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Abstract

There is a well-documented association between exposure to fine
particulate matter (PM,;) and numerous health outcomes, with some
evidence suggesting PM,  originating from coal combustion may have
different health impacts. These studies typically estimate exposure to
coal-derived PM, ; based on the presence of certain chemical tracers
measured in the air near exposed populations. Interpreting such
user-defined source profiles requires a certain degree of subjectivity
and approximation, and such approaches do not consider the
contributions of individual coal power plants. This limits their
relevance for informing air quality management interventions that
must, ultimately, be implemented at individual sources (e.g., through
scrubber installation, closing inefficient plants, etc.). Existing
literature that does focus on specific point sources uses
computationally expensive models for pollution transport, thus
limiting their applicability to only a few power plants or groups of
power plants.

In chapter one, we employ a recently-developed, reduced-complexity
air quality model to provide the first national study of the association

between long-term exposure to emissions from individual coal power
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plants and Ischemic Heart Disease hospitalization. The study provides
a novel combination of observed data, statistical methods, and tools
from environmental engineering. Rooting the approach to causal
inference methods to isolate the coal emissions/health relationship
represents an important step towards establishing the causal links
between emissions and health necessary to drive policy changes.

In chapter two, we provide the first investigation of whether a
purely statistical, data-driven approach to source-receptor mapping
can reproduce knowledge typically produced by complex chemical
transport models. The ability to do so would provide a more
computationally nimble approach to estimate S-R relationships in a
wider variety of settings. Specifically, we consider daily sulfur dioxide
(SO,) emissions from 385 coal-fired power plants operating in the U.S.
in 2005, and estimate a source-receptor mapping to 732 EPA Air
Quality System (AQS) monitor locations measuring daily fine
particulate matter (PM,;). Results were framed as an “emissions
network” — power plants and monitors are nodes and significant
associations between their daily time-series define edges in the
network — representing an annual pattern in coal emissions transport
for 2005. The results of the proposed approach were shown to hold
some promise in capturing general patterns of pollution transport and
source-specific exposures, but was limited in its ability to recover

individual source-receptor links relative to a recently proposed

v
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reduced complexity CTM. Our investigation uncovered several
statistical challenges for which we provide initial progress towards
addressing, with future refinements holding promise for improving the
fidelity of the purely statistical approach.

In chapter three, we explore the value of the statistical, data-driven
approach to source-receptor mapping to evaluate how source-receptor
relationships vary over time. Specifically, we use the statistical
methods to explore seasonal variability (winter, spring, summer, and
fall) in coal emissions transport using daily SO, emissions from
coal-fired power plants operating in the United States from 2005-2010
and daily PM, ; concentrations at air quality monitors. We fit four
emissions networks per year (one each season) from 2005-2010 and
compared them across seasons and years at various levels of
granularity. Our results point to important short-term variability in

source-receptor mappings that may not be captured in annual models.
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A Source-Oriented Approach to
Coal Power Plant Emissions Health
Effects

1.1 Introduction

Long-term exposure to ambient fine particulate matter of less than
2.5 micrometers in diameter (PM,;) has been associated with
increased mortality and morbidity related to various cardiovascular
and respiratory conditions [9, 21, 29-31]. While the association
between overall PM, ; exposure and health outcomes is
well-documented, PM, ; varies in chemical composition and there is

increasing evidence particles originating from different sources impact



health differently [19, 24, 27, 36]. The National Academy of Sciences
identified this area of research as a top priority because it “could
result in targeted control strategies that would specifically address
these sources having the most significant effects on public health”[26].

Most existing research on the comparative health effects of different
sources of PM, ; relies on source apportionment methods to apportion
PM, ; mass measured at population locations into broad source
categories, based in part on the availability of certain chemical tracers
associated with specific types of sources. Despite the value of using
source apportionment in health effects studies, such methods are
limited by their reliance on broad source categories identified by
chemical tracers. Rather, it may be valuable to estimate the health
impact associated with exposure to a specific set of point sources, for
example, all coal-fired power plants operating in the United States.
The ability to evaluate health impacts associated with specific point
sources is an important step towards providing policy-relevant
information that can inform specific, targeted interventions. Moreover,
observational epidemiological studies are particularly challenged by
the threat of confounding; areas exhibiting high exposure may share
important differences from areas with low exposure. The ubiquity of
potential confounding in studies of air pollution warrants the use of
statistical methods anchored to causal inference methodology
designed to more explicitly address the threat of confounding.

The goal of this paper is to refine and complement the existing
evidence of the health burden of coal combustion with a novel analysis
approach that uses a reduced complexity air quality model to
characterize exposure and combines this with statistical methods for
causal inference and confounding adjustment to isolate the association
between public health and emissions from a specific set of coal-fired
power plants. Specifically, we estimate the association between a

United States ZIP code having high exposure to coal combustion



emissions and ischemic heart disease (IHD), mortality from which has
been previously linked to long-term exposure to PM, [16, 25, 36].
Our study of IHD events offers additional granularity to the study of
long-term PM, ; exposure and IHD which has, to date, focused on
mortality.

We characterize coal power plant PM,  exposure with a
recently-developed, reduced-complexity air quality model called the
Intervention Model for Air Pollution (InMAP, available at
http://spatialmodel.com/inmap/).[35] Specifically, we use INMAP to
quantify the influence of coal emissions from 783 coal-fired power
generating units at over 21,000 ZIP code locations in the Northeast,
Industrial Midwest, and Southeast United States. While InMAP is
used to characterize coal emissions exposure, ZIP code level measures
of total ambient PM, ; mass concentrations come from state-of-the-art
predictions from Di et al (2016), derived from a neural-network
combining information from monitoring data, land-use regression,
remote-sensing satellite data, and GEOS-Chem simulations [8]. We
link both measures with health outcomes available among 19,726,981
Medicare beneficiaries living in these regions to isolate the association
between exposure to coal power plants and IHD events.

A key component of our analysis approach is the use of propensity
score matching, a method for confounding adjustment with
advantages over traditional regression models. Grounding the
statistical analysis to an explicit causal inference method such as
propensity score matching is essential for informing policy
interventions, particularly in observational epidemiological studies of
air pollution [10]. The matching procedure is specifically designed to
identify and mitigate the threat of confounding by framing the
investigation as a hypothetical controlled experiment where each ZIP
code is regarded as either high-exposed to coal power plant emissions

or a control location.


http://spatialmodel.com/inmap/

To our knowledge, the combination of a reduced-complexity air
quality model with modern statistical methods for causal inference
and confounding adjustment deployed in an analysis of Medicare
health outcomes and state-of-the-art data fused estimates of PM,
represents the largest scale study to date of the health impacts of coal

power plant pollution emissions.

1.2 Methods

1.2.1 Data Sources and Study Population

We compiled basic background and demographic information from the
Center for Medicare and Medicaid Services on 19,726,981 Medicare
beneficiaries residing in 21,351 ZIP codes in the Northeast, Industrial
Midwest, and Southeast regions of the United States in 2005. These
three regions account for most coal power generation in the United
States and have been subjected to national regulations intended to
limit interstate transfer of air pollution emissions. An IHD event was
defined as a hospital admission with a primary discharge diagnosis of
ICD-9 410-414, or 429. Population demographic data was augmented
with information from the US Census Bureau (year 2000) and the
CDC Behavioral Risk Factor Surveillance System. Total annual
emissions data for 783 coal-fired generating units was obtained from
continuous emissions monitors provided in the EPA’s Air Markets
Program Data (AMPD). Power plant stack features (height,
diameter) were obtained from the EPA’s National Emissions
Inventory (NEI 2014).

For a secondary analysis, we obtained PM, ; exposure predictions
for 2005, from Di et al (2016), derived from a neural-network
combining information from monitoring data, land-use regression,

remote-sensing satellite data, and GEOS-Chem simulations [8].



Ultimately, the analysis data set contained data on 21,351 U.S. ZIP
codes, each having a measure of IHD hospitalization rate in 2005,
measures of population demographics, weather, and total PM,

concentration, and a measure of coal power plant emissions exposure.

1.2.2  Classifying Coal Power Plant Exposure Using InMAP

To create the primary exposure metric, we classified each ZIP code as
either a high-exposed location to coal power plant emissions, or a
control location, by combining data on power plant emissions with the
results from InMAP. InNMAP uses output from a widely-used chemical
transport model, WRF-Chem, to estimate changes in annual average
PM, ; concentrations on a variable spatial grid attributable to annual
changes in precursor emissions at user-prescribed locations.

Total annual SO, emissions during 2005, geographic coordinates,
and stack features for each coal-fired generating unit were input into
InMAP. For each location on the variable spatial grid, InNMAP
estimated the total annual change in PM,  attributable to a 100%
emissions reduction for all coal generating units. These grid estimates
were aggregated to obtain ZIP code estimates. While the INMAP
output can be interpreted as the annual change in pg/m? of PM,
concentration, we refer to these estimates as the influence of coal
emissions and use these values simply to classify ZIP codes (recall
that total PM, mass predictions come from [8]). Based upon the
distribution of these influences, an appropriate cutoff to classify
locations as either high-exposed or control was selected, with this

cutoff varied in sensitivity analyses.

1.2.3 Confounding Adjustment with Propensity Score Matching

Isolating the association between high exposure to coal power plant

emissions and THD hospitalizations by comparing high-exposed to



control locations requires adjusting for various population and
climatological factors, also referred to as confounders, that differ
between locations in both exposure groups.

