DIGITAL ACCESS o e
SCHOLARSHIP T HARVARD Office forSchaarly Communicion

DASH.HARVARD.EDU

On Aging: Analyses of Long-Term Fine Particulate
Air Pollution Exposure, Genetic Variants, and Blood
DNA Methylation Age in the Elderly

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:40050003

Terms of Use

This article was downloaded from Harvard University’s DASH repository, and is made available
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story

The Harvard community has made this article openly available.
Please share how this access benefits you. Submit a story .

Accessibility


http://nrs.harvard.edu/urn-3:HUL.InstRepos:40050003
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=On%20Aging:%20Analyses%20of%20Long-Term%20Fine%20Particulate%20Air%20Pollution%20Exposure,%20Genetic%20Variants,%20and%20Blood%20DNA%20Methylation%20Age%20in%20the%20Elderly&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=8c05f3ee50ad5ae11176e7871c6f09c9&departmentBiological%20Sciences%20in%20Public%20Health
https://dash.harvard.edu/pages/accessibility

On Aging: Analyses of Long-term Fine Particulate Air Pollution Exposure, Genetic Variants, and
Blood DNA Methylation Age in the Elderly

A dissertation presented
by
Jamaji Chilaka Nwanaji-Enwerem
to

The Committee on Higher Degrees in Biological Sciences in Public Health

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy
in the subject of

Biological Sciences in Public Health

Harvard University

Cambridge, Massachusetts

November, 2017



© 2017 Jamaji Chilaka Nwanaji-Enwerem

All rights reserved.



Dissertation Advisors: Andrea A. Baccarelli, MD, PhD Jamaji Chilaka Nwanaji-Enwerem
& Marc G. Weisskopf, PhD, ScD

On Aging: Analyses of Long-term Fine Particulate Air Pollution Exposure, Genetic Variants, and
Blood DNA Methylation Age in the Elderly

Abstract

Human aging is often accompanied by the development of chronic disease. Research has
identified molecular processes that are shared by aging-related diseases, and it is widely believed that pre-
clinical changes in these aging-related molecular processes (i.e. measures of “biological age”) may be
more informative of morbidity and mortality risks than simple chronological age. DNA methylation age
(DNAm-age) is a DNA methylation based predictor of chronological age and a novel measure of
biological age. Studies have demonstrated associations of DNAm-age with a host of aging-related health
outcomes including all-cause mortality, frailty, cancer, and Parkinson’s disease. However, very few
studies have examined DNAm-age relationships with aging risk factors.

Fine particulate air pollution (PM, ) is a well-documented aging risk factor and is considered the
world’s largest singular environmental health risk. This body of work utilized multivariate linear mixed
effects models and a well-established aging cohort, the United States Veterans Affairs Normative Aging
Study (NAS), to examine the relationship of long-term PM, 5 exposure levels with DNAm-age. After
determining the direct relationship of PM, s with DNAm-age in the NAS, we determined which of five
major PM, 5 component species (ammonium, elemental carbon, organic carbon, sulfate, and nitrate) were
most associated with DNAm-age. Finally, we examined if normal genetic variation in aging-related
physiological processes (endothelial function, metal processing, oxidative stress, mitochondrial genome
physiology, and microRNA processing) impacted the relationships of PM, 5 and its component species
with DNAm-age.

We found that PM, 5 was significantly, positively associated with DNAm-age and that sulfate and
ammonium were the component species most associated with DNAm-age. Moreover, endothelial
function, mitochondrial genome, and microRNA processing variants significantly modified the
association of PM, s with DNAm-age. DNAm-age was also significantly associated with a number of
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serum measures related to these effect modifiers including mitochondrial DNA copy number, intercellular
adhesion molecule (ICAM), and vascular cell adhesion molecule (VCAM).

In all, our studies demonstrate a novel association of PM, s with DNAm-age. Our studies also
suggest that DNAm-age has robust relationships with endothelial function, mitochondrial physiology, and
miRNA processing — all of which are processes known to play a role in aging-related diseases. Still,
future studies will be necessary to further understand what DNAm-age represents and how it can best be

used as a biomarker.

v



Table of Contents

THELE PAZE .veeiuviieiii ettt ettt et e et e e bt e et e eesteeetbeessbeeasbeeasbeeessaeestae e sbeeasbeeesbeeanreeentbeeesbaennreennrean i
COPYIIZNE PAZE ...oeiiiiiiiie ettt ettt e st e e et e e e taeestbeeebeeesbeessseeessaeessaeessseesssaessseeasseennses ii
YN o115 2 T USSP ii
DIEATCALION ...ttt ettt et ettt e a et e et s et e e et e sat e ea et ea et eh et sat e ea bt eateeateebeeehtesheeeateeateeaeeeaeas viii
ACKNOWIEAGEMENLS .....eoiiiiiiiieiii ettt ettt e et et e et e ette e tbeeeebeessbeessbeessseesssseasseesseessseessseesssesessseensseans iX
Chapter 1: INTrOAUCTION .....ieiiieiiieiiieeieecieeeiee et e et e et e ette e tee e tbeessbeessbeessseesssaesssasasseesssssaesssasssseessseeeseeans 1
1.1. A Synopsis of Fine Particle (PM, ) Exposure and Human Health .............c.ccocoiiiiiininnn. 2
1.2. The Importance of Continued PMj 5 Research ..........cccceveviieiiiiciiiceiicecceeeeee e 3
1.3. PMy5 EXPOSUIE aNd AING ....veieiiieiiieeiiieciiectieeieeeieeesiveesiteeseveeebeessbeeessaeessaeesseesssaesssesssseens 4
1.4. PM, 5 Exposure and DNA Methylation ...........cccoeecviiiiiiiiiiieeiie et e 4
1.5. DNA Methylation and AZING .......ccccccveeeiieieiieiiieeie et e sreeeieeeieeesaeesaeesaeessseesssaeesaeessseeens 6
1.6. DNA Methylation Age (DNAM-AZE) ..ccvieieiiieiiieiieeie et eree et e teeeeaeeebeesraesbeeesseeenees 7
1.7. Studying PM, s and DNAm-age RelationsShips ........ccccuievvieiiiiiciieiiie e 10
1.8 RETETEICES ...ttt ettt e h e s ht e b e bt e s sate e bt eabeembeenteenteenteens 11

Chapter 2: Long-term Ambient Particle Exposures and Blood DNA Methylation Age: Findings from the

VA NOrMative AZING STUAY ...veeevieiiieiiieeiieeiieerteetteestteestte e teesveesebeaessbeeesseeessseessseessseessseesssessssseessseanes 16
210 ADSITACE ..ottt eh e ettt ea e e et et he e eheesaeeshtesateeatenaaesaeen 17
2.2, INEEOAUCLION ..ttt ettt ettt ettt et et e bt e bt et e e te e bt e bt enbeenbeenteenteens 18
2.3. Materials and Methods .........coooiiiiiiiiii ettt 18
24 RESUILS ..ttt et ettt et ettt ettt et e e b e e bt e b et eteens 24
2.5, DISCUSSION ..entiiutieutieiteete ettt et ettt ettt et e ettt e e s bt ea bt eaeeeaeeeabesateeateeaeeestesatesatesaeesaaesneesneens 31
2.6, CONCIUSION .ttt ettt ettt b et e bt et e e s bt e b e e b e e bt e bt e be e beenbeebeenbeenbeaneean 36
2.7. Contributions and SUPPOTL .....ccc.eiiriiiiiieeiieiiieeiee ettt seeesteesreesveesbeeebaeestaeesseessseesssens 36
2.8 RETETEIICES ...ttt ettt et ettt ettt st e bt e e bt e bt eabeeneeenteenteens 38

Chapter 3: Associations between Long-term Exposure to PM,s Component Species and Blood DNA

\%



Methylation Age in the Elderly: The VA Normative Aging StUdy .......ccceeveieriieiiiieeiieeiie e 45

3L ADSITACE .ottt ettt ettt bt ettt et et e e bt e bt e bt e bt eteeteeneeen 46
3.2, INEEOAUCEION .ttt b e bt et e e bt et et e bt et e ee sbeesbeesaeesaeesaeesmeesaees 47
3.3. Materials and MeEthOdS ........cooiiiiiiiiiiieieee ettt st nbe e 48
B4 RESUILS ettt st h e bbbttt et b e eheeehtesae e sae e i e eaeeeaeas 53
3.5, DISCUSSION ..entiiuiiintieitete ettt ettt et et e bt e bt et e bt et e e bt eateeabeen bt embeeateemteenteenbeenbeembeenteenteeneeens 62
3.6, CONCIUSION ..ttt ettt a e b e b et e et e e bt e bt embeeesbeesbee bt e bt enbeeneeans 66
3.7. Contributions and SUPPOTL ......cceieriiiiiieiiieeie ettt e eiee et e ereesreesreeessbreesaeessbeessseessseessseens 67
3.8, RETETEICES ...eutieiieiietiettee ettt sttt b et e st e sbteebeesaeesaeesaeesaeesaeas 68

Chapter 4: Modifying Role of Endothelial Function Gene Variants on the Association of Long-term PM, s

Exposure with Blood DNA Methylation Age: the VA Normative Aging Study .........ccceevevieviiiniieenneenns 75
A0 ADSEITACE ..ottt ettt et ettt et e a e ettt et et eae e eate et e et et eanes 76
4.2, INETOAUCTION ...ttt ettt e b e bttt et et e eatesateebeesbeecebee bt enbeebeenteenteans 77
4.3. Materials and Methods .........ccoioiiiiiiiiii et 78
A4, RESUILS ...ttt h et h e b e bt e bt e bt et bt et bt e bt e bt e bt e bt e be e beeteens 85
4.5, DISCUSSION «.entieutieniiettete et et et et e ettt et eeteeate s ateeateeaeeebeesaeesstesatesbtesaeeambeembeenteenteenteensesnnas 91
4.0, CONCIUSION ..ttt ettt ettt e s sht e sat e shtesaeesaeesbeesbeesbeesaeesaeesaeenneas 96
4.7. Contributions and SUPPOTT ....eeervirierieiiieeitieeitieeetteesteeestreestaeestaeessaeessseesssesesseeasesessseessseensnes 97
4.8, RETETEICES .....eeutieiieiietiete ettt ettt et et e bt e bt et e bt e bt e be e bt e bt enbeenbeenteenteens 98

Chapter 5: Impacts of the Mitochondrial Genome on the Relationship of Long-term Ambient Fine Particle

Exposure with Blood DNA Methylation AZE ........cccuveviiiiiiieiie et svee s et e v e eveeeeneesese e 105
B R o113 ¢ T AT U PP 106
5.2 INIFOAUCTION vttt ettt s e sb e b e bt et e et e e beesbeenbeenbeebeenbeenbeans 107
5.3. Materials and Methods .........coouiiiiiiiiii e 108
5.4 RESUILS ..ttt et b e b e s bt e bt e bt e bt e bt e bt e bt e sbe e e bt e bt e bt e nbeenbeens 115
5.5, DISCUSSION eutiiutieiietieit ettt ettt ettt ettt e bt e b e et e bt e st e ea e e eabeeab e e sbeesbeenbee bt e sbeesbeenbeenbeennes 123



I T O707 1163 13153 Lo s RO TR TR 128
5.7. Contributions and SUPPOIL ....ccueeiiieeeiieeiieeitieetteereeeeieeesteeestteesteeeseaeesseessseessseessseessseeesees 128
5.8 RETEIEINCES ..ttt ettt e et e e e e e asasasaaaanenees 130

Chapter 6: MicroRNA Processing Gene Polymorphisms, Blood DNA Methylation Age, and Long-term

Ambient PM; s Exposure in EIderly MEn ........c.cccciiiiiiiiiiiiiieiccciee ettt 139
6.1, ADSITACE ..ottt ettt ettt ettt et ettt e a e e et e e at e st et eae e ea e bt e beenaee e 140
6.2, INTTOAUCLION ..ottt ettt e sb e bt e b et et et et e et e este e e sbeesbeesbeesaeenaeas 141
6.3. Materials and Methods .........cooiiiiiiii e e 142
6.4, RESUILS ..ottt et b e bt e b e bt te bt e bt e sae e sateeae et e eaeas 148
6.5, DISCUSSION ..eeutiitietieiieitieit et tet et et e st e et e bt e bt e bt e bt e bt e bt e bt e bt ebeeshtesatesaeesmteaneesntesaeesanenas 155
6.6. CONCIUSION ..ttt ettt ettt ettt et st s et eae e sbtesa bt eabeenteeneeeneeenee 159
6.7. Contributions and SUPPOTL ......cc.eieeuiiiriiiiiieiie ettt et steeebeesbeesbeeebaeeeaeesseessseessns 159
6.8 RETETEIICES ...ttt b e b et e bt e sbeesbeesbeesbeesbeenbeenaeas 161
CRAPLET 7: CONCIUSION ...eiiuiiiiiiieiieeitie ettt e et eestteestveesbeeesreeesbeeessaeesseessseessseesssaeessseessseenssaensseesssesnssens 166
8 T 12 (o e L Lot o) ST OTUUUPPP 167
7.2. Air Pollutant EXPOSULIES ......c.cceeiiiiiieiiieiiieciieeieeeieeeieeeeteeseteesebeesebeesavaessseeessaeensseensseensnas 167
7.3, MEtal EXPOSUIES ...ccvviiiiieieiieiiieitieeieeetteeteeestteetaeessaeessseessseesssesssseeassseessseasssesssseesssesssseens 172
7.4. Organochlorine Pesticide EXPOSUIES .......cccvieeuiieriiiiiieiiieeieeecieeeiee e esiveesreeesveeeseveeseneas 173
7.5, CONCIUSION vttt ettt et ettt et et e e bt s et e e bt e sbeesaeesbeesbeenbee e eneeenne 174
7.6, RETETEICES ..ottt ettt st st b e bt e st e et en e sbeesbeesbeenbeenaeas 176
APPEIAICES ...vvieuiiieiiieiiieeeteeette et e eteeetee e teeestbeestaeessseesssaeasseasssaeassseessseessaeessseeasseaesbeeasbeeassaeanseeantaeeraeans 179
Appendix 1: Chapter 2 Supplementary Data .........c.ccoevieiiieriienie e sevee e 180
Appendix 2: Chapter 3 Supplementary Data .........ccccoovveiiiieiiieeciii e 188
Appendix 3: Chapter 4 Supplementary Data .........c.ccoeviiviieriiiniieieecree e 194
Appendix 4: Chapter 5 Supplementary Data .........c..coeviiiiieiiiiniieieecree e 200
Appendix 5: Chapter 6 Supplementary Data .........c..ceeveieiieriiiiieeieecee e 208

vii



Dedication
This dissertation is dedicated to God, through whom all things are possible. This dissertation is also
dedicated to my parents (Pamaji and Chioma Nwanaji-Enwerem), and grandparents (Ezinna Vincent
Nwanaji-Enwerem [late], Ezinne Elfreda Nwanaji-Enwerem [late], Chief Engineer Bath Achilike, and Lolo
Elfreda Achilike). You have been my foundation in life and the completion of this degree in part honors
the sacrifices that you have made for your children. This work is also dedicated to the people of Umuozu,
Nigeria and Concord, North Carolina. As I continue my journey, I remain aware of my roots and the

environments that shaped my early years.

viii



Acknowledgements
As I reflected on what to write in these acknowledgements, my conscious was immediately drawn

to the Bible parable of the talents (Matthew 25:14 — 29):

“It will be as when a man who was going on a journey called in his servants and
entrusted his possessions to them. To one he gave five talents; to another, two, to a
third, one—to each according to his ability. Then he went away. Immediately the one
who received five talents went and traded with them, and made another five. Likewise,
the one who received two made another two. But the man who received one went off
and dug a hole in the ground and buried his master’s money. After a long time the
master of those servants came back and settled accounts with them. The one who had
received five talents came forward bringing the additional five. He said, ‘Master, you
gave me five talents. See, I have made five more.” His master said to him, ‘Well done,
my good and faithful servant. Since you were faithful in small matters, I will give you
great responsibilities. Come, share your master’s joy.” [Then] the one who had
received two talents also came forward and said, ‘Master, you gave me two talents.
See, I have made two more.’ His master said to him, ‘Well done, my good and faithful
servant. Since you were faithful in small matters, I will give you great responsibilities.
Come, share your master’s joy.” Then the one who had received the one talent came
forward and said, ‘Master, I knew you were a demanding person, harvesting where
you did not plant and gathering where you did not scatter; so out of fear I went off and
buried your talent in the ground. Here it is back.” His master said to him in reply, ‘You
wicked, lazy servant! So you knew that I harvest where I did not plant and gather
where I did not scatter? Should you not then have put my money in the bank so that 1
could have got it back with interest on my return? Now then! Take the talent from him
and give it to the one with ten. For to everyone who has, more will be given and he
will grow rich, but from the one who has not, even what he has will be taken away.”

The belief that we are not simply given gifts in our lives to be buried away, but rather that we are obligated
to share our gifts with the world has resonated with me for much of my life. Throughout my educational
career and doctoral training, there have been countless instances when my family, mentors, colleagues, and
friends have gifted me with their time, attention, and expertise. Unbeknownst to them, simple conversations,
brainstorming sessions, holiday dinners, vacations, and causal outings have meant all the difference to me
on this journey. For their contributions, I say thank you and strive to make myself available and willing to
help those that I encounter throughout life. My sincerest gratitude goes to my advisors Dr. Andrea Baccarelli
and Dr. Marc Weisskopf. I will be ever-appreciative of your allowing me to pursue my research ideas and
your guidance in shaping my research questions. A very special thank you also goes to my dissertation

advisory and defense committees: Dr. Edward Boyer, Dr. Immaculata De Vivo, Dr. Bernardo Lemos, Dr.

iX



Quan Lu, Dr. Frank Sacks, and Dr. Marianne Wessling-Resnick. Each of you have offered me critical
advice at different junctures of my doctoral training and have been stellar examples of scholarly leadership.
A warm thank you also goes to the many other professors, faculty, and staff members at Harvard Medical
School and Harvard T.H. Chan School of Public Health that have had a valuable impact on my career
development.

I have also been privileged to have the support of a loving family. To my parents Pamaji and
Chioma Nwanaji-Enwerem, thank you for raising me to be a moral, compassionate, and hardworking
individual. To my siblings Onyemaechi, Uzoji, Ugoji, and Ezeji, your support has and will always be
invaluable to me. Lastly, but surely not least, thank you to God for all that [ have been given. I hope that I

do these opportunities justice and can positively impact the world to your pleasing. Again, thank you all.



Chapter 1:

Introduction



1.1. A Synopsis of Fine Particle (PM,s) Exposure and Human Health

In 1993, a prospective study involving 8111 residents of six United States cities reported important
associations of air pollutant levels with premature mortality. Even after controlling for smoking and other
risk factors, the study suggested that individuals living in highly polluted cities were at a greater risk of
premature mortality and that these individuals were dying from cardiopulmonary disease and lung cancer'.
Since this landmark 1993 paper, reanalysis of the original study data has confirmed the quality of the initial
findings. Moreover, it has become widely accepted that fine particulate air pollution (PM,; ) is a major
global health risk®. Continued follow-up of the six city study participants has demonstrated that reductions
in the concentrations of ambient PM, 5 — due to legislation like the Clean Air Act of 1970 and amendments
of 1977 and 1990 — are significantly associated with declines in cardiopulmonary mortality”.

Researchers have continued to extensively study the relationships of ambient PM, 5 exposure with
human health. Much of this work has been in observational studies which have reported consistent
relationships of PM, s exposure with adverse cardiopulmonary and cardiometabolic health outcomes™”.
Still, emerging data from observational studies has also revealed novel associations of PM; 5 exposure with
previously unconsidered health outcomes like dementia, Parkinson’s disease, and chronic kidney disease®
¥ Experimental toxicological studies in human cells and animal models have provided supportive evidence
that PM, s exposure can result in health endpoints comparable to those described in human observational
studies”'’. From this experimental work, we have come to understand that fine particles are particularly
dangerous because they are readily inhalable and can penetrate into the lung’s alveolar gas exchange
regions. In addition to respiratory-related consequences, PM, 5 can traverse the respiratory barrier, enter the
circulatory system and cause systemic sequelae''. Experimental studies have also demonstrated that PM, s
exposure impacts biological process (e.g. inflammation and oxidative stress) and that disturbances in these
processes are likely to be among the molecular mechanisms that manifest themselves in PM, s-related
disease'>"

Despite these compelling findings, there are studies that still report no relationships of PM; 5 mass

with health endpoints including relationships that have been previously well-described. A leading theory to
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explain these seemingly contradictory results is based on the premise that the levels and the composition of
PM, s mass are known to vary both spatially and temporally. In fact, the chemical composition of PM, s is
often dependent on particle sources. For instance, primary particles emitted from coal combustion are
enriched with arsenic and selenium while those from oil combustion are enriched with nickel and
vanadium'*. Particles from soil sources are enriched for crustal elements like aluminum and silicon while
sulfates, nitrates, and organic compounds are usually secondary PM, s component species from atmospheric
photochemical reactions'”. A study of 45 school children living Southern California with persistent asthma,
demonstrated that associations of PM,s with airway inflammation in asthmatics is missed if only
relationships with total PM, s mass are examined. However, when associations with particular component
species (e.g. elemental carbon and nitric oxide) were examined, these associations were robust in magnitude
and statistically significant'®. Likewise, another more recently study, based on a population of individuals
under the age of 20 living in the Shalu district of Taiwan, found the risk of asthma outpatient visits to be
associated with carbon and nitrate PM,s component species'’. Differential PM,s component species
toxicity has also been reported in adult populations with respect to many health outcomes including risk of
myocardial infarction and pre-term birth'®'"”. Ultimately, these data demonstrate the importance of
component species analyses alongside total PM, ;s mass analyses especially when attempting to identify

causal toxic pollutants®.

1.2. The Importance of Continued PM, s Research

It is important to re-emphasize that PM, s research has informed the implementation of new air
quality standards that have helped to save many lives and reduced health risks across the world®'*. A
critical component of defining meaningful current and future air quality standards will be work not only
examining relationships of PM, s exposure with disease, but work that examines relationships of PM, s
exposure with molecular processes that may precede the manifestation of clinical disease. Understanding
relationships with molecular processes like biological aging may also inform additional interventions or

therapeutics for individuals currently living in areas that do not adhere to PM, 5 air quality standards.

3



1.3. PM, s Exposure and Aging

Human aging is often accompanied by the development of multiple chronic conditions including
dementia, metabolic syndrome, and cardiovascular disease. Since many of these chronic conditions have
been independently associated with PM, s exposure, exploring relationships of PM, s with aging remains
one promising strategy to further understand the adverse impact of PM; 5 on human health. One large study
of approximately 28 million adults across the United States found that every interquartile range (4.19
ug/m’) increase in PM, s exposure was significantly associated with a lower probability of exceptional
aging, which was defined as living to the age range of 85-94, and a lower probability of becoming a
centenarian, living to the age range of at least 100 years™. Still, the mechanisms that explain how PMS, s
exposure impacts the aging process are not well understood. One major hurdle in addressing this research
gap is the variability in how aging is defined in current research. As demonstrated by the previously
mentioned exceptional aging study, many studies define aging as the passing of time or chronological age.
However, research has identified a number of molecular markers that outperform chronological age in
representing morbidity and mortality risk. These molecular markers include telomere length, mitochondrial
genome abundance, measures of cellular senescence, stem cell exhaustion, and epigenetic alterations.
Furthermore, human observational studies and animal experimental studies have reported relationships of
PM, 5 exposure with a number of these markers including telomere length, cellular senescence, and cell
atrophy”**®. Some of the more novel associations of PM, s exposure with aging markers have involved

epigenetic alterations, particularly DNA methylation.

1.4. PM, s Exposure and DNA Methylation

Epigenetic modifications are alterations to DNA, RNA, or proteins that result in changes in the
regulation or function of these molecules. Although these molecules may be modified, their respective
nucleic acid or protein sequences remain unchanged. Epigenetic changes are one major way that an

organism’s internal and external environments can influence their cellular and phenotypic traits. DNA
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methylation is one of the three major epigenetic modifications — histone modifications and non-coding
RNAs are the other two — and it involves the addition of methyl residues to DNA nucleotides. DNA
methylation is catalyzed by enzymes called DNA methyltransferases (DNMTs). Mammals have three major
DNMTs: DNMTI1, DNMT3A, and DNMT3B. DNMT3A and DNMT3B are involved in de novo
methylation and are most active during embryogenesis and early life?’. DNMT] is the most abundant
methyltransferase and it remains active throughout adulthood. DNMTI is active in maintenance
methylation which involves maintaining methylation patterns throughout an organism’s life. When DNA is
replicated, if the template strand is methylated, DNMT1 methylates the newly synthesized strand
accordingly. In most organisms, S-adenosylmethionine (SAM) serves as a methyl donor in the methylation
processes28'3°.

In mammals, DNA methylation almost exclusively occurs on cytosine residues that are followed
by guanine residues (CpG sites). In fact, approximately 80% of CpGs in mammalian genomes are
methylated®’. DNMTs transfer the methyl group from SAM to the 5 position of cytosine residues to form
5-methylcytosine (SmC). Many CpG sites exist in clusters near transcriptionally integral regions of the
genome like promoters and enhancers. Clusters of CpGs near transcriptional start sites are called CpG
islands. Methylation of CpG islands usually leads to condensed chromatin, delayed replication, and
inhibition of transcription initiation®>. By covalently altering the structure of cytosine residues with
methyl groups, the interactions of chromatin proteins and transcription factors with these areas of DNA are
now altered. Since these interactions are critical for transcription, altering them is how methylation affects
transcription and regulates a number of biological processes including development, genomic imprinting
and inactivation of X chromosomes. It is also important to note that DN A can be demethylated. This process
can occur passively or via enzymes known as Ten-eleven translocation (TET) enzymes. DNA
demethylation may also involve the formation of additional DNA modifications like 5-
hydroxymethylcyotsine (ShmC)*.

Both experimental and observational studies have revealed relationships of PM,s and its
component species with DNA methylation. Moreover, the results of these studies have offered much insight
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into the pathological effects PM,s>. For instance, one epigenome wide study, utilizing the peripheral blood
leukocytes of individuals from three independent United States or German cohorts, identified 12 CpG sites
with methylation levels associated with various time windows of short-term PM, s exposure. Methylation
at 9 of the sites was positively associated with PM, s levels while methylation at the remaining 6 sites was
negatively associated with PM, 5°®. In an epigenome-wide study made up of samples from 1207 individuals
living in Los Angeles and Chicago, methylation at 5 CpG sites was associated with long-term PM, s
exposure levels®’. Not one of these 5 sites was among the previously identified 12 sites. The difference in
these findings could be due a number of differences between the two studies including the length of PM; 5
exposure or even the type of tissue that methylation was measured in. The latter study used methylation
from CD14+ purified monocytes while the first used a mixture of blood leukocytes. Studies have also
examined relationships of PM; 5 component species with DNA methylation. In peripheral blood monocytes,
Dai et. al (2017) examined the relationships of long-term, one year PM, s component exposure (Al, Ca, Cu,
Fe, K, Na, Ni, S, Si, V, and Zn) with methylation in a cohort of community dwelling older men. These
authors found 20 CpG sites that were significantly associated with Fe, 8 that were associated with Ni, and
1 that was associated with V>*. Again, none of these component species-associated CpGs overlapped with
the previously reported long-term or short-term total PM, s-associated CpG sites. Together, these and other
existing studies highlight that differences in research methods or particle composition can influence the
results of PM, s epigenome-wide studies. Moreover, the biological applicability of findings from any

epigenome-wide study should always be carefully considered.

1.5. DNA Methylation and Aging

In addition to its relationships with PM, s exposure levels, DNA methylation also has relationships
with disease and physiological processes. One of the most well-studied of these relationships is the
relationship of DNA methylation with aging. Although some site-specific hypermethylation is observed,
mammalian aging is generally associated with DNA CpG hypomethylation. More specifically, sites like

promoter-associated CpG islands, which normally have low baseline DNA methylation, tend to become
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hypermethylated with age. On the other hand, sites with high baseline methylation, like intergenic non-
island CpGs, tend to become hypomethylated with age. Since most CpGs in the genome are located outside
of CpG islands —and are thus highly methylated at baseline — this translates to an overall loss of DNA
methylation with aging”. This aging-related change in DNA methylation is called epigenetic drift and to
some extent is thought to be due to a decline in DNMT]1 that occurs with aging’. Even though DNA
methylation patterns are highly divergent in different tissues, this phenomenon of epigenetic drift has been
replicated in many tissues and is believed to be a general total-organism phenomenon®'. In addition to the
general epigenetic drift patterns of global hypomethylation and local hypermethylation, research has
identified specific sites in the genome that are so highly associated with aging that they can be used to
predict chronological age™. A number of these “epigenetic clock” sites and measures have been described,
but one particular measure developed by Steve Horvath, PhD, has demonstrated utility across individuals

and tissue/cell types. Hereby, we refer to this Horvath measure as DNA methylation age (DNAm-age)*.

1.6. DNA Methylation Age (DNAm-Age)

DNA methylation age (DNAm-age) is a measure that arose out of the hypothesis that particular
sites in the genome experienced aging-related changes in DNA methylation that were progressive and
common across tissues and individuals. Horvath (2013) developed the measure as a predictor of age using
data from 82 Illumina DNA methylation array datasets that consisted of 7844 non-cancer human samples
from 51 healthy tissues or cell types. 39 of the datasets were used to train the age predictor, 31 were used
to validate the measure, and the others were used for additional analyses. Beginning with 21,369 CpGs
shared between the Illumina 27K and 450K platforms, a transformed version chronological age was
regressed on the CpGs using a penalized regression elastic net model. From these 21,369 CpGs, 353 were
selected by the elastic net. 193 CpGs were hypermethylated with age and 160 were hypomethylated. The
hypermethylated CpGs were more likely to be in poised promoters and were over-represented near
Polycomb-group target genes, which are known to play a critical role during embryonic development. The

160 hypomethylated CpGs were more likely to be in weak promoters or strong enhancers and were over-
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represented in CpG shores. Pathway analysis of the genes that co-locate with the 353 CpGs revealed
enrichment for the biological processes of organism tissue development; cellular growth and proliferation;
cell death and survival; and cancer®.

The weighted average derived from the regression coefficients of each of the 353 CpG sites was
then used to calculate one measure of age prediction, DNAm-age. The measure performed well in the test
datasets (age correlation = 0.96, error = 3.6 years) regardless of if the dataset was from mixed tissues (e.g.
whole blood) or from an individual cell type (e.g. CD14+ monocytes). Moreover, early analyses
demonstrated that DNAm-age possessed a number of other properties beyond its ability to accurately
predict age in a multitude of human tissues including blood, brain, saliva, skin, and bone. First, DNAm-age
appeared to be reflecting some intrinsic measurement of the methylome because it able was able to track
chronological age in non-proliferative tissues (e.g. neurons) while also assigning similar ages to more short-
lived tissues (e.g. blood cells). Yet, there were some tissues where DNAm-age consistently performed
poorly as an age predictor: breast tissue, dermal fibroblasts, uterine endometrium, skeletal muscle, and heart
tissue. Heart tissue tended to have a lower DNAm-age than expected while the other mentioned tissues had
higher DNAm-ages than expected. However, it is thought that this poor performance is due to some unique
property of the methylome in these tissues rather than an error in the metric itself. Second, the DNAm-age
of induced pluripotent stem cells and embryonic stem cells was found to be near zero but increased as these
cells were passaged following cell culture. Third, DNAm-age could be calculated and accurately perform
in chimpanzees. This suggested that the measure was somewhat evolutionarily conserved. Fourth, the
number of somatic mutations in a cancer sample tended to be inversely correlated with the sample’s DNAm-
age even though DNAm-age had very weak relationships with tumor grade and stage.

Since the initial publication that described DNAm-age and its intrinsic properties, researchers have
published findings that further suggest that DN Am-age is not simply a predictor of chronological age. Most
of the emerging evidence suggests that DNAm-age captures risks associated with the molecular aging
process and represents a novel measure of biological aging. Some of the most compelling evidence for this

theory has come from studies demonstrating associations of DNAm-age with all-cause mortality. The
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largest of such studies is a meta-analysis of 13 population-based cohorts amounting to 13,089 individuals.
This study found that increases in DNAm-age were predictive of mortality even when accounting for
chronological age and additional risk factors like cancer, coronary artery disease, hypertension, type 2
diabetes, race, sex, physical activity, and body mass index**. Additional evidence comes from studies that
report that centenarians (long-lived individuals) have DNAm-ages that are lower than their chronological
ages™*. Following this trend, aging-related lifestyle factors and health conditions have also been associated
with DNAm-age. Negative lifestyle factors like exposure violence and personal life stressors have been
associated with increased DNAm-age while more positive lifestyle factors like dietary fish intake or blood
carotenoid levels (an indicator of fruit and vegetable intake) are correlated with decreases in DNAm-age*’
*_ Menopause, Huntington’s disease, frailty, and Alzheimer’s disease-related cognitive decline have all
been associated with increased DNAm-age™ ™.

