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Machine-guided design and evolution of biological systems:
from the protein to the genome scale

Abstract

Evolution has shown that mutation and selection over billions of years can produce complex

molecules and organisms that thrive in a diverse range of environments. As biological engineers,

we would like to systematize the navigation of genetic landscapes to find solutions to urgent health

and technological needs. In this thesis, I approach the engineering of biological systems from the

perspective of design. I illustrate the view of design as an iterative framework of satisfying engineer-

ing constraints while discovering and testing degrees of freedom in biological systems. Beginning at

the genome scale, I describe a software framework for encoding design rules for recoding genomes

and its application to the design of an E. coli strain using only 57 of 64 codons. The genome is be-

ing assembled and tested in 50-kilobase segments and we have verified that over 50% of the recoded

genome design can functionally complement. Where design rules break down, we leverage DNA

synthesis and genome editing to generate targeted diversity and update the design rules. Next, I

describe how a model-guided approach that prioritizes mutations to test can augment adaptive labo-

ratory evolution. A 63-codon genomically recoded organism that we previously engineered suffered

from impaired fitness and we used our approach to discover a minimal set of high-impact edits that

recover 59% of the fitness defect. Finally, I discuss ongoing work to augment design and evolution
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of proteins by training machine learning models that learn from and guide high-throughput map-

ping of fitness landscapes. I describe lessons learned in a proof-of-concept study mapping the fitness

landscape of the green fluorescent protein and implications for engineering of other proteins. The

unifying contribution of this dissertation is a demonstration at multiple scales of how to systemati-

cally integrate DNA synthesis, sequencing, high-throughput assays, and computational methods to

interrogate biological systems and learn design principles that expand our engineering capabilities.
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1
Introduction

Humans have been biological engineers for thousands of years. Long before Darwin, we began

leveraging evolution to domesticate plants and animals. Over the past century, the advent of molecu-

lar biology enabled the development of biologic drugs and industrial enzymes. Today, with compu-

tational design core to practically all fields of engineering and the ability to read and write DNA in

high-throughput, it might seem that we should have unlocked the full potential of biotechnology by

now. And yet, the ability to rationally engineer biological systems remains elusive and we continue

to depend heavily on screening and laboratory evolution. Biology arises from the the stochastic in-

teractions among an immense number of atomic and molecular interactions, making it uniquely

difficult to accurately simulate in silico. This thesis takes the perspective of embracing the empiri-

cal nature of biological engineering to develop a design discipline appropriate to the complexity of

biological systems.
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In chapter 2 I explore how design rules for recoding genomes can be encoded in software and

empirically tested through the design, synthesis, and assembly of an entire genome. The nearly-

universal genetic code is one of the fundamental examples of modularity in biology that defines

how DNA encodes the information to create proteins. The apparent redundancy of the genetic

code obscures the fact that DNA further encodes regulatory information that affect transcription

and translation and a design-forward approach can help guide testing our understanding of the rules.

I created a software tool, the Genome Engineering Toolkit (GETK), to enable the design of a syn-

thetic E. coli using only 57 of 64 codons. In addition to maintaining amino acid sequences, GETK

encodes rules for preserving RBS-binding sites and mRNA secondary structure based on biophysi-

cal prediction tools and empirical data derived from related work in our lab 1. Lessons learned from

design failures were used to guide targeted experiments to debug and update the design rules.

Sometimes there is tension between a design objective and physiological balances in an organism.

Implementing design constraints in engineered organisms can come at the cost of reduced fitness.

In chapter 3, I describe how we used multiplex genome editing, whole-genome sequencing, and

predictive modeling to discover a minimal set of detrimental mutations impairing the fitness of the

first Genomically Recoded Organism. Notably, this work illustrates that a model-guided targeted

editing approach can be more effective than using adaptive lab evolution alone for identifying causal

mutations while minimizing additional collateral mutations. This perturb, learn, and repeat pattern

of engineering is another pillar of design of biological systems.

Interpreting whole-genome sequencing data for dozens or hundreds of genomes was a bottleneck

in the above project and others in our lab. Processing this data often requires assembling an ad hoc
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computational pipeline and is prohibitive to non-bioinformaticians. In chapter 4 I describe Mill-

stone, a software platform that automates many steps of analysis and comparison of hundreds of

engineered or evolved genomes and provides a graphical user interface to make this capability gener-

ally accessible.

In chapter 5, the final part of this thesis, we apply model-guided methods to the task of engi-

neering proteins. Here, we can generate upwards of 105 genotype-phenotype pairs, allowing us to

learn and navigate a protein’s fitness landscape in pursuit of design objectives. Through a proof-of-

concept study navigating the fitness landscape of the green fluorescent protein, we gain insights into

how machine learning can improve on evolution or screening alone. We see that we can rapidly learn

the constraints that determine the protein’s function and experiment with using a machine learn-

ing model to generate diverse variants while maintaining function and optimizing on brightness. In

turn, the protein domain provides a substrate for thinking about generalization in machine learn-

ing, an important concept as the field has been swept by large neural network based models whose

remarkable efficacy is still under intensive investigation.

Despite the overwhelming complexity of biology, evolution has produced countless examples of

modularity and stable solutions to challenges across a variety of environments. This lends support

to my conviction that a more principled approach to biological design is possible. Models guide the

design of interrogative libraries and make the most of limited screening capacity. Through a series of

studies described in this thesis, I have explored how design and modeling coupled with experimental

explorations allow us to engineer the stuff of life.

The future of empirically-grounded biological design will benefit heavily from increases in the
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length of high-throughput DNA sequencing and synthesis. As we obtain more data, we can direct

our models toward better representing the complex physical principles that predict the function of

biological systems. I believe we are still a bit early in our march towards a day when we can design

biological systems entirely in silico from first principles. The path to such a future, and immediate

opportunity, lies in focusing our efforts on computationally augmenting the highly-parallel capabili-

ties of molecular biology and lab evolution.
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2
Rule-based genome design and testing

toward a 57-codon genome
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Napolitano, MG, Moosburner, M, Shrock, E, Pruitt, BW, Conway, N, Goodman, DB, Gardner, CL,
Tyree, G, Gonzales, A, Wanner, BL, Norville, JE, Lajoie, MJ, and Church, GMDesign, synthesis, and
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In this chapter, I describe a method for rule-based genome design and its application to the cre-

ation of a synthetic E. coli genome utilizing only 57 of 64 codons. This organism promises unprece-

dented industrial capabilities through genetic isolation and expansion of the available biochemical

repertoire for protein synthesis. The success of genome-scale engineering projects can be de-risked

through computational design. In particular, I describe my contribution of creating the Genome

Engineering Toolkit (GETK), a software package that facilitates genome-wide codon reassignment

that respects known biophysical constraints. At first glance, the problem of recoded organism design

would appear to require a straight-forward interpretation of the genetic code, leveraging its inherent

degeneracy to replace forbidden codons with any synonymous alternative. However, synonymous

is not the same, and changes in amino acid space may disrupt regulatory information encoded in

primary DNA sequence 2. Thus we created GETK to encode known biophysical rules and generate

genome designs that satisfy the recoding objective while anticipating and inviable designs. We have

experimentally validated 63% of recoded genes by individually testing 55 segments of 50 kilobases

each. We observed that 91% of tested essential genes retained functionality with limited fitness ef-

fect. We demonstrate identification and correction of lethal design exceptions, only 13 of which were

found in 2229 genes.

2.1 Background

Genetically modified organisms (GMOs) play increasingly critical roles in healthcare, agriculture,

and production of a number of human consumables. Modifications in commercially implemented

GMOs are typically limited to heterologous gene expression and evolution under optimizing se-
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lection. Synthetic genomes that differ radically from any known organism may expand potential

applications.

There has been considerable interest in creating minimal 3 and recoded4 genomes, but the prin-

ciples of genome design are not yet understood well enough to design them from scratch. While in

vivo genome engineering strategies may reduce the risk of creating nonfunctional genomes4,5, ra-

tional design will be indispensable for restricting the search space to create viable genomes with a

desired function.

Whole-genome synonymous codon replacement provides a mechanism to construct organisms

exhibiting genetic isolation and enhanced biological functions. Once a codon is replaced genome-

wide and its cognate tRNA is eliminated, the genomically recoded organism (GRO) can no longer

translate the missing codon4. Genetic isolation is achieved since DNA acquired from viruses, plas-

mids and other cells would be improperly translated, rendering GROs insensitive to infection and

horizontal gene transfer. In addition, proteins with novel chemical properties can be explored by

reassigning replaced codons to incorporate nonstandard amino acids (nsAAs) which function as

chemical handles for bioorthogonal reactivity and enable biocontainment of GROs6,7,8.

Building on previous work that demonstrated single stop codon replacement4, we set out to con-

struct an organism with seven codons replaced genome-wide, yielding a virus-resistant, biocontained

bacterium for industrial applications. The number of required changes far surpasses the capabilities

of in vivo editing and requires DNA synthesis of large stretches of redesigned genome.

Multiple groups have tackled the enormous task of encoding detailed genetic and biophysical

information into software as computational design rules. In particular, RNA folding software9,10
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and ribosome strength calculators 11 have enabled design of synthetic DNA parts. However, in order

to redesign an entire genome, it is necessary to 1) simultaneously take into account effects of multiple

known biological principles underlying the structure and control elements of entire chromosomal

sequences, 2) provide as output synthesizable DNA fragments satisfying the assembly strategy ready

to be assembled, and 3) incorporate data learned from empirical testing of designs to update rules

and iterate on designs.

2.2 Design of a 57-codon E. coli Genome

The Genome Engineering Toolkit (GETK) was created with the motivating goal of generating an E.

coli genome design in which all 62,214 instances of seven different codons (5.4% of all E. coli codons)

were synonymously replaced (Figure 2.1). While several synthetic genomes have been previously re-

ported 12,13,14,15,16,3,17,18, a functionally altered genome of this scale has not yet been explored (Figure 2.1

C).

Previous work suggests that codon usage alterations can affect gene expression and cellular fit-

ness in multiple ways 19,20,2,21,22,23,24. However, parsing the individual impact of each codon remains

difficult. Moreover, the number of modifications required to replace all instances of seven codons

throughout the genome is far beyond the capabilities of current single-codon editing strategies4,25.

Although it is possible to simultaneously edit multiple alleles using MAGE 26 or Cas9 27, these strate-

gies would require extensive screening using numerous oligos and likely introduce off-target muta-

tions 5. With plummeting costs of DNA synthesis, financial barriers for synthesizing entire genomes

are greatly reduced, allowing for an almost unlimited number of modifications independent of bi-
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Figure 2.1: A 57-codon E. coli genome. (A) The recoded genomewas divided into 87 segments of ~50-kb. Codons AGA,

AGG, AGC, AGU, UUA, UUG, UAGwere computationally replaced by synonymous alternatives (center). Other codons

(e.g. UGC) remain unchanged. Color-coded histograms represent the abundance of the seven forbidden codons in each

segment. (B) Codon frequencies in non-recoded (wt; E. coli MDS42) versus recoded (rc; rE.coli-57) genome. Forbidden

codons are colored. (C) The scale of DNA editing in genomes constructed by de novo synthesis. Plot area represents

DNA editing as the number of modified bp compared to the parent genome. For the current work, dark gray represents

percent of genome validated in vivo at time of publication (63%). Wt, wild-type.

ological template. Here, we developed computational and experimental tools to rapidly design and

prototype synthetic organisms.

In choosing codons for replacement, UAG (Stop) was selected because it was previously replaced

genome-wide4. AGG and AGA (Arg) are among the rarest codons in the genome, minimizing the

number of changes required. Other codons (AGC (Ser), AGU (Ser), UUG (Leu), UUA (Leu))

were chosen such that their anticodon is not recognized as a tRNA identity element by endogenous

aminoacyl-tRNA synthetases. We also considered mischarging of newly introduced aaRS/tRNA by
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endogenous aminoacyl-tRNA synthetases upon codon reassignment. Lastly, we confirmed all cho-

sen codons are recognized by a different tRNA than their synonymous codons, so that both codons

and cognate tRNA could be eliminated.

In order to minimize synthesis costs and improve genome stability, we based our 57-codon genome

on the reduced-genome E. coliMDS4228. The computational tool GETK automated synonymous

replacement of all forbidden codons occurrences in protein-coding genes while satisfying biologi-

cal and technical constraints (Figure 2.2, Figure 2.3, Table A.1). Primarily, we preserved amino acid

sequences of all coding genes, and adjusted DNA sequences to meet synthesis requirements (e.g.,

removing restriction sites, normalizing regions of extreme GC content and reducing repetitive se-

quences). Alternative codons were selected to minimize disruption of biological motifs such as ribo-

some binding sites (RBS) and mRNA secondary structure4,5, and the relative codon usage was con-

served in order to meet translational demand 29,30. If no acceptable synonymous codon was found,

the constraints were relaxed until an appropriate alternative was identified.

Forbidden codons were uniformly distributed throughout the genome, averaging ~17 codon

changes per gene. Essential genes 31, which provide a stringent test for successful codon replacement,

contained ~6.3% of all forbidden codons (3,903 of 62,214). Altogether, the recoded genome required

a total of 148,955 changes to remove all instances of forbidden codons and adjust the primary DNA

sequence for synthesis and assembly.

We parsed the recoded genome into 1256 synthesis-compatible overlapping fragments of 2-4-kb.

These were used to construct 87 segments of ~50-kb each, which are convenient for yeast assembly

and shuttling. Notably, intermediate 50-kb segments are also easier to troubleshoot than a full-size
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recoded genome or 3548 individual genes. Importantly, we estimated that each segment would con-

tain on average only ~1 potentially lethal recoding exception4,5.

Computational Genome Design Procedure and Design Rules

GETK is a general software tool for genome-wide codon replacement in a prokaryotic genome.

While existing software enables codon optimization of individual genes and operons as well as intro-

duction of manual genome changes (32, 39), no tool currently exists that can perform genome-wide

recoding in an automated fashion.

Several challenges arise when choosing synonymous codons to replace forbidden codons. First,

to ensure biological viability, it is important to maintain the fundamental features of the parent

genome, such as GC content and regulatory elements encoded by the primary nucleotide sequence.

Additionally, when forbidden codons fall in overlapping gene regions, these overlaps must be care-

fully split in a manner that avoids introducing non-synonymous mutations or disrupting regulatory

features. Finally, the computational design scheme must be compatible with the experimental tools

being used for genome construction.

To address these needs, GETK was designed according to a rule-based architecture, where user-

specified rules, encoded as python functions, serve as constraints that the software must navigate in

finding suitable synonymous codon replacements. The set of rules implemented for the rE.coli-57

genome design is described in Table A.1. Notably, while the implementation described below was

customized for this project, the software was written in a modular manner so that it can be extended

to more general applications.
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The recoding software requires two major inputs (Figure 2.2): 1) a genome template, in the form

of an annotated Genbank file. In the current work, the template was E. coliMDS42 genome (Gen-

Bank: AP012306.1). 2) A list of codons to be synonymously replaced throughout the genome, termed

“forbidden codons”. Here we replaced seven codons: AGA, AGG, AGC, AGU, UUG, UUA and

UAG. The software then automatically replaces all instances of forbidden codons, choosing syn-

onymous codons that allow the resulting sequence to best adhere to biological and technical rules

described below. The output is a Genbank file of the final genome design.

The rules guiding the design of rE.coli-57 can be divided into two major categories: 1) Preserving

biologically relevant motifs and 2) Satisfying synthesis and experimental constraints.

The automated computational design pipeline carries out the following steps (Figure 2.2):

1. Apply forbidden codon replacement in all instances of gene overlaps, considering biological
constraints.

2. Apply remaining forbidden codon replacement in each gene independently, considering
biological constraints. See discussion of graph search-based codon selection below.

3. Apply technical rules considering synthesis and assembly constraints. Modifications are made
to satisfy DNA vendor constraints, such as removal of specific restriction enzyme sites and
homopolymer sequences, and balancing of GC content. When multiple alternatives exist (e.g.
synonymous codon swaps to remove restriction enzyme site), we chose the alternative that
best satisfies design rules (minimal biological motif disruption).

4. Partition the genome into ~50 kb segments, then partition each segment into 2 - 4 kb synthe-
sis units. This final step generates the individual fragments for de novoDNA synthesis.
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Figure 2.2: Overview of the computational pipeline for genome recoding. The software accepts as input a genome

template (GenBank file) and a list of codons to be replaced. User-defined rules, both biological and technical (A-G),

are then applied to generate a new recoded genome (Genbank file). Synthesis-compatible 2 – 4 kb sequences are

generated. Rules A-G are illustrated in Figure 2.3 and further explained in Table A.1.

Graph search-based codon replacement algorithm

Each forbidden codon has ~4 synonymous codon alternatives (Figure 2.1A). We optimized for a

recoded genome design that is minimally disruptive with respect to rules that quantify deviation13



B
 Minimize changes in GC-content,
 secondary structure (ss) folding energy

 (ii)

A  Fix overlaps (202 instances) 

 (i)  Use minimal change when possible

Split overlaps, preserve RBS,
codon-shuffle homologous region

A

B
F

  Partition genome into 87 ~50 kb “segments” at
  operon boundaries

G
  Partition each “segment” into ~15 “fragments” of
  size 2 - 4 kb for vendor synthesis

E  Remove homopolymer runs to increase synthesis
 success rate (158 instances)

D
 Remove restriction cut sites
 (AaRI: 972, BsaI: 182, BsmBI: 954)

C  Replace large repeat regions with synthetic terminators
(132 instances)C

D

E

F

G

Figure 2.3: Examples of applying GETK rules. See Table A.1 for complete list of rules and guidelines.

from the wild-type sequence (e.g. secondary structure, GC content, RBS motif strength). With ~17

forbidden codons per gene, an exhaustive comparison of all possible codon modifications rapidly

approaches computational intractability, with 417 possible designs.