One common tool for confounding adjustment in such settings is
propensity score matching, which, in this context, attempts to match
high-exposed locations to control locations that are comparable on the
basis of possible confounding factors. Towards this goal, we estimated
propensity scores for each ZIP code as the predicted probability of
being high-exposed from a logistic regression model that included a
broad set of covariates including socioeconomic and demographic
variables, smoking rates, weather attributes, and characteristics of the
Medicare population. See Appendix A.1 for specific covariates
included in the propensity score model. A secondary analysis
augments propensity scores to include overall PM, ; mass.

After propensity score estimation, each high-exposed location was
matched to a control in the same region and with similar estimated
propensity score (see Appendix A.3 for details). After matching, the
threat of confounding can be empirically assessed by checking whether
covariate distributions are comparable in matched locations, before

conducting any analysis of IHD hospitalizations.

1.2.4 Model for IHD Hospitalizations

The outcome of interest is the number of IHD hospitalizations in the
Medicare population in 2005 in each ZIP code. Poisson regression was
used to estimate the incident rate ratio (IRR) for IHD hospitalization
comparing high-exposed to control locations in the propensity score
matched data set. All models included the covariates from the
propensity score model in the IHD model to adjust for residual
confounding remaining after the matching process. To reflect the

regional nature of air pollution, a separate Poisson regression model



was fit to the matches for each region.

1.2.5 Sensitivity Analyses

We present three sensitivity analyses. To assess the sensitivity to the
exposure cutoff defining high-exposed ZIP codes, we performed the
analysis under a range of different cutoffs delineating high coal
emissions exposed ZIP codes from controls. To assess sensitivity to
the specific propensity score method for confounding adjustment, we
analyzed the data by stratifying (instead of matching) locations on
propensity score quintile and included an indicator of propensity score
quintile in the model for IHD. This method typically results in many
more locations in the IHD analysis and helps assess sensitivity of
results to the specific locations chosen in the matching process.
Finally, to more directly address the prospect of unmeasured spatial
confounding that could arise if there are unmeasured differences
between ZIP codes that are located far from one another, an
alternative method, Distance Adjusted Propensity Score Matching
(DAPSm), was used to construct a matched data set based on
estimated propensity scores and geographic proximity of matches (see

Appendix A.4) [28].

1.2.6  Secondary Analysis: Adjusting for PM,

Importantly, results of the primary analysis do not adjust for total
PM, , mass in the propensity score or outcome models. As a
consequence, estimates of the association between high coal emissions
exposure and THD include both the impact of elevated coal emissions
themselves and any associated increase in overall ambient PM, ; mass.
As a secondary analysis, we augment the propensity score model to
include the annual average ambient PM, ; concentration at each ZIP

code. This analysis estimates the increased association between coal



emissions exposure and IHD among ZIP codes that have been
matched to have similar annual average total PM, mass. Without
restrictive assumptions, this analysis is difficult to interpret, as it
amounts to adjusting for a variable “on the causal pathway” between
coal emissions influence and THD hospitalization; some areas may
have total PM,; mass that is largely a consequence of the coal
influence exposure. Under the assumption that annual average total
PM, ; mass is not measurably affected by the high coal exposure
metric (after adjusting for other variables in the propensity score),
estimates in this secondary analysis address whether elevated coal
power plant emissions are associated with IHD among areas with the
same annual average total PM,; mass. Such a result would indicate
differential health impact of coal-derived PM,  relative to other
sources that might make up total PM,, mass; even for ZIP codes with
the same annual ambient PM, ; concentration, those with high coal
emissions exposure exhibit different health impacts. Appropriateness
of this restrictive assumption relates to whether annual average total
PM, ; mass, which is generally a consequence of many sources
(including, but not limited to power plants), is not measurably
affected by the high coal exposure metric, after adjusting for other
variables in the propensity score. Such may be the case, for example,
in areas where PM,  derived from coal power plant emissions
represents a small proportion of overall ambient average PM, ; mass
relative to other local pollution sources, or where coal emissions
exposure determines the chemical composition of the ambient average

but not the total mass.

1.3 Results

The study population experienced 537,369 IHD events in over 18

million person-years, a rate of 2856 events per 100,000 person-years.



These rates were 2657 per 100,000 in the Northeast, 3025 per 100,000
in the Industrial Midwest, and 2922 per 100,000 in the Southeast.

Table 1.3.1 contains descriptive statistics of all covariates.

1.3.1 Exposure Classification with InMAP

Figure 1.3.1 (top panel) depicts the INMAP estimates of the influence
of coal emissions on each ZIP code. We selected a cutoff value of

4.0 1g/m? in the coal emissions influence to classify locations as either
high-exposed or controls because this value is between the two modes
in the distribution (Figure 1.3.1: top). Using this cut-off, there were
6,625 high-exposed and 14,726 control locations. In terms of coal
emissions influence, the high-exposed locations were in the 80th
percentile of all U.S. ZIP codes and in the 69th percentile of ZIP

codes included in the study area.

1.3.2 Propensity Score Matching Results

High-exposed locations were matched to controls in the same region
with similar propensity scores. Figure 1.3.1 (bottom) depicts the
locations of ZIP codes in the propensity score matched data. The
matched data set consisted of 3,720 high-exposed and 3,720 controls,
which is 35% of the original 21,351 locations. There were 190,339 THD
events in over 6 million person-years in the matched data set. IHD
rates per 100,000 person-years in the high-exposed (controls) were
3170 (3162) in the Industrial Midwest, 2843 (2589) in the Northeast,
and 2853 (2720) in the Southeast. Standard diagnostics for propensity
score matching were performed (see Appendix A.3) to ensure the
comparability of the high-exposed and control locations, thus

mitigating the threat of confounding from these variables.
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Figure 1.3.1: Top - InMAP estimates of the influence of emissions from
783 coal-fired generating units (2005) on ZIP codes in the eastern U.S..
Middle - high-exposed (red) and control (blue) locations in the full data
set. Bottom - high-exposed (red) and control (blue) locations in the
propensity score matched data set.
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1.3.3 Analysis of IHD in the Matched Data

Using Poisson regression fit to the matched data in each region, the
estimated IRRs for annual IHD hospitalizations comparing
high-exposed locations to controls were 1.016 (95% CI: 0.998, 1.035)
in the Industrial Midwest, 1.077 (95% CI: 1.060, 1.094) in the
Northeast, and 1.058 (95% CI: 1.042, 1.075) in the Southeast. This
indicates a significant increase in the rate of IHD hospitalizations in
high-exposed locations in the Northeast and Southeast after adjusting
for covariates. There was no significant increase in the Industrial
Midwest.

1.3.4 Sensitivity to Propensity Score Procedure

Two sensitivity analyses, one stratifying on estimated propensity
scores instead of matching, and another using DAPS matching,
resulted in similar IRR estimates as the primary analysis. The
stratified analysis included 18,614 ZIP code locations, 87% of the full
data set, in the IHD model. For further details and results on DAPS
matching, see Appendix A.4.

1.3.5 Sensitivity to the Definition of High vs. Low Exposure

Figure 1.3.2 (top) shows estimated IRRs for the exposure/IHD
relationship for various cutoffs ranging from 3.0 to 5.0 ng/m? for
delineating high coal emissions exposed ZIP codes from controls. This
range was selected because these cutoff values are between the two
modes of the coal emissions influence distribution. In the Northeast
and Southeast, positive associations were observed at every cutoff. In
the Industrial Midwest, lower cutoffs resulted in negative associations.
Larger cutoffs in that region resulted in either small or no effects with

the point estimates becoming more positive with higher cutoffs.
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Figure 1.3.2 (bottom) shows the mean coal emissions influence in
the high-exposed and controls, by region, for the range of cutoffs. It
depicts the contrasts, in terms of the continuous coal emissions
influence, between the two exposure groups. The high-exposed
locations in the Northeast have the highest coal emissions influence
and the contrast between the high-exposed and controls is the largest
among the regions. In the Industrial Midwest, the high-exposed areas
have a comparatively low coal emissions influence and the contrasts
are the smallest. Note the IRR estimates increase with larger

contrasts in the Industrial Midwest.

1.3.6 Secondary Analysis Results: Adjusting for PM,

Analysis Industrial Midwest Northeast — Southeast

Primary 1.02 1.08 1.06

(1.00, 1.04) (1.06, 1.09) (1.04, 1.08)
Secondary 1.01 1.02 1.05

(0.99, 1.03) (1.01, 1.04) (1.03, 1.07)

Table 1.3.2: Estimated IRRs associated with IHD hospitalizations in the
primary (PM,  unadjusted) and secondary (PM,  adjusted) analyses.

Table 1.3.2 contains estimated IRRs for IHD hospitalizations
comparing high-exposed to control locations in both the primary
(PM, ; unadjusted) and secondary (PM,, adjusted) analyses, showing
that the secondary analysis yields attenuated IRRs in each region. In
interpreting these results, it is important to consider the relationship
between PM, ; and the coal influence exposure in each region.

In the Southeast, total PM,; mass concentrations in the propensity
score matched data were only slightly higher (see Appendix A.5) in
the high-exposed locations than the controls suggesting that
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high-exposed and control areas are differentiated by the amount of
coal-derived PM, , even though total annual average PM, ; mass is
similar. This provides some support for interpreting results from the
secondary analysis as effects of evelaved coal-derived emissions in
areas with similar total PM, mass. In other words, in the Southeast,
elevated coal emissions influence may be associated with increased
[HD above and beyond what might be due to associations with overall
PM, ; mass, possibly due to other characteristics of the PM, . The
lack of an association in the Industrial Midwest precludes a similar
interpretation of the secondary analysis in that region.

