	16	8	2	2	4	32	16
	E. faecalis	MMX 847; cErmB	>64	64	>64	>64	>64	>64	>64
	C. difficile	BAA 1805	8	0.25	0.25	0.5	1	64	8
	B. fragilis	ATCC 25285	0.5	4	>64	>64	>64	>64	>64
	E. coli	ATCC 25922	>64	>64	>64	>64	>64	>64	>64
ε	E. coli	MMX 0121Δ TolC	4	1	8	8	16	64	16
$\frac{\overline{0}}{0}$	P. aeruginosa	ATCC 27853	>64	>64	>64	>64	>64	>64	>64
	H. influenzae	ATCC 49247	16	8	64	64	>64	>64	64
	H. influenzae	MMX $565 \triangle$ AcrB	4	≤ 0.06	0.25	0.25	1	2	0.5

Figure 3.3. Minimum inhibitory concentrations ($\mu \mathrm{g} / \mathrm{mL}$) of 7 -arylthio lincosamide analogs bearing different C 1 modifications, compared to prolinamide analogs clindamycin and 1.77. Data by Micromyx, LLC.

These earlier findings led me to target C-glycoside azepanamides bearing simple 7-chloro substitution, so as to gauge whether improvements to the antimicrobial activity or projected
pharmacokinetic profile of Vicuron's 7-chloro azepanamide 1.65b could be realized (Scheme 3.15). Toward this end, I performed hydrogenolysis of (tosyloxy)methyl intermediate 3.70, capped the newly formed 6-amino group as its corresponding trifluoroacetamide, ${ }^{136}$ and conducted $\mathrm{S}_{\mathrm{N}} 2$ displacement of the toluenesulfonate ester with sodium azide. The resulting product, 3.71, smoothly underwent regioselective 7-deoxychlorination under the action of Vilsmeier reagent 1.27, providing 3.72 in 65% yield. Cleavage of the N-trifluoroacetyl group with sodium hydroxide, coupling of the resulting amine to azepine 3.63 , and catalytic hydrogenation then provided $\mathbf{3 . 7 4}$ in roughly 30% overall yield. By design, this 1-aminomethyl compound was ripe for late-stage diversification: I found that condensation with formalin and glyoxal provided the imidazole derivative FSA-213040; acylation gave FSA-213037 and FSA-213039c-d; and, in a striking transformation conceived by Professor Myers, diazotization with nitrosyl chloride (generated in situ by the action of chlorotrimethylsilane on isoamyl nitrite) ${ }^{137}$ provided the 1 -chloromethyl analog FSA-213038.

[^75]

Scheme 3.15. Synthesis of C-glycoside azepanamide analogs bearing 7-chloro substitution.

As observed in earlier cases, these C-glycosides were less potent than their thiomethyl counterpart, 1.65b (Figure 3.4). Indeed, 7-chloro-substituted azepanamides seemed particularly sensitive to C 1 modification, with ablation of nearly all antimicrobial activity occurring even for the modestly substituted formamidomethyl and chloromethyl analogs FSA-213039c and FSA213038. In the case of C1-ethyl substitution, ${ }^{138}$ this effect was less pronounced, with FSA-213008 displaying roughly $4-16$-fold less potency against Gram-negative species and MLS $_{B}$ resistant

[^76]strains of S. pneumoniae and S. pyogenes. In fact, this drop in potency was modest enough for
FSA-213008 to still feature greater activity against all strains compared to clindamycin.

FSA-213040

FSA-213039d

	Species	Description	Clinda	1.65b	213008	213037	213040	213039c	213039d	213038
	S. aureus	ATCC 29213	0.25	≤ 0.06	≤ 0.06	16	>64	>64	>64	16
	S. aureus	BAA 977; iErmA	0.25	≤ 0.06	≤ 0.06	NT	>64	>64	>64	4
	S. aureus	Micromyx USA 300	0.25	≤ 0.06	≤ 0.06	NT	64	>64	>64	2
	S. aureus	MMX 3035; cErmA	>64	64	>64	NT	>64	>64	>64	>64
+	S. pneumoniae	ATCC 49619	0.12	≤ 0.06	≤ 0.06	0.5	8	8	2	1
$\stackrel{+}{E}$	S. pneumoniae	MMX 3028; cErmB	>64	8	64	NT	>64	>64	>64	>64
¢0゙	S. pneumoniae	MMX 3031; cMefA	0.06	≤ 0.06	≤ 0.06	NT	8	16	4	1
	S. pyogenes	ATCC 19615	0.06	≤ 0.06	≤ 0.06	1	4	8	2	4
	S. pyogenes	MMX 946; cErmB	>64	4	64	NT	>64	>64	>64	>64
	E. faecalis	ATCC 29212	16	≤ 0.06	≤ 0.06	64	>64	>64	>64	32
	E. faecalis	MMX 847; cErmB	>64	64	>64	NT	>64	>64	>64	>64
	C. difficile	BAA 1805	8	≤ 0.06	0.5	NT	>64	64	32	16
	B. fragilis	ATCC 25285	0.5	0.25	0.25	NT	64	>64	64	8
	K. pneumnoniae	ATCC 10031	8	0.5	1	NT	NT	NT	NT	NT
	E. coli	ATCC 25922	>64	4	32	NT	>64	>64	>64	>64
	E. coli	MMX 0120 parent strain	>64	8	>64	>64	>64	>64	>64	>64
1	E. coli	MMX 0121Δ ToIC	4	0.25	2	NT	>64	>64	>64	>64
	E. coli	LptD mutant	2	4	16	NT	NT	NT	NT	NT
O-	P. aeruginosa	ATCC 27853	>64	>64	>64	NT	>64	>64	>64	>64
	P. aeruginosa	MMX 3475 Mex parent	>64	>64	>64	NT	>64	>64	>64	>64
	P. aeruginosa	MMX $3476 \Delta \mathrm{Mex}$	>64	8	64	NT	>64	>64	>64	>64
	H. influenzae	ATCC 49247	16	0.25	1	NT	>64	>64	>64	>64
	H. influenzae	MMX 565Δ AcrB	4	≤ 0.06	0.12	NT	64	>64	32	>64

Figure 3.4. Minimum inhibitory concentrations ($\mu \mathrm{g} / \mathrm{mL}$) of C-glycoside analogs bearing 7-chloro substitution. Data by Micromyx, LLC and Dr. Amarnath Pisipati.

Thus while FSA-213008 was not as potent as $\mathbf{1 . 6 5 b}$, its lack of a metabolically labile thiomethyl appendage suggested that this C-glycoside might feature improved metabolic stability - and thus superior projected in vivo efficacy - compared to the Vicuron compound. Surprisingly,
this hypothesis was not supported by in vitro human liver microsomal stability profiling, conducted in collaboration with Professor Michael Cameron of the Scripps Research Institute. These data instead showed that while FSA-218008 is more stable than clindamycin toward microsomal degradation ($\mathrm{T}_{1 / 2}$'s $=13 \mathrm{~min}$ and 19 min , respectively), S-glycoside $\mathbf{1 . 6 5 b}$ demonstrated the highest metabolic stability of any lincosamide tested, with an assay half-life of 35 minutes. Together these findings suggest that southern-half architecture likely exerts a strong influence on the metabolic susceptibility of the northern-half thioacetal group, and that subtle considerations of stereoelectronics or lipophilicity may underlie the observed difference in chemical resilience of 1.65b and FSA-213008.

Figure 3.5. Metabolic stability of S - and C-glycoside-based lincosamides. Data by Prof. Michael Cameron.

The disappointing performance of various carbon-based C1 substituents relative to the thiomethyl group native to typical lincosamides might be understood in a number of ways. For one, exchange of S for CH_{2} at the anomeric position involves removal of a σ-withdrawing substituent that likely acts via the anomeric effect to stabilize the ${ }^{4} \mathrm{C}_{1}$ chair conformer necessary for ribosomal binding; in addition, the same slight σ-withdrawal afforded by the thioacetal scaffold may acidify the C2-hydroxyl group, enhancing its hydrogen-bond-donor ability and thus strengthening the corresponding interaction with N^{1} of A2058 (cf. Figure 1.6). The close contact
between the sulfur atom of clindamycin and the π face of G2505 in published X-ray co-crystal structures (Figure 1.5) also suggests that dispersion forces may play a role in binding, with the implication that substitution of the sulfur atom with a less polarizable methylene group might weaken the resulting Van der Waals interaction.

8-Norlincomycin and its derivatives

In addition to enabling the preparation of C1-modified analogs, this newly developed route to MTL permitted the preparation of variants bearing modifications to C6 as well. Through exchange of the nitroalkane coupling partner involved in the key nitroaldol-cyclization coupling reaction, we reasoned, lincosamide analogs that would be difficult or impossible to prepare by semisynthetic means could be prepared readily. In particular, we sought to incorporate a diversifiable element at the C6 position that could be unmasked at a late stage so as to enable the examination of a host of substitution patterns in a step-economical fashion. 6-Hydroxymethyl substitution was particularly appealing for this reason, as we expected incorporation of a primary alcohol at this strategic position would provide the most opportunity for derivatization.

$(3 R, 4 S)-3.28$
3.75
(45\%)

TBDPSO
3.80

DMDO
($\geq 95 \%$)

3.81

(88\%)

$$
\xrightarrow[\text { 2. } \mathrm{Zn}^{0}, \mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O}(77 \%)]{\text { 1. TMS- } \mathrm{SCH}_{3}, \text { TMSOTf; }} \text { TBAF }(>99 \%)
$$

Methylthio 8-norlincosamine

(66\%)

Scheme 3.16. Synthesis of 8-norlincomycin by building-block exchange.

My teammate Jack Stevenson originally investigated the coupling of $(3 R, 4 S)$ - $\mathbf{3 . 2 8}$ with 2(benzyloxy)nitroethane under the same conditions developed for the optimized synthesis of $\mathbf{3 . 4}$ (cf. Scheme 3.8). Unexpectedly, whereas nitropropanol derivative $\mathbf{3 . 2 9}$ underwent smooth nitroaldol addition to the epoxyaldehyde electrophile, its desmethyl congener instead underwent β elimination to form benzyl alcohol and nitroethylene under these conditions (not shown). Ultimately, Mr. Stevenson identified a sequence involving the coupling of (3R,4S)-3.28 and nitroethanol (3.75) under the action of methanolic potassium carbonate, proceeding with modest diastereoselectivity ($62: 38 \mathrm{dr}$, favoring the desired C5 epimer) to provide $\mathbf{3 . 7 6}$ in 45% yield after isolation by column chromatography (Scheme 3.16). I advanced this product through alkynyl deprotection and regioselective bis-silylation to furnish 3.77. The same conditions described above for sequential reduction, isoxazolidine protection, cycloisomerization, and glycal epoxidation afforded Brigl's anhydride 3.81, which underwent efficient coupling with trimethyl(methylthio)silane to give the corresponding S-glycoside. Global desilylation could be
performed as part of the workup of this thioglycosylation reaction, and treatment of the resulting isoxazolidine with zinc powder in aqueous acetic acid furnished methylthio 8-norlincosamine (3.4). This sequence proceeded in $\sim 10 \%$ overall yield from $(3 R, 4 S)$-3.28, and permitted the synthesis of 8-norlincomycin by a slightly lengthier but perhaps more practical route than the one originally reported by Upjohn (7 steps, 0.042% yield, Scheme 3.1).

Figure 3.6. Rationale for the synthesis of 7-amino lincosamide analogs. Overlay of lincomycin (gray) and telithromycin (green) bound to the bacterial ribosome shows a close correspondence ($3.2 \AA$) of lincomycin's C7 position with C^{\prime} of the macrolide scaffold. In the foreground, a molecule of spermidine that co-crystallized with lincomycin and the S. aureus 50 S ribosomal subunit is depicted (gold). Compiled from PDB entries 5HKV and 1P9X.

One of the primary motivations for synthesizing 6-hydroxymethyl analogs such as 8norlincomycin was the observation that the C 7 position of clindamycin closely overlaps with C^{\prime} of the macrolide antibiotics in overlaid ribosome-antibiotic co-crystal structures (Figure 3.6). Ongoing work in the Myers laboratory spearheaded by my colleague Dr. Ziyang Zhang had identified desosamine C^{\prime}-amino derivatization as a high priority within the macrolide project, ${ }^{116 b, 139}$ and a contemporaneous publication from Ada Yonath's group described the

[^77]crystallization of the S. aureus 50 S ribosomal subunit with lincomycin and spermidine (a polyamine component of the crystallization buffer) bound in close proximity. ${ }^{23}$ We therefore hypothesized that 7-amino derivatization of lincosamides would be well tolerated, and might afford gains in activity against target organisms including Gram-negative species. Accordingly, I prepared the selectively protected aminotetraol 3.82, which was converted to corresponding aldehyde (with minimal epimerization at C6) by Parikh-Doering oxidation (Scheme 3.17). This aldehyde underwent smooth reductive amination with a variety of amines, chosen for their relatively low $\mathrm{p} K_{\mathrm{a}}{ }^{\prime}$ values and - in the case of FSA-214087 and FSA-214080, for example - their structural homology to the biaryl side chains pioneered by Meiji Seika. In some cases, significant epimerization of the C6 stereocenter occurred, and separable mixtures of aminated products were obtained; empirically, it was found that such epimerization could be minimized through the use of 2,2,2-trifluoroethanol as solvent.

Scheme 3.17. Synthesis of 6-aminomethyl propylhygramide analogs.

FSA-214080

FSA-214087

FSA-215009

FSA-215010

FSA-214082b

FSA-214099

FSA-214084

FSA-214088

FSA-214083b

Species	Description	Clinda	214080	214087	215009	215010	214082b	214099	214084	214088	214083b
+ S. aureus	ATCC 29213	0.25	>64	32	64	>64	>64	64	>64	>64	>64
E S. pneumoniae	ATCC 49619	0.12	>64	8	64	64	>64	16	>64	>64	>64
O S. pyogenes	ATCC 19615	0.06	>64	8	32	64	>64	32	>64	>64	>64
E. faecalis	ATCC 29212	16	>64	>64	>64	>64	>64	>64	>64	>64	>64
1 E. coli	ATCC 25922	>64	>64	>64	>64	>64	>64	>64	>64	>64	>64
\bigcirc - E. coli	MP-9 Δ TolC	8	NT	>64	NT	>64	NT	NT	NT	NT	NT

Figure 3.7. Minimum inhibitory concentrations ($\mu \mathrm{g} / \mathrm{mL}$) of selected 6-aminomethyl propylhygramide analogs. Data by Dr. Amarnath Pisipati.

As Figure 3.7 illustrates, 6-aminomethyl propylhygramide analogs demonstrated virtually no antibacterial activity, even against clindamycin-susceptible Gram-positive control strains. Trifluoroethylamino compound FSA-214099 and pyridylaniline analog FSA-214087 displayed marginal activity in some organisms, but attempts to optimize the latter scaffold through alkylation of the secondary amino group (as in FSA-215009 and FSA-215010) only further reduced activity. These results were discouraging, as we had hoped that installation of a second basic amine within the lincosamide scaffold might increase activity particularly against Gram-negative species; together with a series of semisynthetic 7-deoxyaminolincomycin analogs I prepared, ${ }^{140}$ these data

[^78]offered compelling evidence that the 7 posistion of the lincosamide scaffold was not the ideal site on which to focus these efforts.

Figure 3.8. Generalized synthesis and minimum inhibitory concentrations ($\mu \mathrm{g} / \mathrm{mL}$) of additional 7 -desmethyl lincomycin derivatives enabled by a route to 8 -norlincomycin. See Experimental Section for synthetic details. Data by Micromyx, LLC and Dr. Amarnath Pisipati.

The synthetic flexibility of the 6-hydroxymethyl substituent within 8 -norlincomycin enabled the installation of other targeted modifications as well (Figure 3.8). For example, activation of alcohol $\mathbf{3 . 8 2}$ as the corresponding methanesulfonate ester, and $\mathrm{S}_{\mathrm{N}} 2$ displacement with sodium azide provided azidomethyl analog FSA-215003, which in turn provided access to the primary amine FSA-215077 and triazolyl candidate FSA-215011. Likewise, Mitsunobu chemistry
could be used to activate this same hydroxymethyl group to install a (pyridyl)phenylthio side chain, providing FSA-215002 as the 7-desmethyl congener of Meiji Seika's potent antibiotic 1.75. Carbamate FSA-215036 was prepared by straightforward coupling of $\mathbf{3 . 8 2}$ with phenyl isocyanate; and Wittig olefination of $\mathbf{3 . 8 3}$ produced the 6-vinyl analog FSA-215031.

The collated antimicrobial activities of these 8 -norlincomycin derivatives point to an unexpectedly pronounced role that the C 8 methyl group plays in driving the potency of naturally occurring and semisynthetic lincosamides. For example, 8-norlincomycin (3.5) itself displays up to ≥ 128-fold less potency than its 7-methylated congener, lincomycin (1.1); while deletion of the 7-methyl group in Meiji Seika's candidate $\mathbf{1 . 7 5}$ delivers FSA-215002, which demonstrates no activity against MLS $_{\mathrm{B}}$-resistant strains. Intriguingly, while azidomethyl analog FSA-215003 displayed markedly diminished activity against Gram-positive strains relative to lincomycin and clindamycin, its activity against a strain of E. coli lacking a functioning efflux pump system (MP$9 ; \Delta \mathrm{TolC}$) was not significantly different from that of clindamycin, signaling that differences in permeability or efflux of these compounds may partially explain their diminished activity. The magnitude of this 7-desmethyl effect was surprising, given that this group does not directly engage the ribosome, based on available X-ray evidence; but similarly striking phenomena appear commonly enough within drug discovery as to have been somewhat mythologized. ${ }^{141}$ In the present case, the "magic methyl" effect is likely to arise through a degree of conformational control that the C8 methyl group introduces within the acyclic portion of the lincosamides' northern hemisphere - a hypothesis that would ultimately form the basis for the development of a secondgeneration route to northern-half variants, the subject of the final chapter of this dissertation.

[^79]
Summary and conclusion

In this chapter, I described my efforts to develop and apply a novel synthetic route to the northern-half component of lincosamide antibiotics relying on nitroaldol chemistry to forge the central C5-C6 carbon-carbon bond of methylthiolincosamine (MTL, 1.11). In the course of this work, I identified an unexpected isoxazoline N-oxide product arising through spontaneous cyclization of a nitroaldol adduct, and developed conditions to render this transformation reproducible, scalable, and highly diastereoselective. By targeting a pivotal 1,2-anhydrosugar intermediate, I prepared both the S-glycoside MTL itself, alongside a host of C-glycosidic variants. The C-glycoside-based antibiotics to emerge from this series uniformly demonstrated weaker antibiotic activity compared to their thiomethyl counterparts, and, unexpectedly, replacement of the thiomethyl group within Vicuron's azepanamide candidate $\mathbf{1 . 6 5 b}$ with an isosteric ethyl group (FSA-213008) did not render the resulting lincosamide more resilient toward microsomal degradation.

This route was adapted to prepare a variant of MTL lacking the C8 methyl group, and subsequent elaboration to 8-norlincomycin provided a useful intermediate by which to probe the effects of C8-methyl deletion and 6-aminomethyl substitution. What emerged from these studies was an increased appreciation for the subtle, yet pronounced, effects that conformational control within the northern-half residue exerts on the antimicrobial properties of lincosamide analogs. These structural insights would inform subsequent analog design, and ultimately prompted the development of a new route to MTL, discussed in the chapter that follows.

Experimental section

General Experimental Procedures. All reactions were performed in oven- or flame-dried roundbottomed or modified Schlenk flasks fitted with rubber septa under a positive pressure of argon (dried by passage through a column of Drierite calcium sulfate desiccant), unless otherwise noted. Air- and moisture-sensitive liquids and solutions were transferred via syringe or stainless-steel cannula. When necessary (so noted), solutions were deoxygenated by three cycles of freezing (liquid nitrogen), evacuation, and thawing under static vacuum. Organic solutions were concentrated by rotary evaporation (house vacuum, ~ 60 Torr) at $23-30{ }^{\circ} \mathrm{C}$. Flash-column chromatography was performed as described by Still et al., ${ }^{105}$ employing silica gel ($60-\AA ̊$ pore size, 230-400 mesh, Agela Technologies, Chicago, IL; or RediSep silica cartridges, Teledyne Isco, Lincoln, NE). Analytical thin-layer chromatography (TLC) was performed using glass plates precoated with silica gel ($0.25 \mathrm{~mm}, 60-\AA \AA$ pore size, $230-400$ mesh, Merck KGA) impregnated with a fluorescent indicator (254 nm). In special cases (so noted), analytical TLC was performed with aminopropyl-modified silica gel $\left(\mathrm{NH}_{2}\right.$ silica gel, $60-\AA$ pore size, Wako Chemicals USA) impregnated with a fluorescent indicator (254 nm). TLC plates were visualized by exposure to ultraviolet light (UV) and/or exposure to iodine vapor $\left(\mathrm{I}_{2}\right)$, basic aqueous potassium permanganate solution $\left(\mathrm{KMnO}_{4}\right)$, acidic ethanolic para-anisaldehyde solution (PAA), acidic aqueous ceric ammonium molybdate solution (CAM), or ethanolic solution of phosphomolybdic acid (PMA) followed by brief heating on a hot plate as needed $\left(\sim 200^{\circ} \mathrm{C}, \leq 15 \mathrm{~s}\right) .{ }^{106}$ In some cases, reaction monitoring was carried out by analytical liquid chromatography-mass spectrometry (LCMS), or by flow-injection analysis-high-resolution mass spectrometry (FIA-HRMS).

Materials. Commercial reagents and solvents were used as received, unless mentioned otherwise. Dichloromethane, diethyl ether, tetrahydrofuran, 1,4-dioxane, N, N-dimethylformamide, toluene, and benzene were purified by passage through $\mathrm{Al}_{2} \mathrm{O}_{3}$ under argon, according to the method of Pangborn et al. ${ }^{107}$ 5'-(4-Fluorobutyl)azepine acid $\mathbf{3 . 6 3}$ and 1-(chloromethylene)pipiridine-1-ium chloride (Vilsmeier reagent 1.26) were prepared according to Lewis and co-workers. ${ }^{68}$ Trans-4-n-propyl-L-hygric acid hydrochloride (1.88) was prepared from lincomycin according to Herr and Slomp. ${ }^{9 \mathrm{c}}$ Ethynyltriisopropylsilane, triethylphosphonoacetate, 1,8-diazabicyclo[4.5.0]undec-7ene, (-)-diethyl-D-tartrate, tert-butylchlorodiphenylsilane, chlorotriisopropylsilane, imidazole, trimethyl phosphite, sodium triacetoxyborohydride, trifluoroacetic acid, 1-[2-(trimethylsilyl)ethoxycarbonyloxy]pyrrolidin-2,5-dione (Teoc-OSu), Oxone monopersulfate compound, hexamethyldisilazane, methyl trifluoroacetate, HATU, and 2,4,6trimethylbenzenesulfonyl chloride were purchased from Oakwood Products, Inc. (Estill, SC, USA). Anhydrous cupric acetate, tungsten hexacarbonyl ($99 \%,<0.3 \%$ molybdenum), and palladium hydroxide on carbon ($20 \% \mathrm{w} / \mathrm{w}$) were purchased from Strem Chemicals, Inc. (Newburyport, MA, USA). 4-(tert-Butylthio)phenylboronic acid was purchased from Alchem Pharmtech, Inc. (Monmouth Junction, NJ, USA). (4-Ethynylphenyl)(morpholine)methanone (S3.9) was purchased from Ark Pharm, Inc. (Arlington Heights, IL, USA). 4-(Pyrimidin-5yl)aniline (3.84) was purchased from Enamine, Ltd. (Monmouth, Jct., NJ, USA). 4-Pyridin-3ylaniline (S3.23) was purchased from Maybridge Chemical Company (Altrincham, UK). 4-Ethynylpyrimidin-2-amine was prepared by Dr. Ziyang Zhang, according to literature procedures. ${ }^{142}$ (4-Mercaptophenyl)(morpholino)methanone (3.67) was prepared according to

[^80]published procedures. ${ }^{143}$ All other chemicals and reagents were purchased from Sigma-Aldrich Corporation (Natick, MA, USA).

Instrumentation. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra and carbon nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were recorded on Varian Mercury $400(400 \mathrm{MHz} / 100$ MHz), Varian Inova 500 ($500 \mathrm{MHz} / 125 \mathrm{MHz}$), or Varian Inova $600(600 \mathrm{MHz} / 150 \mathrm{MHz}) \mathrm{NMR}$ spectrometers at $23{ }^{\circ} \mathrm{C}$. Proton chemical shifts are expressed in parts per million (ppm, δ scale) and are referenced to residual protium in the NMR solvent $\left(\mathrm{CHCl}_{3}, \delta 7.26 ; \mathrm{CHD}_{3} \mathrm{OD}, \delta 3.31\right.$; $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{D}, \delta 7.16$). Carbon chemical shifts are expressed as parts per million (ppm, δ scale) and are referenced to the carbon resonance of the NMR solvent $\left(\mathrm{CDCl}_{3}, \delta 77.2 ; \mathrm{CD}_{3} \mathrm{OD}, \delta 49.0 ; \mathrm{C}_{6} \mathrm{D}_{6}, \delta\right.$ 128.1). Data are reported as follows: Chemical shift, multiplicity ($\mathrm{s}=\operatorname{singlet}, \mathrm{d}=\operatorname{doublet}, \mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{qn}=$ quintet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{td}=$ triplet of doublets, $\mathrm{ABq}=\mathrm{AB}$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad, $\mathrm{app}=$ apparent $)$, integration, and coupling constant (J) in Hertz (Hz). Infrared transmittance (IR) spectra were obtained using a Bruker ALPHA FTIR spectrophotometer referenced to a polystyrene standard. Data are represented as follows: Frequency of absorption $\left(\mathrm{cm}^{-1}\right)$, and intensity ($\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{br}=$ broad). Melting points were determined using a Thomas Scientific capillary melting point apparatus. High-resolution mass spectrometry (including FIA-HRMS reaction monitoring) was performed at the Harvard University Mass Spectrometry Facility using a Bruker micrOTOF-QII mass spectrometer. X-ray crystallographic analysis was performed at the Harvard University X-Ray Crystallographic Laboratory by Dr. Shao-Liang Zheng. High-performance liquid chromatography-mass

[^81]spectrometry (LCMS) was performed using an Agilent Technologies 1260-series analytical HPLC system in tandem with an Agilent Technologies 6120 Quadrupole mass spectrometer; a Zorbax Eclipse Plus reverse-phase C_{18} column $(2.1 \times 50 \mathrm{~mm}, 1.8 \mu \mathrm{~m}$ pore size, 600 bar rating; Agilent Technologies, Santa Clara, CA) was employed as stationary phase. LCMS samples were eluted at a flow rate of $650 \mu \mathrm{~L} / \mathrm{min}$, beginning with 5% acetonitrile-water containing 0.1% formic acid, grading linearly to 100% acetonitrile containing 0.1% formic acid over 3 minutes, followed by 100% acetonitrile containing 0.1% formic acid for 2 minutes (5 minutes total run time).

For clarity, intermediates that have not been assigned numbers in the preceding text are numbered sequentially in this section, beginning with $\mathbf{S 3 . 1}$.

Enynol 3.31.

Formylation of ethynyltriisopropylsilane was performed according to the procedure reported by Robles and McDonald. ${ }^{119 \mathrm{a}}$ To a solution of ethynyltriisopropylsilane (3.30, $20.0 \mathrm{~g}, 110$ mmol, 1 equiv) in diethyl ether (100 mL) was added n-butyllithium solution (2.12 M in hexane, $51.7 \mathrm{~mL}, 110 \mathrm{mmol}, 1.00$ equiv) slowly by cannula at $0{ }^{\circ} \mathrm{C}$ over approximately 15 min . The resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for an additional 40 min . This lithium acetylide solution was then transferred via cannula over a period of $5-10 \mathrm{~min}$ to a $500-\mathrm{mL}$ round-bottomed flask containing a mixture of N, N-dimethylformamide ($25.5 \mathrm{~mL}, 329 \mathrm{mmol}, 3.00$ equiv) and diethyl ether (100 mL) chilled to $-78^{\circ} \mathrm{C}$. A white suspension formed. The reaction mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h before warming to $0^{\circ} \mathrm{C}$, at which temperature the mixture became homogeneous. After 1 h of stirring at $0^{\circ} \mathrm{C}$, the mixture was transferred to an ice-cold aqueous sulfuric acid solution $(5 \% \mathrm{v} / \mathrm{v}, 250 \mathrm{~mL})$. The resulting biphasic mixture was stirred at $0^{\circ} \mathrm{C}$ for 1 h , and then the layers were separated. The aqueous phase was extracted with diethyl ether $(3 \times 150 \mathrm{~mL})$, and the combined organic extracts were washed with saturated aqueous sodium chloride solution (150 mL). The washed organic solution was dried over sodium sulfate, the dried solution was filtered, and the filtrate was concentrated to give 3-(triisopropylsilyl)propiolaldehyde (2) as a colorless oil that was used in the next step without further purification. The ${ }^{1} \mathrm{H}$ NMR data matched literature values. ${ }^{119 a}$

Horner-Wadsworth-Emmons olefination of the crude ynal formed in the preceding formylation reaction was performed according to the procedure reported by Bode and coworkers. ${ }^{119 b}$ An oven-dried 2-L round-bottomed flask was charged with lithium chloride (5.60 g ,
$132 \mathrm{mmol}, 1.20$ equiv), and the apparatus was flame-dried. Once cooled, the flask was charged with a magnetic stir bar and acetonitrile (1.3 L), and the resulting suspension was stirred at $23^{\circ} \mathrm{C}$ for 10 min (lithium chloride does not fully dissolve). 3-(Triisopropylsilyl)propriolaldehyde (S3.1, theoretically $110 \mathrm{mmol}, 1$ equiv) and triethyl phosphonoacetate ($22.5 \mathrm{~mL}, 112 \mathrm{mmol}, 1.02$ equiv) were then added sequentially. 1,8-Diazabicyclo[5.4.0]undec-7-ene (DBU, $16.6 \mathrm{~mL}, 110 \mathrm{mmol}$, 1.00 equiv) was added dropwise over 5 min , causing the mixture to warm to approximately $40^{\circ} \mathrm{C}$ with concomitant transformation of the originally colorless reaction solution to an opaque, offwhite suspension. Progress was monitored by TLC (20% dichloromethane-hexanes, UV+PAA); after 10 min , the reaction was judged to be complete. The mixture was concentrated by rotary evaporation to a volume of approximately 300 mL , and the concentrated mixture was transferred to a separatory funnel containing saturated aqueous ammonium chloride solution (400 mL) and diethyl ether $(300 \mathrm{~mL})$. The mixture was shaken, and the layers were separated. The aqueous phase was extracted with diethyl ether $(3 \times 300 \mathrm{~mL})$; the combined organic layers were then washed sequentially with water $(250 \mathrm{~mL})$ and saturated aqueous sodium chloride solution $(250 \mathrm{~mL})$. The washed organic solution was dried over sodium sulfate, the dried solution was filtered, and the filtrate was concentrated to give ethyl (E)-5-(triisopropylsilyl)pent-2-en-4-ynoate as a colorless oil that was used in the next step without further purification. The ${ }^{1} \mathrm{H}$ NMR data matched literature values. ${ }^{119 b}$

Reduction of the crude ester formed in the preceding Horner-Wadsworth-Emmons olefination reaction was performed according to the procedure reported by Bressy and coworkers. ${ }^{119 \mathrm{c}}$ To a rapidly stirred solution of crude ethyl (E)-5-(triisopropylsilyl)pent-2-en-4-ynoate (theoretically $110 \mathrm{mmol}, 1$ equiv) in diethyl ether (220 mL) was added diisobutyl aluminum hydride (1.0 M solution in hexane, $243 \mathrm{~mL}, 2.2$ equiv) by cannula at $-78^{\circ} \mathrm{C}$. The mixture was
stirred at $-78^{\circ} \mathrm{C}$ for 1 h , then at $0{ }^{\circ} \mathrm{C}$ for 1.5 h . The reaction mixture was then transferred by widebore cannula to a 2 -L round-bottomed flask containing a rapidly stirred aqueous Rochelle salt solution (potassium sodium tartrate, $0.80 \mathrm{M}, 410 \mathrm{~mL}, 328 \mathrm{mmol}, 3.0$ equiv) pre-chilled to $0^{\circ} \mathrm{C}$. A cloudy slurry formed immediately upon aqueous quenching of the reaction mixture; after approximately 3 min of stirring at $0^{\circ} \mathrm{C}$, this suspension thickened to form a gel. Gas evolution was then observed, followed by gradual collapse of the gel to form a cloudy, light yellow emulsion. The mixture was stirred at $23{ }^{\circ} \mathrm{C}$ overnight under an atmosphere of nitrogen gas, during which time the emulsion separated into a biphasic mixture. The layers were separated at the end of this period, and the aqueous phase was extracted with diethyl ether $(3 \times 200 \mathrm{~mL})$. The combined organic layers were then washed with saturated aqueous sodium chloride solution (200 mL), and the washed organic product solution was dried over sodium sulfate. The dried solution was filtered, and the filtrate was concentrated to give a light yellow oil. This residue was purified by flashcolumn chromatography (500 g silica gel, eluting with 5% ethyl acetate--hexanes initially, grading to 10% ethyl acetate-hexanes) to afford allylic alcohol $\mathbf{3}$ as a colorless oil ($19.7 \mathrm{~g}, 75 \%, 3$ steps). The ${ }^{1} \mathrm{H}$ NMR data matched literature values. ${ }^{144}$

[^82]

Propargylic epoxide S3.2.

Sharpless asymmetric epoxidation was performed according to a procedure adapted from the report of Kim and co-workers. ${ }^{144}$ A 1-L, 2-necked round-bottomed flask was oven-dried. Once cooled, the flask was charged with a magnetic stir bar and powdered $4-\AA$ molecular sieves (20.0 g, Sigma-Aldrich, activated by heating overnight in a vacuum drying oven [200 $\left.{ }^{\circ} \mathrm{C}, \sim 70 \mathrm{Torr}\right]$). A thermocouple probe was fitted to one neck of the flask, while the other neck was sealed with a rubber septum. Dichloromethane (229 mL) was added, and the resulting slurry was cooled to -30 ${ }^{\circ} \mathrm{C}$ in a CryoCool bath. (-)-Diethyl-D-tartrate $(7.21 \mathrm{~mL}, 41.9 \mathrm{mmol}, 0.500$ equiv) was added. Titanium(IV) isopropoxide ($9.83 \mathrm{~mL}, 33.6 \mathrm{mmol}, 0.400$ equiv) was then added dropwise over 2 min, causing the internal temperature to rise to $-26^{\circ} \mathrm{C}$ briefly. The resulting mixture was stirred at $-30^{\circ} \mathrm{C}$ for 20 min , after which time a solution of allylic alcohol $3.31(20.0 \mathrm{~g}, 84.0 \mathrm{mmol}, 1$ equiv) in dichloromethane (295 mL) was added slowly by cannula over 10 min . The mixture was incubated at $-30^{\circ} \mathrm{C}$ for 30 min . tert-Butylhydroperoxide solution (TBHP, $\sim 5.5 \mathrm{M}$ solution in decane, $30.5 \mathrm{~mL}, 170 \mathrm{mmol}, 2.0$ equiv) was finally added at a rate of $2.0 \mathrm{~mL} / \mathrm{min}$ with a syringe pump, such that the internal temperature of the mixture did not rise above $-28^{\circ} \mathrm{C}$. Stirring was maintained at $-30^{\circ} \mathrm{C}$ following the addition of TBHP, and progress was monitored by TLC (10% ethyl acetate-dichloromethane, UV+PAA). After 21 h , the reaction was judged to be complete. A solution comprising iron(II) sulfate heptahydrate ($27 \mathrm{~g}, 97 \mathrm{mmol}, 1.2$ equiv), DL-tartaric acid (62 $\mathrm{g}, 0.41 \mathrm{~mol}, 4.9$ equiv), and water (517 mL) was added to the reaction mixture, and the resulting biphasic mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min at a moderate stir rate (350 rpm) The mixture was then transferred to a separatory funnel where the layers were separated. The aqueous phase was
extracted with diethyl ether $(3 \times 300 \mathrm{~mL})$, and the combined organic layers were washed with saturated aqueous sodium chloride solution $(2 \times 200 \mathrm{~mL})$. The washed organic solution was dried over sodium sulfate, the dried solution was filtered, and the filtrate was concentrated to give a slightly cloudy colorless oil. This residue was purified by flash-column chromatography (800 g silica gel, eluting with 5\% ethyl acetate-hexanes initially, grading to 15% ethyl acetate-hexanes) to give epoxyalcohol product as a colorless, viscous oil (14.9 g, 70\%). The ${ }^{1} \mathrm{H}$ NMR data matched reported values. ${ }^{144}$

The enantiomeric excess was determined by conversion to the corresponding Mosher esters. In this procedure, a solution of epoxyalcohol $\mathbf{S 3 . 2}(10 \mathrm{mg}, 39 \mu \mathrm{~mol}, 1$ equiv) in $4: 1$ dichloromethane-pyridine (200 $\mu \mathrm{L}$) was treated with (R)-3,3,3-trifluoro-2-methoxy-2phenylpropanoyl chloride ($8.8 \mu \mathrm{~L}, 47 \mu \mathrm{~mol}, 1.2$ equiv) at $23^{\circ} \mathrm{C}$. The mixture was stirred at $23^{\circ} \mathrm{C}$ for 30 min , at which point TLC analysis (50% ethyl acetate-hexanes, $\mathrm{UV}+\mathrm{KMnO}_{4}$) indicated complete consumption of starting material. The reaction mixture was concentrated, and the crude residue was subjected to ${ }^{1} \mathrm{H} \mathrm{NMR}$ analysis $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$. Integration of the major methylene resonance at $\delta 4.60(\mathrm{dd}, J=12.3,3.2 \mathrm{~Hz}, 1 \mathrm{H})$ relative to its minor diastereomeric counterpart at δ $4.66(\mathrm{dd}, J=12.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}$, derived from undesired $(2 S, 3 S)$-product enantiomer) demonstrated an enantiomeric ratio of 94:6 (88\% ee). Use of the enantiomeric (S)-Mosher acyl chloride reagent gave the same result.

Epoxyaldehyde (3R,4S)-2.38.

A solution of epoxyalcohol S3.2 (14.9 g, $58.6 \mathrm{mmol}, 1$ equiv) in dichloromethane (468 mL) and anhydrous dimethyl sulfoxide (117 mL) was treated with triethylamine ($65.3 \mathrm{~mL}, 468$ mmol, 8.00 equiv). Sulfur trioxide-pyridine complex ($37.3 \mathrm{~g}, 234 \mathrm{mmol}, 4.00$ equiv) was then added in three portions over 15 min at $23{ }^{\circ} \mathrm{C}$. The resulting salmon-pink solution was stirred at 23 ${ }^{\circ} \mathrm{C}$, and after 2 h , TLC analysis (30% ethyl acetate-hexanes, PAA) indicated complete consumption of starting material. The reaction mixture was transferred to a separatory funnel containing 1.2 L of 0.5 M copper(II) sulfate solution. The layers were shaken, then separated, and the aqueous phase was extracted with dichloromethane $(3 \times 300 \mathrm{~mL})$. The combined organic layers were then washed with saturated aqueous sodium chloride solution (200 mL), and the washed organic product solution was dried over sodium sulfate. The dried solution was filtered, and the filtrate was concentrated to give a brown oil. This residue was purified by flash-column chromatography (600 g silica gel, eluting with 5% ethyl acetate-hexanes initially, grading to 10% ethyl acetate-hexanes) to afford the product as a colorless oil (12.0 $\mathrm{g}, 81 \%$).
$\mathrm{R}_{f}=0.57$ (40\% ethyl acetate-hexanes, KMnO_{4}).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right): \delta 9.02(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=$ $6.1,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.07(\mathrm{~s}, 21 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CDCl_{3}): $\delta 196.3,99.9,88.9,60.5,44.2,18.6,11.2$.
FTIR (neat, cm^{-1}): 2944 (s), 2866 (s$), 1733$ (s), 1463 (m), 1411 (m), 1046 (m), 883 (m), 833 (m), 667 (m).

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}, 252.1542$; found 252.1540 .

Nitro compound 3.29.

Acetyl chloride ($123 \mathrm{~mL}, 1.73 \mathrm{~mol}, 12.8$ equiv) was added dropwise over 15 min to a solution of (R)-1-nitropropan-2-yl acetate $\left(\mathbf{3 . 3 4}, 20.0 \mathrm{~g}, 136 \mathrm{mmol}, 1\right.$ equiv) ${ }^{145}$ in methanol (1.23 L) at $0{ }^{\circ} \mathrm{C}$. Following the addition of acetyl chloride, the mixture was allowed to warm to $23{ }^{\circ} \mathrm{C}$; progress was monitored by TLC (40% ethyl acetate-hexanes, KMnO_{4}). After 2 h , complete consumption of starting material was noted, and the mixture was concentrated by rotary evaporation to obtain (R)-1-nitropropan-2-ol as a faint yellow oil. Residual methanol present in the crude product was removed azeotropic removal of benzene. The crude product thus obtained was used in the next step without further purification.

To a solution of (R)-1-nitropropan-2-ol (theoretically 136 mmol) in 1:2 dichloromethanehexane (412 mL) was added benzyl 2,2,2-trichloroacetimidate ($30.5 \mathrm{~mL}, 163 \mathrm{mmol}, 1.20$ equiv). Trifluoromethanesulfonic acid ($1.21 \mathrm{~mL}, 13.6 \mathrm{mmol}, 0.100$ equiv) was then added dropwise over 30 min at $23^{\circ} \mathrm{C}$, causing a white precipitate to appear. After 5 h , TLC analysis (20% ethyl acetate hexanes, $\mathrm{UV}+\mathrm{KMnO}_{4}$) indicated that all starting material had been consumed. The reaction mixture was filtered through a pad of Celite to remove the trichloroacetamide precipitate, and the filter pad was washed with hexanes $(2 \times 50 \mathrm{~mL})$. The filtrate was concentrated to give a muddy brown slurry, which was purified by two sequential recrystallizations from 1% ethyl acetatehexanes $(200 \mathrm{~mL})$ to give benzyl ether product as a brilliant white, fluffy powder $(17.4 \mathrm{~g}, 66 \%, 2$

[^83]steps). The ${ }^{1} \mathrm{H}$ NMR and melting-point data matched reported values. ${ }^{146}$ Enantiomeric excess was determined to be $\geq 99 \%$ by chiral HPLC analysis using a chiral stationary-phase AD-H column using 2% isopropanol-hexanes as eluent at a flow rate of $1.0 \mathrm{~mL} / \mathrm{min}$, with detection at 300 nm .

Major enantiomer $\mathrm{R}_{t}=14.7 \mathrm{~min}$, minor enantiomer $\mathrm{R}_{t}=11.7 \mathrm{~min}$.

[^84]

Isoxazoline \boldsymbol{N}-oxide 3.36.

A 4-mL glass vial was charged with a magnetic stir bar, nitro compound $\mathbf{3 . 2 9}(64 \mathrm{mg}, 0.33$ mmol, 1.7 equiv), copper(II) bromide ($13 \mathrm{mg}, 59 \mu \mathrm{~mol}, 0.30$ equiv), cesium carbonate ($29 \mathrm{mg}, 89$ $\mu \mathrm{mol}, 0.45$ equiv), and prolinol ligand $3.35\left(25 \mathrm{mg}, 59 \mu \mathrm{~mol}, 0.30\right.$ equiv). ${ }^{121}$ This mixture was suspended in tetrahydrofuran $(800 \mu \mathrm{~L})$, the vial was sealed with a PTFE-lined screw cap, and the mixture was stirred at $23^{\circ} \mathrm{C}$ for 4 h ; over this time, the mixture changed from dark black to cerulean blue. The mixture was then chilled to $0{ }^{\circ} \mathrm{C}$ before a solution of epoxyaldehyde ($3 S, 4 R$)-3.28 (50 $\mathrm{mg}, 0.20 \mathrm{mmol}, 1$ equiv) in tetrahydrofuran $(100 \mu \mathrm{~L})$ was added. The mixture was warmed to 4 ${ }^{\circ} \mathrm{C}$, and it was stirred at this temperature for 24 h , until TLC analysis (30% ethyl acetate-hexanes) showed complete consumption of aldehyde starting material. The mixture was neutralized with the addition of saturated aqueous ammonium chloride solution $(1.0 \mathrm{~mL})$. This mixture was then extracted with ethyl acetate ($3 \times 2 \mathrm{~mL}$); the combined organic extracts were dried over sodium sulfate, filtered, and concentrated to provide a dark green-black oil. This crude mixture was purified by flash-column chromatography (12 g silica gel, eluting with 10% ethyl acetate-hexanes initially, grading to 35% ethyl acetate-hexanes) to provide the product as a white, crystalline solid ($26 \mathrm{mg}, 30 \%$).

Crystals suitable for X-ray diffraction analysis were prepared by dissolving the product (20 $\mathrm{mg})$ in dichloromethane $(1 \mathrm{~mL})$. This solution was passed through a cotton plug to remove any insoluble impurities, and the filtrate was collected in a 1-mL glass vial. This vial was placed within
a $20-\mathrm{mL}$ glass vial into which hexanes $(\sim 5 \mathrm{~mL})$ had been introduced. The large vial was capped, and the assembly was allowed to stand at $23^{\circ} \mathrm{C}$; after 1 d , the hexanes in the large vial was removed by pipette, and fresh portion of hexanes $(\sim 5 \mathrm{~mL})$ was introduced. The cap to the large vial was left slightly ajar to allow slow evaporation of solvent, and after 4 d of standing, needle-shaped crystals had formed. See Appendix A for X-ray crystal structure data.
$\mathrm{R}_{f}=0.32\left(30 \%\right.$ ethyl acetate-hexanes, $\left.\mathrm{UV}+\mathrm{KMnO}_{4}\right)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.35-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.60(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.60(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.45-4.43(\mathrm{~m}, 2 \mathrm{H}), 1.52(\mathrm{~d}, J=$ $6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 21 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 137.3,128.7,128.3,128.2,119.6,102.2,89.9,84.6,75.2,72.1$, 70.3, 62.6, 19.1, 18.7, 11.2.

FTIR (neat, cm ${ }^{-1}$): 3386 (br), 2865 (m), 1636 (s), 1462 (m), 1366 (m), 1209 (m), 1088 (s), 882 (s), 676 (s).

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{Na}]^{+}$calc'd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{NO}_{5} \mathrm{Si}, 470.2333$; found 470.2321.

Non-diastereoselective synthesis of isoxazoline \boldsymbol{N}-oxides $\mathbf{3 . 4 0}$ and 3.41.

In a $20-\mathrm{mL}$ glass vial fitted with a magnetic stir bar, nitro compound $\mathbf{3 . 2 9}(914 \mathrm{mg}, 4.68$ $\mathrm{mmol}, 1.20$ equiv) was added to a solution of epoxyaldehyde $(3 R, 4 S)-\mathbf{3 . 2 8}(985 \mathrm{mg}, 3.90 \mathrm{mmol}, 1$ equiv) in ethanol (200 proof, 7.80 mL). The mixture was stirred at $23^{\circ} \mathrm{C}$ for $5-10 \mathrm{~min}$, until the nitro compound was fully dissolved, before cesium carbonate ($254 \mathrm{mg}, 780 \mu \mathrm{~mol}, 0.200$ equiv) was added in a single portion. The mixture immediately turned canary yellow in color. Progress was monitored by ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis; after 90 min , an aliquot of the reaction mixture was concentrated, re-dissolved in CDCl_{3} and analyzed by ${ }^{1} \mathrm{H}-\mathrm{NMR}$, revealing that no epoxy aldehyde starting material remained, and that cyclization of the intermediate nitroaldol adducts was complete. The stir bar was removed, and the reaction mixture was concentrated directly in vacuo to provide a viscous, yellow oil. This was purified by flash-column chromatography (80 g silica gel, eluting with 5% ethyl acetate-hexanes initially, grading to 20% ethyl acetate-hexanes) to furnish, in order of elution, the undesired C5 epimer $3.41(866 \mathrm{mg}, 50 \%)$ and the desired C5 epimer $3.40(560 \mathrm{mg}, 32 \%)$ as colorless oils.

3.40:

$\mathrm{R}_{f}=0.61$ (50% ethyl acetate-hexanes, $\mathrm{UV}+\mathrm{KMnO}_{4}$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.14(\operatorname{app} \mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\operatorname{app} \mathrm{t}, J=$ $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.92(\mathrm{dd}, J=6.7,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~d}, J$ $=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{br} \mathrm{s}, 21 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR $\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 162.6,138.0,128.7,128.4,127.9,119.6,103.2,89.6,79.4,77.4$, 77.2, 76.9, 74.7, 72.8, 70.8, 60.4, 19.1, 18.7, 11.2.

FTIR: 3380 (br), 2942 (s), 2865 (s), 1630 (s), 1463 (m), 1381 (m), 1083 (s), 883 (s), 678 (s). HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{NO}_{5} \mathrm{Si}$, 448.2514; found 448.2529.

3.41:

$\mathrm{R}_{f}=0.67\left(50 \%\right.$ ethyl acetate-hexanes, UV $\left.+\mathrm{KMnO}_{4}\right)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.47(\mathrm{dd}, J=3.6,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.72-4.68(\mathrm{~m}$, $2 \mathrm{H}), 4.63(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.59(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.47(\operatorname{app} \mathrm{t}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.85$ (d, $J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.83(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.45(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 21 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 137.3,128.8,128.3,128.2,117.9,102.0,90.0,84.1,74.5,72.0$, 70.0, 63.0, 18.7, 17.7, 11.1.

FTIR (neat, cm^{-1}): 3395 (br), 2943 (s), 2866 (s), 1630 (s), 1463 (m), 1213 (m), 1089 (s), 833 (s). HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{NO}_{5} \mathrm{Si}$, 448.2514; found 448.2502 .

Diastereoselective synthesis of isoxazoline N -oxide $\mathbf{3 . 4 0}$.

To a mixture of (R, R)-diaminocyclohexane ligand $3.42(1.75 \mathrm{~g}, 47.5 \mathrm{mmol}, 0.0100$ equiv), ${ }^{124}$ and anhydrous copper(II) acetate ($863 \mathrm{mg}, 4.75 \mathrm{mmol}, 0.0100$ equiv) was added $1,4-$ dioxane (47.5 mL mL). The resulting dark forest-green solution was stirred at $23{ }^{\circ} \mathrm{C}$ for 30 min before N, N-diisopropylethylamine ($830 \mu \mathrm{~L}, 4.75 \mathrm{mmol}, 0.0100$ equiv) was added. The catalyst mixture was then stirred an additional 10 min at $23^{\circ} \mathrm{C}$ before cooling to $5-10^{\circ} \mathrm{C}$ in an ice-water bath. Nitropropane 3.29 ($12.1 \mathrm{~g}, 61.8 \mathrm{mmol}, 1.30$ equiv) was added in one portion, followed by the epoxyaldehyde ($3 S, 4 R$)-3.28 ($12.0 \mathrm{~g}, 47.5 \mathrm{mmol}, 1$ equiv), which was added by cannula transfer (transfer was quantitated with $2 \times 2 \mathrm{~mL}$ 1,4-dioxane rinses). The mixture was then transferred to a $4{ }^{\circ} \mathrm{C}$ cold-room, where constant stirring was maintained at that temperature. ${ }^{147}$ Progress was monitored by NMR as follows: Aliquots of the reaction mixture (ca. $50 \mu \mathrm{~L}$) were diluted with ethyl acetate $(2 \mathrm{~mL})$, and the diluted samples were washed with saturated aqueous ammonium chloride solution (1 mL). The washed samples were then dried by passage through a short plug of sodium sulfate $(1 \times 2 \mathrm{~cm})$, and the dried filtrate was concentrated. The green-brown residue thus obtained was analyzed by ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right)$, where consumption of epoxyaldehyde was gauged relative to the triisopropylsilyl signal ($\delta 1.15-1.00,21 \mathrm{H}$). After 48 h at $4^{\circ} \mathrm{C}$,

[^85]conversion of aldehyde had reached $\geq 95 \%$, and triethylamine ($13.3 \mathrm{~mL}, 95.0 \mathrm{mmol}, 2.00$ equiv) was added to induce cyclization. The mixture was warmed to $23^{\circ} \mathrm{C}$ and stirred for 20 h , whereupon aliquot NMR analysis (as above) showed the absence of epoxide methine resonances (ca. $\delta 3.45$, 3.30), with concomitant formation of isoxazoline N-oxide products as a $98: 2$ diastereomeric mixture. The product mixture was poured into a separatory funnel containing 175 mL saturated aqueous ammonium chloride solution, and the resulting mixture was extracted with ethyl acetate $(3 \times 150 \mathrm{~mL})$. The combined organic extracts were washed with saturated aqueous sodium chloride solution (50 mL), and the washed organic phase was dried over sodium sulfate. The dried product solution was filtered, and the filtrate was concentrated to afford crude product as a dark brown oil. This residue was purified by flash-column chromatography (2.0 kg silica; eluting 10% ethyl acetate-hexanes initially, grading to 30% ethyl acetate-hexanes) to afford the isoxazoline N-oxide product an amber-brown, viscous oil ($16.4 \mathrm{~g}, 77 \%$).

Propargylic alcohol S3.3.

A solution of tetrabutylammonium fluoride $(1.0 \mathrm{M}$ in tetrahydrofuran, $88 \mathrm{~mL}, 88 \mathrm{mmol}$, 2.5 equiv) was added via cannula over 5 min to a solution of alkynyl silane $\mathbf{3 . 4 0}$ ($15.8 \mathrm{~g}, 35.3$ mmol, 1 equiv) in tetrahydrofuran $(118 \mathrm{~mL})$ at $0^{\circ} \mathrm{C}$. The mixture was then warmed to $23^{\circ} \mathrm{C}$, and after 90 min of stirring at this temperature, TLC analysis (50\% ethyl acetate-hexanes, $\mathrm{UV}+\mathrm{KMnO} 4)$ indicated full conversion of starting material. The product solution was then poured into a separatory funnel containing 350 mL of water to which 35 mL of saturated aqueous sodium chloride solution had been added. The resulting biphasic mixture was extracted with ethyl acetate $(3 \times 150 \mathrm{~mL})$. The organic layers were combined, and the organic solution was washed with saturated aqueous sodium chloride solution $(100 \mathrm{~mL})$. The washed product solution was dried over sodium sulfate, and the dried solution was filtered. The filtrate was concentrated to afford crude product as a light amber oil. This residue was purified by flash-column chromatography (500 g silica; eluting 35% ethyl acetate-hexanes initially, grading to 50% ethyl acetate-hexanes) to provide the product as a sand-colored, powdery solid ($9.38 \mathrm{~g}, 91 \%$).
$\mathrm{R}_{f}=0.45$ (60% ethyl acetate-hexanes, $\mathrm{UV}+\mathrm{KMnO}_{4}$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.37-7.29(\mathrm{~m}, 5 \mathrm{H}), 5.22(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{dd}, J=6.3,2.3$
$\mathrm{Hz}, 1 \mathrm{H}), 4.61(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.06$ (app t, $J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.59(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR (125 MHz, CDCl_{3}): $\delta 137.6,128.7,128.4,127.9,120.0,80.3,79.3,75.7,73.9,72.6$, 70.5, 59.2, 18.9.

FTIR (neat, cm^{-1}): 3373 (br), 3284 (m), 1628 (s$), 1377$ (m), 1085 (s), 1046 (m), 699 (m). HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calc'd for $\mathrm{C}_{15} \mathrm{H}_{17} \mathrm{NO}_{5}, 314.0999$; found 314.1009.

tert-Butyldiphenylsilyl ether 3.44a.

A mixture of diol $\mathbf{S 3 . 3}(9.38 \mathrm{~g}, 32.2 \mathrm{mmol}, 1$ equiv) and imidazole ($6.58 \mathrm{~g}, 97.0 \mathrm{mmol}$, 3.00 equiv) was dissolved in dichloromethane (161 mL), and the resulting solution was cooled to 0° C. tert-Butyl(chloro)diphenylsilane ($12.4 \mathrm{~mL}, 48.3 \mathrm{mmol}, 1.50$ equiv) was then added in one portion, and the solution was warmed to $23^{\circ} \mathrm{C}$. Within 2-5 min of addition of the silyl chloride, a precipitate formed, imparting a cloudy appearance to the reaction mixture. Progress was monitored by TLC (60% ethyl acetate-hexanes, $\mathrm{UV}+\mathrm{KMnO} 4$), and after 45 min , full consumption of starting material was observed. The reaction mixture was quenched with the addition of 150 mL saturated aqueous sodium bicarbonate solution, and the mixture was stirred rapidly at $23^{\circ} \mathrm{C}$ for 10 min . The biphasic mixture was then extracted with dichloromethane $(3 \times 50 \mathrm{~mL})$, and the combined organic extracts were washed with brine $(50 \mathrm{~mL})$. The organic solution was then dried over sodium sulfate, and the dried solution was filtered. The filtrate was concentrated to give a peach-colored oil, which was purified by flash-column chromatography (700 g silica; eluting with hexanes initially, grading to 25% ethyl acetate-hexanes) to provide the product as a colorless, highly viscous oil (15.8 g, 93\%).
$\mathrm{R}_{f}=0.49$ (30\% ethyl acetate-hexanes, UV $+\mathrm{KMnO}_{4}$).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.75-7.68(\mathrm{~m}, 4 \mathrm{H}), 7.49-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.28(\mathrm{~m}, 9 \mathrm{H}), 5.17$
(app $\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{dd}, J=4.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J$
$=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{~d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=6.9,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=8.3$
$\mathrm{Hz}, 1 \mathrm{H}), 2.45(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 138.1,136.2,136.1,132.0,131.4,130.6,130.4,128.6,128.2(2 \times$ C), 127.9, 127.8, 118.9, 79.4, 78.9, 76.7, 74.6, 72.6, 70.7, 61.7, 26.9, 19.4, 19.2.

FTIR (neat, cm^{-1}): 3367 (br), 2932 (m), 2858 (m), 1632 (s), 1428 (m), 1112 (s), 1087 (s), 701 (s). HRMS (ESI,$+ \mathrm{m} / \mathrm{z}$): $[\mathrm{M}+\mathrm{Na}]^{+}$calc'd for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{NO}_{5} \mathrm{Si}$, 552.2177; found 552.2177.

Triisopropylsilyl ether 3.44b.

To a solution of diol S3.3 (329 mg, $1.13 \mathrm{mmol}, 1$ equiv) and imidazole ($615 \mathrm{mg}, 9.04$ mmol, 8.00 equiv) in dimethylformamide $(11.3 \mathrm{~mL})$ was added triisopropylchlorosilane ($718 \mu \mathrm{~L}$, 3.39 mmol , 3.00 equiv) in one portion at $23{ }^{\circ} \mathrm{C}$. Reaction progress was monitored by TLC $(80 \%$ ethyl acetate-hexanes, $\mathrm{UV}+\mathrm{KMnO}_{4}$). After 3 d , full consumption of starting material was observed, and water (25 mL) was added. The resulting mixture was extracted with diethyl ether (3 $\times 25 \mathrm{~mL}$), and the combined organic extracts were washed with saturated aqueous sodium chloride solution (25 mL). The washed organic solution was dried over sodium sulfate, the dried solution was filtered, and the filtrate was concentrated. The residue was purified by flash-column chromatography (24 g silica; eluting 5\% ethyl acetate-hexanes, grading to 20% ethyl acetatehexanes) to obtain the product as a bright white, crystalline solid ($407 \mathrm{mg}, 81 \%$).

Crystals of 3.44b suitable for X-ray analysis were prepared as follows: A 1-mL vial was charged with 20 mg of $\mathbf{3 . 4 4 b}$, and a minimum quantity of benzene (ca. $50 \mu \mathrm{~L}$) was added to dissolve this material. The sample vial was then placed inside a larger, $20-\mathrm{mL}$ scintillation vial filled with ca. 5 mL of hexanes, and the large vial was sealed with a screw cap. Slow diffusion of hexane into the solution of $\mathbf{3 . 4 4 b}$ in benzene occurred over several days at $23^{\circ} \mathrm{C}$, resulting in the growth of long, needle-shaped crystals. See Appendix A for X-ray crystal structure data.
$\mathrm{R}_{f}=0.56\left(30 \%\right.$ ethyl acetate-hexanes, $\left.\mathrm{UV}+\mathrm{KMnO}_{4}\right)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.38-7.28(\mathrm{~m}, 5 \mathrm{H}), 5.21(\mathrm{dd}, J=8.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{dd}, J=4.3$, $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H})$, $4.08(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=7.2,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~d}, J$ $=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-1.15(\mathrm{~m}, 3 \mathrm{H}), 1.09(\operatorname{app} \mathrm{dd}, J=7.4,5.4 \mathrm{~Hz}, 18 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($151 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 140.2,130.6,130.2,129.9,120.9,81.8,80.6,78.4,76.9,74.5,72.7$, 63.6, 21.1, 20.0, 19.9, 14.2.

FTIR (neat, cm^{-1}): 3345 (m), 3260 (m), 2939 (m), 2865 (m), 1639 (s), 1202 (m), 1115 (s), 873 (m), 816 (m), 733 (s).

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{NO}_{5} \mathrm{Si}$, 448.2514; found 448.2516 .

Isoxazoline 3.46a.

The procedure for isoxazoline N-oxide deoxygenation was adapted from the report of Marotta and coworkers. ${ }^{122 \mathrm{~b}}$ A $500-\mathrm{mL}$ round-bottomed flask was charged with isoxazoline N oxide $3.44 \mathrm{a}(15.7 \mathrm{~g}, 29.6 \mathrm{mmol})$, and this substrate was dried by azeotropic removal of benzene. Once dried, the starting material was dissolved in trimethyl phosphite (119 mL ; CAUTION: Trimethyl phosphite is a highly malodorous, volatile substance - all operations up to and including the aqueous acid quench should be carried out in a well-ventilated fume hood), and the flask was sealed. The mixture was heated to $100^{\circ} \mathrm{C}$ in a pre-heated oil bath for 20 h , at which point TLC analysis (30% ethyl acetate-hexanes, UV+PAA) indicated full consumption of starting material. The solution was cooled to $23^{\circ} \mathrm{C}$, and the cooled product solution was transferred to a 2-L roundbottomed flask containing 500 mL of diethyl ether. The product solution was cooled to $5^{\circ} \mathrm{C}$ in an ice-water bath, and the chilled mixture was treated very carefully with 1 N aqueous hydrochloric acid solution (100 mL , added in $1-\mathrm{mL}$ portions over 30 minutes). Care was taken not to allow the internal temperature of the mixture rise above $15{ }^{\circ} \mathrm{C}$ during the acidification procedure. The acidified mixture was transferred to a separatory funnel, where the layers were separated. The organic layer was washed with 1 N aqueous hydrochloric acid solution $(2 \times 75 \mathrm{~mL})$. The combined aqueous washes were extracted with fresh portions of diethyl ether $(2 \times 75 \mathrm{~mL})$. The combined organic phases were then washed sequentially with half-saturated aqueous sodium chloride solution (50 mL), and saturated aqueous sodium chloride solution (50 mL). The organic layer was then dried over sodium sulfate, the dried solution was filtered, and the filtrate was concentrated to afford crude product as a light yellow oil. The crude material was purified by flash-column
chromatography (700 g silica; eluting with 5% ethyl acetate-hexanes initially, grading to 25% ethyl acetate-hexanes) to provide the product as a light peach-colored, highly viscous oil (11.5 g, $75 \%)$.
$\mathrm{R}_{f}=0.56(30 \%$ ethyl acetate-hexanes, UV + PAA $)$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.79-7.76(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.41(\mathrm{~m}, 4 \mathrm{H}), 7.37-$ $7.34(\mathrm{~m}, 4 \mathrm{H}), 7.32-7.29(\mathrm{~m}, 1 \mathrm{H}), 5.28(\operatorname{app} \mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.88(\mathrm{dd}, J=4.0,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.58(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}$, $J=8.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.59(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($150 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 161.3,137.5,136.3,136.2,132.1,131.3,130.5,130.2,128.5$, $128.0,127.9,127.7,83.4,80.1,76.0,71.2,70.9,62.6,26.9,20.0,19.4$.

FTIR (neat, cm ${ }^{-1}$): 3471 (br), 2932 (m), 2858 (m), 1428 (m), 1086 (s), 907 (m), 608 (s).
HRMS (ESI+, m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{31} \mathrm{H}_{35} \mathrm{NO}_{4} \mathrm{Si}$, 514.2408; found 514.2424.

Isoxazoline 3.46b.

In a $2-5 \mathrm{~mL}$ glass microwave vial fitted with a magnetic stir bar, isoxazoline N-oxide $\mathbf{3 . 4 4 b}$ ($200 \mathrm{mg}, 447 \mu \mathrm{~mol}, 1$ equiv) was dissolved in trimethyl phosphite (1.79 mL). The vial was sealed before the mixture was heated to $100^{\circ} \mathrm{C}$ in a pre-heated oil bath. After this mixture was stirred at this temperature for 18 h , TLC analysis (30% ethyl acetate-hexanes, UV+PAA) revealed that no starting material remained. The mixture was consequently cooled to $23^{\circ} \mathrm{C}$ and was diluted with diethyl ether $(50 \mathrm{~mL})$. The diluted product solution was washed sequentially with aqueous hydrogen chloride solution ($1 \mathrm{~N}, 3 \times 15 \mathrm{~mL}$), water (15 mL), and saturated aqueous sodium chloride solution (15 mL). The organic product solution was then dried over sodium sulfate, filtered, and concentrated to provide a yellow-tinged crusty solid residue. This material was purified by flash-column chromatography (12 g silica gel, eluting with hexanes initially, grading to 10% ethyl acetate-hexanes) to provide isoxazoline product as a light yellow, crystalline solid ($164 \mathrm{mg}, 85 \%$).
$\mathrm{R}_{f}=0.41\left(20 \%\right.$ ethyl acetate-hexanes, $\left.\mathrm{KMnO}_{4}\right)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.34-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 5.29(\mathrm{appt} \mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $5.05(\mathrm{dd}, J=3.5,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.55-4.48(\mathrm{~m}, 3 \mathrm{H}), 4.43(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=$ $8.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.61(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.55(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.22-1.16(\mathrm{~m}, 1 \mathrm{H})$, 1.11-1.09 (m, 18H).
${ }^{13}{ }^{13} \operatorname{NMR}\left(151 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 161.2,138.1,128.6,128.0,127.9,83.1,80.7,77.6,75.6,71.2,70.9$, 62.6, 20.0, 18.0, 12.1.

FTIR (neat, cm^{-1}): 2944 (m), 2867 (s), 1463 (m), 1096 (s), 883 (s)
HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calc'd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{NO}_{4} \mathrm{Si}, 454.2384$; found 454.454.2392.

Exo-methylene compound 3.47.

In a 4-mL glass vial fitted with a magnetic stir bar, a solution of alkynol 3.46b ($15 \mathrm{mg}, 35$ μ mol, 1 equiv) in dichloromethane ($700 \mu \mathrm{~L}$) was treated with freshly activated, powered $4-\AA$ molecular sieves. To this suspension was then added (acetonitrile)[(2-biphenyl)di-tertbutylphosphine]gold(I) hexafluoroantimonate (3.48, $2.7 \mathrm{mg}, 3.5 \mu \mathrm{~mol}, 0.10$ equiv) at $23{ }^{\circ} \mathrm{C}$. After 5 h of stirring at this temperature, TLC analysis (30\% ethyl acetate-hexanes) indicated that no starting material remained, and triethylamine $(200 \mu \mathrm{~L})$ was added to quench the Lewis-acid catalyst. The reaction mixture was then diluted with dichloromethane $(10 \mathrm{~mL})$, and the diluted mixture was filtered through a cotton plug in order to remove the molecular sieve powder. The filtrate was concentrated, and the residue was purified by flash-column chromatography (4 g silica gel, eluting with hexanes initially, grading to 10% ethyl acetate-hexanes) to provide the product as a colorless oil (12 mg, 81\%).
$\mathrm{R}_{f}=0.73$ (30\% ethyl acetate-hexanes, KMnO_{4}).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.36-7.27(\mathrm{~m}, 5 \mathrm{H}), 5.44(\mathrm{~d}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{app} \mathrm{dt}, J=5.3$ $\mathrm{Hz}, 1 \mathrm{H}), 4.60-4.45(\mathrm{~m}, 5 \mathrm{H}), 4.35(\mathrm{app} \mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.50(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.23-$ $1.16(\mathrm{~m}, 3 \mathrm{H}), 1.14-1.12(\mathrm{~m}, 18 \mathrm{H})$.
${ }^{13}{ }^{13} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.4,157.8,138.0,128.6,128.2,127.9,85.7,85.2,81.7,73.0$, 71.3, 70.3, 19.8, 18.0, 12.4.

FTIR (neat, cm^{-1}): 2943 (m), 2866 (s), 1686 (m), 1455 (m), 1168 (s), 1086 (m), 1006 (m), 883 (m).

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{NO}_{4} \mathrm{Si}, 432.2565$; found 432.2579

Isoxazolidine S3.4.

The procedure for isoxazoline reduction was adapted from the report of Bauder. ${ }^{130 \mathrm{a}} \mathrm{A}$ mixture of isoxazoline $\mathbf{3 . 4 6 a}$ ($11.4 \mathrm{~g}, 22.1 \mathrm{mmol}$, 1 equiv) and sodium triacetoxyborohydride (23.4 $\mathrm{g}, 110 \mathrm{mmol}, 5.00$ equiv) was suspended in anhydrous acetonitrile $(184 \mathrm{~mL})$. The resulting milkywhite suspension was cooled to $0{ }^{\circ} \mathrm{C}$ in an ice-water bath with constant stirring, and to the cooled suspension was added trifluoroacetic acid ($170 \mathrm{~mL}, 2.21 \mathrm{~mol}, 100$ equiv) over 10 min via an ovendried pressure-equalizing addition funnel. Addition of trifluoroacetic acid caused the suspension to resolve into a colorless solution; following this addition, the ice-water bath was removed, and the reaction solution was allowed to warm to $23{ }^{\circ} \mathrm{C}$. Progress was monitored by TLC (30% ethyl acetate-hexanes, UV+PAA), and after 2.5 h , starting material was fully consumed. The mixture was cooled to $0{ }^{\circ} \mathrm{C}$, and was then transferred via cannula to a stirred, ice-cold mixture of dichloromethane (300 mL) and 2 N aqueous sodium hydroxide solution ($1.10 \mathrm{~L}, 2.21 \mathrm{~mol}$). The resulting biphasic mixture was stirred rapidly for 10 min . Additional sodium hydroxide solution was added as necessary, until the aqueous phase attained $\mathrm{pH}>8$. The mixture was then transferred to a separatory funnel, and the layers were separated. The aqueous layer was extracted with dichloromethane $(3 \times 300 \mathrm{~mL})$, and the combined organic extracts were washed with brine (300 mL). The washed organic layer was dried over sodium sulfate, the dried solution was filtered, and the filtrate was concentrated to afford crude isoxazolidine product as a colorless oil. This material was used in the next step without further purification.

For characterization purposes, a small quantity (ca. 25 mg) of crude residue was purified by HPLC (eluting with 0.1% trifluoroacetic acid- 25% acetonitrile-water, grading to 0.1%
trifluoroacetic acid-95\% acetonitrile-water over 45 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 254 nm ; product $\mathrm{R}_{t}=33.5 \mathrm{~min}$). The trifluoroacetic acid salt thus obtained $\left(\mathbf{S 3 . 4} \cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}\right)$ exhibited the following spectral properties:
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76-7.69(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.28(\mathrm{~m}, 9 \mathrm{H}), 4.91$ (dd, $J=5.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{dd}, J=4.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}$, $J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\operatorname{app} \mathrm{t}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~m}, 1 \mathrm{H}), 3.51(\operatorname{app} \mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $2.40(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.09(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 137.6,136.2,136.1,132.2,131.7,130.5,130.3,128.8,128.2$, $128.1,128.0,127.7,86.1,80.4,76.1,75.4,73.9,70.9,70.7,62.1,26.9,19.4,16.7$. Trifluoroacetate carbons were not resolved due to ${ }^{19} \mathrm{~F}$ nuclear coupling.

FTIR (neat, cm^{-1}): 3302 (br), 2932 (m), 2859 (m), 1671 (s), 1428 (m), 1199 (m), 1113 (s), 701 (s). HRMS (ESI+,m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calc'd for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{NO}_{4} \mathrm{Si}, 538.2384$; found 538.2385.

Alkynol 3.50.

A $200-\mathrm{mL}$ round-bottomed flask was charged with isoxazolidine $\mathbf{S 3 . 4}$ (crude product from the preceding directed reduction step, theoretically 22.1 mmol). The starting material was dissolved in 1,4-dioxane (55 mL) and to the resulting solution, triethylamine ($15.4 \mathrm{~mL}, 110 \mathrm{mmol}$, 5.00 equiv) and N-[2-(trimethylsilyl)ethoxycarbonyloxy]succinimide (Teoc-OSu, $8.59 \mathrm{~g}, 33.1$ mmol, 1.50 equiv) were added sequentially. The reaction mixture was heated to $40{ }^{\circ} \mathrm{C}$, and consumption of starting material was monitored by LCMS. After 16 h , the reaction was judged to be complete. The reaction mixture was then diluted in 450 mL of ethyl acetate, and the diluted product solution was washed with saturated aqueous ammonium chloride solution ($3 \times 50 \mathrm{~mL}$). The combined aqueous washes were extracted with a portion of fresh ethyl acetate (100 mL), and the combined organic layers were then washed with saturated aqueous sodium chloride solution $(50 \mathrm{~mL})$. The washed organic product solution was dried over sodium sulfate, the dried solution was filtered, and the filtrate was concentrated to give a viscous orange oil. This material was purified by flash-column chromatography (1.00 kg silica gel, eluting with 5% ethyl acetatehexanes initially, grading to 20\% ethyl acetate-hexanes) to provide the product as a highly viscous, colorless oil ($10.6 \mathrm{~g}, 73 \%$, 2 steps).
$\mathrm{R}_{f}=0.43(20 \%$ ethyl acetate-hexanes, UV $+\mathrm{KMnO} 4)$.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 7.78-7.74(\mathrm{~m}, 4 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.36(\mathrm{~m}, 4 \mathrm{H}), 7.35-$
$7.27(\mathrm{~m}, 5 \mathrm{H}), 4.90(\operatorname{app~t}, \mathrm{~J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\mathrm{dd}, \mathrm{J}=6.2,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, \mathrm{~J}=11.8$
$\mathrm{Hz}, 1 \mathrm{H}), 4.48(\mathrm{~d}, \mathrm{~J}=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.25-4.12(\mathrm{~m}, 4 \mathrm{H}), 3.65(\operatorname{app} \mathrm{p}, \mathrm{J}=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.31$ $(\mathrm{d}, \mathrm{J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.36(\mathrm{~d}, \mathrm{~J}=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.33(\mathrm{~d}, \mathrm{~J}=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}), 1.05-$ $0.94(\mathrm{~m}, 2 \mathrm{H}), 0.04(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 158.2,138.3,136.3,136.0,130.3,130.2,128.5,127.9(2 \times \mathrm{C})$, $127.8,127.6,83.9,81.2,75.7,74.7,74.1,73.5,71.4,64.9,62.1,26.9,19.4,17.7,17.0,1.4$. FTIR (neat, cm^{-1}): 3463 (br), 2954 (m), 2858 (m), 1702 (m), 1325 (m), 1112 (s), 1064 (s), 838 (s), 700 (s).

HRMS (ESI+, m/z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{37} \mathrm{H}_{49} \mathrm{NO}_{6} \mathrm{Si}_{2}$, 660.3171; found 660.3161.

Glycal 3.51.

The procedure for tungsten-catalyzed cycloisomerization was adapted from the reports of McDonald and Koo. ${ }^{126 b}$ In a $200-\mathrm{mL}$ round-bottomed flask, alkynol 3.50 ($4.17 \mathrm{~g}, 6.32 \mathrm{mmol}, 1$ equiv) was dried by azeotropic removal of benzene under vacuum. The flask was back-filled with argon, and tungsten hexacarbonyl (556 mg, $1.58 \mathrm{mmol}, 0.250$ equiv), ${ }^{148}$ 1,4diazabicyclo[2.2.2]octane ($\mathrm{DABCO}, 1.42 \mathrm{~g}, 12.6 \mathrm{mmol}, 2.00$ equiv), and degassed, anhydrous tetrahydrofuran (63.2 mL) were then added sequentially (CAUTION: Tungsten hexacarbonyl is a volatile source of metal and of carbon monoxide. Manipulations of this reagent should be conducted within a well-ventilated fume hood.). The flask was fitted with an oven-dried reflux condenser, and the apparatus was transferred to a pre-heated oil bath $\left(70^{\circ} \mathrm{C}\right)$ positioned inside a photochemistry safety cabinet. A positive pressure of dry argon was maintained via tubing connected to an argon-filled balloon placed outside of the lightbox. The reaction mixture was refluxed with constant UV irradiation from an adjacent 200-Watt mercury-vapor bulb filtered through a water-cooled Pyrex glass jacket (CAUTION: Exposure to high-intensity UV light can cause irreversible vision loss - never open the safety cabinet when the UV lamp is on.). Progress was monitored by TLC (20% ethyl acetate-hexanes, UV $+\mathrm{KMnO}_{4}$). After 3 d , full consumption of the alkynol substrate was achieved, and the crude product mixture was concentrated under a stream of dry nitrogen. The canary-yellow residue was purified by flash-column chromatography (eluting

[^86]with hexanes initially, grading to 20% ethyl acetate-hexanes) to provide the product as a viscous, colorless oil ($3.53 \mathrm{~g}, 85 \%$).
$\mathrm{R}_{f}=0.65\left(20 \%\right.$ ethyl acetate - hexanes, $\left.\mathrm{UV}+\mathrm{KMnO}_{4}\right)$
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$): 7.77-7.74 (m, 2H), 7.70-7.67 (m, 2H), 7.44-7.38 (m, 2H), 7.37$7.31(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.23(\mathrm{~m}, 3 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 2 \mathrm{H}), 6.10(\mathrm{dd}, J=6.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.67$ (app dt, $J=6.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.62(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.51(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{~d}, J=11.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.36-4.31(\mathrm{~m}, 1 \mathrm{H}), 4.24(\mathrm{td}, J=10.4,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{app} \mathrm{dt}, J=4.6,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 4.10(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{app} \mathrm{p}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.27(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.08$ (s, 9H), 0.07 ($\mathrm{s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{CDCl}_{3}$): $\delta 157.1,141.8,138.2,136.0(2 \times \mathrm{C}), 133.8,133.6,129.9(2 \times \mathrm{C})$, $128.5,127.9,127.8(3 \times \mathrm{C}), 102.0,77.5,77.3,73.6,72.4,71.9,64.8,63.0,27.0,19.4,17.8$, 17.2, 1.2.

FTIR (neat, cm^{-1}): $2954(\mathrm{~m}), 2858(\mathrm{~m}), 1703(\mathrm{~m}), 1328(\mathrm{~m}), 1112(\mathrm{~s}), 1066(\mathrm{~s}), 838(\mathrm{~m}), 702(\mathrm{~s})$.
HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc' ${ }^{\text {d for }} \mathrm{C}_{37} \mathrm{H}_{49} \mathrm{NO}_{6} \mathrm{Si}_{2}, 660.3171$; found 660.3164 .

Brigl's anhydride 3.52.

A solution of dimethyldioxirane in acetone was prepared, and its concentration was assayed according to the procedure of Murray and Singh. ${ }^{131}$ A solution of glycal 3.51 ($1.45 \mathrm{~g}, 2.20 \mu \mathrm{~mol}$, 1 equiv) in dichloromethane (22.0 mL) was cooled to $0^{\circ} \mathrm{C}$, whereupon dimethyldioxirane solution ($0.0997 \mathrm{M}, 26.4 \mathrm{~mL}, 2.64 \mu \mathrm{~mol}, 1.20$ equiv) was added dropwise over 1 min . The reaction mixture was stirred at $0^{\circ} \mathrm{C}$ for 15 min , at which point TLC analysis (20% ethyl acetate-hexanes, UV+PAA) indicated full consumption of starting material. The mixture was then concentrated under a stream of dry argon, and the residue was dried by azeotropic removal of benzene to afford glycal epoxide as a colorless oil that was suitable for use without further purification (quantitative yield, $\geq \mathbf{9 5 \%}$ purity by NMR).
$\mathrm{R}_{f}=0.56\left(\mathrm{NH}_{2}\right.$ silica gel, ${ }^{149} 2 \%$ methanol- 20% ethyl acetate-hexanes, UV+CAM $)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.89-7.83(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.09(\mathrm{~m}, 7 \mathrm{H}), 7.08-7.00$ $(\mathrm{m}, 4 \mathrm{H}), 4.66(\mathrm{dd}, J=2.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.34-4.21(\mathrm{~m}, 4 \mathrm{H}), 4.21$ $(\mathrm{d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.08(\mathrm{~m}, 1 \mathrm{H}), 4.05(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\operatorname{app} \mathrm{p}, J=6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.97-2.92(\mathrm{~m}, 1 \mathrm{H}), 1.19(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 9 \mathrm{H}), 0.95(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{ddd}, J=$ $9.4,6.7,3.9 \mathrm{~Hz}, 2 \mathrm{H}),-0.11(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 9 \mathrm{H})$.

[^87]${ }^{13} \mathrm{C}$ NMR ($125 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 157.95,138.78,136.31,136.13,133.68,133.47,130.36,130.34$, $128.59,128.35,128.31,128.25,128.20,128.06,127.87,127.75,77.12,74.25,74.12$, $73.79,73.33,71.60,67.08,64.65,51.67,27.12,19.63,17.74,16.79,-1.45$.

FTIR (neat, $\left.\mathrm{cm}^{-1}\right): 2953(\mathrm{~m}), 2858(\mathrm{~m}), 1703(\mathrm{~m}), 1249(\mathrm{~m}), 1112(\mathrm{~s}), 837(\mathrm{~s}), 701(\mathrm{~s})$.
HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{37} \mathrm{H}_{49} \mathrm{NO}_{7} \mathrm{Si}_{2}, 676.3120$; found 676.3118 .

Thioglycoside 3.53.

A $10-\mathrm{mL}$ round-bottomed flask was charged with a magnetic stir bar and glycal epoxide 3.52 ($103 \mathrm{mg}, 152 \mu \mathrm{~mol}, 1$ equiv). This starting material was dried by azeotropic removal of benzene before it was dissolved in tetrahydrofuran $(760 \mu \mathrm{~L})$. The solution was chilled to $-78{ }^{\circ} \mathrm{C}$ before trimethyl(methylthio)silane ($65.7 \mu \mathrm{~L}, 456 \mu \mathrm{~mol}, 3.00$ equiv) was added. Trimethylsilyl trifluoromethanesulfonate ($5.49 \mu \mathrm{~L}, 30.4 \mu \mathrm{~mol}, 0.200$ equiv) was then added dropwise at $-78^{\circ} \mathrm{C}$, and stirring was maintained at that temperature. Progress was monitored by TLC $\left(\mathrm{NH}_{2}\right.$ silica gel, 2% methanol- 20% ethyl acetate-hexanes, UV+CAM), and after 10 min , the reaction was judged to be complete. The mixture was neutralized with the addition of $5 \% \mathrm{v} / \mathrm{v}$ triethylaminedichloromethane ($500 \mu \mathrm{~L}$), and the quenched reaction mixture was concentrated in vacuo. Crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis revealed a 91:9 mixture of anomers; this mixture was subjected to flash-column chromatography (12 g silica gel, eluting with hexanes initially, grading to 20% ethyl acetatehexanes) to provide the product as a colorless oil ($105 \mathrm{mg}, 86 \%$).
$\mathrm{R}_{f}=0.40$ (20\% ethyl acetate-hexanes, UV+PMA).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.88-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.82-7.80(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.34(\mathrm{~m}, 6 \mathrm{H}), 7.27-$ $7.22(\mathrm{~m}, 3 \mathrm{H}), 7.13-7.11(\mathrm{~m}, 2 \mathrm{H}), 5.08(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.42$ $(\mathrm{d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dd}, J=9.1,5.1 \mathrm{~Hz}), 4.33(\operatorname{app~t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{dd}, J=$ $9.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=3.8,2.3$
$\mathrm{Hz}, 1 \mathrm{H}), 3.31(\operatorname{app} \mathrm{p}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H})$, $0.20(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}{ }^{13} \operatorname{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 158.2,138.0,136.2,136.1,134.5,133.3,129.8,129.6,128.4,127.7$ $(2 \times \mathrm{C}), 127.6,127.5,87.3,79.6,73.3,73.1,71.6(2 \times \mathrm{C}), 70.2,69.8,64.7,27.1,19.4,17.8$, 17.2, 12.7, 0.4, -1.3.

IR (neat, cm^{-1}): 1703 (m), 1325 (m), 1105 (m), 1063 (m), 837 (s), 731 (s), 699 (s). HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{Na}]^{+}$calc'd for $\mathrm{C}_{41} \mathrm{H}_{61} \mathrm{NO}_{7} \mathrm{SSi}_{3}, 818.3369$; found 818.3356.

Isoxazolidine diol S3.5.

To a stirred solution of thioglycoside $3.53(104 \mathrm{mg}, 131 \mu \mathrm{~mol}$, 1equiv) in tetrahydrofuran $(1.87 \mathrm{~mL})$ was added tetrabutylammonium fluoride solution (1.0 M in tetrahydrofuran, $650 \mu \mathrm{~L}$, $650 \mu \mathrm{~mol}, 5.0$ equiv) at $0{ }^{\circ} \mathrm{C}$. Progress was monitored by flow-injection analysis mass spectrometry, which showed rapid $(<20 \mathrm{~min})$ cleavage of the trimethylsilyl and (trimethylsilyl)ethoxycarbonyl groups; the tert-butyldiphenylsilyl group was removed more slowly. After 4 h at $0^{\circ} \mathrm{C}$, the reaction was judged to be complete, and the mixture was quenched with the addition of saturated aqueous sodium bicarbonate solution $(10 \mathrm{~mL})$. The resulting mixture was extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$, and the combined extracts were washed with saturated aqueous sodium chloride solution (10 mL). Before it was discarded, the sodium chloride solution was extracted with fresh portions of ethyl acetate $(2 \times 5 \mathrm{~mL})$, and the combined organic extracts were dried over sodium sulfate. The dried product solution was filtered, and the filtrate was concentrated to give a colorless oil. The crude isoxazolidine was purified by flash-column chromatography (10 g silica gel, eluting initially with 0.2% ammonium hydroxide -2% methanoldichloromethane, grading to 0.3% ammonium hydroxide -3% methanol-dichloromethane in one step) to provide the product as a white solid $(40.9 \mathrm{mg}, 92 \%)$.