Beyond these associations from observational studies, researchers are also beginning to explore
molecular mechanisms related to DNAm-age. In his initial publication, Horvath reported the results from a
number of simple studies that ultimately resulted in his epigenetic maintenance system (EMS) hypothesis.
The EMS hypothesis states that DNAm-age may represent the cumulative work performed by a yet to be
defined epigenetic maintenance system, which plays a role in maintaining epigenetic homeostasis. Any
event or exposure that disrupts the epigenome will result in more work being done by the EMS to return
the epigenome to homeostasis. The output of this additional work is a higher DNAm-age. In line with his
hypothesis, decreases in DNAm-age could be interpreted as epigenome stability or a disruption of the EMS’
ability to do work. Although Horvath hypothesized that methyltransferases would be a component of the
EMS, no studies have explicitly looked to identify DNAm-age EMS components. One of the first studies
to even explore the mechanistic underpinnings of DNAm-age used human cell lines to examine the
relationships of three major forms of cellular senescence (DNA damage, oncogene-induced, and
replicative) with DNAm-age. These researchers found that replicative senescence and oncogene-induced
senescence were associated with increased DNAm-age, but DNA damage senescence was not. As part of

their studies, the researchers also demonstrated that DNAm-age was independent of telomere length™. A
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second study, that begins to explore the mechanistic relationships of DNAm-age, builds upon the widely
accepted phenomenon in aging research that caloric restriction extends lifespan in model organisms. It was
unknown whether this phenomenon and the biology associated with caloric restriction was at all related to
DNAm-age, until a published report demonstrated that 30% caloric restriction since the age of 7-14 years
in 22-30 year-old rhesus monkeys can impact DNAm-age. Specifically, caloric restricted monkeys had a
blood DNAm-age that was on average 7 years younger than their chronological age when compared to ad

libitum-fed controls™.

1.7. Studying PM, s and DNAm-age Relationships

The emerging research involving DNAm-age has inspired the pursuit of studies that examine the
relationships of DNAm-age with PM, s, an aging and environmental health and risk factor. The work
presented in this dissertation is intended to contribute the growing body of research aimed at providing a

better understanding of how long-term PM; 5 exposure can impact human health.
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2.1. Abstract

Background: Ambient particles have been shown to exacerbate measures of biological aging; yet, no
studies have examined their relationships with DNA methylation age (DNAm-age), an epigenome-wide
DNA methylation based predictor of chronological age.

Objective: We examined the relationship of DNAm-age with fine particulate matter (PM,s), a measure of
total inhalable particle mass, and black carbon (BC), a measure of particles from vehicular traffic.
Methods: We used validated spatiotemporal models to generate 1-year PM, s and BC exposure levels at
the addresses of 589 older men participating in the VA Normative Aging Study with 1 to 3 visits between
2000 and 2011 (n=1032 observations). Blood DNAm-age was calculated using 353 CpG sites from the
Illumina HumanMethylation450 BeadChip. We estimated associations of PM, s and BC with DNAm-age
using linear mixed effects models adjusted for age, lifestyle/environmental factors, and aging-related
diseases.

Results: After adjusting for covariates, a 1-ug/m’ increase in PM, s (95%CI: 0.30, 0.75, P<0.0001) was
significantly associated with a 0.52-year increase in DNAm-age. Adjusted BC models showed similar
patterns of association (f=3.02, 95%CI: 0.48, 5.57, P=0.02). Only PM,;s (B=0.54, 95%CI: 0.24, 0.84,
P=0.0004) remained significantly associated with DNAm-age in two-particle models. Methylation levels
from 20 of the 353 CpGs contributing to DNAm-age were significantly associated with PM, 5 levels in our
two-particle models. Several of these CpGs mapped to genes implicated in lung pathologies including
LZTFL1, PDLIMS5, and ATPAFI.

Conclusion: Our results support an association of long-term ambient particle levels with DNAm-age and

suggest that DNAm-age is a biomarker of particle-related physiological processes.
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2.2. Introduction

Annually, air pollution — including ambient particle exposures — contributes to 3.7 million deaths
worldwide and is one of the world’s largest single environmental health risks'. Emerging evidence has also
suggested that ambient particles may have aging-related effects: particulate matter with aerodynamic
diameter < 2.5 um (PM,s) exposures have been associated with age-related outcomes including brain
atrophy’, declines in cognitive performance’, ischemic heart disease’, and stroke’, as well as increases in
systolic blood pressure by as much as 4.6 mmHg®’. Moreover, traffic related particle exposures have been
associated with hastened lung function decline by 6-7% over a five year period®, accelerated pigment spot
formation, and other clinical hallmarks of premature skin aging’. Previous research has used telomere length
(TL), a common biomarker of biological aging'’, to characterize the relationship between particle exposures
and aging. Nevertheless, data on the associations between ambient particles and TL have been conflicting
and thus reflect a need for alternative biological aging markers™'"'%.

Recent developments in the epigenetics of aging have provided new opportunities to address the
relationship between particle exposures and aging biology. DNA methylation is an epigenetic mark
involved in regulating genomic structure and transcription'”. Reproducible changes in DNA methylation

have long been associated with chronological aging'*'®

and recent studies report persisting associations
even after accounting for age-related cellular heterogeneity, a previously neglected confounder'”™"”. DNA
methylation age (DNAm-age) is a novel tissue-independent predictor of chronological age and is calculated
by an algorithm that uses methylation values from 353 chronological age-correlated CpG dinucleotides in
Illumina’s HumanMethylation450 BeadChip***'. Since DNA methylation in blood has been empirically
shown to be sensitive to a number of biological processes®>*, the DNAm-age of blood cells may help in
further understanding epigenetic aging relationships with ambient particles. In this study, we investigated

the relationship of DNAm-age with ambient particle exposures — PM, s and Black Carbon (BC) — in a cohort

of elderly men. We also examined the relationship of PM, 5 and BC with leukocyte TL.

2.3. Materials and Methods
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2.3.a. Study population

The Normative Aging Study (NAS) is an ongoing longitudinal cohort study of male volunteers
within the Eastern Massachusetts community established in 1963 by the U.S. Department of Veterans
Affairs (VA). Participants free of any chronic medical conditions were enrolled in the study and returned
for onsite, detailed medical examinations every 3-5 years, during which data on stress levels, diet, physical
activity, smoking status, and additional risk factors that may impact health were collected. Participants
provided written informed consent to the VA Institutional Review Board (IRB). The Harvard T.H. Chan
School of Public Health and the VA IRBs granted human subjects approval.

Eligibility for our study sample required continued participation as of 2000, when PM,s air
pollution levels became available. We excluded NAS participants with a diagnosis of leukemia (11
participants) because of a possible influence on the DNA methylation of blood cells. The remaining 589
participants were used in the analysis (Fig. S1). Study staff measured DNA methylation on blood DNA
collected at up to three different visits for the participants. Using all available visits for each participant

resulted in 1032 total observations.

2.3.b. Assessment of environmental factors: ambient particles and temperature
We selected PM, s and BC as our ambient particle exposures because of their global pervasiveness

[1] in addition to their status as the leading ambient particles with well-documented relationships with both

53-55 56-59

DNA methylation™ " and adverse health outcomes

To generate daily PM, s exposure levels (in pg/m’) at each participant’s address, we employed a
well-validated satellite based hybrid spatiotemporal prediction model with a multi-step approach®®'. The
hybrid model combined satellite-derived aerosol optical depth (AOD) measurements and local land use
regression model variables (e.g. traffic density, population density, and elevation) alongside temporal
variables (e.g. temperature, wind speed, etc.). We fit the models to data from each year separately and

generated daily predictions at the 1 x 1 km area resolution. Each participant’s residence was geocoded and

linked to an area level grid-point. To create a metric of long-term exposure, we averaged daily PM, s level
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predictions at each participant’s address over the 365 days prior to the day of visit. The prediction model
had an out of sample R? of 0.88 for daily samples.

We generated daily black carbon (BC) exposure estimates (in pg/m’) based on participants’
residences using a validated spatiotemporal land-use regression model®. Daily average BC estimates from
83 monitoring sites throughout the Greater Boston area were used to develop a prediction model. The final
model included predictors based on information from meteorological conditions (e.g. wind speed), land use
(e.g. traffic density), daily BC concentrations at a central monitor, and additional descriptors (e.g. day of
the week). The prediction model had a high R* of 0.83 based on the training data set and a moderate
correlation between predicted values and observed BC levels in four out-of-sample validation samples (R
=0.59). To generate a 1-year BC exposure, we averaged daily BC exposure levels for the 365 days prior to
the day of NAS visit.

To generate ambient temperature (in Celsius) for each participant we used a spatiotemporal
prediction multi-step approach®’. We obtained daily physical surface temperature (Ts) data from AOD
measurements with 1 x 1 km resolution and daily near surface air temperature (T,) data from the National
Climatic Data Center, Environmental Protection Agency, and Weather Underground Inc. Mixed model
regression was first used to calibrate T to T, in 1 x 1 km grid cells where both were available. The model
was validated with mean out of sample R* for days with available T, and days without T equal to 0.95 and
0.94 respectively. Daily temperature measurements were averaged over the 365 days prior to the visit to
generate 1-year temperature exposure estimates to complement the 1-year PM, s and BC measurements.
We selected the 1-year average because it correlates well with averages of PM, s, BC, and temperature over
longer time windows and was available for a higher number of participants (Table S1). Moreover, existing
studies examining relationships between particle exposures and other biological markers of aging, like
telomere length, report more consistent and biologically significant results when a 1-year particle exposure

. .1 11,45-4.
is utilized®'*-*8,

2.3.c. DNA methylation and calculation of DNA methylation age (DNAm-age)
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Laboratory staff extracted DNA from buffy coat of 7 mL whole blood using the QIAamp DNA
Blood Kit (QIAGEN, Valencia, CA, USA). 500 ng DNA samples were then treated for bisulfite conversion
using the EZ-96 DNA Methylation Kit (Zymo Research, Orange, CA, USA). Following bisulfite
conversion, DNA samples were hybridized to the 12 sample Illumina HumanMethylation450 BeadChips
as per Infinium HD Methylation protocol (Illumina, San Diego, CA, USA). Study staff then used a two-
stage age-stratified algorithm to randomize samples to avoid confounding with chip and plate effects while
ensuring similar age distribution across chips and plates. For quality control, we removed samples where
>5% of probes had beadcount < 3 and >1% of probes had a detection P-value >0.05. The Bioconductor
minfi package Illumina-type background correction without normalization was used to preprocess the
remaining samples and generate methylation beta values to compute DNAm-age®. 450k arrays were run in
the Genomics Core Facility at Northwestern University.

We calculated DNAm-age through Horvath’s publically available online calculator

(http:/labs.genetics.ucla.edu/horvath/dnamage/)*. In short, an elastic net model (penalized regression) was

used to regress a calibrated version of chronological age on 21,369 CpG probes shared by Illumina
HumanMethylation27 and HumanMethylation450 BeadChip platforms. The elastic net platform selected
353 CpGs that correlate with age (193 positively and 160 negatively). The calculator predicts the age of
each DNA sample (DNAm-age) using regression coefficients of the 353 CpGs resulting from the elastic
net regression model trained from a number of training data sets. The calculator maintains predictive

accuracy (age correlation 0.97, error = 3.6 years) across body tissues including blood™.

2.3.d. Assessment of leukocyte telomere length (TL)

Laboratory staff performed quantitative real time polymerase chain reaction (QRT-PCR) on DNA
extracted from buffy coat of whole blood using the QIAamp DNA Blood Kits*. Relative TL was measured
on a 7900HT Fast Real-Time PCR System (Applied Biosystems, Foster City, CA, USA) as the qRT-PCR
factor by which a sample differs from a reference DNA sample in its ratio of telomere repeat copy number

11,64

(T) to single 36B4 gene copy number (S) . The 3684 gene is located on chromosome 12 and encodes
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acidic ribosomal phosphoprotein PO. Laboratory staff ran all samples in triplicate and derived the average
T:S ratio by dividing the average of the three T measurements by the average of the three S measurements.
TL was then reported in relative units (QRT-PCR factor) of T:S ratio in the test sample to T:S ratio in the

reference DNA pool. Batches for participant qRT-PCR telomere measurements were also recorded.

2.3.e. Assessment of smoking status

Smoking histories were collected on all study participants at NAS entry and standardized smoking
interviews were administered at each subsequent NAS visit. Smoking status was characterized into three
groups: 1) never smokers were individuals who reported at entry and consistently thereafter that their
lifetime cigarette consumption was <100 cigarettes; 2) former smokers reported that they had smoked in
the past but quit prior to study entry or they were smokers at entry and quit at some point during the follow
up period and remained quit at the present study visit; 3) current smokers were those who reported
smoking regularly at each the follow up visit or those who quit, but reported inability to maintain abstinence
at the present study visit. All participants also reported their average number of cigarettes per day at each

assessment.

2.3.f. Statistical analysis

We used generalized linear mixed effects models to evaluate the relationship of DNAm-age with
1-year PM, s and 1-year BC exposure levels, singularly and in two-particle models. To account for within
participant correlation between the repeated measurements, the mixed effects models included a random
intercept for each participant. DNAm-age, 1-year PM, s, and 1-year BC were all considered as continuous
variables in all analyses.

The aforementioned models were adjusted for known confounders and covariates with a priori
biological/clinical relevance using a tiered approach. Given that results from previous DNA methylation
studies have been confounded by blood cell heterogeneity, we obtained cell type estimates for six blood

cell types (i.e. plasma, CD4T, CD8T, NK, monocytes and granulocytes) using Houseman and Horvath
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20,65
methods™

. We first constructed chronological age and blood cell type adjusted mixed effects models for
the relationships of PM; 5 and BC with DNAm-age (Model 1). Next, we built models (Model 2) accounting
for environmental/lifestyle factors by adjusting for average 1-year temperature (continuous), cumulative
cigarette pack years (continuous), smoking status (current, former, or never), and season of visit (Spring
[March-May], Summer [June-August], Fall [September-November], and Winter [December-February]),
body mass index (lean [<25], overweight [25-30], obese [>30]), alcohol intake (yes/no > 2 drinks daily),
and maximum years of education (continuous) in addition to the Model 1 covariates. We constructed a third
(Model 3) and fourth set of models (Model 4) which accounted for aging-related diseases and disease-
related medications respectively. Model 3 adjusted for cancer (yes/no history of lifetime cancer diagnosis),
coronary heart disease (yes/no based on electrocardiogram, validated medical records, or physical exam),
diabetes (physician diagnosis or a fasting blood glucose > 126 mg/dL), and hypertension (yes/no
antihypertensive medication use or systolic blood pressure >140 mmHg or diastolic blood pressure
>90 mmHg) in addition to the Model 2 covariates. Model 4 adjusted for subjects taking statins and/or any
diabetes and hypertension medications in addition to the Model 2 covariates. Last, we constructed two-
particle mixed effects models with both PM, s and BC as predictors of DNAm-age using the covariates
from the Model 1- 4 framework.

To exclude sensitivity of our models to outliers, we repeated all analyses using robust regression.
By iteratively reweighting data points such that points far from model predictions in the previous iteration
are given smaller weights, robust regression is able to minimize the sensitivity of a model to outlying values.
Iterations continue until the values of coefficient estimates meet a specified tolerance and weighted least
squares regression is then used to compute model coefficients. We performed a set of additional sensitivity
analyses: 1) we added a random intercept for 450k plate to account for potential batch effects, 2) we
explored our particle DNAm-age associations in participants with only one NAS visit to see how our results
compared to the primary analysis on the full study sample and 3) we stratified our study sample by season

of NAS visit to further explore the contribution of season to the relationship between particle exposures
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and DNAm-age. We also looked at the Pearson correlation between change in particle exposure and change
in DNAm-age between study visits using participants with at least two NAS visits.

Additionally, we evaluated the relationships of DNA methylation values at each of the 353 DNAm-
age CpG probes with 1-year PM,s and 1-year BC exposure levels using the aforementioned Model 2
covariates and technical covariates (450k plate, chip, row, and column). FDR correction was performed to
account for multiple hypotheses testing for all CpG methylation analyses. Gene ontology analyses were
performed on significant CpG results using the publically available DAVID bioinformatics platform®*®’.

As a means of comparison with the DNAm-age results, we explored the relationships of a standard
marker of aging, telomere length, with PM,s and BC exposure levels. We constructed mixed effects
multivariable linear regression models adjusting for chronological age, blood cell type, average 1-year
temperature, cumulative cigarette pack years, smoking status, season of visit, telomere batch (categorical
with four batches), BMI, alcohol intake, and maximum years of education. Similar to our DNAm-age
analyses, we constructed two additional sets of models adjusting for age-related diseases and disease-related
medications respectively. There was one relative TL observation of 12.7, while the remaining 856 TL
observations were < 4. We kept the outlying observation in the TL mixed effects models, but re-ran the
models using robust regression and without the outlying value as sensitivity analyses.

We performed all statistical analyses using R Version 3.1.1 (R Core Team, Vienna, Austria) and

considered a P-value <0.05 to be statistically significant.

2.4. Results

2.4.a. Baseline characteristics and descriptive statistics

All participants were Caucasian males with a mean age of 74.8 years (SD = 7.06) and a mean DNAm-age
of 74.1 years (SD = 7.90, Table 1). Participants with coronary heart disease, hypertension, and a lifetime
cancer diagnosis had a significantly higher mean DNAm-age than their respective counterparts (Table

S2).
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Table 1. Descriptive Statistics of Study Participants

Characteristic
Number of Observations (participants) 1032 (589)
Total Number of Visits, N (%)

One 589 (57%)

Two 352 (34%)

Three 91 (9%)
Chronological Age, Mean (SD) 74.8 (7.06)
DNAm-age, Mean (SD) 74.1 (7.90)
1-year PM, 5 (ug/m’), Mean (SD) 10.7 (1.40)
1-year BC (ug/m’), Mean (SD) 0.51 (0.18)
Year Average Temperature (°C), Mean (SD) 11.5(1.19)
Cigarette Pack Years, Mean (SD) 20.5 (24.4)
Relative Telomere Length, Mean (SD) 1.25 (0.64)
Max Years Education, N (%)

<12 years 264 (25%)

12 — 16 years 493 (48%)

> 16 years 275 (27%)
Body Mass Index, N (%)

Underweight 2 (0%)

Healthy/Lean 234 (23%)

Overweight 549 (53%)

Obese 247 (24%)
Alcohol Consumption, N (%)

< 2 drinks/day 831 (81%)

> 2 drinks/day 201 (19%)
Lifetime Cancer Diagnosis, N (%)

Yes 574 (56%)

No 458 (44%)
Coronary Heart Disease, N (%)

Yes 355 (33%)

No 677 (67%)
Diabetes, N (%)

Yes 193 (19%)

No 839 (81%)
Hypertension, N (%)

Yes 753 (73%)

No 279 (27%)
Smoking Status, N (%)

Never 294 (29%)

Former 701 (67%)

Current 37 (4%)
Season, N (%)

Spring 249 (24%)

Summer 245 (24%)

Fall 350 (34%)

Winter 188 (18%)
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Furthermore, never smokers had a significantly higher mean DNAm-age when compared to former smokers
(Table S2). No significant associations were found when comparing never smokers to current smokers or
current smokers to former smokers. Mean 1-year PM, s and 1-year BC levels were 10.7 pg/m’ (SD = 1.40)
and 0.51 pg/m’ (SD = 0.18) respectively (Table 1). Moreover, 1-year PM, s and BC levels were significantly

correlated (» = 0.41, P <0.0001) in our study sample (Table S3).

Table 2. 1-Year Particulate Matter 2.5 (PM;s) and Black Carbon (BC) as Predictors of DNA
Methylation (DNAm) Age

Particle (1 pg/m’) Difference in DNAm-age (95% CI) P N AIC
PM, 5
Model 1 0.55(0.33, 0.77) <0.0001 1032 6346.85
Model 2 0.52 (0.30, 0.75) <0.0001 1032 6360.86
Model 3 0.52 (0.29, 0.74) <0.0001 1032 6361.47
Model 4 0.50 (0.27,0.72) <0.0001 1032 6362.88
BC
Model 1 2.49 (0.11, 4.88) 0.04 898 5571.94
Model 2 3.02 (0.48, 5.57) 0.02 898 5583.16
Model 3 2.92 (0.36, 5.48) 0.03 898 5583.51
Model 4 2.83(0.28, 5.39) 0.03 898 5582.92
Two-Particle Model 1 898 5560.38
PM, 5 0.56 (0.28, 0.84) 0.0001
BC 0.52 (-2.03, 3.08) 0.69
Two-Particle Model 2 898 5574.56
PM, 5 0.54 (0.24, 0.84) 0.0004
BC 0.62 (-2.24, 3.47) 0.67
Two-Particle Model 3 898 5575.71
PM, 5 0.52 (0.22,0.83) 0.0007
BC 0.61 (-2.25, 3.47) 0.67
Two-Particle Model 4 898 5575.70
PM, 5 0.51(0.21,0.82) 0.0009
BC 0.60 (-2.25, 3.46) 0.68

Model I: adjusted for chronological age and blood cell type.

Model 2: Model 1 but additionally adjusted for temperature, pack years, smoking status, season, BMI,
alcohol consumption, and education.

Model 3: Model 2 but additionally adjusted for history of cancer, hypertension, chd, and diabetes.

Model 4: Model 2 but additionally adjusted for statins and medications for diabetes and hypertension.
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2.4.b. PM, s and BC as independent and joint predictors of DNAm-age

Residuals from all models appeared normally distributed. In a model solely adjusted for
chronological age and blood cell type, 1 pg/m’ increases in l-year PM,s exposures were significantly
associated with 0.55 year increases in DNAm-age (P <0.0001). Following adjustments in Model 2, PM, s
remained associated with increases in DNAm-age (p = 0.52, P <0.0001) (Table 2). These results remained
consistent in Model 3 (B = 0.52, P <0.0001) and Model 4 ( = 0.50, P <0.0001), which were adjusted for
aging-related disease covariates and disease medications respectively (Table 2). These PM, s associations
persisted in sensitivity analyses with robust regression (data not shown) and in models adjusting for 450k
plate, though the effect estimates were slightly attenuated (Table S4). In a model adjusted for chronological
age and blood cell type, BC was a significant predictor of DNAm-age (p = 2.49, P = 0.04), and remained a
significant predictor of DNAm-age in subsequent models adjusting for additional covariates (Table 2).
Nonetheless, after adjusting for 450k plate, the BC associations with DNAm-age remained marginally
significant at best (Tables S4). PM, s levels remained significantly associated with increases in DNAm-age
of 0.51 years or greater (P <0.0001) in two-particle models with BC (Table 2) though the magnitude of the
effect estimates were also attenuated following adjustments for 450k plate (Table S4). BC levels were not
significantly associated with DNAm-age in any of the two-particle models (Tables 2 & S4).

A sensitivity analysis exploring particle associations with DNAm-age in participants with only one
NAS visit, revealed similar, but non-significant trends as the primary analysis (Table S5). A subsequent
sensitivity analysis that stratified the study sample by season of NAS visit also revealed similar trends as
the primary analysis, but results were only significant for PM, s associations in the summer and fall NAS
visit groups (Table S6). Finally, an analysis using participants with at least two NAS visits and exploring
the correlation between the change in particle exposure between visits and the change in DNAm-age

between visits, revealed weak and non-significant correlations (Table S7).

2.4.c. Associations between PM, s levels and methylation values at individual DNAm-age CpG sites
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We explored associations between PM, s levels and the methylation values for the 353 CpG sites
that are used to calculate DNAm-age. Methylation of 20 out of 353 CpGs was significantly associated with
PM,;s levels in two-particle mixed effects Model 2 (adjusting for BC, age, blood cell type, and
lifestyle/environmental characteristics) following FDR correction (Fig. 1). PM, 5 levels were positively or

negatively associated with CpG methylation depending on the CpG site (Table 3).

Table 3. 1-Year Particulate Matter (PM,s) as a Predictor of CpG Probe Methylation in a Two-
Particle Model

Ed

Difference in

CpG Gene Process Methylation P FDR
Negative Association
cgld163776 ACAP2 GTPase activator activity -0.0049 <0.0001 0.003
actin cytoskeleton

cg06044899 TMSL3 organization -0.0048 <0.0001 0.001

cg01570885 FAMS50B protein binding -0.0041 0.001 0.041

cgl8139769  SGCE (PEG10) calcium ion binding -0.0040 0.001 0.037

ubiquitin-protein transferase

cg22736354 NHLRC1 activity -0.0032 0.002 0.042

cgl15661409 C140rf105 uncharacterized -0.0012 0.002 0.041

Positive Association

cg02047577 UCKL1 uridine kinase activity 0.0002 0.001 0.041

cg10940099 CD164 cellular adhesion 0.0002 0.002 0.041

cg22006386 CATSPERG ion channel activity 0.0003 0.002 0.044

cg08186124 LZTFL1 protein binding: cytoplasm 0.0004 <0.0001 0.015

cg04094160 ZBTB5 transcriptional regulation 0.0005 <0.0001 0.014

cgl6408394 RXRA DNA binding 0.0005 0.002 0.042
ATP synthase complex

cg23786576 ATPAFI assembly 0.0006 0.001 0.040
endodeoxyribonuclease

cgl5341340 DNASE2 activity 0.0007 0.002 0.041
NADH dehydrogenase

cg21395782 NDUFA13 activity 0.0008 0.001 0.041

cg26043391 FBXO0O28 protein binding 0.0009 0.001 0.041
integral component of

cg06557358 TMEM132E membrane 0.0010 0.003 0.050

cg14409958 ENPP2 nucleic acid binding 0.0011 0.002 0.041

cg20305610 PDLIMS5 actin binding 0.0013 <0.0001 0.014

cg05675373 KCNC4 potassium channel activity 0.0032 0.002 0.042

“adjusted for chronological age, blood cell type, BC, temperature, pack years, smoking status, season,
BMLI, alcohol consumption, education, and 450k technical covariates.
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The 20 CpGs mapped to 20 known genes; nevertheless, gene ontology analysis did not return significant

pathway enrichment (data not shown). No CpGs were significantly associated with BC levels in the two-

particle mixed effects model.
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Figure 1 | Volcano plot of Regression Coefficients for Difference in DNA
Methylation Beta Values from 353 DNAm-age CpGs Analyzed for Association with
1-Year PM, 5 Levels in a Two-Particle Model. Linear mixed effects models were
used to explore the associations between 1-Year PM; s exposure levels and DNA
methylation values for the 353 CpG sites used to calculate DNAm-age. The
regression coefficient for the difference in DNA methylation beta values given by a
1pg/m’ increase in 1-Year PM, s exposure level is plotted on the x-axis, and the
corresponding significance is plotted on the y-axis. CpG probes meeting statistical
significance following FDR adjustment are depicted as hollow circles. DNA
methylation beta values range from 0 (completely unmethylated) to 1 (completely
methylated).
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2.4.d. DNAm-age, PM,s, and BC as predictors of relative TL

TL showed a weak and non-significant correlation (» = -0.06, P = 0.08) with DNAm-age in
participants’ NAS observations (Table S3). Moreover, DNAm-age was not a significant predictor of TL in
mixed effects models adjusting for chronological age, blood cell type, and telomere batch (Table 4). TL
also showed no significant associations with 1-year PM, s or 1-year BC levels in any of the single-particle

or two-particle models (Table 5).

Table 4. DNAm-age as a Predictor of Relative Telomere Length (TL)

Change in TL (95% CI) P N AIC
DNAm-age
Model 1 -0.006 (-0.01, 0.002) 0.14 857 1687.65
Model 2 -0.004 (-0.01, 0.002) 0.23 856 1233.57

Model I: adjusted for chronological age, blood cell type, and telomere batch

Model 2: Model 1 but excluding one participant with an outlying telomere value.
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Table 5. 1-Year Particulate Matter 2.5 (PM,s) and Black Carbon (BC) as Predictors of
Telomere Length (TL)

Particle (1 pg/m’) Difference in TL (95% CI) P N AIC
PM, 5
Model 1 0.02 (-0.01, 0.06) 0.24 857 1750.26
Model 2 0.02 (-0.01, 0.06) 0.20 857 1754.13
Model 3 0.02 (-0.01, 0.06) 0.23 857 1776.27
Model 4 0.02 (-0.01, 0.06) 0.21 857 1771.64
BC
Model 1 0.11 (-0.16, 0.38) 0.42 770 1616.52
Model 2 0.13 (-0.16, 0.42) 0.37 770 1637.87
Model 3 0.12 (-0.16, 0.41) 0.40 770 1658.35
Model 4 0.13 (-0.16, 0.42) 0.38 770 1654.71
Two-Particle Model 1 770 1623.11
PM, 5 0.02 (-0.02, 0.07) 0.32
BC 0.05 (-0.24, 0.35) 0.71
Two-Particle Model 2 770 1644.69
PM; 5 0.02 (-0.03, 0.07) 0.40
BC 0.07 (-0.25, 0.38) 0.66
Two-Particle Model 3 770 1665.33
PM; 5 0.02 (-0.03, 0.07) 0.47
BC 0.07 (-0.24, 0.39) 0.65
Two-Particle Model 4 770 1661.52
PM, 5 0.02 (-0.03, 0.07) 0.39
BC 0.07 (-0.25, 0.39) 0.67

Model I: adjusted for chronological age and blood cell type.

Model 2: Model 1 but additionally adjusted for temperature, pack years, smoking status, season,
telomere batch, BMI, alcohol consumption, and education.

Model 3: Model 2 but additionally adjusted for history of cancer, hypertension, chd, and diabetes.

Model 4: Model 2 but additionally adjusted for statins and medications for diabetes and hypertension.

2.5. Discussion

The present study showed a novel positive association between 1-year PM, s exposure levels and
DNAm-age. To the best of our knowledge, this is the first study showing relationships between any
environmental pollutant and an epigenetic biomarker of aging. PM, s remained a statistically significant

positive predictor of DNAm-age after adjusting for chronological age and other covariates. The study also
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revealed a significant positive association between BC and DNAm-age after adjusting for age and other
covariates, but not after adjusting for 450k plate. Moreover, we identified 20 age-related CpG sites whose
methylation was significantly associated with PM, s exposure levels in two-particle models adjusting for
BC, age, and other covariates.

Operating under the premise that adverse exposures accelerate aging, we expected 1-year PM, sand
BC exposure levels to be associated with increases in DNAm-age. In alignment with our expectations, both
PM, s and BC exposure levels were positively associated with DNAm-age. Pearson correlations of between
visit changes in particle exposures and between visit changes in DNAm-age in participants with multiple
visits were not significant potentially due to the smaller number of observations. Nonetheless, compared to
the primary analysis, we observed similar trends in the association of our particles with DNAm-age in
sensitivity analyses using participants with a single NAS visit. These trends suggest that having a single or
multiple visits was not driving the results from the adjusted mixed effects models. Likewise, trends similar
to the primary analysis were also observed in our seasonal analysis and were significant for the summer
and fall seasons, which had the highest average particle exposures across all observations.

Although DNAm-age is primarily viewed as a predictor of chronological age, emerging research
suggests that it reflects underlying physiological processes including metabolic dysregulation, immune

dysfunction, and genomic instability*>*

. To date, two studies have described significant associations
between DNAm-age and all-cause mortality”~. Moreover, studies have also demonstrated that DNAm-
age may predict or be reflective of various disease processes’ »>~*> . It is hypothesized that DNAm-age
may measure “the cumulative work done by a particular kind of epigenetic maintenance system [EMS],

which helps maintain epigenetic stability”’

. Under the EMS hypothesis, an increase in DNAm-age suggests
that an event or process has occurred and the EMS has completed more work to repair or return the
epigenome to homeostasis. Alternatively, a reduction in DNAm-age can be interpreted as epigenetic

stability or disrupted activation of the EMS, both of which would result in less maintenance work. Given

the known toxicity of ambient particles, our data supports the theory that some particles may disrupt the

32



epigenome thus requiring more maintenance work. Nevertheless, mechanistic studies are warranted to
explicitly identify the components of this system.

Given our interpretation of the relationship between adverse exposures and DNAm-age, it was
interesting to find that cigarette pack years was negatively correlated with DNAm-age and that former
smokers had a lower mean DNAm-age than never smokers. Though cigarette smoking can be considered a
personal form of air pollution, it is also a complex mixture with a composition that differs from that of
PM, 5. Differences in particle composition can account for differences in the toxicological pathways of
these exposures and may be one reason why we observe differences in their DNAm-age relationships.
Moreover, individuals who are sick are often urged to quit smoking so there may still be some confounding
when observing the unadjusted correlations of pack years and cigarette smoking status with DNAm-age. A
number of physiological factors can also affect the epigenome and should be considered when comparing
smoking to air pollution exposures. For instance, it is widely known that smoking can account for
substantial weight loss and it has been demonstrated that obesity accelerates the DNAm-age of liver cells®'.
Finally, a study sample with 37 current smoker observations may be underpowered to detect differences in
mean DNAm-age between current smokers and other groups.

In our two-particle models, BC exposure levels were not significantly associated with DNAm-age
while PM; s remained a significant predictor of DNAm-age. BC is considered a specific marker of traffic-
related air pollution, while PM, s is a heterogeneous mixture of fine particles with component species often
including carbonaceous fractions (e.g. black carbon), inorganic compounds (e.g. sulfate, nitrate,
ammonium), and trace metals (e.g. nickel, lead, copper)’®. Research on total PM, s is more extensive than
any work singularly exploring BC or other components. Many studies suggest that BC may be more toxic
than PM2,539, but data also exists where PM, s associations are stronger than that of BC*. The finding that
PM, s was driving the association with DNAm-age in the two particle models may possibly be because other
components apart from BC are responsible for the DNAm-age relationship. Another theory is that the

mixture of the PM, s components is more harmful, with regards to DNAm-age, than any of the components
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singularly. Ultimately, further work involving a detailed compositional analysis of PM, s will aid in further
understanding what components are driving the associations with DNAm-age.

