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Delivering the Right Amount of Care – Sometimes 

Less is More 

 

Dissertation Introduction 

New technologies utilized in clinical practice offer improved tools for diagnosing 

and treating patients. In some cases, these improvements cause unintended 

consequences by leading to the diagnosis of indolent or otherwise clinically-irrelevant 

disease. In my first two chapters, I examine technological advances in screening and 

diagnosis that have led to questions regarding whether it is necessary to treat disease 

at as early a stage as it is possible to diagnose it. I conduct cost-effectiveness analyses 

to determine whether application of less-intensive clinical regimens leads to better and 

more cost-effective outcomes for patients with thyroid and prostate cancer. In these two 

cases I find that less intensive therapeutic options provide better results. In my third 

chapter, I use electronic medical records data to examine a case where old technology 

is sufficient to identify disease at a stage suitable for the application of well-established 

and highly efficacious treatments. In contrast with thyroid and prostate cancer, I find that 

a significant proportion of patients eligible for hypertension treatment are not treated, 
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despite simple criteria for diagnosis, low-cost therapies and clear 

recommendations for their use within well-established and accepted guidelines. 

In Chapter One, I evaluate prostate cancer, a disease which is expected to be 

diagnosed in approximately 161,000 men in the United States in 2017, making it the 

third most frequently diagnosed cancer. In the early 1990s, rates of prostate cancer 

diagnoses in the United States increased dramatically due to broader use and 

widespread adoption of the prostate-specific antigen (PSA) test. Although these 

diagnosis rates peaked in the mid-1990s, today, rates remain elevated by about 50% 

compared to pre-PSA-testing levels. Despite this, mortality rates have remained nearly 

constant, suggesting that many patients identified through PSA screening may 

represent "over-diagnosed" or “over-treated” patients. Over the past 15 - 20 years 

clinicians have developed and tested less intensive, yet highly effective Active 

Surveillance treatment regimens. These regimens offer patients who satisfy a very 

specific set of criteria an option to delay immediate radical treatment, thereby avoiding 

the morbidities that are associated with surgery, chemotherapy or radiation therapy. 

Several variations of Active Surveillance have been practiced in different centers around 

the world, but there is no clear consensus regarding which is best, and for which 

patients. In my first chapter I undertake a systematic literature review to identify variants 

of Active Surveillance, identifying three frequently reported variations representing a 

high, medium and low-intensity protocol. I then undertake a decision analysis to 
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compare these to the existing radical treatment mix that is practiced in the US. I find that 

Active Surveillance of medium intensity utilizing biopsy intervals of between 18 – 24 

months is the most efficient option. It allows men with low-risk prostate cancer to 

achieve an additional 217 quality-adjusted life days at an incremental cost of just over 

$2,000, making it a highly cost-effective strategy. I also find that a modified version of 

this protocol using biopsies at ≥ 3 year intervals is more efficient, but may be less 

desirable to clinicians due to its longer period between surveillance biopsies and its lack 

of widespread clinical use.    

In Chapter Two, I examine thyroid cancer. Similarly to prostate cancer, 

diagnoses of thyroid cancer have increased dramatically in the past 15 years, yet 

mortality has remained low and nearly constant. In this chapter I conduct a cost-

effectiveness analysis focusing on treatment for patients with papillary thyroid 

carcinoma, a subtype of thyroid cancer that accounts for approximately 85% of the 

nearly 56,000 incident cases expected in 2017 in the United States. In the most recent 

(2015) update to the American Thyroid Association (ATA) "Management Guidelines for 

Adult Patients with Thyroid Nodules and Differentiated Thyroid Cancer", the ATA 

recommended two major changes to their 2009 guidelines. First, that patients with 

specific tumor characteristics could be treated with lobectomy, a less intensive surgery 

than the prevailing surgery, total thyroidectomy. Second, for patients with specific 

nodule/tumor characteristics, Active Surveillance of their cancer via annual ultrasound 



Dissertation Advisor: Professor Milton Weinstein, Ph.D. Craig White 

 vi 

imaging was a viable option. For my second chapter, I created a Markov 

microsimulation model to determine whether these major changes to the guidelines 

improved outcomes, decreased costs, or both, for patients with papillary thyroid 

carcinoma. I find that the 2015 guidelines represent a dominant treatment strategy 

compared to the strategy recommended in the 2009 guidelines. Even after allowing for 

uncertainty via deterministic and probabilistic sensitivity analysis the 2015 strategy 

remains dominant, or at worst, highly cost-effective in expectation.  

In my third chapter, I utilize a national electronic medical records database to 

evaluate physicians' behavior regarding rates of prescription for pharmacologic 

therapies to treat hypertension. Unlike prostate cancer and thyroid cancer where 

chapters 1 and 2 indicate that there is overtreatment, hypertension presents a 

contradictory case where there appears to be significant undertreatment. In 2003, 

the "Joint National Committee on Prevention, Detection, Evaluation, and Treatment of 

High Blood Pressure" issued its 7th revision of the guidelines for the diagnosis and 

treatment of hypertension (JNC7). Within these guidelines, the JNC provided clear 

blood pressure thresholds of 140mmHg systolic and 90mmHg diastolic for the initiation 

of hypertension treatment and specified appropriate pharmacologic therapies. I utilized 

electronic medical records data from approximately 50 million patients during 2010 - 

2013 from across the United States. Using these data, I determine how often 

pharmacologic treatment was consistent with that which would be expected if the 
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recommendations of the JNC7 guidelines were followed for those patients. I find that the 

majority of patients meeting the JNC7 systolic and diastolic blood pressure criteria for 

treatment do not receive a prescription as recommended by the JNC7 guidelines. 

Secondarily, the rates of treatment and guideline concordance vary by age, race, and 

sex. Through the use of logistic regression analysis I determine that patients satisfying 

the JNC7 criteria for systolic blood pressure have odds of treatment of 2.98 compared 

to those who do not, but that for patients with systolic blood pressure readings near the 

threshold of 140mmHg the odds of treatment for those who satisfy the JNC7 criteria 

increase to 7.75. From these results, I infer that the JNC7 guidelines successfully 

stimulate treatment of patients who satisfy the criteria defined in the JNC7, but that 

there is still significant undertreatment of eligible patients. 
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Abstract 

Introduction 

Active surveillance (AS) is a viable prostate cancer management option for 80% of 

newly diagnosed men1 No direct comparison between different variants of AS protocols 

has been conducted2–4. We developed a model to evaluate which protocol is optimal for 

men with low-risk prostate cancer. 

Methods 

We conducted a decision analysis using a microsimulation model. Men diagnosed 

with low-risk prostate cancer at age 65 were modeled as having been treated with either 

immediate curative therapy or via any of three AS protocols. Modeled AS protocols 

represent those in the literature; a modified AS protocol was included in a sensitivity 

analysis. Immediate curative therapy includes radical prostatectomy, external beam 

radiation therapy, or brachytherapy. Outcome measures were quality-adjusted life years 

(QALYs) and treatment costs. 

Results 

Immediate curative therapy produced fewer QALYs than all variants of AS. Of the 

AS protocols evaluated, biennial biopsy was the only efficient option and had an 

incremental cost-effectiveness ratio of $3,490/QALY relative to immediate therapy. It 

delayed the need for curative therapy by mean time 56 months. In probabilistic 

sensitivity analysis, it was preferred in >86.9% of cases. A modified version of low-

intensity AS dominated all other options. 
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Discussion 

For a 65-year-old man with low-risk prostate cancer, active surveillance with biennial 

biopsy is highly cost-effective compared to immediate treatment or commonly reported 

alternative AS protocols. An AS protocol using triennial biopsy dominates all other 

strategies and should be investigated as an alternative. The optimal choice of AS 

strategy depends on patients’ tolerance for periodic biopsies; physicians should 

therefore incorporate patient preferences into decision-making. 
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Manuscript 

Introduction 

In the early 1990’s, the advent of prostate-specific antigen (PSA) screening led to 

increased detection and diagnosis of prostate cancer.5 Early-stage cancers, which often 

have a more indolent clinical course, comprise the most significant component of this 

increase in incidence.6–18 Approximately 80% of newly diagnosed patients today are 

found to have low-risk, early stage prostate cancer, a term generally reserved for organ-

confined disease (T1 or T2a), a PSA < 10 and a Gleason Score of six or less on 

prostate biopsy.1,19–23 In response to this increased incidence of low-risk cancers, 

clinicians have developed less aggressive management algorithms.24–26 Traditional 

therapies such as radical prostatectomy, brachytherapy and external beam radiation 

therapy frequently lead to side effects such as erectile dysfunction and urinary and 

bowel incontinence, whose risk may outweigh the benefits of immediate treatment. 

Despite the increased utilization of less aggressive strategies, no definitive protocol 

exists.2,4,27 

For men initially diagnosed with low-risk disease, as is usually discovered via 

screening, the rate of progression is often slow enough that the side effects of radical 

treatment can be delayed and in some cases, avoided, without reducing the patient’s 

survival.28–32 The term “Active Surveillance” implies a treatment plan whereby (A) the 

overall intention of treatment, if it occurs, is to cure the patient (as opposed to watchful 

waiting where the intention is palliative), (B) the rate of progression of the cancer is slow 
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enough that a curative radical treatment can be initiated at a later point in time if 

needed, and (C) radical treatment may be permanently avoided because the cancer’s 

rate of progression is slow enough that even patients with life expectancy of >10 years 

may die of other causes.33–37  

Table 1.1.  Existing Studies Reporting AS Protocols and their Eligibility 
Criteria 
Institution Stage GS PSA PSAD1 Positive 

Cores  
Cancer/ 
Core 

Johns Hopkins 1c ≤6  ≤0.15 ≤2 ≤50% 
Miami  ≤T2a ≤6 ≤10  ≤2 ≤20% 
Aarau, Switzerland  ≤6  ≤ 0.15 ≤2 ≤50% 
McGill <2b ≤6   ≤2 ≤50% 
UCSF  ≤2 ≤6 ≤10  ≤33% ≤20% 
Dana-Farber 1c-2c ≤6   <3 ≤50% 
Chicago / MSKCC2 / 
CCF / UBC 

1-2a ≤6 ≤10  ≤3  
Royal Marsden 
Hospital, UK 

1-2 ≤63 ≤15  ≤50%  
Cleveland Clinic 1c-2a ≤6 <10    
Princess Margaret 
Hospital, UK 

1c-2a ≤6 ≤10  ≤3 ≤50% 
MSKCC  ≤2a ≤6 ≤10  ≤3 ≤50% 
Monash & Southern   ≤7 6.54  ≤2   
PRIAS 1c-2 ≤6 ≤10 ≤ 0.2 ≤2  

Toronto 1 ≤65 ≤106    

Connecticut 1-2a ≤6 ≤10  ≤2 <50% 

 

                                            
1 In ng/ml/ml 
2 Memorial Sloan Kettering Cancer Center 
3 For patients over 65 years this was relaxed to ≤7 
4 This study did not provide a threshold. The number reported is a median Gleason sum 
5 Until January 2000, for patients over 70 years this was relaxed to ≤7 
6 Until January 2000, for patients over 70 years this was relaxed to ≤15 
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Active Surveillance Protocols 

Historically, the approach clinicians used when monitoring patients with prostate 

cancer was “Watchful Waiting” (WW). In WW the overall goal is to maximize quality of 

life symptomatically: therefore, the protocols used for monitoring patients were low 

intensity, and clinical intervention was stimulated by symptoms. Under WW, the 

patient’s life expectancy is often predicted to be less than the life expectancy with 

radical treatment, but radical treatment is forgone to preserve quality-of-life.38–41 In 

contrast, “Active Surveillance” (AS) protocols are more intense, since the management 

plan has curative intent. Over the past twenty years, different groups have used 

reasonable but arbitrarily set protocols to actively monitor low-risk prostate cancer 

patients, mainly drawing on monitoring regimens used in other fields in medicine and 

their own comfort levels.31,41–55 To date, no published literature has compared multiple 

active surveillance protocols.   

There is a wide range of intensity in the monitoring regimens of AS protocols. 

They range from digital rectal examination (DRE) and prostate-specific antigen (PSA) 

measurements every 3 months with yearly biopsies, to semi-annual DRE and PSA with 

biopsies every 3 to 4 years (Table 1.1).29,42,44,48–51,54,56–63 Although the overall goal of all 

active surveillance protocols is to cure patients, more intense monitoring may not 

necessarily confer a survival advantage for patients, since it brings its own set of 

problems such as lower compliance and risk of protocol abandonment, and imposes 

burdens of patient pain and suffering, and emotional and financial costs.64–71  
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Concerns over disease progression.  

Several studies of low-risk prostate cancer patients indicate that the risk of 

metastasis is low for a significant period of time, and that prostate cancer-specific 

survival rates are high for disease that has not yet metastasized.41,72–75  

There may never be a prospective randomized trial comparing the effectiveness 

of various active surveillance protocols; however, we now have sufficient data to draw 

preliminary conclusions on what might be the optimal monitoring intensity for low-risk 

prostate cancer patients. We reviewed reported AS protocols and grouped them into 

three categories. We then modeled their clinical- and cost-effectiveness to make 

appropriate monitoring intensity recommendations that balance oncologic outcomes 

against patient mortality, morbidity and cost. 

Literature Review.  

We conducted a search for studies describing treatment protocols using the 

terms “prostate cancer” and “active surveillance” or “conservative management” or 

“watchful waiting“ or “expectant management”. After reviewing abstracts for relevance, 

our search uncovered fifty studies describing AS protocols applied to fifteen unique 

cohorts. We classified these studies as high-, medium- or low-intensity based primarily 

upon biopsy frequency.  

Table 1.2:  Study Protocols and Intensity Classification (H/M/L) 
Institution PSA DRE Biopsy Intensity Classification 

Johns Hopkins q6 q6 q12 High 
Miami  q3 q3 q12 High 



 

 8 

Aarau, Switzerland q6 q6 q12 High 
McGill q3 q3 q12 High 
UCSF  q3-6 q3-6 q12-24 Medium 
Dana Farber q6 q6 q12-18 Medium 
Chicago / MSKCC 
CCF / UBC 

q6-12 q6-12 q12-36 Medium 
Royal Marsden 
Hospital, UK 

q3-6 q3-6 q18-24 Medium 
Cleveland Clinic q6-12  q241 Medium 
Princess Margaret 
Hosp 

q3-6 q6 q24-361 Low 
MSKCC  q6 q6 q24-361 Low 
Monash & Southern  q3 q6 q361 Low 
PRIAS q3-61 q3-61 q361 Low 
Toronto q3-61  q36-481 Low 
Connecticut q6m q6-12 q241 Low 

 

Studies considered for outcomes analysis had to provide details about three 

major parameters; (A) inclusion criteria used for patients to be admissible and remain 

under active surveillance, (B) the protocol used while patients are on active surveillance 

and (C) the follow-up period and oncologic outcomes such as recurrence and survival 

data. Recent review articles were also included, and their cited studies were 

incorporated into our review. Only studies performed on patients with a “curative intent” 

were retained (Table 1.2). 

We also conducted a systematic search for economic analyses for the period 

December 2003 – December 20147. This search identified two hundred and thirty-five 

studies. Sixty-one were deemed relevant. (Appendix 1). 

  

                                            
7 The full terms for this search are available.  



 

 9 

Methods 

We created a Markov state-transition patient-level microsimulation model with a 

monthly cycle length in TreeAge Pro 2015, version 15.1.0.0-v20150223 to model the 

effects of alternative strategies for treating low-risk prostate cancer (PSA ≤ 10ng/ml, 

Gleason sum ≤ 7). All other statistical analyses were undertaken in R ver. 3.1.1. A 

model schematic is shown in Figure 1.1.  

 

Figure 1.1: Markov Decision Model Schematic 
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In the base-case analysis we simulated three variants of AS protocols, each of 

which resembles a protocol that has been reported on in published literature, as well as 

a nationally representative immediate curative treatment strategy. In the model, men are 

diagnosed at age 65 years, and outcomes from each of the strategies are simulated. 

Each man enters the model with a PSA level and PSA velocity randomly assigned from 

within a plausible range as identified in the literature. Men are then tracked until death 

from cancer or background causes. We used US Social Security Administration 2009 

life tables to model background mortality risk, and discounted utilities and costs at a 3% 

annual rate. To reflect parameter uncertainty, we ran our model 1,000 times, each one 

with 10,000 patients using a unique parameter set sampled from the distributions 

defined. We averaged over all simulations to determine mean effectiveness and cost for 

each strategy. For each strategy, total QALYs and total costs per patient are reported. 

