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Abstract

In this dissertation, we propose methodology for hypothesis testing in statistical genetics

and model selection in networks. In chapters 1 and 2, we introduce new methods to tackle dif-

ficulties in hypothesis testing for sequencing association studies brought on by advancement

of sequencing technology. In chapter 3, we introduce a flexible framework for mechanistic

network model selection, which is an area of the networks literature with a dearth of work.

In chapter 1, we aim to test for association in a case-control sequencing studies, where

the case-control status is completely confounded by the quality of the sequencing data. Such

a situation can arise when one combines next generation sequencing data from cases with

publicly available sequencing data (using an older platform) from controls. We propose

a regression calibration-based method and consider maximum-likelihood for conducting an

association study with the aligned reads from cases and controls. The methods allow for

adjusting for non-confounding covariates as well as confounders in some situations. Both

methods control type I error and have comparable power to analysis conducted using the true

genotype with sufficiently high but different sequencing depths. The regression calibration

method allows for analysis with the naive variance estimate and standard software under

certain circumstances.

In chapter 2, we present a method for sparse signal detection for association between a

set of SNPs that contain rare variants and a binary phenotype. Such settings are common in

the increasingly abundant whole genome sequencing analyses. Traditional single SNP tests

with rare variants are subject to poor power. Thus, methods that test for association by

aggregating the test statistics of multiple rare variants together in a genetic region are popu-
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lar. These existing methods for rare variant analysis, such as SKAT, have good power when

the signals are dense in the set of SNPs tested, but can have poor power when the signals

are sparse. In contrast, thresholding methods for signal detection, such as higher criticism

and Berk-Jones methods, have good power in the presence of sparse signals. However, they

rely on the single SNP test statistics to behave well as normally distributed asymptotically.

The normality assumption of the individual test statistics does not hold in the presence of

rare variants for binary phenotypes and yields incorrect type I error rates. Our proposed

rare variant higher criticism approach for sparse signal detection has higher power than the

existing aggregating methods and allows weighting of the SNPs, with the correct size.

In chapter 3, we propose a procedure for mechanistic network model selection. Our pro-

posal aims to address the dearth of work on model selection for mechanistic network models.

Such models describe network growth and evolution over time starting from simple micro-

scopic mechanisms. Along with statistical models, which are probabilistic models for the

final observed network, they are two prominent paradigms for modeling network structure.

In comparison to statistical models, mechanistic models are easier to incorporate domain

knowledge with, to study effects of interventions and to sample from, but typically have

intractable likelihoods. To handle this intractability, our procedure makes use of the flexible

Super Learner framework and borrows aspects from Approximate Bayesian Computation.
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1.1 Introduction

Next-generation sequencing (NGS) is becoming more and more favored as the tool to obtain

genetic information for investigators (Goldstein et al., 2013). Despite the recent advances,

it can still be prohibitively expensive to conduct a well-powered study entirely with NGS.

To make most efficient use of available resources, one could combine data available publicly,

such as data from 1000 genomes (1000 Genomes Project Consortium, 2012), or from previous

studies with data sequenced for the current study. This increases available sample size and

can lead to more efficient use of resources. To combine data from multiple sources for

one study, however, one needs to take care in order to avoid biases from estimating allele

frequencies from the varied data quality, especially with called genotypes (Kim et al., 2011).

This work is motivated by small case-only sequencing data sets, specifically from the NHLBI

GO-ESP lung cohorts exome sequencing project. The exome sequencing project involves a

discovery sample of whole exome sequencing of 89 acute lung injury (ALI) cases. Findings

from the discovery sample were validated in a larger sample, but the discovery sample,

containing information across all of the exome, is not used for association analysis and

does not contain healthy controls. If combined with an external control sample (e.g. 1000

genomes), the combined sample may be well powered to detect associations from a much

larger portion of the exome. However, the data quality between the phase 1 1000 genomes

data, with average coverage 4, and the ALI data set, with average coverage over 70, is quite

stark.

To circumvent the aforementioned difference between quality of NGS data and previously

available data and confounding related to data quality and the platforms used (Nielsen et al.,

2011), such as read depth, investigators often use NGS to generate data for variant discovery

and genotype a larger sample size on the identified variants for association analysis (Liu

and Leal, 2012; Longmate et al., 2010; Sanna et al., 2011). These study designs prevents
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type-I error inflation, but can be conservative and the sample sizes obtained for the discovery

phase is not used for the actual association analysis. There are also methods that tackle this

issue by incorporating the quality of the genetic information via the likelihood. Skotte et al.

(2012) introduced such a method, based on the score test statistic, and has some advantages

over analysis using called genotype. This method only considers the prospective setting and

assumes non-differential misclassification. In this setting, it refers to the sequencing quality

is the same between cases and controls. Derkach et al. (2014) introduced the robust variance

score method, which also incorporates the same information by using the expectation of the

true genotype given the observed reads. Both methods take a score approach and do not

compute regression coefficients. Derkach’s method does consider the retrospective setting,

but is unable to control for confounders.

The regression calibration (RC) method we introduce here is a little different from the

traditional setting since we are dealing with misclassification instead of measurement error

of the covariates (Carroll et al., 2006; Rosner et al., 1989). The only exception to this is

Spiegelman et al. (2000), where a linear mean was assumed for binary covariates. In the

traditional setting, the data consists of two parts. The first consists of subjects with only

observations with error of the unknown covariates. The second, the validation set, consists of

subjects with the true underlying covariates observed in additional to the observations with

error. The validation set is used to estimate parameters of the joint distribution of the true

covariates and the observations with error. In Carroll’s method, one computes the conditional

expectation of the true covariates given the observations with error, then regresses over the

conditional expectation in place of the true covariates. In Rosner’s method, one gets naive

regression parameters by regressing over the observations with error, then adjusts the naive

estimates accordingly. Our method compares more directly to that of Carroll.

Much like RC, maximum likelihood in the traditional misclassification setting has the same
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data structure. The validation set’s contribution to the likelihood involves extra parameters

for the joint distribution of the underlying covariates and the observations with error. In the

traditional setting, maximum likelihood requires the specification of the complete likelihood

(Carroll et al., 1993).

In the sequencing setting, a validation set is not typically possible, but there is intrinsic

information about the correlation between the sequencing reads and the underlying genotype

from the coverage and error rates of the reads that enable our RC method. Due to this

unique data structure and what we observe, we do not need to estimate the parameters of

the underlying error distribution to compute the desired conditional expectations. Under

balanced case-control sampling, even with differing data quality, the RC method allows the

use of naive variance estimate to give close to correct type-I error, allowing for ease of analysis

with standard software packages. This is not generally true in the traditional setting, which

will usually use the sandwich estimator or bootstrap for testing (Carroll et al., 2006). The

RC estimate is biased, but the bias is small when read depth is sufficiently high and error

rate is sufficiently low. This is due to something similar to the small measurement error

assumption in the traditional setting (Carroll et al., 2006).

The presence of the coverage and error rates of the reads also enables our maximum likelihood

method (ML) without a validation set. Due to the presence of the quality information, the

likelihood can now be factored into two parts, one that involves parameters of association

only and one that involves the aforementioned extra parameters. The validation set typically

provides the latter part of this likelihood factorization and can now be factored out and

ignored. The ML approach we introduce gives unbiased estimate of the effect size under

retrospective sampling without covariates. However, in the presence of non-confounding

covariates, there is an induced correlation between the genotype and the non-confounding

covariates under the alternative. When ignored, this leads to a bias in the estimates, though

4



the bias is small when the effect size is small.

In addition to comparison with regression calibration and maximum likelihood methods in

the traditional setting, there is previous work on the setting where subjects have only repli-

cates of the observations with error, but no validation set. These works are relevant since that

is what the sequencing data structure entails. This setting has been previously explored with

measurement error via regression calibration (Carroll et al., 2006), and with misclassification

via maximum likelihood (Liu and Liang, 1991). The latter method assumes non-differential

misclassification and makes distributional assumptions about the joint distribution of the

true covariates and observations with error.

The methods we introduce control type-I error when using all available sample size, i.e.

combining data sequenced for the current study and previously available data. This allows

one to focus all resources on obtaining data used for the association analysis as well as easy

reusage of data collected from previous studies. We will focus on the case when all cases are

sequenced on one platform and controls on another so that matching for confounders related

to data quality would defeat the purpose of combining data from multiple sources. The

VCF files from each data source give information required to compute the expectation of the

genotype given the observed reads. This approach accounts for the uncertainty and differing

quality of genetic information in the cases and controls. Our approach does not assume

non-differential misclassification, unlike the approaches in Liu and Liang (1991), and Skotte

et al. (2012), gives comparable power to analysis done with the true genotype, when read

depth is reasonably high, and allow for adjusting of non-confounding covariates to increase

power as well as of binary confounders. In most settings, RC and ML have similar power,

and in the differentiated ones, RC has higher power.

The next sections are organized as followed. In section 2, we lay out the assumptions
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made about the distribution of the data as well as the reads and introduce the RC and

ML methods without covariates, with non-confounding covariates, confounders, as well as

population stratification. In sections 3 and 4, we specify the structure of the simulations

used to evaluate performance as well as the filtering applied to the combined ALI exome

sequencing and 1000 genomes data set pre-analysis. In section 5, we present the results of

our simulations and data analysis, and conclude with a discussion in section 6.

1.2 Methods

We assume we have independent and identically distributed (iid) subjects over i and that

we have a biallelic locus for which we know the major and minor allele. We also assume

the following for the marginal distribution of the data, where p is the minor allele frequency,

the outcome Y has conditional distribution logit (pi) = logit (P (Yi = 1|Gi)) = β0 + β1Gi

and G ∼ bin (2, p) is the genotype of the locus of interest. If there are additional covariates

X ⊥ G, then logit (pi) = logit (P (Yi = 1|Gi,Xi)) = β0 + β1Gi + βT2 Xi.

We assume that our source of genetic information for each subject is the observed reads G̃i

and the quality information for each read. Say that subject i has reads G̃ij for j ∈ {1, . . . , di},

where di is the read depth for subject i. For read G̃ij, there is an associated quality score,

which can be mapped to misclassification rate πij for this read, where πij = P
(
G̃ij = Gi

)
.

For each subject, we observe G̃ij and πij, for j ∈ {1, . . . , di}, from the reads directly. We

can assume some distribution for di and πij. The setting we are interested in, where the

data quality depends on the case control status, corresponds to the distributions of di and

πij depending on the case control status.

With this information, we can compute the conditional distribution of the observed reads,

G̃i, given the true genotype, di and πi as P
(
G̃i|di,πi, Gi = g

)
=
∏

j P
(
G̃ij|di, πij, Gi = g

)
,

with the assumption that the individual reads are independent given the read depth, mis-
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classification rates and the true genotype. We compute the conditional expectation of the

genotype as E
[
Gi|G̃i, di,πi

]
=
∑

g g × P
(
Gi = g|G̃i, di,πi

)
, where P

(
Gi|G̃i, di,πi

)
is

constructed from P
(
G̃i|Gi, di,πi

)
and an estimate of the distribution of the genotype,

P (Gi = g). P (Gi = g) is estimated from the full sample (cases and controls) with the EM

algorithm (McKenna et al., 2010; Skotte et al., 2012), where the marginal likelihood of the

reads,
∏

i P
(
G̃i|di,πi

)
=
∏

i

[∑
g P
(
G̃i|di,πi, Gi = g

)
× P (Gi = g)

]
, is maximized over

P (Gi = g). Note that in the retrospective setting, we are implicitly conditioning on being

sampled everywhere.

1.2.1 Regression Calibration without Non-Confounding Covariates

The difference in RC in this setting and in the traditional setting mainly differs in how

the conditional expectations are computed. Typically, one has measurements with error,

Z̃1 . . . Z̃m, for unobserved quantity Z, and assumes that the conditional distribution of Z|Z̃

is index by some parameter θ. Then, one conducts a validation study where one obtains

measurement with error and ascertains the true quantity for each subject. An estimate of θ,

θ̂, is obtained from the validation study. From this estimate, one computes the conditional

expectation E
[
Z|Z̃, θ̂

]
and proceeds to regress over this quantity. In the sequencing setting,

there is no way better way to ascertain the true genotype than the sequencing reads them-

selves, so a reliable validation study is not typically possible. Fortunately, there is already

information about the conditional distribution of G̃|G in the observed πij. From this, we are

able to compute the desired conditional expectation E
[
Gi|G̃i, di,πi

]
without a validation

set.

After computing E
[
Gi|G̃i, di,πi

]
, we proceed to use it in place of G in logistic regression.

The regular MLE in this case would be β̂0 and β̂1 which maximizes
∏

i
exp(β0Yi+β1GiYi)
1+exp(β0+β1Gi)

in

terms of β0 and β1. The regression calibration estimator β̂RC =

[
β̂0E β̂1E

]T
maximizes∏

i

exp(β0EYi+β1EE[Gi|G̃i,di,πi]Yi)
1+exp(β0E+β1EE[Gi|G̃i,di,πi])

in terms of β0E and β1E. The resulting estimator, β̂RC , can be
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framed within a set of four estimating equations, two for the regression calibration estimators

and two for the genotype distribution. Under the null, the estimating equations for β̂RC is

unbiased when evaluated at β0E = logit (P (Yi = 1|Si = 1)) and β1E = 0 (shown in appendix).

We can proceed to invoke Z-estimation theory and estimate the variance of the estimators

with the sandwich estimator. The test statistic is form by dividing β̂RC by the sandwich

variance estimate and will have the correct size when compared to its asymptotic distribution,

the standard normal.

Denote pg = P (Gi = g), then the individual contribution to the estimating equations stated

above is:

ψ
(i)
β0E

= Yi − expit
(
β0E + β1EE

[
Gi|G̃i, di, πi

])
ψ

(i)
β1E

= E
[
Gi|G̃i, di, πi

] [
Yi − expit

(
β0E + β1EE

[
Gi|G̃i, di, πi

])]
ψ(i)
p0

=
P
(
G̃i|Gi = 0, di, πi

)
− P

(
G̃i|Gi = 2, di, πi

)
∑

g pgP
(
G̃i|Gi = g, di, πi

)
ψ(i)
p1

=
P
(
G̃i|Gi = 1, di, πi

)
− P

(
G̃i|Gi = 2, di, πi

)
∑

g pgP
(
G̃i|Gi = g, di, πi

)
Denote the bun and meat matrices from this set of estimating equations A and B, with

asymptotic limits A and B. The naive information matrix of the logistic regression fit for

RC is Aβ, a submatrix of A, with asymptotic limit Aβ, a submatrix of A. Under the

null, when the case control sampling is balanced, the sub matrices of the meat and bun

matrices corresponding to the regression calibration estimator have the same limit. Under

these assumptions, it can be shown that the naive variance estimator overestimates the true

variance (shown in appendix), i.e. the element corresponding to β1E of A−1BA−1 ≤that

of A−1β . So the naive variance estimator, from inverting the “observed information” like

8



regular logistic regression, i.e. inverting Aβ, also gives the correct level when the sampling

is balanced, though it is conservative.

Simulation results suggests that if the distribution of the read depth between cases and

controls are not too dissimilar or that both cases and controls have reasonable read depth,

then the conservativeness is low, and the loss of power is minor under the alternative. In

fact, when the minor allele frequency is low and the sample size is not sufficiently large, the

convergence of the test statistic computed with the sandwich estimator is insufficient. In

this case, the naive variance estimator will perform better than the sandwich estimator.

1.2.2 Regression Calibration with Non-Confounding Covariates

If we wish to adjust for non-confounding covariates X ⊥ G with RC, we first need to

compute the conditional expectation E
(
Gi|G̃i, di,πi

)
as before. Note that this conditional

expectation does not take X into account. The reason is that X is non-confounding and is

assumed to be independent of G. The RC estimates β̂RC =

[
β̂0E β̂1E β̂2E

]T
maximizes

the logistic regression “likelihood”:

∏
i

exp
(
β0EYi + β1EE

[
Gi|G̃i, di,πi

]
Yi + βT2EX iYi

)
1 + exp

(
β0E + β1EE

[
Gi|G̃i, di,πi

]
+ βT2EX i

)
in terms of β0E, β1E and β2E. Just as the case without covariates, the corresponding set of

estimating equations are unbiased when evaluated at β1 = 0. Hypothesis testing can once

again proceed with the corresponding sandwich estimator, or the naive variance estimator

when sampling is balanced.

1.2.3 Maximum Likelihood without Non-Confounding Covariates

Just as RC, maximum likelihood in a traditional misclassification setting requires a validation

study. Once again, assume we have measurements with error, Z̃1 . . . Z̃m, for unobserved
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quantity Z, and that the conditional distribution of Z|Z̃ is index by some parameter θ. A

validation study where we obtain measurements with error and ascertain the true unobserved

quantity from each subject is required to get information on θ. Instead of estimating θ,

however, we form a single likelihood L1 (β,θ) × L2 (θ), where L1 is from the majority of

data set without validation and L2 is from the validation study. L1 depends on θ since each

subject’s contribution is averaged over the conditional distribution of Z|Z̃ that depends on

θ, while L2 provides the bulk of the information on θ since Z is observed directly in the

validation set.

As above stated, a validation study is not possible with genotypes, but we have information

about the correlation of G and G̃ from the observed {πij} and di. Say the distribution of πij

and di is indexed by γ, then the full likelihood can be written as L′1 (β)×L′2 (γ). L′1 involves

the outcome Y , the reads G̃, and the read depth and misclassification rates. Each individual

contribution to L′1 is averaged over the conditional distribution Gi|G̃i, di,πi and depends on

the parameter of interest β, but not γ. L′2 is for the marginal distribution of di and πi that

may vary based on the case control status, but does not depend on the parameter of interest

β, and can thus be factored out. Next, we specify the likelihood.

Since we are in the retrospective setting and assuming that we do not have access to

the sampling fraction, the parameters related to the marginal distribution of the data,

i.e. the minor allele frequency p and β0, are not identifiable (Prentice and Pyke, 1979).

From Prentice and Pyke (1979), if the sampling status only depends on the outcome,

we know that we can write P (Yi = 1|Gi = g, Si = 1) = expit (β0cc + β1g), where β0cc =

β0+log (P (Si = 1|Yi = 1) /P (Si = 1|Yi = 0)) and S is the indicator of being sampled. Thus,

we need to form the likelihood based on parameters related to the distribution of the data

given being sampled, i.e. β0cc , P (Gi = 0|Si = 1) and P (Gi = 1|Si = 1). We can write out

the likelihood as follows:
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P
(
G̃i, di,πi|Yi = 1, Si = 1

)
=

2∑
g=0

P
(
G̃i|di,πi, Gi = g, Yi = 1

)
P (di,πi|Gi = g, Yi = 1)

×P (Yi = 1|Gi = g, Si = 1)P (Gi = g|Si = 1)

P (Yi = 1|Si = 1)

=
2∑
g=0

P
(
G̃i|di,πi, Gi = g

)
P (di,πi|Yi = 1)

pi × P (Gi = g|Si = 1)

P (Yi = 1|Si = 1)

∝
2∑
g=0

P
(
G̃i|di,πi, Gi = g

) pi × P (Gi = g|Si = 1)

P (Yi = 1|Si = 1)

P
(
G̃i, di,πi|Yi = 0, Si = 1

)
∝

2∑
g=0

P
(
G̃i|di,πi, Gi = g

) (1− pi)P (Gi = g|Si = 1)

P (Yi = 0|Si = 1)

In the second line, we dropped the conditioning of Yi = 1 from P
(
G̃i|di,πi, Gi = g, Yi = 1

)
since the distribution of G̃i only depends on Yi through di and πi. We also dropped the

conditioning of Gi = g from P (di,πi|Gi = g, Yi = 1) since the distribution of di and πi does

not depend on Gi. Then, the term P (di,πi|Yi = 1) does not depend on any parameters

of interest and can be factored out of the likelihood. Note that this requires 4 parameters

instead of 3 of the marginal distribution. We can get rid of β0cc by solving the following

equation, as a function of β1, P (Gi = 0|Si = 1) and P (Gi = 1|Si = 1):

P (Yi = 1|Si = 1) = expit (β0cc)P (Gi = 0|Si = 1) + expit (β0cc + β1)P (Gi = 1|Si = 1)

+expit (β0cc + 2β1)P (Gi = 2|Si = 1)
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Although there is no closed form solution to this equation, we can numerically solve for

this in each step of the fitting process. Furthermore, to avoid the problem of having esti-

mates that are not in the bounds of the parameter space, notably P (Gi = 0|Si = 1) and

P (Gi = 1|Si = 1), we can parameterize the two as:

P (Gi = 0|Si = 1) = expit (α)

P (Gi = 0 ∪Gi = 1|Si = 1) = expit (α + exp (β))

P (Gi = 1|Si = 1) = expit (α + exp (β))− expit (α)

Testing of the null β1 = 0 can proceed in the normal likelihood framework by dividing the

estimate, β̂1MLE
, by its corresponding standard error derived from the information matrix and

comparing the corresponding quotient to the normal distribution. An issue does arise in this

parameterization when allele frequency is low. In this case, P (Gi = 0 ∪Gi = 1|Si = 1) =

expit (α + exp (β)) ≈ 1. The column of the information matrix corresponding to β contain

products of the term expit (α + exp (β)) (1− expit (α + exp (β))), which is very close to 0.