Owing to nitrogen inversion that occurred on the NMR time scale, the free-base form of this isoxazolidine featured ${ }^{1} \mathrm{H}-\mathrm{NMR}$ peak broadening, as indicated below. For characterization purposes, a portion of this free-base (ca. 12 mg) was purified by HPLC-MS on a Waters SunFire prep C_{18} column $(5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid -10% acetonitrile-
water initially, grading to 0.1% trifluoroacetic acid- 80% acetonitrile-water over 30 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 254 nm and by ESI+ selected ion monitoring $\left.[\mathrm{m} / \mathrm{z}=342] ; \mathrm{R}_{t}=14.8 \mathrm{~min}\right)$ to provide the product as the corresponding hydrotrifluoroacetate salt, which featured sharper NMR peaks.
$\mathrm{R}_{f}=0.31$ (free base, 1% ammonium hydroxide -10% methanol-dichloromethane, UV+PAA).
${ }^{1} \mathrm{H}$ NMR (free base, $\left.600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.37-7.35(\mathrm{~m}, 2 \mathrm{H}), 7.32-7.28(\mathrm{~m}, 2 \mathrm{H}), 5.24(\mathrm{~d}, J=4.9$
$\mathrm{Hz}, 1 \mathrm{H}), 4.87(\mathrm{br}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.35(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{br}, 1 \mathrm{H})$, 3.95 (br, 1H), 3.91 (dd, $J=4.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{br}, 1 \mathrm{H}), 3.36$ (br, 1H), 3.17 (br, 1H), 3.03 (br, 1H), 2.15 (s, 3H), 1.32 (d, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{1} \mathrm{H}$ NMR (hydrotrifluoroacetate salt, $\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.38-7.34(\mathrm{~m}, 4 \mathrm{H}), 7.31-7.29(\mathrm{~m}, 1 \mathrm{H})$, $5.26(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=$ $4.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=10.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.99-3.97(\mathrm{~m}$, $2 \mathrm{H}), 3.93(\mathrm{dd}, J=9.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (hydrotrifluoroacetate salt, $\left.126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 139.1,129.5,128.9(2 \times \mathrm{C}), 88.8,85.6$, 75.0, 73.1, 72.8, 72.1, 69.0, 68.7, 16.6, 13.1.

FTIR (neat, cm^{-1}): 3317 (br, w), 1668 (s), 1433 (w), 1197 (s), 1142 (s), 1093 (s) 699 (m).
HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{16} \mathrm{H}_{23} \mathrm{NO}_{5} \mathrm{~S}, 342.1370$; found 342.1365.

Completion of the synthesis of methylthiolincosamine (1.11).

A flame-dried 2-5 mL glass microwave reaction vial was fitted with a magnetic stir bar and was sealed with a rubber septum. The septum was pierced with a 20 -gauge needle to supply dry argon gas, and a second needle was used to vent the apparatus; under a steady stream of argon to exclude air and moisture, the empty apparatus was chilled to $-78^{\circ} \mathrm{C}$. The chilled flask was then slowly charged with anhydrous ammonia gas (supplied via a 22-gauge needle). After approximately 2 mL of liquid ammonia was condensed in this fashion, the needle supplying ammonia gas was removed, and a small piece of sodium metal (approximately $1 \mathrm{~mm}^{3}$) was added. The mixture attained a deep blue color, and was stirred at $-78^{\circ} \mathrm{C}$ for 5 min . After this time, a solution of isoxazolidine $\mathbf{S 3 . 5}$ (40.0 mg , $117 \mu \mathrm{~mol}$, 1 equiv) in tetrahydrofuran ($500 \mu \mathrm{~L}$) was introduced dropwise via syringe. During this addition, the blue coloration of the reaction mixture disappeared, signaling that the initial portion of sodium metal was fully consumed; additional 1mm^{3} pieces of sodium were added until a deep-blue color persisted. The mixture was then stirred at $-78^{\circ} \mathrm{C}$ for 30 min , until LCMS analysis indicated that O -debenzylation was complete $(\mathrm{N}-\mathrm{O}$ bond cleavage stalls in the course of this reaction, leaving a roughly 50:50 mixture of fully reduced product and O-debenzylated isoxazolidine intermediate even after prolonged exposure to dissolving-metal conditions). Solid ammonium chloride was added portionwise in order to quench excess reductant, until a colorless mixture was obtained; the apparatus was then allowed to warm to $23{ }^{\circ} \mathrm{C}$ in order to allow the ammonia co-solvent to evaporate. The mixture was then dried in vacuo to provide a white solid residue.

This residue was re-dissolved in $50 \% \mathrm{v} / \mathrm{v}$ acetic acid-water (1.0 mL), zinc powder (30.6 $\mathrm{mg}, 469 \mu \mathrm{~mol}, 4.00$ equiv) was added, and the mixture was heated to $35^{\circ} \mathrm{C}$ with stirring, in order to quantitate $N-O$ bond cleavage of intermediate isoxazolidine compound. After 3 h , LCMS analysis revealed that no isoxazolidine remained, and the mixture was filtered through a pad of Celite in order to remove any residual zinc metal. The filtrate was concentrated, and residual acetic acid and water were removed by repeated azeotropic concentration from $50 \% \mathrm{v} / \mathrm{v}$ methanoltoluene. The dried residue, containing the aminotetraol as its hydroacetate salt, along with zinc acetate and ammonium acetate, was dissolved in methanol (5.0 mL), and Amberlyst A26 ionexchange resin (hydroxide form, 1.0 g) was added. The mixture was stirred at $23^{\circ} \mathrm{C}$ for 1 h before the ion-exchange beads were removed by filtration. The filtrate was concentrated to provide crude product in its free-base form; and this residue was purified by flash-column chromatography (4.0 g silica gel, eluting with 1% ammonium hydroxide- 10% methanol-dichloromethane initially, grading to 10% ammonium hydroxide- 40% methanol-dichloromethane) to provide the product as a brilliant white solid ($26.4 \mathrm{mg}, 89 \%$).
$\mathrm{R}_{f}=0.42$ (10% ammonium hydroxide- 40% methanol-dichloromethane, PAA).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 5.17(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.93(\mathrm{~m}, 3 \mathrm{H}), 3.82(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.50(\mathrm{dd}, J=10.4,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=9.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.97(\mathrm{~s}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.4$ $\mathrm{Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right) \delta 88.0,71.3,70.4,68.3,67.7,67.1,53.6,14.2,12.9$.
FTIR (neat, cm^{-1}): 3280 (br), 2904 (m), 1385 (m), 1076 (m), 1041 (s), 866 (m).
HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{9} \mathrm{H}_{19} \mathrm{NO}_{5} \mathrm{~S}, 254.1057$; found 254.1055.

Semisynthetic preparation of methylthiolincosamine (1.11).

Based on the original report of Schroeder, Banniser, and Hoeksema, ${ }^{9 \mathrm{~d}}$ an improved procedure for the preparation of methylthiolincosamine (1.11) from lincomycin (1.1) avoiding the use of hydrazine, a hazardous reagent, was developed. In a $250-\mathrm{mL}$ round-bottomed flask, lincomycin hydrochloride ($1.58 \mathrm{~g}, 3.57 \mathrm{mmol}, 1$ equiv), Amberlyst A26 ion-exchange resin (hydroxide form, 15.8 g), and water $(71.3 \mathrm{~mL})$ were combined. The flask was fitted with a reflux condenser, and the mixture was heated to reflux for 3 d , at which point LCMS analysis indicated that hydrolysis was complete. The mixture was allowed to cool to ambient temperature before the ion-exchange beads were removed by filtration. The filtrate was concentrated directly to afford pure methylthiolincosamine (MTL, 1.11) free base as a brilliant white solid ($795 \mathrm{mg}, 88 \%$).

The TLC $\mathrm{R}_{f},{ }^{1} \mathrm{H}-\mathrm{NMR},{ }^{13} \mathrm{C}-\mathrm{NMR}$, and HRMS data were identical to those of the synthetic sample prepared by the route described above.

Vinyl glycoside 3.54.

An oven-dried $100-\mathrm{mL}$ round-bottom flask was charged with a stir bar and divinylzinc solution (0.15 M solution in tetrahydrofuran-dioxane, $21.7 \mathrm{~mL}, 3.3 \mathrm{mmol}, 2.3$ equiv; prepared according to the method of Brubaker and Myers; ${ }^{150}$ titrated according to the method of Krasovskiy and Knochel ${ }^{151}$). This solution was chilled to $0{ }^{\circ} \mathrm{C}$, and trifluoroacetic acid ($250 \mu \mathrm{~L}, 3.3 \mathrm{mmol}, 2.3$ equiv) was then added dropwise. The resulting solution was stirred for 30 min at $0^{\circ} \mathrm{C}$ prior to use.

In a separate $100-\mathrm{mL}$ round-bottom flask, epoxide 3.52 ($954 \mathrm{mg}, 1.41 \mathrm{mmol}$, 1 equiv) was dried by azeotropic removal of benzene. The dried epoxide was dissolved in anhydrous dichloromethane (14.1 mL), and the resulting solution was chilled to $0^{\circ} \mathrm{C}$. This epoxide solution was then transferred by cannula to the flask containing freshly prepared vinylzinc trifluoroacetate, also at $0{ }^{\circ} \mathrm{C}$. The resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 4 h , at which point TLC analysis $\left(\mathrm{NH}_{2}\right.$ silica gel, 20% ethyl acetate-hexanes $+2 \%$ methanol, UV+CAM) indicated full consumption of epoxide starting material. The reaction was quenched with the addition of 35 mL of saturated aqueous ammonium chloride solution, and the resulting biphasic mixture was stirred for 10 min . The layers were then separated, and the aqueous phase was extracted with dichloromethane ($3 \times$ 20 mL). The combined organic extracts were washed with saturated aqueous sodium chloride solution, and the washed organic product solution was dried over sodium sulfate. The dried solution was filtered, and the filtrate was concentrated to afford crude product as a faint yellow

[^88]oil. The product was purified by flash-column chromatography (40 g silica, eluting with 5% ethyl acetate-hexanes initially, grading to 20% ethyl acetate-hexanes) to provide the product a colorless oil ($846 \mathrm{mg}, 1.20 \mathrm{mmol}, 85 \%$).
$\mathrm{R}_{f}=0.47$ (20% ethyl acetate-hexanes, $\mathrm{UV}+\mathrm{KMnO}_{4}$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}$) $\delta 7.96-7.94(\mathrm{~m}, 2 \mathrm{H}), 7.83-7.79(\mathrm{~m}, 2 \mathrm{H}), 7.22-7.19(\mathrm{~m}, 2 \mathrm{H}), 7.18-7.16$ (m, 1H), 7.15-7.11 (m, 4H), 7.07-7.00 (m, 4H). 5.74 (ddd, $J=17.6,11.0,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $5.20(\operatorname{app~dt}, J=17.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\operatorname{app~dt}, J=11.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\operatorname{app~dt}, J=$ 9.7, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{app} \mathrm{ddt}, J=6.1,4.3,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}$, $J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\operatorname{apptd}, J=10.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.25(\mathrm{~m}, 2 \mathrm{H}), 4.23(\operatorname{app~t}, J=3.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=9.7,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\operatorname{app} \mathrm{qn}, J=6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.71(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H}), 1.07(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.97-0.91(\mathrm{~m}, 2 \mathrm{H}),-$ 0.09 (s, 9H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 157.9,138.1,136.2,135.8,133.5,133.3,130.8,130.1,128.5$, $128.0,127.9,127.8,127.8,119.2,80.2,76.3,74.6,73.2,72.5,71.7,71.1,68.7,64.8,27.1$, 19.5, 17.7, 17.3, -1.2. Overlap of a single pair of phenyl carbon resonances accounts for the observation of only 11 unique phenyl-derived signals.

FTIR (neat, cm^{-1}): 3473 (br), 2953 (m), 2931 (m), 2895 (m), 2858 (m), 1702 (m), 1427 (m), 1250 (m), 1112 (s), 1082 (s), $838(\mathrm{~m}), 702(\mathrm{~s})$.

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{39} \mathrm{H}_{53} \mathrm{NO}_{7} \mathrm{Si}_{2}$, 704.3433; found 704.3418

3.54

(97\%)

3.55

Isoxazolidine diol 3.55.

In a $10-\mathrm{mL}$ round-bottomed flask, isoxazolidine $\mathbf{3 . 5 4}(150 \mathrm{mg}, 213 \mu \mathrm{~mol}$, 1 equiv) was dissolved in tetrahydrofuran $(2.13 \mathrm{~mL})$. The resulting solution was chilled to $0^{\circ} \mathrm{C}$ before it was treated with tetra-n-butylammonium fluoride solution (1.0 M in tetrahydrofuran, $640 \mu \mathrm{~L}, 3.0$ equiv). While cleavage of the 2-(trimethylsilyl)ethyl carbamoyl protecting group is rapid, the tertbutyldiphenylsilyl ether group is less labile - after 2 h of stirring at $0^{\circ} \mathrm{C}$, LCMS analysis showed that global desilylation was complete, and the reaction mixture was treated with saturated aqueous sodium bicarbonate solution (2 mL) and saturated aqueous sodium chloride solution (5 mL). This mixture was extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$, and the combined extracts were dried directly over sodium sulfate. The dried solution was then filtered, the filtrate was concentrated, and the crude residue was purified by flash-column chromatography (12 g silica gel, eluting with dichloromethane initially, grading to 10% methanol-dichloromethane) to furnish isoxazolidine diol product as a viscous, colorless oil ($66.4 \mathrm{mg}, 97 \%$).

In its free-base form, this product displayed substantial ${ }^{1} \mathrm{H}-$ and ${ }^{13} \mathrm{C}-\mathrm{NMR}$ peak broadening, likely owing to a nitrogen inversion process occurring on the NMR timescale. Thus, for NMR characterization purposes, the product was converted to its hydrochloride-salt form by treating an ice-cold solution of free base ($61 \mathrm{mg}, 190 \mu \mathrm{~mol}, 1$ equiv) in methanol $(5.0 \mathrm{~mL})$ with hydrogen chloride solution (4.0 M in 1,4-dioxane, $190 \mu \mathrm{~L}, 760 \mu \mathrm{~mol}, 4.0$ equiv). The mixture was then concentrated in vacuo to provide the hydrochloride salt $\mathbf{3 . 5 5} \cdot \mathrm{HCl}$ as a white solid.
$\mathrm{R}_{f}=0.40$ (free base, 10% methanol-dichloromethane, I_{2}).
${ }^{1} \mathrm{H}$ NMR (hydrochloride salt, $\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.39-7.33(\mathrm{~m}, 4 \mathrm{H}), 7.30-7.27(\mathrm{~m}, 1 \mathrm{H}), 6.09$ (ddd, $J=17.4,10.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\operatorname{app~dt}, J=17.4,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\operatorname{app~dt}, J=10.1$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\mathrm{dd}, J=3.4,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.71-4.70(\mathrm{~m}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.57-4.55(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\operatorname{app} \mathrm{t}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{qd}, J=$ $6.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.96-3.95(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (hydrochloride salt, $126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) δ 139.1, 132.7, 129.4, $128.8(2 \times \mathrm{C}), 119.8$, 84.1, 76.8, 75.3, 72.5, 72.0, 71.4, 69.2, 68.5, 16.1.

FTIR (hydrochloride salt, neat, cm^{-1}): 3390 (br), 2895 (m), 1454 (m), 1087 (s), 698 (s).
HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{5}, 322.1649$; found 322.1658.

Aminotetraol 3.56.

In a $10-\mathrm{mL}$ round-bottomed flask, isoxazolidine $\mathbf{3 . 5 5}(67.6 \mathrm{mg}, 0.189 \mathrm{mmol}, 1$ equiv) was dissolved methanol $(1.00 \mathrm{~mL})$, and the solution was treated with hydrogen chloride solution (4.0 M in 1,4-dioxane, $190 \mu \mathrm{~L}, 4.0$ equiv). The mixture was then concentrated to dryness to provide the hydrochloride salt of the starting material; this salt was dissolved in methanol $(1.89 \mathrm{~mL})$, and the solution was treated with palladium on carbon $(10 \% \mathrm{w} / \mathrm{w}, 20 \mathrm{mg})$. The headspace of the flask was replaced with hydrogen gas, and the black suspension was stirred at $23^{\circ} \mathrm{C}$ for 8 h , whereupon LCMS analysis revealed that olefin saturation, isoxazolidine hydrogenation, and debenzylation were all complete. The mixture was filtered through a pad of Celite to remove the catalyst, and the filter cake was washed with fresh methanol $(3 \times 1 \mathrm{~mL})$. The filtrate was concentrated to afford 3.56 $\cdot \mathrm{HCl}$ as a white foaming solid $(54.3 \mathrm{mg}, 106 \%)$.
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 4.20(\operatorname{app~t}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\operatorname{app} \mathrm{p}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.94$ $3.91(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{td}, J=7.0,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=8.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\operatorname{app} \mathrm{t}, J=$ $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\operatorname{app} \mathrm{p}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 1.29(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 77.2,71.5,69.9,69.7,68.7,65.5,58.5,19.7,18.7,10.9$. FTIR (neat, cm^{-1}): 3333 (br), 2968 (m), 2936 (m), 1503 (m), 1070 (s).

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{10} \mathrm{H}_{21} \mathrm{NO}_{5}$, 236.1492; found 236.1488.

Cyclopropyl glycoside 3.57.

Cyclopropanation was performed using the method described by Denmark and Edwards. ${ }^{152}$ In a $2-5 \mathrm{~mL}$ glass microwave vial fitted with a magnetic stir bar, a solution of diethylzinc (43.9 $\mu \mathrm{L}, 0.426 \mathrm{mmol}, 3.00$ equiv) in 1,2 -dichloroethane ($800 \mu \mathrm{~L}$) was chilled to $0{ }^{\circ} \mathrm{C}$. Chloroiodomethane ($61.9 \mu \mathrm{~L}, 0.852 \mathrm{mmol}, 6.00$ equiv) was then added dropwise to this solution, and the mixture was aged at $0{ }^{\circ} \mathrm{C}$ for 5 min before a solution of olefin $3.54(100 \mathrm{mg}, 0.142 \mathrm{mmol}$, 1 equiv) in 1,2-dichloroethane ($100 \mu \mathrm{~L}$) was added by cannula. The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 3 h , whereupon TLC analysis (30% ethyl acetate-hexanes, UV+CAM) showed complete consumption of starting material. Excess Simmons-Smith reagent was quenched with the addition of saturated aqueous ammonium chloride solution (2 mL), and the resulting biphasic mixture was extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with saturated aqueous sodium chloride solution (10 mL), dried over sodium sulfate, filtered, and concentrated. The residue thus obtained was purified by flash-column chromatography (12 g silica gel, eluting with 20% ethyl acetate-hexanes initially, grading to 50% ethyl acetate-hexanes) to furnish the product as a colorless oil ($90.9 \mathrm{mg}, 89 \%$).
$\mathrm{R}_{f}=0.64$ (30\% ethyl acetate-hexanes, UV+CAM).

[^89]${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.83-7.81(\mathrm{~m}, 2 \mathrm{H}), 7.72-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.44-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.38-$ $7.34(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.21(\mathrm{~m}, 3 \mathrm{H}), 7.16-7.14(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{~d}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J$ $=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.30-4.26(\mathrm{~m}, 2 \mathrm{H}), 4.20(\mathrm{app} \mathrm{dtd}, J=7.6,5.0$, $2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02-4.00(\mathrm{~m}, 2 \mathrm{H}), 3.95(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\operatorname{app} \mathrm{p}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.03(\mathrm{dd}, J=9.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.75(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.25(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~s}$, $9 \mathrm{H}), 1.09-1.06(\mathrm{~m}, 2 \mathrm{H}), 0.61-0.52(\mathrm{~m}, 2 \mathrm{H}), 0.40(\mathrm{tt}, J=9.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.25(\mathrm{ddt}, J=$ $16.1,9.2,4.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.08(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.6,138.2,136.3,135.9,133.7,133.5,130.0,128.5,128.0$, $127.8,81.5,79.9,75.1,73.4,72.2,71.9,71.7,70.2,64.7,27.1,19.6,17.7,17.3,7.4,4.9$, 1.7, -1.2. Overlapping pairs of phenyl carbon resonances are believed to account for the observation of only 9 unique phenyl-derived signals.

FTIR (neat, cm^{-1}): 2953 (m), 2931 (m), 2857 (m), 1698 (m), 1428 (m), 1333 (m), 1250 (m), 1113 (s), 1081 (s), 839 (m), 702 (s).

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{40} \mathrm{H}_{55} \mathrm{NO}_{7} \mathrm{Si}_{2}$, 718.3590; found 718.3569.

Isoxazolidine diol S3.6.

To an ice-cold solution of $\mathbf{3 . 5 7}(88 \mathrm{mg}, 0.12 \mathrm{mmol}, 1$ equiv) in tetrahydrofuran $(1.2 \mathrm{~mL})$ was added tetra- n-butylammonium fluoride solution (1.0 M in tetrahydrofuran, $370 \mu \mathrm{~L}, 370 \mu \mathrm{~mol}$, 3.0 equiv). The mixture was warmed to $23^{\circ} \mathrm{C}$, and desilylation was monitored by LCMS. While cleavage of the (trimethylsilyl)ethyl carbamate group was rapid ($\sim 30 \mathrm{~min}$), the tertbutyldiphenylsilyl ether linkage underwent more sluggish deprotection. After 4.5 h , the reaction was complete, and the mixture was diluted with saturated aqueous sodium bicarbonate solution. The mixture was then extracted with dichloromethane $(4 \times 10 \mathrm{~mL})$, the combined extracts were dried over sodium sulfate, the dried solution was filtered, and the filtrate was concentrated. This crude residue was purified by flash-column chromatography (4 g silica gel, eluting with dichloromethane initially, grading to 10% methanol-dichloromethane) to furnish the product in its free-base form. This material was then converted to its hydrochloride salt by dissolving it in methanol (3 mL), treating the resulting solution with hydrogen chloride solution (4.0 M in $1,4-$ dioxane, $120 \mu \mathrm{~L}, 0.49 \mathrm{mmol}, 4.0$ equiv), and concentrating the acidified solution to dryness. This gave the product ($\mathbf{S 3 . 6} \cdot \mathrm{HCl}, 39 \mathrm{mg}, \mathbf{8 4 \%}$) as a light sand-colored solid.
$\mathrm{R}_{f}=0.37$ (free base, 10% methanol-dichloromethane, I_{2}).
${ }^{1} \mathrm{H}$ NMR (hydrochloride salt, $600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.40(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $2 \mathrm{H}), 7.28(\mathrm{t}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\operatorname{app} \mathrm{t}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\operatorname{app} \mathrm{t}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.68(\mathrm{~d}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=7.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-$
$4.07(\mathrm{~m}, 2 \mathrm{H}), 3.88(\mathrm{dd}, J=7.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{dd}, J=9.8,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.41(\mathrm{~d}, J=6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.15(\mathrm{app} \operatorname{tp}, J=8.6,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.65(\mathrm{app} \mathrm{tt}, J=8.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.58(\mathrm{app} \mathrm{tt}$, $J=9.1,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.36-0.28(\mathrm{~m}, 2 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (hydrochloride salt, $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 139.2,129.4,128.8,128.7,82.2,80.2,75.6$, $72.2,71.9,70.4,69.2,68.8,15.9,9.6,4.7,3.0$.

FTIR (hydrochloride salt, neat, cm^{-1}): 3347 (br), 2932 (w), 1454 (w), 1339 (w), 1127 (m), 1085 (s), 1026 (m), $677(\mathrm{~m})$.

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NO}_{5}, 336.1805$; found 336.1820.

Aminotetraol 3.58.

A 2-5 mL glass microwave vial was charged with a magnetic stir bar, isoxazolidine salt S3.6• $\mathrm{HCl}(38 \mathrm{mg}, 0.10 \mathrm{mmol}$, 1 equiv), methanol (1.0 mL) and palladium on carbon ($10 \% \mathrm{w} / \mathrm{w}$, $11 \mathrm{mg})$. The headspace above the reaction mixture was flushed with hydrogen gas, and the mixture was stirred at $23^{\circ} \mathrm{C}$ under a baloonful of hydrogen gas. After 21 h, LCMS analysis indicated that isoxazolidine hydrogenolysis and O-debenzylation were complete; the mixture was filtered through a Celite pad, and the filter cake was rinsed with methanol ($3 \times 1 \mathrm{~mL}$). The filtrate was concentrated to afford analytically pure product as a white solid ($32 \mathrm{mg}, 111 \%$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 4.18(\operatorname{app} \mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\operatorname{app} \mathrm{p}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.06$ (dd, $J=7.4,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=8.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dd}, J=8.7,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.55$ (app $\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=9.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.29(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\operatorname{app}$ ddq, $J=12.9,9.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.71(\operatorname{tdd}, J=8.5,5.9,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 0.53(\operatorname{app} \mathrm{tt}, J=9.1$, $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 0.35(\mathrm{dq}, J=9.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.29(\mathrm{dq}, J=9.6,4.9 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, CD 3 OD $) ~ \delta 82.0,71.9,70.5,69.9(2 \times \mathrm{C}), 65.6,58.2,18.4,93,5.9,2.6$.
FTIR (neat, cm ${ }^{-1}$): 3350 (br), 2925 (m), 1620 (w), 1510 (m), 1094 (s), 1072 (s), 1002 (m).
HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{NO}_{5}, 248.1492$; found 248.1498 .

Hydroxymethyl glycoside S3.7.

A solution of $\mathbf{3 . 5 4}$ ($654 \mathrm{mg}, 0.929 \mathrm{mmol}, 1$ equiv) in $50 \% \mathrm{v} / \mathrm{v}$ dichloromethane-methanol $(18.6 \mathrm{~mL})$ was chilled to $-78^{\circ} \mathrm{C}$. A mixture of ozone and dioxygen from an ozone generator was bubbled gently through the reaction solution, until an azure color appeared and persisted for 15 seconds, signaling saturation of the solution with ozone gas with concomitant disappearance of starting material. Ozone bubbling was then discontinued, and nitrogen gas was bubbled through the solution for 5 minutes in order to flush the solution of residual ozone. The resulting colorless solution was treated with sodium borohydride ($351 \mathrm{mg}, 9.29 \mathrm{mmol}, 10.0$ equiv) at $-78{ }^{\circ} \mathrm{C}$, and the mixture was subsequently allowed to warm to $23{ }^{\circ} \mathrm{C}$ with constant stirring (Note: gas evolution occurs upon warming, and the reaction flask should be adequately vented to avoid overpressurization). After stirring for 1 h at $23^{\circ} \mathrm{C}$, the mixture was carefully treated with 30 mL of half-saturated aqueous sodium chloride solution (Caution: gas evolution!). The resulting mixture was stirred for 5 minutes, or until gas evolution ceased; and the mixture was then extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with saturated aqueous sodium chloride solution, the washed solution was dried over sodium sulfate, and the dried solution was concentrated to afford the product as a brilliant white solid ($644 \mathrm{mg}, 98 \%$). This material was suitable for use without further purification.
$\mathrm{R}_{f}=0.34$ (40\% ethyl acetate-hexanes, UV+CAM).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.78-7.75(\mathrm{~m}, 2 \mathrm{H}), 7.69-7.66(\mathrm{~m}, 2 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.40-$ $7.35(\mathrm{~m}, 4 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.17-7.13(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J$ $=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.26(\mathrm{~m}, 4 \mathrm{H}), 4.03(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{app} \mathrm{q}, J=5.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.95(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{dd}, J=8.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=11.9,4.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.61(\operatorname{app~tt}, J=11.8,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.06(\mathrm{~s}, 1 \mathrm{H}), 1.89(\mathrm{~s}, 1 \mathrm{H}), 1.24(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.09$ (s, 9H), $1.07(\mathrm{~m}, 2 \mathrm{H}), 0.08(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 157.4,138.1,136.2,135.8,133.4,133.1,130.2,130.2,128.5$, $128.1,128.0,127.9,127.9,79.6,76.2,75.4,73.2,72.0,71.9,71.8,70.2,64.9,59.9,27.1$, 19.5, 17.7, 17.3, -1.2.

FTIR (neat, cm^{-1}): 3452 (br), 2953 (m), 2933 (m), 2857 (m), 1703 (m), 1428 (m), 1250 (m), 1112 (s), 1085 (m), 359 (m), 838 (m), 702 (s).

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{38} \mathrm{H}_{53} \mathrm{NO}_{8} \mathrm{Si}_{2}$, 708.3382; found 708.3366.

para-Toluenesulfonate ester 3.59.

A flame-dried $25-\mathrm{mL}$ round-bottomed flask was charged with diol $\mathbf{S 3 . 7}(1.05 \mathrm{~g}, 1.48 \mathrm{mmol}$, 1 equiv), and this starting material was dried by azeotropic removal of benzene. Anhydrous pyridine (5.0 mL) was then added, and the resulting solution was chilled to $0{ }^{\circ} \mathrm{C}$. Solid p toluenesulfonyl chloride ($481 \mathrm{mg}, 2.52 \mathrm{mmol}, 1.70$ equiv) was added to the ice-cold solution, causing a golden yellow color to evolve. 4-Dimethylaminopyridine (DMAP, $9.1 \mathrm{mg}, 74 \mu \mathrm{~mol}$, 0.050 equiv) was then added, and the resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 minutes; the cooling bath was then removed, and the mixture was allowed to warm to $23{ }^{\circ} \mathrm{C}$ with constant stirring. The golden color dissipated within 30 minutes, leaving a colorless solution. Progress was monitored by TLC (60% ethyl acetate-hexanes, UV+CAM), and after 48 h , the reaction was judged to be complete. The mixture was concentrated in vacuo, and the residue was purified by flash-column chromatography (80 g silica, eluting with 10% ethyl acetate-hexanes initially, grading to 30% ethyl acetate-hexanes) to give the product as a white foaming solid ($1.15 \mathrm{~g}, 90 \%$).
$\mathrm{R}_{f}=0.49$ (30\% ethyl acetate-hexanes, UV+CAM).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.75-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.64(\mathrm{~m}, 4 \mathrm{H}), 7.46-7.41(\mathrm{~m}, 2 \mathrm{H}), 7.39-$

$$
\begin{aligned}
& 7.34(\mathrm{~m}, 4 \mathrm{H}), 7.26-7.22(\mathrm{~m}, 3 \mathrm{H}), 7.19-7.16(\mathrm{~m}, 2 \mathrm{H}), 4.51(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J \\
= & 2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.28-4.24(\mathrm{~m}, 3 \mathrm{H}), 4.10-4.00(\mathrm{~m}, 3 \mathrm{H}), 3.96(\mathrm{t}, J \\
= & 3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=9.2,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\operatorname{app} \mathrm{p}, J=6.2
\end{aligned}
$$

$\mathrm{Hz}, 1 \mathrm{H}), 2.41(\mathrm{~s}, 3 \mathrm{H}), 1.86(\mathrm{~d}, J=3.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{~s}, 9 \mathrm{H}), 1.07-$ $1.03(\mathrm{~m}, 2 \mathrm{H}), 0.07(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 157.5,144.9,138.2,136.1,135.7,133.4,133.0,132.9,130.2$, $129.9,128.5,128.2,128.0,127.9,127.8,79.4,77.4,77.2,76.9,76.0,73.9,73.0,72.2,71.7$, $71.5,68.5,66.0,64.8,27.0,21.8,19.5,17.7,17.1,-1.3,-1.5$.

FTIR (neat, cm^{-1}): 2954 (m), 2931 (m), 2896 (m), 2858 (m), 1707 (m), 1362 (m), 1177 (s), 1098 (s), 837 (s), 703 (s).

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calc'd for $\mathrm{C}_{45} \mathrm{H}_{59} \mathrm{NO}_{10} \mathrm{SSi}_{2}$, 884.3290; found 884.3262.

Isoxazolidine diol S3.8.

In a $100-\mathrm{mL}$ round-bottomed flask, a solution of carbamate $\mathbf{3 . 5 9}(1.15 \mathrm{~g}, 1.34 \mathrm{mmol}, 1$ equiv) in tetrahydrofuran (13.4 mL) was chilled to $0{ }^{\circ} \mathrm{C}$ was treated with tetrabutylammonium fluoride (1.0 M solution in tetrahydrofuran, $4.0 \mathrm{~mL}, 4.0 \mathrm{mmol}, 3.0$ equiv). Following the addition of TBAF, the ice-water cooling bath was removed, and the reaction solution was allowed to warm to $23^{\circ} \mathrm{C}$. Progress was monitored by LCMS; cleavage of the (trimethylsilyl)ethyl carbamate was observed within 15 minutes, while cleavage of the tert-butyldiphenylsilyl ether was comparatively slower. After 2 hours, the reaction was judged to be complete, and 20 mL of saturated aqueous sodium bicarbonate solution was added. The resulting mixture was extracted with dichloromethane $(4 \times 15 \mathrm{~mL})$, and the combined organic layers were dried over sodium sulfate. The dried product solution was filtered, and the filtrate was concentrated to afford a colorless oil. This material was purified by flash-column chromatography (40 g silica, eluting with 1% methanol-dichloromethane initially, grading to 10% methanol-dichloromethane) to give the product as a white foaming solid (508 mg, 79\%).
$\mathrm{R}_{f}=0.52$ (10% methanol-dichloromethane, UV+CAM).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.76(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.30(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.25(\mathrm{~m}, 5 \mathrm{H})$, $4.70(\mathrm{dd}, J=4.1,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.26-$ $4.21(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{app} \mathrm{dt}, J=6.9,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=8.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{app}$
$\mathrm{t}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=8.4,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.23(\mathrm{dd}, J=3.9,2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.39(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 144.9,138.0,132.9,130.0,128.6,128.0,128.0,127.8,81.7$ (br), $78.4,72.9,71.9,70.9,70.6,70.1,69.1,67.2,21.7,16.9$.

FTIR (neat, cm^{-1}): 3378 (br), 2929 (w), 1453 (w), 1356 (m), 1174 (s), 1071 (s), 974 (m), 732 (s). HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{23} \mathrm{H}_{29} \mathrm{NO}_{8} \mathrm{~S}$, 480.1687; found 480.1711.

Aminotetraol 3.60.

In a $25-\mathrm{mL}$ round-bottomed flask, a solution of isoxazolidine $\mathbf{S 3 . 8} \mathbf{(3 6 8 \mathrm { mg } , 7 6 7 \mu \mathrm { mol } , 1}$ equiv) in methanol (8.00 mL) was cooled to $0^{\circ} \mathrm{C}$ and was treated with hydrogen chloride solution (4.0 M in 1,4-dioxane, $770 \mu \mathrm{~L}, 3.1 \mathrm{mmol}, 4.0$ equiv). This solution was immediately concentrated to dryness, and the white residue obtained was re-dissolved in fresh methanol (7.67 mL). This solution was treated with palladium on carbon $(10 \mathrm{wt} \%, 82.0 \mathrm{mg})$, the headspace of the flask was flushed with nitrogen gas, and the apparatus was fitted with a 3-way stopcock to which one arm was affixed to a high-vacuum line, and the other was affixed to a hydrogen gas-filled balloon. The headspace of the flask was replaced by briefly evacuating, then back-filling the flask with hydrogen gas using the stopcock (3 evacuation-backfill cycles), and the black suspension was stirred at $23{ }^{\circ} \mathrm{C}$ under 1 atm of hydrogen gas. After 5 h , LCMS analysis indicated that isoxazolidine ring and benzyl ether hydrogenolysis were complete, and the headspace of the flask was flushed with nitrogen gas. The reaction mixture was filtered through a Celite pad, and the filter cake was rinsed with methanol $(2 \times 3 \mathrm{~mL})$. The filtrate was concentrated to give the product as a dull white crystalline solid ($327 \mathrm{mg}, 100 \%$). This material was suitable for use in subsequent transformations without further purification.

Crystals suitable for X-ray analysis were prepared as follows: In a 1-mL glass sample vial, $3.60 \cdot \mathrm{HCl}(3 \mathrm{mg})$ was deposited, and this material was dissolved in approximately $200 \mu \mathrm{~L}$ of $190-$ proof ethanol. The vial containing the ethanolic solution was then placed inside a $20-\mathrm{mL}$ scintillation vial containing approximately 3 mL of acetonitrile. The large vial was capped, and
the assembly was allowed to stand undisturbed at $23^{\circ} \mathrm{C}$. After 2 days, needle-shaped crystals of sufficient size for X-ray analysis had formed (see Appendix A for X-ray crystal structure data).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.80(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.35(\mathrm{dd}, J=$ $11.7,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-4.21(\mathrm{~m}, 2 \mathrm{H}), 4.18(\operatorname{app~s}, 1 \mathrm{H}), 4.09(\operatorname{app} \mathrm{p}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.99$ $(\mathrm{dd}, J=7.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=8.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=8.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.56$ (app t, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.26(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 146.7,134.3,131.2,129.0,74.0,71.7,69.8,69.5,68.7,68.1,65.5$, 58.1, 21.6, 18.7.

FTIR (neat, cm^{-1}): 3345 (br), 2927 (br), 1598 (w), 1495 (w), 1356 (m), 1190(m), 1175 (s), 1080 (s), $976(\mathrm{~m}), 554(\mathrm{~m})$.

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calc'd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{8} \mathrm{~S}, 414.1193$; found 414.1203.

Synthetic lincosamide FSA-211030.

To a solution of aminotetraol $\mathbf{3 . 6 0} \cdot \mathrm{HCl}(9.7 \mathrm{mg}, 23 \mu \mathrm{~mol}$, 1 equiv) and triethylamine (13 $\mu \mathrm{L}, 95 \mu$ mol, 4.2 equiv) in N, N-dimethylformamide (110 $\mu \mathrm{L}$) was added $N, O-$ bis(trimethylsilyl)trifluoroacetamide ($12 \mu \mathrm{~L}, 45 \mu \mathrm{~mol}, 2.0$ equiv). The mixture was stirred at 23 ${ }^{\circ} \mathrm{C}$ for 1 h in order to ensure complete O-silylation. Carboxylic acid $2.27(7.1 \mathrm{mg}, 25 \mu \mathrm{~mol}, 1.1$ equiv) and HATU ($11 \mathrm{mg}, 29 \mu \mathrm{~mol}, 1.3$ equiv) were then added sequentially, the vial was sealed, and the mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 1 h , at which point LCMS analysis showed complete consumption of aminotetraol starting material and its (oligo)trimethylsilylated congeners. The reaction mixture was diluted with ethyl acetate (15 mL), and this diluted solution was washed sequentially with $10 \% \mathrm{w} / \mathrm{v}$ aqueous citric acid solution $(5 \mathrm{~mL})$, water $(5 \mathrm{~mL})$, half-saturated aqueous sodium bicarbonate solution (5 mL), and saturated aqueous sodium chloride solution (5 mL). The washed organic solution was dried over sodium sulfate, filtered, and concentrated to provide crude (oligo)trimethylsilylated, N-Boc-protected coupled intermediate.

This residue was dissolved in dichloromethane (1.1 mL); and water $(25 \mu \mathrm{~L})$, dimethyl sulfide $(25 \mu \mathrm{~L})$, and trifluoroacetic acid $(370 \mu \mathrm{~L})$ were added. The mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 20 min , whereupon LCMS analysis showed that Boc removal was complete. The mixture was diluted with toluene (2 mL), and the diluted mixture was concentrated to provide a light tan solid residue that was finally subjected to preparative HPLC on a Waters SunFire Prep C 18 column (5 $\mu \mathrm{m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% formic acid -10% acetonitrile-water initially, grading to 0.1%
formic acid-50\% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 254 nm) to provide FSA-211030 $\cdot \mathrm{HCO}_{2} \mathrm{H}$ as a white solid ($4.8 \mathrm{mg}, 35 \%$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.28(\mathrm{br}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.46(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H})$, 5.88 (app ddt, $J=12.5,7.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{app} \mathrm{ddt}, J=12.2,6.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{~d}$, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=11.6,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{dd}, J=15.8,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-$ $4.21(\mathrm{~m}, 3 \mathrm{H}), 4.18-4.13(\mathrm{~m}, 2 \mathrm{H}), 4.00-3.94(\mathrm{~m}, 3 \mathrm{H}), 3.80(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J$ $=11.4,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=9.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\operatorname{app} \mathrm{t}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.54(\mathrm{ddd}$, $J=16.7,7.6,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.21(\operatorname{app~qd}, J=13.1,11.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.12-$ $2.06(\mathrm{~m}, 1 \mathrm{H}), 1.20(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 167.3,146.7,134.1,131.2,131.0,130.5,129.1,86.3,76.0,72.5$, $72.3,70.5,69.3,68.6,68.1,66.9,61.8,57.3,43.0,30.1,21.6,19.5$. One methine carbon is believed to be obfuscated by the solvent signal, and consequently is not observed.

FTIR (neat, cm^{-1}): 3399 (br), 1676 (s), 1360 (m), 1202 (m), 1176 (s), 1133 (m), 1079 (m), 973 (m).

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]$ calc'd for $\mathrm{C}_{25} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O}_{10} \mathrm{~S}, 557.2163$; found 557.2181 .

Protected lincosamide 3.62.

In a 4-mL glass vial fitted with a magnetic stir bar and a silicone septum screw cap, an icecold suspension of aminosugar salt $\mathbf{3 . 6 0} \cdot \mathrm{HCl}(35.7 \mathrm{mg}, 83.5 \mu \mathrm{~mol}, 1$ equiv) and triethylamine ($48.8 \mu \mathrm{~L}, 0.350 \mathrm{mmol}, 4.20$ equiv) in N, N-dimethylformamide $(417 \mu \mathrm{~L})$ was treated with $N, O-$ bis(trimethylsilyl)trifluoroacetamide ($44.7 \mu \mathrm{~L}, 0.167 \mathrm{mmol}, 2.00$ equiv). A colorless solution formed immediately, and this mixture was warmed to $23^{\circ} \mathrm{C}$ to stir for 1 h so as to ensure complete O-silylation. Next, carboxylic acid $2.27(26.0 \mathrm{mg}, 91.8 \mu \mathrm{~mol}, 1.10$ equiv) and HATU (41.2 mg , $0.108 \mathrm{mmol}, 1.30$ equiv) were added, and the resulting yellow solution was stirred at $23{ }^{\circ} \mathrm{C}$ for 3.5 h , at which point LCMS analysis showed complete consumption of aminotetraol starting material and its (oligo)trimethylsilylated congeners. The reaction mixture was consequently diluted with ethyl acetate (30 mL), and the diluted solution was washed sequentially with aqueous citric acid solution $(10 \% \mathrm{w} / \mathrm{v}, 2 \times 10 \mathrm{~mL})$, saturated aqueous sodium chloride solution $(10 \mathrm{~mL})$, half-saturated aqueous sodium bicarbonate solution (10 mL), and a fresh portion of saturated aqueous sodium chloride solution $(10 \mathrm{~mL})$. The washed organic layer was dried over sodium sulfate, filtered, and concentrated. The residue, containing (oligo)trimethylsilylated coupled product congeners, was dissolved in $50 \% \mathrm{v} / \mathrm{v}$ acetic acid-methanol $(2.00 \mathrm{~mL})$. The solution was heated to $40^{\circ} \mathrm{C}$ for 4 h , at which point LCMS analysis showed that global desilylation was complete. The mixture was diluted with toluene, and the diluted mixture was concentrated in vacuo. The residue thus obtained was purified by flash-column chromatography (12 g silica gel, eluting with 1% methanoldichloromethane initially, grading to 10% methanol-dichloromethane), and fractions containing
N-Boc-protected coupled product were identified by $\mathrm{TLC}\left(\mathrm{R}_{f}=0.41\right.$ (10% methanoldichloromethane, UV+CAM). These fractions were pooled and concentrated to provide coupled, N-Boc protected product as a colorless solid ($45.4 \mathrm{mg}, 83 \%$). Due to substantial amide and carbamate rotamerism observed in the ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum, this material was carried forward through $\mathrm{S}_{\mathrm{N}} 2$ displacement with sodium azide prior to full characterization.

A portion of this N-Boc-protected p-toluenesulfonate ester intermediate ($33 \mathrm{mg}, 50 \mu \mathrm{~mol}$, 1 equiv) was introduced to a $0.5-2 \mathrm{~mL}$ conical glass microwave vial. A magnetic stir bar, sodium azide ($33 \mathrm{mg}, 0.50 \mathrm{mmol}$, 10 equiv), and N, N-dimethylformamide ($250 \mu \mathrm{~L}$) were then added. The vial was sealed, stirring was initiated, and the reaction mixture was heated to $80^{\circ} \mathrm{C}$ in a pre-heated oil bath. After 22 h , LCMS analysis indicated that no starting material remained. The reaction mixture was diluted with saturated aqueous sodium chloride solution $(10 \mathrm{~mL})$ and the mixture was extracted with ethyl acetate $(3 \times 5 \mathrm{~mL})$. The combined organic extracts were dried over sodium sulfate, filtered, and concentrated; the residue thus obtained was subjected to flash-column chromatography (4 g silica gel, eluting with dichloromethane initially, grading to 10% methanoldichloromethane) to provide the product as a white solid ($17 \mathrm{mg}, 64 \%$).
${ }^{1} \mathrm{H}$ NMR (1:1 mixture of rotamers, asterisk [*] denotes rotameric signals that could be resolved, $\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.91-5.84(\mathrm{~m}, 1 \mathrm{H}), 5.80-5.73(\mathrm{~m}, 1 \mathrm{H}), 4.43(\operatorname{app} \mathrm{t}, J=8.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.31(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{*} 4.25-4.08(\mathrm{~m}, 3 \mathrm{H}), 4.04-3.95(\mathrm{~m}, 4 \mathrm{H})$, $3.80-3.65(\mathrm{~m}, 3 \mathrm{H}), 3.58-3.49(\mathrm{~m}, 2 \mathrm{H}), 2.94(\mathrm{app} \mathrm{q}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.39(\mathrm{~m}, 2 \mathrm{H})$, $2.08(\operatorname{app~q}, J=14.7,13.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.46(\mathrm{~s}, 9 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}), * 1.25(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.22(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (1:1 mixture of rotamers, asterisk [*] denotes rotameric signals that could be resolved, $\left.126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 172.9,172.8,{ }^{*} 156.0,155.8,{ }^{*} 131.7,131.5, *$ 131.1, 131.0,* 87.4, $86.9, * 82.0,81.6,{ }^{*} 77.0,76.8,{ }^{*} 73.2,71.9,{ }^{*} 71.9,71.8, * 70.6,70.2, * 69.2,69.0, * 69.0$, 68.8,* 68.7, 64.2, 64.0,* 56.6, 55.6,* 51.0, 50.4,* 47.6, 47.4,* 42.6, 41.4,* 31.6, 31.5,* 19.5, 18.7.*

FTIR (neat, cm^{-1}): 3433 (br), 2100 (s), 1672 (s$), 1452$ (m), 1414 (s), 1368 (m), 1171 (m), 1126 (m), 1074 (m),

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{~N}_{5} \mathrm{O}_{9}, 528.2664$; found 528.2680.

Synthetic lincosamide FSA-211064.

In a 4-mL glass vial, tert-butyl carbamate $\mathbf{3 . 6 2}$ ($6.1 \mathrm{mg}, 12 \mu \mathrm{~mol}, 1$ equiv) was dissolved in dichloromethane $(170 \mu \mathrm{~L})$. Water ($3.7 \mu \mathrm{~L}$), dimethyl sulfide (3.7 $\mu \mathrm{L}$), and trifluoroacetic acid $(170 \mu \mathrm{~L})$ were then added sequentially, and the reaction mixture was stirred at $23^{\circ} \mathrm{C}$ for 20 min , whereupon LCMS analysis showed that Boc removal was complete. The reaction mixture was diluted with toluene (1 mL), and the diluted mixture was concentrated to dryness in vacuo. The residue was then purified by preparative HPLC on a Waters SunFire Prep C C_{18} column ($5 \mu \mathrm{~m}, 250$ $\times 19 \mathrm{~mm}$; eluting with 0.1% formic acid -5% acetonitrile-water initially, grading to 0.1% formic acid- 50% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 210 nm) to furnish FSA-211064 • $\mathrm{HCO}_{2} \mathrm{H}$ as a white solid ($2.8 \mathrm{mg}, 51 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.87$ (app ddt, $\left.J=12.5,7.4,2.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.77$ (app ddt, $J=12.3$, $6.1,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{dd}, J=15.8,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\operatorname{app} \mathrm{t}, J=$ $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-4.10(\mathrm{~m}, 3 \mathrm{H}), 4.03-3.97(\mathrm{~m}, 3 \mathrm{H}), 3.86(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=$ $13.8,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-3.55(\mathrm{~m}, 2 \mathrm{H}), 3.49(\mathrm{dd}, J=13.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\operatorname{app} \mathrm{t}, J=$ $11.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.53(\mathrm{ddd}, J=16.6,7.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.19(\operatorname{app} \mathrm{p}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.07$ (app td, $J=14.1,12.3,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.23(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 168.6,130.9,130.7,86.8,77.2,71.9,71.7,70.5,69.3,68.8,68.6$, $62.1,56.9,47.4,43.4,30.4,19.3$. One methine carbon is believed to be obfuscated by the solvent signal, and consequently is not observed.

FTIR (neat, cm^{-1}): 3432 (br), 2090 (s), 1671 (m), 1590 (s), 1350 (m), 1067 (m).
HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{~N}_{5} \mathrm{O}_{7}, 428.2140$; found 428.2154 .

Protected lincosamide 3.64.

In a $2-5 \mathrm{~mL}$ glass microwave vial, an ice-cold solution of aminotetraol $\mathbf{3 . 5 0} \cdot \mathrm{HCl}(249$ $\mathrm{mg}, 0.582 \mathrm{mmol}, 1$ equiv) in N, N-dimethylformamide $(2.91 \mathrm{~mL})$ was treated sequentially with triethylamine ($341 \mu \mathrm{~L}, 2.44 \mathrm{mmol}, 4.20$ equiv) and N, O-bis(trimethylsilyl)trifluoroacetamide (312 $\mu \mathrm{L}, 1.15 \mathrm{mmol}, 2.00$ equiv). The mixture was warmed to $23^{\circ} \mathrm{C}$ and was stirred at this temperature for 1 h to ensure complete O-silylation before a solution of azepine acid $\mathbf{3 . 6 3}$ ($202 \mathrm{mg}, 0.640 \mathrm{mmol}$, 1.10 equiv) in N, N-dimethylformamide (1.50 mL) was added by cannula. The mixture was then treated with HATU ($288 \mathrm{mg}, 0.756 \mathrm{mmol}, 1.30$ equiv), causing the cloudy mixture to attain a golden yellow color. After stirring at $23{ }^{\circ} \mathrm{C}$ for 3 h , the reaction mixture was diluted with ethyl acetate $(50 \mathrm{~mL})$. The diluted organic solution was washed sequentially with $15-\mathrm{mL}$ portions of $10 \% \mathrm{w} / \mathrm{v}$ aqueous citric acid solution, saturated aqueous sodium bicarbonate solution, and saturated sodium chloride solution; the washed solution was dried over sodium sulfate, filtered, and concentrated. This residue was then re-dissolved in $50 \% \mathrm{v} / \mathrm{v}$ acetic acid-methanol, and this solution was stirred at $40{ }^{\circ} \mathrm{C}$ overnight. The mixture was then diluted with toluene (20 mL), and the diluted mixture was concentrated to dryness to provide a faint rose-brown oil. This crude product was purified by flash-column chromatography (48 g silica gel, eluting with dichloromethane initially, grading to 10% methanol-dichloromethane) to furnish the product as a white foaming solid (369 mg, 92\%).
$\mathrm{R}_{f}=0.56\left(10 \%\right.$ methanol-dichloromethane, $\left.\mathrm{I}_{2}\right)$.
${ }^{1}$ H NMR (1:1 mixture of rotamers, asterisk [*] denotes rotameric peaks that could be resolved; 500 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.81(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.50-$ $4.32(\mathrm{~m}, 4 \mathrm{H}), 4.26(\mathrm{dd}, J=11.3,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{ddd}, J=9.4,6.6,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-$ $3.95(\mathrm{~m}, 3 \mathrm{H}) 3.94-3.70(\mathrm{~m}, 3 \mathrm{H}), 3.65(\mathrm{appt} \mathrm{t}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.47(\mathrm{dd}, J=10.1,3.3 \mathrm{~Hz}$, 1H), 2.72 (app q, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 2.46-2.40(\mathrm{br}, 2 \mathrm{H}), 2.32(\mathrm{br}, 1 \mathrm{H}), 2.28$ (br, 1H), * $1.99(\mathrm{br}, 2 \mathrm{H}), 1.65-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}),{ }^{*}$ $1.20(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H})$.*

FTIR (neat, cm^{-1}): 3388 (br), 2972 (m), 2933 (m), 1663 (s$), 1453$ (m), 1407 (m), 1366 (m), 1175 (s), 1080 (m), 973 (m), $554(\mathrm{~m})$.

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{32} \mathrm{H}_{49} \mathrm{FN}_{2} \mathrm{O}_{11} \mathrm{~S}, 689.3114$; found 689.3135 .

Protected lincosamide 3.65.

A $0.5-2 \mathrm{~mL}$ conical glass microwave vial was charged with a magnetic stir bar, p toluenesulfonate ester $3.64(150 \mathrm{mg}, 0.218 \mathrm{mmol}$, 1 equiv), sodium azide ($142 \mathrm{mg}, 2.18 \mathrm{mmol}$, 10.0 equiv), and N, N-dimethylformamide (1.09 mL). The vial was sealed, and the mixture was heated to $80^{\circ} \mathrm{C}$ in a pre-heated oil bath. After 2 d of stirring at elevated temperature, LCMS analysis of the reaction mixture showed that no starting material remained. The mixture was cooled to room temperature and was then partitioned between ethyl acetate $(15 \mathrm{~mL})$ and saturated aqueous sodium chloride solution (15 mL). The layers were shaken, then separated. The aqueous phase was extracted with additional ethyl acetate $(2 \times 10 \mathrm{~mL})$, and the combined organic extracts were dried over sodium sulfate. The dried product solution was then filtered, and the filtrate was concentrated to give a crude residue that was subjected to flash-column chromatography (12 g silica gel, eluting with dichloromethane initially, grading to 10% methanol-dichloromethane) to furnish the product as a white powder ($116 \mathrm{mg}, 96 \%$).
$\mathrm{R}_{f}=0.41$ (10% methanol-dichloromethane, I_{2} or CAM).
${ }^{1} \mathrm{H}$ NMR (60:40 mixture of rotamers, asterisk [*] denotes minor rotameric peaks that could be resolved; $\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.48(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.50-4.43(\mathrm{~m}, 2 \mathrm{H}), 4.38-4.35(\mathrm{~m}, 1 \mathrm{H})$, 4.18-4.99(m, 4H), 3.98-3.93(, 1H), 3.89-3.80(m, 2H), 3.73-3.64(m, 2H), $3.56(\mathrm{~d}, \mathrm{~J}=$ $9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=13.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}, J=13.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{*} 2.73(\operatorname{app} \mathrm{q}$,
$J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.50-2.28(\mathrm{~m}, 2 \mathrm{H}), 2.34(\mathrm{br}, 1 \mathrm{H}), 2.30(\mathrm{br}, 1 \mathrm{H}),{ }^{*} 2.00(\mathrm{br}, 2 \mathrm{H}), 1.68-$ $1.57(\mathrm{~m}, 2 \mathrm{H}), 1.53-1.49(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}),{ }^{*} 1.22(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$, * $1.20(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$.

MS (ESI+, m / z): $\left[\mathrm{M}+\mathrm{H}-\mathrm{N}_{2}\right]^{+}$calc'd for $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{FN}_{5} \mathrm{O}_{8}, 532.3$; found 532.3.

Synthetic lincosamide FSA-212022.

In a $1-\mathrm{mL}$ glass fitted with a magnetic stir bar, azide $\mathbf{3 . 6 5}$ ($11.6 \mathrm{mg}, 20.8 \mu \mathrm{~mol}, 1$ equiv) was dissolved in 2:2:1 tert-butanol-methanol-water $(138 \mu \mathrm{~L})$. To this solution were then added 3-dimethylamino-1-propyne ($4.48 \mu \mathrm{~L}, 41.0 \mu \mathrm{~mol}, 2.00$ equiv), aqueous sodium ascorbate solution ($0.100 \mathrm{M}, 41.5 \mu \mathrm{~L}, 4.15 \mu \mathrm{~mol}, 0.200$ equiv), and aqueous cupric sulfate solution ($0.100 \mathrm{M}, 10.4$ $\mu \mathrm{L}, 1.04 \mu \mathrm{~mol}, 0.0500$ equiv). This mixture was stirred at $23^{\circ} \mathrm{C}$ for 1 h , by which time LCMS analysis showed that no starting material remained. The reaction mixture was diluted with 50% v / v saturated aqueous sodium bicarbonate solution-saturated aqueous sodium chloride solution, and this diluted mixture was extracted with dichloromethane $(3 \times 3 \mathrm{~mL})$. The combined organic extracts were dried over sodium sulfate, filtered, and concentrated.

This residue was transferred to a 4-mL glass vial, where it was re-dissolved in $33 \% \mathrm{v} / \mathrm{v}$ trifluoroacetic acid-dichloromethane $(600 \mu \mathrm{~L})$. After 1 h of stirring at $23{ }^{\circ} \mathrm{C}$, LCMS analysis showed that Boc removal was complete; the mixture was diluted with toluene (1 mL), and the diluted mixture was concentrated to dryness. This residue was then dissolved in methanol (300 $\mu \mathrm{L})$, the solution was treated with palladium on carbon $(10 \% \mathrm{w} / \mathrm{w}, 7.00 \mathrm{mg})$, and the headspace above the reaction mixture was replaced with hydrogen gas. The black suspension was stirred at $23^{\circ} \mathrm{C}$ under hydrogen gas (1 atm) for 12 h , whereupon LCMS analysis showed that azepine hydrogenation was complete. The mixture was filtered through a Celite pad to remove the
heterogeneous catalyst, and the filter cake was rinsed with methanol $(3 \times 1 \mathrm{~mL})$. The filtrate was concentrated to give a colorless oil, which was purified by preparative HPLC on a Waters SunFire Prep C_{18} column ($5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% formic acid- 2% acetonitrile-water initially, grading to 0.1% formic acid -20% acetonitrile-water over 30 min , with a flow rate of 15 $\mathrm{mL} / \mathrm{min}$; monitored by UV absorbance at 210 nm) to provide the product (FSA-212022• $\mathrm{HCO}_{2} \mathrm{H}$, $11.8 \mathrm{mg}, 89 \%, 2$ steps) as a brilliant white solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.37(\mathrm{br}, 1 \mathrm{H}), 8.26(\mathrm{~s}, 1 \mathrm{H}), 4.90(\mathrm{appt} \mathrm{t}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}$, $J=14.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.50-4.47(\mathrm{~m}, 1 \mathrm{H}), 4.43-4.39(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{dt}, J=47.5,6.0 \mathrm{~Hz}, 2 \mathrm{H})$, 4.14-4.08 (m, 3H), 4.05-4.02 (m, 2H), 3.78 (app p, $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.43(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\operatorname{app} \mathrm{t}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 6 \mathrm{H}), 2.21-2.10(\mathrm{~m}$, $2 \mathrm{H}), 2.00(\mathrm{~d}, J=15.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.57(\mathrm{app} \mathrm{q}, J=$ $11.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.46-1.37(\mathrm{~m}, 3 \mathrm{H}), 1.35-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 171.3,138.6,128.2,84.7(\mathrm{~d}, J=163.7 \mathrm{~Hz}), 77.4,72.1,71.9,70.5$, $68.7,68.2,60.7,56.8,52.6,47.2,45.9,43.1,38.7,37.4,33.1,31.6(\mathrm{~d}, J=19.6 \mathrm{~Hz}), 30.6$, 28.7, $23.8(\mathrm{~d}, J=5.1 \mathrm{~Hz})$, 19.5.

FTIR (neat, cm^{-1}): 3385 (br), 1675 (s), 1583 (w), 1202 (s), 1134 (m), 1085 (w), 722 (w).
HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{25} \mathrm{H}_{45} \mathrm{FN}_{6} \mathrm{O}_{6}, 545.3457$; found 545.3468.

Synthetic lincosamide FSA-212019.

In a $1-\mathrm{mL}$ glass fitted with a magnetic stir bar, azide $\mathbf{3 . 6 5}$ ($11.6 \mathrm{mg}, 20.8 \mu \mathrm{~mol}, 1$ equiv) was dissolved in 2:2:1 tert-butanol-methanol-water $(138 \mu \mathrm{~L})$. To this solution were then added 2ethynylpyridine ($4.16 \mu \mathrm{~L}, 41.5 \mu \mathrm{~mol}, 2.00$ equiv), aqueous sodium ascorbate solution $(0.100 \mathrm{M}$, $41.5 \mu \mathrm{~L}, 4.15 \mu \mathrm{~mol}, 0.200$ equiv), and aqueous cupric sulfate solution ($0.100 \mathrm{M}, 10.4 \mu \mathrm{~L}, 1.04$ μ mol, 0.0500 equiv). This mixture was stirred at $23^{\circ} \mathrm{C}$ for 1.5 h , by which time LCMS analysis showed that no starting material remained. The reaction mixture was diluted with $50 \% \mathrm{v} / \mathrm{v}$ saturated aqueous sodium bicarbonate solution-saturated aqueous sodium chloride solution, and this diluted mixture was extracted with dichloromethane $(3 \times 3 \mathrm{~mL})$. The combined organic extracts were dried over sodium sulfate, filtered, and concentrated to give a colorless oil.

This residue was transferred to a $4-\mathrm{mL}$ glass vial, where it was re-dissolved in $33 \% \mathrm{v} / \mathrm{v}$ trifluoroacetic acid-dichloromethane $(600 \mu \mathrm{~L})$. After 10 min of stirring at $23^{\circ} \mathrm{C}$, LCMS analysis showed that Boc removal was complete; the mixture was diluted with toluene (1 mL), and the diluted mixture was concentrated to dryness. This residue was purified by preparative HPLC on a Waters SunFire Prep C_{18} column ($5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% formic acid -2% acetonitrile-water initially, grading to 0.1% formic acid- 20% acetonitrile-water over 30 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 210 nm) to provide the product (FSA$212019 \cdot \mathrm{HCO}_{2} \mathrm{H}, 4.5 \mathrm{mg}, 34 \%, 2$ steps) as a brilliant white solid.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.59(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.47(\mathrm{~s}, 1 \mathrm{H}), 8.28(\mathrm{br}, 2 \mathrm{H}), 8.06(\mathrm{~d}, J=$ $7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{td}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=7.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.67($ app $\mathrm{t}, J=$ $1 \mathrm{H}), 4.92(\mathrm{dd}, J=14.9,11.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.78(\mathrm{dd}, J=14.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{ddd}, J=11.3$, 6.3, 2.9 Hz, 1H), $4.43(\mathrm{dt}, J=47.5,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{dd}, J=9.8,6.3,1 \mathrm{H}), 4.09-4.05(\mathrm{~m}$, $3 \mathrm{H}), 4.00(\mathrm{dd}, J=9.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\operatorname{app} \mathrm{p}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=9.8,3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.44(\mathrm{ddd}, J=13.4,7.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.16(\mathrm{dd}, J=12.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.69-2.62(\mathrm{~m}$, $2 \mathrm{H}), 2.57(\mathrm{dd}, J=17.3,10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{dd}, J=17.0,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.12(\operatorname{app} \mathrm{t}, J=7.5$ $\mathrm{Hz}, 2 \mathrm{H}), 1.72-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.56-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.09(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 170.4,166.8,151.1,150.5,148.8,145.2,138.9,124.6,124.5$, $122.8,121.6,84.6(163.7 \mathrm{~Hz})$, 77.6, 72.1, 72.0, 70.9, 68.8, 67.6, 60.3, 57.4, 47.1, 45.1, $39.7,31.1(\mathrm{~d}, J=19.6 \mathrm{~Hz}), 30.3,29.9,24.4(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 19.6$.

FTIR (neat, cm^{-1}): 3298 (br), 1673 (s), 1598 (s), 1572 (s), 1424 (m), 1202 (m), 1086 (m), 1067 (m), 787 (m).

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{FN}_{6} \mathrm{O}_{6}, 563.3$; found 563.3.

Synthetic lincosamide FSA-212021.

In a $1-\mathrm{mL}$ glass fitted with a magnetic stir bar, azide $\mathbf{3 . 6 5}$ ($11.6 \mathrm{mg}, 20.8 \mu \mathrm{~mol}, 1$ equiv) was dissolved in 2:2:1 tert-butanol-methanol-water $(138 \mu \mathrm{~L})$. To this solution were then added 3ethynylaniline ($4.76 \mu \mathrm{~L}, 41.5 \mu \mathrm{~mol}, 2.00$ equiv), aqueous sodium ascorbate solution (0.100 M , $41.5 \mu \mathrm{~L}, 4.15 \mu \mathrm{~mol}, 0.200$ equiv), and aqueous cupric sulfate solution $(0.100 \mathrm{M}, 10.4 \mu \mathrm{~L}, 1.04$ μ mol, 0.0500 equiv). This mixture was stirred at $23^{\circ} \mathrm{C}$ for 1.5 h , by which time LCMS analysis showed that no starting material remained. The reaction mixture was diluted with $50 \% \mathrm{v} / \mathrm{v}$ saturated aqueous sodium bicarbonate solution-saturated aqueous sodium chloride solution, and this diluted mixture was extracted with dichloromethane $(3 \times 3 \mathrm{~mL})$. The combined organic extracts were dried over sodium sulfate, filtered, and concentrated to give a colorless oil.

This residue was transferred to a $4-\mathrm{mL}$ glass vial, where it was re-dissolved in $33 \% \mathrm{v} / \mathrm{v}$ trifluoroacetic acid-dichloromethane $(600 \mu \mathrm{~L})$. After 10 min of stirring at $23^{\circ} \mathrm{C}$, LCMS analysis showed that Boc removal was complete; the mixture was diluted with toluene (1 mL), and the diluted mixture was concentrated to dryness. This residue was then dissolved in methanol (300 $\mu \mathrm{L})$, the solution was treated with palladium on carbon $(10 \% \mathrm{w} / \mathrm{w}, 7.00 \mathrm{mg})$, and the headspace above the reaction mixture was replaced with hydrogen gas. The black suspension was stirred at $23^{\circ} \mathrm{C}$ under hydrogen gas (1 atm) for 19 h , whereupon LCMS analysis showed that azepine hydrogenation was complete. The mixture was filtered through a Celite pad to remove the
heterogeneous catalyst, and the filter cake was rinsed with methanol $(3 \times 1 \mathrm{~mL})$. The filtrate was concentrated to give a colorless oil, which was purified by preparative HPLC on a Waters SunFire Prep C_{18} column ($5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% formic acid -2% acetonitrile-water initially, grading to 0.1% formic acid -30% acetonitrile-water over 30 min , with a flow rate of 20 $\mathrm{mL} / \mathrm{min}$; monitored by UV absorbance at 210 nm) to provide the product (FSA-212021• $\mathrm{HCO}_{2} \mathrm{H}$, $7.3 \mathrm{mg}, 61 \%, 2$ steps) as a brilliant white solid.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.28(\mathrm{~s}, 1 \mathrm{H}), 8.19(\mathrm{br}, 2 \mathrm{H}), 7.19-7.13(\mathrm{~m}, 3 \mathrm{H}), 6.72(\mathrm{dd}, J=7.7$, $2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.89-4.87(\mathrm{~m}, 2 \mathrm{H}), 4.73(\mathrm{dd}, J=14.9,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.52-4.49(\mathrm{~m}, 1 \mathrm{H}), 4.41$ $(\mathrm{dt}, J=47.5,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.17-4.11(\mathrm{~m}, 3 \mathrm{H}), 4.05-4.04(\mathrm{~m}, 2 \mathrm{H}), 3.83(\operatorname{app} \mathrm{p}, J=6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.72(\mathrm{dd}, J=9.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=13.4,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\operatorname{app} \mathrm{t}, J=12.7$ $\mathrm{Hz}, 1 \mathrm{H}), 2.19-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{~d}, J=14.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{app} \mathrm{ddt}, J=16.1,8.4,4.2 \mathrm{~Hz}$, $1 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.57(\operatorname{app} \mathrm{q}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.45-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.35-1.31(\mathrm{~m}$, $2 \mathrm{H}), 1.09(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 171.1,165.7,149.5,149.2,132.3,130.7,122.6,116.7,116.6$, $113.5,84.7(\mathrm{~d}, J=163.6 \mathrm{~Hz}), 77.5,72.0,71.9,70.7,68.6,67.8,60.7,57.1,46.8,45.9,38.7$, $37.4,33.0,31.6(\mathrm{~d}, J=19.7 \mathrm{~Hz}), 30.7,28.7,23.8(\mathrm{~d}, J=5.1 \mathrm{~Hz}), 19.4$.

FTIR (neat, cm^{-1}): 3322 (br), 2935 (m), 1675 (s), 1590 (s), 1459 (m), 1202 (m), 1132 (m), 1083 (m), 1067 (m).

HRMS (ESI+, m / z): $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calc'd for $\mathrm{C}_{28} \mathrm{H}_{43} \mathrm{FN}_{6} \mathrm{O}_{6}$, 290.1687; found 290.1693.

Synthetic lincosamide FSA-212015.

In a $1-\mathrm{mL}$ glass fitted with a magnetic stir bar, azide $\mathbf{3 . 6 5}$ ($14.3 \mathrm{mg}, 25.6 \mu \mathrm{~mol}, 1$ equiv) was dissolved in 2:2:1 tert-butanol-methanol-water $(170 \mu \mathrm{~L})$. To this solution were then added (4-ethynylphenyl)(morpholino)methanone (S3.9, $11.0 \mathrm{mg}, 51.1 \mu \mathrm{~mol}, 2.00$ equiv), aqueous sodium ascorbate solution $(0.100 \mathrm{M}, 51.1 \mu \mathrm{~L}, 5.11 \mu \mathrm{~mol}, 0.200$ equiv $)$, and aqueous cupric sulfate solution ($0.100 \mathrm{M}, 12.8 \mu \mathrm{~L}, 1.28 \mu \mathrm{~mol}, 0.0500$ equiv). This mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 16 h , by which time LCMS analysis showed that no starting material remained. The reaction mixture was diluted with $50 \% \mathrm{v} / \mathrm{v}$ saturated aqueous sodium bicarbonate solution-saturated aqueous sodium chloride solution, and this diluted mixture was extracted with dichloromethane ($3 \times 3 \mathrm{~mL}$). The combined organic extracts were dried over sodium sulfate, filtered, and concentrated to give a colorless oil.

This residue was transferred to a $4-\mathrm{mL}$ glass vial, where it was re-dissolved in $33 \% \mathrm{v} / \mathrm{v}$ trifluoroacetic acid-dichloromethane $(600 \mu \mathrm{~L})$. After 10 min of stirring at $23^{\circ} \mathrm{C}$, LCMS analysis showed that Boc removal was complete; the mixture was diluted with toluene (1 mL), and the diluted mixture was concentrated to dryness. This residue was then dissolved in methanol (300 $\mu \mathrm{L})$, the solution was treated with palladium on carbon ($10 \% \mathrm{w} / \mathrm{w}, 10.0 \mathrm{mg}$), and the headspace above the reaction mixture was replaced with hydrogen gas. The black suspension was stirred at $23^{\circ} \mathrm{C}$ under hydrogen gas (1 atm) for 24 h , whereupon LCMS analysis showed that azepine
hydrogenation was complete. The mixture was filtered through a Celite pad to remove the heterogeneous catalyst, and the filter cake was rinsed with methanol $(3 \times 1 \mathrm{~mL})$. The filtrate was concentrated to give a colorless oil, which was purified by preparative HPLC on a Waters SunFire Prep C_{18} column $(5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% formic acid -2% acetonitrile-water initially, grading to 0.1% formic acid- 40% acetonitrile-water over 30 min , with a flow rate of 15 $\mathrm{mL} / \mathrm{min}$; monitored by UV absorbance at 280 nm) to provide the product (FSA-212015• $\mathrm{HCO}_{2} \mathrm{H}$, $9.6 \mathrm{mg}, 56 \%, 2$ steps) as a brilliant white solid.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.49(\mathrm{~s}, 1 \mathrm{H}), 8.29(\mathrm{br}, 1 \mathrm{H}), 7.95(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.53(\mathrm{~d}, J=$ $8.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.90(\mathrm{dd}, J=14.9,11.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{dd}, J=15.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{ddd}, J$ $=11.4,6.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dt}, J=47.5,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.18-4.11(\mathrm{~m}, 3 \mathrm{H}), 4.06-4.05(\mathrm{~m}$, $2 \mathrm{H}), 3.85-3.47(\mathrm{~m}, 10 \mathrm{H}), 3.41(\mathrm{ddd}, J=13.9,5.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\operatorname{app} \mathrm{t}, J=12.4 \mathrm{~Hz}$, $1 \mathrm{H}), 2.18(\operatorname{app} \mathrm{ddt}, J=16.5,8.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.11(\operatorname{app} \mathrm{dtd}, J=15.6,7.6,3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $2.00(\operatorname{app~dt}, J=15.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\operatorname{app} \mathrm{ddt}, J=14.9,8.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.71-1.62(\mathrm{~m}$, $3 \mathrm{H}), 1.56(\operatorname{app} \mathrm{dtd}, J=15.3,11.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.46-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.36-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.09$ (d, $J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 170.7,169.8,165.6,146.6,134.7,132.3,127.6,125.4,122.0$, $83.3(\mathrm{~d}, J=163.2 \mathrm{~Hz}), 76.1,70.6,69.3,67.2,66.4,59.3,55.7,45.5,44.6,37.3,36.0,31.7$, $30.2(\mathrm{~d}, J=19.6 \mathrm{~Hz}), 39.3,27.3,22.5(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 18.1$.

FTIR (neat, cm^{-1}): 3358 (br), 2936 (m), 1672 (m), 1601 (s$), 1459$ (m), 1438 (m), 1280 (m), 1114 (m), 1068 (m).

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{33} \mathrm{H}_{49} \mathrm{FN}_{6} \mathrm{O}_{8}, 677.3669$; found 677.3683 .

Synthetic lincosamide FSA-212023.

In a 4-mL glass vial, at $23^{\circ} \mathrm{C}$, trifluoroacetic acid $(100 \mu \mathrm{~L})$ was added to a suspension of azide 3.65 ($50 \mathrm{mg}, 89 \mu \mathrm{~mol}, 1$ equiv) in dichloromethane ($200 \mu \mathrm{~L}$). After stirring for 30 min , LCMS analysis showed that Boc removal was complete, and the mixture was diluted with toluene $(1 \mathrm{~mL})$. The diluted mixture was concentrated to dryness, and the residue was re-dissolved in methanol $(500 \mu \mathrm{~L})$. This solution was treated with palladium on carbon $(10 \% \mathrm{w} / \mathrm{w}, 25 \mathrm{mg})$, the headspace of the vial was replaced with hydrogen gas, and the black suspension was stirred under hydrogen gas (1 atm) at $23{ }^{\circ} \mathrm{C}$. After 1 h , LCMS analysis showed that azepine hydrogenation was complete, and the mixture was filtered through a Celite pad to remove heterogeneous catalyst. The filter cake was rinsed with methanol $(3 \times 1 \mathrm{~mL})$, and the filtrate was concentrated to give the product as a colorless oil ($61 \mathrm{mg}, 103 \%$).

An analytically pure sample was prepared by subjecting a small quantity of crude product $(\sim 6 \mathrm{mg})$ to preparative HPLC on a Waters SunFire Prep C ${ }_{18}$ column ($5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% formic acid -2% acetonitrile-water initially, grading to 0.1% formic acid -25% acetonitrile-water over 30 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 280 nm) to provide the product $\left(\mathbf{F S A}-212023 \cdot \mathrm{HCO}_{2} \mathrm{H}\right)$ as a brilliant white solid.
${ }^{1} \mathrm{H}$ NMR (hydroformate salt, $\left.600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.51$ (br, 2H), $4.42(\mathrm{dt}, J=47.6,6.0 \mathrm{~Hz}, 2 \mathrm{H})$, 4.26-4.24(m, 1H), $4.10(\mathrm{dd}, J=7.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=9.4,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{br}$,
$1 \mathrm{H}), 3.96-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.39-3.33$ (m, $2 \mathrm{H}), 3.24(\mathrm{dd}, J=13.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\operatorname{app} \mathrm{t}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.17-2.09(\mathrm{~m}, 2 \mathrm{H}), 1.99$ $(\mathrm{d}, J=15.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.90-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.61(\mathrm{~m}, 3 \mathrm{H}), 1.55(\operatorname{app} \mathrm{q}, J=11.5 \mathrm{~Hz}, 1 \mathrm{H})$, $1.46-1.38(\mathrm{~m}, 3 \mathrm{H}), 1.36-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.30(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (hydroformate salt, $126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 171.9,169.8,84.7$ (d, $J=163.8 \mathrm{~Hz}$), 74.1, $72.0,71.5,70.8,70.1,68.6,60.6,55.6,45.6,39.1,37.4,36.8,33.8,31.6$ (d, $J=19.7 \mathrm{~Hz})$, 30.6, 28.8, 23.9 (d, $J=5.0 \mathrm{~Hz}), 22.1$.

FTIR (hydroformate salt, neat, cm^{-1}): 3246 (br), 2936 (m), 1670 (m), 1585 (s), 1377 (w), 1348 (m), 1078 (m).

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{20} \mathrm{H}_{38} \mathrm{FN}_{3} \mathrm{O}_{6}, 436.2817$; found 436.2830.

Synthetic lincosamide FSA-212031.

In a $16 \times 100 \mathrm{~mm}$ glass test tube, diamine FSA-212023 $\cdot 2 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(12 \mathrm{mg}, 18 \mu \mathrm{~mol}, 1$ equiv) was dissolved in water ($300 \mu \mathrm{~L}$). A solution of 2,5-dioxopyrrolidin-1-yl 2-hydroxybenzoate (3.66, $4.7 \mathrm{mg}, 20 \mu \mathrm{~mol}$, 1.1 equiv) ${ }^{153}$ in acetonitrile $(1.5 \mathrm{~mL}$) was added, and the mixture was basified with the addition of saturated aqueous sodium bicarbonate solution ($\sim 20 \mu \mathrm{~L}$), until pH 8 9 was achieved. After 1 h , LCMS showed the reaction had stalled due to acidification of the reaction mixture; additional sodium bicarbonate solution was added to re-establish pH 8 - 9 . After 20 h of additional stirring, LCMS showed that no starting material remained. The mixture was concentrated to dryness, and the residue was purified by preparative HPLC on a Waters SunFire Prep C_{18} column ($5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% formic acid -2% acetonitrile-water initially, grading to 0.1% formic acid -30% acetonitrile-water over 30 min , with a flow rate of 15 $\mathrm{mL} / \mathrm{min}$; monitored by UV absorbance at 254 nm) to provide FSA-212031 $\cdot \mathrm{HCO}_{2} \mathrm{H}$ as an eggshell-white powder ($8.0 \mathrm{mg}, 74 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.44(\mathrm{br}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.91(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dt}, J=47.6,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.26-4.20(\mathrm{~m}, 2 \mathrm{H}), 4.08(\mathrm{dd}, J=$

[^90]$10.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-4.00(\mathrm{~m}, 2 \mathrm{H}), 3.94(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.91-3.84(\mathrm{~m}, 2 \mathrm{H}), 3.69$ (dd, $J=11.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{dd}, J=6.3,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=13.6,4.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.09 (app t, $J=12.4 \mathrm{~Hz}, 1 \mathrm{H}$), $2.20-2.08(\mathrm{~m}, 2 \mathrm{H}), 2.00-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{ddd}, J=15.2$, $8.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.71-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.46-1.37(\mathrm{~m}, 3 \mathrm{H}), 1.35-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.10(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 171.6,170.8,168.9,160.7,134.7,129.4,120.2,118.3,117.3$, $84.7(\mathrm{~d}, J=163.7), 76.8,71.8(2 \times \mathrm{C}), 70.6,68.9,68.6,60.6,56.2,45.8,38.9,37.4,35.6$, $33.3,31.6(\mathrm{~d}, J=19.7 \mathrm{~Hz}), 30.6,28.8,23.9(\mathrm{~d}, J=5.0 \mathrm{~Hz}), 19.1$.

FTIR (neat, cm^{-1}): 3309 (br), 2935 (m), 1672 (m), 1634 (m), 1591 (s), 1376 (m), 1347 (m), 1077 (m), 757 (m).

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{FN}_{3} \mathrm{O}_{8}, 556.3029$; found 556.3054 .

Synthetic lincosamide FSA-212075.

A $12 \times 75 \mathrm{~mm}$ glass test tube was charged with a magnetic stir bar, diamine FSA-212023

- $2 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(15 \mathrm{mg}, 23 \mu \mathrm{~mol})$, and water $(377 \mu \mathrm{~L})$. A solution of 2,5-dioxopyrrolidin-1-yl 4hydroxybenzoate ($\mathbf{S 3 . 1 0}, 5.9 \mathrm{mg}, 25 \mu \mathrm{~mol}, 1.1$ equiv) ${ }^{154}$ in acetonitrile (1.9 mL) was added next. Finally, the pH of the mixture was adjusted to $\mathrm{pH} 8-9$ with the addition of aqueous sodium bicarbonate solution ($1.1 \mathrm{M}, 40 \mu \mathrm{~L}, 44 \mu \mathrm{~mol}, 1.9$ equiv). After 21 h of stirring at $23{ }^{\circ} \mathrm{C}$, LCMS analysis showed that no starting material remained. The mixture was concentrated to dryness, and the residue was subjected to preparative HPLC on a Waters SunFire Prep C C_{18} column ($5 \mu \mathrm{~m}, 250$ $\times 19 \mathrm{~mm}$; eluting with 0.1% formic acid -5% acetonitrile-water initially, grading to 0.1% formic acid- 30% acetonitrile-water over 30 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 254 nm) to provide FSA-212075 • $\mathrm{HCO}_{2} \mathrm{H}$ as a brilliant white solid ($4.7 \mathrm{mg}, 35 \%$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.46(\mathrm{br}, 1 \mathrm{H}), 7.73(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.83(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 2 \mathrm{H})$, $4.41(\mathrm{dt}, J=47.5,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.22(\mathrm{ddd}, J=11.3,6.4,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=8.3,5.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=10.0,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=6.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{qd}, J=6.5$, $1.5 \mathrm{~Hz}), 3.92-3.88(\mathrm{~m}, 3 \mathrm{H}), 3.66(\mathrm{dd}, J=10.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=14.6,3.6 \mathrm{~Hz}$,

[^91]$1 \mathrm{H}), 3.40(\mathrm{ddd}, J=13.8,5.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\operatorname{app} \mathrm{t}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.19-2.08(\mathrm{~m}$, $2 \mathrm{H}), 2.00-1.97(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{app} d d t, J=15.5,8.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.71-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.45-$ $1.38(\mathrm{~m}, 3 \mathrm{H}), 1.37-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.10(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H})$.

FTIR (neat, cm^{-1}): 3271 (br), 2934 (m), 1671 (m), 1607 (s), 1580 (s), 1448 (s), 1348 (m), 1281 (m), 1077 (m), 743 (m).

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{FN}_{3} \mathrm{O}_{8}, 556.3038$; found 556.3036.

Synthetic lincosamide FSA-212030.

In a $16 \times 100 \mathrm{~mm}$ glass test tube, diamine FSA-212023 $\cdot 2 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(12 \mathrm{mg}, 18 \mu \mathrm{~mol}, 1$ equiv) was dissolved in water ($300 \mu \mathrm{~L}$). A solution of 2,5-dioxopyrrolidin-1-yl 3-methyl-1H-pyrazole-5-carboxylate ($\mathbf{S 3 . 1 1}, 4.4 \mathrm{mg}, 20 \mu \mathrm{~mol}, 1.1$ equiv) in acetonitrile (1.5 mL) was added, and the mixture was basified with the addition of saturated aqueous sodium bicarbonate solution ($\sim 20 \mu \mathrm{~L}$), until pH 8-9 was achieved. After 13 h of stirring at $23^{\circ} \mathrm{C}$, LCMS analysis indicated that no starting material remained. The mixture was concentrated to dryness, and the residue was subjected to preparative HPLC on a Waters SunFire Prep C_{18} column ($5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% formic acid -2% acetonitrile-water initially, grading to 0.1% formic acid -30% acetonitrile-water over 30 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 254 nm) to provide FSA-212030 $\cdot \mathrm{HCO}_{2} \mathrm{H}$ as a white solid ($3.7 \mathrm{mg}, 35 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.44(\mathrm{br}, 1 \mathrm{H}), 6.50(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{dt}, J=47.6,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.23-$ $4.17(\mathrm{~m}, 1 \mathrm{H}), 4.12(\operatorname{app} \mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=9.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-4.02(\mathrm{~m}$, $2 \mathrm{H}), 3.94-3.87(\mathrm{~m}, 3 \mathrm{H}), 3.66(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=$ $14.0,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{app} \mathrm{t}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~s}, 3 \mathrm{H}), 2.16-2.07(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{dd}$, $J=13.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.67(\mathrm{~m}, 1 \mathrm{H}), 1.67-1.54(\mathrm{~m}, 3 \mathrm{H}), 1.48-$ $1.39(\mathrm{~m}, 3 \mathrm{H}), 1.37-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.11(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 171.4,169.0,165.1,147.4,142.6,105.1,84.7(\mathrm{~d}, J=163.6 \mathrm{~Hz})$, $77.1,72.5,71.9,70.9,68.9,67.8,60.7,57.0,45.7,39.0,37.3,35.2,33.3,31.6(\mathrm{~d}, J=19.8$ Hz), 30.5, 28.7, 23.9 (d, $J=5.1 \mathrm{~Hz}), 19.5$, 10.7.