Thus, the GETK recoding algorithm seeks a solution that respects each rule up to a threshold,

rather than seeking a global minimum. To find a satisfactory solution, the genome-recoding prob-

lem is represented as a graph which is traversed using an algorithm based on depth first search.

Nodes in the graph represent a unique alternative gene sequence. Sibling nodes in the graph differ

in the choice of a single specific codon. Children of a node are all possible changes to the next down-
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stream codon. Each node is assigned a score quantifying deviation from wild-type with respect to

each of the scorers. Each score is a quantitative measure of deviation away from wild-type sequence

in the respective score profile for a 40-nucleotide window centered around that codon. As long as

all scores are below the thresholds for their respective profiles, a node will be expanded and pursued.

If all nodes at a level violate the threshold, the algorithm backtracks to an earlier node and chooses

a different branch. If the algorithm cannot find a solution for a particular gene, the threshold con-

straints are loosened and the search is restarted.

This algorithm ensures that the selected changes minimize disruption of biologically important

motifs. A variant of the same algorithm is applied at each stage of the pipeline including forbidden

codons, replacements and adjustments for DNA synthesis requirements.

2.3 Assembly and testing of rE.coli-57

Each ~50-kb recoded segment, carrying on average ~40 genes and ~3 essential genes, was assembled

and tested for functionality individually (Figure 2.4). Each segment was assembled in S. cerevisiae

and electroporated directly into E. coli on a low copy plasmid. Subsequent deletion of the corre-

sponding chromosomal sequence provided a stringent test for recoded genes functionality since

errors in essential genes would be lethal.

Thus far, we performed chromosomal deletions for 2229 recoded genes (55 segments), account-

ing for 63% of the genome and 53% of essential genes. Encouragingly, 99.5% of recoded genes were

found to complement wild-type without requiring any optimization. Moreover, the majority of

chromosomally deleted strains exhibited limited fitness impairment (<10% doubling-time increase)
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Figure 2.4: Experimental strategy for recoded genome validation. (A) Pipeline schematics: 1) computational design;

2) de novo synthesis of 2- to 4-kb overlapping recoded fragments; 3) assembly of 50-kb segment (orange) in S. cere-

visiae on a low copy plasmid; 4) plasmid electroporation in E. coli (wt.seg - non-recoded chromosomal segment); 5)

wt.seg is replaced by kanamycin cassette (Kan) such that cell viability depends solely on recoded gene expression; 6)

�-integrase-mediated recombination of attP and attB sequences (P- episomal, B- chromosomal); 6a,b) elimination of

residual vectors (see (C)); 7) single-copy integrated recoded segment. attL-attR sites shown in gray. Chromosomal dele-

tions were performed in E. coli TOP10. (B) PCR analysis of steps 4-7 (L- GeneRuler 1-kb plus ladder, C- TOP10 control).

Numbers correspond to schematics in (A). PCR primers shown in red. (C) Cas9-mediated vector elimination: residual

vector carrying recoded segment is targeted for digestion by Cas9 using attP-specific guide RNA (gRNA).

(Figure 2.5A).

Severe fitness impairment (>1.5-fold increase) was observed in only two strains. The causal genes

were mapped by systematically removing wild-type genes, followed by measurement of strain fitness

(Figure 2.5B-C). We found fitness impairment in segment 21 was caused by insufficient expression of

16



the recoded fatty acid biosynthesis operon rpmF-accC. Specifically, codon changes in upstream yceD

gene were found to disrupt the operon promoter. Fitness was improved when yceD codons were

altered via MAGE to preserve the overlapping promoter (Figure 2.5C). In segment 84, analysis sug-

gested three genes caused impairment of fitness, including the recoded gene ytfP which contained

a large deletion. Finally, RNA-Seq analysis of 208 recoded genes suggested the majority of genes ex-

hibit limited change in transcription level (Figure 2.5D), with only 28 genes found to be significantly

differentially expressed.

2.4 Debugging rE.coli-57 and Extending GETK Rules

To debug 50-kb segments that failed to complement, we performed an iterative process of deleting

portions of the corresponding region on the chromosome in order to identify the single gene or sub-

region that could not be complemented as designed or synthesized. Figure 2.6 illustrates this process

for Segment 44, where we localized the lethal error to the redesigned accD gene. Using Sanger se-

quencing, we compared the trouble region to the design. In several instances, a synthesis error (e.g.

deletion of up to several hundred of bases) was identified, and new synthesis product was ordered.

In the case where sequencing confirmed the assembled segment matched the design, as with accD

in segment 44, we proceeded with our troubleshooting pipeline for design exceptions. First, RBS

strength and mRNA folding were analyzed to pinpoint the cause of expression disruption 2,21,24. We

further used degenerate oligos to prototype viable alternative codons. Based on these insights, a new

recoded sequence was computationally generated (Figure 2.6B) and introduced into the recoded

segment via lambda Red recombineering. Viable clones were selected upon chromosomal deletion.
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Each design exception was identified and characterized as shown in Figure 2.6. In order to compu-

tationally redesign lethal recoded genes, we updated our algorithm in two specific ways: 1) we refined

scoring of mRNA secondary structure and 2) we added a new rule that conserves predicted inter-

nal ribosome pausing motif strengths. These updates to the algorithm were based both on MAGE

experiments as well as results from other recoding work in our lab.

Specifically, the initial design used mRNA secondary structure score calculated based on a slid-

ing window of 40 bp around the codon of interest. This simplified heuristic did not take into ac-

count the increased importance of mRNA secondary structure near the RBS and start codon of the

gene 19,21,32. We thus updated our algorithm to score mRNA secondary structure as a skewed interval

that is -30 to +100 nucleotides relative to the codon of interest. Notably, for codons in the first 100

nucleotides we center the window at the start of the gene.

The second update (conserving predicted strength of internal ribosome pausing motifs) is based

on observations suggesting that internal Shine-Delgarno motifs are a significant driver of transla-

tion dynamics 33. In the initial genome design, we did not take into account potential disruption or

unintended introduction of ribosome pausing motifs. In order to improve our codon selection al-

gorithm, we treated each codon as putatively being part of a ribosomal pausing motif. Specifically,

an AUG start codon was computationally inserted 10 bases after the codon of interest to simulate an

RBS and generate an expression score (a proxy for motif strength). To calculate the RBS score, we

use the ribosome binding site calculator 11. We then compare the relative change in predicted expres-

sion between wild-type and recoded sequence to generate the final RBS score.

We tested the new design by λ-recombineering. Lastly, the viable recoded accD gene was Sanger-
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sequenced. Interestingly, all viable clones were found to carry a specific accD sequence of that had

the N-terminal end of the improved design and the C-terminal end of the initial (lethal) design, un-

derscoring the significance of N-terminal optimization for successful synonymous codon replace-

ment 19,21. Such recombination events, which are expected due to the high degree of homology be-

tween the two gene versions, effectively shuffle the sequences and increase the search space of viable

recoded codons.

2.5 Discussion

Progress toward constructing rE.coli-57 provides crucial insights into design challenges in recod-

ing genomes. While the number of individual design exceptions encountered were relatively few,

we found that testing libraries of degenerate oligos via MAGE alone was insufficient to finding a

solution. MAGE is effective for finding a viable alternative to individuals codons, but was unable

to yield a solution for multiple codon changes simultaneously. The MAGE results were useful for

updating GETK rules, in addition to design principles learned from a parallel project in the lab 1.

In the accD case, the solution was ultimately a combination of an updated GETK design and an

adventitious recombination event, highlighting the role and opportunity for integration between

computational design and empirical investigation.

Another challenge not directly explored yet will be synthetic effects of combining multiple re-

coded regions. Individual design flaws may have a neutral or slightly negative effect, but it remains

to be determined what the effect of combinations of these changes will result in. Here again we will

need to use both design and clever experimental design to make progress.
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The utility of GETK is exhibited in the 99.5% of recoded designs proving viable. Further, our

ability to resolve the accD design exception (Figure 2.6) through extending GETK illustrates that

the software can be tuned based on empirical results. Many segments remain to be constructed and

this will require further tuning GETK rules and incorporating additional rules that capture known

biophysical principles.

The rE.coli-57 genetic code will remain unchanged until all codons and respective tRNAs and

release factors are removed (e.g. tRNA genes argU, argW, serV, leuX, leuZ, release factor prfA). Only

then can the strain be tested for novel properties and introduced with up to 4 orthogonal nsAAs.

Once complete, a genetically isolated rE.coli-57will offer a unique chassis with expanded synthetic

functionality broadly applicable for biotechnology.

The code used to design the rE.coli-57 genome is available at https://github.com/churchlab/

recoli57. GETK code is available at https://github.com/churchlab/getk.
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Figure 2.5: Phenotypic analysis of recoded strains. (A) Recoded segments were episomally expressed in the absence

of corresponding wild-type genes. Doubling time shown relative to non-recoded parent strain. (B) Localization of fit-

ness impairment in segment 21. Chromosomal genes (gray) were deleted to test for functional complementation by

recoded genes (orange). Decrease in doubling timewas observed upon deletion of rpmF-accC operon. Essential genes

are framed. (C) Fine-tuning of rpmF-accC operon promoter resulted in increased gene expression and decrease in dou-

bling time (normalized counts represent mean scaled sequencing depth). Orange: Initial promoter. Green: Improved

promoter. (D) RNA-Seq analysis of 208 recoded genes (blue, segments 21, 38, 44, 46, 70). Wild type gene expression

shown in gray. Differentially expressed recoded genes shown in red (absolute log2 fold-change >2, adjusted p-value

<0.01). Fold-changes represent the difference between expression of each gene in a given strain and the average ex-

pression of the same gene in all other strains. Inset: P-value distribution of recoded genes.
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Figure 2.6: Troubleshooting lethal design exceptions. (A) Recoded segment 44 (orange) did not support cell viability

upon deletion of the corresponding chromosomal sequence (Chr-∆seg44.0). The causative recoded gene accDwas

identified by successive chromosomal deletions (Chr-∆seg44.1-4. ‘X’ – nonviable). Essential genes are framed. (B) �-

recombination was used to exchange lethal accD sequence (accD.Initial, recoded codons in orange) with an alternative

recoded accD sequence (accD.Improved, alternative codons in blue). mRNA structure and RBSmotif strength were

calculated for both sequences. Wt shown in gray. accD nuc- the first position in each recoded codon. The resulting

viable sequence (accD.Viable) carried codons from both designs. Full sequences are provided in fig. S11. mRNA and

RBS scores - ratio between predictedmRNA folding energy (kcal/mol)9 or predicted RBS strength 11 of recoded and

non-recoded codon. 22
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Optimizing complex phenotypes through

model-guided multiplex genome
engineering

The contents of this chapter were adapted from:
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In the previous chapter, we saw how encoding design rules in software can allow generating an up-

date genome design for an E. coli using only 57 of 64 codons. We experimentally validated entire

50-kb segments and found that most design changes are permitted. However, the accumulation of

many changes or collateral mutations as a result of the engineering process can potentially result in

a fitness impaired-organism. While adaptive laboratory evolution (ALE) has traditionally been used

to optimize engineered or evolved organisms, there is a need for a method of identifying a minimal

set of high-impact tweaks in order to minimize collateral changes and avoid breaking design con-

straints. In this chapter, we present a method for identifying genomic modifications that optimize

a complex phenotype through multiplex genome engineering and predictive modeling. We apply

our method to identify six single nucleotide mutations that recover 59% of the fitness defect exhib-

ited by the 63-codon E. coli strain C321.∆A. By introducing targeted combinations of changes in

multiplex, we generate rich genotypic and phenotypic diversity and characterize clones using whole-

genome sequencing and doubling time measurements. Regularized multivariate linear regression

accurately quantifies individual allelic effects and overcomes bias from hitchhiking mutations and

context-dependence of genome editing efficiency that would confound strategies based on enrich-

ment alone.

3.1 Background

Genome editing and DNA synthesis technologies are enabling the construction of engineered organ-

isms with synthetic metabolic pathways 34, reduced and refactored genomes 18,28,15,35, and expanded

genetic codes4,36. However, genome-scale engineering can come at the cost of reduced fitness or
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suboptimal traits 18,36 caused by design flaws that fail to preserve critical biological features 36,1, syn-

thesis errors, or collateral mutations acquired during strain construction4. It remains challenging to

identify alleles that contribute to these complex phenotypes and prohibitive to test them individu-

ally. Laboratory evolution has traditionally been used to improve desired phenotypes and navigate

genetic landscapes ? ; however, this process relies on mutations that accumulate across the genome

and may disrupt synthetic designs or traits not maintained under selection. In contrast, targeted

genome engineering can alter the genome at chosen loci and can be used to target many locations

simultaneously 26. Multiplexed editing creates a large pool of combinatorial genomic changes that

can be screened or selected to find high-performing genomic designs. However, as the number of

targeted loci considered increases, it becomes difficult to interpret the significance of individual

changes. There remains a need for a method to rapidly identify subsets of beneficial alleles from a

large list of candidates in order to optimize large-scale genome engineering efforts.

Leveraging recent improvements in the cost and speed of microbial whole genome sequencing,

we present a method for identifying precise genomic changes that optimize complex phenotypes,

combining multiplex genome engineering, genotyping, and predictive modeling (Figure 3.1). Mul-

tiple rounds of genome editing are used to generate a population enriched with combinatorial di-

versity at the targeted loci. Throughout the editing process, clones from the population are subject

to whole-genome sequencing and are screened for phenotype. The genotype and phenotype data is

used to update a model which predicts the effects of individual alleles. These steps are repeated on a

reduced set of candidate alleles informed by the model, or on a new set of targets. Finally, the high-

est impact alleles are rationally introduced into the original organism, minimizing alterations to the
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organism’s original genotype while optimizing the desired phenotype.

We applied this method to the genomically recoded organism (GRO) C321.∆A, a strain of E. coli

engineered for non-standard amino acid (nsAA) incorporation4. C321.∆A was constructed by re-

placing all 321 UAG stop codons with synonymous UAA codons and deleting UAG-terminating

release factor prfA. Over the course of the construction process, C321.∆A acquired 355 off-target mu-

tations and developed a 60% greater doubling time relative to its non-recoded parent strain, E. coli

MG1655. An improved C321.∆A strain would accelerate the pace of research involving GROs and

further enable applications leveraging expanded genetic codes, including biocontainment7, virus

resistance 37 and expanded protein properties 23. We expected that a subset of the off-target muta-

tions caused a considerable fraction of the fitness defect, providing a starting hypothesis for iterative

improvement.

fitness

C321.∆A

C321.∆A.opt......

starting
strain

prioritize alleles to
modify

genotype & phenotype
combinatorially 
modified clones

update
genotype-phenotype

model

iterate with model-informed allele set

initial candidate alleles

optimized
strain with

minimal edits

e.g.: differences from ref. strain, 
synthesis/design errors,

metabolic predictions, etc.

Figure 3.1: Workflow for improving phenotypes throughmodel-guidedmultiplex genome editing. First, an initial

set of target alleles (hundreds to thousands) is chosen for testing based on starting hypotheses. These targets may

be designed based on differences from a reference strain, synthesis or design errors, or biophysical modeling. Mul-

tiplex genome editing creates a set of modified clones enrichedwith combinations of the targeted changes. Clones

are screened for genotype and phenotype, and predictivemodeling is used to quantify allele effects. The workflow is

repeated to validate and test new alleles. Beneficial alleles are combined to create an optimized genotype.
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3.2 Results

To select an initial set of candidate alleles (Figure B.1), we first used the genome engineering and anal-

ysis software Millstone 38 to analyze sequencing data from C321.∆A and to identify all mutations rela-

tive to the parental strain MG1655. Millstone uses SnpEff 39 to annotate affected genes and predicted

severity of each mutation. We further annotated each coding mutation with the growth defect of

its associated gene’s Keio collection knockout strain after 22 hours in lysogeny broth (LB_22)40.

Based on this analysis, we identified 127 mutations in proteins and non-coding RNA as the top can-

didates responsible for fitness impairment. Our candidate alleles included all frameshift and non-

synonymous mutations, mutations in non-coding RNA, and synonymous changes in genes with

LB_22 < 0.7. We partitioned the targets into three priority categories according to predicted effect

(41Additional file 2 and Additional file 3).

MAGE introduces combinations of genome edits with approximately 10-20% of cells receiving

at least one edit per cycle26. To generate a diverse population of mutants enriched for reversions at

multiple loci, we performed up to 50 cycles of MAGE in three lineages. The first lineage used a pool

of 26 oligonucleotides targeting only the highest category of mutations, the second lineage targeted

the top 49 sites, and the third lineage targeted all 127 (Figure B.1).

We sampled a total of 90 clones from multiple time points and lineages during MAGE cycling,

including three separate clones of the starting strain. We then performed whole genome sequencing

and measured doubling time for each clone. Millstone was used to process sequencing data and to

report variants for all 90 samples in parallel. We observed fitness improvement across all three lin-
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eages with a diversity of genotypes and fitness phenotypes across the multiple time points (Figure 3.2

and Figure 3.3 a,b). Clones selected from the final time point recovered 40-58% (mean 49%) of the

fitness defect compared to MG1655 and had between 5 and 15 (mean 10.2) successfully reverted mu-

tations. Of the 127 targeted mutations, 99 were observed in at least one clone, with as many as 19

successful reversions in a clone from the 127-oligo lineage. Additionally, we observed 1,329 unique de

novomutations across all clones (although only 135 were called in more than one clone), accumulat-

ing at a rate of roughly one per MAGE cycle in each clone (Figure 3.2 d,e). This elevated mutation

rate was caused by defective mismatch repair (ΔmutS), which both increases MAGE allele replace-

ment frequency and provides a source of new mutations that could improve fitness.