Thus, this column will be of terms very to 0. Inverting the information matrix in this case

may run into numerical issues. Thus, when allele frequency is low, we recommend using RC

instead.

1.2.4 Maximum Likelihood with Non-Confounding Covariates

If we want to perform analysis in with non-confounding covariate X, which is marginally

independent of G, we must reconsider the likelihood:
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P
(
G̃i, di,πi, Xi|Yi = 1, Si = 1

)
=

2∑
g=0

P
(
G̃i|di,πi, Gi = g,Xi, Yi = 1

)
P (di,πi|Gi = g,Xi, Yi = 1)

×P (Yi = 1|Gi = g,Xi, Si = 1)P (Gi = g|Xi, Si = 1)P (Xi|Si = 1)

P (Yi = 1|Si = 1)

∝
2∑
g=0

P
(
G̃i|di,πi, Gi = g,Xi, Yi = 1

) pi × P (Gi = g|Xi, Si = 1)P (Xi|Si = 1)

P (Yi = 1|Si = 1)

P
(
G̃i, di,πi, Xi|Yi = 0, Si = 1

)
∝

2∑
g=0

P
(
G̃i|di,πi, Gi = g,Xi, Yi = 0

) (1− pi)P (Gi = g|Xi, S = 1)P (Xi|Si = 1)

P (Yi = 0|Si = 1)

Similar to the situation without non-confounding covariates, we drop the conditioning of Xi

and Yi = 1 from P
(
G̃i|di,πi, Gi = g,Xi, Yi = 1

)
since G̃i only depends on Yi through di

and πi and does not depend on Xi. P (di,πi|Gi = g,Xi, Yi = 1) also does not depend on Gi

and can be factored out. Although P (Xi|Si = 1) can be factored out and ignored in the

analysis, P (Gi = g|Xi, Si = 1) cannot be ignored. Even though G and X are independent

marginally, if both G and X are associated with Y , i.e. β1, β2 6= 0, then G and X are

not independent conditioning on S = 1. Under the null, β1 = 0, it can be shown that

P (Gi = g|Xi, Si = 1) = P (Gi = g|Si = 1). So if we replaced P (Gi = g|Xi, Si = 1) with

P (Gi = g|Si = 1) in the likelihood, we have the correct model under the null and have

correct size, but the model would be incorrect under the alternative and there would be

some bias. In the simulations we looked at, the bias is not too severe. This problem would

be avoided under prospective sampling.
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1.2.5 Analysis with Confounders

So far we have only considered incorporating non-confounding covariates X. Our methods

can potentially incorporate confounders, but different issues arise with both. With RC, if

we are able to compute the conditional expectation of the genotype given the sequencing

reads and the confounders, E
[
Gi|G̃i, di,πi,X i

]
, we substitute it in place of the genotype

in the analysis just as before. The corresponding estimating equations will have expectation

0. However, it may not be clear in practice how to compute this conditional expectation.

With ML, the likelihood remains essentially the same as the case with non-confounding

covariates. The only difference being P (Gi = g|X i, Si = 1) 6= P (Gi = g|Si = 1) under the

null as well as the alternative. If the marginal conditional distribution of G|X is correctly

specified, then we can correctly specify the null likelihood. Just as with non-confounding

covariate, under the null, this marginal correlation remains the same after conditioning on

being sampled (Si = 1), but under the alternative, this correlation changes after averaging

over Y . Once again, we can specify the likelihood correctly under the null, but it will be

wrong under the alternative. So we are able to perform inference, but the estimate is biased.

If the support of the confounder is infinite, then it will often be unclear how to specify this

conditional distribution. Instead, if the support of the confounder was finite, e.g. binary,

then we can devote extra parameters for the distribution of the genotype given each possible

value of the confounder and Si = 1. This is feasible when the confounder only takes on very

few values. This approach does work in our simulation study.

1.2.6 Population Stratification

Although it is not clear how to control for any arbitrary confounder with our method, we have

found an ad-hoc solution to control for population stratification. If we control for the first

few principal components from the conditional expectation of the genotype E
[
Gi|G̃i, di,πi

]
,

it adequately controls for inflation from population stratification. Let PCi be the vector
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of loadings for the PCs of the ith subject. For RC, this means adding in the PCs as co-

variates in the logistic regression fit, i.e. maximize
∏

i

exp(β0EYi+β1EE[Gi|G̃i,di,πi]Yi+βTPCPCiYi)
1+exp(β0E+β1EE[Gi|G̃i,di,πi]+βTPCPCi)

,

with inference proceeding as before. For ML, the PCs are included in the specification of

logit (P (Yi = 1|Gi = g,PCi, Si = 1)) = β0 +β1Gi +β
T
PCPCi. In addition, we need to spec-

ify the conditional distribution of the genotype given the PCs as a function of the PCs,

P (Gi = g|PCi, S = 1) = f (PCi). Regardless of how f is specified, it most likely will be

an approximation, so ideally, it should be something flexible.

1.3 Simulation Studies

The goal of the simulation studies is to study the performance of each method under varying

differences in data quality. We consider (1) a situation where the distribution of both read

depth and misclassification rates are similar, (2) a situation where both are quite different,

and (3) one where the read depth is similar and misclassification rate is quite different.

Situation (1) corresponds to using data from platforms of similar performance; situation

(2) corresponds to using data from a newer platform and an older platform; and situation

(3) corresponds to using data from a newer platform and an older platform with increased

number of reads.

For simulation without other covariates, given fixed number of cases and controls, we first

generate the genotype of cases and controls separately, based on the distribution of G given

Y . Then, for each subject i, we generate the read depth di and a sequence of misclassification

rates πij for j ∈ {1, . . . , di}. Now, we generate the sequence of reads for individual i based

on the generated read depth and misclassification rates. The read depths are generated

from various normal distributions truncated from below at 1 and rounded to the nearest

integer. The misclassification rate is generated from various normal distribution truncated

from below at 0 and from above at 1. The means and standard deviations of the normal

distributions truncated for each situation are specified in table 1.1. From the reads, we can
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Table 1.1: The normal distributions (mean, standard deviation) used to generate the read
depth and misclassification rate in our simulations. The three scenarios (1)-(3) are described
in the first paragraph of the simulations section

(1) (2) (3)

Case Read Depth N (8, 1) N (20, 2) N (20, 2)
Misclassification N (0.005, 0.0001) N (0.005, 0.0001) N (0.005, 0.0001)

Control Read Depth N (6, 1) N (3, 1) N (16, 1)
Misclassification N (0.01, 0.001) N (0.05, 0.01) N (0.05, 0.01)

computed the desired P
(
G̃i|Gi

)
, with which we can compute E

(
Gi|G̃i

)
for RC or form

the likelihood for ML.

For simulation with a confounding covariate, we generate the genotype, a binary confounder

X, and Y conditional on G andX prospectively, then stop when we have the requisite number

of cases and controls. We then can sample the desired number of cases and controls and can

proceed to generate the sequence of reads. The binary confounder X has one particular mean

if G = 0 or 1, and a different mean if G = 2. For simulation with population stratification,

we generate two population minor allele frequencies from an ancestral allele frequency (0.2)

with the Balding-Nichols model (Balding and Nichols, 1995) with FST = 0.01, then generate

the genotype and the phenotype based on the population the subject belongs to. Then,

we sample the desired number of cases and controls independently of the population the

subject belongs too and generate the sequence of reads as before. The parameters used for

the simulation with population stratification are listed in table 1.2.

Table 1.2: The parameter values used for size simulation with population stratification. The
columns are the same as in table A.1, except the third and fourth columns now denote the
ancestral minor allele frequency and the FST used to generate the two new population minor
allele frequencies
ncase ncontrol Anc. p FST rdcase rdcon ecase econ β0 β1
200 300 0.2 0.01 (20,1) (3,1) (0.005,0.0001) (0.05,0.001) logit(0.2) 0
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1.3.1 Size

For simulations under the null, we generated a case-control sample from the following

prospective models:

logit (P (Y = 1|G)) = logit (0.2)

logit (P (Y = 1|G,X)) = logit (0.2) + 0.2X

logit (P (Y = 1|G,Z)) = logit (0.2) + Z

The first model refers to the null model without any other covariates, the second refers to

the null model with a confounding covariate X, while the third refers to the null model with

population stratification with binary population marker Z. The true genotype G is gener-

ated with minor allele frequency 0.2 in all cases, unless stated otherwise. For simulation

with population stratification, we generate two population minor allele frequencies from the

specified Balding-Nichols model, then proceed to generate the true genotype for both pop-

ulations. After the genotype is generated, we simulate the read depth and misclassification

rates di and πij with the distribution as specified in the three situations stated above.

The simulations include scenarios with 1:1 and 1:2 case to control sampling ratio. In each

setting, we compare the performance of analysis with the true genotype with the Wald

statistic versus RC and ML. RC with the naive variance estimator will only be considered

when the sampling is balanced. Comparison of the p-values under the null against the

uniform distribution will be done with the QQ-plot.

1.3.2 Power

For simulations under the alternative, the data is generated with the same procedure as

simulations under the null, except the prospective models are now:

17



logit (P (Y = 1|G)) = logit (0.2) + 0.3G

logit (P (Y = 1|G,X)) = logit (0.2) + 0.3G+ 0.2X

logit (P (Y = 1|G,Z)) = logit (0.2) + 0.3G+ Z

For each scenario assessed for size, we generate data with the same parameters, but with a

non-zero effect for the genotype as stated above. We will compare proportion rejected at

various significance levels as well as bias in the estimators for analysis with the true genotype

against RC and ML. RC with naive variance is still only considered with balanced sampling

since it gives incorrect size when sampling is unbalanced.

1.4 Application on ALI Exome and 1000 Genomes Data

We performed analysis with RC and ML as well as naive analysis with the called genotype

on the combined data set of the discovery sample from the NHLBI ALI cohort project and

phase 1 of 1000 genomes project. The discovery sample from the Acute Lung Injury cohort

project consists of exome sequencing data from 89 Caucasian subjects with varying severity

of lung injury. The data from phase 1 of 1000 genomes consist of exome sequencing data

from 174 CEU and GBR subjects. The original ALI data set distinguishes subjects based on

ventilator-free-days (VFD). Those with VFD < 2 are considered high severity, while those

with VFD < 24 are considered low severity. In our analysis, we do not make this distinction,

and consider all subjects with ALI subjects as cases and 1000 genomes subjects as controls.

To compute the desired P
(
Gi|G̃i, di,πi

)
, we need P

(
G̃i|Gi, di,πi

)
from all the subjects.

This information is encoded as PL in the VCF files for the ALI subjects, and as GL for the

1000 genomes subjects. To combine the data set, we matched up SNPs that are both in

the 1000 genomes phase 1 exome data and the ALI exome data that have the same name
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(RS number), physical location and definition of major and minor alleles. SNPs with quality

(QUAL) < 30, quality by depth (QD) < 5, allele balance (AB) > 0.75, % missing > 10%, or

strand bias (SB) > -0.1 were removed due to low quality. We also removed SNPs that exhibit

low allele frequencies by filtering out SNPs that have estimated probability for genotype 0

< 0.0025 and that of genotype 1 < 0.095. Lastly, due to the lack of genotype data and

small sample sizes (89 cases and 174 controls), we were unable to filter based on the exact

or asymptotic Hardy-Weinberg equilibrium tests. So as a substitute, we filtered out SNPs

that had estimated probability for genotype 1 > 0.5, which is the upper bound had the SNP

been under Hardy-Weinberg equilibrium. 22619 SNPs remained after this filtering.

The remaining SNPs post-filtering are analyzed with RC, ML as well as the Wald test with

the called genotype. Since we have unequal number of cases and controls, we did not consider

RC with naive variance estimator just as in the simulations. For all three methods of analysis,

we included two PCs to control for population stratification. For RC and ML, this was done

with PCs from the conditional expectation of the genotype, while the naive analysis used

PCs from the called genotypes.

1.5 Results

1.5.1 Size Simulations

We first look at how well the various methods control type I error under various scenarios.

When the read depth and misclassification distribution are both similar between cases and

controls and sampling is balanced, RC with naive and sandwich variance both control type I

error well (scenario A). On the other hand, if the distribution of read depth and misclassifi-

cation both differ significantly between cases and controls with balanced sampling, RC with

naive variance is conservative, while RC with sandwich variance continues to perform well

(scenario B). Scenario A and B are both simulated with a high MAF. If we have scenario B

with a low MAF instead, then both RC with naive and sandwich variance are conservative,
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Table 1.3: Summary of the scenarios considered in the size simulations. The first column is
used for identification in the article; the second refers to the distributions of read depth and
misclassification rate as described above; the third refers to whether the sampling is balanced;
the fourth refers to whether the simulation is done with a low minor allele frequency; the
last refers to the plot set in the appendix to refer to for the QQ plots

Scenario Dep/Mis Balanced Low MAF Plot Set
A (1) Yes No 1
B (2) Yes No 2
C (2) Yes Yes 3
D (3) Yes No 4
E (2) No No 5

but RC with naive variance is noticeably less conservative (scenario C). Next, we consider

a similar read depth distribution but significantly different misclassification distribution be-

tween cases and controls with balanced sampling. In this case, RC with both naive and

sandwich variances control the size well, so a sufficient number of reads can make up for

an order of magnitude of difference in misclassification rate (scenario D). Lastly, if we have

scenario B with unbalanced sampling, RC with naive variance no longer gives correct type

I error, but RC with sandwich variance still performs well (scenario E). In each of these

scenarios, ML controls type I error well consistently. Scenario C was omitted for ML due to

numerical issues stemming from low MAF. Table 1.3 gives a summary of all the scenarios

considered, while table 1.4 gives a summary of the performance of each method in each

scenarios. More detail and results of the simulations can be found in the appendix.

For simulation with population stratification, we generated data in the aforementioned fash-

Table 1.4: Summary of the results of size simulations. The first column is used for identi-
fication in the article; the last three columns refer to how well the method in the column
name controls size in our simulations

Scenario RC Naive RC Sandwich ML
A Correct Correct Correct
B Conservative Correct Correct
C Conservative Conservative N/A
D Correct Correct Correct
E Liberal Correct Correct
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ion and performed naive analysis with no principal components as well as analysis that

controls for the first two principal components. For the ML simulations with population

stratification, we specify P (Gi = g|PCi, Si = 1) = f (PCi) as a logistic model with first

and second order terms as well as an interaction term:

f (PCi) = expit
(
α0 + α1PC1i + α2PC2i + α3PC

2
1i + α4PC

2
2i + α5PC1i × PC2i

)
As expected, the naive analysis shows significant inflation for RC, ML, and analysis with

the true genotype. After controlling for the two principal components, we can see that the

control of type I error is much improved. Due to the unbalanced sampling, however, RC

with naive variance still shows some inflation as expected, but RC with sandwich variance

performs well. One issue that we did encounter was numerical issues in fitting the ML. This

is due to additional nuisance parameters required for the distribution of the genotype given

the principal components. As a result, ML does not control type I error as well as RC with

sandwich variance in this case. All corresponding QQ plots are in figure 1.1.

For simulation with a binary confounder, we generate the confounder with probabilities

P (X = 1|G = 0 or 1) = 0.5 and P (X = 1|G = 2) = 0.6, depending on the value of G. We

parameterized P (Gi = g|Xi, Si = 1) as

P (Gi = 0|Xi = x, Si = 1) = expit (αx)

P (Gi = 1|Xi = x, Si = 1) = expit (αx + exp (βx))− expit (αx)

The parameterization is similar to that of P (Gi = g|Si = 1) above, which is without con-

founders, except there is a separate set of parameters for each value of X. QQ plot for the

ML analysis (see appendix A.1.6 for more detail) shows that this parameterization controls

size very well. Although the performance is good, this does show the limitations of this
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Figure 1.1: QQ plots for the size simulation with population stratification. The four plots
correspond to analysis with RC and naive variance, RC and sandwich variance, ML, and
with the true genotype. The blue plots correspond to the naive analysis without PCs, and
the black plots correspond to analysis with PCs
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approach, considering how many additional parameters were needed to fully parameterize

P (Gi = g|Xi, Si = 1) for just a binary X. For more complex confounders, one would need

to make additional assumptions to restrict the number of parameters.

1.5.2 Power Simulations

Next, we assess the power and bias of the methods, via simulations with the same sets of

parameters used in the size assessment, but with β1 6= 0. Each QQ-plot in the appendix

is followed by the corresponding tables of averages of the estimates and empirical power at

various significance level. In each scenario, the power for the methods based on the reads is

expectedly lower than that with the true genotype, but is comparable in all the cases.

In most of the scenarios, RC seems to have slightly higher power than ML. The power com-

parison between RC with naive and sandwich variance varies for the scenarios with balanced

sampling. For scenario A, with similar distributions for read depth and misclassification

distributions, power is similar for RC with naive and sandwich variance. In scenario B, in

which the distribution of read depth and misclassification rate both differ significantly be-

tween cases and controls, there is small but noticeable power gain from using the sandwich

variance. In scenario C, even though the distribution of read depth and misclassification

rate still differ significantly, the power of RC with naive variance is slightly higher than that

of RC with sandwich variance while power for both is far away from 0. This reflects the

result from the null simulations where RC is less conservative with the naive variance than

with the sandwich variance in scenario C. Lastly, in scenario D, read depth for both cases

and controls are sufficiently high, but there is significant difference in misclassification error

rates. Here, power is similar for RC with both variances.

In general, the power loss is more severe in cases where the data quality of one group is

poor, such as in scenario B and E. The bias of the RC estimator follows a similar pattern,
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as the bias goes from undetectable in situation (1) and (3) to noticeable but not too severe

in situation (2). For ML, there is no appreciable bias even under situation (2).

1.5.3 Analysis of Combined ALI and 1000 Genomes Data

We matched the two data sets based on physical location of SNPs that had the same name

and definition of major and minor alleles. SNPs with low quality, low allele frequencies and

with estimated heterozygous probability greater than 0.5 were removed. We applied RC with

sandwich variance, ML and naive analysis with the called genotype to the 22619 SNPs that

remained after filtering. We control for population stratification with two principal compo-

nents computed from the conditional expectations of the true genotype for RC and ML, or

from the called genotypes for the naive analysis. For ML, we specify P (Gi = g|PCi, S = 1)

with the same model as they were in the null simulations.