In the Northeast, however, there was a more pronounced
association between high-exposure and total PM,; concentrations (see
Appendix A.5), reflecting the prominent influence of coal emissions in
determining overall PM, ; mass in this region. As a result, the IRR
effect estimate in the secondary analysis was particularly attenuated
(primary IRR: 1.08, secondary IRR: 1.02). Given the lack of
independence between exposure and total PM, ; concentrations, we
cannot interpret the secondary analysis as being informative about

the relative toxicity of particles from coal emissions.

1.4 Discussion

We have deployed new computational and statistical tools to
investigate the health impact of exposure to emissions originating
from coal power plants. For this analysis, we considered populations
in 21,351 ZIP code locations in the Northeast, Industrial Midwest,
and Southeast regions of the United States and their exposure to the
emissions from 783 coal-fired generating units in 2005. Our results
showed an increased rate in IHD hospitalizations in the Northeast
(IRR: 1.08, 95% CI: 1.06, 1.09) and the Southeast (IRR: 1.06, 95%
CI: 1.04, 1.08) for high-exposed locations. Importantly, this is an
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impact on annual hospitalization rates, whereas most previous studies
of IHD admissions and air pollution have only addressed short-term
exposure and daily rates. No significant association was found in the
Industrial Midwest (IRR: 1.02, 95% CI: 1.00, 1.04). While there are
no directly comparable studies, our results are broadly consistent with
existing work. The source-apportinment analysis in Thurston et al
(2016) estimated a hazard ratio for IHD mortality of 1.05 (95% CI:
1.02, 1.08) per 10 pg/m? increase in coal combustion PM, .[36]

The lack of an association in the Industrial Midwest may be the
result of the relative spatial homogeneity in coal power plant exposure
in that region, reducing the exposure gradient used for comparison
and the ability to detect health effects. The Industrial Midwest had
the smallest difference in mean coal emissions influence between the
high-exposed and control locations. In addition, the highest and least
exposed ZIP codes were underrepresented there. In terms of coal
emissions influence, only 1.4% (5.0%) of Industrial Midwest ZIP codes
were among the highest (lowest) 10% of ZIP code exposure levels in
the propensity score matched data (for comparison, the analogous
values in the NE were 17% (16.5%)).

At lower cutoffs, negative associations estimated in the Industrial
Midwest can be attributed to controls in the matched data being
densely located in two areas with high IHD rates derived from other
causes. Specifically, coal mining in southeast Kentucky and southern
West Virginia and steel production near Lake Erie result in locally
high THD rates. [14, 20] At higher cutoffs, these areas, which are
consistently characterized as control locations, are not included in the
matched data due to more suitable controls being located elsewhere.

Losses in predictive accuracy are a potential issue for
reduced-complexity models like INMAP. It is important to reiterate
that our strategy does not use outputs from InMAP directly in the

health-outcomes analysis, it merely uses the output to characterize
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ZIP codes as “high-exposed” or controls. Thus, our design provides
robustness to losses in predictive accuracy from the use of
reduced-complexity models as we require only accurate estimates of
the relative ranking of coal emissions influence among ZIP codes.

While the propensity score analysis employed here is designed to
provide a more rigorous account of the threat of confounding, it comes
with important limitations. The method relies on a binary exposure
classification of an inherently continuous exposure. Dichotomizing the
continuous exposure permits more targeted adjustment for
confounding, including empirical assessment of the extent to which
covariates are “balanced” between high and low exposed groups.
Nonetheless, dichotomization of a continuous exposure results in a
loss of information and the inability to characterize a complete
exposure-response relationship. It can also be viewed as a type of
classical measurement error. This limitation was evident in the
Industrial Midwest, where exposures between the two groups were
closer on a continuous scale than the other regions.

Another inherent feature of the investigation is the presence of
ambient PM, ; mass as an intermediate variable “on the causal
pathway” between coal emissions influence and THD hospitalizations.
Our primary analysis did not provide any adjustment for ambient
PM, ; mass, permitting IRR estimates to include any effect of high
coal emissions influence that is due to the resulting increase in total
PM, , mass. In a secondary analysis that adjusts for PM,; in the
propensity score and outcome models, we evaluated the possibility of
interpreting results as differential effects of coal emissions influence
among areas with the same overall PM, ; mass. We provided some
evidence that the assumptions required for such interpretation are
reasonable in the Industrial Midwest and Southeast, but more
targeted analysis of this point, possibly with methods emanating from

the literature on mediation analysis or principal stratification, are
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warranted. [13, 32]
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A Data-Driven Approach to
Source-Receptor Mapping of Power
Plant Emissions to Exposed

Populations.

2.1 Introduction

Source-receptor mapping is the process of determining which
populations are impacted by the air pollution derived from the
emissions from a set of pollution sources and is a critical component
of high-stakes, public-policy interventions to improve air quality. The

central challenge is long-range pollution transport — emissions from,



for example, power plant smokestacks, chemically react in the
atmosphere and move hundreds of kilometers before reaching exposed
populations. While rich-observed data resources on emissions and
ambient air quality are increasingly available, deterministic chemical
transport models (CTMs) remain the primary tool for source-receptor
mapping, providing mathematical representations of pollution
transport processes. However, their computational burden limits the
total number of times the procedure can be practicably run in any
given investigation. Typically, implementation considers only a few
sources or groups of sources, or a limited number of scenarios
representing specific time frames or specific emissions scenarios can be
accommodated [5, 22, 23]. As deterministic physical/chemical models,
they also confront limitations in terms of uncertainty quantification
and validation [2, 4, 17, 37, 40].

A more flexible and computationally nimble approach to
source-receptor mapping could permit consideration of a wider variety
of scenarios relevant to policy evaluation, and so-called
“reduced-complexity” CTMs are generating interest for such a
purpose [35]. In a similar spirit, this paper considers methods to
leverage increasingly rich-observed data on sources and receptors
towards exploring an entirely data-driven approach: using only
observed emissions and monitored air quality measurements, we
employ a rigorous statistical modeling approach to quantify
associations between emissions from specific point sources and air
quality at a set of population locations. Specifically, we consider daily
sulfur dioxide (SO,) emissions from 385 coal-fired power plants
operating in the U.S. in 2005, and estimate a source-receptor mapping
to 732 EPA Air Quality System (AQS) monitor locations measuring
daily fine particulate matter (PM,;). The purely statistical approach,
anchored only to observed data, offers a promise of computational

scalability and flexibility relative to CTMs. In addition, the simplicity

20



of the approach has the potential to aid in transparency and
communicability in public policy assessments relative to highly
specialized and technical CTMs. However, the statistical challenges
associated with such an approach and the reliability for capturing true
source-receptor relationships have never been seriously addressed. We
aim to document both as an important first step towards statistical
and observation-based approaches to problems that have historically
been only addressed with deterministic physical-chemical models.

Towards the goal of estimating and then validating the statistical
approach, we frame a source-receptor matrix as an “emissions
network”, a directed, unweighted network with two types of nodes
(power plants and monitors). To specify the presence or absence of an
edge between any monitor/power plant pair in the network, we fit a
generalized additive model predicting the daily time-series of PM,  for
the monitoring location from the daily SO, emissions from the power
plant, adjusting for seasonality, day of the week, and weather. An
edge in the network is defined as a power plant/monitor pair with a
significant association between daily air quality at the monitor and
recent emissions from the power plant.

One statistical challenge in detecting edges in this manner is the
isolation of regional pollution patterns emanating from power plants
from those related more to local sources of pollution such as traffic,
residential heating, and local industry. To address this challenge, we
pre-process the daily pollution time series data with a spatial wavelet
decomposition following [1]. The decomposition parses the daily PM,
time series into components that vary at high spatial frequency
(presumably corresponding to variations in local sources such as
traffic) and those that vary at a low spatial frequency (presumably
corresponding to regional pollution sources). We confine estimation of
the source-receptor network to the low spatial frequency component,

as the secondary formation of PM, ( originating from power plants is
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expected to vary at a more regional scale. In this sense, the spatial
wavelet decomposition can be viewed as filtering the high-frequency
variation from local sources, which is particularly important in light of
the positioning of many monitors in the vicinity of local pollution
sources that account for most of the variability in PM, .

A second statistical challenge is the occurrence of extreme PM,
events. These events affect large geographic areas, typically for several
days, with PM, ; concentrations reaching levels several times higher
than normal. The air pollution comes from a variety of manmade
(traffic, power generation, etc) and natural sources (forest fires,
wind-blown soil, etc), and meteorological conditions during these
events facilitate its suspension in the air as fine particulate matter.
Given the relatively small day-to-day variability in PM,  on normal
days, extreme PM, ; events exert undue influence on models relating
daily emissions and PM, ; time-series. Specifically, not accounting for
these days in the model would result in many extraneous edges
between affected areas and any power plants simultaneously
increasing their emissions, regardless of proximity to the affected
areas. The spatial wavelet decomposition is not effective in filtering
these events because of the wide geographic area affected. Thus, we
adjust for temperature and relative humidity, two important
meteorological factors in extreme PM, ; events, in our models.

To assess the reliability of the approach, we evaluate our emissions
network across several domains. First, we assess its adherence to
established regional patterns in long-range pollution transport.
Second, we use the emissions network to rank monitor locations total
exposure to coal emissions and compare them to output from a
recently developed, reduced-complexity air quality model called
Intervention Model for Air Pollution (InMAP) [35]. Lastly, we
investigate correspondence between individual edges in the network
and output from InMAP.
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2.2 Methods

2.2.1 Data

We obtained daily SO, emissions data measured by continuous
monitoring systems for 385 coal-fired power plants operating in the
United States from January 1, 2005 to December 31, 2005 [38]. SO,
was selected because it is a byproduct of coal combustion and a
precursor in the formation of PM, .