The combinatorial diversity produced by sampling at regular intervals between consecutive

rounds of multiplex genome engineering generates a dataset well-suited for analysis by linear re-

gression. Initially, we made a simplifying assumption that doubling time is determined by the in-

dependent effects of individual alleles and employed a first-order multiplicative model that predicts

doubling time based on allele occurrence (Methods and Supplementary Note 1). As model features,

we considered the 99 reversions and 135 de novomutations that occurred in at least two clones. Mul-

tivariate linear regression was used to fit the model, with feature coefficients indicating the predicted

effect of the respective allele. We considered several priors in selecting our specific modeling strategy:

1) we expected a small number of alleles to contribute significantly to fitness improvement; 2) the

continuous passaging nature of our experiment may allow hitchhiker alleles to become associated

with causal alleles. Thus we chose to use elastic net regularization42, which adds a weighted com-

bination of L1 and L2 terms to the objective function. To limit overfitting, we performed multiple
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Figure 3.2: Mutation dynamics overmany cycles ofMAGE allele reversion. (a) Increase in combinatorial diversity

and reversion count versus number ofMAGE cycles. (b) Number of reversions per clone vsMAGE cycle. (c) The rate

of reversions perMAGE cycle among the different allele categories, showing a higher rate per cycle for cells exposed

to all 127 oligos. (d) The number of de novomutations per clone over successiveMAGE cycles. (e) Rate of de novo

mutations perMAGE cycle. (f) The average ratio between number of de novomutations and reverted alleles perMAGE

cycle remains constant throughout the experiment. (g) Doubling time (min) improvement per clone from the C321.∆A

starting strain (top dotted line) towards the ECNR2 parent strain (bottom dotted line). Blue line is a LOESS fit.
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rounds of k-fold cross-validation (k=5) and selected alleles that were assigned a non-zero coefficient

on average. The analysis of the data obtained over 50 cycles of MAGE identified four targeted re-

versions and four de novo mutations that had the greatest putative effect on fitness (Figure 3.3 c,d

and41Additional file 4).
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Figure 3.3: Genotypic and phenotypic diversity in 87 clones sampled across 50MAGE cycles enabledmodel-guided

prioritization of top single nucleotide variants (SNVs) for further validation. (a) Percent of C321.∆A fitness defect

recovered acrossMAGE cycles (shownwith bar color and height). The number of SNVs reverted or introduced are

shown below. (b) Presence of targeted reversions and de novomutations in each clone colored according to fitness.

A subset of themost enrichedmutations are shown, ordered by enrichment (full dataset available in41Additional

file 10). (c) Examplemodel fit using top 8 alleles as features with 15 samples left out as a test set (blue points) and

used to evaluate R2. Training points are plotted in orange. The inset shows distribution of R2 values for 100 different

simulations with 15 random samples left out to calculate R2 for each. Example fit was chosen to exemplify amedian R2

value from this distribution. (d) Averagemodel fit coefficients for top 8 alleles assigned non-zero values over repeated

cross-validated linear regression (Methods) indicate their predicted contribution to fitness improvement.

To validate the eight alleles prioritized in the 50-cycle MAGE experiment, we performed nine

cycles of MAGE using a pool of eight oligos (41Additional file 4) applied to the starting C321.∆A

strain. We then screened each clone using MASC-PCR (Methods) and measured doubling time
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(Figure B.2). Modeling revealed strong effects for two reversions (hemA-T1263523C and cpxA-

A4102449G) and one de novomutation (cyaA-C3990077T), along with weaker effects for two ad-

ditional reversions (bamA-C200214T and leuS-C672170A). These mutations are discussed in Sup-

plementary Note 2. A clone with all five of these mutations was isolated and measured to have recov-

ered 51% of the fitness defect exhibited by C321.∆A. The three remaining de novo mutations did not

show evidence of improving fitness despite being highlighted in the initial modeling, illustrating the

importance of subsequent validation of model-selected alleles.

To identify mutations that further improved the fitness of C321.∆A, we extended our search to

off-target mutations occurring in regulatory regions using smaller pool sizes. We identified seven

non-coding mutations predicted to disrupt gene regulation 1 (Methods and41Additional file 5).

Applying nine rounds of MAGE followed by linear modeling identified the reversion C49765T, a

mutation in the -35 box of the folA promoter, which recovers a predicted 27% of the fitness defect

(Figure B.3).

To test whether any of the designed UAG-to-UAA mutations caused a fitness defect in the C321

background, we followed the same procedure with 20 previously recoded UAA codons predicted to

have a potentially disruptive effect (41Additional file 6). We tested reversion back to UAG in a prfA+

variant of C321 capable of terminating translation at UAG codons. We observed no evidence of a

beneficial fitness effect from any individual UAA-to-UAG reversion.

Finally, we used MAGE to introduce the best six mutations (41Additional file 7) into the orig-

inal C321.∆A strain (Methods), creating an optimized strain C321.∆A.opt that restores 59 +/- 11%

of the fitness defect in C321.∆A (Figure 3.4 a). This rationally designed strain recovered the same
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amount of fitness as the fastest clones obtained through 50 rounds of MAGE and substantial pas-

saging, which resulted in 6-13 reversions and 31-38 de novomutations. (Figure 3.4 a). Whole genome

sequencing of the final strain confirmed that no UAG codons were reintroduced. Nine additional

de novo mutations arose, but these are predicted to have a neutral effect (41Additional file 8). We

characterized UAG-dependent incorporation of the nsAAs p-acetyl-L-phenylalanine (pAcF) in

C321.∆A.opt using sfGFP variants with 0, 1, and 3 residues replaced by the UAG codon and con-

firmed that C321.∆A.opt maintains nsAA-dependent protein expression (Figure 3.4 b). C321.∆A.opt

has been deposited at AddGene (Bacterial strain #87359).
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Figure 3.4: Construction and characterization of final strain C321.∆A.opt (a) Doubling time of clones isolated during

construction and optimization of C321.∆A. Strain C321.∆A.opt was constructed in seven cycles ofMAGE in batches

of up to three cycles separated byMASC-PCR screening to pick clones with themaximum number of alleles converted

(seeMethods). The two dotted horizontal lines correspond to the relative doubling times for the original GRO and

the wild-type strain. (b) Testing nsAA-dependent protein expression using the nsAA p-acetyl-L-phenylalanine (pAcF)

in sfGFP variants with 0, 1, or 3 residues replacedwith UAG codons. Normalized GFP fluorescence was calculated by

taking the ratio of absolute fluorescence toOD600 of cells suspended in Phosphate Buffered Saline (PBS) for each

sample and normalizing to the fluorescence ratio of non-recoded strain EcNR1.mutS.KO expressing 0 UAG sfGFP

plasmid.
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To address the remaining fitness defect, we first examined potential interactions among the six

alleles identified. We characterized the fitness of 359 clones with intermediate genotypes generated

during the construction of the final strain (Figure 3.4 a). We applied linear regression with higher or-

der interaction terms (Figure 3.5 a) and observed that combinations of mutations tended to produce

diminishing returns43, suggesting that additional beneficial alleles would only contribute marginally

to fitness (Figure 3.5 b). A set of relatively weaker mutations may contribute to the remaining fitness

defect, although we cannot exclude the possibility that the combination of 321 designed UAG-to-

UAA mutations contributes to the global defect as well.
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Figure 3.5: Interactions among top six alleles show evidence of epistasis. Genotypes and fitness measurements were

obtained from 359 intermediate clones generated during the construction of the final strain containing the six best

alleles ( 41Additional file 7). Each clone was genotyped usingMASC-PCR and doubling timewasmeasured during allele

validation experiments and final strain construction. (a) Individual model coefficients for the top six alleles, as well as

three significant interaction terms identified during combinatorial construction. These values are from a linear model

with interaction terms between each pair of alleles. The bars signify the standard error of themean of themodel co-

efficients, and the significance codes for a non-zero effect size are ’***’ : p < 0.001, ’**’ : 0.001 < p < 0.01, ’*’
: 0.01 < p < 0.05, ‘n.s.’ not significant. All three interactions coefficients remain significant after a family-wise
error rate (FWER)α = 0.05/C(6, 2) = 0.003. (b) Each data point represents the amount of fitness recovered
when adding the allele specified to an identical starting genotype background. Horizontal error bars correspond to

the standard deviation of fitness defect among all clones with this starting genotype. Vertical error bars represent the

standard deviation of all differences between clones with andwithout the respective allele. For each plot, the thick col-

ored line represents a simple linear fit through the points, corresponding to the r and p values given in each plot. The
dotted line corresponds to the predicted fit for a simplemultiplicativemodel of fitness where the allele always recov-

ers a constant percent of the remaining fitness defect regardless of the background. For all alleles except A4102449G

(pink), adding the allele to C321 showed a recovery of the fitness defect (>0 on the y axis), with the percentage of de-

fect recovered decreasing as other alleles are also reverted, consistent with a first-order multiplicativemodel. In some

cases the fitness improvement dropsmore rapidly than predicted by themultiplicativemodel (i.e. points below the

dotted lines), suggesting diminishing returns epistasis. This is supported by the negative-coefficient interaction terms

in panel a. In the case of A4102449G there appears to be a negative effect with themutation alone, but an increase in

the presence of other alleles, suggesting possible sign epistasis.
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Simulating effects of experiment design parameters and modeling technique

on power of predicting causal mutations

To evaluate the possibility that our modeling procedure did not detect all effects among alleles

tested, we performed in silico simulations of a simplified version of our experiment and investigated

our ability to detect fitness effect with varying numbers of underlying causal mutations. We found

that in the idealized case of no epistasis, we would detect over 90% of total fitness effect given our ex-

perimental design parameters (Figure 3.6 e). Because simulation can be a powerful tool for design of

experiments, here I describe the implementation of the simulation and insights learned about exper-

imental parameters and comparisons of modeling methods. A Jupyter notebook containing the sim-

ulation code can be found at https://github.com/churchlab/optimizing-complex-phenotypes.

The simulation parallels our 50-cycle MAGE experiment and allows exploring the relationship

among experimental design parameters including number of oligos tested and number of clones

sampled for genotyping. The simulation also investigated different number and effect-size distribu-

tions of causal mutations. For a given combination of parameters, we sample a distribution of un-

derlying mutation effects, which are distributed in effect size according to a power law distribution.

The total fitness effect across all mutations is capped at a 50%, comparable to the C321.∆A context.

We then performed, in silico, iterations of MAGE separated by competitive expansion and bottle-

necking of the population. We sample clonal genotypes from this simulated population and calcu-

late phenotypes using the underlying mutation effects. We then perform predictive modeling with

the simulated genotype-phenotype data and evaluate precision and recall relative to the true muta-
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tion effects. We also compare our regularized linear modeling strategy to univariate linear regression

(as is used in GWAS) and enrichment of mutations in the final population. We made simplifying

assumptions of no de novomutations, no epistatic interactions among mutations, no measurement

noise, and equal recombination efficiency for all mutations.

The simulations show that the predictive power of multivariate linear modeling requires a diverse

set of genotype-phenotype pairs. Here, selection acts between MAGE cycles during expansion and

bottlenecking of the population (re-growth to mid-log and sub-sampling for next round of MAGE).

Sampling clones for genotyping at regular intervals over the course of MAGE cycling allows ob-

taining the needed genotype-phenotype diversity. We initially tuned the simulation parameters

of recombination efficiency, distribution of fitness effects, and intervals between MAGE cycles by

sampling clones until we observed fitness improvement and mutation accumulation distributions

(Figure 3.6 a) that were representative of our real data (Fig. 2). Sampling only from the final time

point (Figure 3.6 b), or simulating without selection (Figure 3.6 c), resulted in a lack of phenotypic

diversity and subsequently reduced predictive modeling power.

Using the simulations, we assessed the predictive capabilities of elastic net-regularized linear re-

gression across different numbers of variants considered and number of whole genome samples, and

compared our model to univariate linear regression (GWAS) and enrichment (Figure 3.6 d). As eval-

uation metrics, we used variants of recall and precision that are weighted by underlying mutation

effect and predicted mutation effect, respectively. We found that for a variety of parameter com-

binations, regularized linear modeling achieved higher recall and precision, and conclude that our

approach yields better results than univariate regression or enrichment. By modeling the quantified
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effects of combinations of mutations, regularized linear modeling with elastic net can more effec-

tively discriminate between causal mutations and hitchhikers. Our simulations also show that while

recall decreases as the total effect is distributed among greater numbers of individual mutations, it

increases with the number of samples sequenced (Figure 3.6 e). Sequencing up to 200 clones was

simulated to capture at least 91% of causal effect for as many as 100 causal SNPs. Precision remains

consistently high at different combinations of parameters.

We expect variations of our simulation strategy to be useful for design of other experiments and

provide the simulation code at https://github.com/churchlab/optimizing-complex-phenotypes.

3.3 Discussion

In summary, we used an iterative strategy of multiplex genome engineering and model-guided fea-

ture selection to converge on six alleles that together recover 59% of the fitness defect in C321.∆A

relative to its wild-type ancestor. This method allowed us to quantify the effects of hundreds of

individual alleles and then rationally introduce only the minimal set of beneficial genetic changes,

reducing unintended effects from additional off-target mutations.

Our approach reveals several problems inherent to simply using enrichment to rank allelic effect.

Our data show that alleles enriched over rounds of selection are not necessarily well-correlated with

fitness. Allele enrichment may be affected by differences in editing efficiency, competition among

beneficial alleles through clonal interference, and genetic drift. Combinatorial targeted editing over-

comes these obstacles by allowing the measurement of each allele in many genetic backgrounds, so

that linear modeling can quantify its average individual effect.
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Figure 3.6: Simulation illustrates predictive strength of elastic netmodel at different experimental design parameter

combinations. Results of simulating varying experimental design parameters. (a) Doubling times andmutation distribu-

tion of clones sampled regularly over 50 cycles of simulatedMAGE approximates what was observed in real data (Fig-

ure 3.2, Figure 3.3). (b) Sampling from final time point results in phenotypically homogenous population and reduced

predictivemodeling performance. (c) Running the simulation without selection results in insufficient propagation of

effective alleles for predictive accuracy. (d) Precision and recall across different settings of the experimental design

parameters of total variants introduced versus number of whole genome samples collected. A comparison among our

elastic net linear modeling strategy and univariate linear regression (GWAS) and enrichment is shown. Points indicate

results of simulation at corresponding parameters (10 replicates per parameter combo; separated by jitter). Fill color

is interpolated using a LOESS regression. (e) Comparing number of genomes sampled vs number of underlying causal

variants. Elastic net model predicted to achieve recall > 0.913 at at 200whole genome samples for as many 100 causal

effect SNPs.

Further, measuring mutation effects in multiplex makes it experimentally tractable to explore a

much larger set of mutations. We observed evidence of positive epistatic interactions between some

alleles (Figure 3.5 a, left), which would be harder to identify through singleplex editing strategies.

These findings demonstrate the utility of multiplex genome engineering and predictive modeling for

studying epistasis.

A similar model-guided approach could be used to augment other multiplex genome modifica-

tion techniques, including yeast oligo-mediated genome engineering44 or multiplex CRISPR/Cas9-

based genome engineering in organisms that support homology-directed double-stranded break re-

pair44,45. Biosensors tied to selections or screens46 can extend this method to optimize biosynthetic

pathways in addition to fitness. The rapidly declining cost of multiplex genome sequencing47 will

allow this method to scale to thousands of whole genomes, increasing statistical power and enabling

the use of more complex models. While we use column-synthesized oligos in this study, chip-based

oligo synthesis enables scaling up the number of genomic sites targeted, allowing thousands of al-

leles to be tested simultaneously48,49,50. Our simulations suggest that the predictive power of this
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method can support larger number of mutations than we tested with a modest increase in genomes

sampled (Figure 3.6 d). Finally, making genomic changes trackable 51,52 for targeted sequencing could

further increase the economy, speed, and throughput of this approach.

Efficiently quantifying the effects of many alleles on complex phenotypes is critical not only for

tuning synthetic organisms and improving industrially relevant phenotypes, but also for under-

standing genome architecture. While our method is used here to identify and repair detrimental

alleles to improve fitness, it will also enable rapid prototyping of alternative genome designs and in-

terrogation of genomic design constraints. Iteratively measuring and modeling the effects of large

numbers of combinatorial genomic changes in parallel is a powerful approach to navigate and un-

derstand genotype-phenotype landscapes.

3.4 Methods

Media and reagents

All experiments were performed in LB-Lennox (LBL) medium (10 g/L bacto tryptone, 5 g/L sodium

chloride, 5 g/L yeast extract) with pH adjusted to 7.45 using 10 M NaOH. LBL agar plates were

made from LBL plus 15 g/L Bacto Agar. Selective agents were used at the following concentrations:

carbenicillin (50 µg/mL), chloramphenicol (20 µg /mL), gentamycin (5 µg/mL), kanamycin (30

µg/mL), spectinomycin (95 µg/mL), and SDS (0.005% w/v).
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Strains

The construction and genotype of engineered E. coli strain C321.∆A was previously described in de-

tail4. Here, before improving fitness, we constructed strain C321.∆A.mutSfix.KO.tolCfix.∆bla:E

by further modifying C321.∆A to introduce the following changes: 1) the mutS gene was reinserted

into the C321.∆A strain in its original locus, and MAGE was used to disable the gene by introduc-

tion of two internal stop codons and a frameshift, and 2) the carbenicillin-resistance marker bla

was swapped for gentamicin resistance marker aacC1 in the lambda red insertion locus. Several con-

trol assays were performed in EcNR1.mutS.KO, a non-recoded by MAGE-enabled strain similar

to EcNR226. All genomic positions reported in the manuscript are in the frame of MG1655 K12

(Genbank accession NC_000913.2). The final C321.∆A.opt strain has been deposited at AddGene

(Bacterial strain #87359).