The resulting QQ plots for both RC and ML look reasonably close to the 45 degree line

(figure 1.2), with the tail of the QQ plot for RC showing a little more signal than ML. This

reflects the results from the simulations where RC had slightly higher power than ML in

most of the scenarios. On the other hand, the QQ plot for the naive analysis with called

genotypes is much more liberal in comparison, with the QQ plot well above the 45 degree

line. This suggests that naive analysis with such a combined data set can lead to lots of false

positives.

There were no SNPs that reach genome-wide significance. There were 5 SNPs that had

p-value < 10−4 and 30 SNPs that had p-value < 10−3 with RC, while the same numbers

were 2 and 27 for ML. One of the top hits with both RC and ML is rs2943521, which belongs

to the MUC5B gene. This gene is associated with mucus secretion, including lung mucus,

and has been linked to other lung diseases (Seibold et al., 2011). Although the top hits are

different from those in Lee et al. (2012), which analyzed the same ALI subjects, the analysis
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Figure 1.2: QQ plots for analysis of combined ALI and 1000 genomes data. The red plot
is analysis with the called genotypes, the blue plot is analysis with ML, the black plot is
analysis with RC
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in that paper was from comparing subjects with severe vs mild ALI, whereas our analysis is

from comparing ALI subjects vs healthy subjects. So the hypothesis being tested is different.

Looking at the QQ-plots from RC and ML, we can see that the two look very similar, with

RC having a few more smaller p-values in the tail.

1.6 Discussion

We propose methods for association analysis with a data set where the case-control status is

completely confounded by sequencing quality while controlling for population stratification

as well as some forms of confounding. Such a data set can arise where the cases and controls

are sequenced on different sequencing platforms from different studies. The RC method

requires the sandwich estimator for inference when case-control sampling is unbalanced, but

can use the naive estimator when the sampling is balanced. The latter can be useful when

speed is of importance or when convergence of the sandwich estimator is poor. However,

asymptotically, the naive estimator is slightly more conservative than the sandwich estimator.

When the data is of sufficient quality, the bias in the RC estimator is small. Controlling

for non-confounding covariates does not affect these results. The ML estimator is unbiased

under the alternative when there are no covariates, but this does not hold when there are

covariates.

Although we do have a solution for controlling for population stratification, our methods do

not allow for controlling for confounders in general. So extending the methods to control for

general confounders is the next step. In addition, forming the sandwich estimator for RC

and maximizing the likelihood for ML are a bit time consuming at the moment. Speeding

up both are also of interest in the future.

The details shown in this paper are for the additive model, but extensions for the dominant

and recessive model is simple. This can be done by simply substituting in the probability of
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the desired homozygous genotype for the indicator of said genotype, and the above results

still hold. Our methods can also be easily extended to accommodate data sets where cases

and controls are both taken from multiple sources of differing quality. In our simulation

studies, RC seems to perform slightly better than ML in terms of power. When sampling is

balanced, the difference in control of size between the sandwich and naive estimator seems to

be negligible, though the power seems to be slightly better for the sandwich estimator when

convergence is sufficient. In comparison to the existing score based methods, our methods

gives an estimate of the effect size and allows the use of the naive variance estimator when

sampling is balanced.

With the continued advancement of sequencing technology, we have higher quality data

sets available for association studies. However, rather than discarding old data sets due to

confounding by data quality, our methods allow for reusing of existing data with new data

for analysis.
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2.1 Introduction

With the advancement of sequencing technology, there is unprecedented access to rare variant

data through large sequencing projects such as the Trans-Omics for Precision Medicine

(TOPMed) of the National Heart, Lung, and Blood Institute (NHLBI) and the Genome

Sequencing Program (GSP) of the National Human Genome Research Institute (NHGRI).

Consequently, there is an increasing need for methods that have good power for detecting

genetic association with phenotypes in the presence of rare variants. Historically, single

SNP analysis through the GWAS framework has identified many SNPs that are associated

with numerous phenotypes, but are typically restricted to analysis with common variants,

as they are underpowered or biased with rare variants (Lee et al., 2014). To illustrate the

loss of information from restricting analysis to common variants, consider the Dallas Heart

Study (Romeo et al., 2009). Of the 93 SNPs in the data set, only 1 and 4 have minor allele

frequency ≥ 0.05 and ≥ 0.01 respectively, while 57 are singletons. Instead, SNP-set methods

that analyze multiple SNPs as a unit are popular for testing rare variants, but existing

methods do not perform well with rare variants and binary phenotype when the signal is

sparse (only a few SNPs in the SNP-set are associated).

As whole genome sequencing (WGS) becomes more prevalent and the number variants in

a typical data set increases, the burden of Bonferroni correction, i.e. loss of power, is ex-

acerbated and makes single SNP analysis even more impractical. With WGS data, there is

access to more complete data on genetic regions, such as genes and signaling pathways. If

a set of SNPs are from one genetic region, they are likely to jointly affect the phenotype,

and it is more sensible to analyze them as one unit than separately. The true signals in

many SNP-sets may be weak and undetectable by single SNP methods. The true signal may

also be sparse, such as the FGFR2 region that shows association with breast cancer (Hunter

et al., 2007). The region contains 35 SNPs, and only 4 of which show evidence of association,

but no genome-wide significance. Given these shortcomings of single SNP analysis, methods
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that test for association with a set of SNPs through a signal detection approach have been

gaining popularity. Such methods aim to overcome issues with single SNP analysis by com-

piling signals across all the SNPs into a single stronger signal, though the hypothesis now

being tested is a global null of no association between the phenotype and the entire SNP-set.

Several existing SNP-set analysis methods compile signals from the SNP-set via the marginal

test statistic from each individual SNP. Some of these methods, especially those tailored to-

wards sparse signals, typically rely on the marginal statistics to be well-behaving, e.g. close

to normally distributed. Therefore, these methods work well for normally distributed pheno-

types or for binary phenotypes with common variants, such as the aforementioned FGFR2

region. However, the marginal test statistics can behave poorly with binary phenotype and

rare variants, which are more prevalent in WGS data. For example, the score statistic be-

comes very discrete, since the numerator and the denominator both take on only a few values.

As a result, the normality assumption will no longer hold, making the approximation of its

distribution difficult. In addition to weak and sparse signals as well as the presence of rare

variants, one needs to deal with the linkage disequilibrium (LD) present between the SNPs

being tested. LD between SNPs leads to correlation between the marginal test statistics that

needs to be properly handled to avoid incorrect results. LD in common variants can lead to

highly correlated test statistics, while its effect is less severe in rare variants. However, it has

been shown that ignoring LD in rare variants can still lead to biased results (Neale et al.,

2011). In this paper, we develop a genetic association testing method through a SNP-set

approach that has good power against sparse alternatives in the presence of rare variants

and binary phenotype while accounting for LD.

There are several existing methods for signal detection for SNP-set association testing that

are well powered against dense alternatives, i.e. a large number of SNPs are associated.

The burden tests (Li and Leal, 2008; Madsen and Browning, 2009; Morgenthaler and Thilly,

30



2007; Morris and Zeggini, 2010) aggregates all variants in the SNP-set into a single covariate,

then tests for association between the newly formed covariate and the phenotype. Burden

tests have good power when the signals are dense and in the same direction. The second

condition may be especially unreasonable for a signaling pathway, which can contain both

protective and risk-increasing variants in different genes. In addition to the burden tests,

the sequence kernel association test (SKAT) (Wu et al., 2010, 2011) is a variance component

test that assumes random effects for the SNPs in the SNP-set. The test statistic is the sum

of the score statistic for testing zero variance for the random effect for each individual SNP

with adjustment for LD between the SNPs, with the option to weight the SNPs individually

to improve power. SKAT relies on having a dense signal or a sufficient number of SNPs to

be in LD with the “true” signal SNPs for good power, but the signals need not be in the

same direction. Burden tests and SKAT are both able to handle rare variants, but, when

the signal in the SNP-set is weak, the aggregated quantity (of the variants or of the test

statistics) mixes the small amount of signals with a large amount of noise. Thus, if the

signal is sparse and LD between the signal SNPs and noise SNPs is weak, which can happen

with rare variants, then SKAT and burden tests are likely to have poor power.

Methods that are designed for sparse signals include MinP (Conneely and Boehnke, 2007;

Moskvina and Schmidt, 2008; Zhang and Liu, 2011) and higher criticism (Donoho and Jin,

2004). MinP computes the marginal test statistic for all SNPs in the SNP-set, then takes

the most extreme one as the test statistic with adjustment for LD between the SNPs. MinP

relies on “true” strong signal SNPs to have good power, which is unusual in sequencing data,

and is unable to handle rare variants with binary phenotypes, due to the aforementioned

issue with marginal test statistics. The original higher criticism tests the global null for a

large number of marginal tests and is known to have good power against sparse alternatives.

However, higher criticism relies on independence or sparse and weak correlation between the

marginal test statistics as well as a large number of marginal tests (i.e. the number of SNPs
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in the SNP-set) for asymptotic results. In reality, there is likely to be correlation in the

marginal test statistics due to LD in the SNP-set, which will contain a fairly finite number

of SNPs.

To handle the first of the two issues with higher criticism, the innovated higher criticism

(iHC) (Hall and Jin, 2010) was proposed. The iHC transforms the marginal test statistics

through the Cholesky decomposition of the correlation matrix and proceeds to apply higher

criticism to the transformed test statistics, which are assumed to be independent. However,

this approach is shown to have poor power due to the mixing of signal and noise through

the transformation, since the transformed test statistics are all linear combinations of a few

signal SNPs and a larger number of noise SNPs. To avoid mixing signal and noise, the

generalized higher criticism (GHC) (Barnett et al., 2016) was proposed. GHC takes the

marginal test statistics on the original scale and accounts for correlation directly through

their correlation matrix. Thus, GHC can handle correlation between the test statistics due

to LD without mixing signal and noise and retains good power against sparse alternatives,

while additionally giving a means to compute analytic p-values that does not rely on a large

number of SNPs in the SNP-set. Both iHC and GHC assume multivariate normality of the

marginal test statistics, which is reasonable given common SNPs or normally distributed

phenotypes. However, if the phenotype is binary and the SNP-set contains rare variants,

then the normality assumption will be inaccurate as previously mentioned. In addition,

neither methods allow for weighting of the SNPs.

To avoid this need for normality, we propose a new method for signal detection for genetic

association in the presence of rare variants. The core of this method is a more meaningful way

for obtaining p-values for rare variants than methods that rely on asymptotics. Typically,

marginal p-values/test statistics (Fisher’s exact test, score statistic) are computed for a given

SNP by comparing the observed sample against more extreme possible samples for the given
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SNP only. Our method computes p-values for individual SNPs that compares the observed

sample against more extreme possible samples for all SNPs in the region being tested. This

approach can amplify weak sparse signals against a background of numerous noise SNPs.

Signals across the SNP-set are compiled to form a single statistic, while the correlation is

estimated via permutation. The compilation of the signals allows for weighting of the SNPs

individually to improve power. If no weighting is done, then this compilation corresponds

exactly to GHC as in Barnett et al. (2016). Our approach has good power against sparse

alternatives, and is able to handle rare variants and weight SNPs unlike existing methods

tailored towards sparse alternatives.

The rest of the paper will be organized as follows. In section 2, we review how individ-

ual p-values/test statistics are typically computed in GWAS settings, reasons they perform

poorly, and introduce our new framework for computing p-values for individual SNPs. In

section 3, we discuss GHC and how it handles correlation between SNPs, and how we handle

correlation within our framework. In addition, we discuss how to weight the SNPs individ-

ually. In section 4, we evaluate how well our method controls size as well as comparison of

power against existing methods such as SKAT through simulation. In section 5, we analyze

the aforementioned Dallas Heart Study data with our proposed method as well as existing

methods, followed by concluding remarks in section 6.

2.2 Marginal P-values

Assume a sample of size n and a SNP-set with p SNPs, such as SNPs from the aforementioned

FGFR2. Let Y be a n× 1 vector of the phenotype and G a n× p matrix, where the ith row

(gi) is the ith subject and the jth column (Gj) is the jth SNP. Consider the model:

logit (P (Yi = 1|gi)) = β0 + βTgi
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The goal is to test the global null, H0 : β = 0, against the alternative, HA : β 6= 0, but

tailored towards sparse alternatives when only a few elements of β is nonzero in the presence

of rare variants. In contrast, in a traditional GWAS setting, one tests for association with

each SNP separately, H0j : βj = 0, the score statistic is:

Sj =
GT
j (Y − µ̂0)

SE

where µ̂0 is the fitted mean under the global null. Rather than testing for each H0j separately

with Sj, a SNP-set method may take the vector of score statistics S and compute a single test

statistic for the global null H0 : β = 0. In the GWAS setting, where Gj is not sparse due to

the variants being common, one can rely on classical theory and approximate the distribution

of Sj with the standard normal under the null. In the sequencing setting, however, the data

sets typically contain rare variants (e.g. only 3 out of 500 subjects have the minor allele),

i.e. Gj is sparse, thus, the numerator of Sj becomes a sum of just a few discrete terms

that are either 1 − µ̂0 or −µ̂0. In this case, normal approximation for Sj can be inaccurate

even for reasonable sample sizes due to the discreteness of Sj. Dense signal methods, such

as burden and SKAT, do not rely on the assumption of multivariate normality of S, unlike

sparse signal methods, such as MinP and higher criticism. As a sparse signal method, GHC

is no exception and assumes the vector of score statistics S behaves as a multivariate normal

under the null. Thus, GHC in the current form cannot be used for data with rare variants

due to violation of its assumptions.

To circumvent this issue caused by rare variants for sparse signal methods, we propose a

new framework for computing p-value for individual SNPs. The core idea is to compare the

measure of association of the observed sample of a given SNP against that of all possible

samples for all SNPs in the region. Note the new notations M (j) =
∑

iGij, the number of
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minor alleles for the jth SNP, and M (j)
c =

∑
iGijYi, the number of minor alleles in cases for

the jth SNP. Consider the model with only the jth SNP for the whole sample:

P (Y |Gj) =
exp (β0

∑
i Yi + βj

∑
iGijYi)∏

i (1 + exp (β0 + β1Gij))

It is well known in this case that
∑

i Yi is sufficient for β0, so conditional on
∑

i Yi:

P

(
Y |
∑
i

Yi = c,Gj

)
=

exp (βj
∑

iGijYi)∑
Y∗:

∑
i Y
∗
i =c

exp (βj
∑

iGijY ∗i )

Note that condition on
∑

i Yi andGj,M
(j)
c is sufficient for βj. Here, one can proceed to com-

pute conditional p-value for hypothesis on βj based on the null distribution of M (j)
c |
∑

i Yi =

c,Gj only. However, if sparsity is high in Gj, the null distribution of the p-values from

M
(j)
c |
∑

i Yi = c,Gj would be highly discrete also. Instead, we propose to compute the

p-value based on the null distribution of M (j)
c |
∑

i Yi = c,M (j) > 0, a weaker condition-

ing. M (j) > 0 is chosen as the conditioning since it naturally corresponds to the data,

which consists of SNPs which have at least one observed minor allele. Assume that the

measure of association is the statistic T = T
(
M

(j)
c

)
where smaller values are considered

more extreme, and let T o be the actual observed value of the statistic. Then, the p-value

P
(
T < T o|

∑
i Yi = c,M (j) > 0

)
can be decomposed by first conditioning on M (j):

P

(
T < T o|

∑
i

Yi = c,M (j) > 0

)

=
∑
m

P

(
T < T o|

∑
i

Yi = c,M (j) = m,M (j) > 0

)
P

(
M (j) = m|

∑
i

Yi = c,M (j) > 0

)

=
∑
m

∑
k:T (k)<T o

P

(
M (j)

c = k|
∑
i

Yi = c,M (j) = m

)
P

(
M (j) = m|

∑
i

Yi = c,M (j) > 0

)
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This decomposition shows the resulting p-value comes from comparing the measure of as-

sociation observed for the jth SNP against that of all possible samples for other individual

SNPs in the region under the null. T o, representing the observed measure of association

from the jth SNP, is compared against values of T for all possible different observed number

of minor alleles of each SNPs in the region (indexed by m).

The final expression requires two components, P
(
M (j) = m|

∑
i Yi = c,M (j) > 0

)
, which can

be directly estimated from the data, and P
(
M

(j)
c = k|

∑
i Yi = c,M (j) = m

)
, which is con-

veniently hypergeometric under the null. In comparison to the very discrete p-values directly

based on the null distribution of M (j)
c |
∑

i Yi = c,Gj, this formulation alleviates that issue

and gives smoother p-values that are closer to U (0, 1) under the null. However, if there

are lots of rare variants in the region, the resulting p-values are still somewhat discrete. To

smooth out the remaining discreteness in the p-values computed this way, one can compute

Uj = P
(
T ≤ T o|

∑
i Yi = c,M (j) > 0

)
and Lj = P

(
T < T o|

∑
i Yi = c,M (j) > 0

)
for the jth

SNP. Then, generate pj ∼ U (Lj, Uj) as the p-value for the jth SNP.

One can interpret this framework as the construction of a null distribution of all possible 2×2

tables for each SNP in the SNP-set. The distribution goes from 2× 2 tables with extremely

high measures of association (more extreme) on the one end to ones with low measures (less

extreme) on the other. Each 2× 2 table is weighted by the product of its probability under

the null conditional on the corresponding number of minor alleles and the number of SNPs

in the SNP-set with the corresponding number of minor alleles. The p-value for a particular

SNP is obtained by looking up where its observed 2× 2 table is situated in the constructed

null distribution. We noted in section 1 that this framework can amplify weak sparse signals.

To illustrate this, consider a causal SNP in the SNP-set that is only moderately associated

with the phenotype. If the observed 2 × 2 table is only compared against other possible

2× 2 tables of the causal SNP, then it will likely only seem moderately associated. However,
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when compared against the constructed null distribution, the observed 2 × 2 table of the

causal SNP will appear more extreme than the bulk of the distribution, which consists of less

extreme 2× 2 tables that likely have bigger weights. As a result, this 2× 2 table will likely

be placed closer to the highly associated end of the constructed null distribution and appear

more extreme than in the comparison against possible 2 × 2 tables of the causal SNP only.

In comparison, the observed 2× 2 table for a noise SNP is likely to show little to no sign of

association and will likely be placed among other tables that show little signs of association

in the constructed null distribution. As a result, the observed 2 × 2 table of a noise SNP

will not appear much differently when compared against the constructed null distribution or

just the possible 2× 2 tables of the noise SNP alone. In the end, the signal SNPs are likely

to appear more extreme in this new framework, i.e. amplified, while noise SNPs are not.

2.2.1 Partitioning the SNP-set

One unwritten premise for the sparse signal methods is that there is sufficient attenuation

of the marginal test statistic/p-value of the causal SNPs such that the method is able to

spot it among many other noise SNPs. This premise is typically met with common variants.

However, this can be an issue for rare variants, because fewer number of observed minor

alleles means a smaller range of observable imbalance in allele counts between cases and

controls, leading to weaker statistical evidence for association. For example, in the extreme

case when the causal SNP is a singleton, there is only two observable configurations, i.e. a

single minor allele in a case or in a control. In this case, both configurations are equally likely

under the null, so the marginal test statistic/p-value can give no evidence for association

even if the singleton was indeed causal.