Although we attributed the observed positive association of PM,s with DNAm-age to greater
cumulative work by the epigenetic maintenance system, we also conducted additional analyses to identify
which of the 353 CpG sites contributing to the DNAm-age metric had methylation values that were
significantly associated with PM, s levels. We identified 20 such CpGs through a mixed effects model
adjusting for chronological age, blood cell type, and lifestyle/environmental factors. These CpGs mapped
to 20 known genes. A gene ontology analysis of these 20 genes did not return any significant enrichment
for specific biological pathways. Nevertheless, a literature review revealed relationships between the genes.
For instance, LZTFL1, PDLIMS5, and ATPAFI, can all be generally characterized as being involved in
protein binding. LZTFLI (Leucine Zipper Transcription Factor-like 1) is a nuclear gene that encodes a
cytoplasmic protein that interacts with other cytosolic proteins to regulate ciliary trafficking and control [3-
catenin nuclear signaling. LZTFL1 downregulation has been implicated in non-small cell lung cancer and
poor survival. In contrast, LZTFL1 re-expression in lung tumor cells inhibits tumor growth and lung tissue
colonization by circulating tumor cells*'. ATPAFI (ATP Synthase Mitochondrial F1 Complex Assembly
Factor 1) encodes a soluble mitochondrial protein that helps prevent abnormal aggregation of F1-ATP
synthase subunits, and, like LZTFL]I, is expressed in many tissues including the lung. ATPAF'I is highly
expressed in bronchial biopsies of individuals with severe asthma and has been found to predispose children
of different ancestries to asthma®’. Unlike LZTFLI and ATPAFI, PDLIMS5 (PDZ and LIM domain 5)
primarily is involved in cardiomyocyte function. Nonetheless, PDLIM)5 still has implications for lung
physiology as its downregulation has been linked to hypoxia-induced pulmonary hypertension®.
Collectively, our data suggests putative relationships between ambient particle levels and genes involved in
various elements of lung physiology. Nonetheless, additional methylation and mechanistic studies will be
necessary to first confirm these changes in gene methylation and next ascertain if these changes actually

manifest themselves as differences in gene expression and protein levels/activity.
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Finally, to help interpret our DNAm-age results, we explored the relationship of PM,s and BC
exposure levels with relative telomere length. Telomeres are nucleoprotein structures, at the ends of
eukaryotic chromosomes, involved in maintaining genomic fidelity. Telomere shortening has been
associated with aging and aging related diseases**. Contrary to our expectations, we observed no association
of PM, s and BC with relative TL. As mentioned, the literature examining the relationship between particles
and TL has been conflicting. Significant associations between annual PM, s exposures and decreased TL
have been reported®, but in the NAS the relationship between annual BC exposures and decreased TL was
only observed in never smokers''. The literature concerning short-term particle exposures is even more
obscure. In some cases, short-term particle exposures have been associated with increased TL*®, decreased
TLY, and in other instances no significant association was observed®*. Our findings add to the body of
literature that suggests: 1) that exposure duration and study population characteristics are particularly
critical in understanding and interpreting the results of TL studies; and 2) other measures, like DNAm-age,
may offer more advantages for understanding the relationship between particle exposures and biological
aging. Moreover, DNAm-age was not associated or correlated with TL in our study sample. Similar non-
significant relationships between DNAm-age and TL have also been independently reported in a study
conducted in the Lothian Birth Cohorts*’. The known relationships of DNAm-age and TL with in vitro cell
passaging also highlight the differences between these markers. As cells are passaged, they divide and in
most cases their telomeres shorten®. However, DNAm-age increases as cells are passaged and divide in
vitro®. In all, our findings and existing evidence suggests that though DNAm-age and TL are both measures
of “aging,” the two are not one in the same and may capture different elements of biological processes.

Though we present a study with a number of objective, validated measures and rigorous statistical
methods, our study does have a few limitations. First, our PM, s and BC measurements were generated
using spatiotemporal prediction models. Though the models were validated’', we cannot completely
eliminate residual measurement error or discrepancies in calibration coefficients™. Also, ambient levels of
air pollution at a participant’s address may differ from personal exposures, which also depend on time spent
at home, rates of penetration of ambient particles into the house, and the presence of indoor sources of
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particles. However, we note that the demographics of the Normative Aging Study, which is composed
primarily of retired older men, make it more likely that participants spend a large part of their day at home.
Our findings are also based on a cohort of older Caucasian males residing in a lightly-polluted urban
environment; thus, studies including younger individuals, females, non-Caucasians, and in different
environments are warranted to confirm our findings more broadly. Lastly, we attempted to adjust for
potential confounders, but cannot rule out the possibility of unknown or residual confounding in our

analyses.

2.6. Conclusion

Our data suggests that DNAm-age and TL capture different elements of biological aging; describes
novel associations between ambient particles and DNAm-age; and highlights existing limits in
interpretations of biological/molecular aging. Further analyses utilizing DNAm-age with PM, 5, BC, and
other particles may provide much needed insight into fully understanding the biologically adverse nature

of ambient particles.
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3.1. Abstract

Background: Long-term PM, s exposure and aging have been implicated in multiple shared diseases;
studying their relationship is a promising strategy to further understand the adverse impact of PM, 5 on
human health.

Objective: We assessed the relationship of major PM, s component species (ammonium, elemental
carbon, organic carbon, nitrate, and sulfate) with Horvath and Hannum DNA methylation (DNAm) age,
two DNA methylation-based predictors of chronological age.

Methods: This analysis included 552 participants from the Normative Aging Study with multiple visits
between 2000 and 2011 (n=940 visits). We estimated 1-year PM, 5 species levels at participants’
addresses using the GEOS-chem transport model. Blood DNAm-age was calculated using CpG sites on
the [llumina HumanMethylation450 BeadChip. We fit linear mixed-effects models, controlling for PM, s
mass and lifestyle/environmental factors as fixed effects, with the adaptive LASSO penalty to identify
PM, 5 species associated with DNAm-age.

Results: Sulfate and ammonium were selected by the LASSO in the Horvath DNAm-age models. In a
fully-adjusted multiple-species model, interquartile range increases in both 1-year sulfate (95%CI: 0.28,
0.74, P<0.0001) and ammonium (95%CI: 0.02, 0.70, P=0.04) levels were associated with at least a 0.36-
year increase in Horvath DNAm-age. No PM, 5 species were selected by the LASSO in the Hannum
DNAm-age models. Our findings persisted in sensitivity analyses including only visits with 1-year PM; s
levels within US EPA national ambient air quality standards.

Conclusion: Our results demonstrate that sulfate and ammonium were most associated with Horvath
DNAm-age and suggest that DNAm-age measures differ in their sensitivity to ambient particle exposures

and potentially disease.
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3.2. Introduction

Fine particulate matter (PM;s) remains an inescapable environmental exposure and an enormous
global public health concern'. It is estimated that at least 2.1 million lives could be saved annually if PM, s
guidelines were adhered to worldwide®. For the millions of people exposed to PM, s daily, understanding
the impact of PM, s on human health is critical for developing interventions aimed at reducing PM, s-related
morbidity and mortality globally. Researchers have consistently demonstrated that long-term PM, ;s
exposure is a major contributor to cardiopulmonary disease’®, and emerging evidence suggests that PM, s
is a risk factor for previously unconsidered disease outcomes like cognitive decline’"!. Nevertheless, much
remains to be understood about how PM; 5 contributes to even its most well-documented disease outcomes.
One promising strategy to better understand the adverse impact of PM; 5 on human health, is to study the
relationship of PM, s with aging. Many studies have implicated PM, s as a contributor to accelerated aging'>
' Moreover, independent of PM, 5 exposures, aging is associated with cardiopulmonary disease, cognitive

decline, and many other PM, s-related disease outcomes'®?!

. Thus, understanding how PM, 5 can contribute
to aging, may provide additional insight into other adverse PM, s-related health effects.

DNA methylation-based biomarkers of age have proved to be promising tools in understanding the
relationship of PM, s with aging. These biomarkers have surpassed their initial utility of simply predicting
chronological age, and have demonstrated remarkable usefulness in assessing individuals’ risk of mortality,
malignancy, neurocognitive disease, and other biologically-relevant health endpoints®>*. Evidence also
suggests that these biomarkers of age are reflective of individuals’ past environmental exposures®. One
such study by our group demonstrated robust associations between PM, s exposure levels and Horvath DNA
methylation (DNAm) age. Horvath DNAm-age is a tissue-independent predictor of chronological age that
is calculated from DNA methylation values at 353 chronological age-correlated CpG dinucleotides in
Illumina’s HumanMethylation450 BeadChip™. Specifically, in an elderly cohort and with fully-adjusted
models, we observed that a 1 pg/m’ increase in 1-year PM, s exposure was associated with a 0.52-year

increase in Horvath DNAm-age’'.

Still, PM, 5 is a heterogeneous mixture of carbonaceous fractions, inorganics, and metals; and it is
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widely appreciated that PM, s component species often differ in their health effects’> ™. The present study
builds upon our previous research and examines the relationships of PM; s component species with both
Horvath and Hannum DNAm-age in elderly men. Hannum DNAm-age is also a DNA methylation-based
predictor of chronological age, but it is based on measurements from 71 CpG dinucleotides™. Only 6 CpG
dinculeotides are shared between the Horvath and Hannum metrics. By investigating the relationships of
PM, s component species with these two forms of DNAm-age, we aim to (1) better understand how specific
PM, 5 species are related to aging, and (2) demonstrate differences in the biological utility of different

DNAm-age measures.

3.3. Materials and Methods
3.3.a. Study population

The participants in this analysis were part of the U.S. Veterans Affairs Normative Aging Study
(NAS), a longitudinal investigation of aging men established in Eastern Massachusetts in 1963 *’. The men
were free of known chronic medical conditions at enrollment, and returned for onsite, follow-up visits every
3-5 years. During these visits, detailed physical examinations were performed, bio-specimens including
blood were obtained, and questionnaire data pertaining to diet, smoking status, and additional lifestyle
factors that may impact health were collected. All participants provided written informed consent to the
VA Institutional Review Board (IRB), and both the Harvard T.H. Chan School of Public Health and VA
IRBs granted human subjects approval.

All NAS men with continued study participation as of the year 2000, when PM, s component levels
became available, were eligible for our study sample. After excluding participants with a diagnosis of
leukemia (n=11), due to its potential influence on the DNA methylation of blood cells®, and those
incomplete for the covariates of interest (n=16), we had a total of 552 participants with 940 observations
between the years 2000 and 2011. Of the 552 participants, 249 (45%) had one visit, 218 (40%) had two

visits, and 85 (15%) had three or more visits.
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3.3.b. DNA Methylation and calculation of DNAm-age

Laboratory staff extracted DNA from the buffy coat of whole blood collected from each participant
at each NAS follow-up visit (QIAamp DNA Blood Kit, QIAGEN, Valencia, CA, USA). DNA samples
were then treated with bisulfite conversion (EZ-96 DNA Methylation Kit, Zymo Research, Orange, CA,
USA) and hybridized to the 12 sample Illumina HumanMethylation450 BeadChips (Infinium HD
Methylation protocol, Illumina, San Diego, CA, USA). To ensure a similar age distribution and avoid
confounding across chips and plates, study staff employed a two-stage age-stratified algorithm to randomize
samples. For quality control, study staff removed samples where >5% of probes had a beadcount < 3 or >
1% of probes had a detection P-value >0.05. The Bioconductor minfi package Illumina-type background
correction without normalization was used to preprocess the remaining samples and generate methylation
beta values **. The beta values represent the percentage of methylation for each of the ~480,000 CpG sites
in the BeadChip array. The 450k arrays were run in the Genomics Core Facility at Northwestern University.

To explore potential differences in the relationship of PM; 5 and PM, s species with different forms
of DNAm-age, we calculated both Horvath DNAm-age and Hannum DNAm-age using the 450k beta values
and Horvath’s publically available online calculator (http://labs.genetics.ucla.edu/horvath/dnamage/).
Horvath DNAm-age was derived from an elastic net (penalized regression) using multiple data sets of
varying tissue and cell types. 21,369 CpG probes, shared by the Illumina HumanMethylation27 and
HumanMethylation450 BeadChip platforms were regressed on a calibrated version of chronological age.
The elastic net selected 353 CpGs that correlate with age, and the resulting model coefficients are used by
the calculator to predict the age of each DNA sample (DNAm-age) **. Hannum DNAm-age was also derived
using an elastic net. However, Hannum DNAm-age was based on a single cohort where DNA methylation
values were calculated from whole blood. This elastic net selected 71 CpG probes in the Illumina
HumanMethylation450 BeadChip that are predictive of chronological age. Hannum DNAm-age was
calculated as the sum of the beta values multiplied by the reported effect sizes for the Hannum predictor’®.
The Hannum and Horvath DNAm-ages only share 6 CpG probes (cg04474832, cg05442902, cg06493994,
cg09809672, cg19722847, and ¢g22736354).
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3.3.c. Assessment of Environmental Factors: Ambient Particles and Temperature

We employed the widely used GEOS-chem chemical transport model (http://www.geoschem.org)
to generate 1-year exposure estimates for PM, s and the following major PM, 5 component species: organic
carbon (OC), elemental carbon (EC), sulfate, nitrate, and ammonium *°. These 5 component species were
selected because they make up a large fraction of total PM, s mass (~ 88.6%) and were best predicted by
the model. GEOS-chem incorporates nonlinear chemistry, meteorology, and detailed emissions inventories
to simulate the formation and transportation of atmospheric components to give raw estimates of PM, s and
its major chemical components. Ten-fold cross-validation demonstrated that the model performs well for
PM, s mass and its component species with R’s ranging from 0.70 to 0.88 *. We generated daily estimates
at the 1x1 km area resolution. Each participant’s residence was geocoded and linked to an area level grid-
point. Time spent away from home (>7 days) and address changes were also accounted for as particle
estimates were assigned to each participants’ address. Given that >90% of NAS participants are retired,
home address exposures are expected to be a good proxy for their individual ambient exposures. We then
generated 1-year total PM, ;s and PM,; s component species exposure windows by averaging daily exposures
for the 365 days prior to the day of each participants” NAS visit. The 1-year PM, s exposure window was
utilized because it has been previously reported to be robustly associated with DNAm-age®'.

We used a spatiotemporal prediction multi-step approach to generate temperature (in Celsius) for
each participant *'. First, we obtained 1x1 km resolution daily physical surface temperature (Ts) data from
NASA satellite measurements and daily near surface air (Ta) data from the Environmental Protection
Agency, National Climatic Data Center, and Weather Underground Inc. We then used mixed model
regression to calibrate Ts to Ta. The model was validated with a mean out of sample R* of 0.95. To generate
1-year temperature measurements to complement 1-year particle exposures, we averaged daily temperature

measurements over the 365 days prior to participants’ NAS visits.

3.3.d. Statistical Analysis
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We first used generalized linear mixed effects models to determine the relationship of DNAm-age
(Horvath and Hannum independently) with 1-year PM, 5 exposure levels and 1-year PM, s component
species exposure levels. All linear mixed effects models included a random participant-specific intercept to
account for correlation between repeated measures (i.e. multiple visits for a participant).

We adjusted for confounders and covariates that have a priori biological/clinical relevance and/or
are reported in the existing literature. Specifically, our previous publication was the first study examining
associations of ambient particles and DNAm-age®'. There, we used a tiered approach of adding confounders
and covariates based on known relationships of ambient particles with DNA methylation and known
relationships of ambient particles with older markers of aging®****. Tier one adjusted for chronological
age and blood cell types. Tier two made additional adjustments for lifestyle and environmental factors. Tier
three expanded on tier two by additionally adjusting for age-related diseases, and tier four expanded on tier
two by additionally adjusting for medications of age-related diseases. After considering model fit (assessed
via AIC) and considering biological factors that are known to be important, the tier two covariates were
deemed to be most appropriate. Thus, in line with the previously published tier two framework’', the models
for this analysis were adjusted for chronological age (continuous), six blood cell type estimates [i.e. plasma
cells, CD4+ lymphocytes, CD8+ lymphocytes, natural killer (NK) cells, monocytes, and granulocytes]

30,46 .
, average 1-year temperature (continuous),

(continuous) determined via Houseman and Horvath methods
cumulative cigarette pack years (continuous), smoking status (current, former, or never), season of visit
(spring [March-May], Summer [June-August], Fall [September-November], and Winter [December-
February]), body mass index (BMI) (lean [<25], overweight [25-30], obese [>30]), alcohol intake (yes/no
> 2 drinks daily), and maximum years of education (continuous). All PM, s component species models were
additionally adjusted for PM, s mass®’.

To more rigorously identify the PM, ;s component species that may be associated with DNAm-age,
we applied the adaptive LASSO (least absolute shrinkage and selection operator)®™. Given that PM, s

component species are correlated, placing them together within the same standard linear regression model

can result in unaccounted for stochastic errors. The LASSO is a regression shrinkage and selection approach
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that helps overcome such limitations. The LASSO applies an /; penalty on the component regression
coefficients, which minimizes the sum of squared errors subject to the sum of the absolute values of the
coefficients being less than a given value®. The adaptive LASSO improves upon this procedure by utilizing
weights for penalizing different coefficients in the /; penalty to identify a subset of model predictors to
achieve asymptotic normality™. Furthermore, the adaptive LASSO has been successfully applied in air
pollution and health research’".

To identify and select PM, s component species associated with DNAm-age, we applied a penalty
to all PM, ;s component species, but not to PM; s mass and the other covariates in the model. A, the penalty
parameter, determines how strongly the magnitude of the PM,s species regression coefficients are
constrained. When A is small, the regression coefficients are weakly penalized and mirror those that would
be given from a standard linear mixed effects model. When A is large, the coefficients are strongly
penalized, shrinkage is maximized, and all coefficients tend towards zero such that the resulting model
includes fixed covariates only. When A takes a value in between the extremes, the result is a penalized
model where some PM, s component species will have coefficients of zero and others will be non-zero.
PM, s component species with non-zero coefficients are considered as “selected” by the adaptive LASSO.
We ran the model across a range of As, beginning with a A of 0, and selected the A resulting in the model
with the smallest Bayesian Information Criterion (BIC)™. Following LASSO selection, we fit a final
multiple-species linear mixed effects model using the selected PM, s component species and our fixed
covariates. From this final model, we were able to estimate component species effect sizes and their
corresponding 95% confidence intervals.

Additionally, we considered that the LASSO may not select the PM, 5 species that are most
correlated with total PM, s mass. Thus, we conducted a sensitivity analysis where we performed LASSO
selection without adjusting for PM, s mass. From this sensitivity analysis model, we fit a multiple-species
linear mixed effects model using the selected PM, s component species and estimated component species

effect sizes and their corresponding 95% confidence intervals.
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After finding that Horvath DNAm-age alone was significantly associated with PM, s component
species, we evaluated the relationships of the DNA methylation values of each of the 353 Horvath CpG
probes with the particles in the aforementioned LASSO-selected multiple-species linear mixed effects
model. In addition to the already described covariates, we included technical covariates (450k plate, chip,
row, and column) to this analysis. To account for multiple hypothesis testing, we also performed FDR
correction in this analysis. We then performed gene ontology analysis on the list of significant CpGs (FDR

P-value < 0.05) using the publically available GoTermFinder tool (http:/go.princeton.edu/cgi-

bin/GOTermFinder).

In an additional sensitivity analyses, we re-ran our models excluding participant visits with PM, s
exposures greater than 12 pg/m’. This allowed us to assess if our findings persisted even at the PM, s levels
currently deemed acceptable by the U.S. Environmental Protection Agency (EPA) National Ambient Air
Quality Standards (NAAQS)™.

All statistical analyses were performed using R Version 3.1.1 (R Core Team, Vienna, Austria) and

we considered a P-value < 0.05 to be statistically significant.

3.4. Results
3.4.a. Descriptive Results

Table 1 summarizes the characteristics of the study population. All study participants were
Caucasian males with a mean (£ SD) age of 74.7 + 6.99 years across all study visits. Average Horvath
DNAm-age and Hannum DNAm-age were 74.0 £ 7.92 years and 75.1 + 8.95 years respectively. Horvath
DNAm-age (r = 0.59, p<0.0001) and Hannum DNAm-age (r = 0.77, p<0.0001) were both strongly
correlated with chronological age in the study population. Both measures of DNAm-age were also strongly

correlated to each other (r = 0.69, p<0.0001).
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Table 1. Characteristics of Study Subjects (2000 — 2011)

Variable First Visit (N = 552) All Visits (N = 940)
Age (years), mean (SD) 73.3 (6.82) 74.7 (6.99)
Horvath DNAm-age (years), mean (SD) 73.7 (7.77) 74.0 (7.92)
Hannum DNAm-age (years), mean (SD) 73.8 (8.80) 75.1 (8.95)
Temperature (°C), mean (SD) 11.5(1.12) 11.3 (1.00)
Pack years, mean (SD) 20.7 (24.7) 20.5 (24.4)
Smoking Status, N (%)
Current 25 (4) 40 (4)
Former 355 (64) 614 (65)
Never 172 (32) 286 (31)
Season, N (%)
Spring 145 (26) 241 (26)
Summer 115 (21) 199 (21)
Fall 177 (32) 313 (33)
Winter 115 (21) 187 (20)
BML N (%)
Healthy/Lean 119 (21) 216 (23)
Overweight 302 (55) 493 (52)
Obese 131 (24) 231 (25)
Alcohol Consumption, N ( %)
< 2 drinks/day 441 (80) 761 (81)
> 2 drinks/day 111 (20) 179 (19)
Education, N (%)
<12 years 146 (27) 242 (26)
12 - 16 years 262 (47) 434 (46)
> 16 years 144 (26) 264 (28)

Table 2 reports 1-year PM, s and PM, s component species exposure levels across all study visits. The
participants had a mean 1-year PM, s exposure level of 10.3 + 1.60 pug/m’, with an interquartile range (IQR)
of 2.16 pg/m’. Of the measured PM, s component species, sulfate accounted for the largest proportion of
total PM, 5 mass (33%), followed by organic carbon (28.6%), nitrate (11.5%), ammonium (10.1%), and
elemental carbon (5.4%). OC was the PM, s species most correlated with total PM, s mass (r = 0.67). 1-year
PM, s and PM, 5 species Pearson correlations across all visits are reported in Table S1. Moreover, 1-year

PM, s and PM, s species exposure distributions across first visits are reported in Table S2.
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Table 2. Mean 1-Year Particulate Matter 2.5 (PM,s) and Component Species Concentrations Across
All Study Visits

Particle Pearson Correlation

(ug/m’) Mean (SD) IQR  Proportion of PM, 5 (%) with PM,5 N
PM; 5 10.3 (1.60) 2.16 - - 940
PM, s Component Species
EC 0.56 (0.17)  0.23 54 0.62 940
ocC 2.94(091) 1.28 28.6 0.67 940
Sulfate 3.40(1.23) 0.82 33.0 0.30 940
Nitrate 1.18(0.32) 0.42 11.5 0.46 940
Ammonium 1.04 (0.31) 0.3 10.1 0.53 940

3.4.b. 1-Year PM,sand PM, ;s Component Species as Predictors of DNAm-age

Table 3 summarizes the results of three model frameworks where PM, 5 and its component species
were modeled as predictors of both Horvath and Hannum DNAm-age. Residuals from all models appeared
normally distributed. In the model framework 1, PM, 5 was modeled as a predictor of Horvath and Hannum
DNAm-age independently. In the fully adjusted model, an IQR increase in 1-year PM, 5 exposure was
significantly associated with a 0.64-year increase in Horvath DNAm-age (p=0.005). However, an IQR
increase in 1-year PM, s exposure was not significantly associated with Hannum DNAm-age (3=0.06,
p=0.74). Under the model framework 2, each PM, 5 component species was modeled as an independent
predictor of Horvath and Hannum DNAm-age adjusting for all covariates and total PM; 5 mass. 1-year IQR
increases in OC ($=0.93, p=0.001), sulfate (3=0.59, p<0.0001), nitrate (f=0.58, p=0.01), and ammonium
(P=0.59, p=0.0004) were all significantly associated with increases in Horvath DNAm-age of at least 0.58
years. No PM, 5 component species were significantly associated with Hannum DNAm-age (Table 3).

The model 3 framework reflects the results of the multiple-species fully-adjusted linear mixed
effects models with the PM, 5 component species selected by the adaptive LASSO. The adaptive LASSO
selected sulfate and ammonium as important predictors of Horvath DNAm-age. Figure 1A depicts the

relationship between BIC, the model selection criterion, and A, the adaptive LASSO penalty parameter. The
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model with the smallest BIC had A = 11. Figure 1B shows the LASSO coefficient paths for the PM, s
component species. Each component species coefficient is expressed as the difference in mean Horvath
DNAm-age per an IQR increase in the 1-year component species exposure level. Each curve depicts the
rate at which the component species coefficient shrinks towards zero as A increases. At A=0, all components

species have a non-zero coefficient.
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Table 3. 1-Year Particulate Matter 2.5 (PM, ) and Component Species as Predictors of DNA Methylation (DNAm) Age

Difference in Horvath DNAm-age

Difference in Hannum DNAm-age

Particle for IQR (95% CI) P for IQR (95% CI) P N

Model Framework 1

PM, 5 0.64 (0.20, 1.09) 0.005 0.06 (-0.28, 0.40) 0.74 940
Model Framework 2

EC 0.27 (-0.25, 0.80) 0.30 -0.09 (-0.48, 0.29) 0.64 940
oC 0.93 (0.37, 1.50) 0.001 0.35 (-0.05, 0.77) 0.09 940
Sulfate 0.59 (0.37, 0.81) <0.0001 0.08 (-0.09, 0.25) 0.36 940
Nitrate 0.58 (0.11, 1.04) 0.01 0.30 (-0.04, 0.65) 0.08 940
Ammonium 0.59 (0.26, 0.92) 0.0004 0.06 (-0.18, 0.30) 0.63 940
Model Framework 3

PM; 5 0.18 (-0.30, 0.66) 0.45 - - 940
Sulfate 0.51(0.28, 0.74) <0.0001 - - 940
Ammonium 0.36 (0.02, 0.70) 0.04 - - 940

Model Framework 1: adjusted for chronological age, blood cell types, temperature, pack years, smoking status, season, BMI, alcohol
consumption, and education. Model Framework 2: PM, s component species as independent predictors of DNAm-age adjusted for PM, s in
addition to model 1 covariates. Model Framework 3: PM, s, sulfate, and ammonium as joint predictors of DNAm-age (given selection of sulfate
and ammonium by the adaptive LASSO) adjusted for model 1 covariates. No species were selected as predictors of Hannum DNAm-age.
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Figure 1 | A) The relationship between BIC, a criterion for model selection and A (lambda),
the adaptive LASSO penalty parameter, for DNAm-age. The vertical line at A = 11 denotes
the penalty parameter with the lowest BIC. B) LASSO coefficient paths: plot of coefficient
profiles for PM, s components as a function of . At A = 11, sulfate and ammonium are the
only PM, s components with a non-zero coefficient.
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In the multiple-species fully-adjusted linear mixed effects model, both sulfate (f=0.51, p<0.0001)
and ammonium (B=0.36, p=0.04) remain significant positive predictors of Horvath DNAm-age. The
adaptive LASSO did not select any PM, s component species as important predictors of Hannum DNAm-
age.

In our sensitivity analysis — where LASSO selection was performed without adjusting for total
PM, s mass — sulfate, ammonium, and OC were selected as important predictors of DNAm-age (Figure S1).
Nonetheless, in a multiple-species fully-adjusted linear mixed effects model, both sulfate (=0.45,
p=0.0003) and ammonium (=0.34, p<0.05) remained significant positive predictors of Horvath DNAm-
age, but OC (p=0.42, p=0.16) was not a significant predictor of Horvath DNAm-age (Table S3). Again, the
sensitivity analysis adaptive LASSO did not select any PM, s component species as important predictors of
Hannum DNAm-age.

Significant findings from the main analysis multiple-species fully-adjusted linear mixed effects
model persisted in the second sensitivity analyses excluding participant visits with PM, 5 exposures greater
than 12 pg/m’, the annual PM, 5 exposure level currently deemed acceptable by the U.S. Environmental

Protection Agency (EPA) National Ambient Air Quality Standards (NAAQS) (Table S4).

3.4.c. Associations between 1-Year PM, s and PM, ;s Component Species Levels and Methylation Values at
Horvath DNAm-age CpG Sites

After FDR correction, 47 out of 353 Horvath DNAm-age CpG sites had methylation values that
were significantly associated with total PM, 5 levels in the fully-adjusted multiple-species linear mixed
effects model. PM,5 levels were positively or negatively associated with CpG methylation values

depending on the CpG site (Table 4). 46 of the 47 CpG sites mapped to known
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Table 4. 1-Year Particle Exposures as Predictors of Horvath CpG Probe

Difference in

i . . FDR
CpG Gene Process/Function Me;:z lsalt)l on lzlsl;e()cctil;tlilozf Adjl;)sted
(%)
PM; s
cgl5262928 TIMMI17A Mitochondrial protein import 24.18 + 0.001
cg14409958 ENPP2* Nucleic acid binding 19.85 + 0.001
cg01570885 FAMS0B* Protein binding 19.64 - 0.004
cg08186124  LZTFL1* Protein binding: cytoplasm 19.59 + 0.004
cgl18139769 SGCE* Calcium binding 19.25 - 0.004
cgl5547534 PPP1R35 Phosphatase binding 18.79 + 0.004
cg26456957 PPP1R12C Protein kinase binding 18.74 + 0.001
cg05847778 BBS5 Transcription initiation 18.01 + 0.006
cgl5661409 Cl4orfl105* Uncharacterized 17.52 - <0.001
cg02335441 NEKI11 DNA replication 17.32 + 0.008
cgl7285325 TYMP Phosphorylase activity 17.23 + 0.007
cg04094160 ZBTB5* Transcriptional regulation 16.92 + 0.003
cg03682823 SGCE Calcium binding 16.80 - 0.008
cg07663789 NPR3 Hormone binding/blood volume 16.13 + 0.003
cgl15703512 PDZD9 Uncharacterized 15.80 + 0.015
cg22190114 NLRPS ATP binding 15.60 + 0.015
cg19008809 SFMBT1 Transcription corepressor 15.48 + 0.013
activity
cg00374717 ARSG Sulfatase enzyme activity 15.29 - 0.004
cgl12985418 MIBI1 Protein binding 15.14 + 0.018
cg03588357 GPR68 G-protein coupled receptor 15.09 + 0.020
activity
cg14424579 AGBL5 Metallocarboxypeptidase 15.07 + 0.007
cgl14597908 GNAS G-protein binding 15.04 - 0.015
cg19044674 LEPREI Oxidoreductase activity 14.88 + 0.023
cg09441152 PQLC1 Membrane component 14.87 + 0.027
cg07849904 MNI1 Transcriptional activator 14.85 + 0.015
cgl19273182 PAPOLG Polynucleotide 14.81 + 0.025
adenylyltransferase activity

cgl17063929 NOX4 Nucleotide binding 14.56 - 0.015
cg24116886  DEFBI127 Immunologic response 14.40 - 0.015
cg09191327 PRDM12 Methyltransferase activity 14.30 + 0.027
cg23662675 ZMYNDS Transcription cofactor activity 14.16 + 0.014
cg14992253 EIF31 Translation initiation 13.12 - 0.018
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Table 4. 1-Year Particle Exposures as Predictors of Horvath CpG Probe (Continued)

cg05442902 P2RX6 Channel activity 12.82 0.026

cg06557358 TMEM132 Integral component of 12.60 0.031
E* membrane

cgl1932564 TNFRSF13 Immunologic response 12.51 0.037
C

cg18031008 MRPS21 Mitochondrial ribosome 12.10 0.030

cg19945840 SDF4 Calcium binding 12.08 0.023

cgl9167673 PDGFB Protein homodimerization 12.03 0.031

activity

€g25159610 PLK2 Cell division 11.96 0.038

cg22006386  CATSPER Ion channel activity 11.89 0.026
G*

cg27377450 unknown unknown 11.85 0.026

cg20100381 NAEI Protein heterodimerization 11.84 0.046

activity

cg04268405 CHST3 Sulfotransferase 11.47 0.026

cg07595943 ADAD?2 RNA binding 11.36 0.023

cg25505610 EIF3M Translation initiation 10.67 0.042

cgl6744741 PRKG2 Protein kinase activity 10.17 0.038

cg21395782 NDUFA13* NADH dehydrogenase activity 8.27 0.027

cg01459453 SELP Oligosaccharide binding 8.05 0.023

Ammonium
cg02275294 SOATI Fatty-acyl-CoA binding 10.81 0.036

All models are fully adjusted. * = CpGs associated with PM, s levels in a prior publication.

genes. 9 of these 46 genes (ENPP2, FAMS50B, LZTFLI1, SGCE, Cl4o0rf105, ZBTB5, TMEM132F,
CATSPERG, and NDUFA13) were previously reported in a similar, previously published PM, s Horvath
CpG analysis®'. Gene ontology of our 46 genes combined with the genes in the previously reported study
returned the GO term “regulation of translational initiation” (Table S5).

Only 1 out 353 CpG sites (cg02275294) had methylation values that were significantly associated
with ammonium levels in the fully-adjusted multiple-species linear mixed effects model. No individual

CpG sites had methylation values that were significantly associated with sulfate levels after FDR correction.
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3.5. Discussion

In this study, we report positive associations of 1-year PM, s exposure levels with Horvath DNAm-
age in a population of community-dwelling, elderly men. Additionally, we utilized the adaptive LASSO to
identify 1-year sulfate and ammonium levels as the PM,s components most robustly associated with
Horvath DNAm-age. To our knowledge, this is the first report of associations of multiple PM, s component
species with DNAm-age and the second time that satellite-derived PM, s exposure levels have been found
to be associated with Horvath DNAm-age. In addition to being consistent with the existing literature®’, our
findings also demonstrate important public health relevance as they persist in sensitivity analyses including
only participant visits with 1-year PM,5 levels within current US EPA national ambient air quality
standards™*. Our study also extends the literature by exploring PM, s relationships with Hannum DNAm-
age although these relationships were found to be null. Furthermore, we identified 47 CpG sites, 9 of which
were previously reported, whose methylation values were significantly associated with PM, 5 levels in fully-
adjusted linear mixed effects models. Only 1 CpG was associated with ammonium levels and 0 were
associated with sulfate levels.