Millstone, software for multiplex genome analysis and engineering

Millstone 38 was used throughout the project to rapidly process whole genome sequencing data

and identify variants in each sample relative to the reference genome, to explore variant data, and

to design oligonucleotides for MAGE. The Millstone analysis pipeline takes as input raw FASTQ

reads for up to hundreds of clones and a reference genome as Genbank or FASTA format. The

software then automates alignment of reads to the reference using the Burrows-Wheeler Aligner

(BWA-MEM) followed by single nucleotide variant (SNV) calling using Freebayes. Millstone per-

forms variant calling in diploid mode, even for bacterial genomes. This helps account for paralogy
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in the genome and results in mutation calls being reported as “homozygous alternate” (strong wild-

type), “heterozygous” (marginal), or wild-type, along with an “alternate fraction” (AF) field that

quantifies the fraction of aligned reads at the locus showing the alternate allele. Marginal calls were

inspected on a case-by-case basis using Millstone’s JBrowse integration to visualize raw read align-

ments. Millstone provides an interface for exploring and comparing variants across samples. After

initial exploration and triage in Millstone, we exported the variant report from Millstone for further

analysis and predictive modeling. In follow-up analysis, we determined empirically that 0.1 < AF <

0.7 indicated a variant call was marginal in our data.

Identifying off-target mutations for reversions

For the 50-cycle MAGE experiment, we considered only mutations occurring in regions annotated

as coding for a protein or functional RNA. Using Millstone annotations of predicted effect and

Keio knock-out collection annotation of essentiality40, we defined three priority categories accord-

ing to expected effect on fitness (41Additional file 2). A total of 127 targets were allocated to the three

categories to be used for the 50-cycle MAGE experiment.

For a separate experiment, off-target mutations in regulatory regions were selected based on the

criteria of predicted regulatory disruption of essential genes and several non-essential genes with par-

ticularly strong predicted disruption. Regulatory disruption was determined based on calculating

change in 5’ mRNA folding or ribosome binding site (RBS) motif strength for mutations occurring

up to 30 bases upstream of a gene. We calculated mRNA folding and ribosome binding site (RBS)

motif disruption as described in 1. Briefly, the minimum free energy (MFE) of the 5-prime mRNA
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structure was calculated using Unafold’s hybrid-ss-min function9 (T=37 °C), taking the average

MFE between windows of RNA (-30, +100) and (-15, +100) relative to the start codon of the gene.

Mutations that caused a change in MFE of the mRNA of over 10% relative to the wild-type context

were prioritized for testing. To predict RBS disruption, the Salis RBS Calculator 11 was provided

with sequence starting 20 bases upstream of the gene ATG and including the ATG. Mutations that

caused a greater than 10-fold change in predicted expression were included for testing. Finally, we

also considered mutations that overlapped promoters of essential genes based on annotations from

RegulonDB 53.

The 20 UAG-reversion targets were chosen when UAGs occurred in essential genes, introduced

non-synonymous changes in overlapping genes, or disrupted a predicted regulatory feature as above.

Multiplex automated genome engineering

Single-stranded DNA oligonucleotides for MAGE were designed using Millstone’s optMAGE inte-

gration https://github.com/churchlab/optmage. Oligos were designed to be 90 base pairs

long with the mutation located at least 20 base pairs away from either end. We used the C321.∆A

reference genome (Genbank accession CP006698.1) for oligo design to avoid inadvertently revert-

ing intentional UAG-to-UAA changes. OptMAGE avoids strong secondary structure (< −12 kcal

mol−1) and chooses the sense of the oligo to target the lagging strand of the replication fork26. Phos-

phorothioate bonds were introduced between the first and second and second and third nucleotides

at the 5-prime end of each oligo to inhibit exonuclease degradation 26. All DNA oligonucleotides

were purchased with standard purification and desalting from Integrated DNA Technologies and
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dissolved in dH20.

MAGE was performed as described in 26, with the following specifications: 1) Cells were grown

at 34 °C between cycles. 2) We noted that C321.∆A exhibits electroporation resistance so a voltage

of 2.2 kV (BioRad GenePulser, 2.2 kV, 200 ohms, 25 µF was used for cuvettes with 1mm gap) was

chosen based on optimization using a lacZ blue-white screen. 3) Total concentration of the DNA

oligonucleotide mixture was 5 µM for all electroporations (i.e., the concentration of each oligo was

adjusted depending on how many oligos were included in the pool).

The 50-cycle MAGE experiment was carried out in three lineages, with oligo pool sizes of 26, 49,

and 127 consisting of oligos from priority categories 1, 1,2, and 1,2,3, respectively (41Additional file

2). Note that we originally began with just two pools ‒the top 26 and all 127 oligos ‒, but after 5

MAGE cycles the lineage exposed to all 127 oligos was branched to have a separate lineage with only

the 49 category 1, 2 oligos in order to obtain more enrichment of the higher priority targets. In order

to prevent any population from acquiring permanent resistance to recombination, we toggled the

dual-selectable marker tolC at recombinations 23, 31, and 26 for the three lineages, respectively, as

described in 54. Briefly, an oligo introducing an internal stop codon in tolC was included in the re-

combination, and after at least 5 hours of recovery, cells were selected in media containing colicin E1,

which is toxic in tolC+ E. coli. In the subsequent recombination, an oligo restoring tolC function

was included in the pool after which cells were selected in the presence of 0.005% SDS (w/v).

Validation MAGE experiments composed of 10 or fewer oligos were carried out for up to 9

MAGE cycles, as we expected adequate diversity based on previous experience with MAGE effi-

ciency.
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Whole genome sequencing

Genomic DNA (gDNA) preparation for whole genome sequencing of 96 clones (only 87 considered

in manuscript because sequencing analysis revealed that 9 cultures were polyclonal) was performed

as in 54. Briefly, gDNA was prepared by shearing using a Covaris E210 AFA Ultrasonication machine.

Illumina libraries were prepared for pooled sequencing as previously described 55. Barcoded Illu-

mina adapters were used to barcode each strain in a 96-well plate. All 96 genomes were sequenced

together on a single lane of a HiSeq 2500 PE150 (41Additional file 9). Alternative inexpensive WGS

library preparation methods have since become available47.

WGS data was processed to identify clonal genotypes in Millstone and then exported for further

analysis (41Additional file 10). Demultiplexed .fastq reads were aligned to the MG1655 reference

genome. SNVs were reported with Millstone, as described above. During analysis, marginal calls

were visually confirmed by examining alignments using Millstone’s JBrowse integration.

Multiplex allele-specific colony PCR (MASC-PCR)

MASC-PCR was used to assess successful reversions in validation experiments of <= 10 targeted mu-

tations and typically performed for 96 clones in parallel. The protocol was performed as previously

described4. Briefly, two separate PCRs, each interrogating up to 10 positions simultaneously, were

performed on each clone to detect whether the C321.∆A or reverted allele was present at each posi-

tion. For each position, the two reactions shared a common reverse primer but used distinct forward

primers differing in at least one nucleotide at the 3’ end to match the SNV being assayed specifically.
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Positive and negative controls were included when available to aid in discriminating cases of non-

specific amplification.

Measuring fitness

Fitness was determined from kinetic growth (OD600) on a Biotek H-series plate reader. Cells were

grown at 34 °C in 150 µL LBL in a flat-bottom 96-well plate at 300 rpm linear shaking. To achieve

consistent cell state before reading, clones were picked from agar plates or glycerol, grown overnight

to confluence, passaged 1:100 into fresh media, grown again to mid-log ( 3 hours), and passaged 1:100

again before starting the read. OD measurements were recorded at 5 minute intervals until conflu-

ence. Doubling times were calculated according to tdouble = c * ln(2) / m, where c = 5 minutes per

time point and m is the maximum slope of ln(OD600). The maximum slope was determined us-

ing a sliding window linear regression through 8 contiguous time points (40 minutes) points rather

than between two predetermined OD600 values because not all of the growth curves were the same

shape or reached the same max OD600. The script used for analyzing doubling time is available at

https://github.com/churchlab/analyze_plate_reader_growth.

Predictive modeling of allele causality

Choosing alleles for subsequent validation was framed as a feature selection problem. We used pre-

dictive modeling to prioritize features. Both targeted reversions introduced by MAGE and de novo

mutations were considered.

For most analyses, we used a first-order multiplicative allele effect model, where each allele (rever-
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sion or de novomutation) is represented by a single feature and the fitted coefficient corresponding

to that feature represents the allele’s effect on doubling time. To find coefficient values, we fit a linear

model where genotypes (WGS or MASC-PCR) predict the logarithm of doubling time. Alleles cor-

responding to features with the most negative coefficients were selected for validation in smaller sets.

An additive model was also tested and yielded similar results, as previously noted by others43.

While we anticipated the possibility of epistatic effects among alleles tested, a first-order model

of the 50-cycle MAGE experiment already had 239 features (99 reversions + 140 de novomutations

observed at least twice) and 87 samples, so we omitted higher-order interaction terms to avoid over-

fitting due to model complexity. We discuss implications of this independence assumption and

other details of our allele effect modeling strategy in Supplementary Note 1.

Elastic net regularization42, which includes both L1 and L2 regularization penalties, was used in

model-fitting. L1 regularization enforces sparsity, capturing the assumption that a handful of alleles

will explain a majority of the fitness effect. L2 regularization prevents any one of a subset of highly

correlated alleles from dominating the effect of those alleles, balancing the tendency of L1 to drop

subsets of highly co-occurring alleles.

Accordingly, the elastic net loss function used follows from Zou and Hastie42:

L(λ1,λ2, β) = |y− Xβ|2 + λ1|β|1 + λ2|β|2

where
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|β|1 =
p∑

j=1

|βj|

|β|2 =
p∑

j=1

β2
j

And the coefficients are estimated according to:

β̂ = argmin
B

L(λ1,λ2, β)

Elastic net regression was performed using the ElasticNetCV module from scikit-learn 56. This

module introduces the hyperparameters

alpha = λ1 + λ2

l1_ratio =
λ1

λ1 + λ2

and uses k-fold cross validation (k = 5) to identify the best choice of hyperparameters for a given

training dataset. We specified the range of l1_ratio to search over as [.1, .3, .5, .7, .9, .95, .99, 1], which

tests with higher resolution near L1-only penalty. This fits our hypothesis that a small number of

mutations are responsible for a majority of the fitness effect. For alpha, we followed the default of

allowing scikit-learn to search over 100 alpha values automatically computed based on l1_ratio.

To address the under-determined dataset in the 50-cycle MAGE experiment (more alleles than
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individual clones), we performed 100 repetitions of scikit-learn’s cross-validated elastic net regres-

sion procedure, and for each repetition, we randomly held-out 15 samples that could be used to

evaluate the model fit by that iteration. The model coefficient for each allele was then calculated

as the weighted-average across all 100 repetitions using the prediction score on the 15-held out sam-

ples as the weighting factor. Only model coefficients with a negative value (some putative fitness

improvement) were considered in a second round of 100 repeats of cross-validated elastic net regres-

sion, again with 15 samples held-out in each repeat to evaluate the model fit. The weighted-average

coefficient values over this second set of 100 repetitions were used to determine the top alleles for ex-

perimental validation in a 9-cycle MAGE experiment. While this method reproducibly reported the

alleles hemA-T1263523C, cpxA-A4102449G, and cyaA-C3990077T, alleles with weaker predicted ef-

fects were detected more stochastically, depending on the randomized train-test split, even with 100

repetitions. We expect that sequencing additional clones, as well as further tuning of our modeling

method for detecting weak effects may be warranted in future studies.

To evaluate the results of the 9-cycle MAGE validation experiments, we used unregularized mul-

tivariate linear regression. With <= 10 parameters and ~90 clones, only a single iteration of cross-

validated regression applied to the full dataset was required to assign predicted effects without re-

quiring the testing of individual alleles.

Elastic net-regularized multivariate regression was compared to univariate linear regression for

our data (Supplementary Note 1,41Additional file 11).

50



Final strain construction

C321.∆A.opt was constructed by adding the six alleles identified by the optimization workflow

(41Additional file 7) to C321.∆A.mutSfix.KO.tolCfix.∆bla:E. A total of seven cycles of MAGE were

required, with a MASC-PCR screening step every three cycles to select a clone with the best geno-

type so far (Figure 3.4 a), minimizing the total number of cycles required. Three cycles of MAGE

were performed using oligos targeting all six alleles. Ninety-six clones were screened by MASC-

PCR, and one clone with 3/6 alleles (C49765T, T1263523C, A4102449G) was chosen for the next

round of MAGE. Three more rounds of MAGE were performed on top of the clone with 3/6 alle-

les using only the three remaining oligos. MASC-PCR identified a clone with 5/6 alleles (C49765T,

C200214T, C672170A, T1263523C, A4102449G). One more round of MAGE was performed using

the remaining oligo and a clone with all six alleles was obtained. Additional off-target mutations

acquired during construction as identified by whole genome sequencing of the final clone are listed

in41Additional file 8.

Characterizing non-standard amino acid incorporation

nsAA incorporation was measured as previously described4. 1-UAG-sfGFP, and 3-UAG-sfGFP re-

porters were produced by PCR mutagenesis from sfGFP (41Additional file 1: Supplementary Note

4), and isothermal assembly was used to clone 0-UAG-sfGFP (unmodified sfGFP), 1-UAG-sfGFP,

and 3-UAG-sfGFP into the pZE21 vector backbone 57. We used the pEVOL-pAcF plasmid to incor-

porate the non-standard amino acid p-acetyl-L-phenylalanine. Reagents were used at the following
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concentrations: anhydrotetracycline (30 ng/μL), L-arabinose (0.2% w/v), pAcF (1 mM).
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4
Millstone: software for multiplex microbial

genome analysis and engineering

The contents of this chapter were adapted from:

Goodman DB*,Kuznetsov G*, Lajoie MJ, Ahern BW, Napolitano MG, Chen KY, Chen C, Church
GM.Millstone: software for multiplex microbial genome analysis and engineering. (2017) Genome
biology, 18:101.

Acknowledgements:

Millstone was designed by DBG, GK, and MJL. DBG prototyped early forms of the NGS analy-
sis pipelines and GK designed the software architecture. GK and DBG wrote the bulk of the code,
with important contributions from BWA, KYC, and CC. MJL and MGN tested and contributed to
design of advanced features.
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Inexpensive DNA sequencing and advances in genome editing have made computational analysis

a major rate-limiting step in adaptive laboratory evolution and microbial genome engineering. In

the previous chapter, we saw how whole genome sequencing and comparison of hundreds of en-

gineered clones allowed us to systematically identify targeted mutations for improving the fitness

of the first Genomically Recoded Organism. That effort relied heavily on Millstone, a web-based

software platform that we built to enable a number genome of engineering projects in our lab4,54,7,1.

Millstone automates genotype comparison and visualization of engineered and evolved genomes.

In this chapter, I describe Millstone’s features and how it can be used in engineering and evolution

projects.

4.1 Introduction

Microbial populations can harbor a staggering amount of genomic diversity, enabling them to

evolve and adapt to diverse environments. Adaptive laboratory evolution uses this process to gen-

erate strains that are useful for biotechnology or for answering fundamental biological questions 59.

In addition to harnessing natural variation, biologists can generate targeted genomic diversity in

a population of cells and then screen or select for phenotypes of interest 26. The decreasing cost of

reading and writing microbial genomes has made it possible to generate billions of combinatorial

genomic variants per day at specific loci 26,25,60 and to sequence entire E. coli genomes for less than 25

USD per sample47,61 (Supplementary Note 1).

Computational analysis is increasingly a bottleneck when mapping whole-genome data to pheno-

types across many samples. Going from raw DNA sequencing reads to annotated variants requires



the integration of a large number of disparate tools, usually assembled into an ad hoc pipeline by

individual labs and followed by time-intensive manual confirmation of variants. There remains a

critical need for an integrated solution capable of comparative analysis among multiple genomes and

supporting interactive querying and data visualization, collaboration, genome versioning, and the

design of additional mutations or reversions (Table C.1, Supplementary Note 2).

To address this need, we developed Millstone, a web-based software platform that supports an

iterative process of multiplex mutation analysis and genome engineering. Millstone automates read

alignment and variant calling using a hybrid reference-based and de novo assembly approach, then

allows researchers to explore and compare mutations among genomic samples, and finally creates

updated reference genomes and designs new genomic edits for subsequent rounds of experiments

(Figure 4.1 a, Figure C.1). Serving as both a genomics pipeline and a platform for exploring
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Figure 4.1: Millstone enables rapid iterativemultiplex genome analysis and engineering. (a) To useMillstone, a re-

searcher uploads a reference genome and next-generation sequencing reads for many individual genomic clones,

for example from long-term evolution or targeted genome editing. Millstone performs alignment and variant calling

for both single nucleotide variants and structural variation and then assigns predicted effects based on reference

genome annotations. A unified datamodel stores sample genotype, phenotype, and variant annotation data. Variants

can then be queried, filtered, and grouped into sets for export, triage, and analysis. These variant sets can be used

to design oligonucleotides to recreate or revert mutations of interest, or used to generate new versions of the refer-

ence genome. (b) A combined screenshot of theMillstone analysis and alignment visualization views (condensed and

cropped for clarity). A custom query language allows searching and filtering over the data. As variant calls sometimes

require visual inspection and comparison, Millstone’s variant analysis view provides programmatically-generated links

to visualizations of the relevant read alignments in JBrowse 58.

56



whole-genome sequencing data, Millstone provides a powerful user-friendly interface that allows

researchers to investigate individual variants through interactive filtering and alignment visualization

(Figure 4.1 b).