FTIR (neat, cm^{-1}): 3267 (br), 2931 (m), 1639 (s), 1582 (s), 1420 (m), 1346 (w), 1078 (m). HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{Na}]^{+}$calc'd for $\mathrm{C}_{25} \mathrm{H}_{42} \mathrm{FN}_{5} \mathrm{O}_{7}, 566.2960$; found 566.2975.

Protected lincosamide S3.12.

In a 4-mL glass vial fitted with a magnetic stir bar, aminotetraol $\mathbf{3 . 5 6} \cdot \mathrm{HCl}(54 \mathrm{mg}, 0.20$ mmol, 1 equiv) was dissolved in N, N-dimethylformamide $(990 \mu \mathrm{~L})$, and triethylamine ($120 \mu \mathrm{~L}$, 0.84 mmol, 4.2 equiv) was added. The mixture was chilled to $0{ }^{\circ} \mathrm{C}$ before N, O bis(trimethylsilyl)trifluoroacetamide ($110 \mu \mathrm{~L}, 0.40 \mathrm{mmol}, 2.0$ equiv) was added; the mixture was then warmed to $23^{\circ} \mathrm{C}$ and was stirred for 1 h to ensure complete O-silylation. This mixture was then transferred by cannula to a separate $4-\mathrm{mL}$ glass vial containing azepine acid $\mathbf{3 . 6 3} \mathbf{(7 0 ~ m g , ~} 0.22$ mmol, 1.1 equiv) that had been dried by azeotropic removal of benzene, and HATU ($98 \mathrm{mg}, 0.26$ mmol, 1.3 equiv) was added. The resulting yellow solution was stirred at $23{ }^{\circ} \mathrm{C}$ for 3 h . The reaction mixture was then diluted with ethyl acetate $(15 \mathrm{~mL})$, and this solution was washed sequentially with $10-\mathrm{mL}$ portions of $10 \% \mathrm{w} / \mathrm{v}$ aqueous citric acid solution, saturated aqueous sodium bicarbonate solution, and saturated aqueous sodium chloride solution. The washed organic solution was then dried over sodium sulfate, filtered, and concentrated. The residue was redissolved in $50 \% \mathrm{v} / \mathrm{v}$ acetic acid-methanol, and the resulting solution was stirred at $40{ }^{\circ} \mathrm{C}$ overnight in order to remove pendant trimethylsilyl groups from the coupled product. The mixture was then concentrated, and the crude residue was purified by flash-column chromatography (12 g silica gel, eluting with dichloromethane initially, grading to 10% methanol-dichloromethane) to provide the product as a white solid ($76 \mathrm{mg}, 72 \%$).
$\mathrm{R}_{f}=0.32\left(10 \%\right.$ methanol-dichloromethane, $\left.\mathrm{I}_{2}\right)$.
${ }^{1} \mathrm{H}$ NMR (1:1 ratio of rotamers, asterisk [*] denotes rotamer peaks that could be resolved; 600 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.07(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.90(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), * 5.49(\mathrm{~d}, J=6.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.46(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), * 4.49-4.42(\mathrm{~m}, 2 \mathrm{H}), 4.36(\mathrm{q}, J=6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-4.01(\mathrm{~m}$, $1 \mathrm{H}), 4.01-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.94-3.92(\mathrm{~m}, 1 \mathrm{H}), 3.87-3.80(\mathrm{~m}, 3 \mathrm{H}), 3.71(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{*}$ 3.67 (ddd, $J=15.3,11.7,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.56(\mathrm{~m}, 1 \mathrm{H}), 2.77-2.69(\mathrm{~m}, 1 \mathrm{H}), 2.50-2.38$ $(\mathrm{m}, 2 \mathrm{H}), 2.34-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.01-1.97(\mathrm{~m}, 2 \mathrm{H}), 1.67-1.59(\mathrm{~m}, 4 \mathrm{H}), 1.53-1.49(\mathrm{~m}, 2 \mathrm{H})$, $1.48(\mathrm{~s}, 9 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}),{ }^{*} 1.21(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{*} 0.96(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (1:1 ratio of rotamers, asterisk [*] denotes rotamer peaks that could be resolved; 126 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 175.4,175.3,{ }^{*} 157.7,157.1, * 142.7,142.5, * 120.4,120.2, * 84.7(\mathrm{~d}, J=$ $163.8 \mathrm{~Hz}) 82.0,81.7, * 79.9,79.8, * 71.5,71.4, * 71.1,70.9, * 70.6,69.6,69.5, * 68.9,68.8, *$ $63.5,62.6, * 57.8,56.8, * 41.8,41.2, * 39.5,39.3, * 34.9,34.2, * 31.0(\mathrm{~d}, J=19.9 \mathrm{~Hz}), 30.9$ (d, $J=19.9 \mathrm{~Hz}),{ }^{*} 28.8,28.7,28.3, * 24.8(\mathrm{~d}, J=4.8 \mathrm{~Hz}), 24.6(\mathrm{~d}, J=4.8 \mathrm{~Hz}),{ }^{*} 20.7,19.6$,* 17.6, 11.0, 10.9.*

FTIR (neat, cm^{-1}): 3397 (br), 2970 (m), 2935 (m), 1655 (s), 1453 (m), 1410 (s), 1368 (m), 1165 (s), 1080 (s).

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{26} \mathrm{H}_{45} \mathrm{FN}_{2} \mathrm{O}_{8}, 533.3233$; found 533.3256.

Synthetic lincosamide FSA-212009.

A 4-mL glass vial was charged with hydrogen chloride solution (4.0 M in 1,4-dioxane, 750 $\mu \mathrm{L})$, and this solution was chilled to $0^{\circ} \mathrm{C}$ in an ice-water bath. Azepine $\mathbf{S 3 . 1 2}(20 \mathrm{mg}, 38 \mu \mathrm{~mol}, 1$ equiv) was then added, the cooling bath was removed, and the resulting solution was stirred at 23 ${ }^{\circ} \mathrm{C}$ for 35 min , whereupon LCMS analysis showed that Boc removal was complete. The mixture was diluted with toluene (1 mL), and the mixture was concentrated in vacuo. Residual dioxane was removed by re-concentration from $50 \% \mathrm{v} / \mathrm{v}$ methanol-toluene. The dried residue was then redissolved in methanol $(1.0 \mathrm{~mL})$, and the solution was treated with palladium on carbon $(10 \% \mathrm{w} / \mathrm{w}$, $10 \mathrm{mg})$. Hydrogen gas was bubbled through the black suspension for 5 min , and then the mixture was stirred under hydrogen gas (1 atm) at $23^{\circ} \mathrm{C}$ for 1.5 h , whereupon LCMS analysis showed that olefin hydrogenation was complete. The reaction mixture was filtered through a pad of Celite, the filter cake was rinsed with fresh methanol $(2 \times 5 \mathrm{~mL})$, and the filtrate was concentrated to give a colorless film. This residue was purified by preparative HPLC on a Waters SunFire Prep C_{18} column $(5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% formic acid- 2% acetonitrile-water initially, grading to 0.1% formic acid- 50% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 210 nm) to provide the product (FSA-212009• $\mathrm{HCO}_{2} \mathrm{H}, 12 \mathrm{mg}$, 65%) as a white solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.43(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{dt}, J=47.5,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{dd}, J=8.5,5.7$ Hz, 4.09-4.05 (m, 2H), $3.96(\mathrm{dd}, J=10.0,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.83$ (ddd, $J=11.3,6.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=10.1,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.42$ (ddd, $J=13.7,6.0,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\operatorname{app} \mathrm{t}, ~ J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.00$ $(\operatorname{app~dt}, J=15.3,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.90(\operatorname{app} \mathrm{ddt}, J=15.4,8.1,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.71-1.54(\mathrm{~m}, 6 \mathrm{H})$, $1.54-1.46(\mathrm{~m}, 3 \mathrm{H}), 1.36-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.96(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta 171.7,168.8,84.7(\mathrm{~d}, J=163.6 \mathrm{~Hz}), 80.1,71.6,70.8,70.7,69.5$, $68.1,60.7,56.5,45.8,38.9,37.4,33.3,31.6(\mathrm{~d}, J=19.6 \mathrm{~Hz}), 30.6,28.8,23.8(\mathrm{~d}, J=5.0$ $\mathrm{Hz}), 18.6,17.5,11.1$.

FTIR (neat, cm^{-1}): 3281 (br), 2935 (m), 1670 (m), 1589 (s), 1346 (m), 1080 (s).
HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{32} \mathrm{H}_{39} \mathrm{FN}_{2} \mathrm{O}_{6}, 435.2865$; found 435.2884.

Protected lincosamide 3.68.

In a $2-5 \mathrm{~mL}$ glass microwave vial, an ice-cold solution of tetraol $\mathbf{3 . 6 5}(64.5 \mathrm{mg}, 115 \mu \mathrm{~mol}$, 1 equiv) in pyridine ($192 \mu \mathrm{~L}$) was treated sequentially with hexamethyldisilazane (139 $\mu \mathrm{L}, 662$ $\mu \mathrm{mol}, 5.74$ equiv) and chlorotrimethylsilane ($37.3 \mu \mathrm{~L}, 292 \mu \mathrm{~mol}, 2.53$ equiv). The resulting milky white suspension was warmed to $23^{\circ} \mathrm{C}$, and after 2 h of stirring at this temperature, the mixture was concentrated to dryness. The dried residue was partitioned between water (10 mL) and 20% v / v ethyl acetate hexanes $(20 \mathrm{~mL})$, the layers were shaken vigorously until both were clear, and then the layers were separated. The organic phase was washed with a fresh portion of water (10 mL), dried over sodium sulfate, filtered, and concentrated to provide 2,3,4,7-tetrakis- O trimethylsilylated intermediate $\left(\mathrm{R}_{f}=0.52,20 \%\right.$ ethyl acetate-hexanes, CAM). This material was then re-dissolved in methanol ($500 \mu \mathrm{~L}$), and $80 \% \mathrm{v} / \mathrm{v}$ acetic acid-water $(75 \mu \mathrm{~L})$ was added. After stirring for 10 min at $23{ }^{\circ} \mathrm{C}$, TLC analysis showed that no tetrasilylated intermediate remained; the mixture was neutralized with the addition of saturated aqueous sodium bicarbonate solution (150 $\mu \mathrm{L})$. The basified mixture was partitioned between water (10 mL) and $20 \% \mathrm{v} / \mathrm{v}$ ethyl acetatehexanes (20 mL), and the layers were shaken vigorously before they were separated. The organic phase was then washed with a fresh portion of water $(10 \mathrm{~mL})$, dried over sodium sulfate, filtered, and concentrated to afford 2,3,4-tris- O-trimethylsilylated intermediate as a white foaming solid ($85.7 \mathrm{mg}, 96 \%$).

A portion of this intermediate ($56.1 \mathrm{mg}, 72.3 \mu \mathrm{~mol}, 1$ equiv) was transferred to a clean $2-$ 5 mL glass microwave vial, where it was dissolved with chloroform $(241 \mu \mathrm{~L})$. This solution was chilled to $0^{\circ} \mathrm{C}$, and was treated sequentially with triethylamine ($25.2 \mu \mathrm{~L}, 181 \mu \mathrm{~mol}, 2.50$ equiv) and methanesulfonyl chloride ($11.3 \mu \mathrm{~L}, 145 \mu \mathrm{~mol}, 2.00$ equiv). After 3 min of stirring at $0{ }^{\circ} \mathrm{C}$, TLC analysis (40% ethyl acetate-hexanes) showed complete consumption of 7-hydroxy intermediate. The reaction mixture was diluted with dichloromethane (5 mL), and the diluted solution was washed with saturated aqueous sodium bicarbonate solution $(2 \times 2 \mathrm{~mL})$. The washed product solution was then dried over sodium sulfate, filtered, and concentrated to give 7-Omethanesulfonyl ester intermediate as a colorless oil ($67.6 \mathrm{mg}, 109 \%$).

Finally, in a $0.2-0.5 \mathrm{~mL}$ glass vial fitted with a magnetic stir bar and PTFE-lined screw cap, this 7-O-methanesulfonyl ester intermediate, (4-mercaptophenyl)(morpholino)methanone (3.67, $35.0 \mathrm{mg}, 157 \mu \mathrm{~mol}, 2.00$ equiv) and potassium carbonate ($32.5 \mathrm{mg}, 235 \mu \mathrm{~mol}, 3.00$ equiv) were dissolved in N, N-dimethylformamide (196 $\mu \mathrm{L}$). The vial was sealed, and the contents were heated with stirring to $80^{\circ} \mathrm{C}$ for 90 min , at which point TLC analysis (40% ethyl acetate-hexanes, UV+PAA) showed that no sulfonate ester electrophile remained. The mixture was cooled to $23{ }^{\circ} \mathrm{C}$ and was diluted with ethyl acetate (5 mL); this diluted solution was washed with water $(2 \times 1 \mathrm{~mL})$, and the washed solution was concentrated. The residue was re-dissolved in $50 \% \mathrm{v} / \mathrm{v}$ acetic acidmethanol, and the resulting solution was stirred at $40^{\circ} \mathrm{C}$ overnight in order to effect global desilylation. The desilylated product mixture was concentrated to dryness and was purified by flash-column chromatography (12 g silica gel, eluting with dichloromethane initially, grading to 10% methanol-dichloromethane) to provide arenesulfide 3.68 as a brilliant white solid (46.5 mg , 81\% overall).
$\mathrm{R}_{f}=0.26(10 \%$ methanol-dichloromethane, UV+CAM).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.51(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.35(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 6.73(\mathrm{~d}, J=9.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.43(\operatorname{app} \mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=11.3,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dt}, J=47.3$, $6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.26-2.33(\mathrm{~m}, 1 \mathrm{H}), 4.17(\mathrm{app} \mathrm{td}, J=9.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.07(1 \mathrm{H}), 4.04$ (dd, $J=9.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.56(\mathrm{~m}, 12 \mathrm{H}), 3.52(\mathrm{dd}, J=9.6,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.39$ (m, 1H),

MS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}-\mathrm{Boc}]^{+}$calc'd for $\mathrm{C}_{36} \mathrm{H}_{53} \mathrm{FN}_{6} \mathrm{O}_{9} \mathrm{~S}$, 665.4; found 665.4.

Synthetic lincosamide FSA-212066.

In a 1-mL glass vial fitted with a magnetic stir bar and a PTFE-lined screw cap, azide $\mathbf{3 . 6 8}$ ($12.9 \mathrm{mg}, 16.9 \mu \mathrm{~mol}, 1$ equiv) was dissolved in $2: 2: 1 \mathrm{v} / \mathrm{v} / \mathrm{v}$ tert-butanol-methanol-water ($112 \mu \mathrm{~L}$). To this solution were then added 1-ethynyl-3-fluorobenzene ($3.93 \mu \mathrm{~L}, 3.38 \mu \mathrm{~mol}, 2.00$ equiv), aqueous sodium ascorbate solution ($0.100 \mathrm{M}, 33.7 \mu \mathrm{~L}, 3.37 \mu \mathrm{~mol}, 0.200$ equiv), and aqueous cupric sulfate solution $\left(0.100 \mathrm{M}, 8.43 \mu \mathrm{~L}, 0.843 \mathrm{mmol}, 0.0500\right.$ equiv) at $23{ }^{\circ} \mathrm{C}$. Upon addition of copper catalyst, the mixture attained a fluorescent lemon-yellow color. The reaction was shielded from light using aluminum foil, and after stirring for 24 h , LCMS analysis showed that no starting material remained. Saturated aqueous sodium bicarbonate solution $(1 \mathrm{~mL})$ and saturated aqueous sodium chloride solution (1 mL) were added, and the diluted mixture was extracted with dichloromethane $(3 \times 2 \mathrm{~mL})$. The combined extracts were dried over sodium sulfate, filtered, and concentrated to give a light yellow-green foaming solid.

This residue was then transferred to a 4-mL glass vial, where it was dissolved in $33 \% \mathrm{v} / \mathrm{v}$ trifluoroacetic acid-dichloromethane ($300 \mu \mathrm{~L}$). After stirring at $23^{\circ} \mathrm{C}$ for 30 min , LCMS analysis showed that Boc removal was complete, and the mixture was concentrated to dryness. The residue was then dissolved in methanol $(300 \mu \mathrm{~L})$, palladium on carbon $(10 \% \mathrm{w} / \mathrm{w}, 20.0 \mathrm{mg})$ was added, and the vial was transferred to a Parr stainless-steel high-pressure reaction flask, where 150 psi of hydrogen gas pressure was applied. After stirring for 4 d, the pressure reactor was carefully
depressurized, and the reaction mixture was filtered through a pad of Celite to remove the heterogeneous catalyst. The filter cake was rinsed with methanol $(3 \times 1 \mathrm{~mL})$, the filtrate was concentrated, and the residue thus obtained was subjected to preparative HPLC on a Waters SunFire Prep C_{18} column ($5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% formic acid -5% acetonitrilewater initially, grading to 0.1% formic acid -50% acetonitrile-water over 30 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 280 nm) to provide $\mathbf{F S A} \mathbf{- 2 1 2 0 6 6} \cdot \mathrm{HCO}_{2} \mathrm{H}$ as a white solid ($4.9 \mathrm{mg}, 35 \%$, 2 steps).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.41(\mathrm{br}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H})$, $7.40(\mathrm{td}, J=8.0,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.17(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.06(\mathrm{td}$, $J=8.5,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{dd}, J=14.9,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.74-4.69(\mathrm{~m}, 2 \mathrm{H}), 4.53(\mathrm{dd}, J=9.5$, $3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dt}, J=47.6,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{dd}, J=8.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.04(\mathrm{~m}$, $2 \mathrm{H}), 4.01-3.97(\mathrm{br}, 1 \mathrm{H}), 3.78-3.59(\mathrm{br}, 6 \mathrm{H}), 3.56(\mathrm{dd}, J=6.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{dd}, J=$ $14.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\operatorname{app} \mathrm{t}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.98(\mathrm{~m}, 1 \mathrm{H})$, $1.92-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.70-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.60-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.37(\mathrm{~m}, 3 \mathrm{H}), 1.36-1.31$ (m, 2H), 1.11 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.

FTIR (neat, cm^{-1}): 3335 (br), 2932 (m), 1677 (m), 1618 (s), 1590 (s), 1434 (m), 1280 (m), 1113 (m), 1086 (m).

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{39} \mathrm{H}_{52} \mathrm{~F}_{2} \mathrm{~N}_{6} \mathrm{O}_{7} \mathrm{~S}$, 787.3659; found 787.3648.

Synthetic lincosamide FSA-212062b.

In a 1-mL glass vial fitted with a magnetic stir bar and a PTFE-lined screw cap, azide $\mathbf{3 . 6 8}$ ($12.5 \mathrm{mg}, 16.3 \mu \mathrm{~mol}, 1$ equiv) was dissolved in $2: 2: 1 \mathrm{v} / \mathrm{v} / \mathrm{v}$ tert-butanol-methanol-water ($109 \mu \mathrm{~L}$). To this solution were then added 3-ethynylaniline ($3.68 \mu \mathrm{~L}, 3.27 \mu \mathrm{~mol}, 2.00$ equiv), aqueous sodium ascorbate solution ($0.100 \mathrm{M}, 32.7 \mu \mathrm{~L}, 3.27 \mu \mathrm{~mol}, 0.200$ equiv), and aqueous cupric sulfate solution ($0.100 \mathrm{M}, 8.17 \mu \mathrm{~L}, 0.817 \mathrm{mmol}, 0.0500$ equiv) at $23^{\circ} \mathrm{C}$. Upon addition of copper catalyst, the mixture attained a golden yellow color. The reaction was shielded from light using aluminum foil, and after stirring for 2 h , LCMS analysis showed that no starting material remained. Saturated aqueous sodium bicarbonate solution (1 mL) and saturated aqueous sodium chloride solution (1 mL) were added, and the diluted mixture was extracted with dichloromethane ($3 \times 2 \mathrm{~mL}$). The combined extracts were dried over sodium sulfate, filtered, and concentrated to give a light brown foaming solid.

This residue was then transferred to a 4-mL glass vial, where it was dissolved in $33 \% \mathrm{v} / \mathrm{v}$ trifluoroacetic acid-dichloromethane ($300 \mu \mathrm{~L}$). After stirring at $23^{\circ} \mathrm{C}$ for $30 \mathrm{~min}, \mathrm{LCMS}$ analysis showed that Boc removal was complete, and the mixture was concentrated to dryness. The residue was then dissolved in methanol $(300 \mu \mathrm{~L})$, palladium on carbon $(10 \% \mathrm{w} / \mathrm{w}, 15.0 \mathrm{mg})$ was added, and the vial was transferred to a Parr stainless-steel high-pressure reaction flask, where 150 psi of hydrogen gas pressure was applied. After stirring for 2 d , the pressure reactor was carefully
depressurized, and the reaction mixture was filtered through a pad of Celite to remove the heterogeneous catalyst. The filter cake was rinsed with methanol $(3 \times 1 \mathrm{~mL})$, the filtrate was concentrated, and the residue thus obtained was subjected to preparative HPLC on a Waters SunFire Prep C_{18} column ($5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% formic acid -5% acetonitrilewater initially, grading to 0.1% formic acid -50% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 280 nm) to provide $\mathbf{F S A} \mathbf{- 2 1 2 0 6 2 b} \cdot \mathrm{HCO}_{2} \mathrm{H}$ as a white solid ($3.3 \mathrm{mg}, 23 \%$, 2 steps).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.43(\mathrm{~s}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.47(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H})$, $7.45-7.44(\mathrm{~m}, 1 \mathrm{H}), 7.22(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.08(\mathrm{~d}, J=8.2 \mathrm{~Hz}$, 2H), 4.84-4.81 (m, 1H), $4.74(\mathrm{dd}, J=14.4,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{dd}, J=9.7,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.40$ (dt, $J=47.6,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{dd}, J=9.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=6.8,4.1 \mathrm{~Hz}, 1 \mathrm{H})$, $3.96-3.95(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.68(\mathrm{~m}, 4 \mathrm{H}), 3.64-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.44$ (ddd, $J=14.0,5.9,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.38-3.33(\mathrm{~m}, 1 \mathrm{H}), 3.14(\mathrm{app} \mathrm{t}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.26-2.13(\mathrm{~m}$, 2H), 2.03-1.99 (m, 1H), $1.92(\operatorname{app} \operatorname{td}, J=10.4,9.4,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.70-1.61(\mathrm{~m}, 3 \mathrm{H}), 1.59-$ $1.53(\mathrm{~m}, 1 \mathrm{H}), 1.46-1.36(\mathrm{~m}, 3 \mathrm{H}), 1.34-1.29(\mathrm{~m}, 2 \mathrm{H}), 1.08(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.

FTIR (neat, cm^{-1}): 3388 (br), 2930 (m), 1672 (s), 1609 (m), 1463 (m), 1438 (m), 1202 (s), 1136 (m).

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{39} \mathrm{H}_{52} \mathrm{FN}_{7} \mathrm{O}_{7} \mathrm{~S}, 784.3862$; found 784.3855.

Protected lincosamide S3.13.

In a 1-mL glass vial, an ice-cold solution of tetraol $\mathbf{S 3 . 1 2}(15 \mathrm{mg}, 28 \mu \mathrm{~mol}, 1$ equiv) in pyridine ($100 \mu \mathrm{~L}$) was treated with hexamethyldisilazane ($15 \mu \mathrm{~L}, 71 \mu \mathrm{~mol}, 2.5$ equiv) and chlorotrimethylsilane ($21 \mu \mathrm{~L}, 0.16 \mathrm{mmol}, 5.7$ equiv). A white suspension of pyridinium hydrochloride formed upon addition of chlorotrimethylsilane. The mixture was then warmed to 23 ${ }^{\circ} \mathrm{C}$ and was stirred at that temperature for 2 h before it was concentrated to dryness. The dried residue was partitioned between hexanes $(10 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$, and the layers were shaken until both were clear. The layers were separated, and the organic layer was concentrated. The dried residue was re-dissolved in methanol ($500 \mu \mathrm{~L}$), and $80 \% \mathrm{v} / \mathrm{v}$ acetic acid-water $(75 \mu \mathrm{~L})$ was added at $23^{\circ} \mathrm{C}$. This mixture was stirred for 30 min , at which point TLC analysis showed that no tetrasilylated intermediate $\left(\mathrm{R}_{f}=0.65,20 \%\right.$ ethyl acetate-hexanes, CAM$)$ remained. The mixture was basified with the addition of saturated aqueous sodium bicarbonate solution ($200 \mu \mathrm{~L}$), and the mixture was then concentrated to dryness. The residue was partitioned between water $(10 \mathrm{~mL})$ and $50 \% \mathrm{v} / \mathrm{v}$ ethyl acetate-hexanes (10 mL). The layers were shaken vigorously before they were separated. The organic layer was washed with a fresh portion of water $(10 \mathrm{~mL})$ and was then dried over sodium sulfate. The dried product solution was concentrated to provide 2,3,4-tris- O trimethylsilylated intermediate ($18 \mathrm{mg}, 23 \mu \mathrm{~mol}$).

This intermediate was transferred to a 1-mL glass vial, where it was dried by azeotropic removal of benzene before it was dissolved in chloroform (100 $\mu \mathrm{L}$). This solution was chilled to $0^{\circ} \mathrm{C}$, and was then treated with triethylamine ($7.9 \mu \mathrm{~L}, 57 \mu \mathrm{~mol}, 2.5$ equiv) and methanesulfonyl chloride ($3.5 \mu \mathrm{~L}, 45 \mu \mathrm{~mol}, 2.0$ equiv). After 5 min of stirring at $0^{\circ} \mathrm{C}$, TLC analysis showed that no alcohol starting material remained (alcohol $\mathrm{R}_{f}=0.24$, methanesulfonate ester $\mathrm{R}_{f}=0.63 ; 20 \%$ diethyl ether-dichloromethane, CAM). The mixture was diluted with dichloromethane (2 mL), and the diluted solution was washed with saturated aqueous sodium bicarbonate solution (1 mL). The washed organic solution was then dried over sodium sulfate, filtered, and concentrated to give 2,3,4-tris- O-trimethylsilyl-7-O-methanesulfonyl intermediate as a colorless oil ($19 \mathrm{mg}, 23 \mu \mathrm{~mol}$).

Finally, in a $0.2-0.5 \mathrm{~mL}$ glass microwave vial, this material was dried by azeotropic removal of benzene. To the dried residue were added (4-mercaptophenyl)(morpholino)methanone (3.67, $10 \mathrm{mg}, 46 \mu \mathrm{~mol}$, 2.0 equiv), potassium carbonate ($9.5 \mathrm{mg}, 69 \mu \mathrm{~mol}, 3.0$ equiv) and N, N dimethylformamide $(57 \mu \mathrm{~L})$. The vial was sealed, and the mixture was heated to $80{ }^{\circ} \mathrm{C}$ for 1 h . The thick gel that formed was then cooled to $23{ }^{\circ} \mathrm{C}$ before it was diluted with dichloromethane. Trifluoroacetic acid ($200 \mu \mathrm{~L}$) was added next; after 10 min of stirring at $23^{\circ} \mathrm{C}$, LCMS analysis showed that all three trimethylsilyl groups had been removed successfully, while the Boc group remained in place. The mixture was concentrated to dryness, and the dried residue was subjected to preparative HPLC on a Waters SunFire Prep C ${ }_{18}$ column ($5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% formic acid -10% acetonitrile - water initially, grading to 0.1% formic acid -60% acetonitrilewater over 35 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 280 nm) to provide the product as a colorless film $(8.8 \mathrm{mg}, 52 \%, 3$ steps $)$.
${ }^{1} \mathrm{H}$ NMR (60:40 mixture of rotamers, asterisk [*] denotes minor rotamer peaks that could be resolved; $\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.70(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.62(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), * 7.46(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.39(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.50(\mathrm{br} \operatorname{app} \mathrm{s}, 1 \mathrm{H}), 4.59(\mathrm{dd}, J=11.0,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), * 4.51(\mathrm{dd}, J=11.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.46-4.42(\mathrm{~m}, 2 \mathrm{H}), 4.37-4.35(\mathrm{~m}, 1 \mathrm{H}), 4.05-3.93$ $(\mathrm{m}, 2 \mathrm{H}), 3.91-3.78(\mathrm{~m}, 5 \mathrm{H}), 3.76-3.60(\mathrm{~m}, 6 \mathrm{H}), 3.59-3.40(\mathrm{~m}, 3 \mathrm{H}), 2.82-2.74(\mathrm{~m}, 1 \mathrm{H})$, 2.49-2.39 (m, 2H), 2.35-2.32(m, 1H), 2.01 (app t, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.69-1.56(\mathrm{~m}, 4 \mathrm{H})$, $1.55-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.49(\mathrm{~s}, 9 \mathrm{H}), 1.47(\mathrm{~s}, 9 \mathrm{H}),{ }^{*} 1.34(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{t}, J=7.4 \mathrm{~Hz}$, $3 \mathrm{H})$.

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{37} \mathrm{H}_{56} \mathrm{FN}_{3} \mathrm{O}_{9} \mathrm{~S}$, 638.3270; found 638.3258.

FSA-212048

Synthetic lincosamide FSA-212048.

In a 4-mL glass vial fitted with a stir bar, azepine $\mathbf{S 3 . 1 3}(8.8 \mathrm{mg}, 12 \mu \mathrm{~mol})$ was dissolved in $33 \% \mathrm{v} / \mathrm{v}$ trifluoroacetic acid-dichloromethane ($300 \mu \mathrm{~L}$). After 1.5 h , LCMS analysis showed that Boc removal was complete, and the mixture was diluted with toluene ($500 \mu \mathrm{~L}$). The diluted mixture was concentrated to dryness. The residue was re-dissolved in methanol ($500 \mu \mathrm{~L}$), and the solution was treated with palladium hydroxide on carbon ($20 \% \mathrm{w} / \mathrm{w}, 8.0 \mathrm{mg}$). The black suspension was stirred under hydrogen gas (1 atm) at $23{ }^{\circ} \mathrm{C}$ for 2 d , at which point LCMS analysis showed that azepine hydrogenation was complete. The mixture was filtered through a Celite pad, and the filter cake was rinsed with methanol $(3 \times 1 \mathrm{~mL})$. The filtrate was concentrated to give a colorless film, which was purified by preparative HPLC on a Waters SunFire Prep C C_{18} column (5 $\mu \mathrm{m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% formic acid -10% acetonitrile--water initially, grading to 0.1% formic acid- 60% acetonitrile-water over 30 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 280 nm) to provide the product (FSA-212048 • $\mathrm{HCO}_{2} \mathrm{H}, 3.0 \mathrm{mg}, 37 \%$) as a white solid.
${ }^{1}{ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.46(\mathrm{br}, 1 \mathrm{H}), 7.44(\mathrm{dd}, J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.38(\mathrm{dd}, J=8.3,1.3$ $\mathrm{Hz}, 2 \mathrm{H}), 4.57(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dtd}, J=47.6,6.1,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.05-3.99(\mathrm{~m}, 2 \mathrm{H})$, $3.96(\mathrm{dd}, J=10.1,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.78-3.60(\mathrm{~m}$,
$6 \mathrm{H}), 3.57(\mathrm{dd}, J=10.2,3.1 \mathrm{~Hz}, 1!\mathrm{H}), 3.55-3.39(\mathrm{~m}, 3 \mathrm{H}), 3.12(\operatorname{app} \mathrm{t}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.25-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.05-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.93(\mathrm{app} \mathrm{td}, J=11.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.71-1.61(\mathrm{~m}$, $4 \mathrm{H}), 1.59-1.53(2 \mathrm{H}), 1.47-1.40(\mathrm{~m}, 3 \mathrm{H}), 1.35(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.35-1.32(\mathrm{~m}, 2 \mathrm{H}), 0.97$ $(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

FTIR (neat, cm^{-1}): 3333 (br), 2965 (m), 2933 (m), 1677 (s), 1595 (s), 1435 (m), 1280 (m), 1114 (m), 1084 (m).

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{FN}_{3} \mathrm{O}_{7} \mathrm{~S}, 640.3426$; found 640.3435 .

Protected lincosamide S3.14.

In a 4-mL glass vial fitted with a magnetic stir bar and silicone septum screw cap, an icecold solution of aminotetraol hydrochloride salt $\mathbf{3 . 5 8} \cdot \mathrm{HCl}(32 \mathrm{mg}, 0.11 \mathrm{mmol})$ and triethylamine ($66 \mu \mathrm{~L}, 0.47 \mathrm{mmol}, 4.2$ equiv) in N, N-dimethylformamide ($564 \mu \mathrm{~L}$) was treated with N, O bis(trimethylsilyl)trifluoroacetamide ($61 \mu \mathrm{~L}, 0.23 \mathrm{mmol}, 2.0$ equiv). The mixture was warmed to $23^{\circ} \mathrm{C}$ and was stirred at that temperature for 1 h to ensure complete O-silylation before it was transferred via cannula to a separate 4-mL glass vial (fitted with a magnetic stir bar and silicone septum screw cap) containing azepine acid $\mathbf{3 . 6 3}$ ($39 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.1$ equiv). The resulting mixture was then treated with HATU ($56 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.3$ equiv), and the yellow solution was stirred at $23^{\circ} \mathrm{C}$. After 3 h , this solution was diluted with ethyl acetate $(20 \mathrm{~mL})$, and the organic solution was washed sequentially with $10-\mathrm{mL}$ portions of $10 \% \mathrm{w} / \mathrm{v}$ aqueous citric acid solution, saturated aqueous sodium bicarbonate solution, and saturated aqueous sodium chloride solution. The washed organic product solution was then dried over sodium sulfate, filtered, and concentrated to give a residue that was re-dissolved in $50 \% \mathrm{v} / \mathrm{v}$ acetic acid-methanol $(4 \mathrm{~mL})$. This solution was stirred at $40{ }^{\circ} \mathrm{C}$ overnight to effect global desilylation, the desilylated mixture was diluted with toluene (4 mL), and the diluted mixture was concentrated to dryness in vacuo. The residue thus obtained was purified by flash-column chromatography (12 g silica gel, eluting with dichloromethane initially, grading to 10% methanol-dichloromethane) to provide the product as a white solid (44 mg, 71\%).
${ }^{1} \mathrm{H}$ NMR (60:40 mixture of rotamers, asterisk [*] denotes minor rotamer signals that could be resolved, $\left.600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.97(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{*} 7.83(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.50-$ $5.46(\mathrm{~m}, 1 \mathrm{H}), 4.48(\mathrm{dd}, J=12.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{app} \mathrm{dq}, J=47.5,6.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.12-$ $4.07(\mathrm{~m}, 1 \mathrm{H}), 4.07-4.02(\mathrm{~m}, 1 \mathrm{H}), 4.01-4.91(\mathrm{~m}, 3 \mathrm{H}), 3.88(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.86-3.80$ (m, 1H), 3.78-3.74(m, 1H), 3.71-3.64 (m, 1H), 3.07 (dd, $J=9.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{app}$ $\mathrm{q}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.49-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.32(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.29(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), * 1.99(\mathrm{app} \mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.67-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H}), 1.45(\mathrm{~s}, 9 \mathrm{H}),{ }^{*} 1.22(\mathrm{~d}, J$ $=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}),{ }^{*} 1.15-1.09(\mathrm{~m}, 1 \mathrm{H}), 0.74(\mathrm{tdd}, J=8.5,6.0,4.4 \mathrm{~Hz}$, $1 \mathrm{H}), 0.50(\mathrm{tq}, J=9.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.37(\mathrm{dq}, J=9.8,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.27(\mathrm{dq}, J=10.0,5.1$ Hz, 1H).

Synthetic lincosamide FSA-212011.

In a 4-mL glass vial fitted with a magnetic stir bar and PTFE-lined screw cap, azepine S3.14 ($10 \mathrm{mg}, 18 \mu \mathrm{~mol}, 1$ equiv) was dissolved in hydrogen chloride solution (4.0 M in $1,4-$ dioxane, $370 \mu \mathrm{~L}$). After 15 min of stirring at $23{ }^{\circ} \mathrm{C}$, a white precipitate had formed, and LCMS analysis showed that Boc removal was complete. Toluene (1 mL) was added, and the mixture was concentrated to dryness. The residue was then re-dissolved in methanol ($500 \mu \mathrm{~L}$), and palladium on carbon $(10 \% \mathrm{w} / \mathrm{w}, 5.0 \mathrm{mg})$ was added. The headspace above the mixture was replaced with hydrogen gas, and the mixture was stirred under a balloonful of hydrogen gas at $23^{\circ} \mathrm{C}$. After 1 h , LCMS analysis indicated that azepine hydrogenation was complete, and the mixture was filtered through a Celite pad to remove the heterogeneous catalyst. The filter cake was rinsed with methanol ($3 \times 1 \mathrm{~mL}$), and the filtrate was concentrated. This residue was purified by preparative HPLC on a Waters SunFire Prep C_{18} column ($5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% formic acid2% acetonitrile-water initially, grading to 0.1% formic acid -40% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 210 nm) to provide FSA-212011 - $\mathrm{HCO}_{2} \mathrm{H}$ as a white solid ($6.2 \mathrm{mg}, 69 \%$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.39(\mathrm{~s}, 1 \mathrm{H}), 4.42(\mathrm{dt}, J=47.6,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{dd}, J=9.1,5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.12(\mathrm{app} p, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{br}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=9.9,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.90$ (br, 1H), 3.80-3.74(m, 2H), $3.43(\mathrm{dd}, J=12.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\operatorname{appt}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.06(\mathrm{dd}, J=10.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.13(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{~d}, J=14.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.93-1.88$ $(\mathrm{m}, 1 \mathrm{H}), 1.72-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.55-1.47(\mathrm{~m}, 3 \mathrm{H}), 1.36-1.32(\mathrm{~m}, 2 \mathrm{H}), 1.20(\mathrm{~d}, J=6.4 \mathrm{~Hz}$, $3 \mathrm{H}), 1.17-1.10(\mathrm{~m}, 1 \mathrm{H}), 0.75(\mathrm{tt}, J=8.4,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 0.51(\mathrm{tt}, J=8.7,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.38$ (dq, $J=9.8,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.25(\mathrm{dq}, J=9.6,4.7 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 171.8,168.3,84.7(\mathrm{~d}, J=163.7 \mathrm{~Hz}), 84.2,72.4,72.1,70.6,70.3$, $67.8,60.7,55.7,45.7,38.9,37.4,33.2,31.6(\mathrm{~d}, J=19.6 \mathrm{~Hz}), 30.6,28.8,23.9(\mathrm{~d}, J=5.1$ $\mathrm{Hz}), 17.7,8.6,7.1,2.0$.

FTIR (neat, cm^{-1}): 3244 (br), 2936 (m), 1677 (m), 1660 (m), 1590 (s), 1462 (m), 1383 (m), 1345 (m), 1101 (m), 1076 (m), 1044 (m).

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{FN}_{2} \mathrm{O}_{6}, 447.2865$; found 447.2871.

Protected lincosamide S3.15.

In a 1-mL glass vial fitted with a magnetic stir bar, an ice-cold solution of tetraol $\mathbf{S 3 . 1 4}$ (20.3 mg, $37.3 \mu \mathrm{~mol}, 1$ equiv) in pyridine $(62.1 \mu \mathrm{~L}$) was treated sequentially with hexamethyldisilazane ($44.8 \mu \mathrm{~L}, 214 \mu \mathrm{~mol}, 5.74$ equiv) and chlorotrimethylsilane ($12.1 \mu \mathrm{~L}, 94.3$ $\mu \mathrm{mol}, 2.53$ equiv). The cooling bath was then removed, and the milky white suspension was stirred at $23{ }^{\circ} \mathrm{C}$ for 2 h before it was concentrated to dryness. The dried residue was partitioned between water (10 mL) and $50 \% \mathrm{v} / \mathrm{v}$ ethyl acetate-hexanes (10 mL); the biphasic mixture was shaken vigorously until the layers were clear, and then the layers were separated. The organic layer was washed with a fresh portion of water $(5 \mathrm{~mL})$. The washed organic solution was dried over sodium sulfate, filtered, and concentrated to give 2,3,4,7-tetrakis- O-trimethylsilylated intermediate as a colorless oil. This material was dissolved in methanol $(500 \mu \mathrm{~L})$, and $80 \% \mathrm{v} / \mathrm{v}$ acetic acid-water ($75 \mu \mathrm{~L}$) was added. Desilylation was monitored by TLC, and after 1.5 h , complete disappearance of starting material $\left(\mathrm{R}_{f}=0.50,20 \%\right.$ ethyl acetate-hexanes, CAM$)$ was observed. The mixture was neutralized with the addition of saturated aqueous sodium bicarbonate solution ($200 \mu \mathrm{~L}$), and the basified mixture was concentrated to dryness. The dried residue was partitioned between water (10 mL) and 50% diethyl ether-hexanes $(10 \mathrm{~mL})$, the biphasic mixture was agitated, and the layers were separated. The organic product solution was then washed with a fresh portion of water (5
mL), dried over sodium sulfate, filtered, and concentrated to give 2,3,4,-tris- O-trimethylsilylated intermediate as a colorless oil.

This material was transferred to a clean $1-\mathrm{mL}$ glass vial containing a magnetic stir bar, where it was dissolved in chloroform $(123 \mu \mathrm{~L})$. The solution was chilled to $0{ }^{\circ} \mathrm{C}$ before triethylamine ($12.8 \mu \mathrm{~L}, 92.0 \mu \mathrm{~mol}, 2.50$ equiv) and methanesulfonyl chloride ($5.73 \mu \mathrm{~L}, 73.6 \mu \mathrm{~mol}$, 2.00 equiv) were added sequentially by micropipette. After 5 min of stirring at $0^{\circ} \mathrm{C}$, TLC analysis (40% ethyl acetate-hexanes, CAM) indicated that no 2,3,4,-tris- O-trimethylsilylated intermediate remained. The reaction mixture was diluted with dichloromethane (5 mL), and the mixture was washed with saturated aqueous sodium bicarbonate solution $(2 \times 2 \mathrm{~mL})$. The washed product solution was then dried over sodium sulfate, filtered, and concentrated to give 2,3,4-tris- O -trimethylsilyl-7- O-methanesulfonyl intermediate as a foaming, off-white solid.

Finally, in a 1-mL glass vial, methanesulfonate ester intermediate $(25.6 \mathrm{mg}, 30.5 \mu \mathrm{~mol}, 1$ equiv), (4-mercaptophenyl)(morpholino)methanone (3.67, $13.6 \mathrm{mg}, 61.0 \mu \mathrm{~mol}, 2.00$ equiv), and potassium carbonate ($12.7 \mathrm{mg}, 91.5 \mu \mathrm{~mol}, 3.00$ equiv) were suspended in N, N-dimethylformamide $(76.0 \mu \mathrm{~L})$. This mixture was heated to $80^{\circ} \mathrm{C}$ for 1.5 h , whereupon TLC analysis (40% ethyl acetate-hexanes, UV+PAA) showed that no sulfonate ester intermediate remained. The reaction mixture was diluted with ethyl acetate (5 mL), the diluted solution was washed with water (2×1 mL), and the washed solution was concentrated. The residue was re-dissolved in $50 \% \mathrm{v} / \mathrm{v}$ acetic acid-methanol (2 mL), and the resulting solution was stirred at $40^{\circ} \mathrm{C}$ overnight in order to effect global desilylation. The desilylated product mixture was concentrated to dryness, and the dried residue was subjected to flash-column chromatography (4 g silica gel, eluting with dichloromethane initially, grading to 10% methanol-dichloromethane) to furnish the product as a colorless oil ($18.2 \mathrm{mg}, 69 \%$ overall).
$\mathrm{R}_{f}=0.26(10 \%$ methanol-dichloromethane, UV + PAA $)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.44(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 6.68(\mathrm{~d}, J=9.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.44(\operatorname{app} \mathrm{t}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{dd}, J=11.5,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dt}, J=47.3$, $6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.19(\mathrm{app} \mathrm{td}, J=9.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.07(\mathrm{~m}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=9.6,6.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.88-3.77(\mathrm{~m}, 3 \mathrm{H}), 3.76-3.76(\mathrm{~m}, 7 \mathrm{H}), 3.20(\mathrm{dd}, J=9.6,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.81-2.77$ (br, 1H), 2.76-2.49 (br, 1H), 2.48-2.35 (br, 1H), 2.34-2.26 (m, 1H), 2.02-1.95 (m, 2H), $1.70-1.59(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.41(\mathrm{~m}, 11 \mathrm{H}), 1.29-1.23(\mathrm{~m}, 3 \mathrm{H}), 1.03-0.96(\mathrm{br}, 1 \mathrm{H}), 0.74-0.67$ (br, 1H), 0.42-0.28 (br, 2H), 0.26-0.15 (br, 1H).

MS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{38} \mathrm{H}_{56} \mathrm{FN}_{3} \mathrm{O}_{9} \mathrm{~S}$, 750.4; found 750.4.

S3.15

$$
\xrightarrow[\substack{\text { 2. } \mathrm{H}_{2}, \mathrm{Pd}-\mathrm{C}, \mathrm{CH}_{3} \mathrm{OH} \\ 23^{\circ} \mathrm{C}, 2 \mathrm{~d}}]{\substack{\text { 1. } \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2} \\ 23{ }^{\circ} \mathrm{C}, 15 \mathrm{~min}}}
$$

Synthetic lincosamides FSA-212052a and FSA-212052b.

In a 4-mL glass vial fitted with a magnetic stir bar and silicone septum screw-cap, azepine S3.15 (18.2 mg, $24.3 \mu \mathrm{~mol}$, 1 equiv) was dissolved in $33 \% \mathrm{v} / \mathrm{v}$ trifluoroacetic aciddichloromethane $(450 \mu \mathrm{~L})$, and the resulting solution was stirred at $23^{\circ} \mathrm{C}$. After 15 min , LCMS analysis indicated that Boc removal was complete; toluene (1 mL) was added, and the mixture was concentrated to dryness. The residue was then re-dissolved in methanol ($500 \mu \mathrm{~L}$), palladium on carbon $(10 \% \mathrm{w} / \mathrm{w}, 20 \mathrm{mg})$ was added, the headspace above the reaction mixture was replaced with hydrogen gas, and the mixture was stirred at $23^{\circ} \mathrm{C}$ under a balloonful of hydrogen gas. After 2 d , LCMS showed that azepine hydrogenation was $\sim 75 \%$ complete, and the mixture was filtered through a Celite pad to remove the heterogeneous catalyst. The filter cake was rinsed with methanol ($3 \times 1 \mathrm{~mL}$), and the filtrate was concentrated to give a colorless oil. This residue was purified by preparative HPLC on a Waters SunFire Prep C C_{18} column ($5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% formic acid -10% acetonitrile-water initially, grading to 0.1% formic acid -50% acetonitrile-water over 30 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at $254 \mathrm{~nm})$ to provide FSA-212052a $\cdot \mathrm{HCO}_{2} \mathrm{H}(3.3 \mathrm{mg}, 20 \%)$ and $\mathbf{F S A}-212052 b \cdot \mathrm{HCO}_{2} \mathrm{H}(6.9 \mathrm{mg}$, 41\%) as white solids.

FSA-212052a • $\mathrm{HCO}_{2} \mathrm{H}:$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.26(\mathrm{~s}, 1 \mathrm{H}), 7.48(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H})$, 5.73 (app t, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=9.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dt}, J=47.5,5.9 \mathrm{~Hz}, 2 \mathrm{H})$, $4.11(\mathrm{dd}, J=9.9,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{qd}, J=7.5,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.86(\mathrm{~d}$, $J=3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.69(\mathrm{br}, 4 \mathrm{H}), 3.76(\mathrm{dd}, J=10.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.67-3.59(\mathrm{br}, 2 \mathrm{H})$, 3.48 (ddd, $J=13.5,7.4,2.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.78-2.69(\mathrm{~m}, 2 \mathrm{H}), 2.62-2.57(\mathrm{~m}, 2 \mathrm{H}), 2.48-2.44$ (m, $2 \mathrm{H}), 2.13(\operatorname{app} \mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.59-1.53(\mathrm{~m}, 2 \mathrm{H}), 1.37(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 1.10-1.04(\mathrm{~m}, 1 \mathrm{H}), 0.62(\operatorname{tdd}, J=8.5,6.2,4.6 \mathrm{~Hz}, 1 \mathrm{H}), 0.28(\mathrm{qd}, J=10.0,4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 0.13-0.08(\mathrm{~m}, 1 \mathrm{H}), 0.04(\mathrm{ddt}, J=9.2,6.3,4.7 \mathrm{~Hz}, 1 \mathrm{H})$.

MS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{33} \mathrm{H}_{48} \mathrm{FN}_{3} \mathrm{O}_{7} \mathrm{~S}$, 650.3; found 650.4.

FSA-212052b • $\mathrm{HCO}_{2} \mathrm{H}:$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.38(\mathrm{br}, 1 \mathrm{H}), 7.47(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.40(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H})$, $4.54(\mathrm{dd}, J=9.8,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dt}, J=47.5,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.12-4.08(\mathrm{~m}, 2 \mathrm{H}), 4.00(\mathrm{qd}$, $J=6.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=10.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J$ $=10.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76-3.69(\mathrm{br}, 4 \mathrm{H}), 3.68-3.60(\mathrm{br}, 2 \mathrm{H}), 3.57-3.48(\mathrm{br}, 2 \mathrm{H}), 3.45(\mathrm{dd}$, $J=13.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\operatorname{appt}, J=12.6 \mathrm{~Hz}, 3.06(\mathrm{dd}, J=10.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.27-2.16$ (m, 2H), 2.06-2.00 (m, 1H), 1.96-1.91 (m, 1H), 1.72-1.55 (m, 4H), 1.48-1.41 (m, 3H), $1.38(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.07(\mathrm{tdd}, J=12.9,6.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.64-$ $0.59(\mathrm{~m}, 1 \mathrm{H}), 0.28(\mathrm{dq}, J=9.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 0.10(\mathrm{tt}, J=8.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 0.04(\mathrm{ddd}, J=$ $11.0,9.3,5.1 \mathrm{~Hz}, 1 \mathrm{H})$.

HRMS (ESI+,m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{33} \mathrm{H}_{50} \mathrm{FN}_{3} \mathrm{O}_{7} \mathrm{~S}, 652.3426$; found 652.3443 .

N-Trifluoroacetamido tetraol S3.16.

A $50-\mathrm{mL}$ round-bottomed flask was charged with isoxazolidine $\mathbf{S 3 . 8}(508 \mathrm{mg}, 1.06 \mathrm{mmol}$, 1 equiv). Methanol (10.6 mL) was added, the resulting solution was chilled to $0^{\circ} \mathrm{C}$, and the stirred solution was treated with hydrogen chloride ($1.06 \mathrm{~mL}, 4 \mathrm{M}$ solution in dioxane, $4.24 \mathrm{mmol}, 4.00$ equiv). The mixture was then concentrated in vacuo to remove methanol, dioxane, and excess hydrogen chloride; and the dried residue $(\mathbf{S 3 . 8} \cdot \mathbf{H C l})$ was re-dissolved in methanol $(10.6 \mathrm{~mL})$. To this solution was added $10 \% \mathrm{w} / \mathrm{w}$ palladium on carbon (113 mg). The reaction flask was fitted with a 3-way stopcock to which a hydrogen-filled balloon had been affixed. The headspace in the flask was replaced with hydrogen gas by three evacuation-backfilling cycles, and the black reaction mixture was stirred at $23{ }^{\circ} \mathrm{C}$. After 2 h , LCMS analysis indicated that isoxazolidine hydrogenolysis and O-debenzylation were complete. At this point, triethylamine ($738 \mu \mathrm{~L}, 5.30$ mmol, 5.00 equiv) and methyl trifluoroacetate ($533 \mu \mathrm{~L}, 5.30 \mathrm{mmol}, 5.00$ equiv) were added sequentially. After an additional 25 min , LCMS analysis demonstrated complete conversion of the primary amine intermediate to the corresponding trifluoroacetamide. The reaction mixture was filtered through a pad of Celite to remove catalyst, and the filtrate was concentrated to give product alongside triethylamine hydrochloride. In order to remove the latter, the crude residue was suspended in ethyl acetate (30 mL), and the organic solution was washed with saturated aqueous sodium chloride solution $(3 \times 10 \mathrm{~mL})$. The combined aqueous washes were extracted with ethyl acetate $(2 \times 10 \mathrm{~mL})$, and these extracts were washed with a fresh portion of saturated aqueous sodium chloride solution $(10 \mathrm{~mL})$. The combined organic layers were dried over sodium sulfate,
the dried solution was filtered, and the filtrate was concentrated to give the product as a white solid ($529 \mathrm{mg}, 102 \%$). This material was sufficiently pure ($\geq 90 \%$, based on ${ }^{1} \mathrm{H}$ NMR analysis) for use without further purification. An analytically pure sample ($\sim 25 \mathrm{mg}$) was prepared by flash-column chromatography (4.5 g silica gel, eluting with 3% methanol-dichloromethane initially, grading to 10% methanol-dichloromethane).
$\mathrm{R}_{f}=0.27$ (10% methanol-dichloromethane, UV+PMA).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.81(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.45(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{dd}, J=$ $11.4,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=11.4,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{ddd}, J=$ $9.5,7.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.95(\mathrm{~m}, 2 \mathrm{H}), 3.87(\mathrm{dd}, J=7.2,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=10.1$, $3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.46(\mathrm{~s}, 3 \mathrm{H}), 1.15(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 146.6,134.3,131.2,129.0,76.1,72.0,70.9,70.5,68.2,68.1,66.6$, 57.1, 21.6, 19.1. Trifluoroacetamide carbons were not resolved due to ${ }^{19} \mathrm{~F}$ nuclear coupling. ${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-77.44(\mathrm{~s}, 3 \mathrm{~F})$.

FTIR (neat, cm^{-1}): 3381 (br), 2519 (br), 1710 (s), 1353 (m), 1175 (s), 1080 (m), 973 (m).
HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~F}_{3} \mathrm{NO}_{9} \mathrm{~S}$, 488.1197; found 488.1192.

Azidomethyl glycoside 3.71.

An oven-dried 20-mL microwave vial was charged with a stir bar and $\mathbf{S 3 . 1 6}(400 \mathrm{mg}, 821$ $\mu \mathrm{mol}, 1$ equiv), and this material was dried by azeotropic removal of benzene. Sodium azide (533 $\mathrm{mg}, 8.21 \mathrm{mmol}, 10.0$ equiv) and anhydrous N, N-dimethylformamide $(4.10 \mathrm{~mL})$ were then added, and the vial was sealed. The mixture was heated to $80^{\circ} \mathrm{C}$ with rapid stirring. After 3 days, LCMS analysis indicated complete consumption of starting material; at this time the mixture was cooled, and the cooled reaction mixture was diluted with water $(5 \mathrm{~mL})$ and saturated aqueous sodium chloride solution $(35 \mathrm{~mL})$. This mixture was extracted with ethyl acetate $(4 \times 20 \mathrm{~mL})$. The combined organic extracts were dried over sodium sulfate, the dried product solution was filtered, and the filtrate was concentrated to give a light brown oil. In order to remove residual N, N dimethylformamide, the crude residue was concentrated repeatedly from 10% methanol-toluene, affording 3.71 as a dull brown solid ($281 \mathrm{mg}, 96 \%$). This material could be used in subsequent steps without further purification; an analytically pure sample ($\sim 20 \mathrm{mg}$) was prepared by flashcolumn chromatography (10 g silica gel, eluting with 5% methanol-dichloromethane initially, grading to 10% methanol-dichloromethane), affording a brilliant white crystalline solid.

Melting point: $140-143{ }^{\circ} \mathrm{C}$.
$\mathrm{R}_{f}=0.12$ (10% methanol-dichloromethane, PMA).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 4.26(\operatorname{app} \mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{ddd}, J=10.1,6.5,3.1 \mathrm{~Hz}, 1 \mathrm{H})$, 4.05-3.97 (m, 4H), $3.71(\mathrm{dd}, J=13.8,10.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=9.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.45$ (dd, $J=13.8,3.1 \mathrm{~Hz} 1 \mathrm{H}), 1.19(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 77.3,71.8,70.8,70.3,68.6,68.2,57.5,47.3,19.4$. Trifluoroacetamide carbons were not resolved due to ${ }^{19} \mathrm{~F}$ nuclear coupling.
${ }^{19}$ F NMR (471 MHz, CD 3 OD) $\delta-77.56(\mathrm{~s}, 3 \mathrm{~F})$.
FTIR (neat, cm^{-1}): 3319 (br), 2933 (w), 2105 (s$), 1710$ (s), 1556 (m), 1282 (m), 1214 (s), 1183 (s), 1159 (s), 1073 (s).

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{6}, 359.1173$; found 359.1180 .

3.71

3.72

Chloro compound 3.72.

A flame-dried 20-mL microwave vial was charged with azidotetraol 3.71 ($250 \mathrm{mg}, 698$ μ mol, 1 equiv), and this starting material was dried by azeotropic removal of benzene. The dried residue was suspended in 1,2-dichloroethane (11.6 mL), and the resulting suspension was cooled to $0^{\circ} \mathrm{C}$. Chloromethylenepipiridinium chloride ($704 \mathrm{mg}, 4.19 \mathrm{mmol}, 6.00$ equiv) was added in one portion, and the mixture was stirred rapidly at $0{ }^{\circ} \mathrm{C}$. After 15 min , the originally light yellow suspension had clarified, forming a yellow homogeneous solution. The reaction mixture was then heated to $60^{\circ} \mathrm{C}$, and over the course of 2 h the solution attained an intense sunset orange color. After 20 h , LCMS analysis indicated that deoxychlorination was complete (evidenced by the disappearance of starting material and its mono- and di-formylated congeners; ESI- $m / z=357$, 385 , and 413 , respectively). The reaction mixture was cooled to $23^{\circ} \mathrm{C}$, and the cooled solution was transferred by cannula to a rapidly stirred, ice-cold sodium hydroxide solution ($8.38 \mathrm{~mL}, 0.5$ M, $4.19 \mathrm{mmol}, 6.00$ equiv). In order to saponify the formyl esters formed upon workup, the biphasic mixture was treated with additional 0.5 M sodium hydroxide solution until the aqueous phase achieved $\mathrm{pH}=11$; the mixture was then warmed to $23^{\circ} \mathrm{C}$ with constant vigorous stirring, and additional sodium hydroxide solution was added periodically to maintain $\mathrm{pH}=11$. After 24 h , deformylation was complete by LCMS analysis. The mixture was transferred to a separatory funnel, and the layers were separated. The aqueous phase was then treated with solid sodium chloride until saturation was achieved, and the resulting aqueous solution was extracted with dichloromethane $(5 \times 7 \mathrm{~mL})$. The combined organic layers were dried over sodium sulfate, the
dried solution was filtered, and the filtrate was concentrated to give a brown oil. This residue was purified by flash-column chromatography (12 g silica, eluting with dichloromethane initially, grading to 8% methanol-dichloromethane) to give the product as a brilliant white solid (170 mg , 65\%).
$\mathrm{R}_{f}=0.23$ (10% methanol-dichloromethane PMA).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 4.64(\mathrm{qd}, J=6.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{dd}, J=9.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.15$ (ddd, $J=9.6,6.5,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}, J=9.9,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=9.5,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.82(\mathrm{dd}, J=3.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{dd}, J=13.8,9.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=13.8,3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=9.9,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.44(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 159.3(\mathrm{q}, J=37.4 \mathrm{~Hz}), 117.5(\mathrm{q}, J=286.8 \mathrm{~Hz}), 77.1,72.2,71.3$, 69.5, 68.6, 58.8, 55.1, 47.5, 22.8.

FTIR (neat, cm^{-1}): 3384 (br), 2106 (s), 1716 (s), 1545 (m), 1289 (m), 1217 (s$), 1176$ (s), 1165 (s), 1078 (s).

HRMS (ESI-, m / z): $[\mathrm{M}-\mathrm{H}]^{-}$calc'd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{ClF}_{3} \mathrm{~N}_{4} \mathrm{O}_{5}, 375.0689$; found 375.0692.

Protected lincosamide 3.73.

In a $10-\mathrm{mL}$ round-bottomed flask, trifluoroacetamide 3.72 ($170 \mathrm{mg}, 451 \mu \mathrm{~mol}, 1$ equiv) was dissolved in a minimal quantity of methanol $(500 \mu \mathrm{~L})$. This solution was chilled to $0^{\circ} \mathrm{C}$ before it was treated with ice-cold aqueous sodium hydroxide solution $(1.00 \mathrm{M}, 2.26 \mathrm{~mL}, 2.26 \mathrm{mmol}, 5.0$ equiv). The mixture was stirred at $4{ }^{\circ} \mathrm{C}$ for 18 h , at which point LCMS analysis showed that no starting material remained. The mixture was acidified with the addition of aqueous hydrogen chloride solution (1.0 M), until the $\mathrm{pH}<2$ was attained. The acidified mixture was then concentrated to dryness to give a light yellow residue comprising deacylated product, sodium chloride, and sodium trifluoroacetate. This mixture was suspended in ethanol (190 proof, 5 mL), and the suspension was filtered. The solids were rinsed with fresh ethanol (190 proof, $2 \times 2 \mathrm{~mL}$), and the combined filtrates were concentrated. This residue was then re-dissolved in methanol (10 mL), the solution was cooled to $0^{\circ} \mathrm{C}$, and the mixture was treated with Amberlyst A26 resin (hydroxide form, 2.0 g). After stirring for 1 h at $0^{\circ} \mathrm{C}$, the ion-exchange beads were removed by filtration, and the filtrate was concentrated to provide aminotriol intermediate ($132 \mathrm{mg}, 104 \%$).

A portion of this crude aminotriol ($100 \mathrm{mg}, 360 \mu \mathrm{~mol}, 1$ equiv) transferred to a $2-5 \mathrm{~mL}$ glass microwave vial containing a magnetic stir bar, where it was dissolved in N, N dimethylformamide (1.78 mL). This solution was chilled to $0^{\circ} \mathrm{C}$, triethylamine ($169 \mu \mathrm{~L}, 1.21$ mmol, 3.40 equiv) and N, O-bis(trimethylsilyl)trifluoroacetamide ($143 \mu \mathrm{~L}, 534 \mu \mathrm{~mol}, 1.50$ equiv) were added, and the mixture was warmed immediately back to $23^{\circ} \mathrm{C}$. After 1 h of stirring at this
temperature, the mixture was transferred via cannula to a separate 4-mL glass vial (fitted with a magnetic stir bar and silicone septum screw cap) containing azepine acid $\mathbf{3 . 6 3}(135 \mathrm{mg}, 427 \mu \mathrm{~mol}$, 1.20 equiv). The mixture was then treated with HATU ($176 \mathrm{mg}, 463 \mu \mathrm{~mol}, 1.30$ equiv), causing the dull brown solution to turn the color of chartreuse. After 5 h , the mixture was diluted with ethyl acetate (40 mL), and the diluted solution was washed sequentially with $10 \% \mathrm{w} / \mathrm{v}$ aqueous citric acid solution $(2 \times 10 \mathrm{~mL})$, saturated aqueous sodium bicarbonate solution $(2 \times 10 \mathrm{~mL})$, and saturated aqueous sodium chloride solution $(10 \mathrm{~mL})$. The product solution was then dried over sodium sulfate, filtered, and concentrated; the residue obtained was re-dissolved in $50 \% \mathrm{v} / \mathrm{v}$ acetic acid-methanol (8 mL), and the resulting solution was stirred at $40^{\circ} \mathrm{C}$ overnight in order to effect global desilylation. The mixture was then diluted with toluene $(10 \mathrm{~mL})$ and the diluted solution was concentrated. The dried residue was purified by flash-column chromatography (24 g silica gel, eluting with dichloromethane initially, grading to 10% methanol-dichloromethane) to provide the product as white solid ($98.2 \mathrm{mg}, 50 \%, 2$ steps).
$\mathrm{R}_{f}=0.16$ (10% methanol-dichloromethane, PMA)
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 5.53-5.48(\mathrm{~m}, 1 \mathrm{H}), 4.70-4.63(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=12.0,4.1 \mathrm{~Hz}$, $1 \mathrm{H}), 4.41(\mathrm{dt}, J=47.5,5.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{ddd}, J=9.6,6.7,3.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.03-3.98(\mathrm{~m}, 1 \mathrm{H}), 3.90-3.85(\mathrm{~m}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J=4.8,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.73$ $(\mathrm{m}, 2 \mathrm{H}), 3.67-3.57(\mathrm{~m}, 2 \mathrm{H}), 3.54(\mathrm{dd}, J=10.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.83-2.74(\mathrm{~m}, 1 \mathrm{H}), 2.51-2.38$ (m, 2H), 2.34-2.30 (d, $J=17.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.01(\operatorname{app} \mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.69-1.58(\mathrm{~m}, 2 \mathrm{H})$, $1.54-1.44(\mathrm{~m}, 14 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 175.9,157.8,142.8,120.2,111.4,84.7(\mathrm{~d}, J=163.8 \mathrm{~Hz}), 81.9$, $77.2,72.5,72.1,69.6,68.9,62.9,59.4,54.4,47.7,41.8,39.5,35.4,31.0(\mathrm{~d}, J=19.8 \mathrm{~Hz})$, $28.8,24.8(\mathrm{~d}, J=4.3 \mathrm{~Hz}), 22.8$.

FTIR (neat, cm^{-1}): 3395 (br), 2972 (m), 2935 (m), 2101 (s), 1663 (s), 1445 (m), 1413 (m), 1393 (m), 1368 (m), 1253 (m), 1163 (s), 1084 (m). HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{25} \mathrm{H}_{41} \mathrm{ClFN}_{5} \mathrm{O}_{7}, 578.2751$; found 578.2738.

Aminomethyl protected lincosamide 3.74.

To a 1-dram vial containing azidotriol 3.73 ($40.0 \mathrm{mg}, 69.0 \mu \mathrm{~mol}$, 1 equiv) was added methanol $(690 \mu \mathrm{~L})$ and 10% palladium on carbon $(4.0 \mathrm{mg})$. The vial was fitted with a rubber septum and the headspace above the reaction mixture was flushed with hydrogen gas. The black heterogeneous reaction mixture was stirred at $23{ }^{\circ} \mathrm{C}$ under an atmosphere of hydrogen gas supplied by a balloon. After 26 h , complete consumption of starting material was noted by LCMS analysis, and the reaction mixture was filtered through a pad of Celite $(1 \times 1 \mathrm{~cm})$ to remove catalyst. The filter pad was rinsed with methanol $(3 \times 2 \mathrm{~mL})$, and the filtrate was concentrated to give a colorless oil. The residue was purified by preparative HPLC on a Waters SunFire Prep C C_{18} column ($5 \mu \mathrm{~m}$, $250 \times 19 \mathrm{~mm}$; eluting with 0.1% formic acid -5% acetonitrile-water initially, grading to 0.1% formic acid- 25% acetonitrile-water over 10 min , then grading to 0.1% formic acid -55% acetonitrile-water over the next 30 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 210 nm) to provide the product as a brilliant white solid ($25.4 \mathrm{mg}, 61 \%$).
${ }^{1} \mathrm{H}$ NMR (65:35 mixture of rotamers, asterisk [*] denotes minor rotamer peaks that could be resolved, $\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.49(\mathrm{br}, 1 \mathrm{H}), 4.73(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.51(\mathrm{dd}, J=12.6$, $5.8 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{*} 4.47-4.35(\mathrm{~m}, 4 \mathrm{H}) .4 .22(\operatorname{app} \mathrm{dq}, J=6.1,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=9.4,6.4$ $\mathrm{Hz}, 1 \mathrm{H}), * 4.05(\mathrm{dd}, J=9.5,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.97-3.86(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.66$ (d, $J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), * 3.54(\mathrm{dd}, J=9.5,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\operatorname{app} \mathrm{dt}, J=13.5,4.1 \mathrm{~Hz}, 1 \mathrm{H})$,
$3.21(\mathrm{ddd}, J=13.3,9.0,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.11(\mathrm{dd}, J=15.1,11.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{dd}, J=14.7$, $12.0 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{*} 2.37-2.25(\mathrm{~m}, 1 \mathrm{H}), 1.99-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.88-1.60(\mathrm{~m}, 4 \mathrm{H}), 1.48(\mathrm{~s}, 9 \mathrm{H})$, $1.46-1.37(\mathrm{~m}, 3 \mathrm{H}), 1.31-1.26(\mathrm{~m}, 2 \mathrm{H}), 1.21-1.07(\mathrm{~m}, 2 \mathrm{H})$.

FTIR (neat, cm^{-1}): 3269 (br), 2967 (m), 2929 (m), 1655 (s), 1586 (s), 1406 (m), 1395 (m), 1367 (m), 1347 (m), 1248 (m), 1161 (s), 1082 (m), 776 (w).

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{25} \mathrm{H}_{45} \mathrm{ClFN}_{3} \mathrm{O}_{7}, 554.3003$; found 554.3005.

Synthetic lincosamide FSA-213040.

To a $1-\mathrm{mL}$ vial, aminotriol $3.74(5.0 \mathrm{mg}, 9.02 \mu \mathrm{~mol}$, 1 equiv), methanol ($180 \mu \mathrm{~L}$), ammonium acetate ($2.1 \mathrm{mg}, 27 \mu \mathrm{~mol}, 3.0$ equiv), glyoxal ($40 \% \mathrm{w} / \mathrm{w}$ aqueous solution, $3.9 \mu \mathrm{~L}, 27$ $\mu \mathrm{mol}, 3.0$ equiv), and formalin ($37 \% \mathrm{w} / \mathrm{w}, 2.0 \mu \mathrm{~L}, 27 \mu \mathrm{~mol}, 3.0$ equiv) were added sequentially. The mixture was stirred at $23^{\circ} \mathrm{C}$. After 3 h , additional glyoxal ($3.9 \mu \mathrm{~L}, 3.0$ equiv) and formalin ($2.0 \mu \mathrm{~L}, 3.0$ equiv) were added. After an additional 14 h , no starting material remained by LCMS, and the mixture was diluted with benzene $(300 \mu \mathrm{~L})$. The mixture was concentrated, and the dried residue was re-dissolved in 33% trifluoroacetic acid-dichloromethane ($200 \mu \mathrm{~L}$). After 30 min of stirring at $23{ }^{\circ} \mathrm{C}$, LCMS analysis indicated that Boc removal was complete. Toluene ($500 \mu \mathrm{~L}$) was added, and the mixture was concentrated. The dried residue was purified by preparative HPLC on a Waters SunFire Prep C_{18} column $(5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% formic acid -5% acetonitrile-water initially, grading to 1% formic acid- 50% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 210 nm) to afford FSA-213040 • $\mathrm{HCO}_{2} \mathrm{H}$ as a white solid ($2.9 \mathrm{mg}, 54 \%$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.78(\mathrm{~s}, 1 \mathrm{H}), 8.10(\mathrm{br}, 1 \mathrm{H}), 7.65(\mathrm{~s}, 1 \mathrm{H}), 7.51(\mathrm{~s}, 1 \mathrm{H}), 4.66-4.52$ $(\mathrm{m}, 3 \mathrm{H}), 4.47-4.44(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=47.2,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.25(\operatorname{app} \mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.14(\mathrm{dd}, J=9.7,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.05(\mathrm{~m}, 1 \mathrm{H}), 3.92-3.89(\mathrm{~m}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=9.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.67(\mathrm{dd}, J=9.9,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{ddd}, J=14.3,6.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{dd}, J=14.8$,
$6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.09-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.92(\mathrm{app} \mathrm{q}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.50-$ $1.38(\mathrm{~m}, 5 \mathrm{H}), 1.37(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$. One methylene proton corresponding to the ζ position of the azepane is obfuscated by $\mathrm{CHD}_{2} \mathrm{OD}$ signal.

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{ClFN}_{4} \mathrm{O}_{5}, 505.2588$; found 505.2590.

Synthetic lincosamide FSA-213037.

A solution of aminotriol 3.74 ($5.0 \mathrm{mg}, 8.3 \mu \mathrm{~mol}, 1$ equiv) and N, N-diisopropylethylamine ($7.3 \mu \mathrm{~L}, 42 \mu \mathrm{~mol}, 5.0$ equiv) in dichloromethane ($83 \mu \mathrm{~L}$) was chilled to $-50^{\circ} \mathrm{C}$. Benzoyl chloride ($1.1 \mu \mathrm{~L}, 9.2 \mu \mathrm{~mol}, 1.1$ equiv) was then added, causing a light white suspension to form. After 15 min, excess benzoyl chloride was quenched with the addition of methanol ($50 \mu \mathrm{~L}$), the cooling bath was removed, and the mixture was concentrated to dryness. The residue was then re-dissolved in $33 \% \mathrm{v} / \mathrm{v}$ trifluoroacetic acid-dichloromethane $(600 \mu \mathrm{~L})$, and the resulting solution was stirred at $23{ }^{\circ} \mathrm{C}$ for 2 h . After this time, toluene (1 mL) was added, and the diluted mixture was concentrated in vacuo. The residue was purified by preparative HPLC on a Waters SunFire Prep C_{18} column ($5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% formic acid -5% acetonitrile-water initially, grading to 0.1% formic acid -25% acetonitrile-water over 10 min , then grading to 0.1% formic acid- 55% acetonitrile-water over the next 25 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 254 nm) to provide the product as a white solid ($0.9 \mathrm{mg}, 18 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.29(\mathrm{br}, 1 \mathrm{H}), 7.83(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $7.46(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.66(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.49-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{dt}, J=47.4,6.0$ $\mathrm{Hz}, 2 \mathrm{H}), 4.33$ (ddd, $J=10.5,6.4,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=9.9,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=$ $11.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.84-3.71(\mathrm{~m}, 4 \mathrm{H}), 3.68(\mathrm{dd}, J=9.9,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.30(\mathrm{~m}, 1 \mathrm{H})$,
2.09-2.02 (m, 2H), $1.91(\mathrm{app} \mathrm{q}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.65(\mathrm{~m}, 2 \mathrm{H}), 1.63-1.58(\mathrm{~m}, 1 \mathrm{H})$, $1.57-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.49-1.42(\mathrm{~m}, 2 \mathrm{H}), 1.39(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.39-1.35(\mathrm{~m}, 3 \mathrm{H})$. Two proton signals were not observed: Both are believed to be obfuscated by the $\mathrm{CHD}_{2} \mathrm{OD}$ signal.

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{27} \mathrm{H}_{41} \mathrm{ClFN}_{3} \mathrm{O}_{6}, 558.2741$; found 558.2754.

Synthetic lincosamides FSA-213039c and FSA-213039d.

A 1-mL vial was charged sequentially with aminotriol $3.74(5.0 \mathrm{mg}, 8.3 \mu \mathrm{~mol}, 1$ equiv), N, N-dimethylformamide ($83 \mu \mathrm{~L}$), triethylamine $(3.5 \mu \mathrm{~L}, 25 \mu \mathrm{~mol}, 3.0$ equiv), and 2 (methylthio)acetic acid (1.1 $\mu \mathrm{L}, 10 \mu \mathrm{~mol}, 1.2$ equiv). N-(3-Dimethylaminopropyl- N^{\prime} 'ethylcarbodiimide hydrochloride (EDC, $1.8 \mathrm{mg}, 9.2 \mu \mathrm{~mol}, 1.1$ equiv) was then added. The resulting solution was stirred at $23{ }^{\circ} \mathrm{C}$ for 1 h , at which time additional triethylamine ($6.0 \mu \mathrm{~L}, 43$ $\mu \mathrm{mol}, 5.2$ equiv) and 2-(methylthio) acetic acid ($1.1 \mu \mathrm{~L}, 10 \mu \mathrm{~mol}, 1.2$ equiv) were added. After 19 h, LCMS analysis showed no starting material remained. Methanol (200 $\mu \mathrm{L}$) and toluene ($200 \mu \mathrm{~L}$) were added, and the resulting solution was concentrated to dryness. The residue was then redissolved in 33% trifluoroacetic acid-dichloromethane ($200 \mu \mathrm{~L}$), and after 30 min of stirring at 23 ${ }^{\circ} \mathrm{C}$, LCMS analysis indicated that Boc removal was complete. Toluene ($300 \mu \mathrm{~L}$) was added, and the resulting solution was concentrated to dryness. The crude residue was purified by preparative HPLC on a Waters SunFire Prep C_{18} column ($5 \mu \mathrm{~m} 250 \times 19 \mathrm{~mm}$, eluting with 0.1% formic acid5% acetonitrile-water, grading to 0.1% formic acid- 50% acetonitrile-water over 30 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 210 nm) to afford FSA-213039c $\cdot \mathrm{HCO}_{2} \mathrm{H}$ ($2.4 \mathrm{mg}, 55 \%$) and FSA-213039d $\cdot \mathrm{HCO}_{2} \mathrm{H}(2.6 \mathrm{mg}, 53 \%)$ as white solids.

FSA-213039c • $\mathrm{HCO}_{2} \mathrm{H}$:
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.08(\mathrm{~s}, 1 \mathrm{H}), 4.71(\mathrm{qd}, J=6.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{dd}, J=9.6,1.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.43$ (dd, $J=47.6,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{ddd}, J=10.7,6.5,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.05-4.00$ (m, 2H), $3.81(\mathrm{dd}, J=3.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.63-3.53(\mathrm{~m}, 3 \mathrm{H}), 3.37$ (ddd, $J=14.0,6.3,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.33(\mathrm{ddt}, J=15.4,6.8,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.10-2.03(\mathrm{~m}, 2 \mathrm{H})$, $1.93(\mathrm{dtd}, J=15.4,11.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~d}, J=$ $6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.42-1.35(\mathrm{~m}, 3 \mathrm{H})$. One methylene proton corresponding to the ζ position of the azepane is obfuscated by $\mathrm{CHD}_{2} \mathrm{OD}$ signal.

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{21} \mathrm{H}_{37} \mathrm{ClFN}_{3} \mathrm{O}_{6}, 482.2428$; found 482.2438 .

FSA-213039d • $\mathrm{HCO}_{2} \mathrm{H}$:

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 4.70(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.47-4.43(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{dd}, J=47.4$, $5.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.17(\mathrm{ddd}, J=10.5,6.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-3.99(\mathrm{~m}, 2 \mathrm{H}), 3.82(\mathrm{~d}, J=3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.70(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.65-3.53(\mathrm{~m}, 3 \mathrm{H}), 3.37(\mathrm{ddd}, J=13.9,6.3,3.2 \mathrm{~Hz}, 1 \mathrm{H})$, 3.20 (app q, $J=15.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.37-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.09-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.93$ (app q, $J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H})$, $1.43-1.34(\mathrm{~m}, 3 \mathrm{H})$. One methylene proton corresponding to the ζ position of the azepane is obfuscated by $\mathrm{CHD}_{2} \mathrm{OD}$ signal.

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{ClFN}_{3} \mathrm{O}_{6} \mathrm{~S}, 542.2461$; found 542.2451.

Synthetic lincosamide FSA-213038.

A nitrosyl chloride solution $(1.08 \mathrm{M})$ was prepared according to the method described by Weiß and Wagner: ${ }^{137}$ A solution of isoamyl nitrite $(501 \mu \mathrm{~L}, 3.73 \mathrm{mmol})$ in tetrahydrofuran $(2.50$ mL) was cooled to $0^{\circ} \mathrm{C}$ and was treated with chlorotrimethylsilane ($475 \mu \mathrm{~L}, 3.73 \mathrm{mmol}$). The resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 1.5 h prior to use.

In a $1-\mathrm{mL}$ vial, aminotriol $3.74(5.0 \mathrm{mg}, 9.0 \mu \mathrm{~mol})$ was dried by azeotropic removal of benzene. The dried starting material was then dissolved in tetrahydrofuran ($100 \mu \mathrm{~L}$), and the resulting solution was cooled to $0^{\circ} \mathrm{C}$ with stirring. Nitrosyl chloride solution ($1.08 \mathrm{M}, 100 \mu \mathrm{~L}$, $108 \mu \mathrm{~mol}, 12.0$ equiv) was then added, and the resulting solution was stirred at $0^{\circ} \mathrm{C}$. After 2.5 h , LCMS analysis indicated no starting material remained; the reaction mixture was concentrated under a stream of nitrogen. The dried residue was re-dissolved in 33% trifluoroacetic aciddichloromethane, and the resulting solution was stirred at $23^{\circ} \mathrm{C}$ for 30 min , at which point LCMS analysis indicated that Boc removal was complete. Toluene (1 mL) was added, and the resulting mixture was concentrated to dryness. The residue was purified by preparative HPLC on a Waters SunFire Prep C_{18} column ($5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 1% formic acid- 5% acetonitrile-water initially, grading to 0.1% formic acid- 50% acetonitrile-water over 40 min , with a flow rate of 15 $\mathrm{mL} / \mathrm{min}$; monitored by UV absorbance at 210 nm) to afford FSA-213038• $\mathrm{HCO}_{2} \mathrm{H}$ as a white solid ($2.2 \mathrm{mg}, 52 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 4.69(\mathrm{q}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dt}, J=47.5,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{~m}$, $1 \mathrm{H}), 4.17$ (app dt, $J=8.9,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=10.0,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dd}, J=10.1$, $2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~m}, 2.0 \mathrm{H}), 3.81(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{~d}, J$ $=10.0,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.36(\mathrm{ddd}, J=14.0,6.2,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.32(\mathrm{~m}, 1 \mathrm{H}), 2.04(\mathrm{~m}, 2 \mathrm{H}), 1.93$ $(\mathrm{m}, 1 \mathrm{H}), 1.73-1.52(\mathrm{~m}, 4 \mathrm{H}), 1.49-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.42-1.36(\mathrm{~m}$, $3 \mathrm{H})$. One methylene proton corresponding to the ζ position of the azepane is obfuscated by $\mathrm{CHD}_{2} \mathrm{OD}$ signal.

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{20} \mathrm{H}_{35} \mathrm{Cl}_{2} \mathrm{FN}_{2} \mathrm{O}_{5}$, 473.1980; found 473.1983.

Tetraol S3.17.

In a $10-\mathrm{mL}$ glass microwave vial, an ice-cold solution of isoxazolidine $\mathbf{3 . 5 5}(66 \mathrm{mg}, 0.21$ mmol, 1 equiv) in methanol (2.1 mL) was treated with hydrogen chloride solution (4.0 M in $1,4-$ dioxane, $210 \mu \mathrm{~L}, 0.82 \mathrm{mmol}, 4.0$ equiv). This mixture was immediately concentrated to dryness to provide the hydrochloride salt of the starting material, which was re-dissolved in methanol (2.1 $\mathrm{mL})$. This solution was then treated with palladium on carbon $(10 \% \mathrm{w} / \mathrm{w}, 22 \mathrm{mg})$, the headspace of the reaction flask was replaced with hydrogen gas, and the black suspension was stirred under hydrogen gas (1 atm) at $23{ }^{\circ} \mathrm{C}$ for 5 h , at which point LCMS analysis indicated that olefin saturation, isoxazolidine hydrogenolysis, and debenzylation were all complete. Consequently, triethylamine ($140 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 5.0$ equiv) was added to basify the reaction mixture, and methyl trifluoroacetate ($100 \mu \mathrm{~L}, 1.0 \mathrm{mmol}, 5.0$ equiv) was added to protect the primary amine that had been generated in the hydrogenolytic operation. After 10 min of stirring at $23^{\circ} \mathrm{C}$, LCMS analysis indicated that trifluoroacetylation was complete, and the mixture was filtered through a pad of Celite to remove the heterogeneous catalyst. The filter cake was rinsed with methanol ($3 \times 1 \mathrm{~mL}$), and the filtrate was concentrated in vacuo to give a white solid containing crude product contaminated with triethylamine hydrochloride. The latter was removed as follows: The crude product mixture was partitioned between ethyl acetate (15 mL) and saturated aqueous sodium chloride solution (15 mL). The layers were shaken, then separated; and the organic layer was washed with a fresh portion of saturated aqueous sodium chloride solution. These combined aqueous washes were then themselves extracted with fresh ethyl acetate $(2 \times 10 \mathrm{~mL})$, and the combined organic extracts (35 mL in total) were dried over sodium sulfate. The dried product
solution was filtered, and the filtrate was concentrated to give pure trifluoroacetamide as a white solid (43 mg, 63\%).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 4.20(\operatorname{app} \mathrm{t}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{qd}, J=7.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.01-$ $3.96(\mathrm{~m}, 2 \mathrm{H}), 3.88-3.82(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.60(\mathrm{~m}, 2 \mathrm{H}), 1.17(\mathrm{dd}, J=6.4,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.96$ ($\mathrm{t}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-77.51(\mathrm{~s}, 3 \mathrm{~F})$.
MS (ESI-, m / z): $[\mathrm{M}-\mathrm{H}]^{-}$calc'd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{~F}_{3} \mathrm{NO}_{6}, 330.1$; found 330.1.

Chloro compound S3.18.