We obtained PM, ; concentrations from 651 AQS monitors
operating in the eastern United States during the same time period.
Of these monitors, 82 measured the concentration daily and 569
measured the concentration every third day. For those monitors
measuring every third day, we imputed the missing values using linear
interpolation. We restricted our analysis to monitors in the eastern
United States because the majority of coal combustion for power
generation occurs in this region. The eastern United States is divided
into three regions: Industrial Midwest (IMW), Northeast (NE), and
Southeast (SE). Figure 2.2.1 depicts the geographic regions, coal

power plants, and monitors.

2.2.2  Spatial Decomposition of PM,

We used the 2-dimensional wavelet decomposition of Antonelli et al
(2017) to decompose the PM, ; spatial surface into high and low
spatial frequency components. Seven levels of wavelet functions were
estimated as in [1] and the cutoff between high (levels 6-7) and low
(levels 1-5) frequency levels determined by visual inspection. Each
day was decomposed independently of the other days. For the
remainder of this paper, PM, refers to the low frequency component

of the total PM, obtained from the decomposition, meant to
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Figure 2.2.1: Map of geographic regions, coal-fired power plants, and east-
ern AQS monitors in 2005. Large triangles: highest 20% of power plants in
terms of average daily SO, emissions.

represent the regional pollution more sensitive to secondary PM,

from regional sources.

2.2.3 Statistical Models for Emissions and Air Quality

Let PM; be the low frequency component of the total PM, on day t at
a monitor. Let SOz, be the sulfur dioxide emissions reported from a
power plant on day t (note: for simplicity, subscripts for each power
plant and monitor are excluded from SO2, and PM;). For each power
plant /monitor pair within 1000km, we fit the following generalized

additive model:

3
log(PM;) = a,+ Z B,(SO2._p) +f(t) + W+ g(temp,, humid,) +¢, t=1,...,365
I=0

(2.1)
where I = o,...,3 is the lag in days between emissions and PM,;, f(t) is

a smooth function of time (cubic regression splines with eight knots),
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and W; a vector of indicators for the day of the week. g(-) are smooth
functions (cubic regression splines with 5 degrees of freedom) of the
temperature, humidity, and an interaction between the two on day t.
The strategy for estimating the source-receptor network fits 168,084
models of this type, one for each power plant/monitor pair. As each
such model is estimated independently, computation distributed in
parallel across 150 cores required only 20 minutes of computation
time.

The smooth functions of time in the model isolates the short-term
association between emissions and PM, . This term is necessary
because seasonal trends in emissions and air quality typically result in
correlations between most power plants and monitors, regardless of
their physical proximity. During warm weather periods, power plants
increase output in response to increased energy demands, resulting in
higher emissions. At the same time, warmer temperatures enhance
the conversion of primary pollutants to PM, in the atmosphere,
resulting in higher concentrations of PM,  even for the same level of
primary pollutants. Using a smooth function of time to adjust for
seasonal trends is a common approach in studies of short-term health
effects of PM, [7, 11, 18].

The smooth functions of temperature and humidity are included to
adjust for extreme PM, ; events, which occur when air pollution is
present in certain meteorological conditions, of which temperature
and humidity are an important component. These events are typically
short-duration, lasting as short as a few days in many cases.
Therefore, the smooth function of time is not effective in removing the
influence of these extreme events on the models.

In Equation 3.1, we estimate the association between each of several
lag days in emissions and a particular day’s PM, . This reflects the
complicated nature of long-range pollution transport, as changing

weather patterns and other factors typically make emissions from
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several days contribute to air quality on a given day. While regression
estimates of the coefficients of individual lags will be highly unstable
due to multicollinearity, we focus on the overall association of several
days by summing the B coefficients. This method is also commonly
used in short-term health effects studies of air pollution [33].

For each power plant/monitor pair, the model is used to compute a
p-value testing the null hypothesis of no association between emissions
from that power plant and PM, ; at that monitor. We adjust these
p-values for multiple comparisons using the Benjamini-Hochberg
procedure. Pairs with positive overall effects and adjusted p-values less

than 0.05 are regarded as edges in the estimated emissions network.

2.2.4 Validation against long-range pollution transport patterns

Descriptive statistics of the network are provided and edge patterns
are compared to known long-range pollution transport patterns in the
United States. This level of validation is largely heuristic, designed
primarily to give a rough sense of whether the procedure corresponds

to general expectations.

2.2.5 Validation of relative monitor exposures to coal emissions

For a more refined validation, we investigate the concordance of the
emissions network to INMAP in terms of the relative exposures to coal
emissions at monitor locations. In addition, we perform a similar

comparison with annual average sulfate, a byproduct of coal emissions.

Emissions network exposure

For each edge in the network connecting a power plant to a monitor,
we define a measure of the power plant’s influence on the monitor as a
function of the geographic distance between the plant/monitor pair

and average daily emissions at the plant. Specifically, the influence of
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power plant j on monitor i is:

1

xj = W X avgemissions; X I(edge; =1) j€P,ie M (2.2)
where P and M are the sets of power plants and monitors,
respectively, distance; is the geographic distance between j and i,
avgemissions; is the average daily SO, emissions from j, and I(edge; = 1)
is 1(0) if there is (not) an edge in the emissions network between j and
i. After calculating x; for each (i,j) pair representing an edge in the
network, we obtain a single measure for each monitor by summing
over all power plants. That is, to obtain a monitor-specific quantity of
coal emissions exposure, we calculate x; = 3 ;cp x5, where x; = o for (i, )
pairs that do not have an edge in the network. This quantity is not
intended to be interpretable in an absolute sense, but to provide a
relative quantity for validating general patterns of how a given
location is impacted by pollution transport from power plants, as

derived from significant edges in the network.

InMAP exposure

We compare the quantity «x; to analogous measures of coal-emissions
exposures obtained from the reduced complexity air quality model
InMAP. InMAP uses preprocessed physical and chemical information
from a chemical transport model to estimate the annual change in
PM,; (ng/m?) at tens of thousands of U.S. locations on a variable
spatial grid attributable to user-specified changes in emissions. It is
computationally fast, allowing this task to be performed individually
for a large number of sources. Using INMAP, we estimated the annual
change in PM,  at each location on the grid associated with a 100%
reduction in the emissions from each power plant. This task was
performed individually for each of the power plants. The resulting

grid-level outputs were aggregated to obtain ZIP code level values by
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performing a spatial overlay of over ZIP code shapefiles. Monitors
were assigned the value of their ZIP code. The result is an
InMAP-derived analog to x;, denoted with x***?, designed to quantify
the amount of PM, ( at a given monitor i attributable to SO,
emissions from power plant j. The sum over all power plants is
calculated for each monitor location (x"4"), and compared against

the analogously-calculated «;.

Sulfate exposure

Sulfate is a byproduct of coal combustion and is measured by a small

subset of AQS monitors measuring PM, ;. For these monitors, we

sulfate
; .

compare x; to the annual average sulfate, x

2.2.6 Validation of edge selection

Finally, we investigate the correspondence of estimated edges between
individual sources and receptors in the network and InMAP output.
Note that InNMAP does not produce “edges” directly, rather, it
provides a continuously-scaled measure of the relationship between
sources and receptors. To investigate correspondence with the
estimated edges in the network, we use INMAP output to first classify
power plant/monitor pairs as “High InMAP pairs” or “Low InMAP
pairs” based on a percentile cutoff in the distribution of InMAP
output. Then, we compare the percent of estimated network edges
among power plant/monitor pairs classified as “high INMAP pairs” to
the percent of estimated network edges among power plant/monitor
pairs classified as “low INMAP pairs.” Correspondence between the
estimated network and InMAP would be indicated by a comparatively
high percent of estimated edges among High InMAP pairs. A variety
of cutoffs for defining high /low InNMAP pairs were considered to

evaluate sensitivity.
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2.3  Results

2.3.1 Descriptive statistics

Figure 2.3.1 shows the total daily SO, emissions from coal-fired power

plants in 2005 and the average daily PM, ; by region.
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Figure 2.3.1: Total sulfur dioxide (SO,) emissions in tons from coal power
plants and average fine particulate matter (PM, ) in pg/m? by region in
2005.

Table 2.3.1 is a summary of power plant and monitor characteristics
by region. We considered 168,084 power plant/monitor pairs and
corresponding models of the form (3.1). Based on estimates from the
models, 25,221 pairs (22.3%) resulted in edges in the emissions

network.
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Industrial
Midwest Northeast Southeast

power plants 125 63 73
avg daily SO2 emissions (tons)  59.4 61.3 4.7
avg stdev (tons) 43.3 37.3 46.5
median degree 70 25 25
unlinked power plants 8 ) 7
monitors 223 180 248
avg daily PM,; (pg/m?) 144 134 13.7
avg stdev in daily PM, (pg/m?) 5.2 4.9 4.0
median degree 58 39 33
unlinked monitors 1 0 6

Table 2.3.1: Summary of power plant and monitor characteristics by re-
gion.

2.3.2  Power plant and monitor connectivity

Figure 2.3.2 depicts node degree (number of connected edges)
distributions for monitors (a) and power plants (b). Five monitors did
not link to any power plants because of insufficient measurements.
These monitors made PM, ; measurements on less than 30 days each
during the year and were removed from the remainder of the analyses.
The power plant degree distribution is highly skewed, most power
plants link to a few or no monitors. Many factors influence whether
power plants form edges with monitors. For example, power plants
operating continuously throughout the year were more likely to be
high degree than those that operate intermittently. Appendix B.1
investigates other factors associated with power plant connectivity in
the network, indicating the importance of factors such as operating

frequency, average emissions, and emissions variability.
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Figure 2.3.2: Histogram of degree distributions for monitors and power
plants.