4.2 Results

Millstone was built in response to challenges encountered during the construction of the genom-

ically recoded organism (GRO) C321.ΔA4, a strain of E. coli in which all 321 UAG stop codons

were replaced with a synonymous UAA. Multiplex automated genome engineering 26 (MAGE) was

used to introduce sets of 10 mutations into 32 strains and conjugative assembly genome engineer-

ing25 (CAGE) was used to hierarchically combine redesigned regions into a chromosome with all 321

UAGs recoded (Figure 4.2 a, green). We sequenced 68 intermediate clones to confirm the designed

changes but our initial analyses were slow, error-prone, and lacked the ability to visualize and com-

pare evidence for mutations among samples. Millstone solved these issues, allowing us to identify

and track the 3127 designed and off-target mutations across all strains. Finally, by iteratively applying

mutations directly to the initial reference genome and re-aligning reads, Millstone allowed us to gen-

erate a new C321.ΔA reference sequence which incorporated 355 additional off-target mutations that

had accumulated during strain construction. (Figure 4.2 a, green and orange).

Millstone’s ability to rapidly generate clonal genotypes from whole genome sequencing reads

enabled a follow-up project to improve the fitness of the GRO. The final strain from Lajoie et al.

demonstrated incorporation of proteins containing non-standard amino acids, but suffered from

an impaired growth phenotype, which we hypothesized was due to a subset of the 355 off-target mu-
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Figure 4.2: Millstone accurately detects genomic variants and can iteratively version genomes. (a) Millstone was used

to analyze genomic clones involved in generating and rationally optimizing a genomically recoded organism. MAGE26

and CAGE 25 were used to generate theC321.ΔA strain of E. coli4. With sequencing data from these strains, Millstone

confirmed the designedmutations, identified and annotated off-target mutations, and generated a new reference

genome. Further reversion of variants was performedwithMAGE to improve the strain’s fitness (Kuznetsov et al.,

submitted), and a final reference genomewas generated. (b) Analysis of 11 escapee clones from a biocontainment selec-

tion with a synthetic non-standard amino acid (nsAA) auxotrophy7 identified two escapemechanisms, either mutation

of tyrS or disruption of lon. (c) Millstone can also be used for Adaptive Laboratory Evolution studies. We employed

Millstone to analyzemutations across 115 clones in the Tenaillon et al.62 high temperature evolution experiment.

Millstone was used to create a new reference genome for the ancestral strain fromREL606, the closest available refer-

ence genome, and called variants against this new reference. Millstone reports 99.2% of SNVs, deletions, andmobile

elements found by the Tenaillon pipeline, as well some not identified in the original study (Table C.2).
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tations. We developed an iterative method for systematically optimizing strain fitness through pre-

dictive modeling and multiplex testing of reversions41. Millstone was used throughout this process:

first, to rank high-effect candidates for reversion, then to design oligonucleotides for MAGE, and

finally to report variants from whole genome sequencing of 96 edited clones (Figure 4.2 a, orange).

Once the final subset of effective reversions was identified and used to construct a faster-growing

GRO, Millstone was also used to produce a final reference genome for the improved strain.

Millstone’s de novo assembly and genotype comparison features were crucial in a project to engi-

neer a biocontained version of the GRO which is dependent on a non-standard amino acid (nsAA)

for survival7. A major challenge in engineering biocontainment, and in selection more generally,

is diagnosis of escape mechanisms. InMandell et al., plating of early versions of the biocontained

GRO on non-permissive media revealed individual clones that could survive without the essential

nsAA. We performed whole genome sequencing on 11 escapee clones and several controls and used

Millstone to identify loci enriched for mutations across escapees. This led to the discovery and val-

idation of two primary mechanisms of escape: a single off-target nonsynonymous mutation in the

redesigned tyrS gene occurring in 4/11 clones and disruption of the lon protease in the remaining

7 clones. Millstone revealed several modes of lon disruption: a frameshift (1/7), nonsynonymous

substitution (1/7), and insertion of a mobile element upstream of the gene (5/7) (Figure 4.2 b). To

identify and precisely map these mobile elements and other structural variants, Millstone combines

a local de novo re-assembly approach with coverage-based deletion calling (Figure C.3). Rapid anal-

ysis of escapee clones allowed us to identify and validate the key mechanisms of escape from bio-

containment, so that further modifications lowered escape rates by at least 5 orders of magnitude
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(undetectable escape with detection limit 2.2e-12 escapees per c.f.u.).7.

Millstone can also be used to analyze genomic variation in samples undergoing adaptive labora-

tory evolution (ALE). In Tenaillon et al.62, 115 lines of E. coli were grown at 42 C in parallel for over

2,000 generations in an attempt to identify convergent evolutionary responses to this environmen-

tal challenge (Figure 4.2 c). This impressive effort required a custom sequencing analysis pipeline

consisting of over half a dozen tools, followed by manual validation and visual confirmation of

all 1331 variants. We reanalyzed the raw data from this project in Millstone and identified 99.7% of

SNVs and 98.9% of structural variants and mobile element insertions. Millstone further discovered 8

SNVs, 4 large deletions, and 2 mobile element insertions that were not reported in the original work

(Figure 4.2 d, Table C.2). On an Amazon Web Services EC2 instance, the entire process from sample

upload to variant triage across all 115 strains took a single day (Table C.3).

4.3 Discussion

New technologies for constructing, screening, and selecting microbial genomes now allow for in-

creasingly complex functional genomics studies and bioengineering endeavors. As the sequence

constraints of the genome come into focus, the promise of designing new organisms to address med-

ical and material challenges is becoming a reality63. The path forward requires rapid construction

and characterization of successive versions of redesigned genomes 18,36, and computational genome

design and analysis tools will increasingly become integral to this process. Researchers who already

have raw sequencing data can use Millstone to identify and explore mutations. We have reduced the

barrier for other labs to use Millstone by making the software deployable on Amazon Web Services
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(AWS). Documentation and an online demo are available at http://churchlab.github.io/

millstone.

61

http://churchlab.github.io/millstone
http://churchlab.github.io/millstone


5
Toward machine-guided protein

engineering

Acknowledgements:

This chapter describes joint, unpublished work in progress with Surge Biswas and Pierce Ogden.
The three of us have participated in all experiments and computational modeling.
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In chapter 3, we demonstrated the efficacy of a model-guided approach to genome-scale optimiza-

tion. Inexpensive DNA synthesis and next-generation DNA sequencing allow generating ~100-1000

whole-genome/phenotype pairs which can be interpreted by simple models to guide further engi-

neering. Focusing on a single protein, we can further leverage the same DNA synthesis and sequenc-

ing capabilities to develop assays that measure on the order of 105 variants in a single experiment,

thus providing an even stronger foundation for machine-guided methods to leverage.

In this chapter, I review relevant background and describe lessons learned from proof-of-concept

work using machine learning to navigate the fluorescence landscape of the green fluorescent protein

(GFP). The key technological question is whether and how machine learning can be effectively com-

bined with modern DNA sequencing and synthesis capabilities to augment design and optimiza-

tion of proteins. By measuring thousands of genotype-phenotype pairs for a protein and building a

model predicting function from sequence, we may be able to overcome limitations of and augment

structure-based design and directed evolution. The genotype-phenotype models we build serve the

dual role of approximating the fitness landscapes of proteins, allowing us to gain insight into their

evolution and engineering potential.

In our GFP proof-of-concept work, both modeling and experimental design have been moving

targets. I have done my best to fit a report of our progress to a linear narrative, and I apologize in

advance to the reader for any non sequiturs in the discussion of work so far.
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5.1 Background

Proteins are molecular machines that play critical roles in cells, including catalyzing reactions, sens-

ing, signaling, and providing structure. Over evolutionary time, nature has generated a diverse set of

proteins capable of performing a wide range of functions and enabling life to exist across a broad

spectrum of environments. We are still unable to build nanomachines capable of sophisticated

molecular manipulations from scratch, but we can modify existing proteins to achieve therapeutic

and industrial goals. In the process, we gain insight into the biophysical properties and evolutionary

history of proteins that promises to broaden the space of applications from tuning these nanoma-

chines.

The function of a protein is determined by its structure, chemical properties of its side chains,

and the environment in which it acts. Abstractly, we can think of this as a function that maps a

given sequence and environment to some biological activity:

f(sequence, environment) = biological function

In protein engineering, we are seeking a solution to a specific biological function in a given envi-

ronment, and the challenge can be thought of as finding solutions to the inverse function of f():

f−1(biological function, environment) = set of sequences

The primary strategies for protein engineering include building and testing mutants guided by
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structure, directed evolution of existing proteins64, semi-rational approaches that augment directed

evolution with targeted mutagenesis65, as well as advances in de novo protein design66. Prediction

of protein structure and function from sequence67 is another active area research68, leaving protein

engineering efforts limited by assay development. Most engineering objectives require identifying

more than one modification and the difficulty of predicting interactions among mutations is likely

a major contributor to the difficulty of protein engineering69. Insight gained from empirically mea-

suring and modeling many such interactions, consequently mapping the fitness landscape of a pro-

tein, may advance the rate at which proteins can be engineered.

5.1.1 Fitness Landscapes

The relation f(sequence, environment) = biological function is often referred to as the fitness

landscape70. Because the number of possible amino acid sequences scales exponentially with protein

length, obtaining an exhaustive assessment of a fitness landscape quickly becomes infeasible, even for

a peptide with just ten residues.

Paraphrasing De Visser and Krug’s summary of the history of conceptualizing fitness landscapes71:

Sewall Wright painted an early picture of the rugged terrain describing the relationship between

genotype and phenotype70. Several decades later, John Maynard Smith crystallized the importance

of networks of connected paths through fitness landscapes for facilitating adaptive evolution72.

Kauffman and Weinberger suggested one strategy for modeling the topology of the landscape con-

cept through their NK model of tunable roughness73. However, there remains a disconnect between

intuitive but abstract notion of a fitness landscape and interpretable models based on data. The

65



intractable task of assaying every possible genotype means a complete empirical landscape for any

protein is unattainable.

Intelligent interrogation of fitness landscapes, such as through assaying combinatorially complete

sets of small numbers of mutations74, has provided insights into the nature of fitness landscapes,

and in particular into one of their most salient features: epistasis. Confirmation of the occurrence

of diminishing returns, sign epistasis, reciprocal sign epistasis, and other non-additive effects of mu-

tations confirm the richness of fitness landscapes but also reinforces the daunting challenge of a

complete analytical understanding.

More recently, advances in DNA sequencing, DNA synthesis, and mutagenesis methods have

made deep mutational scanning75 a fashionable pursuit76,77,78,79. Notably, these high-throughput

assay methods trade-off accuracy for scope and begin to reveal global features of fitness landscapes.

Deep mutational scans can be used to improve engineered protein function, as illustrated by White-

head et al. who used deep mutational scanning to identify mutations to significantly improve an

influenza hemagglutinin-binding protein that had been computationally designed and optimized

through directed evolution 80. This is just one of a growing number of illustrations that fitness land-

scapes, whether obtained through evolution or systematic interrogation, contain information that

can be leveraged to enhance protein engineering.

5.1.2 Machine Learning and Design of Experiments

Computational and statistical methods are needed to interpret data from empirical characteriza-

tion of fitness landscapes, allow prediction of fitness at unobserved points, and guide further explo-
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ration of the landscape. While there are many examples in literature describing statistical methods

for quantifying the effects of individual mutations and identifying epistatic interactions, methods

for interpolating along and navigating a landscape are less well-characterized. Specifically, there are

two challenges: 1) Identifying a modeling method that can best represent the nonlinear relationship

f(sequence, environment) = biological function and 2) Identifying a strategy for efficiently sam-

pling additional points in pursuit of an engineering goal.

Previous work leveraging machine learning methods to engineer proteins have used variations

of linear regression 81,82, Gaussian Process (GP) regression 83,84, and other kernel-based methods to

model the relationship between sequence and function. The work by Romero et al. using GP regres-

sion with a consensus structure-based kernel worked quite well given their context of having on the

order of hundreds of well-characterized mutants derived from shuffling of homologous proteins.

However, being a nonparametric model, exact inference with GP regression scales withO(N3),

where N is the number of training points, making them impractical for applications beyond a few

thousand training points 85. Additionally, the structure-based kernels used by GP-based methods

may not capture indirect interactions among non-contacting residues.

In short, we would like a model that scales well with large datasets and can represent nonlinear

interactions among any subset of residues. The methods of multilayer neural networks, colloquially

known as deep learning, have seen a recent resurgence due to quick iteration enabled by commoditi-

zation of GPUs and availability of large datasets, demonstrating their remarkable ability to obviate

much feature engineering and outperform previous methods in a number of tasks 86. Neural net-

works are attractive in their potential as universal function approximators 87, theoretically capable of
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representing any nonlinear function given a sufficient number of nodes and training data, though a

strong caveat of course. Deep learning has been demonstrated to outperform previous methods on

a variety of tasks in the biology domain, including predicting effects of mutations on splicing 86,88,

predicting protein-nucleic acid binding 89, and protein contact map prediction90. However, sim-

pler methods, noteably linear regression, have repeatedly demonstrated their efficacy as a starting

point for fitting data and lend themselves more readily to interpretability even while neural network

approaches may be more predictive in the same domain91. Thus a principled exploration of appro-

priate complexity for every new domain is warranted.

Complementing methods for quantitatively representing fitness landscapes are methods for sam-

pling against them. As biology remains a fundamentally empirical pursuit, there is much value to a

method for intelligently filling the screening capacity of any round of experiments to balance explo-

ration with exploitation. Strategies for doing so are formalized as methods of Bayesian optimization,

as reviewed by Ghahramani92. Referred to by related terms of Bayesian decision theory and active

learning, Bayesian optimization uses a representation of uncertainty in model predictions to guide

prioritization of new observations.

The Gaussian process method used by Romero et al. comes with a built-in representation of

uncertainty for new data points 83. The authors computationally sampled possible variants relative

to their model, balancing exploration and exploitation to select variants to physically create and

characterize. This ultimately led to the creation of a cytochrome P450 variant more thermostable

than any reported by DNA shuffling or directed evolution 83. For deep neural networks, a variety of

methods have been proposed for quantifying uncertainty93,94.
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5.1.3 Fluorescent Proteins as a Test Domain

An ideal application to develop this new methodology of high-throughput characterization of fit-

ness landscapes would be a well-characterized protein with interesting diversity of functions and

existing high-throughput assay methods. Fluorescent proteins satisfy this requirement with their

diversity in fluorescent properties, including intensity and peak excitation-emission spectra95. And

they are naturally amenable to the high-throughput screening technique of fluorescence activated

cell sorting (FACS).

The family of fluorescent proteins from various aquatic creatures consist of ~238-residue polypep-

tide chain that forms into an eleven-stranded beta-barrel structure encasing a single helix in the

center, of which three amino acids cyclize to form an excitable chromophore96. The most com-

monly used variants are those of the jellyfishA. victoria green fluorescent protein (avGFP), the

coral-derived red fluorescent proteins, and more recently discovered B. lanceolatum LanYFP and

its engineered derivatives. Variations in fluorescence intensity and peak excitation-emission spectra

result from variations in the maturation and local environment of the chromophore and overall sta-

bility. Many mutations have been well-characterized, including those at residues 65-67 that form the

chromophore. These universally consist of the amino acids XZG, where X is variable, Z is an aro-

matic amino acid, and G is a universally-conserved glycine. Novel protein variants continue to be re-

ported97,98. These and other recent engineering efforts have typically used semi-rational approaches

that combine structural knowledge and directed evolution. For our purposes, fluorescent proteins

represent a balance between existing knowledge that can serve as positive control, and remaining
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questions that may be addressed by further interrogation of the fitness landscape.

Recently, Sarkisyan et al. reported exploration of the local fitness landscape of avGFP using FACS

and next generation sequencing (NGS)78 . The authors generated ~50,000 mutants of GFP using

a single round of error-prone mutagenesis covering 90% of single mutants accessible by single-

nucleotide mutations, 2% of double mutants, and vanishingly small fractions of higher-order mu-

tants. This conceptually but rich dataset contained numerous examples of epistasis in the local vicin-

ity of avGFP, and formed the starting point for our own investigations.

5.2 Results

5.2.1 Exploring generalization in a local fitness landscape

We began our explorations with a deeper dive into the local fitness landscape dataset of 50,000 GFP

variants published by Sarkisyan et al.78. The authors of that study experimented with fitting several

different models predicting fluorescence from sequence. Specifically, they tested a linear model (r2 =

0.7), a linear model with a sigmoid function applied to the output (r2 = 0.84), and a simple neural

network with two hidden layers composed of one and two nodes with non-linear transformations,

respectively, feeding into a final output node (r2 = 0.935). The reported variances were computed

by fitting each model architecture on five random iterations of 90-10 train-test splits. We reproduced

these results and further experimented with more complicated architectures, but were unable to

improve the fit significantly. We were surprised that a fundamentally additive model (with a non-

linearity on the output) performed the best. Scaling up to models with more parameters and greater
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capacity may squeeze out incremental improvements to the fit data, but our ultimate purpose was to

augment design.

To evaluate new designs, a machine learning model must have the capacity to generalize beyond

training data. A model’s potential to evaluate previously unseen data is approximated by its perfor-

mance on held-out test data. However, this makes the assumption that unseen data will come from

the same data distribution as that of the test data, which is by no means guaranteed, and often not

true. A random train-test split is a natural treatment of existing data in many domains. However,

if the ultimate goal is design, a random train-test split may not adequately select for a model that is

capable of generalizing to novel design modes.