We performed probabilistic sensitivity analyses based on the distribution of costs and 

QALYs across the 1,000 randomly selected parameter sets.  

Active Surveillance Protocols 

Each variant of AS modeled involves DRE, PSA and Biopsy. Low-intensity AS 

includes DRE and PSA testing quarterly for twenty-four months, then semi-annually 

thereafter; confirmatory biopsy at twelve months and then triennially thereafter; and 

bone scans for any man whose PSA increases to a level greater than 20ng/ml. This 

protocol models the one used in the PRIAS study. Medium-intensity AS includes PSA 

and DRE testing semi-annually and biopsy biennially. High-intensity involves PSA and 
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DRE testing semi-annually, and biopsy annually. Table 1.2 lists the bases for each of 

these intensity classifications.  

In an additional analysis we included a fourth AS protocol, which is a modified 

version of the low-intensity protocol. Unlike the low-intensity protocol modeled on 

PRIAS, which utilizes a confirmatory biopsy at 12 months after diagnosis, the modified 

low-intensity protocol does not require its first (post-diagnosis) biopsy until the third year 

of monitoring. It also specifies semi-annual DRE and PSA, rather than quarterly DRE 

and PSA for the first two years as specified in the low-intensity protocol. This protocol is 

not commonly practiced but may be of interest to physicians seeking a low-intensity 

monitoring regimen for their patients. 

Any man under surveillance who no longer satisfies the eligibility criteria for any 

AS protocol is treated with a brachytherapy regimen identical to that in the immediate 

treatment strategy. We use modified probabilities for these men due to the fact that men 

no longer eligible for AS have a greater chance of having progressed to an intermediate 

disease classification. For the purposes of our analysis we did not consider the use of 

endorectal coil MRI, as it is not part of the standard of care of published AS protocols. 

Immediate Treatment 

Our immediate treatment strategy applies the age-specific nationally 

representative distribution of radical prostatectomy (RP), external beam radiation 

therapy (EBRT) and brachytherapy (BT).76 We excluded strategies for primary androgen 
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deprivation therapy and cryotherapy due to their infrequent use as first-line treatment 

options in low-risk patients and data limitations.  
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8 We chose to use 0 for this parameter in our base case to model a situation in which patients remain on Active 
Surveillance protocol as long as they are eligible. We tested the robustness of our results by undertaking sensitivity 
analysis on this parameter over a range of plausible values. 

Table 1.3:  Model Parameters 
Probabilities Value Distribution (SD) Source 

BCR – Intermediate-Risk  0.0453  
PM

84–87 
BCR – Low-Risk Brachytherapy 0.0159  20,85 
BCR – Low-Risk Prostatectomy 0.0230  .PM

20,84,88 
BCR – Low-Risk Radiation Therapy 0.0230  20 
Metastases During BCR 0.050 (0.01) Beta  

PM

74,84,89 
Metastases While Under AS 0.00138 (0.000037)  Beta  

PM

41,72–75,89–91 
Death Due to Prostatectomy Surgery 0.00383 (0.000018) Beta  

PM

92–94 
Refractory Metastases 0.28  

PM

95 
Complications due to Biopsy (Major) 0.009  

PM

66,71,80 
Complications due to Biopsy (Minor) Varies Table 

PM

80 
Long Term GI Adverse Events Brachytherapy  0.04  

PM

89 
Long Term Sexual Adverse Events Brachytherapy 0.323  

PM

89,95 
Long Term Urinary Adverse Events Brachytherapy 0.167  

PM

89,90,95 
Long Term GI Adverse Events Prostatectomy  0.00  

PM

89 
Long Term Sexual Adverse Events Prostatectomy 0.453  

PM

89 
Long Term Urinary Adverse Events Prostatectomy 0.127  

PM

89,94 
Long Term GI Adverse Events – Radiation Therapy  0.066  

PM

89 
Long Term Sexual Adverse Events Radiation Therapy 0.48  

PM

89 
Long Term Urinary Adverse Events Radiation Therapy 0.134  

PM

89 
Exit Protocol due to Anxiety or Psychological reasons 08   

Utilities    
Age Specific Baseline Utility Varies Table 

PM

96 
Utility for Active Surveillance 0.817 (0.0484) Beta  

PM

77–79 
Utility while in BCR 0.731 (0.030) Beta 

PM

77,85,89 
One Time Disutility from Prostate Biopsy -0.00274  

PM

97 
One Time Disutility from biopsy complications -0.003  

PM

66,97 
One Time Disutility from Prostatectomy -0.0959  

PM

97 
Metastatic Prostate Cancer 0.364 (0.067) Beta  

PM

77,78,90,98 
GI Complications 0.74 (0.1982) Beta  

PM

77 
Sexual Complications 0.831 (0.0614) Beta  

PM

77,79,89,98 
Sexual and GI Complications 0.706 (0.0888) Beta 

PM

77,79,90,98 
Urinary Complications 0.860 (0.286) Beta 

PM

77,89,98 
Urinary and GI Complications 0.743 (0.059) Beta 

PM

77,89,98 
Urinary and Sexual Complications 0.825 (0.032) Beta 

PM

77,89,98 
Urinary, Sexual and GI Complications 0.516 (0.081) Beta 

PM

77,89,98 
Costs    

Treatment of Biochemical Recurrence $2,565  
PM

85 
Prostate Biopsy $2,557  

PM

99 
Complications of Biopsy (Major)  $13,479 ($11,800) LogNormal 

PM

81 
Complications of Biopsy (Minor) $122  

PM

99,100 
Brachytherapy $12,600 ($7,360) LogNormal 

PM

81 
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Men undergoing treatment may incur morbidities related to bowel, urinary, or 

sexual function. After treatment, patients continue in a “post-treatment” state until death 

from other causes, or until biochemical recurrence (BCR). While in the post-treatment 

state, men are monitored via PSA testing and DRE annually. If BCR occurs, men are 

presumed to have hormone responsive disease and are treated with hormone therapy 

until they become refractory and develop metastases. Men with refractory metastases 

are treated palliatively until death. 

Model Parameters (Table 1.3)  

Probabilities 

All probabilities were estimated from secondary sources. Where possible multiple 

values for the same parameter were aggregated via random-effects meta-analysis 

(Appendix 1). Where data were insufficient to do this, we either used the mean and 

variance of the set of data to parameterize a beta distribution, or we fit the lowest and 

highest values as the 5%-95% range in a beta distribution.  

Probabilities for frequency of metastases while in an AS protocol varied. For this 

parameter we performed statistical survival analysis. Using data from several studies 

Prostatectomy $12,141 ($5,391) LogNormal 
PM

81,101,102 
Radiation Therapy $20,607 ($4,544) LogNormal 

PM

76,85,86,90,102,103 
Follow Up Office Visit  $122  

PM

99 
Long Term Bowel Complications (initial Costs) $810.61  

PM

90 
Long Term Urinary Complications (initial Costs) $741.45  

PM

90 
Long Term Sexual Complications (initial Costs) $831.49  

PM

89 
Treatment of Metastatic Hormone Refractory PC $2,212  

PM

85 
Treatment of Metastatic Hormone Responsive PC $3,172  

PM

85 
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we generated multiple beta distributions that fit the data.76 We then used these 

parameter sets to generate a beta distribution that would identify the probability at any 

given time point for this parameter.  

We included a parameter in the model to represent the probability that patients 

drop out from AS protocol due to anxiety or other reasons. The base case model used a 

value of zero for this probability, but literature on the appropriate value for this 

parameter is inconclusive. Given this uncertainty, we conducted deterministic sensitivity 

analysis on the parameter. 

Utilities9 

Utilities were estimated for all complications and all health states. For being on 

any of the active surveillance protocols we used a value of 0.817 (based on a pooled 

estimate of several studies).77–79 We modeled health-state utilities as beta distributions 

to allow for patient-level variability of preferences in the population. For transient 

procedure-related disutilities we applied a fixed utility decrement to each patient’s 

current utility in each model cycle for the duration of the procedure.  

Costs 

Costs were determined from the published literature, the CMS Fee Schedule, the 

fee schedule at a major academic hospital, and AHRQ’s HCUP database. We used cost 

analyses by prior authors for selected costs, such as costs of complications due to 

                                            
9 Utilities are numerical values, ranging from 0 (death), to 1 (perfect health) used to indicate preferences for a given health state. 
The summation of each year, multiplied by its utility weight is used to determine total quality adjusted life years (QALYs). 
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treatment. For costs associated with BT, RP and RT, we modeled a lognormal 

distribution to represent the possibility of a small group of high-cost patients. We fit 

distributions based upon either median and mean hospital costs as reported in HCUP, 

or in the case of RT, we used a plausible range to represent a 5%-95% confidence 

interval for a lognormal distribution.  

Complications  

Recent literature indicates that repeated prostate biopsies produce an increasing 

rate of complications. We used these data to create a tabular distribution on this 

parameter as a function of the number of biopsies (see Supplementary Table 1.1).80 

Major complications of biopsy can lead to hospitalization. We modeled costs to account 

for this based on our own analysis of the AHRQ HCUPNet dataset for hospitalizations 

associated with ICD-9-CM procedure code 60.11.66,80,81  

We modeled the frequency of complications due to each of the treatments as 

both short-term and long-term adverse effects. We presumed short-term adverse effects 

persist for three months, and long-term adverse effects persist for the patient’s lifetime.  
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Table 1.4: Base Case Analysis – Selected Key Results Generated By The 
Model for 65-yo Men with Low-Risk Disease  
Outcome Immediate 

Treatment 
Low-Intensity 
Active Surveillance 

Medium-Intensity 
Active Surveillance 

High-Intensity 
Active Surveillance 

Lifetime Metastases 10.94% 7.98% 6.30% 6.64% 

Prostate Cancer 
Death 

7.56% 6.97% 5.48% 5.70% 

ATFS* 0 Months 52.73 months 56.16 months 54.91 months 

Life Expectancy -
Years (SD) 

81.87 (0.08) 81.97 (0.15) 82.08 (0.15) 82.07 (0.15) 
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Results 

Base Case 

In the cohort of men diagnosed at age 65, medium-intensity AS was the most 

effective strategy, yielding 10.169 QALYs. This was followed by high-intensity AS 

(10.137), and then low-intensity AS (10.053). Immediate curative treatment offered the 

fewest QALYs (9.574), but at a lower cost ($22,988) than any of the active surveillance 

strategies. Among active surveillance strategies, medium-intensity AS had the lowest 

cost ($25,065]) and also yielded the most QALYs. The lifetime risk of developing 

metastatic cancer was 6.64%, 6.30%, 7.98% and 10.94% respectively for high-intensity 

AS, medium-intensity AS, low-intensity AS, and immediate treatment (Table 1.4). 

Lifetime risk of Prostate Cancer death was 5.70%, 5.48%, 6.97% and 7.56%.We find 

medium-intensity AS to be a highly cost-effective strategy, with an incremental cost-

effectiveness ratio of $3,490 per QALY (Table 1.5).  

Table 1.5: Base Case Analysis – Results for 65-yo Men with Low-Risk Disease 

Protocol Cost QALY ICER 
($/QALY) 

Dominance 

Immediate Treatment 22,988 9.574 - - 

Low-intensity AS 24,890 10.053 - Extended 

Medium-intensity AS 25,065 10.169 3,490 None 

High-intensity AS 36,638 10.137 - Absolute 

Note: Costs and QALYs discounted at 3% p.a. 
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Sensitivity Analysis 

In probabilistic sensitivity analysis, medium-intensity AS had an 86.9% probability 

of being the most cost-effective strategy at a willingness to pay (WTP) criterion of 

$50,000/QALY. Considering cost minimization only (WTP of $0/QALY) immediate 

treatment is preferred with near certainty.  

For parameters for which we expected model sensitivity, such as frequency of 

metastases, utility for being in an AS protocol, or departure from protocol due to anxiety, 

we undertook one-way sensitivity analyses to determine threshold values. We found the 

model results insensitive to changes in anxiety dropout rates for all possible values. 

Medium-intensity AS was the most cost-effective option for values of the utility for active 

surveillance greater than 0.75. (Figure 2.2(B)). For any values of metastases within 

99.97% of the modeled distribution of expected probabilities of metastases while under 

surveillance, (i.e. <0.104% per month, a value more than seven-fold higher than best 

existing estimates for rate of metastases while under surveillance), medium-intensity AS 

was still a cost-effective strategy at WTP of $150,000/QALY. (Figure 2.2(A)). 
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Table 1.6: Analysis with Modified Low-Intensity Protocol Included – Results for 
65-yo Men with Low-Risk Disease 

Protocol Cost QALY ICER 
($/QALY) 

Dominance 

Immediate Treatment 22,988 9.574 - Dominated 

Low-intensity AS 24,890 10.053 - Dominated 

Modified Low-intensity AS 21,399 10.194 - Dominant 

Medium-intensity AS 25,065 10.169 - Dominated 

High-intensity AS 36,638 10.137 - Dominated 
Note: Costs and QALYs discounted at 3% p.a. 

 

Results when the fourth (modified low-intensity) AS protocol was included in the 

comparison were quite different from the base case.  Notably, the removal of the 

confirmatory biopsy at 12 months after protocol initiation, and a change to a consistent 

semi-annual (rather than quarterly) DRE and PSA test specified in the modified low-

intensity protocol, increases efficiency. With these changes the modified low-intensity 

protocol is the dominant strategy offering greater QALY (10.194) at a lower cost 

($21,399) than any other protocol. (Table 1.6) 

  



 

 21 

 

 

Figure 1.2(a) & (b): Sensitivity Analyses 

 
(A) Sensitivity Analysis – Metastases while under AS. at varying values of probability of progression to metastatic 
disease while under active surveillance; Dashed line – Expected probability that frequency of metastases is less 
than modeled value  

(B) Sensitivity Analysis – Utility for AS. Expected QALY for each strategy under varying assumptions about 
individuals’ utility preferences for being under active surveillance 
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Discussion 

Four-fifths of newly diagnosed prostate cancers are low volume Gleason 6 

cancers, or so-called “low-risk” disease, which can often be effectively managed with 

active surveillance. There is evidence to suggest that these cancers present very little 

risk of metastasis and that delaying treatment does not increase this risk appreciably, 

yet fewer than 20% of men are undergo active surveillance. A study of 14,123 men with 

pathologic Gleason 6 disease identified only 22 cases with lymph node metastases.82 

Another study of 11,521 men treated with radical prostatectomy with confirmed Gleason 

6 disease had a prostate cancer mortality of only 0.2%-1.2% at 15 years.83 An additional 

study with a median follow up of 8 years, reported that the relative risk for non-prostate 

cancer death was 10-fold higher than that from prostate cancer. About one-third of 

patients enrolled on active surveillance will be reclassified to higher risk during their 

follow up. However, this reclassification appears to have little impact on overall survival, 

highlighting that active surveillance is effective at identifying progressive disease while 

still early enough to be successfully treated. 

There is no consensus regarding the appropriate intensity of active surveillance. 

Both AUA and EAU guidelines recommend active surveillance in low-risk disease, but 

neither guideline specifies a protocol. The potential health benefits that would accrue 

from identifying the most appropriate surveillance protocol are considerable. The 

challenge is to select the least intense and costly surveillance protocol without 

compromising potential curability. 
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Clinicians seeking reassurance as to how to proceed when selecting a protocol 

may find our analysis useful. It illustrates that all three commonly reported AS protocols 

offer superior quality-adjusted outcomes and expected survival outcomes than 

immediate treatment.   

Our model shows that medium-intensity AS offers a 217 quality-adjusted life-day 

improvement over the current US practice of immediate treatment of various modalities, 

at an incremental cost of $2,077 per man. The majority of this gain in quality-adjusted 

survival arises because the average patient initiating medium-intensity AS will delay 

treatment for 56 months, thereby deferring any adverse effects of treatment. Our 

analysis is sensitive to individual preferences. If preferences are such that utility while 

under active surveillance is less than 0.75, immediate treatment becomes the preferred 

strategy. 