Given our prior report of robust associations of PM; s levels from satellite-based spatiotemporal
models with Horvath DNAm-age, we expected to observe a similar positive relationship using PM, s levels
from the GEOS-chem chemical transport model. As expected, we observed that an IQR increase in 1-year
PM, 5 exposure was associated with a 0.64-year increase in Horvath DNAm-age. Since PM, 5 component
species are highly related to total PM, 5, we also expected that PM, s component species would be associated
with Horvath DNAm-age, even when adjusting for PM, 5 mass. Given the existing literature concerning the
differential health effects of PM, s component species, we speculated that some component species may be
more robustly associated with Horvath DNAm-age than others. In particular, we expected the carbonaceous
fractions to be among the species most robustly associated with DNAm-age due to the extensive literature
(including work from our group) on the adverse nature of carbonaceous fraction exposures on health®*+>
*7_In our fully adjusted one-species linear mixed effects models, we observed strong positive associations

of 4 out of the 5 component species examined with Horvath DNAm-age. IQR range increases in organic
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carbon, sulfate, nitrate, and ammonium were all significantly associated with at least a 0.58-year increase
in Horvath DNAm-age.

Despite the results from our fully adjusted one-species linear mixed effects models, we desired a
method to more comprehensively identify the component species most associated with DNAm-age.
Nevertheless, we were aware that simply modeling highly-correlated PM, 5 species together would result
in unaccounted for stochastic errors. Thus, we employed the adaptive LASSO as a penalized regression
method to help overcome this difficulty. The literature has shown that carbonaceous fractions are robustly
associated with age-related health outcomes”“**>*’: however, neither elemental or organic carbon were
selected in our models. Rather sulfate and ammonium were selected. This difference may be explained by
the fact that a majority of the aforementioned studies did not consider other PM, s component species in
addition to the carbonaceous fractions. Even in our single-species linear mixed effects models, we note that
organic carbon was among the four species significantly associated with Horvath DNAm-age (Table 3).
However, when all five component species are considered together in the adaptive LASSO, only sulfate
and ammonium were selected. It is also possible that the LASSO did not select the carbonaceous fractions
because the selection was performed under PM, 5 adjustment and PM, s may be capturing most of the
variability of organic and elemental carbon. Thus, we performed LASSO selection not adjusting for total
PM, s mass as a sensitivity analysis. This time LASSO did select organic carbon along with sulfate and
ammonium. However, when these three component species were modeled with PM, 5 in a multiple-species
fully-adjusted linear mixed effects model, organic carbon was the only species that was not a significant
predictor of DNAm-age. This suggests that organic carbon was selected in the sensitivity analysis because
of'its strong correlation with PM, s mass and not because organic carbon itself is a good predictor of DNAm-
age. This finding also reiterates the notion that adjustment for PM, 5 mass in component species models is
very important as PM, s mass often confounds the relationship between the outcome and species*’. Failing
to include PM, s mass may lead to misleading findings about species. In all, our data suggests that of the
considered species, sulfate and ammonium have the most important relationships with DNAm-age.

Furthermore, existing studies that do consider a range of PM, s components demonstrate that other non-
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carbonaceous components are important to age-related outcomes’>*’. These data, together with our
findings, also suggests the important need to consider a range of PM, s components, rather than one or two
species, in air pollution and health studies.

Both sulfate and ammonium are classified in the inorganic fraction of PM,s. Sulfates are often
produced from oxidation or photochemical reactions involving primary gases derived from sources like
coal-burning power plants®. Additionally, ammonia from organic sources including animal feeds and
fertilizers can contribute to the existence of sulfates in the form of atmospheric ammonium sulfate®'. As far
as direct ambient sulfate and ammonium toxicity to human health is concerned, existing studies are limited.
Yet, there has been extensive evidence describing the ability of acidic sulfates, like ammonium sulfate, to
increase the number and toxicity of biologically harmful secondary particles***°. For instance, ammonium
sulfate aerosols have been shown to influence the photo-chemical reactions of nitrogen oxides and toluene
hastening the production of secondary organic aerosols®’. Moreover, sulfur concentrations have been found
to be directly proportional to the ability of soluble particle extracts to generate biologically damaging
oxidants®. Furthermore, a prior study in the NAS has reported a 27% decrease in long interspersed
nucleotide element-1 methylation per every IQR increase in 90-day sulfate exposure. This study provides
evidence for the influence of sulfates on DNA methylation, which may be a potential pathway for sulfate
toxicity®. It is still unclear what the molecular relevance of Horvath DNAm-age is, but our findings along
with the existing literature will be helpful in providing additional insight for future work.

Following the selection of sulfate and ammonium by the adaptive LASSO, we constructed a final
multiple-species linear mixed effects model adjusted for PM, s mass and all covariates. Even in this model,
sulfate and ammonium remained significant positive predictors of Horvath DNAm-age. We then looked to
see if there were specific Horvath DNAm-age component CpG sites with methylation values that were
associated with PM; s, sulfate, and/or ammonium in our fully-adjusted multiple-species linear model. From
this analysis, we identified 47 significant CpG sites after FDR adjustment. These sites mapped to 46 genes,
and 9 of them were reported in a previous CpG-level analysis of the same 353 sites in the Horvath algorithm

that we conducted using PM, s levels from a satellite-based spatiotemporal model. To better grasp the
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impact of PM,; levels on methylation, we divided the coefficients for each significant CpG site (i.e.
difference in methylation per IQR increase in particle level) by the standard deviation of the respective
particle level. We were pleased to see that 5 of the 9 CpGs that were shared between both PM, s prediction
models were in the top 20% of our gene list. We then combined the gene lists from both PM, 5 prediction
models (removing any duplicates) and performed a gene ontology (GO) analysis. The GO analysis returned
the term “regulation of translational initiation” with the following genes from our list falling into this
category: RXRA, EIF3M, EIF31. Though the GO term itself is not highly specific, combining this pathway
with what is known about the toxicity of PM, s will be useful in further understanding how PM, s may
contribute to aging and disease. Only 1 CpG was associated with ammonium levels and it mapped to the
gene SOATI, which is involved in fatty-acyl-CoA binding. SOAT1 has been implicated in a number of
diseases including familial hypercholesterolemia®. No CpG sites were specifically associated with sulfate
levels. The finding that almost no CpGs sites were associated with ammonium and sulfate further
demonstrates that Horvath DNAm-age is simply not a reflection of its 353 component CpGs, and reiterates
the need for work focused on defining the molecular relevance of DNAm-age.

Finally, our study demonstrates that all DNAm-age measures are not the same. In the literature,
there is evidence of both Horvath and Hannum DNAm-age reflecting the same disease outcome and
evidence where they differ in their reporting ability. For instance, both Horvath and Hannum DNAm-age

appear to be useful in predicting mortality’""’

. However, in a study of male and female veterans, Hannum
DNAm-age was associated with post-traumatic stress disorder and neural integrity, but Horvath DNAm-
age was not’>. The differences in these two DNAm-age measures may stem from the fact that they are
derived from almost entirely different CpG sites or from the fact that Horvath DNAm-age was constructed
using many datasets of multiple tissue types and the Hannum DNAm-age was based only on blood from
one dataset’*°. Our results suggest that Hannum DNAm-age is not sensitive to exposure levels of PM, s
and its component species. Additional studies in different populations will be necessary to confirm these
findings more broadly. Nonetheless, continued research exploring the specific sensitivity of DNAm-age

measures will be a crucial next step in the growth of this field of research. Once more is known about the

65



profiles of these markers, we can begin to use them more effectively in answering questions concerning
human health.

Strengths of our study include rigorous statistical methods and access to a large cohort with
extensive and repeated information regarding pollutant exposures, potential confounders, and DNA
methylation data from multiple study visits. However, our study does have several limitations. First,
although we used a validated chemical transport model to estimate the levels of ambient PM, 5 and its
component species at participants’ addresses, we recognize that these estimates may differ from personal
exposures. Nonetheless, we know that a majority of NAS participants are retired and spend most of their
time at home. Moreover, our approach is expected to result in non-differential misclassification that is likely
to underestimate the observed associations rather than bias them away from the null”. Secondly, it is known
that LASSO regression is limited to linear relationships. Given the linear relationship of our particle
exposures with DNAm-age and the scope of this paper, the adaptive LASSO was a good tool for identifying
PM, s components that are independently important to DNAm-age. However, for future studies potentially
interested in the interactions between PM,s components, another technique may be necessary as PM, s
species interactions that are important for the prediction of DNAm-age may be more complex (i.e. not
linear). Third, we note that our findings are based on an elderly cohort of Caucasian males that reside in a
lightly-polluted environment. Hence, additional studies involving other demographic groups and in
different environments will be necessary to confirm our findings more broadly. Finally, we used the existing
literature and a priori knowledge of biological/clinical relevance to adjust for potential confounders.

Nonetheless, we cannot rule out the possibility of unknown or residual confounding in our analyses.

3.6. Conclusion

Our study utilizes the GEOS-chem chemical transport model to validate novel positive associations
between long-term PM, s exposure levels and Horvath DNAm-age. For the first time, we demonstrate that
sulfate and ammonium are among the PM, s component species most associated with Horvath DNAm-age

in this population of elderly men. In contrast, we observed no relationships of long-term PM, s and PM, s
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component species exposure levels with Hannum DNAm-age. These results suggest that DNA methylation-
based biomarkers of age differ in their sensitivity to ambient particle exposures and potentially disease
outcomes. Future studies in other populations will be critical for defining the environmental and disease

sensitivity profiles of DNAm-age measures.
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4.1. Abstract

Background: Recent studies have reported robust associations of long-term PM, s exposure with DNA
methylation-based measures of aging; yet, the molecular implications of these relationships remain poorly
understood.

Objective: We evaluated if genetic variation in three biological pathways implicated in PM, s-related
disease — oxidative stress, endothelial function, and metal processing — could modify the effect of PM, 5 on
DNAm-age, one prominent DNA methylation-based measure of biological age.

Methods: This analysis was based on 552 individuals from the Normative Aging Study with at least one
visit between 2000 and 2011 (n=940 visits). A genetic-score approach was used to calculate aging-risk
variant scores for endothelial function, oxidative stress, and metal processing pathways. One-year PM; 5
and PM, s component (sulfate and ammonium) levels at participants’ addresses were estimated using the
GEOS-chem transport model. Blood DNAm-age was calculated using CpG sites on the Illumina
HumanMethylation450 BeadChip.

Results: In fully-adjusted linear mixed-effects models, the effects of sulfate on DNAm-age (in years) were
greater in individuals with high aging-risk endothelial function variant scores when compared to individuals
with low aging-risk endothelial function variant scores (Pineraciion=0.0007; Brigh=1.09, 95%Cl;gn: 0.70,
1.48; Prow=0.40, 95%Cl,w: 0.14, 0.67). Similar trends were observed in fully-adjusted models of
ammonium and total PM, s alone. No effect modification was observed by oxidative stress and metal
processing variant scores. Secondary analyses revealed significant associations of serum endothelial
markers, ICAM1 (=0.01, 95%CTI: 0.002, 0.012) and VCAM1 ($=0.002, 95%CTI: 0.0005, 0.0026), with
DNAm-age.

Conclusion: Our results add novel evidence that endothelial physiology may be important to DNAm-age

relationships, but further research is required to establish their generalizability.
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4.2. Introduction

Approximately 92% of the world’s population lives in areas with ambient fine particle (PM,s)
levels higher than currently accepted global standards'. In fact, a substantial portion of global mortality and
morbidity can be attributed to PM, s exposurez. Research continues to demonstrate that long-term PM, s
exposure is a major risk factor for cardiovascular disease™, and respiratory impairment’. PM, 5 has also
been associated with cognitive decline®’, and cancer®. Still, exactly how PM, s contributes to these and
other important health outcomes is still not fully understood. Addressing this knowledge gap is a critical
step for developing interventions to alleviate the disease burden of individuals already exposed to high
PM.,s levels. Aging also independently contributes to many PM, s-related health endpoints'®''". Thus,
studying how PM,s is related to aging may facilitate a greater understanding of the complex
pathophysiology surrounding PM, s-related diseases.

Some of the most recent studies of PM; 5 and aging have involved DNA methylation age (DNAm-
age), a novel tissue-independent measure of biological age that is calculated using DN A methylation values
from 353 age-correlated CpG dinucleotides'. Our research group was the first to report significant positive
associations of long-term PM, s exposure levels with DNAm-age'. Recently, we have identified sulfate
and ammonium as important component species in the PM, s-DNAm-age relationship'®. In collaboration
with another research group, we have also demonstrated associations between other air pollutants (e.g.
black carbon, PMo, and NOy) and epigenetic aging measures' . Despite this work, very little is known
about the molecular implications of the PM, s and DNAm-age relationship. At the moment, the algorithm
used to calculate DNAm-age relies on assays that have only been optimized for humans and chimpanzees'?.
Hence, this field of research is limited by a lack of traditional animal models to study DNAm-age’s
relationships. It is possible that DNAm-age is simply reflecting a well-studied biological process (e.g.
oxidative stress), but it may alternatively reflect a completely novel process. Existing epidemiologic studies
have demonstrated robust associations of DNAm-age with mortality, cognitive decline, cancer, and other
PM, s-related outcomes thereby suggesting that DNAm-age processes are common to many disease
pathologies'®'®. There is also epidemiologic evidence that normal genetic variation may influence DNAm-
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age, but this has yet to be explored in the context of the PM, s-DNAm-age association'’. To our knowledge,
only a couple of studies have peripherally examined the molecular implications of DNAm-age, and these
studies only conclude that DNAm-age represents a form of biological aging that differs from cellular
senescence' %,

Even with current limitations, existing technologies can be creatively utilized to begin
understanding the molecular implications of DNAm-age. Here, we employ components of a previously
developed genetic score approach that categorizes normal genetic variation into three biological pathways
— oxidative stress, endothelial function, and metal processing”'. Oxidative stress, endothelial function, and
metal processing are all biological pathways that have been implicated in numerous PM, s-related diseases;
thus, they may also be involved in the PM, s-DNAm-age relationship®*. The existing studies that have used
this Bind et al. method have suggested potential modification of the associations of PM, 5 exposure with
inflammatory markers and cardiac autonomic function, but the results have not been statistically

*124Given these previous findings, our aim is to use the candidate pathway-specific genetic

significant
variants employed by the Bind method to 1) identify variants specifically important to DNAm-age and 2)

assess if the normal genetic variation captured by these variants modifies the PM, s-DNAm-age relationship

in a population of community-dwelling elderly Caucasian men.

4.3. Materials and Methods
4.3.a. Study Population

Participants included in this analysis were part of the Normative Aging Study (NAS), an ongoing
longitudinal cohort study of healthy male volunteers from the Eastern Massachusetts area®. The NAS is a
closed cohort and participants are now elderly. The NAS was established by the U.S. Department of
Veterans Affairs (VA) in 1963, and enrolled men who were free of any chronic disease. Every 3-5 years,
NAS participants reported for onsite, detailed medical examinations during which bio-specimens were

collected and assessments of lifestyle factors that may affect health were made. All participants provided
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written informed consent to the VA Institutional Review Board (IRB), and human subjects approval was
granted by the VA and Harvard T.H. Chan School of Public Health IRBs.

All NAS men with continued study participation as of the year 2000, when address-specific PM; s
component species levels became available, were eligible for our study sample. After excluding participants
with a diagnosis of leukemia (n=11), due to its potential influence on the DNA methylation of blood cells'?,
and those incomplete for the covariates of interest (n=16), we had a total of 552 participants with 940
observations (i.e. study visits) between the years 2000 and 2011. This was the study sample that was used
in reporting the significant associations between PM, s component species and DNAm-age in our previous
publication'®. Of these 552 participants, 249 (45%) had one visit, 218 (40%) had two visits, and 85 (15%)
had three or more visits. From this sample, we then excluded participants missing pathway specific
polymorphism data. This resulted in three distinct, but not mutually exclusive, groups of participants: 1)
Oxidative stress subset (n=410, obs=702); 2) Endothelial function subset (n=450, obs=779); and 3) Metal

processing subset (n=426, obs=744).

4.3.b. DNA Methylation Assay and Calculation of DNAm-age

Laboratory staff extracted DNA from the buffy coat of whole blood collected from each participant
during each NAS follow-up visit (QIAamp DNA Blood Kit, QIAGEN, Valencia, CA, USA). DNA samples
underwent bisulfite conversion (EZ-96 DNA Methylation Kit, Zymo Research, Orange, CA, USA) and
were hybridized to the 12 sample [llumina HumanMethylation450 BeadChips (Infinium HD Methylation
protocol, Illumina, San Diego, CA, USA). A two-stage age-stratified algorithm was used to randomize
samples avoiding confounding and ensuring a similar age distribution across chips and plates. For quality
control purposes, study staff removed samples where >5% of probes had a beadcount < 3 or > 1% of probes
had a detection P-value >0.05. The Bioconductor minfi package Illumina-type background correction
without normalization was used to preprocess the remaining samples and generate methylation beta
values™. Beta values represent the percentage of methylation for each of the ~480,000 CpG sites in the

BeadChip array. The 450k arrays were run in the Genomics Core Facility at Northwestern University.
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DNAm age was determined wusing the publically available online calculator
(http://labs.genetics.ucla.edu/horvath/dnamage/). DNAm-age was derived from penalized regression (an
elastic net) using multiple data sets of varying cell and tissue types. 21,369 CpG probes, shared by the
Illumina HumanMethylation27 and HumanMethylation450 BeadChip platforms were regressed on a
calibrated version of chronological age. The elastic net selected 353 CpGs that correlated with age (193
positively and 160 negatively), and the resulting model coefficients were used by the calculator to predict
the age of each DNA sample (DNAm-age)'>. Empirical data demonstrated that the calculator maintains
predictive accuracy (age correlation 0.97, error = 3.6 years) across almost all body tissues including blood,

brain, and bone.

4.3.c. Ambient Particle (Exposure) Assessment

We utilized the GEOS-chem chemical transport model (http://www.geoschem.org) to generate 1-
year exposure estimates for PM, s, sulfate, and ammonium. Sulfate and ammonium are the major PM, s
component species previously demonstrated to be most important in predicting DNAm-age'®. By
incorporating meteorology variables, non-linear chemistry, and detailed emissions inventories, GEOS-
chem simulated the formation and transportation of atmospheric components and provided raw estimates
of PM, s and its major component species. Ten-fold cross-validation demonstrated that the model performed
well for PM,s mass and its component species with Rs ranging from 0.70 to 0.88”’. Each participant’s
residence was geocoded and linked to an area level grid-point. After accounting for address changes, we
assigned particle estimates to each participant’s address. Greater than 90% of NAS participants are retired,;
thus, home address exposures are expected to be a good proxy for their individual ambient exposures. We
generated daily estimates at the 1x1 km area resolution and 1-year total PM, ;s and PM, s component species
exposure windows by averaging daily exposures for the 365 days prior to the day of each participants’ NAS
visit. The 1-year PM, s exposure window was utilized because it has been previously reported to be robustly

associated with DNAm-age".
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4.3.d. Serum Endothelial Function Marker Assays

We used three common plasma endothelial function markers (vascular cell adhesion molecule-1
[VCAM], intercellular adhesion molecule-1 [I[CAM], and vascular endothelial growth factor [VEGF]) that
were measured in blood collected from NAS participants during their study visits. These markers were
selected because of all serum physiologic markers available in the NAS, they are most specific and directly
related to the endothelium. Other markers like CRP are non-specific to the endothelium and have more
nuanced relationships with other biological processes like general inflammation. These markers have also
been consistently associated with PM; 5 levels in numerous (NAS and non-NAS) epidemiologic studies and

have been extensively used to assess endothelial function™**

. VCAM and ICAM are two important cellular
adhesion molecules that mediate leukocyte-endothelial cell adhesion and transendothelial migration®.
Laboratory staff measured VCAM (ng/mL) and ICAM (ng/mL) in serum using the enzyme-linked
immunosorbent assay method (R&D Systems, Minneapolis, MN). Sensitivity of the assay was 0.35 ng/mL
for ICAM with day-to-day assay variabilities of 10.1, 7.4, 6.0 and 6.1% at concentrations of 64.2, 117,290
and 453 ng/mL, respectively. Sensitivity of the assay was 2.0 ng/mL for VCAM with day-to-day assay
variabilities of 10.2, 8.5 and 8.9% at concentrations of 9.8, 24.9 and 49.6 ng/mL, respectively. VEGF is a
signaling protein that stimulates the production of endothelial cells and the formation of blood vessels™.
VEGF (pg/mL) was quantified using multiplexing technology (MILLIPLEXTM MAP) with commercially

available MILLIPLEXTM MAP kits (EMD Millipore, Billerica, MA, USA). The VEGF assay has intra-

assay and inter-assay precision of 13% and 19% respectively.

4.3.e. Statistical Analysis
4.3.e.1. Primary Analysis and Variant Scores:

We first used linear mixed effects models to determine if we could observe previously published
positive associations of 1-year PM, s, sulfate, and ammonium levels with DNAm-age in each of our three

pathway subsets.
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In our study reporting a relationship between PM, s and DNAm-age, we used a tiered framework
adjusting for confounders and covariates with: 1) a priori biological/clinical relevance and/or 2) reported
in the existing literature". Tier one adjusted for chronological age and blood cell types. Tier two made
additional adjustments for lifestyle and environmental factors. Tiers three and four expanded on tier two by
additionally adjusting for age-related diseases and medications for age-related diseases respectively. After
examining model fit (assessed via AIC) and considering the implications of genetic polymorphisms on
disease independent of PM, s and DNAm-age relationships, we employed the tier three covariates for this
analysis. In all, these models were adjusted for chronological age (continuous), six blood cell type estimates
[i.e. plasma cells, CD4+ lymphocytes, CD8+ lymphocytes, natural killer (NK) cells, monocytes, and

granulocytes] (continuous) determined via Houseman and Horvath methods'>’!

, average l-year
temperature (continuous address-specific satellite measurements'*), cumulative cigarette pack years
(continuous), smoking status (current, former, or never), season of visit (spring [March-May], Summer
[June-August], Fall [September-November], and Winter [December-February]), body mass index (BMI)
(lean [<25], overweight [25-30], obese [>30]), alcohol intake (yes/no > 2 drinks daily), maximum years of
education (continuous), cancer (yes/no history of lifetime cancer diagnosis), coronary heart disease (yes/no
based on electrocardiogram, validated medical records, or physical exam), diabetes (physician diagnosis or
a fasting blood glucose > 126 mg/dL), and hypertension (yes/no antihypertensive medication use or systolic
blood pressure >140 mmHg or diastolic blood pressure >90 mmHg). The sulfate and ammonium models
were additionally adjusted for PM, s mass. All linear mixed effects models were run using the Ime function
from the nlme R package®, and included a random participant-specific intercept to account for correlation
between repeated outcome measures (i.e. multiple visits for a participant).

We next used fully adjusted mixed effects models to determine: 1) if oxidative stress, endothelial
function, or metal processing genetic variants were associated with DNAm-age and 2) the impact of air
pollution-genetic pathway interactions on DNAm-age. To accomplish this, we utilized genotyping data
from the NAS dataset and components of a novel genetic score developed by Bind et al. (2014)*'. Briefly,

genotyping assays were performed using the Sequenom MassArray MALDI-TOF Mass Spectrometer with
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semi-automated primer design and implementation of the short extension method (San Diego, CA). The
MassArray system has the capacity to analyze multiple classes of genetic markers with high sensitivity.

Bind et al. developed a novel approach to investigate interactions between environmental exposures
and the biological pathways of oxidative stress, endothelial function, and metal processing'. The authors
first related genes to one of these three pathways based on the biological functionality provided by
GeneCards®. Then considering independent outcomes representative of each pathway (8-hydroxy-2'-
deoxyguanosine for oxidative stress, augmentation index for endothelial function, and patella lead
concentration for metal processing), they used the least absolute shrinkage and selection operator (LASSO)
method to select the most important gene variants for each of the outcomes.

Although the Bind ef al. method would allow us to broadly identify pathways that may be related
to the PM, s-DNAm-age relationship, it does not allow us to identify variants that are specifically important
to this relationship. Identifying specific variants allows for a more comprehensive understanding of why
these pathways are important. In an effort to identify pathway score component variants that were
specifically sensitive to DNAm-age relationships, we made one alteration to the Bind ef a/. method. Two
major limitations of LASSO selection are that 1) the number of selected variables are bounded by the
number of observations and 2) that the LASSO tends to select one variable from a highly related group
while ignoring the others™. Given our desire to maximize the identification of specific genetic variants
important to DNAm-age from three individual groups of pathway-related variants, the latter of these two
limitations was a concern to us. To overcome this limitation, we employed an elastic net penalized
regression, which allows for the selection of highly-related variables”. Thus, starting with the reported
Bind et al. list of candidate pathway-specific gene variants, we then employed an elastic net (penalized
regression) via the glmnet function in the R glmnet package to determine which of these pathway-specific
gene variants were also important for DNAm-age’®. Our method was similar to that described by Lenters
and colleagues’’ and the full documentation for running all aspects of the elastic net via glmnet is publically
available (https://cran.r-project.org/web/packages/glmnet/index.html). In short, all aforementioned

covariates were included in the elastic net regression models as unpenalized variables. The fully-adjusted
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elastic net regression linear models utilized a hybrid of ridge and LASSO penalty functions to determine
which genetic variants, within each respective pathway, were important predictors of DNAm-age. With
ridge, the square of the regression coefficients for predictors are penalized. All predictors are retained but
coefficients from highly related predictors are proportionally shrunk towards zero. With LASSO, the
absolute value of predictor coefficients is penalized and coefficients are shrunk by a constant factor.
Coefficients for the least predictive variants are shrunk to zero and only one predictor from a highly
correlated group tends to be selected. By combining both of these penalty functions, the elastic net
performed selection while allowing for the inclusion of highly-related genetic variants bin®>~°. Cross-
validation was also performed to determine the optimal degree of penalization. The proportion of ridge and
LASSO functions and the corresponding penalty that yielded the minimum mean-squared error (MSE) of
prediction from repeated 10-fold cross-validation was used in the final elastic net selection model. Gene
variants with non-zero coefficients are considered as “selected” by the elastic net. Following this elastic net
selection, we were left with three lists: 1) Oxidative stress gene variants that were important for DNAm-
age; 2) Endothelial function gene variants that were important for DNAm-age; and 3) Metal processing
gene variants that were important for DNAm-age.

Returning to the original Bind et al. methodology, we then summed the sign of the non-zero
coefficients for each of the important variants to construct pathway specific variant scores for all study
participants. For instance, say hypothetical oxidative stress variants Al, A2, and B3 had elastic net
coefficients of +2.3, -1.7, and 1.6. A participant with all of these variants would have an oxidative stress
polymorphism score of +1 (i.e. 1 — 1 + 1= 1). Another participant with only variants A1 and B3 would have
an oxidative stress score of +2 (i.e. 1 + 1 = 2). Final binary pathway polymorphism scores were created by
dichotomizing each score as low or high aging-risk using the median of each score’s distribution in the
study sample.

Again, we used fully adjusted mixed effects models to determine if each pathway polymorphism

score was independently associated with DNAm-age. We then included interaction terms of our main
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exposures (PM, s, sulfate, and ammonium) with the three respective pathway polymorphism scores to

identify genetic pathway-air pollution interactions that are related to DNAm-age.

4.3.e.2. Secondary Analysis:

Although our air pollution-genetic pathway interaction models provided us with some insight to
biological pathways that may be genetically relevant to DNAm-age, we further investigated if these same
pathways had functional relationships with DNAm-age. Thus, we first looked to see if serum endothelial
function markers were correlated with DNAm-age in our study sample. We next constructed linear mixed
effects models to see if the serum markers were significantly associated with DNAm-age after adjusting for
chronological age, blood cell types, and the age-related diseases of lifetime cancer diagnosis, hypertension,
diabetes, and coronary heart disease.

All statistical analyses were performed using R Version 3.1.1 (R Core Team, Vienna, Austria) and

we considered a P-value < 0.05 to be statistically significant.

4.4. Results
4.4.a. Descriptive Statistics

The demographics and clinical data of all study participants in each of the three biological pathway
subsets are presented in Table 1. Participants in each subset had an average age (SD) and an average
DNAm-age (SD) both of approximately 74 + 7 years. Table S1 lists all of the candidate pathway-specific
genetic variants used by Bind ez al. (2014)*'. Table S2 lists the genetic variants that were selected by the
elastic net as important for DNAm-age. No metal processing variants were selected by the elastic net; thus,
no variant score could be calculated for that subset. Participants in the oxidative stress subset had variant
scores ranging from -6 to 4, and endothelial function subset participants had variant scores ranging from -

3 to 0. Both subsets had variant scores with a median of 1.
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Table 1. Characteristics of Study Subjects, 2000 — 2011

Oxidative Stress Endothelial Function Metal Processing

Variable Subset (N = 702)* Subset (N =779)" Subset (N = 744)"
Age, mean (SD) 74.7 (6.89) 74.8 (6.95) 74.7 (6.80)
DNAm-age, mean (SD) 74.2 (7.97) 73.9 (7.92) 73.8 (7.51)
Variant Score, mean (range) -0.51 (-6, 4) -1.23 (-3, 0) -
Temperature, mean (SD) 11.3 (0.99) 11.3 (0.98) 11.3 (1.03)
Pack years, mean (SD) 20.4 (24.7) 20.6 (24.7) 20.9 (24.9)
Smoking Status, N (%)

Current 35(5) 37 (5) 34 (5)
Former 450 (64) 512 (65) 480 (65)
Never 217 (31) 230 (30) 230 (30)
Season, N (%)

Spring 177 (25) 192 (25) 188 (25)
Summer 146 (21) 164 (21) 157 (21)
Fall 238 (34) 267 (34) 251 (34)
Winter 141 (20) 156 (20) 148 (20)
BMI, N (%)

Healthy/Lean 168 (24) 189 (24) 172 (23)
Overweight 370 (53) 406 (52) 391 (53)
Obese 164 (23) 184 (24) 181 (24)
Alcohol Consumption, N ( %)

< 2 drinks/day 560 (80) 620 (80) 599 (81)

> 2 drinks/day 142 (20) 159 (20) 145 (19)
Education, N (%)

<12 years 192 (27) 207 (27) 192 (26)
12 - 16 years 320 (46) 355 (46) 341 (46)

> 16 years 190 (27) 217 (27) 211 (28)
Lifetime Cancer Diagnosis, N (%)

Yes 390 (55) 435 (56) 426 (57)
No 312 (45) 344 (44) 318 (43)
Coronary Heart Disease, N (%)

Yes 221 (31) 261 (34) 257 (35)
No 481 (69) 518 (66) 487 (65)
Diabetes, N (%)

Yes 120 (17) 138 (18) 131 (18)
No 582 (83) 641 (82) 613 (82)
Hypertension, N ( %)

Yes 514 (73) 571 (73) 541 (73)
No 188 (27) 208 (27) 203 (27)

*From 552 participants (940 visits), we excluded participants missing pathway-specific variant data.
This resulted in three distinct, but not mutually exclusive, subsets.
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Table 2 summarizes the mean levels of PM, s, sulfate, and ammonium in each of the three subsets.
In the oxidative stress subset, 10.3 (2.14) pg/m’, 3.40 (0.80) pg/m’, and 1.04 (0.29) pg/m’ were the average
(IQR) levels of PM,;s, sulfate, and ammonium respectively. Both the endothelial function and metal
processing subsets showed similar levels of these particles. The mean (IQR) levels for PM, s, sulfate, and
ammonium in the endothelial function subset were 10.3 (2.09) pug/m’, 3.38 (0.80) pg/m’, and 1.04 (0.29)
pg/m’. The mean (IQR) levels for same particles in the metal processing subset were 10.3 (2.09) pg/m’,

3.42 (0.84) ug/m’, and 1.04 (0.28) pug/m”.

Table 2. Mean 1-Year Particulate Matter 2.5 (PM,s), Sulfate, and Ammonium
Concentrations, 2000-2011

Particle (ug /m3) Oxidative Stress Endothelial Function Metal Processing
Subset (N =702) Subset (N =779) Subset (N = 744)
PM, 5, mean (IQR) 10.3 (2.14) 10.3 (2.09) 10.3 (2.09)
Sulfate, mean (IQR) 3.40 (0.80) 3.38 (0.80) 3.42 (0.84)
Ammonium, mean (IQR) 1.04 (0.29) 1.04 (0.29) 1.04 (0.28)

4.4.b.-Year Particle Levels and Variant Scores as Predictors of DNAm-age

Table 3 summarizes the results of linear mixed effects models where dichotomized variant scores
and IQR increases in 1-year particle levels were modeled as independent predictors of DNAm-age. In the
endothelial function subset, an IQR increase in 1-year PM, s (3=0.67, p=0.005), sulfate (3=0.64, p<0.0001),
and ammonium (=0.49, p=0.002) were all significantly, positively associated with DNAm-age. 1-year
IQR increases in all three particles were also significant positive predictors of DNAm-age in the metal
processing subset. Similar trends were observed in the oxidative stress subset where sulfate (3=0.64,
p<0.0001) and ammonium (=0.58, p=0.0005) were significant positive predictors of DNAm-age and PM; s
(P=0.46, p=0.07) was a marginally significant positive predictor of DNAm-age.

13 oxidative stress variants and 3 endothelial function variants were selected by the elastic net as
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important for predicting DNAm-age. These variants were used to calculate the variant scores for these
pathways (Table S2). Again, no variants were selected by the elastic net for the metal processing subset;
hence, no variant score could be calculated for this biological pathway. In both the oxidative stress and
endothelial function subsets, individuals with high aging-risk variant scores (= median) on average had at
least a 0.62-year higher DNAm-age than their counterparts with low aging-risk variant scores. However,

these relationships were not statistically significant (Table 3).