In the protein engineering domain, it is not immediately apparent which characteristics clearly

define a data distribution. We enumerated several natural characteristics to consider: edit distance to

a reference point (e.g. wild-type avGFP), phenotype distribution (e.g. dark vs bright), and identity

of individual mutations. Focusing on these properties, it became clear that the published Sarkisyan

dataset, generated by error-prone PCR from a single avGFP wild-type, had certain properties that by

no means necessarily represent the space of possible fluorescent proteins. For example, Sarkisyan et

al. observed a generally bimodal distribution in the fluorescence of their 50,000 mutants, with most

mutants being near wild-type, or non-fluorescent, leaving relatively few intermediate values. Most

of their mutants were within a small hamming ball (mean 3 mutations) from the avGFP wildtype.

Considering edit distance together with brightness, they observed that most avGFP variants with

greater than five mutations were non-fluorescent. Finally, the mutations observed covered 90% of

all possible single amino acid mutations reachable by a single nucleotide mutation; however, we
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calculated this to be only 40% of all possible single amino acid mutations. With the exception of

brightness, all of these characteristics are a direct result of the mutagenesis process used.

To further explore whether a model trained data from a local fitness landscape could generalize,

we took a design approach and chose as an initial design objective to generate GFP variants that are

functional but maximally distant in sequence space from the wild-type starting point. In addition to

being a conceptually simple metric, edit distance can serve as a design constraint in itself. Design of-

ten requires navigating multiple constraints, and maintaining function while increasing edit distance

would be a sufficiently interesting and conceptually simple objective to focus on. From the Sarkisyan

dataset, we knew that this design objective was not trivial, as most mutants with greater than five

mutations were no longer fluorescent. A model would have to do better than random at predict-

ing function from sequence as a baseline. Further, the objective of maximizing hamming distance

while maintaining function is not entirely dissimilar to at least one real problem in biotechnology:

deimmunization of a protein therapeutic–where a drug’s susceptibility to immune response must be

minimized while maintaining function. As a first step, we asked how much progress experimental

methods alone could make toward the design objective.

5.2.2 Mapping the local superfolder GFP landscape through Break-Fix Evo-

lution

We devised an experimental strategy we refer to as Break-Fix evolution to enrich for diverse mutants

that maintain function. The main idea is to perform mutagenesis followed by alternating rounds

of positive selection for bright mutants and negative selection for dim mutants. We considered a
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simpler strategy of repeated mutagenesis under high-selection only. However, we were concerned

that maintaining high-selection only would allow wild-type and low-order mutants to persist and

dominate the library.

At this point, we decided to switch to the superfolder GFP99, a descendant of avGFP differing

at 14 amino acid residues and optimized over a series of studies 100,101,99 for increased brightness and

stability. Our primary motivation to do this was to obtain a deep measurement of a second mode of

GFP, distinct from avGFP, that could serve as a complementary dataset for training.

We decided to employ a simplified version of the Sarkisyan high-throughput assay without loss

of generality toward our primary goal of testing whether machine learning can enable design in the

protein domain. We limited mutagenesis to a region corresponding to only 163 of 238 amino acid

residues of the full GFP (residues 39 - 201), a region spanning 489 nucleotides that would comfort-

ably fit within 600-bp constraint set by the the longest commercially available short-read technol-

ogy (MiSeq paired-end 300), with margin for the known reduced quality of the second read. Sark-

isyan et al. employed a neat restriction enzyme + barcoding trick to obtain the full 714 nucleotide

sequence, which added a bit of complexity to the experiment. Our chosen region entirely covers the

chromophore residues (65 - 67) and most important residues previously reported in literature96, as

well as several of each type of secondary structure feature (beta sheets, turns, etc.) Further, we rea-

soned that in order to achieve our design objective of functional but distant mutants, it would be

sufficient to train a classification model on binary data and we sorted into 2 bins after every mutage-

nesis round (and 4 bins for the first round to better map the immediate landscape of sfGFP). This

decision had the additional benefit of expanding the library size we could analyze with the same se-
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quencing capacity.

We performed two rounds of Break-Fix, which involved a total of four rounds of mutagenesis

with FACS into 4 bins after the first mutagenesis and into just the low and high bin for the rest. The

input to each round alternated between the low-fluorescence and high-fluorescence mutant library

from the previous round. Cells in all bins were sequenced.

Upon processing the FACS + NGS data, we obtained a dataset of 260,314 genotypes with a bi-

nary dark or bright label. We performed several quality control sanity checks of our data, including

confirming that function was disrupted by internal stop codons and mutations to known highly

conserved residues96. We were surprised to find that the proportion of functional mutants vs edit

distance was not significantly different than that attained by Sarkisyan et al. (Figure 5.1), illustrating

the challenges of implementing desired constraints via directed evolution alone. A DNA shuffling

approach 100 may have yielded more distance+functional diversity, and experiments are under way at

time of writing.

Figure 5.1: Comparison of brightness vs edit distance between the Sarkisyan avGFP (blue) and Break-Fix Evolution

sfGFP (yellow) datasets. The larger number of genotypes imaged gavemore bright examples within fivemutations of

the respective reference. However, despite the Break-Fix selection strategy intended to increase further mutants, the

proportion of bright mutants at higher edit distance was not significantly increased.

Thus, we proceeded to investigating how we could use a model trained on the Sarkisyan and
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Break-Fix data to design higher edit distance functional GFP mutants that simple directed evolution

approaches could not access.

5.2.3 Model Comparison

To design sequences, we needed to choose a model that would generalize well beyond the local

avGFP and sfGFP fitness landscapes. Using these datasets, we compared various model architec-

tures. In addition to random splits, we experimented with different train-dev-test splits (where

dev refers to data held-out from training epochs but used for model selection). Figure 5.2 shows a

comparison among three models we focused on throughout this work across three dataset splits

and five metrics. The three models shown are a linear model, composite residues model (to be

explained later), and a fully-connected feed-forward neural network (FNN) with 3 hidden layers

composed of 100-30-10 nodes respectively. For each model, we further compared two versions that

differ by whether the output node activation is linear or sigmoidal, following the observation that

data tended to be bimodally distributed, as noted by Sarkisyan et al.78. We evaluated the model on

three different dataset split designs: 1) sarkisyan_90_10: a 90-10 random split of the Sarkisyan data, 2)

sarkisyan_breakfix: train on Sarkisyan and test on Break-Fix and 3) sarkisyan_epistasis: a Sarkisyan

avGFP data split where training data consists of all single mutants and doubles that fit an additive

model and test dataset composed of doubles with non-additive epistatic behavior (Figure 5.3).

We chose the feed-forward neural network (FNN) with sigmoid output to sample against in the

design of our initial library for synthesis. The linear model with a sigmoid output outperformed

all other models on sarkisyan_90_10 split. The FNN was competitive with the linear model on the

75



Figure 5.2: Comparison ofmodel performance across different train-test splits. Three different models, each with two

output node variations (linear or sigmoid) are applied to three different dataset splits. We ended up selecting the feed-

forward neural network (FNN) with sigmoid output for our initial designs, focusing only on r2 at the time. In retrospect,
a linear model with sigmoid output was likely more justified at this point.
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Figure 5.3: Data split for sarkisyan_epistasis dataset. Sarkisyan avGFP data split where training data consists of all

single mutants and doubles that fit an additivemodel and test dataset composed of doubles with non-additive epistatic

behavior.

sarkisyan_breakfix train-test split. On sarkisyan_epistasis, all models performed quite poorly, but

the FFN weakly out-performed others according to Spearman correlation. The composite residues

model did not perform well on this dataset, but would perform well on later training data. It is in-

cluded for comparison.

In retrospect we found that this model selection procedure did not robustly justify selecting the

FNN over the linear model, especially given lessons learned from subsequent analysis and experi-
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ments. Still, designs using this model would show interesting results.

5.2.4 Designing far but functional sequences

We proceeded with using the FNN discriminative model trained on avGFP and sfGFP data to de-

sign sfGFP variants that were distant but still functional. Because our design objective was high edit

distance and maintaining functionality (but not necessarily improving on wild-type), and a large

portion of our Break-Fix sfGFP data was collected in a binary mode, we trained a binary classifier

using the previously chosen 100-30-10 neural network architecture.

To guide design, we had to consider the synthesis capacity for the proposed variants. The ideal

output would be 105 full-length sequences that would fill our NGS + FACS screening capacity.

However, the present price for synthesis of individual variants beyond ~200 nucleotides is $.07 per

basepair, or on the order of ~$40 for our designs, including accessory cloning regions. Thus we were

limited to synthesizing up to ~100 variants per iteration.

We asked whether we could instead leverage inexpensive microarray synthesis of ~200-mer DNA

oligos (~$0.0001 per basepair) upon which commercial full-length gene synthesis is increasingly

based. A key insight was that full-length gene synthesis price is driven by the general need to isolate

low-error target designs, whereas we hypothesized that our model-guided and pooled screening

approach could tolerate a pooled library of near-miss variants. We devised a biased-combinatorial

gene assembly approach from microarray chip oligos that would have allowed us to inexpensively

synthesize a library of hundreds of variants, and some number of recombinations. However, we

continue technical development on this approach and details are beyond the scope of this thesis.
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In the meantime, we devised a validation pipeline to measure sequence neighborhoods. Synthe-

sis of 100 full-length sequences would leave three-to-four orders of magnitude below our FACS +

NGS screening capacity. To fill this capacity with interesting information, we can then perform

error-prone PCR on the individual sequences and perform FACS + NGS on the resulting library of

sequence neighborhoods.

We used the neural network classifier as the discriminator in a sampling strategy to generate dis-

tant variants that were predicted to be bright. Our sequence candidate design procedure was based

on a simulated annealing approach. Starting with wild-type sfGFP, a random mutation is proposed.

The mutated sequence is then passed through the discriminative model and a continuous score be-

tween 0 and 1 was assigned by taking the value just prior to the final sigmoid output node. This

score is compared to the score of the parent sequence before the mutation, and using the Metropolis-

Hastings criterion, the proposed mutation is accepted if a) its score was better than its parent OR

b) a random number is above a threshold proportional to the magnitude of the score decrease. This

allows for occasional negative steps through the landscape with the motivation of avoiding local min-

ima. Repeating this procedure, a lineage of mutants is generated. We generated 1000 such lineages

with terminal members having as many as 50 mutations relative to wild-type. This was more lineages

than we needed for synthesis, but this would give us extra sequences to prioritize based on other

metrics.

We proceeded to choose 96 candidates for full length synthesis. To prioritize these, we generated

confidence intervals on the predicted brightnesses by scoring each sequence multiple times with dif-

ferent random settings of weight dropout at inference time 102 to make our discriminative neural
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network approximately Bayesian94. The jury is still out on whether this is a valid means of approx-

imating uncertainty but conceptually this strategy appeared to be a reasonable criteria to prioritize

sequences while addressing some of the noise in the predictions. We chose 48 sequences at least 20

mutations from sfGFP predicted to be bright with 95% confidence using this method. We also sam-

pled 48 sequences from the same lineage with approximately half as many mutations from wild-type,

and also predicted to be bright with high confidence.

The 96 synthesized sequences were received, individually cloned, and visualized on a plate (Fig-

ure 5.4). We found that 43 maintained some level of fluorescence at the GFP peak excitation. Out-

sourced full length synthesis turnaround time is typically less than one week from Twist at time of

writing, allowing rapid feedback initial feedback on designs.

We used error-prone PCR with the designed variants as inputs to generate libraries of design

neighborhoods. We grouped the 96 designs into six pools according to brightness in order to simplify

library generation and allow enriching for assaying functional neighborhoods. The elements of the

neighborhoods were then quantified for fluorescence by FACS + NGS. During FACS, we sorted

cells into four equal-sized bins evenly distributed along the log-GFP dimension with the boundary

between the two top bins aligned with the center of the wild-type sfGFP distribution. From buck-

eted NGS reads, we inferred fluorescence for a given genotype using the distribution of observations

genotype among the different bins to infer fluorescence, as in78. The continuous measurements of

individual proteins would allow us to build regression models that could be used to improve quan-

titative brightness. The resulting dataset consisted of 308,548 unique genotype-phenotype quanti-

tative measurements, though many were singletons. Unlike the Sarkisyan and Break-Fix datasets,
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Figure 5.4: 96 Sequences Designed by Simulated Annealing The 96 sequences designed by simulated annealing with

respect to the discriminativemodel and optimized for increasing edit distance while maintaining function. These were

cloned into separate backbones and imaged at both GFP andmCherry excitation/emission settings and the images

overlaid. 43maintained GFP function at a detectable level.

fluorescence measurements were more evenly distributed across different quantitative levels, which

would have interesting implications for modeling.

5.2.5 Assessing model-predicted designs

Figure 5.5 shows that while the fraction of sequences maintaining function falls off with edit dis-

tance, the functional mutants still covered a range of edit distances, including a functional mutant

39 mutations removed from wild-type sfGFP.

Inspecting the functional mutant with 39 mutations, we found that many of the mutations
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Figure 5.5: Brightness vs edit distance formodel-designed variantsGreen line indicates wild-type fluorescence. Fluo-

rescence was inferred from FACS+NGSwith 4 bins.

resided on the outer barrel. We found that outer barrel mutations were enriched and inner barrel

mutations were depleted in the designs (Figure 5.6). This matches general a priori intuition about

the GFP protein, where the inner barrel environment is important for the formation and mainte-

nance of the chromophore environment. As our design generation process optimized for distance

while maintaining function, it is likely that many of the mutations were neutral.

To more generally quantify the triviality of a mutation at a given position, we returned to the

Sarkisyan and Break-Fix mutagenesis datasets and calculated the entropy at each position from the

distribution of amino acids observed at the position across the dataset. Specifically, we chose a low

brightness threshold to distinguish dark and bright mutants and calculated the positional entropy

within each set. We then took the ratio of bright to dark and interpreted this as the independent
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Figure 5.6: Outer barrel mutations enriched and inner barrel mutations were depleted. Each of the dots corresponds

to one of the 96 designs. The orange line indicates the number of mutations of the respective type if mutations were

chosen by chance, with the slope representing the fraction of positions annotated by the respective outer or inner

barrel annotation for secondary structure.

permissibility of mutability of a given position in the protein. We found that the positional entropy

ratio was correlated between the Sarkisyan and Break-Fix datasets (Figure 5.7).

This analysis of positional triviality hints at a deep principle for exploring protein fitness land-

scapes. Positions with low positional entropy ratio between bright and dark are independently re-

calcitrant to mutation. At present, we are designing experiments that further stress test these non-

trivial positions.

5.2.6 Optimizing brightness using a regression model

Using the dataset of continuous fluorescence measurements from the neighborhoods of the initial

96 machine-designed sequences, we compared regression models of various architectures that pre-

dict quantitative brightness from sequence (Figure 5.8). Notably, the neighborhood data was not

distributed bimodally as in the Sarkisyan and Break-Fix dataasets and instead was clustered around
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Figure 5.7: Positional entropy ratio as a quantifiedmeasure of mutability. Sarkisyan (avGFP) vs Break-Fix(sfGFP).

Bottom right compares the datasets directly and shows positional entropy is correlated between the twoGFPmodes

separate by 14mutations. Colors annotated in legend indicate the secondary structure annotation for the respective

residue (H:α-helix, B: Isolated β-bridge, E+: outer-barrel, E-: inner-barrel, E0: barrel orientation undefined, G: 3-10
helix, I:π-helix, T: Turn, S: Bend, -: Other). Upper left and bottom right show the distribution of position entropies,

colored by secondary structure annotations.

modes covering a range of brightnesses between dim and wild-type sfGFP brightness. The three

datasets were 1) nbrhoods4_90_10: a 90-10 random split of the 96-designs neighborhoods data, 2)

nbrhoods_tr_dev_sark_test: train and dev on neighborhoods data and test on Sarkisyan and 3) nbr-

hoods_tr_sark_dev_test: train from neighborhoods data and dev and test from Sarkisyan. We used

the last dataset to make the final model decision because the Sarkisyan data was a sufficiently differ-

ent mode from the training data and serve as proxy for assessing generalization.
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Figure 5.8: Comparison ofmodel performance on designed neighborhoodsmeasurements. The samemodels are

compared as in Figure 5.2. We selected the composite residuesmodel with with linear activation for further design as

it showed the highest predictive performance and lowest FDR.
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Here we found that the optimal model was what we refer to as the composite residues architec-

ture (Figure 5.9), which captures the prior that certain residues should be considered together when

any of them are mutated. A permutation layer contains weights that represent learned associations

among these residues. We found that a linear activation on the output node was optimal, which

matched the observation of the data being more uniformly distributed from low to high as com-

pared to the bimodal distributions in the Sarkisyan and Break-Fix datasets, where a sigmoid activa-

tion on the output performed better.

Figure 5.9: Composite residuesmodel architecture.Wedesigned the composite residuesmodel architecture to cap-

ture the prior that certain residues should be considered together for mutation. The key component is a permutation

layer that learns which subset of residue interactions to consider most strongly for prediction.

We observed that the composite residues model performance varied depending on the numerical

random seed used during training. We trained ten iterations of the model from different seeds and

tested several ensemble models, specifically comparing a mean, median, and min ensemble. While

the mean and median ensemble performance as assessed by Pearson R was best, the min-ensemble

false-discovery rate (FDR) was significantly lower. We thus proceeded with the min-ensemble of

ten instances of the composite residues model. We continue to explore variations on ensembles and
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boosting.

We used the model to generate sequences using two general strategies: 1) The simulated annealing

approach for the first set of designed variants and 2) A greedy search algorithm that sequentially

picks the best model-predicted mutation to make at every step. As seed sequences, we used wild-type

sfGFP as well as nine other bright sequences from the neighborhood exploration of the first design

set. We designed 70 sequences optimizing for brightness. We also designed 24 sequences that were

optimized for further maximizing distance from wild-type sfGFP.