Our model suggests that improvements to the low-intensity AS protocol may be 

achieved by decreasing its intensity further, in turn making it the optimal strategy in 

terms of quality-adjusted survival and cost. This arises because the disutility from an 

increased rate of complications from more frequent biopsies outweighs the gains 

achieved through the small number of cancers that are prevented from metastasizing in 

the interval between biopsies.  The inefficiency of the low-intensity AS (protocol) in our 

model is eliminated and reversed when the frequent monitoring in the first two years 

after diagnosis is eliminated. These protocol modifications may need to be applied on a 

patient-specific basis, since not all clinicians or their patients may be comfortable with 
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the extended wait until the first surveillance biopsy.  The finding regarding this modified 

low-intensity AS protocol should be regarded as tentative, because it is not widely 

practiced, but our model suggest that it deserves further consideration by clinicians who 

favor a low-intensity approach,  

The primary concerns for a clinician in recommending active surveillance are that 

cancer may progress or that metastases may occur, leading to worse outcomes, yet the 

data on metastases in untreated men is inconsistent. Currently available studies report 

mostly on watchful waiting to identify probabilities for these events; this can be 

misleading. The goal of watchful waiting is palliation of symptomatic disease; therefore, 

it is very likely that should a man live long enough, progression and metastases will 

occur.   

For this reason, we modeled the probability of metastatic disease in monitored 

patients using a time-varying non-linear risk distribution to capture this characteristic10. 

Our analysis is consistent with the published literature in finding that metastatic disease 

is infrequent among low-risk patients. Further, our deterministic sensitivity analysis finds 

that the actual probability of metastases would have to be seven-fold higher than the 

expected value (the 99.97-th percentile) of our meta-analysis on the parameter for 

medium-intensity AS to no longer be cost-effective. We feel confident that our results 

                                            
10 In the case of probability of metastases while in an active surveillance protocol, we utilized several studies 
reporting frequency of metastases at different timepoints (in different untreated populations) to fit a Beta distribution. 
We then used this to draw values from at time, t=x, for time dependent parameters for a beta distribution. For 
example, at time point t=3 years, we drew from our Beta distribution to determine α and β for a beta distribution which 
was used to determine the outcome stochastically  
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are robust to changes in the frequency of metastases while under surveillance (Figure 

2.2(a)). 

The substantial gains in QALYs identified in our model lend further support to the 

case for medium-intensity AS with biennial biopsy frequency as the preferred treatment 

in this population given average preferences, or for a modified low-intensity protocol for 

those comfortable waiting a longer period between biopsies. This offers guidance to 

clinicians in the selection of appropriate monitoring strategies.  

Future analyses should focus on further elucidating the advantages and 

disadvantages of extended intervals between surveillance biopsies, and to 

understanding patient preferences and utilities at the time a treatment choice is being 

made. Such preferences should be elicited on an ongoing basis in the case of active 

surveillance.  
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Abstract 

 

Importance 

Diagnosis of thyroid cancer in the US has more than tripled since 1987, from 5.0 

per 100,000 people, to 15.1 per 100,000 people in 2013. The majority of these patients 

present with small papillary tumors and have historically received Total Thyroidectomy 

as a treatment. 

Objective 

In 2015, the American Thyroid Association (ATA) released updated guidelines 

recommending Active Surveillance of certain small papillary tumors, and Lobectomy for 

larger unifocal tumors with no metastases. Clinicians may be interested in the outcomes 

from these treatments, and their relative clinical and economic performance compared 

to current standard of care, Total Thyroidectomy.   

Design 

We created a Markov microsimulation model to evaluate the performance of the 

ATA’s 2015 guidelines compared to the ATA’s 2009 guidelines. We modeled a cohort of 

100,000 simulated patients with demographic and thyroid nodule characteristics 

representative of those presenting clinically in the US. 

Main Outcome Measures 

 Life expectancy, QALYs, costs, and frequency of common surgical adverse 

events. 
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Results 

In our base case analysis, we find that the ATA 2015 strategy dominates the ATA 

2009 strategy. For all feasible combinations of model inputs in our probabilistic 

sensitivity analysis, the ATA 2015 strategy delivers greater discounted average QALYs 

[13.16 vs. 11.66] at a lower discounted average cost [$13,026 vs. $28,083].  

Deaths due to Thyroid cancer under the ATA 2015 strategy are higher than the 

2009 strategy [523 vs. 444], but this is entirely offset by a reduction in surgical deaths, 

leading to greater average life expectancy under the ATA 2015 strategy [83.40yrs vs. 

83.36yrs]. Personal preference can have a significant influence on the optimal choice of 

strategy. Patients for whom Active Surveillance causes utility reductions of ≥ 0.126 

achieve better results with the ATA 2009 strategy.  

Conclusion 

For eligible patients with papillary thyroid carcinoma, the ATA 2015 Guidelines 

represent a favorable treatment option. Clinicians should consider following these 

guidelines, especially for patients for whom Active Surveillance does not create a 

significant psychological concern.  
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Manuscript 

Background 

The incidence of thyroid cancer has been increasing in the United States. Rates 

have more than tripled since 1987, from 5.0 per 100,000 people, to 15.1 per 100,000 

people in 20131. In 2015, there were approximately 62,450 new cases in the United 

States2. Despite this increase in incidence, mortality has remained constant at 0.5 per 

100,000 individuals over this same time period3. The reasons for this growing 

divergence between incidence and mortality are believed to be primarily due to 

increased use of cross-sectional imaging and technological advancements, as well as 

changing surgical and pathological practices – changes which allow for identification of 

what was an undiagnosed reservoir of smaller nodules and occult disease1. From 1975 

to 2009, the proportion of incident papillary thyroid microcarcinomas (PTmC) – those 

tumors less than 10mm in largest diameter -  increased from 25% to 39%1. This has led 

experts to question if we are over-treating patients with small, indolent tumors1,4. 

Research indicates that many PTmC are still treated aggressively with total 

thyroidectomy or radioactive iodine in the U.S5. Studies of active surveillance protocols 

with long term longitudinal follow-up in Japan have recently demonstrated that selected 

low-risk patients with PTmC can safely forgo surgery for small papillary thyroid cancers 

for periods of fifteen years or longer with no significant morbidity and no increase in 

disease-specific mortality6–8. In the small proportion of patients that had tumor 

progression or new lymph node metastases, excellent outcomes were observed with 

rescue surgery6,7,9,10.  
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Additionally, it was recently reported that there was no difference in survival for 

patients undergoing thyroid lobectomy versus total thyroidectomy11. The use of 

lobectomy is intended to reduce the frequency of adverse surgical events like bilateral 

recurrent laryngeal nerve injury, and post-operative morbidities such as 

hypoparathyroidism and hypothyroidism. Lobectomy has long-term advantages over 

total thyroidectomy as it allows patients to retain some natural thyroid function, but for 

this same reason it incurs some short-term disadvantages, since it reduces the 

accuracy of thyroglobulin (Tg) as a tumor marker, precludes the use of radioactive 

iodine ablation, and may lead to a small increased risk of recurrence in these patients 

due to the remaining functional thyroid tissue.  

Table 2.1: Strategy characteristics for selected ultrasound and FNAB findings 
based upon nodule size. 
Nodule Findings Strategy Recommendations 
Ultrasound 
Suspicion Pattern Nodule Size FNAB 

Characteristic ATA 2009 ATA 2015 

High N/A Not Benign Total 
Thyroidectomy Lobectomy* 

Benign Benign Monitoring 

Intermediate 

<10mm Not Benign Total 
Thyroidectomy 

Active 
Surveillance 

Benign Benign Monitoring 

≥10mm Not Benign Total 
Thyroidectomy Lobectomy* 

Benign Benign Monitoring 

Low 

<15mm Not Benign Total 
Thyroidectomy 

Active 
Surveillance 

Benign Benign Monitoring 

≥15mm Not Benign Total 
Thyroidectomy Lobectomy* 

Benign Benign Monitoring 

Very Low 

<20mm Not Benign Total 
Thyroidectomy 

Active 
Surveillance 

Benign Benign Monitoring 

≥20mm 
Not Benign Total 

Thyroidectomy Lobectomy* 

Benign Benign Monitoring 
Benign N/A N/A Benign Monitoring 

*Lobectomy is recommended only for nodules that are not multifocal, and with no lymph node metastases. 12,13 
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ATA Guidelines 

These findings and others have led to a shift to less aggressive treatment of low-

risk papillary thyroid carcinomas (PTC). In 2015, the American Thyroid Association 

(ATA) published a revision to the 2009 Management Guidelines for Patients with 

Thyroid Nodules12,13 (Table 2.1). Whereas the ATA’s 2009 guidelines suggest total 

thyroidectomy for malignant nodules of any size and lobectomy only to be considered 

for small (<1cm) nodules with very specific characteristics (low-risk, unifocal, 

intrathyroidal, no prior irradiation and no nodal metastases), their 2015 update provided 

the option for active surveillance (AS) or thyroid lobectomy for a broader range of low-

risk PTCs, including but not limited to PTmCs12,13.  

It is estimated that in 2006 approximately 23,000 of the 30,180 patients 

diagnosed with thyroid cancer in the U.S. underwent total thyroidectomy14,15. If surgery 

rates remain similar for 2016, we can expect initial treatment for patients diagnosed in 

2016 to include nearly 48,000 total thyroidectomies at a total cost of approximately 

$660M to the US healthcare system16. Implementation of the ATA’s 2015 guidelines 

should lead to a reduction in the number of total thyroidectomies, fewer surgical 

complications, and potentially, cost reductions. There will also be a subset of patients 

opting for AS that will have surgery delayed – in many cases indefinitely. In fact, several 

studies of patients with small PTCs have demonstrated that rates of disease 

progression, nodal metastases and distant metastases are exceedingly low and that 

many patients can avoid surgical intervention for substantial periods of time6,9,17. On the 

other hand, long-term outcomes including adverse effects on health-related quality of 

life and potential consequences of delayed or missed treatments are yet to be studied.  
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Nevertheless, it remains unclear whether the new ATA 2015 guidelines, if 

followed, represent a cost-effective strategy compared to the prior version. To date, no 

studies have evaluated both costs and effectiveness of the 2015 guidelines. We 

undertook a decision analysis comparing costs and effectiveness of the 2009 and 2015 

guidelines to determine which strategy is more efficient in a representative US 

population. 

Methods 

We created a Markov state-transition patient-level microsimulation model in 

TreeAge Pro 2016, version 16.2.1.0-v20160817 to compare two strategies for managing 

patients with thyroid nodules. A schematic of the model structure is shown in Figure 2.1. 

Figure 2.1: Markov Decision Model Schematic 
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For each state, we utilized a state-specific cycle duration, varying from 1 day for 

ultrasound to 365 days for post-surgery surveillance. (Table 2.2). We modeled the 

ATA’s 2009 guidelines and compared them to the 2015 guidelines. All other statistical 

analyses were undertaken in R Statistical software version 3.1. 

 

Table 2.2: Markov State Cycle Lengths / Durations used in Base Case 

 
 

State Cycle Duration 
Active Surveillance 365 days 
Benign Monitoring 365 days 
Initial Diagnosis / Clinical Nodule 90 days 
FNA Biopsy 1 day 
Lobectomy Surgery 30 days 
Metastases 365 days 
Post-surgery Surveillance 182.5 days 
Recurrence 365 days 
Total Thyroidectomy Surgery 30 days 
Ultrasound 1 day 

 

We simulated a representative US cohort of 100,000 patients, distributed 

according to age, nodule size, nodule characteristics, and sex as reported in the 

literature18. Thyroid nodule characteristics such as microcalcifications, multifocality, solid 

or spongiform composition, hypoechogenicity, eccentric shape, and true underlying 

malignancy status were modeled on those found in populations reported in prior 

studies19,20. For each patient, a tumor growth type (growing, stable, shrinking) and rate 

is assigned probabilistically through a distribution derived from a regression model we 

created using a longitudinal cohort of Japanese patients undergoing active surveillance. 

Details of this regression analysis are provided in Appendix 2. While the Japanese 

patient data are the most relevant data we have available, we believe that these may 
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underestimate the true rates of progression due to some potential sample selection 

bias. 

We used 2013 life tables from the United States Social Security Administration to 

model background mortality risk21. We discounted QALYs and costs at the standard 3% 

annual rate22. We utilized distributions to represent uncertainty in our parameter 

estimates and to allow for probabilistic sensitivity analysis (see Table 2.3 for details).  

  
  

Table 2.3: Model Parameters 
 

  
  

  

Utilities Value Distribution Source 
Airway Problem During Surgery -0.500 None Estimate 
Bilateral RLN Injury 0.205 None 58,59 

Diagnosis  -0.040 None 59 

FNA Biopsy -0.500 N/A Estimate 
Hematoma during surgery -0.500 N/A Estimate 
Hypoparathyroidism 0.836 Uniform 58,60,61 

Hypothyroidism 0.830 Beta 61,62 

Distant metastatic disease 0.250 N/A Estimate 
Cancer Recurrence 0.540 N/A 58 

Unilateral RLN injury 0.627 N/A 58,61,62 

Probabilities    

Patient age at diagnosis 55.78 Normal (SD 11.68) Estimate 
Initial Tumor Size 21mm Lognormal 18 
Male Sex 14% N/A 18 
Annual discount rate 3% N/A N/A 
TSH Range 0.5 – 5 Triangular 63,64 
Recurrence in contralateral lobe (Lobectomy) 0.145  41 
Death from distant metastases 0.077 Beta 65 
Surgical death (Lobectomy) 0.0023 Beta 46 
Surgical Death (Total Thyroidectomy) 0.0020 Beta 45,46 
Distant Metastases at Initial Diagnosis 0.014 Beta 11,27–33 
Lymph Node Metastases at Initial Diagnosis 0.268 Beta 6,11,27–33,35,36,43 
Airway Problem (Lobectomy) 0.006 Beta 46 
Hematoma (Lobectomy) 0.004 Beta 46 
Hypocalcemia (Lobectomy) 0.023 Beta 46 
Hypothyroidism (Lobectomy) 0.143 N/A 66 
Hypoparathyroidism (Lobectomy) 0.022 Beta 35,41,45,47,51,52 
Temporary Unilateral RLN Injury (Lobectomy) 0.015 Beta  41,46,49–51 
Distant Metastases under Active Surveillance 0.007 Beta Estimate / 9 
Distant Metastases under Benign Monitoring 0.005 Beta Estimate 
Ipsilateral LN Metastases 0.003 None 9 
Distant Metastases post-surgery (Lobectomy) 0.005 Beta Estimate 
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Distant Metastases post-surgery (Thyroidectomy) 0.005 Beta Estimate  
Distant Metastases during PTC recurrence 0.080 Beta 13 
Contralateral LN Metastases (Lobectomy) 0.001 N/A 9,41 
Multifocal Disease 0.424 N/A 11 
Recurrence After Lobectomy 0.009 Beta 27–31,33–38,40,41,43,55 
Recurrence after Thyroidectomy 0.008 Beta 27–31,33–38,40,41,43,55 
Remission during recurrence 0.100 N/A Estimate 
Airway Problem (Thyroidectomy) 0.009 Beta 46 
Hematoma (Thyroidectomy) 0.007 Beta 41,45,46,54 
Hypocalcemia (Thyroidectomy) 0.141 N/A 45,46,49,54 
Hypothyroidism (Thyroidectomy) 1.000 N/A Estimate 
Hypoparathyroidism (Thyroidectomy) 0.089 Beta 35,41,51–53 
Unilateral RLN Injury (Thyroidectomy) 0.015 Beta 41,45,46,49–54 
Bilateral RLN Injury (Thyroidectomy) 0.003 Beta Estimate 

Costs    
Ablation $73.68 N/A 67 
Airway problem $5,790.24 N/A 67 
CT Scan $287.11 N/A 67 
Endoscopy $128.48 N/A 67 
FNA Biopsy $497.78 N/A 67 
Hematoma  $5,790.24 N/A 67 
Hypoparathyroidism (Annual) $1,651.18 N/A 67 
Hypothyroidism (Annual) $158.03 N/A 67 
cLT4Annual $111.83 N/A 67 
Metastatic Disease Treatment (Initial) $60,196.00 N/A 68 
Metastatic Disease Treatment (Ongoing) $35,189.00 N/A 68 
Primary Care Physician Visit $96.96 N/A 68 
Radioactive Iodine Treatment $6,097.09 N/A 64,67 
Bilateral Permanent RLN Injury $27,874.28 N/A 16 
Unilateral Permanent RLN Injury $6,623.08 N/A 16 
Unilateral Temporary RLN Injury $2,224.24 N/A 16 
Serum TSH Test $23.10 N/A 67 
cSpecialistVisit $145.72 N/A 67 
Lobectomy Surgery $9,185.00 Lognormal 69 
Surgical Mortality $55,983.11 Gamma 52 
Thyroidectomy $11,352.00 Lognormal 69 
Temporary Hypoparathyroidism $867.77 N/A 67 
Thyrogen $2,103.80 N/A 67 
Thyroid Scan $332.65 N/A 67 
Ultrasound $124.86 N/A 67 

 

Calibration is a well-established practice used to ensure that even in cases when 

robust data on some parameters are lacking, models are representative of outcomes 

observed in the real world. This is often achieved by aligning well-understood 

intermediate parameters generated by the model with real-world estimates of these 



 

 45 

parameters. In our model, we manually calibrated parameters to reproduce point 

estimates of cancer-specific survival (CSS) at 5 years and at 15 years reported via the 

Surveillance Epidemiology and End Results (SEER) program and American Cancer 

Society (ACS) statistics23,24. Rates of metastases for untreated (but monitored as 

benign, or managed under AS) malignancies were adjusted to satisfy calibration targets, 

as these data on metastases rates are unknown or unknowable25,26.  