In a $2-5 \mathrm{~mL}$ glass microwave vial, an ice-cold heterogeneous mixture of tetraol $\mathbf{S 3 . 1 7}$ (44 $\mathrm{mg}, \quad 0.13 \mathrm{mmol}, 1$ equiv) and 1,2 -dichloroethane $(2.2 \mathrm{~mL})$ was treated with 1 -(chloromethylene)pipiridin-1-ium chloride ($130 \mathrm{mg}, 0.80 \mathrm{mmol}, 6.0$ equiv). The vial was sealed, and the mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min , during which time the originally light-yellow suspension clarified to form a light-yellow solution. The mixture was then heated to $60^{\circ} \mathrm{C}$ for 21 h , at which point LCMS analysis showed that deoxychlorination was complete, as evidenced by the disappearance of (oligo)formylated starting material congeners (ESI-, $[M-H]^{-} m / z=358,386$, 414). The mixture was chilled to $0^{\circ} \mathrm{C}$, and excess Vilsmeier reagent was quenched with the addition of aqueous sodium hydroxide solution $(0.50 \mathrm{M}, 1.60 \mathrm{~mL}, 0.80 \mathrm{mmol}, 6.0$ equiv). The resulting aqueous layer was still acidic, so additional sodium hydroxide solution $(0.50 \mathrm{M})$ was added to achieve (and maintain) $\mathrm{pH} \sim 10$. The biphasic mixture was warmed to $23{ }^{\circ} \mathrm{C}$ with rapid stirring, and saponification of pendant formyl groups was monitored by LCMS. After 18 h , deformylation was complete. The layers were separated, and the aqueous phase was then treated with sodium chloride to the point of saturation, in order to diminish the product's solubility. The resulting aqueous mixture was then extracted with dichloromethane $(5 \times 2 \mathrm{~mL})$, until no product could be detected in the aqueous phase by LCMS. The combined organic extracts were dried over sodium sulfate, the dried solution was filtered, and the filtrate was concentrated. The crude residue thus obtained was purified by flash-column chromatography (4 g silica gel, eluting with
dichloromethane initially, grading to 7% methanol-dichloromethane) to provide the product as a white solid ($30 \mathrm{mg}, 65 \%$).
$\mathrm{R}_{f}=0.31$ (10% methanol-dichloromethane, CAM).
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 4.63(\mathrm{qd}, J=6.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=9.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.97$ (dd, $J=10.1,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.87-3.83(\mathrm{~m}, 2 \mathrm{H}), 3.77(\mathrm{dd}, J=3.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=$ $10.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.73-1.62(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 80.5,71.9,70.0,69.9,69.5,58.9,55.3,23.1,17.5,11.2$. Trifluoroacetamide carbons were not resolved due to ${ }^{19} \mathrm{~F}$ nuclear coupling.
${ }^{19}$ F NMR ($471 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-76.74(\mathrm{~s}, 3 \mathrm{~F})$.
FTIR (neat, cm^{-1}): 3365 (br), 2938 (w), 1712 (s), 1545 (w), 1212 (m), 1160 (s), 1079 (s), 963 (m).
HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{12} \mathrm{H}_{19} \mathrm{ClF}_{3} \mathrm{NO}_{5}, 350.0977$; found 350.0981.

Aminotriol S3.19.

In a 4-mL glass vial, trifluoroacetamide $\mathbf{S 3 . 1 8 (3 0 ~ m g , ~} 86 \mu \mathrm{~mol}$, 1 equiv) was dissolved in methanol $(50 \mu \mathrm{~L})$. To this solution was then added ice-cold aqueous sodium hydroxide solution $(1.0 \mathrm{M}, 450 \mu \mathrm{~L})$. Vigorous stirring was maintained, and the mixture was held at $4{ }^{\circ} \mathrm{C}$ for 18 h , at which point LCMS analysis indicated that no starting material remained. The mixture was diluted with $400 \mu \mathrm{~L}$ of ice-cold water, and the white suspension was filtered. This filter cake was washed with $300 \mu \mathrm{~L}$ of ice-cold water before being dried in vacuo to provide a crop of pure crystalline product ($13 \mathrm{mg}, 60 \%$). The filtrate, containing additional aminotriol product, was acidified with the addition of aqueous hydrogen chloride solution $(1.0 \mathrm{M}, 500 \mu \mathrm{~L})$ before it was concentrated to dryness to provide crude product as its hydrochloride salt, contaminated with sodium chloride. This solid was suspended in ethanol (190 proof, 1.0 mL), and the supernatant (containing $\mathbf{S 3 . 1 9}$ • $\mathrm{HCl})$ was transferred to a vial containing Amberlyst A26 resin (hydroxide form, 300 mg). This mixture was stirred at $0^{\circ} \mathrm{C}$ for 30 min before the ion-exchange beads were removed by filtration. The filtrate was concentrated to provide additional product (11 mg , estimated 80% pure by ${ }^{1} \mathrm{H}$ NMR, ~40\%).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 4.62(\mathrm{q}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\operatorname{app~t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J$ $=9.4,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\operatorname{appq}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=9.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J$ $=9.3,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.63(\mathrm{app} \mathrm{p}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.56(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}), 0.99(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 79.0,72.9,72.1,70.2,69.9,61.0,56.5,22.7,18.3,11.1$. FTIR (neat, cm^{-1}): 3300 (br), 2929 (w), 2464 (w), 1620 (w), 1076 (s), 963 (m). HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{10} \mathrm{H}_{20} \mathrm{ClNO}_{4}, 254.1154$; found 254.1154.

Synthetic lincosamide FSA-213008.

A solution of aminotriol $\mathbf{S 3 . 1 9}$ ($12.9 \mathrm{mg}, 51.0 \mu \mathrm{~mol}, 1$ equiv) in N, N-dimethylformamide $(254 \mu \mathrm{~L})$ was treated sequentially with triethylamine $(22.7 \mu \mathrm{~L}, 163 \mu \mathrm{~mol}, 3.20$ equiv) and $N, O-$ bis(trimethylsilyl)trifluoroacetamide ($20.5 \mu \mathrm{~L}, 76.0 \mu \mathrm{~mol}, 1.50$ equiv) at $23^{\circ} \mathrm{C}$. The mixture was stirred for 1 h to ensure complete O-silylation before a solution of azepine acid $\mathbf{3 . 6 3}$ ($17.6 \mathrm{mg}, 56.0$ μ mol, 1.10 equiv) in N, N-dimethylformamide $(200 \mu \mathrm{~L})$ was added. The reaction mixture was then treated with HATU ($25.1 \mathrm{mg}, 66.0 \mu \mathrm{~mol}, 1.30$ equiv), and the lemon-yellow mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 3 h . After this time, the reaction mixture was diluted with ethyl acetate $(20 \mathrm{~mL})$ and the diluted organic solution was washed sequentially with $10-\mathrm{mL}$ portions of $10 \% \mathrm{w} / \mathrm{v}$ aqueous citric acid solution, saturated aqueous sodium bicarbonate solution, and saturated aqueous sodium chloride solution. The washed organic layer was then dried over sodium sulfate, filtered, and concentrated. The dried residue was transferred to a $4-\mathrm{mL}$ glass vial, where it was re-dissolved in $33 \% \mathrm{v} / \mathrm{v}$ trifluoroacetic acid-dichloromethane $(300 \mu \mathrm{~L})$. Deprotection was monitored by LCMS, and after 15 min global trimethylsilyl and Boc removal was complete. The mixture was concentrated to dryness, and the residue was re-dissolved in methanol (300 mL). Palladium on carbon $(10 \% \mathrm{w} / \mathrm{w}, 20 \mathrm{mg})$ was added, the headspace above the black suspension was replaced with hydrogen gas, and the mixture was stirred at $23^{\circ} \mathrm{C}$ for 4 h , resulting in complete hydrogenation of the azepine, as indicated by LCMS. The mixture was filtered through a pad of Celite to remove the heterogeneous catalyst, and the filter cake was rinsed with methanol ($3 \times 1 \mathrm{~mL}$). The filtrate
was concentrated to give a brown film, which was subjected to preparative HPLC-MS on a Waters SunFire Prep C_{18} column ($5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% formic acid -5% acetonitrilewater initially, grading to 0.1% formic acid -40% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 210 nm and ESI+ selected ion monitoring [$\mathrm{m} / \mathrm{z}=$ 453]) to provide the product (FSA-213008 $\cdot \mathrm{HCO}_{2} \mathrm{H}, 3.0 \mathrm{mg}, 50 \%$, 2 steps) as a white solid.
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.42(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{q}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dt}, J=47.5,6.0 \mathrm{~Hz}$, $2 \mathrm{H}), 4.41(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{app} \mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{dd}, J=10.1,6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.85(\mathrm{ddd}, J=10.1,6.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.80(\operatorname{app~s}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}$, $J=10.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=13.3,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\operatorname{app} \mathrm{t}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.25-$ $2.14(\mathrm{~m}, 2 \mathrm{H}), 2.02(\mathrm{br} \mathrm{d}, J=14.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.94(\mathrm{ddd}, J=14.8,8.2,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.72-1.61$ $(\mathrm{m}, 5 \mathrm{H}), 1.61-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.42(\mathrm{~m}, 3 \mathrm{H}), 1.44(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-1.33(\mathrm{~m}$, $2 \mathrm{H}), 1.02(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 171.6,84.7(\mathrm{~d}, J=163.7 \mathrm{~Hz}), 80.4,71.8,70.6,69.9,69.6,60.5$, $59.3,55.0,45.6,38.9,37.4,33.3,31.6(\mathrm{~d}, J=19.6 \mathrm{~Hz}), 30.7,29.1,23.8(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H})$, 23.2, 17.4, 11.2.

FTIR (neat, cm^{-1}): 3266 (br), 2934 (m), 1672 (m), 1590 (s$), 1459$ (m), 1378 (m), 1346 (m), 1084 (m).

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{ClFN}_{2} \mathrm{O}_{5}, 453.2526$; found 453.2526 .

Isoxazoline \boldsymbol{N}-oxide 3.76.

In a $100-\mathrm{mL}$ round-bottomed flask, epoxyaldehyde $(3 R, 4 S)-\mathbf{3 . 2 8}(4.93 \mathrm{~g}, 19.5 \mathrm{mmol}, 1$ equiv) was dissolved in methanol (39.1 mL). To this solution were added nitroethanol (2.80 mL , $39.1 \mathrm{mmol}, 2.0$ equiv) and potassium carbonate ($270 \mathrm{mg}, 1.95 \mathrm{mmol}, 0.100$ equiv). After stirring for 2 h at $23^{\circ} \mathrm{C}$, TLC analysis (60% ethyl acetate-hexanes, CAM) showed complete consumption of epoxyaldehyde starting material, as well as the disappearance of intermediate, linear, mid-polar nitroaldol adducts (R_{f} 's $0.63-0.77,60 \%$ ethyl acetate-hexanes, CAM). The mixture was concentrated in vacuo, and crude ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of the residue revealed a $62: 38$ diastereomeric ratio favoring the desired C5 epimer. This crude mixture was subjected to flash-column chromatographic separation (700 g silica gel, eluting with 50% ethyl acetate-hexanes initially, grading to 80% ethyl acetate-hexanes) to afford isoxazoline N-oxide product as a brilliant white powder ($3.00 \mathrm{~g}, 45 \%$).

Melting point: $55-57^{\circ} \mathrm{C}$.
$\mathrm{R}_{f}=0.38$ (ethyl acetate, CAM).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.51(\mathrm{appt} \mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.89(\mathrm{dd}, J=6.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.67$ (dd, $J=7.4,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.53(\mathrm{~m}, 2 \mathrm{H}), 3.42(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.97(\mathrm{~d}, J=6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 2.42(\mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.09-1.08(\mathrm{~m}, 21 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 118.7,103.0,89.8,79.7,74.8,60.6,55.2,18.7,11.2$.
FTIR (neat, cm^{-1}): 3357 (br), 2942 (s$), 2865$ (s$), 1639$ (s$), 1463$ (m), 1014 (s), 883 (s$), 677$ (s).

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{16} \mathrm{H}_{29} \mathrm{NO}_{5} \mathrm{Si}, 366.1707$; found 366.1703.

3.76

(97\%)

S3. 20

Triol S3.20.

To a solution of isoxazoline N-oxide $\mathbf{3 . 7 6}(4.70 \mathrm{~g}, 13.7 \mathrm{mmol}$, 1 equiv) in tetrahydrofuran $(137 \mathrm{~mL})$ was added tetrabutylammonium fluoride solution $(1.0 \mathrm{M}$ in tetrahydrofuran, 32.8 mL , $32.8 \mathrm{mmol}, 2.40$ equiv) dropwise at $0{ }^{\circ} \mathrm{C}$. The resulting colorless solution was immediately warmed to $23{ }^{\circ} \mathrm{C}$, and after 2 h of stirring at that temperature, TLC analysis (5% methanol-ethyl acetate, CAM) indicated complete consumption of starting material. The mixture was loaded directly onto a column of silica gel (500 g) pre-equilibrated with ethyl acetate. The product was eluted with 5% methanol-ethyl acetate, and product-containing fractions were pooled. The pooled fractions were concentrated to give the product as a buff white solid ($221 \mathrm{mg}, 97 \%$).
$\mathrm{R}_{f}=0.32$ (5% methanol-ethyl acetate, CAM).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.25(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{dd}, J=8.1,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.45(\mathrm{dd}$, $J=6.3,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.33(\mathrm{~d}, J=14.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~d}, J=2.2$ Hz, 1H).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 120.8,82.9,81.9,75.4,75.4,73.5,73.5,58.8,55.1$.
FTIR (neat, cm^{-1}): 3279 (br), 2933 (w), 1639 (s), 1293 (m), 1092 (m), 1044 (m), 1019 (m).
HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{NO}_{5}, 210.0373$; found 210.0370.

Bis-silyl ether 3.77.

To a solution of triol $3.76(2.35 \mathrm{~g}, 12.6 \mathrm{mmol}, 1$ equiv) and imidazole $(4.27 \mathrm{~g}, 62.8 \mathrm{mmol}$, 8.00 equiv) in N, N-dimethylformamide (62.8 mL) was added tert-butyl(chloro)diphenylsilane ($7.26 \mathrm{~mL}, 28.3 \mathrm{mmol}, 4.00$ equiv) dropwise at $0{ }^{\circ} \mathrm{C}$. The mixture was then warmed to $23{ }^{\circ} \mathrm{C}$. Silylation of the primary alcohol was fast (generally complete within 5 min), while silylation of the propargylic alcohol was substantially slower - after 14 h of stirring at $23^{\circ} \mathrm{C}$, TLC analysis (60% ethyl acetate-hexanes, $\mathrm{UV}+\mathrm{KMnO}_{4}$) showed complete consumption of the mono-silylated intermediate $\left(\mathrm{R}_{f}=0.61\right)$. Excess chlorosilane reagent was quenched with the addition of saturated aqueous ammonium chloride (100 mL), and the resulting mixture was stirred rapidly at $23{ }^{\circ} \mathrm{C}$ for 10 min . The mixture was then extracted with 20% ethyl acetate-hexanes $(4 \times 100 \mathrm{~mL})$; the organic extracts were then combined, washed with saturated aqueous sodium chloride solution (100 mL), dried over sodium sulfate, filtered, and concentrated to give a light golden-amber oil. This residue was purified by flash-column chromatography (500 g silica gel, eluting with hexanes initially, grading to 20% ethyl acetate-hexanes) to provide the product as a white, foaming, amorphous solid (5.87 g, 70\%).
$\mathrm{R}_{f}=0.39\left(20 \%\right.$ ethyl acetate-hexanes, UV $\left.+\mathrm{KMnO}_{4}\right)$.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.80-7.78(\mathrm{~m}, 2 \mathrm{H}), 7.76-7.71(\mathrm{~m}, 6 \mathrm{H}), 7.51-7.46(\mathrm{~m}, 4 \mathrm{H}), 7.45-$
$7.40(\mathrm{~m}, 8 \mathrm{H}), 5.34(\mathrm{app} \mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.81(\mathrm{dd}, J=5.1,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=13.7$
$\mathrm{Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{dd}, J=7.2,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.47(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.12(\mathrm{~s}, 18 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.2,136.0,135.6(2 \times \mathrm{C}), 132.6,132.5,132.1,131.6,130.5$, $130.3,130.2(2 \times \mathrm{C}), 128.1(2 \times \mathrm{C}), 128.0,127.7,116.9,79.8,79.2,76.5,74.3,61.8,57.0$, $26.9(2 \times \mathrm{C}), 19.4,19.3$.

FTIR (neat, cm ${ }^{-1}$): 2931 (w), 2858 (w), 1644 (m), 1427 (m), 1105 (s), 1082 (s), 699 (s). HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{39} \mathrm{H}_{45} \mathrm{NO}_{5} \mathrm{Si}_{2}, 664.2909$; found 664.2900.

Isoxazoline 3.78.

In a $100-\mathrm{mL}$ round-bottomed flask, isoxazoline N-oxide 3.77 ($2.50 \mathrm{~g}, 3.77 \mathrm{mmol}$, 1 equiv) was dried by azeotropic removal of benzene. The dried starting material was then dissolved in trimethyl phosphite (15.1 mL), the flask was fitted with an oven-dried reflux condenser, and the reaction solution was heated to $100^{\circ} \mathrm{C}$ in a pre-heated oil bath. After 3 h , TLC analysis (20% ethyl acetate-hexanes, PAA) showed complete consumption of starting material. The mixture was cooled to $0^{\circ} \mathrm{C}$ and diluted in diethyl ether (200 mL); the organic product solution was then washed sequentially with 0.1 M aqueous HCl solution $(2 \times 40 \mathrm{~mL})$ and saturated aqueous sodium chloride solution (50 mL). The washed organic solution was dried over sodium sulfate, filtered, and concentrated to give a light yellow foaming solid. This residue was purified by flash-column chromatography (220 g silica gel, eluting with hexanes initially, grading to 20% ethyl acetatehexanes) to provide the product as a white, foaming, amorphous solid ($1.76 \mathrm{~g}, 72 \%$).
$\mathrm{R}_{f}=0.47\left(20 \%\right.$ ethyl acetate - hexanes, $\left.\mathrm{UV}+\mathrm{KMnO}_{4}\right)$
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.78-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.74-7.71(\mathrm{~m}, 4 \mathrm{H}), 7.70-7.68(\mathrm{~m}, 2 \mathrm{H}), 7.48-$
$7.44(\mathrm{~m}, 4 \mathrm{H}), 7.42-7.39(\mathrm{~m}, 8 \mathrm{H}), 5.43(\mathrm{app} \mathrm{t}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{dd}, J=4.0,2.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.60(\mathrm{~d}, J=13.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=8.5,3.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.90 (d, $J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.48$ (d, $J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 159.9,136.3(2 \times \mathrm{C}), 135.8,135.7,132.8(2 \times \mathrm{C}), 132.2,131.5$, $130.5,130.2,130.1(2 \times \mathrm{C}), 128.0,128.0(3 \times \mathrm{C}), 127.7,83.1,80.4,77.2,76.0,63.0,57.5$, $26.9(2 \times \mathrm{C}), 19.4(2 \times \mathrm{C})$.

HRMS $(\mathrm{ESI}+, m / z):[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{39} \mathrm{H}_{45} \mathrm{NO}_{4} \mathrm{Si}_{2}, 648.2960$; found 648.2957.

Isoxazolidine S3.21.

To a rapidly stirred, ice-cold suspension of isoxazoline 3.78 ($2.00 \mathrm{~g}, 3.09 \mathrm{mmol}, 1$ equiv) and sodium triacetoxyborohydride ($3.27 \mathrm{mg}, 15.4 \mathrm{mmol}, 5.00$ equiv) in acetonitrile (25.7 mL) was added trifluoroacetic acid ($23.8 \mathrm{~mL}, 309 \mathrm{mmol}, 100$ equiv) dropwise over 2 min . The mixture was then warmed to $23{ }^{\circ} \mathrm{C}$, and over the course of 1.5 h , the originally opaque white suspension gradually clarified, giving a light yellow, homogeneous solution. After 3.5, TLC analysis (20\% ethyl acetate-hexanes, PAA) showed full consumption of isoxazoline starting material. The reaction mixture was transferred by cannula to a rapidly stirred, ice-cold biphasic mixture of aqueous sodium hydroxide solution $(2.0 \mathrm{M}, 155 \mathrm{~mL}, 309 \mathrm{mmol})$ and dichloromethane (155 mL). Additional 2.0 M aqueous sodium hydroxide solution was added as necessary to achieve $\mathrm{pH} \geq 8.0$, and rapid stirring was maintained for 10 min . The layers were then separated, and the aqueous layer was extracted with dichloromethane $(3 \times 75 \mathrm{~mL})$. The combined organic extracts were dried over sodium sulfate, filtered, and concentrated to give isoxazolidine product as a foaming, dullwhite solid that was used in the next step without further purification.

For characterization purposes, a small quantity (ca. 25 mg) of crude residue was purified by HPLC on a Waters SunFire Prep C_{18} column $(5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% formic acid -25% acetonitrile-water initially, grading to 0.1% formic acid- 95% acetonitrile-water over 20 min , then holding at 0.1% formic acid -95% acetonitrile-water for 20 min with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at $\left.254 \mathrm{~nm} ; \mathrm{R}_{t}=31.9 \mathrm{~min}\right)$ to give analytically pure sample with the following spectroscopic properties:
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.80-7.72(\mathrm{~m}, 4 \mathrm{H}), 7.67-7.61(\mathrm{~m}, 4 \mathrm{H}), 7.50-7.36(\mathrm{~m}, 12 \mathrm{H}), 4.90$ (dd, $J=5.3,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.77(\mathrm{dd}, J=4.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-3.88(\mathrm{~m}, 2 \mathrm{H}), 3.71(\mathrm{dd}, J=$ $11.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dt}, J=6.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.11(\mathrm{~s}, 9 \mathrm{H}), 1.08$ ($\mathrm{s}, 9 \mathrm{H}$).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 136.3,136.1,135.7,135.6,132.9(2 \times \mathrm{C}), 132.3,132.0,130.4$, $130.3,130.1(2 \times \mathrm{C}), 128.0(3 \times \mathrm{C}), 127.8,127.7,81.1,77.7,75.8,70.9,63.1,61.0,27.0$ $(2 \times \mathrm{C}), 19.4(2 \times \mathrm{C})$.

FTIR (neat, cm^{-1}): 3288 (w), 2931 (m), 2858 (m), 1428 (m), 1112 (s), 701 (s).
HRMS (ESI,$+ m / z):[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{39} \mathrm{H}_{47} \mathrm{NO}_{4} \mathrm{Si}_{2}$, 650.3116; found 650.3119.

Carbamate S3.79.

A solution of isoxazolidine $\mathbf{S 3 . 2 1}$ (theoretically $3.09 \mathrm{mmol}, 1$ equiv) and $N-[2-$ (trimethylsilyl)ethoxycarbonyloxy]succinimide (Teoc-OSu, $1.20 \mathrm{mg}, 4.64 \mathrm{mmol}, 1.50$ equiv) in 1,4-dioxane (7.73 mL) was treated with triethylamine ($2.15 \mathrm{~mL}, 15.5 \mathrm{mmol}, 5.00$ equiv) at $23^{\circ} \mathrm{C}$, and the resulting solution was warmed to $40^{\circ} \mathrm{C}$. After 12 h of stirring at this temperature, LCMS analysis showed full consumption of starting material, and the reaction mixture was diluted with ethyl acetate $(200 \mathrm{~mL})$. The resulting product solution was washed sequentially with saturated aqueous ammonium chloride solution $(2 \times 40 \mathrm{~mL})$ and saturated sodium chloride solution (40 mL). The washed solution was then dried over sodium sulfate, filtered, and concentrated to provide a foaming, gummy oil. This crude residue was purified by flash-column chromatography (120 g silica gel, eluting with hexanes initially, grading to 15% ethyl acetate-hexanes) to furnish the product as a crispy white amorphous solid ($1.61 \mathrm{~g}, 66 \%, 2$ steps $)$.
$\mathrm{R}_{f}=0.48\left(20 \%\right.$ ethyl acetate-hexanes, UV $\left.+\mathrm{KMnO}_{4}\right)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.83-7.80(\mathrm{~m}, 4 \mathrm{H}), 7.71-7.67(\mathrm{~m}, 4 \mathrm{H}), 7.51-7.38(\mathrm{~m}, 8 \mathrm{H}), 4.96$ (app t, $J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.87(\mathrm{dd}, J=5.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{dd}, J=6.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ (dd, $J=5.6,3.6 \mathrm{~Hz}), 4.26-4.14(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{dd}, J=10.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{dd}, J=10.8$, 6.6 Hz, 1H), $3.61(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.42(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~s}, 9 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H})$, $1.02-0.98(\mathrm{~m}, 1 \mathrm{H}), 0.93-0.89(\mathrm{~m}, 1 \mathrm{H}), 0.06(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 157.1,136.3,136.1,135.7(2 \times \mathrm{C}), 133.0(2 \times \mathrm{C}), 132.3,131.9$, $130.3,130.2,130.0,129.9,128.0,127.9(2 \times \mathrm{C}), 127.7,83.2,80.8,75.9,70.2,64.8,62.9$, 62.1, $26.9(2 \times \mathrm{C}), 19.4(2 \times \mathrm{C}), 17.7,-1.4$.

IR (neat, cm^{-1}): 2954 (2), 2858 (w), 1702 (w), 1427 (m), 1104 (s), 837 (m), 731 (s), 699 (s). HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{45} \mathrm{H}_{59} \mathrm{NO}_{6} \mathrm{Si}_{3}$, 794.3723; found 794.3720.

Glycal 3.80.

In a $100-\mathrm{mL}$ borosilicate glass microwave reaction vial, alkynol $3.79(1.60 \mathrm{~g}, 2.02 \mathrm{mmol}$, 1 equiv) was dried by azeotropic removal of benzene. To the dried starting material was added tungsten hexacarbonyl ($177 \mathrm{mg}, 0.504 \mathrm{mmol}, 0.250$ equiv) and 1,4-diazabicyclo[2.2.2]octane (452 $\mathrm{mg}, 4.03 \mathrm{mmol}, 2.00$ equiv). CAUTION: Tungsten hexacarbonyl is a volatile source of metal and of carbon monoxide. Manipulations of this reagent should be conducted within a well-ventilated fume hood. The vial was flushed with dry argon gas, and then anhydrous, degassed tetrahydrofuran $(20.2 \mathrm{~mL})$ was added at $23^{\circ} \mathrm{C}$. The resulting colorless solution attained a vibrant fluorescent yellow color within 3 minutes. The vial was sealed and was transferred to a pre-heated oil bath (60 ${ }^{\circ} \mathrm{C}$) positioned inside a photochemistry safety cabinet. The reaction mixture was heated with constant UV irradiation from an adjacent 200-Watt mercury-vapor bulb filtered through a watercooled Pyrex glass jacket (CAUTION: Exposure to high-intensity UV light can cause irreversible vision loss - never open the safety cabinet when the UV lamp is on). Progress was monitored by TLC (20% ethyl acetate-hexanes, UV+KMnO4). After 2 d, full consumption of alkynol substrate was achieved, and the crude product mixture was concentrated to dryness in vacuo. The goldenrod, oily residue was purified by flash-column chromatography (120 g silica gel, eluting with hexanes initially, grading to 15% ethyl acetate-hexanes) to provide the product as a viscous, colorless oil $(1.40 \mathrm{~g}, 88 \%)$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.93-7.91(\mathrm{~m}, 2 \mathrm{H}), 7.88-7.85(\mathrm{~m}, 2 \mathrm{H}), 7.70-7.65(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.18$ $(\mathrm{m}, 12 \mathrm{H}), 5.98(\mathrm{dd}, J=6.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{app} \mathrm{dt}, J=6.5,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{dd}, J=$ $7.0,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{app} \mathrm{dt}, J=4.4,2.1 \mathrm{~Hz}), 4.32-4.26(\mathrm{~m}, 2 \mathrm{H}), 4.24-4.17(\mathrm{~m}, 2 \mathrm{H}), 3.85$ (dd, $J=10.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=10.8,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H}), 0.91$ $(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}),-0.07(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 157.3,142.0,136.3(2 \times \mathrm{C}), 136.0(2 \times \mathrm{C}), 134.2(2 \times \mathrm{C}), 133.5$, $133.4,130.2(4 \times \mathrm{C}), 128.4,128.2(2 \times \mathrm{C}), 128.1,102.1,78.9,76.9,69.3,64.5,63.6,63.3$, $27.1(2 \times \mathrm{C}), 19.6,19.4,17.7,-1.4$.

IR (neat, cm^{-1}): $2954(\mathrm{~m}), 2931(\mathrm{~m}), 2857(\mathrm{~m}), 1702(\mathrm{~m}), 1427(\mathrm{~m}), 1111(\mathrm{~s}), 1066(\mathrm{~s}), 837(\mathrm{~m})$, 701 (s).

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{45} \mathrm{H}_{59} \mathrm{NO}_{6} \mathrm{Si}_{3}$, 794.3723; found 794.3696.

Brigl's anhydride 3.81.

A solution of dimethyldioxirane in acetone was prepared, and its concentration was assayed according to the procedures of Murray and Singh. ${ }^{131}$ A solution of glycal $\mathbf{3 . 8 0}(920 \mathrm{mg}, 1.16 \mathrm{mmol}$, 1 equiv) in dichloromethane ($11.6 \mu \mathrm{~L}$) was cooled to $0^{\circ} \mathrm{C}$, whereupon dimethyldioxirane solution ($0.0775 \mathrm{M}, 17.9 \mathrm{~mL}, 1.39 \mu \mathrm{~mol}, 1.20$ equiv) was added dropwise over 3 min . The reaction mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min , at which point TLC analysis $\left(\mathrm{NH}_{2}\right.$ silica gel, 20% ethyl acetatehexanes, UV + PAA) indicated full consumption of starting material. The mixture was then concentrated under a stream of dry argon, and the residue was dried by azeotropic removal of benzene to afford Brigl's anhydride product as a colorless oil that was suitable for use without further purification (quantitative yield, $\geq 95 \%$ purity by NMR).
$\mathrm{R}_{f}=0.63\left(\mathrm{NH}_{2}\right.$ silica gel, 20% ethyl acetate-hexanes $+2 \%$ methanol, $\left.\mathrm{UV}+\mathrm{CAM}\right)$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 7.89-7.86(\mathrm{~m}, 2 \mathrm{H}), 7.80-7.76(\mathrm{~m}, 2 \mathrm{H}), 7.65-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.22-7.13$
$(\mathrm{m}, 12 \mathrm{H}), 4.65(\operatorname{app~dt}, J=2.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.61(\mathrm{dd}, J=7.1,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.28-4.17(\mathrm{~m}, 2 \mathrm{H}), 4.12(\mathrm{~d}, J=2.0,1 \mathrm{H}), 3.88(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{dd}, J=$ $10.9,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=10.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\operatorname{app} \mathrm{t}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{~s}$, $9 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{t}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}),-0.11(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($\left.126 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 157.2,136.2,136.1,135.9(2 \times \mathrm{C}), 133.4(2 \times \mathrm{C}), 133.3,133.2$, $130.3(2 \times \mathrm{C}), 130.1,128.3,128.2,128.1,77.1,74.7,73.2,69.4,66.9,64.5,63.3,51.6$, $27.0,19.6,19.3,17.6,-1.5$. Two phenyl carbons are not observed: One is believed to be
obfuscated by the solvent signal, and the other is believed to coincide with another resonance (δ 130.1).

IR (neat, cm^{-1}): 2954 (m), 2931 (m), 2858 (m), 1703 (m), 1427 (m), 1249 (m), 1111 (s$), 822(\mathrm{~s})$, 700 (s).

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{45} \mathrm{H}_{59} \mathrm{NO}_{7} \mathrm{Si}_{3}$, 810.3672; found 810.3667.

Isoxazolidine triol S3.22.

In a $25-\mathrm{mL}$ round-bottomed flask fitted with a magnetic stir bar, glycal epoxide $\mathbf{3 . 8 1}$ (321 $\mathrm{mg}, 396 \mathrm{mmol}, 1$ equiv) was dried by azeotropic removal of benzene. Once dried, the starting material was dissolved in tetrahydrofuran $(3.96 \mathrm{~mL})$, and the resulting solution was chilled to -78 ${ }^{\circ} \mathrm{C}$. Once cooled, (methylthio)trimethylsilane ($169 \mu \mathrm{~L}, 1.19 \mathrm{mmol}, 3.00$ equiv) was added; next, trimethylsilyl trifluoromethanesulfonate ($14.3 \mu \mathrm{~L}, 79.0 \mu \mathrm{~mol}, 0.200$ equiv) was added dropwise. After 5 min, TLC analysis (NH_{2} silica gel, 2% methanol- 20% ethyl acetate-hexanes, UV+CAM) showed complete conversion of starting material to a slightly more polar product. At this point the reaction was quenched with the addition of tetra- n-butylammonium fluoride solution (1.0 M in tetrahydrofuran, $2.8 \mathrm{~mL}, 2.8 \mathrm{mmol}, 7.0$ equiv), and the mixture was warmed to $23^{\circ} \mathrm{C}$. After 1 h of stirring at $23^{\circ} \mathrm{C}$, LCMS analysis showed that global desilylation was complete. The mixture was loaded directly onto a column of silica gel $(20 \mathrm{~g})$ that had been pre-equilibrated with ethyl acetate; the column was eluted first with ethyl acetate (300 mL), then with 5% methanol-ethyl acetate (300 mL), and finally with 10% methanol-ethyl acetate (600 mL). Fractions containing product were identified by TLC (10% methanol-ethyl acetate, PAA), and these fractions were pooled and concentrated to afford isoxazolidine triol $\mathbf{S 3 . 2 2}(103 \mathrm{mg}, 110 \%)$ that was sufficiently pure for use in the subsequent $\mathrm{N}-\mathrm{O}$ bond cleavage reaction.

For characterization purposes, a small quantity (ca. 20 mg) of this product was subjected to preparative HPLC (with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$, eluting with 0.1% trifluoroacetic acid- 1% acetonitrile-water for 2 min , then grading to 0.1% trifluoroacetic acid- 20% acetonitrile-water
over 18 min ; monitored by UV absorbance at 210 nm ; product $\mathrm{R}_{t}=8.75 \mathrm{~min}$) to give the trifluoroacetic acid salt of $\mathbf{S 3 . 2 2} \cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ in pure form.
$\mathrm{R}_{f}=0.06$ (free base, 10% methanol-ethyl acetate, PAA).
${ }^{1} \mathrm{H}$ NMR (hydrotrifluoroacetate salt, $\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.27(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.98$ (d, $J=$ $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{dd}, J=3.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=10.1,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\operatorname{app} \mathrm{t}, J$ $=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=10.0,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=12.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.83(\mathrm{dd}, J$ $=12 \cdot 0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2 \cdot 14(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (hydrotrifluoroacetate salt, $100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 89.0,85.4,76.1,70.1,69.0,68.6,59.0$, 13.1.
${ }^{19} \mathrm{~F}$ NMR (hydrotrifluoroacetate salt, $471 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-77.3$ (s, 3F).
IR (hydrotrifluoroacetate salt, neat, cm^{-1}): 3349 (br), 1672 (s), 1434 (w), 1199 (s), 1139 (m), 1095 (m), 1051 (m).

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{8} \mathrm{H}_{15} \mathrm{NO}_{5} \mathrm{~S}$ 238.0744; found 238.0739.

Aminotetraol 3.4.

To a solution of isoxazolidine triol S3.22 (234 mg, $986 \mu \mathrm{~mol}$, 1 equiv) in $50 \% \mathrm{v} / \mathrm{v}$ acetic acid-water (9.86 mL) was added activated zinc powder ($258 \mathrm{mg}, 3.94 \mathrm{mmol}, 4.00$ equiv). The mixture was heated to $35^{\circ} \mathrm{C}$ with stirring, and after 4 h , LCMS showed complete conversion of starting material to aminotetraol product. The mixture was cooled before it was filtered through a Celite pad. The filter cake was washed with methanol $(3 \times 5 \mathrm{~mL})$, and the combined filtrates were concentrated to dryness. Residual acetic acid was removed by repeated concentration from 50\% v / v methanol-toluene. Once dried, the crude residue, containing the hydroacetate salt of the desired product as well as zinc acetate as a major impurity, was dissolved in methanol (20 mL) and was treated with Amberlyst A26 resin (hydroxide form, 4.00 g). After stirring the mixture at $23{ }^{\circ} \mathrm{C}$ for 1 h , the ion-exchange beads were removed by filtration, and the filtrate was concentrated to give a white solid. This crude residue was finally purified by flash-column chromatography (25 silica gel, eluting with 1% ammonium hydroxide- 10% methanol-dichloromethane initially, grading to 10% ammonium hydroxide -40% methanol-dichloromethane) to provide methylthio-8norlincosamine as a white solid ($182 \mathrm{mg}, 77 \%$).
$\mathrm{R}_{f}=0.30$ (10% ammonium hydroxide- 40% methanol-dichloromethane, ninhydrin). ${ }^{155}$

[^92]${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{D}_{2} \mathrm{O}\right) \delta 5.17(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-3.92(\mathrm{~m}, 2 \mathrm{H}), 3.84(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.63(\mathrm{dd}, J=11.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=10.2,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.38(\mathrm{dd}, J=11.2,6.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.91(\mathrm{ddd}, J=9.0,6.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.92(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{D}_{2} \mathrm{O}\right) ~ 87.0,70.5,70.3,68.2,67.8,63.0,50.6,12.0$.
FTIR (neat, cm^{-1}): 2939 (s), 2865 (m), 1711 (s), 1464 (m), 1434 (m), 1125 (m), 1036 (m), 756 (s). HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{8} \mathrm{H}_{17} \mathrm{NO}_{5} \mathrm{~S}, 240.0900$; found 240.0899.

8-Norlincomycin (3.5).

In a $2-5 \mathrm{~mL}$ glass microwave vial fitted with a magnetic stir bar, methylthio-8norlincosamine (3.4, $100 \mathrm{mg}, 418 \mu \mathrm{~mol}$, 1 equiv) was dissolved in N, N-dimethylformamide (2.09 $\mathrm{mL})$. Triethylamine $(262 \mu \mathrm{~L}, \quad 1.88 \mathrm{mmol}, 4.50$ equiv) and $\mathrm{N}, \mathrm{O}-$ bis(trimethylsilyl)trifluoroacetamide ($224 \mu \mathrm{~L}, 836 \mu \mathrm{~mol}, 2.00$ equiv) were added next, and the solution was stirred at $23{ }^{\circ} \mathrm{C}$ for 1 h to ensure complete O-silylation. After this period, trans-4-n-propyl-L-hygric acid hydrochloride (1.88) (104 mg, $501 \mu \mathrm{~mol}, 1.20$ equiv) and HATU (222 mg , $585 \mu \mathrm{~mol}, 1.40$ equiv) were added, causing the reaction mixture to attain a canary yellow hue. Following 4 h of stirring at $23^{\circ} \mathrm{C}$, LCMS analysis showed complete conversion of aminotetraol starting material and its (oligo)silylated congeners to amide products. The reaction mixture was consequently diluted with ethyl acetate $(25 \mathrm{~mL})$ and the diluted solution was washed with saturated aqueous sodium bicarbonate solution $(10 \mathrm{~mL})$. The aqueous layer was extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$, and the combined organic layers were then washed with saturated aqueous sodium chloride solution (15 mL). The washed organic solution was dried over sodium sulfate, filtered, and concentrated; and the residue thus obtained was re-dissolved in $50 \% \mathrm{v} / \mathrm{v}$ methanol-acetic acid. This colorless solution was stirred at $40^{\circ} \mathrm{C}$ for 24 h to ensure complete desilylation before it was concentrated to dryness in vacuo. Residual acetic acid was removed by repeated concentration of the mixture from $50 \% \mathrm{v} / \mathrm{v}$ methanol-toluene. Once thoroughly dried, the crude residue was treated with methanol (10 mL) and Amberlyst A26 resin (hydroxide form, 2.00 g). The resulting mixture
was stirred at $23{ }^{\circ} \mathrm{C}$ for 1 h before the ion-exchange beads were removed by filtration and the filtrate was concentrated. This light amber-colored oily residue was purified by flash-column chromatography (18 g silica gel, eluting with 0.5% ammonium hydroxide- 5% methanoldichloromethane initially; grading to 1% ammonium hydroxide- 10% methanol-dichloromethane) to furnish 8-norlincomycin (3.5) as a light yellow, foaming solid (121 mg, 74\%).
$\mathrm{R}_{f}=0.23\left(1 \%\right.$ ammonium hydroxide- 10% methanol-dichloromethane, PMA or $\left.\mathrm{I}_{2}\right)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.29(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.08(\mathrm{~m}$, $2 \mathrm{H}), 3.78$ (app dt, $J=6.6,5.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.72(\mathrm{dd}, J=10.7,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{dd}, J=10.1$, $3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=8.7,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{dd}, J=10.6,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.37(\mathrm{~s}, 3 \mathrm{H})$, 2.19-2.15 (m, 1H), $2.08(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{dd}, J=10.1,8.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{ddd}, J=13.0,8.2$, $4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\operatorname{app~dt}, J=12.9,10.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.36-1.31(\mathrm{~m}, 4 \mathrm{H}), 0.92(\mathrm{t}, J=6.5 \mathrm{~Hz}$, $3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CD 3 OD) $\delta 178.2,89.0,71.9,70.4,69.8(2 \times \mathrm{C}), 69.5,63.8,61.5,51.9,41.9$, 38.9, 38.6, 37.0, 22.6, 14.6, 12.8.

FTIR (neat, cm^{-1}): 3333 (br), 2920 (s), 2787 (m), 1644 (s), 1525 (s), 1080 (s).
HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{17} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{~S}, 393.2054$; found 393.2050.

Alcohol 3.82.

In a $2-5 \mathrm{~mL}$ glass microwave vial, an ice-cold solution of 8-norlincomycin (3.5, 90.0 mg , $229 \mu \mathrm{~mol}, 1$ equiv) in pyridine ($382 \mu \mathrm{~L}$) was treated sequentially with hexamethyldisilazane (121 $\mu \mathrm{L}, 578 \mu \mathrm{~mol}, 2.52$ equiv) and chlorotrimethylsilane ($168 \mu \mathrm{~L}, 1.31 \mathrm{mmol}, 5.72$ equiv). Following the addition of these reagents, the mixture was warmed to $23^{\circ} \mathrm{C}$, and stirring was maintained for 2 h . The mixture was then concentrated to dryness in vacuo, and the residue was partitioned between hexanes $(10 \mathrm{~mL})$ and water $(10 \mathrm{~mL})$. The layers were separated, and the aqueous phase was extracted with additional hexanes $(3 \times 5 \mathrm{~mL})$. The combined organic extracts were then dried over sodium sulfate, the dried solution was filtered, and the filtrate was concentrated to afford crude, persilylated 8-norlincomycin as a brilliant white solid. This material was then suspended in methanol $(887 \mu \mathrm{~L})$, and $80 \% \mathrm{v} / \mathrm{v}$ acetic acid-water $(133 \mu \mathrm{~L})$ was added to the suspension, causing the mixture to become a homogeneous, colorless solution. Desilylation was monitored by TLC (40% ethyl acetate-hexanes, $C A M$; persilylated intermediate $\mathrm{R}_{f}=0.64$; alcohol product $\mathrm{R}_{f}=0.16$), and after 40 min of stirring at $23^{\circ} \mathrm{C}$, the reaction was judged to be complete. The reaction mixture was transferred to a separatory funnel containing hexanes $(10 \mathrm{~mL})$ and saturated aqueous sodium bicarbonate solution (10 mL). The mixture was shaken vigorously, and the layers were separated. The aqueous layer was extracted with fresh hexanes $(3 \times 5 \mathrm{~mL})$, and the combined organic extracts were washed with saturated aqueous sodium chloride solution (10 mL). The washed organic
solution was then dried over sodium sulfate, filtered, and concentrated to provide 2,3,4-tris- O -trimethylsilyl-8-norlincomycin as a white, foaming, amorphous solid (115 mg, 93\%).
$\mathrm{R}_{f}=0.16$ (40% ethyl acetate - hexanes, CAM).
H NMR ($600 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 7.73(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.11(\mathrm{~m}$, $3 \mathrm{H}), 3.92(\mathrm{br} \mathrm{d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{brd}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.66(\mathrm{dd}, J=9.4,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-3.12(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=10.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.57(\mathrm{br}$, $1 \mathrm{H}), 2.34(\mathrm{~s}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.04-2.02(\mathrm{~m}, 2 \mathrm{H}), 1.97-1.93(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.80(\mathrm{~m}, 1 \mathrm{H})$, $1.30-1.24(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{t}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.17(\mathrm{~s}, 9 \mathrm{H}), 0.12(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 174.8,88.3,72.6(2 \times \mathrm{C}), 70.9,69.0,68.9,62.9,62.8,50.0,42.0$, $38.3,37.8,35.8,21.7,14.4,12.7,0.9,0.5,0.3$.

FTIR (neat, cm^{-1}): 2957 (m), 1659 (m), 1518 (m), 1250 (m), 1132 (m), 1070 (m), 893 (s), 839 (s). HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{26} \mathrm{H}_{56} \mathrm{~N}_{2} \mathrm{O}_{6} \mathrm{SSi}_{3}$, 609.3240; found 609.3259.

Aldehyde 3.83.

To a solution of 2,3,4-tris- O-trimethylsilyl-8-norlincomycin (3.82, $50 \mathrm{mg}, 82 \mu \mathrm{~mol}, 1$ equiv) in dichloromethane ($660 \mu \mathrm{~L}$) and dimethyl sulfoxide ($160 \mu \mathrm{~L}$) were added triethylamine ($92 \mu \mathrm{~L}, 660 \mu \mathrm{~mol}, 8.0$ equiv) and sulfur trioxide-pyridine complex ($52 \mathrm{mg}, 330 \mu \mathrm{~mol}, 4.0$ equiv) at $23^{\circ} \mathrm{C}$. After 15 min , TLC analysis (10% methanol-dichloromethane, PAA) showed that reaction progress had stalled, and additional portions of triethylamine ($92 \mu \mathrm{~L}, 660 \mu \mathrm{~mol}, 8.0$ equiv) and sulfur trioxide-pyridine complex ($52 \mathrm{mg}, 330 \mu \mathrm{~mol}, 4.0$ equiv) were added. After an additional 15 min of stirring at $23^{\circ} \mathrm{C}$, TLC analysis showed the reaction was complete. The mixture was diluted with dichloromethane (10 mL), and the diluted solution was transferred to a separatory funnel containing saturated aqueous sodium bicarbonate solution (10 mL). The layers were shaken vigorously, then separated, and the aqueous phase was extracted with fresh portions of dichloromethane $(3 \times 5 \mathrm{~mL})$. The combined organic extracts were then washed with saturated aqueous sodium chloride solution $(10 \mathrm{~mL})$ before being dried over sodium sulfate, filtered, and concentrated to provide crude aldehyde $\mathbf{3 . 8 3}$ as a dull white solid. This material was unstable toward column chromatography, and thus an analytically pure sample could not be obtained; instead, purity of $\geq 85 \%$ was assumed based on crude ${ }^{1} \mathrm{H}$ NMR analysis $\left(\mathrm{CDCl}_{3}\right)$, and this material was used directly in subsequent transformations whereafter 2-step yields were determined.

Synthetic lincosamide FSA-214080.

To a solution of aldehyde $\mathbf{3 . 8 3}$ (theoretically $9.7 \mathrm{mg}, 16 \mathrm{mmol}$, 1 equiv) in dichloromethane (400 mL) were added 4-(pyrimidin-5-yl)aniline (3.84, $6.9 \mathrm{mg}, 40 \mu \mathrm{~mol}, 2.5$ equiv) and acetic acid $\left(9.2 \mu \mathrm{~L}, 160 \mu \mathrm{~mol}, 10\right.$ equiv) at $23{ }^{\circ} \mathrm{C}$. After 15 min of stirring, the mixture was then treated with sodium triacetoxyborohydride ($6.8 \mathrm{mg}, 32 \mu \mathrm{~mol}, 2.0$ equiv), and 2 h later, LCMS analysis showed complete consumption of aldehyde starting material and imine intermediate. The reaction mixture was concentrated under a stream of nitrogen, and the residue was re-suspended in $50 \% \mathrm{v} / \mathrm{v}$ methanol-1N aqueous hydrogen chloride solution (1.0 mL). The resulting canary yellow suspension was stirred at $23^{\circ} \mathrm{C}$ for 5 min , whereupon LCMS analysis showed global desilylation was complete. The mixture was filtered through a $0.2-\mu \mathrm{m}$ PTFE filter, and the filtrate was concentrated. The crude residue was subjected to purification by preparative HPLC on a Waters SunFire Prep C_{18} column ($5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% formic acid- 5% acetonitrilewater, grading to 0.1% formic acid -40% acetonitrile-water over 40 min , with a flow rate of 15 $\mathrm{mL} / \mathrm{min}$; monitored by UV absorbance at $280 \mathrm{~nm} ; \mathrm{R}_{t}=15.8 \mathrm{~min}$) to provide (pyrimidyl)aniline analog FSA-214080 $\cdot \mathrm{HCO}_{2} \mathrm{H}$ as a white solid ($1.9 \mathrm{mg}, 19 \%, 2$ steps).
${ }^{1} \mathrm{H}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.98(\mathrm{~s}, 1 \mathrm{H}), 8.96(\mathrm{~s}, 2 \mathrm{H}), 8.44(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 7.51(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.83$ $(\mathrm{d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.31(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\operatorname{app~q}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{dd}, J=$
6.4, 1.3 Hz, 1H), 4.12 (dd, $J=10.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.94(\mathrm{dd}, J=3.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.64$ (dd, $J=10.1,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=13.7,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dd}, J=13.6,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.25$ (app t, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.22-3.17(\mathrm{~m}, 1 \mathrm{H}), 2.45(\mathrm{~s}, 3 \mathrm{H}), 2.23-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H})$, $2.01-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.84-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.29-1.16(\mathrm{~m}, 4 \mathrm{H}), 0.80(\mathrm{t}, \mathrm{J}=$ 7.1 Hz, 3H).

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{27} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}$, 546.2745; found 546.2753.

Synthetic lincosamide FSA-214087.

A 4-mL glass vial fitted with a PTFE-lined screw cap was charged with a magnetic stir bar, aldehyde $\mathbf{3 . 8 3}$ (theoretically $10 \mathrm{mg}, 16 \mu \mathrm{~mol}$, 1 equiv), 2,2,2-trifluoroethanol ($330 \mu \mathrm{~L}$), and powdered, activated $4 \AA$ molecular sieves $(10 \mathrm{mg})$. The suspension was chilled to $-20^{\circ} \mathrm{C}$ in an acetone bath, whereupon acetic acid ($5.7 \mu \mathrm{~L}, 99 \mu \mathrm{~mol}, 6.0$ equiv) was added. 4-(Pyridin-3yl)aniline ($\mathbf{S 3 . 2 3}, 8.4 \mathrm{mg}, 49 \mu \mathrm{~mol}, 3.0$ equiv) was added next, causing the mixture to turn tennisball yellow; and the mixture was stirred at $-20^{\circ} \mathrm{C}$ for 15 min before the mixture was treated with sodium triacetoxyborohydride ($10 \mathrm{mg}, 49 \mu \mathrm{~mol}, 3.0$ equiv). After 30 min , LCMS analysis showed complete consumption of aldehyde starting material and imine intermediate. The mixture was warmed to $23^{\circ} \mathrm{C}$ and was concentrated to dryness before being re-suspended in $50 \% \mathrm{v} / \mathrm{v}$ methanol1 N aqueous hydrogen chloride solution. After 5 min of stirring at $23^{\circ} \mathrm{C}$, LCMS analysis showed that global desilylation was complete, and the yellow mixture was filtered through a $0.2-\mu \mathrm{m}$ PTFE filter. The filtrate was concentrated, and the crude residue was purified by preparative HPLC on a Waters SunFire Prep C_{18} column ($5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acidwater, grading to 0.1% trifluoroacetic acid- 50% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at $280 \mathrm{~nm} ; \mathrm{R}_{t}=22.2 \mathrm{~min}$) to provide (pyridyl)aniline analog FSA-214087• $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as a white solid ($5.6 \mathrm{mg}, 44 \%$, 2 steps).
${ }^{1} \mathrm{H}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 9.03(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.77(\mathrm{ddd}, J=8.4,2.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.62(\mathrm{dd}$, $J=5.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.03(\mathrm{dd}, J=8.3,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.63(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.82(\mathrm{~d}, J=$ $8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.35(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\operatorname{app} \mathrm{td}, J=9.1,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=8.9$ Hz, 1H), 4.16-4.11 (m, 2H), 3.91 (dd, $J=3.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.72-3.66(\mathrm{~m}, 2 \mathrm{H}), 3.62$ (dd, J $=10.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.37(\mathrm{dd}, J=14.1,9.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.91(\mathrm{~s}, 3 \mathrm{H}), 2.83(\mathrm{app} \mathrm{t}, J=11.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.23-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.09-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.30(\mathrm{~m}, 2 \mathrm{H}), 1.27-1.19$ $(\mathrm{m}, 2 \mathrm{H}), 0.84(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.

HRMS (ESI+, m / z): $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calc'd for $\mathrm{C}_{28} \mathrm{H}_{40} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$, 273.1432; found 273.1432.

Synthetic lincosamide FSA-215009.

In a 4-mL glass vial fitted with a PTFE-lined screw cap and a magnetic stir bar, aniline FSA-214087 (22 mg, $41 \mu \mathrm{~mol}, 1$ equiv) was dissolved in methanol $(820 \mu \mathrm{~L})$ to which a spatula tipful of bromocresol green pH indicator had been added. The pH of the solution was adjusted to reach $\mathrm{pH} 4-5$ (indicated by a forest green color) by addition of acetic acid. Formalin ($92 \mu \mathrm{~L}, 1.2$ $\mathrm{mmol}, 30$ equiv) and sodium cyanoborohydride ($13 \mathrm{mg}, 210 \mu \mathrm{~mol}, 5.0$ equiv) were then added, and the mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 10 min , whereupon LCMS analysis showed that the reaction was complete. The mixture was passed through a $0.2-\mu \mathrm{m}$ PTFE filter, the filtrate was concentrated, and the crude residue was purified by preparative HPLC-MS on a Waters SunFire Prep C_{18} column ($5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid-water, grading to 0.1% trifluoroacetic acid- 35% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 280 nm and ESI+ selected ion monitoring [$\mathrm{m} / \mathrm{z}=280$]; $\mathrm{R}_{t}=29.2$ min) to provide (pyridyl) aniline analog $\mathbf{F S A} \mathbf{- 2 1 5 0 0 9} \cdot 2 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as a white solid ($4.1 \mathrm{mg}, 13 \%$)

[^93]$\mathrm{Hz}, 1 \mathrm{H}), 3.76-7.74(\mathrm{~m}, 2 \mathrm{H}), 3.63-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H}), 2.85(\mathrm{~s}, 3 \mathrm{H}), 2.72(\mathrm{app} \mathrm{t}, \mathrm{J}=$ $11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 1.96-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.76(\mathrm{dt}, J=13.4,9.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{ddd}$, $J=13.9,8.5,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.24(\mathrm{ddd}, J=15.7,8.2,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.16-1.10(\mathrm{~m}, 1 \mathrm{H}), 1.08-$ $1.01(\mathrm{~m}, 2 \mathrm{H}), 0.68(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

HRMS (ESI+, m / z): $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calc'd for $\mathrm{C}_{29} \mathrm{H}_{42} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$, 280.1511; found 280.1514.

Synthetic lincosamide FSA-215010.

In a 4-mL glass vial fitted with a PTFE-lined screw cap and a magnetic stir bar, aniline FSA-214087 (22 mg, $41 \mu \mathrm{~mol}$, 1 equiv) was dissolved in methanol $(820 \mu \mathrm{~L})$ to which a spatula tipful of bromocresol green pH indicator had been added. The pH of the solution was adjusted to reach $\mathrm{pH} 4-5$ (indicated by a forest green color) by addition of acetic acid. Glycolaldehyde dimer ($74 \mathrm{mg}, 0.62 \mathrm{mmol}, 15$ equiv) and sodium cyanoborohydride ($13 \mathrm{mg}, 0.21 \mathrm{mmol}, 5.0$ equiv) were then added, and the mixture was stirred at $23^{\circ} \mathrm{C}$ for 20 h , whereupon LCMS analysis indicated that the reaction was complete. The mixture was passed through a $0.2-\mu \mathrm{m}$ PTFE filter, the filtrate was concentrated, and the crude residue was purified by preparative HPLC on a Waters SunFire Prep C_{18} column ($5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid-water, grading to 0.1% trifluoroacetic acid- 35% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at $280 \mathrm{~nm} ; \mathrm{R}_{t}=26.0 \mathrm{~min}$) to provide ethanolamine analog FSA$215010 \cdot 2 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as a white solid ($8.3 \mathrm{mg}, 25 \%$).

[^94]$3.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.79-3.72(\mathrm{~m}, 3 \mathrm{H}), 3.65-3.60(\mathrm{~m}, 3 \mathrm{H}), 3.59-3.55(\mathrm{~m}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 2.75$ (app t, $J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H}), 2.02-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{dt}, J=13.4,9.6 \mathrm{~Hz}, 1 \mathrm{H})$, $1.58(\mathrm{ddd}, J=13.0,8.6,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.32-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.20-1.14(\mathrm{~m}, 1 \mathrm{H}), 1.12-1.07(\mathrm{~m}$, $2 \mathrm{H}), 0.72(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

HRMS (ESI,$+ m / z$): $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calc'd for $\mathrm{C}_{30} \mathrm{H}_{44} \mathrm{~N}_{4} \mathrm{O}_{6}$, 295.1564; found 295.1561.

Synthetic lincosamides FSA-214082a and FSA-214082b.

In a 4-mL glass vial fitted with a PTFE-lined screw cap and a magnetic stir bar, aldehyde 3.83 (theoretically $10 \mathrm{mg}, 16 \mu \mathrm{~mol}, 1$ equiv), dichloromethane $(410 \mu \mathrm{~L})$, acetic acid $(9.4 \mu \mathrm{~L}, 0.17$ mmol, 10 equiv) and cyclopropylamine ($2.9 \mu \mathrm{~L}, 41 \mu \mathrm{~mol}, 2.5$ equiv) were combined. This mixture was stirred for 15 min at $23^{\circ} \mathrm{C}$ before sodium triacetoxyborohydride ($7.0 \mathrm{mg}, 33 \mu \mathrm{~mol}, 2.0$ equiv) was added. After 1 h , LCMS analysis showed that the reaction was complete. The mixture was concentrated to dryness, and the residue was re-suspended in $50 \% \mathrm{v} / \mathrm{v}$ methanol -1 N aqueous hydrogen chloride solution (1.0 mL). After 15 min , LCMS showed that global desilylation was complete, and the mixture was passed through a $0.2-\mu \mathrm{m}$ PTFE filter. The filtrate was concentrated, and the crude residue was purified by preparative HPLC on a Waters SunFire Prep C_{18} column (5 $\mu \mathrm{m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid-water, grading to 0.1% trifluoroacetic acid- 40% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 210 nm ; FSA-214082a $\mathrm{R}_{t}=22.4 \mathrm{~min}$, FSA-214082b $\mathrm{R}_{t}=23.7 \mathrm{~min}$) to provide cyclopropylamine analogs FSA-214082a $\cdot 2 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(2.3 \mathrm{mg}, 26 \%, 2$ steps $)$ and FSA-214082b - $2 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ ($2.1 \mathrm{mg}, 23 \%, 2$ steps) as white solids.

FSA-214082a $\cdot 2 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}:$

${ }^{1} \mathrm{H}$ NMR ($\left.600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.30(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.69(\mathrm{ddd}, J=9.8,5.7,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.24-$ $4.18(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{dd}, J=10.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=3.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=$ $10.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=10.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=13.0,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.36$ (dd, $J=13.0,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.98-2.94(\mathrm{~m}, 4 \mathrm{H}), 2.91-2.83(\mathrm{~m}, 2 \mathrm{H}), 2.37-2.29(\mathrm{~m}, 2 \mathrm{H})$, 2.26-2.19(m, 1H), $2.11(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.44(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.33(\mathrm{~m}, 2 \mathrm{H}), 0.97-0.90(\mathrm{~m}, 8 \mathrm{H})$. HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$, 432.2527; found 432.2516.

FSA-214082b • $2 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}:$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 5.34(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\operatorname{app~td}, J=7.7,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.31$ (dd, $J=7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=10.3,6.5 \mathrm{~Hz}, 4.10(\mathrm{dd}, J=10.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89$ (dd, $J=3.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=11.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.60-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.59-3.58$ (m, 1H), $3.40(\mathrm{dd}, J=13.0,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~s} 3 \mathrm{H}), 2.90(\operatorname{app} \mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.82$ (app tt, $J=7.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.25-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.51-$ $1.46(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.93-0.92(\mathrm{~m}, 4 \mathrm{H})$.

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{20} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}, 432.2527$; found 432.2519 .

Synthetic lincosamide FSA-214099.

A 4-mL glass vial fitted with a PTFE-lined screw cap was charged with a magnetic stir bar, aldehyde 3.83 (theoretically $20 \mathrm{mg}, 33 \mu \mathrm{~mol}$, 1 equiv), 2,2,2-trifluoroethanol ($660 \mu \mathrm{~L}$), and powdered, activated $4 \AA$ molecular sieves $(20 \mathrm{mg})$. The suspension was chilled to $-20^{\circ} \mathrm{C}$ in an acetone bath, whereupon acetic acid ($11 \mu \mathrm{~L}, 0.20 \mu \mathrm{~mol}, 6.0$ equiv) was added. 2,2,2-Trifluoroethan-1-amine ($7.8 \mu \mathrm{~L}, 99 \mu \mathrm{~mol}, 3.0$ equiv) was added next, and the mixture was stirred at $-20^{\circ} \mathrm{C}$ for 15 min before the mixture was treated with sodium triacetoxyborohydride (21 mg , $99 \mu \mathrm{~mol}, 3.0$ equiv). After 1 h, LCMS analysis showed complete consumption of aldehyde starting material and imine intermediate. The mixture was concentrated to dryness, and the residue was resuspended in $50 \% \mathrm{v} / \mathrm{v}$ methanol-1N aqueous hydrogen chloride solution (1.0 mL). After 15 min of stirring at $23{ }^{\circ} \mathrm{C}$, LCMS analysis demonstrated that global desilylation was complete, and the mixture was filtered through a $0.2-\mu \mathrm{m}$ PTFE filter. The filtrate was concentrated, and the crude residue was purified by preparative HPLC-MS on a Waters SunFire Prep C C_{18} column ($5 \mu \mathrm{~m}, 250$ $\times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid-water, grading to 0.1% trifluoroacetic acid- 40% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 210 nm and ESI+ selected ion monitoring $\left.[\mathrm{m} / \mathrm{z}=474] ; \mathrm{R}_{t}=20.7 \mathrm{~min}\right)$ to provide trifluoroethylamine analog FSA-214099•2 $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as a white solid ($8.8 \mathrm{mg}, 38 \%$, 2 steps).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.31(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{td}, J=8.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}$, $J=7.8,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.19(\mathrm{dd}, J=10.2,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=10.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.89$ (dd, $J=3.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=11.0,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.74-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.58(\mathrm{dd}, J=$ $10.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=12.7,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{dd}, J=12.7,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.89$ (app $\mathrm{t}, J=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.30(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.19(\mathrm{~m}, 1 \mathrm{H}), 1.51-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.41-$ $1.32(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (471 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta-71.30(\mathrm{~s}, 3 \mathrm{~F}),-77.18(\mathrm{~s}, 6 \mathrm{~F})$.
HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$, 474.2244; found 474.2252.

Synthetic lincosamide FSA-214084.

In a 4-mL glass vial fitted with a PTFE-lined screw cap and a magnetic stir bar, aldehyde 3.83 (theoretically $10 \mathrm{mg}, 16 \mu \mathrm{~mol}, 1$ equiv), dichloromethane $(410 \mu \mathrm{~L})$, acetic acid $(9.4 \mu \mathrm{~L}, 0.17$ mmol, 10 equiv) and 4-fluorobenzylamine ($4.7 \mu \mathrm{~L}, 41 \mu \mathrm{~mol}, 2.5$ equiv) were combined. This mixture was stirred for 15 min at $23^{\circ} \mathrm{C}$ before sodium triacetoxyborohydride $(7.0 \mathrm{mg}, 33 \mu \mathrm{~mol}$, 2.0 equiv) was added. After 1 h, LCMS analysis showed that the reaction was complete. The mixture was concentrated to dryness, and the residue was re-suspended in $50 \% \mathrm{v} / \mathrm{v}$ methanol -1 N aqueous hydrogen chloride solution $(1.0 \mathrm{~mL})$. After $15 \mathrm{~min}, \mathrm{LCMS}$ showed that global desilylation was complete, and the mixture was passed through a $0.2-\mu \mathrm{m}$ PTFE filter. The filtrate was concentrated, and the crude residue was purified by preparative HPLC on a Waters SunFire Prep C_{18} column $(5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% formic acid-water, grading to 0.1% formic acid- 40% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at $210 \mathrm{~nm} ; \mathrm{R}_{t}=13.5 \mathrm{~min}$) to provide 4-fluorobenzylamine analog FSA-214084 as a white solid ($1.0 \mathrm{mg}, 12 \%, 2$ steps).
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.58(\mathrm{dd}, J=8.6,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.20(\mathrm{app} \mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 5.28$ $(\mathrm{d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\operatorname{app} \mathrm{td}, J=8.3,4.8 \mathrm{~Hz}, 4.34-4.30(\mathrm{~m}, 3 \mathrm{H}), 4.28-4.24(\mathrm{~m}, 1 \mathrm{H})$, $4.08(\mathrm{dd}, J=10.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=11.0,6.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.57(\mathrm{dd}, J=10.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.43(\mathrm{dd}, J=13.1,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 2.91(\operatorname{app} \mathrm{t}, J$
$=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.33-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.01(\mathrm{~s}, 3 \mathrm{H}), 1.52-1.48(\mathrm{~m}, 2 \mathrm{H})$, $1.41-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (471 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta-113.45(\mathrm{~s}, 1 \mathrm{~F})$.
HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{24} \mathrm{H}_{38} \mathrm{FN}_{3} \mathrm{O}_{5} \mathrm{~S}$, 500.2589; found 500.2577.

Synthetic lincosamide FSA-214088.

A 4-mL glass vial fitted with a PTFE-lined screw cap was charged with a magnetic stir bar, aldehyde 3.83 (theoretically $10 \mathrm{mg}, 16 \mu \mathrm{~mol}, 1$ equiv), 2,2,2-trifluoroethanol ($330 \mu \mathrm{~L}$), and powdered, activated $4 \AA$ molecular sieves $(10 \mathrm{mg})$. The suspension was chilled to $-20^{\circ} \mathrm{C}$ in an acetone bath, whereupon acetic acid $(5.7 \mu \mathrm{~L}, 0.10 \mu \mathrm{~mol}, 6.0$ equiv) was added. Aniline ($4.5 \mu \mathrm{~L}$, $49 \mu \mathrm{~mol}, 3.0$ equiv) was added next, and the mixture was stirred at $-20^{\circ} \mathrm{C}$ for 15 min before the mixture was treated with sodium triacetoxyborohydride ($10 \mathrm{mg}, 49 \mu \mathrm{~mol}, 3.0$ equiv). After 10 min , LCMS analysis showed complete consumption of aldehyde starting material and imine intermediate. The mixture was concentrated to dryness, and the residue was re-suspended in 50% v / v methanol-1N aqueous hydrogen chloride solution (1.0 mL). After 15 min of stirring at $23^{\circ} \mathrm{C}$, LCMS analysis demonstrated that global desilylation was complete, and the mixture was filtered through a $0.2-\mu \mathrm{m}$ PTFE filter. The filtrate was concentrated, and the crude residue was purified by preparative HPLC-MS on a Waters SunFire Prep C_{18} column $(5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid-water, grading to 0.1% trifluoroacetic acid-50\% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at $254 \mathrm{~nm} ; \mathrm{R}_{t}=28.3 \mathrm{~min}$) to provide aniline analog FSA-214088•2 $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as a white solid $(5.7 \mathrm{mg}, 60 \%$, 2 steps).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 7.17-7.14(\mathrm{~m}, 2 \mathrm{H}), 6.79-6.71(\mathrm{~m}, 3 \mathrm{H}), 5.33(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H})$, 4.47 (app td, $J=8.8,4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~d}, J$
$=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=10.8,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.64-3.59(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{dd}, J=13.7,8.9$
$\mathrm{Hz}, 1 \mathrm{H}), 2.90(\mathrm{~s}, 3 \mathrm{H}), 2.82(\operatorname{appt}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.05-$
$1.97(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.28(\mathrm{~m}, 2 \mathrm{H}), 0.93(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$, 468.2527; found 468.2538 .

Synthetic lincosamides FSA-214083a and FSA-214083b.

In a 4-mL glass vial fitted with a PTFE-lined screw cap and a magnetic stir bar, aldehyde 3.83 (theoretically $10 \mathrm{mg}, 16 \mu \mathrm{~mol}, 1$ equiv), dichloromethane ($410 \mu \mathrm{~L}$), acetic acid $(9.4 \mu \mathrm{~L}, 0.17$ $\mathrm{mmol}, 10$ equiv) and bicyclo[1.1.1]pentan-1-amine hydrochloride ($4.9 \mathrm{mg}, 41 \mu \mathrm{~mol}, 2.5$ equiv) were combined. This mixture was stirred for 15 min at $23^{\circ} \mathrm{C}$ before sodium triacetoxyborohydride ($7.0 \mathrm{mg}, 33 \mu \mathrm{~mol}, 2.0$ equiv) was added. After $1 \mathrm{~h}, \mathrm{LCMS}$ analysis showed that the reaction was complete. The mixture was concentrated to dryness, and the residue was re-suspended in $50 \% \mathrm{v} / \mathrm{v}$ methanol-1N aqueous hydrogen chloride solution $(1.0 \mathrm{~mL})$. After $15 \mathrm{~min}, \mathrm{LCMS}$ showed that global desilylation was complete, and the mixture was passed through a $0.2-\mu \mathrm{m}$ PTFE filter. The filtrate was concentrated, and the crude residue was purified by preparative HPLC on a Waters SunFire Prep C_{18} column $(5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid-water, grading to 0.1% trifluoroacetic acid- 40% acetonitrile-water over 40 min , with a flow rate of 15 $\mathrm{mL} / \mathrm{min}$; monitored by UV absorbance at 210 nm ; FSA-214083a $\mathrm{R}_{t}=27.1 \mathrm{~min} ;$ FSA-214083b R_{t} $=29.4 \mathrm{~min})$ to provide propellamine analogs $\mathbf{F S A}-\mathbf{2 1 4 0 8 3 a} \cdot 2 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(3.8 \mathrm{mg}, 40 \%, 2$ steps $)$ and FSA-214083b $\cdot 2 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(2.2 \mathrm{mg}, 23 \%, 2$ steps $)$ as white solids.

FSA-214083a • $2 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}:$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 5.29(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{ddd}, J=10.2,6.1,3.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.22(\mathrm{dd}, J=10.3,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, J=6.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=3.4,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.76(\mathrm{ddd}, J=7.5,5.8,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=10.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.35(\mathrm{dd}, J=12.9$, $3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{dd}, J=12.8,10.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 2.89(\operatorname{app} \mathrm{t}, J=10.6 \mathrm{~Hz}, 1 \mathrm{H})$, $2.73(\mathrm{~s}, 1 \mathrm{H}), 2.34-2.29(\mathrm{~m}, 2 \mathrm{H}), 2.23-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 6 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.49-1.44$ (m, 2H), 1.38-1.33 (m, 2H), $0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$, 458.2683; found 458.2676.

FSA-214083b • $2 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}:$

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 5.34(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\operatorname{app~td}, J=7.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.30$ (dd, $J=7.0,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=10.3,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=10.1,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.89(\mathrm{dd}, J=3.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=10.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=10.1,3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 3.44(\mathrm{dd}, J=12.9,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{dd}, J=12.9,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 2.90$ (app t, $J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~s}, 1 \mathrm{H}), 2.39-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.22(\mathrm{~m}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 6 \mathrm{H})$, $2.11(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.35(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}, 458.2683$; found 458.2676.

Synthetic lincosamide FSA-215003.

In a 1-mL glass vial fitted with a magnetic stir bar and a PTFE-lined screw cap, 2,3,4-tris-O-trimethylsilyl-8-norlincomycin (3.82, $20 \mathrm{mg}, 33 \mu \mathrm{~mol}, 1$ equiv) was dissolved in chloroform ($160 \mu \mathrm{~L}$). Triethylamine ($11 \mu \mathrm{~L}, 82 \mu \mathrm{~mol}, 2.5$ equiv) was added, the vial was sealed, and the solution was chilled to $0^{\circ} \mathrm{C}$. Methanesulfonyl chloride ($5.1 \mu \mathrm{~L}, 66 \mu \mathrm{~mol}, 2.0$ equiv) was then added, the vial re-sealed, and the mixture stirred at $0^{\circ} \mathrm{C}$ for 5 min , whereupon TLC analysis $(10 \%$ methanol-dichloromethane, PAA) revealed that all of the starting material had been consumed. The reaction mixture was diluted with dichloromethane $(1 \mathrm{~mL})$, and the diluted mixture was transferred to a separatory funnel containing hexanes (10 mL) and saturated aqueous sodium bicarbonate solution (10 mL). The biphasic mixture was shaken vigorously for 1 min before the layers were separated; the aqueous layer was extracted with fresh hexanes $(2 \times 5 \mathrm{~mL})$, and the combined organic extracts were washed with saturated aqueous sodium chloride solution (5 mL). The washed organic solution was dried over sodium sulfate, filtered, and concentrated to give crude methanesulfonate ester intermediate as a white solid. This material was transferred to a 4mL glass vial and was dried by azeotropic removal of benzene before sodium azide ($21 \mathrm{mg}, 330$ μ mol, 10 equiv) and N, N-dimethylformamide $(330 \mu \mathrm{~L})$ were added. The vial was sealed with a PTFE-lined screw cap, and the reaction mixture was heated to $60^{\circ} \mathrm{C}$ in a pre-heated oil bath. After 18 h , LCMS analysis showed that all the intermediate sulfonate ester had been consumed, and the product mixture was transferred to a separatory funnel containing $50 \% \mathrm{v} / \mathrm{v}$ saturated aqueous
sodium bicarbonate solution-saturated aqueous sodium chloride solution (10 mL). This mixture was then extracted with ethyl acetate $(4 \times 5 \mathrm{~mL})$, the combined organic extracts were dried over sodium sulfate, the dried product solution was filtered, and the filtrate was concentrated. The residue thus obtained was then re-dissolved in $50 \% \mathrm{v} / \mathrm{v}$ methanol- 1 N aqueous hydrogen chloride solution; after 30 min of stirring this mixture, LCMS analysis showed that global desilylation was complete, and the mixture was passed through a $0.2-\mu \mathrm{m}$ PTFE filter. The filtrate was concentrated, and the crude residue was subjected to preparative HPLC on a Waters SunFire Prep C_{18} column ($5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid-water, grading to 0.1% trifluoroacetic acid- 40% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at $210 \mathrm{~nm} ; \mathrm{R}_{t}=28.6 \mathrm{~min}$) to provide azide analog $\mathbf{F S A} \mathbf{- 2 1 5 0 0 3} \cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as a white solid ($8.4 \mathrm{mg}, 48 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.29(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{ddd}, J=9.3,5.8,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.22$ (dd, $J=9.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=9.7,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=10.2,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $3.85(\mathrm{dd}, J=3.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=11.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{dd}, J=12.7,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 3.59(\mathrm{dd}, J=10.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=12.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 2.89$ (app t, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.24(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.52-1.45$ (m, 2H), 1.39-1.34 (m, 2H), $0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (100 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 169.0, ~ 89.5,72.0,69.9,69.8,69.6,69.4,62.3,52.7,50.8,41.1$, 38.0, 36.4, 35.7, 22.1, 14.2, 13.1.

FTIR (neat, cm^{-1}): 3367 (br), 2927 (w), 2105 (s$), 1671$ (s), 1453 (m), 1202 (s), 1136 (m).
HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{17} \mathrm{H}_{31} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}, 418.2119$; found 418.2132.

Synthetic lincosamide FSA-215011.

To a stirred suspension containing azide FSA-215003 $\cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(6.3 \mathrm{mg}, 12 \mu \mathrm{~mol}, 1$ equiv), 4-ethylnylpyrimidin-2-amine ($4.2 \mathrm{mg}, 35 \mu \mathrm{~mol}, 3.0$ equiv), freshly prepared aqueous sodium ascorbate solution $(0.10 \mathrm{M}, 24 \mu \mathrm{~L}, 2.4 \mu \mathrm{~mol}, 0.20$ equiv $)$, and 0.10 M sodium phosphate buffer ($120 \mu \mathrm{~L}$), aqueous cupric sulfate solution ($0.10 \mathrm{M}, 5.9 \mu \mathrm{~L}, 0.59 \mu \mathrm{~mol}, 0.050$ equiv) was added by micropipette at $23^{\circ} \mathrm{C}$. The originally white suspension immediately attained a vibrant sunset orange color. After 40 min of stirring, LCMS analysis indicated that no starting material remained. The crude reaction mixture was directly subjected to preparative HPLC on a Waters SunFire Prep C_{18} column $(5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid-water, grading to 0.1% trifluoroacetic acid- 50% acetonitrile-water over 40 min , with a flow rate of 15 $\mathrm{mL} / \mathrm{min}$; monitored by UV absorbance at $254 \mathrm{~nm} ; \mathrm{R}_{t}=19.0 \mathrm{~min}$) to provide triazole analog FSA$215011 \cdot 2 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as a white solid ($4.4 \mathrm{mg}, 49 \%$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.78(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $5.38(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.03(\mathrm{dd}, J=14.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.79(\operatorname{app} \mathrm{td}, J=10.0,3.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.63(\mathrm{dd}, J=14.0,10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{dd}, J=9.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=10.2$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.07$ (dd, $J=9.7,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{dd}, J=3.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.64(\mathrm{dd}, J=$ $10.7,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=10.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.86(\mathrm{~s}, 3 \mathrm{H}), 2.78(\operatorname{app} \mathrm{t}, J=10.5 \mathrm{~Hz}$,
$1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.13-2.06(\mathrm{~m}, 3 \mathrm{H}), 1.44-1.40(\mathrm{~m}, 2 \mathrm{H}), 1.34-1.28(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{t}, J=$ $7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

HRMS (ESI+, m / z): $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calc'd for $\mathrm{C}_{23} \mathrm{H}_{36} \mathrm{~N}_{8} \mathrm{O}_{5} \mathrm{~S}$, 269.1337; found 269.1328.

Synthetic lincosamide FSA-215077.

A solution of azide FSA-215003 ($14 \mathrm{mg}, 33 \mu \mathrm{~mol}$, 1 equiv) in methanol ($330 \mu \mathrm{~L}$) was treated sequentially with acetic acid ($19 \mu \mathrm{~L}, 330 \mu \mathrm{~mol}, 10$ equiv) and platinum(IV) oxide (7.5 mg , $33 \mu \mathrm{~mol}, 1.0$ equiv). The headspace was flushed with hydrogen gas, and the dark gray heterogeneous mixture was stirred at $23^{\circ} \mathrm{C}$ under 1 atm of hydrogen for 1 h , whereupon LCMS analysis indicated that no starting material remained. The reaction mixture was diluted with methanol $(500 \mu \mathrm{~L})$, and activated charcoal was added in order to adsorb the platinum-black particles; the mixture was stirred 5 min to ensure complete adsorption. The black suspension was then filtered through a Celite pad, and the filter cake was rinsed with fresh methanol ($2 \times 1 \mathrm{~mL}$). The filtrate was concentrated, and the residue thus obtained was purified by preparative HPLCMS on a Waters SunFire Prep C_{18} column $(5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid-water, grading to 0.1% trifluoroacetic acid- 30% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 210 nm and ESI+ selected ion monitoring [m / z $\left.=392] ; \mathrm{R}_{t}=16.9 \mathrm{~min}\right)$ to provide diamine analog $\mathbf{F S A}-215077 \cdot 2 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as a white solid (3.7 mg, 18\%).
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.33(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\operatorname{app} \mathrm{td}, J=8.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.31$ $(\mathrm{d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=10.3,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=10.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.88$ (3.2, 1.3 Hz, 1H), $3.76(\mathrm{dd}, J=11.0,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=10.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.41(\mathrm{dd}$,
$J=13.1,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\mathrm{dd}, J=13.1,8.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 2.90(\operatorname{app} \mathrm{t}, J=10.8$ $\mathrm{Hz}, 1 \mathrm{H}), 2.40-2.31(\mathrm{~m}, 2 \mathrm{H}), 2.26-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.40-$ $1.34(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{17} \mathrm{H}_{33} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}, 392.2214$; found 392.2224 .

Synthetic lincosamide FSA-215002.

In a 1 -mL glass vial, 2,3,4-tris- O-trimethylsilyl-8-norlincomycin (3.82, $20 \mathrm{mg}, 33 \mu \mathrm{~mol}, 1$ equiv) and triphenylphosphine ($17 \mathrm{mg}, 66 \mu \mathrm{~mol}, 2.0$ equiv) were dissolved in tetrahydrofuran (660 $\mu \mathrm{L}$), and the resulting solution was chilled to $0{ }^{\circ} \mathrm{C}$. With constant stirring, diethyl azodicarboxylate solution ($40 \% \mathrm{w} / \mathrm{w}$ in toluene, $30 \mu \mathrm{~L}, 66 \mu \mathrm{~mol}, 2.0$ equiv) was added dropwise, and the mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 min , during which time the original orange color of the azodicarboxylate reagent faded to afford a colorless reaction mixture. 4-(Pyridin-3-yl)benzenethiol ($\mathbf{S 2 . 3 9 b}, 15 \mathrm{mg}$, $82 \mu \mathrm{~mol}, 2.5$ equiv) was added next, resulting in a flash of yellow-orange color that then disappeared. Progress was monitored by LCMS, and after 5 h , the reaction was judged to be complete The mixture was concentrated to dryness under a stream of nitrogen, and the residue was then re-dissolved in $50 \% \mathrm{v} / \mathrm{v}$ methanol-1N aqueous hydrogen chloride solution ($800 \mu \mathrm{~L}$). After 30 min of stirring at $23^{\circ} \mathrm{C}$, LCMS analysis showed that global desilylation was complete, and the mixture was passed through a $0.2-\mu \mathrm{m}$ PTFE filter. The filtrate was concentrated, and the crude residue was subjected to preparative HPLC on a on a Waters SunFire Prep C ${ }_{18}$ column ($5 \mu \mathrm{~m}, 250$ $\times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid-water, grading to 0.1% trifluoroacetic acid- -40% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at $254 \mathrm{~nm} ; \mathrm{R}_{t}=27.8 \mathrm{~min}$) to provide arenesulfide analog $\mathbf{F S A}-215002 \cdot 2 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as a white solid ($4.8 \mathrm{mg}, 19 \%$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 9.09(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, $8.00(\mathrm{dd}, J=8.2,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.75(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.54(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.33(\mathrm{~d}, J$ $=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\operatorname{app~td}, J=9.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{dd}, J=8.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}$, $J=9.8,6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=10.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=3.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ (dd, $J=11.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{dd}, J=14.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=10.1,3.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.14(\mathrm{dd}, J=14.0,9.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 2.86(\operatorname{app} \mathrm{t}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.26(\mathrm{~m}$, $1 \mathrm{H}), 2.22-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.46-1.39(\mathrm{~m}, 2 \mathrm{H}), 1.33-1.28(\mathrm{~m}, 2 \mathrm{H}), 0.90(\mathrm{t}, J=$ 7.3 Hz, 3H).

HRMS (ESI+, m / z): $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calc'd for $\mathrm{C}_{28} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}_{2}$, 281.6238; found 281.6238.

Synthetic lincosamide FSA-215036.

A 1-mL glass vial was charged with a magnetic stir bar, 2,3,4-tris- O-trimethylsilyl-8norlincomycin ($\mathbf{3 . 8 2}, 10 \mathrm{mg}, 16 \mu \mathrm{~mol}$, 1 equiv), pyridine ($82 \mu \mathrm{~L}$), and phenyl isocyanate ($3.6 \mu \mathrm{~L}$, $33 \mu \mathrm{~mol}, 2.0$ equiv). The vial was sealed with a PTFE-lined screw cap, and the reaction mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 2 h , at which point TLC analysis (8% methanol-dichloromethane, PAA) showed that all the starting material had been consumed. Excess phenyl isocyanate was quenched with the addition of methanol (1 drop), and the mixture was then concentrated to dryness. The residue was then re-dissolved in $50 \% \mathrm{v} / \mathrm{v}$ methanol-1N aqueous hydrogen chloride solution (500 $\mu \mathrm{L}$), after 30 min , LCMS analysis showed that global desilylation was complete. The product solution was passed through a $0.2-\mu \mathrm{m}$ PTFE filter, the filtrate was concentrated, and the crude residue was purified by preparative HPLC on a on a Waters SunFire Prep C C_{18} column ($5 \mu \mathrm{~m}, 250$ $\times 19 \mathrm{~mm}$; eluting with 0.1% formic acid -5% acetonitrile-water, grading to 0.1% formic acid -50% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at $\left.254 \mathrm{~nm} ; \mathrm{R}_{t}=21.8 \mathrm{~min}\right)$ to provide phenyl carbamate analog $\mathbf{F S A} \mathbf{- 2 1 5 0 3 6} \cdot \mathrm{HCO}_{2} \mathrm{H}$ as a white solid (5.8 mg, 64\%).

[^95]$(\mathrm{m}, 2 \mathrm{H}), 4.25(\mathrm{dd}, J=9.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}, J=10.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{dd}, J=3.4$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=10.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.52-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.44(\mathrm{dd}, J=9.9,6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.60(\mathrm{~s}, 3 \mathrm{H}), 2.41(\operatorname{appt} \mathrm{t}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.11-2.09(\mathrm{~m}, 1 \mathrm{H})$, $2.08(\mathrm{~s}, 3 \mathrm{H}), 1.95(\mathrm{app} \mathrm{dt}, J=13.0,9.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.34-1.21(\mathrm{~m}, 4 \mathrm{H}), 0.87(\mathrm{t}, J=7.2 \mathrm{~Hz}$, $3 \mathrm{H})$.

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{~N}_{3} \mathrm{O}_{7} \mathrm{~S}, 512.2425$; found 512.2444.

Synthetic lincosamide FSA-215031.