Even though the marginal p-value introduced in section 2 behaves well with rare variants, it

does not circumvent this issue, as the new p-value will still show little attenuation under the

alternative with extremely rare variants. The new p-value will show the greatest improvement
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when the minor allele count is not extremely low so that the p-value is still able to show some

attenuation under the null, but low enough so that one cannot rely on asymptotics. In light

of these two considerations, we propose to use some threshold on minor allele count when

testing for association on a SNP-set with rare variants. The SNP-set will be partitioned into

two sets, one for SNPs with minor allele count less than the threshold and one for SNPs

with minor allele count greater or equal to the threshold. A single p-value will be computed

for the first set with an aggregating method such as SKAT, while marginal p-values will

be computed for each SNP in the second via the framework from section 2. The resulting

p-values, the single one from the first set and all the marginal ones from the second set, will

be compiled into a single p-value for the whole SNP-set via a thresholding technique like

GHC. If the sparse signals are in the extremely rare variants, i.e. the first set, then marginal

p-values for these SNPs will have little attenuation, and one is better served by trying to

pick up some power by aggregating them. If the sparse signals are in the other rare variants,

i.e. the second set, then our p-values will perform well and thresholding methods should be

able to pick them up.

In addition to loss of power, the extremely rare variants are also likely to produce highly

correlated marginal p-values using the procedure in section 2. Our framework serves to

provide a distribution for all observable 2 × 2 tables in the SNP-set that allows for a more

precise assessment of the degree of association present in the actual observed 2 × 2 table

for a particular SNP. If a SNP has very few minor alleles, then it can only produce a small

number of observable 2 × 2 tables that show little evidence of association and will all be

placed around the less extreme end of the distribution. As a result, the marginal p-values

produced by our procedure for variants with very low minor allele counts will always be from

the same part of the distribution, and thus be highly correlated. This is undesirable due to

the limit in the amount of correlation GHC as well as the weighted GHC introduced below

are able to handle.
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2.3 Review of GHC and Handling Correlation

The original higher criticism (HC) test was developed by Donoho and Jin (2004) for testing

the global null H0 : β = 0 against sparse alternatives where only a few elements of the

p-dimensional β is nonzero. It assumes that the individual test statistics are independent

and standard normally distributed under the null. For the vector of marginal test statistics

Z, the HC statistic is defined as:

HC = sup
t>0

S (t)− 2pΦ̄ (t)√
2pΦ̄ (t)

(
1− 2Φ̄ (t)

)
where S (t) =

∑p
j=1 I|Zj |≥t and Φ̄ (t) is the survivor function of the standard normal distri-

bution. This test rejects for large values of HC.

To accommodate correlation in Z, which can arise due to LD in the context of SNP-set

testing, Hall and Jin (2010) proposed the iHC which performs HC with Z∗, the Z trans-

formed with the Cholesky decomposition of the correlation matrix, in place of Z. In the

presence of correlation, the transformation of Z leads to mixing the signal SNPs with the

noise SNPs since Z∗ is a linear combination of all components of Z. When the signal is

sparse, these linear combinations mix just a few signal SNPs with many noise SNPs, thus

masking attenuations from the few signal SNPs and leading to poor power. GHC takes a

different approach to handling the correlation and keeps the same numerator as the original

HC statistic. Instead of using the variance estimate for independent Z, GHC directly esti-

mate the variance of the numerator ( ˆvar (S (t))) given the estimate of the correlation matrix.

The GHC statistic is of the form:

GHC = sup
t>0

S (t)− 2pΦ̄ (t)√
ˆvar (S (t))
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In addition to loss of power due to mixing of signal and noise, asymptotic results for iHC

requires a very large p to be accurate (Barnett and Lin, 2014). It has been shown that size

of tests that use asymptotic results can be inaccurate for p as large as one million. That is

an astronomical number compared to the number of SNPs in most SNP-sets of interest, e.g.

a couple hundred in a signaling pathway. Asymptotic results for GHC suffers the same issue

in fact. Instead of using the asymptotic approximation, Barnett et al. (2016) developed an

analytic p-value computation for GHC. The formulation for the p-value computation can be

written as:

P (GHC ≥ h) = 1− P (GHC < h)

= 1− P

(⋂
t>0

{
S (t) < h

√
ˆvar (S (t)) + 2pΦ̄ (t)

})

= 1− P

(
p⋂

k=1

{S (tk) < p− k + 1}

)

= 1−
p∏

k=1

P

(
S (tk) ≤ p− k|

k−1⋂
l=1

{S (tl) ≤ p− l}

)

≈ 1−
p∏

k=1

P (S (tk) ≤ p− k| {S (tk−1) ≤ p− k + 1})

The tk are solutions to h
√

ˆvar (S (tk))+2pΦ̄ (tk) = p−k+1 for k = 1 . . . p. The third equality

holds due to the monotone nature of h
√

ˆvar (S (t)) + 2pΦ̄ (t), which allows simplifying the

statement over the union over t > 0 to just p points. The last approximation is to say the

distribution of S (tk) only depends on S (tk−1), rather than that of S (tl) for l = 1 . . . k − 1.

The conditional distribution of S (tk) |S (tk−1) = m is approximated with a beta-binomial

that has the first two moments matched with that of S (tk) |S (tk−1) = m.

In order to compile a p-value for the whole SNP-set with the new p-values, one needs to

transform the p-values into statistics and estimate the correlation of said statistics. GHC

assumes that the marginal test statistics are multivariate normal, so inverting via the normal
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distribution function is the obvious approach. Given the vector of marginal p-values p =[
p1 . . . pp

]T
, define the corresponding statistic Zj for pj as |Zj| = Φ̄

(pj
2

)
. This defines

the absolute value but not the sign, which can be borrowed from conventional measures of

association such as the score statistic. Zjs defined this way will reflect the observed direction

of association, but it can only be done if there is imbalance in the minor alleles between cases

and controls, i.e. the score statistic is non-zero. If the score statistic is 0, there is no sign to

borrow, but this is evidence of no association between the SNP and the phenotype. Typically,

if the test statistic is standard normal under the null, we would expect the statistic to be

of each sign half of the time. So this would be accurately reflected if Zj is assigned either

sign with probability 1
2
when the score statistic is 0. This procedure will be used for the

p-values for every SNP in the second set of SNPs per the partitioning described in section

2.1. While the single p-value from the first set of SNPs will be inverted the same way to get

the absolute value of the statistic, the sign assignment will be the same as that of the score

statistic for association between Y and C, where Ci is the indicator of having at least one

minor allele among those SNPs in the first set. From this point on, marginal p-values/test

statistics will refer to both those computed for each SNP in the second set as well as the one

computed for the whole first set.

With the numerical value of the marginal test statistic Z defined, one still needs to estimate

the correlation between Z. In GHC, the score statistics have a closed form, and the cor-

relation matrix of Z can be easily estimated from genotype matrix directly. The marginal

test statistic/p-value introduced here has no closed form, so the correlation matrix cannot

be estimated directly from the data. Instead, to estimate the correlation of Z, we propose

the following procedure:

1. Permute the phenotype Y , which is valid under the null

2. Compute the statistics Z(b) for permutations b = {1 . . . B}
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3. Estimate the correlation matrix Σ from
{
Z(b)

}
.

This ensures that the estimate Σ̂ characterizes the correlation structure of Z under the null.

If weighting of the SNPs is not desired, then one can compile a single p-value for the SNP-set

with the original GHC at this point.

2.3.1 Compiling and Weighting SNPs

In order to weight the SNPs, the GHC test statistic needs to be redefined. With the original

GHC statistic, the test statistic was based on S (t) =
∑p

j=1 I|Zj |≥t. In order to incorporate

weights, the test statistic will be based on Sw (t) =
∑p

j=1 I|Zj |≥wjt, where wj is the weight

corresponding to the jth SNP. The purpose of assigning the weights this way is that it allows

one to assign lower weights to SNPs that are believed a priori to be signal SNPs, so it would

be easier for the marginal test statistic of those SNPs to incur the indicator. With the new

definition of Sw (t), the new test statistic is also redefined:

GHCw = sup
t>0

Sw (t)−
∑p

j=1 2Φ̄ (wjt)√
ˆvar (Sw (t))

The variance estimate ˆvar (Sw (t)) for Sw (t) is similar to that of S (t) as from the origi-

nal GHC, but with a slight modification due to the introduction of the weights (details in

appendix).

With similar logic and approximations as in the original GHC, the p-value for the newly

defined test statistic can be approximated as

P (GHCw ≥ h) ≈ 1−
p∏

k=1

P (Sw (tk) ≤ p− k| {Sw (tk−1) ≤ p− k + 1})

The tk here are found as solutions to h
√

ˆvar (Sw (tk)) +
∑p

j=1 2Φ̄ (wjt) = p − k + 1 for

k = 1 . . . p, which is quite similar to that from GHC also. The conditional distribution of
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Sw (tk) |Sw (tk−1) = m is once more approximated with a moment-matched beta-binomial

distribution. The first two moments of Sw (tk) |Sw (tk−1) = m require different approxima-

tions than those of S (tk) |S (tk−1) = m in GHC in order to accommodate the new weights

(details in appendix). Due to the approximations used, this weighted procedure has a limit

to the amount of variability in the weights as well as of correlation between the marginal

test statistics it can handle.

2.4 Simulation Studies

We conduct simulation studies to assess the control of type-I error as well as power of

our method. The genotype data is simulated with ms, while keeping the absolute value of

pairwise correlation between SNPs < 0.1. This limitation is due to the crudeness of the

approximations used to approximate the moments of Sw (tk) |Sw (tk−1) = m. The pheno-

types are generated in R, while the SKAT and burden p-values are computed with the R

package SKAT. The GHC p-values are computed with the R package GHC, while those of

the weighted GHC are computed with our own R code.

2.4.1 Null Simulations

For the size simulation, we use a minor allele count threshold of 10 and generate 50 SNPs

over that threshold and 30 SNPs under that threshold for 1000 cases and 1000 controls under

the null. The SNPs in the second set have minor allele counts between 10 and 40 inclusively,

so that there are plenty of SNPs with minor allele counts where the framework introduced

in section 2 is believed to show the greatest improvement. A marginal p-value is computed

for each of the 50 SNPs over the threshold using the new framework, and a single p-value

for the 30 SNPs under the threshold with SKAT. Compilation of the 51 signals is done both

unweighted as well as with beta weights, B (1, 6). In the latter case, the SKAT p-value for

the SNPs under the threshold will use the same beta parameters for weighting. Given a

distribution with density function f for the weights, the inverse of the weight for SNPs over
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the threshold is f evaluated at the minor allele frequency, i.e. 1
wj

= f (pj), while the single

weight for all SNPs under the threshold is obtained the same way but with the average

minor allele frequency of all such SNPs. Compilation of the p-values for the whole SNP-set

is done with the original GHC if unweighted, while compilation is done with the weighted

GHC introduced in section 3 if using the beta weights.

The reason the weights for the individual SNPs are assigned this way is for a more direct

comparison to SKAT with the weighted linear kernel, which is the version computed in these

simulations. For SKAT with this kernel, the test statistic can be written as STWS, where S

is the vector of marginal score statistics for each SNP and W a diagonal matrix with diagonal

elements corresponding to the weights for each SNP
{
wsj
}
. Note the test statistic can be

rewritten as STwSw, where Sw is a vector whose jth element corresponds to the product of

the jth marginal test statistic and the square root of its weight, i.e.
√
wsjSj. Thus,

√
wsj

can be seen as the weight applied on the same scale as the marginal test statistics and is

assigned the value of the chosen beta density evaluated at the jth minor allele frequency in

SKAT. In the weighted GHC introduced in section 3, the weights are applied to the marginal

test statistics through the indicator function I|Zj |≥wjt. Rearrangement of the condition of

the indicator function yields
∣∣∣ 1
wj
Zj

∣∣∣ ≥ t, assuming wj > 0, which means that 1
wj

is the

weight applied on the same scale as the marginal test statistics. Thus, if the value of 1
wj

in weighted GHC is assigned the same way as
√
wsj , i.e. evaluation of the beta density at

the corresponding minor allele frequency, then the weighting scheme of the two methods

correspond directly.

The results over 100,000 replications are summarized in the QQ-plots in figure 2.1. Both

unweighted and weighted QQ-plots adhere closely to the 45 degree line. The unweighted one

shows almost no deviation until the tail where there are only a few points. The weighted one,

however, shows a small amount of “wiggle” around the 45 degree line all the way through,
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Figure 2.1: QQ-plots for unweighted GHC and weighted GHC in the null simulations

but never shows any noticeable deviation. This “wiggle” is likely caused by the crudeness of

the approximations currently used to compute the conditional moments used in the p-value

computation mentioned above. Both versions of GHC seem to control size well in these

settings, although the performance of the weighted GHC is likely to deteriorate with more

variable weights in its current form.

2.4.2 Power Simulations

Due to the aforementioned issues caused by rare variants on the marginal test statistics, no

other sparse signal methods are able to handle rare variants. Instead, SKAT and burden

test are used in these simulation for power comparison. We chose a variety of sparsity and

effect sizes as well as ways to choose the causal SNPs to compare the power of each method.

For power simulations, the genotype generation remains the same as the null simulations,

but the phenotypes for the 2000 subjects are generated prospectively. Given the genotype,

the phenotype is generated via a logistic model, where a given number of SNPs are selected

to be the causal SNPs:
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logit (P (Yi = 1|gi)) = β0 + βTgi

There are three regimes for selecting the causal SNPs. One, the causal SNPs are selected

randomly out of the 80. Two, the causal SNPs are randomly selected from the set under the

minor allele count threshold, which contains many singletons. Three, the causal SNPs are

selected as the rarest out of the set over the minor allele count threshold. The purpose of

the latter two is to show the utility of the procedure described in section 2.1. In the second

regime, there are dense signals in the set of SNPs under the minor allele count threshold.

It is unclear a priori whether aggregating such dense signals as with SKAT and burden or

treating it all as a single strong signal in GHC will yield better power. In the third regime,

the causal SNPs have minor allele counts where the new marginal p-values are expected to

show the most improvement, so weighted GHC is expected to outperform SKAT. For the

first and third causal regimes, the number of causal SNPs vary between 2, 3, and 5 out of 80,

with corresponding effect size of the causal SNPs, at 1, 0.7 and 0.5. For the second causal

regime, the effect sizes are determined in the same manner as the power simulations in Wu

et al. (2011), where a SNP with minor allele frequency po is assigned effect size c |log10 (po)|.

The number of causal SNPs vary between 15, 20, and 25 out of 80, with corresponding value

of c at 0.5, 0.45, 0.4. The direction of association are always kept the same in order for

burden to have reasonable power, although our method and SKAT do not benefit from this

unidirectionality. The compilation of the p-values will be unweighted for all methods with

the first regime for selecting causal SNPs, but will employ a B (1, 6) weight for the latter

two.

The power results for the various scenarios visited at α = 0.05 are summarized in figure

2.2. For the first causal regime, the increase in power from our method is the most obvious
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Figure 2.2: Power for all three causal regimes, at various choices of sparsity and effect size,
at α = 0.05, for our approach, SKAT, and burden, from left to right
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in the sparsest case, with 2 causal SNPs and effect size β1 = 1. With 3 causal SNPs and

effect size β1 = 0.7, the increase in performance is less pronounced, while SKAT overtakes

in performance in the third setting. In the second causal regime, GHC is surprisingly out-

performing both SKAT and burden by a wide margin. With the given choices of parameter

values, it seems to be better to treat the signals in the set of SNPs under the threshold as

a single strong signal with GHC than to aggregate all the SNPs together with SKAT and

burden. Burden outperforming SKAT here is not too unexpected as all the signals are in

the same direction. Though the ordering of performance may change with different choices

of number of causal SNPs and/or effect sizes, these results clearly show the utility of the

approach laid out in section 2.1. Lastly, in the third causal regime, GHC performs the best

in all three settings. This is expected since this is where our method is expected to show

the most improvement. In general, our method performs well when the sparsity is low (2 or

3 causal SNPs), and is able to retain some power when the signals are all in the extremely

rare variants. However, when sparsity decreases, aggregating methods such as SKAT can

perform better in some settings. Additional results at other significance levels can be found

in the appendix.

2.5 Analysis of Dallas Heart Study Data

The Dallas Heart Study contains sequencing data on 93 variants in the genes ANGPTL3,

ANGPTL4, and ANGPTL5 as well as log-transformed serum triglyceride levels for 3476

subjects. The subjects include both genders from three ethnicities, black, Hispanic, and

white. Since our method is aimed at binary phenotypes, the serum triglyceride level was

dichotomized as cases and controls. The data set is analyzed for association between the

dichotomized phenotype and the SNP-set containing all variants in the data set with minor

allele frequency < 0.05 (this leaves 92 of the 93 variants) with both weighted and unweighted

versions of SKAT, burden, and GHC as introduced in this paper. Both versions of GHC uses

the same 10 minor allele count threshold as the simulations, which puts 78 variants in the set
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under the threshold and 14 variants in the set over for a total of 15 marginal statistics. The

weighting scheme for each method remains the same as the simulations also. In its current

form, our method is unable to control for covariates, so all three different analyses are done

without covariates for comparison. Although a preliminary analysis with only gender and

ethnicity as the covariates do not show any highly significant association, the analysis results

should still be taken with a grain of salt and is more for the purpose of comparison between

the methods.

The weighted and unweighted p-values for each method can be found in table 2.1. If the

phenotype is dichotomized with the highest 10% as cases and the rest as controls, both SKAT

and burden have smaller p-values than GHC. Upon further inspection of the marginal test

statistics for GHC, there are 4 marginal statistics with values approximately 2 or greater

with none greater than 4 for SNPs over the threshold, while the single statistic for the set

of SNPs under the threshold is small and shows little sign of association. This seems to

indicate several moderate signals, which is a situation where SKAT is expected to perform

better. This has some loose correspondence to the third setting of the first causal regime in

the power simulations, where SKAT performs better as well.

Defining the top 10% as cases is not a fixed cutoff and has no clinical interpretation. Instead,

if the phenotype is dichotomized with subjects with serum triglyceride level over 150 (the

clinical definition of high triglyceride) as cases and otherwise as controls, the results look

opposite of the other definition, with GHC having much lower p-values than SKAT and

Table 2.1: Unweighted and weighted p-values for GHC, SKAT, and burden from analysis of
the data from Dallas Heart study

Definition of cases GHC SKAT Burden

Highest 10% Unweighted 0.00197 0.00096 0.00058
Weighted 0.00746 0.00079 0.00078

> 150
Unweighted 0.00018 0.41 0.55
Weighted 0.00010 0.36 0.61
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burden. The marginal statistics of GHC tell a difference story than before also. The largest

marginal test statistic for SNPs over the threshold is only approximately 2, while the single

statistic for the set of SNPs under the threshold is over 4. This seems to indicate that if

the signals in the extremely rare variants combined is extremely strong, and there is little

signal elsewhere, then SKAT and burden may risk this signal getting buried among the noise

SNPs, but GHC may be able to pick it up as a strong single sparse signal. This definition

of the phenotype only yields 11 cases, though a low number of cases does not affect the

validity of our method. This situation corresponds to the second causal regime of the power

simulations, where the signals are strong and all in the SNPs under the threshold. In all three

settings for the second causal regime, GHC outperforms both SKAT and burden. However,

the correspondence is not exact since the power of burden is boosted by the unidirectionality

of the signals in the simulation, which is unlikely to be the case in the data.

The p-value of the better performing methods in either cases are similar, while GHC achieves

noticeably lower p-value when it does not perform the best than SKAT and burden. Note that

the results of the analysis change completely depending on the definition of the phenotype. In

combination with the lack of control for covariates, these results are by no means informative

in practice, but show the strength and weakness of each method in a context outside of

simulation with correspondence to scenarios visited in the simulations.

2.6 Discussion

We propose a method for association testing between a SNP-set (genes, signalling pathways)

and a phenotype of interest for a sequencing study setting, where rare variants are prominent.