To simulate the biological variation between patients, and to determine the effect 

of uncertainty in our parameters, we undertook both probabilistic and deterministic 

sensitivity analysis. For our probabilistic sensitivity analysis, we ran 1,000 iterations of 

the model, each time with 100,000 simulated patients. For each iteration we used a 

unique parameter set sampled from our parameter distributions to simulate population 

and biological heterogeneity and parameter uncertainty. We averaged over all 

simulations to determine mean costs (US$) and effectiveness (life expectancy and 

quality adjusted life years, QALYs) for each strategy. We compared strategies using 

incremental cost-effectiveness ratios (ICER).  

Deterministic sensitivity analysis entails deliberately varying one or more 

parameters over a range of possible values to determine the extent of the variation in 

the output caused by changes in the parameters. We undertook one-way deterministic 

sensitivity analysis on the rate of metastases while in an AS protocol, and separately, 

analysis of the reduction in patient utility while in an AS protocol, to measure the effect 

of changes in these two uncertain parameters.  
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Model Strategies 

Common Elements 

For both the ATA 2009 and ATA 2015 strategies, patients enter the model with a 

clinically recognized thyroid nodule which may be malignant or benign (underlying true 

state). An initial evaluation is undertaken utilizing serum thyroid stimulating hormone 

(TSH) and a thyroid scan for those patients with a suppressed TSH or “hyperthyroid”. 

Patients with a hyperfunctioning nodule are presumed to have a benign nodule and 

subsequently undergo monitoring for a benign nodule according to the standard of care. 

At this stage, patients with cancer can present with distant metastases at a rate which 

we determined via pooled analysis of several studies. Those patients move immediately 

to treatment for metastatic thyroid cancer11,27–33.  

Patients will undergo a neck ultrasound, at which time a pattern classification 

ranging from benign to very high suspicion based on the TIRADS classification and/or 

ATA guidelines is determined13. Patients with nodules classified as benign on 

ultrasound are monitored annually via ultrasound and physician evaluation for increases 

in nodule volume. Any nodule increasing in volume by 50% or more is treated with 

surgery, the aggressiveness of surgery (either lobectomy or total thyroidectomy) being 

determined by the specific strategy modeled.  

In each case, patients undergoing surgery are subject to complications arising 

from surgeries. We included hematoma, hypocalcemia, hypoparathyroidism, 

hypothyroidism, recurrent laryngeal nerve (RLN) injury and operative mortality. Surgical 

complications, and their costs and probabilities, are shown in Table 2.3. 
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Patients are tracked after surgery, and any long-term surgical complications 

(hypocalcemia, hypoparathyroidism, hypothyroidism, recurrent laryngeal nerve injuries) 

are incorporated into their ongoing quality of life. Unlike those who undergo total 

thyroidectomy, patients who undergo lobectomy can develop tumor recurrence or de 

novo tumor in the contralateral thyroid lobe. All patients are subject to risk of recurrence 

in the operative bed, and of cervical lymph node and/or distant metastases based on 

rates in the literature (Table 2.3). Patients with recurrence of their tumor will undergo 

radioactive iodine treatment (or a second treatment in case of presentation with ≥ Stage 

III disease) initially based on RAI guidelines.  

ATA 2009 Strategy 

Within the ATA 2009 strategy, all patients undergoing ultrasound evaluation with 

nodules ≥ 10mm will additionally undergo fine needle aspiration biopsy (FNAB). The 

results of the ultrasound and FNAB lead to a determination that the nodule is either 

benign or malignant utilizing the Bethesda cytologic scale. If the nodule is determined to 

be malignant, the patient undergoes total thyroidectomy and radioactive iodine ablation, 

leading to the need for long-term treatment for hypothyroidism in addition to treatment 

for any other side effects of surgery.    

ATA 2015 Strategy 

In contrast to the ATA 2009 strategy, patients who follow the ATA 2015 protocol 

strategy undergo ultrasound, but criteria for FNAB changed. Based on a combination of 

ultrasound findings and nodule size, patients are either classified as “benign”, “active 

surveillance” or “malignant”. Any patient with a nodule classified as benign on 

ultrasound foregoes FNAB and is treated for a benign nodule. If not deemed benign, 
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patients undergo FNAB based upon various combinations of ultrasound findings and 

nodule size, and the Bethesda cytologic classification is determined. The interventions 

recommended for each type of patient under the ATA 2015 strategy are shown in Table 

2.1. Smaller unifocal nodules with no lymph node metastases are recommended for AS. 

Patients with larger unifocal tumors and no lymph node metastases receive lobectomy -

- others receive total thyroidectomy.  

Model Inputs  

Probabilities 

All model probabilities except those modified through calibration were estimated 

from secondary sources (Table 2.3). 

To determine PTC recurrence rates after each type of surgery we conducted a 

pooled analysis of seventeen studies reporting on 49,607 total thyroidectomy patients 

and 12,332 lobectomy patients27-31,33–44 (Appendix 2). 

 

Table 2.4: Pooled Analysis of Distant and Lymph Node Metastases at diagnosis 
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For probabilities of complications arising from each type of surgery, we used data 

from fifteen different studies representing 23,628 lobectomy patients and 40,693 total 

thyroidectomy patients to undertake pooled analyses35,41,45–54. For each surgical 

complication, between 903 and 40,265 patients were analyzed. In each case, we 

generated a beta distribution utilizing the data within the pooled analysis, and included 

this distribution in our model to permit probabilistic sensitivity analysis.  

Rates of initial distant and lymph node metastases were determined via pooled 

analysis (Table 2.4). Eight studies reported on the rates of distant metastases among 

114,326 unique patients, and fourteen studies among 117,829 patients reported on 

rates of lymph node metastases6,11,27–38,43. Only four studies report on rates of 

metastases while under AS but still provide a sample of over 1,235 patients for 

durations of up to nearly 20 years 6–10. Patients under AS tend to be healthier, and to 

have less advanced disease. Typically, those with multifocal disease or lymph node 

metastases are excluded from AS, implying that rates for these patients should be 

lower. Conversely, we presume that less aggressive therapy must leave patients at 

least slightly elevated risk of metastases versus similar patients who have surgery. 

Each of these factors leads to different effects on the estimated rate of metastases for 

patients under AS. We presume that AS patients are exposed to a higher metastasis 

risk than they would be had they had surgery, but that they start from a lower absolute 

level of risk of metastases. We conduct deterministic sensitivity analysis on this 

parameter due to the opposing nature of these two potential drivers of the outcome and 

our lack of a clear rationale to favor one over the other.  
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For other parameters, we created distributions with estimates of mean and 

variance determined from the literature. These distributions enabled us to simulate 

heterogeneity and parameter uncertainty. In cases where it was reported, we used sex-

specific probabilities (e.g. initial tumor size and features). Details of the distributions are 

shown in Table 2.3. 

Utilities 

Utilities are numerical values, ranging from 0 (death), to 1 (perfect health) used to 

indicate preferences, or Quality of Life (QoL) in a given health state. Each future year is 

given a utility value, or QALY score which depends on the health state(s) of the patient 

during that year. Values accruing in future years are discounted to reflect their 

diminished value compared to immediate QALY gains. QALYs for each individual 

patient in the model are computed by summing over years. Finally, QALYs for individual 

patients are summed to determine total discounted expected QALYs gained under each 

strategy. Utilities were estimated for all complications and all health states. Data for 

utility values were taken from secondary literature where available. In the case of 

patient utility for active surveillance, we conducted sensitivity analysis on this parameter 

due to its potential significance in the model.  

Patients who undergo surgery are exposed to surgical complication risks, and the 

associated disutility that accompanies the complication. For each short-term surgical 

complication we estimated the disutility, and applied the disutility for the appropriate 

duration and summed this into the patient’s total lifetime QALYs. We modeled the 

duration of complications due to each of the treatments as either short-term or long-term 

adverse effects. Short-term complications included: airway problems, hematoma, 
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hypocalcemia, hypoparathyroidism, hypothyroidism, and both unilateral and bilateral 

recurrent laryngeal nerve (RLN) injury. Long-term complications included hypocalcemia, 

hypoparathyroidism, hypothyroidism, and both unilateral and bilateral recurrent 

laryngeal nerve (RLN) injury. We presumed short-term surgical adverse effects persist 

during the surgical recovery period of 30 days, and long-term adverse effects persist for 

the patient’s lifetime. 

Costs 

Costs were estimated from the published literature, the Centers for Medicare and 

Medicaid Services (CMS) Fee Schedule, the fee schedule at a major academic hospital, 

and CMS’ National Inpatient Sample (NIS) database. In each case we determined costs 

using a set of CPT, ICD-9-CM or ICD-10 codes for subcomponents of the procedure or 

treatment. Author CL provided detail on contents of bundled procedures, allowing for 

individual components of cost to be obtained from Redbook (drug costs), CMS Fee 

schedule (physician services), and NIS (hospital procedures). Costs of FNA Biopsy, 

Lobectomy and Total Thyroidectomy were obtained using 2014 data from AHRQ’s NIS 

database for ICD-9-CM codes 06.2 and 06.4.  

It is rare for patients to develop metastases. When this occurs, treatment costs 

often escalate significantly. Additionally, costs related to surgical mortality can vary 

substantially. For these parameters, we utilized lognormal (for surgery) and gamma (for 

surgical deaths) distributions to model the variation and the potential for very high cost 

patients.  
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Results 

Base Case 

Our base case analysis modeled a cohort of 100,000 patients with mean age 56 

years, 86% female sex and having thyroid nodules with mean size 21mm to reflect the 

range of individuals most representative of the patient population seen in clinical 

practice. For this cohort, ATA 2015 was the cost-effective strategy and dominated ATA 

2009, generating greater average QALYs [13.16 vs. 11.66] at a lower average cost per 

patient [$13,027 vs. $28,083]. Results are shown in Table 2.5. 

 

Table 2.5. Results of Base Case Analysis 

Protocol Cost QALY ICER Dominance 

ATA 2009 28,083 11.66 - - 

ATA 2015 13,027 13.16 - Dominant 

 

The lifetime risks of distant metastatic cancer under the ATA 2015 and ATA 2009 

strategies (including those with distant metastases at initial diagnosis) were 3.13% and 

2.88%, the risks of death from thyroid cancer among all patients were 0.84% and 

0.71%, and the lifetime cancer-specific death probabilities among patients with 

malignant nodules were 6.92% and 5.88%.  

Additionally, there is a significant decrease in the number of surgical deaths, 

acute adverse events, and long-term complications among the ATA 2015 strategy 

patients. In each case, these events are approximately 1/3 or less of those seen in the 

ATA 2009 strategy due to fewer patients at risk and lower complication rates. Average 

patient life expectancy slightly favored the ATA 2015 strategy (83.40 years vs. 83.36 
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years). In the case of the highly-morbid permanent bilateral recurrent laryngeal nerve 

injury, rates under the ATA 2015 strategy are only  approximately 4% of those in the 

ATA 2009 strategy (0.05% vs. 1.2%). Full results are shown in Table 2.6. 

  



 

 54 

 

Table 2.6. Results of Base Case Analysis – Predicted Numbers of Events 
Under Each Strategy. Based on 2016 US Thyroid Cancer Incidence (62,450 
patients) 

  Strategy 

Outcome ATA 2009 ATA 2015 

Diagnostic:   

FNA Biopsies (Lifetime) 80,132 18,555 

Initial Benign Diagnosis 34,953 18,248 

Treatment:   

Patients Under Active Surveillance 0 43,483 

Total Thyroidectomies (Lifetime) 51,298 2,049 

Lobectomies (Lifetime) 0 14,655 

Surgeries (Lifetime) 51,298 16,704 

Treatment-Related Adverse Events:   

Surgical Airway Problems 460 102 

Surgical Hematomas 367 78 

Temporary RLN Injuries 761 248 

Permanent RLN Injuries (Unilateral) 332 111 

Permanent RLN Injuries (Bilateral) 136 5 

Surgical Deaths 102 38 

Outcomes:   

Life Expectancy 83.36 years 83.40 years 

Locoregional & Lymph Node Metastases 9,790 11,364 

Distant Metastases 1,800 1,952 

Cancer Deaths 444 523 

Combined Cancer and Surgical Deaths 546 561 

 
Sensitivity Analysis 

In probabilistic sensitivity analysis, which involved varying multiple parameters 

simultaneously within the model to determine the effect of different combinations of 

uncertain inputs, the ATA 2015 strategy was preferred with certainty for all values of 

willingness to pay (WTP) of $0 or greater due to its dominance in all iterations.  
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We hypothesized that the comparative effectiveness of the two strategies would 

depend on patients’ utility while under AS, since patients with strong preferences for 

immediate treatment are unlikely to be good candidates for AS. For this reason, we 

undertook deterministic sensitivity analysis on the parameter used to track patients’ 

utilities while under AS. We find that if an individual patient’s disutility for AS is more 

than 0.126, the patient should be treated immediately. (Figure 2.2).  

Finally, we undertook deterministic sensitivity analysis on rates of metastases 

while under AS. We find that model results are insensitive to changes in this parameter. 

(Figures 2.3 & 2.4).  

 

Figure 2.2: Sensitivity Analysis. Changes in discounted lifetime utility (QALYs) for 
each strategy with varying rates of patient-specific utility for being under active 
surveillance 
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Figure 2.3: Sensitivity Analysis. Changes in discounted lifetime costs (USD$) of each 
strategy with varying rates of distant metastases while under active surveillance 
 

 
 

Figure 2.4: Sensitivity Analysis. Changes in Discounted Lifetime Utility (QALYs) for 
each strategy with varying rates of distant metastases while under active surveillance 
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Discussion 

Our analysis showed that the ATA 2015 guidelines present a highly cost-effective 

alternative to the ATA’s 2009 Guidelines. Use of the ATA 2015 recommended strategy 

would lead to far fewer surgeries and surgical complications, and greater quality of life. 

It would only have a small detrimental effect on overall rates of cancer-specific survival, 

an effect on average patient life-expectancy that is entirely offset by a reduction in 

surgical mortality.  

In their attempt to address questions pertaining to these smaller tumors, changes 

to the ATA guidelines have promoted less intensive therapies for a subset of tumors 

satisfying size and ultrasound criteria. We estimate that approximately 43,500 of the 

62,450 newly diagnosed patients in the US each year are suitable candidates for 

treatment via AS. We also find that under the ATA 2015 guidelines nearly 35,000 fewer 

patients would undergo surgery each year, and of these surgeries, nearly 88% of them 

would be lobectomies, a lower risk alternative to total thyroidectomy. We estimate that if 

the revised guidelines were followed, there is the potential for a large proportion of 

patients to be candidates for AS and for less aggressive surgery. The updated 

guidelines represent a potentially significant change in practice patterns. Thus, despite 

their expected benefit, clinicians will need reassurance that this move toward less 

intensive treatments will still offer patients excellent outcomes.  

Within the updated guidelines modeled herein, two major changes may be of 

particular interest to clinicians: active surveillance as an option to delay treatment, and 

lobectomy as a less intensive, but still highly efficacious immediate treatment. Studies of 
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lobectomy for thyroid cancer report on many patients over a significant duration. These 

studies indicate that when applied to appropriate patients, generally those without lymph 

node metastases and having unifocal tumors, lobectomy offers nearly as favorable 

recurrence and survival outcomes as total thyroidectomy, but results in much lower 

morbidity11,19,55. Our model results suggest that even though approximately 14% of 

patients initially treated via lobectomy will require completion thyroidectomy at some 

juncture, the initial use of lobectomy among eligible patients leads to quality of life gains 

and reduced cost. Likewise, we acknowledge in practice that there are other indications 

for performing an initial thyroidectomy such as bilateral nodules and patient preference. 