An oven-dried 4-mL glass vial was charged with a magnetic stir bar, methyltriphenylphosponium bromide ($16 \mathrm{mg}, 46 \mu \mathrm{~mol}, 1.4$ equiv), and tetrahydrofuran ($330 \mu \mathrm{~L}$). The vial was sealed with a silicone septum-lined screw cap, and the mixture was chilled to $0{ }^{\circ} \mathrm{C}$ before potassium tert-butoxide solution (1.0 M in tetrahydrofuran, $40 \mu \mathrm{~L}, 40 \mu \mathrm{~mol}, 1.2$ equiv) was added. Upon treatment with alkoxide base, the heterogeneous mixture immediately attained a vibrant, highlighter-yellow color. This mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 min before a solution of aldehyde $\mathbf{3 . 8 3}$ (theoretically $20 \mathrm{mg}, 33 \mu \mathrm{~mol}$, 1 equiv) in tetrahydrofuran ($330 \mu \mathrm{~L}$) was added by cannula, causing the yellow color to disappear. After 5 min of stirring at $0^{\circ} \mathrm{C}, \mathrm{TLC}$ analysis $(7 \%$ methanol-dichloromethane, PAA) revealed that no starting material remained, and excess Wittig reagent was quenched with the addition of acetone $(150 \mu \mathrm{~L})$. The product mixture was diluted with hexanes (15 mL), dried over sodium sulfate, filtered, and concentrated to give a white film that was re-dissolved in $50 \% \mathrm{v} / \mathrm{v}$ methanol-1N aqueous hydrogen chloride solution (1.5 mL). This mixture was stirred at $23^{\circ} \mathrm{C}$ for 1 h , at which point LCMS analysis indicated that global desilylation was complete. The mixture was passed through a $0.2-\mu \mathrm{m}$ PTFE filter, the filtrate was concentrated, and the crude residue was purified by preparative HPLC-MS on a Waters SunFire Prep C_{18} column ($5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% formic acid-water, grading to 0.1% formic acid- 35% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by

UV absorbance at 210 nm and ESI+ selected ion monitoring $[\mathrm{m} / \mathrm{z}=389] ; \mathrm{R}_{t}=18.9 \mathrm{~min}$) to provide vinyl analog FSA-215031• $\mathrm{HCO}_{2} \mathrm{H}$ as a white solid $(1.5 \mathrm{mg}, 11 \%$, 2 steps $)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.37(\mathrm{~s}, 1 \mathrm{H}), 6.01(\mathrm{ddd}, J=17.3,10.5,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.28(\mathrm{~d}, J=$ $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.23(\operatorname{app~dt}, J=17.3,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\operatorname{app~dt}, J=10.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.71$ (app ddt, $J=8.5,5.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=10.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=8.2,0.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=3.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=10.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.44-3.41(\mathrm{~m}, 1 \mathrm{H})$, $2.59(\mathrm{~s}, 3 \mathrm{H}), 2.38(\operatorname{app} \mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.30-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{ddd}, J=13.5,8.3,5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.95(\mathrm{~m}, 1 \mathrm{H}), 1.42-1.32(\mathrm{~m}, 4 \mathrm{H}), 0.94(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}, 389.2105$; found 389.2111 .

Page intentionally left blank

Chapter 4. A sulfinimine-based route to methylthiolincosamine variants

Introduction

In the fourth year of the lincosamide project, I developed a second-generation synthesis of the northern-half component of the class, motivated by the desire to more expediently test those hypotheses that had emerged in the course of my earlier work on this subunit. Specifically, SAR emerging through my prior route to MTL and its derivatives implicated conformational control as a critical design consideration, suggesting that S-glycosidic analogs bearing rigidified C6 appendages might represent the most promising path forward. The nitroaldol-based route was not ideally suited to put these plans into action, however, as it was relatively lengthy and unexpectedly unaccommodating toward changes to the nucleophile in the key nitroaldol coupling; thus, this technology did not practically enable exploration of diverse substitution at C6, the new focus of our efforts. Accordingly, in designing a second retrosynthesis of our targeted MTL analogs, I sought to identify a means by which to install C6 substituents at a late stage, ideally forging the C6-C7 bond with robust and predictable stereoselectivity.

Scheme 4.1. A revised retrosynthesis of northern-half variants bearing modifications to C 1 and C6.

What emerged from this planning was a route not dissimilar to the one reported by Dondoni (and adopted by Vicuron), wherein a galactopyranoside C6-nitrone (1.42) underwent coupling with Grignard nucleophiles to forge the acylic portion of the lincosamides' northern half (Scheme 1.6). However, whereas the Vicuron scheme relied on subsequent anomeric-group interconversions to introduce C 1 substituents, I aimed instead to employ glycosylation conditions
analogous to those I had developed in my previous route, and elected strategically to install the C1 substituent prior to C6-C7 bond formation (Scheme 4.1). In order to expand the scope of compatible nucleophiles, to improve the predictability of the stereochemical outcome of this pivotal coupling, and to facilitate more expedient deprotection of fully assembled glycosides, I opted to target a C6-sulfinimino electrophilic intermediate (4.3). Such an intermediate, it was hoped, would provide access to a host of C6 modifications extending far beyond the scope of those accessible through the earlier nitrone route, leveraging the rich literature on diastereoselective nucleophilic additions to sulfinimine electrophiles famously pioneered by Professor Jonathan Ellman. ${ }^{156}$

Synthesis of 6-modified propylhygramides by a sulfinimine-based route

Owing in part to the simplicity of this revised scheme, a route to both $R_{\mathrm{S}^{-}}$and $S_{\mathrm{S}^{-}}$ sulfinimino electrophiles 4.10 was realized with minimal experimentation (Scheme 4.2). According to published and readily scaled protocols, tri-O-benzoyl-D-galactal was first epoxidized using dimethyldioxirane generated in situ within a heterogeneous reaction mixture containing acetone and Oxone monopersulfate compound. ${ }^{157}$ The resulting "disarmed" Brigl's anhydride, 4.5, underwent diastereoselective cis- α-thioglycoside formation under the action of trimethylsilyl trifluoromethanesulfonate in tert-butyl methyl ether, and a protecting-group swap at C2 then provided tetrabenzoate 4.7. The C6-benzoyl group within this intermediate could be hydrolyzed selectively using lipase from Candida rugosa according to a procedure described by Esmurziev,

[^96]Sundby, and Hoff; ${ }^{158}$ and oxidation of the resulting alcohol provided aldehyde 4.8 in good yield. Finally, this aldehyde was converted to its N-tert-butanesulfinyl aldimine derivatives $\left(R_{\mathrm{S}}\right)$ - and $\left(S_{\mathrm{S}}\right)-\mathbf{4 . 1 0}$ using anhydrous copper(II) sulfate as Lewis-acid catalyst and water scavenger. ${ }^{159}$

Scheme 4.2. Synthesis of N-tert-butanesulfinaldimine building blocks.

These sulfinimine intermediates were remarkably general in regard to the scope of nucleophiles with which they could be coupled. The first such pairing involved simple Grignard addition of 2-(1,3-dioxan-2-yl)ethylmagnesium bromide to the R_{S} epimer, which proceeded in good yield to provide 4.11 as a single diastereomer after column chromatography (Scheme 4.3). ${ }^{160}$ Notably, no debenzoylation was observed under these conditions - this chemoselectivity would prove general across a host of nucleophile classes, with the exception of some organlithiums, which were simply too nucleophilic to exhibit similar discrimination (vide infra). Using conditions originally developed by Ellman and Brinner, ${ }^{161}$ the γ-dioxanylsulfinamide 4.11 was converted to

[^97]${ }^{161}$ Brinner, K. M.; Ellman, J. A. Org. Biomol. Chem. 2005, 3, 2109-2113.
the corresponding pyrrolidine under ionic-reduction conditions (triethylsilane, trifluoroacetic acid-water, $23{ }^{\circ} \mathrm{C}, 24 \mathrm{~h}$) in excellent yield. Hydrazinolysis of the benzoyl protecting groups provided 4.12, ${ }^{162}$ which was elaborated to the tricyclic lincomycin analog FSA-216092 in the usual fashion. By design, this analog contained a conformationally restricted C6 substituent, which was calculated to roughly overlap with the 1-chloroethyl group of clindamycin.

Scheme 4.3. Synthesis of a conformationally constrained, tricyclic analog.

Installation of a nonrotatable alkynyl appendage to C 6 was achieved in a similar fashion (Scheme 4.4). Lithiation of ethynyltrimethylsilane, followed by introduction of $\left(S_{\mathrm{S}}\right)-\mathbf{4 . 1 0}$ as a solution in tetrahydrofuran provided the propargylic sulfinamide 4.14 in excellent yield and diastereoselectivity. The diastereochemical outcome of this coupling, arising through a putative closed transition state, was assigned by analogy to reported alkynyllithium addition procedures upon which this transformation was based, ${ }^{163}$ with the caveat that a greater proportion of ethereal solvent (tetrahydrofuran, whose coordinating activity can favor open-transition-state pathways ${ }^{156}$)

[^98]was required in order to guarantee the solubility of the sulfinimine starting material. Sequential hydrazinolysis of 4.14, acid-promoted desulfinylation, and alkyne deprotection then provided 4.15, which I advanced to propylhygramide candidate FSA-217031 by established means.

Scheme 4.4. Synthesis of 6-alkynyl analog FSA-217031.

Another important class of nucleophiles that underwent successful coupling were allylzinc reagents, whose ease of preparation, broad functional group compatibility, and stereospecific engagement of sulfinimine electrophiles rendered them particularly valuable in the campaign to explore C6 substitution (Scheme 4.5). For instance, prenzylzinc reagent $\mathbf{4 . 1 6}$ underwent efficient coupling with $\left(R_{\mathrm{s}}\right) \mathbf{- 4 . 1 0}$ to provide, after deprotection, MTL variant 4.17, featuring a quaternary center at C 7 . Racemic cyclopentenylzinc reagent $(\pm) \mathbf{4 . 1 9}$ likewise underwent quantitative, rapid $\left(-78{ }^{\circ} \mathrm{C}, 10 \mathrm{~min}\right)$, doubly diastereoselective coupling ${ }^{164}$ to provide 4.21 bearing a stereochemically differentiated olefin for subsequent functionalization if so desired.

[^99]

Scheme 4.5. Diastereoselective coupling of allylzinc reagents with sulfinimine $\left(R_{\mathrm{S}}\right)-\mathbf{4 . 1 0}$.

While aminosugars such as 4.18 and $\mathbf{4 . 2 1}$ possessed alkene groups with potential utility for late-stage diversification, the task of selectively functionalizing these olefins in the presence of sulfide, alcohol, and amino groups presented a formidable challenge. Conditions for radicalMarkovnikov olefin hydrofunctionalization developed by Professor Dale Boger and co-workers provided an excellent solution, permitting late-stage, site-selective manipulation of lincosamide analogs FSA-217009 and FSA-217003 as illustrated in Scheme 4.6. Iron(III)/sodium borohydride-promoted radical hydroazidation ${ }^{165}$ proceeded smoothly for both of these substrates, providing diastereomeric mixtures that could be readily separated (e.g., FSA-217021a/b, stereochemistry not assigned), or subjected directly to hydrogenation to provide the corresponding amines. As might be expected, the diastereoselectivity of this reaction was dependent upon the steric environment of the nascent asymmetric center - cyclopentenyl analog FSA-217003 provided a 90:10 mixture of epimeric products (LCMS analysis), which following hydrogenation permitted

[^100]the isolation only of the major epimeric cyclopentylamine FSA-217045b (stereochemistry not assigned).
A

Scheme 4.6. Synthesis and late-stage diversification of propylhygramide analogs bearing olefin functional groups.

The antimicrobial activities of propylhygramide analogs prepared by this sulfiniminebased route are tabulated in Figure 4.1. While no analogs surpassed clindamycin in activity, particularly against Gram-negative strains, some important lessons emerged from this series. Consistent with X-ray evidence implicating the lincosamides' amide $\mathrm{N}-\mathrm{H}$ hydrogen atom in the recognition of rRNA residue G2505 (Figure 1.5) for example, FSA-216092, which lacks this hydrogen-bond donor, displayed no antimicrobial activity. Unexpectedly, alkyne analog FSA217031 demonstrated poor activity as well, perhaps owing to a diminished barrier to rotation about the C5-C6 bond attributable to the minimal steric demands exacted by the C6-alkynyl appendage. The bulkier reverse-prenylated analog FSA-217009 by contrast demonstrated some of the best activity of the lot, surpassed only by its major hydroazidation product, FSA-217021b. Cyclopentenyl analog FSA-217003 displayed modest activity, while its polar derivatives FSA-

217045b and cis-diols FSA-217039a/b (prepared by osmylative dihydroxylation) featured little to no activity. Together these results tentatively supported the hypothesis that conformational restraint within the exocyclic portion of the lincosamides' northern hemisphere could be used to design active, fully synthetic analogs bearing alternatives to clindamycin's native 6-(1chloroethyl) group.

FSA-216092

FSA-217031

FSA-217009

FSA-217021a FSA-217021b

Figure 4.1. Minimum inhibitory concentrations ($\mu \mathrm{g} / \mathrm{mL}$) of propylhygramide analogs bearing modifications to C6.

Design and synthesis of C6-modified azepanamides by the same strategy

With these results in hand, I sought to investigate the influence of azepane southern halves in combination with C6-modified aminosugars. Around this time, my teammate Ioana Moga had discovered a (trifluoroethylamino)propyl 5' substituent within the azepane scaffold that imparted
modest activity against Gram-negative species, comparable to those activities observed for Vicuron's 5'-fluorobutyl candidate 1.65b (Figure 4.2). Importantly, this scaffold featured an amino group with attenuated basicity (calculated $\mathrm{p} K_{\mathrm{a}}{ }^{\prime}=3.7-5.6$), a structural element that our group had identified as a key driver of Gram-negative activity across a wide range of ribosome-targeting structural classes. This empirical observation was reinforced when an early biophysical study led by Dr. Sunil David of the Wellcome Trust Research Laboratory came to our attention - in it, David and co-workers had found that diamines with intercationic distances of $\geq 11 \AA$ reliably display affinity for the lipid A component of the Gram-negative outer membrane. ${ }^{166}$ Reasoning that lipid A binding and subsequent self-promoted uptake ${ }^{167}$ of rationally designed polyamines might offer an actionable path toward the discovery of broad-spectrum lincosamides, I sought to apply this newly developed route to C6 derivatives toward the evaluation of this hypothesis.

[^101]

FSA-411030

	Species	Description	Clinda	1.65b	411030
	S. aureus	ATCC 29213	0.25	≤ 0.06	0.25
	S. aureus	BAA 977; iErmA	0.25	≤ 0.06	0.25
	S. aureus	MP-549; USA 300; MsrA	0.125	≤ 0.06	0.25
	S. aureus	Micromyx USA 300	0.25	≤ 0.06	NT
	S. aureus	MMX 3035; cErmA	>64	64	>64
	S. pneumoniae	ATCC 49619	0.125	≤ 0.06	≤ 0.06
E	S. pneumoniae	MMX 3028; cErmB	>64	8	64
\%	S. pneumoniae	MMX 3031; cMefA	0.06	≤ 0.06	1
	S. pyogenes	ATCC 19615	0.06	≤ 0.06	≤ 0.06
	S. pyogenes	MMX 946; cErmB	>64	4	64
	E. faecalis	ATCC 29212	16	≤ 0.06	4
	E. faecalis	MMX 847; cErmB	>64	64	>64
	C. difficile	BAA 1805	8	≤ 0.06	NT
	C. difficile	ATCC 700057	8	NT	1
	B. fragilis	ATCC 25285	0.5	0.25	NT
	K. pneumnoniae	ATCC 10031	8	0.5	4
	E. coli	ATCC 25922	>64	4	64
	E. coli	MP-9 \triangle TolC	8	0.25	4
${ }_{0}^{10}$	E. coli	LptD mutant	2	4	64
	P. aeruginosa	ATCC 27853	>64	>64	NT
	H. influenzae	ATCC 49247	16	0.25	16
	A. baumanii	ATCC 19606	64	NT	>64

Figure 4.2. Comparison of minimum inhibitory concentrations ($\mu \mathrm{g} / \mathrm{mL}$) of 5 '-substituted azepanamides displaying activity against Gram-negative species.

Toward this end, I targeted a C6-pipiridin-4-yl analog, FSA-218008, designed based on its calculated inter-amine (trifluoroethylamine to pipiridine) distance of $\sim 12 \AA$ and conformationally constrained northern-half architecture. The southern-half component was synthesized through straightforward manipulation of 5'-hydroxypropyl azepine 4.22, first described by Vicuron, ${ }^{68}$ through a sequence involving Dess-Martin oxidation, reductive amination, Boc protection, and saponification (Scheme 4.7A). The desired northern-half component was likewise prepared from $\left(S_{\mathrm{S}}\right)-\mathbf{4 . 1 0}$ and vinyl stannane $\mathbf{4 . 2 5}{ }^{168}$ by a sequence closely mirroring those used to prepare the

[^102]MTL analogs described above (Scheme 4.7B). In the key step, tin-lithium exchange provided a vinyllithium species that underwent diastereoselective (but not chemoselective) addition to the tri-O-benzoyl sulfinimine electrophile; as a result, an excess of nucleophile was required, and a mixture of debenzoylated sulfinamide products was obtained after aqueous workup. In order to resolve this mixture, it was first subjected to conditions for global debenzoylation (catalytic sodium methoxide, methanol, $\left.23{ }^{\circ} \mathrm{C}\right) ;{ }^{169}$ the resulting mixture of C 6 epimers ($72: 28$, favoring the desired $6 R$ diastereomer) was then separated by flash-column chromatography to provide diastereomerically pure intermediate in 18% yield. Acid-promoted desulfinylation provided diaminotriol ($6 R$)-4.26, suitable for coupling with 4.24. Boc removal and hydrogenation finally provided the target analog FSA-218008 in 59\% yield.

[^103]A

Scheme 4.7. Synthesis of C6-pipiridin-4-yl azepanamide analogs featuring 5'(trifluoroethylamino)propyl substitution.

As I was unable to definitively establish the stereochemical outcome of organolithiumsulfinimine coupling $\left(S_{\mathrm{S}}\right) \mathbf{- 4 . 1 0}+\mathbf{4 . 2 5} \rightarrow(6 R)-\mathbf{4 . 2 6}$, I synthesized the 6-epi congener of FSA218008 as well, so as to ensure the target analog was successfully prepared (Scheme 4.7C). In this case, $\left(R_{\mathrm{S}}\right)-4.10$ was coupled under identical conditions, this time providing MTL derivative ($6 S$)4.26 in $>90 \%$ diastereomeric excess, signaling that this particular pairing represented the matched case. Through straightforward application of coupling, deprotection, and hydrogenation conditions as before, FSA-218002 was produced.
A
 $\left(R_{\mathrm{S}}\right)-\mathbf{4 . 1 0}$

B

$\left(R_{\mathrm{S}}\right)-4.10$

4.28

FSA-218020c

Scheme 4.8. Synthesis of 7-fluorinated azepanamide analogs.

The early finding by Upjohn scientists that 7-halo substitution positively influences Gramnegative activity (Figure 1.10) prompted me to investigate 7 -fluoro derivatives as well. Difluoromethyl phenyl sulfone underwent smooth, diastereoselective addition to $\left(R_{\mathrm{s}}\right)$-4.10 following deprotonation with lithium hexamethyldisilazide, for example, ${ }^{170}$ providing 7,7-difluoro compound FSA-218020c after coupling with 5'-fluorobutyl azepine 3.63, deprotection, and hydrogenation (Scheme 4.8A). Originally, it was planned that this compound could undergo reductive desulfonylation with sodium-mercury amalgam or magnesium in methanol to provide the corresponding C6-difluoromethyl lincosamide, however this transformation was not attempted. The C6-trifluoromethyl analog FSA-218023 was prepared as well, using tetrabutylammonium difluorotriphenylsilicate (TBAT) to promote in situ formation of trifluoromethyl anion from Ruppert's reagent (Scheme 4.8B). ${ }^{171}$ Notably, both 7-fluorinated

[^104]aminosugars 4.27 and 4.28 underwent exceptionally slow and inefficient amide coupling under standard conditions, doubtless owing to their diminished nucleophilicity.

FSA-218012

FSA-218020c

FSA-218013

FSA-218023

FSA-217098

FSA-218008

FSA-217099

FSA-218002

Species	Description	Clinda	1.65b	218012	218013	217098	217099	218020c	218023	218008	218002
S. aureus	ATCC 29213	0.25	≤ 0.06	≤ 0.125	1	≤ 0.125	0.5	2	2	128	>256
S. aureus	BAA 977; EErmA	0.25	≤ 0.06	NT	NT	≤ 0.125	NT	NT	NT	NT	NT
S. aureus	MP-549; USA 300; MsrA	0.125	≤ 0.06	≤ 0.125	0.5	≤ 0.125	0.5	1	1	16	>256
S. aureus	MMX 3035; cErmA	>64	64	NT	NT	>256	NT	NT	NT	NT	NT
\pm S. pneumoniae	ATCC 49619	0.125	≤ 0.06	≤ 0.125	>256	64					
\% S. preumoniae	MMX 3028; cErmB	>64	8	NT	NT	128	NT	NT	NT	NT	NT
\bigcirc S. pneumoniae	MMX 3031; cMefA	0.06	≤ 0.06	NT	NT	≤ 0.125	NT	NT	NT	NT	NT
S. pyogenes	ATCC 19615	0.06	≤ 0.06	≤ 0.125	>256	16					
S. pyogenes	MMX 946; cErmB	>64	4	NT	NT	256	NT	NT	NT	NT	NT
E. faecalis	ATCC 29212	16	≤ 0.06	0.5	8	0.5	64	4	4	>256	>256
E. faecalis	MMX 847; cErmB	>64	64	NT	NT	>256	NT	NT	NT	NT	NT
E. coli	ATCC 25922	>64	4	256	>256	256	>256	>256	>256	>256	>256
E E. coli	MP-9 Δ ToIC	8	0.25	32	256	32	256	256	128	>256	>256
\% E. coli	LptD mutant	2	4	32	256	16	128	>256	256	>256	>256
H. influenzae	ATCC 49247	16	0.25	64	>256	128	>256	>256	>256	>256	>256

Figure 4.3. Minimum inhibitory concentrations ($\mu \mathrm{g} / \mathrm{mL}$) of azepanamides bearing C6 modification.

Figure 4.3 lists the in vitro antimicrobial activities of azepanamides bearing C6 modifications introduced by the sulfinimine platform. Unfortunately, neither the designed triamine FSA-218008 nor the 7-fluorinated analogs FSA-218020c and FSA-218023 demonstrated any appreciable Gram-negative activity; the former in fact were inactive even against lincosamidesusceptible Gram-positive strains. Fluorobutyl and (trifluoroethylamino)propyl azepanamides
bearing C6 tert-pentyl and cyclopentyl decoration performed better, although even in the case of FSA-217098, activity against MLS S_{B} and Gram-negative pathogens was substantially diminished with respect to its C6-(1-chloroethyl) counterpart, 1.65b.

Synthesis of clindamycin by radical hydrochlorination of a 6-vinyl lincosamide precursor

Since in the course of this work no C6 substituent had yet been found to outperform the chloroethyl group native to clindamycin and related analogs, I aimed to identify a means by which to install this important appendage using the sulfinimine route described above. Such a technology, it was hoped, would open the door to more expedient exploration of C 1 modifications than the earlier nitroaldol route had allowed, and thus would offer a concise, unified approach to MTL variants bearing targeted modifications to either (or both) of these strategic positions. Conditions for radical-Markovnikov hydrofunctionalization, which earlier had empowered the synthesis of FSA-217021a/b and FSA-217045b from olefinic precursors, presented an appealing path forward - in Boger's report, the authors described the feasibility of radical hydrochlorination through the use of a suitable chlorine-radical trap, such as N-acetylsulfanilyl chloride (4.31). Accordingly, I envisioned that hydrochlorination of a C6-vinyl lincosamide precursor might afford the desired 6-(1-chloroethyl) motif with similar ease, efficiency, and regioselectivity as I had observed in the case of late-stage hydroazidation.

Scheme 4.9. A concise synthesis of clindamycin enabled by late-stage Markovnikov hydrochlorination of an olefinic precursor.

As a proof of concept, I successfully synthesized clindamycin in 4 steps from key building block $\left(S_{\mathrm{S}}\right)-4.10$ (Scheme 4.9). Addition of vinylmagnesium bromide proceeded with modest diastereoselectivity to provide the desired epimer (6R)-4.29 in 63\% yield after chromatographic isolation. ${ }^{172}$ Global deprotection was then performed in a one-pot optimized procedure (catalytic sodium methoxide in methanol, followed by hydrochloric acid, $23^{\circ} \mathrm{C}$) to provide 6 -vinyl MTL derivative 4.30, which in turn was coupled with trans-4-propyl-L-hygric acid (1.88) to produce FSA-215031, chemically identical to the sample prepared by Wittig olefination of 8norlincomycin derivative $\mathbf{3 . 8 3}$ (Figure 3.8). In the key step, addition of sodium borohydride to a degassed, ice-cold solution of FSA-215031, iron(III) oxalate, and N-acetylsulfanilyl chloride (4.31) in an ethanol-water mixture provided clindamycin (1.3) and its 7-epi congener as a $74: 26$ mixture, isolated together in 54% yield. While improvements in yield and diastereoselectivity are likely achievable through modulation of temperature, solvent, radical trap structure, and reagent

[^105]stoichiometry; this may be unnecessary, as the concision and functional-group compatibility of this route is arguably preferable to schemes relying on more traditional Vilsmeier or Appel approaches to the 6-(1-chloroethyl) group.

Summary and conclusion

In the final months of my graduate work, I developed a concise, scalable, and flexible synthetic route to methylthiolincosamine derivatives, relying on N-tert-butanesulfinimines $\mathbf{4 . 1 0}$ as key intermediates. The value of this approach is evident in the range of nucleophilic species that successfully engage these sulfinimines, and in the expediency with which the resulting adducts are converted to C6-modified aminosugars suitable for coupling to various southern-half scaffolds. This route enabled the preparation of lincosamide analogs bearing quaternization and fluorination of the C 7 position, as well as the synthesis of rationally designed polyamines bearing C6-pipiridin4 -yl decoration. From this work emerged the discovery that radical-based methods for olefin hydrofunctionalization can provide expedient access to active lincosamides, exemplified by the synthesis of clindamycin in four steps from sulfinimine $\left(S_{\mathrm{S}}\right)-\mathbf{4 . 1 0}$.

Broadly speaking, our original aims to develop a synthetic platform for the discovery of new lincosamides have been achieved, and our chemical approaches to this underexploited class continue to evolve alongside our understanding of the structural basis for these antibiotics' activity. Based on the findings I have presented here, we expect that further refinement of those promising scaffolds we have uncovered, together with efforts to unlock yet more chemical space within the class, will continue to drive advances in the antimicrobial activities, spectra of action, $\mathrm{PK} / \mathrm{PD}$, and safety profiles of next-generation lincosamide candidates. It is our hope, then, that this platform for lincosamide discovery will offer further evidence of the enabling potential of fully synthetic approaches to address the challenges of contemporary infectious disease.

Experimental section

General Experimental Procedures. All reactions were performed in oven- or flame-dried roundbottomed or modified Schlenk flasks fitted with rubber septa under a positive pressure of argon (dried by passage through a column of Drierite calcium sulfate desiccant), unless otherwise noted. Air- and moisture-sensitive liquids and solutions were transferred via syringe or stainless-steel cannula. When necessary (so noted), solutions were deoxygenated by three cycles of freezing (liquid nitrogen), evacuation, and thawing under static vacuum. Organic solutions were concentrated by rotary evaporation (house vacuum, ~ 60 Torr) at $23-30{ }^{\circ} \mathrm{C}$. Flash-column chromatography was performed as described by Still and co-workers, ${ }^{105}$ employing silica gel (60Å pore size, 230-400 mesh, Agela Technologies, Chicago, IL; or RediSep silica cartridges, Teledyne Isco, Lincoln, NE). Analytical thin-layer chromatography (TLC) was performed using glass plates pre-coated with silica gel ($0.25 \mathrm{~mm}, 60-\AA$ pore size, $230-400$ mesh, Merck KGA) impregnated with a fluorescent indicator (254 nm). In special cases (so noted), analytical TLC was performed with aminopropyl-modified silica gel $\left(\mathrm{NH}_{2}\right.$ silica gel, $60-\AA$ pore size, Wako Chemicals USA) impregnated with a fluorescent indicator (254 nm). TLC plates were visualized by exposure to ultraviolet light (UV) and/or exposure to iodine vapor (I_{2}), basic aqueous potassium permanganate solution $\left(\mathrm{KMnO}_{4}\right)$, acidic ethanolic para-anisaldehyde solution (PAA), acidic aqueous ceric ammonium molybdate solution (CAM), or ethanolic solution of phosphomolybdic acid (PMA) followed by brief heating on a hot plate as needed ($\left.\sim 200{ }^{\circ} \mathrm{C}, \leq 15 \mathrm{~s}\right) \cdot{ }^{106} \mathrm{In}$ some cases, reaction monitoring was carried out by analytical liquid chromatography-mass spectrometry (LCMS), or by flow-injection analysis-high-resolution mass spectrometry (FIA-HRMS).

Materials. Commercial reagents and solvents were used as received, unless mentioned otherwise. Dichloromethane, diethyl ether, tetrahydrofuran, 1,4-dioxane, N, N-dimethylformamide, toluene, and benzene were purified by passage through $\mathrm{Al}_{2} \mathrm{O}_{3}$ under argon, according to the method of Pangborn and co-workers. ${ }^{107}$ D-Galactal was purchased from Toronto Research Chemicals, Inc. (North York, ON, Canada). Oxone monopersulfate compound, Dess-Martin periodinane, trifluoroacetic acid, HATU, and di-tert-butyl dicarbonate were purchased from Oakwood Products, Inc. (Estill, SC, USA). 1-Chloro-3-methyl-2-butene (prenyl chloride) and ethynyltrimethylsilane were purchased from Alfa Aesar (Haverhill, MA, USA). Trans-4-n-propyl-L-hygric acid hydrochloride (1.88) was prepared according to Herr and Slomp. ${ }^{9 c}$ 5'-(3Hydroxypropyl)azepine ester $\mathbf{4 . 2 2}$ and 5'-fluorobutyl azepine acid $\mathbf{3 . 6 3}$ were prepared according to Lewis and co-workers. ${ }^{68}$ All other chemicals and reagents were purchased from Sigma-Aldrich Corporation (Natick, MA, USA).

Instrumentation. Proton nuclear magnetic resonance (${ }^{1} \mathrm{H}$ NMR) spectra and carbon nuclear magnetic resonance (${ }^{13} \mathrm{C}$ NMR) spectra were recorded on Varian Mercury $400(400 \mathrm{MHz} / 100$ MHz), Varian Inova $500(500 \mathrm{MHz} / 125 \mathrm{MHz})$, or Varian Inova $600(600 \mathrm{MHz} / 150 \mathrm{MHz}) \mathrm{NMR}$ spectrometers at $23{ }^{\circ} \mathrm{C}$. Proton chemical shifts are expressed in parts per million (ppm, δ scale) and are referenced to residual protium in the NMR solvent $\left(\mathrm{CHCl}_{3}, \delta 7.26 ; \mathrm{CHD}_{3} \mathrm{OD}, \delta 3.31\right.$; $\mathrm{C}_{6} \mathrm{H}_{5} \mathrm{D}, \delta$ 7.16). Carbon chemical shifts are expressed as parts per million (ppm, δ scale) and are referenced to the carbon resonance of the NMR solvent $\left(\mathrm{CDCl}_{3}, \delta 77.2 ; \mathrm{CD}_{3} \mathrm{OD}, \delta 49.0 ; \mathrm{C}_{6} \mathrm{D}_{6}, \delta\right.$ 128.1). Data are reported as follows: Chemical shift, multiplicity ($\mathrm{s}=\operatorname{singlet}, \mathrm{d}=\operatorname{doublet}, \mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, $\mathrm{qn}=$ quintet, $\mathrm{dd}=$ doublet of doublets, $\mathrm{td}=$ triplet of doublets, $\mathrm{ABq}=\mathrm{AB}$ quartet, $\mathrm{m}=$ multiplet, $\mathrm{br}=$ broad, $\mathrm{app}=$ apparent $)$, integration, and coupling constant (J) in Hertz
(Hz). Infrared transmittance (IR) spectra were obtained using a Bruker ALPHA FTIR spectrophotometer referenced to a polystyrene standard. Data are represented as follows: Frequency of absorption $\left(\mathrm{cm}^{-1}\right)$, and intensity ($\mathrm{s}=$ strong, $\mathrm{m}=$ medium, $\mathrm{br}=$ broad). Melting points were determined using a Thomas Scientific capillary melting point apparatus. High-resolution mass spectrometry (including FIA-HRMS reaction monitoring) was performed at the Harvard University Mass Spectrometry Facility using a Bruker micrOTOF-QII mass spectrometer. X-ray crystallographic analysis was performed at the Harvard University X-Ray Crystallographic Laboratory by Dr. Shao-Liang Zheng. High-performance liquid chromatography-mass spectrometry (LCMS) was performed using an Agilent Technologies 1260-series analytical HPLC system in tandem with an Agilent Technologies 6120 Quadrupole mass spectrometer; a Zorbax Eclipse Plus reverse-phase C_{18} column $(2.1 \times 50 \mathrm{~mm}, 1.8 \mu \mathrm{~m}$ pore size, 600 bar rating; Agilent Technologies, Santa Clara, CA) was employed as stationary phase. LCMS samples were eluted at a flow rate of $650 \mu \mathrm{~L} / \mathrm{min}$, beginning with 5% acetonitrile-water containing 0.1% formic acid, grading linearly to 100% acetonitrile containing 0.1% formic acid over 3 minutes, followed by 100% acetonitrile containing 0.1% formic acid for 2 minutes (5 minutes total run time).

For clarity, intermediates that have not been assigned numbers in the preceding text are numbered sequentially in the following section, beginning with S4.1.

Tri-O-benzoyl-D-galactal (S4.2).

In a $500-\mathrm{mL}$ round-bottomed flask, D-galactal (S4.1, $4.40 \mathrm{~g}, 30.1 \mathrm{mmol}, 1$ equiv) was dissolved in pyridine $(44.0 \mathrm{~mL})$. To this solution was added benzoic anhydride $(52.8 \mathrm{~g}, 233 \mathrm{mmol}$, 7.75 equiv), followed by 4-dimethylaminopyridine ($368 \mathrm{mg}, 3.01 \mathrm{mmol}, 0.10$ equiv). Upon addition of benzoic anhydride, the solution became cold (ca. $5^{\circ} \mathrm{C}$). The mixture was stirred at ambient temperature, and after 2 h , TLC analysis (20% ethyl acetate-hexanes, UV+ KMnO_{4}) showed the reaction was complete. Excess benzoic anhydride was quenched with the dropwise addition of N, N-dimethylethylenediamine ($18.1 \mathrm{~mL}, 166 \mathrm{mmol}, 5.50$ equiv), and the mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 10 min to ensure complete reaction. The mixture was then diluted with ethyl acetate (500 mL), and the diluted mixture was washed repeatedly with 1 N aqueous hydrogen chloride solution (150 mL each), until the aqueous washes were acidic ($\mathrm{pH} \leq 0$). The organic solution was then washed with water (150 mL), saturated aqueous sodium chloride solution (150 mL), and saturated aqueous sodium chloride solution (150 mL). The washed organic product solution was then dried over sodium sulfate, the dried solution was filtered, and the filtrate was concentrated to provide tri-O-benzoyl-D-galactal (S4.2) as a foaming white solid (12.6 g, 91\%) suitable for use in the subsequent epoxidation reaction without further purification. The corresponding ${ }^{1} \mathrm{H}$ NMR, ${ }^{13} \mathrm{C}$ NMR, and HRMS spectral data were identical to those reported for tri-O-benzoyl-D-galactal. ${ }^{173}$

[^106]

Brigl's anhydride 4.5.

To a solution of glycal $\mathbf{S 4 . 2}$ (12.6 g, $27.5 \mathrm{mmol}, 1$ equiv) in dichloromethane (139 mL) was added acetone ($30.3 \mathrm{~mL}, 412 \mathrm{mmol}, 15.0$ equiv) and saturated aqueous sodium bicarbonate solution (278 mL). The resulting biphasic mixture was chilled to $0^{\circ} \mathrm{C}$ before a solution of Oxone monopersulfate compound $(50.7 \mathrm{~g})$ in water $(194 \mathrm{~mL})$ was added dropwise. Rapid stirring (>700 rpm) was maintained at $0{ }^{\circ} \mathrm{C}$ throughout the course of the reaction to ensure vigorous mixing of the two phases. After 6 h, TLC analysis (30% ethyl acetate-hexanes, UV+PAA) showed complete consumption of the starting material, and the mixture was transferred to a separatory funnel, where the layers were separated. The aqueous phase was extracted with dichloromethane $(2 \times 100 \mathrm{~mL})$, and the combined organic phases were then washed sequentially with saturated aqueous sodium bicarbonate solution (200 mL) and water $(200 \mathrm{~mL})$. The washed organic solution was dried over sodium sulfate, the dried solution was filtered, and the filtrate was concentrated to afford epoxide 4.5 as a white, foaming solid ($12.4 \mathrm{~g}, 95 \%$). This material was used without further purification.
$\mathrm{R}_{f}=0.39\left(\mathrm{NH}_{2}\right.$ silica gel, ${ }^{174} 30 \%$ ethyl acetate-hexanes, UV+PAA $)$.
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 8.10-8.08(\mathrm{~m}, 2 \mathrm{H}), 8.07-8.05(\mathrm{~m}, 2 \mathrm{H}), 7.97-7.95(\mathrm{~m}, 2 \mathrm{H}), 7.14-7.08$
(m, 2H), 7.06-6.99(m, 5H), $6.93(\mathrm{app} \mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 5.69(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}$, $J=0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=11.4,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=$ $11.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\operatorname{app} \mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{dd}, J=2.3,1.5 \mathrm{~Hz}, 1 \mathrm{H})$.

[^107]${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{C}_{6} \mathrm{D}_{6}\right) \delta 165.8,165.6,165.0,133.4(2 \times \mathrm{C}), 133.1,130.1(2 \times \mathrm{C}), 130.0$, $128.7(2 \times \mathrm{C}), 128.6,77.1,68.0,67.7,63.1,62.9,50.3$.

IR (neat, cm^{-1}): 1724 (s), 1451 (m), 1267 (s), 1247 (s), 1094 (s), 766 (s), 496 (s).
HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{27} \mathrm{H}_{22} \mathrm{O}_{8}, 475.1387$; found 475.1408 .

Thioglycoside 4.6.

A $200-\mathrm{mL}$ round-bottomed flask fitted with a stir bar and charged with 3.00 g of powdered, activated $4 \AA$ molecular sieves was flame-dried. Once cooled, the flask was then charged with epoxide 4.5 ($3.00 \mathrm{~g}, 6.32 \mathrm{mmol}, 1$ equiv) and anhydrous tert-butyl methyl ether (63.2 mL). The resulting suspension was chilled to $-78^{\circ} \mathrm{C}$, whereupon (methylthio)trimethylsilane ($2.69 \mathrm{~mL}, 19.0$ $\mathrm{mmol}, 3.00$ equiv) was added. Trimethylsilyl trifluoromethanesulfonate ($1.14 \mathrm{~mL}, 6.32 \mathrm{mmol}$, 1.00 equiv) was added dropwise next, and stirring was continued at $-78^{\circ} \mathrm{C}$. After 50 min , TLC analysis $\left(\mathrm{NH}_{2}\right.$ silica gel, 30% ethyl acetate-hexanes, $\left.\mathrm{UV}+\mathrm{CAM}\right)$ showed disappearance of both starting material and of a polar spot believed to arise by quenching of unreacted oxocarbenium intermediate during TLC spotting. A $5 \% \mathrm{v} / \mathrm{v}$ triethylamine-dichloromethane solution (88.2 mL , 31.6 mmol triethylamine, 5.00 equiv) was added before the reaction mixture was warmed to 23 ${ }^{\circ} \mathrm{C}$. Celite $(3.00 \mathrm{~g})$ was added to the warmed mixture (to facilitate filtration), and the mixture was filtered through a pad of Celite. The filtrate was washed with saturated aqueous sodium bicarbonate solution $(100 \mathrm{~mL})$, and the aqueous layer was extracted with dichloromethane (2×50 $\mathrm{mL})$. The combined organic layers were washed with water $(100 \mathrm{~mL})$, dried over sodium sulfate, and filtered to obtain a white foaming solid residue. This crude product was purified by flashcolumn chromatography (120 g silica gel; eluting with hexanes initially, grading to 25% ethyl acetate-hexanes) to furnish α-methylthioglycoside product as a foaming white solid ($2.82 \mathrm{~g}, 75 \%$).
$\mathrm{R}_{f}=0.62(40 \%$ ethyl acetate-hexanes, UV + PAA $)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{dd}, J=8.4,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 8.02(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.84$ (dd, $J=8.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.61(\mathrm{td}, J=7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{td}, J=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.49-$ $7.45(\mathrm{~m}, 3 \mathrm{H}), 7.40(\operatorname{app} \mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\operatorname{app} \mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.97(\mathrm{dd}, J=3.6$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.59(\mathrm{dd}, J=9.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.92(\mathrm{ddd}, J=7.1$, $5.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{dd}, J=9.9,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{dd}, J=11.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{dd}$, $J=11.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.0,165.4(2 \times \mathrm{C}), 133.5,133.2,133.0,129.8,129.6(3 \times \mathrm{C})$, $129.5,129.4,128.6,128.4,128.2,86.8,71.7,69.3,67.8,67.1,62.8,12.0,0.0$.

FTIR (neat, cm^{-1}): 1720 (s), 1451 (m), 1249 (s), 1094 (s), 840 (s), 765 (s).
HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{31} \mathrm{H}_{34} \mathrm{O}_{8} \mathrm{SSi}$, 595.1816; found 595.1820.

Tetra-O-benzoyl thiogalactoside 4.7.

To a stirred solution of trimethylsilyl ether $4.6(6.15 \mathrm{~g}, 10.3 \mathrm{mmol}, 1$ equiv) in methanol $(103 \mathrm{~mL})$ were added 2 drops of 1 N aqueous hydrogen chloride solution at $23{ }^{\circ} \mathrm{C}$. Within 10 minutes, TLC analysis (60% ethyl acetate-hexanes, UV) demonstrated complete consumption of starting material, with concomitant formation of desilylated intermediate $\left(\mathrm{R}_{f}=0.56,40 \%\right.$ ethyl acetate-hexanes, UV+PAA). The stir bar was removed from the flask, and the reaction mixture was concentrated in vacuo; in order to remove residual methanol, the residue was then re-dissolved in toluene (100 mL) and this solution was re-concentrated. To this dried residue were then added pyridine (25.8 mL), benzoic anhydride $(2.80 \mathrm{~g}, 12.4 \mathrm{mmol}, 1.20$ equiv), and 4(dimethylamino)pyridine ($126 \mathrm{mg}, 1.03 \mathrm{mmol}, 0.100$ equiv) sequentially. After 1 h of stirring at $23{ }^{\circ} \mathrm{C}$, TLC analysis (40% ethyl acetate-hexanes, UV+PAA) showed complete consumption of the intermediate alcohol, and excess benzoic anhydride was quenched with the dropwise addition of N, N-dimethylethylenediamine ($563 \mu \mathrm{~L}, 5.15 \mathrm{mmol}, 0.500$ equiv). Following this quench, the mixture was incubated at $23{ }^{\circ} \mathrm{C}$ for 10 min before toluene (100 mL) was added and the mixture concentrated in vacuo (to remove excess pyridine). The residue was dissolved in ethyl acetate (250 mL), and the organic solution was washed sequentially with 1 N aqueous hydrogen chloride solution ($3 \times 100 \mathrm{~mL}$), water $(100 \mathrm{~mL})$, saturated aqueous sodium bicarbonate solution (100 mL), and saturated aqueous sodium chloride solution $(100 \mathrm{~mL})$. The washed organic solution was then dried over sodium sulfate, filtered, and concentrated to provide a white foaming solid. This residue was purified by flash-column chromatography (330 g silica gel; eluting with hexanes initially,
grading to 30% ethyl acetate-hexanes) to furnish tetra- O-benzoyl galactoside product (5.48 g , $85 \%)$ as a brilliant white, foaming solid.
$\mathrm{R}_{f}=0.56(40 \%$ ethyl acetate-hexanes, UV+PAA).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{dd}, J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.04(\mathrm{dd}, J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.00$ (dd, $J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}$), 7.81 (dd, $J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{ddt}, J=8.8,7.1,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.56$ (ddt, $J=8.8,7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.41(\mathrm{~m}, 3 \mathrm{H}), 7.39$ (ddt, $J=7.4,6.2,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.07(\mathrm{app} \mathrm{q}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.95-5.92(\mathrm{~m}$, $3 \mathrm{H}), 5.01$ (ddd, $J=6.9,5.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{dd}, J=11.6,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{dd}, J=11.6$, $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13}{ }^{13} \mathrm{NMR}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 166.1,165.8,165.6,165.5,133.7,133.6,133.3,130.1,130.0,129.8$ $(2 \times \mathrm{C}), 129.6,129.2,129.1,129.0,128.8,128.6,128.5,128.4,83.7,69.2,69.1(2 \times \mathrm{C})$, 67.3, 62.8, 12.5.

FTIR (neat, cm^{-1}): 1721 (s), 1451 (m), 1262 (s), 1105 (s), 1069 (s), 708 (s).
HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{35} \mathrm{H}_{30} \mathrm{O}_{9} \mathrm{~S}, 627.1683$; found 627.1688 .

Alcohol S4.3.

Sodium acetate buffer was prepared by dissolving acetic acid ($5.71 \mathrm{~mL}, 0.100 \mathrm{~mol}$) in water $(450 \mathrm{~mL})$ to which a small quantity of aqueous bromocresol green solution had been added as pH indicator. Aqueous sodium hydroxide $(1 \mathrm{~N})$ solution was then added until $\mathrm{pH} 4.5-5.0$ was achieved (indicated by aquamarine color and corroborated by testing with a pH strip).

In a 1-L round-bottomed flask fitted with a large magnetic stir bar, tetra- O-benzoyl galactoside $4.7(5.48 \mathrm{~g}, 8.74 \mathrm{mmol}, 1$ equiv) was dissolved in 1,4-dioxane (131 mL). To this solution was added freshly prepared acetate buffer (306 mL), followed by Candida rugosa lipase (11.0 g , type VII, ≥ 700 unit $/ \mathrm{mg}$, Aldrich). After the headspace of the vessel was flushed with argon, rapid stirring (900 rpm) was initiated, and the heterogeneous mixture was heated to $35^{\circ} \mathrm{C}$ in a pre-heated oil bath. After 2 d , TLC analysis (40\% ethyl acetate-hexanes, UV+PAA) showed complete consumption of starting material. The mixture was filtered through a Celite pad, and the filter cake was rinsed with ethyl acetate $(500 \mathrm{~mL})$. The filtrate was separated, and the organic phase was washed with saturated aqueous sodium bicarbonate solution (100 ml), water (100 mL), and saturated aqueous sodium chloride solution $(100 \mathrm{~mL})$. The washed solution was then dried over sodium sulfate, filtered, and concentrated to give a foaming syrup. This crude residue was purified by flash-column chromatography (220 g silica gel; eluting with 10% ethyl acetate-hexanes initially, grading to 40% ethyl acetate-hexanes) to provide the product ($3.82 \mathrm{~g}, 84 \%$) as a white foaming solid.
$\mathrm{R}_{f}=0.34(40 \%$ ethyl acetate-hexanes, UV + PAA $)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.99(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.81(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 2 \mathrm{H}), 7.64(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.45-7.38(\mathrm{~m}, 3 \mathrm{H}), 5.94-5.86(\mathrm{~m}$, 4H), $4.69(\operatorname{app} \mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\operatorname{app~dt}, J=13.0,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.68(\operatorname{app~dt}, J=12.4$, $6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.40(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.5,165.8,165.4,133.8,133.6,133.3,130.0(2 \times \mathrm{C}), 129.7$, $128.7,128.5,128.3,83.6,69.8,69.6,69.3,69.2,61.0,12.6$.

IR (neat, cm^{-1}): 1720 (s), 1451 (m), 1257 (s), 1093 (s), 1067 (s), 1025 (s), 706 (s). HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{28} \mathrm{H}_{26} \mathrm{O}_{8} \mathrm{~S}$, 523.1421; found 523.1421.

Aldehyde 4.8.

To a solution of alcohol $\mathbf{S 4 . 3}$ ($3.80 \mathrm{~g}, 7.27 \mathrm{mmol}$, 1 equiv) in dichloromethane (48.5 mL) was added Dess-Martin periodinane ($4.63 \mathrm{~g}, 10.9 \mathrm{mmol}, 1.50$ equiv) at $23{ }^{\circ} \mathrm{C}$. After 2 h , TLC analysis (60% ethyl acetate-hexanes, UV+PAA) showed complete consumption of starting material. Consequently, and with constant stirring throughout, the mixture was diluted with diethyl ether (200 mL); the diluted mixture was then treated with saturated aqueous sodium bicarbonate solution (75 mL), followed by aqueous sodium thiosulfate solution ($50 \mathrm{wt} \%, 75 \mathrm{~mL}$). The mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 1 h , at which time both the organic and aqueous phases had become clear. These layers were separated, and the aqueous phase was extracted with diethyl ether ($3 \times 30 \mathrm{~mL}$). The combined organic extracts were washed with fresh saturated aqueous sodium bicarbonate solution (75 mL), then with saturated aqueous sodium chloride solution (75 mL). The washed organic solution was dried over sodium sulfate, filtered, and concentrated to provide the product as a white solid ($4.00 \mathrm{~g}, 106 \%$). This material was sufficiently pure for use in subsequent sulfinimine condensations without further purification.

For characterization purposes, a small portion of crude product ($\sim 30 \mathrm{mg}$) was purified by flash-column chromatography (4 g silica gel, eluting with hexanes initially, grading to 80% ethyl acetate-hexanes) to furnish an analytically pure sample.
$\mathrm{R}_{f}=0.31-0.59(60 \%$ ethyl acetate - hexanes, UV + PAA $)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.67(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.01-7.97(\mathrm{~m}, 4 \mathrm{H}), 7.81-7.79(\mathrm{~m}, 2 \mathrm{H})$, $7.62-7.58(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.48-7.44(\mathrm{~m}, 3 \mathrm{H}), 7.40(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.27$ $(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.30(\mathrm{dd}, J=3.0,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.90-5.82(\mathrm{~m}$, $2 \mathrm{H}), 5.11(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($100 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 196.1,165.7,165.5,165.2,133.8(2 \times \mathrm{C}), 133.5,130.1,129.9$, 129.0, 128.9, $128.7(2 \times \mathrm{C}), 128.4,84.5,74.4,68.7(2 \times \mathrm{C}), 68.5,13.2$. Two phenyl carbons are not observed: Both are believed to coincide with other adjacent resonances (likely δ 130.1 and δ 128.7).

FTIR (neat, cm^{-1}): 2923 (w), 1721 (s), 1451 (m), 1259 (s), 1246 (s), 1092 (s), 1068 (s), 908 (m), 706 (s).

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{28} \mathrm{H}_{24} \mathrm{O}_{8} \mathrm{~S}$, 521.1265; found 521.1288.

tert-Butanesulfinaldimine $\left(R_{\mathrm{S}}\right)$-4.10.

In a flame-dried $10-20 \mathrm{~mL}$ glass microwave vial fitted with a magnetic stir bar, aldehyde $4.8(1.00 \mathrm{~g}, 1.92 \mathrm{mmol}, 1$ equiv), (R)-(+)-2-methyl-2-propanesulfinamide ($[R]-4.9,466 \mathrm{mg}, 3.84$ mmol, 2.00 equiv), and anhydrous cupric sulfate ($460 \mathrm{mg}, 2.88 \mathrm{mmol}, 1.50$ equiv) were combined. To this mixture was added toluene (6.40 mL); the vial was then sealed, and the mixture was heated to $40^{\circ} \mathrm{C}$ in a pre-heated oil bath. After stirring for $2 \mathrm{~d}, \mathrm{TLC}$ analysis (60% ethyl acetate-hexanes, UV+PAA) showed complete consumption of aldehyde starting material, as well as disappearance of a polar spot $\left(\mathrm{R}_{f}=0.28\right.$, UV-active, staining brown with PAA) believed to represent hemiaminal intermediate. The mixture was filtered through a pad of Celite to remove insoluble salts, and the filter cake was rinsed with dichloromethane $(3 \times 15 \mathrm{~mL})$. The filtrate was concentrated to provide a lime green-colored oily residue, which was purified by flash-column chromatography (30 g silica gel; eluting with 10% ethyl acetate-hexanes initially, grading to 50% ethyl acetate-hexanes) to provide $\left(R_{\mathrm{S}}\right)$-sulfinimine product as a white solid ($845 \mathrm{mg}, 71 \%$).
$\mathrm{R}_{f}=0.60(60 \%$ ethyl acetate-hexanes, UV + PAA $)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.06(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.98(\mathrm{dd}, J=8.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{dd}, J$ $=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.79(\mathrm{dd}, J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{tt}, J=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{tt}, J$ $=7.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.46-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.26-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.32(\mathrm{dd}, J$ $=3.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.89(\mathrm{dd}, J=10.6,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.85(\mathrm{dd}, J=$ $10.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.49(\operatorname{app} \mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 0.98(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.7,165.5,165.4,164.8,133.7(2 \times \mathrm{C}), 133 ., 130.0(2 \times \mathrm{C})$, $129.8,129.2,129.1,129.0,128.7,128.6,128.4,84.5,71.3,69.5,69.2,68.7,57.2,22.2$, 13.0.

FTIR (neat, cm^{-1}): 1724 (s), 1451 (m), 1259 (s), 1246 (s), 1088 (s), 1067 (s), 704 (s).
HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{NO}_{8} \mathrm{~S}_{2}, 624.1720 ; 624.1743$.

tert-Butanesulfinaldimine $\left(S_{\mathrm{S}}\right)$-4.10.

In a flame-dried $10-20 \mathrm{~mL}$ glass microwave vial fitted with a magnetic stir bar, aldehyde 29 ($750 \mathrm{mg}, 1.44 \mathrm{mmol}, 1$ equiv), (S)-(-)-2-methyl-2-propanesulfinamide ([S]-4.9, $349 \mathrm{mg}, 2.88$ mmol, 2.00 equiv), and anhydrous cupric sulfate ($345 \mathrm{mg}, 2.16 \mathrm{mmol}, 1.50$ equiv) were combined. To this mixture was added toluene $(4.80 \mathrm{~mL})$; the vial was then sealed, and the mixture was heated to $40^{\circ} \mathrm{C}$ in a pre-heated oil bath. After stirring for 5 d , TLC analysis (60% ethyl acetate-hexanes, UV+PAA) showed complete consumption of aldehyde starting material, as well as disappearance of a polar spot $\left(\mathrm{R}_{f} \sim 0.25\right.$, UV-active, staining brown with PAA) believed to represent hemiaminal intermediate. The mixture was filtered through a pad of Celite to remove insoluble salts, and the filter cake was rinsed with dichloromethane $(3 \times 10 \mathrm{~mL})$. The filtrate was concentrated to provide a yellow moss-green oil that was subjected to flash column chromatography (40 g silica gel; eluting with 10% ethyl acetate-hexanes initially, grading to 50% ethyl acetate-hexanes) to give (S_{S})sulfinimine product as a white solid ($563 \mathrm{mg}, 63 \%$).
$\mathrm{R}_{f}=0.54(50 \%$ ethyl acetate-hexanes, UV + PAA $)$
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.05(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.00-7.97(\mathrm{~m}, 4 \mathrm{H}), 7.82-7.79(\mathrm{~m}, 2 \mathrm{H})$, $7.59(\mathrm{tt}, J=7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52(\mathrm{tt}, J=7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.42(\mathrm{~m}, 3 \mathrm{H}), 7.40-7.37$ $(\mathrm{m}, 2 \mathrm{H}), 7.27-7.24(\mathrm{~m}, 2 \mathrm{H}), 6.29(\mathrm{dd}, J=2.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.00(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.91-$ $5.86(\mathrm{~m}, 2 \mathrm{H}), 5.43(\mathrm{app} \mathrm{t}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.13(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, CDCl_{3}) $\delta 165.7,165.6,165.3,163.8,133.7,133.5,133.4,130.0,129.9$, $129.8,129.2,129.0(2 \times \mathrm{C}), 128.6(2 \times \mathrm{C}), 128.4,84.5,70.9,69.2,69.0,68.8,57.4,22.4$, 13.0.

FTIR (neat, cm^{-1}): 1724 (s), 1451 (m), 1277 (s), 1247 (s), 1088 (s), 1068 (s), 706 (s).
HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{32} \mathrm{H}_{33} \mathrm{NO}_{8} \mathrm{~S}_{2}, 624.1720$; found 624.1731 .

Dioxolane 4.11.

In a $2-5 \mathrm{~mL}$ microwave vial, sulfinimine $\left(R_{\mathrm{S}}\right)-4.10(100 \mathrm{mg}, 160 \mathrm{mmol}, 1$ equiv) was dried by azeotropic removal of benzene. The dried starting material was then dissolved in tetrahydrofuran ($802 \mu \mathrm{~L}$), and the resulting solution was chilled to $-50^{\circ} \mathrm{C}$ in an acetone bath. With constant stirring throughout, a solution of (1,3-dioxan-2-ylethyl)magnesium bromide ($0.5 \mathrm{M}, 481$ $\mu \mathrm{L}, 240 \mu \mathrm{~mol}, 1.50$ equiv) was added dropwise, and the temperature of the cooling bath was allowed to warm to $-40^{\circ} \mathrm{C}$ gradually over approximately 15 min . After 1 h of stirring at that temperature, TLC analysis (60% ethyl acetate-hexanes, UV) showed full consumption of starting material. Excess Grignard reagent was quenched with the addition of saturated aqueous ammonium chloride solution $(1 \mathrm{~mL})$, and the mixture was warmed to $23^{\circ} \mathrm{C}$. The warmed mixture then diluted with additional saturated aqueous ammonium chloride solution (5 mL), and the diluted mixture was extracted with ethyl acetate $(3 \times 6 \mathrm{~mL})$. The combined organic extracts were washed with saturated aqueous sodium chloride solution (5 mL), and the washed organic solution was dried over sodium sulfate. The dried solution was filtered, and the filtrate was concentrated to provide crude sulfinamide as a colorless film that produced a foaming white solid upon reconcentration from hexanes. This crude residue was purified by flash-column chromatography (12 g silica gel; eluting with 50% ethyl acetate-hexanes initially; grading to 90% ethyl acetatehexanes) to afford pure sulfinamide product as a white solid ($105 \mathrm{mg}, 89 \%$).
$\mathrm{R}_{f}=0.25$ (60% ethyl acetate-hexanes, UV+PMA).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.09(\mathrm{dd}, J=8.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{dd}, J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.76$ (dd, $J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.62(\mathrm{tt}, J=7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{tt}, J=7.7$, $1.3,1 \mathrm{H}), 7.39-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.24-7.21(\mathrm{~m}, 2 \mathrm{H}), 6.08(\mathrm{dd}, J=3.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{~d}, J$ $=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{dd}, J=10.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{dd}, J=10.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.75(\mathrm{~d}, J=$ $7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.98-3.93(\mathrm{~m}, 2 \mathrm{H}), 3.92(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.68-$ $3.57(\mathrm{~m}, 3 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H}), 2.09-2.03(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.86(\mathrm{~m}, 1 \mathrm{H}) 1.85-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.23-$ $1.20(\mathrm{~m}, 1 \mathrm{H}), 1.18(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13}{ }^{13}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.8,165.6,165.5,133.7,133.6,133.2,130.1,130.0,129.8$, $129.4,129.2,129.1,128.8,128.6,128.3,102.1,84.4,70.4,69.6,69.1,69.0,66.9(2 \times \mathrm{C})$, 56.3, 55.4, 31.0, 26.2, 25.8, 22.7, 13.2.

FTIR (neat, cm^{-1}): 2959 (w), 2855 (w), 1725 (s), 1452 (m), 1280 (s), 1261 (s), 1093 (s), 1068 (s), 711 (s).

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{38} \mathrm{H}_{45} \mathrm{NO}_{10} \mathrm{~S}_{2}, 740.2558$; found 740.2556.

Pyrrolidine 4.12.

In a 4-mL glass scintillation vial in open air, sulfinamide 4.11 ($39 \mathrm{mg}, 53 \mu \mathrm{~mol}$, 1 equiv) was dissolved in $95 \% \mathrm{v} / \mathrm{v}$ trifluoroacetic acid-water. The vial was sealed with a PTFE-lined screwcap, and the resulting solution was stirred at $23{ }^{\circ} \mathrm{C}$ for 30 min in order for desulfinylative cyclization to occur. The vessel was then opened, triethylsilane ($84 \mu \mathrm{~L}, 530 \mu \mathrm{~mol}, 10$ equiv) was then added, the vial was re-sealed, and the mixture was stirred for 22 h at $23^{\circ} \mathrm{C}$. Finally, the reaction mixture was concentrated to dryness in vacuo to provide crude amine $4.12 \cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ ($>95 \%,{ }^{1} \mathrm{H}$ NMR), which was used without purification in the subsequent hydrazinolysis step.

For characterization purposes, a small quantity (ca. 10 mg) of crude residue was purified by HPLC-MS on a Waters SunFire Prep C C_{18} column ($5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid- 10% acetonitrile-water initially, grading to 0.1% trifluoroacetic acidacetonitrile over 30 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 254 nm and ESI+ selected ion monitoring $\left.[m / z=562] ; \mathrm{R}_{t}=20.0 \mathrm{~min}\right)$ to afford $4.12 \cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as a white solid.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.73(\mathrm{br}, 1 \mathrm{H}), 9.42(\mathrm{br}, 1 \mathrm{H}), 7.99(\mathrm{dd}, J=4.3,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.97$ (dd, $J=4.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.73(\mathrm{dd}, J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{tt}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.52$ $(\mathrm{tt}, J=7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.47-7.37(\mathrm{~m}, 5 \mathrm{H}), 7.24-7.20(\mathrm{~m}, 2 \mathrm{H}), 6.03(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H})$, $5.86(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.82(\mathrm{dd}, J=10.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{dd}, J=10.6,3.2 \mathrm{~Hz}, 1 \mathrm{H})$,
$4.99(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{br}, 1 \mathrm{H}), 3.40(\mathrm{br}, 1 \mathrm{H}), 2.28-2.21(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{~s}, 3 \mathrm{H})$, 2.10-2.03 (m, 2H), 1.98-1.90(m, 2H).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.2,165.9,165.3,134.0,133.7,133.4,130.1(2 \times \mathrm{C}), 129.7$, $129.1,129.0,128.8,128.7,128.6,128.4,85.1,69.4,69.0,68.6,68.5,58.3,46.4,28.5,24.0$, 13.4. Trifluoroacetate carbons were not resolved due to ${ }^{19} \mathrm{~F}$ coupling.
${ }^{19}$ F NMR (471 Hz, $\left.\mathrm{CDCl}_{3}\right) \delta-75.8(\mathrm{~s}, 3 \mathrm{~F})$.
FTIR (neat, cm^{-1}): 2960 (w), 1728 (s), 1673 (m), 1452 (m), 1279 (s), 1261 (s), 1122 (s), 709 (s).
HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{31} \mathrm{H}_{31} \mathrm{NO}_{7} \mathrm{~S}$, 562.1894; found 562.1891.

Aminotriol 4.13.

In an 8 -mL glass scintillation vial, triester $4.12 \cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ (theoretically $53 \mu \mathrm{~mol}$, crude product of reductive cyclization) was dissolved in ethanol ($960 \mu \mathrm{~L}$). Hydrazine (anhydrous, 96 $\mu \mathrm{L}$) was added, the reaction vial was capped with a PTFE-lined screw-cap, and the mixture was heated to $60{ }^{\circ} \mathrm{C}$ with stirring in a pre-heated oil bath. After 15 h, LCMS analysis showed the reaction was complete, and the reaction mixture was consequently diluted with toluene. The diluted mixture was concentrated under a stream of argon, and residual hydrazine was removed by repeated concentration from $50 \% \mathrm{v} / \mathrm{v}$ toluene-methanol. The white solid residue thus obtained was purified by flash-column chromatography (4.0 g silica gel; eluting with 2% ammonium hydroxide5\% methanol-dichloromethane initially, grading to 5% ammonium hydroxide- 10% methanoldichloromethane) to provide aminotriol product ($10.5 \mathrm{mg}, 79 \%, 2$ steps) as a white solid.
$\mathrm{R}_{f}=0.23$ (10% methanol-5\% ammonium hydroxide-dichloromethane, PAA).
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.27(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=10.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dd}$, $J=3.3,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=7.5,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=10.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.44$ (app q, $J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.02-2.91(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.07-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.77(\mathrm{~m}$, $2 \mathrm{H}), 1.62(\operatorname{app~dq}, J=12.7,8.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 89.3,73.5,72.1,70.9,69.6,59.5,47.0,29.9,25.9,12.9$.
FTIR (neat, cm^{-1}): 3316 (br), 2919 (m), 1411 (m), 1079 (s), 1056 (s).
HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{10} \mathrm{H}_{19} \mathrm{NO}_{4} \mathrm{~S}$, 250.1108; found 250.1118.

Synthetic lincosamide FSA-216092.

In a flame-dried, $0.5-2 \mathrm{~mL}$ conical microwave vial, aminotriol $4.13(10.0 \mathrm{mg}, 40.0 \mu \mathrm{~mol}$, 1.00 equiv) was dissolved in anhydrous N, N-dimethylformamide ($201 \mu \mathrm{~L}$). The resulting solution was chilled to $0{ }^{\circ} \mathrm{C}$, whereupon triethylamine $(25.2 \mu \mathrm{~L}, 180 \mu \mathrm{~mol}, 4.50$ equiv) and $N, O-$ bis(trimethylsilyl)trifluoroacetamide ($16.1 \mu \mathrm{~L}, 60.0 \mu \mathrm{~mol}, 1.50$ equiv) were added. The mixture was allowed to warm to $23^{\circ} \mathrm{C}$ with stirring over the course of 1 h , at which point trans-4-n-propyl-L-hygric acid hydrochloride ($\mathbf{1 . 8 8}, 10.8 \mathrm{mg}, 52.0 \mu \mathrm{mmol}, 1.30$ equiv) was added, followed by HATU ($22.9 \mathrm{mg}, 60.0 \mu \mathrm{~mol}, 1.50$ equiv). The dull sand-brown cloudy mixture adopted a vibrant canary-yellow color upon addition of HATU. The mixture was stirred at $23^{\circ} \mathrm{C}$ for 2 h , at which point LCMS analysis indicated full consumption of aminotriol and its (oligo)trimethylsilylated congeners. The mixture was diluted with ethyl acetate (15 mL), and the diluted solution was washed sequentially with saturated aqueous sodium bicarbonate solution (7 mL), water (7 mL), and saturated aqueous sodium chloride solution (7 mL). The washed organic solution was then dried over sodium sulfate, the dried solution was filtered, and the filtrate was concentrated. The colorless residue was then re-dissolved in 4 mL of $50 \% \mathrm{v} / \mathrm{v}$ methanol- 1 N aqueous hydrochloric acid, and the resulting solution was incubated at $23^{\circ} \mathrm{C}$ for 30 min to effect global desilylation. The mixture was then passed through a $0.2-\mu \mathrm{m}$ PTFE syringe filter, the filtrate was concentrated, and the residue was purified by preparative HPLC-MS on a Waters SunFire Prep C ${ }_{18}$ column ($5 \mu \mathrm{~m}$, $250 \times 19 \mathrm{~mm}$; eluting with 0.1% formic acid -5% acetonitrile-water, grading to 0.1% formic acid 30% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance
at 210 nm and ESI + selected ion monitoring $[\mathrm{m} / \mathrm{z}=403] ; \mathrm{R}_{t}=19.0 \mathrm{~min}$; mixed fractions containing tetramethylurea $[\mathrm{ESI}+m / z=117]$ were discarded) to afford pyrrolidinamide analog FSA-216092 - $\mathrm{HCO}_{2} \mathrm{H}(4.2 \mathrm{mg}, 23 \%)$ as a white solid.
${ }^{1} \mathrm{H}$ NMR ($500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 8.28(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.29(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=10.3,6.7$ $\mathrm{Hz}, 1 \mathrm{H}), 4.35(\operatorname{app} \mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.08(\mathrm{~m}, 2 \mathrm{H}), 3.78(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75$ (dd, $J=10.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.63(\mathrm{ddd}, J=10.9,8.8,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{ddd}, J=10.2,3.5$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\operatorname{appq}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.89(\mathrm{~s}, 3 \mathrm{H}), 2.87(\operatorname{app~t}, J=11.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.44$ $2.37(\mathrm{~m}, 1 \mathrm{H}), 2.35-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.24-2.17(\mathrm{~m}, 1 \mathrm{H}), 2.10-1.92(\mathrm{~m}, 3 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H})$, $1.52-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.44-1.32(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 168.8,166.8,89.5,71.8,71.1,70.9,69.5,69.0,62.0,59.9,47.8$, $40.6,38.0,35.8,35.0,27.6,24.5,22.1,14.3,13.2$.

FTIR (neat, cm^{-1}): 3358 (br), 2923 (m), 1638 (s), 1595 (s), 1458 (m), 1346 (m), 1201 (m), 1062 (m).

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc' d for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}, 403.2261$; found 403.2280 .

Propargylic sulfinamide 4.14.

In a $25-\mathrm{mL}$ round-bottomed flask, ethynyltrimethylsilane ($51.7 \mu \mathrm{~L}, 369 \mu \mathrm{~mol}, 2.30$ equiv) was dissolved in hexanes (2.92 mL). This solution was chilled to $-78^{\circ} \mathrm{C}$ before it was treated with the dropwise addition of freshly titrated n-butyllithium solution $(2.30 \mathrm{M}$ in hexane, $160 \mu \mathrm{~L}, 369$ $\mu \mathrm{mol}, 2.30$ equiv). The resulting mixture was stirred at $-78^{\circ} \mathrm{C}$ for 15 min , then warmed to $0{ }^{\circ} \mathrm{C}$ for 15 min to ensure complete deprotonation. The lithium acetylide solution was then chilled again to $-78{ }^{\circ} \mathrm{C}$ before a solution of sulfinimine $\left(S_{\mathrm{s}}\right) \mathbf{- 4 . 1 0}(100 \mathrm{mg}, 160 \mu \mathrm{~mol}, 1$ equiv) in tetrahydrofuran $(1.29 \mu \mathrm{~L})$ was added dropwise by cannula. After 5 min , FIA-HRMS analysis ${ }^{175}$ showed complete consumption of sulfinimine starting material, and excess lithium acetylide was quenched with the addition of saturated aqueous ammonium chloride solution (5 mL). The resulting mixture was extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$, the combined organic extracts were dried over sodium sulfate, the dried solution was filtered, and the filtrate was concentrated to provide an orangecolored oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis indicated that the propargyl sulfinamide product was sufficiently pure for use in subsequent deprotection operations without further purification (113 mg, 98\%, dr $\geq 94: 6)$.
$\mathrm{R}_{f}=0.38(40 \%$ ethyl acetate-hexanes, UV+PAA).

[^108]${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{dd}, J=8.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.76$ $(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.65-7.62(\mathrm{~m}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.42(\mathrm{tt}, J=7.4,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.40-7.37(\mathrm{~m}, 2 \mathrm{H}), 7.25-7.22(\mathrm{~m}, 2 \mathrm{H}), 6.01(\mathrm{dd}, J=3.1,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.94(\mathrm{~d}, J=5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.87(\mathrm{dd}, J=10.6,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{dd}, J=10.6,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.70(\mathrm{~d}, J=10.0$ $\mathrm{Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=9.9,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.21(\mathrm{~s}, 3 \mathrm{H}), 1.23(\mathrm{~s}, 9 \mathrm{H})$, 0.15 (s, 9H).
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 166.1,165.8,165.3,133.9,133.6,133.3,130.1(2 \times \mathrm{C}), 129.8$, $129.3,129.1(2 \times \mathrm{C}), 128.9,128.6,128.4,102.7,91.2,83.8,71.5,69.3,68.9,56.8,48.6$, 29.9, 22.8, 12.5, -0.1.

FTIR (neat, cm^{-1}): 2923 (m), 1729 (s$), 1452$ (m), 1282 (s), 1260 (s$), 1091$ (s), 1069 (s$), 844$ (s), 710 (s).

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{37} \mathrm{H}_{43} \mathrm{NO}_{8} \mathrm{~S}_{2} \mathrm{Si}$, 722.2272; found 722.2300.

Aminotriol 4.15.

In a conical $0.5-2 \mathrm{~mL}$ glass microwave vial, sulfinamide $4.14(38 \mathrm{mg}, 53 \mu \mathrm{~mol}, 1$ equiv) was dissolved in ethanol (200 proof, $48 \mu \mathrm{~L}$). Anhydrous hydrazine ($48 \mu \mathrm{~L}$) was added, and after stirring at $23^{\circ} \mathrm{C}$ for 1.5 h , FIA-HRMS showed debenzoylation was complete. The mixture was diluted with toluene (1 mL), and the diluted solution was concentrated in vacuo. The dried residue was then dissolved in anhydrous methanol $(130 \mu \mathrm{~L})$ before hydrogen chloride solution (4 M in 1,4-dioxane, $130 \mu \mathrm{~L}$) was added. Upon acidification of the reaction mixture, a thick white precipitate formed immediately, and within 5 min , LCMS analysis showed removal of the tertbutanesulfinyl group was complete. The mixture was diluted with toluene (1 mL) and was concentrated in vacuo; in order to remove residual hydrogen chloride, the residue was reconcentrated twice more from 25% methanol-toluene. The dried residue was then dissolved in methanol (1.0 mL), and the solution was treated with Amberlyst A26 resin (hydroxide form, 200 $\mathrm{mg})$ and potassium carbonate (2.0 mg). After 1 h of stirring at $23^{\circ} \mathrm{C}$, LCMS analysis showed that removal of the trimethylsilyl group was complete, and the mixture was filtered through a Celite pad in order to remove insoluble salts and the ion-exchange beads. The filtrate was concentrated in vacuo to give a light yellow, oily residue that was purified by flash-column chromatography (4.0 g silica gel; eluting with 0.5% ammonium hydroxide- 5% methanol-dichloromethane initially, grading to 2% ammonium hydroxide- 2% methanol-dichloromethane) to provide pure aminotriol product ($2.9 \mathrm{mg}, 23 \%$) as a white solid.
$\mathrm{R}_{f}=0.26$ (2% ammonium hydroxide -18% methanol-dichloromethane, PAA).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.31(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=3.3,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}$,

$$
J=10.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dd}, J=7.9,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.63
$$

$$
(\mathrm{dd}, J=10.0,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}) .
$$

MS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{9} \mathrm{H}_{15} \mathrm{NO}_{4} \mathrm{~S}$, 234.1; found 234.1.

Synthetic lincosamide FSA-217031.

In a 4-mL glass vial fitted with a magnetic stir bar and silicone septum screw-cap, aminotriol 4.15 ($2.9 \mathrm{mg}, 12 \mu \mathrm{~mol}$, 1 equiv) was dissolved in N, N-dimethylformamide ($124 \mu \mathrm{~L}$). To this solution were added triethylamine ($7.8 \mu \mathrm{~L}, 56 \mu \mathrm{~mol}, 4.5$ equiv) and $N, O-$ bis(trimethylsilyl)trifluoroacetamide ($5.0 \mu \mathrm{~L}, 19 \mu \mathrm{~mol}, 1.50$ equiv); and the resulting solution was stirred at $23{ }^{\circ} \mathrm{C}$ for 1 h to ensure complete O-silylation. To this reaction mixture were then added trans-4-n-propyl-L-hygric acid hydrochloride (1.88, $3.1 \mathrm{mg}, 15 \mu \mathrm{~mol}, 1.2$ equiv) and HATU (6.1 $\mathrm{mg}, 16 \mu \mathrm{~mol}, 1.3$ equiv). Upon addition of HATU, the reaction mixture attained a canary yellow color. After stirring this mixture at $23^{\circ} \mathrm{C}$ for 2 h , LCMS analysis showed complete consumption of aminotriol starting material and its (oligo)trimethylsilylated congeners. Excess HATU and activated prolyl intermediate were quenched with the addition of 1 N aqueous hydrogen chloride solution $(400 \mu \mathrm{~L})$ and methanol $(400 \mu \mathrm{~L})$. The mixture was stirred at $23^{\circ} \mathrm{C}$ for 10 min , whereupon LCMS analysis showed complete desilylation of (oligo)trimethylsilylated product derivatives. The mixture was concentrated to dryness under a stream of nitrogen, and the residue was purified by preparative HPLC-MS on a Waters SunFire Prep C_{18} column $(5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid -15% acetonitrile-water, grading to 0.1% trifluoroacetic acid-50\% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 210 nm and ESI + selected ion monitoring $\left.[\mathrm{m} / \mathrm{z}=387] ; \mathrm{R}_{t}=11.7 \mathrm{~min}\right)$ to provide FSA-217031•2 $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as a white solid ($2.3 \mathrm{mg}, 37 \%$).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.32(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.01(\operatorname{app~dt}, J=9.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ $(\mathrm{d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=9.6,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=10.0,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.91$ (app dt, $J=3.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=10.9,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{ddd}, J=10.1,3.3,1.4$ $\mathrm{Hz}, 1 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 2.89(\operatorname{app} \mathrm{t}, J=11.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{dd}, J=2.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-$ $2.33(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.51-1.45(\mathrm{~m}, 2 \mathrm{H}), 1.42-1.33(\mathrm{~m}, 2 \mathrm{H}), 0.96$ (t, $J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 168.3,88.8, ~ 82.0,73.5,72.0,69.6,69.5,69.4,62.3,43.2,41.0$, $37.9,36.1,35.8,22.1,14.2,12.5$. One carbon is not observed, which is believed to be due to coincidence with another resonance.

FTIR (neat, cm^{-1}): 3269 (br), 1669 (s), 1201 (s), 1135 (s), 1083 (s), 721 (m).
HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$, 387.1948; found 387.1967.

Reverse-prenyl compound 4.17.

Prenylzinc chloride-lithium chloride complex solution was prepared according to the method reported by Sämann and Knochel. ${ }^{176}$ In a $100-\mathrm{mL}$ round-bottomed flask, lithium chloride ($892 \mathrm{mg}, 21.0 \mathrm{mmol}$) was flame-dried. Once the apparatus had cooled, activated zinc powder (2.50 $\mathrm{g}, 38.2 \mathrm{mmol}$) was added, followed by tetrahydrofuran $(19.1 \mathrm{~mL})$. The mixture was stirred at 23 ${ }^{\circ} \mathrm{C}$ for 10 min to ensure complete saturation of the solution with lithium chloride; then 1,2dibromoethane ($33 \mu \mathrm{~L}, 382 \mu \mathrm{~mol}$) and trimethylsilyl chloride ($122 \mu \mathrm{~L}, 956 \mu \mathrm{~mol}$) were added. The resulting mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 10 min before a solution of prenyl chloride $(2.16$ $\mathrm{mL}, 19.1 \mathrm{mmol})$ in tetrahydrofuran $(19.1 \mathrm{~mL})$ was added dropwise via cannula over a period of approximately 5 min . Zinc insertion was monitored by aliquot NMR: After 2.5 h , a small aliquot of the reaction mixture $(\sim 100 \mu \mathrm{~L})$ was diluted with chloroform- $d(\sim 300 \mu \mathrm{~L})$, and this mixture was filtered through a cotton plug to remove insoluble zinc solids. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis of this mixture revealed complete consumption of prenyl chloride, signaling completion of the reaction. Stirring was discontinued, and the suspension was allowed to settle for 1 h . The supernatant was then transferred via cannula to an oven-dried Schlenk bomb flask for storage. Titration of this reagent solution against iodine ${ }^{151}$ indicated a reagent concentration of 0.40 M (theoretical titer $=0.50 \mathrm{M}$, 80\% yield).

[^109]An oven-dried $25-\mathrm{mL}$ round-bottomed flask was charged with a stir bar and freshly titrated prenylzinc chloride-lithium chloride reagent solution $(2.4 \mathrm{~mL}, 0.40 \mathrm{M}$ in tetrahydrofuran, 960 $\mu \mathrm{mol}, 3.0$ equiv). This mixture was then chilled to $-78{ }^{\circ} \mathrm{C}$ before a solution of sulfinimine $\left(R_{\mathrm{S}}\right)-$ 4.10 ($200 \mathrm{mg}, 320 \mu \mathrm{~mol}, 1$ equiv) in tetrahydrofuran $(1.0 \mathrm{~mL})$ was added by cannula. After 3 h of stirring at $-78^{\circ} \mathrm{C}$, the mixture was warmed to $-60^{\circ} \mathrm{C}$. The mixture was stirred at $-60^{\circ} \mathrm{C}$ for 24 h , whereupon TLC analysis (60% ethyl acetate-hexanes, UV+PAA) demonstrated complete consumption of starting material. The mixture was diluted with ethyl acetate (10 mL), and excess prenylzinc reagent was quenched with the addition of saturated aqueous ammonium chloride solution (20 mL). The resulting biphasic mixture, once warmed to $23^{\circ} \mathrm{C}$, was separated; and the aqueous layer was extracted with ethyl acetate $(3 \times 20 \mathrm{~mL})$. The combined organic extracts were then dried over sodium sulfate, filtered, and concentrated to provide a solid white residue. This crude product was purified by flash-column chromatography (24 g silica gel; eluting with 10% ethyl acetate-hexanes initially, grading to 50% ethyl acetate-hexanes) to provide sulfinamide product as a white foaming solid ($190 \mathrm{mg}, 85 \%$).
$\mathrm{R}_{f}=0.49(60 \%$ ethyl acetate-hexanes, UV + PAA $)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{dd}, J=8.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.94(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.71$ $(\mathrm{dd}, J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.63-7.60(\mathrm{~m}, 1 \mathrm{H}), 7.50-7.46(\mathrm{~m}, 3 \mathrm{H}), 7.39(\mathrm{tt}, J=7.5,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 7.35-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.18(\mathrm{~m}, 2 \mathrm{H}), 6.17(\mathrm{~d}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.96(\mathrm{~d}, J=5.9 \mathrm{~Hz}$, $1 \mathrm{H}), 5.92(\mathrm{dd}, J=17.4,10.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dd}, J=10.7,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{dd}, J=10.7$,
$3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{dd}, J=12.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{dd}, J=5.8,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~d}, J=5.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.99(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{dd}, J=6.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.18(\mathrm{~s}, 3 \mathrm{H})$, $1.10(\mathrm{~s}, 3 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.4(2 \times \mathrm{C}), 165.0,143.7,133.8,133.4,133.1,130.1,129.9$, 129.7, 129.2, $129.1(2 \times \mathrm{C}), 128.8,128.5,128.2,113.7,84.7,70.1,70.0,68.4,67.5,66.5$, 57.0, 41.2, 26.4, 24.6, 23.2, 13.5.

FTIR (neat, cm^{-1}): 1725 (s), 1451 (m), 1277 (s), 1247 (s), 1065 (s), 908 (m), 705 (s). HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{37} \mathrm{H}_{43} \mathrm{NO}_{8} \mathrm{~S}_{2}, 694.2503$; found 694.2530.

Aminotriol 4.18.

In a $2-5 \mathrm{~mL}$ glass microwave vial, sulfinamide 4.17 ($189 \mathrm{mg}, 272 \mathrm{mmol}$, 1 equiv) was dissolved in ethanol (2.48 mL). Anhydrous hydrazine ($248 \mu \mathrm{~L}$) was then added, and the mixture was stirred at $23^{\circ} \mathrm{C}$. After 4 h , FIA-HRMS analysis of the reaction mixture showed debenzoylation was complete; the mixture was diluted with toluene (2 mL), and volatiles were then removed in vacuo to give a white solid. This residue was re-dissolved in anhydrous methanol ($680 \mu \mathrm{~L}$) before hydrogen chloride solution (4.0 M in 1,4-dioxane, $680 \mu \mathrm{~L}$) was added at $23^{\circ} \mathrm{C}$ (upon acidification, the colorless methanolic solution became an opaque white suspension). After 10 min , removal of the tert-butanesulfinyl group was confirmed by LCMS analysis. The reaction mixture was diluted with toluene (1.5 mL), and the mixture was concentrated in vacuo. The resulting residue was then re-dissolved in methanol $(15 \mathrm{~mL})$, the resulting solution was treated with Amberlyst A26 resin (hydroxide form, 2.0 g), and the mixture was stirred at $23^{\circ} \mathrm{C}$ for 1 h prior to filtration to remove the ion-exchange beads. The filtrate was concentrated to provide crude aminotriol product in freebase form, contaminated with benzoylhydrazine by-product. This mixture was separated by flashcolumn chromatography (12 g silica gel; eluting with 0.2% ammonium hydroxide -2% methanoldichloromethane initially; grading to 1% ammonium hydroxide- 10% methanol-dichloromethane) to provide pure aminotriol product as a white solid ($58.9 \mathrm{mg}, 78 \%$).
$\mathrm{R}_{f}=0.29$ (2% ammonium hydroxide- 20% methanol-dichloromethane, PAA).
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.96(\mathrm{dd}, J=17.4,10.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.08$ $(\mathrm{dd}, J=9.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.05(\operatorname{app~q}, J=1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.08(\mathrm{~m}, 2 \mathrm{H}), 4.05(\mathrm{dd}, J=$ $3.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.48(\mathrm{dd}, J=10.2,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.90(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.14(\mathrm{~s}, 3 \mathrm{H})$, $1.13(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 147.1,112.8,90.7,72.3,72.0,71.9,69.5,60.9,41.3,25.8,23.5$, 14.7.

FTIR (neat, cm^{-1}): 3272 (br), 2966 (m), 1444 (m), 1114 (m), 1070 (s), 1041 (s), 859 (m).
HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{12} \mathrm{H}_{23} \mathrm{NO}_{4} \mathrm{~S}$, 278.1421; found 278.1434.

Cyclopentenyl compound 4.20.