Our method allows for data sets with rare variants and binary phenotype, and is tailored to-

wards sparse alternatives. Existing sparse signal methods, such as GHC, makes assumptions

about the distribution of marginal test statistics that fail in these situations and is unable to

weight the SNPs. The core of the new method is a new marginal test statistic/p-value that
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requires no such assumption. This new framework compares the observed sample of a given

SNP against more extreme possible samples for each SNP in the SNP-set by constructing a

null distribution of all such possible samples. In comparison, typical marginal test statistics

(e.g. score, Fisher’s exact test) only compares the observed sample against more extreme

possible samples for the SNP being tested. The constructed null distribution serves to create

a finer spectrum for assessment of the observed measure of association, and to amplify weak

to moderate signals. The latter is because a signal may appear weak or moderate when only

compared against possible samples at the SNP being tested, but will likely appear stronger

when compared against this new null distribution, which is less likely for noise SNPs. In

addition, we build upon the GHC framework by incorporating weights for the SNPs to in-

crease power, although this approach has limitation in the variability of the weights used as

well as correlation among the test statistics.

In most of the scenarios visited in our simulation studies, our method has improved power

over SKAT and burden in the presence of a significant portion of rare variants. Power

improvement is quite noticeable when signal is not in the extremely rare variants, such as

singletons. However, when the signals are in these variants, our method is still able to retain

some of the power by aggregating the extremely rare variants first. In comparison with

existing sparse signal methods, such as GHC and minP, our method can handle rare variants

with binary phenotype and does not rely on asymptotics.

The main drawback of our method is the lack of ability to control for covariates, since it

no longer allows for the hypergeometric assumption under the null. The approximations

currently made to incorporate the weights are quite crude, leading to a limitation in the

amount of variability in the weights as well as the correlation among the test statistics the

weighted GHC is able to handle. Additionally, the use of permutation to handle LD is quite

time consuming. So improved approximation for the weights, controlling for confounders,
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and speeding up the software are the main focus for future work.

With the increasing abundance of whole genome sequencing data, ignoring rare variants as

with GWAS becomes more and more wasteful. Existing SNP-set methods have found creative

ways to deal with sparse signals, but not with rare variants when testing for association with

binary phenotypes. This is a glaring hole in the landscape of SNP-set methods. Our method

is a first step in attempting to address this issue.
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3.1 Introduction

Many systems of scientific and societal interest can be represented as networks, and network

models are used, among many other applications, to study social networks, communication

patterns, scientific citations, and protein-protein interactions (Newman, 2010; Wasserman

and Faust, 1994; Pastor-Satorras and Vespignani, 2007; Lusher et al., 2012; Raval and Ray,

2013).

There are (at least) two prominent paradigms to the modeling of networks, which we call

the statistical approach and the mechanistic approach. In the statistical approach, one

describes a model that specifies the likelihood of observing a given network, i.e., these are

probabilistic models of data that take the shape of a network (Robins et al., 2007; Hoff et al.,

2002; Goyal et al., 2014). In the mechanistic approach, one specifies a set of domain-specific

mechanistic rules, informed by scientific understanding of the problem, that are used to

grow or evolve the network over time (Barabási and Albert, 1999; Watts and Strogatz, 1998;

Solé et al., 2002; Vázquez et al., 2003; Klemm and Eguiluz, 2002; Kumpula et al., 2007).

For example, in the context of social networks, mechanisms of interest might include triadic

closure or reciprocation of directed edges. Both modeling approaches provide distinct angles

and advantages to our understanding of complex systems, and in both approaches, one is

interested in learning about the connection between microscopic and macroscopic structures.

Both mechanistic and statistical models are indexed by parameters and calibration/inference

on those parameters sheds light on those micro/macro structures.

A particular generative mechanism in mechanistic models may seem like a strong assumption

in contexts where one does not directly observe the formation of the network, and where it is

difficult to study microscopic interactions in isolation of the rest of the system. For example,

it might be difficult to learn about the mechanistic rules that govern the formation or dissolu-

tion of ties in in-person interactions, whereas doing so in the setting of online social networks
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might be more feasible since every interaction can be recorded. In some biological networks

the pairwise interactions are well understood both theoretically and experimentally, they can

be studied in isolation, and these interactions are highly reproducible. For example, gene

duplication is one of the main drivers of the evolution of genomes and it is well understood,

and therefore perhaps not surprisingly, network models based on gene duplication were one

of the first large-scale models used in systems biology (Raval and Ray, 2013).

In comparison, statistical models may be seen as a more sound approach in settings where

domain specific understanding is not as readily available to guide the selection of mechanisms,

or there are too many mechanisms and including all of them would not lead to insightful

modeling. This is in line with the use of statistical modeling more broadly, where one

of the goals might be to learn how different predictors are associated with the response,

which is a problem that can be studied even if the true associations between response and

predictors, let alone the underlying mechanisms, are unknown. Common statistical models

have limitations in the structures they are able to accommodate (Goyal and Onnela, 2017),

and fitting and sampling from some of these models can be difficult. For example, the

popular class of exponential random graph models (ERGMs) appear not to be consistent

under sampling (Shalizi and Rinaldo, 2013). Mechanistic models do not suffer from these

limitations as much, since generation of network structures from a handful of mechanisms

is usually computationally inexpensive, so it is relatively simple to sample from a particular

model.

Another advantage of mechanistic models is the ease with which one can incorporate domain

knowledge in the model. Since the modeler is in control of the mechanisms to include, one

is able to encode relevant domain knowledge of known or hypothesized interactions between

actors in the system as mechanistic rules. Duplication-divergence models in protein-protein

interaction networks are good examples of this (Raval and Ray, 2013). In statistical models,
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one is unable to model such interactions directly, and can only consider the types of networks

structures one expects to observe due to these interactions.

While there is a very extensive literature on mechanistic models in network science, there

is a dearth of work on model selection in mechanistic models (Middendorf et al., 2005).

The aim of this paper is to provide a framework for model selection in mechanistic network

models. For instance, given a full model which has an array of different generative potential

or plausible mechanisms, we are interested in selecting between different submodels each

possessing only a subset of the mechanisms of the full model. Traditional likelihood-based

model selection are not applicable to most mechanistic models because in most cases their

likelihood functions are not known. One of the reasons why the likelihood functions are

intractable is that in mechanistic models one must consider all the possible paths to generate

any one particular network realization, which leads to a combinatorial explosion save for the

most trivial models. As such, one must consider likelihood-free approaches.

One recent likelihood-free approach to both inference and model selection for problems with

intractable likelihoods is Approximate Bayesian Computation (ABC) (Marin et al., 2012;

Sunnåker et al., 2013; Lintusaari et al., 2016). As the name suggests, this Bayesian approach

aims at calibrating the model parameters by obtaining the posterior distribution for the

parameters of interest. Following Bayes theorem, the posterior is obtained by combining

information from the prior distribution and the observed data set. ABC inference starts

by generating samples of possible parameter values from the prior distribution. For each

sample from the prior, one generates a data set according to the model for the data, where

the nature of the model, statistical or mechanistic, is not relevant for the purpose. Then,

a set of pre-specified summary statistics is computed for each of the generated data sets as

well as the observed data set. Given a distance measure for the summary statistics space,

one accepts only the generated data sets whose summary statistics’ distance from those of
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the observed data sets are within a certain threshold. These generated data sets are deemed

“close” to the observed one, and the parameters sampled from the prior corresponding to

these data sets form the approximation to the posterior distribution. Model selection with

ABC is similar but includes an additional layer of hierarchy for the model index.

The main difficulty in applying ABC arises when selecting the summary statistics as well

as the threshold on the distance. If the selected summary statistics are sufficient for the

parameters of the model and the distance threshold is zero, i.e., only data sets with exactly

matching summary statistics are kept, then the resulting posterior will be exact in the limit

as the number of generated samples goes to infinity (Lintusaari et al., 2016). However,

should one fall short on either of these accounts, then the obtained posterior will be an

approximation to the true posterior. Since likelihood-free approaches like ABC are only

needed with intractable likelihoods, it will typically be difficult to find the sufficient statistics

in these situations, though there is previous work on how to select good summary statistics

for an ABC procedure (Prangle et al., 2014). As for the threshold on distance measure, the

smaller the distance threshold, the greater the computational burden to generate a sufficient

number of accepted samples. In fact, outside of using discrete summary statistics, it may be

totally impractical to use a distance threshold of zero. As a result, the performance of ABC

inference can suffer due to the inaccuracy of the resulting posterior. ABC model selection

suffers from these same issues with reference to the model index which becomes an additional

model parameter on which inference is required. Even if one were to select statistics that

are marginally sufficient for the submodels, they may not be jointly sufficient for the full

model and not be able to discriminate among the various models under comparison, save

for some special cases. Lastly, if one does somehow manage to select all the sufficient

statistics and conduct model selection with ABC, the resulting ABC Bayes factor may have

no correspondence to the true Bayes factor (Robert et al., 2011).
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Instead of dealing with the issues stemming from the inaccuracy of the ABC posterior, we

propose a procedure for model selection that borrows the data generation from candidate

models from ABC but not the Bayesian aspects, i.e., ABC without the “B”. Just as in ABC,

the data we generate from each candidate model will be the basis for model selection as the

training data, but rather than a Bayesian approach, we propose to conduct model selection

with Super Learner (Polley et al., 2011; Van der Laan et al., 2007). Originally proposed for

prediction in a regression setting, and generalizable to others, Super Learner is an ensemble

algorithm that makes a prediction by combining the predictions from a library of candidate

algorithms. Given a particular loss function, Super Learner aims to minimize the expected

loss, called the risk. The discrete Super Learner will simply pick the candidate algorithm that

has the lowest cross-validated risk in the training data, whereas the full Super Learner will

create the convex combination of the algorithm-specific estimates that has the lowest cross-

validated risk. Given a bounded loss function, the discrete Super Learner as well as the full

Super Learner have the so-called oracle property, meaning that asymptotically they perform

at least as well as the optimal candidate algorithm and the optimal convex combination of

the candidate algorithms, respectively (Dudoit and van der Laan, 2005; Van Der Laan and

Dudoit, 2003).

Our proposed approach has similarities to that of Pudlo et al. (2015), which is a random

forest-based ABC approach for model selection that is fairly robust to the choice of summary

statistics. They measure performance with the prior error rate, which is the probability to

select the wrong model, averaged over the prior. Our proposed approach can be seen as a

generalization of that of Pudlo et al. (2015). First, the choice of performance measure is

flexible and can be encoded directly into the loss function. For example, the prior error rate

implicitly weighs misclassification differently for each model due to the sensitivity to the

choice of prior. Should one desire a measure that does not discriminate between misclassifi-

cation of different models, one can use a measure like the area under the receiver operating
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characteristic curve (AUC) (Bradley, 1997; Ling et al., 2003). Second, Super Learner can

make use of a host of candidate algorithms, including random forest, to perform the clas-

sification. Random forest is a very flexible algorithm, but it may not perform well in all

settings. One can be more robust against this by having more candidate algorithms for

Super Learner.

We can deem the random forest-based ABC approach of Pudlo et al. (2015) as a special

case of our approach if we do not cross-validate and only have random forest as a candidate

algorithm. In our model selection setting for mechanistic network models, we propose to use

Super Learner to predict the model index for a particular network realization. Due to the

intractable nature of the likelihood and the ease of generating data, model selection with

mechanistic network models lends itself well to the Super Learner framework. The rest of

the paper is organized as follows. In Section 2, we provide a brief overview of Super Learner

as well as the procedure for model selection in the context of mechanistic network models.

In addition, we introduce and motivate a simple mechanistic network model as a proof of

concept, and we then use this model in our subsequent simulations. In Section 3, we lay out

the details of the simulations as well as the results and evaluate the performance of Super

Learner. Finally, in Section 4, we conclude with further discussions and with suggestions for

future work.

3.2 Methods and Material

3.2.1 The Super Learner Framework

Given a particular loss function L, Super Learner, as introduced by Van der Laan et al.

(2007), aims to minimize the risk E [L] with an algorithm for prediction composed from

a library or set of candidate algorithms {Ql}. The procedure begins by partitioning the

training data, with predictors X t and outcome Y t, into V validation sets. The covariates

and outcome of the vth validation set are referred to as Xv
t and Y v

t , while those of the
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corresponding training set, the union of the remaining V − 1 validation sets, are referred

to as X−vt and Y −vt . For the vth validation set, each candidate algorithm Ql is trained on(
X−vt ,Y −vt

)
. The resulting trained algorithm Q̂v

l is then evaluated at Xv
t , giving prediction

Ŷ
v

l . After training each candidate algorithm on each training set and evaluating it on the

corresponding validation set, a new data set is formed with the cross-validated predicted

outcome
{
Ŷ

v

l

}
and the observed outcome Y v

t from all validation sets. This cross-validation

procedure is to prevent overfitting, and this new data set will be the basis for the final

prediction algorithm.

In the case of the discrete Super Learner, the candidate algorithm with the smallest estimated

cross-validate risk is chosen for final prediction. Assuming a regression setting and a squared

error loss function, the cross-validated risk for the lth candidate algorithm can be estimated

as Ê [L (Ql)] = 1
V

∑
v

1
nv

∑
i

(
Yi − Ŷ v

l,i

)2
, where the first summation is over the validation

sets and the second is over the nv observations in the vth validation set. In the case of the

full Super Learner, the estimated risk will be minimized over all convex combinations of the

candidate algorithm. In the same regression setting with squared loss and a particular convex

combination {al}, where
∑

l al = 1 and al ≥ 0, the cross-validated risk can be estimated as

Ê [L (a)] = 1
V

∑
v

1
nv

∑
i

(
Yi −

∑
l alŶ

v
l,i

)2
. Once the final prediction algorithm is determined,

i.e. Ql∗ that achieves the smallest risk in the discrete Super Learner or {a∗l } in the full Super

Learner, each candidate algorithm is refit on the entire training data in order to predict for

an observation with predictors Xo. Each resulting trained algorithm Q̂l is then evaluated at

Xo, giving prediction Ŷ o
l . The final prediction will be the Ŷ o

l∗ in the discrete Super Learner,

or
∑

l a
∗
l Ŷ

o
l in the full Super Learner. Figure 3.1 gives a visual representation of the Super

Learner framework.
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Figure 3.1: General schematic of the Super Learner framework

3.2.2 Procedure for Model Selection

Now, we introduce the procedure for mechanistic network model selection with the Super

Learner framework. In this setting, the Super Learner will predict the model index based on

training data generated from each candidate mechanistic network model. Before generating

the training data, one needs care when choosing the parameter values for the candidate

models so that it is plausible for the candidate models to generate the observed data to

predict for, assuming that one of the candidate models is the true model. This can be done by

choosing parameter values so that the data generated from the candidate models match the

observed data based on some summary statistics. This ensures the generated data from each

candidate model is at least similar to the observed data in some way. Once the parameter

values are determined, one can form the training data by combining statistics computed for

data generated from each candidate model as predictors with their corresponding true model

index. Before going ahead with the Super Learner procedure, one needs to determine the
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Figure 3.2: Schematic of model selection procedure with Super Learner

appropriate loss function for the setting. Since the prediction is for the model index, this is a

classification problem, so a loss function like squared loss is no longer appropriate. Instead,

we propose to use 1− AUC as the loss function, where AUC is the area under the receiver

operating characteristic curve. The AUC is an appropriate measure of the quality of the

classification since it does not depend on the distribution of the model index in the data for

performance evaluation. The corresponding loss function is also bounded, so the resulting

Super Learner will retain the oracle property.

Algorithm 3.1 lays out the procedure we propose for model selection using Super Learner,

and figure 3.2 gives a visual representation. In addition to selecting the candidate algorithms,

one needs to select the all-important network summary statistics to both match on, in step 1,

and to train the algorithms on, in steps 5 and 7. As previously stated in Robert et al. (2011),

even if the sufficient statistics of all submodels are selected, they may not be jointly sufficient
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Algorithm 3.1 Steps for the model selection with mechanistic network models via Super
Learner

1. Match the parameters for all candidate models with the observed network based on
relevant statistics

2. Select relevant statistics that highlight differences between models as predictors

3. ABC without the “B”, generate training data for all models of interest

4. Split the training data into cross-validation sets

5. Train/evaluate all candidate algorithms on each training/validation pair based on se-
lected predictors

6. Train Super Learner on the results from each candidate algorithm

7. Train each candidate algorithm on entire training data set

8. Classify/select model for observed network based on algorithms from steps 6 and 7

for the full model. Since it will be very difficult to obtain, sufficiency should not be the most

important criterion for these statistics, but rather their ability to characterize the similarities

and differences between the candidate models and thus their ability to discriminate among

models. Suppose one is trying to select between a full model and one of its submodels that

has one of the mechanisms of the full model turned off, then one needs to consider the

characteristics of the network that the missing mechanism affects and those that it does not.

The statistics chosen for matching the parameters in step 1 should reflect the characteristics

that are unaffected by the missing mechanism. Conversely, those chosen as predictors in

steps 5 and 7 should reflect the characteristics affected by the missing mechanism. The

ability to characterize these similarities and differences will determine the performance of

the algorithm and, thus, should guide the selection of the summary statistics. Though the

candidate models we consider here are nested, they do not need to be in general to use this

framework.
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3.2.3 Model for Proof of Concept

As a proof of concept for this framework of model selection for mechanistic models, we

introduce a simple mechanistic model to demonstrate its performance. The basis for the

model is the classic Erdős–Rényi (ER) model (Erdős and Rényi, 1959). In the ER model,

the number of nodes n is fixed, and there are two variants on how edges are placed in the

graph. In one variant, sometimes called the G(n, p) model, each of the C (n, 2), n choose 2,

possible edges are independent and included in the graph with probability p, so the number

of edges in the graph has a binomial distribution. In the other variant, sometimes called the

G(n,m) model, the number of edges in the graph m is also fixed. In this case, the random

graph has a uniform distribution over all C (C (n, 2) ,m) possible graphs with n nodes and

m edges.

Our model takes elements from both variants of the ER model. The model generates random

graphs with a fixed number of nodes and edges just like the second variant of the ER model,

but each edge is added one at a time with a certain probability akin to the first variant.

At each step of graph generation, we select a pair of nodes that are not connected to one

another uniformly from all such node pairs, and we connect the nodes with an edge with

a given probability. This process is repeated until the requisite number of edges have been

added. If the probability for adding each edge was always fixed, then this model would be

the same as the second variant of the ER model. In our model, there is a base probability

p0 for edge placement, but two additional mechanisms are included to allow the varying

of the probability. The first mechanism is triadic closure, where should the addition of the

selected edge close a triangle, i.e., the selected edge with two additional existing edges form a

complete subgraph between three nodes in the network, then the probability will be increased

by p1 over the base probability for adding the edge. We dub the second mechanism “triadic

closure plus,” where should the addition of the selected edge close more than one triangle,

then the probability will be further increased by p2 for each potentially closed triangle in
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Figure 3.3: The probability to add an edge between two unconnected nodes in our model
with two mechanisms when there are no closeable triangles, when there is one closeable
triangle, and when there is more than one closeable triangle

excess of one. Figure 3.3 demonstrates these two mechanisms. Though this model is fairly

simple, both its mechanisms can be motivated in social networks. Another example is a

citation network, where a new paper that cites an existing paper A might also cite paper

B if A also cites B. In a friendship network, the first mechanism corresponds to the idea

that two people are more likely to become friends if they have a mutual friend, while the

second mechanism further increases the likelihood for each mutual friend. As such, these

mechanisms can also be related to the so-called weak ties hypothesis (Granovetter, 1973),

and it has been shown, in large-scale communication networks, that a greater proportion of

shared friends is associated with greater tie strength (Onnela et al., 2007).