2.3.3 Validation against long-range pollution transport patterns

Figure 2.3.3 depicts the distance and direction from power plants to
monitors by power plant region for various aspects of the estimated
emissions network. Row 1 depicts the number of power plant/monitor
pairs available in each region, regardless of whether they are
connected with an edge, and simply describes where the monitors are
located in relation to the power plants. Row 2 depicts the distance
and direction of estimated edges and describes where the linked
monitors are located in relation to the power plants. Row 3 depicts
the percent of monitors within 250km of power plants resulting in
edges. Rows 4-6 depict similar percentages for 250-500, 500-750, and
750-1000km, respectively.

For Industrial Midwest power plants, most monitors are located to
the east, southeast, and south (Figure 2.3.3, row 1). Monitors to the
east are most likely to be linked as distance increases. For Northeast

power plants, monitors are typically located to the west and
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Figure 2.3.3: Compass direction from power plants to monitors by power
plant region. The y-axis variable is the same across rows (row 1 - count of
monitor /power plant pairs, row 2 - count of edges, rows 3 to 6 - percent of
pairs that are edges). Colors represent four distance categories.
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southwest. However, these power plants are much more likely to be
linked to monitors to the east and northeast, consistent with weather
patterns in the region. This is particularly evident in the highest
distance category, where power plants link almost exclusively to
monitors to the east and to very few of the many monitors located to
the west and southwest. For Southeast power plants, there is not a

dominant transport pattern.

2.3.4 Validation of relative monitor exposures to coal emissions
InMAP

Figure 2.3.4 depicts the relative exposures to coal emissions at
monitors using the emissions network and an analogous measure from
InMAP. Spearman’s rank-order correlation coefficient comparing the
methods is 0.80, 0.40, and 0.63 in the Industrial Midwest, Northeast,
and Southeast, respectively. See Appendix B.2 for a more detailed

comparison of the two methods.

(a) Emissions network (b) InMAP

Figure 2.3.4: Relative exposures to coal emissions at monitors using the
emissions network and InMAP. Lighter monitors are higher exposed.
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Sulfate

Figure 2.3.5 depicts the network-derived exposure and annual average
sulfate at monitors for 163 monitors measuring both PM, ; and
sulfate. Spearman’s rank-order correlation coefficient are 0.67 in the
Industrial Midwest, 0.70 in the Northeast, and 0.33 in the Southeast.

(a) Emissions network (b) Sulfate

Figure 2.3.5: Exposures to coal emissions estimated from the network and
annual average sulfate. Lighter monitors are higher exposed.

2.3.5 Validation of individual edge selection

Table 2.3.2 compares edge percents in high InNMAP to low InMAP
power plant pairs for two different cutoff values. Edges were more
likely to form between high INMAP pairs in the Northeast for both
cutoffs. Edges were less likely in high InNMAP pairs in the Southeast

and there was no difference in the Industrial Midwest.

2.3.6 Negative Associations

There were 12,446 (11.0%) power plant monitor pairs for which the

time series models indicated significant negative associations between
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InMAP InMAP Edges Edges

Power Plant cutoff  cutoff High  Low
Region (perc.) (ng/m3) (%) (%)
IndustrialMidwest 90 0.040 0.25 0.24
Northeast 90 0.020 0.26 0.17
Southeast 90 0.039 0.12 0.19
IndustrialMidwest 80 0.015 0.24 0.24
Northeast 80 0.003 0.22 0.17
Southeast 80 0.013 0.13 0.20

Table 2.3.2: Comparison of edge percents in high InMAP vs low InMAP
pairs for two cutoffs.

daily emissions and daily ambient PM, ;. The negative associations

are discussed in the next section.

2.4  Discussion

We have explored an entirely statistical and data-driven approach to
source-receptor mapping, designed to answer questions in air pollution
research typically addressed with computationally intensive,
deterministic models. The conceptual simplicity and computational
scalability of the approach can potentially extend source-receptor
modeling over a wider variety of time frames, subsets of sources and
receptors, and regulatory scenarios than can be currently supported
by state-of-the-science chemical transport models. Anchoring the
approach exclusively to observed measurements and reasonably simple
statistical models has the potential to add transparency and
communicability to public policy assessments.

After confronting the most salient statistical challenges, the
statistically-estimated source-receptor mapping was shown to have

several strengths and several weaknesses. Our approach results in a
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network that has some of the characteristics of general pollution
transport patterns in the eastern United States. Edges from power
plants in the Industrial Midwest and Northeast were more likely to be
with montitors to the east. When compared with the output from a
reduced-complexity air quality model (InMAP), the statistical
approach characterizes the relative exposure levels to coal power plant
emissions comparably, with agreement in exposure metrics varying by
region. Some noteworthy differences between the statistical procedure
and InMAP output are discussed here. In the Industrial Midwest, the
statistical approach places higher exposures in northern Ohio, near
the Cleveland area, relative to other areas in that region. The two
methods are less correlated in the Northeast, potentially the result of
an inability to distinguish between small absolute differences in
exposure in the densely located monitors in the I-95 corridor. There is
also disagreement between relative exposures in western Pennsylvania
(Pittsburgh area) and the mid-Atlantic states, with our method
placing higher exposures at the former. The two methods are highly
correlated in the Southeast, with the biggest disagreement occurring
in locations on the Gulf of Mexico.

Statistically estimating individual power plant/monitor edges in the
network proved more challenging in terms of correspondence with the
output from the reduced-complexity CTM. There is not convincing
evidence the statistical approach can reliably identify the critical
power plant/monitor relationships determined by InMAP. The
statistical approach estimated edges at a higher rate in the high
InMAP pairs in only one region (Northeast), perhaps because these
power plants tended to operate more frequently throughout the year
and were located in a region with more consistent weather patterns.
In the Southeast, edges were actually more likely in the low InMAP
pairs. The high prevalence of large, seasonally-operating power plants

in that region may explain this contradictory result.
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Importantly, the reliability of this comparison should also be viewed
in light of the fact that InMAP contains its own limitations, and
cannot necessarily serve as a “gold standard” comparison of
source-receptor matrices. For example, INMAP’s reliance on annual
input data leads it to generally assign the highest exposures to
locations in the direction of the annual average wind vector from an
emissions source, which may in and of itself explain some lack of
correspondence with the statistical approach, in particular when
assessing edges between sources and receptors that are not connected
by consistent weather patterns. In addition, INMAP uses total annual
emissions from each power plant. Therefore, a large power plant,
operating for only a few months of the year, would have the same
impact on locations as a smaller power plant, operating continously
throughout the year, with the same annual emissions. However, the
ability of the statistical approach to detect edges from these two
power plants will be different, given its reliance on variability in
emissions and PM, ; to identify edges.

The statistical approach also relies on the low frequency component
of the wavelet decomposition of the entire ambient PM, ; surface as a
proxy for coal-derived PM, , but such decomposition is complicated
by many factors. First is the proxy nature of this strategy; while SO,
emissions from coal power plants are likely to play an important role
in regional pollution variability, the low frequency PM, ; component is
likely driven by additional sources or emissions as well. Furthermore,
areas with dense monitor coverage, typically urban, have more
information for detecting and filtering local sources of pollution, thus
providing an advantage over areas, typically rural, with sparse
monitor coverage. Despite this advantage, urban areas present their
own challenge. The large concentration of local sources (traffic,
residential heating, etc) combine to form another type of low spatial

frequency pollution, known as urban background pollution, making it
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difficult to isolate regional pollution such as power plants in the low
frequency component. Refinement of parameters in the wavelet
decomposition to account for regional differences in air pollution
sources, transport, and monitor density could result in improvements.

When statistical associations are detected between emissions and
air quality, it does not necessarily mean the emissions caused the air
quality changes. In particular, we found extreme PM, ( events, such as
regional haze, resulted in many “extraneous” edges between affected
monitors and any power plants with changing emissions during the
event, regardless of their physical proximity. These events may also
explain many of the negative associations detected between emissions
and air quality. Adjusting for weather in the time-series models was
the primary strategy for reducing the influence of these events, and
seemed to be effective when compared with unadjusted, preliminary
analyses. This strategy may result in some decreased ability to detect
edges, given the highly correlated nature of weather, emissions, and
air quality. A potential improvement to the current method would be
to filter these events by temporally decomposing the PM, ; time-series.

In addition to extreme PM, ( events, similarity of power plant
operating schedules likely leads to extraneous edges. If one power
plant impacts a location’s air quality, any plant with a similar
operating schedule is also likely to form an edge with that same
location, regardless of true transport patterns. These types of
extraneous edges may be common in the network, as many power
plants operate seasonally. For example, there was a 60% increase from
May 1st to July 1st in the number of power plants operating in 2005.
A greater understanding of operating dependencies could result in
improved filtering of extraneous edges.

The statistical models used for estimating the network in this work
were intentionally simple and designed to establish a baseline of

performance using little more than the daily time series data
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themselves. Future directions to refine the data driven approach
include adding spatial components, or some other structure, to the
models in order to share information among similar power
plants/monitor. Such models could provide more spatial consistency
to the source-receptor mappings and allow for edges to form between
pairs with characteristics that currently inhibit edges. In addition,
this feature could help filter extraneous edges and improve conditions
for comparisons with deterministic models. Lastly, our approach was
completely agnostic with regard to knowledge of pollution transport.
A refined approach could combine some knowledge from chemical

transport models into statistical models.