‘ ¢4 * 1

Oxidative Stress
Score
@ Low
A High
PM, Sulfate Ammonium
p =0.08 p =0.66 p=0.17

Difference in DNAm-age (in years) for an IQR
Increase in 1-Year Particle Concentration

Figure 1 | Difference in DNAm-age for one interquartile range increase in 1-year
particle exposure according to oxidative stress score (low versus high) in the fully-
adjusted linear mixed effects model.
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Table 3. Mean 1-Year Particulate Concentrations and Polymorphism Score as Independent Predictors of DNAm-age

Predictor Oxidative Stress Subset Endothelial Function Subset Metal Processing Subset
(N=1702) (N =1779) (N=744)

Difference in DNAm-age Difference in DNAm- age Difference in DNAm-age

(years) for IQR (95% CI) P (years)for IQR (95% CI) P (years) for IQR (95% CI) P
PM; s 0.46 (-0.04, 0.97) 0.07 0.67 (0.21, 1.15) 0.005 0.48 (0.003, 0.94) 0.05
Sulfate 0.64 (0.38, 0.89) <0.0001 0.64 (0.40, 0.88) <0.0001 0.53 (0.29, 0.77) <0.0001
Ammonium 0.58 (0.25, 0.91) 0.0005 0.49 (0.18, 0.80) 0.002 0.53 (0.16, 0.89) 0.005
Variant Score*
Low ref - ref - - -
High 0.62 (-0.65, 1.89) 0.34 0.67 (-0.46, 1.79) 0.25 - -

All models adjusted for chronological age, blood cell type, temperature, pack years, smoking status, season, BMI, alcohol consumption, education, lifetime
cancer diagnosis, hypertension, diabetes, and coronary heart disease. Sulfate, ammonium and polymorphism score models are additionally adjusted for total
PM, s mass. *Binary pathway polymorphism scores were created by dichotomizing each score using the median of each score’s distribution in the study sample.
Participants had a low aging-risk if their score was less than (<) the median and a high aging-risk score if their score was greater than or equal to ( >) the median.
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4.4.c. Effect Modification by Variant Scores

Figures 1 and 2 depict the modifying role of the oxidative stress (Figure 1) and endothelial function
(Figure 2) variant scores on the relationship of 1-year particle exposures with DNAm-age. The association
of all three particles on DNAm-age was greater in individuals with a low aging-risk oxidative stress variant
score when compared to individuals with a high aging-risk oxidative stress variant score (Figure 1), but
none of these differences were statistically significant. The effect of all three particles on DNAm-age was
greater in individuals with a high aging-risk endothelial function variant score when compared to
individuals with a low aging-risk endothelial function variant score (Figure 2). These differences were

significant for sulfate and ammonium exposure but not quite for PM,s. The relationships in Figure 1 are

quantified in Table S3.

Endothelial Function
Score

@ Low

A High

PM, ¢ Sulfate Ammonium
p=0.52 p = 0.0007 p=0.03

Difference in DNAm-age (in years) for an IQR
Increase in 1-Year Particle Concentration
o
o

Figure 2 | Difference in DNAm-age for one interquartile range increase in 1-year
particle exposure according to endothelial function score (low versus high) in the
fully-adjusted linear mixed effects model.
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4.4.d. Relationships of Serum Endothelial Functional Markers with DNAm-age

In our secondary analysis, DNAm-age was significantly positively correlated with both ICAM
(r=0.13, p=0.0001) and VCAM (1=0.25, p<0.0001) (Table S4). However, DNAm-age was not significantly
correlated with VEGF (r=0.02, p=0.54). After adjusting for chronological age, blood cell types, cancer,
hypertension, diabetes, and coronary heart disease, ICAM1 (=0.01, p=0.005) and VCAM1 (=0.002,
p=0.004) were both significant positive predictors of DNAm-age. VEGF ($=-0.00003, p=0.82) was not

significantly associated with DNAm-age (Table 4).

Table 4. Associations of Serum Endothelial Function Markers with DNAm-age

Difference in DNAm-age (95% CI) P N
Marker
ICAM (ng/mL) 0.01 (0.002, 0.012) 0.005 608
VCAM (ng/mL) 0.002 (0.0005, 0.0026) 0.004 608
VEGF (pg/mL) -0.00003 (-0.0003, 0.0003) 0.82 608

Models adjusted for chronological age, blood cell type, lifetime cancer diagnosis,
hypertension, diabetes, and coronary heart disease.

4.4.e. Endothelial Function Variant Score as a Modifier of the Association of PM, s with ICAM and VCAM

We performed subsequent analyses, using fully-adjusted mixed effects models, where we found
that the positive associations of 1-year particle levels with ICAM (Figure S1) and VCAM (Figure S2) were
greater in individuals with high aging-risk endothelial function variant scores when compared to their

counterparts. These findings were only statistically significant for [CAM.

4.5. Discussion
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The present study employed a large longitudinal cohort of elderly men to: 1) identify pathway-
specific genetic variants that were related to DNAm-age and 2) determine if these variants modified the
association of PM, s and PM, s component levels with DNAm-age. In each of our pathway subsets, we first
wanted to ensure that we observed similar relationships of PM, s, sulfate, and ammonium with DNAm-age
as previously reported. Indeed, this was the case as sulfate and ammonium were significant positive
predictors of DNAm-age in all three subsets. PM, s levels were significant positive predictors of DNAm-
age in the endothelial function and metal processing subsets, while being marginally significant in the
oxidative stress subset — potentially due to reduced power attributed to the subset’s slightly reduced sample
size.

We next used components of a method developed by Bind et al. (2014) to calculate variant scores
for oxidative stress, endothelial function, and metal processing pathways. The addition of an elastic net
selection to the Bind et al. method allowed us to optimize the sensitivity of the approach to DNAm-age
relationships, while allowing for the identification of genetic-pathway variants that were specifically
important for DNAm-age. Given that each of these pathways is known to be associated with PM; s-related
disease, we predicted that the elastic net would select important variants from each of the pathways. This
was the case for oxidative stress and endothelial function, but not metal processing. Published literature has
already demonstrated that these metal processing variants do not modify the effect of PM, s levels on a
panel serum physiological markers including fibrinogen, ICAM, and CRP?'. Thus, it is possible that metal
processing pathways have little or no relationship with DNAm-age physiology especially in the context of
PM, 5 exposure. Nevertheless, no studies have examined the relationship of PM,s’s metal component
species with DNAm-age and no studies have examined the relationship of direct metal exposures with
DNAm-age. Such studies will be necessary to confirm our null findings of metal processing physiology
with DNAm-age.

A total of 13 oxidative stress variants and 3 endothelial function variants were selected by the
elastic net. A subsequent literature review revealed that many of the selected oxidative stress variants,
including rs2284367 (CAT), rs2300181 (CAT), and rs1799811 (GSTP1), have already been implicated as
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effect modifiers of the relationship of PM, s and its component species with numerous health endpoints®™*’.

None of the selected endothelial function variants had been implicated in PM, s relationships, but there is
evidence of their role in impacting disease susceptibility following other environmental insults like

.. . .. 40-42
radiation, cigarette smoke, and pesticide exposures

. After using the direction of the elastic net
coefficients of these variants to construct pathway-specific variant scores, we determined if these scores
were associated with DNAm-age. Given that the Bind ef al. method constructs the scores such that a higher
score correlates with a profile of higher risk for increased DNAm-age, we expected that individuals with
high oxidative stress or endothelial function scores would on average have higher DNAm-ages than their
low score counterparts. After examining the effect estimates, this was the case. High aging-risk oxidative
stress score participants on average had a 0.62-year greater DNAm-age and high aging-risk endothelial
function participants on average had a 0.67-year greater DNAm-age. Despite these trends, these results
were not statistically significant.

When we next explored the modifying role of these variant scores on particle-DNAm-age
relationships, we found that the effect of sulfate and ammonium on DNAm-age were on average
approximately 0.60-years greater in participants with a high aging-risk endothelial function score when
compared to participants with a low aging-risk endothelial function score. A similar trend was observed
with PM, 5 and endothelial score interactions, but this was not statistically significant. This result suggests
that DNAm-age is sensitive to endothelial function physiology and is further supported by our secondary
analysis that revealed significant associations of ICAM and VCAM with DNAm-age after adjusting for
covariates. Numerous human and animal studies have demonstrated that PM,s exposure upregulates

expression of endothelial factors, which are known to play a role in vascular dysfunction®**

. Moreover,
vascular physiology is a ubiquitous component of many disease processes and may help explain why
DNAm-age has been linked to all-cause mortality, malignancy, cognitive deficits and a host of other
diseases™*°. Endothelial micro-particles from acute coronary artery patients (a surrogate marker of

endothelial dysfunction) have been shown to promote thrombogenecity and aging phenotypes in healthy

coronary artery cells’. In a cross-sectional study, endothelial VCAM was associated with increased
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vascular resistance and lower cognitive performance®. On the contrary pharmaceutical agents that are used
to treat age-related disease (e.g. statins) have been shown to increase endothelial progenitor cells, which
may promote endothelial repair and offer benefits like cardio-protection®.

It is interesting that endothelial variants significantly modified the associations of sulfate and
ammonium, but not total PM,s. As it is widely accepted that different PM,s species have different
toxicological effects, this finding may speak to a specific toxicity of these component species via
endothelial function pathways™. It has already been demonstrated that ammonium and sulfate moieties can
impact endothelial function’'% Tt is also important to highlight that VEGF was not significantly correlated
with DNAm-age. VEGF was also not significantly associated with DNAm-age after adjusting for
covariates. The differences between DNAm-age’s relationship with VEGF compared to its relationship
with ICAM or VCAM could possibly be attributed to VEGF gene and protein expression. VEGF production
is induced in cells that are hypoxic and circulating VEGF then binds to endothelial cells to promote
angiogenesis>’. [CAM and VCAM are more specifically produced by endothelial cells and play a prominent
role in endothelial cell interactions with inflammatory cells*’. Hence, our data allude to a specific
relationship between DNAm-age and endothelial function that may be related to immune regulation. This
finding is particularly promising, as the immune system has long been thought to play a role in the adverse
effects of PM,s*. In all, our findings and the existing literature suggest that the endothelial function pathway
is a promising place to begin understanding the molecular relevance of DNAm-age. Future studies including
these and other endothelial function markers are necessary to confirm our findings and further define this
relationship.

Finally, none of the particle-oxidative stress score interactions were statistically significant, but it
is worth noting the direction of the effect estimates for these interaction terms. Like the endothelial function
score, individuals with a high aging-risk oxidative stress score had a higher DNAm-age when compared to
individuals with a low aging-risk oxidative stress scores (results not statistically significant). However,
unlike the endothelial function score, a high aging-risk oxidative stress score appeared to mitigate the effect

of particles of DNAm-age. These results were not statistically significant but may suggest competing effects
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between high particle exposure and a high aging-risk oxidative stress physiology. When both are
simultaneously present (i.e. the interaction of both variables is considered) they appear to inhibit or dampen
each other’s effects. Such a phenomenon is often observed in epidemiologic research and biological
systems™. One air pollution related example of competing effects is the mitigation of associations of
particles with the birth complication preeclampsia when multiple particle sources are considered
simultaneously™*.

The strengths of the current study include utilization of novel biomarker and genetic pathway tools,
rigorous statistical methods, and a large longitudinal cohort with repeated measures of ambient pollutant
exposures, DNA methylation, and potential confounders. This is the first study to use genetic variants to
study the relationship of ambient particles with DNAm-age. On the contrary, our study does have some
notable limitations. First, given that a majority of NAS participants are retired and are very likely to spend
most of their time at home, we use a validated chemical transport model to estimate 1-year ambient levels
of PM,;, sulfate, and ammonium at participants’ addresses. Such an approach at estimating personal
exposures could potentially result in non-differential misclassification, but this is likely to attenuate
statistical associations rather than bias them away from the null>®. Secondly, we employ a genetic variant
score approach that is somewhat limited because it does not provide genome-wide resolution of the three
biological pathways. Nonetheless, the variants that are present are representative of their respective
pathways. Third, to maximize statistical power, we used our full cohort to calculate variant scores and test
for effect modification of DNAm-age relationships. This could be a source of bias and is a limitation of this
study. Still, our subsequent analysis demonstrating that the endothelial function variant score was a
significant modifier of the PM, s-ICAM relationship demonstrates that the variation captured by our score
impacts the association of PM, s with endothelial function markers that are independent of DNAm-age.
Notwithstanding this evidence, validation of our score and findings in an independent cohort is a future
direction of this work. Fourth, all bisulfite-mediated methods used for quantifying DNA methylation are
limited in their ability to distinguish between 5-methylcytosine and its oxidation product 5-
hydroxymethylcytosine®’. Lastly, our findings are based on an elderly cohort of Caucasian males that reside
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in a lightly-polluted environment. To date, only one study has explicitly examined race and sex differences
in DNAm-age and data from that study suggests that men have higher DNAm-ages than women'’.
Furthermore, there is evidence that race and sex differences can impact individual responses to PM, s
exposure. For instance, one study reported that urban PM,s levels were associated with asthma
exacerbations in African Americans, but not Caucasian Americans™". Nevertheless, more work must be
done to confirm if these, and similar, reported differential effects are truly due to race/sex or if they are
instead due to differences in residential characteristics and other social determinants. A limited amount of
research has explicitly explored the race or sex differences of the endothelial function variants selected by
our elastic net. One study examining gene-gene interactions that influence pulmonary tuberculosis
susceptibility reported strong interactions between the rs2248814 (NOS2A) variant and other genes in
African Americans but not Caucasians™. Another study reported that the rs1800779 (NOS3) variant was
positively associated with high tension primary open glaucoma in women, but not in men®. With respect
to the results of the present study, additional studies involving other demographic groups, in different
environments, and using other assessments of endothelial function will be necessary to confirm our findings

more broadly.

4.6. Conclusion

In summary, our findings add evidence that genetic variation can impact the association of long-
term fine particle levels with DNAm-age. In particular, the effect of 1-year particle levels on DNAm-age
was greater in individuals with a high aging-risk endothelial function genetic variant profile when compared
to individuals with a low aging-risk variant profile. We also report novel, robust positive associations of
serum endothelial markers with DNAm-age. Although the biological relevance of DNAm-age is still greatly
undefined, our study makes a valiant, early attempt at addressing this important research gap. Again, future
studies in different populations using these and other endothelial markers will be necessary to broaden the

understanding of the relationship of endothelial function with DNAm-age.
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5.1. Abstract

Background: The mitochondrial genome has long been implicated in age-related disease, but no studies
have examined its role in the relationship of long-term fine particle (PM, s) exposure and DNA
methylation age (DNAm-age) — a novel measure of biological age.

Objective: In this analysis based on 940 observations between 2000 and 2011 from 552 Normative Aging
Study participants, we determined the roles of mitochondrial DNA haplogroup variation and
mitochondrial genome abundance in the relationship of PM, s with DNAm-age.

Methods: We used the GEOS-chem transport model to estimate address-specific, one-year PM, s levels
for each participant. DNAm-age and mitochondrial DNA markers were measured from participant blood
samples.

Results: Nine haplogroups (H, I, J, K, T, U, V, W, and X) were present in the population. In fully-
adjusted linear mixed-effects models, the association of PM, s with DNAm-age (in years) was
significantly diminished in carriers of haplogroup V (Piyeraciion= 0.01; = 0.18, 95%CI: -0.41, 0.78)
compared to non-carriers (f= 1.25, 95%CI: 0.58, 1.93). Mediation analysis estimated that decreases in
mitochondrial DNA copy number, a measure of mitochondrial genome abundance, mediated 12% of the
association of PM, s with DNAm-age.

Conclusion: Our data suggests that the mitochondrial genome plays a role in DNAm-age relationships

particularly in the context of long-term PM, 5 exposure.
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5.2. Introduction

Research continues to implicate long-term fine particulate air pollution (PM,s) as a major risk
factor for aging and age-related disease. For instance, a recent study of over 500 elderly individuals reported
a 27% increase in the risk of an individual developing metabolic syndrome for every 1 pg/m’ increase in
annual PM, s concentration'. In addition to metabolic disease, long-term PM, 5 exposure has been associated
with an increased likelihood of all-cause mortality” and significant deficits in cardiac autonomic function’,
cognitive performance®, and respiratory ability”. Even on a molecular level, researchers have consistently
demonstrated relationships of PM, s with more traditional measures of biological aging including, telomere
length® and inflammatory markers’. These PM, s-biological aging relationships are of particular interest
because they often persist independent of age-related diseases and they may offer insight as to how PM, s
interacts with biological systems to adversely impact human health. Recently, researchers reported positive
associations of long-term PM,s with DNA methylation age (DNAm-age)®, a novel tissue-independent
measure of biological age calculated from DNA methylation values at 353 age-correlated CpG
dinucleotides’. Furthermore, the authors examined the relationships of five major PM, s component species
(ammonium, elemental carbon, organic carbon, nitrate, and sulfate) with DNAm-age, and found that sulfate
and ammonium were most associated with DNAm-age'®. Although the ability of DNAm-age to reflect
previous environmental exposures and predict multiple health outcomes makes it a promising biomarker of

"1 it is so novel that the molecular implications of these relationships remain largely unknown.

aging
Addressing this research gap is of paramount importance for future aging research involving this biomarker.

Mitochondria are membrane-bound intracellular organelles tasked with energy production and
highly involved in the biological aging processes'®"”. Mitochondria possess their own genomes which exist
as circular double-stranded molecules of DNA that code for a number of biological effectors including

519 Due to the

some major components of the energy-generating electron transport chain (ETC)
mitochondrial genome’s proximity to the ETC (the major source of intracellular reactive oxygen species)
and its diminished DNA repair capacity (in comparison to nuclear DNA), mitochondrial DNA is

particularly susceptible to oxidative damage®. There is also convincing evidence that the mitochondrial
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genome is susceptible to damage from exogenous oxidative stressors” >. Overall, it is the damage to the
mitochondrial genome that has been specifically linked to accelerated aging® . Given that PM, s exposure
is a known risk factor of systemic oxidative stress*® and since PM, s exposure has already been linked to

728 we hypothesized that the mitochondrial genome may be involved in

mitochondrial genome integrity
the PM, s-DNAm-age relationship.

In the present study, we examined the impact of mitochondrial genomic variation and abundance
(a compensatory response to poor mitochondrial genome integrity) on the relationship of PM, 5 and its
component species with DNAm-age. First, we examined if different mitochondrial haplogroups (forms of

29-30 . L
modified the association

normal mitochondrial genetic variation that potentially impact ETC capacity)
of PM,s and its component species with DNAm-age. Next, we determined the relationship of one
commonly used measure of mitochondrial genome abundance, mitochondrial DNA copy number, with
DNAm-age. Mitochondrial copy number is the ratio of a cell’s mitochondrial DNA to nuclear DNA.
Fluctuations in mitochondrial copy number often occur with normal mitochondrial biogenesis and
degradation, but the measure is also sensitive to exogenous stressors and is thought to be an adaptive
response to compensate for mitochondrial genome damage®'. Copy number has already been associated

with PM, s levels®, but no studies have examined its relationship with DNAm-age. Finally, we determined

if copy number mediated and/or modified the association of PM, s with DNAm-age.

5.3. Materials and Methods
5.3.a. Study Population

Participants in the present analysis were active participants in the Veteran Affairs Normative Aging
Study (NAS), a longitudinal cohort study of aging established in 1963*. The NAS is a closed cohort of
now elderly community-dwelling men living in the Greater Boston area. At enrollment, all participants
were free of chronic diseases. Participants return every 3 to 5 years for onsite, follow-up study visits. During
these recurring visits, participants receive comprehensive outpatient medical evaluations, bio-specimens

(including blood) are collected, and participants provide detailed information about their diets and other
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lifestyle factors that may affect their health. All participants provided written informed consent to the VA
Institutional Review Board (IRB), and human subjects approval was granted by the VA and Harvard T.H.
Chan School of Public Health IRBs (protocol 14027-102).

All NAS men with continued study participation as of the year 2000, when address-specific PM; s
component species levels became available, were eligible for the present study sample. We began with a
total of 552 participants with 940 observations between the years 2000 and 201 1. This was the study sample
that was used in reporting the significant associations between PM, s component species and DNAm-age
in our previous publication'’. Of these 552 participants, 249 (45%) had one visit, 218 (40%) had two visits,
and 85 (15%) had three or more visits. From this sample, we then excluded participants missing
mitochondrial haplogroup data. This resulted in a final study sample of 508 participants with 870 total study
visits. In the final study sample, 227 participants (45%) had one visit, 200 (39%) had two visits, and 81

(16%) had three or more visits.

5.3.b. DNA Methylation and DNA Methylation Age (DNAm-age)

Whole blood was collected from each participant during each NAS follow-up visit. We performed
bisulfite conversion (EZ-96 DNA Methylation Kit, Zymo Research, Orange, CA, USA) on extracted DNA
from the buffy coat of the whole blood, and then used the Illumina Infinium HumanMethylation450
BeadChip to measure the DNA methylation of CpG probes. To minimize batch effects and ensure a similar
age distribution across chips and plates, we randomized chips across plates and used a two-stage age-
stratified algorithm to randomize samples. For quality control, we removed samples where >5% of probes
had a beadcount < 3 or > 1% of probes had a detection P-value >0.05. After pre-processing the remaining
samples with [llumina-type background correction without normalization and normalizing the samples with
dye-bias and BMIQ3 adjustments, we generated methylation beta values®. Beta values represent the
percentage of methylation for each of the ~480,000 CpG sites in the BeadChip array. In other words, beta
= intensity of the methylated signal (M) / [intensity of the unmethylated signal (U) + intensity of the
methylated signal (M) + 100].
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DNAm age was calculated using Horvath’s publically available online calculator
(http://labs.genetics.ucla.edu/horvath/dnamage/). DNAm-age was derived from an elastic net penalized
regression run on multiple data sets of different cell and tissue types. After 21,369 CpG probes — shared by
both the Illumina HumanMethylation27 and HumanMethylation450 BeadChip platforms — were regressed
on a calibrated version of chronological age, the elastic net selected 353 CpGs that correlated with age (193
positively and 160 negatively)’. The model coefficients from these 353 CpGs were used by the calculator
to predict the age of each DNA sample (i.e. DNAm-age). The calculator maintains predictive accuracy (age

correlation 0.97, error = 3.6 years) across almost all body tissues including blood and brain’.

5.3.c. Fine Particulate (PM; ;) Air Pollution

We used the simulation outputs from GEOS-chem, a chemical transport model®, fused with land-
use variables to generate one-year exposure estimates for PM, s as well as sulfate and ammonium, the major
PM, s component species demonstrated to be most important in predicting DNAm-age'’. Ten-fold cross-
validation demonstrated that the model performed well for PM, s mass and its component species with R’s
ranging from 0.70 to 0.88. Existing literature demonstrates that the one-year PM, s exposure window is
robustly associated with DNAm-age®. We generated daily estimates at the 1 km x1 km area resolution and
one-year total PM, s and PM, 5 component species exposure windows by averaging daily exposures for the
365 days prior to the day of each participants’ NAS visit. Given that greater than 90% of NAS participants
are retired, home address exposures are expected to be a good proxy for their individual ambient exposures.
After geocoding and linking participants’ residencies to an area level grid-point; and accounting for address
changes and time spent away from home (>7 days), we assigned particle estimates to each participant’s

address.

5.3.d. Mitochondrial (DNA) Haplogroups
Participant blood was genotyped using Tagman or Sequenom assays (Applied Biosystems, Foster

City, CA)’". All samples were successfully genotyped and internal blinded quality control samples were
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>99% concordant. Hardy-Weinberg equilibrium tests were not assessed because they are not valid for
mitochondrial polymorphisms®™. No heteroplasmy (heterozygous samples) were observed. Nine
mitochondrial DNA haplogroups (H, I, J, K, T, U, V, W, and X) were observed in the cohort and all are
common to populations of European ancestry. Based on the phylogenetic evolutionary tree and restriction
fragment length polymorphisms, these haplogroups can be grouped into four clusters (Cluster 1:J,T; Cluster
2: V. H; Cluster 3: U,K; Cluster 4: I, W, X)*°. The clusters are widely known, and since overall type I error
increases as the number of statistical tests increases, many epidemiologic studies first perform cluster
analyses®” *. Following this framework, we perform primary cluster analyses and subsequently explore

individual haplogroups of interest.

5.3.e. Mitochondrial DNA Copy Number (Genome Abundance)

As noted, the mitochondrial genome is particularly vulnerable to both endogenous and exogenous
(e.g. air pollution) oxidative stressors due to its proximity to the ETC, lack of protective barriers (i.e. histone
proteins, chromatin organization, etc.), and relatively limited DNA damage repair activity’'. We are
utilizing one measurement of mitochondrial genome abundance (copy number) that is sensitive to oxidative
stress. Mitochondrial copy number represents the ratio of mitochondrial DNA copy number to the nuclear
DNA copy number (mtDNA:nDNA ) and was also calculated from whole blood samples collected at every
visit. As previously described’', real-time PCR (RT-PCR) is used to measure the ratio of a mitochondrial
gene (mtDNA 12S ribosomal ribonucleic acid) to a nuclear gene (Ribonuclease P gene), which is
normalized to a reference DNA sample (a pool of 300 test samples) to obtain relative mitochondrial DNA

copy number values controlled for plate effects.

5.3.f. Statistical Analysis
5.3.f.1.Covariates
The relationships of the mitochondrial genome with DNAm-age and its role in the association of

PM, s with DNAm-age were evaluated using linear mixed-effects models including a random participant-

111



specific intercept to account for correlation between repeated outcome measures (i.e. multiple visits for a
participant). In the analyses, we controlled for the following covariates a priori based on previous analyses®

#43. chronological age (continuous), blood cell proportions [plasma cells,

' and the relevant literature
CD4+ lymphocytes, CD8+ lymphocytes, natural killer (NK) cells, monocytes, and granulocytes]
(continuous) determined via Houseman and Horvath methods™*, average 1-year temperature (continuous
address-specific satellite measurements'®), cumulative cigarette pack years (continuous), smoking status
(current, former, or never), season of visit (spring [March-May], Summer [June-August], Fall [September-
November], and Winter [December-February]), body mass index (BMI) (lean [<25], overweight [25-30],
obese [>30]), alcohol intake (yes/no > 2 drinks daily), maximum years of education (continuous), cancer
(yes/no history of lifetime cancer diagnosis), coronary heart disease (yes/no based on electrocardiogram,
validated medical records, or physical exam), diabetes (physician diagnosis or a fasting blood glucose >

126 mg/dL), and hypertension (yes/no antihypertensive medication use or systolic blood pressure

>140 mmHg or diastolic blood pressure >90 mmHg).

5.3.f.2. Direct Associations

We first used fully-adjusted linear mixed effects models to evaluate previously published positive
associations of one-year PM, s, sulfate, and ammonium levels with DNAm-age. Sulfate and ammonium
models were additionally adjusted for PM, s mass. To limit multiple comparisons and the potential for false
positive results, we performed mitochondrial haplogroup cluster analyses — as conducted in a previously
published NAS study of haplogroups’’ — evaluating the direct relationships of mitochondrial haplogroup
clusters with DNAm-age and mitochondrial DNA copy number. We also used fully-adjusted mixed-effects

models to determine the associations of mitochondrial DNA copy number with DNAm-age.

5.3.f.3. Mitochondrial Haplogroup as an Effect Modifier
Since haplogroup is a genetic parameter that does not change during life, it is not on the causal

pathway of the exposure and outcome but could potentially impact the relationship of the exposure with the
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outcome. For these reasons, it appropriate to consider it as an effect modifier. Specifically, we evaluated if
the haplogroup clusters modified the associations of PM, s, sulfate, and ammonium with DNAm-age. In
these analyses the reference group was all participants without the cluster of interest. For example, when
we evaluated the modifying role of mitochondrial haplogroup cluster 1 on the association of PM, s with
DNAm-age, we compared participants genotyped as having cluster 1 against all other participants (i.e.
participants genotyped as having clusters 2, 3, and 4). Structuring the analyses this way allows us to
compare the findings of each specific haplogroup cluster to a mixed population of haplogroup clusters. This
helps with interpreting the results especially since there is no strict biological evidence that defines one
particular haplogroup cluster as a control or reference group. After determining clusters with statistically
significant modifying effects on the PM,s-DNAm-age relationship, we re-ran the models testing the
modifying role of the individual haplogroups within those particular clusters and with individual PM, s

components (sulfate and ammonium) as the predictors. Again, all of these models were fully-adjusted.

5.3.f4. Mitochondrial DNA Copy Number as an Effect Modifier and/or Mediator

Unlike haplogroups, which are determined at birth and remain the same throughout life, copy
number can change throughout life. In fact, empirical evidence exploring the relationships between short-
term versus long-term PM, 5 exposure and mitochondrial genome abundance suggest that copy number is
subject to much change over time*’. Moreover, there is experimental evidence demonstrating that depletion
of the mitochondrial genome results in aberrant methylation of nuclear DNA at promoter CpG islands*.
Given this evidence, we hypothesized that the association of PM,s with DNAm-age could be mediated
through and/or modified by copy number. To test this hypothesis, we employed a 4-way decomposition
mediation method. Standard methods of testing for effect modification operate under the assumption that
the modifier is not on the casual pathway between the exposure and outcome. Thus, these results may be
misleading if mediation is truly present and the candidate modifier is indeed on the causal pathway*’. The
4-way decomposition method circumvents the risk of these potentially misleading results by allowing one

to simultaneously parse out: 1) the controlled direct effect [the effect of the exposure on the outcome due
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neither to mediation nor interaction]; 2) the reference interaction [the effect of the exposure on the outcome
due to interaction alone]; 3) the mediated interaction [the effect of the exposure on the outcome due to
mediation and interaction]; and 4) the pure indirect effect [the effect of the exposure on the outcome due to
mediation alone]*.

As mentioned earlier, there is some risk of simple interaction (effect modification) models resulting
in misleading results if the candidate modifier is indeed on the causal pathway between the exposure and
the outcome. This is not the case for simple mediation analyses because the goal of mediation is to provide
evidence that a variable of interest is or is not on the causal pathway’’. Due to the newness of the 4-way
decomposition method, we performed a sensitivity analysis using a standard, simple mediation approach
where we used fully-adjusted linear mixed-effects models and modeled*’: Step 1) PM, s as a predictor of
DNAm-age; Step 2) PM,s as a predictor of mitochondrial DNA copy number; and Step 3) PM;sas a
predictor of DNAm-age controlling for mitochondrial DNA copy number. The proportion of the effect
mediated by mitochondrial DNA copy number was calculated as the percentage of natural indirect
effect over the sum of natural direct and natural indirect effect. In other words, [(Step 2 BPM,s * Step
3 BmtDNA CN)] / [(Step 2 BPM, s * Step 3 PmtDNA CN) + (Step 3 BPM,5)]. The statistical significance

of the mediation effect was assessed via the Sobel Z test.

5.3.f.5. Additional Sensitivity Analyses

Although all the covariates for diabetes, CHD, hypertension, and BMI were categorized using well-
known and biologically relevant definitions, we performed sensitivity analyses examining if any resolution
on potential confounding was lost by using these discrete categories. Specifically, we re-ran our direct
association models and the simple mediation analysis (which specifically lists out mediation steps) using
fully adjusted models where the aforementioned categorical variables were replaced with continuous
measures of fasting blood glucose, total cholesterol, HDL cholesterol, systolic blood pressure, diastolic

blood pressure, and BMI.
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Our mediation analyses used fully-adjusted models; thus, we assumed limited exposure-outcome,
exposure-mediator, and mediator-outcome confounding. However, due to the nature of this prospective
repeated measures study, changes in DNAm-age at one visit could potentially affect copy number at a
subsequent visit’'. Hence, we performed an analysis testing the aforementioned association to check the

assumption of time-varying confounding.

5.3.f.6. Analysis Software

The 4-way decomposition mediation analysis was performed with a published SAS macro in SAS,
version 9.3 (SAS Institute, Inc., Cary, North Carolina)*. All other statistical analyses were performed using
R Version 3.1.1 (R Core Team, Vienna, Austria) and we considered a P-value < 0.05 to be statistically

significant.

5.4. Results
5.4.a. Descriptive Statistics

Table 1 describes the demographic and clinical data for all participants. Participants had a mean
(SD) DNAm-age of 74.1 (7.89) years and mean (SD) age of 74.8 (6.97) years. A majority of the men had
completed at least 12 years of formal education (74%), consumed less than 2 drinks a day (81%), were
former smokers (65%), and did not have coronary heart disease (65%) or diabetes (82%). The mean (SD)
exposure levels for PM, s, sulfate, and ammonium were 10.3 (2.13) pg/m’, 3.39 (0.80) pg/m’, and 1.04
(0.28) ug/m’ respectively. Most participants were genotyped as having mitochondrial haplogroup cluster 2
(51%). 17% of the participants were cluster 1, 23% were cluster 3, and 9% were cluster 4. In regards to
individual haplogroup frequencies, a majority of the participants were haplogroup V carriers (42%).