A solution of sulfinimine $\left(R_{\mathrm{S}}\right) \mathbf{- 4 . 1 0}(150 \mathrm{mg}, 240 \mu \mathrm{~mol}, 1$ equiv $)$ in tetrahydrofuran (1.00 $\mu \mathrm{L}$) was chilled to $-78{ }^{\circ} \mathrm{C}$. With constant stirring, a freshly titrated ${ }^{151}$ solution of 2cyclopentenylzinc chloride-lithium chloride complex ${ }^{177}$ (0.35 M in tetrahydrofuran, $2.06 \mathrm{~mL}, 721$ $\mu \mathrm{mol}, 3.0$ equiv) was added dropwise over 3 min . After 10 min of stirring at $-78^{\circ} \mathrm{C}$, TLC analysis (60% ethyl acetate-hexanes, UV) indicated that the starting material was fully consumed, and the reaction was quenched by the addition of saturated aqueous ammonium chloride solution (7 mL). The mixture was warmed to $23^{\circ} \mathrm{C}$ and was extracted with ethyl acetate $(3 \times 10 \mathrm{~mL})$. The combined organic extracts were then washed with saturated aqueous sodium chloride solution (10 mL), and the washed organic solution was dried over sodium sulfate. The dried solution was filtered, and the filtrate was concentrated to give a colorless film. This crude residue was purified by flashcolumn chromatography (12 g silica gel; eluting with 10% ethyl acetate--hexanes initially; grading to 50% ethyl acetate-hexanes) to provide cyclopentenylated product ($165 \mathrm{mg}, 99 \%$) as a brilliant white solid.
$\mathrm{R}_{f}=0.38\left(50 \%\right.$ ethyl acetate-hexanes, UV $+\mathrm{KMnO}_{4}$).
${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.11(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.2$
$\mathrm{Hz}, 2 \mathrm{H}), 7.62(\operatorname{app} \mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.50(\operatorname{app} \mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.40(\operatorname{app} \mathrm{t}, J=7.8 \mathrm{~Hz}$,

[^110]$1 \mathrm{H}), 7.37(\operatorname{app} \mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\operatorname{app} \mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.25(\mathrm{~d}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.93(\mathrm{~d}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.89-5.87(\mathrm{~m}, 1 \mathrm{H}), 5.83-4.77(\mathrm{~m}, 3 \mathrm{H}), 4.78(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H})$, $3.58(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.50(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{br}, 1 \mathrm{H}), 2.38-2.27(\mathrm{~m}, 2 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H})$, 2.03 (app dtd, $J=13.4,9.1,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.64(\operatorname{app} \operatorname{ddt}, J=13.1,9.7,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.14(\mathrm{~s}$, 9H).
${ }^{13}{ }^{13}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.8,165.4,165.3,134.2,133.6,133.5,133.1,130.2,130.0(2 \times$ C), $129.8,129.5,129.3,129.1,128.8,128.7,128.5(2 \times$ C $), 128.2,84.9,71.1,69.8,69.7$, $69.1,60.2,56.8,47.6,32.5,27.1,22.8,13.7$.

FTIR (neat, cm^{-1}): 2957 (w), 1724 (s), 1451 (m), 1278 (s), 1258 (s), 1066 (s), 908 (m), 705 (s). HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{37} \mathrm{H}_{41} \mathrm{NO}_{8} \mathrm{~S}_{2}, 692.2346$; found 692.2371 .

Aminotriol 4.21.

In a $2-5 \mathrm{~mL}$ glass microwave vial, sulfinamide $4.20(165 \mathrm{mg}, 238 \mu \mathrm{~mol}$, 1 equiv) was dissolved in ethanol (200 proof, 2.17 mL). To this solution was then added anhydrous hydrazine $(217 \mu \mathrm{~L})$ at $23^{\circ} \mathrm{C}$; after 2 h of stirring, FIA-HRMS analysis of the reaction mixture indicated that debenzoylation was complete. The mixture was diluted with toluene (2 mL), and the diluted mixture was concentrated in vacuo. The dried residue was then dissolved in anhydrous methanol $(595 \mu \mathrm{~L})$, and the resulting solution was treated with hydrogen chloride solution (4 M in 1,4dioxane) at $23{ }^{\circ} \mathrm{C}$. Upon acidification, a white precipitate formed immediately. Within 5 min , LCMS analysis of the reaction mixture revealed that removal of the tert-butanesulfinyl group was complete. The mixture was diluted with toluene (2 mL), and the diluted mixture was concentrated in vacuo; in order to remove residual hydrogen chloride, the residue was re-concentrated twice more from $25 \% \mathrm{v} / \mathrm{v}$ methanol-toluene. The dried, off-white powder thus obtained was then treated with Amberlyst A26 resin (hydroxide form, 1.00 g) and methanol (10 mL). After stirring this mixture for 1 h , the ion-exchange beads were filtered off, and the filtrate was concentrated to afford crude product in its free-base form, contaminated with benzoylhydrazine by-product. These components were separated by flash-column chromatography (5.0 g silica gel; eluting with 0.5% ammonium hydroxide-5\% methanol-dichloromethane initially, grading to 2% ammonium hydroxide -20% methanol-dichloromethane) to provide pure aminotriol product as a white solid (46 mg, 70\%).
$\mathrm{R}_{f}=0.23$ (2% ammonium hydroxide -20% methanol-dichloromethane, PAA).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.90(\operatorname{app} \mathrm{dq}, J=4.6,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\operatorname{app} \mathrm{dq}, J=6.1,2.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.28(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=10.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=3.4,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 3.96(\mathrm{dd}, J=8.2,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=10.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.17(\operatorname{app} \operatorname{dddq}, J=$ $9.2,7.0,4.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=8.3,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.47-2.39(\mathrm{~m}, 1 \mathrm{H}), 2.36-2.28$ (app dddq, $J=16.4,9.1,6.9,2.4 \mathrm{~Hz}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.06-2.02(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.68(\mathrm{~m}, 1 \mathrm{H})$. ${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 134.6,130.6,89.6,73.1,72.4,70.4,69.7,55.2,48.1,33.3,27.8$, 13.3.

FTIR (neat, cm^{-1}): 3288 (br), 2915 (m), 1422 (w), 1095 (m), 1051 (s).
HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{12} \mathrm{H}_{21} \mathrm{NO}_{4} \mathrm{~S}, 276.1264$; found 276.1263.

Synthetic lincosamide FSA-217009.

In a conical, $0.5-2 \mathrm{~mL}$ microwave vial, aminotriol $4.18(27 \mathrm{mg}, 97 \mu \mathrm{~mol}$, 1 equiv) was dried by azeotropic removal of benzene. The dried material was dissolved in $N, N-$ dimethylformamide ($490 \mu \mathrm{~L}$), and to this solution were added triethylamine ($61 \mu \mathrm{~L}, 440 \mu \mathrm{~mol}, 4.5$ equiv) and N, O-bis(trimethylsilyl)trifluoroacetamide ($39 \mu \mathrm{~L}, 150 \mu \mathrm{~mol}, 1.5$ equiv) at $23{ }^{\circ} \mathrm{C}$. The solution was stirred at $23^{\circ} \mathrm{C}$ for 1 h to ensure complete O-silylation. Trans-4-n-propyl-L-hygric acid hydrochloride (1.88, $26 \mathrm{mg}, 130 \mu \mathrm{~mol}, 1.3$ equiv) and HATU ($56 \mathrm{mg}, 150 \mu \mathrm{~mol}, 1.5$ equiv) were then added sequentially, and the resulting canary-yellow solution was stirred at $23{ }^{\circ} \mathrm{C}$ for 3 h , at which point LCMS analysis demonstrated full consumption of aminotriol starting material and its (oligo)trimethylsilylated congeners. The mixture was diluted with ethyl acetate (25 mL), and the diluted mixture was washed sequentially with saturated aqueous sodium bicarbonate solution $(10 \mathrm{~mL})$ and saturated aqueous sodium chloride solution $(10 \mathrm{~mL})$. The washed organic solution was dried over sodium sulfate, the dried solution was filtered, and the filtrate was concentrated to give a colorless residue. This residue was re-dissolved in $1: 1$ methanol-1N aqueous hydrogen chloride solution; this solution was incubated at $23^{\circ} \mathrm{C}$ for 1 h to ensure complete desilylation of the coupling product mixture, and was then concentrated to afford a dull yellow oily residue. This crude residue was purified by HPLC-MS on a Waters SunFire Prep C_{18} column ($5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid -2.5% acetonitrile-water, grading to 0.1% trifluoroacetic acid- 50% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$;
monitored by UV absorbance at 210 nm and ESI + selected ion monitoring $\left[\mathrm{m} / \mathrm{z}=431\right.$]; $\mathrm{R}_{t}=31.7$ min) to afford reverse-prenyl analog $\mathbf{F S A} \mathbf{- 2 1 7 0 0 9} \cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as a white solid ($19 \mathrm{mg}, 37 \%$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.27(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.99(\mathrm{dd}, J=17.5,10.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}$, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=17.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.97(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.23(\mathrm{~m}, 2 \mathrm{H})$, 4.13 (app t, $J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=10.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.76$ (dd, $J=11.1,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=10.3,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 2.86(\operatorname{app} \mathrm{t}, J=$ $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.18(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.52-1.43(\mathrm{~m}, 2 \mathrm{H})$, $1.40-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.13(\mathrm{~s}, 3 \mathrm{H}), 1.12(\mathrm{~s}, 3 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 168.5,146.8,112.0,91.2,72.3,71.5,71.3,69.8,69.3,62.1,57.6$, $42.0,41.0,38.0,36.4,35.8,25.6,23.9,22.1,15.2,14.2$.

FTIR (neat, cm^{-1}): 3361 (br), 2966 (m), 1671 (s), 1467 (m), 1202 (s), 1181 (s), 1135 (s).
HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$, 431.2574; found 431.2594 .

Synthetic lincosamides FSA-217021a and FSA-217021b.

To begin, a 0.050 M stock solution of ferric oxalate was prepared by stirring ferric oxalate hexahydrate (100 mg) in 4.1 mL water until completely dissolved (ca. 24 h$)$. An aliquot of this solution ($920 \mu \mathrm{~L}, 46 \mu \mathrm{~mol}, 5.0$ equiv) was then transferred to an $8-\mathrm{mL}$ glass vial fitted with a stir bar and a silicone septum screw-cap, and this solution was chilled to $0^{\circ} \mathrm{C}$ before nitrogen gas was bubbled through it for 5 min to remove any residual dioxygen. An aqueous solution of sodium azide ($73 \mu \mathrm{~L}, 1.0 \mathrm{M}, 73 \mu \mathrm{~mol}, 8.0$ equiv) was then added, causing the lemon-lime solution to turn a deep sunset orange. Ethanol (190 proof, $460 \mu \mathrm{~L}$) was added next to the ice-cold solution, followed by an ethanolic solution of FSA-217009 $\cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(5.0 \mathrm{mg}, 9.2 \mu \mathrm{~mol}, 1$ equiv). Finally, under a stream of nitrogen gas (to help exclude oxygen) sodium borohydride ($2.8 \mathrm{mg}, 73 \mu \mathrm{~mol}$, 8.0 equiv) was added in two portions over 5 min with rapid stirring (CAUTION: Addition of sodium borohydride to water causes rapid hydrogen gas evolution - the vial should be ventilated to avoid overpressurization). After 20 min of stirring at $0{ }^{\circ} \mathrm{C}$, LCMS analysis showed complete consumption of starting material. The reaction mixture was quenched with the addition of aqueous ammonia solution ($28 \% \mathrm{w} / \mathrm{w}, 400 \mu \mathrm{~L}$), and the mixture was extracted exhaustively with $10 \% \mathrm{v} / \mathrm{v}$ methanol-dichloromethane $(5 \times 10 \mathrm{~mL})$. The combined extracts were dried over sodium sulfate, filtered, and concentrated to afford a colorless residue that was subjected to preparative HPLCMS on a Waters SunFire Prep C_{18} column $(5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid -15% acetonitrile-water, grading to 0.1% trifluoroacetic acid- 50% acetonitrile-water over 40
min, with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 210 nm and ESI + selected ion monitoring $[m / z=474] ; \mathrm{dr}=76: 24 ; \mathbf{F S A}-217021 \mathbf{a} \mathrm{R}_{t}=26.3 \mathrm{~min} ; \mathbf{F S A - 2 1 7 0 2 1 b} \mathrm{R}_{t}=26.7$ $\mathrm{min})$ to provide $\mathbf{F S A}-\mathbf{2 1 7 0 2 1 a} \cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(1.4 \mathrm{mg}, 29 \%)$ and $\mathbf{F S A}-\mathbf{2 1 7 0 2 1 b} \cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(3.0 \mathrm{mg}$, $60 \%)$ as white solids.

FSA-217021a $\cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.24(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=8.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=9.9,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=5.6,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{q}, J=6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.85(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=11.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.49(\mathrm{dd}, J=10.3,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 2.88(\operatorname{appt}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.35(\mathrm{~m}, 1 \mathrm{H}), 2.24-2.20(\mathrm{~m}, 2 \mathrm{H})$, $2.20(\mathrm{~s}, 3 \mathrm{H}), 1.52-1.48(\mathrm{~m}, 2 \mathrm{H}), 1.43-1.31(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~s}, 3 \mathrm{H})$, $0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 3 \mathrm{H})$.

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}, 474.2745$; found 474.2763.

FSA-2017021b $\cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}:$

${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.24(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{~d}, J=9.4$ $\mathrm{Hz}, 1 \mathrm{H}), 4.14(\operatorname{app} \mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=10.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.91(\mathrm{q}, J=6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.80(\mathrm{~d}, J=2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=11.1,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.46(\mathrm{dd}, J=10.4,3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 2.88(\operatorname{appt}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.40-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.25-2.22(\mathrm{~m}, 5 \mathrm{H})$, $1.52-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.33(\mathrm{~m}, 2 \mathrm{H}), 1.31(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.02(\mathrm{~s}, 3 \mathrm{H}), 0.97-0.94$ ($\mathrm{m}, 6 \mathrm{H}$).

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{~N}_{5} \mathrm{O}_{5} \mathrm{~S}, 474.2745$; found 474.2762.

Synthetic lincosamide FSA-217003.

In a conical, $0.5-2 \mathrm{~mL}$ microwave vial, aminotriol 4.21 ($20 \mathrm{mg}, 73 \mu \mathrm{~mol}$, 1 equiv) was dried by azeotropic removal of benzene. The dried material was dissolved in $N, N-$ dimethylformamide ($360 \mu \mathrm{~L}$), and to this solution were added triethylamine ($46 \mu \mathrm{~L}, 330 \mu \mathrm{~mol}, 4.5$ equiv) and N, O-bis(trimethylsilyl)trifluoroacetamide ($29 \mu \mathrm{~L}, 110 \mu \mathrm{~mol}, 1.5$ equiv) at $23{ }^{\circ} \mathrm{C}$. The solution was stirred at $23{ }^{\circ} \mathrm{C}$ for 1 h to ensure complete O-silylation. Trans-4-n-propyl-L-hygric acid hydrochloride ($\mathbf{1 . 8 8}, 18 \mathrm{mg}, 87 \mu \mathrm{~mol}, 1.2$ equiv) and $\mathrm{HATU}(36 \mathrm{mg}, 94 \mu \mathrm{~mol}, 1.3$ equiv) were then added sequentially, and the resulting canary-yellow solution was stirred at $23{ }^{\circ} \mathrm{C}$ for 3 h , at which point LCMS analysis demonstrated full consumption of aminotriol starting material and its (oligo)trimethylsilylated congeners. The mixture was diluted with ethyl acetate (25 mL), and the diluted mixture was washed with saturated aqueous sodium chloride solution-saturated aqueous sodium bicarbonate solution $(1: 1,10 \mathrm{~mL})$. The washed organic solution was dried over sodium sulfate, the dried solution was filtered, and the filtrate was concentrated to give a colorless residue. This residue was re-dissolved in 1:1 methanol-1N aqueous hydrogen chloride solution (5 mL); this solution was incubated at $23^{\circ} \mathrm{C}$ for 1 h to ensure complete desilylation of the coupling product mixture, and was then concentrated to afford a dull yellow oily residue. This residue was then re-dissolved in methanol $(5 \mathrm{~mL})$ and was treated with Amberlyst A26 resin (500 mg , hydroxide form). The heterogeneous mixture was stirred at $23^{\circ} \mathrm{C}$ for 30 minutes, at which point the ion-exchange beads were removed by filtration, and the filtrate was concentrated to afford
crude product in its free-base form as a colorless oil. This residue was purified by flash-column chromatography (3.0 g silica gel; eluting with 0.1% ammonium hydroxide -1% methanoldichloromethane initially; grading to 1% ammonium hydroxide- 10% methanol-dichloromethane) to obtain FSA-217003 as an off-white foaming solid ($27 \mathrm{mg}, 85 \%$).

The crude residue obtained after desilylation with methanolic hydrogen chloride could also be purified by HPLC-MS on a Waters SunFire Prep C ${ }_{18}$ column ($5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid -2.5% acetonitrile-water, grading to 0.1% trifluoroacetic acid -40% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 210 nm and ESI + selected ion monitoring $\left.[\mathrm{m} / \mathrm{z}=429] ; \mathrm{R}_{t}=35.7 \mathrm{~min}\right)$ to afford FSA-217003• $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as a white solid. It was in this form that the material was evaluated in in vitro susceptibility assays.
$\mathrm{R}_{f}=0.34$ (free base, 1% ammonium hydroxide -9% methanol-dichloromethane, PAA).
${ }^{1} \mathrm{H}$ NMR (hydrotrifluoroacetate salt, $\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.95(\mathrm{dd}, J=5.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.71$ (dd, $J=5.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.30(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{dd}, J=10.0,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.14$ (m, 2H), $4.11(\mathrm{dd}, J=10.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{~d}, J=3.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=11.1,6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=10.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.27(\mathrm{~m}, 1 \mathrm{H}), 2.93(\mathrm{~s}, 3 \mathrm{H}), 2.87(\operatorname{app} \mathrm{t}, J=$ $11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.36-2.28(\mathrm{~m}, 3 \mathrm{H}), 2.21-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.08-2.02(\mathrm{~m}, 1 \mathrm{H})$, $1.59-1.32(\mathrm{~m}, 5 \mathrm{H}), 0.95(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (hydrotrifluoroacetate salt, $126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 169.4,135.4,129.8,90.1,72.3,71.4$, $70.1,69.6(2 \times \mathrm{C}), 62.2,53.2,47.3,41.1,38.0,36.8,35.7,33.4,27.4,22.1,14.2,13.6$.

FTIR (neat, cm^{-1}): 3277 (br), 2928 (m), 1666 (s$), 1555$ (m), 1199 (s), 1176 (s), 1130 (s$), 799$ (s), 719 (s).

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{21} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{O} \mathrm{S}$, 429.2422; found 429.2418 .

Synthetic lincosamide FSA-217045b.

To begin, a 0.050 M stock solution of ferric oxalate was prepared by stirring ferric oxalate hexahydrate (200 mg) in 8.2 mL water until completely dissolved (ca. 24 h). An aliquot of this solution ($4.20 \mathrm{~mL}, 0.210 \mathrm{mmol}, 5.00$ equiv) was transferred to a $10-20 \mathrm{~mL}$ glass microwave vial fitted with a stir bar and a rubber septum, and this solution was chilled to $0^{\circ} \mathrm{C}$ before nitrogen gas was bubbled through it for 5 min to remove any residual dioxygen. An aqueous solution of sodium azide ($1.00 \mathrm{M}, 336 \mu \mathrm{~L}, 0.336 \mathrm{mmol}, 8.00$ equiv) was then added, causing the lemon-lime solution to turn a deep sunset orange. Ethanol (190 proof, 2.10 mL) was added next to the ice-cold solution, followed by an ethanolic solution of FSA-217003 $\cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(18.0 \mathrm{mg}, 42.0 \mu \mathrm{~mol}, 1$ equiv $)$. Finally, under a stream of nitrogen gas (to help exclude oxygen), sodium borohydride (12.7 mg , $0.336 \mathrm{mmol}, 8.00$ equiv) was added in two portions over 5 min with rapid stirring (CAUTION: Addition of sodium borohydride to water causes rapid hydrogen gas evolution - the vial should be ventilated to avoid overpressurization). After 20 min of stirring at $0{ }^{\circ} \mathrm{C}, \mathrm{LCMS}$ analysis of the reaction mixture showed that no starting material remained. The reaction was quenched with the addition of aqueous ammonia solution ($28 \mathrm{w} / \mathrm{w}, 2.0 \mathrm{~mL}$), and the mixture was extracted exhaustively with $10 \% \mathrm{v} / \mathrm{v}$ methanol-dichloromethane $(4 \times 10 \mathrm{~mL})$. The organic extracts were dried over sodium sulfate, filtered, and concentrated to provide a colorless residue that was then re-dissolved in $50 \% \mathrm{v} / \mathrm{v}$ ethanol-water $(840 \mu \mathrm{~L})$ and transferred to a 4-mL glass vial fitted with a stir bar and silicone septum screw cap. Acetic acid ($60.1 \mu \mathrm{~L}, 1.05 \mathrm{mmol}, 25.0$ equiv) and
platinum(IV) oxide ($30 \mathrm{mg}, 132 \mu \mathrm{~mol}, 3.15$ equiv) were added to this solution, the vial was sealed, and the mixture was stirred rapidly under 1 atm of hydrogen gas at $23^{\circ} \mathrm{C}$. After 2.5 h , LCMS analysis indicated that no azide intermediate remained, and activated charcoal (300 mg) was added in order to adsorb platinum black particles. The mixture was stirred at $23^{\circ} \mathrm{C}$ for 5 min to ensure complete adsorption before the black suspension was filtered through a Celite pad. The filter cake was rinsed with methanol $(2 \times 2 \mathrm{~mL})$, and the filtrate was concentrated to give a colorless residue that was subjected to preparative HPLC-MS on a Waters SunFire Prep C ${ }_{18}$ column ($5 \mu \mathrm{~m}, 250 \times$ 19 mm ; eluting with 0.1% trifluoroacetic acid -2.5% acetonitrile-water initially, grading to 0.1% trifluoroacetic acid-35 acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV-210 nm and ESI + selected ion monitoring $[m / z=223.5] ; \mathrm{dr}=10: 90$; major diastereomer $\mathrm{R}_{t}=20.8 \mathrm{~min}$) to provide the major diastereomer $\mathbf{F S A} \mathbf{- 2 1 7 0 4 5 b} \cdot 2 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as a white solid ($2.49 \mathrm{mg}, 9 \%$).
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.33(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\operatorname{app} \mathrm{t}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.31(\mathrm{~d}, J=$ $5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=9.9,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dd}, J=10.1,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{~d}, J=3.1$ $\mathrm{Hz}, 1 \mathrm{H}), 3.76(\mathrm{dd}, J=11.2,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.70(\mathrm{~m}, 1 \mathrm{H}), 3.53(\mathrm{dd}, J=10.1,3.1 \mathrm{~Hz}$, $1 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 2.91(\operatorname{app} \mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.65(\operatorname{app~dq}, J=12.9,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.39$ (app hept, $J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.23(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.17(\mathrm{~s}, 3 \mathrm{H}), 2.11-2.07$ $(\mathrm{m}, 1 \mathrm{H}), 1.99-1.94(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.69(\mathrm{~m}, 3 \mathrm{H}), 1.53-1.45(\mathrm{~m}, 3 \mathrm{H}), 1.37(\mathrm{tq}, J=13.5,6.1$ $\mathrm{Hz}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{21} \mathrm{H}_{39} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$, 446.2683; found 446.2693.

Synthetic lincosamides FSA-217039a and FSA-217039b.

In a 1-mL glass vial fitted with a magnetic stir bar and PTFE-lined screw cap, cyclopentene analog FSA-217003 $\cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(5.0 \mathrm{mg}, 9.2 \mu \mathrm{~mol}$, 1 equiv) was dissolved in $50 \% \mathrm{v} / \mathrm{v}$ tert-butanol-water. To this solution were then added AD-mix- $\alpha(15 \mathrm{mg})$ and AD-mix- $\beta(15 \mathrm{mg})$ at 23 ${ }^{\circ} \mathrm{C}$, and the vial was sealed. After 20 h of stirring at $23^{\circ} \mathrm{C}$, LCMS analysis indicated that the reaction was complete ($\geq 60 \%$ conversion of starting material). The reaction mixture was diluted with methanol (2 mL), causing a yellow precipitate to form, and this suspension was passed through a $0.2-\mu \mathrm{m}$ PTFE filter. The filtrate was concentrated and the crude residue was purified by preparative HPLC on a Waters SunFire Prep C_{18} column $(5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid- 2.5% acetonitrile-water initially, grading to 0.1% trifluoroacetic acid- 40% acetonitrile-water over 40 min ; monitored by UV-210 nm and ESI+ selected ion monitoring [m / z $=463] ; \mathrm{dr}=42: 58$; FSA-217039a $\mathrm{R}_{t}=18.2 \mathrm{~min}, \mathbf{F S A - 2 1 7 0 3 9 b} \mathrm{R}_{t}=19.9 \mathrm{~min}$) to provide diastereomeric cyclopentanediol analogs FSA-217039a $\cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(1.6 \mathrm{mg}, 30 \%)$ and FSA217039b $\cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(2.1 \mathrm{mg}, 39 \%)$ as white solids.

FSA-217039a $\cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}:$

${ }^{1} \mathrm{H}$ NMR $\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.26(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\operatorname{app} \mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.23(\mathrm{dd}, J$

$$
=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dd}, J=10.1,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=10.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.95
$$

(dd, $J=3.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\operatorname{app} \mathrm{q}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=7.6,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.78-$ $3.74(\mathrm{~m}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=10.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 2.86(\operatorname{app} \mathrm{t}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$, $2.41-2.34(\mathrm{~m}, 2 \mathrm{H} 0,2.22-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 2.01-1.96(\mathrm{~m}, 1 \mathrm{H}), 1.98(\mathrm{app} \mathrm{dtd}, J=$ $14.3,9.0,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.84(\operatorname{app} \operatorname{ddt}, J=14.4,10.4,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.64$ (dddd, $J=13.3,8.8$, $7.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.49-1.46(\mathrm{~m}, 2 \mathrm{H}), 1.40-1.34(\mathrm{~m}, 2 \mathrm{H}), 0.95(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc' d for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}, 463.2472$; found 463.2490 .

FSA-217039b $\cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$:

${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 5.27(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.25(\mathrm{~m}, 3 \mathrm{H}), 4.10(\mathrm{dd}, J=10.2$, $5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-4.01(\mathrm{~m}, 2 \mathrm{H}), 3.89(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{dd}, J=11.2,6.9 \mathrm{~Hz}, 1 \mathrm{H})$, $3.55(\mathrm{dd}, J=10.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 2.87(\mathrm{app} \mathrm{t}, J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.38-2.22(\mathrm{~m}$, $4 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 1.94-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.71-1.62(\mathrm{~m}, 3 \mathrm{H}), 1.51-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.41-1.34$ (m, 2H), $0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{21} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}, 463.2472$; found 463.2486 .

Aldehyde S4.4.

To a solution of alcohol $4.22(230 \mathrm{mg}, 734 \mu \mathrm{~mol}, 1 \text { equiv })^{68}$ in dichloromethane (7.34 mL) was added Dess-Martin periodinane ($374 \mathrm{mg}, 881 \mu \mathrm{~mol}, 1.20$ equiv) in one portion at $23{ }^{\circ} \mathrm{C}$. The resulting white suspension was stirred for 2 h , at which point TLC analysis (80% ethyl acetatehexanes, PAA) showed that no starting material remained. The mixture was treated with saturated aqueous sodium bicarbonate solution (5.0 mL), and the resulting biphasic mixture was stirred rapidly (1000 rpm) for 2 min before aqueous sodium thiosulfate solution $(50 \% \mathrm{w} / \mathrm{w}, 5.0 \mathrm{~mL})$ was added as well. After 15 min , stirring was discontinued, and the layers were separated. The aqueous phase was extracted with fresh dichloromethane $(2 \times 10 \mathrm{~mL})$, and the combined organic extracts were dried over sodium sulfate. The dried solution was filtered, and the filtrate was concentrated to provide the product as a colorless oil ($198 \mathrm{mg}, 87 \%$).
$\mathrm{R}_{f}=0.58\left(80 \%\right.$ ethyl acetate-hexanes, $\left.\mathrm{KMnO}_{4}\right)$.
${ }^{1} \mathrm{H}$ NMR (60:40 mixture of rotamers, asterisk [*] denotes minor rotameric peaks that could be resolved, $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.61(\operatorname{app} \mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}), * 9.60(\operatorname{app} \mathrm{t}, J=1.7 \mathrm{~Hz}, 1 \mathrm{H})$, $5.30(\operatorname{app} \mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), * 5.27(\mathrm{app} \mathrm{t}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.56(\mathrm{dd}, J=10.5,4.3 \mathrm{~Hz}, 1 \mathrm{H})$, * $4.37(\mathrm{dd}, J=9.7,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.73-3.61(\mathrm{~m}, 2 \mathrm{H}), 3.57(\mathrm{~s}, 3 \mathrm{H}), * 3.56(\mathrm{~s}, 3 \mathrm{H}), 3.48$ (ddd, J $=14.6,8.8,5.2 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{*} 2.56-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.33(\mathrm{~m}, 3 \mathrm{H}), 2.28-2.09(\mathrm{~m}, 4 \mathrm{H}), 1.34$ (s, 9H), ${ }^{*} 1.28(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (60:40 mixture of rotamers, asterisk [*] denotes minor rotameric peaks that could be resolved, $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) δ 201.7, 201.6,* 172.9, 172.6,* $155.4, * 154.8,140.8,140.4$,* $119.4,{ }^{*} 119.0,80.0,79.9,{ }^{*} 60.1,58.8, * 51.8,{ }^{*} 51.7,42.0, * 41.9,40.6, * 39.7,34.4,34.3,{ }^{*}$ 31.0,*30.9, 28.2,*28.1, 27.0,*26.9.

IR (neat, cm^{-1}): 2974 (w), 1747 (m), 1724 (m), 1686 (s), 1400 (s), 1160 (s).
HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{NO}_{5}, 312.1805$; found 312.1801.

Trifluoroethylamine derivative $\mathbf{4 . 2 3}$.

In a $100-\mathrm{mL}$ round-bottomed flask, aldehyde $\mathbf{S 4 . 4}(198 \mathrm{mg}, 636 \mu \mathrm{~mol}$, 1 equiv) was dried by azeotropic removal of benzene. To the dried starting material were then added anhydrous 1,2dichloroethane (12.7 mL); powdered, activated $4 \AA$ molecular sieves (200 mg); and 2,2,2-trifluoroethan-1-amine ($100 \mu \mathrm{~L}, 1.27 \mathrm{mmol}, 2.00$ equiv). The resulting suspension was stirred at $23{ }^{\circ} \mathrm{C}$ for 10 min before sodium triacetoxyborohydride ($80.0 \mathrm{mg}, 377 \mu \mathrm{~mol}, 0.593$ equiv) was added. After stirring at $23^{\circ} \mathrm{C}$ for 24 h , acetic acid ($182 \mu \mathrm{~L}, 3.18 \mathrm{mmol}, 5.00$ equiv) and additional sodium triacetoxyborohydride ($190 \mathrm{mg}, 896 \mu \mathrm{~mol}, 1.41$ equiv) were added. After 4 hours, TLC analysis (80% ethyl acetate-hexanes, PAA) showed that no starting material remained. Excess reductant was quenched with the dropwise addition of saturated aqueous sodium bicarbonate solution (10 mL). The resulting biphasic mixture was stirred for 10 min at $23^{\circ} \mathrm{C}$ before stirring was discontinued and the layers were separated. The aqueous phase was extracted with dichloromethane $(3 \times 7 \mathrm{~mL})$, the combined organic extracts were dried over sodium sulfate, the dried solution was filtered, and the filtrate was concentrated to provide analytically pure product as a colorless oil ($245 \mathrm{mg}, 98 \%$).
$\mathrm{R}_{f}=0.53\left(60 \%\right.$ ethyl acetate-hexanes, $\left.\mathrm{KMnO}_{4}\right)$.
${ }^{1} \mathrm{H}$ NMR (60:40 mixture of rotamers, asterisk [*] denotes minor rotameric peaks that could be resolved, $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.39(\operatorname{appt} \mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{*} 5.35(\operatorname{app} \mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H})$, $4.69(\mathrm{dd}, J=10.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{*} 4.49(\mathrm{dd}, J=9.9,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.85-3.71(\mathrm{~m}, 2 \mathrm{H}), 3.68$
(s, 3H), 3.57 (ddd, $J=14.6,8.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{*} 3.14(\mathrm{q}, J=9.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.66-2.41(\mathrm{~m}, 4 \mathrm{H})$, 2.36-2.25 (m, 2H), $1.95(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.57-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 9 \mathrm{H}),{ }^{*} 1.39(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.3,173.0, * 155.7, * 155.1,142.4,141.9, * 125.7(\mathrm{q}, J=279.9$ $\mathrm{Hz}), 119.1,{ }^{*} 118.6,80.3,80.2, * 60.6,59.1,{ }^{*} 52.1, * 52.0,50.6(\mathrm{q}, J=31.0 \mathrm{~Hz}), 49.0,{ }^{*} 49.0$, $41.0, * 40.2,36.6, * 36.5,34.4,34.3, * 28.5, *, 28.5,28.4,27.5,27.3$.
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (471 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta-71.74(\mathrm{~s}, 3 \mathrm{~F})$.
IR (neat, cm^{-1}): 2976 (w), 1747 (m), 1690 (s), 1402 (m), 1269 (m), 1158 (s).
HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{4}, 395.2152$; found 395.2145.

Azepine S4.5.

In a $20-\mathrm{mL}$ glass vial, amine $4.23(245 \mathrm{mg}, 621 \mu \mathrm{~mol}$, 1 equiv) was dissolved in dichloromethane (2.07 mL). Di-tert-butyl dicarbonate ($159 \mu \mathrm{~L}, 683 \mu \mathrm{~mol}, 1.10$ equiv) and triethylamine ($113 \mu \mathrm{~L}, 807 \mu \mathrm{~mol}, 1.30$ equiv) were then added sequentially. The vial was sealed, and the mixture was stirred at $23^{\circ} \mathrm{C}$ for 18 h , at which point LCMS analysis showed that no starting material remained. Excess acylation reagent was quenched with the dropwise addition of $50 \% \mathrm{v} / \mathrm{v}$ saturated aqueous ammonium chloride solution-water $(4.0 \mathrm{~mL})$. The resulting mixture was stirred at $23^{\circ} \mathrm{C}$ for 10 min before the layers were separated. The aqueous layer was extracted with ethyl acetate $(3 \times 4 \mathrm{~mL})$, and the organic solutions were combined. The resulting product solution was then washed sequentially with $5-\mathrm{mL}$ portions of water and saturated aqueous sodium chloride solution. The washed organic solution was dried over sodium sulfate, filtered, and concentrated. The residue thus obtained was purified by flash-column chromatography (12 g silica gel, eluting with hexanes initially, grading to 20% ethyl acetate-hexanes) to provide the product as a colorless oil ($183 \mathrm{mg}, 60 \%$).
$\mathrm{R}_{f}=0.56\left(40 \%\right.$ ethyl acetate-hexanes, $\left.\mathrm{KMnO}_{4}\right)$.
${ }^{1} \mathrm{H}$ NMR (60:40 mixture of azepane N-Boc rotamers, asterisk [${ }^{*}$] denotes minor rotameric peaks that could be resolved, $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.34(\operatorname{app} \mathrm{t}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{*} 5.31($ app $\mathrm{t}, J=$ $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{dd}, J=10.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{*} 4.44(\mathrm{dd}, J=9.8,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.80-3.68(\mathrm{~m}$, $4 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 3.53(\mathrm{app} \mathrm{dt}, J=14.6,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, * 3.17 (br app s, 2H), 2.62-2.55 (m,
$1 \mathrm{H}), 2.43-2.37(\mathrm{~m}, 1 \mathrm{~h}), 2.32-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.84(\mathrm{t}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.60-1.52(\mathrm{~m}, 2 \mathrm{H})$, $1.40(\mathrm{~s}, 18 \mathrm{H}), 1.34(\mathrm{~s}, 18 \mathrm{H})$.*
${ }^{13} \mathrm{C}$ NMR (60:40 mixture of azepane N-Boc rotamers, asterisk [*] denotes minor rotameric peaks that could be resolved, $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 173.1,172.8, * 155.6,{ }^{*} 155.0,142.0,141.6,{ }^{*}$ $124.7(\mathrm{q}, J=283.4 \mathrm{~Hz}), 119.2,{ }^{*} 118.6,80.8,80.1,80.0, * 60.4,59.0, * 51.9, * 51.8,48.1$ (br), 40.9,* 40.1, 36.3, 36.2,* 34.4, 34.3,*28.4,* 28.3, 28.2 (br), 27.4,* 27.3, 26.2 (br).
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-70.80(\mathrm{~s}, 3 \mathrm{~F})$.
IR (neat, cm^{-1}): 2977 (w), 1691 (m), 1410 (m), 1367 (m), 1147 (s), 730 (m).
HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{23} \mathrm{H}_{37} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}, 495.2676$; found 495.2666.

Carboxylic acid 4.24.

At $23{ }^{\circ} \mathrm{C}$, a solution of methyl ester $\mathbf{S} 4.5(183 \mathrm{mg}, 370 \mu \mathrm{~mol}, 1$ equiv) in $50 \% \mathrm{v} / \mathrm{v}$ methanol-tetrahydrofuran $(1.85 \mathrm{~mL})$ was treated with aqueous lithium hydroxide solution (1.00 M, $555 \mu \mathrm{~L}, 555 \mu \mathrm{~mol}, 1.50$ equiv). After 3 h , TLC analysis (40% ethyl acetate-hexanes, KMnO_{4}) showed that no starting material remained, and the mixture was transferred to a separatory funnel containing distilled water $(15 \mathrm{~mL})$. Saturated aqueous sodium chloride solution $(5 \mathrm{~mL})$ was then added in order to prevent emulsification, and the aqueous product mixture was washed with 50% v / v ethyl acetate-hexanes. The washed aqueous solution was then transferred to a clean roundbottomed flask, where it was chilled to $0^{\circ} \mathrm{C}$ with stirring. Once cooled, the mixture was acidified with the dropwise addition of aqueous hydrogen chloride solution (1.0 N) until $\mathrm{pH}=2$ was achieved. The acidified aqueous mixture was then extracted with ethyl acetate ($4 \times 15 \mathrm{~mL}$), and the combined extracts were dried over sodium sulfate. The dried organic solution was filtered, and the filtrate was concentrated to give analytically pure product as a foaming white solid (144 mg, 81\%).
${ }^{1} \mathrm{H}$ NMR (60:40 mixture of azepane N-Boc rotamers, asterisk [*] denotes minor rotameric peaks that could be resolved, $\left.500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 11.49(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 5.39(\operatorname{app~t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H})$,* $5.36(\operatorname{app} \mathrm{t}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{dd}, J=11.0,4.3 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{*} 4.49(\mathrm{dd}, J=9.7,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.85-3.70(\mathrm{~m}, 4 \mathrm{H}), 3.56(\mathrm{app} \mathrm{dt}, J=14.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{*} 3.29-3.13(\mathrm{~m}, 2 \mathrm{H}), 2.72-$
$2.62(\mathrm{~m}, 1 \mathrm{H}), 2.54-2.42(\mathrm{~m}, 1 \mathrm{H}), 2.39-2.20(\mathrm{~m}, 2 \mathrm{H}), 1.88(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 1.59(\mathrm{p}, J=$ $8.1,7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.43(\mathrm{~s}, 18 \mathrm{H}), 1.38(\mathrm{~s}, 18 \mathrm{H})$.*
${ }^{13} \mathrm{C}$ NMR (complex rotameric mixture, asterisk [*] denotes minor rotameric peaks that could be resolved, $126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 178.3,{ }^{*} 177.9,177.1,177.0,{ }^{*} 156.2,155.6, * 144.1,154.8,{ }^{*}$ $141.9,124.8(\mathrm{q}, J=279.9 \mathrm{~Hz}),{ }^{*} 124.6(\mathrm{q}, J=281.9 \mathrm{~Hz}), 119.0,118.7,118.5, * 81.1, * 80.7$, $60.3,59.2, * 48.2$ (br), 47.6, 40.9,* 40.1, 36.3, 36.1,*34.4, 34.3,*28.5,*28.3, 28.2,*27.1, $27.0, * 26.5, * 26.2,26.0, * 25.7$.
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(376 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta-70.70(\mathrm{~s}, 3 \mathrm{~F})$.
HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{22} \mathrm{H}_{35} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{6}, 479.2374$; found 479.2374.

$\left(S_{\mathrm{S}}\right)-\mathbf{4 . 1 0}$

S4.6

Dehydropipiridine S4.6.

In a $25-\mathrm{mL}$ round-bottomed flask fitted with a stir bar, vinyl stannane $\mathbf{4 . 2 5}(183 \mathrm{mg}, 641$ $\mu \mathrm{mol}, 4.00$ equiv) was dissolved in tetrahydrofuran $(3.00 \mathrm{~mL})$. The resulting solution was chilled to $-78{ }^{\circ} \mathrm{C}$ before n-butyllithium solution (2.40 M in hexanes, $267 \mu \mathrm{~L}, 641 \mu \mathrm{~mol}, 4.00$ equiv) was added dropwise. The resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min before $N, N, N^{\prime}, N^{\prime}$ tetramethylethylenediamine ($242 \mu \mathrm{~L}, 1.60 \mathrm{mmol}, 10.0$ equiv) was added. After stirring the reaction mixture for an additional 30 min at $-78^{\circ} \mathrm{C}$, a solution of sulfinimine $\left(S_{\mathrm{S}}\right) \mathbf{- 4 . 1 0}(100 \mathrm{mg}, 0.160$ mmol, 1 equiv) in tetrahydrofuran ($500 \mu \mathrm{~L}$) was added dropwise by syringe. Within 5 min , TLC analysis (60% ethyl acetate-hexanes, UV+CAM) indicated that no sulfinimine starting material remained, and the mixture was neutralized with the addition of acetic acid ($184 \mu \mathrm{~L}, 3.21 \mathrm{mmol}$, 20.0 equiv). The mixture was warmed to ambient temperature before it was transferred to a separatory funnel containing ethyl acetate (10 mL) and saturated aqueous sodium bicarbonate solution (20 mL). The layers were shaken, then separated; the aqueous layer was extracted with $10 \% \mathrm{v} / \mathrm{v}$ methanol-dichloromethane $(5 \times 10 \mathrm{~mL})$. The combined organic extracts were dried over sodium sulfate, filtered and concentrated to provide a crude mixture of (oligo)debenzoylated dehydropipiridine adducts.

This crude residue was dissolved in anhydrous methanol (2.91 mL), and the resulting solution was treated with methanolic sodium methoxide solution $(0.5 \mathrm{M}, 290 \mu \mathrm{~L})$ at $23{ }^{\circ} \mathrm{C}$. After 40 min of stirring, LCMS analysis indicated that debenzoylation was complete. The mixture was neutralized with the addition of acetic acid $(\sim 18 \mu \mathrm{~L})$ until $\mathrm{pH}=7$ was achieved. The mixture was
then concentrated to dryness to provide a mahogany-colored, solid residue. LCMS analysis of this crude residue revealed that a $72: 28$ diastereomeric mixture of dehydropipiridine adducts was present. Purification by flash-column chromatography (6.0 g silica gel, eluting with dichloromethane initially, grading to 0.85% ammonium hydroxide- 8.5% methanoldichloromethane) provided the product as a light brown solid ($12.3 \mathrm{mg}, 18 \%$).
$\mathrm{R}_{f}=0.31$ (2% ammonium hydroxide- 20% methanol-dichloromethane, PAA).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 5.95-5.93(\mathrm{~m}, 1 \mathrm{H}), 5.92(\mathrm{ddt}, J=17.0,10.2,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}$, $J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\operatorname{app} \mathrm{dq}, J=17.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.22(\mathrm{ddd}, J=10.2,2.0,1.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.23(\mathrm{~d}, J=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{~d}, J=9.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{dd}, J=10.1,5.6 \mathrm{HZ}, 1 \mathrm{H}), 3.85$ (dd, $J=3.3,1.1 \mathrm{~Hz}, 1 \mathrm{H}$), 3.57 (dd, $J=10.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.17-3.12(\mathrm{~m}, 3 \mathrm{H}), 3.02($ app dq, $J=17.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\operatorname{app~dt}, J=10.8,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.51(\mathrm{ddd}, J=11.8,7.8,4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.26(\mathrm{br} \mathrm{d}, J=17.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.14-2.11(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 135.2,132.6,129.0,119.5,89.2,72.2,72.0,70.1,69.5,62.0,60.1$, 56.4, 53.3, 50.3, 25.4, 22.9, 13.1.

IR (neat, cm^{-1}): 3377 (br), 2917 (m), 1363 (w), 1052 (s), 997 (m).
HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}_{2}$, 435.1982; found 435.1976.

Diaminotriol (6R)-4.26.

To a solution of $\mathbf{S 4 . 6}(12 \mathrm{mg}, 28 \mu \mathrm{~mol}, 1$ equiv) in methanol $(140 \mu \mathrm{~L})$ was added a solution of hydrogen chloride in 1,4-dioxane ($4 \mathrm{M}, 140 \mu \mathrm{~L}$) at $23^{\circ} \mathrm{C}$. After 25 min , LCMS analysis indicated that no starting material remained. Consequently, the mixture was diluted with toluene (1 mL), and the diluted solution was concentrated to dryness in vacuo. The residue was re-dissolved in methanol (2 mL), and Amberlyst A26 ion-exchange resin (hydroxide form, 500 mg) was added. The resulting suspension was stirred at $23{ }^{\circ} \mathrm{C}$ for 30 min before the ion-exchange beads were removed by filtration. The filtrate was concentrated to provide crude product in its free-base form; this material was purified by flash-column chromatography (4.0 g silica gel, eluting with 0.2% ammonium hydroxide- 2% methanol-dichloromethane initially, grading to 2% ammonium hydroxide- 20% methanol-dichloromethane) to provide the product as a sand-brown solid (3.9 mg , 43\%).
$\mathrm{R}_{f}=0.30$ (3\% ammonium hydroxide- 30% methanol-dichloromethane, PAA).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 5.91(\mathrm{ddt}, J=17.0,10.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.79(\mathrm{td}, J=3.4,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 5.31(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{app} \mathrm{dq}, J=17.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{ddt}, J=10.2,1.9$,
$1.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=10.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=7.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, 3.3$,
$1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.55(\mathrm{dd}, J=10.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.12(\mathrm{dt}, J=6.8,1.3$
$\mathrm{Hz}, 1 \mathrm{H}), 3.07(\operatorname{app~dq}, J=16.8,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 30.00(\operatorname{app~dq}, J=16.7,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.70$
(app dt, $J=11.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.60(\mathrm{ddd}, J=11.7,7.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{br} \mathrm{d}, J=17.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.16(\mathrm{dtt}, J=17.2,5.2,2.4 \mathrm{HZ}, 1 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 136.0,135.2,124.6,119.4,89.6,72.6,72.2,71.4,69.5,62.0,57.9$, 53.2, 50.5, 26.5, 13.4.

IR (neat, cm^{-1}): 3369 (br), 2917 (m), 1095 (s), 1053 (s), 993 (m).
HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}$, 331.1686; found 331.1685 .

Synthetic lincosamide FSA-218008.

In a 4-mL glass microwave vial fitted with a magnetic stir bar, diaminotriol (6R)-4.26 (3.9 $\mathrm{mg}, 12 \mu \mathrm{~mol}, 1$ equiv) was dissolved in N, N-dimethylformamide ($120 \mu \mathrm{~L}$). To this solution were then added triethylamine $(7.4 \mu \mathrm{~L}, 53 \mu \mathrm{~mol}, 4.5$ equiv) and N, O bis(trimethylsilyl)trifluoroacetamide ($4.8 \mu \mathrm{~L}, 18 \mu \mathrm{~mol}, 1.5$ equiv) at $23{ }^{\circ} \mathrm{C}$. After stirring 1 h to ensure complete O-silylation, a solution of azepine acid $4.24(7.4 \mathrm{mg}, 15 \mu \mathrm{~mol}, 1.3$ equiv) in N, N dimethylformamide ($100 \mu \mathrm{~L}$) was added by micropipette, followed by HATU ($6.7 \mathrm{mg}, 18 \mu \mathrm{~mol}$, 1.5 equiv). After 2 h , LCMS analysis demonstrated complete consumption of aminotriol starting material and its (oligo)trimethylsilylated congeners. The mixture was diluted with ethyl acetate $(20 \mathrm{~mL})$, and the diluted mixture was washed with $50 \% \mathrm{v} / \mathrm{v}$ saturated aqueous sodium bicarbonate solution-saturated aqueous sodium chloride solution (7 mL), then with saturated aqueous sodium chloride solution (7 mL). The washed organic solution was dried over sodium sulfate, filtered, and concentrated to provide crude, (oligo)trimethylsilylated coupling product

This material was dissolved in $33 \% \mathrm{v} / \mathrm{v}$ trifluoroacetic acid-dichloromethane ($600 \mu \mathrm{~L}$), and the resulting solution was stirred at $23^{\circ} \mathrm{C}$ for 30 min , until LCMS analysis indicated that global desilylation and N-Boc deprotection were complete. The mixture was diluted with toluene (1 mL) before it was concentrated to dryness in vacuo. Methanol (1 mL) was then added, followed by palladium on carbon $(10 \% \mathrm{w} / \mathrm{w}, 25 \mathrm{mg})$. Hydrogen gas was bubbled through the resulting black suspension for 2 min before bubbling was discontinued; the mixture was then rapidly stirred (700
rpm) under 1 atm of hydrogen gas (supplied by a balloon) at $23^{\circ} \mathrm{C}$ for 2 d . After this time, LCMS analysis indicated that hydrogenation was complete, and the mixture was filtered through a pad of Celite in order to remove the heterogeneous catalyst. The filter cake was rinsed with methanol (3 $\times 1 \mathrm{~mL}$) and the filtrate was concentrated to provide a colorless film. This material was purified by preparative HPLC-MS on a Waters SunFire prep C ${ }_{18}$ column $(5 \mu \mathrm{~L}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid-5\% acetonitrile-water initially, grading to 0.1% trifluoroacetic acid30% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 210 nm and ESI + selected ion monitoring $\left.[\mathrm{m} / \mathrm{z}=599] ; \mathrm{R}_{t}=12.6 \mathrm{~min}\right)$ to provide FSA-218008 - $3 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as a white solid ($6.7 \mathrm{mg}, 59 \%$).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 5.24(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=$ $6.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.08-4.06(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{q}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{dd}, J=3.3,1.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.59-3.56(\mathrm{~m}, 3 \mathrm{H}), 3.44(\mathrm{ddd}, J=13.9,5.8,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.15-3.11(\mathrm{~m}, 3 \mathrm{H}), 3.02(\mathrm{t}$, $J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.93(\mathrm{td}, J=13.0,2.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.24-2.14(\mathrm{~m}, 2 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.03-1.94$ $(\mathrm{m}, 4 \mathrm{H}), 1.86(\mathrm{td}, J=9.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.79-1.59(\mathrm{~m}, 9 \mathrm{H}), 1.43(\mathrm{dtd}, J=12.9,8.9,3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 1.39-1.35(\mathrm{~m}, 2 \mathrm{H}), 1.01(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-70.15(\mathrm{t}, J=9.0 \mathrm{~Hz}, 3 \mathrm{~F}),-77.19(\mathrm{~s}, 9 \mathrm{~F})$.
IR (neat, cm^{-1}): 1671 (s), 1436 (w), 1201 (s), 1134 (s).
HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{27} \mathrm{H}_{49} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$, 599.3449; found 599.3436.

$\left(R_{\mathrm{S}}\right)-4.10$

(24\%, >95:5 dr)

(6S)-4.26

Diaminotriol (6S)-4.26.

In a $25-\mathrm{mL}$ round-bottomed flask fitted with a stir bar, vinyl stannane $4.25(183 \mathrm{mg}, 641$ $\mu \mathrm{mol}, 4.00$ equiv) was dissolved in tetrahydrofuran $(3.00 \mathrm{~mL})$. The resulting solution was chilled to $-78{ }^{\circ} \mathrm{C}$ before n-butyllithium solution (2.40 M in hexanes, $267 \mu \mathrm{~L}, 641 \mu \mathrm{~mol}, 4.00$ equiv) was added dropwise. The resulting mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 min before $N, N, N^{\prime}, N^{\prime}-$ tetramethylethylenediamine ($242 \mu \mathrm{~L}, 1.60 \mathrm{mmol}, 10.0$ equiv) was added. After stirring the reaction mixture for an additional 30 min at $-78^{\circ} \mathrm{C}$, a solution of sulfinimine $\left(R_{\mathrm{S}}\right)-\mathbf{4 . 1 0}(100 \mathrm{mg}, 0.160$ mmol, 1 equiv) in tetrahydrofuran ($500 \mu \mathrm{~L}$) was added dropwise by syringe. Within 5 min , TLC analysis (60% ethyl acetate-hexanes, UV+CAM) indicated that no sulfinimine starting material remained, and the mixture was neutralized with the addition of acetic acid ($184 \mu \mathrm{~L}, 3.21 \mathrm{mmol}$, 20.0 equiv). The mixture was warmed to ambient temperature before it was transferred to a separatory funnel containing ethyl acetate (10 mL) and saturated aqueous sodium bicarbonate solution (20 mL). The layers were shaken, then separated; the aqueous layer was extracted with $10 \% \mathrm{v} / \mathrm{v}$ methanol-dichloromethane $(5 \times 10 \mathrm{~mL})$. The combined organic extracts were dried over sodium sulfate, filtered and concentrated to provide a crude mixture of (oligo)debenzoylated dehydropipiridine adducts.

This crude residue was dissolved in anhydrous methanol (2.91 mL), and the resulting solution was treated with methanolic sodium methoxide solution $(0.5 \mathrm{M}, 290 \mu \mathrm{~L})$ at $23{ }^{\circ} \mathrm{C}$. After 40 min of stirring, LCMS analysis indicated that debenzoylation was complete. The mixture was neutralized with the addition of acetic acid $(\sim 18 \mu \mathrm{~L})$ until $\mathrm{pH}=7$ was achieved. The mixture was
then concentrated to dryness to provide a mahogany-colored, solid residue. LCMS analysis of this crude residue revealed the presence of only a single diastereomeric product.

Finally, this material was transferred to a 4-mL glass vial fitted with a magnetic stir bar, where it was dissolved methanol $(480 \mu \mathrm{~L})$. A solution of hydrogen chloride in 1,4-dioxane (4 M , $480 \mu \mathrm{~L}$) was added at $23^{\circ} \mathrm{C}$, and the resulting mixture was stirred at $23^{\circ} \mathrm{C}$ for 30 min . After this time, LCMS analysis indicated that desulfinylation was complete, and the mixture was diluted with toluene $(2 \mathrm{~mL})$. The diluted mixture was concentrated in vacuo, the dried residue was redissolved in methanol $(10 \mathrm{~mL})$, and the crude product solution was treated with Amberlyst A26 ion-exchange resin (hydroxide form, 2.0 g). The suspension was stirred at $23^{\circ} \mathrm{C}$ for 30 min before the ion-exchange beads were removed by filtration. The filtrate was concentrated to afford crude product in its free-base form, which was purified by flash column chromatography (4.0 g silica gel, eluting with 1% ammonium hydroxide -10% methanol-dichloromethane initially, grading to 10% ammonium hydroxide- 40% methanol-dichloromethane) to provide the product as a white solid ($13 \mathrm{mg}, 24 \%, 3$ steps).
$\mathrm{R}_{f}=0.41$ (10% ammonium hydroxide- 40% methanol-dichloromethane, PAA).
${ }^{1} \mathrm{H}$ NMR ($600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 5.90(\mathrm{ddt}, J=16.9,10.1,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.69(\mathrm{t}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H})$, 5.25 (app dq, $J=17.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.22-5.19(\mathrm{~m}, 2 \mathrm{H}), 4.09(\mathrm{dd}, J=10.1,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $4.03(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=$ $10.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.10(\mathrm{dt}, J=6.7,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\operatorname{app~dq}, J=16.6,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.98$ (app dq, $J=16.4,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.70(\operatorname{app} \mathrm{dt}, J=11.2,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.56(\mathrm{ddd}, J=11.6,7.1$, $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.33-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.14(\mathrm{~m}, 1 \mathrm{H}), 2.05(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 138.1,135.4,122.4,119.2,89.6,72.8,72.3,70.3,69.7,62.0,57.1$, 53.3, 50.7, 26.7, 13.5.

IR (neat, cm^{-1}): 3355 (br), 2916 (m), 1094 (s), 1081 (s), 1055 (s), 993 (m). HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{O}_{4} \mathrm{~S}, 331.1686$; found 331.1684.

Synthetic lincosamide FSA-218002.

In a 4-mL vial fitted with a silicone septum screw cap, diaminotriol (6S)-4.26 (12.5 mg, $37.8 \mu \mathrm{~mol}$, 1 equiv) was dissolved in N, N-dimethylformamide ($189 \mu \mathrm{~L}$). To this solution were then added triethylamine $(23.7 \mu \mathrm{~L}, \quad 170 \mu \mathrm{~mol}, 4.50$ equiv) and N, O bis(trimethylsilyl)trifluoroacetamide ($15.2 \mu \mathrm{~L}, 56.8 \mu \mathrm{~mol}, 1.50$ equiv) at $23{ }^{\circ} \mathrm{C}$. The resulting solution was stirred for 1 h to ensure complete O-silylation. Next, a solution of azepane acid 4.24 ($23.6 \mathrm{mg}, 49.2 \mu \mathrm{~mol}, 1.30$ equiv) in N, N-dimethylformamide ($100 \mu \mathrm{~L}$) was added by micropipette, followed by HATU ($21.6 \mathrm{mg}, 57.8 \mu \mathrm{~mol}, 1.50$ equiv), which was added in one portion. Consumption of diaminotriol starting material and its (oligo)trimethylsilylated congeners was monitored by LCMS, and after 1.5 h , the reaction was judged to be complete. The reaction mixture was diluted with ethyl acetate (20 mL), and the diluted solution was washed first with $50 \% \mathrm{v} / \mathrm{v}$ saturated aqueous sodium bicarbonate solution-saturated aqueous sodium chloride solution (10 $\mathrm{mL})$, followed by saturated sodium chloride solution $(10 \mathrm{~mL})$. The washed organic phase was then dried over sodium sulfate, filtered, and concentrated to give a light brown oil.

In an $8-\mathrm{mL}$ glass vial, this crude residue was dissolved in $33 \% \mathrm{v} / \mathrm{v}$ trifluoroacetic aciddichloromethane (3.0 mL), and the resulting solution was stirred at $23^{\circ} \mathrm{C}$ for 30 min , at which point LCMS analysis indicated that global desilylation and Boc removal were complete. Toluene $(5 \mathrm{~mL})$ was added, and the diluted mixture was concentrated to dryness in vacuo. The dried residue was then re-dissolved in methanol (1.0 mL), and palladium on carbon $(10 \% \mathrm{w} / \mathrm{w}, 50 \mathrm{mg})$ was
added. Hydrogen gas was bubbled through the resulting black suspension for 2 min before bubbling was discontinued; the reaction mixture was stirred rapidly (700 rpm) under 1 atm of hydrogen gas (supplied by a balloon) overnight. After this time, LCMS analysis indicated that hydrogenation was complete, and the mixture was filtered through a pad of Celite in order to remove the heterogeneous catalyst. The filter cake was rinsed with fresh portions of methanol (3 $\times 2 \mathrm{~mL}$), and the filtrate was concentrated. The residue obtained was finally purified by preparative HPLC-MS on a Waters SunFire prep C_{18} column $(5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid -0.5% acetonitrile-water initially; grading to 0.1% trifluoroacetic acid -30% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 210 nm and ESI + selected ion monitoring $[\mathrm{m} / \mathrm{z}=599]$) to provide $\mathbf{F S A}-\mathbf{2 1 8 0 0 2} \cdot 3 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as a white solid ($7.85 \mathrm{mg}, 22 \%, 2$ steps).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.26(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=10.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.13(\mathrm{dd}$, $J=10.1,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=10.3,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-3.99(\mathrm{~m}, 3 \mathrm{H}), 3.80(\mathrm{dd}, J=3.4$, $1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{br} \mathrm{d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{br} \mathrm{d}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.50(\mathrm{dd}, J=10.3$, $3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.45$ (ddd, $J=14.0,5.8,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-3.11(\mathrm{~m}, 3 \mathrm{H}), 3.03-2.93(\mathrm{~m}, 4 \mathrm{H})$, $2.27-2.17(\mathrm{~m}, 2 \mathrm{H}), 2.15-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.13(\mathrm{~s}, 3 \mathrm{H}), 2.05-1.95(\mathrm{~m}, 2 \mathrm{H}), 1.94-1.86(\mathrm{~m}, 2 \mathrm{H})$, $1.78-1.58(\mathrm{~m}, 8 \mathrm{H}), 1.44(\operatorname{app} \mathrm{dtd}, J=12.9,8.9,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.40-1.36(\mathrm{~m}, 2 \mathrm{H}), 0.99(\mathrm{t}, J$ $=7.4 \mathrm{~Hz}, 1 \mathrm{H})$.
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (471 MHz, CD 3 OD$) \delta-70.10(3 \mathrm{~F}),-77.14$ (9F).
HRMS (ESI+,m / z): $[\mathrm{M}+2 \mathrm{H}]^{2+}$ calc'd for $\mathrm{C}_{27} \mathrm{H}_{49} \mathrm{~F}_{3} \mathrm{~N}_{4} \mathrm{O}_{5} \mathrm{~S}$, 299.1682; found 299.1688.

$\left(R_{\mathrm{S}}\right)-\mathbf{4 . 1 0}$

Difluoro compound S4.7.

In a $0.5-2 \mathrm{~mL}$ conical glass microwave vial, sulfinimine $\left(R_{\mathrm{s}}\right)-4.10(30.7 \mathrm{mg}, 49.2 \mu \mathrm{~mol}$, 1.05 equiv) and difluoromethyl phenyl sulfone ($9.00 \mathrm{mg}, 46.9 \mu \mathrm{~mol}, 1$ equiv) were dissolved in tetrahydrofuran $(234 \mu \mathrm{~L})$. The resulting solution was chilled to $-78^{\circ} \mathrm{C}$ before a freshly prepared solution of lithium hexamethyldisilazide (1.00 M in tetrahydrofuran, $51.5 \mu \mathrm{~L}, 51.5 \mu \mathrm{~mol}, 1.10$ equiv) was added, causing a vibrant yellow color to evolve. Consumption of sulfinimine starting material was monitored by TLC (40% ethyl acetate-hexanes, UV+PAA), and after 30 min , it appeared that the reaction had stalled, signaling completion. The mixture was neutralized with the dropwise addition of saturated aqueous ammonium chloride solution (1 mL). Ethyl acetate (3 mL) was then added, and the mixture was allowed to warm to $23{ }^{\circ} \mathrm{C}$. The biphasic mixture was transferred to a separatory funnel containing saturated aqueous sodium chloride solution (5 mL) and ethyl acetate (10 mL); the layers were shaken, then separated. The aqueous layer was extracted with fresh portions of ethyl acetate $(2 \times 5 \mathrm{~mL})$, and the combined extracts were dried over sodium sulfate. The dried product solution was then filtered, and the filtrate was concentrated. The colorless residue obtained in this fashion was purified by flash-column chromatography (4 g silica gel, eluting with hexanes initially, grading to 50% ethyl acetate-hexanes) to provide the product as a brilliant white solid ($28.4 \mathrm{mg}, 74 \%$).
$\mathrm{R}_{f}=0.40(60 \%$ ethyl acetate-hexanes, UV+PAA).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.12(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 8.01(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.97(\mathrm{dd}, J$ $=8.2,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.78-7.74(\mathrm{~m}, 3 \mathrm{H}), 7.64-7.61(\mathrm{~m}, 3 \mathrm{H}), 7.51-49(\mathrm{~m}, 3 \mathrm{H}), 7.41(\mathrm{tt}, J=$ $7.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.37(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.22(\mathrm{t}, J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.37(\operatorname{app} \mathrm{~s}, 1 \mathrm{H}), 6.04$ (d, $J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.88(\mathrm{dd}, J=10.7,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dd}, J=10.7,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.44$ $(\mathrm{d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\operatorname{app} \mathrm{ddt}, J=19.1,9.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.22$ (s, 3H), $1.02(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CDCl}_{3}\right) \delta 165.5,165.2,164.7,135.8,133.9,133.6,133.2,132.7,130.9,130.1$ $(2 \times \mathrm{C}), 129.8,129.5,129.2,129.1,129.0,128.6,128.3,121.0(\mathrm{t}, J=122.2 \mathrm{~Hz}), 84.8,69.8$ $(\operatorname{app~d}, J=2.6 \mathrm{~Hz}), 69.3,68.4,64.2(\operatorname{app~d}, J=5.3 \mathrm{~Hz}), 59.1(\mathrm{t}, J=19.3 \mathrm{~Hz}), 57.4,22.5$, 13.2.
${ }^{19}$ F NMR ($376 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-99.54(\mathrm{dd}, J=241.3,9.7 \mathrm{~Hz}, 1 \mathrm{~F}),-109.29(\mathrm{dd}, J=241.2,19.1$ Hz, 1F).

IR (neat, cm^{-1}): 1728 (s), 1451 (m), 1279 (s), 1246 (s), 1090 (s), 1067 (s), 709 (s). HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{39} \mathrm{H}_{39} \mathrm{~F}_{2} \mathrm{NO}_{10} \mathrm{~S}_{3}$, 816.1777; found 816.1761.

Aminotriol 4.27.

In a $2-5 \mathrm{~mL}$ glass microwave vial fitted with a magnetic stir bar, sulfinamide $\mathbf{S} 4.7$ (28 mg , $34 \mu \mathrm{~mol}, 1$ equiv) was dissolved in anhydrous methanol ($620 \mu \mathrm{~L}$). To this solution was then added a methanolic solution of sodium methoxide $(0.5 \mathrm{M}, 62 \mu \mathrm{~L})$ at $23^{\circ} \mathrm{C}$; after 30 min , LCMS analysis of the reaction mixture indicated that global debenzoylation was complete. A solution of hydrogen chloride in 1,4-dioxane ($4 \mathrm{M}, 600 \mu \mathrm{~L}$) was then added in order to acidify the mixture. After stirring for an additional 30 min, LCMS indicated that the tert-butanesulfinyl group had been cleaved as well. The mixture was diluted with toluene $(1 \mathrm{~mL})$ before it was concentrated to dryness in vacuo. Prior to purification, the crude residue containing aminotriol hydrochloride salt was converted to the corresponding free base by re-dissolving it in methanol $(2 \mathrm{~mL})$ and treating the resulting solution with Amberlyst A26 resin (hydroxide form, 300 mg). After stirring the mixture for 30 \min at $23^{\circ} \mathrm{C}$, the ion-exchange beads were removed by filtration, and the filtrate was concentrated. The residue was finally purified by flash-column chromatography (4 g silica gel, eluting with 0.1% ammonium hydroxide-1\% methanol-dichloromethane initially, grading to 1% ammonium hydroxide- 10% methanol-dichloromethane) to provide the product as a white solid ($7.6 \mathrm{mg}, 55 \%$).
$\mathrm{R}_{f}=0.55$ (2\% ammonium hydroxide- 20% methanol-dichloromethane (UV+PAA).
${ }^{1} \mathrm{H}$ NMR $\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.00(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.84(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.70(\mathrm{t}, J=7.6$ $\mathrm{Hz}, 2 \mathrm{H}), 5.23(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.10$
(dd, $J=10.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.98(\operatorname{app} \mathrm{dt}, J=21.0,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=10.2,3.3 \mathrm{~Hz}$, 1H), 1.99 (s, 3H).
${ }^{13} \mathrm{C}$ NMR (126 MHz, CD 3 OD) $\delta 136.6,135.4,131.7,130.5,89.5,72.0,70.4,70.1,69.5,54.0(\mathrm{t}, J$ $=17.6 \mathrm{~Hz}), 13.0$.
${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-102.25(\mathrm{~d}, 233.5 \mathrm{~Hz}, 1 \mathrm{~F}),-114.06(\mathrm{dd}, J=233.5,4.4 \mathrm{~Hz}, 1 \mathrm{~F})$.
IR (neat, cm^{-1}): 3372 (br), 1336 (s), 1162 (m), 1084 (s).
HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{14} \mathrm{H}_{19} \mathrm{~F}_{2} \mathrm{NO}_{6} \mathrm{~S}_{2}, 400.0695$; found 400.0697.

Synthetic lincosamide FSA-218020c.

In a $1-\mathrm{mL}$ glass vial fitted with a magnetic stir bar, aminotriol $4.27(7.0 \mathrm{mg}, 18 \mu \mathrm{~mol}, 1$ equiv) was dissolved in N, N-dimethylformamide ($180 \mu \mathrm{~L}$). Triethylamine ($11 \mu \mathrm{~L}, 79 \mathrm{mmol}, 4.5$ equiv) and N, O-bis(trimethylsilyl)trifluoroacetamide ($7.1 \mu \mathrm{~L}, 26 \mu \mathrm{~mol}, 1.5$ equiv) were then added sequentially, and the resulting solution was stirred at $23^{\circ} \mathrm{C}$ for 1 h to ensure complete O-silylation. A solution of azepane acid $\mathbf{3 . 6 3}$ ($7.2 \mathrm{mg}, 23 \mu \mathrm{~mol}, 1.3$ equiv) in N, N-dimethylformamide ($175 \mu \mathrm{~L}$) was introduced, followed by HATU ($10 \mathrm{mg}, 26 \mu \mathrm{~mol}, 1.5$ equiv), which was added in a single portion. Consumption of aminotriol starting material and its (oligo)trimethylsilylated congeners was monitored by LCMS - owing to the attenuated nucleophilicity of the β, β-difluoroamino group, coupling was observed to be sluggish. After 24 h of stirring at $23^{\circ} \mathrm{C}$, the reaction mixture was diluted with ethyl acetate $(10 \mathrm{~mL})$, and the diluted solution was washed sequentially with $5-\mathrm{mL}$ portions of aqueous citric acid solution ($10 \% \mathrm{w} / \mathrm{v}$), saturated aqueous sodium bicarbonate solution, and saturated aqueous sodium chloride solution. The washed organic layer was then dried over sodium sulfate, filtered, and concentrated to give a colorless residue.

This residue was transferred to a $4-\mathrm{mL}$ glass vial fitted with a magnetic stir bar, where it was dissolved in $33 \% \mathrm{v} / \mathrm{v}$ trifluoroacetic acid-dichloromethane $(900 \mu \mathrm{~L})$. The resulting solution was stirred at $23^{\circ} \mathrm{C}$ for 30 min , at which point LCMS analysis indicated that Boc removal was complete. The mixture was diluted with toluene $(1.0 \mathrm{~mL})$, and the diluted mixture was concentrated to dryness in vacuo. The dried residue was then re-dissolved in methanol (1.0 mL),
and palladium on carbon $(10 \% \mathrm{w} / \mathrm{w}, 30 \mathrm{mg})$ was added. Hydrogen gas was bubbled through this mixture for 2 min before bubbling was discontinued; the mixture was then stirred under hydrogen gas (1 atm, supplied by a balloon) at $23{ }^{\circ} \mathrm{C}$ for 24 h , at which point LCMS analysis indicated that hydrogenation was complete. The mixture was filtered through a pad of Celite in order to remove the heterogeneous catalyst, and the filter cake was rinsed with fresh portions of methanol (3×1 $\mathrm{mL})$. The filtrate was concentrated, and the crude residue was purified by preparative HPLC-MS on a Waters SunFire prep C_{18} column ($5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid15% acetonitrile-water initially, grading to 0.1% trifluoroacetic acid- 70% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 254 nm and by ESI+ selected ion monitoring $[m / z=599] ; \mathrm{R}_{t}=26.1 \mathrm{~min}$) to provide $\mathbf{F S A}-\mathbf{2 1 8 0 2 0} \mathbf{c} \cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as a white solid ($2.4 \mathrm{mg}, 19 \%$, 2 steps).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 7.99(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.88(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.72(\mathrm{t}, J=7.8$ $\mathrm{Hz}, 2 \mathrm{H}), 5.36(\operatorname{app} \mathrm{dt}, J=18.6,8.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=8.6 \mathrm{~Hz}$, $1 \mathrm{H}), 4.41(\mathrm{dt}, J=47.5,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.09(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.07(\mathrm{dd}, J=5.5,3.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.90(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{dd}, J=10.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{ddd}, J=14.0,5.7,2.0$ $\mathrm{Hz}, 1 \mathrm{H}), 3.15(\operatorname{app} \mathrm{t}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.21(\mathrm{~m}, 2 \mathrm{H}), 2.04-2.00(\mathrm{~m}, 1 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H})$, $1.94-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.57(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.41(\mathrm{~m}, 3 \mathrm{H}), 1.37-1.33(\mathrm{~m}, 1 \mathrm{H})$.

IR (neat, cm-1): 3356 (br), 1672 (s), 1449 (w), 1345 (w), 1203 (m), 1131 (m).
HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{25} \mathrm{H}_{37} \mathrm{~F}_{3} \mathrm{~N}_{2} \mathrm{O}_{7} \mathrm{~S}_{2}, 599.2067$; found 599.2071.

Trifluoromethyl compound S4.8.

In a $0.5-2 \mathrm{~mL}$ conical glass microwave vial, sulfinimine $\left(R_{\mathrm{s}}\right)-4.10(32 \mathrm{mg}, 51 \mu \mathrm{~mol}, 1$ equiv) and tetra- n-butylammonium difluorotriphenylsilicate (TBAT, $9.5 \mathrm{mg}, 56 \mu \mathrm{~mol}, 1.1$ equiv) were suspended in tetrahydrofuran $(510 \mu \mathrm{~L}$; TBAT does not freely dissolve $)$. The white suspension was chilled to $-70^{\circ} \mathrm{C}$ before trifluoromethyltrimethylsilane ($10 \mu \mathrm{~L}, 67 \mu \mathrm{~mol}, 1.3$ equiv) was added. The suspension was allowed to warm to $-60{ }^{\circ} \mathrm{C}$ and stirring was maintained at that temperature until the mixture had clarified to form a peach-colored homogeneous solution (1 h), signaling that the reaction was complete. The mixture was neutralized with the addition of saturated aqueous ammonium chloride solution (1 mL), ethyl acetate (2 mL) was added, and the biphasic mixture was allowed to warm to $23^{\circ} \mathrm{C}$. The mixture was then transferred to a separatory funnel containing additional saturated aqueous ammonium chloride solution (5 mL) and ethyl acetate (5 mL); the layers were shaken, then separated. The aqueous layer was extracted with fresh portions of ethyl acetate ($3 \times 2 \mathrm{~mL}$), and the combined organic extracts were washed with saturated aqueous sodium chloride solution $(5 \mathrm{~mL})$. The washed solution was then dried over sodium sulfate, filtered, and concentrated to provide a colorless oil. ${ }^{1} \mathrm{H}-$ and ${ }^{19} \mathrm{~F}-\mathrm{NMR}$ analysis $\left(\mathrm{CDCl}_{3}\right)$ of this crude residue revealed a roughly 50:50 mixture of recovered sulfinimine starting material and a single diastereomeric β, β, β-trifluoro sulfinamide product. After flash-column chromatography (4 g silica gel, eluting with 20% diethyl ether-hexanes initially, grading to 80% diethyl etherhexanes), pure product ($15 \mathrm{mg}, 43 \%$) was obtained.
$\mathrm{R}_{f}=0.20$ (70\% diethyl ether-hexanes, UV+PAA).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.08(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{dd}, J=8.3,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.75$ $(\mathrm{dd}, J=8.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{tt}, J=7.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{tt}, J=7.4$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.24(\mathrm{t}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.13(\mathrm{dd}, J=3.3,1.1 \mathrm{~Hz}$, $1 \mathrm{H}), 5.98(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{dd}, J=10.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{dd}, J=10.8,3.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.05(\mathrm{dd}, J=7.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\operatorname{app} \mathrm{dp}, J=14.5,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=6.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(126 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 165.6,165.5,164.6,133.9,133.7,133.3,130.1(2 \times \mathrm{C}), 129.9$, $129.1(2 \times \mathrm{C}), 129.0,128.9,128.6,128.3,85.1,69.3,68.7,68.3,65.7,58.9(\mathrm{q}, J=30.1$ $\mathrm{Hz}), 57.3,22.4$, 13.3. The trifluoromethyl carbon signal was not resolved due to coupling to adjacent ${ }^{19} \mathrm{~F}$ nuclei.
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR ($471 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta-71.58(\mathrm{~s}, 3 \mathrm{~F})$.
IR (neat, cm^{-1}): 1727 (s), 1258 (s), 1089 (s$), 1067$ (s), 1025 (m), 907 (m), 704).
HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{33} \mathrm{H}_{34} \mathrm{~F}_{3} \mathrm{NO}_{8} \mathrm{~S}_{2}$, 694.1751; found 694.1752.

Aminotriol 4.28.

In a 4-mL glass vial fitted with a stir bar, sulfinamide $\mathbf{S} 4.8(15 \mathrm{mg}, 22 \mu \mathrm{~mol}$, 1 equiv) was dissolved in anhydrous methanol ($390 \mu \mathrm{~L}$). To this solution was then added methanolic sodium methoxide solution $(0.5 \mathrm{M}, 39 \mu \mathrm{~L})$ at $23{ }^{\circ} \mathrm{C}$; after 30 min of stirring, LCMS analysis indicated that global debenzoylation was complete. The mixture was consequently treated with a solution of hydrogen chloride in 1,4-dioxane ($4 \mathrm{M}, 400 \mu \mathrm{~L}$), and after 30 additional minutes, LCMS analysis showed that cleavage of the tert-butanesulfinyl group was complete. Toluene (1 mL) was added, and the diluted mixture was concentrated to dryness in vacuo. The residue was then re-dissolved in methanol (2 mL), and Amberlyst A26 resin (hydroxide form, 100 mg) was added with stirring. After 30 min , the ion-exchange beads were removed by filtration, and the filtrate was concentrated to provide crude product in free-base form. This residue was subjected to flash-column chromatography (4 g silica gel, eluting with 0.4% ammonium hydroxide- 4% methanoldichloromethane initially, grading to 2% ammonium hydroxide -20% methanol-dichloromethane) to provide the product as a white solid ($4.2 \mathrm{mg}, 70 \%$).
$\mathrm{R}_{f}=0.27$ (2% ammonium hydroxide- 20% methanol-dichloromethane, PAA).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.27(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=9.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{dd}$, $J=3.4,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=10.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{dd}, J=10.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.55$ (dq, $J=9.1,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta 89.4,72.0,70.3,70.0,69.5,54.6(\mathrm{q}, J=28.1 \mathrm{~Hz}), 12.7$. The trifluoromethyl carbon signal was not resolved due to coupling to adjacent ${ }^{19} \mathrm{~F}$ nuclei. ${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (471 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta-75.01(\mathrm{~s}, 3 \mathrm{~F})$.

IR (neat, cm^{-1}): 3360 (br), 2924 (w), 1262 (m), 1164 (s), 1119 (s), 1108 (s), 1058 (s), 983 (w).
HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{8} \mathrm{H}_{14} \mathrm{~F}_{3} \mathrm{NO}_{4} \mathrm{~S}$, 278.0668; found 278.0669.

Synthetic lincosamide FSA-218023.

In a $1-\mathrm{mL}$ glass vial fitted with a magnetic stir bar, aminotriol $4.28(4.2 \mathrm{mg}, 15 \mu \mathrm{~mol}, 1$ equiv) was dissolved in N, N-dimethylformamide $(150 \mu \mathrm{l})$. To this solution were then added triethylamine ($9.5 \mu \mathrm{~L}, 68 \mu \mathrm{~mol}, 4.5$ equiv) and N, O-bis(trimethylsilyl)trifluoroacetamide ($6.1 \mu \mathrm{~L}$, $23 \mu \mathrm{~mol}, 1.5$ equiv) at $23{ }^{\circ} \mathrm{C}$. The resulting solution was stirred for 1 h to ensure complete O silylation. A solution of azepane acid $\mathbf{3 . 6 3}(6.2 \mathrm{mg}, 20 \mu \mathrm{~mol}, 1.3$ equiv) in N, N-dimethylformamide $(50 \mu \mathrm{~L})$ was then added by micropipette, followed by $\operatorname{HATU}(8.6 \mathrm{mg}, 23 \mu \mathrm{~mol}, 1.5$ equiv), which was added in a single portion. Consumption of aminotriol starting material and its (oligo)trimethylsilylated congeners was monitored by LCMS, and, owing to the low nucleophilicity of the β, β, β-trifluoro-substituted amino group, conversion was slow. After stirring for 17 h at $23^{\circ} \mathrm{C}$, the mixture was diluted with ethyl acetate (20 mL), and the diluted solution was washed sequentially with $5-\mathrm{mL}$ portions of aqueous citric acid solution $(10 \% \mathrm{w} / \mathrm{v})$, water, saturated aqueous sodium bicarbonate solution, and saturated aqueous sodium chloride solution. The washed organic layer was then dried over sodium sulfate, filtered, and concentrated to give crude, (oligo)trimethylsilylated coupling product as a light-yellow oil.

This residue was transferred to a $2-5 \mathrm{~mL}$ glass microwave vial. A magnetic stir bar was added to the vial, and the residue was dissolved in $33 \% \mathrm{v} / \mathrm{v}$ trifluoroacetic acid-dichloromethane $(600 \mu \mathrm{~L})$. The mixture was stirred at $23^{\circ} \mathrm{C}$ for 30 min , at which point LCMS analysis indicated that global desilylation and Boc removal were complete. The mixture was diluted with toluene (1
mL), and the diluted solution was concentrated to dryness in vacuo. The dried residue was then redissolved in methanol $(1.0 \mathrm{~mL})$, and palladium on carbon $(10 \% \mathrm{w} / \mathrm{w}, 25 \mathrm{mg})$ was added. Hydrogen gas was bubbled through this black reaction suspension for 2 min before bubbling was discontinued; the mixture was then stirred rapidly (700 rpm) under 1 atm of hydrogen gas (supplied by a balloon). After 24 h , LCMS analysis indicated that hydrogenation was complete, and the mixture was filtered through a pad of Celite in order to remove the heterogeneous catalyst. The filter cake was rinsed with fresh methanol $(3 \times 1 \mathrm{~mL})$, and the filtrate was concentrated. The crude residue was finally subjected to preparative HPLC-MS on a Waters SunFire prep C ${ }_{18}$ column (5 $\mu \mathrm{m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid-10\% acetonitrile-water initially, grading to 0.1% trifluoroacetic acid- 60% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 210 nm and ESI + selected ion monitoring [$\mathrm{m} / \mathrm{z}=477$]; $\mathrm{R}_{t}=23.3$ min) to provide FSA-218023 as a mixture of the desired lincosamide hydrotrifluoroacetate salt and undesired N-trifluoroacetyl aminosugar by-product in a 68:32 molar ratio (77:23 weight ratio). The mass of this mixture was 2.0 mg , corresponding to 17% overall yield.

Desired lincosamide hydrotrifluoroacetate salt:
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.31(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.01-4.93(\mathrm{~m}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=9.8,1.4$
$\mathrm{Hz}, 1 \mathrm{H}), 4.42(\mathrm{dt}, J=47.5,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.10(\mathrm{dd}, J=10.2,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dd}, J=7.0$, $4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=10.2,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.45(\mathrm{ddd}, J=13.5$, $5.6,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{app} \mathrm{t}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.21-2.11(\mathrm{~m}, 2 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.01(\mathrm{br}$ $\mathrm{dd}, J=13.9,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.90(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.53(\mathrm{~m}, 4 \mathrm{H}), 1.47-1.31(\mathrm{~m}, 5 \mathrm{H})$.
${ }^{19} \mathrm{~F}$ NMR ($471 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$) $\delta-72.99(\mathrm{~s}, 1 \mathrm{~F}),-77.16(\mathrm{~s}, 3 \mathrm{~F})$.
FTIR (neat, cm ${ }^{-1}$): 3337 (br), 1672 (s), 1188 (s), 1142 (s).

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~F}_{4} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{~S}$, 278.0668; found 278.0669.

Synthetic lincosamide FSA-218012.

In a 1-mL glass vial fitted with a magnetic stir bar, aminotriol $4.18(10.5 \mathrm{mg}, 37.9 \mu \mathrm{~mol}, 1$ equiv) was dissolved in N, N-dimethylformamide $(189 \mu \mathrm{~L})$. Triethylamine ($23.7 \mu \mathrm{~L}, 170 \mathrm{mmol}$, 4.50 equiv) and N, O-bis(trimethylsilyl)trifluoroacetamide ($15.2 \mu \mathrm{~L}, 56.9 \mu \mathrm{~mol}, 1.50$ equiv) were then added sequentially, and the resulting solution was stirred at $23^{\circ} \mathrm{C}$ for 1 h to ensure complete O-silylation. A solution of azepane acid $3.63(15.5 \mathrm{mg}, 49.3 \mu \mathrm{~mol}, 1.30$ equiv) in $\mathrm{N}, \mathrm{N}-$ dimethylformamide $(150 \mu \mathrm{~L})$ was introduced, followed by HATU ($21.6 \mathrm{mg}, 56.8 \mu \mathrm{~mol}, 1.50$ equiv), which was added in a single portion. Upon addition of HATU, the reaction mixture attained a vibrant tennis ball yellow color. After 2 h of stirring at $23^{\circ} \mathrm{C}$, LCMS analysis of the reaction mixture showed that aminotriol starting material and its (oligo)trimethylsilylated congeners were fully consumed; the reaction mixture was consequently diluted with ethyl acetate (12 mL), and the diluted solution was washed sequentially with $7-\mathrm{mL}$ portions of aqueous citric acid solution (10% w/v), saturated aqueous sodium bicarbonate solution, and saturated aqueous sodium chloride solution. The washed organic layer was then dried over sodium sulfate, filtered, and concentrated to give a light rose-colored residue.