3.3 Simulation Studies

We conduct simulation studies to assess the performance of the Super Learner framework for

model selection. Super Learner will be used to select between the full model with both triadic

mechanisms vs. the submodel with only the “standard” triadic closure mechanism. Networks

generated from both models have 100 nodes and a base edge probability of p0 = 0.3. The

probability of edge placement increases by p1 = 0.1 for the first triangle the edge would close

and by p2 for every subsequent triangle, and we varied the value of p2 over the values 0.05,
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0.03, 0.01, and 0.005. The number of edges is the statistic that is matched between the two

models for a particular simulation and will be varied over values 500, 1000, and 2000. For

a given number of edges, the variation of p2 from 0.05 to 0.005 means that the differences

caused by the additional mechanism will be more and more difficult to detect. For a given

value of p2, the variation of the number of edges from 500 to 2000 means that there will

be more opportunities for the additional mechanism to manifest itself, making it easier to

detect. The simulation studies will iterate through each combination of value of p2 and edge

number to see the interplay between the two.

Super Learner used for the simulations is composed of three candidate algorithms, k-nearest

neighbors (KNN), support vector machine (SVM), and random forest (RF), which we discuss

here briefly. These three are chosen largely for their ability to handle collinear predictors,

which are often present in summary statistics for networks. Given an observed sample for

classification, KNN determines which k (user-defined) samples in the training data are closest

to the observed sample, based on some distance measure in the covariate space, a common

choice being the Euclidean distance. The predicted class is the most frequent class among

the k-nearest neighbors. Unlike KNN, which essentially formulates a new decision rule for

each observation, SVM seeks to formulate a single decision rule for all classifications by

separating the space of the predictors with a set of hyperplanes that segregates the space

class-wise. Heuristically, a good hyperplane is one that is farthest from any sample in the

training data. Once the class-wise segregation of the predictor space is complete, a new data

point is classified based on the class label of the subset of the predictor space it falls in.

Lastly, RF seeks to create a set of decision trees (the “forest”) from the training data in order

to arrive at the final prediction. To build each tree, a bootstrap sample of the training data

is taken to form the root. Then, at each node, a subset of the predictors are selected, and a

“best” split is determined for these predictors in order to form its daughter nodes. Typically,

the quality of the split is measured by the amount of homogeneity in each daughter node.
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Given an observed sample, each tree is traversed and gives a class label for the sample. An

observation is then classified as the most frequent amongst all the tree-wise decisions.

Aside from the candidate algorithms, choosing appropriate predictors is an important task

for the user. As discussed in the previous sections, sufficient summary statistics are difficult

to obtain in all but the trivial mechanistic network models, and one should aim to use

summary statistics that are likely able to characterize the differences between the candidate

models. In these simulations, there are five summary statistics chosen as predictors. The first

predictor is the triangle count, which is an obvious choice, since the additional mechanism in

the full model will favor edges that close multiple triangles more so than those that only close

one. The second is the average local clustering coefficient over all nodes. The local clustering

coefficient of a node is a measure of how close its neighbors are to forming a complete graph

by themselves, i.e. having every possible edge between any two neighbors. If the addition

of an edge between nodes a and b will close multiple triangles, both a and b already share

a set of neighbors with whom to form the potentially closed triangles. Then, without loss

of generality, from the point of view of node a, the addition of the edge would mean the

addition of a single neighbor, b, and the addition of multiple edges amongst its updated set of

neighbors from b to those shared neighbors. In scenarios with lower total edge counts, where

the degree of either a or b is likely to be smaller, this could lead to a potentially large change

in the local clustering coefficient. Lastly, the additional mechanism is a rich-getting-richer

scheme in terms of the degree of a node, since the more closeable triangles a pair of nodes

have, the higher their existing degrees, which further leads to a higher probability of both

getting an increase to their degrees with an additional edge. Thus, this mechanism is likely

to affect the degree distribution in the network. As a proxy to the full degree distribution,

the three quartiles (25%, 50%, 75%) of the degree distribution are included as predictors.

The mechanistic model proposed in the previous section is coded in Python and based on
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the package NetworkX. The training of Super Learner, with a 5-fold cross-validation, is

done with the R package SuperLearner, which contains wrappers for the chosen candidate

algorithms. For a given combination of edge count and value for p2, we generate 10,000

training samples from both the full model and the submodel as training data. Rather than

using a separate sample to assess performance, the AUC of Super Learner as well as each

candidate algorithm was estimated via a 10-fold cross-validation. Note that this is different

from the cross-validation for Super Learner itself. For a given validation set of the 10 that

the training data is first partitioned into, the 5-fold cross-validated Super Learner is trained

on the remaining 9 validation sets, and then used to predict the model index for the given

validation set. The AUC measure is computed for each of the 10 validation sets and averaged.

3.3.1 Simulation Results

The cross-validated estimate of the AUC for the full and discrete Super Learner, and each

candidate algorithm for each scenario of the simulation studies are summarized in figure 3.4.

In general, performance decreases as the value of p2 decreases, which is no surprise as the

effect of the additional mechanism diminishes as p2 gets smaller. Performance also improves

as the edge count increases, as the mechanism has more opportunities to manifest itself with

more edges. In most scenarios, the discrete Super Learner has the same cross-validated AUC

as that of the best performing candidate algorithm, with the full Super Learner performing a

little better as expected. In these scenarios, the ordering of the performance of the candidate

algorithms is likely the same across each fold in the cross-validation. Thus, the discrete

Super Learner would always pick the same candidate algorithm in each fold and have the

same performance as the best candidate algorithm averaged across all folds. The full Super

Learner, in this case, would take a convex combination of the candidate algorithms in each

fold and would perform at least as well as, and likely better than, the best performing

candidate algorithm in each fold. When averaged across the cross-validation folds, the full

Super Learner clearly performs better, as evidenced by the simulations. There are a few
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Figure 3.4: Cross-validated AUC for each method (full Super Learner, discrete Super
Learner, support vector machine, random forest, k-nearest neighbors from left to right)
in each simulation scenario
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scenarios where either or both of the discrete and full Super Learner perform slightly worse

than the best performing candidate algorithm. This occurs with edge count 500 and p2 =

0.01 or 0.005, as well as with edge count 1000 and p2 = 0.01. In each of these 3 scenarios,

there are several candidate algorithms that are quite close in performance, and the ordering

of their performance is likely not constant across the folds. In this case, the discrete Super

Learner picks different candidate algorithms across the folds and the AUC averaged across

the folds may be worse than that of the best candidate algorithm. The full Super Learner

on the other hand weights different candidate algorithms most heavily across the folds, and

the cross-validated AUC can also end up worse than the best candidate algorithm. This

phenomenon is likely a finite sample issue, since the ordering of the performance of the

candidate algorithms are likely to be constant across all folds in the limit.

The simulation results also seem to support the oracle properties of both the discrete and

full Super Learner. In most scenarios, the discrete Super Learner has the same performance

as the best candidate algorithm, and the full Super Learner performs slightly better. In the

other scenarios, where either or both of the discrete and full Super Learner perform worse

than the best candidate algorithm, they both still perform very close to the best candidate

algorithm, with difference in AUC only of the order of 10−3. Since the oracle properties

for both Super Learners are asymptotic results, deviation from asymptotic behaviors would

be expected for finite samples. The best performing candidate algorithm varies between

support vector machine (SVM) and random forest (RF) across the scenarios, which is not

something known a priori, but both versions of Super Learner are able to closely match or

beat the best candidate algorithm. Although the differences between the best and worst

performing candidate algorithms in the scenarios visited are not too big (biggest difference

is about 0.1), it is still easy to see the manifestation of the oracle property, which would

be even more valuable in scenarios with bigger differences. In cases when one is unlikely to

fully grasp the significance of the various summary statistics as predictors or what learning
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algorithm would work best due to the complex nature of the data, it would be ideal to

consider multiple candidate algorithms paired with different combinations of predictors and

find an optimal mix. This makes Super Learner well suited for model selection in mechanistic

network models.

3.4 Discussion

We propose a procedure for model selection with mechanistic network models via the Super

Learner framework. Due to the intractability of the likelihood of the typical mechanistic net-

work models, likelihood-based model selection methods are not feasible. The Approximate

Bayesian Computation (ABC) approach provides one viable means for model selection for

mechanistic network models. However, an accurate ABC posterior requires one to build it

from sufficient statistics, which is typically difficult to find in the case of intractable likeli-

hoods. The lack of sufficiency and approximations required to arrive at the ABC posterior

can mean the posterior distribution of the model index is inaccurate. In addition, the con-

catenation of the sufficient statistics of each submodel is not necessarily sufficient for the

joint model. This can lead to a lack of correspondence between the ABC Bayes factor and

the true Bayes factor. Rather than relying on ABC to approximate the Bayes factor for

model selection, which suffers from the lack of sufficiency, we propose to use Super Learner

for model selection while borrowing the generation of pseudo-data from ABC.

With training data readily generated from each candidate model, Super Learner seeks to

build an optimal algorithm from a host of candidate algorithms. In this case, it seeks

to build an optimal classifier from candidate algorithms to best discriminate between the

candidate models with the given predictors, which are not necessarily sufficient. One is

unlikely to know what classifiers paired with what predictors will perform well, but with

Super Learner, one does not need to make this choice as Super Learner will try to build the

optimal classifier with all that is given. However, this does not mean that the quality of the
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predictors does not matter. The better the predictors are at characterizing the differences

between the candidate models, the better Super Learner performs. Though the ability to

characterize the differences likely correlates with sufficiency, sufficiency in and of itself should

not be the criterion for choosing the predictors. Here, one can apply domain knowledge to

select predictors.

The main difficulty of the proposed approach is that one needs to be sure that the candidate

models can plausibly generate the observed data, assuming one of the candidate models

is the true model. To do so, one needs to consider what characteristics of the data are

the differences in the candidate models unlikely to affect, then set the parameters of each

candidate model to match these characteristics of the observed data. This will hopefully

allow the differences in the candidate models to more clearly manifest themselves and ensure

that the data generated from each candidate model are similar to the observed data in some

aspects. Ideally, this also means that the data generated from the true model match the

observed data closely. However, there is no guarantee to this. In the current state, this part

of the procedure is more an art than an algorithm.

The most immediate step for future work would be to make the matching of the parameters

of the candidate models more concrete. Should this step be done incorrectly, one faces the

danger of choosing the wrong model completely, even if true model is included among the

candidates. Another future direction would be to assess the uncertainty in the results.

Network models see wide use in many domains, and mechanistic models allow one to easily

incorporate domain knowledge. However, there is little work up to date on model selection for

mechanistic network models. We propose a procedure that makes use of the Super Learner

framework and leverages the ease of generating data from mechanistic models as a first step

in model selection for mechanistic network models.
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A Supplementary Material to Chapter 1

A.1 Simulation Plots and Results

Table A.1: Parameter values used for simulations. The first column is the corresponding plot
set; the second and third are the number of cases and controls; the fourth is the minor allele
frequency; the fifth and sixth are the mean and variance used to generate the read depth for
cases and controls; the seventh and eighth are the mean and variance used to generate the
misclassification rate for cases and controls; the ninth and tenth are the intercept and effect
size used for the size simulation
Plot ncase ncontrol p rdcase rdcontrol ecase econtrol β0 β1
1 450 450 0.2 (8,1) (6,1) (0.005,0.0001) (0.01,0.001) logit(0.2) 0
2 450 450 0.2 (20,2) (3,1) (0.005,0.0001) (0.05,0.001) logit(0.2) 0
3 1500 1500 0.01 (20,2) (3,1) (0.005,0.0001) (0.01,0.001) logit(0.2) 0
4 450 450 0.2 (20,2) (16,1) (0.005,0.0001) (0.05,0.001) logit(0.2) 0
5 300 600 0.2 (20,2) (3,1) (0.005,0.0001) (0.05,0.001) logit(0.2) 0
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A.1.1 Plot Set 1

Figure A.1: QQ plots for the size simulation for analysis with the true genotype, analysis
with RC and naive variance, and analysis with RC and sandwich variance

Figure A.2: QQ plots for the size simulation for analysis with the true genotype, analysis
with ML
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Table A.2: Power for analysis with the true genotype, analysis with RC and naive variance,
analysis with RC and sandwich variance, and analysis with ML at the given effect size and
various significance levels, as well as bias for RC and ML estimates for the intercept and
effect size

Power β1 = 0.3 α = 0.05 0.01 0.001 10−4

True G 0.73696 0.50322 0.23423 0.09049
RC and naive 0.71547 0.47664 0.21578 0.07913

RC and sandwich 0.71748 0.48006 0.21931 0.08253
ML 0.7082 0.469 0.2108 0.0781
Bias ¯̂

β0
¯̂
β1

RC -0.1280 0.2998
ML -0.1277 0.3000
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A.1.2 Plot Set 2

Figure A.3: QQ plots for the size simulation for analysis with the true genotype, analysis
with RC and naive variance, and analysis with RC and sandwich variance

Figure A.4: QQ plots for the size simulation for analysis with the true genotype, analysis
with ML

81



Table A.3: Power for analysis with the true genotype, analysis with RC and naive variance,
analysis with RC and sandwich variance, and analysis with ML at the given effect size and
various significance levels, as well as bias for RC and ML estimates for the intercept and
effect size

Power β1 = 0.3 α = 0.05 0.01 0.001 10−4

True G 0.73778 0.50354 0.2353 0.09068
RC and naive 0.63896 0.38802 0.15118 0.04852

RC and sandwich 0.65902 0.4212 0.1822 0.0651
ML 0.6457 0.3995 0.1547 0.0465
Bias ¯̂

β0
¯̂
β1

RC -0.1247 0.2869
ML -0.1281 0.3024
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A.1.3 Plot Set 3

Figure A.5: QQ plots for the size simulation for analysis with the true genotype, analysis
with RC and naive variance, and analysis with RC and sandwich variance

Table A.4: Power for analysis with the true genotype, analysis with RC and naive variance,
and analysis with RC and sandwich variance at the given effect size and various significance
levels, as well as bias for RC estimates for the intercept and effect size

Power β1 = 0.4 α = 0.05 0.01 0.001 10−4

True G 0.36158 0.15376 0.03366 0.0051
RC and naive 0.26008 0.08596 0.01156 0.0006

RC and sandwich 0.24088 0.0851 0.01884 0.00428
Bias ¯̂

β0
¯̂
β1

RC -0.0085 0.3670
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A.1.4 Plot Set 4

Figure A.6: QQ plots for the size simulation for analysis with the true genotype, analysis
with RC and naive variance, and analysis with RC and sandwich variance

Figure A.7: QQ plots for the size simulation for analysis with the true genotype, analysis
with ML
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Table A.5: Power for analysis with the true genotype, analysis with RC and naive variance,
analysis with RC and sandwich variance, and analysis with ML at the given effect size and
various significance levels, as well as bias for RC and ML estimates for the intercept and
effect size

Power β1 = 0.3 α = 0.05 0.01 0.001 10−4

True G 0.7369 0.49962 0.23096 0.08806
RC and naive 0.73422 0.497 0.22932 0.08696

RC and sandwich 0.73442 0.49768 0.2299 0.08748
ML 0.7371 0.5022 0.2315 0.0854
Bias ¯̂

β0
¯̂
β1

RC -0.1279 0.3001
ML -0.1284 0.3015
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A.1.5 Plot Set 5

Figure A.8: QQ plots for the size simulation for analysis with the true genotype, analysis
with RC and naive variance, and analysis with RC and sandwich variance

Figure A.9: QQ plots for the size simulation for analysis with the true genotype, analysis
with ML
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Table A.6: Power for analysis with the true genotype, analysis with RC and sandwich
variance, and analysis with ML at the given effect size and various significance levels, as well
as bias for RC and ML estimates for the intercept and effect size

Power β1 = 0.3 α = 0.05 0.01 0.001 10−4

True G 0.6928 0.4503 0.2036 0.0771
RC and naive NA NA NA NA

RC and sandwich 0.6387 0.4055 0.1737 0.0625
ML 0.63042 0.38347 0.15117 0.04918
Bias ¯̂

β0
¯̂
β1

RC -0.8310 0.3170
ML -0.8218 0.3010
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A.1.6 Plot Set 6

Table A.7: Parameter values used for size simulation with a binary confounder. The columns
are the same as in table A.1, except the third and fourth columns now denote the mean of
the binary confounder when G = 0 or 1 and when G = 2; the last column is the effect size
of the confounder
ncase ncontrol p px01 px2 rdcase rdcon ecase econ β0 β1 β2

300 600 0.2 0.5 0.6 (8,1) (6,1) (0.005,0.0001) (0.05,0.001) logit(0.2) 0 0.2

Figure A.10: QQ plots for the size simulation with a binary confounder for analysis with the
true genotype, analysis with ML

Table A.8: Power for analysis with the true genotype, and analysis with ML at the given
effect size and various significance levels, as well as bias for ML estimates for the intercept
and effect size

Power β1 = 0.3 α = 0.05 0.01 0.001 10−4

True G 0.6951 0.4614 0.2116 0.0802
ML 0.6625 0.4211 0.184 0.0644
Bias ¯̂

β0
¯̂
β1

¯̂
β2

ML -0.9268 0.3015 0.2000
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A.2 Unbiasedness of the Estimating Equation for RC

In order to show the estimating equations for β̂RC is unbiased when evaluated at β0E =

logit (P (Yi = 1|Si = 1)) and β1E = 0 under the null, we will simply show the unbiasedness

of the contributions from one subject:

EYi,G̃i,di,πi|Si=1

[
ψ

(i)
β0E

]
= EYi,G̃i,di,πi|Si=1

[
Yi − expit

(
β0E + β1EE

[
Gi|G̃i, di, πi

])]
= EYi,G̃i,di,πi|Si=1 [Yi − P (Yi = 1|Si = 1)]

= EYi|Si=1 [Yi − P (Yi = 1|Si = 1)]

= 0

EYi,G̃i,di,πi|Si=1

[
ψ

(i)
β1E

]
=EYi,G̃i,di,πi|Si=1

[
E
[
Gi|G̃i, di, πi

] [
Yi − expit

(
β0E + β1EE

[
Gi|G̃i, di, πi

])]]
=EYi,G̃i,di,πi|Si=1

[
E
[
Gi|G̃i, di, πi

]
[Yi − P (Yi = 1|Si = 1)]

]
=EYi|Si=1

[
EG̃i,di,πi|Yi,Si=1

[
E
[
Gi|G̃i, di, πi

]
[Yi − P (Yi = 1|Si = 1)]

]]
=EYi|Si=1

[
EG̃i,di,πi|Yi,Si=1

[
E
[
Gi|G̃i, di, πi

]]
× [Yi − P (Yi = 1|Si = 1)]

]
(1) (2) =EYi|Si=1

[
EG̃i,di,πi|Yi

[
E
[
Gi|G̃i, di, πi, Yi

]]
× [Yi − P (Yi = 1|Si = 1)]

]
=EYi|Si=1 [E [Gi|Yi]× [Yi − P (Yi = 1|Si = 1)]]

(1) =E [Gi]× EYi|Si=1 [Yi − P (Yi = 1|Si = 1)]

=0

(1) since G ⊥ Y under the null

(2) we can drop Si = 1 from the conditioning since Si only depends Yi, so once we condition

on Yi, Si is independent of everything else
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A.3 Show Naive Variance Overestimates the True Variance for RC

with Balanced Sampling

Define matrices:

D =

 X 0

0 X

 (some block diagonal matrix)

V =

 0 X

0 0

 (only top right block is nonzero)

B = D + V (bun matrix)

= D + IIV

B−1 = D−1 −D−1
(
I + V D−1

)−1
V D−1

M = D + V + V T (meat matrix)
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Then:

B−1M
(
B−1

)T
=

D−1︸︷︷︸
A1

−D−1
(
I + V D−1

)−1
V D−1︸ ︷︷ ︸

A2

×
 D︸︷︷︸

B1

+ V + V T︸ ︷︷ ︸
B2



×

D−1︸︷︷︸
C1

−D−1V T
(
I +D−1V T

)−1
D−1︸ ︷︷ ︸

C2



(
I +D−1V T

)−1
=I −

(
D + V T

)−1
V T

Note, can show
(
D + V T

)−1 is of form

 X 0

X X

 and (D + V )−1 is of form

 X X

0 X


with blockwise inversion.