Additional individual haplogroup frequencies are reported in Table S1.
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Table 1. Characteristics of Study Subjects (2000 — 2011)

Main Variables

All Visits, N = 870

Age (years), mean (SD) 74.8 (6.97)
DNAm-age (years), mean (SD) 74.1 (7.89)
One- Year Fine Particle Level (ug/m’), mean (IQR)
PM, s 10.3 (2.13)
Sulfate 3.39 (0.80)
Ammonium 1.04 (0.28)
Mitochondrial Haplogroup Cluster, N (%)
1J7T) 146 (17)
2(VH) 447 (51)
3 (UK) 200 (23)
4 (IWX) 87 (9)
Lifestyle and Environmental Variables
Alcohol Consumption, N ( %)
< 2 drinks/day 705 (81)
> 2 drinks/day 165 (19)
BMI, N (%)
Healthy/Lean 206 (24)
Overweight 457 (52)
Obese 207 (24)
Education, N (%)
<12 years 224 (26)
12 — 16 years 402 (46)
> 16 years 244 (28)
Pack years, mean (SD) 20.9 (24.8)
Smoking Status, N (%)
Current 40 (5)
Former 566 (65)
Never 264 (30)
Season, N (%)
Spring 219 (25)
Summer 182 (21)
Fall 298 (34)
Winter 171 (20)
Temperature (°C), mean (SD) 11.3 (0.98)
Age-Related Diseases
Coronary Heart Disease, N (%)
Yes 308 (35)
No 562 (65)
Diabetes, N (%)
Yes 159 (18)
No 711 (82)
Hypertension, N ( %)
Yes 639 (73)
No 231 (27)
Lifetime Cancer Diagnosis, N (%)
Yes 486 (56)
No 384 (44)
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5.4.b. One-Year Particle Levels and Haplogroup Clusters as Predictors of DNAm-age

Table 2 summarizes the results from fully-adjusted linear mixed-effects models examining the
independent relationships of PM, s, sulfate, ammonium, and individual haplogroup clusters with DNAm-
age. One-year IQR increases in PM, s (p=0.007), sulfate (p<0.0001), and ammonium (p=0.0005) were all
significantly associated with increases in DNAm-age of at least 0.58 years (approximately 7 months). None

of the haplogroup clusters were significantly associated with DNAm-age.

Table 2. Mean One-Year Particulate Concentrations and Mitochondrial Haplogroup
Cluster as Independent Predictors of DNAm-age (N = 870)

. Difference in DNAm-age for
Predictor IQR (95% CI) 8 P
PM; 5 0.64 (0.18, 1.11) 0.007
Sulfate 0.58 (0.35, 0.82) <0.0001
Ammonium 0.58 (0.26, 0.91) 0.0005
Haplogroup Cluster
1dJ7T) -0.27 (-1.59, 1.05) 0.69
2 (VH) -0.42 (-1.43, 0.60) 0.42
3 (UK) 0.93 (-0.28, 2.15) 0.13
4 (IWX) -0.22 (-1.99, 1.55) 0.81

All models adjusted for chronological age, blood cell type, temperature, pack years, smoking
status, season, BMI, alcohol consumption, education, lifetime cancer diagnosis, hypertension,
diabetes, and coronary heart disease. Sulfate and ammonium models are additionally adjusted
for total PM, s mass. Haplogroup models are adjusted for all three particles.

5.4.c. Effect Modification by Haplogroup Clusters and Individual Haplogroups

Figure 1 depicts the modifying role of the mitochondrial haplogroup clusters on the association of
one-year PM,s levels with DNAm-age. Only the cluster 2 mitochondrial DNA genotype significantly
(p=0.007) modified the association of PM, s levels with DNAm-age. The effect of PM, s on DNAm-age
was diminished by approximately 1 year when comparing individuals with the cluster 2 genotype to all

individuals without the cluster 2 genotype. Figure 2 depicts a subsequent analysis examining the modifying
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role of the individual haplogroups in cluster 2 (haplogroups V and H) on the association of PM, s levels
with DNAm-age. The effect of PM,5s on DNAm-age was diminished by approximately 1 year when
comparing individuals with the haplogroup V genotype to all individuals without the haplogroup V
genotype (p=0.01). Figure 3 depicts the modifying role of haplogroup cluster V on the association of the
PM, s components sulfate and ammonium with DNAm-age. Similar to total PM,;, the association of
ammonium with DNAm-age was diminished in individuals with a haplogroup V genotype when compared
to individuals without a haplogroup V genotype (p=0.03). This relationship persisted even when we

included one-year nitrate levels as a covariate in the mixed-effects model (Figure S1).

Haplogroup
Cluster
Present

in 1-Year Particle Concentration
L 4

Difference in DNAm-age (in years) for an IQR Increase

Cluster 1 Cluster 2 Cluster 3 Cluster 4
p=0.41 p = 0.007 p=0.18 p=0.07

Figure 1 | Difference in DNAm-age for one interquartile range increase in one-year
PM,; 5 exposure comparing participants with and without the respective mitochondrial
haplogroup clusters in fully-adjusted mixed-effects models.

Cluster 1 (JT); Cluster 2 (VH); Cluster 3 (UK) and Cluster 4 (IWX).
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Difference in DNAm-age (in years) for an IQR Increase

in 1-Year Particle Concentration

. VU
]
Haplogroup
1 A Present

@® No

. Yes

Haplogroup V Haplogroup H
p =0.01 p=0.60

Figure 2 | Difference in DNAm-age for one interquartile range increase in one-year
PM,; 5 exposure comparing participants with and without the respective mitochondrial
haplogroups from cluster 2 in fully-adjusted mixed-effects models.
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o
— Haplogroup

Present

in 1-Year Particle Concentration

Sulfate Ammonium

Difference in DNAm-age (in years) for an IQR Increase

Haplogroup V Haplogroup V
p=0.27 p=0.03

Figure 3 | Difference in DNAm-age for one interquartile range increase in one-year
sulfate and ammonium exposure comparing participants with and without the V
mitochondrial haplogroup in fully-adjusted mixed-effects models.

5.4.d. Relationships of Mitochondrial DNA Copy Number with DNAm-age

In fully-adjusted linear mixed-effects models examining the relationship of copy number with
DNAm-age, we found that copy number (=-3.31, p<0.0001) was significantly, negatively associated with
DNAm-age. However, copy number was not significantly associated with chronological age ($=0.57,
p=0.17) (Table 3). These relationships persisted in sensitivity analysis adjusting for continuous variables

instead of disease categories (Table S2).
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Table 3. Relationships of Mitochondrial Copy Number with Age and DNAm-age

(N=797)

Outcome Difference in Outcome for p
IQR (95% CI)

Age 0.57 (-0.25, 1.39) 0.17

DNAm-age -3.31 (-4.62, -2.00) <0.0001

All models adjusted for mitochondrial haplogroup, PM, s, sulfate, ammonium, blood cell type,
temperature, pack years, smoking status, season, BMI, alcohol consumption, education,
lifetime cancer diagnosis, hypertension, diabetes, and coronary heart disease. DNAm-age
model is also adjusted for chronological age.

5.4.e. Mediation Analyses

There was no evidence of time-varying confounding of DNAm-age on mitochondrial DNA copy
number (Table S3). Table 4 presents the results of a 4-way decomposition meditation analysis examining
the potential role of the mitochondrial DNA copy number as a mediator of the association of PM, 5 levels
with DNAm-age. The controlled direct effect of one-year PM, s (due neither to mediation nor interaction)
was positive and statistically significant (3=0.81, p=0.02). The pure indirect effect of one year PM, s (due
to mediation alone) was also statistically significant (f=0.22, p=0.02). The percentage of the effect
mediated by the copy number was estimated to be 12.2%. There was no evidence of any significant effect
modification by copy number. These mediation relationships were consistent with results from the
sensitivity analysis using the simple mediation approach (Table S4) and adjusting for continuous variables

instead of disease categories (Table S5).
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Table 4. Results of 4-Way Decomposition Mediation Analysis of Mitochondrial DNA Copy Number as a Mediator of the
Relationship of PM, ;s with DNAm-age (N=797)

% of Effect

Effect Interpretation B (95% CI) SE t P P ediation Mediated by
Mediator
Controlled  Due neither to 0.81 (0.15, 1.48) 0.34 2.4 0.02
Direct mediation nor - -
Effect interaction
Reference Due to 0.12 (-0.04, 0.30) 0.08 1.53 0.13

Interaction  interaction alone

Mediated  Due to mediation -0.09 (-0.20, 0.02)

. . . 0.06 -1.63 0.10 - -
Interaction and interaction
Pure Due to mediation
Indirect 0.22 (0.07, 0.38) 0.08 2.79 0.01 0.02 12.2

Effect alone

Results based on fully-adjusted models adjusted for chronological age, blood cell type, temperature, pack years, smoking status, season,
BMLI, alcohol consumption, education, lifetime cancer diagnosis, hypertension, diabetes, and coronary heart disease. Effects were calculated
using the published SAS macro where continuous covariates were set to their mean values and categorical variables were set to the category
with the greatest proportion of study participants.
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5.4.f. Relationships of Haplogroup Clusters with Mitochondrial DNA Copy Number

Table S6 presents the results of fully-adjusted linear mixed-effects models examining the
association of each mitochondrial haplogroup cluster with mitochondrial DNA copy number. Only the
association with cluster 3 was statistically significant (=0.06, p=0.02). We also found that the association
of PM, s with mitochondrial DNA copy number was greater in individuals with the haplogroup V genotype

when compared to individuals without the haplogroup V genotype (p=0.001) (Figure S2).

5.5. Discussion

In the present study, we used fully-adjusted linear mixed-effects models to investigate the role of
the mitochondrial genome in the relationship of long-term PM, s exposure with DNAm-age in a large
longitudinal aging cohort. To our knowledge, this is the first study to demonstrate: 1) that mitochondrial
DNA haplogroup V significantly reduces the association of one-year PM, s and ammonium exposure levels
with DNAm-age and 2) that decreases in mitochondrial DNA copy number partially mediate the association
of one-year PM, s exposure levels with DNAm-age. Additionally, we observed novel associations of
mitochondrial DNA copy number with DNAm-age and the mitochondrial haplogroup cluster 3 genotype.

The number of studies examining relationships of ambient PM, s with DNAm-age are limited, but

8, 10, 52 L .
777 Here, we observed comparable, significant positive

our results are consistent with what they report
associations of PM, s, sulfate, and ammonium with DNAm-age. No existing studies have examined the
relationships of the mitochondrial genome with DNAm-age; however, we believed that such relationships
would exist because both DNAm-age — as previously mentioned — and mitochondrial genome integrity are
robustly associated with PM, s levels®' =%,

With respect to mitochondrial haplogroups specifically, only two studies have examined
relationships of mitochondrial haplogroups with air pollution and both studies examined the modifying role

that mitochondrial haplogroups may have on the health effects of air pollution. The first study used a panel

of 38 subjects with 417 total observations to test if air pollutant exposure-associated inflammation was
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stronger in carriers of mitochondrial haplogroup H versus U>*. The authors justified limiting their study
design to haplogroups H and U based on evidence suggesting that genetic variation due to mitochondrial
haplogroups impacts the coupling of respiratory chain and the subsequent development of endogenous
reactive oxygen species (ROS) by the mitochondria®™. Haplogroup H has a relatively tightly coupled
respiratory chain and has been associated with increased oxidative damage and risk of age-related diseases
like Parkinson’s>*>’. On the other hand, haplogroup U has a less tightly coupled respiratory chain and has
been shown to be protective against Parkinson’s disease™. In the end, this study found that air pollutant
(black carbon, carbon monoxide, nitric oxides and polycyclic aromatic hydrocarbons) associations with
inflammatory markers (IL-6 and TNF-a) were stronger for individuals with the haplogroup H genotype
when compared to haplogroup U individuals. Although this study’s results were consistent with the
aforementioned literature, the study was only based on 38 subjects and only relationships between two
haplogroups were explored. In a larger study of 582 subjects with multiple visits, the researchers
investigated if 9 different haplogroups (phylogenetically grouped into 4 clusters) resulted in differential
susceptibility to cognitive effects of long-term black carbon exposure’’. These researchers observed
impaired cognition in carriers of cluster 1 (J and T) and even worse cognition of carriers of cluster 4 (I, W,
and X). No effects were observed in cluster 2 (H and V) or 3 (K and U) carriers. Unlike the first study,
these authors did not observe any effect modification in the clusters that contained haplogroups H and V.
Another major difference between the two studies is that former reported significant findings with short-
term air pollution exposures (< 5 days) and the second used a one-year exposure window. In all, the findings
of these two studies suggest that the impact of haplogroups on air pollution relationships may be health
outcome specific and may vary depending on the duration of air pollution exposure.

Given that DNAm-age has been associated with numerous age-related diseases, we believed that it
would be associated with haplogroups that were also associated with age-related diseases, like haplogroup
H. Nevertheless, we found no direct associations of haplogroups with DNAm-age in our study sample.
However, we did find that haplogroup cluster 2 (V and H) significantly lessened the positive association of
PM, 5 levels with DNAm-age. Further analyses suggested that this protective effect was predominately due
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to haplogroup V and it persisted even when examining the effects of the PM, 5 component ammonium.
Although cluster 2 haplogroups, like H, have been traditionally thought to be health-adverse, there is also
existing evidence that these haplogroups may also offer some health benefits. For instance, haplogroup H
carriers were found to have a 2.12 fold increased chance of survival at 180 days following a septic episode
compared to non-carriers of haplogroup H. In the sepsis study the researchers did not measure other
haplogroups, but it is possible that related haplogroup V could also be protective if explored. Furthermore,
in a study that compared the frequency distributions of haplogroups in athletes versus non-athlete controls,
researchers found that the V haplogroup was overrepresented in endurance athletes (15.7%) compared with
controls (7.5%)®. A major issue in existing haplogroup research is that groups being compared are not
always the same and often relative findings are being interpreted. Thus, findings of an adverse effect of
haplogroup H when it is compared to haplogroup U may not exist when haplogroup H is compared to
haplogroup V. In an attempt to remedy future issues with such comparisons, our study always compares
carriers of a specific haplogroup or cluster to all other individuals who were not carriers of the haplogroup
or cluster. Thus, we are effectively comparing carriers of each haplogroup to a mixed population of
haplogroups. Still, future studies using this comparison paradigm will be necessary to confirm our findings
of a protective effect of cluster 2 and haplogroup V.

With respect to mitochondrial DNA copy number, our results agree with existing evidence that
long-term PM, s exposure is associated with decreases in mitochondrial DNA copy number®. We also report
novel evidence that mitochondrial DNA copy number is negatively associated with DNAm-age. Since
mitochondrial copy number is viewed as a measure of the mitochondria’s ability to respond to and buffer
biological stressors, and a reduced copy number can be due to an exhausted mitochondrial buffering
capacity (often observed with long-term environmental stresses)’" ', it is biologically conceivable that
increases in buffering capacity would be associated with less of an “adverse” outcome like aging. Moreover,
due to the strong associations of mitochondrial DNA copy number with DNAm-age and the known cross-
talk between the nuclear and mitochondrial genomes’’, we believed that one measure may mediate the
other’s relationship with PM,s. DNAm-age and mitochondrial DNA copy number were measured from
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blood taken at the same study visit so we took into account a number of considerations in assessing which
would be the most biologically plausible outcome and the most biologically plausible mediator. First,
although methylation of some nuclear genes like mitochondrial DNA polymerase y catalytic subunit
(PolgA) have been shown to regulate mitochondrial DNA copy number®, PolgA methylation does not
contribute to the DNAm-age metric’. Further, evidence has shown that DNAm-age is not simply the sum
of its component CpG DNA methylation levels®. Rather, DNAm-age is a biomarker of aging with a unique
balance of stability and responsiveness that allows it to simultaneously reflect past exposures®' and predict
future disease risk®. This unique balance of stability and responsiveness is best explained by the fact that,
aside from the context of induced pluripotent stem cells, DNAm-age appears to only increase with time®.
In the seminal DNAm-age paper by Horvath (2013), it is hypothesized that “DNAm age measures the
cumulative work done by a particular kind of epigenetic maintenance system (EMS), which helps maintain
epigenetic stability ... This model would explain the high tick rate during organismal development since a
high power is required to maintain epigenetic stability during this stressful time. At the end of development,
a constant amount of power is sufficient to maintain stability leading to a constant tick rate ... DNAm age
should be accelerated by many perturbations that affect epigenetic stability’.” In line with this current
understanding of DNAm-age, it is feasible that different environmental exposures or biological
microenvironments that affect epigenetic stability could exacerbate the otherwise constant rate of DNAm-
age increase®” **.

In contrast to DNAm-age, evidence shows that mitochondrial DNA copy number is a more variable
metric able to rapidly change (increase or decrease) in response to short-term and long-term exposures but
unable to intrinsically record long-term trends because it must be kept within a relatively stable range to
maintain optimal physiological function®’. Moreover, mitochondrial effectors like apoptosis-inducing
factor, which are normally localized in the mitochondria, have been shown to translocate to the nucleus
where they trigger DNA fragmentation, chromatin condensation, and other DNA changes™. Flavin adenine
dinucleotide (FAD) and o ketoglutarate (a-KG) are two additional co-factors that are synthesized within

the mitochondria, but are actively involved in the processes of nuclear methylation®. Thus, for our
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mediation analysis, we ultimately found that most evidence supported DNAm-age as an outcome with long-
term reporting ability and a mitochondrial copy number as a mediator. Given this analytical framework, we
found that mitochondrial DNA copy number significantly mediated about 12% of the observed effect of
PM, s on DNAm-age. Mitochondrial DNA copy number has been shown to decrease with age and copy
number has been associated with other age-related outcomes like frailty and mortality®®’. Hence, our
findings are in agreement with existing aging research but controlled experiments must be performed to
confirm if copy number is indeed a mediator of the relationship between PM, s and DNAm-age.

Finally, we explored the relationships of mitochondrial haplogroups and copy number in our study
sample. The weaker association between copy number and DNAm-age in individuals with haplogroup V,
may suggest that copy number is not the ultimate source of their protection against the effects of PM;s.
This theory is also supported by the findings that 1) copy number is not directly associated with haplogroup
cluster 2 (V and H) and 2) copy number only mediates 12% of the association between PM, s and DNAm-
age.

The current study possesses a number of strengths including the use of novel biomarker and a large
longitudinal cohort with repeated measures of ambient pollutant exposures, DNA methylation,
mitochondrial genome measures, and potential confounders. In fact, this is the first study to use
mitochondrial genetic variants and genome abundance to study the relationship of ambient particles with
DNAm-age. Still, our study has a few notable limitations. First, we utilized address-specific PM, sand PM, s
component exposure estimates which could potentially misclassify personal exposure levels. However, the
majority of NAS participants are retired and very likely spend most of their time at home. Moreover, any
resulting non-differential misclassification is likely to attenuate statistical associations rather than bias them

away from the null®®®

. Secondly, the mitochondrial genotyping technique resulted in haplogroup
designations that may not encompass more recent mutations that could potentially impact the relationship
of PM, ;s with DNAm-age. Nonetheless, the haplogroups that were used have been utilized in many studies

and our main objective was to identify common, normal forms of mitochondrial variation that may impact

the PM,s-DNAm-age relationship. Larger studies are warranted to evaluate the impact of rarer forms of
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mitochondrial genome variation on the PM, s5-DNAm-age relationship. Finally, our findings are based on a
cohort of elderly Caucasian males that reside in a lightly-polluted environment. Additional studies
involving other demographic groups and in different environments will be needed to confirm our findings

more broadly.

5.6. Conclusion

Overall, our study supports the premise that mitochondrial physiology is important for DNAm-age
relationships, particularly in the context of ambient fine particle air pollution. Our data specifically suggests
that mitochondrial haplogroups and copy number appear to be two different — but not necessarily mutually
exclusive — ways that the relationship of PM, s with DNAm-age is impacted by mitochondrial physiology.
Future research aimed at further understanding the relationships of mitochondrial physiology with shared
PM,s and aging-related health outcomes will be critical for addressing this important public and

environmental health topic.
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6.1. Abstract

Background: The association of long-term PM, s exposure, an aging risk factor, with DNA methylation
age (DNAm-age), an epigenetic biomarker of aging, may involve mediators of gene regulation.
Objective: Since microRNAs are heavily involved in gene regulation, we investigated the modifying role
of genetic variation in microRNA-processing genes on the PM, s-DNAm-age relationship.

Methods: We conducted a repeated measures study based on 552 participants from the Normative Aging
Study with multiple visits between 2000 and 2011 (n=940 visits). Address-level one-year PM, s exposures
were estimated using the GEOS-chem model. DNAm-age and a panel of 14 SNPs in microRNA-processing
genes were measured from participant blood samples.

Results: From an elastic net, four SNPs were identified as important to DNAm-age. In fully-adjusted linear
mixed-effects models, having at least one copy of the minor rs4961280 [4GO2] allele was associated with
a lower DNA methylation age (=-1.13; 95%CI: -2.26, -0.002). However, only the rs4961280 [4GO2] SNP
modified the PM,s-DNAm-age relationship. The association of PM; s with DNAm-age was significantly
(Pinteraciion=0.01) weaker in homozygous carriers of the major AGO2 allele (8=0.38; 95%CI: -0.20, 0.96)
when compared to all other participants (5=1.58; 95%CI: 0.76, 2.39). Gene network analyses revealed
known physical, genetic, and co-expression relationships of AGO2 with genes that contribute methylation
values to the DNAm-age measure including /POS8 and TIPARP.

Conclusion: Our results suggest that microRNA-processing impacts DNAm-age relationships particularly

in the context of long-term PM, 5 exposure.
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6.2. Introduction

Between 2015 and 2050, the global percentage of individuals over the age of 60 is expected to
almost double from 12% to 22%'. This shift in the age composition of the global population is particularly
important because it will likely be accompanied by immense public health and economic burdens due to an
unprecedented volume of aging-related diseases. For instance, in the United States alone, the 2017 disease
prevalence and economic costs associated with Alzheimer’s dementia were 5.5 million and $259 billion.
By 2050, those statistics are expected to be 16 million and $1.1 trillion respectively”. In an effort to curb
these expanding disease and economic burdens, there has been an ever-growing emphasis on research aimed
at understanding biological aging and the factors that contribute to adverse aging-related health outcomes.

Ambient fine particle air pollution (PM,s) — often considered the world’s largest singular
environmental health risk — is one potentially modifiable risk factor for aging-related diseases including
cardiovascular disease, cognitive decline, and cancer’®. Of particular interest, is the association of long-
term PM,s exposure levels with DNA methylation (DNAm) age, a novel epigenome-wide DNA
methylation-based measure of biological aging”®. Like other biomarkers of biological aging, DNAm-age
has been associated with all-cause mortality and aging-related diseases”'’. In contrast to other biomarkers
of aging, researchers remain highly uncertain about what DNAm-age is capturing on a molecular
physiological level''. By examining the relationship of DNAm-age with PM, s, a widely studied exogenous
exposure and aging risk factor, we can begin to understand more about DNAm-age physiology.

As previously mentioned, DNAm-age is derived from measurements of DNA methylation. DNA
methylation is a biological process where methyl groups are added to DNA nucleotides and often result in
changes in gene expression'”. Micro RNAs (miRNAs) are small non-coding RNA molecules that can also
regulate gene expression and have been associated with PM, s, aging/aging-related diseases, and DNA
methylation'>"”. miRNAs are produced from nuclear transcripts that form hairpin structures. Following
nuclear and cytoplasmic processing by a series of enzymes, miRNAs are incorporated into a structure called
the RNA-induced silencing complex (RISC). RISC achieves post-transcriptional gene regulation by using
one strand of the incorporated miRNA to target messenger RNAs (mRNAs) via nucleotide complementary
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base pairing. Once the relevant mRNA is targeted, RISC inhibits subsequent protein production by inducing
mRNA cleavage or by reducing translation of the mRNA molecule'’.

Despite existing knowledge of the role of miRNAs in PM; s and aging biology, studies have not yet
examined the role of miRNAs in the PM, s-DNAm-age relationship. Given the shared role of miRNAs and
DNA methylation in gene regulation'’, we hypothesized that miRNA physiology would be related to
DNAm-age and may play a role in the relationship of PM,s with DNAm-age. In the present study, we
investigated if single nucleotide polymorphisms (SNPs) in miRNA processing genes modified the
associations of long-term PM,s and PM,s component species (sulfate and ammonium) exposure with
DNAm-age in participants of the elderly Normative Aging Study (NAS). Rather than simply testing all the
SNPs in our panel, we utilized a methodical framework to identify and analyze significant SNPs and PM, s—
SNP interactions. We first employed an elastic net (penalized regression) selection model to identify SNPs
in miRNA processing genes that were specifically important to DNAm-age. Subsequently, we used fully-
adjusted linear mixed effects models to test for statistically significant direct associations of the elastic net
selected SNPs and PM,s-SNP interactions with DNAm-age. We also conducted a number of secondary
analyses to better ascertain if particular PM, 5 component species were responsible for the relationships we

observed.

6.3. Methods
6.3.a. Study Population

The U.S. Department of Veterans Affairs (VA) Normative Aging Study (NAS) is a longitudinal
study of aging that was established in 1963 and recruited male participants from the Greater Boston area
that were free of any chronic disease'®. The NAS is now a closed cohort, but every 3-5 years since
recruitment, participants return for onsite, follow-up study visits. During these recurring visits, participants
undergo thorough physical examinations, report lifestyle practices via questionnaires, and provide bio-

specimens including blood. At recruitment, all participants provided written informed consent to the VA

142



Institutional Review Board (IRB) and were at least 18 years of age. The VA and Harvard T.H. Chan School
of Public Health IRBs granted human subjects approval (protocol 14027-102).

Our study sample is derived from all NAS men with continued study participation since the year
2000, when address-level PM, s component species estimates became available. We started with a total of
552 participants with 940 study visits (observations) between the years 2000 and 2011°. Of these 552
participants, 249 (45%) had one study visit, 218 (40%) had two study visits, and 85 (15%) had three or
more study visits. From this sample, we then excluded participants missing miRNA processing gene
polymorphism data. This resulted in a final study sample of 471 participants with 808 total study visits. In
the final study sample, 208 participants (44%) had one visit, 189 (40%) had two visits, and 74 (16%) had

three or more visits.

6.3.b. Measuring DNA Methylation and Computing DNA Methylation (DNAm) Age

We extracted DNA from whole blood provided by participants during NAS visits. After performing
bisulfite conversion on the DNA (EZ-96 DNA Methylation Kit, Zymo Research, Orange, CA, USA), we
performed methylation analysis using the [llumina HumanMethylation450 BeadChip platform (Infinium
HD Methylation protocol, Illumina, San Diego, CA, USA). To ensure a similar age distribution across
chips/plates and minimize batch effects, we used a two-stage age-stratified algorithm to randomize samples
and randomized chips across plates. For quality control purposes, we removed samples where >5% of
probes had a beadcount < 3 or > 1% of probes had a detection P-value >0.05. The remaining samples were
pre-processed with Illumina-type background correction without normalization and normalized with dye-
bias and BMIQ3 adjustments. Next, we generated methylation beta values, which represent the percentage
of methylation for each of the ~480,000 CpG sites in the BeadChip array. Beta = intensity of the methylated
signal (M) / [intensity of the unmethylated signal (U) + intensity of the methylated signal (M) + 100].

DNAm age was computed wusing the publically available online calculator
(http://labs.genetics.ucla.edu/horvath/dnamage/). DNAm-age was derived from a penalized regression (an

elastic net) run on numerous datasets of diverse cell and tissue types where CpG probes shared by both the
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Illumina HumanMethylation27 and HumanMethylation450 BeadChip platforms were regressed on a
calibrated version of chronological age. 353 CpGs that correlated with age (193 positively and 160
negatively) were selected by the elastic net''. The model coefficients from these 353 CpGs were used by
the calculator to predict the age of each DNA sample (i.e. DNAm-age). The calculator maintains predictive
accuracy (age correlation 0.97, error = 3.6 years) across almost all body tissues including blood, bone, and

- 11
brain .

6.3.c. One-Year Address-Level Ambient Fine Particulate Matter (PM5) Exposure Estimation

We focused on the one-year PM, s exposure window because existing literature demonstrates that
it is robustly associated with DNAm-age’. Furthermore, greater than 90% of NAS participants are retired;
thus, home address exposures are expected to be a good proxy for their individual ambient exposures. Using
the GEOS-chem chemical transport model (http://www.geoschem.org), we generated daily estimates at the
1 km x1 km area resolution for total PM, 5. The GEOS-chem model is particularly useful because it allows
us to predict PM, s component species like ammonium and sulfate at the same 1 km x 1 km area resolution.
Sulfate and ammonium are the major PM, s component species that have been previously shown to be
important in predicting DNAm-age®. After geocoding and linking participants’ residencies to an area level
grid-point, we assigned particle estimates to each participant’s address. One-year total PM, s and PM, s
component species exposure estimates were determined by averaging daily exposures for the 365 days prior
to the day of each participants’ NAS visit. Ten-fold cross-validation demonstrated that the model performed

well for PM, s mass and its component species with R”s ranging from 0.70 to 0.88".

6.3.d. Genotyping Micro RNA Processing Gene Polymorphisms
The panel of 24 microRNA (miRNA) processing gene single nucleotide polymorphisms (SNPs)

examined in this study were selected from previous studies that investigated the association of miRNA

20,21

processing gene SNPs and chronic aging-related diseases™ . Some of these same SNPs have been shown

22,23

to modify relationships of ambient air pollutants with aging-related disease™*”. We performed genotyping
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on DNA extracted from participants’ blood. Multiplex PCR assays were designed with Sequenom
SpectroDESIGNER software (Sequenom, Inc., San Diego, CA). The extension product was subsequently
spotted onto a 384-well spectroCHIP and analyzed in the MALDI-TOF mass spectrometer (Sequenom,
Inc.). We duplicated the assay for 5% of the samples. Of all the 24 SNPs analyzed for this study, all were
successfully detected.

Following genotyping, we excluded ten SNPs for which the number of participants who were
homozygous minor variant carriers was less than 10 [rs595961 and rs636832 in AGOI!; rs197388 and
rs197414 in DDX20; rs417309 in DGCRS; rs3742330 in DICERI; rs2740348 and rs3744741 in GEMIN4,
rs1106042 in PIWILI] and one in which Hardy—Weinberg equilibrium was not met at the 0.05 level
[rs10719 in DROSHA]. This exclusion criteria has been utilized in already published studies that use this
panel of SNPs***. The remaining 14 SNPs were used in the study analyses. Linkage disequilibrium (LD)
of SNPs within the same gene was previously assessed wusing the LDPlotter tool

(https://www.pharmgat.org/Tools/pbtoldplotform)™.

6.3.e. Statistical Analysis
6.3.e.1. Elastic Net Selection of miRNA Processing Gene SNPs:

The aim of the present study was to examine if SNPs in miRNA processing genes modified the
association of long-term PM, s and PM, s component species levels with DNAm-age. In an effort to A) limit
multiple comparisons and B) identify specific miRNA processing gene SNPs that are important to DNAm-
age, we first employed an elastic net (penalized regression) via the glmnet function in the R glmnet package.
Our elastic net method was similar to that described by Lenters and colleagues® and the full documentation
for running all aspects of the elastic net via glmnet is publically available (https://cran.r-
project.org/web/packages/glmnet/index.html. We have also used a comparable elastic net strategy in a
previous publication”. In short, the elastic net regression linear models utilized a hybrid of ridge and
LASSO penalty functions to determine which SNPs were important to DNAm-age. By combining both of
these penalty functions, the elastic net is able to perform selection while allowing for the inclusion of highly-
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related genetic variants’>*’. In our case, the highly related variants were the panel of miRNA processing
gene SNPs. Specifically, in our elastic net selection model, all 14 SNPs and their respective PM; 5-SNP
interactions were regressed on DNAm-age. Chronological age (continuous), blood cell proportions [plasma
cells, CD4+ lymphocytes, CD8+ lymphocytes, natural killer (NK) cells, monocytes, and granulocytes]

11,28 .
), average 1-year temperature (continuous

(continuous, determined via Houseman and Horvath methods
address-specific satellite measurements®), cumulative cigarette pack years (continuous), smoking status
(current, former, or never), and season of visit (spring [March-May], Summer [June-August], Fall
[September-November], and Winter [December-February]), were also included in the selection model as
unpenalized variables. The existing air pollution, DNA methylation, and DNAm-age literature have
identified these variables as important potential confounders”®*>’. Cross-validation was performed to
determine the optimal degree of penalization and the minimum mean-squared error (MSE) of prediction

from repeated 10-fold cross-validation was used in the final elastic net selection model. miRNA processing

gene SNPs with non-zero model coefficients were considered as “selected” by the elastic net.

6.3.e.2. Covariates:

The direct relationships of the miRNA processing gene SNPs with DNAm-age and the role of these
SNPs as modifiers of the association of PM, s with DNAm-age were examined using fully-adjusted linear
mixed-effects models. These models included a random participant-specific intercept to account for
correlation between repeated outcome measures resulting from having multiple study visits for participants.
In the analyses using fully-adjusted models, we controlled for all the variables used in the elastic net
selection model as well as body mass index (BMI) (lean [<25], overweight [25-30], obese [>30]), alcohol
intake (yes/no > 2 drinks daily), maximum years of education (continuous), cancer (yes/no history of
lifetime cancer diagnosis), ischemic heart disease (yes/no based on electrocardiogram, validated medical
records, or physical exam), diabetes (physician diagnosis or a fasting blood glucose > 126 mg/dL), and
hypertension (yes/no antihypertensive medication use or systolic blood pressure >140 mmHg or diastolic

blood pressure >90 mmHg).
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6.3.e.3. Effect Modification by and Direct Associations of miRNA Processing Gene SNPs:

Using the same covariates from the direct effect fully-adjusted linear mixed effects models, we
evaluated if the miRNA processing gene SNPs selected by the elastic net modified the association of PM, s
with DNAm-age. Given a statistically significant modifying effect, we evaluated if the SNP of interest
modified the associations of sulfate and ammonium with DNAm-age. In these analyses, the reference group
was participants who were homozygous for the major variant of the SNP. For instance, if we evaluated the
modifying role of ‘SNP A’ on the association of PM,s with DNAm-age, we compared participants
genotyped as homozygous for the major variant of ‘SNP A’ against all other participants (i.e. participants
genotyped heterozygous or homozygous for the minor variant of ‘SNP A’). We conducted secondary
analyses exploring trends in significant modifier effects across all three genotypes (homozygous major
variant, heterozygous, and homozygous minor variant). When we observed that a miRNA processing gene
SNP significantly modified the relationship of a PM,s component species with DNAm-age, we also
conducted an additional sensitivity analysis. In this sensitivity analysis, we subtracted that component
species from total PM, 5 and reevaluated effect modification by the SNP.