The synthesized sequences were transformed and imaged (Figure 5.10). The fluorescence of the

brightest clones was quantified (Figure 5.11) and found to be near wild-type, achieving the optimiza-

tion objective over the first round of designed sequences that maintained fluorescence, though it was

reduced relative to wild-type (Figure 5.5). Several clones were measured to have fluorescence above

that of wild-type sfGFP.

5.3 Discussion and Future Work

In the present work, we explored how high-throughput mapping of protein fitness landscapes can

be employed to learn design principles and optimize protein function. We performed our study

with the green fluorescent protein (GFP) where a well-established FACS + NGS assay can be used

to measure 105 genotype-phenotype pairs per experimental cycle. We found that a model trained on

local mutagenesis data could be used to design functional sfGFP mutants having up to 39 mutations

from the wild-type. We mutagenized and measured the local neighborhoods of 96 designed vari-

ants. A regression model trained on this data was used to design variants verified to be close to and
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Figure 5.10: 94 Sequences TowardOptimizing BrightnessWedesigned 94 sequences using simulated annealing and

greedy optimization. This image shows the overlay of GFP andmCherry channels. The control in the bottom right

was at a different OD and is not comparable in this figure. bright-1a: 20 sequences (2 per seed) ED = 15 from seed by

1000 parallel searches that terminate at 15mutations. bright-1b: 20 sequences (2 per seed) ED = 15 from seed using

kernel reward attracting to ED = 15 and allowing 4000 steps so toggles somemutations under termination bright-

1c: 20 sequences by greedy search (saturation at each step and take best step) 10 ED = 15 from seed (pick brightest

predicted) 10 ED = 5 (same lineages; conservative hedge). bright-1d: 10 sequences edit distance 5 brightest from each

set 1a (conservative hedge).

sometimes exceed the reference sfGFP brightness.

Our work is motivated by the need to systematize traditional protein engineering methods of

directed evolution and structure-guided mutagenesis. Screening capacity is one of the biggest limita-

tions of protein engineering. Random or targeted mutations are often restricted to a narrow space
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Figure 5.11: Quantified brightness for optimized clones. Green line indicates wild-type fluorescence. Fluorescence

was inferred from FACS+NGSwith 4 bins. Right: Distribution of edit distance amongmutants with non-zero green

fluorescence.

in order to ensure capacity is filled with mutations with a high prior expectation. With increasing

synthesis and sequencing capacity, it becomes possible to leverage iterative experimentation to em-

pirically design mutagenesis while optimizing for screening variants, neighborhoods, and trajectories

predicted to be bright.

5.3.1 Design principles for machine-guided protein engineering

Our results so far hint at several design principles for engineering proteins guided by machine learn-

ing. First, we showed the efficacy of bootstrapping on an initial random mutagenesis followed by
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high-throughput characterization. While limited to a local exploration, this data can reveal design

constraints and serve as medium for training initial models. From the Sarkisyan avGFP data and

Break-Fix sfGFP data generated by variations of error-prone PCR, we were able to train a model that

successfully generated functional design removed by twenty more or mutations, where nearly all

mutants above ten mutations from error-prone PCR were non-functional.

Another design principle that emerges is the remarkable efficacy of simple addictive models at

the begging of iteration. Our success at achieving the far-but-still-functional design objective may

be owed to the broadly additive nature of many mutations, which applies strongly to many residues

in GFP and may also apply to other proteins. An additive model can be a surprisingly effective pre-

dictor. We observed that a linear regression model with a sigmoid output performed best on various

train-test splits and combinations of the Sarkisyan avGFP data and Break-Fix sfGFP mutagenesis

data. Previous engineering work has demonstrated the efficacy of model that don’t take into ac-

count interaction terms, although with smaller data sizes 82. We were surprised that even with greater

amounts of data it is difficult to beat a linear model without interaction terms.

However, adding model complexity can also be beneficial as the training data distribution shifts

from local perturbations to different distributions enabled by design. Using the neighborhood mea-

surements of the initial designed set of 96 variants, we found that the composite residues model, in-

tentionally architected to capture the prior that the model should learn to consider certain residues

together, had better performance. Throughout this work, we came to understand the significant

role of the dev dataset in model selection and more generally the central role of designing data distri-

butions in machine-guided protein engineering.
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5.3.2 Designing data distributions

The protein engineering domain allows the design and testing of thousands of variants in a single

experiment. This control over the design of data distributions is a unique and powerful aspect of

this domain and perhaps more important than the design of model architectures. Directed evolu-

tion can find solutions when they are local to the starting point, navigating a space of points sharing

a similar distribution. However, as edit distance from the reference starting point increases, new id-

iosyncrasies of the distant space arise. We found that a linear model does well predicting the effect

of combinations of mutations in the local space, but the more complex composite residues model,

which takes into account the importance of the residue proximity in three-dimensional space, was

more effective for more distant modes. However, the ability to train models of increasing complex-

ity in turn relies on the availability of appropriately held-out data. Thus designing data distributions

is both challenging but also a great opportunity.

Methods for generating data variation carry their own nuances and biases. Error-prone PCR

from a single starting variant explores a specific sliver of the possible fitness landscape. This is gen-

erally limited to amino acid mutations within a single nucleotide mutation and few functional

mutants are observed beyond a hamming ball of ~5 mutations from the starting point. While an

error-prone dataset can be effective for revealing permissiveness of individual positions to mutations,

there are many other experimental perturbations that can yield interesting data. DNA shuffling al-

lows diverse variants to be combined. Selection allows evaluating library numbers beyond screening

capacity. For particular residues of interest, targeted mutagenesis can be employed. And of course
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synthesis of specific variants. These techniques have been employed for decades and now with the

availability of inexpensive sequencing, they become further amenable to a model-guided approach.

Beyond generating individual sequences that a model would like to explore or exploit, it is possi-

ble to predict the fitness of entire neighborhoods or trajectories. Thus a library of variants can be

designed that is predicted to have a high chance of containing interesting mutants and whose infor-

mation content would further accelerate the model’s ability to discern desirable sequences.

Reiterating, the core value of being able to design experiments that collect specific data distribu-

tions is the ability to craft dev sets that facilitate effective model selection. There is yet significant

work to be done to systematize methods for design of experiments.

5.3.3 Multi-objective optimization

Proteins as medicines or industrial tools must not only be optimized for their specific task, but must

also act safely and reliable in their destined environments. As therapeutics, proteins must be limited

in toxicity, while also having favorable pharmicokinetic properties. Optimizing for these early in the

development pipeline before getting to expensive clinical trials is a tremendously valuable proposi-

tion of much interest in the field 103.

Selecting for multiple properties using directed evolution is particularly difficult. A serial devel-

opment strategy may be employed where an initial library is pruned based on performance against a

first objective. And the remaining members are screened for performance against a second objective.

The intersection of sequences that satisfy both objectives may be very limited. A machine-guided

approach could be used to separately learn predictive models for performance in the separate assays.

92



Then the models could be used to generate candidate sequences that are predicted to be optimal in

both assays. The proposed intersection library could be screened both separately in a combined a

assay. I hypothesize that a model-guided approach may be essential to generate the diversity needed

for a successful screen for a molecule satisfying multiple objectives in many applications.

In the context of our GFP proof-of-concept, our foray into multi-objective optimization was

limited to maximizing edit distance while maintaining function: only one of these objectives was

assay-limited. A next step in our work is developing the capability to optimize against multiple assay-

determined objectives. Mastering this capability may allow us to solve problems where evolution

alone would fail.

5.3.4 On to other proteins

While we have developed our proof-of-concept using GFP, the methods and design principles ex-

tend broadly to other protein systems. Any protein problem that can be expressed as a sufficiently

high-throughput assay coupled to next-gen DNA sequencing can be augmented by our machine-

guided approach. Limitations and challenges are determined by the difficulty of engineering the

assay and the size of the DNA space.

In assay development, there is typically a trade-off between throughput and quality of individ-

ual measurements. Machine learning methods may be able to leverage noisy data that is correct on

average. Thus rather than collecting individual quantitative measurements, relative enrichment or

pooled values may be enough to provide hints for subsequent targeted exploration.

The DNA space is constrained by technological limitations of DNA sequencing and synthesis.
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Next-generation DNA sequencing can provide billions of reads but is currently limited to ~600

nucleotides. Molecular biology tricks, including the clever use of barcodes, can be used to push

these limitations. Inexpensive DNA synthesis at scale is currently limited to ~200 nucleotides. The

price of longer synthesis is in part driven by the need for screening for near-perfect clones. High-

throughput genotype-phenotype mapping assays may tolerate and even benefit from imperfect

libraries, allowing leveraging imperfect longer synthesis.
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A
Supplemental Information for Chapter 2

Table A.1: GenomeDesign Rules
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Category Fig 
S5.# 

Rule Motivation Implementation 

Biological A Fix gene overlaps: 
Perform minimal 
synonymous codon 
swaps required to 
properly recode both 
overlapping genes. 

Forbidden codons may fall in 
the overlapping region of two 
genes. Sometimes it may be 
possible to remove forbidden 
codons through synonymous 
swaps alone. In other cases, in 
order to avoid introducing 
non-synonymous mutations or 
disrupting regulatory motifs 
such as ribosome binding 
sites (RBS), it is necessary to 
separate the genes first so that 
codons in each gene can be 
replaced independently. 

Use synonymous 
codon swaps 
(Genbank 
annotation: 
adj_base_ov) to 
avoid introducing 
non-synonymous 
changes in 
overlapping genes. 

Use computational 
RBS motif 
strength prediction 
(38) to maintain 
RBS motif. 

In short gene 
overlaps, attempt 
to minimize 
editing, for 
example reduce 4 
nucleotide overlap 
to 1 nucleotide  

If necessary - 
separate by 
duplicating 
overlapping regions  
[202 instances] 

If minimal overlap 
fix does not 
preserve RBS 
motif, separate the 
overlap by 
copying the 
overlapping 
sequence and 15-
20 base pairs 
upstream, to 
preserve native 
RBS (Genbank 
annotation: 
fix_overlap) 

Reduce homology 
between duplicated 
regions through 

To separate overlapping genes 
we duplicate the sequence, 
creating two tandem 

Perform 
synonymous 
codon swaps in 
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non-disruptive 
shuffling of copied 
region 

paralogous regions. These 
two paralogs have the 
potential to recombine 
spontaneously which could 
cause a disruptive change in 
either the upstream or 
downstream gene. We attempt 
to prevent this spontaneous 
recombination by shuffling 
the codons of the upstream 
paralog, thus maintaining the 
native  nucleotide sequence of 
the N-terminus of the 
downstream gene and 15-20 
bases upstream. This region 
has shown to be important for 
mRNA folding and translation 
initiation 

copied regions to 
reduce homology 
while maintaining 
regulatory motifs. 
(Genbank 
annotation: 
adj_base_ov) 

B Preserve 5-prime 
mRNA secondary 
structure of genes 

Gene expression is affected 
by mRNA secondary structure  

Use 
thermodynamics-
based secondary 
structure 
prediction (37) to 
compare mRNA 
free energy (∆G) 
of wild-type and 
recoded sequence. 
Minimize ∆G 
change across 40 
bp windows 
centered at 
modified codons. 

Preserve GC content Related to DNA stability, 
mRNA secondary structure. 

Maintain GC 
content when 
choosing among 
alternative codons. 
Minimize ∆GC 
across 40 base pair 
windows centered 
at modified 
codons. 

Rebalance codon 
usage 

Preserve codon usage bias for 
remaining 57 codons in order 

Ensure selection 
of alternate codons 

97



to preserve expression 
dynamics that are dependent 
on aa-tRNA availability. 

is consistent with 
global distribution 
of codon choice; 
both for recoding 
and heterologous 
expression. 

Synthesis C Remove repetitive 
(REP) sequences 
[132 instances] 

We found REP regions to be 
over-enriched in DNA 
fragments that failed the 
repetitiveness metric for 
commercial synthesis and/or 
failed during synthesis. 
Hypothesizing that these REP 
elements were used as 
transcriptional terminators, 
we replaced REP sequences 
with synthetic transcriptional 
terminators. 

Replace each REP 
sequence with 
unique terminator 
sequence drawn 
from orthogonal 
set(57). Note that 
not all REPs were 
deleted as some 
were tolerated for 
DNA synthesis. 
(Genbank 
annotation: 
rep_to_term) 

D Remove restriction 
sites needed for 
synthesis  [AarI: 
972 instances, BsaI: 
182 instances, 
BsmBI: 954 
instances] 

DNA synthesis vendor 
constraint. 

Disruption of  
restriction enzyme 
motifs using 
synonymous 
codon swaps. 
(Genbank 
annotation: 
adj_base_RE ) 

Preserve 
functional RNA 
(e.g. rRNA) 
secondary 
structure when 
necessary(58). If 
outside of coding 
regions, change 
single nucleotides 
to avoid disrupting 
annotated 
regulatory motifs. 
(Genbank 
annotation: 
adj_base_RNA) 
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E Remove 
homopolymer runs 
[158 instances] 

DNA synthesis vendor 
constraint: remove sequence 
of more than 8 consecutive A, 
C, T or more than 5 
consecutive G 

In coding 
sequence, we 
performed 
synonymous 
codon swaps. In 
intergenic 
sequence, minimal 
nucleotide changes 
were performed 
that avoid 
disrupting 
annotated 
regulatory motifs. 
(Genbank 
annotation: 
adj_base _hp) 

NA Rebalance GC 
content extremes 

DNA synthesis vendor 
constraint: 0.30 < GC < 0.75. 

If coding sequence 
contains very 
high/low GC 
content, use 
synonymous 
codon swaps to 
normalize GC 
content. (Genbank 
annotation: 
adj_base_GC) 

If intergenic 
sequences contains 
high/low GC 
content, introduce 
minimal 
nucleotide changes 
to avoid disrupting 
annotated 
regulatory motifs. 
(Genbank 
annotation: 
adj_base_GC) 
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F Partition genome 
into 87 50-kb 
“segments” at 
operon boundaries 

We make sure to avoid 
splitting operons so that 
segments remain modular and 
can be redesigned 
independent of each other. 
(See Manuscript and Suppl. 
Methods for choice of 
segment size). 

Allow ±5-kb 
variability in 
segment size  to 
find partitioning 
that keeps whole 
operons together. 
(Genbank 
annotation: 
segment) 

G Partition each 
“segment” into ~15 
synthesis-
compatible 
fragments of  2 to 4-
kb with 50 bp 
overlaps between 
adjacent fragments 

We used 2 to 4-kb as the 
primary synthesis unit, as 
offered by vendors. 50 bp 
overlaps enable homologous-
recombination-based 
assembly in S. cerevisiae. 

Choose 
partitioning to 
minimize 
secondary 
structure at 50 
base pair overlaps 
to maximize 
success rate in 
yeast assembly. 
(Genbank 
annotation: 
synthesis_frag) 
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Figure B.1: Detailed ExperimentalWorkflowDepiction of the specific steps used to identify the six alleles that op-

timized the fitness of C321.∆A.Millstone (Goodman et al., submitted) was used to annotatemutations in C321.∆A.

127 prioritized codingmutations were tested in C321.∆A over 50 cycles ofMAGE in 3 lineages. Eighty-seven clones

were genotyped bywhole genome sequencing and annotated usingMillstone, and their doubling times weremeasured.

Modeling bymultiple linear regression identified 8 alleles for subsequent validation. After the second iteration, 5 alle-

les were chosen, with 3 alleles having a significant linear model coefficient and 2more reversions having subtle effects.

In a parallel experiment, a small pool of 7 non-codingmutations was tested, andmodeling identified one allele that

was found to have a strong effect. In another parallel experiment, 20 UAA-to-UAG reversions were tested on a C321

backgroundwith prfA still present, but no reversions were found to affect fitness. The top 6 alleles were combined in a

final optimized strain, and clones with intermediate combinations of alleles were used to characterize their interaction

effects (Fig. 5).
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Figure B.2: Empirical testing to validate top eight alleles from 50-cycleMAGE experiment. The top eight alleles (Addi-

tional file 4) were tested in the original C321.∆A background using nine cycles ofMAGE.We selected 96 clones from

the final population andmeasured doubling times and performedMASC-PCR to assess genotypes. Clones are sorted

by fitness on the x axis and alleles are listed on the y axis in order of enrichment. Linear modeling revealed a strong

predicted effect for reversions hemA-T1263523C and cpxA-A4102449G and de novomutation in cyaA-C3990077T,

with weaker predicted effects for reversions leuS-C672170T and bamA-C200214T and de novomutation T1511492C.

For construction of the final strain, we chose to keep the three high-predicted-effect alleles (hemA-T1263523C, cpxA-

A4102449G, cyaA-C3990077T) and the twoweak-predicted-effect reversions (leuS-C672170T, bamA-C200214T),

but we omitted the three weak-effect de novomutations.
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Figure B.3: Empirical testing identifies high-effect non-codingmutation. Genotypes and fitness from testing a set

of seven non-codingmutations (Additional file 5). Upper right: the topmodel-selected allele is not apparent from

enrichment alone, and it is later experimentally validated to have a significant effect (Fig. 4).
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B.2 Supplementary Note 1: Further discussion of allele effect modeling and

feature selection.

Adaptive laboratory evolution (ALE) typically uses enrichment of mutated genes observed across

replicate lineages evolved in parallel to select meaningful features [33,34]. We selected multivariate

linear modeling regularized by elastic net as an alternative to enrichment as initial tests suggested

that it was a better method for predicting SNPs that recovered fitness in our experiments. For some

alleles, high model coefficients corresponded to high levels of enrichment. For example, the rever-

sion of mutation hemA-T1263523C had the highest enrichment after 50 cycles of MAGE (occurring

in 78 out of 87 clones) and was also selected by modeling for validation, eventually being verified to

confer fitness improvement (Fig. 3). On the other hand, when testing the pool of seven non-coding

reversions, the single allele selected by the model folA-C49765T (also later experimentally validated)

occurred in only 4 out of 96 clones. Meanwhile, three other alleles occurred in over 25 out of 96

clones, but they were not predicted to have a strong effect by linear modeling (Supplementary Fig.