A1B1C1 = D−1DD−1

= D−1
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A1B1C2 = D−1DD−1V T
(
I +D−1V T

)−1
D−1

= D−1V T
(
I +D−1V T

)−1
D−1

= D−1V T
(
I −

(
D + V T

)−1
V T
)
D−1

= D−1V TD−1 −D−1V T
(
D + V T

)−1
V TD−1︸ ︷︷ ︸

=0

= D−1V TD−1

A1B2C1 = D−1
(
V + V T

)
D−1

= D−1V D−1 +D−1V TD−1

A1B2C2 = D−1
(
V + V T

)
D−1V T

(
I +D−1V T

)−1
D−1

= D−1V TD−1V T
(
I +D−1V T

)−1
D−1︸ ︷︷ ︸

=0

+D−1V D−1V T
(
I +D−1V T

)−1
D−1

= D−1V D−1V T
(
I +D−1V T

)−1
D−1

= D−1V D−1V T
(
I −

(
D + V T

)−1
V T
)
D−1

= D−1V D−1V TD−1 −D−1V D−1V T
(
D + V T

)−1
V TD−1︸ ︷︷ ︸

=0

= D−1V D−1V TD−1
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A2B1C1 = D−1
(
I + V D−1

)−1
V D−1DD−1

= D−1
(
I + V D−1

)−1
V D−1

= D−1
(
I − V (D + V )−1

)
V D−1

= D−1V D−1 −D−1V (D + V )−1 V D−1︸ ︷︷ ︸
=0

= D−1V D−1

A2B1C2 =D−1
(
I + V D−1

)−1
V D−1DD−1V T

(
I +D−1V T

)−1
D−1

=D−1
(
I + V D−1

)−1
V D−1V T

(
I +D−1V T

)−1
D−1

=D−1
(
I − V (D + V )−1

)
V D−1V T

(
I −

(
D + V T

)−1
V T
)
D−1

=D−1V D−1V T
(
I −

(
D + V T

)−1
V T
)
D−1

−D−1V (D + V )−1 V D−1V T
(
I −

(
D + V T

)−1
V T
)
D−1︸ ︷︷ ︸

=0

=D−1V D−1V TD−1 −D−1V D−1V T
(
D + V T

)−1
V TD−1︸ ︷︷ ︸

=0

=D−1V D−1V TD−1
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A2B2C1 = D−1
(
I + V D−1

)−1
V D−1

(
V + V T

)
D−1

= D−1
(
I + V D−1

)−1
V D−1V D−1︸ ︷︷ ︸

=0

+D−1
(
I + V D−1

)−1
V D−1V TD−1

= D−1
(
I + V D−1

)−1
V D−1V TD−1

= D−1
(
I − V (D + V )−1

)
V D−1V TD−1

= D−1V D−1V TD−1 −D−1V (D + V )−1 V D−1V TD−1︸ ︷︷ ︸
=0

= D−1V D−1V TD−1

A2B2C2 = D−1
(
I + V D−1

)−1
V D−1

(
V + V T

)
D−1V T

(
I +D−1V T

)−1
D−1

= D−1
(
I + V D−1

)−1
V D−1V D−1V T

(
I +D−1V T

)−1
D−1

+D−1
(
I + V D−1

)−1
V D−1V TD−1V T

(
I +D−1V T

)−1
D−1

= 0
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Finally,

B−1M
(
B−1

)T
=

D−1︸︷︷︸
A1

−D−1
(
I + V D−1

)−1
V D−1︸ ︷︷ ︸

A2

×
 D︸︷︷︸

B1

+ V + V T︸ ︷︷ ︸
B2



×

D−1︸︷︷︸
C1

−D−1V T
(
I +D−1V T

)−1
D−1︸ ︷︷ ︸

C2


=A1B1C1 − A1B1C2 + A1B2C1 − A1B2C2 − A2B1C1 + A2B1C2 − A2B2C1 + A2B2C2

=D−1 −D−1V TD−1 +D−1V D−1 +D−1V TD−1 −D−1V D−1V TD−1 −D−1V D−1

+D−1V D−1V TD−1 −D−1V D−1V TD−1 + 0

=D−1 −D−1V D−1V TD−1

So B−1M
(
B−1

)T is still block diagonal, since D−1V D−1V TD−1 is of form

 X 0

0 0

. In
fact, ifD is symmetric and full rank, then we can writeD = D∗D

T
∗ , thusD

−1V D−1V TD−1

is at least positive semi-definite. So the diagonal of the top left block of B−1M
(
B−1

)T is

less of equal to that of D−1.

Now we need to verify that the bun and meat matrix of the balanced regression calibration

meets the above descriptions of B andM . Here, B−1M
(
B−1

)T is the sandwich covariance

of the regression parameters and the estimate genotype probabilities from the set of estimat-

ing equations, with the top left block corresponding to the regression parameters. The top

left block of D−1 corresponds to the naive covariance matrix for the regression parameters.
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The individual contributions to the estimating equations are as follows:

ψ
(i)
β0E

= Yi − expit
(
β0E + β1EE

[
Gi|G̃i, di, πi

])
ψ

(i)
β1E

= E
[
Gi|G̃i, di, πi

] [
Yi − expit

(
β0E + β1EE

[
Gi|G̃i, di, πi

])]
ψ(i)
p0

=
P
(
G̃i|Gi = 0, di, πi

)
− P

(
G̃i|Gi = 2, di, πi

)
∑

g pgP
(
G̃i|Gi = g, di, πi

)
ψ(i)
p1

=
P
(
G̃i|Gi = 1, di, πi

)
− P

(
G̃i|Gi = 2, di, πi

)
∑

g pgP
(
G̃i|Gi = g, di, πi

)
Furthermore:

E
[
Gi|G̃i, di, πi

]
=
∑
g

g × P
(
Gi = g|G̃i, di, πi

)

=

∑
g g × pgP

(
G̃i|Gi = g, di, πi

)
∑

g′ pg′P
(
G̃i|Gi = g′, di, πi

)

96



∂E
[
Gi|G̃i, di, πi

]
∂p0

=
−p1P

(
G̃i|Gi = 1, di, πi

) [
P
(
G̃i|Gi = 0, di, πi

)
− P

(
G̃i|Gi = 2, di, πi

)]
(∑

g′ pg′P
(
G̃i|Gi = g′, di, πi

))2

+

2
[(∑

g pgP
(
G̃i|Gi = g, di, πi

))(
−P

(
G̃i|Gi = 2, di, πi

))
− (1− p0 − p1)P

(
G̃i|Gi = 2, di, πi

)(
P
(
G̃i|Gi = 0, di, πi

)
− P

(
G̃i|Gi = 2, di, πi

))]
(∑

g′ pg′P
(
G̃i|Gi = g′, di, πi

))2

∂E
[
Gi|G̃i, di, πi

]
∂p1

=

[∑
g pgP

(
G̃i|Gi = g, di, πi

)]
P
(
G̃i|Gi = 1, di, πi

)
−p1P

(
G̃i|Gi = 1, di, πi

) [
P
(
G̃i|Gi = 1, di, πi

)
− P

(
G̃i|Gi = 2, di, πi

)]
(∑

g′ pg′P
(
G̃i|Gi = g′, di, πi

))2

+

2
[(∑

g pgP
(
G̃i|Gi = g, di, πi

))(
−P

(
G̃i|Gi = 2, di, πi

))
− (1− p0 − p1)P

(
G̃i|Gi = 2, di, πi

)(
P
(
G̃i|Gi = 1, di, πi

)
− P

(
G̃i|Gi = 2, di, πi

))]
(∑

g′ pg′P
(
G̃i|Gi = g′, di, πi

))2
Everything below will be evaluated at the true parameters and under the null, i.e. β1 = 0,

which induces β1E = 0. In this case, P (Yi = 1|Si = 1) = expit (β0E).
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The bottom right block of both the bun and meat matrices are the same since it is a likelihood

and is trivial to show. The meat matrix is defined as:


Regression parameter block

ψ
(i)
β0E
ψ

(i)
p0 ψ

(i)
β0E
ψ

(i)
p1

ψ
(i)
β1E
ψ

(i)
p0 ψ

(i)
β1E
ψ

(i)
p1

Top right transpose Genotype prob block



ψ
(i)
β0E
ψ(i)
p0

=
[
Yi − expit

(
β0E + β1EE

[
Gi|G̃i, di, πi

])]
×
P
(
G̃i|Gi = 0, di, πi

)
− P

(
G̃i|Gi = 2, di, πi

)
∑

g pgP
(
G̃i|Gi = g, di, πi

)
ψ

(i)
β1E
ψ(i)
p0

=E
[
Gi|G̃i, di, πi

] [
Yi − expit

(
β0E + β1EE

[
Gi|G̃i, di, πi

])]
×
P
(
G̃i|Gi = 0, di, πi

)
− P

(
G̃i|Gi = 2, di, πi

)
∑

g pgP
(
G̃i|Gi = g, di, πi

)
ψ

(i)
β0E
ψ(i)
p1

=
[
Yi − expit

(
β0E + β1EE

[
Gi|G̃i, di, πi

])]
×
P
(
G̃i|Gi = 1, di, πi

)
− P

(
G̃i|Gi = 2, di, πi

)
∑

g pgP
(
G̃i|Gi = g, di, πi

)
ψ

(i)
β1E
ψ(i)
p1

=E
[
Gi|G̃i, di, πi

] [
Yi − expit

(
β0E + β1EE

[
Gi|G̃i, di, πi

])]
×
P
(
G̃i|Gi = 1, di, πi

)
− P

(
G̃i|Gi = 2, di, πi

)
∑

g pgP
(
G̃i|Gi = g, di, πi

)
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The bun matrix is defined as:


Regression parameter block

−
∂ψ

(i)
β0E

∂p0
−
∂ψ

(i)
β0E

∂p1

−
∂ψ

(i)
β1E

∂p0
−
∂ψ

(i)
β1E

∂p1

0 Genotype prob block



∂ψ
(i)
β0E

∂p0

∣∣∣∣∣
β1E=0

= 0

∂ψ
(i)
β1E

∂p0

∣∣∣∣∣
β1E=0

=
∂E
[
Gi|G̃i, di, πi

]
∂p0

[
Yi − expit

(
β0E + β1EE

[
Gi|G̃i, di, πi

])]
∂ψ

(i)
β0E

∂p1

∣∣∣∣∣
β1E=0

= 0

∂ψ
(i)
β1E

∂p1

∣∣∣∣∣
β1E=0

=
∂E
[
Gi|G̃i, di, πi

]
∂p1

[
Yi − expit

(
β0E + β1EE

[
Gi|G̃i, di, πi

])]
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Expectations for terms of the top right block of the meat matrix:

E
[
ψ
(i)
β0E

ψ(i)
p0

∣∣∣β1E = 0, Yi, di, πi

]
= [Yi − P (Yi = 1|Si = 1)]E

 P
(
G̃i|Gi = 0, di, πi

)
− P

(
G̃i|Gi = 2, di, πi

)
∑

g pgP
(
G̃i|Gi = g, di, πi

)
∣∣∣∣∣∣Yi, di, πi


(1) = [Yi − P (Yi = 1|Si = 1)]E

 1
p0
P
(
G̃i, Gi = 0|di, πi

)
− 1

p2
P
(
G̃i, Gi = 2|di, πi

)
P
(
G̃i|di, πi

)
∣∣∣∣∣∣Yi, di, πi


= [Yi − P (Yi = 1|Si = 1)]E

[
1

p0
P
(
Gi = 0|G̃i, di, πi

)
− 1

p2
P
(
Gi = 2|G̃i, di, πi

)∣∣∣∣Yi, di, πi]
(2) = [Yi − P (Yi = 1|Si = 1)]

× E
[
1

p0
P
(
Gi = 0|G̃i, di, πi, Yi

)
− 1

p2
P
(
Gi = 2|G̃i, di, πi, Yi

)∣∣∣∣Yi, di, πi]
= [Yi − P (Yi = 1|Si = 1)]

[
1

p0
P (Gi = 0|di, πi, Yi)−

1

p2
P (Gi = 2|di, πi, Yi)

]
(2) = [Yi − P (Yi = 1|Si = 1)]

[
1

p0
P (Gi = 0|di, πi)−

1

p2
P (Gi = 2|di, πi)

]
(1) = [Yi − P (Yi = 1|Si = 1)]

[
p0
p0
− p2
p2

]
=0
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Note that the expectation is 0 given (Yi, di, πi), and will be 0 marginally. E
[
ψ

(i)
β0E
ψ

(i)
p1

]
can

be shown to be 0 in a similar manner.

E
[
ψ

(i)
β1E
ψ(i)
p0

∣∣∣ β1E = 0, Yi, di, πi

]
= [Yi − P (Yi = 1|Si = 1)]

× E

E [Gi|G̃i, di, πi

] P (G̃i|Gi = 0, di, πi

)
− P

(
G̃i|Gi = 2, di, πi

)
∑

g pgP
(
G̃i|Gi = g, di, πi

)
∣∣∣∣∣∣Yi, di, πi


(1) = [Yi − P (Yi = 1|Si = 1)]

× E
[
E
[
Gi|G̃i, di, πi

]( 1

p0
P
(
Gi = 0|G̃i, di, πi

)
− 1

p2
P
(
Gi = 2|G̃i, di, πi

))∣∣∣∣Yi, di, πi]

We can similarly show that:

E
[
ψ

(i)
β1E
ψ(i)
p1

∣∣∣ β1E = 0, Yi, di, πi

]
= [Yi − P (Yi = 1|Si = 1)]

× E
[
E
[
Gi|G̃i, di, πi

]( 1

p1
P
(
Gi = 1|G̃i, di, πi

)
− 1

p2
P
(
Gi = 2|G̃i, di, πi

))∣∣∣∣Yi, di, πi]
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Now we look at the expectation of the top right block of the bun matrix. Note that
∂ψ

(i)
β0E

∂p0

∣∣∣∣
β1E=0

and
∂ψ

(i)
β0E

∂p1

∣∣∣∣
β1E=0

equal 0. For the other two terms:

E

 ∂ψ(i)
β1E

∂p0

∣∣∣∣∣∣β1E = 0, Yi, di, πi


= [Yi − P (Yi = 1|Si = 1)]E

 ∂E
[
Gi|G̃i, di, πi

]
∂p0

∣∣∣∣∣∣Yi, di, πi


= [Yi − P (Yi = 1|Si = 1)]E

−p1P
(
G̃i|Gi = 1, di, πi

) [
P
(
G̃i|Gi = 0, di, πi

)
− P

(
G̃i|Gi = 2, di, πi

)]
(∑

g′ pg′P
(
G̃i|Gi = g′, di, πi

))2

+

2
[(∑

g pgP
(
G̃i|Gi = g, di, πi

))(
−P

(
G̃i|Gi = 2, di, πi

))
− (1− p0 − p1)P

(
G̃i|Gi = 2, di, πi

)(
P
(
G̃i|Gi = 0, di, πi

)
− P

(
G̃i|Gi = 2, di, πi

))]
(∑

g′ pg′P
(
G̃i|Gi = g′, di, πi

))2
∣∣∣∣∣∣∣∣∣∣∣∣∣
Yi, di, πi


(1) = [Yi − P (Yi = 1|Si = 1)]E

−P
(
G̃i, Gi = 1|di, πi

) [
1
p0
P
(
G̃i, Gi = 0|di, πi

)
− 1
p2
P
(
G̃i, Gi = 2|di, πi

)]
P
(
G̃i|di, πi

)2

+

2
[
P
(
G̃i|di, πi

)(
−P

(
G̃i|Gi = 2, di, πi

))
−P

(
G̃i, Gi = 2|di, πi

)(
1
p0
P
(
G̃i, Gi = 0|di, πi

)
− 1
p2
P
(
G̃i, Gi = 2|di, πi

))]
P
(
G̃i|di, πi

)2
∣∣∣∣∣∣∣∣∣∣∣∣∣
Yi, di, πi


= [Yi − P (Yi = 1|Si = 1)]E

[
−P

(
Gi = 1|G̃i, di, πi

)[ 1

p0
P
(
Gi = 0|G̃i, di, πi

)
−

1

p2
P
(
Gi = 2|G̃i, di, πi

)]

+
2
(
−P

(
G̃i|Gi = 2, di, πi

))
P
(
G̃i|di, πi

)
−2P

(
Gi = 2|G̃i, di, πi

)( 1

p0
P
(
Gi = 0|G̃i, di, πi

)
−

1

p2
P
(
Gi = 2|G̃i, di, πi

))∣∣∣∣Yi, di, πi]

= [Yi − P (Yi = 1|Si = 1)]E

2
(
−P

(
G̃i|Gi = 2, di, πi

))
P
(
G̃i|di, πi

)
−
(
P
(
Gi = 1|G̃i, di, πi

)
+ 2P

(
Gi = 2|G̃i, di, πi

))( 1

p0
P
(
Gi = 0|G̃i, di, πi

)
−

1

p2
P
(
Gi = 2|G̃i, di, πi

))∣∣∣∣Yi, di, πi]

= [Yi − P (Yi = 1|Si = 1)]E

 2
(
−P

(
G̃i|Gi = 2, di, πi

))
P
(
G̃i|di, πi

)
∣∣∣∣∣∣Yi, di, πi


− [Yi − P (Yi = 1|Si = 1)]E

[
E
[
Gi|G̃i, di, πi

]( 1

p0
P
(
Gi = 0|G̃i, di, πi

)
−

1

p2
P
(
Gi = 2|G̃i, di, πi

))∣∣∣∣Yi, di, πi]

= [Yi − P (Yi = 1|Si = 1)]E

 2
(
−P

(
G̃i|Gi = 2, di, πi

))
P
(
G̃i|di, πi

)
∣∣∣∣∣∣Yi, di, πi

− E [ψ(i)
β1E

ψ
(i)
p0

∣∣∣β1E = 0, Yi, di, πi

]
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So, to show that E
[
ψ

(i)
β1E
ψ

(i)
p0

∣∣∣
β1E=0

]
= E

[
−

∂ψ
(i)
β1E

∂p0

∣∣∣∣
β1E=0

]
, it suffices to show that

E

[
[Yi − P (Yi = 1|Si = 1)]E

[
2(−P(G̃i|Gi=2,di,πi))

P(G̃i|di,πi)

∣∣∣∣Yi, di, πi]] = 0:

[Yi − P (Yi = 1|Si = 1)]E

 2
(
−P

(
G̃i|Gi = 2, di, πi

))
P
(
G̃i|di, πi

)
∣∣∣∣∣∣Yi, di, πi


(1) = [Yi − P (Yi = 1|Si = 1)]E

− 2
p2
P
(
G̃i, Gi = 2|di, πi

)
P
(
G̃i|di, πi

)
∣∣∣∣∣∣Yi, di, πi


=− [Yi − P (Yi = 1|Si = 1)]E

[
2

p2
P
(
Gi = 2|G̃i, di, πi

)∣∣∣∣Yi, di, πi]
(2) =− [Yi − P (Yi = 1|Si = 1)]E

[
2

p2
P
(
Gi = 2|G̃i, di, πi, Yi

)∣∣∣∣Yi, di, πi]
=− [Yi − P (Yi = 1|Si = 1)]

2

p2
P (Gi = 2|di, πi, Yi)

(2) =− [Yi − P (Yi = 1|Si = 1)]
2

p2
P (Gi = 2|di, πi)