2.5 Conclusion

We have provided the first investigation of whether a purely statistical
data-driven approach to source receptor mapping can reproduce
knowledge typically produced by complex chemical transport models.
The ability to do so would provide a more computationally nimble
approach to estimate S-R relationships in a wider variety of settings.
The results of the proposed approach were shown to hold some
promise in capturing general patterns of pollution transport and
source-specific exposures, but was limited in its ability to recover
individual source-receptor links relative to a recently proposed
reduced complexity CTM. Our investigation uncovered several
statistical challenges for which we provide initial progress towards
addressing, with future refinements holding promise for improving the

fidelity of the purely statistical approach.
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A Longitudinal Analysis of
Source-Receptor Mappings from
Coal Power Plant Emissions

Networks.

3.1 Introduction

Recent work has explored the possibility of a purely data-driven and
statistical approach to source-receptor mapping, the process of
determining which air pollution sources affect which locations’ air
quality[6]. Such decisions are usually performed by deterministic,

chemical transport models with important limitations in flexibility



and scalability. The proposed data-driven approach, initially applied
to mapping sulfur dioxide (SO,) emissions from coal power plants to
fine particulate matter (PM, ) concentrations measured at USEPA
Air Quality System monitors in the United States in 2005, uses
statistical models to detect associations between source-specific daily
emissions time-series and location-specific daily air quality time-series.
Results were framed as an “emissions network” — power plants and
monitors are nodes and significant associations between their daily
time-series define edges in the network — representing an annual
pattern in coal emissions transport for 2005. Several aspects of the
network were consistent with known air pollution transport patterns
and output from a reduced-complexity air quality model.

One of the key advantages of the observation-based, statistical
approach over deterministic models is its flexibility; it can readily be
applied under a variety of different scenarios and time frames without
the complex setup and computational resources required for CTMs,
potentially even more flexibly than existing reduced-complexity CTMs
that rely on annual summaries [35]. In this paper, we explore the
value of this computational flexibility to evaluate how source-receptor
relationships vary over time. Specifically, we use the statistical
methods to explore seasonal variability (winter, spring, summer, and
fall) in coal emissions transport using daily SO, emissions from
coal-fired power plants operating in the United States from 2005-2010
and daily PM, ( concentrations at air quality monitors. Evidence of
seasonal variability in coal emissions exposures attributable to
weather /transport patterns could be leveraged to generate exposure
contrasts of interest in health outcomes studies. To isolate seasonal
variability from the overall downward trend in coal power generation
and increased air quality monitoring during the period, we restricted
our analysis to 168 coal power plants and 345 air quality monitors

that were continuously operating over the six year period.
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The initial work proposing the statistical approach documented two
critical statistical challenges [6]. First, it is difficult to detect
associations with coal emissions at monitors located near local sources
of pollution, such as traffic, that cause most of the day-to-day
variability at those monitors. For this reason, we perform a spatial
decomposition, each day, of PM,; concentrations across monitors
using the wavelet decomposition of [1]. Second, extreme PM,  events
result in many extraneous edges between affected monitors and power
plants varying their emissions during the event. Therefore, we adjust
for key determinants of extreme PM,  events in the time-series
models, namely, daily temperature and humidity. See [6] for more
discussion on each of these challenges.

To evaluate seasonal variability in source-receptor patterns, we fit
four emissions networks per year (one each season) from 2005-2010
and compared them across seasons and years at various levels of
granularity. First, we explored whether there is seasonal variability in
the geographic patterns of long-range air pollution transport. For
each network, we summarized the network density, defined as the
percent of possible power plant/monitor connections resulting in
edges, by compass direction from power plant to monitor. Second, we
investigated seasonal variability in coal emissions exposure at monitor
locations. In each network, the primary measure of a monitor’s
exposure to coal emissions is its degree, or number of connected power
plants. Summaries of monitor degree and year-to-year correlations are
reported. A secondary exposure measure that weights each edge by
both the distance from power plot to monitor and the emissions from
the power plant was also considered. These measures quantify
monitors’ exposures to coal emissions in general, but are agnostic to
which specific power plants are contributing to the exposures.
Therefore, lastly, we considered the consistency of specific power

plant /monitor relationships over time by measuring the concordance
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of edge/non-edge assignments between networks in consecutive years.

3.2 Methods

3.2.1 Data

Daily SO, emissions were obtained from continuous emissions
monitoring systems for coal-fired power plants operating in the United
States from December 1, 2004 to November 30, 2010 [38]. We
restricted our analysis to the 168 continuously operating power plants,
defined as operational for at least one day per season for the entire
period. The seasons were winter, spring, summer, and fall, beginning
on the first day of December, March, June, and September and ending
on the last day of February, May, August, and November, respectively.

We obtained PM, ; concentrations measured at AQS monitors
operating in the eastern United States during the same time period.
We restricted analysis to a continuously operating subset of these
monitors, defined as measuring PM, ; on at least 100 days per year for
the entire period. 345 monitors were included in the analysis. Of
them, 18% measured PM, ; concentration daily, with the remainder
measuring every third day. For these monitors, daily measurements
were estimated by linearly interpolating between consecutive

measurements.

3.2.2 Spatial decomposition and network formation

To filter local variability in PM, that is unlikely attributable to
regional sources of air pollution, we performed a spatial
decomposition of the daily PM, ; surface using the two-dimensional
wavelets method of [1]. This spatial decomposition isolates a low
spatial frequency component of the daily PM, ( surface believed to

correspond with regional pollution sources and excludes a high spatial
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frequency component believed to correspond to local sources of
pollution such as nearby traffic. The decomposition is performed on
each day independently. See [6] for a more detailed descriptun of the
decomposition.

Next, we fit four emissions networks per year (one per season) from
2005-2010. An emissions network consists of nodes — power plants and
monitors — and edges between them. Edges correspond to positive,
significant associations between power plant daily SO, emissions and
monitor PM, ; time-series, after adjusting for day of the week,
temperature, and humidity using a generalized additive model.
Specifically, for each power plant/monitor pair (for simplicity of
notation, subscripts for each are omitted in Equation 3.1) within

1000km, the model is:

3
log(PM;) = a, + Z B/(SO2.1) +f(t) + W, + g(temp,, humid,) +¢&, t=1,...,92
I=o0

(3.1)
where PM; and SO2, are the PM, ; concentration at the monitor and
SO, emissions from the power plant on day ¢, and I = o,...,3 is the lag
in days between them. f(t) is a smooth function of time (cubic
regression splines with five knots), W; a vector of indicators for the
day of the week, and g(-) are smooth functions (cubic regression
splines with 5 degrees of freedom) of the temperature, humidity, and
an interaction between the two on day t. In Equation 3.1, the
quantity of interest is the sum of the B coefficients, as coefficient
estimates for individual lags will be highly unstable due to
multicollinearity. This method is commonly used in short-term health
effects studies of air pollution [33]. For further discussion of this
model, see [6]. The strategy for estimating the source-receptor
network fits 1,391,040 models of this type, one for each power

plant/monitor pair per season per year. As each such model is
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estimated independently, computation distributed in parallel across

120 cores required 45 minutes of computation time.

3.2.3 Network Metrics for Quantifying Longitudinal S-R Variability
Seasonal variability in long-range coal emissions transport

In this section, we investigate seasonal and year-to-year variability in
geographic patterns of long-range pollution transport. Towards this
end, we summarize the network density, or percent of possible
connections resulting in edges, by geographic direction from power

plant to monitor, for each geographic region.

Seasonal variability in coal emissions exposures

In this section, we investigate seasonal and year-to-year variability in
coal emissions exposures using two measures. The first is node degree,
defined as the number of connected edges. For a monitor, it is both
an indicator of overall exposure and the scope of the intervention
required to improve air quality at the location. For a power plant, it
is an indicator of the geographic scope of the area affected by its
emissions and the value of potential emissions reductions there. For
this measure, we report both the median and year-to-year
correlations, by season.

As a secondary measure of exposure for each monitor, we weight
each edge in the network by geographic distance and average daily

SO, emissions during the period. Specifically, the weights are:

1
w; = —— X avgemissions; j € P,i€ M 3.2

! distance;; g i) (3:2)

where P and M denote the power plant and monitor sets, respectively,
distance; is the geographic distance between j and i, and avgemissions; is

the average daily SO, emissions from j. Then, we obtain a single
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exposure measure, x;, for each monitor by summing over its connected

edges.
x; = Z wil(edge; =1) i€ M (3.3)
jeP
I(edge; = 1) is 1 (0) if there is (not) an edge in the emissions network
between i and j. We use this quantity to compare relative exposures

to coal emissions in different time periods.

Seasonal variability in individual power plant/monitor relationships

In this section, we investigate the consistency of individual power
plant /monitor relationships over time, a more granular assessment
than the previous section which considered overall exposures at
monitor locations. The previous section did not consider whether the
exposures were attributable to the same or different power plants.
Here, we compare the concordance of edge/non-edge assignments
between consecutive years, by season, using three different measures.
Edge (non-edge) concordance is the percent of edges (non-edges) in
the previous year’s network that were again edges (non-edges) in the
next year’s network. Overall concordance, the percent of all agreeing

pairs, both edges and non-edges, is also reported.

3.3 Results

3.3.1 Daily emissions and air quality

Figure 3.3.1a depicts average daily and annual PM, ; concentrations
measured at AQS monitors in the eastern United States. PM,
concentrations were highest in the summer and lowest in the spring
and fall. The average annual PM,  concentration decreased 30% from
14.0 png/m3 in 2005 to 10.7 pg/m? in 2010.