Also using fully-adjusted linear mixed effects models, we determined if elastic net selected miRNA
processing gene SNPs had direct associations with DNAm-age when modeled as joint predictors with PM; s
levels. We also performed a sensitivity analysis, examining these direct associations, where we subtracted

component species from total PM,; 5 as previously described above.

6.3.e.4. Network Analysis:

We used the publically available Genemania platform (https://genemania.org) to explore gene
network relationships (co-expression, physical interactions, and genetic interactions) between the genes
encompassing the elastic net selected SNPs and the 353 genes that contribute CpGs to the DNAm-age

metric.
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6.3.e.5. Analysis Software:
The gene network analysis was performed using the Genemania plugin for Cytoscape. All
remaining statistical analyses were performed using R Version 3.1.1 (R Core Team, Vienna, Austria) and

we considered a P-value < 0.05 to be statistically significant.

6.4. Results
6.4.a. Descriptive Statistics

Table 1 summarizes the demographic and clinical characteristics of study participants across all
study visits. All participants were Caucasian males with a mean (SD) chronological age and DNAm-age of
75.0 (7.03) and 74.1 (8.02). A majority of the participants had completed at least 12 years of formal
education (74%), were former smokers (67%), and were overweight or obese (77%). In this study sample,
the prevalence of ischemic heart disease, diabetes, and hypertension were 35%, 18%, and 75% respectively.
The lifetime prevalence of a cancer diagnosis was 57%.

The mean (IQR) one-year PM, s, sulfate, and ammonium levels were 10.3 (2.15) pg/m’, 3.39 (0.81)
pg/m’, and 1.05 (0.29) pg/m’. Table S1 presents the Pearson correlation coefficients and the proportion of
total PM, s mass of GEOS-chem transport model derived PM, s component species across all study visits.
Sulfate made up the greatest proportion of PM, s mass (33.2%), and ammonium made up 10.2% of PM, 5
mass. The correlation coefficients for sulfate and ammonium with total PM, s mass were 0.30 (p<0.0001)

and 0.51 (p<0.0001) respectively.
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Table 1. Characteristics of Study Participants (2000 — 2011)

Main Variables

All Visits, N = 808

Age (years), mean (SD) 75.0 (7.03)
DNAm-age (years), mean (SD) 74.1 (8.02)
One- Year Fine Particle Level (ug/m’), mean (IQR)

PM, s 10.3 (2.15)
Sulfate 3.39 (0.81)
Ammonium 1.05 (0.29)
Lifestyle and Environmental Variables

Alcohol Consumption, N ( %)

< 2 drinks/day 647 (80)

> 2 drinks/day 161 (20)
BML N (%)

Healthy/Lean 189 (23)
Overweight 427 (53)
Obese 192 (24)
Education, N (%)

<12 years 206 (26)
12 — 16 years 379 (47)

> 16 years 223 (27)
Pack years, mean (SD) 21.2 (24.7)
Smoking Status, N (%)

Current 36 (4)
Former 538 (67)
Never 234 (29)
Season, N (%)

Spring 204 (25)
Summer 175 (22)
Fall 271 (33)
Winter 158 (20)
Temperature (°C), mean (SD) 11.3 (0.99)
Aging-Related Diseases

Ischemic Heart Disease, N (%)

Yes 287 (35)
No 521 (65)
Diabetes, N (%)

Yes 148 (18)
No 660 (82)
Hypertension, N ( %)

Yes 604 (75)
No 204 (25)
Lifetime Cancer Diagnosis, N (%)

Yes 458 (57)
No 350 (43)
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0.4.b. Elastic Net Selected miRNA Processing Gene SNPs
Table S2 lists the 14 miRNA processing SNPs that were included in the elastic net selection model.
Of these 14 SNPs, four (rs4961280 [AGO2], rs6877842 [DROSHA], 1s910924 [GEMIN4], and rs784567

[TARBP?2]) were selected by the elastic net with DNA methylation as the outcome.

Table 2. Mean One-Year Fine Particle (PM,s) Concentrations and MicroRNA Processing
Gene Single Nucleotide Polymorphisms (SNPs) as Joint Predictors of DNAm-age (N = 808)
Difference in DNAm-age

Predictor for IQR (95% CI) P
PM, s 0.76 (0.24, 1.24) 0.003
Elastic Net Selected miRNA SNPs*

54961280 (4GO2) -1.13 (-2.26, -0.002) 0.05
rs6877842 (DROSHA) -0.78 (-1.92, 0.37) 0.18
1$910924 (GEMIN4) -0.41 (-1.47, 0.65) 0.45
15784567 (TARBP2) -1.35(-2.61,-0.09) 0.04

Note. Model adjusted for chronological age, blood cell type, temperature, pack years, smoking
status, season, BMI, alcohol consumption, education, lifetime cancer diagnosis, hypertension,
diabetes, and ischemic heart disease. “Values for the miRNA processing SNPs are in reference to
participants whose genotypes are homozygous for the major variant. Bold text specifies statistically
significant P values (<0.05).

Of the four elastic net selected SNPs, only rs4961280 (4GO2) and rs784567 (TARBP2) were
significantly associated with DNAm-age in fully-adjusted linear mixed effects models that included PM, s
levels as a covariate (Table 2). For rs4961280 (4G02), individuals who had at least one copy of the minor
SNP allele on average had a 1.13-year lower DNAm-age than individuals with the homozygous major
variant (allele) genotype (p<0.05). When we compared all three genotypes, on average, individuals who
were homozygous for the minor rs4961280 (AGO2) variant (AA) had the lowest DNAm-age. Homozygous
major carriers (CC) had the highest DNAm-age and heterozygous individuals (CA) had an intermediate
DNAm-age (Figure S1). The trend for this relationship was statistically significant (p=0.04). For rs784567
(TARBP?2), individuals who had at least one copy of the minor SNP allele on average had a 1.35-year lower
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DNAm-age than individuals with the homozygous major allele genotype (p=0.04, Table 2). When we

looked across all three rs784567 (TARBP2) genotypes, a trend similar to rs4961280 (4GO2) was observed,

but the trend did not reach statistical significance (p=0.08, Figure S1). These relationships persisted in

sensitivity analyses where the ammonium component was subtracted from total PM, s mass (Table S3).
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Figure 1 | Difference in DNAm-age for one interquartile range increase in one-year particle
exposure levels comparing participants with and without a homozygous major variant
genotype for AGO2, DROSHA, GEMIN4, and TARBP? in fully-adjusted linear mixed

effects models.

Out of all four SNPs, only the rs4961280 (4GO2) SNP significantly modified the association of

PM, s with DNAm-age (p=0.01) — although the rs6877842 (DROSHA) SNP neared statistical significance

(p=0.052, Figure 1). Specifically, the association of PM, s with DNAm-age was greater in individuals who

were not homozygous for the major AGO2 variant (allele) when compared to individuals who were
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homozygous for the major allele. This trend was also observed for the ammonium PM, s component species.
No significant effect modification by the AGO2 SNP was observed for sulfate levels and the rs6877842
(DROSHA) SNP did not significantly modify the relationships of ammonium or sulfate with DNAm-age

(Figure 2).
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Figure 2 | Difference in DNAm-age for one interquartile range increase in one-year
particle exposure (ammonium and sulfate) levels comparing participants with and
without a homozygous major variant genotype for AGO2 and DROSHA in fully-
adjusted linear mixed effects models.

We observed a significant (p=0.01) increasing trend for the association of PM, s with DNAm-age when
comparing the three rs4961280 (4GO2) SNP genotypes (Figure 3). The strongest (magnitude) association
was observed in individuals who were homozygous for the minor allele and the smallest association was

observed in individuals with the homozygous major allele genotype. An association of intermediate
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magnitude was observed in individuals who were heterozygous for the genotype. A similarly significant
(p=0.02) trend across genotypes was observed for the relationship of ammonium with DNAm-age (Figure
3). In a sensitivity analysis where the ammonium component was subtracted from total PM, s mass, we still
observed a significant — though slightly attenuated — trend in the PM, 5 (less ammonium) and DNAm-age

relationship across AGO2 genotypes (Figure S2).
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Figure 3 | Difference in DNAm-age for one interquartile range increase in one-year particle
exposure (PMs s and Ammonium) levels comparing participants of homozygous major variant
(N=526), heterozygous (N=257), and homozygous minor variant genotypes (N=25) for AGO?2
in fully-adjusted linear mixed-effects models. *P value for the test of linear trend across
genotypes was based on a linear mixed-effects regression model where the three AGO?2
genotypes were fit as a continuous measure.

6.4.c. Gene Network Analysis

Figure 4 depicts the results of a network analysis examining relationships of AGO2, DROSHA,
GEMIN4, and TARBP?2 with the 353 genes that contribute CpGs to the DNAm-age measure. /PO8 was the
sole DNAm-age CpG contributing gene that had a physical interaction with AGO2. Many genes were found
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to have genetic interactions or be co-expressed with AGO2. PAPOLG and TIPARP were the only two genes
that had both genetic interactions and were co-expressed with AGO2. PAPOLG and TIPARP were also co-

expressed or had a genetic interaction with DROSHA (Table S4).
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Figure 4 | Curated network map depicting relationships of AGO2, DROSHA, GEMIN4, and
TARBP?2 with genes that contribute component CpG methylation to DNAm-age. Each of the
elastic net selected genes is surrounded by a circle of related genes that contribute CpG
methylation to the DNAm-age metric. Solid lines that connect genes represent co-expression.
Dashed lines that connect genes represent physical interactions. Squiggly lines that connect
genes represent genetic interactions.
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6.5. Discussion

The present study utilized a DNAm-age elastic net selection model to identify four SNPs in miRNA
processing genes (rs4961280 [4GO2], rs6877842 [DROSHA], rs910924 [GEMIN4] and rs784567
[TARBPZ2]) of which two (rs4961280 [AGO2] and rs784567 [TARBP2]) were directly associated with
DNAm-age in a population of community-dwelling elderly men. Additionally, the study demonstrated a
significant modifier effect of the rs4961280 (4GO2) SNP on the associations of one-year PM,s and
ammonium (one PM, s component species) levels with DNAm-age. More specifically, our data suggests
that the association of PM, s with DNAm-age is attenuated in individuals carrying at least one copy of the
rs4961280 (AGO2) major variant allele. Our results were consistent (though slightly attenuated) in
sensitivity analyses where we subtracted ammonium levels from total PM; 5 mass. This suggests that the
impact of the rs4961280 (AGO2) SNP on the relationship between PM, s and DNAm-age is largely — but
not exclusively — due to ammonium is levels. Moreover, a gene network analysis revealed physical
interactions, genetic interactions, and co-expression relationships of AGO2, DROSHA, GEMIN4, and
TARBP?2 with genes that contribute CpGs to the DNAm-age metric. To our knowledge, this is the first study
to examine relationships of miRNA processing physiology with epigenetic age both independently and in
the context of long-term PM, s exposure.

DROSHA is a gene located on human chromosome 5 and it encodes an RNA-specific
endoribonuclease that is involved in the initial step of nuclear miRNA processing’'. GEMIN4 and TARBP2
are located on chromosomes 17 and 12 respectively, and they both encode enzymes that are involved in the
cytoplasmic processing of miRNAs. After a literature review examining the relationships of the SNPs in
these three genes with air pollution, we found only one previous study — also in the Normative Aging Study
cohort — demonstrating that in comparison to other participants, individuals heterozygous for the rs910924
(GEMIN4) SNP genotype were more likely to have lower global cognition measurements given the same
level of black carbon exposure®. Nonetheless, we did find a number studies implicating DROSHA,

GEMIN4, and TARBP2 in numerous aging-related diseases including prostate cancer, and colorectal
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cancer >, Since cancers are often related to changes in DNA methylation, the connections of these genes
with cancer may be the reason why their SNPs were selected by the elastic net**.

In contrast to the other three SNPs, we did observe significant effect modification of the PM, s-
DNAm-age relationship by the rs4961280 (4GO2) SNP. Furthermore, we also observed a significant direct
relationship of the rs4961280 (4GO2) SNP with DNAm-age. AGO2 (Argonaute Protein 2) is a gene located
on human chromosome 2. Argonaute (AGO) proteins, including AGO2, form the core of the RNA-induced
Silencing Complex (RISC) which is involved in gene silencing via RNA interference. AGO proteins are
well-conserved across species and structurally include an amino-terminal, PAS, Piwi, and MID domains.
Humans have eight AGO proteins; however, only AGO 1-4 are capable of loading miRNA in RISC.
Moreover, only AGO2 appears to have the ability to cleave mRNA targets and achieve transcript
instability/silencing™. In addition to their role in RISC, it has also been demonstrated that AGO proteins
play a role in stabilizing and maintaining proper levels of mature miRNA strands™.

Our data suggested that individuals with at least one copy of the rs4961280 (4GO2) major variant
had an attenuated association of PM,s/ammonium with DNAm-age when compared to individuals who
were homozygous for the minor variant. However, individuals with at least one copy of the minor variant
on average had lower DNAm-ages when compared to individuals that were homozygous for the major
variant. Very few studies have explicitly examined relationships of the rs4961280 (4G0O2) SNP and none
of them were in the contexts of PM, s or aging. However, we did find one study that demonstrated that the
minor variant was associated with a reduced risk of benign prostatic hypertrophy (BPH) in a Serbian
population®. Since BPH is most common in aging men, this study is in alignment with our finding that the
minor allele is associated with qualities of being “younger” (i.e. a lower DNAm-age or a lower risk of
BPH)"’. Further work will need to be done to understand why it is the major allele that attenuates the
positive association of PM, s with DNAm-age, but the minor allele that is directly associated with a lower
biological age. Moreover, it will be helpful for the field to understand why ammonium relationships with

DNAm-age were impacted by the rs4961280 (4GO2) SNP and sulfate relationships were not.
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Of the existing studies that examine relationships of AGO2 — not simply the SNP, but the gene —
with aging in humans, the majority are cell culture based and describe AGO2 as a factor involved in
molecular processes related to biological aging such as cellular senescence, stem cell renewal, and

endothelial function®®*°

. We also found a few animal studies that showed relationships of AGO2 with
chronological aging. A study examining relationships of miRNAs with aging in Drosophila revealed that
with age, there was a global increase in miRNAs loaded in AGO2 but not AGO1. Furthermore, mutations
in AGO?2 resulted in shorter life span and neurodegeneration. Together, these data suggest that AGO2
impacts aging-associated processes*' . Another study looking to elucidate how intermittent fasting increases
longevity in Caenorhabditis elegans demonstrated that fasting upregulates the expression of miRNA-
induced silencing complex (RISC) components including argonautes. In this study, fasting upregulated
AGO2 by 2 fold*.

Our network analyses of AGO2, DROSHA, GEMIN4, TARBPZ2, and genes that contribute CpGs to
the DNAm-age metric demonstrated one physical interaction between AGOZ2 and a gene called IPOS8. IPOS8
(Importin 8) is a gene on chromosome 12 that encodes a protein involved in mediating the nuclear import
of other proteins with nuclear localization signals. IPO8 has also been shown to mediate the cytoplasm to
nucleus transport of mature miRNAs. Moreover, this IPO8 mediated transport of miRNAs is dependent on
the physical association of IPO8 with the AGO2 complex™®. The literature primarily describes IPOS as an
optimum reference gene for micro-array and RT-PCR studies in multiple tissue types including the lung*.
Two genes (PAPOLG and TIPARP) had both genetic interactions and co-expression relationships with
AGO2. These two genes also had genetic interactions with TARBP2 and DROSHA. PAPOLG (Poly [A]
polymerase gamma) is a gene on chromosome 2 that encodes an exclusively nuclear-localized poly (A)
polymerase responsible for catalyzing template-independent extension of the 3’ end of a strand of
DNA/RNA®. To our knowledge, no explicit studies have examined the relationships of PAPOLG and
biological aging but PAPOLG has been implicated in relationships involving aging-related health outcomes.
For instance, a 12-week trial examined if a dietary intervention of 400g/week of high-glucoraphanin (HG)
broccoli altered plasma metabolites linked to cancer risk when compared to diets of 400g/week of standard
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broccoli or 400g/week of peas. No other modifications were made to the participants’ diets. The study
revealed that the levels of plasma metabolites (including FAD) of individuals receiving HG broccoli were
differentiated by PAPOLG genotypes. This suggests that PAPOLG may interact with diet to impact the
levels of metabolites including those that have been implicated in cancer risk*®. TIPARP (TCDD-inducible
poly [ADP-ribose] polymerase) is a gene on chromosome 3 that encodes a member of the poly (ADP-
ribose) polymerase super family*. In a study exposing human aortic endothelial cells to 10 pg/ml of fine
and ultrafine ambient particulate matter from California, mRNA levels of enzymes including TIPARP
increased®. Another study exposed human adenocarcinomic human alveolar basal epithelial (A549) cells
to 10 pg/ml of winter and summer PM, s from Milan and found that PM, 5 from both seasons modulated
TIPARP gene expression®.

Strengths of our study include the combination of a novel biomarker, rigorous statistical methods,
and access to a large cohort with extensive and repeated information regarding PM, 5 exposure levels, DNA
methylation data, and potential confounders from multiple study visits. This is the first study to use miRNA
processing gene variants to study the relationship of ambient fine particles with DNAm-age. However, our
study does have some notable limitations. First, we use a validated chemical transport model to generate
address-level one-year PM,s, sulfate, and ammonium exposure estimates. Given that most NAS
participants are retired, we believe that particle exposure levels at their homes approximately capture their
personal exposures. Still, there is some risk of exposure misclassification. Nonetheless, such non-
differential misclassification is likely to underestimate any observed associations rather than bias them
away from the null’’. Second, we utilize a panel of a miRNA processing gene SNPs that is somewhat limited
because it does not provide genome-wide resolution of all genes involved in miRNA processing.
Nevertheless, this panel has been successfully utilized in other environmental health studies and we use a
rigorous elastic net approach to identify our variants of interest’. Although we did not test for effect
modification with all the SNPs in our panel, our targeted approach identified significant interactions that
persisted even in sensitivity analyses. These findings will be informative to more comprehensive, future
research. Lastly, our study examines the role of the miRNA processing pathway by using genetic variants
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of miRNA processing genes and our findings are based on a cohort of elderly Caucasian males who reside
in a lightly-polluted environment. Future studies involving other demographic groups, in different
environments, and using miRNA expression levels will be necessary to broadly confirm and add to these

important but early findings.

6.6. Conclusion

In conclusion, genotypes of the rs4961280 (4GO2) miRNA processing SNP were directly
associated with DNAm-age and modified the associations of one-year PM, s and ammonium levels with
DNAm-age in this population of community-dwelling Caucasian elderly men. Although our findings need
to be confirmed in other individuals of this same demographic group and different populations, they begin
to address the important research gap concerning the biological relevance of DNAm-age and the physiology
of the PM,s-DNAm-age relationship. Future studies will be necessary to elucidate more nuanced

relationships of miRNA physiology with epigenetic aging.
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7.1. Introduction

The work presented in this dissertation represents the first published studies examining
relationships of any traditional environmental pollutant with DNAm-age. Since our initial study, we have
replicated some biological aging relationships in an independent German cohort and reported relationships
of other ambient pollutants (e.g. nitric oxide) with DNAm-age'. Moreover, other research groups have since
explored the relationships of other environmental exposures with DNAm-age®. Here, we summarize the
existing body of research that describes relationships of DNAm-age with chemical environmental

pollutants.

7.2. Air Pollutants

Of the work examining the relationships of chemical exposures with DNAm-age, the literature on
air pollutants is the most extensive. Nwanaji-Enwerem et al. (2016) was the first group to describe
associations of any chemical pollutant with DNAm-age and their study focused on relationships of DNAm-
age with long-term ambient fine particle (PM,s) and Black Carbon (BC) exposures’. DNAm-age was
measured in peripheral blood leukocytes from 1032 samples taken from 589 community-dwelling older
men who were participants in the ongoing VA Normative Aging Study (NAS). Using linear mixed effects
models adjusted for chronic diseases, lifestyle factors, environmental factors, and white blood cell
composition, the group found that a 1 pg/cm’ increase in one-year PM,s exposure was significantly
associated with a 6-month increase in DNAm-age (p < 0.0001). A 1 pg/cm’ increase in one-year BC
exposure was also significantly associated with DNAm-age (3 =2.83, p=0.03). However, when PM, s and
BC were simultaneously modeled as predictors of DNAm-age, only PM, s remained statistically significant.
This prompted the authors to focus their attention to PM, s relationships including an analysis exploring the
associations of PM, 5 levels with methylation at the 353 DNAm-age component CpG sites. 20 out of 353
DNAm-age component CpGs had significant associations with one-year PM, s exposure, but enrichment

analysis did not return any significant findings for these 20 sites”.
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Given the results from the combined PM, s and BC models, the authors hypothesized that PM, s
component species besides the carbonaceous species were responsible for the association with DNAm-age.
Hence, they performed a follow-up study in the NAS to identify which of five major PM, s component
species (i.e. ammonium, elemental carbon, organic carbon, nitrate, and sulfate) were driving the DNAm-
age association. Using the adaptive least absolute shrinkage and selection operator method, the researchers
identified ammonium and sulfate as the PM,s component species most associated with DNAm-age”.
Importantly, the associations of PM, s, sulfate, and ammonium with DNAm-age all remained statistically
significant even when the analyses were limited to one-year PM, 5 exposures within US EPA national
ambient air quality standards. This suggested that there was a risk of biological aging even at accepted air
pollution levels. To further understand the underlying biology of the risks implied by this association,
subsequent work by this same group focused on identifying potential modifiers and mediators of the PM, s-
DNAm-age relationship in the NAS.

First, they used elastic net penalized regression to identify endothelial function related SNPs most
important for DNAm-age and next they calculated a polymorphism score based on the important SNPs’.
This score, which reflected endothelial function physiology and aging risk, was then explored as a modifier
of the PM, s-DNAm-age association. The authors found that the magnitude of the association of PM, s with
DNAm-age was significantly higher in individuals with a high aging-risk endothelial function score (Bigh
=1.09, 95% CI: 0.70, 1.48) when compared to individuals with a low score (Biow = 0.40, 95% CI: 0.14,
0.67, Pinteraction = 0.0007). Following this finding of significant effect modification, the authors then
examined the relationship of DNAm-age with serum endothelial function markers in the same cohort of
NAS participants. In these analyses, DNAm-age was positively associated with serum ICAM ( = 0.01, p
=10.005) and VCAM (B =0.002, p=0.004). This was the first study to use pathway specific genetic variants
to understand the association of PM; s with DNAm-age. Furthermore, the integrated data from genetic and
functional analyses suggests a role in the PM, 5-DNAm-age relationship for endothelial function, which is

already appreciated as a contributor to PM, s-related processes®™.
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The second molecularly focused study conducted by the group suggests that mitochondrial
physiology may be involved in the PM,s-DNAm-age relationship. Similar to the study involving
endothelial function, this study is able to provide a more convincing argument for its conclusion because it
utilizes an integration of genetic (mitochondrial DNA haplogroups) and functional (mitochondrial DNA
copy number) measures in the NAS. Mitochondrial haplogroups represent normal mitochondrial genetic
variation and can potentially impact energy generating capacity by the organelle. Mitochondrial copy
number is the ratio of a cell’s mitochondrial DNA to nuclear DNA. Changes in copy number can occur
normally with mitochondrial biogenesis and degradation, but changes can also be related to exogenous
stressors and enable the organelle to compensate for mitochondrial genome damage’. Out of the nine
haplogroups found and tested (H, I, J, K, T, U, V, W, and X) in the study sample, no haplogroups showed
direct associations with DNAm-age. However, carriers of Haplogroup V (f = 0.18, 95% CI: —0.41, 0.78)
demonstrated a diminished magnitude of the PM, 5 association with DNAm-age when compared to non-
carriers (B = 1.25, 95% CI: 0.58, 1.93, Pisteraction = 0.01). Copy number was negatively associated with
DNAm-age (p=-3.31, p<0.0001), and was estimated to significantly mediate 12% of the PM, s association
with DNAm-age. Like endothelial function, mitochondrial genome physiology has been previously
implicated in PM,s-related processes'®"’. Hence, these results though they need to be replicated in a
different population, were in line with the existing literature.

The final molecularly focused study performed by this group also utilized the NAS cohort and
elastic net penalized regression to identify two SNPs in microRNA processing genes that had direct
associations with DNAm-age: 14961280 [AGO2] and rs784567 [TARBP2]. Individuals with at least one
copy of the minor variant of either one of these two SNPs had on average at least a 1.13-year lower DNAm-
age than homozygous major individuals. However, significant effect modification was only observed by
the AGO2 SNP. Having at least one copy of the major AGO2 allele significantly reduced the magnitude of
the PM,s association with DNAm-age'*. Again, the authors explored these relationships because
microRNA physiology has been previously implicated in PM, s processes'>'’. Hence, the findings were

again broadly in alignment with the existing literature. Overall, each of these molecular endothelial
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function, mitochondrial, and microRNA relationships need to be replicated in different populations and
demographic groups, but these studies represent some of the most comprehensive data aimed at
understanding DNAm-age’s molecular relationships with environmental exposures.

Still, efforts have been made to replicate the direct associations of PM, 5 and BC with two variations
of DNAm-age (IEAA and DNAmMAA). Intrinsic epigenetic age acceleration (IEAA) is the residual that
results from regressing DNAm-age on chronological age and measures of blood cell counts. Hence, IEAA
is independent of both age and cell counts. DNAm-age age acceleration (DNAmAA) is the residual from
regressing DNAm-age on chronological age alone. Hence, DNAmMAA is independent of chronological
age'®. Ward-Caviness et al. (2016) utilized a cohort of 1777 men and women from the German KORA
cohort and examined relationships of IEAA and DNAmAA with ambient pollutants: PM,s, BC, coarse
particulate matter (PM,), and nitrogen oxide (NOx)'. In a combined sex model (males and females
included) PM, ;s was not significantly associated with IEAA (B =0.02, p = 0.88) or DNAmAA (B =0.04, p
= 0.77). BC was also not significantly associated with IEAA or DNAmAA in combined sex models.
However, unlike PM, 5, BC did show some sex-specific relationships. BC was negatively associated with
IEAA in men, but positively associated with IEAA in women. BC was positively associated with DNAmAA
in women but showed no association in men. With respect to the other pollutants that were examined, PM;,
had significant negative associations with [IEAA and DNAmMAA in men but no relationships in women.
NOx had significant negative associations with IEAA and DNAmMAA in men, but positive associations
women. This study also examined PM, s associations with IEAA and DNAmMAA in a subset of the NAS
cohort and found only the IEAA associations to be statistically significant but negative in direction (f = -
0.42, p=0.03). The data from this study broaden the knowledge of important relationships of air pollutants
with DNAm-age-related measures. Although, the findings using the full cohort are predominantly null,
important sex differences were identified. This suggests that the impact of pollutants on DNAm-age may
differ by sex, which is not farfetched given that it is already appreciated that on average chronological age-
matched DNAm-age is lower in women than it is in men'. The results also speak to the relationships
between the different DNAm-age measures. What is most surprising is that the relationships of IEAA and
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PM, 5 in the KORA cohort and the subset of the NAS cohort are either not statistically significant or are in
the opposite direction of those previously reported by Nwanaji-Enwerem et al. (2016). Using IEAA versus
adjusting for white blood cell proportions within statistical models — which was the method employed by
Nwanaji-Enwerem et al. (2016)° — could potentially lead to different results even though this is not
expected. The authors also noted that total cholesterol, age’, and physical activity were included as
covariates in their model but were not used in the Nwanaji-Enwerem et al. (2016) models. Moreover, there
were some differences in the sample sizes used by the two studies given that additional covariates included
in the latter study were missing at random for some participants in the initial study sample. The initial
Nwanaji-Enwerem et al. (2016) study was based on 1032 observations from 589 participants, while this
latter work was based on a subset of 734 observations from 496 participants in the NAS. Ultimately, more
work is necessary to elucidate the associations of ambient air pollutants with DNAm-age measures, but
these future studies will need to pay close attention to consistency in model design.

Smoking can be considered a form of personal air pollution. Gao et al. (2016) examined the
associations of smoking with DNAmAA in a cohort of 1509 male and female participants from the
ESTHER study in Germany’. They found that no self-reported smoking related indicators (i.e. smoking
status, cessation time, and cumulative exposure) were significantly associated with DNAmAA. They next
compiled a list of 150 smoking-related CpGs that were independent from the 353 DNAm-age component
CpGs. Each of the 150 CpGs had been identified at least twice in previously published active-smoking
related epigenome wide association studies. 66 of these 150 smoking related CpGs were associated with
DNAmMAA after a validation step and were used to create a smoking index. A one standard deviation
increase in smoking index was associated with a 1-year increase in DNAmMAA. This study doesn’t
demonstrate direct associations of smoking self-reports with DNAm-age, possibly because self-reports and
not the most accurate measure of smoking. However, the study does demonstrate that methylation of
separate sites that are sensitive to certain exposures may have important associations with DNAm-age.

Thus, DNAm-age may not always be sensitive in itself to an exposure, but it can be used with other loci to
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develop a composite marker that is exposure sensitive. These types of integrated methylation analyses will

likely be useful in future environmental exposure work.

7.3. Metal Exposures

The work examining the relationships of metal exposures with DNAm-age is far more limited than
that examining air pollutants. To the best of our knowledge, only two studies have been published in this
area. The first examines associations of age acceleration (here defined as chronological age subtracted from
DNAm-age) with urinary cadmium (Cd) in 40 non-smoking women from Thailand”. Urinary Cd was first
measured in the women and used to split the cohort into a high exposure (mean chronological age = 60.4
years) and a low exposure group (mean chronological age = 58.8 years). Then, linear mixed effects models
adjusted for urinary creatinine, age, and white blood cells were used to examine the association of Urinary
Cd with blood age acceleration. The study reports no significant differences in mean age acceleration
between the groups and no associations with urinary Cd. However, secondary analyses revealed 20 of the
353 DNAm-age CpGs were differentially methylated between the high and low exposure groups. In
reviewing the CpGs differentially expressed between the two Cd exposure groups, four of them (EIF3I,
TNFRSF13C, ZBTBS5, and ACAP2) were also noted for being associated with one-year PM, s levels in the
Nwanaji-Enwerem et al. (2016) studies™. ZBTBS5, which is known to be involved in transcriptional
regulation, was identified in both Nwanaji-Enwerem et al. (2016) studies (using different prediction
models) and this Cd study. Future work that looks for associations of the 353 DNAm-age component CpGs
with environmental exposures could also be useful for building a deeper understanding of environmental
exposure related DNAm-age biology.

The second study related to metal exposure was a pilot study of 68 subjects examining the potential
relationships of chronic cobalt (Co) and chromium (Cr) exposure from metal-on-metal hip implants with
DNAmAA?'. 34 arthritis patients with metal on metal hip replacements and 34 arthritis patients with non-
metal hip replacements were recruited from 2009 to 2010 in the United Kingdom. There were 30 men and

4 women in each group and the average chronological age of each group was 59.7 years. Although serum
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Co and Cr levels were significantly greater in the group with metal-on-metal hip implants, the study
ultimately found no associations between metal exposure and DNAmMAA. These findings may suggest that
the exposure (metal rubbing off from implants) has a small biological impact with respect to DNA
methylation or that a larger sample size is needed to detect statistically significant changes. Regardless,
future studies exploring the relationships of metal exposure and DNAm-age will be highly useful and

informative.

7.4. Organochlorine Pesticide Exposures

To date, one study has examined the relationships of organochlorine pesticides with DNAm-age™.
This study measured three organochlorine pesticides — (4-chlorophenyl)-1,1-dichloroethene (DDE), hexa-
chlorobenzene (HCB), and transnonachlor (TNC) — in the plasma of 967 participants from the Swedish
PIVUS study. In statistical models adjusted for lifestyle and environmental factors, but not white blood cell
composition, TNC (B = 0.86, p=0.006) was significantly associated with DiffAge (defined as the difference
between DNAm-age and chronological age). DDE (B = 0.31, p=0.10) and HCB (3 = 0.15, p = 0.67) were
not significantly associated with DiffAge. This study highlights the issue of consistency in ongoing DNAm-
age research. Consistency across study design will be important for conducting future research and
interpreting the results of existing studies. Age acceleration, DNAm-age, and IEAA have all been used as
outcomes in DNAm-age research. Age acceleration is at times defined as the difference between DNAm-
age and chronological age (or vice versa) or even as the residuals from regressing DNAm-age on
chronological age. This organochloride study elects to introduce a new term “DiffAge” which has an
overlapping definition as the difference between DNAm-age and chronological age. Consistency in
nomenclature will be critical for limiting confusion, replicating findings, and conveying results to larger
scientific and lay community.

Consistency in study design is also critical to the interpretation of research findings. Again, it is

important to note that this organochloride pesticide study did not to adjust for blood cell counts in its

173



DNAm-age statistical models. In the majority of studies, researchers adjust for blood cell counts as
covariates or they simply use IEAA, which already accounts for blood cell proportions. It is widely accepted
that blood cell counts should be adjusted for unless the researchers have a biological reason for why it is
inappropriate (e.g. when HIV is the exposure and may impact DNAm-age through changes in blood cell

23,24
count™

). In a perfect world, each of the variations of DNAm-age that do account for blood cells would
result in similar findings; however, to simply believe that they would is a major assumption. A future study

showing how each of these measures does or does not vary in the context of one outcome or one biological

process could be useful for providing this needed methodologic understanding.