This residue was transferred to a $4-\mathrm{mL}$ glass vial fitted with a magnetic stir bar, where it was dissolved in $33 \% \mathrm{v} / \mathrm{v}$ trifluoroacetic acid-dichloromethane $(600 \mu \mathrm{~L})$. The resulting solution was stirred at $23^{\circ} \mathrm{C}$ for 30 min , at which point LCMS analysis indicated that Boc removal was complete. The mixture was diluted with toluene $(1.0 \mathrm{~mL})$, and the diluted mixture was
concentrated to dryness in vacuo. The dried residue was then re-dissolved in methanol (1.0 mL), and palladium on carbon $(10 \% \mathrm{w} / \mathrm{w}, 30 \mathrm{mg})$ was added. Hydrogen gas was bubbled through this mixture for 2 min before bubbling was discontinued; the mixture was then stirred under hydrogen gas (1 atm , supplied by a balloon) at $23{ }^{\circ} \mathrm{C}$ for 18 h , at which point LCMS analysis indicated that hydrogenation was complete. The mixture was filtered through a pad of Celite in order to remove the heterogeneous catalyst, and the filter cake was rinsed with fresh portions of methanol (3×1 mL). The filtrate was concentrated, and the crude residue was purified by preparative HPLC-MS on a Waters SunFire prep C_{18} column ($5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid10% acetonitrile-water initially, grading to 0.1% trifluoroacetic acid- -50% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 210 nm and by ESI+ selected ion monitoring $[\mathrm{m} / \mathrm{z}=479] ; \mathrm{R}_{t}=30.0 \mathrm{~min}$) to provide $\mathbf{F S A} \mathbf{- 2 1 8 0 1 2} \cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as a white solid ($16.1 \mathrm{mg}, 72 \%, 2$ steps).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.22(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dt}, J=47.5,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.23(\mathrm{~d}$, $J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=6.8,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{dd}, J=10.4$, $5.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.88(\mathrm{~d}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.48-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.14(\operatorname{app} \mathrm{t}, J=12.1 \mathrm{~Hz}, 1 \mathrm{H})$, $2.25-2.19(\mathrm{~m}, 1 \mathrm{H}), 2.19(\mathrm{~s}, 3 \mathrm{H}), 2.15-2.09(\mathrm{~m}, 1 \mathrm{H}), 2.05-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.94-1.88(\mathrm{~m}, 1 \mathrm{H})$, $1.72-1.56(\mathrm{~m}, 4 \mathrm{H}), 1.50-1.32(\mathrm{~m}, 7 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (126 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 170.8,91.4,84.7(\mathrm{~d}, J=163.8 \mathrm{~Hz}), 72.2,71.8,71.4,69.4,60.6$, $56.1,45.7,38.8,38.3,37.4,33.8,33.2,31.6(\mathrm{~d}, J=19.7 \mathrm{~Hz}), 30.6,28.9,24.8,24.6,23.8$ (d, $J=5.1 \mathrm{~Hz}), 15.3,8.5$.
${ }^{19} \mathrm{~F}$ NMR (471 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta-77.15(\mathrm{~s}, 3 \mathrm{~F}),-220.28(\mathrm{tt}, J=14.4,5.8 \mathrm{~Hz}, 1 \mathrm{~F})$.
IR (neat, cm^{-1}): 3368 (br), 2937 (w), 1659 (s), 1473 (m), 1202 (s), 1137 (s).

HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{23} \mathrm{H}_{43} \mathrm{FN}_{2} \mathrm{O}_{5} \mathrm{~S}$, 479.2949; found 479.2962.

Protected lincosamide S4.9.

In a 4-mL glass vial, aminotriol $4.18(37.9 \mathrm{mg}, 137 \mu \mathrm{~mol}$, 1 equiv) was dissolved in N, N dimethylformamide (683 $\mu \mathrm{L}$). Triethylamine ($86.0 \mu \mathrm{~L}, 615 \mu \mathrm{~mol}, 4.50$ equiv) and N, O bis(trimethylsilyl)trifluoroacetamide ($55.0 \mu \mathrm{~L}, 205 \mu \mathrm{~mol}, 1.50$ equiv) were then added sequentially at $23^{\circ} \mathrm{C}$, and the colorless solution was stirred for 1 h to ensure complete O-silylation. Next, a solution of azepane acid $4.24(85.0 \mathrm{mg}, 178 \mu \mathrm{~mol}, 1.30$ equiv) in N, N-dimethylformamide ($500 \mu \mathrm{~L}$) was added by micropipette, followed by HATU ($77.9 \mathrm{mg}, 205 \mu \mathrm{~mol}, 1.50$ equiv), which was added in a single portion. Following HATU addition, the reaction mixture attained a vibrant tennis ball yellow color. After 3 h , LCMS analysis showed complete consumption of aminotriol starting material and its (oligo)trimethylsilylated congeners; the mixture was consequently diluted with ethyl acetate (30 mL), and the diluted solution washed sequentially with $10-\mathrm{mL}$ portions of aqueous citric acid solution ($10 \% \mathrm{w} / \mathrm{v}$), saturated aqueous sodium bicarbonate solution, and saturated aqueous sodium chloride solution. The organic layer was then dried over sodium sulfate, filtered, and concentrated to give a colorless residue. In order to desilylate the coupled product, this residue was then re-dissolved in $50 \% \mathrm{v} / \mathrm{v}$ acetic acid-methanol (4.0 mL) and the resulting solution was heated to $40^{\circ} \mathrm{C}$ overnight. The mixture was then diluted with toluene (5.0 mL), and the diluted mixture was concentrated to dryness. Residual acetic acid was removed by repeated concentration from $50 \% \mathrm{v} / \mathrm{v}$ ethanol-toluene. The crude, desilylated product was purified by flash-
column chromatography (12 g silica gel, eluting with dichloromethane initially, grading to 5% methanol-dichloromethane) to furnish product as a white solid ($91.8 \mathrm{mg}, 91 \%$).
$\mathrm{R}_{f}=0.55$ (10% methanol-dichloromethane, PAA).
${ }^{1} \mathrm{H}$ NMR (55:45 rotameric mixture, asterisk [*] denotes minor rotameric signals that could be resolved, $\left.600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.04(\mathrm{dd}, J=17.5,10.7 \mathrm{~Hz}, 1 \mathrm{H}), * 5.99(\mathrm{dd}, J=17.5,10.8$ $\mathrm{Hz}, 1 \mathrm{H}),{ }^{*} 5.51-5.49(\mathrm{~m}, 1 \mathrm{H}), 5.21(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.19(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{*} 5.09-$ $4.98(\mathrm{~m}, 2 \mathrm{H}), 4.49-4.47(\mathrm{~m}, 1 \mathrm{H}), 4.21(\mathrm{~m}, 1 \mathrm{H}), 4.49-4.47(\mathrm{~m}, 1 \mathrm{H}), 4.21-4.19(\mathrm{~m}, 1 \mathrm{H})$, 4.08-4.03 (m, 1H), $3.93(\mathrm{q}, ~ J=9.0 \mathrm{~Hz}, 2 \mathrm{~F}), 3.88-3.83(\mathrm{~m}, 1 \mathrm{H}), 3.71-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.51-$ $3.47(\mathrm{~m}, 1 \mathrm{H}), 3.29-3.22(\mathrm{~m}, 2 \mathrm{H}), 2.73-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.53-2.33(\mathrm{~m}, 3 \mathrm{H}), 2.12(\mathrm{~s}, 3 \mathrm{H}), 2.08$ $(\mathrm{s}, 3 \mathrm{H}),{ }^{*} 1.95-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.71-1.64(\mathrm{~m}, 2 \mathrm{H}), 1.48(\mathrm{~s}, 18 \mathrm{H}), 1.46(\mathrm{~s}, 18 \mathrm{H}),{ }^{*} 1.14(\mathrm{~s}$, $3 \mathrm{H}),{ }^{*} 1.12(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~s}, 3 \mathrm{H}),{ }^{*} 1.07(\mathrm{~s}, 3 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR (55:45 rotameric mixture, asterisk [*] denotes minor rotameric signals that could be resolved, $\left.126 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 175.3,{ }^{*} 174.9,157.6,{ }^{*} 157.1,146.2,145.7, * 142.2,142.1,{ }^{*}$ $120.3,120.1,{ }^{*} 112.6,{ }^{*} 112.2,90.3,89.7, * 82.1,81.7,{ }^{*} 71.9,71.8, * 71.5, * 71.3,70.8,69.7,{ }^{*}$ $69.4,69.4, * 63.7, * 62.9,60.1, * 58.6,41.8,41.7,41.7, * 41.2$ (br), 37.1 (br), 35.3 (br), 34.5, $28.9, * 28.7,28.7, * 28.6, * 28.4,28.3,27.8$ (br), 27.0 (br), 26.0, 25.8,* $25.5, * 25.5$.
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (471 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta-72.20(\mathrm{~s}, 3 \mathrm{~F})$.
IR (neat, cm^{-1}): 3401 (br), 2974 (w), 1702 (s), 1410 (s), 1151 (s), 1096 (m).
HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{34} \mathrm{H}_{56} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{9} \mathrm{~S}$, 740.3762 ; found 740.3757 .

Synthetic lincosamide FSA-218013.

In a 4-mL glass vial fitted with a stir bar, azepine $\mathbf{S 4 . 9}(9.5 \mathrm{mg}, 13 \mu \mathrm{~mol}, 1$ equiv) was dissolved in $33 \% \mathrm{v} / \mathrm{v}$ trifluoroacetic acid-dichloromethane $(900 \mu \mathrm{~L})$. The resulting solution was stirred at $23{ }^{\circ} \mathrm{C}$ for 30 min , whereupon LCMS analysis showed that global Boc deprotection was complete. Toluene (1.0 mL) was added, and the mixture was concentrated to dryness in vacuo. The dried residue was then re-dissolved in methanol ($700 \mu \mathrm{~L}$), and palladium on carbon (10% w/w, 25 mg) was added. Hydrogen gas was bubbled through the mixture for 2 min , then bubbling was discontinued, and the reaction mixture was stirred rapidly (600 rpm) under an atmosphere of hydrogen gas (supplied by a balloon) at $23{ }^{\circ} \mathrm{C}$. After 2 h , LCMS analysis indicated that hydrogenation was complete, and the mixture was filtered through a pad of Celite in order to remove the heterogeneous catalyst. The filter cake was rinsed with fresh methanol ($3 \times 1 \mathrm{~mL}$), and the filtrate was concentrated. This crude residue was purified by preparative HPLC-MS on a Waters SunFire Prep C_{18} column $(5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid -5% acetonitrile-water initially, grading to 0.1% trifluoroacetic acid -40% acetonitrile-water over 40 min, with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 210 nm and by ESI + selected ion monitoring $[\mathrm{m} / \mathrm{z}=544]$) to afford $\mathbf{F S A}-218013 \cdot 2 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as a white solid $(6.8 \mathrm{mg}, 69 \%)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.21(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.24(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{~d}, J=8.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.10(\mathrm{br} \mathrm{s}, 1), 4.07-3.99(\mathrm{~m}, 3 \mathrm{H}), 3.86(\mathrm{app} \mathrm{s}, 1 \mathrm{H}), 3.48-3.43(\mathrm{~m}, 2 \mathrm{H}), 3.19-3.11$
$(\mathrm{m}, 3 \mathrm{H}), 2.26-2.10(\mathrm{~m}, 2 \mathrm{H}), 2.18(\mathrm{~s}, 3 \mathrm{H}), 2.05(\mathrm{br} \mathrm{d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.95-1.91(\mathrm{~m}, 1 \mathrm{H})$, $1.79-1.73(\mathrm{~m}, 2 \mathrm{H}), 1.70-1.56(\mathrm{~m}, 2 \mathrm{H}), 1.52-1.35(\mathrm{~m}, 5 \mathrm{H}), 1.01(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 3 \mathrm{H}), 0.88$ ($\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}$).
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR $\left(471 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta-70.12(\mathrm{~s}, 3 \mathrm{~F}),-77.16(\mathrm{~s}, 6 \mathrm{~F})$.
IR (neat, cm^{-1}): 3370 (br), 1671 (s), 1201 (s), 1184 (s), 1137 (s).
HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{24} \mathrm{H}_{44} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$, 544.3027; found 544.3018.

Synthetic lincosamide FSA-217098.

In a $1-\mathrm{mL}$ glass vial fitted with a magnetic stir bar, aminotriol $4.21(5.0 \mathrm{mg}, 18 \mu \mathrm{~mol}, 1$ equiv) was dissolved in N, N-dimethylformamide $(180 \mu \mathrm{~L})$. To this solution were then added triethylamine ($11 \mu \mathrm{~L}, 82 \mu \mathrm{~mol}, 4.5$ equiv) and N, O-bis(trimethylsilyl)trifluoroacetamide ($7.3 \mu \mathrm{~L}$, $27 \mu \mathrm{~mol}, 1.5$ equiv) sequentially at $23^{\circ} \mathrm{C}$. The mixture was stirred at ambient temperature for 1 h to ensure complete O-silylation before a solution of azepane acid $\mathbf{3 . 6 3}$ ($7.4 \mathrm{mg}, 24 \mu \mathrm{~mol}, 1.3$ equiv) in N, N-dimethylformamide ($200 \mu \mathrm{~L}$) was added. Finally, HATU ($10 \mathrm{mg}, 27 \mu \mathrm{~mol}, 1.5$ equiv) was added in one portion at $23^{\circ} \mathrm{C}$, causing the reaction mixture to attain a tennis ball yellow color. After 2 h , LCMS analysis of the reaction mixture demonstrated that aminotriol starting material and its (oligo)trimethylsilylated congeners were fully consumed. The mixture was diluted with ethyl acetate $(15 \mathrm{~mL})$, and the diluted mixture was washed sequentially with $5-\mathrm{mL}$ portions of aqueous citric acid solution ($10 \% \mathrm{w} / \mathrm{v}$), saturated aqueous sodium chloride solution, and saturated aqueous sodium chloride solution. The organic solution was then dried over sodium sulfate, filtered, and concentrated to give a colorless residue.

This crude residue was re-dissolved in $33 \% \mathrm{v} / \mathrm{v}$ trifluoroacetic acid-dichloromethane (600 mL), and after 30 min of stirring at $23^{\circ} \mathrm{C}$, LCMS analysis indicated that global Boc deprotection was complete. The mixture was diluted with toluene (1 mL), and the diluted mixture was concentrated to dryness. The residue was then re-dissolved in methanol $(300 \mu \mathrm{~L})$, and to this solution was added palladium on carbon ($10 \% \mathrm{w} / \mathrm{w}, 20 \mathrm{mg}$). Hydrogen gas was bubbled through
this black suspension for 2 min before bubbling was discontinued, and the mixture was stirred rapidly (700 rpm) under 1 atm of hydrogen gas (supplied by a balloon). After 1 d , LCMS indicated that hydrogenation was incomplete; additional palladium on carbon ($10 \% \mathrm{w} / \mathrm{w}, 20 \mathrm{mg}$) was added. The reaction mixture was stirred for 1 d further under an atmosphere of hydrogen gas before LCMS indicated that hydrogenation was complete. The mixture was filtered through a pad of Celite in order to remove the heterogeneous catalyst, and the filter cake was rinsed with fresh portions of methanol $(3 \times 1 \mathrm{~mL})$. The filtrate was concentrated, and the residue was purified by preparative HPLC-MS on a Waters SunFire prep C_{18} column $(5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid-water initially, grading to 0.1% trifluoroacetic acid- 40% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 210 nm and ESI+ selected ion monitoring [$\mathrm{m} / \mathrm{z}=477$]; $\mathrm{R}_{t}=39.2 \mathrm{~min}$) to provide $\mathbf{F S A} \mathbf{- 2 1 7 0 9 8} \cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as a white solid ($3.2 \mathrm{mg}, 30 \%$, 2 steps).
${ }^{1} \mathrm{H}$ NMR ($\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.26(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dt}, J=47.6,6.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.28(\mathrm{dd}$, $J=8.8,5.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.06(\mathrm{~m}, 3 \mathrm{H}), 3.88(\mathrm{~d}, J=3.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=10.2,3.3$ $\mathrm{Hz}, 1 \mathrm{H}), 3.44(\mathrm{ddd}, J=13.9,6.0,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{appt}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.34-2.26(\mathrm{~m}$, $1 \mathrm{H}), 2.23-2.12(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.04-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.54$ (m, 10H), 1.47-1.29 (m, 6H), 1.29-1.21 (m, 1H).
${ }^{19} \mathrm{~F}$ NMR (471 MHz, CD $\left.{ }_{3} \mathrm{OD}\right) \delta-77.06(\mathrm{~s}, 3 \mathrm{~F}),-220.35(\mathrm{tt}, J=14.3,5.6 \mathrm{~Hz}, 1 \mathrm{~F})$.
HRMS (ESI+, m / z): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{23} \mathrm{H}_{41} \mathrm{FN}_{2} \mathrm{O}_{5} \mathrm{~S}$, 477.2793; found 477.2791.

Synthetic lincosamide FSA-217099.

In a $1-\mathrm{mL}$ glass vial fitted with a magnetic stir bar, aminotriol $4.21(5.0 \mathrm{mg}, 18 \mu \mathrm{~mol}, 1$ equiv) was dissolved in N, N-dimethylformamide $(180 \mu \mathrm{~L})$. To this solution were then added triethylamine ($11 \mu \mathrm{~L}, 82 \mu \mathrm{~mol}, 4.5$ equiv) and N, O-bis(trimethylsilyl)trifluoroacetamide ($7.3 \mu \mathrm{~L}$, $27 \mu \mathrm{~mol}, 1.5$ equiv) sequentially at $23^{\circ} \mathrm{C}$. The mixture was stirred at ambient temperature for 1 h to ensure complete O-silylation before a solution of azepane acid 4.24 ($11 \mathrm{mg}, 24 \mu \mathrm{~mol}, 1.3$ equiv) in N, N-dimethylformamide ($200 \mu \mathrm{~L}$) was added. Finally, HATU ($10 \mathrm{mg}, 27 \mu \mathrm{~mol}, 1.5$ equiv) was added in one portion at $23^{\circ} \mathrm{C}$, causing the reaction mixture to attain a tennis ball yellow color. After 2 h , LCMS analysis of the reaction mixture demonstrated that aminotriol starting material and its (oligo)trimethylsilylated congeners were fully consumed. The mixture was diluted with ethyl acetate $(15 \mathrm{~mL})$, and the diluted mixture was washed sequentially with $5-\mathrm{mL}$ portions of aqueous citric acid solution ($10 \% \mathrm{w} / \mathrm{v}$), saturated aqueous sodium chloride solution, and saturated aqueous sodium chloride solution. The organic solution was then dried over sodium sulfate, filtered, and concentrated to give a colorless residue.

This crude residue was re-dissolved in $33 \% \mathrm{v} / \mathrm{v}$ trifluoroacetic acid-dichloromethane (600 mL), and after 30 min of stirring at $23^{\circ} \mathrm{C}$, LCMS analysis indicated that global Boc deprotection was complete. The mixture was diluted with toluene (1 mL), and the diluted mixture was concentrated to dryness. The residue was then re-dissolved in methanol $(300 \mu \mathrm{~L})$, and to this solution was added palladium on carbon ($10 \% \mathrm{w} / \mathrm{w}, 20 \mathrm{mg}$). Hydrogen gas was bubbled through
this black suspension for 2 min before bubbling was discontinued, and the mixture was stirred rapidly (700 rpm) under 1 atm of hydrogen gas (supplied by a balloon). After 1 d , LCMS indicated that hydrogenation complete. The mixture was filtered through a pad of Celite in order to remove the heterogeneous catalyst, and the filter cake was rinsed with fresh portions of methanol (3×1 mL). The filtrate was concentrated, and the residue was purified by preparative HPLC-MS on a Waters SunFire prep C_{18} column ($5 \mu \mathrm{~m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid2.5% acetonitrile-water initially, grading to 0.1% trifluoroacetic acid -50% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 210 nm and ESI + selected ion monitoring $\left.[m / z=271.5] ; \mathrm{R}_{t}=25.3 \mathrm{~min}\right)$ to provide $\mathbf{F S A} \mathbf{- 2 1 7 0 9 9} \cdot 2 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as a white solid (4.4 mg, 31\%, 2 steps).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.25(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.28(\mathrm{dd}, J=8.8,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.05$ (m, 3H), $4.01(\mathrm{q}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{dd}, J=3.5,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.54(\mathrm{dd}, J=10.2,3.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.45(\mathrm{ddd}, J=13.8,5.9,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.19-3.11(\mathrm{~m}, 3 \mathrm{H}), 2.34-2.27(\mathrm{~m}, 1 \mathrm{H}), 2.23-$ $2.12(\mathrm{~m}, 2 \mathrm{H}), 2.10(\mathrm{~s}, 3 \mathrm{H}), 2.06-2.01(\mathrm{~m}, 1 \mathrm{H}), 1.95-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.79-1.53(\mathrm{~m}, 10 \mathrm{H})$, $1.43-1.32(\mathrm{~m}, 4 \mathrm{H}), 1.28-1.20(\mathrm{~m}, 1 \mathrm{H})$.
${ }^{19} \mathrm{~F}\left\{{ }^{1} \mathrm{H}\right\}$ NMR (471 MHz, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta-70.13(3 \mathrm{~F}),-77.18(6 \mathrm{~F})$.
IR (neat, cm^{-1}): 3373 (br), 1669 (s), 1427 (w), 1201 (s), 1183 (s), 1137 (s).
HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{24} \mathrm{H}_{42} \mathrm{~F}_{3} \mathrm{~N}_{3} \mathrm{O}_{5} \mathrm{~S}$, 542.2870; found 542.2867.

Allylic sulfinamides (6S)-4.29 and (6R)-4.29.

A solution of sulfinimine $\left(S_{\mathrm{S}}\right)-\mathbf{4 . 1 0}(100 . \mathrm{mg}, 160 . \mu \mathrm{mol}, 1$ equiv $)$ in dichloromethane (1.60 $\mathrm{mL})$ was chilled to $-78^{\circ} \mathrm{C}$ before a solution of vinylmagnesium bromide in tetrahydrofuran (0.60 $\mathrm{M}, 800 \mu \mathrm{~L}, 480 \mu \mathrm{~mol}, 3.0$ equiv) was added dropwise. After stirring for 30 min at $-78^{\circ} \mathrm{C}$, TLC analysis (60% ethyl acetate-hexanes, UV+PAA) indicated that no sulfinimine starting material remained. Unreacted Grignard reagent was destroyed with the dropwise addition of saturated aqueous ammonium chloride solution (5 mL), and the resulting mixture was warmed to $23{ }^{\circ} \mathrm{C}$ before it was transferred to a separatory funnel containing water (1 mL) and saturated aqueous sodium chloride solution $(5 \mathrm{~mL})$. This mixture was extracted with dichloromethane $(3 \times 10 \mathrm{~mL})$, the combined organic extracts were dried over sodium sulfate, the dried solution was filtered, and the filtrate was concentrated to furnish a colorless film. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ analysis $\left(\mathrm{CDCl}_{3}\right)$ of this crude residue revealed a 71:29 mixture of diastereomeric products. Separation of this mixture by flashcolumn chromatography (12 g silica gel, eluting with 15% ethyl acetate-hexanes initially, grading to 60% ethyl acetate-hexanes) provided, in order of elution from the column, ($6 S$) $\mathbf{- 4 . 2 9}$ (24.4 mg, $23 \%)$ and ($6 R$)-4.29 ($65.1 \mathrm{mg}, 62 \%$), both as white amorphous solids.
$\mathrm{R}_{f}=0.29\left(60 \%\right.$ ethyl acetate-hexanes, UV $\left.+\mathrm{KMnO}_{4}\right)$.
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.07(\mathrm{dd}, J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{dd}, J=8.4,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.78$

$$
(\mathrm{dd}, J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{tt}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.49(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{tt}, J=7.5,
$$

$1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{t}, J=7.8 \mathrm{~Hz}, 2 \mathrm{H}), 6.12-6.05(\mathrm{~m}, 2 \mathrm{H}), 5.89-$ $5.88(\mathrm{~m}, 1 \mathrm{H}), 5.83-5.78(\mathrm{~m}, 2 \mathrm{H}), 5.43(\mathrm{app} \mathrm{dt}, J=17.2,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(10.5,1.0 \mathrm{~Hz}$, $1 \mathrm{H}), 4.51(\mathrm{dd}, J=9.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\operatorname{app} \mathrm{td}, J=8.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~d}, J=8.5 \mathrm{~Hz}$, $1 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.8,165.7,165.5,136.1,133.7,133.6,133.3,130.0(2 \times \mathrm{C})$, $129.9,129.4,129.3,129.1,128.8,128.6,128.4,118.8,84.5,71.5,69.6,69.2,68.9,58.0$, 56.7, 22.9, 13.1.

IR (neat, cm^{-1}): 1729 (s$), 1452$ (w), 1282 (s$), 1261$ (s), 1094 (m), 1069 (s), 686 (s$)$.
HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{NO}_{8} \mathrm{~S}_{2}$, 652.2033; found 652.2031.
(6S)-4.29:
$\mathrm{R}_{f}=0.38$ (60% ethyl acetate-hexanes, $\mathrm{UV}+\mathrm{KMnO}_{4}$).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 8.04(\mathrm{dd}, J=8.3,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{dd}, J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.77$ (dd, $J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.63(\mathrm{tt}, J=7.1,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.53-7.47(\mathrm{~m}, 3 \mathrm{H}), 7.44(\mathrm{tt}, J=7.8$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.38(\mathrm{dd}, J=8.3,7.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.25(\mathrm{dd}, J=8.3,7.6 \mathrm{~Hz}, 2 \mathrm{H}), 4.93(\mathrm{~d}, J=4.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.88(\mathrm{dd}, J=3.2,1.2 \mathrm{z}, 1 \mathrm{H}), 5.82-5.76(\mathrm{~m}, 2 \mathrm{H}), 5.62(\mathrm{ddd}, J=17.1,10.3,8.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.37(\mathrm{~d}, J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.24(\mathrm{dt}, J=17.2,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\mathrm{dd}, J=9.6,1.4 \mathrm{~Hz}$, $1 \mathrm{H}), 4.22(\mathrm{td}, J=9.1,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.92(\mathrm{~d}, J=1.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.16(\mathrm{~s}, 3 \mathrm{H}), 1.22(\mathrm{~s}, 9 \mathrm{H})$.
${ }^{13} \mathrm{C}$ NMR ($126 \mathrm{MHz}, \mathrm{CDCl}_{3}$) $\delta 165.7,165.6,165.3,133.8,133.7,133.3,132.4,130.1,129.9$, $129.2,1291,128.9,128.6,128.4,123.6,84.2,71.5,69.4,68.9,68.4,57.1,55.5,22.8,13.0$. Only 10 phenyl carbon resonances are observed; the 2 missing signals are believed to coincide with observed resonances ($\delta 130.1,129.2$).

IR (neat, cm^{-1}): 1729 (s), 1452 (w), 1282 (s), 1262 (s), 1106 (m), 1069 (s), 711 (m).

HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{34} \mathrm{H}_{37} \mathrm{NO}_{8} \mathrm{~S}_{2}, 652.2033$; found 652.2037.

Aminotriol 4.30.

In a 4-mL glass vial fitted with a magnetic stir bar, sulfinamide (6R)-4.29 (19 mg, $29 \mu \mathrm{~mol}$, 1 equiv) was dissolved in anhydrous methanol $(530 \mu \mathrm{~L})$. To this solution was then added a methanolic solution of sodium methoxide $(0.5 \mathrm{M}, 53 \mu \mathrm{~L})$ at $23^{\circ} \mathrm{C}$. After 30 min of stirring at ambient temperature, LCMS analysis indicated that global debenzoylation was complete, and a solution of hydrogen chloride in 1,4-dioxane ($4 \mathrm{M}, 500 \mu \mathrm{~L}$) was added next. After an additional 30 min , LCMS analysis indicated that the tert-butanesulfinyl group had been completely removed. The mixture was diluted with toluene (1 mL), and the diluted mixture was concentrated in vacuo. The residue was re-dissolved in methanol (1 mL), and the solution was treated with Amberlyst A26 ion-exchange resin (hydroxide form, 100 mg). The mixture was stirred at $23{ }^{\circ} \mathrm{C}$ for 30 min before the resin was filtered off; the filtrate was concentrated to provide crude product in free-base form. This residue was finally purified by flash-column chromatography (4 g silica gel, eluting with 0.5% ammonium hydroxide- 5% methanol-dichloromethane initially, grading to 2% ammonium hydroxide- 20% methanol-dichloromethane) to furnish the product as a white solid ($2.9 \mathrm{mg}, 42 \%$).
$\mathrm{R}_{f}=0.24$ (2% ammonium hydroxide- 20% methanol-dichloromethane, PAA).
${ }^{1} \mathrm{H} \operatorname{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 5.98(\mathrm{ddd}, J=17.2,10.3,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.36-5.24(\mathrm{~m}, 3 \mathrm{H}), 4.11$ (dd, $J=10.2,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.05(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.94(\mathrm{~d}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\operatorname{app} \mathrm{t}, J=6.5 \mathrm{~Hz}$, $1 \mathrm{H}), 3.60(\mathrm{dd}, J=10.2,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H})$.

IR (neat, cm^{-1}): 3342 (br), 1581 (m), 1080 (s), 1054 (s).
HRMS (ESI,$+ m / z$): $[\mathrm{M}+\mathrm{H}]^{+}$calc'd for $\mathrm{C}_{9} \mathrm{H}_{17} \mathrm{NO}_{4} \mathrm{~S}$, 236.1; found 236.2.

Synthetic lincosamide FSA-215031.

In a $1-\mathrm{mL}$ glass vial fitted with a magnetic stir bar, aminotriol $4.30(2.9 \mathrm{mg}, 12 \mathrm{mmol}, 1$ equiv) was dissolved in N, N-dimethylformamide $(120 \mu \mathrm{~L})$. To this solution were then added triethylamine ($7.7 \mu \mathrm{~L}, 55 \mu \mathrm{~mol}, 4.5$ equiv) and N, O-bis(trimethylsilyl)trifluoroacetamide ($5.0 \mu \mathrm{~L}$, $18 \mu \mathrm{~mol}, 1.5$ equiv) at $23^{\circ} \mathrm{C}$. The solution was stirred at $23^{\circ} \mathrm{C}$ for 1 h in order to ensure complete O-silylation before trans-4-n-propyl-L-hygric acid hydrochloride $(\mathbf{1 . 8 8}, 3.3 \mathrm{mg}, 16 \mu \mathrm{~mol}, 1.3$ equiv) and HATU ($7.0 \mathrm{mg}, 18 \mu \mathrm{~mol}, 1.5$ equiv) were added sequentially. Upon addition of HATU, the colorless mixture changed to a dull tennis-ball yellow. After $2 \mathrm{~h}, \mathrm{LCMS}$ analysis of the reaction mixture demonstrated complete consumption of the aminotriol starting material and its (oligo)trimethylsilylated congeners; the mixture was diluted with $50 \% \mathrm{v} / \mathrm{v}$ acetic acid-methanol $(2 \mathrm{~mL})$, and the resulting solution was heated to $35^{\circ} \mathrm{C}$ overnight in order to effect global desilylation of the coupling product. The mixture was then concentrated to dryness in vacuo, and the crude residue was purified by preparative HPLC-MS on a Waters SunFire prep C C_{18} column (5 $\mu \mathrm{m}, 250 \times 19 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid -5% acetonitrile-water initially, grading to 0.1% trifluoroacetic acid- 40% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 210 nm and ESI+ selected ion monitoring [$\mathrm{m} / \mathrm{z}=389$]; $\mathrm{R}_{t}=29.0$ min) to furnish FSA-215031 $\cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$ as a white solid $(4.1 \mathrm{mg}, 66 \%)$.
${ }^{1} \mathrm{H}$ NMR (hydrotrifluoroacetate salt, $\left.500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 6.00(\mathrm{ddd}, J=17.5,10.2,5.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.29(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.19(\mathrm{~m}, 2 \mathrm{H}), 4.77(\mathrm{ddt}, J=8.8,5.7,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.18(\mathrm{dd}$, $J=9.7,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.09(\mathrm{~m}, 2 \mathrm{H}), 3.90(\mathrm{dd}, J=3.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{dd}, J=11.1$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{dd}, J=10.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{~s}, 3 \mathrm{H}), 2.83(\operatorname{app} \mathrm{t}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.37 (app p, $J=7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.29-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.04(\mathrm{~s}, 3 \mathrm{H}), 1.52-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.42-$ $1.32(\mathrm{~m}, 2 \mathrm{H}), 0.96(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$.

The hydroformate salt, FSA-215031 • $\mathrm{HCO}_{2} \mathrm{H}$, was characterized as well. Refer to the Experimental Section of Chapter 3 for details.

Synthesis of clindamycin (1.3) by radical hydrochlorination.

In a $12 \times 100 \mathrm{~mm}$ glass test tube fitted with a magnetic stir bar, an aqueous solution of iron(III) oxalate $\left(0.050 \mathrm{M}, 400 \mu \mathrm{~L}, 0.020 \mathrm{mmol}, 5.0\right.$ equiv) was chilled to $0^{\circ} \mathrm{C}$. Argon was bubbled through this solution for 10 min in order to sparge it of dissolved oxygen gas. A suspension of N acetylsulfanilyl chloride ($4.31,4.7 \mathrm{mg}, 0.020 \mathrm{mmol}, 5.0$ equiv) in ethanol (190 proof, $200 \mu \mathrm{~L}$) was added by micropipette, followed by a solution of FSA-215031 $\cdot \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}(2.0 \mathrm{mg}, 4.0 \mathrm{mmol}, 1$ equiv) in ethanol (190 proof, $200 \mu \mathrm{l}$). Sodium borohydride ($0.96 \mathrm{mg}, 0.025 \mathrm{mmol}, 6.4$ equiv) was finally added at $0{ }^{\circ} \mathrm{C}$ under a blanket of argon gas, causing rapid gas evolution. The mixture gradually changed color from a light-yellow solution to the color of orange juice. After 20 min, LCMS analysis indicated that the reaction was complete; the mixture was treated with ammonium hydroxide solution ($200 \mu \mathrm{~L}$), and the resulting suspension was extracted with $10 \% \mathrm{v} / \mathrm{v}$ methanoldichloromethane $(4 \times 2 \mathrm{~mL})$. The combined organic extracts were dried over sodium sulfate, filtered, and concentrated to provide a colorless film, which was purified by preparative HPLCMS on a Waters SunFire prep C_{18} column $(5 \mu \mathrm{~m}, 19 \times 250 \mathrm{~mm}$; eluting with 0.1% trifluoroacetic acid -5% acetonitrile-water initially, grading to 0.1% trifluoroacetic acid -40% acetonitrile-water over 40 min , with a flow rate of $15 \mathrm{~mL} / \mathrm{min}$; monitored by UV absorbance at 210 nm and ESI + selected ion monitoring $[\mathrm{m} / \mathrm{z}=425] ; \mathrm{R}_{t}=29.0 \mathrm{~min}$) to provide clindamycin hydrotrifluoroacetate (1.3• $\mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}$) and 7-epi-clindamycin hydrotrifluoroacetate as a $74: 26$ mixture ($1.2 \mathrm{mg}, 54 \%$).

The ${ }^{1} \mathrm{H}$ NMR spectrum of the major diastereomer was identical to that of an authentic sample of clindamycin hydrotrifluoroacetate.

Page intentionally left blank

Appendix A. Catalog of X-ray crystal structures

X-ray Crystallographic Laboratory Structure Report

Dr. Shao-Liang Zheng, Harvard University
January 10, 2014

2.9

X-Ray Crystallography: A crystal mounted on a diffractometer was collected data at 100 K . The intensities of the reflections were collected by means of a Bruker APEX II DUO CCD diffractometer ($\mathrm{Cu}_{\mathrm{K} \alpha}$ radiation, $\lambda=1.54178 \AA$), and equipped with an Oxford Cryosystems nitrogen flow apparatus. The collection method involved 1.0° scans in ω at $30^{\circ}, 55^{\circ}, 80^{\circ}$ and 115° in 2θ. Data integration down to $0.84 \AA$ resolution was carried out using SAINT V7.46 A with reflection spot size optimization. Absorption corrections were made with the program SADABS. ${ }^{178}$ The structure was solved by the direct methods procedure and refined by least-squares methods again F^{2} using SHELXS-97 and SHELXL-97 ${ }^{179}$ with OLEX 2 interface. ${ }^{180}$ Non-hydrogen atoms were refined anisotropically, and hydrogen atoms were allowed to ride on the respective atoms. Crystal data as well as details of data collection and refinement are summarized in Table B.1, geometric parameters are shown in B.2, and hydrogen-bond parameters are listed in Table B.3. The Ortep plots produced with SHELXL-97 program, and the other drawings were produced with Accelrys DS Visualizer 2.0. ${ }^{181}$

Table A1. Experimental details

	$\mathrm{mml}-042-\mathrm{np}-\mathrm{d} 2$
Crystal data	$\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{O}_{3}$
Chemical formula	380.47
M_{r}	Orthorhombic, $P 2_{1} 2_{1} 2_{1}$
Crystal system, space group	100
Temperature (K)	$7.7089(1), 13.4375(2), 19.3877(3)$
$a, b, c(\AA)$	$2008.34(5)$
$V\left(\AA^{3}\right)$	

[^111]
Table A1 (Continued)

Z	4
Radiation type	$\mathrm{Cu} K \alpha$
$\mu\left(\mathrm{mm}^{-1}\right)$	0.67
Crystal size (mm)	$0.16 \times 0.12 \times 0.10$
Data collection	
Diffractometer	Bruker D8 goniometer with CCD area detector diffractometer
Absorption correction	$\begin{aligned} & \text { Multi-scan } \\ & S A D A B S \end{aligned}$
$T_{\text {min }}, T_{\text {max }}$	0.901, 0.936
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	49871, 3482, 3417
$R_{\text {int }}$	0.030
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.595
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.024, 0.060, 1.06
No. of reflections	3482
No. of parameters	266
H -atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.12, -0.18
Absolute structure	Flack H D (1983), Acta Cryst. A39, 876-881
Absolute structure parameter	-0.02 (14)

Computer programs: APEX2 v2009.3.0 (Bruker-AXS, 2009), SAINT 7.46A (Bruker-AXS, 2009), SHELXS97 (Sheldrick, 2008), SHELXL97 (Sheldrick, 2008), Bruker SHELXTL (Sheldrick, 2008).

Table A2. Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{O} 1$	$1.2260(14)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.3813(19)$
$\mathrm{C} 1-\mathrm{N} 2$	$1.3625(15)$	$\mathrm{C} 11-\mathrm{H} 11$	0.9500
$\mathrm{C} 1-\mathrm{C} 2$	$1.5236(15)$	$\mathrm{C} 12-\mathrm{C} 13$	$1.3877(19)$
$\mathrm{C} 2-\mathrm{N} 1$	$1.4731(15)$	$\mathrm{C} 12-\mathrm{H} 12$	0.9500
$\mathrm{C} 2-\mathrm{C} 3$	$1.5682(15)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.3909(17)$

Table A2 (Continued)

Table A2 (Continued)

O2-C3-C2	113.45 (9)	C14-C15-C16	119.78 (10)
C4-C3-C2	104.76 (9)	C10-C15-C16	122.00 (10)
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{H} 3$	109.9	N2-C16-C15	112.01 (9)
C4-C3-H3	109.9	N2-C16-C17	112.18 (9)
C2-C3-H3	109.9	C15-C16-C17	110.30 (9)
C5-C4-C6	115.23 (10)	N2-C16-H16	107.4
C5-C4-C3	104.31 (9)	C15-C16-H16	107.4
C6--C4-C3	111.65 (9)	C17-C16-H16	107.4
C5- $\mathrm{C} 4-\mathrm{H} 4$	108.5	O3-C17-C18	112.19 (9)
C6- $\mathrm{C} 4-\mathrm{H} 4$	108.5	O3-C17-C16	108.01 (9)
C3-C4-H4	108.5	C18-C17-C16	109.51 (9)
N1-C5-C4	105.85 (9)	O3-C17-H17	109.0
N1-C5-H5A	110.6	C18-C17-H17	109.0
C4-C5-H5A	110.6	C16-C17-H17	109.0
N1-C5-H5B	110.6	C23-C18-C19	118.79 (11)
C4-C5- 55 B	110.6	C23-C18-C17	120.98 (10)
H5A-C5-H5B	108.7	C19-C18-C17	120.23 (11)
C7-C6-C4	114.93 (10)	C20-C19-C18	120.49 (12)
C7-C6-H6A	108.5	C20-C19-H19	119.8
C4-C6-H6A	108.5	C18-C19-H19	119.8
C7-C6-H6B	108.5	C21-C20-C19	120.39 (13)
C4-C6-H6B	108.5	C21-C20-H20	119.8
H6A-C6-H6B	107.5	C19-C20-H20	119.8
C8-C7-C6	125.35 (12)	C20-C21-C22	119.48 (12)
C8- $\mathrm{C} 7-\mathrm{H} 7$	117.3	C20-C21-H21	120.3
C6-C7-H7	117.3	C22-C21-H21	120.3
C7-C8-H8A	120.0	C23-C22-C21	120.07 (13)
С7-С8- H 8 B	120.0	C23-C22-H22	120.0
H8A-C8-H8B	120.0	C21-C22-H22	120.0
N2-C9-H9A	109.5	C22-C23-C18	120.74 (13)
N2-C9-H9B	109.5	C22-C23-H23	119.6
H9A-C9-H9B	109.5	C18-C23-H23	119.6
N2-C9-H9C	109.5	C2-N1-C5	104.43 (9)
H9A-C9-H9C	109.5	C2-N1-H1	107.9 (10)
H9B-C9-H9C	109.5	C5-N1-H1	109.2 (9)

Table A2 (Continued)

C11-C10-C15	120.87 (12)	C1-N2-C9	116.70 (9)
C11-C10-H10	119.6	C1-N2-C16	125.23 (10)
C15-C10-H10	119.6	C9-N2-C16	118.06 (9)
C12-C11-C10	120.54 (12)	$\mathrm{C} 3-\mathrm{O} 2-\mathrm{H} 2 \mathrm{~A}$	107.2 (12)
C12-C11-H11	119.7	C17-O3-H3A	108.3 (12)
C10-C11-H11	119.7		
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	-12.59 (14)	C10-C15-C16-C17	49.10 (14)
N2- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{N} 1$	169.04 (9)	N2-C16-C17-O3	-42.50 (12)
$\mathrm{O} 1-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	105.89 (11)	C15-C16-C17-O3	-168.11 (9)
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-72.48 (13)	N2-C16-C17-C18	-164.95 (9)
N1-C2-C3-O2	106.65 (10)	C15-C16-C17-C18	69.43 (12)
C1-C2-C3-O2	-13.79 (13)	O3-C17-C18-C23	149.86 (11)
N1-C2-C3-C4	-11.68 (11)	C16-C17-C18-C23	-90.21 (12)
C1-C2-C3-C4	-132.13 (9)	O3-C17-C18-C19	-30.94 (14)
$\mathrm{O} 2-\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	-132.86 (10)	C16-C17-C18-C19	88.98 (13)
C2-C3-C4-C5	-11.31 (11)	C23-C18-C19-C20	0.77 (18)
O2-C3-C4-C6	102.07 (11)	C17-C18-C19-C20	-178.44 (11)
C2- $\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 6$	-136.38 (9)	C18-C19-C20-C21	1.10 (19)
C6--C4-C5-N1	153.54 (10)	C19-C20-C21-C22	-1.9 (2)
C3-C4-C5-N1	30.78 (11)	C20-C21-C22-C23	0.8 (2)
C5-C4-C6-C7	64.17 (14)	C21-C22-C23-C18	1.1 (2)
C3--C4-C6-C7	-177.07 (10)	C19-C18-C23-C22	-1.85 (19)
C4-C6-C7-C8	126.50 (13)	C17-C18-C23-C22	177.35 (11)
C15-C10-C11-C12	0.1 (2)	C1-C2-N1-C5	152.76 (9)
C10-C11-C12-C13	-2.0 (2)	$\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 5$	30.91 (11)
C11-C12-C13-C14	1.77 (19)	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 1-\mathrm{C} 2$	-38.66 (11)
C12-C13-C14-C15	0.44 (19)	$\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 9$	-2.66 (16)
C13-C14-C15-C10	-2.35 (17)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 9$	175.68 (10)
C13-C14-C15-C16	175.80 (11)	O1-C1-N2-C16	176.23 (10)
C11-C10-C15-C14	2.11 (18)	$\mathrm{C} 2-\mathrm{C} 1-\mathrm{N} 2-\mathrm{C} 16$	-5.44 (16)
C11-C10-C15-C16	-176.00 (11)	C15-C16-N2-C1	-112.52 (12)
C14-C15-C16-N2	105.32 (12)	C17-C16-N2-C1	122.81 (11)
C10-C15-C16-N2	-76.60 (14)	C15-C16-N2-C9	66.35 (13)
C14-C15-C16-C17	-128.97 (11)	C17-C16-N2-C9	-58.32 (12)

Table A3. Hydrogen-bond parameters

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}(\AA)$	$\mathrm{H} \cdots A(\AA)$	$D \cdots A(\AA)$	$D-\mathrm{H} \cdots A\left({ }^{\circ}\right)$
$\mathrm{N} 1 — \mathrm{H} 1 \cdots \mathrm{O} 2^{\mathrm{i}}$	$0.884(15)$	$2.160(15)$	$2.9550(13)$	$149.3(12)$
$\mathrm{O} 2 — \mathrm{H} 2 \mathrm{~A} \cdots \mathrm{O} 3$	$0.92(2)$	$1.76(2)$	$2.6785(12)$	$174.6(18)$
$\mathrm{O} 3-\mathrm{H} 3 \mathrm{~A} \cdots \mathrm{~N} 1^{\mathrm{ii}}$	$0.87(2)$	$1.83(2)$	$2.6906(13)$	$169.7(17)$

Symmetry code(s): (i) $x+1 / 2,-y+3 / 2,-z+1$; (ii) $x-1, y, z$.

Figure A1. Perspective views showing 50\% probability displacement.

Figure A2. Three-dimensional supramolecular architecture viewed along the a-axis direction.

X-ray Crystallographic Laboratory Structure Report

Dr. Shao-Liang Zheng, Harvard University
October 13, 2015

X-Ray Crystallography: A crystal mounted on a diffractometer was collected data at 100 K . The intensities of the reflections were collected by means of a Bruker APEX II DUO CCD diffractometer ($\mathrm{Cu}_{\mathrm{K} \alpha}$ radiation, $\lambda=1.54178 \AA$), and equipped with an Oxford Cryosystems nitrogen flow apparatus. The collection method involved 1.0° scans in ω at $-30^{\circ},-55^{\circ},-80^{\circ}, 30^{\circ}, 55^{\circ}, 80^{\circ}$ and 115° in 2θ. Data integration down to $0.84 \AA$ resolution was carried out using SAINT V8.34 C with reflection spot size optimization. Absorption corrections were made with the program SADABS. ${ }^{182}$ The structure was solved by the Intrinsic Phasing methods and refined by leastsquares methods again F^{2} using SHELXT-2014 and SHELXL-2014 ${ }^{183}$ with OLEX 2 interface. Non-hydrogen atoms were refined anisotropically, and hydrogen atoms were allowed to ride on the respective atoms. Crystal data as well as details of data collection and refinement are summarized in Table B.4, geometric parameters are shown in Table B.5, and hydrogen-bond geometric parameters are listed in Table B.6. The Ortep plots produced with SHELXL-2014 program, and the other drawings were produced with Accelrys DS Visualizer 2.0.

Table A4. Experimental details

	mm8-002-np-d
Crystal data	
Chemical formula	$\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{NO}_{5} \mathrm{Si}$
M_{r}	447.63
Crystal system, space group	Monoclinic, $P 2_{1}$
Temperature (K)	100
$a, b, c(\AA)$	$11.7798(16), 6.7133(10), 19.712(3)$
$\beta\left(^{\circ}\right)$	$103.006(7)$
$V\left(\AA^{3}\right)$	$1518.8(4)$
Z	2
Radiation type	Cu Ka

[^112]
Table A4 (Continued)

$\mu\left(\mathrm{mm}^{-1}\right)$	0.90
Crystal size (mm)	$0.12 \times 0.01 \times 0.01$
Data collection	
Diffractometer	Bruker D8 goniometer with CCD area detector diffractometer
Absorption correction	$\begin{aligned} & \text { Multi-scan } \\ & S A D A B S \end{aligned}$
$T_{\text {min }}, T_{\text {max }}$	0.683, 0.864
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	22195, 4853, 3617
$R_{\text {int }}$	0.109
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.596
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.084, 0.231, 1.04
No. of reflections	4853
No. of parameters	314
No. of restraints	85
H -atom treatment	H -atom parameters constrained
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.49, -0.26
Absolute structure	Flack x determined using 1118 quotients $[(\mathrm{I}+)-(\mathrm{I}-)] /[(\mathrm{I}+)+(\mathrm{I}-)]$ (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
Absolute structure parameter	0.05 (5)

Computer programs: APEX3 v2015.5.2 (Bruker-AXS, 2015), SAINT 8.34C (Bruker-AXS, 2014), SHELXT2014 (Sheldrick, 2015), SHELXL2014 (Sheldrick, 2015), Bruker SHELXTL (Sheldrick, 2015).

Table A5. Geometric parameters ($\AA,{ }^{\circ}$)

C1—C6	$1.361(10)$	C20-H20A	0.9800
C1—C2	$1.385(10)$	C20-H20B	0.9800
C1—H1	0.9500	C20-H20C	0.9800
C2-C3	$1.374(13)$	C21-H21A	0.9800
C2-H2	0.9500	C21-H21B	0.9800

Table A5 (Continued)

C3-C4	1.392 (14)	C21-H21C	0.9800
C3-H3	0.9500	C22-C24	1.50 (2)
C4-C5	1.370 (10)	C22-C23	1.57 (2)
C4-H4	0.9500	C22-H22	1.0000
C5-C6	1.392 (11)	C23-H23A	0.9800
C5-H5	0.9500	C23-H23B	0.9800
C6-C7	1.506 (8)	C23-H23C	0.9800
C7-O1	1.430 (9)	C24-H24A	0.9800
C7-H7A	0.9900	C24-H24B	0.9800
C7-H7B	0.9900	C24-H24C	0.9800
C8-O1	1.416 (7)	C14A-C15A	1.248 (19)
C8-C10	1.495 (9)	C15A-Si1A	1.90 (2)
C8-C9	1.510 (10)	Si1A-C16A	1.82 (2)
C8-H8	1.0000	Si1A-C22A	1.94 (2)
C9-H9A	0.9800	Si1A-C19A	1.96 (3)
C9-H9B	0.9800	C16A-C18A	1.53 (3)
C9-H9C	0.9800	C16A-C17A	1.61 (3)
C10-N1	1.312 (8)	C16A-H16A	1.0000
C10-C11	1.504 (9)	C17A-H17D	0.9800
C11-O4	1.413 (8)	C17A-H17E	0.9800
C11-C12	1.555 (9)	C17A-H17F	0.9800
C11-H11	1.0000	C18A-H18D	0.9800
C12-O2	1.451 (7)	C18A-H18E	0.9800
C12-C13	1.510 (9)	C18A-H18F	0.9800
C12-H12	1.0000	C19A-C20A	1.36 (3)
C13-O5	1.422 (8)	C19A-C21A	1.47 (3)
C13-C14A	1.475 (9)	C19A-H19A	1.0000
C13-C14	1.475 (9)	C20A-H20D	0.9800
C13-H13	1.0000	C20A-H20E	0.9800
C13-H13A	1.0000	C20A-H20F	0.9800
C14-C15	1.199 (12)	C21A-H21D	0.9800
C15-Si1	1.851 (13)	C21A-H21E	0.9800
Si1-C16	1.854 (12)	C21A-H21F	0.9800
Si1-C19	1.881 (16)	C22A-C24A	1.49 (3)
Si1-C22	1.931 (17)	C22A-C23A	1.59 (3)

Table A5 (Continued)

C16-C18	1.560 (17)	C22A-H22A	1.0000
C16-C17	1.61 (2)	C23A-H23D	0.9800
C16-H16	1.0000	C23A-H23E	0.9800
C17-H17A	0.9800	C23A-H23F	0.9800
C17-H17B	0.9800	C24A-H24D	0.9800
C17-H17C	0.9800	C24A-H24E	0.9800
C18-H18A	0.9800	C24A-H24F	0.9800
C18-H18B	0.9800	N1-O3	1.261 (7)
C18-H18C	0.9800	N1-O2	1.424 (7)
C19-C20	1.36 (2)	O4-H4A	0.8400
C19-C21	1.50 (2)	O5-H5A	0.8400
C19-H19	1.0000		
C6-C1-C2	122.8 (8)	C19-C20-H20C	109.5
C6- $\mathrm{C} 1-\mathrm{H} 1$	118.6	H20A-C20-H20C	109.5
C2-C1-H1	118.6	H20B-C20-H20C	109.5
C3-C2-C1	117.8 (7)	C19-C21-H21A	109.5
C3-C2-H2	121.1	C19-C21-H21B	109.5
$\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$	121.1	H21A-C21-H21B	109.5
C2-C3-C4	121.5 (7)	C19-C21-H21C	109.5
C2-C3-H3	119.2	H21A-C21-H21C	109.5
C4-C3-H3	119.2	H21B-C21-H21C	109.5
C5-C4-C3	118.3 (9)	C24-C22-C23	111.7 (18)
C5-C4-H4	120.9	C24-C22-Si1	116.5 (14)
C3-C4-H4	120.9	C23-C22-Si1	106.8 (13)
C4-C5-C6	121.9 (8)	C24-C22-H22	107.1
C4-C5-H5	119.1	C23-C22-H22	107.1
C6-C5-H5	119.1	Si1-C22-H22	107.1
C1-C6-C5	117.7 (6)	C22-C23-H23A	109.5
C1-C6-C7	123.6 (7)	C22-C23-H23B	109.5
C5-C6-C7	118.6 (6)	H23A-C23-H23B	109.5
O1-C7-C6	108.4 (5)	C22-C23-H23C	109.5
O1-C7-H7A	110.0	H23A-C23-H23C	109.5
C6-C7- H 7 A	110.0	H23B-C23-H23C	109.5
O1-C7-H7B	110.0	C22-C24-H24A	109.5

Table A5 (Continued)

C6-C7-H7B	110.0	C22-C24-H24B	109.5
H7A-C7-H7B	108.4	H24A-C24-H24B	109.5
O1-C8-C10	111.2 (6)	C22-C24-H24C	109.5
O1-C8-C9	106.4 (5)	H24A-C24-H24C	109.5
C10-C8-C9	113.4 (6)	H24B-C24-H24C	109.5
O1-C8- H 8	108.6	C15A-C14A-C13	170 (4)
C10-C8-H8	108.6	C14A-C15A-Si1A	172 (7)
C9-C8-H8	108.6	C16A-Si1A-C15A	110 (2)
C8-C9-H9A	109.5	C16A-Si1A-C22A	125.3 (15)
C8-C9-H9B	109.5	C15A-Si1A-C22A	109 (3)
H9A-C9-H9B	109.5	C16A-Si1A-C19A	112.3 (16)
C8-C9-H9C	109.5	C15A-Si1A-C19A	106 (3)
H9A-C9-H9C	109.5	C22A-Si1A-C19A	90.8 (17)
H9B-C9-H9C	109.5	C18A-C16A-C17A	115 (2)
N1-C10-C8	121.0 (6)	C18A-C16A-Si1A	102 (2)
N1-C10-C11	109.4 (5)	C17A-C16A-Si1A	113 (2)
C8-C10-C11	129.6 (5)	C18A-C16A-H16A	108.7
O4-C11-C10	113.5 (5)	C17A-C16A-H16A	108.7
O4-C11-C12	113.2 (5)	Si1A-C16A-H16A	108.7
C10-C11-C12	103.2 (5)	C16A-C17A-H17D	109.5
O4-C11-H11	108.9	C16A-C17A-H17E	109.5
C10-C11-H11	108.9	H17D-C17A-H17E	109.5
C12-C11-H11	108.9	C16A-C17A-H17F	109.5
O2-C12- C 13	108.6 (5)	H17D-C17A-H17F	109.5
$\mathrm{O} 2-\mathrm{C} 12-\mathrm{C} 11$	105.6 (5)	H17E-C17A-H17F	109.5
C13-C12-C11	114.4 (5)	C16A-C18A-H18D	109.5
$\mathrm{O} 2-\mathrm{C} 12-\mathrm{H} 12$	109.3	C16A-C18A-H18E	109.5
C13-C12-H12	109.3	H18D-C18A-H18E	109.5
C11-C12-H12	109.3	C16A-C18A-H18F	109.5
O5-C13-C14A	111.8 (5)	H18D-C18A-H18F	109.5
O5-C13-C14	111.8 (5)	H18E-C18A-H18F	109.5
O5-C13-C12	109.5 (5)	C20A-C19A-C21A	111 (3)
C14A-C13-C12	108.9 (6)	C20A-C19A-Si1A	110 (3)
C14-C13-C12	108.9 (6)	C21A-C19A-Si1A	114 (3)
$\mathrm{O} 5-\mathrm{C} 13-\mathrm{H} 13$	108.9	C20A-C19A-H19A	106.9

Table A5 (Continued)

C14-C13-H13	108.9	C21A-C19A-H19A	106.9
C12-C13-H13	108.9	Si1A-C19A-H19A	106.9
O5-C13-H13A	108.9	C19A-C20A-H20D	109.5
C14A-C13-H13A	108.9	C19A-C20A-H20E	109.5
C12-C13-H13A	108.9	H20D-C20A-H20E	109.5
C15-C14-C13	173.3 (17)	C19A-C20A-H20F	109.5
C14-C15-Si1	168 (3)	H20D-C20A-H20F	109.5
C15-Si1-C16	104.6 (11)	H20E-C20A-H20F	109.5
C15-Sil-C19	108.3 (14)	C19A-C21A-H21D	109.5
C16-Si1-C19	111.1 (8)	C19A-C21A-H21E	109.5
C15-Si1-C22	103.5 (9)	H21D-C21A-H21E	109.5
C16-Si1-C22	111.5 (7)	C19A-C21A-H21F	109.5
C19-Si1-C22	116.8 (9)	H21D-C21A-H21F	109.5
C18-C16-C17	111.7 (13)	H21E-C21A-H21F	109.5
C18-C16-Sil	109.4 (8)	$\mathrm{C} 24 \mathrm{~A}-\mathrm{C} 22 \mathrm{~A}-\mathrm{C} 23 \mathrm{~A}$	112 (3)
C17-C16-Sil	114.1 (12)	C24A-C22A-Si1A	114 (3)
C18-C16-H16	107.1	C23A-C22A-Si1A	104 (2)
C17-C16-H16	107.1	$\mathrm{C} 24 \mathrm{~A}-\mathrm{C} 22 \mathrm{~A}-\mathrm{H} 22 \mathrm{~A}$	108.8
Si1-C16-H16	107.1	$\mathrm{C} 23 \mathrm{~A}-\mathrm{C} 22 \mathrm{~A}-\mathrm{H} 22 \mathrm{~A}$	108.8
C16-C17-H17A	109.5	Si1A-C22A-H22A	108.8
C16-C17-H17B	109.5	$\mathrm{C} 22 \mathrm{~A}-\mathrm{C} 23 \mathrm{~A}-\mathrm{H} 23 \mathrm{D}$	109.5
H17A-C17-H17B	109.5	$\mathrm{C} 22 \mathrm{~A}-\mathrm{C} 23 \mathrm{~A}-\mathrm{H} 23 \mathrm{E}$	109.5
C16-C17-H17C	109.5	H23D-C23A-H23E	109.5
H17A-C17-H17C	109.5	$\mathrm{C} 22 \mathrm{~A}-\mathrm{C} 23 \mathrm{~A}-\mathrm{H} 23 \mathrm{~F}$	109.5
H17B-C17-H17C	109.5	$\mathrm{H} 23 \mathrm{D}-\mathrm{C} 23 \mathrm{~A}-\mathrm{H} 23 \mathrm{~F}$	109.5
C16-C18-H18A	109.5	$\mathrm{H} 23 \mathrm{E}-\mathrm{C} 23 \mathrm{~A}-\mathrm{H} 23 \mathrm{~F}$	109.5
C16-C18-H18B	109.5	$\mathrm{C} 22 \mathrm{~A}-\mathrm{C} 24 \mathrm{~A}-\mathrm{H} 24 \mathrm{D}$	109.5
H18A-C18-H18B	109.5	$\mathrm{C} 22 \mathrm{~A}-\mathrm{C} 24 \mathrm{~A}-\mathrm{H} 24 \mathrm{E}$	109.5
C16-C18-H18C	109.5	H24D-C24A-H24E	109.5
H18A-C18-H18C	109.5	$\mathrm{C} 22 \mathrm{~A}-\mathrm{C} 24 \mathrm{~A}-\mathrm{H} 24 \mathrm{~F}$	109.5
H18B-C18-H18C	109.5	$\mathrm{H} 24 \mathrm{D}-\mathrm{C} 24 \mathrm{~A}-\mathrm{H} 24 \mathrm{~F}$	109.5
C20-C19-C21	109.7 (19)	$\mathrm{H} 24 \mathrm{E}-\mathrm{C} 24 \mathrm{~A}-\mathrm{H} 24 \mathrm{~F}$	109.5
C20-C19-Si1	116.0 (15)	$\mathrm{O} 3-\mathrm{N} 1-\mathrm{C} 10$	131.2 (6)
C21-C19-Si1	111.6 (15)	$\mathrm{O} 3-\mathrm{N} 1-\mathrm{O} 2$	114.7 (4)
C20-C19-H19	106.3	$\mathrm{C} 10-\mathrm{N} 1-\mathrm{O} 2$	114.1 (5)

Table A5 (Continued)

C21-C19-H19	106.3	C8-O1-C7	113.6 (5)
Si1-C19-H19	106.3	N1-O2-C12	107.2 (4)
C19-C20-H20A	109.5	C11-O4-H4A	109.5
C19-C20-H20B	109.5	C13-O5-H5A	109.5
H20A-C20-H20B	109.5		
C6- $\mathrm{C} 1-\mathrm{C} 2-\mathrm{C} 3$	-0.4 (13)	C15-Si1-C16-C18	64.9 (15)
C1-C2-C3-C4	0.8 (13)	C19-Si1-C16-C18	-178.5 (10)
C2-C3-C4-C5	-0.5 (14)	C22-Si1-C16-C18	-46.4 (12)
C3-C4-C5-C6	0.0 (13)	C15-Si1-C16-C17	-61.1 (16)
C2- $\mathrm{C} 1-\mathrm{C} 6-\mathrm{C} 5$	-0.1 (12)	C19-Si1-C16-C17	55.5 (14)
C2-C1-C6-C7	179.2 (8)	C22-Si1-C16-C17	-172.4 (12)
C4-C5-C6-C1	0.3 (12)	C15-Si1-C19-C20	37 (2)
C4-C5-C6-C7	-179.0 (8)	C16-Si1-C19-C20	-77.8 (18)
C1-C6-C7-O1	-12.5 (9)	C22-Si1-C19-C20	152.8 (17)
C5-C6-C7-O1	166.8 (7)	C15-Si1-C19-C21	163.2 (17)
$\mathrm{O} 1-\mathrm{C} 8-\mathrm{C} 10-\mathrm{N} 1$	-114.6 (6)	C16-Si1-C19-C21	48.9 (19)
C9-C8-C10-N1	125.6 (7)	C22-Si1-C19-C21	-80.5 (18)
O1-C8-C10-C11	63.3 (9)	O5-C13-C14A-C15A	79 (28)
C9-C8-C10-C11	-56.4 (9)	C12-C13-C14A-C15A	-42 (28)
N1-C10-C11-O4	-117.9 (6)	C15A-Si1A-C16A-C18A	39 (4)
C8-- $10-\mathrm{C} 11-\mathrm{O} 4$	64.0 (8)	C22A-Si1A-C16A-C18A	-95 (3)
N1-C10-C11-C12	4.9 (7)	C19A-Si1A-C16A-C18A	157 (2)
$\mathrm{C} 8-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	-173.2 (6)	C15A-Si1A-C16A-C17A	163 (4)
$\mathrm{O} 4-\mathrm{C} 11-\mathrm{C} 12-\mathrm{O} 2$	116.0 (5)	C22A-Si1A-C16A-C17A	29 (3)
C10- $\mathrm{C} 11-\mathrm{C} 12-\mathrm{O} 2$	-7.1 (6)	C19A-Si1A-C16A-C17A	-79 (2)
$\mathrm{O} 4-\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13$	-124.6 (6)	C8-C10-N1-O3	-0.7 (11)
C10-C11-C12-C13	112.3 (6)	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{N} 1-\mathrm{O} 3$	-179.0 (6)
O2-C12-C13-O5	67.1 (6)	C8-C10-N1-O2	177.5 (5)
C11-C12-C13-O5	-50.6 (7)	$\mathrm{C} 11-\mathrm{C} 10-\mathrm{N} 1-\mathrm{O} 2$	-0.9 (7)
$\mathrm{O} 2-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14 \mathrm{~A}$	-170.4 (5)	C10-C8-O1-C7	65.1 (7)
$\mathrm{C} 11-\mathrm{C} 12-\mathrm{C} 13-\mathrm{C} 14 \mathrm{~A}$	71.9 (7)	C9-C8-O1-C7	-171.1 (6)
O2-C12-C13-C14	-170.4 (5)	C6-C7-O1-C8	172.2 (5)
C11-C12-C13-C14	71.9 (7)	O3-N1-O2-C12	174.4 (5)
C14-C15-Si1-C16	-15 (11)	C10-N1-O2-C12	-4.0 (7)

Table A5 (Continued)

$\mathrm{C} 14-\mathrm{C} 15-\mathrm{Si1}-\mathrm{C} 19$	$-134(11)$	$\mathrm{C} 13-\mathrm{C} 12-\mathrm{O} 2-\mathrm{N} 1$	$-116.4(5)$
$\mathrm{C} 14-\mathrm{C} 15-\mathrm{Si1}-\mathrm{C} 22$	$102(10)$	$\mathrm{C} 11-\mathrm{C} 12-\mathrm{O} 2-\mathrm{N} 1$	$6.8(6)$

Table A6. Hydrogen-bond parameters

$D — \mathrm{H} \cdots A$	$D-\mathrm{H}(\AA)$	$\mathrm{H} \cdots A(\AA)$	$D \cdots A(\AA)$	$D-\mathrm{H} \cdots A\left({ }^{\circ}\right)$
$\mathrm{O} 4 — \mathrm{H} 4 \mathrm{~A} \cdots \mathrm{O}^{\mathrm{i}}$	0.84	2.43	$2.727(6)$	101.5
$\mathrm{O} 5 — \mathrm{H} 5 \mathrm{~A} \cdots \mathrm{O} 2$	0.84	2.46	$2.871(6)$	111.1

Symmetry code(s): (i) $-x+1, y-1 / 2,-z+1$.

Figure A3. Perspective views showing 50\% probability displacement

Figure A4. Three-dimensional supramolecular architecture viewed along the b-axis direction.

X-ray Crystallographic Laboratory Structure Report

Dr. Shao-Liang Zheng, Harvard University
December 10, 2015

3.44b

X-Ray Crystallography: A crystal mounted on a diffractometer was collected data at 100 K . The intensities of the reflections were collected by means of a Bruker APEX II DUO CCD diffractometer ($\mathrm{Cu}_{\mathrm{K} \alpha}$ radiation, $\lambda=1.54178 \AA$), and equipped with an Oxford Cryosystems nitrogen flow apparatus. The collection method involved 1.0° scans in ω at $-30^{\circ},-55^{\circ},-80^{\circ}, 30^{\circ}, 55^{\circ}, 80^{\circ}$ and 115° in 2θ. Data integration down to $0.84 \AA$ resolution was carried out using SAINT V8.34 C with reflection spot size optimization. Absorption corrections were made with the program SADABS (Bruker diffractometer, 2014). The structure was solved by the Intrinsic Phasing methods and refined by least-squares methods again F^{2} using SHELXT-2014 and SHELXL-2014 with OLEX 2 interface. Non-hydrogen atoms were refined anisotropically, and hydrogen atoms were allowed to ride on the respective atoms. Crystal data as well as details of data collection and refinement are summarized in Table B.7, geometric parameters are shown in Table B. 8 and hydrogen-bond parameters are listed in Table B.9. The Ortep plots produced with SHELXL-2014 program, and the other drawings were produced with Accelrys DS Visualizer 2.0.

Table A7. Experimental details

$\mathrm{mm} 8-092$	
Crystal data	$\mathrm{C}_{24} \mathrm{H}_{37} \mathrm{NO}_{5} \mathrm{Si}$
M_{r}	447.63
Crystal system, space group	Monoclinic, $P 2_{1}$
Temperature (K)	100
$a, b, c(\AA)$	$10.4700(7), 6.9042(4), 17.1454(10)$
$\beta\left(^{\circ}\right)$	$92.914(5)$
$V\left(\AA^{3}\right)$	$1237.79(13)$
Z	2
Radiation type	$\mathrm{Cu} \mathrm{K} \mathrm{\alpha}$
$\mu\left(\mathrm{~mm}^{-1}\right)$	1.11
Crystal size (mm)	$0.16 \times 0.08 \times 0.01$

Table A7 (Continued)

Data collection	
Diffractometer	Bruker D8 goniometer with CCD area detector diffractometer
Absorption correction	$\begin{aligned} & \text { Multi-scan } \\ & S A D A B S \end{aligned}$
$T_{\text {min }}, T_{\text {max }}$	0.688, 0.864
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	16287, 3956, 3393
$R_{\text {int }}$	0.081
$(\sin \theta / \lambda)_{\text {max }}\left(\AA^{-1}\right)$	0.596
Refinement	
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	0.055, 0.143, 1.10
No. of reflections	3956
No. of parameters	291
No. of restraints	1
H-atom treatment	H atoms treated by a mixture of independent and constrained refinement
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	0.32, -0.41
Absolute structure	Flack x determined using 1252 quotients $[(\mathrm{I}+)-(\mathrm{I}-)] /[(\mathrm{I}+)+(\mathrm{I}-)]$ (Parsons, Flack and Wagner, Acta Cryst. B69 (2013) 249-259).
Absolute structure parameter	0.01 (5)

Computer programs: APEX3 v2015.5.2 (Bruker-AXS, 2015), SAINT 8.34C (Bruker-AXS, 2014), SHELXT2014 (Sheldrick, 2015), SHELXL2014 (Sheldrick, 2015), Bruker SHELXTL (Sheldrick, 2015).

Table A8. Geometric parameters ($\AA{ }^{\circ},{ }^{\circ}$)

$\mathrm{C} 1-\mathrm{C} 2$	$1.184(7)$	$\mathrm{C} 16-\mathrm{C} 17$	$1.534(8)$
$\mathrm{C} 1-\mathrm{H} 1$	0.9500	$\mathrm{C} 16-\mathrm{C} 18$	$1.535(7)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.480(7)$	$\mathrm{C} 16-\mathrm{Si1}$	$1.885(5)$
$\mathrm{C} 3-\mathrm{O} 1$	$1.419(5)$	$\mathrm{C} 16-\mathrm{H} 16$	1.0000
$\mathrm{C} 3-\mathrm{C} 4$	$1.529(6)$	$\mathrm{C} 17-\mathrm{H} 17 \mathrm{~A}$	0.9800
$\mathrm{C} 3-\mathrm{H} 3$	1.0000	C17-H17B	0.9800
$\mathrm{C} 4-\mathrm{O} 4$	$1.454(5)$	C17-H17C	0.9800
$\mathrm{C} 4-\mathrm{C} 5$	$1.537(6)$	C18-H18A	0.9800

Table A8 (Continued)

C4-H4	1.0000	C18-H18B	0.9800
C5-O2	1.410 (6)	C18-H18C	0.9800
C5-C6	1.495 (6)	C19-C21	1.538 (7)
C5-H5	1.0000	C19-C20	1.542 (7)
C6-N1	1.300 (6)	C19-Si1	1.882 (6)
C6-C7	1.505 (6)	C19-H19	1.0000
C7-O3	1.426 (6)	C20-H20A	0.9800
C7-C15	1.516 (7)	C20-H20B	0.9800
C7-H7	1.0000	C20-H20C	0.9800
C8-O3	1.435 (6)	C21-H21A	0.9800
C8-C9	1.508 (7)	C21-H21B	0.9800
C8-H8A	0.9900	C21-H21C	0.9800
С8-H8B	0.9900	C22-C23	1.525 (7)
C9-C10	1.379 (8)	C22-C24	1.532 (7)
C9-C14	1.392 (8)	C22-Sil	1.880 (5)
C10-C11	1.396 (7)	C22-H22	1.0000
C10-H10	0.9500	C23-H23A	0.9800
C11-C12	1.371 (9)	C23-H23B	0.9800
C11-H11	0.9500	C23-H23C	0.9800
C12-C13	1.385 (9)	C24-H24A	0.9800
C12-H12	0.9500	C24-H24B	0.9800
C13-C14	1.403 (8)	C24-H24C	0.9800
C13-H13	0.9500	N1-O5	1.259 (5)
C14-H14	0.9500	N1-O4	1.435 (4)
C15-H15A	0.9800	O1—Sil	1.672 (3)
C15-H15B	0.9800	O2-H2	0.84 (8)
C15-H15C	0.9800		
C2- $\mathrm{C} 1-\mathrm{H} 1$	180.0	C18-C16-H16	106.3
C1-C2-C3	176.0 (5)	Si1-C16-H16	106.3
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 2$	112.5 (3)	C16-C17-H17A	109.5
O1-C3-C4	105.6 (4)	C16-C17-H17B	109.5
C2-C3-C4	109.9 (4)	H17A-C17-H17B	109.5
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{H} 3$	109.6	C16-C17-H17C	109.5
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{H} 3$	109.6	H17A-C17-H17C	109.5

Table A8 (Continued)

C4-C3-H3	109.6	H17B-C17-H17C	109.5
O4-C4-C3	107.5 (4)	C16-C18-H18A	109.5
O4-C4-C5	105.5 (3)	C16-C18-H18B	109.5
C3-C4-C5	115.0 (4)	H18A-C18-H18B	109.5
O4-C4-H4	109.6	C16-C18-H18C	109.5
C3-C4-H4	109.6	H18A-C18-H18C	109.5
C5-C4-H4	109.6	H18B-C18-H18C	109.5
O2-C5-C6	110.1 (4)	C21-C19-C20	110.6 (4)
O2-C5-C4	117.0 (4)	C21-C19-Sil	116.6 (4)
C6-C5-C4	99.9 (4)	C20-C19-Sil	113.9 (4)
O2-C5-H5	109.8	C21-C19-H19	104.8
C6-C5-H5	109.8	C20-C19-H19	104.8
C4-C5-H5	109.8	Si1-C19-H19	104.8
N1-C6-C5	110.2 (4)	C19-C20-H20A	109.5
N1-C6-C7	121.0 (4)	C19-C20-H20B	109.5
C5-C6-C7	128.5 (4)	H20A-C20-H20B	109.5
O3-C7-C6	108.6 (4)	C19-C20-H20C	109.5
O3-C7-C15	107.1 (4)	H20A-C20-H20C	109.5
C6-C7-C15	112.0 (4)	H20B-C20-H20C	109.5
O3-C7-H7	109.7	C19-C21-H21A	109.5
C6-- $7-\mathrm{H} 7$	109.7	C19-C21-H21B	109.5
C15-C7-H7	109.7	H21A-C21-H21B	109.5
O3-C8-C9	109.9 (4)	C19-C21-H21C	109.5
O3-C8-H8A	109.7	H21A-C21-H21C	109.5
C9-C8-H8A	109.7	H21B-C21-H21C	109.5
O3-C8-H8B	109.7	C23-C22-C24	109.9 (4)
С9-C8-H8B	109.7	C23-C22-Sil	113.2 (4)
H8A-C8-H8B	108.2	C24-C22-Si1	113.9 (3)
C10-C9-C14	119.5 (5)	C23-C22-H22	106.4
C10-C9-C8	122.0 (5)	C24-C22-H22	106.4
C14-C9-C8	118.3 (5)	Si1-C22-H22	106.4
C9-C10-C11	120.4 (6)	C22-C23-H23A	109.5
C9-- $\mathrm{C} 10-\mathrm{H} 10$	119.8	C22-C23-H23B	109.5
C11-C10-H10	119.8	H23A-C23-H23B	109.5
C12-C11-C10	120.3 (6)	C22-C23-H23C	109.5

Table A8 (Continued)

C12-C11-H11	119.9	H23A-C23-H23C	109.5
C10-C11-H11	119.9	H23B-C23-H23C	109.5
C11-C12-C13	120.1 (5)	C22-C24-H24A	109.5
C11-C12-H12	119.9	C22-C24-H24B	109.5
C13-C12-H12	119.9	H24A-C24-H24B	109.5
C12-C13-C14	119.8 (6)	C22-C24-H24C	109.5
C12-C13-H13	120.1	H24A-C24-H24C	109.5
C14-C13-H13	120.1	H24B-C24-H24C	109.5
C9-C14-C13	119.9 (6)	O5-N1-C6	132.6 (4)
C9-C14-H14	120.1	O5-N1-O4	114.4 (3)
C13-C14-H14	120.1	C6-N1-O4	112.9 (4)
C7-C15-H15A	109.5	C3-O1-Si1	127.9 (3)
C7-C15-H15B	109.5	C5-O2-H2	117 (6)
H15A-C15-H15B	109.5	C7-O3-C8	113.0 (4)
C7-C15-H15C	109.5	N1-O4-C4	104.0 (3)
H15A-C15-H15C	109.5	O1-Si1-C22	103.0 (2)
H15B-C15-H15C	109.5	O1—Si1-C19	114.1 (2)
C17-C16-C18	109.8 (4)	C22-Si1-C19	113.2 (2)
C17-C16-Sil	112.5 (3)	O1—Si1-C16	107.2 (2)
C18-C16-Si1	115.0 (4)	C22-Si1-C16	110.3 (2)
C17-C16-H16	106.3	C19-Si1-C16	108.7 (2)
$\mathrm{O} 1-\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 4$	179.1 (3)	C2-C3-O1-Si1	-84.3 (5)
C2-C3-C4-O4	57.6 (5)	C4-C3-O1-Si1	155.9 (3)
O1-C3-C4-C5	-63.8 (5)	C6-C7-O3-C8	73.1 (5)
C2- 3 3- $\mathrm{C} 4-\mathrm{C} 5$	174.7 (4)	C15-C7-O3-C8	-165.7 (4)
$\mathrm{O} 4-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 2$	91.9 (5)	C9-C8-O3-C7	-156.6 (4)
C3-C4-C5-O2	-26.3 (6)	O5-N1-O4-C4	170.6 (4)
O4-C4-C5-C6	-26.8 (5)	C6-N1-O4-C4	-12.0 (5)
C3-C4-C5-C6	-145.0 (4)	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{O} 4-\mathrm{N} 1$	147.5 (3)
O2-C5-C6-N1	-103.3 (5)	C5-C4-O4-N1	24.3 (5)
C4-C5-C6-N1	20.4 (5)	C3-O1-Si1-C22	-149.6 (3)
O2-C5-C6-C7	69.8 (6)	C3-O1-Si1-C19	-26.4 (4)
C4-C5-C6-C7	-166.5 (5)	C3-O1-Si1-C16	94.0 (4)
N1-C6-C7-O3	-162.7 (5)	C23-C22-Si1-O1	170.0 (4)

Table A8 (Continued)

C5-C6-C7-O3	24.8 (7)	C24-C22-Si1-O1	43.5 (4)
N1-C6-C7-C15	79.2 (6)	C23-C22-Si1-C19	46.3 (5)
C5-C6-C7-C15	-93.3 (6)	C24-C22-Si1-C19	-80.2 (4)
O3-C8-C9-C10	26.4 (6)	C23-C22-Si1-C16	-75.8 (5)
O3-C8-C9-C14	-158.1 (4)	C24-C22-Si1-C16	157.7 (4)
C14-C9-C10-C11	0.3 (7)	C21-C19-Si1-O1	-67.6 (4)
C8-C9-C10-C11	175.7 (5)	C20-C19-Sil-O1	63.1 (4)
C9-C10-C11-C12	-1.3 (8)	C21-C19-Si1-C22	49.8 (4)
C10-C11-C12-C13	1.4 (9)	C20-C19-Si1-C22	-179.5 (3)
C11-C12-C13-C14	-0.6 (8)	C21-C19-Si1-C16	172.8 (4)
C10-C9-C14-C13	0.5 (7)	C20-C19-Si1-C16	-56.5 (4)
C8-C9-C14-C13	-175.1 (5)	C17-C16-Si1-O1	64.1 (4)
C12-C13-C14-C9	-0.3 (8)	C18-C16-Sil-O1	-169.2 (4)
C5-C6-N1-O5	170.6 (5)	C17-C16-Si1-C22	-47.4 (5)
C7-C6-N1-O5	-3.1 (9)	C18-C16-Sil-C22	79.3 (5)
C5-C6-N1-O4	-6.2 (6)	C17-C16-Sil-C19	-172.1 (4)
C7-C6-N1-O4	-179.9 (4)	C18-C16-Sil-C19	-45.4 (5)

Table A9. Hydrogen-bond parameters

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}(\AA)$	$\mathrm{H} \cdots A(\AA)$	$D \cdots A(\AA)$	$D-\mathrm{H} \cdots A\left({ }^{\circ}\right)$
$\mathrm{O} 2-\mathrm{H} 2 \cdots \mathrm{O} 5^{\mathrm{i}}$	$0.84(8)$	$1.97(8)$	$2.798(5)$	$167(8)$

Symmetry code(s): (i) $-x+1, y-1 / 2,-z+1$.

Figure A5. Perspective views showing 50\% probability displacement

Figure A6. Three-dimensional supramolecular architecture viewed along the b-axis direction.

X-ray Crystallographic Laboratory Structure Report

Dr. Shao-Liang Zheng, Harvard University
December 10, 2015

X-Ray Crystallography: A crystal mounted on a diffractometer was collected data at 100 K . The intensities of the reflections were collected by means of a Bruker APEX II CCD diffractometer ($\mathrm{Mo}_{\mathrm{K} \alpha}$ radiation, $\lambda=0.71073 \AA$), and equipped with an Oxford Cryosystems nitrogen flow apparatus. The collection method involved 0.5° scans in ω at 28° in 2θ. Data integration down to $0.78 \AA$ resolution was carried out using SAINT V8.37A with reflection spot size optimization. Absorption corrections were made with the program SADABS. ${ }^{184}$ The structure was solved by the Intrinsic Phasing methods and refined by least-squares methods again F^{2} using SHELXT-2014 and SHELXL-2014 with OLEX 2 interface. Non-hydrogen atoms were refined anisotropically, and hydrogen atoms were allowed to ride on the respective atoms. Crystal data as well as details of data collection and refinement are summarized in Table B.10, geometric parameters are shown in Table B. 11 and hydrogen-bond parameters are listed in Table B.12. The Ortep plots produced with SHELXL-2014 program, and the other drawings were produced with Accelrys DS Visualizer 2.0.

Table A10. Experimental details

	$\mathrm{mml1}-029-\mathrm{c}$
Crystal data	$\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{ClNO}_{8} \mathrm{~S}$
Chemical formula	427.89
M_{r}	Monoclinic, $P 2_{1}$
Crystal system, space group	100
Temperature (K)	$6.0507(3), 9.9307(4), 16.3874(7)$
$a, b, c(\AA)$	$97.2807(15)$
$\beta\left({ }^{\circ}\right)$	$976.74(8)$
$V\left(\AA^{3}\right)$	2
Z	Mo Ka
Radiation type	0.35
$\mu\left(\mathrm{~mm}^{-1}\right)$	

[^113]
Table A10 (Continued)

Crystal size (mm)	$0.20 \times 0.12 \times 0.06$
Data collection	
Diffractometer	Bruker D8 goniometer with CCD area detector
Absorption correction	Multi-scan $S A D A B S$
$T_{\min ,} T_{\max }$	$0.806,0.862$
No. of measured, independent and observed $[I>2 \sigma(I)]$ reflections	$7929,4202,3942$
$R_{\text {int }}$	0.020
$(\sin \theta / \lambda)_{\max }\left(\AA^{-1}\right)$	0.641
Refinement	$0.032,0.067,1.08$
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right], w R\left(F^{2}\right), S$	4202
No. of reflections	274
No. of parameters	1
No. of restraints	H atoms treated by a mixture of independent and constrained refinement
H-atom treatment	$0.22,-0.29$
$\Delta \rho_{\text {max }}, \Delta \rho_{\text {min }}\left(\mathrm{e} \AA^{-3}\right)$	Flack x determined using 1719 quotients $[(\mathrm{I}+)-(\mathrm{I}-)] /[(\mathrm{I}+)+(\mathrm{I}-)]$ (Parsons, Flack and Wagner, Acta Cryst. B69 $(2013) 249-259)$. Absolute structure
Absolute structure parameter	$-0.02(2)$

Computer programs: APEX3 v2016.1-0 (Bruker-AXS, 2016), SAINT 8.37A (Bruker-AXS, 2016), SHELXT2014 (Sheldrick, 2015), SHELXL2014 (Sheldrick, 2015), Bruker SHELXTL (Sheldrick, 2015).