3). There were many other cases where linear regression assigned low coefficients to alleles that were

highly enriched. The discrepancy between enrichment and model-predicted effect may be due to

differences in MAGE oligonucleotide recombination frequency [35], insufficient time for mutations

to achieve enrichment, or stochastic enrichment of passenger mutations in a lineage during MAGE

cycling. As noted in Methods, we observed that alleles with weaker effect were not consistently re-

ported and were dependent on the choice of randomized train-test split, an issue that we expect to

be remedied by sequencing additional clones and further tuning of the exact implementation of
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multivariate linear regression with respect to alleles with weak effect. Altogether, however, we found

that regularized multivariate linear modeling provided an effective strategy of predicting fitness ef-

fect for individual alleles.

We compared our multivariate linear regression strategy to univariate linear regression (Addi-

tional file 11). Treating any Bonferroni-corrected p-value of < 0.05 as a reported effect, we found that

the two modeling strategies agreed in six of the eight alleles chosen for validation following the 50-

cycle MAGE experiment. Based on our simulations (Supplementary Fig. 4), we expect imperfect

recall and precision for both elastic net and the univariate model. However, the elastic net model is

predicted to generally perform better in both recall and precision, including at the parameters of our

experimental design. Thus, we chose to pursue the targets identified by our elastic net regularized

multivariate regression strategy. Further, the diminishing returns observed in our analysis of par-

tial strains (Supplementary Fig. 5) suggests that the majority of effects had been recovered in the six

SNPs found. We did not pursue independent validation of the additional mutations reported by the

univariate analysis.

An important consideration with multivariate linear modeling is whether to include higher-order

interaction terms. For our 50-cycle MAGE experiment, we made an assumption that independent

allele effects would dominate relative to complex epistatic effects and included only first-order

terms in the model. For validation in pools of <= 10 oligos, we typically selected 96 clones and ex-

perimented with second- and higher-order models, but also found that the first-order model was

typically sufficiently informative of allele effect.

To investigate how higher-order model terms can inform interpretation of epistatic effects, we
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assembled a dataset of 359 intermediate genotyped clones obtained from validation experiments or

from screening during construction of the final strain with all six top alleles (Fig. 5). Interestingly,

linear modeling with second-order interaction terms indicated evidence of possible diminishing

returns epistasis among certain alleles [36] and also a possible positive epistasis effect between cpxA-

A4102449G and cyaA-C3990077T. Alleles that contribute to fitness through a positive epistasis

effect could be lost during validation of small numbers of alleles, supporting our validation of high

impact alleles in pools.

Even with targeted engineering by MAGE, de novo mutations can play a role in fitness improve-

ment. The mismatch repair-deficient context in which this study was conducted elevates the back-

ground mutation rate >100-fold [37] and resulted in the accumulation of four de novo mutations

for every reversion (Fig. 2f). We considered de novo mutations in modeling experiment data, but

omitted any de novo mutation that was never observed in more than one clone, reducing the num-

ber of features corresponding to de novo mutations from 1329 to 135. Linear regression of data ob-

tained over 50-cycles of MAGE identified four de novo mutations with a putative effect. Valida-

tion of these alleles determined that three of these were false positives or only beneficial in a specific

context. The fourth de novo cyaA-C3990077T, however, showed a strong effect upon validation,

demonstrating that linear regression can be an effective strategy for identifying causal de novo muta-

tions and may be generally applicable in laboratory evolution studies.

Additional features beyond allele occurrence can be added to the linear model such as terms that

capture prior expectation of an allele’s effect. For application to ALE, mutations could be merged ac-

cording to affected gene and its interacting partners. Higher order terms can be iteratively introduce
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as the candidate feature set is pruned.

B.3 Supplementary Note 2: Discussion of alleles chosen to construct final

strain.

The final strain was constructed by introducing six mutations into the starting C321.∆A background:

five alleles reverted to their MG1655 starting point and one de novo mutation not previously present

in MG1655 (Additional file 7).

Four of five reversions (bamA-C200214T, leuS-C672170A, hemA-T1263523C, cpxA-A4102449G)

were coding mutations in essential genes prioritized in the highest category of 27 mutations in the

50-cycle MAGE experiment, supporting the strength of the initial prioritization method. The fifth

reversion (p-folA-C49765T) was identified in screening noncoding off-target mutations predicted

to disrupt gene regulation. Though we did not consider mutations outside of coding regions in our

initial prioritization, the later consideration and validation of such a causal mutation demonstrates

computational prediction of regulatory disruption as an important strategy in tuning organisms

[8]. The sixth mutation was the de novo mutation C3990077T that arose in the background of

MAGE-cycling, coding for cyaA (adenylate cyclase), a non-essential gene that nonetheless impacts

fitness upon knockout (Keio knockout survival = 0.324). If designed, this mutation would have

been prioritized in category 1 (Additional file 2).

We characterized intermediate genotypes created while constructing the final strain (Fig. 5) and

determined that three of the mutations (reversions of p-folA-C49765T, hemA-T1263523C and de

novo cyaA-C3990077T) had especially strong individual effects. Two reversions (leuS-C672170A,
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bamA-C200214T) had weaker individual effects that diminished in backgrounds with multiple

mutations (Fig. 5b). The last reversion cpxA-A4102449G did not have a strong effect alone, and

may even have been slightly detrimental, but appeared to provide a benefit in the presence of cyaA-

C3990077T (Fig. 5a). To our knowledge, none of the gene identities or relationships reveal a first-

order explanation for the findings of epistasis. However, both cyaA (C3990077T) and cpxA (A4102449G)

are implicated in stress response pathways [38] [39].

We suspected that the de novo cyaA-C3990077T is a beneficial suppressor in the C321.∆A back-

ground but not in the non-recoded background. Testing the mutation in EcNR1.mutS.KO revealed

a minor detrimental effect on fitness, increasing doubling time by 2.94
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Figure C.1: Millstone Analysis Pipeline. The analysis pipeline efficiently automates the process of identifying single

nucleotide variants (SNVs) and structural variants (SVs) from user sample data and storing the information in a data

model representation that can be explored usingMillstone’s variant exploration UI. Once sample FASTQs and a refer-

ence genome are uploaded,Millstone uses BWA104 to align samples to the reference, parallelizing alignments across

available processor cores. Once all alignments are complete, Freebayes performs SNV-detection on all .bam files si-

multaneously, parallelizing across regions of the genome. SVs are identified in parallel in individual samples using two

methods: 1) Deletions are detected using sequencing read coverage and 2) novel junctions that indicate insertions and

rearrangements are identified using de novo assembly of unmapped reads using Velvet105 followed by a custom graph-

walking algorithm to combine assembled contigs and alignment with BWA to place contigs in the genome. All variant

callers report their data in the Variant Call Format (VCF) andMillstone parses the VCFs into a single datamodel rep-

resentation. Millstone further uses read coverage to identify regions of the genomewith poormapping quality and

automatically adds variants that fall into such regions to appropriate VariantSets.



Figure C.2: Millstone DataModel.Millstone’s datamodel was designed to enable project organization, data storage,

and to support researcher operations including uploading data, running analysis pipelines, exploring the resulting data,

and generating actionable outputs. Users upload ReferenceGenomes (e.g. Genbank or FASTA genome sequences) and

ExperimentSamples (e.g. FASTQ) to a Project. The AlignmentGroupmodel stores data from an alignment of multiple

ExperimentSamples against a specific ReferenceGenome. Variants represent both user-specified designedmutations

and those emprically identified by variant callers. Variants are themost important primitive inMillstone, and serve

as the unit of operation for analysis and design tasks. Variants are defined relative to a specific ReferenceGenome. The

VariantCallerCommonDatamodel relates a given Variant to any AlignmentGroups themutation was called in and stores

metadata provided by the variant calling tool (e.g. Freebayes). The VariantEvidencemodel further stores evidence

for the occurrence of a specific Variant in a specific ExperimentSample. VariantSets allow the user to group Variants

and take actions on groups. The VariantSet concept is very similar to tags in other software contexts and a Variant

can belong tomore than one VariantSet. Operations enabled by VariantSets include filtering in the exploration view,

exporting subsets of variants, printingMAGE oligos, and generating new versions of reference genomes. The full

datamodel is declared in the source code: https://github.com/churchlab/millstone/blob/master/
genome_designer/main/models.py.

112

https://github.com/ churchlab/millstone/blob/master/genome_designer/main/models.py
https://github.com/ churchlab/millstone/blob/master/genome_designer/main/models.py


lonIS186clpX

lonIS186

2 de novo
contigs reported

updated reference 
genome

1 de novo
contig reported

reference
genome

L1a L1b R1a R1b

457,843 bp
15,383-16,734 bp

paralogs:  608,399bp & 2,519,128bp 

R2L1 R1 L2

clpX

Sample Contig #
Mean 

Coverage
Contig 

Size
Left/Right 
Junction

Genome 
Position Gene

adk.d6-Esc3 1569 45.9 360 L1 457848 lon
1569 45.9 360 R1 16733 IS186
673 38.8 532 R2 457835 lon
673 38.8 532 L2 15388 IS186

adk.d6-Esc2 571 76.0 2145 L1b 608398 IS186
571 76.0 2145 L1a 457848 lon
571 76.0 2145 R1a 607053 IS186
571 76.0 2145 R1b 457835 lon

adk.d6-Esc1 8 38.8 1784 L1b 608399 IS186
8 38.8 1784 L1a 457848 lon
8 38.8 1784 R1a 607053 IS186
8 38.8 1784 R1b 457836 lon

adk.d6/tyrS.d8-Esc3 76 9.2 608 L1 457841 lon
76 9.2 608 R1 15385 IS186
2 10.3 481 L2 2519646 IS186
2 10.3 481 R2 457835 lon

adk.d6/tyrS.d8-Esc2 4 3.6 236 R1 2519128 IS186
4 3.6 236 L1 457405 clpX
4 3.6 236 L1 456777 clpX
14 6.6 575 L2 16733 IS186
14 6.6 575 R2 457848 lon

b

c

a

d

5 
sa

m
pl

es
 w

ith
 IS

18
6 

ins
er

tio
n 

at
 lo

n
co

nt
ro

l

lonIS186clpX

Figure C.3: Millstone uses de novo assembly to identify amobile element insertion at the lon locus across 5 escapee

clones fromMandell et al. (a)Millstone’s integration with JBrowse shows evidence for a disruption upstream of the lon

gene for 5 escapee strains. Each colored line represents a single read, and the reads are grouped vertically by strain.

A wild-type dependent strain is shown at the bottom for comparison. Darker readsmap to the forward strand, and

lighter readsmap to the reverse strand. Properly paired reads are shown in green, reads with an unmappedmate

are shown in blue, and reads with improperly pairedmates are shown in orange. The dark blue vertical lines at the

center of this locus denote split reads, indicating a disruption in alignment. (b)Millstone performs de novo assembly

followed by alignment of assembled contigs back to the reference, and then uses a graph traversal algorithm to identify

large insertions. Millstone identifies either one or two contigs for the insertion of the IS186 element into the lon locus.

Finally, Millstone generates an updated reference genomewhich reflects the insertion. (c)A table of contigs, their

sizes, andmultiple reference alignments for each of the 5 samples with an IS186 insertion. (d)A new JBrowse view

with the the updated reference genome. The split andmismapping reads are gone, revealing a clean alignment in the

region with the inserted IS element. The dark region indicates reads whichmap tomultiple IS186 paralogs across the

genome.



Table C.1: Comparison betweenMillstone andOther Tools. A tabular comparison of features between different whole-

genome sequencing tools, with a focus on those that aremeant for use with haploid microbial genomes and are scal-

able to large datasets. All tools listed here are free and open-source. Amore detailed description of the differences

between the features and limitations of each is provided in Supplementary Note 1. Effect Prediction: Prediction of

variant effects based on genome annotation. Variant visualization: can visualize read alignments for individual vari-

ants built into the tool. Multiple Sample Comparison: can compare the evidence for and presence/absence of a variant

across multiple samples within the tool. Interactive Querying: can interactively search and subset variant list based on

genomic position, gene, quality, mutation type, etc. within the tool. Structural Variant Detection: Supports detection of

longer variants not normally detected by SNV callers like Freebayes and GATKUnified Genotyper, such as insertions,

deletions, and translocations longer than 50-100 bp in length. Genome Versioning: Capable of generating an updated

reference genome based on a subset of variants found in an initial reference genome. Easy Deployment / Install: Can be

usedwithout command-line compilation or scripting. Genome Editing: Generates designs for iterative editing/reversion

of selected variants. Sharing / Collaboration: Built-in data-sharing via the web among teams of multiple users. Uses

Paired-End Data: Utilizes paired-end read information to generate alignments and identify structural variants. Modular

Pipeline: Capable of custom pipelines using different user-specifiedmodules.
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Table C.2: Variant differences betweenMillstone and the original analysis performed by Tenaillon et al.We compared

variants found by the Tenaillon et al. to those found automaticallyMillstone, focusing on Type II errors. Here we split

discrepancies into 5 classes, including 3 short nucleotide variant (SNV) classes - short Deletions, Insertions, and Point

Mutations, and 2 structural variant classes - Large Deletions andMobile Element insertions. The final two columns

describe ’True Positive’ variants which were found by only one of the two pipelines. To identify these, we examined

the read evidence usingMillstone’s JBrowse visualization feature and determinedwhether the variant was correct as

called by either pipeline.
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Table C.3: Benchmarking.Millstone’s analysis pipeline was executed on datasets of various size from four different

projects: Biocontainment 7, GRO 4, Improving GRO Fitness (Kuznetsov et al., submitted), and Tenaillon 62. Average query

timewas calculated using no filter and a simple filter for strong alt calls: GT_TYPE = 2. All benchmarking was per-
formed on AmazonWeb Services (AWS) Elastic Cloud Compute (EC2) instances r3.8xlarge (32 cores, 244 Gbmemory).

.
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C.2 Supplementary Note 1: Cost of Multiplexed Genome Library Preparation

and Sequencing

Sample Preparation

Low-cost high-throughput sample preparation workflows for Illumina sequencing based on trans-

poson insertion and fluorescent dye-based sample quantification can reduce the cost of preparation

to below $15 USD per sample and be performed in approximately 5 hours per 96-well plate47.

Multiplexed Illumina Sequencing

For accurate discovery of structural variants, 20-30x coverage is ideal per sample. For the 4.6 megabase

Escherichia coli K12 MG1655 genome at 30x coverage, this is approximately 1 million 150 bp reads.

The cost per read for Illumina sequencing can vary widely depending on the platform (NexSeq,

MiSeq, HiSeq, etc). As a conservative estimate, a whole HiSeq 2500 lane in Rapid Run mode can

produce 250 million paired end reads of 150 base pairs for a cost of approximately $2500 USD, or

approximately $10 dollars per bacterial genome. Paired-end 150bp sequencing in Rapid Run mode

takes approximately 40 hours. Larger-scale sequencing formats are generally cheaper, but longer to

run, and smaller formats, like the MiSeq, are faster, but more expensive per genome.
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C.3 Supplementary Note 2: Comparison of Millstone to Other Tools

While other packages exist to solve the integration and automation of whole genome resequenc-

ing and annotation, most of these tools are built for large diploid genomes, such asHomo sapiens.

Here we compare features and performance between Millstone and a few other related automated

genome re-sequencing tools (see also Table C.1).

Galaxy. Some tools, like Galaxy, allow users to create their own custom pipelines without bash

scripting, and do support the creation of pipelines for microbial genomes. However, Galaxy re-

quires that the user to understand and optimize settings for each individual tool. Galaxy also does

not allow visualization or interactive querying of the output, and cannot generate new reference

genomes or use the output of one round of sequencing to inform the next round. Finally, because

of Galaxy’s one-size-fits-all nature, optimizing pipeline performance (for example, via inline compres-

sion and piping of input and output streams) is not possible.

SPANDx. Another recent tool, SPANDx, can also perform genome resequencing for multi-

ple strains simultaneously, but its widespread use is limited because it can only be run on UNIX

computing clusters using the venerable and closed-source commercial PBS job scheduling system.

SPANDx has no user interface or interactive components, and so users are required to gather the

data manually and run the pipeline using a command line interface. Because we could not readily lo-

cate a PBS system to test the pipeline on, we were not able to compare the output between SPANDx

and Millstone.

breseq. breseq is purpose-built to perform haploid genome resequencing, and has become a stan-
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dard tool for Adaptive Laboratory Evolution experiments. 106. breseq reports SNV and SV events for

single genomes and provides a visualization of raw read evidence for the event. An advantage of Mill-

stone is its ability to perform variant calling on hundreds of genomes in parallel, facilitating analysis

of mutation frequency across a population of clones. Millstone’s JBrowse integration allows inter-

active visualization feature allows researchers to zoom, scroll, and rapidly compare read alignments

among genomic samples on the fly (as in Figure C.3).

Both breseq and Millstone use a default variant detection threshold that works well in most cases,

and Millstone complements this with an interactive search feature that allows researchers to filter

variants after the variant calling pipeline has been run according to characteristics including read

depth, number of samples with the variant, or predicted variant effect.

Millstone further supports paired-end reads, allowing for enhanced detection of structural varia-

tion, whereas breseq treats paired-end reads as single reads. Millstone can further assemble and place

de novo contigs onto existing reference genomes. Millstone can be used pre-configured on Amazon

Web Services (AWS) and so does not require proficiency with UNIX nor the manual installation of

dependencies. Millstone’s user interface also automates the process of copying data to the remote

server.
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