In contrast to lobectomy, there are relatively few studies reporting on the 

consequences of delaying intervention by using AS for PTC. Active Surveillance as a 

strategy has been in use for low-risk prostate cancer for many years now56. Similar 

challenges exist in determining appropriate candidates for PTmC active surveillance as 

exist in prostate cancer. While not all small PTmCs will be aggressive tumors, all large 

PTCs were small at one time, and criteria to predict which small tumors will become 

large tumors are not known.  

Although AS of PTmC has been utilized in limited settings overseas, it is a 

relatively new phenomenon in the US and data are lacking on the risks associated with 

delaying treatment for patients with small well-differentiated papillary thyroid 

malignancies. Fortunately, the limited data available to date indicate highly promising 

results, with high cancer-specific survival rates observed even over extended durations. 

It appears that the criteria for AS can be made sufficiently strict that, as with prostate 
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cancer, treatment delays do not typically lead to bad outcomes, yet still allow application 

to a large proportion of patients. Results from PTC AS in Japan indicate distant 

metastasis rates of 0% for a cohort of 1,235 patients followed up to 227 months9,10.  

Our sensitivity analysis on rates of metastases while following an AS protocol 

indicates that even at simulated rates of metastases while under surveillance 

significantly higher than has been reported, the ATA 2015 guidelines are still strongly 

preferred. We believe that this is attributable to two facts: (1) in our model, only 

approximately 13% of patients under surveillance actually have a malignancy and are at 

risk of metastases, and (2) even for metastatic disease, the annual rates of mortality are 

still low at less than 8%, as reported by prior authors42,57. 

Almost inevitably, some patients eligible for AS and their physicians may still be 

uncomfortable delaying treatment despite our findings, and patient preference may have 

a significant influence on treatment choice. However, our sensitivity analysis on patient 

preference for AS indicates that our results are robust to reductions in patient utility of 

up to 0.126. Although patients with this strong a preference against AS may opt for 

immediate treatment, this has only a minor influence on the choice of strategy due to 

the presence of lobectomy as a treatment option in the ATA 2015 strategy. Patients who 

qualify for AS but have a strong preference for immediate treatment are almost certainly 

candidates for lobectomy. Due to lobectomy’s lower rate of complications compared to 

total thyroidectomy, and comparable long-term outcomes in qualifying patients, the 

efficiency of the ATA 2015 strategy is maintained.  



 

 60 

The results of our model indicate that the ATA 2015 Guidelines are a highly cost-

effective strategy for management of patients with small, well-differentiated papillary 

thyroid cancers and should be preferred over the ATA’s 2009 Guidelines. The use of AS 

reduces the frequency of serious adverse events arising from surgery. Preferential use 

of lobectomy in a subset of patients allows these patients to retain thyroid function and 

thereby avoid lifelong treatment for hypothyroidism. Further research into rates of 

metastases while under AS, and more specific clinical characteristics of suitable 

patients for AS, would be beneficial to further demonstrate the safety and applicability of 

this approach. Additional studies on the health-related quality of life for patients 

undergoing AS will be valuable.  
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Abstract  

Purpose 

Hypertension affects approximately 30% of US adults and is correlated with 

significant cardiovascular events. Despite clear and well-established guidelines for 

treatment, nearly half of the 75 million hypertensive individuals in the US remain 

insufficiently treated. We sought to determine the effect of the Joint National Committee 

on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure (JNC7) 

guidelines on rates of antihypertensive medication prescribing among primary care 

physicians, and how rates of medication prescription for eligible patients varied by age, 

sex, race or comorbidity status.  

Methods 

We employed data from an electronic medical records database to undertake a 

logistic regression analysis. We analyzed 11.8 million blood pressure readings for adult 

patients (≥18 years) naïve to any antihypertensive medication and seen in outpatient 

clinics between January 2010 – December 2013. We investigated the effect of the JNC7 

guideline by examining treatment in patients with blood pressure readings just above or 

below the treatment threshold (systolic pressure 135-144 mmHg for non-diabetics).  

Results 

Treatment eligibility based upon systolic blood pressure significantly drives the 

initiation of antihypertensive medication (OR = 2.97±0.02). Nevertheless, only between 

17% and 36% of patients who satisfy the guideline for treatment are treated. For 

patients with blood pressure readings at or near the JNC7 guideline threshold, those 
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patients with qualifying systolic blood pressure readings (≥140mmHg, or ≥130mmHg for 

diabetics), have significantly higher odds of treatment than their non-qualifying 

counterparts (OR = 7.75±0.63) 

Compared to non-treatment-eligible white patients aged 18-30 years old with no 

cardiovascular comorbidities, similar black and Hispanic patients have a higher 

likelihood of treatment (OR = 1.95±0.00 and 1.41±0.00, respectively), as do white 

patients aged 60-70 years old with no cardiovascular comorbidities (OR = 10.83±0.01) 

and white patients 18-30 years old with cardiovascular comorbidities (OR = 1.43±0.00).   

Conclusion 

Although JNC7 guidelines affect rates of pharmacologic antihypertensive 

treatment initiation, a substantial proportion of eligible patients do not receive guideline 

concordant antihypertensive therapy. Moreover, this proportion varies significantly by 

age, race and comorbidity status. 
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Manuscript 

Introduction 

Background 

Hypertension is one of the most prevalent medical conditions in the United 

States, affecting approximately 30% of US adults and is correlated with significant 

cardiovascular events with high morbidity, mortality and costs1,2. Prospective and 

retrospective studies have shown that successful treatment of hypertension, and 

particularly, systolic blood pressure (SBP) control, leads to reductions in stroke, 

myocardial infarction, heart failure3. Appropriate diagnosis via blood pressure 

measurement, and effective treatment through the use of antihypertensive therapy, is 

associated with 35-40%, 20-25% and >50% reductions in incidence for these respective 

events3 

The Seventh Report of the Joint National Committee on Prevention, Detection, 

Evaluation, and Treatment of High Blood Pressure (JNC7)3, defines hypertension in 

those without diabetes or chronic kidney disease (CKD) as systolic blood pressure 

140mmHg or greater (130mmHg for diabetic patients), or diastolic blood pressure 

90mmHg or greater (80mmHg for diabetic patients). Blood pressure, a metric sufficient 

to implement the JNC7 guidelines, is easily measurable by healthcare providers using 

the sphygmomanometer available in almost every physician office. Despite this, studies 

indicate that even in high quality academic centers in excess of 30% of patients who 

meet hypertension diagnostic criteria are not appropriately diagnosed4.  
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A large proportion of patients with hypertension therefore remain inadequately 

treated. In 2012, nearly 30% of US adults were hypertensive. Yet an estimated 54% of 

hypertensive patients did not have their blood pressure controlled either due to lack of 

treatment initiation, lack of adherence to treatment or insufficient treatment, despite 

clear guidelines and effective therapies2. Prior authors have evaluated treatment 

effectiveness and management of hypertensive patients5–7. This is the first study to 

evaluate rates of JNC7 concordant treatment initiation based upon blood pressure 

readings in a nationally representative population  

JNC7 Guidelines 

The JNC7 guidelines were released in 2004, approximately 7 years after their 

predecessor, the JNC6 guidelines. A key difference from the JNC6 guidelines was an 

effort to make the guidelines easy to apply. To this end, the committee specifically 

called for the guidelines to be more concise and for the criteria for diagnosis to be 

simplified3 The JNC7 guidelines specify that non-diabetic patients with SBP ≥ 140mmHg 

or DBP ≥ 90mmHg be treated for Hypertension with pharmacologic therapy. For 

diabetic patients or those with chronic kidney disease, the SBP threshold for treatment 

with pharmacologic therapy is 130mmHg and DBP is 80mmHg.  

We undertook an analysis to compare physicians’ antihypertensive medication 

prescribing behavior with the recommended practice from the JNC7 guidelines. We also 

examined how guideline-concordant treatment initiation varied by patient characteristics 

such as patient gender, age, or race. 
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Methods 

Data Source  

Data were gathered from the GE Centricity Electronic Medical Records (GE-

EMR) system’s Medical Quality Improvement Consortium (MQIC) dataset. The MQIC is 

a consortium of over 700 ambulatory practices representing 33,000 healthcare 

providers caring for approximately 35 million patients throughout the United States. 

Data from these providers are collected as part of standard clinical practice. They are 

used to create the federally mandated “Meaningful Use” reports, population health 

management initiatives and quality reporting.  

The GE-EMR has been in use for over 25 years and is certified by the 

Certification Commission for Healthcare Information Technology. It has been utilized in 

prior analyses, and validated against NCHS-NAMCS to show concordance in results for 

many conditions including hypertension and diabetes (24.4% and 10.2% for GE-EMR, 

20.2% – 25.4% and 8.5% – 11.1% for NAMCS respectively)8,9. 

Records in the GE-EMR contain patient demographic information and patient 

clinical characteristics such as prior and current diagnoses and medication lists. During 

and post-visit, physicians record the details of the patient office visit encounter. This 

encounter record contains information pertaining to patient symptoms, diagnoses made, 

procedures performed and prescriptions written during the visit, as well as free text 

physician notes. For this analysis we relied solely on the structured information 

contained in the dataset. This structured data contains details of patient date of birth, 

gender, race, ethnicity, marital status, employment status, and pre-existing health 

conditions, as well as numeric blood pressure readings that were captured by the 
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clinician at the time of the visit. Importantly, the record also contains information 

regarding the patient’s current medications allowing physicians to determine during the 

visit if a patient has reported any current pharmacologic treatment for hypertension. 

Patient Population 

Inclusion Criteria 

All blood pressure readings recorded for adult patients (age ≥18) during an office 

visit with an Internal Medicine or Family Practice physician, or a Cardiologist within the 

period January 1, 2010 until December 17, 2013 were included in the initial extraction. 

This cutoff date was chosen to coincide with the publication of the updated JNC8 

guidelines, which supplanted the JNC7 guidelines and defined a higher systolic blood 

pressure treatment threshold for older patients.  

Exclusion Criteria 

Data were excluded from analysis if patients were less than 18 years old at the 

time of the blood pressure reading, if patients’ records indicated that they were taking 

any existing antihypertensive medications, if their blood pressure readings were likely 

incorrect (SBP < 100 or >200, DBP < 55 or > 120, SBP not at least 10mmHg greater 

than DBP), or if the reading was taken during a visit to a practice with a specialty other 

than those defined in the inclusion criteria.  

Data Elements 

For each blood pressure reading in the dataset, the patient’s gender, age, marital 

status, employment status, race and ethnicity were recorded. Additionally, we 

determined whether the patient was evaluated by a physician, or by a non-physician 

healthcare provider, and the medical specialty of the provider. For each patient’s blood 
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pressure record, we determined whether any antihypertensive drug was prescribed for 

the patient during the office visit at which the blood pressure reading was taken. 

Medications considered suitable for hypertension treatment included those from the 

classes “Diuretics”, “Beta Blockers”, “Angiotensin Receptor Blockers”, “Angiotensin 

Converting Enzyme inhibitors” or “Calcium Channel Blockers”. Any medication from any 

of these classes prescribed at the time of the visit was sufficient to determine that 

guideline-concordant medication was prescribed.  

Utilizing patient medical histories within the dataset, any patient with a history of 

ischemic heart disease (IHD), congestive heart failure (CHF), diabetes, myocardial 

infarction (MI), stroke (CVA) or peripheral vascular disease (PVD) was identified and 

flagged for subgroup analysis. 

 

Figure 3.1: Dataset Inclusion Exclusion Criteria  
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Our initial dataset contained 59,001,548 patient blood pressure records within the 

eligible date range from eligible providers. After the application of all inclusion and 

exclusion criteria, the retained sample for analysis contained 11,799,751 patient blood 

pressure records. Dataset characteristics are shown in Figure 3.1 and Table 3.1. 
  

Table 3.1: Dataset Characteristics (n= 11,799,751)  

Blood Pressure – Mean (SD)  
Systolic 127.1 (15.2) 
Diastolic 76.5 (9.6) 

Patient Gender  
Female 0.60 

Patient Age  
18 – 29 0.15 
30 – 39  0.13 
40 – 49  0.16 
50 – 59  0.19 
60 – 69  0.17 
70 – 79  0.12 
80 and older 0.07 

Patient Race   
White 0.69 
Black 0.08 
Asian 0.02 
Native American / Alaskan 0.00 
Hawaiian / Pac. Islander 0.00 
Unknown 0.17 
Not-Entered 0.04 

Patient Ethnicity  
Non-Hispanic 0.76 
Hispanic 0.08 
Unknown 0.17 
Not Entered 0.00 

Patient Employment Status  
Employed 0.15 
Unemployed 0.06 
Retired 0.11 
Unknown 0.60 
Not Entered 0.08 

 
Patient Marital Status  

Married 

Single 

0.48 
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Single 0.23 
Widowed / Widower 0.07 
Divorced 0.06 
Separated 0.01 
Partnered 0.00 
Unknown 0.16 
Not Entered 0.00 

Comorbidities  
Diabetes 0.21 
History of Myocardial infarction 0.02 
History of Stroke 0.06 
History of Ischemic Heart Disease 0.12 
History of Peripheral Vascular Disease 0.04 
History of Congestive Heart Failure 0.04 

Treating Provider Type  
Physician 0.96 
Non-Physician 0.04 

  
Analysis of Effect of Guidelines 

We conducted logistic regression analyses on the entire sample population, and 

then undertook separate subgroup analyses by age, gender, and comorbidity status.  

Overall Analysis 

If physician prescribing behavior was influenced by the sharp blood pressure 

threshold promulgated by the JNC7 guidelines, there would be a discontinuity in the 

rates of antihypertensive medication prescription at the DBP 90mmHg or the SBP 

140mmHg thresholds. We searched for this discontinuity.  

Our primary outcome of interest was physicians’ antihypertensive drug 

prescribing behavior for their patients (prescription of any antihypertensive drug = 1). 

Independent predictor variables included in the model were systolic (or in a separate 

model, diastolic) blood pressure reading, patient 10-year age category (18 – 30, 30-40, 

40-50, 50-60, 60-70, 70-80, 80+), gender (Male, Female), race (White, Black, Asian, 

Native American, Hawaiian/Pacific Islander), ethnicity (Non-Hispanic, Hispanic), 
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employment status (Unemployed, Employed, Retired), marital status (Married, Single, 

Widowed, Divorced, Separated, Partnered), existence of comorbidities (Yes/No), and 

whether the healthcare provider was a physician (Yes/No).  

To test whether JNC7 guidelines affected prescribing behavior, in all model 

specifications we included a covariate indicating whether the patient satisfied the JNC7 

guidelines of either 140mmHg systolic (130mmHg for diabetic patients) or 90mmHg 

diastolic for treatment (Treatment Eligible = 1). We also included an interaction term 

between systolic blood pressure and JNC7 guideline treatment eligibility to determine if 

physicians’ response to systolic blood pressure was greater than their response to 

diastolic blood pressure.   

Threshold Analysis 

To determine the effect of the 140mmHg systolic cutoff on physicians’ propensity 

to initiate antihypertensive therapy, additional logistic regression analyses were 

undertaken utilizing only those patient blood pressure records where systolic blood 

pressure readings fell in the range between 135mmHg and 144mmHg. Presuming the 

guidelines are effective, there should be a step change in prescribing probability for 

patients below 140mmHg compared to their near equivalent counterparts with SBP of 

140mmHg (and above). 
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Subgroup Analyses 

Using the same model specifications, we undertook subgroup analyses by ten-

year age group, gender and comorbidity status. All analyses were undertaken using R 

statistical software, version 3.3.   

The study was approved by the Institutional Review Board of the Harvard Faculty 

of Arts and Sciences. 

Results 

Blood pressure distribution 

The distribution of blood pressure readings highlighted a strong zero terminal-

digit preference for both systolic and diastolic values (Figure 3.2). Readings with zero 

 

Figure 3.2: Distribution of systolic and diastolic blood pressure readings  
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end-digits were recorded 30% and 34% of the time for diastolic and systolic values 

respectively. Providers also had a preference for reporting even-numbered readings; 

even numbered readings were recorded in the dataset 86% of the time for both diastolic 

and systolic values. Controlling for other covariates, patients whose systolic blood 

pressure reading is even numbered have slightly greater odds of treatment (OR = 

1.04±0.01). For diastolic blood pressure, the even-number effect was also small, but in 

the opposite direction (OR = 0.99±0.00). 