Figure 3.3.1b depicts the daily total and annual daily average SO,
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emissions in thousands of tons from 2005-2010 for coal power plant

facilities operating in the United States. Coal emissions were highest

in the summer and winter. There was a 53% decrease in the average
daily emissions from 2005 to 2010 (21.0 to 9.8 thousand tons per day).

Monitor characteristics

median
distance to 2005 2010
power plants avg PM,, avg PM,;
region monitors  (km) (ng/m?) (ng/m?3)
IndustrialMidwest 105 521.4 14.7 10.9
Northeast 119 607.3 13.6 10.1
Southeast 121 671.3 13.9 10.6
Table 3.3.1: Monitor characteristics by region.
Power plant characteristics
median 2005 2010
distance to daily avg daily avg
power monitors SO, emissions SO, emissions
region plants (km) (1,000 tons) (1,000 tons)
IndustrialMidwest 83 618.6 5.24 2.46
Northeast 39 507.7 3.19 1.19
Southeast 46 659.0 3.64 1.46

Table 3.3.2: Power plant characteristics by region.
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Figure 3.3.1: Daily PM, ; and SO, emissions from 2005-2010.
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3.3.2 Network Metrics for Quantifying Longitudinal S-R Variability
Seasonal variability in long-range coal emissions transport

Winter networks were the most dense; summer networks were the
least dense. Aggregated over the six-year period, network densities
were (.25, 0.18, 0.11, and 0.17 in the winter, spring, summer, and fall,
respectively. Spring and fall were typically between summer and
winter, in terms of network density, with notable exceptions in the
spring of 2006 and the fall of 2010 in the Northeast and Industrial
Midwest. Figures 3.3.2-3.3.4 depict network density by geographic
orientation from power plant to monitor for each season in the time
period, aggregated over power plants in each geographic region. In
many networks, power plants were more likely to make connections
with monitors in specific directions. However, it does not appear that
such directional trends extend across seasons in the same year nor

across years in the same season.

Seasonal variability in coal emissions exposures

Figure 3.3.5 depicts the median monitor degree by geographic region
and season and is a measure of exposure to coal emissions during each
time period. Median monitor degrees were typically highest in the
winter and lowest in the summer. From year-to-year, they were most
variable in the winter and spring. The distribution of monitor degrees
within each season/year (these plots are not shown) were typically
symmetric about the medians depicted in Figure 3.3.5.

Figure 3.3.6 depicts the median power plant degree by geographic
region and season. It is a measure of the geographic scope of the

influence of emissions from a typical power plant. Power plants were
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Figure 3.3.2: Industrial Midwest: network density by direction from power
plants to monitors within 1000km, indicating geographic patterns in long-
range transport of coal emissions.

connected to the most monitors in the winter and the least in the
summer. There is more variability in median power plant degree

within the same season than in median monitor degree. In addition,
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Figure 3.3.3: Northeast: network density by direction from power plants
to monitors within 1000km, indicating geographic patterns in long-range
transport of coal emissions.

the distribution of power plant degrees (not shown in this paper) was

typically skewed, with most power plants linked to a small number of
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spring summer fall

winter

Figure 3.3.4: Southeast: network density by direction from power plants

to monitors within 1000km,
transport of coal emissions.

indicating geographic patterns in long-range

monitors and fewer power plants linked to many monitors.

Figure 3.3.7 depicts the correlation in monitor degrees comparing

the current year to the same season in the previous year. Large,
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Figure 3.3.5: Median monitor degree by season, describing how strongly
monitoring locations are subject to power plant pollution.
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Figure 3.3.6: Median power plant degree by season, describing the scope of
the area affected by emissions from individual power plants.

positive correlations indicate monitors linked to many (few) power

plants in the current year were also linked to many (few) power plants

in the previous year and is a measure of the consistency of exposures

from year-to-year.
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In the winter, spring, and fall, correlation are especially positive
(with fall 2008 in the Industrial Midwest an exception), potentially
indicating relative exposures are consistent across the years in that
season. In the summer, correlations were mostly negative in the
Industrial Midwest and Northeast. In 2006-2007, 2008-2009, and
2009-2010, locations that were high (low) exposed in the first year

were more likely to be low (high) exposed in the second year.
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Figure 3.3.7: Spearman’s rank-order correlation coefficient comparing
monitor degrees from year to year by season, describing the consistency
of relative exposures amongst the monitors from year to year in the same
season.

Figure 3.3.8 depicts the correlation in monitor degree between
consecutive time periods. For example, the large, positive correlations
in spring 2005 indicate similar monitors were high (low) exposed in
spring 2005 as in winter 2005. The figure shows that exposures in the
Southeast were positively correlated for the entire six-year period,
thus indicating the relative exposures amongst monitor locations in
this region were consistent over the entire time period. In Figure

3.3.8, the negative correlation comparing Summer 2006 to Spring 2006
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was the result of a one-month shift in the geographic location of
high-exposed monitors. Typically, the high-exposed monitors are
located across the Ohio River Valley and Pennsylvania. In Summer
2006, the highest exposures were located along the I-95 corridor in the
Mid-Atlantic states and southern New England (see Appendix C.1 for
detailed exposure maps). This shift was primarily the result of
Northeast power plants connecting with monitors to their west in
Spring 2006 and to their east in Summer 2006 (Figure 3.3.3). A
similar shift in high exposures away from the Industrial Midwest
occurred in Spring and Summer of 2009, but in this case, emissions
from Industrial Midwest power plants were primarily responsible
(Figure 3.3.2). Lastly, in Figure 3.3.8, the Industrial Midwest and
Northeast display very similar season-to-season relationships as each

other, with the Southeast differentiated from the other regions.
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Figure 3.3.8: Spearman’s rank-order correlation coefficient comparing
monitor degrees in consecutive time periods, describing the consistency
of relative exposures amongst the monitors from one season to the next.

Figure 3.3.9 depicts seasonal maps of the distance and emissions
weighted monitor exposures (Equation 3.3). Across seasons, the
highest exposed areas were in the Ohio River Valley and in an area
from western North Carolina to northern Alabama. Exposures were

the highest in the winter. See Appendix C.1 for individual exposure
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(c) summer (d) fall

Figure 3.3.9: Seasonal monitor exposures, averaged over 2005-2010, to coal
emissions using distance/emissions weighted edges in the networks. Lighter
areas are higher exposed.

maps for each network.

Seasonal variability in individual power plant/monitor relationships

Figure 3.3.10 depicts the edge, non-edge, and overall concordance of
power plant/monitor pairs in the network in consecutive years. Edge

concordances were typically very low, indicating that individual power
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plant /monitor relationships in the network change each year. Overall
concordance and non-edge concordance were relatively high because

network density in each time period (see Section 3.3.2) is relatively

small.
winter spring
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Figure 3.3.10: Concordance of each year’s power plant/monitor pairs with
those of the same season in the previous year.

3.4 Discussion

In this paper, we investigated the seasonal variability in several
aspects of coal emissions transport and exposures from 2005-2010
using a newly-developed, observation-based, statistical approach to
source-receptor mapping. Using this approach, four networks were fit
per year (one for each season) and assessed for seasonal variability in
coal emissions exposures, geographic patterns in long-range pollution
transport, and the stability of individual power plant/monitor

relationships over time.
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There are striking differences between winter and summer networks,
despite similar overall coal power plant emissions in these two seasons.
Daily average SO, emissions (thousands of tons) were highest in the
summer (10.9) and winter (10.2), and lowest in the fall (7.4) and
spring (6.9). Winter networks had the highest densities, median node
degrees, and weighted exposures of the four seasons. On the other
hand, summer was typically the lowest in these measures. Together,
these results point to more clearly-defined and detectable
relationships between population exposures from individual power
plants in the winter. A likely explanation is the different plume
dispersion characteristics that dominate the two seasons. In summer,
emissions plumes disperse the most both horizontally and vertically in
the atmosphere, mixing with emissions from other pollution sources
before affecting the air quality at monitors. Therefore, even though
emissions and PM, ; are high in the summer, the affects of individual
power plants are more diluted than in the winter, when plumes tend
to stay narrower.

Many individual networks exhibited clear geographic patterns in
coal emissions transport within the time period they represented, as
network densities were higher in some orientations between power
plant and monitor than others. (Figures 3.3.2-3.3.4). However, there
were no apparent seasonal or annual trends in these patterns across
different networks, which suggests significant seasonal variability in
long-range pollution transport patterns. An important implication of
high seasonal variability is annual exposures derived from annual
input-based, deterministic models may not accurately represent
shorter term exposures.

There were substantial shifts in the highest-exposed geographic
locations from spring to summer in two different years (2006,2009). In
both cases, these shifts affected the Industrial Midwest and Northeast,

but not the Southeast, in terms of relative exposures of locations
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(Figure 3.3.8. In addition, in both cases, the highest exposed
locations shifted from the Industrial Midwest, which is typical (Figure
3.3.9), to farther east in the Mid-Atlantic and southern New England
states (Figure C.1.1. There were no clear meteorological or other
explanations for these events. Further investigation of these periods
may provide valuable information on the ability of the models to
detect relationship under varying conditions.

In assessing the efficacy of our statistical approach, it is noteworthy
that year-to-year correlations in monitor degree (Figure 3.3.7) were
mostly high, but edge concordances (Figure 3.3.10) were mostly low.
Taken together, this suggests the relative exposures amongst a group
of locations were stable over time, but the specific power plants
contributing to their exposures were not. In other words, monitors
located in geographic areas with many power plants were higher
exposed, but the specific power plants contributing to the exposure
are either highly variable or cannot be reliably detected. Owing to the
complexities of atmospheric processes, the statistical approach, as
described in this paper, may only be able to capture broad trends in
air pollution transport and exposure, but not be able to reliably
determine individual power plant/monitor relationships.