Table A11. Geometric parameters ($\AA,{ }^{\circ}$)

$\mathrm{S} 1-\mathrm{O} 8$	$1.428(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.524(4)$
$\mathrm{S} 1-\mathrm{O} 7$	$1.434(2)$	$\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	1.0000
$\mathrm{~S} 1-\mathrm{O} 6$	$1.578(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.531(4)$
$\mathrm{S} 1-\mathrm{C} 10$	$1.747(3)$	$\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	1.0000
$\mathrm{O} 1-\mathrm{C} 2$	$1.428(3)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.506(4)$
$\mathrm{O} 1-\mathrm{H} 1$	$0.72(4)$	$\mathrm{C} 6-\mathrm{H} 6$	1.0000

Table A11 (Continued)

O2-C8	1.435 (3)	C7-C8	1.524 (4)
O2-C4	1.435 (3)	C7-H7	1.0000
O3-C5	1.432 (3)	C8-C9	1.525 (4)
O3-H3	0.74 (4)	C8-H8	1.0000
O4-C6	1.430 (3)	C9—H9A	0.9900
O4-H4	0.76 (4)	C9-H9B	0.9900
O5-C7	1.431 (3)	C10-C11	1.387 (4)
O5-H5	0.73 (4)	C10-C15	1.394 (4)
O6-C9	1.471 (3)	C11-C12	1.387 (4)
N1-C3	1.491 (4)	C11-H11	0.9500
N1—H1A	0.84 (4)	C12-C13	1.387 (5)
N1-H1B	0.91 (4)	C12-H12	0.9500
N1-H1C	0.90 (4)	C13-C14	1.391 (5)
$\mathrm{C} 1-\mathrm{C} 2$	1.513 (4)	C13-C16	1.505 (4)
C1—H1D	0.9800	C14-C15	1.383 (4)
C1-H1E	0.9800	C14-H14	0.9500
C1-H1F	0.9800	C15-H15	0.9500
C2-C3	1.525 (4)	C16-H16A	0.9800
C2-H2	1.0000	C16-H16B	0.9800
$\mathrm{C} 3-\mathrm{C} 4$	1.530 (4)	C16-H16C	0.9800
C3-H3A	1.0000		
O8-S1-07	119.62 (15)	O4-C6-C7	110.6 (2)
O8-S1-O6	103.82 (12)	O4-C6-C5	107.8 (2)
O7-S1-O6	108.86 (12)	C7-C6-C5	111.2 (2)
O8-S1-C10	110.90 (14)	O4-C6-H6	109.1
O7-S1-C10	109.04 (15)	C7-C6-H6	109.1
O6-S1-C10	103.23 (12)	C5-C6-H6	109.1
C2-O1-H1	108 (3)	O5-C7-C6	108.3 (2)
C8-O2-C4	115.4 (2)	O5-C7-C8	111.0 (2)
C5-O3-H3	106 (3)	C6-C7-C8	111.7 (2)
C6-O4-H4	106 (3)	O5-C7-H7	108.6
C7-O5-H5	105 (3)	C6-C7-H7	108.6
C9-O6-S1	117.63 (16)	C8-C7-H7	108.6
C3-N1-H1A	110 (2)	O2-C8-C7	110.2 (2)

Table A11 (Continued)

C3-N1-H1B	112 (2)	O2-C8-C9	111.7 (2)
H1A-N1-H1B	106 (3)	C7-C8-C9	113.3 (2)
C3-N1-H1C	114 (2)	O2-C8-H8	107.1
H1A-N1-H1C	109 (3)	C7-C8-H8	107.1
H1B-N1-H1C	107 (3)	C9-C8-H8	107.1
C2-C1-H1D	109.5	O6-C9-C8	106.3 (2)
C2-C1-H1E	109.5	O6-C9-H9A	110.5
H1D-C1-H1E	109.5	C8-C9-H9A	110.5
$\mathrm{C} 2-\mathrm{C} 1-\mathrm{H} 1 \mathrm{~F}$	109.5	O6-C9-H9B	110.5
H1D-C1-H1F	109.5	C8-C9-H9B	110.5
H1E-C1-H1F	109.5	H9A-C9-H9B	108.7
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 1$	111.3 (2)	C11-C10-C15	120.1 (3)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3$	107.6 (2)	C11-C10-S1	120.1 (2)
C1-C2-C3	113.5 (2)	C15-C10-S1	119.6 (2)
O1-C2-H2	108.1	C12-C11-C10	119.5 (3)
C1-C2-H2	108.1	C12-C11-H11	120.3
C3-C2-H2	108.1	C10-C11-H11	120.3
N1-C3-C2	108.6 (2)	C11-C12-C13	121.3 (3)
N1-C3-C4	109.8 (2)	C11-C12-H12	119.3
C2-C3-C4	117.2 (2)	C13-C12-H12	119.3
N1-C3-H3A	106.9	C12-C13-C14	118.2 (3)
C2-C3-H3A	106.9	C12-C13-C16	120.7 (3)
C4-C3-H3A	106.9	C14-C13-C16	121.1 (3)
O2- $\mathrm{C} 4-\mathrm{C} 5$	112.1 (2)	C15-C14-C13	121.5 (3)
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 3$	102.8 (2)	C15-C14-H14	119.3
C5-C4-C3	117.1 (2)	C13-C14-H14	119.3
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{H} 4 \mathrm{~A}$	108.1	C14-C15-C10	119.2 (3)
C5-C4-H4A	108.1	C14-C15-H15	120.4
C3-C4-H4A	108.1	C10-C15-H15	120.4
O3-C5-C4	110.1 (2)	C13-C16-H16A	109.5
O3-C5-C6	109.8 (2)	C13-C16-H16B	109.5
C4-C5-C6	108.0 (2)	H16A-C16-H16B	109.5
$\mathrm{O} 3-\mathrm{C} 5-\mathrm{H} 5 \mathrm{~A}$	109.6	C13-C16-H16C	109.5
C4-C5-H5A	109.6	H16A-C16-H16C	109.5
C6-C5-H5A	109.6	H16B-C16-H16C	109.5

Table A11 (Continued)

O8-S1-O6-C9	-176.1 (2)	C4-O2-C8-C7	-54.4 (3)
O7-S1-O6-C9	-47.6 (2)	C4-O2-C8-C9	72.5 (3)
C10-S1-O6-C9	68.1 (2)	O5-C7-C8-O2	173.5 (2)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{N} 1$	-53.8 (3)	C6-C7-C8-O2	52.5 (3)
C1-C2-C3-N1	-177.4 (2)	O5-C7-C8-C9	47.5 (3)
$\mathrm{O} 1-\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 4$	71.3 (3)	C6-C7-C8-C9	-73.5 (3)
C1-C2-C3-C4	-52.3 (3)	S1-O6-C9-C8	134.41 (19)
C8-O2-C4-C5	57.4 (3)	O2-C8-C9-O6	59.8 (3)
C8-O2-C4-C3	-175.9 (2)	C7-C8-C9-O6	-175.1 (2)
N1-C3-C4-O2	-55.1 (3)	O8-S1-C10-C11	156.8 (2)
C2-C3-C4-O2	-179.6 (2)	O7-S1-C10-C11	23.1 (3)
N1-C3-C4-C5	68.3 (3)	O6-S1-C10-C11	-92.5 (2)
C2-C3-C4-C5	-56.1 (3)	O8-S1-C10-C15	-27.4 (3)
$\mathrm{O} 2-\mathrm{C} 4-\mathrm{C} 5-\mathrm{O} 3$	64.8 (3)	O7-S1-C10-C15	-161.2 (2)
C3--C4-C5-O3	-53.7 (3)	O6-S1-C10-C15	83.2 (2)
O2-C4-C5-C6	-55.1 (3)	C15-C10-C11-C12	-2.8 (4)
C3-C4-C5-C6	-173.6 (2)	$\mathrm{S} 1-\mathrm{C} 10-\mathrm{C} 11-\mathrm{C} 12$	172.9 (2)
O3-C5-C6-O4	56.1 (3)	C10-C11-C12-C13	-0.2 (4)
C4-C5-C6-O4	176.1 (2)	C11-C12-C13-C14	3.9 (4)
O3-C5-C6-C7	-65.3 (3)	C11-C12-C13-C16	-175.8 (3)
C4-C5-C6-C7	54.7 (3)	C12-C13-C14-C15	-4.7 (4)
$\mathrm{O} 4-\mathrm{C} 6-\mathrm{C} 7-\mathrm{O} 5$	62.9 (3)	C16-C13-C14-C15	175.0 (3)
C5-C6-C7-O5	-177.4 (2)	C13-C14-C15-C10	1.7 (4)
O4-C6-C7-C8	-174.6(2)	C11-C10-C15-C14	2.1 (4)
C5-C6-C7-C8	-54.8 (3)	S1-C10-C15-C14	-173.7 (2)

Table A12. Hydrogen-bond parameters

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}(\AA)$	$\mathrm{H} \cdots A(\AA)$	$D \cdots A(\AA)$	$D-\mathrm{H} \cdots A\left({ }^{\circ}\right)$
$\mathrm{O} 4 — \mathrm{H} 4 \cdots \mathrm{O} 5$	$0.76(4)$	$2.55(4)$	$2.832(3)$	$104(4)$
$\mathrm{N} 1 — \mathrm{H} 1 \mathrm{~B} \cdots \mathrm{O} 1$	$0.91(4)$	$2.31(4)$	$2.737(3)$	$108(3)$
$\mathrm{N} 1 — \mathrm{H} 1 \mathrm{C} \cdots \mathrm{O} 2$	$0.90(4)$	$2.29(4)$	$2.686(3)$	$107(3)$
$\mathrm{N} 1 — \mathrm{H} 1 \mathrm{~B} \cdots \mathrm{O} 3$	$0.91(4)$	$2.43(3)$	$2.789(3)$	$104(2)$
$\mathrm{O} 1 — \mathrm{H} 1 \cdots \mathrm{Cl} 1^{\mathrm{i}}$	$0.72(4)$	$2.47(4)$	$3.155(2)$	$160(4)$
$\mathrm{O} 3-\mathrm{H} 3 \cdots \mathrm{Cl} 1^{\mathrm{ii}}$	$0.74(4)$	$2.45(4)$	$3.176(2)$	$170(5)$

Table A12 (Continued)

$\mathrm{O} 5 — \mathrm{H} 5 \cdots \mathrm{Cl} 1^{\mathrm{iii}}$	$0.73(4)$	$2.38(4)$	$3.108(3)$	$172(4)$
$\mathrm{N} 1 — \mathrm{H} 1 \mathrm{~A} \cdots \mathrm{Cl} 11^{\mathrm{iv}}$	$0.84(4)$	$2.36(4)$	$3.191(3)$	$168(3)$
$\mathrm{N} 1 — \mathrm{H} 1 \mathrm{~B} \cdots \mathrm{O} 4^{\mathrm{i}}$	$0.91(4)$	$2.23(4)$	$2.847(3)$	$125(3)$

Symmetry code(s): (i) $-x-1, y+1 / 2,-z$; (ii) $x-1, y, z$; (iii) $-x, y-1 / 2,-z$; (iv) $-x, y+1 / 2,-z$.

Figure A7. Perspective views showing 50% probability displacement

Figure A8. Three-dimensional supramolecular architecture viewed along the a-axis direction.

Appendix B. Catalog of synthetic lincosamide structures

According to Myers laboratory convention, antibiotic candidates are assigned FSA (fully synthetic antibiotic) numbers, permitting their identification according to the specific chemical experiment that generated them. The coding scheme used (as of May 2018) is depicted below:

FSA-22095

FSA-412090

FSA-510026

FSA-412092

FSA-510027

FSA-412094

FSA-510031
FSA-510032

β-Hydroxy prolinamides

FSA-21194

FSA-21141

FSA-23003

FSA-22018

FSA-21147

FSA-23001

FSA-22035

FSA-21193

FSA-22093

FSA-22097

FSA-21134

FSA-22099

FSA-23023

FSA-23010

FSA-23011

FSA-22090a

FSA-22090b

FSA-506046

FSA-506008

FSA-506016

FSA-506006

FSA-506015

FSA-22090c
FSA-23005

FSA-506044
7-Deoxyaminolincomycin and derivatives

FSA-215038

FSA-215049

FSA-215081

FSA-215082

FSA-215054

FSA-215025d

FSA-215070

FSA-215071

FSA-215072

FSA-215059

FSA-215064

FSA-215028c

FSA-60127

FSA-60132a

FSA-60144

FSA-60145

FSA-60151

FSA-60169

FSA-60149

FSA-60154

FSA-60167

FSA-60132b

FSA-60131

FSA-60134

FSA-60146

FSA-60165

FSA-60168

FSA-60147

FSA-60142

FSA-60159

FSA-60156

FSA-60157

FSA-24039

FSA-24036

FSA-507051

FSA-507052

FSA-511020

FSA-24041

FSA-501076

FSA-507007

FSA-507057

FSA-510001

FSA-22091

FSA-501099

FSA-507041

FSA-507053

FSA-510002

FSA-24040

FSA-504059

FSA-507031

FSA-507060

FSA-510003

FSA-24035

FSA-504062

FSA-507056

FSA-511019

FSA-510006

FSAA-511033

FSA-511044

FSA-511077

FSA-510065

FSA-510021

FSA-511045

FSA-511078

FSA-510022

FSA-509019

FSA-512011

FSA-510011

FSA-510072

FSA-511046

FSA-507061

FSA-512012

FSA-510073

FSA-509018

FSA-511100

FSA-510012

FSA-510074

FSA-503001

FSA-503002

FSA-503003

FSA-502002

FSA-504049

FSA-504050

FSA-503073

FSA-503004

FSA-504057

FSA-504063

Oxepinoprolinamides

FSA-27049

FSA-212034

FSA-214009b

FSA-211030

FSA-213061

FSA-213064

FSA-214009a

㕶

FSA-214043

FSA-214082a

FSA-214084

FSA-215002

FSA-215003

FSA-214082b

FSA-214099

FSA-214087

FSA-215036

FSA-215077

FSA-214083a

FSA-214088

FSA-216092

FSA-217003

FSA-215031

FSA-217031

FSA-217009

FSA-217021a/b

6-Modified azepanamides

FSA-218012

FSA-218013

FSA-217098

FSA-218008

FSA-217099

FSA-218020c

FSA-218023

FSA-218002

FSA-212009

FSA-212011

FSA-212075

FSA-212023

FSA-212022

FSA-212030

FSA-212019

FSA-212021

FSA-212015

7-Arylthio azepanamides

FSA-213026

FSA-212048

FSA-212052a

FSA-212052b

FSA-212066

FSA-212062b

FSA-213008

FSA-213037

FSA-45064

FSA-45031a

FSA-46029b

FSA-45066

FSA-45031b

FSA-45070

7-Chloro azepanamides

FSA-45068

FSA-45062

FSA-45076

FSA-45068b

FSA-46027

FSA-45090

FSA-45030

FSA-46029

FSA-46001

FSA-45062

FSA-45098

FSA-46049b

FSA-47004

FSA-46084

FSA-46033

FSA-45098b

FSA-46053

FSA-47039

FSA-46090

7-Chloro azepanamides

FSA-46036

FSA-46044

FSA-46057

FSA-47041

FSA-46071

FSA-46036b

FSA-46049

FSA-46069

FSA-46082

FSA-46073

FSA-45086

FSA-46049b

FSA-46069b

FSA-46085

FSA-48098

FSA-48072

FSA-49002

FSA-48058

FSA-49023

FSA-48099

FSA-48056

FSA-48023

FSA-48024

FSA-49025a

FSA-49001

FSA-48065

FSA-48070

FSA-49025b

FSA-49006

FSA-48086

FSA-48039

7-Chloro azepanamides

FSA-48079

FSA-47078

FSA-410034

FAS-410041

FSA-410052

FSA-410061

FSA-410001

FSA-410033

FSA-410037

FSA-410049

FSA-410060

FSA-410082

FSA-410090

FSA-47056

FSA-410095

FSA-47042

FSA-47063

FSA-411004

FSA-47095

FSA-48013

FSA-48052

FSA-49005

FSA-49053

FSA-48020

FSA-48053

FSA-49036

FSA-47090

FSA-48021

FSA-48066

FSA-49050

FSA-48010

FSA-48036

FSA-48069

FSA-49060

FSA-48016

FSA-48043

FSA-48083

FSA-49057

FSA-48027

FSA-47060

FSA-410055

FSA-411082

FSA-413006

FSA-48063

FSA-47072

FSA-410056

FSA-411085

FSA-413007

FSA-47068

FSA-410097

FSA-410057

FSA-411089

FSA-413008

FSA-47077

FSA-411019

FSA-410058

FSA-411090

FSA-413010

FSA-47091

FSA-411030

FSA-411081

FSA-413005

7-Chloro azepanamides

FSA-413025

FSA-413055

Miscellaneous southern halves

FSA-412025

FSA-412045

FSA-412081

FSA-47033

FSA-412026

FSA-412049

FSA-412070

FSA-47037

FSA-412032a

FSA-412052

FSA-412078

FSA-47030

FSA-412032b

FSA-412073

FSA-412083

FSA-47036

FSA-412036

FSA-412077

FSA-412086

FSA-47031

Miscellaneous southern halves

FSA-47005

FSA-46093

FSA-46097

FSA-47035

FSA-46099

FSA-46087

FSA-46078

FSA-47099

FSA-47006

FSA-46094

FSA-46089

FSA-47007

FSA-46095

FSA-46088

FSA-47008

FSA-46096

FSA-46100

Appendix C. Minimum inhibitory concentrations of synthetic lincosamides
Table C1. Minimum inhibitory concentrations ($\mu \mathrm{g} / \mathrm{mL}$) of synthetic lincosamide antibiotics.

Table C1 (Continued). Minimum inhibitory concentrations ($\mu \mathrm{g} / \mathrm{mL}$) of synthetic lincosamide antibiotics.

Table C1 (Continued). Minimum inhibitory concentrations ($\mu \mathrm{g} / \mathrm{mL}$) of synthetic lincosamide antibiotics.

Table C1 (Continued). Minimum inhibitory concentrations ($\mu \mathrm{g} / \mathrm{mL}$) of synthetic lincosamide antibiotics.

Table C1 (Continued). Minimum inhibitory concentrations ($\mu \mathrm{g} / \mathrm{mL}$) of synthetic lincosamide antibiotics.

Table C1 (Continued). Minimum inhibitory concentrations ($\mu \mathrm{g} / \mathrm{mL}$) of synthetic lincosamide antibiotics.

Table C1 (Continued). Minimum inhibitory concentrations ($\mu \mathrm{g} / \mathrm{mL}$) of synthetic lincosamide antibiotics.

Table C1 (Continued). Minimum inhibitory concentrations ($\mu \mathrm{g} / \mathrm{mL}$) of synthetic lincosamide antibiotics.

Appendix D. Secondary in vitro profiling of FSA-213064

Time-Kill, Post-Antibiotic Effect, and Post-Antibiotic Sub-MIC Effect Studies of FSA-213064

Dr. Amarnath Pisipati - October 25, 2017

Time Kill Studies:

Organism: S. aureus ATCC 29213 (Initial inoculum $\sim 1 \times 10^{6} \mathrm{CFU} / \mathrm{mL}$).
Antibiotics: Clindamycin and FSA-213064.
MIC against S. aureus ATCC 29213: Clindamycin, $0.125 \mu \mathrm{~g} / \mathrm{mL}$; FSA-213064, $0.25 \mu \mathrm{~g} / \mathrm{mL}$. Antibiotic concentration: $4 \times$ MIC.

Table D1.

Time Point	Bacterial $\log _{10}$ CFU/mL		
	UTC	Clindamycin $(\mathbf{4} \times$ MIC $)$	FSA-213064 $(\mathbf{4} \times$ MIC $)$
$\mathbf{0} \mathbf{h}$	6.06	6.06	6.06
$\mathbf{1 ~ h}$	6.17	6.14	6.11
$\mathbf{3} \mathbf{~ h}$	7.17	6.07	6.09
$\mathbf{6} \mathbf{h}$	8.39	6.3	5.87
$\mathbf{9} \mathbf{h}$	9.17	5.84	5.75
$\mathbf{2 4} \mathbf{~ h}$	9.3	5	5.3

Figure D1.

Time Kill Vs S. aureus ATCC 29213

Time point

Conclusion: Both compounds exhibited bacteriostatic effect for the duration of study.

Post Antibiotic Effect (PAE) Studies

Organism: S. aureus ATCC 29213 (Initial inoculum $\sim 1 \times 10^{6} \mathrm{CFU} / \mathrm{mL}$).
Antibiotics: Clindamycin and FSA-213064.
MIC against S. aureus ATCC 29213: Clindamycin, $0.125 \mu \mathrm{~g} / \mathrm{mL}$; FSA-213064, $0.25 \mu \mathrm{~g} / \mathrm{mL}$. Antibiotic concentration: $4 \times$ MIC.

Procedure:

- Initial inoculum $\left(\sim 1 \times 10^{6} \mathrm{CFU} / \mathrm{mL}\right)$ is exposed to $4 \times$ MIC concentration of antibiotics for 1 hour.
- Inoculum diluted 1:1000 to remove antibiotic.
- One flask is left without adding antibiotic as untreated control (UTC).
- Counts determined from the diluted inoculum at $0 \mathrm{~h}, 1,3,6,9$ and 24 hours.
- Time taken by bacteria in untreated control (C) and treated samples (T) to grow $1 \log _{10}$ $\mathrm{CFU} / \mathrm{mL}$ compared to 0 h count is determined.
- $\mathbf{P A E}=\mathbf{T}-\mathbf{C}$

Table D2:

Time Point	Bacterial $\log _{10} \mathbf{C F U} / \mathrm{mL}$		
	UTC	Clindamycin ($4 \times$ MIC)	$\begin{gathered} \text { FSA-213064 } \\ (4 \times \text { MIC }) \end{gathered}$
0 h	3.28	3.08	3.06
1h	3.44	3.08	3.17
3 h	4.41	3	3.17
6 h	6	5.17	3.84
9 h	7.6	6.54	5.39
24 h	9.17	8.92	8.87

Figure D2:

Time taken by S. aureus ATCC 29213 in UTC to grow $1 \log _{10} \mathrm{CFU} / \mathrm{mL}(\mathrm{C})=2.75 \mathrm{~h}$ Time taken to grow $1 \log _{10} \mathrm{CFU} / \mathrm{mL}$ in Clindamycin, $4 \times \mathrm{MIC}$ treated flask $(\mathrm{T})=4.6 \mathrm{~h}$ Time taken to grow $1 \log _{10} \mathrm{CFU} / \mathrm{mL}$ in FSA-213064, $4 \times$ MIC treated flask $(\mathrm{T})=6.4 \mathrm{~h}$ PAE of Clindamycin: T - C

$$
\begin{aligned}
& =4.6 \mathrm{~h}-2.75 \mathrm{~h} \\
& =\mathbf{1 . 8 5} \mathbf{h}
\end{aligned}
$$

PAE of FSA-213064: T - C

$$
\begin{aligned}
& =6.4 \mathrm{~h}-2.75 \mathrm{~h} \\
& =\mathbf{3 . 6 5} \mathbf{h}
\end{aligned}
$$

Conclusion:

FSA-213064 has exhibited a longer PAE compared to Clindamycin against S. aureus ATCC 29213 at $4 \times$ MIC concentrations.

Post-Antibiotic Sub MIC Effect (PA-SME) study:

Organism: S. aureus ATCC 29213 (Initial inoculum $\sim 1 \times 10^{6} \mathrm{CFU} / \mathrm{mL}$).
Antibiotics: Clindamycin and FSA-213064.
MIC against S. aureus ATCC 2921: Clindamycin, $0.125 \mu \mathrm{~g} / \mathrm{mL}$; FSA-213064, $0.25 \mu \mathrm{~g} / \mathrm{mL}$.

Procedure:

- Initial inoculum $\left(\sim 1 \times 10^{6} \mathrm{CFU} / \mathrm{mL}\right)$ is exposed to $4 \times$ MIC concentration of antibiotics for 1 hour
- Inoculum diluted 1:1000 to remove antibiotic
- The diluted inoculum containing media is substituted with $0.25 \times$ and $0.5 \times$ MIC concentrations of antibiotics in individual flasks respectively
- Counts determined from each flask at $0 \mathrm{~h}, 1,3,6,9$ and 24 hours.
- One flask is left without adding antibiotic as untreated control (UTC)
- Time taken by bacteria in untreated control (C) and treated samples (T) to grow $1 \log _{10}$ CFU/mL compared to 0 h count is determined.
- $\mathbf{P A E}=\mathbf{T}-\mathbf{C}$

Time taken by S. aureus ATCC 29213 in Untreated Control to grow $1 \log _{10} \mathrm{CFU} / \mathrm{mL}(\mathrm{C})=2.75$ h

Time taken by bacteria to grow $1 \log _{10} \mathrm{CFU} / \mathrm{mL}$ in Clindamycin and FSA-213064 at $0.25 \times$ and $0.5 \times$ MICs:
S. aureus did not exhibit $1 \log _{10}$ CFU growth from start to 30 hours.

The bacterial counts were detectible with clindamycin at all time points, whereas with FSA213064, bacterial counts were below the detection limit from $9^{\text {th }}$ hour at $0.25 \times$ MIC and from $6^{\text {th }}$ hour with $0.5 \times$ MIC concentrations.
(detection limit in our lab is $200 \mathrm{CFU} / \mathrm{mL}$ or 20 colonies per plate)
There was a complete bacteriostatic effect with Clindamycin at both the sub-MIC concentrations.

With Clindamycin:

There were a 0.65 and $0.22 \log 10 \mathrm{CFU}$ reductions with $0.25 \times \mathrm{MIC}$ at $24^{\text {th }}$ and $30^{\text {th }}$ hour, respectively.

There were a 1.08 and $0.85 \log 10 \mathrm{CFU}$ reductions at $0.5 \times \mathrm{MIC}$ by $24^{\text {th }}$ and $30^{\text {th }}$ hour respectively.

With FSA-213064:

There were more than $1.0 \log 10$ CFU reductions from $9^{\text {th }}$ hour and $6^{\text {th }}$ hour onwards with $0.25 \times$ MIC and 0.5 x MIC respectively. There was no regrowth observed even after $30^{\text {th }}$ hour indicating a possible complete inhibition of growth.

Results are tabulated below.

Table D3:

Time Point	Bacterial $\mathrm{Log}_{10} \mathbf{C F U} / \mathbf{m L}$				
	UTC	$\begin{aligned} & \text { Clindamycin } \\ & (0.25 \times \text { MIC }) \end{aligned}$	$\begin{aligned} & \text { Clindamycin } \\ & (0.5 \times \text { MIC }) \end{aligned}$	$\begin{gathered} \text { FSA-213064 } \\ (0.25 \times \text { MIC }) \end{gathered}$	$\begin{gathered} \text { FSA-213064 } \\ (0.5 \times \text { MIC }) \end{gathered}$
0 hr	3.28	3.08	3.08	3.06	3.06
1 hr	3.44	3.32	3.11	3.14	3.07
3 hr	4.41	3.07	2.84	3.17	2.9
6 hr	6	3.47	ND	3.2	2.0
9 hr	7.6	3.17	3.0	2.0	2.0
24 hr	9.17	2.43	2.0	2.0	2.0
30 hr	9.5	3.3	2.23	2.0	2.0

Figure D3:

Conclusion:

Clindamycin exhibited bacteriostatic effect at $0.25 \times$ MIC and $0.5 \times$ MIC. There was a drop in $\log 10$ CFUs below the detection limit at $0.5 \times$ MIC of clindamycin but the bacteria started to regrow by $30^{\text {th }}$ hour onwards. Whereas FSA-213064 exhibited a complete elimination of bacteria (probable) from $9^{\text {th }}$ and $6^{\text {th }}$ hour at $0.25 \times$ and $0.5 \times$ MIC concentrations with no regrowth even at $30^{\text {th }}$ hour. This indicates our compound to be superior compared to clindamycin against sensitive wild type S. aureus (ATCC 29213)

Appendix E. Catalog of spectra

$\begin{array}{lllllllllllllllllllllllllll}1.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & \begin{array}{l}51.0 \\ (\mathrm{ppm})\end{array} & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & -0\end{array}$

FSA-21141

$\begin{array}{llllllllllllllllllllllllllll}1.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & \underset{f 1}{5.0}(\mathrm{ppm}) & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & -0\end{array}$

| 1.5 | 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -0 |
| :--- |

[^114]

| 1.5 | 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -0 |
| :--- |

2.22

2.26

$\begin{array}{lllllllllllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 30 & 20 & 10 & 0 & -10\end{array}$

$$
\begin{aligned}
& 2.27
\end{aligned}
$$

5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	$\underset{f 1}{(\mathrm{ppm})}$	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0

S2.5

FSA-22091

5	10.0	9.5	9.0	8.5	8.0	7.5	7.0	6.5	6.0	5.5	$\underset{f 1}{5(\mathrm{ppm})}$	4.5	4.0	3.5	3.0	2.5	2.0	1.5	1.0	0.5	0.0	-0

FSA-24039

$\begin{array}{llllllllllllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

$\begin{array}{llllllllllllllllllllll}10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & \underset{f 1}{5.0}(\mathrm{ppm})\end{array} 4^{2.5}$

 $\begin{array}{lllllllllllllllllllllll}1.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & \underset{f 1}{5.0}(\mathrm{ppm})\end{array} 4.5$

$\begin{array}{lllllllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 30 & 20 & 10 & 0 & -10\end{array}$

$\begin{array}{llllllllllllllllllllllllllll}.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & \underset{f 1}{5.0}(\mathrm{ppm}) & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & -0\end{array}$

FSA-212034

$\begin{array}{lllllllllllllllllllllllllll}1.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & \underset{f 1}{5.0}(\mathrm{ppm}) & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & -0\end{array}$

| 1.5 | 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -0 |
| :--- |

$\begin{array}{llllllllllllllllllllllllll}.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & \begin{array}{c}51.0 \\ (\mathrm{ppm})\end{array} & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & -0\end{array}$

$\begin{array}{lllllllllllllllllllllll}.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & \begin{array}{c}5.0 \\ \mathrm{f} 1(\mathrm{ppm})\end{array} & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & -0\end{array}$

S3. 3

3.44a

3.44b

3.46a

3.47

$$
\begin{array}{llllllllllllllllllllllllllllllllll}
1.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & \underset{f 1}{(\mathrm{ppm})}
\end{array}
$$

$\begin{array}{lll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

S3.4

$\begin{array}{ll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

3.50

$\begin{array}{lll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

TBDPSO

TBDPSO

$$
\begin{aligned}
& \text { C- } \\
& \text { S3.5 }
\end{aligned}
$$

0	5.5	5.0	4.5	4.0	3.5	$\stackrel{3.0}{\text { f1 }(\mathrm{ppm})}$	2.5	2.0	1.5	1.0	0.5	0.0

[^115]\[

$$
\begin{aligned}
& 3.55
\end{aligned}
$$
\]

$\begin{array}{llllllllllllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

3.57

[^116]

[^117]

1.5

$\begin{array}{lll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

$\begin{array}{ll}1.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & \underset{f 1}{5.0} & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & -0\end{array}$

FSA-211064

$\begin{array}{ll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

$\begin{array}{ll}1.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & \underset{f 1}{5.0} & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & -0\end{array}$

$\begin{array}{lll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^118]

$\begin{array}{lll}1.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & -0\end{array}$

S3.13

S3.14

FSA-212052a

FSA-212052a


```
1.5
```


10

$\begin{array}{lllllllllllllllllllllllllllllllllllllll}10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & -0\end{array}$

FSA-213039c

 $\begin{array}{ll}1.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & -0\end{array}$

Co

S3. 18

$\begin{array}{llllllllllllllllllllllllll}10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & \begin{array}{llllll}5.0 \\ (\mathrm{ppm})\end{array} & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & -0\end{array}$

[^119]

[^120]
3.78

| 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -0 |
| :--- |

3.4

FSA-215003


```
    10.0
```


| .5 | 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -0 |
| :--- |

 | 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -0 |
| :--- |

Oi:

 $\begin{array}{llllllllllllllllllllllllllllllllll}10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & -0\end{array}$

|

$\begin{array}{ll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

$\begin{array}{lll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

Coscen


```
    10.0
```



```
    10.0
```


4.18

$$
\begin{array}{llllllllllllllllllllllll}
10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & -0
\end{array}
$$

 $\begin{array}{ll}1.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & \underset{f 1}{5.0} & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & -0\end{array}$

$\begin{array}{ll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

$\begin{array}{llllllllllllllllllllllll}10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & \begin{array}{l}5.0 \\ (\mathrm{ppm})\end{array} & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & -0\end{array}$

FSA-217021a
*stereochemistry not assigned

$+$

FSA-217045b (9\%) *stereochemistry not assigned

$\begin{array}{lllllllllllllllllllllllllllllllllll}1.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & \underset{f 1}{5.0}(\mathrm{ppm}) & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & -0\end{array}$

S4. 4

$\begin{array}{ll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^121]

 \qquad

 | 10.0 | 9.5 | 9.0 | 8.5 | 8.0 | 7.5 | 7.0 | 6.5 | 6.0 | 5.5 | 5.0 | 4.5 | 4.0 | 3.5 | 3.0 | 2.5 | 2.0 | 1.5 | 1.0 | 0.5 | 0.0 | -0 |
| :--- |

S4.9

(6S)-4.29

(6R)-4.29

$\begin{array}{llllllllllllllllllllllllllllllll}1.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & 5.0 & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & -0\end{array}$

Asterisks (${ }^{*}$) denote 7-epi-clindamycin signals that could be resolved.

[^0]: ${ }^{1}$ For a review of the role of chemical synthesis in antibiotics discovery, see: Wright, P. M.; Seiple, I. B.; Myers, A. G. Angew. Chem. Int. Ed. 2014, 53, 8840-8869.

[^1]: ${ }^{2}$ Fernandes, P. B. Methods for treating gastrointestinal disease. WO patent 2010/048599 A1, April 29, 2010.
 ${ }^{3}$ Aggen, J. B.; Armstrong, E. S.; Goldblum, A. A.; Dozzo, P.; Linsell, M. S.; Gliedt, M. J.; Hildebrandt, D. J.; Feeney, L. A.; Kubo, A.; Matias, R. D.; Lopez, S.; Gomez, M.; Wlasichuk, K. B.; Diokno, R.; Miller, G. H.; Moser, H. E. Antimicrob. Agents Chemother. 2010, 54, 4636-4642.

[^2]: ${ }^{4}$ (a) Liu, F.; Myers, A. G. Curr. Opin. Chem. Biol. 2016, 32, 48-57. (b) Sun, C.; Wang, Q.; Brubaker, J. D.; Wright, P. M.; Lerner, C. D.; Noson, K.; Charest, M.; Siegel, D. R.; Wang, Y.-M.; Myers, A. G. J. Am. Chem. Soc. 2008, 130, 17913-17927. (c) Charest, M. G.; Lerner, C. D.; Brubaker, J. D.; Siegel, D. R.; Myers, A. G. Science 2005, 308, 395398.
 ${ }^{5}$ Seiple, I. B.; Zhang, Z.; Jakubek, P.; Langlois-Mercier, A.; Wright, P. M.; Hog, D. T.; Yabu, K.; Allu, S. R.; Fukuzaki, T.; Carlsen, P. N.; Kitamura, Y.; Zhou, X.; Condakes, M. L.; Szczypiński, F. T.; Green, W. D.; Myers, A. G. Nature 2016, 533, 338-345.
 ${ }^{6}$ Page, M. G. P. Beta-Lactam Antibiotics. In Antibiotic Discovery and Development; Dougherty, T. J.; Pucci, M. J., Eds.; Springer: New York, 2012; pp 79-117.
 ${ }^{7}$ Notably, the oxazolidinones represent a rare historical example of an antibiotic class uncovered not through naturalproduct isolation, but through phenotypic screening of a corporate library. The origin of the quinolone class is similar, if less transparently documented: (a) Gregory, W. A.; Brittelli, D. R.; Wang, C.-L. J.; Wuonola, M. A.; McRipley, R. J.; Eustice, D. C.; Eberly, V. S.; Bartholomew, P. T.; Slee, A. M.; Forbes, M. J. Med. Chem. 1989, 32, 1673-1681. (b) Bisacchi, G. S. J. Med. Chem. 2015, 58, 4874-4882.

[^3]: ${ }^{8}$ (a) Mason, D. J.; Dietz, A.; DeBoer, C. Antimicrob. Agents Chemother. 1963, 554-559. (b) Magerlein, B. J. Adv. Appl. Microbiol. 1971, 14, 185-229.
 ${ }^{9}$ (a) Hoeksema, H.; Bannister, B.; Birkenmeyer, R. D.; Kagan, F.; Magerlein, B. J.; MacKellar, F. A.; Schroeder, W.; Slomp, G.; Herr, R. R. J. Am. Chem. Soc. 1964, 86, 4223-4224. (b) Hoeksema, H. J. Am. Chem. Soc. 1964, 86, 42244225. (c) Herr, R. R.; Slomp, G. J. Am. Chem. Soc. 1967, 89, 2444-2447. (d) Schroeder, W.; Bannister, B.; Hoeksema, H. J. Am. Chem. Soc. 1967, 89, 2448-2453. (e) Hoeksema, H. J. Am. Chem. Soc. 1967, 90, 755-757.
 ${ }^{10}$ (a) U. S. Food and Drug Administration. Drugs@FDA: FDA Approved Drug Products, Lincocin Hydrochloride (Lincomycin Hydrochloride), NDA \#050316. https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event= overview.process\&ApplNo=050316 (accessed 7 March, 2018). (b) U. S. Food and Drug Administration. Drugs@FDA: FDA Approved Drug Products, Cleocin Hydrochloride (Clindamycin Hydrochloride), NDA \#050162.

[^4]: https://www.accessdata.fda.gov/scripts/cder/daf/index.cfm?event= overview.process\&ApplNo=050162 (accessed 7 March, 2018).
 ${ }^{11}$ O’Dowd, H.; Erwin, A. L.; Lewis, J. G. Lincosamide Antibacterials. In Natural Products in Medicinal Chemistry; Hanessian, S., Ed.; Wiley-VCH Verlag GmbH \& Co. KGaA, Weinheim, Germany, 2014.
 ${ }^{12}$ (a) Brahme, N. M.; Gonzales, J. E.; Rolls, J. P.; Hessler, E. J.; Mizsak, S.; Hurley, L. H. J. Am. Chem. Soc. 1984, 106, 7873-7878. (b) Brahme, N. M.; Gonzales, J. E.; Mizsak, S.; Rolls, J.; Hessler, E.; Hurley, L. H. J. Am. Chem. Soc. 1984, 106, 7878-7883.

[^5]: ${ }^{13}$ The tetracycline antibiotics modulate the activity of human cytosolic ribosomes, with potential therapeutic applications, for example, whereas aminoglycoside ototoxicity is believed to arise in part from human mitoribosome inhibition. See: (a) Mortison, J. D.; Schenone, M.; Myers, J. A.; Zhang, Z.; Chen, L.; Ciarlo, C.; Comer, E.; Natchiar, S. K.; Carr, S. A.; Klaholz, B. P.; Myers, A. G. 2018 [pre-print], bioRxiv doi: 10.1101/256230. (b) Hobbie, S. N.; Akshay, S.; Kalapala, S. K.; Bruell, C. M.; Shcherbakov, D.; Böttger, E. C. Proc. Nat. Acad. Sci. U. S. A. 2008, 105, 20888-20893.
 ${ }^{14}$ Böttger, E. C.; Springer, B.; Prammananan, T.; Kidan, Y.; Sander, P. EMBO Rep. 2001, 2, 318-323.
 ${ }^{15}$ Camps, M.; Arrizabalaga, G.; Boothroyd, J. Mol. Microbiol. 2002, 43, 1309-1318.
 ${ }^{16}$ Wilson, D. N. Crit. Rev. Biochem. Mol. Bio. 2009, 44, 393-433.

[^6]: ${ }^{17}$ Smieja, M. Can. J. Infect. Dis. 1998, 9, 22-28.
 ${ }^{18}$ Schlünzen, F.; Zarivach, R.; Harms, J.; Bashan, A.; Tocilj, A.; Albrecht, R.; Yonath, A; Franceschi, F. Nature 2001, 413, 814-821.

[^7]: ${ }^{19}$ (a) Douthwaite, S. Nucleic Acids Res. 1992, 20, 4717-4720. (b) Hansen, L. H.; Mauvas, P.; Douthwaite, S. Mol. Microbiol. 1999, 31, 623-631.
 ${ }^{20}$ A similar phenomenon is believed to drive the affinity of aminoglycoside antibiotics for their polynucleic acid targets. Accordingly, displacement of magnesium ions with basic amines has served as a successful design strategy in several medicinal chemistry campaigns. For a review, see: Meanwell, N. A. Bioorg. Med. Chem. Lett. 2017, 27, 53555372.
 ${ }^{21}$ Tu, D.; Blaha, G.; Moore, P. B.; Steitz, T. A. Cell 2005, 121, 257-270.

[^8]: ${ }^{22}$ Dunkle, J. A.; Xiong, L.; Mankin, A. S.; Cate, J. H. D. Proc. Nat. Acad. Sci. U. S. A. 2010, 107, 17152-17157.
 ${ }^{23}$ Matzov, D.; Eyal, Z.; Benhamou, R. I.; Shalev-Benami, M.; Halfon, Y.; Krupkin, M.; Zimmerman, E.; Rozenberg, H.; Bashan, A.; Fridman, M.; Yonath, A. Nucleic Acids Res. 2017, 45, 10284-10292.

[^9]: ${ }^{24}$ Zhang, H.-Z.; Schmidt, H.; Piepersberg, W. Mol. Microbiol. 1992, 6, 2147-2157.

[^10]: ${ }^{25}$ (a) Leclerq, R. Clin. Infect. Dis. 2002, 34, 482-492. (b) Roberts, M. C.; Sutcliffe, J.; Courvalin, P.; Jensen, L. B.; Rood, J.; Seppala, H. Antimicrob. Agents Chemother. 1999, 43, 2823-2830.
 ${ }^{26}$ Courvalin, P.; Ounissi, H.; Arthur, M. J. Antimicrob. Chemother. 1985, 16 (Suppl A), 91-100.

[^11]: ${ }^{27}$ Centers for Disease Control and Prevention. Antibiotic resistance threats in the United States, 2013. http://www.cdc.gov/drugresistance/threat-report/2013. Accessed March 6, 2018.
 ${ }^{28}$ (a) Griffith, L. J.; Ostrander, W. E.; Mullins, C. G.; Beswick, D. E. Science 1965, 147, 746-747. (b) Weisblum, B.; Demohn V. J. Bacteriol. 1969, 98, 447-452. (c) Leclerq, R. Macrolides, Lincosamides, and Streptogramins. In Antibiogram; Courvalin, P.; Leclerq, R.; Rice, L. B., Eds.; Eska Publishing: Portland, OR, 2010; pp 305-326.

[^12]: ${ }^{29}$ Marks, J.; Kannan, K.; Roncase, E. J.; Klepacki, D.; Kefi, A.; Orelle, C.; Vásquez-Laslop, N.; Mankin, A. S. Proc. Nat. Acad. Sci. U. S. A. 2016, 113, 12150-12155.
 ${ }^{30}$ Gupta, P.; Liu, B.; Klepacki, D.; Gupta, V.; Schulten, K.; Mankin, A. S.; Vásquez-Laslop, N. Nat. Chem. Biol. 2016, 12, 153-158.

[^13]: ${ }^{31}$ Schwarz, S.; Werckenthin, C.; Kehrenberg, C. Antimicrob. Agents Chemother. 2000, 44, 2530-2533.
 ${ }^{32}$ (a) Long, K. S.; Poehlsgaard, J.; Kehrenberg, C.; Schwarz, S.; Vester, B. Antimicrob. Agents Chemother. 2006, 50, 2500-2505. (b) Toh, S.-M.; Xiong, L.; Bae, T.; Mankin, A. S. RNA 2008, 14, 98-106.
 ${ }^{33}$ (a) LaMarre, J. M.; Locke, J. B.; Shaw, K. J.; Mankin, A. S. Antimicrob. Agents Chemother. 2011, 55, 3714-3719. (b) Kehrenberg, C.; Aarestrup, F. M.; Schwarz, S. Antimicrob. Agents Chemother. 2007, 51, 483-487.
 ${ }^{34}$ (a) Diaz, L.; Kiratisin, P.; Mendes, R. E.; Panesso, D.; Singh, K. V.; Arias, C. A. Antimicrob. Agents Chemother. 2012, 56, 3917-3922. (b) Morales, G.; Picazo, J. J.; Baos, E.; Candel, F. J.; Arribi, A.; Peláez, B.; Andrade, R.; de la Torre, M. A.; Fereres, J.; Sánchez-García, M. Clin. Infect. Dis. 2010, 50, 821-825. (c) Baos, E.; Candel, F. J.; Merino, P.; Pena, I.; Picazo, J. J. Diagnost. Microbiol. Infect. Dis. 2013, 76, 325-329. (d) O’Connor, C.; Powell, J.; Finnegan, C.; O’Gorman, A.; Barrett, S.; Hopkins, K. L.; Pichon, B.; Hill, R.; Power, L.; Woodford, N.; Coffey, J. C.; Kearns, A.; O’Connell, N. H.; Dunne, C. P. J. Hosp. Infect. 2015, 90, 316-321.
 ${ }^{35}$ Benner, E. J.; Adams, A. P., Jr. Antimicrob. Agents Chemother. 1969, 9, 100-103.

[^14]: ${ }^{36}$ The presence of multiple rRNA gene copies in most bacteria explains why high-level resistance is slow to develop in these organisms, as point mutations to target genes rarely rescue organisms from the action of an antibiotic. For a review of this so-called "multiple-target hypothesis," see: Silver, L. Nature Rev. Drug Discov. 2007, 6, 41-55.
 ${ }^{37}$ Fukunaga, M.; Okuzako, N.; Mifuchi, I.; Arimitsu, Y.; Seki, M. Microbiol. Immunol. 1992, 36, 161-167.
 ${ }^{38}$ Lu, H.; Li, K.; Gong, W.; Yan, L.; Gu, X.; Chai, Z.; Guan, Z.; Zhou, P. Emerg. Microbes Infect. 2015, 4, e10; doi:10.1038/emi.2015.10.
 ${ }^{39}$ Nakase, K.; Okamoto, Y.; Aoki, S.; Noguchi, N. J. Dermatol. 2018, 45, 340-343.

[^15]: ${ }^{40}$ Petinaki, E.; Guerin-Faublee, V.; Pichereau, V.; Villers, C.; Achard, A.; Malbruny, B.; Leclercq, R. Antimicrob. Agents Chemother. 2008, 52, 626-630.
 ${ }^{41}$ Morar, M.; Bhullar, K.; Hughes, D. W.; Junop, M.; Wright, G. D. Structure 2009, 17, 1649-1659.
 ${ }^{42}$ Brisson-Noël, A.; Delrieu, P.; Samain, D.; Courvalin, P. J. Biol. Chem. 1988, 263, 15880-15887.

[^16]: ${ }^{43}$ Novotna, G.; Janata J. Antimicrob. Agents Chemother. 2006, 50, 4070-4076.
 ${ }^{44}$ Dar, D.; Shamir, M.; Mellin, J. R.; Koutero, M.; Stern-Ginossar, N.; Cossart, P.; Sorek, R. Science 2016, 352, aad9822.

[^17]: ${ }^{45}$ Wohl, B. Blavatnik Fellow, Harvard University, Cambridge, MA. Personal communication based on analysis of wholesaler data from IMS Health, September 2016.
 ${ }^{46}$ Baggs, J.; Fridkin, S. K.; Pollack, L. A.; Srinivasan, A.; Jernigan, J. A. JAMA Intern. Med. 2016, doi:10.1001/jamainternmed.2016.5651.
 ${ }^{47}$ E. faecalis presents a noteworthy exception. Intrinsic resistance to clindamycin is observed in this organism, a common cause of urinary tract infections, owing to a conserved gene ($l s a$) encoding a putative ABC transporter protein. See: Kristich, C. J.; Rice, L. B.; Arias, C. A. Enterococcal Infection - Treatment and Antibiotic Resistance. In Enterococci: From Commensals to Leading Causes of Drug-Resistant Infection; Gilmore, M. S.; Clewell, D. B.; Ike, Y.; Shankar, N., Eds.; [Online] Massachusetts Eye and Ear Infirmary: Boston, MA, 2014 (accessed 7 March, 2018).
 ${ }^{48}$ (a) Nicholas, P.; Meyers, B. R.; Levy, R. N.; Hirschman, S. Z. Antimicrob. Agents Chemother. 1975, 8, $220-221$. (b) Summersgill, J. T.; Schupp, L. G.; Raff, M. J. Antimicrob. Agents Chemother. 1982, 21, 601-603. (c) Darley, E. S. R.; MacGowan, A. P; J. Antimicrob. Chemother. 2004, 53, 928-935. (d) Zeller, V.; Dzeing-Ella, A.; Kitzis, M.-D.; Ziza, J.-M.; Mamoudy, P.; Desplaces, N. Antimicrob. Agents Chemother. 2010, 54, 88-92.

[^18]: ${ }^{49}$ Liu, C.; Bayer, A.; Cosgrove, S. E.; Daum, R. S.; Fridkin, S. K.; Gorwitz, R. J.; Kaplan, S. L.; Karchmer, A. W.; Levine, D. P.; Murray, B. E.; Rybak, M. J.; Talan, D. A.; Chambers, H. F. Clin. Infect. Dis. 2011, 52, e18-55.
 ${ }^{50}$ (a) Lell, B.; Kremsner, P. G. Antimicrob. Agents Chemother. 2002, 46, 2315-2320. (b) Kremsner, P. G. J. Antimicrob. Chemother. 1990, 25, 9-14.

 51 Foamix Pharmaceuticals. Changing the Face of Dermatology, January 2017. http://phx.corporateir.net/External.File?t=1\&item=VHlwZT0yfFBhemVudEIEPTUyNDYwNzR8Q2hpbGRJRD02NTY1ODk= (accessed 7 March, 2018).
 ${ }^{52}$ Livengood, C. H., III; Thomason, J. L.; Hill, G. B. Obstetrics and Gynecology 1990, 76, 118-123.
 ${ }^{53}$ For early reports and etiological studies of lincomycin- and clindamycin-associated colitis see: (a) Ecker, J. A.; Williams, R. G.; McKittrick, J. E.; Failing, R. M. Am. J. Gastroenterol. 1970, 54, 214-228. (b) Anonymous. British

[^19]: Medical Journal 1974, 4, 65-66. (c) Onderdonk, A. B.; Brodasky, T. F.; Bannister, B. J. Antimicrob. Chemother.

[^20]: ${ }^{54}$ Although all antibiotics carry some risk of CDAD, clindamycin, third-generation cephalosporins, penicillins, and some fluoroquinolones are traditionally considered among the most problematic. See: Owens, R. C., Jr.; Donskey, C. J.; Gaynes, R. P.; Loo, V. G.; Muto, C. A. Clin. Infect. Dis. 2008, 46 (Suppl 1), S19-31.
 ${ }^{55}$ Buffie, C. G.; Bucci, V.; Stein, R. R.; McKenney, P. T.; Ling, L.; Gobourne, A.; No, D.; Liu, H.; Kinnebrew, M.; Viale, A.; Littman, E.; van den Brink, M. R. M.; Jenq, R. R.; Taur, Y.; Sander, C.; Cross, J.; Toussaint, N. C.; Xavier, J. B.; Pamer, E. G. Nature 2015, 517, 205-208.

[^21]: ${ }^{56}$ Magerlein, B. J.; Birkenmeyer, R. D.; Kagan, F. J. Med. Chem. 1967, 10, 355-359
 ${ }^{57}$ Ulanova, D.; Novotná, J.; Smutná, Y.; Kameník, Z; Gažák, R.; Šulc, M.; Sedmera, P.; Kadlčík, S.; Plháčková, K.; Janata, J. Antimicrob. Agents Chemother. 2010, 54, 927-930.

[^22]: ${ }^{58}$ Magerlein, B. J. J. Med. Chem. 1967, 10, 1161-1163.

[^23]: ${ }^{59}$ (a) Bannister, B. J. Chem. Soc. Perkin Trans. 1 1972, 3025-3030. (b) Bannister, B. J. Chem. Soc. Perkin Trans. 1 1972, 3031-3036. (c) Bannister, B. J. Chem. Soc. Perkin Trans. 1 1973, 1676-1682. (d) Bannister, B. J. Chem. Soc. Perkin Trans. 1 1974, 360-369.

[^24]: ${ }^{60}$ Magerlein, B. J.; Kagan, F. J. Med. Chem. 1969, 12, 780-784.
 ${ }^{61}$ (a) Livingston, D. A. Synthesis of 7-halo-7-deoxylincomycins. U.S. Patent 4,568,741, February 4, 1986. (b) Zhou, X.-D.; Guo, Q.-H.; Han, F.-Z.; Long, D.-B. Industrial production method for clindamycin or salts thereof. China Patent 101,333,234, June 13, 2012.
 ${ }^{62}$ Birkenmeyer, R. D.; Kagan, F. J. Med. Chem. 1970, 13, 616-619.

[^25]: ${ }^{63}$ Birkenmeyer, R. D.; Kroll, S. J.; Lewis, C.; Stern, K. F.; Zurenko, G. E. J. Med. Chem. 1984, 27, 216-223.
 ${ }^{64}$ When urine was collected from rats and fractionated based on antimicrobial activity, only unmodified drug was recovered. This stands in contrast to clindamycin, which afforded four distinct antimicrobially active fractions.

[^26]: ${ }^{65}$ The literature is not consistent on this topic, particularly pertaining to whether clindamycin's clinical efficacy is driven instead by the 24 -hour AUC/MIC ratio. While clindamycin features a negligible post-antibiotic effect (favoring the $\mathrm{T}>$ MIC model), lincosamides with prolonged persistent effects could be expected to depend less on dosing frequency, and thus transition to a regime better described by the 24-h AUC/MIC determinant. See: (a) Vogelman, B.; Gudmundsson, S.; Leggett, J.; Turnidge, J.; Ebert, S.; Craig, W. A. J. Infect. Dis. 1988, 158, 831-847. (b) Craig, W. A. Clin. Infect. Dis. 2001, 33 (Suppl 3), S233-S237. (c) Craig, W. A.; Kiem, S.; Andes, D. R. Free drug 24-hr AUC/MIC is the PK/PD target that correlates with in vivo efficacy of macrolides, azalides, ketolides, and clindamycin, abstr. A-1264. Abstr. Intersci. Conf. Antimicrob. Agents Chemother.: San Deigo, CA, 2002.
 ${ }^{66}$ Thornsberry, C.; Marler, J. K.; Watts, J. L.; Yancey, R. J., J. Antimicrob. Agents Chemother. 1993, 37, 1122-1126.
 ${ }^{67}$ Whereas clindamycin (Cleocin) continues to be sold by Pfizer, pirlimycin (Pirsue) is instead marketed by Zoetis, Inc., a veterinary spin-off incorporated in 2014. See: Zoetis Inc. Pfizer Provides Update on Animal Health Strategic

[^27]: Alternatives Review Process. Press release, June 7, 2014. https://www.zoetisus.com/news-and-media/pfizer-provides-update-on-animal-health-strategic-alternatives-review-process.aspx (accessed 10 March 2018).
 ${ }^{68}$ Lewis, J. G.; Anandan, S. K.; O’Dowd, H.; Gordeev, M. F.; Li, L. Lincomycin derivatives possessing antibacterial activity. US Patent 7,361,743 B2, April 22, 2008.

[^28]: ${ }^{69}$ Dondoni, A.; Franco, S.; Merchan, F.; Merino, P.; Tejero, T. Synlett 1993, 78-80.

[^29]: ${ }^{70}$ O’Dowd, H.; Lewis, J. G.; Gordeev, M. F. Tetrahdron Lett. 2008, 49, 2979-2981.

[^30]: ${ }^{71}$ O’Dowd, H.; Lewis, J. G.; Trias, J.; Asano, R.; Blais, J.; Lopez, S. L.; Park, C. K.; Wu, C.; Wang, W.; Gordeev, M. F. Bioorg. Med. Chem. Lett. 2008, 18, 2645-2648.

[^31]: ${ }^{72}$ Wishka, D. G.; Bédard, M.; Brighty, K. E.; Buzon, R. A.; Farley, K. A.; Fichtner, M. W.; Kauffman, G. S.; Kooistra, J.; Lewis, J. G.; O'Dowd, H.; Samardjiev, I. J.; Samas, B.; Yalamanchi, G.; Noe, M. C. J. Org. Chem. 2011, 76, 19371940.

[^32]: ${ }^{73}$ (a) Umemura, E.; Wakiyama, Y.; Kumura, K.; Ueda, K.; Masaki, S.; Watanabe, T.; Yamamoto, M.; Hirai, Y.; Fushimi, H.; Yoshida, T.; Ajito, K. J. Antibiot. 2013, 66, 195-198. (b) Wakiyama, Y.; Kumura, K.; Umemura, E.; Ueda, K.; Masaki, S.; Kumura, M.; Fushimi, H.; Ajito, K. J. Antibiot. 2016, 69, 368-380. (c) Kumura, K.; Wakiyama, Y.; Ueda, K.; Umemura, E.; Watanabe, T.; Shitara, E.; Fushimi, H.; Yoshida, T.; Ajito, K. J. Antibiot. 2016, 69, 440445. (d) Wakiyama, Y.; Kumura, K.; Umemura, E.; Masaki, S.; Ueda, K.; Watanabe, T.; Yamamoto, M.; Hirai, Y.; Ajito, K. J. Antibiot. 2016, 69, 428-439. (e) Wakiyama, Y.; Kumura, K.; Umemura, E.; Masaki, S.; Ueda, K.; Sato, Y.; Watanabe, T.; Hirai, Y.; Ajito, K. J. Antibiot. 2017, 70, 52-64. (f) Kumura, K.; Wakiyama, Y.; Ueda, K.; Umemura, E.; Watanabe, T.; Kumura, M.; Yoshida, T.; Ajito, K. J. Antibiot. 2017, 70, 655-663. (g) Wakiyama, Y.; Kumura, K.; Umemura, E.; Ueda, K.; Watanabe, T.; Yamada, K.; Okutomi, T.; Ajito, K. J. Antibiot. 2017, 70, 888906. (h) Kumura, K.; Wakiyama, Y.; Ueda, K.; Umemura, E.; Hirai, Y.; Yamada, K.; Ajito, K. J. Antibiot. 2017, 70, 1112-1121. (i) Kumura, K.; Wakiyama, Y.; Ueda, K.; Umemura, E.; Watanabe, T.; Yamamoto, M.; Yoshida, T.; Ajito, K. J. Antibiot. 2018, 71, 104-112. (j) Wakiyama, Y.; Kumura, K.; Umemura, E.; Masaki, S.; Ueda, K.; Sato, Y.; Hirai, Y.; Hayashi, Y.; Ajito, K. J. Antibiot. 2018, 71, 298-317. (k) Umemura, E.; Kumura, K.; Masaki, S.; Ueda, K.; Wakiyama, Y.; Sato, Y.; Yamamoto, M.; Ajito, K.; Watanabe, T.; Kaji, C. Lincosamide Derivatives and Antimicrobial Agents Comprising the Same as Active Ingredient. U. S. Patent 7,867,980 B2, January 11, 2011.

[^33]: ${ }^{75}$ Hanessian, S.; Sato, K.; Liak, T. J.; Danh, N.; Dixit, D. J. Am. Chem. Soc. 1984, 106, 6114-6115.

[^34]: ${ }^{76}$ Collin, M.-P.; Hobbie, S. N.; Böttger, E. C.; Vasella, A. Helv. Chim. Acta 2008, 91, 1838-1848.
 ${ }^{77}$ For a discussion of the 1,2,3-triazole group as an amide bioisostere, see: Kolb, H. C.; Sharpless, K. B. Drug Discov. Today 2003, 8, 1128-1137.
 ${ }^{78}$ Collin, M.-P.; Hobbie, S. N.; Böttger, E. C.; Vasella, A. Helv. Chim. Acta 2009, 92, 230-266.

[^35]: ${ }^{79}$ Kadlcik, S.; Kamenik, Z.; Vasek, D.; Nedved, M.; Janata, J. Chem. Sci. 2017, 8, 3349-3355.

[^36]: ${ }^{80}$ Morales, M. R.; Mellem, K. T.; Myers, A. G. Angew. Chem. Int. Ed. 2012, 51, 4568-4571.
 ${ }^{81}$ Seiple, I. B.; Mercer, J. A. M.; Sussman, R. J.; Zhang, Z.; Myers, A. G. Angew. Chem. Int. Ed. 2014, 53, 46424647.
 ${ }^{82}$ (a) Myers, A. G.; Gleason, J. L.; Yoon, T. J. Am. Chem. Soc. 1995, 117, 8488-8489. (b) Myers, A. G.; Gleason, J. L.; Yoon, T.; Kung, D. W. J. Am. Chem. Soc. 1997, 119, 656-673.

[^37]: ${ }^{83}$ For a widely circulated review on the unique physicochemical space occupied by antibacterial drugs, see: O'Shea, R.; Moser, H. E. J. Med. Chem. 2008, 51, 2871-2878.
 ${ }^{84}$ Prepared by monotosylation of 2-allyl-1,3-propanediol, followed by oxidation with Dess-Martin periodinane; data not shown.

[^38]: ${ }^{85}$ Yoshii, Y.; Otsu, T.; Hosokawa, N.; Takasu, K.; Okano, K.; Tokuyama, H. Chem. Commun. 2015, 51, 1070-1073.
 ${ }^{86}$ Racemization of the aldehyde substrate prior to its introduction in the annulation reaction has been ruled out in the case of 2.2c. Reduction of this aldehyde with sodium borohydride produces the corresponding alcohol with optical purity identical to that of its synthetic precursor:

[^39]: ${ }^{87}$ According to Myers laboratory convention, FSA (fully synthetic antibiotic) codes are assigned to all candidate compounds which undergo in vitro antimicrobial evaluation. For a description of how these code numbers are formulated, and for a list of structure-activity data of all lincosamide FSAs prepared to date, see Appendices B and C.

[^40]: ${ }^{88}$ Lipinski, C. A.; Lombardo, F.; Dominy, B. W.; Feeny, P. J. Adv. Drug Deliv. Rev. 1997, 23, 3-25.

[^41]: ${ }^{89}$ A twofold difference in MIC is considered within the typical margin of error for broth microdilution susceptibility assays.

[^42]: ${ }^{90}$ This structure-based, chimeric design strategy has been employed with some success in the past, most notably by Melinta Therapeutics (formerly Rib-X Pharmaceuticals): (a) Wang, D.; Sutcliffe, J. A.; Oyelere, A. K.; McConnell, T. S.; Ippolito, J. A.; Abelson, J. N.; Springer, D. M.; Salvino, J. M.; Lou, R.; Goldberg, J. A.; Farmer, J. J.; Duffy, E.; Bhattacharjee, A. Bifunctional Heterocyclic Compounds and Methods of Making the Same. U. S. Patent 7,091,196 B2, August 15, 2006. (b) Zhou, J.; Bhattacharjee, A.; Chen, S.; Chen, Y.; Duffy, E.; Farmer, J.; Goldberg, J.; Hanselmann, R.; Ippolito, J. A.; Lou, R.; Orbin, A.; Oyelere, A.; Salvino, J.; Springer, D.; Tran, J.; Wang, D.; Wu, Y.; Johnson, G. Bioorg. Med. Chem. Lett. 2008, 18, 6179-6183. (c) Long, D.; Marquess, D. G. Future Med. Chem. 2009, 1, 1037-1050

[^43]: ${ }^{91}$ Use of this dibasic sulfide reagent in place of dimethyl sulfide dramatically reduced the formation of undesired dimethyl acetal by-product in this case. See: Appell, R. B.; Tomlinson, I. A.; Hill, I. Synth. Commun. 1995, 25, 35893595.

[^44]: ${ }^{92}$ Gauthier, D.; Lindhardt, A. T.; Olsen, E. P. K.; Overgaard, J.; Skrydstrup, T. J. Am. Chem. Soc. 2010, 132, 79988009.

[^45]: ${ }^{93}$ Conformational constraint is among the design principles used most widely in drug discovery. In the context of antibiotics specifically, it bears mentioning that in a widely circulated publication by Professor Paul Hergenrother and co-workers, conformational rigidity (as measured by the number of rotatable bonds) was identified among those molecular attributes most reliably predicting Gram-negative activity. FSA-24035 possesses five rotatable bonds, the maximum recommended number; clindamycin has seven. See: (a) Richter, M. F.; Drown, B. S.; Riley, A. P.; Garcia, A.; Shirai, T.; Svec, R. L.; Hergenrother, P. J. Nature 2017, 545, 299-304. (b) Zheng, Y.; Tice, C. M.; Sing, S. B. Bioorg. Med. Chem. Lett. 2017, 27, 2825-2837. (c) Fang, Z.; Song, Y.; Zhan, P.; Zhang, Q.; Liu, X. Future Med. Chem. 2014, 6, 885-901.

[^46]: ${ }^{94}$ While trans-fused oxepinoprolinamides are shown here, my colleague Katherine Silvestre synthesized both $3^{\prime}, 4^{\prime}$ cis isomers of FSA-24035. These analogs (FSA-504059 and FSA-507051) were substantially less potent (see Appendices B and C).

[^47]: ${ }^{95}$ Morandi, B.; Wickens, Z. K.; Grubbs, R. H. Angew. Chem. Int. Ed. 2013, 52, 9751-9754.

[^48]: ${ }^{96}$ Rye, C. S.; Withers, S. G. J. Am. Chem. Soc. 2002, 124, 9756-9767.

[^49]: ${ }^{97}$ (a) Douthwaite, S.; Champney, W. S. J. Antimicrob. Chemother. 2001, 48 (Suppl 2), 1-8. (b) Lonks, J. R.; Goldmann, D. A. Clin. Infect. Dis. 2005, 40, 1657-1664.

[^50]: ${ }^{98}$ When sodium cyanoborohydride was used in the N-methylation of FSA-27049, undesired reduction of the pyrimidine ring was observed; use of sodium triacetoxyborohydride avoided this.

[^51]: ${ }^{99}$ Calculated by density functional theory with empirical correction using Schrödinger's Jaguar $\mathrm{p} K_{\text {a }}$ prediction software, following molecular-dynamics conformational searching with the OPLS3 force field.
 ${ }^{100}$ Gillaspy, M. L.; Lefker, B. A.; Hada, W. A.; Hoover, D. J. Tetrahedron Lett. 1995, 36, 7399-7402.

[^52]: ${ }^{101}$ The latter was observed in some cases where overly lipophilic southern-half fragments were investigated. These compounds were hemolytic and cytotoxic owing to their action as surfactants, rather than protein-synthesis inhibitors.
 ${ }^{102}$ For experimental details, refer to Appendix D.
 ${ }^{103}$ An antibiotic is deemed bactericidal versus bacteriostatic if, following 18-24 h exposure of cultured bacteria to antibiotic at $4 \times$ MIC, a $\geq 1,000$-fold ($\geq 3-\log$) reduction in colony-forming units is observed. See: Clinical and

[^53]: Laboratory Standards Institute. Methods for Determining Bactericidal Activity of Antimicrobial Agents; Approved Guideline. LCCLS Document M26-A. NCCLS, Wayne, PA, 1999.

[^54]: ${ }^{104}$ Cleocin HCl [package insert]. Pharmacia \& Upjohn Co., Division of Pfizer Inc., New York, NY; Revised July 2016.

[^55]: ${ }^{105}$ Still, W. C.; Khan, M.; Mitra, A. J. Org. Chem. 1978, 43, 2923-2925.
 ${ }^{106}$ Sanford, M. TLC stains. umich.edu/~mssgroup/docs/TLCStains.pdf (accessed April 14, 2018).

[^56]: ${ }^{107}$ Pangborn, A. B.; Giardello, M. A.; Grubbs, R. H.; Rosen, R. K.; Timmers, F. J. Organometallics 1996, 15, 15181520.

[^57]: ${ }^{108}$ Bartley, D. M.; Coward, J. K. J. Org. Chem. 2006, 71, 372-374.

[^58]: ${ }^{109}$ Robins, M. J.; Wilson, J. S.; Hansske, F. J. Am. Chem. Soc. 1983, 105, 4059-4065.

[^59]: ${ }^{110}$ High-purity ethylene is necessary for ethenolysis, as acetylene (a common impurity in commercial ethylene) is known to poison metathesis catalysts. See: Marx, V. M.; Sullivan, A. H.; Melaimi, M.; Virgil, S. C.; Keitz, B. K.; Weinberger, D. S.; Bertrand, G.; Grubbs, R. H. Angew. Chem. Int. Ed. 2015, 54, 1919-1923.

[^60]: ${ }^{111}$ Liu, C.; Han, N.; Song, X.; Qiu, J. Eur. J. Org. Chem. 2010, 5548-5551.

[^61]: ${ }^{112}$ Clavier, S.; Rist, Ø.; Hansen, S.; Gerlach, L.-O. Högberg, T.; Bergman, J. Org. Biomol. Chem. 2003, 1, 42484253.

[^62]: ${ }^{113}$ For a detailed review, see: Golebiowski, A.; Jurczak, J. Total synthesis of lincomycin and related chemistry, in Recent Progress in the Chemical Synthesis of Antibiotics; Lukacs, G.; Ohno, M., Eds. Springer-Verlag, Berlin, 1990; pp 365-385.
 ${ }^{114}$ Magerlein, B. J. Tetrahedron Lett. 1970, 1, 33-36.
 ${ }^{115}$ Bannister, B.; Magerlein, B. J. Lincomycin analogs and process. U.S. Patent 3,705,889, December 12, 1972.

[^63]: ${ }^{116}$ (a) Zhang, Z.; Fukuzaki, T.; Myers, A. G. Angew. Chem. Int. Ed. 2016, 55, 523-527. (b) Zhang, Z. A platform for the synthesis of new macrolide antibiotics. Ph.D. Dissertation, Harvard University, 2016.
 ${ }^{117}$ Liu, F. Development of a component-based synthesis for the discovery of new aminoglycoside antibiotics, and diastereoselective Michael-Claisen cyclizations en route to 5 -oxatetracyclines. Ph.D. Dissertation, Harvard University, 2017.
 ${ }^{118}$ For a review of glycals as powerful intermediates in complex carbohydrate synthesis, see: Danishefsky, S. J.; Bilodeau, M. T. Angew. Chem. Int. Ed. 1996, 35, 1380-1419.

[^64]: ${ }^{119}$ (a) Robles, O.; McDonald, F. E. Org. Lett. 2008, 10, 1811-1814. (b) Sohn, S. S.; Rosen, E. L.; Bode, J. W. J. Am. Chem. Soc. 2004, 126, 14370-14371. (c) Candy, M.; Tomas, L.; Parat, S.; Heran, V.; Bienaymé, H.; Pons, J.-M.; Bressy, C. Chem. Eur. J. 2012, 18, 14267-14271.
 ${ }^{120}$ Kitayama, T. Tetrahedron 1996, 52, 6139-6148.

[^65]: ${ }^{121}$ Xu, K.; Lai, G.; Zha, Z.; Pan, S.; Chen, H.; Wang, Z. Chem. Eur. J. 2012, 18, 12357-12362.

[^66]: ${ }^{122}$ (a) Rosini, G.; Galarini, R.; Marotta, E.; Righi, P. J. Org. Chem. 1990, 55, 781-783. (b) Marotta, E.; Micheloni, L. M.; Scardovi, N.; Righi, P. Org. Lett. 2001, 3, 727-729.

[^67]: ${ }^{123}$ Compared to the synthesis of the $(3 S, 4 R)$ enantiomer depicted in Scheme 3.5 , improvements in yield and reliability of the Sharpless asymmetric epoxidation reaction were realized en route to $(3 R, 4 S)$ - $\mathbf{3 . 2 8}$ through the use of Aldrich pre-powdered $4 \AA \AA$ molecular sieves (versus manually crushed pellets). See the Experimental Section that follows for details.

[^68]: ${ }^{124}$ (a) Chougnet, A.; Zhang, G.; Liu, K.; Häussinger, D.; Kägi, A.; Allmendinger, T.; Woggon, W.-D. Adv. Synth. Catal. 2011, 353, 1797-1806. (b) Zhang, G.; Yashima, E.; Woggon, W.-D. Adv. Synth. Catal. 2009, 351, 1255-1262.
 ${ }^{125}$ The marginal observed increase in dr at C5 upon triethylamine-promoted cyclization may arise either from C5epimeric linear intermediates displaying differing rates of cyclization, or more simply from limitations in the precision of ${ }^{1} \mathrm{H}$-NMR measurements used to determine these ratios.

[^69]: ${ }^{126}$ (a) McDonald, F. E.; Reddy, K. S.; Díaz, Y. J. Am. Chem. Soc. 2000, 122, 4304-4309. (b) Koo, B.-S.; McDonald, F. E. Org. Lett. 2007, 9, 1737-1740. (c) Wipf, P; Graham, T. H. J. Org. Chem. 2003, 68, 8798-8807.
 ${ }^{127}$ (a) Trost, B. M.; Rhee, Y. H. J. Am. Chem. Soc. 2003, 125, 7482-7483. (b) Codelli, J. A.; Puchlopek, A. L. A.; Reisman, S. E. J. Am. Chem. Soc. 2012, 134, 1930-1933.
 ${ }^{128}$ (a) Trost, B. M.; Rhee, Y. H. J. Am. Chem. Soc. 2002, 124, 2528-2533. (b) Trost, B. M.; Rhee, Y. H. Org. Lett. 2004, 6, 4311-4313. (c) Zeng, M.; Li, L.; Herzon, S. B. J. Am. Chem. Soc. 2014, 136, 7058-7067. (d) Zeng, M.; Herzon, S. B. J. Org. Chem. 2015, 80, 8604-8618.

[^70]: ${ }^{129}$ Dorel, R.; Echavarren, A. M. Chem. Rev. 2015, 115, 9028-9072.
 ${ }^{130}$ Use of less acidic additives resulted in little to no conversion of the isoxazoline substrate. The $\mathrm{p} \mathrm{Ka}^{\prime}$ of 3methylisoxazoline is 0.55 ± 0.10, while the $\mathrm{p} K_{\text {a }}$ of trifluoroacetic acid is 0.23 , consistent with a mechanistic model requiring substrate protonation for $\mathrm{C}=\mathrm{N}$ bond reduction. See: (a) Bauder, C. Org. Biomol. Chem. 2008, 6, 2952-2960. (b) Grünanger, P.; Vita-Finzi, P.; Dowling, J. E. Isoxazoles. In Chemistry of Heterocyclic Compounds; Wiley: New York, 1991; Vol. 49.

[^71]: ${ }^{131}$ Murray, R. W.; Singh, M. Org. Synth. 1997, 74, 91.
 ${ }^{132}$ Anomeric selectivity was highly dependent on solvent choice, and participation of ethereal solvents is believed to underlie the high α selectivities observed. When tert-butyl methyl ether was used, for example, $\sim 90: 10 \alpha: \beta$ selectivity was observed, while $\beta-O$-methyl glycoside - arising through putative loss of tert-butyl cation from a transient sugarsolvent oxonium adduct - was isolated as a by-product.

[^72]: ${ }^{133}$ Xue, S.; Han, K.-Z.; He, L.; Guo, Q.-X.; Synlett 2003, 870-872.

[^73]: ${ }^{134}$ (a) Brodasky, T. F.; Lewis, C.; Eble, T. E. Eur. J. Drug Metab. Pharmacokinet. 1977, 2, 149-156. (b) Wynalda, M. A.; Hutzler, J. M.; Koets, M. D.; Podoll, T.; Wienkers, L. C. Drug Metab. Dispos. 2003, 31, 878-887.

[^74]: ${ }^{135}$ Abdu-Allah, H. H. M.; Tamanaka, T.; Yu, J.; Zhuoyuan, L.; Sadagopan, M.; Adachi, T.; Tsubata, T.; Kelm, S.; Ishida, H.; Kiso, M. J. Med. Chem. 2008, 51, 6665-6681.

[^75]: ${ }^{136}$ In early work from The Upjohn Company, trifluoroacetylation of this amino group was found to facilitate subsequent 7-deoxychlorination. See Reference 60.
 ${ }^{137}$ Weiß, R.; Wagner, K.-G. Chem. Ber. 1984, 117, 1973-1976.

[^76]: ${ }^{138}$ FSA-213008 was prepared from 3.56 by a sequence analogous to the one presented in Scheme 3.15 -see Experimental Section for details.

[^77]: ${ }^{139}$ (a) Myers, A. G.; Seiple, I. B.; Zhang, Z. Macrolides with modified desosamine sugars and uses thereof. WO 154591 A1, September 29, 2016. (b) Myers, A. G.; Zhang, Z. Synthesis of desosamines. WO 154533 A1, September 29, 2016.

[^78]: ${ }^{140}$ The chemical structures and antibacterial activities of these semisynthetic derivatives are tabulated in Appendices B and C, respectively. For the details of their preparation, see: Mitcheltree, M. J.; Myers, A. G. Lincosamide antibiotics and uses thereof. Patent application in preparation, 2018.

[^79]: ${ }^{141}$ For reviews of the "magic methyl" effect, see: (a) Schönherr, H.; Cernak, T. Angew. Chem. Int. Ed. 2013, 52, 12256-12267. (b) Berreiro, E. J.; Kümmerle, A. E.; Fraga, C. A. M. Chem. Rev. 2011, 111, 5215-5246.

[^80]: ${ }^{142}$ Tibiletti, F.; Simonetti, M.; Nicholas, K. M.; Palmisano, G.; Parravicini, M.; Imbesi, F.; Tollari, S.; Penoni, A. Tetrahedron 2010, 66, 1280-1288.

[^81]: ${ }^{143}$ Ahlmark, M.; Din, B. D.; Kauppala, M.; Luiro, A.; Pajunen, T.; Pystynen, J.; Tiainen, E.; Vaismaa, M.; Messinger, J. Preparation of 2-substituted 4,5-dihydroxyisophthalonitriles and their analogs as inhibitors of catechol- O methyltransferase for the treatment of Parkinson's disease. WO Patent 2013175053A1, May 23, 2013.

[^82]: ${ }^{144}$ Cho, J.; Lee, Y. M.; Kim, D.; Kim, S. J. Org. Chem. 2009, 74, 3900-3904.

[^83]: ${ }^{145}$ Kitayama, T. Tetrahedron 1996, 52, 6139-6148.

[^84]: ${ }^{146}$ Bartoli, G.; Marcantoni, E.; Petrini, M. J. Chem. Soc. Chem. Commun. 1991, 793-794.

[^85]: ${ }^{147}$ Although the melting point of pure 1,4 -dioxane is $12{ }^{\circ} \mathrm{C}$, freezing point depression prevents the solidification of the reaction mixture at these temperatures.

[^86]: ${ }^{148}$ Tungsten hexacarbonyl purchased from Strem $(99 \%,<0.3 \%$ molybdenum $)$ gave moderately higher yields than precatalyst purchased from Sigma-Aldrich (97%), likely due to the presence of molybdenum hexacarbonyl as a major impurity in the latter sample.

[^87]: ${ }^{149}$ Note: The acid-sensitive product is unstable toward chromatography using standard silica gel.

[^88]: ${ }^{150}$ Brubaker, J. D.; Myers, A. G. Org. Lett. 2007, 9, 3523-3525.
 ${ }^{151}$ Krasovskiy, A.; Knochel, P. Synthesis 2006, 890-891.

[^89]: ${ }^{152}$ Denmark, S. E.; Edwards, J. P. J. Org. Chem. 1991, 56, 6974-6981.

[^90]: ${ }^{153}$ Zhou, L.-S.; Yang, K.-W.; Feng, L.; Xiao, J.-M.; Liu, C.-C.; Zhang, Y.-L.; Crowder, M. W. Bioorg. Med. Chem. Lett. 2013, 23, 949-954.

[^91]: ${ }^{154}$ Barré, A.; Tînţaş, M.-L.; Alix, F.; Gembus, V.; Papamicaël, C.; Levacher, V. J. Org. Chem. 2015, 80, 6537-6544.

[^92]: ${ }^{155}$ Note: Prior to staining with ninhydrin, TLC plates must be heated thoroughly ($\sim 200{ }^{\circ} \mathrm{C}, 30 \mathrm{~s}$) to drive off residual ammonia, which interferes with proper staining.

[^93]: ${ }^{1} \mathrm{H}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 9.06(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.77$ (ddd, $\left.J=8.3,2.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.62(\mathrm{~d}, J$ $=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.02(\mathrm{dd}, J=8.3,5.6,1 \mathrm{H}), 7.71(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.94(\mathrm{~d}, J=9.0 \mathrm{~Hz}$, $2 \mathrm{H}), 5.35(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{app} \mathrm{td}, J=8.6,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{dd}, J=9.1,1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.14(\mathrm{dd}, J=10.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.99(\mathrm{dd}, J=10.3,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{dd}, J=3.4,1.3$

[^94]: ${ }^{1} \mathrm{H}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 9.08(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.81(\mathrm{ddd}, J=8.4,2.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.64$ (app $\mathrm{dt}, J=5.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{ddd}, J=8.4,5.6,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.71(\mathrm{~d}, J=9.0,2 \mathrm{H}), 6.99(\mathrm{~d}$, $J=9.1 \mathrm{~Hz}, 2 \mathrm{H}), 5.36(\mathrm{~d}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.71(\mathrm{ddd}, J=10.9,8.9,3.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{~d}, J$ $=9.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dd}, J=10.1,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{dd}, J=10.1,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{~d}, J=$

[^95]: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(600 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.38(\mathrm{~s}, 1 \mathrm{H}), 7.43(\mathrm{~d}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-7.25(\mathrm{~m}, 2 \mathrm{H}), 7.02(\mathrm{tt}$,

 $$
 J=7.4,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.31(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48(\operatorname{app~dt}, J=9.6,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.41-4.38
 $$

[^96]: ${ }^{156}$ Ellman, J. A.; Owens, T. D.; Tang, T. P. Acc. Chem. Res. 2002, 35, 984-995.
 ${ }^{157}$ Wagschal, S.; Guilbaud, J.; Rabet, P; Farina, V.; Lemaire, S. J. Org. Chem. 2015, 80, 9328-9335.

[^97]: ${ }^{158}$ Esmurziev, A.; Sundby, E.; Hoff, B. H. Eur. J. Org. Chem. 2009, 1592-1597.
 ${ }^{159}$ Liu, G.; Cogan, D. A.; Owens, T. D.; Tang, T. P.; Ellman, J. A. J. Org. Chem. 1999, 64, 1278-1284.
 ${ }^{160}$ In all cases shown, C6 stereochemistry was assigned by analogy to published protocols for sulfinimine addition, and has not been corroborated independently by X-ray crystallography or other means.

[^98]: ${ }^{162}$ The N-benzoyl triol arising by base-promoted acyl-group migration was a major by-product in this hydrazinolysis transformation. In subsequent examples, debenzoylation was performed before amine desulfinylation, so as to preempt this troublesome side-reaction.
 ${ }^{163}$ (a) Ding, C.-H.; Chen, D.-D.; Luo, Z.-B.; Dai, L.-X.; Hou, X.-L. Synlett 2006, 1272-1274. (b) Wang, D.; Nugent, W. A. J. Org. Chem. 2007, 72, 7307-7312.

[^99]: ${ }^{164}$ Reddy, L. R.; Hu, B.; Prashad, M.; Prasad, K. Org. Lett. 2008, 10, 3109-3112.

[^100]: ${ }^{165}$ Leggans, E. K.; Barker, T. J.; Duncan, K. K.; Boger, D. L. Org. Lett. 2012, 14, 1428-1431.

[^101]: ${ }^{166}$ David, S. A.; Mathan, V. I.; Balaram, P. J. Endotoxin Res. 1995, 2, 325-336.
 167 (a) Hancock, R. E.; Bell, A. Eur. J. Clin. Microbiol. Infect. Dis. 1988, 7, 713-720. (b) Farmer, S.; Li, Z. S.; Hancock, R. E. J. Antimicrob. Chemother. 1992, 29, 27-33.

[^102]: ${ }^{168}$ This vinyl stannane was generously provided by Dr. Md. Ataur Rahman, who prepared it from 1-allyl-4ketopipiridine by application of a known enolization-triflation-stannylation sequence. See: Sünnemann, H. W.; Banwell, M. G.; de Meijere, A. Eur. J. Org. Chem. 2007, 3879-3893.

[^103]: ${ }^{169}$ Basic methanolysis was found to be preferable to hydrazinolysis for reasons of safety and practicality - the catalytic base used in this transformation could be quenched easily by an excess of hydrogen chloride, permitting tandem debenzoylation-desulfinylation in a single flask, without the need for intermediate evaporative workup.

[^104]: ${ }^{170}$ (a) Li, Y.; Hu, J. Angew. Chem. Int. Ed. 2005, 44, 5882-5886. (b) Liu, J.; Li, Y.; Hu, J. J. Org. Chem. 2007, 72, 3119-3121.
 ${ }^{171}$ Prakash, G. K. S.; Mandal, M.; Olah, G. A. Org. Lett. 2001, 3, 2847-2850.

[^105]: ${ }^{172}$ While the commercially available solution of this Grignard reagent in tetrahydrofuran was used here, freshly prepared vinylmagnesium bromide in diethyl ether is known to provide improved diastereoselectivities in similar reactions. See: Lee, A.; Ellman, J. A. Org. Lett. 2001, 3, 3707-3709.

[^106]: ${ }^{173}$ Chen, H.; Xian, T.; Zhang, W.; Si, W.; Luo, X.; Zhang, B.; Zhang, M.; Wang, Z.; Zhang, J. Carbohydr. Res. 2016, 431, 42-46.

[^107]: ${ }^{174}$ Note: The acid-sensitive product is unstable toward chromatography using standard silica gel.

[^108]: ${ }^{175}$ Despite extensive experimentation, TLC conditions could not be identified to adequately distinguish starting material from product for purposes of reaction monitoring.

[^109]: ${ }^{176}$ Sämann, C.; Knochel, P. Synthesis 2013, 45, 1870-1876.

[^110]: ${ }^{177}$ Ren, H.; Dunet, G.; Mayer, P.; Knochel, P. J. Am. Chem. Soc. 2007, 129, 5376-5377.

[^111]: ${ }^{178}$ Bruker AXS APEX II, Bruker AXS, Madison, Wisconsin, 2009.
 ${ }^{179}$ Sheldrick, G. M. Acta Cryst. 2008, A64, 112-122.
 ${ }^{180}$ Dolomanov, O. V.; Bourhis, L. J.; Gildea, R. J.; Howard, J. A. K.; Puschmann, H. J. Appl. Cryst. 2009, 42, 339341.
 ${ }^{181}$ Accelrys DS Visualizer v2.0.1, Accelrys Software, Inc., 2007.

[^112]: ${ }^{182}$ Bruker AXS APEX3, Bruker AXS, Madison, Wisconsin, 2015.
 183 (a) Sheldrick, G. M. Acta Cryst. 2015, A71, 3-8. Sheldrick, G. M. Acta Cryst. 2015, C21, 3-8.

[^113]: ${ }^{184}$ Bruker AXS APEX3, Bruker AXS, Madison, Wisconsin, 2016.

[^114]: $\begin{array}{lllllllllllllllllllllllllll}1.5 & 10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & \begin{array}{l}5.0 \\ (\mathrm{ppm})\end{array} & 4.5 & 4.0 & 3.5 & 3.0 & 2.5 & 2.0 & 1.5 & 1.0 & 0.5 & 0.0 & -0\end{array}$

[^115]: $\begin{array}{lllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^116]: $\begin{array}{lllllllllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^117]: $\begin{array}{llllllllllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^118]: $\left.\begin{array}{lllllllllllllllllllllll}10.0 & 9.5 & 9.0 & 8.5 & 8.0 & 7.5 & 7.0 & 6.5 & 6.0 & 5.5 & \underset{f 1}{(\mathrm{ppm})}\end{array}\right)$

[^119]:

[^120]: $\begin{array}{llllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

[^121]: $\begin{array}{lllllllllllllllllllllllllllll}230 & 220 & 210 & 200 & 190 & 180 & 170 & 160 & 150 & 140 & 130 & 120 & 110 & 100 & 90 & 80 & 70 & 60 & 50 & 40 & 30 & 20 & 10 & 0 & -10\end{array}$