 

Table 3.2: Overall Population Regression Analysis Results 

 Systolic Diastolic 
Sample Size 11,799,751 11,799,751 

  Estimate SE Estimate SE 
(Intercept) 0.001 0.019 0.003 0.016 
Systolic BP (mmHg) 1.025 0.000 N/A N/A 
Diastolic BP (mmHg) N/A N/A 1.018 0.000 
Treatment Eligible 2.972 0.023 0.833 0.016 
Even Systolic BP Reading 1.039 0.003 N/A N/A 
Even Diastolic BP Reading N/A N/A 0.989 0.003 
Physician  1.108 0.005 1.113 0.005 

Gender     
Male 1.000  1.000  
Female 0.892 0.002 0.905 0.002 

Race     
White 1.000  1.000  
Black 1.952 0.003 1.938 0.003 
Asian 1.540 0.007 1.503 0.007 
Native American 0.894 0.016 0.889 0.016 
Hawaiian / Pacific Islander 1.225 0.021 1.204 0.021 
Unknown 1.211 0.003 1.215 0.003 
Not Entered 1.047 0.005 1.050 0.005 

Ethnicity     
Non-Hispanic 1.000  1.000  
Hispanic 1.411 0.004 1.422 0.004 
Unknown 0.840 0.003 0.841 0.003 
Not Entered 1.320 0.018 1.305 0.018 

Marital Status     
Married 1.000  1.000  
Single 1.096 0.003 1.092 0.003 
Widowed/Widower 1.103 0.004 1.118 0.004 
Divorced 0.987 0.004 0.984 0.004 
Separated 1.105 0.011 1.100 0.011 
Partnered 0.818 0.072 0.803 0.072 
Unknown 1.074 0.003 1.072 0.003 
Not-Entered 1.599 0.173 1.538 0.174 
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Employment Status     
Unemployed 1.000  1.000  
Employed 0.957 0.005 0.960 0.005 
Retired 0.828 0.005 0.841 0.005 
Unknown 0.949 0.004 0.949 0.004 
Not-Entered 0.937 0.005 0.946 0.005 

Age Category     
Age 18-30 1.000  1.000  
Age 30-40 3.503 0.008 3.403 0.008 
Age 40-50 6.788 0.007 6.727 0.007 
Age 50-60 9.557 0.007 10.049 0.007 
Age 60-70 10.830 0.007 12.379 0.007 
Age 70-80 9.644 0.008 11.874 0.008 
Age 80+ 7.875 0.008 10.201 0.008 

Comorbidities     
False 1.000  1.000  
True 1.430 0.002 1.435 0.002 

Interaction 1.000  1.000  
Systolic BP (mmHg) * Treatment Eligible 
 

0.992 
 

0.000 
 

1.007 
 

0.000 
  

In unadjusted regression models for the overall population there was a significant 

difference in physicians’ response to increases in diastolic blood pressure for readings 

above the 90mmHg threshold for both diabetic and non-diabetic patients, indicating 

guideline effectiveness (Figures 3.3(a), 3.3(b), 3.3(c) & 3.3(d)). The effect is noticeable, 

but much less pronounced, for systolic blood pressure readings at the respective 

130mmHg and 140mmHg thresholds. In all models, there were increasing odds of 

antihypertensive drug prescription with increasing systolic blood pressure and greater 

odds of prescribing for patients who satisfy the guideline criteria. For each 1mmHg 

increase in SBP the odds of treatment increase by 2.5%. 
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Figure 3.3(a)–(d): Threshold Analysis Results showing Systolic and Diastolic cutoffs 
for treatment and treatment probability above and below treatment thresholds  
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Within the overall analysis, females have lower odds of treatment than males 

(OR = 0.89±0.00). With the exception of Native Americans (OR = 0.89±0.02), White 

patients have the lowest odds of treatment versus their Black, Asian and 

Hawaiian/Pacific Island counterparts (OR = 1.95±0.00, 1.54±0.01, and 1.23±0.02) 

respectively).   

Patients receiving care from a physician have greater odds of treatment than 

those treated by non-physicians such as nurses, nurse practitioners and physician 

assistants (OR = 1.11±0.01).  

Consistently, patients with comorbid conditions have higher odds of treatment 

(OR = 1.43±0.00) than their otherwise healthy counterparts. 
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Table 3.5: Subgroup Analysis Model Results (Threshold Analysis) 
 

  SBP Threshold Analysis 
(135mmHg-144mmHg) 

DBP Threshold Analysis 
(86mmHg - 92mmHg) 

Sample Size 1,551,964 1,360,864 

  Estimate SE Estimate SE 
(Intercept) 0.00 0.59 0.03 0.40 
Systolic BP (mmHg) 1.02 0.00   
Diastolic BP (mmHg)   1.00 0.00 
Treatment Eligible 7.75 0.63 0.83 0.43 
Even Systolic BP Reading     
Even Diastolic BP Reading     
Physician  1.14 0.01 1.11 0.01 

Gender     
Male 1.00    
Female 0.93 0.00 0.89 0.00 

Race     
White 1.00    
Black 1.91 0.01 1.96 0.01 
Asian 1.66 0.02 1.47 0.02 
Native American 0.90 0.04 0.92 0.04 
Hawaiian / Pacific Islander 1.18 0.05 1.23 0.05 
Unknown 1.17 0.01 1.17 0.01 
Not Entered 1.02 0.01 1.07 0.01 

Ethnicity     
Non-Hispanic 1.00    
Hispanic 1.52 0.01 1.38 0.01 
Unknown 0.87 0.01 0.89 0.01 
Not Entered 1.42 0.04 1.26 0.05 

Marital Status     
Married 1.00    
Single 1.08 0.01 1.10 0.01 
Widowed/Widower 1.09 0.01 1.10 0.01 
Divorced 0.97 0.01 0.99 0.01 
Separated 1.07 0.03 1.14 0.03 
Partnered 0.85 0.17 0.61 0.18 
Unknown 1.07 0.01 1.08 0.01 
Not-Entered 2.53 0.44 1.42 0.41 

Employment Status     
Unemployed 1.00    
Employed 0.95 0.01 0.96 0.01 
Retired 0.85 0.01 0.85 0.01 
Unknown 0.96 0.01 0.98 0.01 
Not-Entered 0.96 0.01 0.93 0.01 

Age Category     
Age 18-30 1.00    
Age 30-40 2.75 0.02 2.49 0.02 
Age 40-50 4.25 0.02 4.19 0.02 
Age 50-60 5.38 0.02 5.59 0.02 
Age 60-70 5.88 0.02 6.35 0.02 
Age 70-80 5.26 0.02 5.62 0.02 
Age 80+ 4.34 0.02 4.71 0.02 

Comorbidities     
True 1.25 0.00 1.39 0.01 

Interaction 1.00    
Systolic BP (mmHg) * Treatment Eligible 0.99 0.00 1.01 0.00 
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Threshold Analysis 

To focus on the effect of the 140mmHg threshold for eligibility for treatment, we 

undertook an analysis using only those patients with systolic blood pressure readings in 

the range 135mmHg to 144mmHg (Table 3.5). We controlled for systolic blood pressure 

by including it as a numeric independent variable in our regression. As was the case 

with all other analyses, patients in this subgroup analysis with systolic blood pressure 

135mmHg – 139mmHg were classified as “not guideline eligible” if in addition their 

diastolic blood pressure did not warrant treatment (i.e. it was less than 90mmHg) and 

they were not diabetic (for whom a 130mmHg threshold for treatment applies). All 

patients with readings of 140mmHg – 144mmHg were classified as “guideline eligible” 

for treatment. The results of this threshold analysis are shown in Table 3.5, and Figures 

3.3(a), 3.3(b), 3.3(c) & 3.3(d). 

In this analysis, we see much higher odds of treatment (OR = 7.75±0.63) among 

patients who are guideline eligible for treatment compared to those who are not.   
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 Table 3.6: Subgroup Analysis Model Results (Age) 

  18-30yo 30-40yo 40-50yo 50-60yo 60-70yo 70-80yo 80+ 

Sample Size n=1,439,713 n=1,374,048 n=1,888,038 n=2,386,882 n=2,208,894 n=1,535,454 n=966,722 

  Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE Est. SE 

(Intercept) 0.00 0.14 0.00 0.08 0.00 0.05 0.01 0.04 0.02 0.04 0.03 0.05 0.02 0.06 
Systolic BP (mmHg) 1.05 0.00 1.05 0.00 1.03 0.00 1.02 0.00 1.02 0.00 1.01 0.00 1.01 0.00 
Diastolic BP (mmHg) N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A N/A 
Treatment Eligible 10.2

7 
0.18 5.63 0.10 2.06 0.06 1.38 0.05 1.23 0.05 1.31 0.06 1.36 0.07 

Even SBP Reading 1.23 0.02 1.09 0.01 1.05 0.01 1.01 0.01 1.01 0.01 1.05 0.01 1.11 0.01 
Physician  1.09 0.03 1.08 0.02 1.08 0.01 1.06 0.01 1.11 0.01 1.19 0.01 1.25 0.02 

Gender                             
Male 1.00 

 
1.00 

 
1.00 

 
1.00 

 
1.00 

 
1.00 

 
1.00   

Female 0.67 0.01 0.72 0.01 0.77 0.00 0.85 0.00 0.95 0.00 1.05 0.00 1.21 0.01 
Race                             

White 1.00 
 

1.00 
 

1.00 
 

1.00 
 

1.00 
 

1.00 
 

1.00   
Black 1.93 0.02 2.12 0.01 1.99 0.01 1.92 0.01 1.82 0.01 1.88 0.01 1.98 0.01 
Asian 0.96 0.07 1.02 0.03 1.21 0.02 1.43 0.01 1.51 0.01 2.02 0.02 2.32 0.02 
Native American 0.82 0.10 0.76 0.06 0.89 0.04 0.87 0.03 0.86 0.03 1.00 0.04 1.14 0.07 
Hawaiian / PI 0.75 0.14 1.23 0.07 1.15 0.05 1.18 0.04 1.24 0.04 1.15 0.06 1.56 0.10 
Unknown 0.92 0.02 1.05 0.01 1.12 0.01 1.19 0.01 1.27 0.01 1.32 0.01 1.22 0.01 
Not Entered 0.97 0.04 0.97 0.02 0.99 0.01 1.00 0.01 1.07 0.01 1.09 0.01 1.12 0.02 

Ethnicity                             
Non-Hispanic 1.00 

 
1.00 

 
1.00 

 
1.00 

 
1.00 

 
1.00 

 
1.00   

Hispanic 1.13 0.03 1.19 0.01 1.27 0.01 1.42 0.01 1.49 0.01 1.61 0.01 1.77 0.02 
Unknown 0.88 0.02 0.89 0.01 0.86 0.01 0.85 0.01 0.84 0.01 0.81 0.01 0.82 0.01 
Not Entered 0.88 0.15 1.07 0.08 1.05 0.05 1.26 0.04 1.38 0.04 1.57 0.04 1.50 0.06 

Marital Status                             
Married 1.00 

 
1.00 

 
1.00 

 
1.00 

 
1.00 

 
1.00 

 
1.00   

Single 0.81 0.02 1.07 0.01 1.05 0.01 1.06 0.00 1.09 0.01 1.11 0.01 1.18 0.01 
Widowed/Widower 0.99 0.28 1.10 0.07 1.08 0.03 1.04 0.01 1.07 0.01 1.07 0.01 1.08 0.01 
Divorced 1.09 0.06 1.06 0.02 0.98 0.01 0.96 0.01 0.97 0.01 0.96 0.01 1.04 0.02 
Separated 1.15 0.10 1.07 0.04 1.05 0.02 1.06 0.02 1.09 0.02 1.22 0.03 1.22 0.04 
Partnered 0.99 0.28 0.84 0.19 0.63 0.15 0.82 0.13 1.04 0.18 1.81 0.29 0.00 19.0

8 
Unknown 0.87 0.02 1.09 0.01 1.05 0.01 1.05 0.01 1.05 0.01 1.07 0.01 1.11 0.01 
Not-Entered 1.18 0.47 2.68 0.36 1.32 0.49 1.22 0.32 1.11 0.46 2.77 0.71 

 
  

Employment Status                             
Unemployed 1.00 

 
1.00 

 
1.00 

 
1.00 

 
1.00 

 
1.00 

 
1.00   

Employed 0.88 0.03 0.94 0.02 1.01 0.01 1.01 0.01 0.91 0.01 0.88 0.02 0.96 0.03 
Retired 1.75 0.28 1.02 0.11 0.96 0.04 0.93 0.01 0.83 0.01 0.77 0.02 0.75 0.02 
Unknown 0.95 0.02 1.00 0.01 1.01 0.01 1.00 0.01 0.91 0.01 0.86 0.02 0.87 0.02 
Not-Entered 0.83 0.03 0.93 0.02 0.91 0.01 0.93 0.01 0.91 0.01 0.94 0.02 1.00 0.03 

Comorbidities                             
False 1.00 

 
1.00 

 
1.00 

 
1.00 

 
1.00 

 
1.00 

 
1.00   

True 4.05 0.02 2.61 0.01 1.98 0.01 1.57 0.00 1.30 0.00 1.14 0.00 1.07 0.01 
Interaction                             
Systolic BP (mmHg)* 
Treatment Eligible 0.99 0.00 0.99 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 1.00 0.00 
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Subgroup Analyses 

We conducted subgroup analyses by age, gender and comorbidity status. 

Results of these analyses are shown in Tables 3.6 & 3.7 and Figures 3.4(a)-(d), and 

discussed in the following text.  

 

Figure 3.4(a) – (d): Charts showing predicted probability of prescription by subgroup  
 

 
(a) Comorbidity Status 

 
(b) Gender 

 
(c) Race 

 
(d) Age Group 
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Within our subgroup analyses stark differences are evident in treatment 

probabilities for different age groups. Patients age 60-69 who satisfy the JNC7 

guidelines are much more likely than their 18-30-year-old counterparts to receive any 

medication for their hypertension (OR = 10.83±0.01). Indeed, treatment is more likely at 

higher ages, with all age groups having odds of treatment between 3.5 and 10.8 

compared to the 18-30-year age group.  

Marital status also affects treatment. Persons describing themselves as 

“partnered”, that is, living as a married couple yet not married, have divergent odds of 

treatment based upon comorbidity status. Comorbid “partnered” patients have odds of 

1.35 versus their healthier “partnered” counterparts, whose odds are 0.617. Patients 

who are classified as having comorbidities have much lower odds of treatment than 

their otherwise healthy counterparts based on guideline criteria alone.  

The effect of the JNC7 guideline eligibility for treatment on odds of treatment 

initiation for comorbid patients is 0.80±0.04, compared to odds of 6.85±0.03 for those 

with none of the six comorbidities.  