Our results suggest high seasonal variability in coal emissions
transport patterns. The relatively simple methods described in this
paper could be improved in a several ways described in [6], including
adding spatial information in determining power plant/monitor
relationships and incorporating information from the output of
chemical transport models. In addition, this particular study focused
on SO, emissions. SO, gas, which is converted to sulfate (an
important PM,, component) primarily in the warmer months, is not
the only bi-product of coal burning that contributes to elevated PM, g
concentrations [34]. NO, gas is converted to nitrate (another

important PM, ; component) primarily in the winter months, and its

29



emissions are typically highly correlated with SO,. In the mid-2000s,
however, regulatory policies [39] required summertime NO, emissions
controls on power plants to reduce O, concentrations; during these
periods, NO, and SO, emissions were less correlated. Both the
differences in chemical pathways that convert NO, and SO, to PM,
and varying implementation time lines of air quality controls have the
potential to confound the results here, and suggest an opportunity for

future related work that investigates different air pollutant such as
NO,.
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A

A Source-Oriented Approach to
Coal Power Plant Emissions Health
Effects



A.1 Data Sources

Abbreviation  Description Source

PM, Average annual concentration (pg/m?) of  Di et al[§]
PM,., in 2005
(secondary analysis only)

PctOccupied Percent of housing units occupied Census 2000
PctUrban Percent residing in an urban area Census 2000
logPop log(total population) Census 2000
MedianHHInc ~ Median household income (thousands of §) Census 2000
PctHighSchool Percent with a high school degree Census 2000
PctFemale Percent female Census 2000
PctBlack Percent African-American Census 2000
PctPoor Percent living below poverty threshold Census 2000
PctMovedIn5  Percent moved in last 5 years Census 2000
MedianHValue Median house values (thousands of §) Census 2000
mean_ age Mean age of the Medicare population Medicare 2005
Female rate Percent female (Medicare pop.) Medicare 2005
White rate Percent Caucasian (Medicare pop.) Medicare 2005
avrelh Average relative humidity (2005) Di et al[§]
avtmpf Average temperature (2005) Di et al|8]
smokerate2000 County smoking rate (2000) Dwye[r—ljindgren
et al {12

Table A.1.1: Covariates included in the propensity score model.
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A.2  Geographic Regions

Figure A.2.1: United States regions (Industrial Midwest, Northeast, South-
east) included in this study.
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A.3 Propensity Score Matching

We estimated the propensity score, which is the predicted probability
of being high-exposed conditional on covariates, of each ZIP code
using logistic regression. Figure A.3.1 shows the distribution of the
estimated propensity scores for high-exposed and control locations.
The propensity score distributions are very different, indicating stark
differences in the characteristics of high-exposed and control locations
and a strong threat of confounding in unadjusted, health-outcome
comparisons. The purpose of the propensity score matching algorithm
is to match high-exposed locations to controls with similar propensity
scores.

We used a 1:1 nearest neighbor algorithm with caliper implemented
in the R Matchlt package [15]. The caliper is the maximum allowable
difference in propensity scores between matched locations. We used
calipers equal to 20% of the pooled standard deviation of the logit of
the propensity score, as suggested in Austin (2011) [3]. These calipers
were 0.38, 0.61, and 0.31 for the Industrial Midwest, Northeast, and
the Southeast, respectively.

In addition, locations with propensity scores outside the mutual
support of the two groups’ propensity scores were discarded from the
analysis to prevent extrapolation beyond the observed range of
covariate profiles common to both exposure groups.

The matching process resulted in 3,720 of the 6,625 (56%)
high-exposed locations receiving matches with similar propensity
scores. Table A.3.1 provides descriptive statistics of the matched data
set. After matching, we reviewed several diagnostics to ensure the
matching process successfully balanced covariates, which would adjust
for confounding. Figure A.3.2 depicts one common diagnostic, the
standardized mean difference, for each covariate in the raw and

propensity score matched data. The standardized mean difference is
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Figure A.3.1: Distribution of estimated propensity scores for high-exposed
(red) and control (blue) locations before matching.

the difference in means between the high-exposed and controls,
divided by the pooled standard deviation of the two groups [3].
Differences are close to zero in the matched data for each covariate in
each region, except for average temperature and humidity, indicating
that covariates in the matched data are “balanced” (on average)
between high-exposed and matched control locations. The ability to
confirm such balance is a key benefit of using propensity scores.
Average temperature and humidity were adjusted for in the outcome
model. Thus, the threat of confounding due to these factors is

minimized.
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Figure A.3.2: Standardized mean difference (SMD) between the high-
exposed and control groups for each covariate in the raw (orange) and

propensity score matched (blue) data. Variable abbreviations are in Ap-

pendix A.1.
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A.4 Distance Adjusted Propensity Score Matching

DAPSm allows the investigator to modify the relative importance of
propensity score similarity and geographic distance in selecting
matches by specifying a weight between zero (geographic distance
matching) and one (propensity score matching). Using DAPSm,
instead of propensity score matching, typically results in matched
data sets with geographically closer matches, but with some
additional covariate imbalance. In our analysis, we created DAPS
matched data sets for a range of weights using the DAPSm package in
R [28] and selected the largest weight for which the standardized
mean difference (SMD) of all covariates was less than 0.15.

Figure A.4.2 shows the SMD of each covariate in the DAPSm data
set for a range of weights. For this sensitivity analysis, we used data
sets obtained for weights 0.9975, 0.985, and 0.9975 in the Industrial
Midwest, Northeast, and Southeast, respectively. Figure A.4.1 depicts
the locations of the DAPSm data, which are geographically closer
than the propensity score matched data in Figure 1.3.1. Table A.4.1
compares the IRRs for IHD estimated using the two matching
methods.

Analysis Industrial Midwest Northeast  Southeast
Propensity Score 1.02 1.08 1.06
Matched (1.00, 1.04) (1.06, 1.09) (1.04, 1.08)
DAPS Matched  1.00 1.06 1.05

(0.98, 1.02) (1.04, 1.08) (1.03, 1.05)

Table A.4.1: Comparison of the propensity score and DAPS matched es-
timates of IRRs for IHD hospitalizations associated with high-exposure to
coal power plant emissions.
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ZIP Codes Controls High

All 14726 6625
Matched 3150 3150
Unmatched 9419 2895
Discarded 2157 580

Figure A.4.1: High-exposed (red) and control (blue) locations in the Dis-
tance Adjusted Propensity Score matched data.

A.5 Secondary Analysis

In interpreting the secondary analysis, it is important to consider the
relationship between the exposure and total PM, ; mass concentration.
When total PM, ; mass concentrations are similar in the high-exposed
and controls, the secondary analysis can be interpreted as the effects
of coal power plant influence among areas with similar total PM,
mass, indicating characteristics of the coal-derived PM,; itself, other
than just total mass, may be responsible for increased IHD.

To assess this relationship, a common measure is the standardized
mean difference, which is the difference in means between the
high-exposed and controls, divided by the pooled standard deviation
of the two groups [3]. The standardized mean differences comparing
total PM, ; mass concentration in the high-exposed and controls were
0.23, 0.96, and 0.26 in the Industrial Midwest, Northeast, and
Southeast, respectively. Further interpretations of these results are

provided in the main text.
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A Data-Driven Approach to
Source-Receptor Mapping of Plant

Emissions to Exposed Populations

B.1 Power plant characteristics by degree

Figure B.1.1 contrasts high and low degree power plants in various
characteristics. High degree power plants were those with degree

higher than the median power plant.
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Figure B.1.1: The average daily emissions (left), average standard devia-
tion in daily emissions (center), and number of operating days for power
plant by high and low degree. The median degree is out of 365 (right) by
high linked and unlinked (degree zero) power plants.

B.2 Monitor Exposures

Figure B.2.1a depicts the relative exposure of each monitor in the
Industrial Midwest to coal emissions according to the two methods.
Both methods tend to agree on the relative exposures, listed here in
increasing order, of monitors in Wisconsin, Illinois, Indiana, and West
Virginia. The emissions network ranks Ohio and Michigan higher
exposed, and Kentucky less exposed, than InMAP.

In the Northeast (Figure B.2.1b), the methods tend to agree on
New England, Virginia, and eastern Pennsylvania. The emissions
network ranks western Pennsylvania and New York higher, and parts
of the mid-Atlantic less exposed than InMAP.

In the Southeast (Figure B.2.1c), the methods mostly agree across
the region, with the most disagreement coming from the emissions
network underestimating exposures along the coast of the Gulf of

Mexico.

73



state
200 ( ® W
@ OH
150 ® Ky
@ onN
=100{ @ o wm
- [ 3 @ IL
o] O o w
r
ol @
0 50 100 150 200

(a) Industrial Midwest (p = 0.80).

@ ‘ state
150 Og @ ’ ® PA
o, i

. o .q ® MidAtl
% 100 ‘.’ % ® o o NY
BT B
50' . .
o
o4 C
0 50 100 150

(b) Northeast (p = 0.40).

state
200 : L’E‘;
.
® AR
150
L > ® AUMSI/LA
= SC/GA
< 100+
® FL
50
0 -

0 50 100 150 200

(c) Southeast (p = 0.63).

Figure B.2.1: Ranked InNMAP and emissions network exposures at monitor
locations by geographic region. p is the rank-order correlation coefficient.
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A Longitudinal Analysis of

Source-Receptor Mappings from
Coal Power Plant Emissions

Networks.

C.1  Weighted monitor exposures for each network: 2005-

2010, by season
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Figure C.1.1: Weighted coal emissions exposures by year and season from
2005 to 2010.
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