(1) =− [Yi − P (Yi = 1|Si = 1)]
2

p2
p2

=− 2 [Yi − P (Yi = 1|Si = 1)]

⇒E

[Yi − P (Yi = 1|Si = 1)]E

 2
(
−P

(
G̃i|Gi = 2, di, πi

))
P
(
G̃i|di, πi

)
∣∣∣∣∣∣Yi, di, πi


=E [−2 [Yi − P (Yi = 1|Si = 1)]]

=0
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This shows that E
[
ψ

(i)
β1E
ψ

(i)
p0

∣∣∣
β1E=0

]
= E

[
−

∂ψ
(i)
β1E

∂p0

∣∣∣∣
β1E=0

]
, similarly:

E

 ∂ψ(i)
β1E

∂p1

∣∣∣∣∣∣β1E = 0, Yi, di, πi


= [Yi − P (Yi = 1|Si = 1)]E

 ∂E
[
Gi|G̃i, di, πi

]
∂p1

∣∣∣∣∣∣Yi, di, πi


= [Yi − P (Yi = 1|Si = 1)]E



[∑
g pgP

(
G̃i|Gi = g, di, πi

)]
P
(
G̃i|Gi = 1, di, πi

)
−p1P

(
G̃i|Gi = 1, di, πi

) [
P
(
G̃i|Gi = 1, di, πi

)
− P

(
G̃i|Gi = 2, di, πi

)]
(∑

g′ pg′P
(
G̃i|Gi = g′, di, πi

))2

+

2
[(∑

g pgP
(
G̃i|Gi = g, di, πi

))(
−P

(
G̃i|Gi = 2, di, πi

))
− (1− p0 − p1)P

(
G̃i|Gi = 2, di, πi

)(
P
(
G̃i|Gi = 1, di, πi

)
− P

(
G̃i|Gi = 2, di, πi

))]
(∑

g′ pg′P
(
G̃i|Gi = g′, di, πi

))2
∣∣∣∣∣∣∣∣∣∣∣∣∣
Yi, di, πi



(1) = [Yi − P (Yi = 1|Si = 1)]E



P
(
G̃i|di, πi

)
1
p1
P
(
G̃i, Gi = 1|di, πi

)
−P

(
G̃i, Gi = 1|di, πi

) [
1
p1
P
(
G̃i, Gi = 1|di, πi

)
− 1
p2
P
(
G̃i, Gi = 2|di, πi

)]
P
(
G̃i|di, πi

)2

+

2
[
P
(
G̃i|di, πi

)(
− 1
p2
P
(
G̃i, Gi = 2|di, πi

))
−P

(
G̃i, Gi = 2|di, πi

)(
1
p1
P
(
G̃i, Gi = 1|di, πi

)
− 1
p2
P
(
G̃i, Gi = 2|di, πi

))]
P
(
G̃i|di, πi

)2
∣∣∣∣∣∣∣∣∣∣∣∣∣
Yi, di, πi


= [Yi − P (Yi = 1|Si = 1)]E

 1
p1
P
(
G̃i, Gi = 1|di, πi

)
− 2
p2
P
(
G̃i, Gi = 2|di, πi

)
P
(
G̃i|di, πi

)
− P

(
Gi = 1|G̃i, di, πi

)[ 1

p1
P
(
Gi = 1|G̃i, di, πi

)
−

1

p2
P
(
Gi = 2|G̃i, di, πi

)]
−2P

(
Gi = 2|G̃i, di, πi

)( 1

p1
P
(
Gi = 1|G̃i, di, πi

)
−

1

p2
P
(
Gi = 2|G̃i, di, πi

))∣∣∣∣Yi, di, πi]
(1) = [Yi − P (Yi = 1|Si = 1)]E

[
1

p1
P
(
Gi = 1|G̃i, di, πi

)
−

2

p2
P
(
Gi = 2|G̃i, di, πi

)∣∣∣∣Yi, di, πi]
− [Yi − P (Yi = 1|Si = 1)]E

[
E
[
Gi|G̃i, di, πi

] [ 1

p1
P
(
Gi = 1|G̃i, di, πi

)
−

1

p2
P
(
Gi = 2|G̃i, di, πi

)]∣∣∣∣Yi, di, πi]
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Again, to show that E
[
ψ

(i)
β1E
ψ

(i)
p1

∣∣∣
β1E=0

]
= E

[
−

∂ψ
(i)
β1E

∂p1

∣∣∣∣
β1E=0

]
, it suffices to show that

E
[
[Yi − P (Yi = 1|Si = 1)]E

[
1
p1
P
(
Gi = 1|G̃i, di, πi

)
− 2

p2
P
(
Gi = 2|G̃i, di, πi

)∣∣∣Yi, di, πi]] = 0:

[Yi − P (Yi = 1|Si = 1)]E

[
1

p1
P
(
Gi = 1|G̃i, di, πi

)
− 2

p2
P
(
Gi = 2|G̃i, di, πi

)∣∣∣∣Yi, di, πi]
(2) = [Yi − P (Yi = 1|Si = 1)]

× E
[
1

p1
P
(
Gi = 1|G̃i, di, πi, Yi

)
− 2

p2
P
(
Gi = 2|G̃i, di, πi, Yi

)∣∣∣∣Yi, di, πi]
= [Yi − P (Yi = 1|Si = 1)]

[
1

p1
P (Gi = 1|di, πi, Yi)−

2

p2
P (Gi = 2|di, πi, Yi)

]
(2) = [Yi − P (Yi = 1|Si = 1)]

[
1

p1
P (Gi = 1|di, πi)−

2

p2
P (Gi = 2|di, πi)

]
(1) = [Yi − P (Yi = 1|Si = 1)]

[
1

p1
p1 −

2

p2
p2

]
=− [Yi − P (Yi = 1|Si = 1)]

⇒E
[
[Yi − P (Yi = 1|Si = 1)]E

[
1

p1
P
(
Gi = 1|G̃i, di, πi

)
− 2

p2
P
(
Gi = 2|G̃i, di, πi

)∣∣∣∣Yi, di, πi]]
=E [− [Yi − P (Yi = 1|Si = 1)]]

=0

This shows that E
[
ψ

(i)
β1E
ψ

(i)
p1

∣∣∣
β1E=0

]
= E

[
−

∂ψ
(i)
β1E

∂p1

∣∣∣∣
β1E=0

]
.

Thus E
[
ψ

(i)
β

(
ψ

(i)
p

)T]
= E

[
−∂ψ

(i)
β

∂p

]
.
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Now we look at the block of each matrix that corresponds to the regression parameters.

Under H0, for the meat matrix looks like:

[Yi − P (Yi = 1|Si = 1)]2

 1 E
[
Gi|G̃i, di, πi

]
E
[
Gi|G̃i, di, πi

]
E
[
Gi|G̃i, di, πi

]2


The negative of the bun matrix looks like:

P (Yi = 1|Si = 1) [1− P (Yi = 1|Si = 1)]

 1 E
[
Gi|G̃i, di, πi

]
E
[
Gi|G̃i, di, πi

]
E
[
Gi|G̃i, di, πi

]2


The top left term has the same expectation is obvious to see. For the off diagonal term, we

have:

E
[
[Yi − P (Yi = 1|Si = 1)]2E

[
Gi|G̃i, di, πi

]]
=E

[
[Yi − P (Yi = 1|Si = 1)]2E

[
E
[
Gi|G̃i, di, πi

]
|Yi
]]

=P (Yi = 1|Si = 1) [1− P (Yi = 1|Si = 1)]2E
[
E
[
Gi|G̃i, di, πi

]
|Yi = 1

]
+ P (Yi = 0|Si = 1) [0− P (Yi = 1|Si = 1)]2E

[
E
[
Gi|G̃i, di, πi

]
|Yi = 0

]
(2) =P (Yi = 1|Si = 1) [1− P (Yi = 1|Si = 1)]2E

[
E
[
Gi|G̃i, di, πi, Yi = 1

]
|Yi = 1

]
+ P (Yi = 0|Si = 1) [0− P (Yi = 1|Si = 1)]2E

[
E
[
Gi|G̃i, di, πi, Yi = 0

]
|Yi = 0

]
=P (Yi = 1|Si = 1) [1− P (Yi = 1|Si = 1)]2E [Gi|di, πi, Yi = 1]

+ P (Yi = 0|Si = 1) [0− P (Yi = 1|Si = 1)]2E [Gi|di, πi, Yi = 0]

(2) =P (Yi = 1|Si = 1) [1− P (Yi = 1|Si = 1)]2E [Gi|di, πi]

+ P (Yi = 0|Si = 1) [0− P (Yi = 1|Si = 1)]2E [Gi|di, πi]

(1) =E [Gi]
[
P (Yi = 1|Si = 1) [1− P (Yi = 1|Si = 1)]2 + [1− P (Yi = 1|Si = 1)]P (Yi = 1|Si = 1)2

]
=E [Gi]P (Yi = 1|Si = 1) [1− P (Yi = 1|Si = 1)] [[1− P (Yi = 1|Si = 1)] + P (Yi = 1|Si = 1)]

=E [Gi]P (Yi = 1|Si = 1) [1− P (Yi = 1|Si = 1)]
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P (Yi = 1|Si = 1) [1− P (Yi = 1|Si = 1)]E
[
E
[
Gi|G̃i, di, πi

]]
=E [Gi]P (Yi = 1|Si = 1) [1− P (Yi = 1|Si = 1)]

So the off diagonal terms are equal, now for the bottom right term:

E

[
[Yi − P (Yi = 1|Si = 1)]2E

[
Gi|G̃i, di, πi

]2]
=E

[
E

[
[Yi − P (Yi = 1|Si = 1)]2E

[
Gi|G̃i, di, πi

]2∣∣∣∣Yi]]
=P (Yi = 1|Si = 1)E

[
[Yi − P (Yi = 1|Si = 1)]2E

[
Gi|G̃i, di, πi

]2∣∣∣∣Yi = 1

]
+ P (Yi = 0|Si = 1)E

[
[Yi − P (Yi = 1|Si = 1)]2E

[
Gi|G̃i, di, πi

]2∣∣∣∣Yi = 0

]
=P (Yi = 1|Si = 1) (1− P (Yi = 1|Si = 1))2E

[
E
[
Gi|G̃i, di, πi

]2∣∣∣∣Yi = 1

]
+ (1− P (Yi = 1|Si = 1))P (Yi = 1|Si = 1)2E

[
E
[
Gi|G̃i, di, πi

]2∣∣∣∣Yi = 0

]
=P (Yi = 1|Si = 1) (1− P (Yi = 1|Si = 1))

×
[
(1− P (Yi = 1|Si = 1))E

[
E
[
Gi|G̃i, di, πi

]2∣∣∣∣Yi = 1

]
+P (Yi = 1|Si = 1)E

[
E
[
Gi|G̃i, di, πi

]2∣∣∣∣Yi = 0

]]

E

[
P (Yi = 1|Si = 1) [1− P (Yi = 1|Si = 1)]E

[
Gi|G̃i, di, πi

]2]
=P (Yi = 1|Si = 1) (1− P (Yi = 1|Si = 1))

×
[
P (Yi = 1|Si = 1)E

[
E
[
Gi|G̃i, di, πi

]2∣∣∣∣Yi = 1

]
+ (1− P (Yi = 1|Si = 1))E

[
E
[
Gi|G̃i, di, πi

]2∣∣∣∣Yi = 0

]]
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When the distribution of read depth and error rates differ between cases and controls, the

value E
[
E
[
Gi|G̃i, di, πi

]2∣∣∣∣Yi] varies depending on Yi since the variance of E
[
Gi|G̃i, di, πi

]
will defer between cases and controls even though the expectation of E

[
Gi|G̃i, di, πi

]
, which

is E [Gi], is the same. In this case, if sampling is balanced, i.e. P (Yi = 1|Si = 1) = 1
2
,

the expectation of the bottom right terms of the meat and bun matrices are still the same,

otherwise, they are different. So if the distribution of read depth and error rates differ

between cases and controls, the expectation of the bun and meat matrices under the null

meet the description of the matrices B and M as stated above when sampling is balanced,

otherwise, they do not.

(1) Gi is marginally independent of (di, πi), and under H0, Gi is independent of Yi and Si,

so P (Gi = g|di, πi) = P (Gi = g) = P (Gi = g|Si = 1) = pg

(2) under H0, Gi is independent of Yi given (di, πi)

Note, DAG under H0:

S ← Y Gi

↓ ↓

di, πi → G̃i
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B Supplementary Material to Chapter 2

B.1 Variance of Sw (tk)

From Schwartzman and Lin (2011):

P (Zj > tj, Zk > tk) = Φ̄ (tj) Φ̄ (tk) + φ (tj)φ (tk)
∞∑
n=1

rnjk
n!
Hn−1 (tj)Hn−1 (tk)

where Hi (t) is the ith Hermite polynomial and rjk is the element in the jth row and kth

column of correlation matrix Σ. Note that

P (|Zj| > tj, |Zk| > tk) = 2
(
Φ̄ (tj)− P (Zj > tj, Zk > −tk) + P (Zj > tj, Zk > tk)

)
Then, the variance of Sw can be written as:

var (Sw (t)) = var

(
p∑
i=1

I|Zi|≥wit

)

= E

( p∑
i=1

I|Zi|≥wit

)2
− E [ p∑

i=1

I|Zi|≥wit

]2

= E

[
p∑
i=1

I2|Zi|≥wit + 2

p∑
j<k=1

I|Zj |≥wjtI|Zk|≥wkt

]
− E

[
p∑
i=1

I|Zi|≥wit

]2

= 2

p∑
j<k=1

P (|Zj| ≥ wjt, |Zk| ≥ wkt) +

p∑
i=1

Φ̄ (wit)−

(
p∑
i=1

Φ̄ (wit)

)2

Now the above expression can be substutited for each P (|Zj| ≥ wjt, |Zk| ≥ wkt) term. The

infinite sum can be approximated accurately with just the first few terms.
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B.2 Approximation of the Moments of Sw (tk) |Sw (tk−1) = m

Let {{j′}} and {{j∗}} both denote the collection of all size m subsets of {1 . . . p} for nota-

tional purposes, {j′} and {j∗} denote the event that {j′} and {j∗} are the only indices that

incur the indicator at tk−1. We approximate the first moment of Sw (tk) |Sw (tk−1) = m as:

E [Sw (tk) |Sw (tk−1) = m] = E

[∑
j

I|Zj |≥wjtk |Sw (tk−1) = m

]

=
∑
{j′}

E

[∑
j

I|Zj |≥wjtk |{j′}

]
× P

(
{j′}|Sw (tk−1) = m

)

≈
∑
{j′}

∑
j∈{j′}

Φ̄ (wjtk)

Φ̄ (wjtk−1)
×

P
(
{j′}

)
∑
{j∗} P

(
{j∗}

)
=
∑
j

Φ̄ (wjtk)

Φ̄ (wjtk−1)
×

∑
{j′}:j∈{j′} P

(
{j′}

)
∑
{j∗} P

(
{j∗}

)
The first approximation states that the distribution of Zj given that j ∈ {j′} and {j′} does

not depend on Zk for j 6= k ∈ {j′}. The terms
∑
{j′}:j∈{j′} P({j′})∑
{j∗} P({j∗})

represent the probability

that j is one of the indicators incurred at tk−1 given that only m indicators are incurred

at tk−1. One can approximate these values by first approximating P
(
{j′}

)
by assuming

independence between {Zj} for each {j′}. This approach is quite accurate, but it essentially

entails iterating through the powerset of {1 . . . p}, which is completely inpractical. Note that

the terms
∑
{j′}:j∈{j′} P({j′})∑
{j∗} P({j∗})

sum up to m. Currently, we approximate
∑
{j′}:j∈{j′} P({j′})∑
{j∗} P({j∗})

by

scaling the terms Φ̄ (wjtk−1) up so they sum to m. This simplified the above expression to:

E [Sw (tk) |Sw (tk−1) = m] ≈
∑
j

Φ̄ (wjtk)

Φ̄ (wjtk−1)
× Φ̄ (wjtk−1)∑

j∗ Φ̄ (wj∗tk−1)
×m

= m

∑
j Φ̄ (wjtk)∑

j∗ Φ̄ (wj∗tk−1)
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Note that is approximation is quite crude, and leads to the limitations we currently face with

the weighted GHC. Likewise, for the second moment:

E
[
Sw (tk)

2 |Sw (tk−1) = m
]

=E

(∑
j

I|Zj |≥wjtk

)2

|Sw (tk−1) = m


=E

[∑
j

I2|Zj |≥wjtk |Sw (tk−1) = m

]
+ 2× E

[∑
j<l

I|Zj |≥wjtkI|Zl|≥wltk |Sw (tk−1) = m

]

≈E

[∑
j

I|Zj |≥wjtk |Sw (tk−1) = m

]

+ 2×
∑
j<l

P (|Zj| ≥ wjtk, |Zl| ≥ wltk)

P (|Zj| ≥ wjtk−1, |Zl| ≥ wltk−1)
×

∑
{j′}:j,l∈{j′} P

(
{j′}

)
∑
{j∗} P

(
{j∗}

)

The
∑
{j′}:j,l∈{j′} P({j′})∑
{j∗} P({j∗})

terms are approximated by scaling the P (|Zj| ≥ wjtk−1, |Zl| ≥ wltk−1)

terms up so they sum to

 m

2

. The expression then simplifies to:

E
[
Sw (tk)

2 |Sw (tk−1) = m
]

≈m
∑

j Φ̄ (wjtk)∑
j∗ Φ̄ (wj∗tk−1)

+ 2×
∑
j<l

P (|Zj| ≥ wjtk, |Zl| ≥ wltk)

P (|Zj| ≥ wjtk−1, |Zl| ≥ wltk−1)

× P (|Zj| ≥ wjtk−1, |Zl| ≥ wltk−1)∑
j∗<l∗ P (|Zj∗| ≥ wj∗tk−1, |Zl∗| ≥ wl∗tk−1)

×

 m

2


=m

∑
j Φ̄ (wjtk)∑

j∗ Φ̄ (wj∗tk−1)
+ 2

 m

2

 ∑
j<l P (|Zj| ≥ wjtk, |Zl| ≥ wltk)∑

j∗<l∗ P (|Zj∗| ≥ wj∗tk−1, |Zl∗| ≥ wl∗tk−1)
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B.3 Power Simulation Results

Figure B.1: Power simulation results for the first causal regime
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Figure B.2: Power simulation results for the second causal regime
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Figure B.3: Power simulation results for the third causal regime
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C Supplementary Material to Chapter 3

C.1 Simulation Numerical AUC Results

Table C.1: Cross-validated AUC results from the simulations for the full Super Leaner, dis-
crete Super Learner, support vector machine, random forest, k-nearest neighbors at various
edge counts and values of p2

p2 = 0.05 p2 = 0.03 p2 = 0.01 p2 = 0.005
fSL 0.65898 0.58875 0.51746 0.50457
dSL 0.65707 0.58846 0.51606 0.50493

EC = 500 SVM 0.55004 0.50956 0.49892 0.50094
RF 0.65707 0.58846 0.51814 0.50507
KNN 0.63730 0.56502 0.51603 0.50102
fSL 0.97887 0.90921 0.66112 0.57223
dSL 0.97767 0.90452 0.65349 0.57040

EC = 1000 SVM 0.97583 0.90452 0.55492 0.50450
RF 0.97767 0.90231 0.65542 0.57040
KNN 0.97378 0.89997 0.64798 0.55610
fSL 0.99951 0.99849 0.90484 0.74456
dSL 0.99904 0.99775 0.90082 0.73649

EC = 2000 SVM 0.99878 0.99707 0.90082 0.64878
RF 0.99904 0.99775 0.89611 0.73649
KNN 0.99768 0.99544 0.89320 0.72942
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