 

Table 3.7: Subgroup Analysis Model Results (Gender, Health Status) 

 
Female Only Male Only 

Without  
Comorbidities 

With  
Comorbidities 

Sample Size n=7,020,125 n=4,779,626 n=7,935,140 n=3,864,611 

 Est. SE Est. SE Est. SE Est. SE 
(Intercept) 0.00 0.03 0.00 0.03 0.00 0.02 0.01 0.03 
Systolic BP (mmHg) 1.03 0.00 1.02 0.00 1.03 0.00 1.01 0.00 
Diastolic BP (mmHg) N/A N/A N/A N/A N/A N/A N/A N/A 
Treatment Eligible 4.79 0.03 1.22 0.04 6.85 0.03 0.80 0.03 
Even Systolic BP Reading 1.03 0.00 1.04 0.00 1.08 0.00 1.01 0.00 
Even Diastolic BP Reading   

  
    

  
  

Physician  1.10 0.01 1.11 0.01 1.12 0.01 1.11 0.01 
Gender                 

Male   
  

  1.00 
 

1.00   
Female   

  
  0.85 0.00 0.95 0.00 



 

 90 

Race                 
White 1.00 

 
1.00   1.00 

 
1.00   

Black 2.05 0.00 1.84 0.00 2.12 0.00 1.78 0.00 
Asian 1.55 0.01 1.52 0.01 1.39 0.01 1.71 0.01 
Native American 0.86 0.02 0.95 0.02 0.92 0.02 0.86 0.02 
Hawaiian / Pacific Islander 1.22 0.03 1.22 0.03 1.14 0.03 1.28 0.03 
Unknown 1.25 0.00 1.16 0.00 1.17 0.00 1.27 0.00 
Not Entered 1.04 0.01 1.05 0.01 1.07 0.01 1.03 0.01 

Ethnicity                 
Non-Hispanic 1.00 

 
1.00   1.00 

 
1.00   

Hispanic 1.41 0.00 1.41 0.01 1.23 0.01 1.56 0.01 
Unknown 0.83 0.00 0.85 0.00 0.83 0.00 0.85 0.00 
Not Entered 1.33 0.02 1.29 0.03 1.30 0.03 1.33 0.02 

Marital Status                 
Married 1.00 

 
1.00   1.00 

 
1.00   

Single 1.10 0.00 1.07 0.00 1.06 0.00 1.11 0.00 
Widowed/Widower 1.06 0.00 1.01 0.01 1.11 0.01 1.08 0.00 
Divorced 0.97 0.00 1.01 0.01 1.01 0.01 0.96 0.01 
Separated 1.11 0.01 1.08 0.02 1.07 0.02 1.12 0.01 
Partnered 1.24 0.10 0.58 0.10 0.62 0.10 1.35 0.11 
Unknown 1.08 0.00 1.04 0.00 1.05 0.00 1.10 0.00 
Not-Entered 1.52 0.21 1.82 0.31 1.35 0.24 1.69 0.25 

Employment Status                 
Unemployed 1.00 

 
1.00   1.00 

 
1.00   

Employed 0.91 0.01 0.99 0.01 0.97 0.01 0.99 0.01 
Retired 0.81 0.01 0.84 0.01 0.88 0.01 0.83 0.01 
Unknown 0.93 0.00 0.95 0.01 0.98 0.01 0.95 0.01 
Not-Entered 0.92 0.01 0.95 0.01 0.94 0.01 0.96 0.01 

Age Category                 
Age 18-30 1.00 

 
1.00   1.00 

 
1.00   

Age 30-40 3.84 0.01 3.08 0.01 3.33 0.01 2.01 0.02 
Age 40-50 7.92 0.01 5.51 0.01 6.47 0.01 2.83 0.02 
Age 50-60 11.90 0.01 7.20 0.01 9.59 0.01 3.31 0.02 
Age 60-70 14.38 0.01 7.56 0.01 11.76 0.01 3.40 0.02 
Age 70-80 13.39 0.01 6.37 0.01 11.29 0.01 2.93 0.02 
Age 80+ 11.43 0.01 4.71 0.01 9.66 0.01 2.35 0.02 

Comorbidities                 
True 1.43 0.00 1.45 0.00   

  
  

Interactions          
Systolic BP (mmHg) * 
Treatment Eligible 0.99 0.00 1.00 0.00 0.99 0.00 1.00 0.00 

 

Discussion 

Our analyses show that physician behavior appears to be influenced by the 

JNC7 guidelines. Patients who satisfy the guidelines are more likely to receive a 

prescription for a suitable medication than similar patients who do not.  

Despite the positive effect of SBP on treatment initiation, many patients with 

elevated blood pressure readings are not receiving recommended treatment. More 
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specifically, patients satisfying the criteria for treatment specified in the JNC7 Guidelines 

are only prescribed an antihypertensive medication between 17% (systolic blood 

pressure category 140mmHg – 144mmHg) and 36% (systolic blood pressure category 

195mmHg – 199mmHg) of the time. It is unclear whether there are clinical reasons for 

this deviation, and if so what those reasons might be, but it nonetheless seems likely 

that a significant portion of eligible patients are left untreated for reasons unrelated to 

their clinical parameters. In short, our results indicate significant under-treatment of 

hypertension for patients across all ages, races and for both men and women.  

We also find that patient characteristics such as age, race and comorbidity status 

influence treatment probability, with younger patients much less likely to receive 

recommended treatment.  Notably, in our data, black patients are more likely to receive 

treatment than their white counterparts. This finding may seem incongruent with much 

of the literature, because it is well known that black patients have worse outcomes for 

hypertension at a population level2. Nonetheless, among those blacks who visit their 

primary care doctor, our findings suggest that black patients are more likely to receive 

guideline-concordant care, This finding is supported by those of prior authors7,10,11. 

Perhaps the higher rates of treatment are due to physician awareness of these worse 

outcomes and a perception that hypertension among black patients may be more likely 

to be recalcitrant, conditioning physicians to treat black patients more aggressively. 

Prescribing occurs more often for qualifying patients who are seen by physicians 

compared to those patients who are treated by non-physician healthcare specialists. 
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Further analysis is necessary to determine whether this is due to prescribing limitations 

or other factors.   

We recognize that many physicians may not wish to prescribe medications to 

patients after a single, initial high reading due to a possible “white coat effect”, and/or a 

preference to try to implement lifestyle modifications with the patient before resorting to 

medication. While this reasoning may apply in many cases, this practice deviates from 

the JNC7 guidelines and the argument is inconsistent with the findings of prior studies 

conducted at several centers across the United States that indicate patients with 

repeated high blood pressure readings often remain untreated4. 

The size and geographic breadth of our sample leads us to conclude that our 

findings apply broadly, not to just some niche populations, and that the phenomenon of 

undertreatment of hypertension is widespread. Thus, this represents a large opportunity 

for major improvements in cardiovascular primary and specialty care. While patient non-

adherence to medications is often an issue, our analysis specifically focuses on medical 

practitioner behavior and clinicians’ adherence to guidelines. A large gap exists 

between recommended care and that which is being applied in actual practice.   

Surprisingly, in a model with DBP and age controls our analysis indicates a mild 

negative association of diastolic blood pressure on treatment initiation. Why this is so is 

unclear, but it could relate to a positive correlation (~0.3) between age and SBP and a 

slight negative correlation between age and DBP (~ -0.04). Older patients typically 

exhibit higher systolic blood pressure. Thus, if physicians are more likely to initiate 

therapy based upon systolic blood pressure the age-SBP correlation may manifest itself 
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as a positive effect of age on treatment initiation in models with no SBP covariate and 

mask a smaller effect of diastolic blood pressure on treatment initiation. 

This study utilizes electronic medical records. Therefore it is therefore subject to 

the limitations of data collected for clinical use rather than research. It is possible that 

some medications prescribed were not recorded in the electronic records system. We 

are also unable to determine whether physicians were choosing not to prescribe due to 

patient requests for lifestyle modifications, or due to referral to other providers, or for 

other reasons that may be clinically viable, yet at variance with JNC7 expectations.    

Conclusion  

 This study was initiated to assess the effectiveness of the JNC7 guidelines for 

hypertension treatment. That investigation revealed an important finding that was not 

part of our initial motivation. There is substantial under-treatment for hypertension. 

Nearly two-thirds of tested patients for whom the guidelines recommend treatment did 

not receive it.  Moreover, 31.8% had guideline eligible blood pressures, and 11.9% of 

our sample had blood pressures that were more than ten points above the level where 

treatment is recommended. 

To return to our initial purpose, for patients without any prior pharmacologic 

treatment for hypertension the JNC7 guidelines are associated with increases in 

physician hypertension drug prescribing behavior. This effect varies by age, race and 

comorbidity status.  
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In short, there is evidence that the JNC7 guidelines have an effect, but the effect 

falls far short of getting the vast majority of patients who need treatment to receive 

treatment. 

Acknowledgments  

Craig White was supported by R25CA092203 from the National Cancer Institute 

at the National Institutes of Health. He wishes to acknowledge Professor Christopher 

Robertson for his ideas, which proved very useful during the analysis phase of the study 

and Assistant Professor Jacob Wallace, whose input was helpful during the 

conceptualization of the study.  

 

 

  



 

 95 

 
References 

1.  Guo F, He D, Zhang W, Walton RG. Trends in Prevalence, Awareness, 
Management, and Control of Hypertension Among United States Adults, 1999 to 
2010. J Am Coll Cardiol. 2012;60(7):599-606. doi:10.1016/j.jacc.2012.04.026. 

2.  Centers for Disease Control and Prevention (CDC). Vital signs: prevalence, 
treatment, and control of hypertension--United States, 1999-2002 and 2005-
2008. MMWR Morb Mortal Wkly Rep. 2011;60(4):103-108. 

3.  National High Blood Pressure Education Program. The Seventh Report of the 
Joint National Committee on Prevention, Detection, Evaluation, and Treatment of 
High Blood Pressure. Bethesda (MD): National Heart, Lung, and Blood Institute 
(US); 2004. http://www.ncbi.nlm.nih.gov/books/NBK9630/. Accessed October 3, 
2016. 

4.  Wall HK, Hannan JA, Wright JS. Patients with undiagnosed hypertension: hiding 
in plain sight. JAMA. 2014;312(19):1973-1974. doi:10.1001/jama.2014.15388. 

5.  Jha AK, Perlin JB, Kizer KW, Dudley RA. Effect of the Transformation of the 
Veterans Affairs Health Care System on the Quality of Care. N Engl J Med. 
2003;348(22):2218-2227. doi:10.1056/NEJMsa021899. 

6.  Asch SM, McGlynn EA, Hiatt L, et al. Quality of care for hypertension in the 
United States. BMC Cardiovasc Disord. 2005;5(1):1. doi:10.1186/1471-2261-5-1. 

7.  Gillespie, C, Kuklina E, Briss P, Blair N, Hong Y. Vital Signs: Prevalence, 
Treatment, and Control of Hypertension — United States, 1999–2002 and 2005–
2008. Morb Mortal Wkly Rep. 2011;60(4):103-108. 

8.  Crawford AG, Cote C, Couto J, et al. Comparison of GE Centricity Electronic 
Medical Record database and National Ambulatory Medical Care Survey findings 
on the prevalence of major conditions in the United States. Popul Health Manag. 
2010;13(3):139-150. doi:10.1089/pop.2009.0036. 

9.  Crawford AG, Cote C, Couto J, et al. Prevalence of obesity, type II diabetes 
mellitus, hyperlipidemia, and hypertension in the United States: findings from the 
GE Centricity Electronic Medical Record database. Popul Health Manag. 
2010;13(3):151-161. doi:10.1089/pop.2009.0039. 

10.  Hicks LS, Fairchild DG, Horng MS, Orav EJ, Bates DW, Ayanian JZ. 
Determinants of JNC VI guideline adherence, intensity of drug therapy, and blood 
pressure control by race and ethnicity. Hypertens Dallas Tex 1979. 
2004;44(4):429-434. doi:10.1161/01.HYP.0000141439.34834.84. 

11.  Diana Downie, Dorothee Schmid, Marcus G Plescia, et al. Racial Disparities in 
Blood Pressure Control and Treatment Differences in a Medicaid Population, 
North Carolina 2005-2006. Prev Chronic Dis. 2011;8(3). 



 

 96 

 

Appendix 1 – Supplementary Materials for Chapter 1 

Supplementary Table 1.1 – Complication Rates for Repeat Biopsy 

Supplementary Table 1: Complication Rates for Repeat Biopsy 

Biopsy Number Complication Rate (per biopsy) 

1 0.02 
2 0.02 
3 0.055 
4 0.1 
5 0.15 
6 0.16 
7 0.12 
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Economic Model Literature Review Search Terms and Findings 
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"cancer"[All Fields]) OR ("neoplasms"[MeSH Terms] OR "neoplasms"[All Fields] OR 
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Model"[Title/Abstract] OR "Decision Tree"[Title/Abstract] OR "Health 

Economic"[Title/Abstract] OR "Markov"[Title/Abstract] OR "Cost-

Effectiveness"[Title/Abstract] OR "Cost-Utility"[Title/Abstract]) AND ("2003/12/12"[PDAT] 
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Supplementary Figure 1.1 – Meta-Analysis (Metastases) 
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Supplementary Figure 1. Meta-analysis of probability of occurrence of metastases before treatment 
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Supplementary Figure 1.2 – Meta-Analysis (Mortality) 
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Supplementary Figure 1.3 – Model Structure (Low-intensity AS Strategy) 
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Supplementary Figure 1.4 – Model Structure (Medium-intensity AS Strategy) 
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Supplementary Figure 1.5 – Model Structure (High-intensity AS Strategy) 
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Supplementary Figure 1.6 – Model Structure (Immediate Treatment Strategy)  
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Appendix 2 – Supplementary Materials for Chapter 2 

Thyroid Model – Natural History Models 

Data Source 

Data for the analysis was provided by Dr Akira Miyauchi and Dr Yasuhiro Ito from 

Kuma Hospital in Japan over the period 1996 to the present.  

The dataset consists of patients with Thyroid nodules. Patients have elected not 

to undergo treatment, and are monitored via regular ultrasound evaluations during 

which the size of the nodule is measured by the physician.  

Nodule sizes are measured in mm, usually to the nearest whole number mm. 

Patient characteristics such as gender, date of birth, family history of cancer, history of 

radiation exposure, multifocality of the thyroid nodule(s), presence of lymph node 

metastases etc… are collected.  

For each patient multiple readings are contained in the dataset. The data format 

is wide, with each row containing readings for multiple dates.  

Data Cleansing 

Data cleansing was undertaken in SQL Server and R. Data from the file 

“160515_Ito_Lubitz_microPTC_FINAL.xlsx” was used for the final analysis of patient 

histories.  

A multiple stage import was undertaken: 

1) Import the Excel file using the SQL server data import tool. Select only the 

worksheet called ‘Sheet1’ for import. The first row of the file is used for headers.  Import 

it into a table called “Lubitz_PTMC_Data_Simple_New” 
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2) Run the following SQL Code to import and convert the data structure to a long 

format for analysis and create a new table called “PTMC_DATA_CLEAN” 

 

/** Script to manipulate the Ito Data into R required format for Gompertz Model      **/ 

/* Change the row based format into columns so that R can import it for NLS model      */ 

/* Works for up to 27 readings, add more rows in the union to accommodate more        */ 

/* readings when modeling for the distribution, pay attention to serial correlation   */ 
DROP TABLE PTMC_Data.dbo.PTMC_DATA_CLEAN 

select ID, DOB, Age, Female, RadHx, FamHxPTC, Susp_LNM, Susp_MF, DO_US_0 as 

Reading_Date, Size_0 as Size, 0 as Time_Elapsed INTO 

PTMC_Data.dbo.PTMC_DATA_CLEAN from PTMC_Data.dbo.Lubitz_PTMC_Data_Simple_New 

as PTMC 

Union select ID, DOB, Age, Female, RadHx, FamHxPTC, Susp_LNM, Susp_MF, 

DO_US_1 as Reading_Date, Size_1 as Size, DATEDIFF(day,cast(DO_US_0 as Date), 

CAST(DO_US_1 as DATE)) as Time_Elapsed from 

PTMC_Data.dbo.Lubitz_PTMC_Data_Simple_New as PTMC_1 

Union select ID, DOB, Age, Female, RadHx, FamHxPTC, Susp_LNM, Susp_MF, 

DO_US_2 as Reading_Date, Size_2 as Size, DATEDIFF(day,cast(DO_US_0 as Date), 

CAST(DO_US_2 as DATE))  from PTMC_Data.dbo.Lubitz_PTMC_Data_Simple_New as 

PTMC_2 

Union select ID, DOB, Age, Female, RadHx, FamHxPTC, Susp_LNM, Susp_MF, 

DO_US_3 as Reading_Date, Size_3 as Size, DATEDIFF(day,cast(DO_US_0 as Date), 

CAST(DO_US_3 as DATE))  from PTMC_Data.dbo.Lubitz_PTMC_Data_Simple_New as 

PTMC_3 

Union select ID, DOB, Age, Female, RadHx, FamHxPTC, Susp_LNM, Susp_MF, 

DO_US_4 as Reading_Date, Size_4 as Size, DATEDIFF(day,cast(DO_US_0 as Date), 

CAST(DO_US_4 as DATE))  from PTMC_Data.dbo.Lubitz_PTMC_Data_Simple_New as 

PTMC_4 

Union select ID, DOB, Age, Female, RadHx, FamHxPTC, Susp_LNM, Susp_MF, 

DO_US_5 as Reading_Date, Size_5 as Size, DATEDIFF(day,cast(DO_US_0 as Date), 

CAST(DO_US_5 as DATE))  from PTMC_Data.dbo.Lubitz_PTMC_Data_Simple_New as 

PTMC_5 

Union select ID, DOB, Age, Female, RadHx, FamHxPTC, Susp_LNM, Susp_MF, 

DO_US_6 as Reading_Date, Size_6 as Size, DATEDIFF(day,cast(DO_US_0 as Date), 

CAST(DO_US_6 as DATE))  from PTMC_Data.dbo.Lubitz_PTMC_Data_Simple_New as 

PTMC_6 

Union select ID, DOB, Age, Female, RadHx, FamHxPTC, Susp_LNM, Susp_MF, 
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DO_US_7 as Reading_Date, Size_7 as Size, DATEDIFF(day,cast(DO_US_0 as Date), 