7.5. Conclusion

In conclusion, DNAm-age is a novel biomarker that is pertinent to human aging and aging related
conditions. Moreover, DNAm-age has been associated with a range of chemical environmental exposures
(Figure 1). Establishing a better understanding of DNAm-age’s molecular relationships will be critical for
actualizing the maximum utility of this biomarker. DNAm-age may prove to be sensitive and specific for a
particular disease that is related to environmental exposures. It may also prove to simply be a useful measure
of a more general biological process with disease implications. Developing consistency in DNAm-age

research communications/methodologies will be important for reaching either of these conclusions.

174



Air Pollution

DNAm-age
Chemical Environmental
Exposure
Relationships

Figure 1 | Reported relationships of DNAm-age with chemical environmental pollutants in
the existing literature. To date, DNAm-age has known relationships with air pollutants (e.g.
black carbon and PM, s), cadmium, and organochloride pesticides (e.g. transnonachlor).
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Appendix 1: Chapter 2 Supplementary Data

Table S1. Pearson Correlations with 1-Year Particulate Matter 2.5 (PM;s) and Black Carbon
(BC) Estimates in NAS data (2000-2011)

Particle Pearson Correlation Coefficient Number of Observations P
PM; s
1 Year - 1032 -
2 Year 0.97 436 <0.0001
3 Year 0.95 321 <0.0001
4 Year 0.91 222 <0.0001
5 Year 0.90 182 <0.0001

BC

1 Year - 898 -
2 Year 0.97 881 <0.0001
3 Year 0.95 866 <0.0001
4 Year 0.97 853 <0.0001
5 Year 0.97 829 <0.0001
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Table S2. Significant Relationships between Mean DNAm-age and
Dichotomous/Categorical Variables in All Participant Observations

Mean DNAm-age in years (SD)

Coronary heart disease Yes: 75.2 (8.10)

No: 73.5 (7.74)
P=10.002

Hypertension Yes: 74.6 (7.93)
No: 72.5 (7.60)
P <0.0001

Lifetime cancer diagnosis Yes: 75.1 (8.19)

No: 72.8 (7.34)
P <0.0001

Never: 75.7 (8.05)

Former: 73.4 (7.80)

Smoking Status Current: 73.6 (6.70)
P <0.0001%

* only the p value for T test between never and former smokers was statistically significant
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Table S3. Pearson Correlations of Continuous Variables in Participant Observations

DNAm-age PM, s BC Age Tempera- Pack years Telomere CD4 cells NK cells Monocytes  Granulo- Plasma CD8 cells
ture cytes cells
0.01
PM, 5 P=0.87
N=1032
0.03 0.41
BC P=033  P<0.0001
N =898 N =898
A 0.60 -0.18 0.02
P <0.0001 P <0.0001 P=0.48
N =1032 N =1032 N =898
Temperature -0.02 0.04 0.35 -0.03
P=0.60 P=0.20 P <0.0001 P=0.34
N=1032 N=1032 N =898 N=1032
S e -0.03 0.06 0.04 -0.12 -0.03
P=0.30 P=0.07 P=0.18 P =10.0002 P=033
N=1032 N=1032 N =898 N =1032 N =1032
Telomere -0.06 0.04 0.02 -0.03 -0.04 -0.03
P=0.08 P=0.22 P=0.54 P=0.44 P=0.30 P=0.32
N =857 N =857 N =770 N =857 N =857 N =857
CD4 cells -0.17 0.08 0.05 -0.17 -0.04 -0.01 0.01
P <0.0001 P=0.008 P=0.10 P =10.0002 P=0.16 P=0.73 P=0.77
N =1032 N =1032 N =898 N =1032 N =1032 N =1032 N =2857
NK cells 0.25 -0.05 -0.02 0.19 0.03 -0.10 -0.10 -0.14
P <0.0001 P=0.15 P=0.65 P <0.0001 P=033 P =10.002 P=0.003 P <0.0001
N =1032 N=1032 N =898 N=1032 N =1032 N =1032 N =857 N=1032
-0.10 -0.01 0.02 -0.05 0.12 0.03 -0.01 -0.28 -0.18
Monocytes P=0.004 P=0.66 P=0.50 P=0.08 P =0.0001 P=033 P=0.77 P <0.0001 P <0.0001
N =1032 N=1032 N =898 N=1032 N=1032 N =1032 N =857 N =1032 N=1032
-0.06 0.005 -0.01 0.05 -0.04 0.03 0.06 -0.50 -0.53 0.08
Granulocytes P=0.07 P=0.88 P=0.87 P=0.09 P=0.23 P=0.30 P=0.10 P <0.0001 P <0.0001 P=0.02
N=1032 N=1032 N =898 N=1032 N =1032 N =1032 N =857 N=1032 N =1032 N =1032
-0.13 -0.16 0.01 0.10 0.05 -0.02 0.03 -0.51 -0.24 0.29 0.61
Plasma cells P <0.0001 P <0.0001 P=0.82 P=0.001 P=0.14 P=039 P=043 P <0.0001 P <0.0001 P <0.0001 P <0.0001
N =1032 N =1032 N =898 N =1032 N =1032 N =1032 N =857 N =1032 N=1032 N=1032 N =1032
0.19 -0.06 0.07 0.27 0.03 0.04 -0.11 -0.39 0.36 0.10 -0.004 0.21
CD8 cells P <0.0001 P=0.05 P=0.03 P <0.0001 P=0.31 P=0.21 P=10.001 P <0.0001 P <0.0001 P=0.001 P=0.90 P <0.0001
N =1032 N=1032 N =898 N =1032 N =1032 N=1032 N = 857 N=1032 N =1032 N =1032 N=1032 N=1032
-0.20 0.005 -0.10 -0.20 -0.06 -0.07 0.05 0.13 -0.19 -0.06 0.29 0.08 -0.44
naive CD8 P <0.0001 P=0.88 P=0.004 P <0.0001 P=0.06 P=0.02 P=0.13 P <0.0001 P <0.0001 P=0.07 P <0.0001 P=0.01 P <0.0001
cells N =1032 N=1032 N =898 N =1032 N =1032 N =1032 N =857 N =1032 N=1032 N =1032 N =1032 N =1032 N=1032
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Table S4. 1-Year Particulate Matter 2.5 (PM;;s) and Black Carbon (BC) as Predictors of DNA

Methylation (DNAm) Age in Models Adjusted for 450k Plate

Particle (1 pg/m”) Difference in DNAm-age (95% CI) P N AIC
PM,; 5
Model 1 0.36 (0.15, 0.58) 0.001 1032 6320.22
Model 2 0.34 (0.12, 0.55) 0.003 1032 6334.26
Model 3 0.33(0.11, 0.55) 0.003 1032 6334.98
Model 4 0.31 (0.09, 0.53) 0.006 1032 6337.17
BC
Model 1 2.03 (-0.30, 4.36) 0.09 898 5528.47
Model 2 2.28 (-0.23, 4.79) 0.07 898 5541.63
Model 3 2.16 (-0.36, 4.68) 0.09 898 5542.51
Model 4 2.10 (-0.42, 4.62) 0.10 898 5543.39
Two-Particle Model 1 898 5527.19
PM; 5 0.33 (0.06, 0.60) 0.02
BC 0.93 (-1.57, 3.43) 0.46
Two-Particle Model 2 898 5541.51
PM, 5 0.31 (0.02, 0.60) 0.04
BC 0.93 (-1.90, 3.76) 0.52
Two-Particle Model 3 898 5542.71
PM, 5 0.30 (0.01,0.59) 0.04
BC 0.88 (-1.95, 3.71) 0.54
Two-Particle Model 4 898 5543.88
PM, 5 0.29 (-0.01,0.58) 0.06
BC 0.88 (-1.95, 3.71) 0.54

Model I: adjusted for chronological age, blood cell type, and 450k plate.

Model 2: Model 1 but additionally adjusted for temperature, pack years, smoking status, season, BMI,

alcohol consumption, and education.

Model 3: Model 2 but additionally adjusted for history of cancer, hypertension, chd, and diabetes.

Model 4: Model 2 but additionally adjusted for statins and medications for diabetes and hypertension.
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Table S5. 1-Year Particulate Matter 2.5 (PM;;s) and Black Carbon (BC) as Predictors of DNA

Methylation (DNAm) Age in Participants with Only One NAS Visit

Particle (1 pg/m’) Difference in DNAm-age (95% CI) P N AIC
PM, 5
Model 1 0.29 (-0.32, 0.90) 0.36 237 1505.79
Model 2 0.38 (-0.25, 1.01) 0.24 237 1509.82
Model 3 0.38 (-0.25, 1.01) 0.24 237 1504.55
Model 4 0.39 (-0.25, 1.02) 0.23 237 1510.27
BC
Model 1 0.31 (-3.60, 4.23) 0.88 239 1521.24
Model 2 0.46 (-3.94, 4.87) 0.84 239 1525.69
Model 3 0.76 (-3.59, 5.10) 0.73 239 1516.33
Model 4 0.70 (-3.79, 5.19) 0.76 239 1524.62
Two-Particle Model 1 239 1521.52
PM; 5 0.52 (-0.26, 1.30) 0.19
BC -0.52 (-4.68, 3.64) 0.80
Two-Particle Model 2 239 1526.55
PM, 5 0.42 (-0.39, 1.25) 0.30
BC -0.32 (-5.05, 4.39) 0.89
Two-Particle Model 3 239 1517.14
PM, 5 0.44 (-0.36, 1.23) 0.28
BC -0.04 (-4.62, 4.54) 0.99
Two-Particle Model 4 239 1525.38
PM, 5 0.45 (-0.37, 1.26) 0.28
BC -0.12 (-4.80, 4.55) 0.96

Model I: adjusted for chronological age and blood cell type.

Model 2: Model 1 but additionally adjusted for temperature, pack years, smoking status, season, BMI,

alcohol consumption, and education.

Model 3: Model 2 but additionally adjusted for history of cancer, hypertension, chd, and diabetes.

Model 4: Model 2 but additionally adjusted for statins and medications for diabetes and hypertension.
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Table S6. Seasonal Analysis of 1-Year Particulate Matter 2.5 (PM;s) and Black Carbon (BC) as
Predictors of DNA Methylation (DNAm) Age

Particle (1 pg/m”) Difference in DNAm-age (95% CI) P N AIC
PM,; 5
Spring 0.43 (-0.14, 1.00) 0.13 249 1560.31
Summer 1.13 (0.54, 1.71) 0.002 245 1541.28
Fall 0.63 (0.22, 1.03) 0.003 350 2287.70
Winter 0.37 (-0.36, 1.09) 0.29 188 1184.74
BC
Spring 2.85 (-3.18, 8.88) 0.30 219 1387.22
Summer 2.85(-7.61, 13.31) 0.36 214 1361.99
Fall 3.09 (-1.68, 7.87) 0.20 293 1930.10
Winter 2.61 (-4.02, 9.24) 0.37 172 1077.01
Two-Particle Spring 219 1386.70
PM; 5 0.59 (-0.27, 1.45) 0.14
BC 1.00 (-5.77,7.76) 0.73
Two-Particle Summer 214 1352.99
PM, 5 1.06 (-2.82, 4.93) 0.18
BC -0.11 (-32.11, 31.90) 0.97
Two-Particle Fall 293 1928.58
PM, 5 0.62 (-0.002, 1.24) 0.05
BC 0.33 (-5.22, 5.87) 0.91
Two-Particle Winter 172 1078.58
PM, 5 0.25 (-0.81, 1.31) 0.57
BC 1.68 (-6.42,9.77) 0.62

Models adjusted for chronological age, blood cell type, temperature, pack years, smoking status, BMI,

alcohol consumption, and education.
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Table S7. Pearson Correlation of Change in Particle Exposure and Change in DNAm-age in
Participants with Multiple Visits

Pearson Correlation Coefficient with Change in DNAm-age P N
Change in
Particle
PM, s -0.07 0.19 352
BC 0.08 0.17 296
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668 Total Participants with DNA
Methylation (DNAm) Age

P Participants with a Leukemia Diagnosis (N=11)

v

Eligible Participants
N =657

p Participants missing PM; s Levels (N=59)

p Participants missing Temperature (N=7)

p Participants missing other covariates (N=2)

Study Sample
N =589

Figure S1 | Eligible and ineligible participants in NAS data (2000-2011).
Figure 1 depicts the selection scheme utilized for arriving at the final study

sample.
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Appendix 2: Chapter 3 Supplementary Data

Table S1. Pearson Correlations of Particulate Matter 2.5 (PM, ) and Component
Species Concentrations Across All Study Visits

Particle (ug/m’) EC 0oC Sulfate Nitrate  Ammonium
oC 0.64
Sulfate 0.38 0.46
Nitrate 0.40 0.58 0.25
Ammonium 0.43 0.49 043 0.45
PM, 5 0.62 0.67 0.30 0.46 0.53

All Pearson correlations were significant with P < 0.0001
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Table S2. Mean 1-Year Particulate Matter 2.5 (PM,s) and
Component Species Concentrations Across First Study Visits

Particle (ug/m") Mean (SD) IQR N
PM, s 10.9 (1.41) 1.68 552
PM, s Component Species
EC 0.61 (0.18) 0.21 552
oC 3.24 (0.81) 1.00 552
Sulfate 3.87 (1.16) 0.70 552
Nitrate 1.19 (0.27) 0.36 552
Ammonium 1.13 (0.26) 0.19 552
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Table S3. 1-Year Particulate Matter 2.5 (PM;s) and Component Species as Joint Predictors of DNA Methylation (DNAm) Age Following
LASSO Selection not Accounting for Total PM, 5

Difference in Horvath DNAm-age Difference in Hannum DNAm-age

Particle for IQR (95% CI) P for IQR (95% CI) P N
Model Framework 4
PM, 20.03 (-0.58, 0.52) 0.97 ; i 940
Sulfate 0.45 (0.21, 0.69) 0.0003 ] ; 940
Ammonium 0.34 (0.002, 0.69) 0.05 ; ; 940
oC 0.42 (-0.17, 1.02) 0.16 ; ; 940

Model Framework 4: adjusted for chronological age, blood cell types, temperature, pack years, smoking status, season, BMI, alcohol
consumption, and education. No species were selected as predictors of Hannum DNAm-age.
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Table S4. Comparison of Estimated Coefficients of PM; 5, Sulfate, and Ammonium in the Main Analysis and in the Sensitivity
Analysis Where Study Visits with 1-Year PM, s Levels > 12 ng/m3 were Excluded.

PM, 5 Sulfate Ammonium

Analysis Difference in Difference in Difference in

(no. of DNAm-age DNAm-age DNAm-age

Visits) for IQR (95% CI) P for IQR (95% CI) P for IQR (95% CI) P

Main

analysis 0.18 (-0.30, 0.66) 0.45 0.51 (0.28, 0.74) <0.0001 0.36 (0.02, 0.70) 0.04
(n=940)
Sensitivity

analysis 0.12 (-0.52, 0.75) 0.72 0.50 (0.25, 0.75) 0.0001 0.46 (0.06, 0.86) 0.02
(n=823)

All models were fully adjusted.
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Table S5. Gene Ontology Results from Horvath CpGs Significantly Associated with 1-Year PM, 5
Levels

GO 1ID GO Term Genes FDR Adjusted P

GO:0006446 regulation of translational initiation RXRA, EIF3M, EIF31 0.005
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Bayesian Information
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"\
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ammonium
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Coefficient (Difference in DNAM-age for an
IQR increase in 1-Year concentration)

Lambda (%)

Figure S1 | A) The relationship between BIC, a criterion for model selection and A (lambda),
the adaptive LASSO penalty parameter, for DNAm-age not adjusting for PM, 5. The lowest
BIC occurs at A = 9. B) LASSO coefficient paths: plot of coefficient profiles for PM, s
components as a function of L. The vertical line at A = 9 denotes the penalty parameter with
the lowest BIC. At A =9, organic carbon, sulfate, and ammonium are the only PM, s
components with a non-zero coefficient. Again, these models did not adjust for total PM s
levels.
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Appendix 3: Chapter 4 Supplementary Data

Table S1. Candidate Pathway-Specific Genetic Variants

Oxidative Stress

rs number Gene Chromosome Variation Type
152284367 CAT 11 A/G Intron
rs1001179 CAT 11 A/G Promoter
rs2300181 CAT 11 A/G Intron
rs480575 CAT 11 C/T Intron
- HMOX1 22 Short/Long* Promoter
152071746 HMOX1 22 A/T Promoter
1s5995098 HMOX1 22 C/G Intron
152071749 HMOX1 22 A/G Intron
rs2071747 HMOX1 22 C/G coding sequence nonsynonymous
rs1800566 NQO1 16 C/T coding sequence nonsynonymous
rs1695 GSTP1 11 A/G coding sequence nonsynonymous
rs1799811 GSTPI 11 Ala/Val Exon
152282679 GC 4 A/C Intron
rs1155563 GC 4 C/T Intron
152301022 GCLM 1 A/G Intron
rs3170633 GCLM 1 A/G 3’end
rs4147565 GSTM1 1 Deletion coding sequence nonsynonymous
- GSTT!1 22 Deletion coding sequence nonsynonymous
Endothelial Function
rs12944039  NOS2A 17 A/G Intron
rs2297516 NOS2A 17 A/C Intron
152072324 NOS2A 17 A/C Intron
152248814 NOS2A 17 A/G Intron
152255929 NOS2A 17 A/T Intron
rs1137933 NOS2A 17 C/T coding sequence nonsynonymous
rs1800779 NOS3 7 A/G Intron
rs1799983 NOS3 7 G/T coding sequence nonsynonymous
rs2010963 VEGFA 6 C/G 5’ Untranslated Region
Metal Processing Genetic Polymorphisms
15224572 SLCI11A2 12 A/G Intron
rs422982 SLC11A2 12 A/T Intron
rs12227734 SLC11A2 12 A/G Intron
rs11837720 SLCI11A2 12 C/G Intron
rs1005559  SLCI11A2 12 A/T Intron
rs1049296 TF 3 C/T coding sequence nonsynonymous
rs1799945 HFE 6 C/G Exon
rs1800562 HFE 6 A/G Exon
rs1800435 ALAD 9 C/G coding sequence nonsynonymous

* Short corresponds to less than 25 GT-repeats (0: short/short, 1: short/long, 2: long/long)
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Table S2. Pathway-Specific Genetic Variants Selected by the Elastic Net

Oxidative Stress

rs number Variation Type Direction of Model Coefficient
152284367 A/G HT, HO +, -
rs1001179 A/G WT, HO -, +
rs2300181 A/G HT, HO +, -
rs480575 C/T HT, HO -+
rs2071746 AIT WT, HT +, -
rs5995098 C/G WT +
rs2071749 A/G HT -
152071747 C/G WT, HT i
rs1800566 C/T WT, HO -+
rs1799811 Ala/Val HT, HO -+
rs2282679 A/C WT, HO +, -
rs2301022 A/G HO +
rs3170633 A/G WT, HO -, +
Endothelial Function
152248814 A/G HO -
rs1137933 C/T WT -
rs1800779 A/G HT -

WT = Wildtype. HT = Heterozygous for polymorphism. HO = Homozygous for
polymorphism.
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Table S3. Difference in DNA-age per an IQR Increase in 1-Year Particle Level by Variant Score

Oxidative Stress

Endothelial Function

Particle Model Cohort (N = 702) Cohort (N = 779)
Difference in DNAm-age for P for Difference in DNAm-age P for N
IQR (95% CI) Interaction for IQR (95% CI) Interaction
Model 1
PM, s*Variant Score 0.08 0.52
Low (< median) 0.20 (-0.40, 0.80) 215 0.14 (-0.44, 0.72) 277
High (> median -0.64 (-1.50, 0.20) 487 0.41 (-0.32, 1.14) 502
Model 2
Sulfate*Variant Score 0.66 0.0007
Low (< median) 0.57 (0.28, 0.85) 215 0.40 (0.14, 0.67) 277
High (= median 0.47 (0.05, 0.90) 487 1.09 (0.70, 1.48) 502
Model 3
Ammonium*Variant Score 0.17 0.03
Low (< median) 0.56 (0.13, 0.98) 215 0.05 (-0.33, 0.42) 277
High (> median 0.18 (-0.26, 0.63) 487 0.64 (0.18, 1.11) 502

All models are adjusted for chronological age, blood cell type, temperature, pack years, smoking status, season, BMI, alcohol consumption, education,
lifetime cancer diagnosis, hypertension, diabetes, and coronary heart disease. Model I: Includes an interaction for PM, s and variant score. Model 2: Includes

an interaction for sulfate and variant score and is additionally adjusted for PM, 5. Model 3: Includes an interaction for ammonium and variant score and is

additionally adjusted for PM, s.
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Table S4. Pearson Correlations of DNAm-age and Serum Endothelial Function Markers

DNAm-age Age ICAM VCAM
Age P< 00001
ream Pootonl  pooid
VeAM P 00001 P 00001 Fivvecs
VEGF p= s b0 peosr Py
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Figure S1 | Difference in Serum ICAM (ng/mL) for one interquartile range increase in
1-year particle exposure according to endothelial function score (low versus high) in
the fully-adjusted linear mixed effects model.
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Figure S2 | Difference in Serum VCAM (ng/mL) for one interquartile range increase
in 1-year particle exposure according to endothelial function score (low versus high)
in the fully-adjusted linear mixed effects model.
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Appendix 4: Chapter 5 Supplementary Data

Table S1. Individual Mitochondrial Haplogroups of Study Subjects
(2000 — 2011)

Mitochondrial Haplogroup, N (%) All Visits, N = 870

77 (9)
69 (8)
369 (42)
78 (9)
99 (11)
101 (12)
31 (4)
20 (2)
26 (3)

HXE— RaOZm< A~
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Table S2. Relationships of Mitochondrial Copy Number with Age and DNAm-age (N=797) —
Sensitivity Analysis

Difference in QOutcome for

Outcome IQR (95% CI) P
Age 0.49 (-0.31, 1.29) 0.23
DNAm-age -3.23 (-4.55,-1.92) <0.0001

All models adjusted for mitochondrial haplogroup, PM, s, sulfate, ammonium, blood cell type,
temperature, pack years, smoking status, season, BMI (continuous), alcohol consumption, education,
lifetime cancer diagnosis, systolic blood pressure, diastolic blood pressure, fasting blood glucose, total
cholesterol and HDL cholesterol. DNAm-age model is also adjusted for chronological age.
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Table S3. Estimated Difference in Mitochondrial DNA Copy Number for a One-Year Increase in
DNA Methylation Age at the Previous Visit (N =316)

Difference in Copy Number

Model 95% CI) P
1 -0.005 (-0.013, 0.002) 0.16
2 -0.004 (-0.011, 0.003) 0.29

Model 1 is fully-adjusted for chronological age, blood cell type, temperature, pack years, smoking
status, PM, s, season, BMI, alcohol consumption, education, lifetime cancer diagnosis, hypertension,
diabetes, and coronary heart disease. Model 2 adjusts for the same covariates as Model 1 in addition to
the previous visit’s mitochondrial DNA copy number.
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Table S4. Mediation Analysis of Mitochondrial DNA Copy Number as a Mediator of the Relationship of PM, ;s with DNAm-age
(N=797)

% of Effect

Steps Variable B (95% CI) SE t P Sobel Z P ediation Mediated by
Mediator

Step 1

Outcome DNAm-age - - - - - - -

Predictor PM, 5 0.70 (0.20, 1.20) 0.25 2.78 0.006 - - -
Step 2

Outcome Copy Number - - - - - - -

Predictor PM, 5 -0.03 (-0.05, -0.002) 0.01 -2.11 0.04 - - -
Step 3

Outcome DNAm-age - - - - - - -

Mediator Copy Number -3.41 (-4.74, -2.09) 0.67 -5.07 <0.001 - - -

Predictor PM; 5 0.59 (0.10, 1.08) 0.25 2.38 0.02 2.26 0.02 13.6

All steps use fully-adjusted models adjusted for chronological age, blood cell type, temperature, pack years, smoking status, season, BMI,
alcohol consumption, education, lifetime cancer diagnosis, hypertension, diabetes, and coronary heart disease.
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Table S5. Mediation Analysis of Mitochondrial DNA Copy Number as a Mediator of the Relationship of PM, ;s with DNAm-age
(N=797) — Continuous Disease Variables

% of Effect

Steps Variable B (95% CI) SE t P Sobel Z P ediation Mediated by
Mediator

Step 1

Outcome DNAm-age - - - - - - -

Predictor PM, 5 0.70 (0.19, 1.20) 0.26 2.72 0.007 - - -
Step 2

Outcome Copy Number - - - - - - -

Predictor PM, 5 -0.03 (-0.05, -0.002) 0.01 -2.12 0.03 - - -
Step 3

Outcome DNAm-age - - - - - - -

Mediator Copy Number -3.48 (-4.80, -2.15) 0.67 -5.15 <0.001 - - -

Predictor PM; 5 0.59 (0.09, 1.09) 0.25 2.33 0.02 2.69 0.01 13.9

All steps use fully-adjusted models adjusted for chronological age, blood cell type, temperature, pack years, smoking status, season, BMI,
alcohol consumption, education, lifetime cancer diagnosis, systolic blood pressure, diastolic blood pressure, fasting blood glucose, total
cholesterol, and HDL cholesterol.
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Table S6. Mitochondrial Haplogroup Clusters as Independent Predictors of Mitochondrial DNA
Copy Number (N =797)

Difference in DNAm-age for

Haplogroup Cluster IQR (95% CI) P
1 JT) 0.03 (-0.03, 0.08) 0.34
2 (VH) -0.04 (-0.08, 0.001) 0.06
3 (UK) 0.06 (0.01, 0.11) 0.02
4 (IWX) -0.05 (-0.12, 0.02) 0.19

All models adjusted for chronological age, blood cell type, temperature, pack years, smoking status,
PM, 5, season, BMI, alcohol consumption, education, lifetime cancer diagnosis, hypertension, diabetes,
and coronary heart disease.
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Difference in DNAm-age (in years) for an IQR Increase

in 1-Year Particle Concentration

[ ]
Sulfate Ammonium
Haplogroup V Haplogroup V
p=0.29 p=0.03

Figure S1 | Difference in DNAm-age for one interquartile range increase in one-year
sulfate and ammonium exposure comparing participants with and without the V
mitochondrial haplogroup in fully-adjusted models mixed-effects models additionally
adjusted for nitrate exposure.

206

Haplogroup
Present




Difference in DNAm-age (in years) for a 1 Unit Increase

in Mitochondrial DNA Copy Number

Haplogroup
Present

- ® No

— AYes

Haplogroup V
p =0.001

Figure S2 | Difference in DNAm-age for a one-unit increase in mitochondrial DNA
copy number comparing participants with and without the V mitochondrial
haplogroup in the fully-adjusted mixed-effects model.
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Appendix 5: Chapter 6 Supplementary Data

Table S1. Pearson Correlations and Proportion of Particulate Matter 2.5 (PM,s) Mass of
PM, s Component Species Concentrations Across All Study Visits

Particle (ug/m’) Sulfate Ammonium
Ammonium 0.42
PM, s Mass 0.30 0.51
Proportion of PM, ;s Mass 33.2% 10.2%

All Pearson correlations were significant with P < 0.0001
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Table S2. MicroRNA Processing Gene Single Nucleotide Polymorphisms (SNPs) (N=808)

Participants

rs number Gene Chromosome Maj\?;r/i::inor Homozygous Major
Variant, N (%)

rs4961280" AGO2 8 C/A 526 (65)
rs197412 DDX20 1 T/C 321 (40)
rs3757 DGCRS 22 G/A 439 (54)
rs1640299 DGCRS8 22 G/T 233 (29)
rs13078 DICERI 14 T/A 540 (67)
rs6877842" DROSHA 5 G/C 551 (68)
rs7813 GEMIN4 17 C/T 258 (32)
rs910924" GEMIN4 17 C/T 403 (50)
rs910925 GEMIN4 17 C/G 258 (32)
rs1062923 GEMIN4 17 T/C 510 (63)
rs4968104 GEMIN4 17 T/A 417 (52)
rs784567" TARBP2 12 C/T 189 (23)
rs14035 RAN 12 C/T 401 (50)
rs11077 XPOS5 6 A/C 322 (40)

Note. YSNPs selected in DNAm-age Elastic net
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Table S3. Mean One-Year Fine Particle (PM; sless ammonium) Concentrations and MicroRNA
Processing Gene Single Nucleotide Polymorphisms (SNPs) as Joint Predictors of DNAm-age (N =
808)

Difference in DNAm-age

Predictor for IQR (95% CI) P
PM, 5 (less Ammonium) 0.51 (0.06, 0.97) 0.03
Elastic Net Selected miRNA SNPs®
rs4961280 (4GO2) -1.13 (-2.26, -0.004) 0.05
rs6877842 (DROSHA) -0.78 (-1.93, 0.37) 0.18
rs910924 (GEMIN4) -0.42 (-1.48, 0.64) 0.43
rs784567 (TARBP2) -1.32(-2.58,-0.05) 0.04

Note. Model adjusted for chronological age, blood cell type, temperature, pack years, smoking status,
season, BMI, alcohol consumption, education, lifetime cancer diagnosis, hypertension, diabetes, and
ischemic heart disease. *Values for the miRNA processing SNPs are in reference to participants whose
genotypes are homozygous for the major variant. Bold text specifies statistically significant P values
(<0.05).
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Table S4. Genemania Curated Gene Interactions

Type of Interaction

Genes Related

Genes Related

Genes Related

Genes Related to

to AGO2 to DROSHA to GEMIN4 TARBP2
Physical Interactions
IPOS LGALSI
Co-Expression
FXN AIBG AIBG BASP1
IER? C2orf60 AGBL5 CIB2
PUM3 CCNF ALOX12 DDAH?2
NOP2 CSPG5 BAZ2A DDRI
NRAS DPPS8 NRDE2 GRWDI
PAPOLG HCRTRI DEPDCI1 LRRC61
PLK1 MGC29506 EIF3I MLLT6
PRPF8 MNI1 ELAC2 MPI
TIPARP MRPS21 ENPP2 MRPL38
NR2F2 FAM3C MYOZI
PAPOLG GRIN2C NDUFA3
PTPRK GRWDI NDUFS5
SLC14A41 IER?2 SCAP
SSRP1 KCTD9 SSRP1
UCKLI K1440020 TNP1
USP10 MPI
WFSI MPP6
ZMYNDI5 NAE1
ZMYNDS8 NOP2
PLKI
PRPF8
SDC2
ZBTBS
Genetic Interactions
ABCA3 AFFI EVAIC ALKBH3
ACOTI11 CD164 DST ARSG
ALOXI2 DPPS8 IER?2 C7orf55
APOAIBP DST KHDRBS?2 CYFIPI
BCCIP EPHX?2 MGP DOLPP1
Cl10orf35 ERG SDC?2 ERG
CDHI GJD4 SEC61G FES
CHAFIB KPNAI SLC20A42 KLF2
CHI3L2 LAMA3 TNPI MAP3KS
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Table S4. Genemania Curated Gene Interactions (Continued)

CRADD LHCGR
DGKI MIBI
DPP8 NATI10

DST PDCDG6IP

FAMS50B PPPIRI6B
GALC RBPMS
GAP43 RSPRY]

GLBI TIPARP
GPR68 TOMILI
GRIA2 WES1
IL6ST ZHX1
KCNC4

KLHL35
MPP6
NAAGO
NR2F2

PAPOLG
POMC

RAPGEF1]
REEPI
RSPRY]
SGCE
SLC9A3R2
SNRPB2
ST3GAL4
SYNE1

TIPARP
TNPI
USPI10
ZBTB16

MAPKAPI
PAPOLG
RASSF4
RFC3
THUMPD3
TXNDC15
USP10
ZNF804B
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Difference in DNAm-age (in years)

According to Genotype

0- REF E REF -
|
4-
N Major Variant Heterozygous Minor Variant Major Variant Heterozygous Minor Variant
Homozygous p =0.02 Homozygous Homozygous p=0.01 Homozygous
p=0.41 p=0.54

rs4961280 (AGO2), P for trend = 0.04*

rs784567 (TARBP2), P for trend = 0.08*

Figure S1 | Difference in DNAm-age according to AGO2 and TARBP2 genotypes in fully-
adjusted linear mixed-effects models. AGO2 genotype observation counts: homozygous
major variant (N=526), heterozygous (N=257), and homozygous minor variant (N=25).
TARBP?2 genotype observation counts: homozygous major variant (N=189), heterozygous
(N=434), and homozygous minor variant (N=185). *P value for the test of linear trend
across genotypes was based on a linear mixed-effects regression model where the three
genotypes for each gene were fit as a continuous measure.
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Difference in DNAm-age (in years)

for an IQR Increase in 1-Year
PM2.5 (Less Ammonium) Concentration

P for trend =0.01*

I |

AGO2
- .GO AGO2 .AGOZ
Major Allele Minor Allele
Heterozygous
Homozygous 001 Homozygous
REF p=b p=0.38

Figure S2 | Difference in DNAm-age for one interquartile range increase in one-year PM, s
(without the ammonium component) levels comparing participants of homozygous major
variant (N=526), heterozygous (N=257), and homozygous minor variant genotypes (N=25)
for AGO?2 in fully-adjusted linear mixed effects models. *P value for the test of linear trend
across genotypes was based on a linear mixed-effects regression model where the three
AGO?2 genotypes were fit as a continuous measure.
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