CAST(DO_US_7 as DATE))  from PTMC_Data.dbo.Lubitz_PTMC_Data_Simple_New as 

PTMC_7 

Union select ID, DOB, Age, Female, RadHx, FamHxPTC, Susp_LNM, Susp_MF, 

DO_US_8 as Reading_Date, Size_8 as Size, DATEDIFF(day,cast(DO_US_0 as Date), 

CAST(DO_US_8 as DATE))  from PTMC_Data.dbo.Lubitz_PTMC_Data_Simple_New as 

PTMC_8 

Union select ID, DOB, Age, Female, RadHx, FamHxPTC, Susp_LNM, Susp_MF, 

DO_US_9 as Reading_Date, Size_9 as Size, DATEDIFF(day,cast(DO_US_0 as Date), 

CAST(DO_US_9 as DATE))  from PTMC_Data.dbo.Lubitz_PTMC_Data_Simple_New as 

PTMC_9 

Union select ID, DOB, Age, Female, RadHx, FamHxPTC, Susp_LNM, Susp_MF, 

DO_US_10 as Reading_Date, Size_10 as Size, DATEDIFF(day,cast(DO_US_0 as 

Date), CAST(DO_US_10 as DATE))  from 

PTMC_Data.dbo.Lubitz_PTMC_Data_Simple_New as PTMC_10 

Union select ID, DOB, Age, Female, RadHx, FamHxPTC, Susp_LNM, Susp_MF, 

DO_US_11 as Reading_Date, Size_11 as Size, DATEDIFF(day,cast(DO_US_0 as 

Date), CAST(DO_US_11 as DATE))  from 

PTMC_Data.dbo.Lubitz_PTMC_Data_Simple_New as PTMC_11 

Union select ID, DOB, Age, Female, RadHx, FamHxPTC, Susp_LNM, Susp_MF, 

DO_US_12 as Reading_Date, Size_12 as Size, DATEDIFF(day,cast(DO_US_0 as 

Date), CAST(DO_US_12 as DATE))  from 

PTMC_Data.dbo.Lubitz_PTMC_Data_Simple_New as PTMC_12 

Union select ID, DOB, Age, Female, RadHx, FamHxPTC, Susp_LNM, Susp_MF, 

DO_US_13 as Reading_Date, Size_13 as Size, DATEDIFF(day,cast(DO_US_0 as 

Date), CAST(DO_US_13 as DATE))  from 

PTMC_Data.dbo.Lubitz_PTMC_Data_Simple_New as PTMC_13 

Union select ID, DOB, Age, Female, RadHx, FamHxPTC, Susp_LNM, Susp_MF, 

DO_US_14 as Reading_Date, Size_14 as Size, DATEDIFF(day,cast(DO_US_0 as 

Date), CAST(DO_US_14 as DATE))  from 

PTMC_Data.dbo.Lubitz_PTMC_Data_Simple_New as PTMC_14 

Union select ID, DOB, Age, Female, RadHx, FamHxPTC, Susp_LNM, Susp_MF, 

DO_US_15 as Reading_Date, Size_15 as Size, DATEDIFF(day,cast(DO_US_0 as 

Date), CAST(DO_US_15 as DATE))  from 

PTMC_Data.dbo.Lubitz_PTMC_Data_Simple_New as PTMC_15 

Union select ID, DOB, Age, Female, RadHx, FamHxPTC, Susp_LNM, Susp_MF, 

DO_US_16 as Reading_Date, Size_16 as Size, DATEDIFF(day,cast(DO_US_0 as 

Date), CAST(DO_US_16 as DATE))  from 
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PTMC_Data.dbo.Lubitz_PTMC_Data_Simple_New as PTMC_16 

Union select ID, DOB, Age, Female, RadHx, FamHxPTC, Susp_LNM, Susp_MF, 

DO_US_17 as Reading_Date, Size_17 as Size, DATEDIFF(day,cast(DO_US_0 as 

Date), CAST(DO_US_17 as DATE))  from 

PTMC_Data.dbo.Lubitz_PTMC_Data_Simple_New as PTMC_17 

Union select ID, DOB, Age, Female, RadHx, FamHxPTC, Susp_LNM, Susp_MF, 

DO_US_18 as Reading_Date, Size_18 as Size, DATEDIFF(day,cast(DO_US_0 as 

Date), CAST(DO_US_18 as DATE))  from 

PTMC_Data.dbo.Lubitz_PTMC_Data_Simple_New as PTMC_18 

Union select ID, DOB, Age, Female, RadHx, FamHxPTC, Susp_LNM, Susp_MF, 

DO_US_19 as Reading_Date, Size_19 as Size, DATEDIFF(day,cast(DO_US_0 as 

Date), CAST(DO_US_19 as DATE))  from 

PTMC_Data.dbo.Lubitz_PTMC_Data_Simple_New as PTMC_19 

Union select ID, DOB, Age, Female, RadHx, FamHxPTC, Susp_LNM, Susp_MF, 

DO_US_20 as Reading_Date, Size_20 as Size, DATEDIFF(day,cast(DO_US_0 as 

Date), CAST(DO_US_20 as DATE))  from 

PTMC_Data.dbo.Lubitz_PTMC_Data_Simple_New as PTMC_20 

Union select ID, DOB, Age, Female, RadHx, FamHxPTC, Susp_LNM, Susp_MF, 

DO_US_21 as Reading_Date, Size_21 as Size, DATEDIFF(day,cast(DO_US_0 as 

Date), CAST(DO_US_21 as DATE))  from 

PTMC_Data.dbo.Lubitz_PTMC_Data_Simple_New as PTMC_21 

Union select ID, DOB, Age, Female, RadHx, FamHxPTC, Susp_LNM, Susp_MF, 

DO_US_22 as Reading_Date, Size_22 as Size, DATEDIFF(day,cast(DO_US_0 as 

Date), CAST(DO_US_22 as DATE))  from 

PTMC_Data.dbo.Lubitz_PTMC_Data_Simple_New as PTMC_22 

Union select ID, DOB, Age, Female, RadHx, FamHxPTC, Susp_LNM, Susp_MF, 

DO_US_23 as Reading_Date, Size_23 as Size, DATEDIFF(day,cast(DO_US_0 as 

Date), CAST(DO_US_23 as DATE))  from 

PTMC_Data.dbo.Lubitz_PTMC_Data_Simple_New as PTMC_23 

Union select ID, DOB, Age, Female, RadHx, FamHxPTC, Susp_LNM, Susp_MF, 

DO_US_24 as Reading_Date, Size_24 as Size, DATEDIFF(day,cast(DO_US_0 as 

Date), CAST(DO_US_24 as DATE))  from 

PTMC_Data.dbo.Lubitz_PTMC_Data_Simple_New as PTMC_24 

Union select ID, DOB, Age, Female, RadHx, FamHxPTC, Susp_LNM, Susp_MF, 

DO_US_25 as Reading_Date, Size_25 as Size, DATEDIFF(day,cast(DO_US_0 as 

Date), CAST(DO_US_25 as DATE))  from 

PTMC_Data.dbo.Lubitz_PTMC_Data_Simple_New as PTMC_25 

Union select ID, DOB, Age, Female, RadHx, FamHxPTC, Susp_LNM, Susp_MF, 
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DO_US_26 as Reading_Date, Size_26 as Size, DATEDIFF(day,cast(DO_US_0 as 

Date), CAST(DO_US_26 as DATE))  from 

PTMC_Data.dbo.Lubitz_PTMC_Data_Simple_New as PTMC_26 

 

3) Remove all invalid rows and select only the columns that we want from the 

data by performing the following SQL select statement.  

Invalid rows are those where: 

• Time elapsed is NULL or negative 
• Patient ID is not greater than 100 
• Tumor Size is not greater than 0mm 

 

/* Select only the rows that are complete. */  

Select  

 [ID] AS patient_id, 

 [Time_Elapsed] AS Time_Elapsed, 

 [Age] AS Age, 

 [Female] AS Female, 

 [RadHx] AS RadHx, 

 [FamHxPTC] AS FamHxPTC, 

 [Susp_LNM] AS Susp_LNM, 

 [Susp_MF] AS Susp_MF, 

 [Size] AS Tumor_Size 

  FROM [PTMC_Data].[dbo].[PTMC_DATA_CLEAN] 

  where time_elapsed >=0 and ID >100 AND Size > 0 

  order by ID asc, time_elapsed asc  
The data that are produced needs to be exported manually using the export 

feature in SQL Server. Export the full data table to a file named “PTMC Data TXT File - 

Clean - Unique.csv” 

Growth Model Statistical Analysis 
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To prepare for statistical analysis, further data manipulation is required to ensure 

bad data are removed. The following steps have to be taken. Code provided is for R 

version 3.3.0 in RStudio version 0.99.896 on Mac OSX ver 10.11.2. 

Pre-Analysis and Manipulation 

Read Data File 

# Data file was modified within SQL Server to drop any rows where the dates 

# were the same but the tumor size was different. I decided to keep the 

# largest tumor size value of the duplicates.  

# Read in Data and select the patients we want to keep 

 

PTMC <- read.csv('/PTMC Data TXT File - Clean - Unique.csv') 

 

This reads in the CSV file. The file location will need to be specified for the 

correct location on the local machine.  

Remove Bad Data 

We need to remove any patients who do not meet the following criteria: 

• Age ≥ 18 (0 patients removed) 
• Tumor Size ≥ 4mm for all readings (0 patients removed) 
• Minimum of 3 readings of tumor size (0 patients removed) 

 

We do this via the following code: 

#Get a list of patients who are under age 18 and drop them 
bad.patients.age <- as.numeric(unique(PTMC$patient_id[(PTMC$Age <18)])) 
PTMC <- PTMC[!(PTMC$patient_id %in% bad.patients.age),] 
# Get a list of patients who have tumor size measurements of 0 and drop them 
bad.patients.tumor_size <- as.numeric(unique(PTMC$patient_id[(PTMC$Tumor_Size <4)])) 
PTMC <- PTMC[!(PTMC$patient_id %in% bad.patients.tumor_size),] 
 
# Create the master data table with only patients who have more than 3 readings 
good.patients <- as.numeric(names(table(PTMC$patient_id)))[table(PTMC$patient_id)>3]  
Thyroid_Master<-PTMC[PTMC$patient_id %in% good.patients,]  
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Examine the Data for weirdness… 

Next, check the data for any strange elements or features. This can be achieved 

through use of multiple tools. This exercise is left to the reader to undertake. Importantly 

though, look for empty rows, negative values (should not exist for count or size data) 

dates that are out of order etc…  

Option 1: Analysis with Automated Exponential Model Fitting 

Step 1 – Identify Patient Types 

Our pre-existing hypothesis is that patients will either have tumors that grow, 

shrink, or remain stable. We wish to classify each patient as having either  

• Growing Tumor 
• Shrinking Tumor 
• Stable Tumor Size 

 
Using the TumGR package in R, we can attempt to automatically fit exponential 

models for each patient’s data. Since each patient has at least 3 readings, this should 

be achievable for any monotonic patients. TumGR does not allow for the use of 

covariates since it is designed for use in clinical trial modeling. We will use it here not for 

model specification, but purely as a patient classifier. 

The TumGR package also allows for the fitting of an additive growth / decay 

model of the form  

𝑇𝑢𝑚𝑜𝑟	𝑆𝑖𝑧𝑒 = 𝑒,.. + 𝑒01. 

 

In this model values for g and d drive growth or decay with at least one having a 

strictly positive value. For a growth model, the estimate for d will be 0, and for a decay 
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model the estimate for g will be 0. For patients with tumors that exhibit some 

combination of growth and decay we should expect positive values for both g and t.  

In this analysis, out of 221 patients we see that when we use p<0.05 as our 

model fit threshold, 62 patients exhibit growth and have growth model fits; 52 patients 

are fit with decay models; 15 are fit with growth and decay combination models, and 92 

patients are not fit to a model due to p-value requirement.  

#---------------------Tumor Growth Models (exponential)---------------------------------# 
#---------------------------------------------------------------------------------------# 
# Tumor Growth Model Fits - Does not utilize any covariates.  
# Automagically identifiies growers and shrinkers.  
# Need to use days in time field since it requires integer readings (I think). Doesn't work with 
years 
#---------------------------------------------------------------------------------------# 
#---------------------------------------------------------------------------------------# 
model.fit <- gdrate(TumGR_Data, pval = 0.05, plots = FALSE) 
model.fit 
model.gx <- model.fit$results[model.fit$results$selectedFit == "gx",] 
model.dx <- model.fit$results[model.fit$results$selectedFit == "dx",] 
model.not_fit <- model.fit$results[model.fit$results$selectedFit == "not fit",] 

 

The following output from TumGR provides details of the model fits: 

$models 
     Group Analyzed       Type  N Percentage 
1 excluded       no error data  1          0 
2 excluded      yes    not fit 91         41 
3 included      yes         dx 52         24 
4 included      yes         gd 15          7 
5 included      yes         gx 62         28 
 
$sumstats 
  Parameter   N   Median                 IQR     Mean       SD 
1         g  77 0.000104 (5.6e-05, 0.000216) 0.000155 0.000137 
2         d  67 0.000124 (6.9e-05, 0.000318) 0.000261 0.000311 
3       phi NaN      NaN                 NaN      NaN      NaN 

 

Re-fitting models with classified patient groups 

With patients classified into growth, shrinkage or stable tumor classes, we can 

then take each patient class and model their tumor growth behavior, now with the 

inclusion of patient covariates. Since we know the patient IDs of the patients who exhibit 

tumor growth, shrinkage or stable size, we create three new datasets, with one dataset 

for each group of patients using the results of the call to TumGR.  
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TumGR_Data_Growers <- Thyroid_Master[Thyroid_Master$patient_id %in% model.gx$name,] 
TumGR_Data_Decayers <- Thyroid_Master[Thyroid_Master$patient_id %in% model.dx$name,] 
TumGR_Data_Flatliners <- Thyroid_Master[Thyroid_Master$patient_id %in% model.not_fit$name,] 

 

Growth Models 

We will fit patients in this class with an exponential model. Since we know each 

patient individually achieved a good fit via TumGR exponential modeling, we should 

expect a good fit here for the group using a fixed effects exponential model.  

The model is of the form: 

ln 𝑇𝑢𝑚𝑜𝑟	𝑆𝑖𝑧𝑒4 = 𝛽64 + 𝛽7𝑇𝑖𝑚𝑒_𝐸𝑙𝑎𝑝𝑠𝑒𝑑4+	𝑋4𝛽 + 𝜖	 

In this case the model fit appears to be well-specified with the following simple 

parameters. Other parameters such as multifocality, age, gender and radiation history 

are significant, but make no difference to the time dependent growth factor, so for our 

model these are redundant. Permutations of the covariates were tried, with model 

specifications including all variables, combinations and the inclusion of some interaction 

terms not making any meaningful difference to the time-dependent tumor growth rate. 

Linear (not logged) nodel specifications were also tested but these: 

 

ln 𝑇𝑢𝑚𝑜𝑟	𝑆𝑖𝑧𝑒4 = 𝛽64 + 	𝛽7𝑇𝑖𝑚𝑒_𝐸𝑙𝑎𝑝𝑠𝑒𝑑4 + 𝜖 

 

The following goodness of fit checks are shown. Due to the rounded / integer 

nature of the data some strange patterns emerge in the residuals, but overall they 

appear to be well distributed and homoscedastic. The QQ plot implies normality. 

Overall, the patient level fixed-effects model seems to fit well. 
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The final model specification is: 

ln 𝑇𝑢𝑚𝑜𝑟	𝑆𝑖𝑧𝑒4 = 1.978565 +	𝛽6G + 0.023598 ∗ 	𝑇𝑖𝑚𝑒_𝐸𝑙𝑎𝑝𝑠𝑒𝑑4 + 𝜖 

Where Time_Elapsed is in years and Beta_0_i is a patient level intercept / fixed 

effect. 

Here is the results table: 

Call: 
lm(formula = log(Tumor_Size) ~ Time_Elapsed + factor(patient_id),  
    data = TumGR_Data_Growers) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.74841 -0.07134  0.00356  0.07098  0.53198  
 
Coefficients: 
                       Estimate Std. Error t value Pr(>|t|)     
(Intercept)            1.978565   0.049615  39.878  < 2e-16 *** 
Time_Elapsed           0.023598   0.001568  15.050  < 2e-16 *** 
factor(patient_id)102 -0.283187   0.057780  -4.901 1.23e-06 *** 
factor(patient_id)103  0.219801   0.061918   3.550 0.000416 *** 
… Other patient level fixed-effects intercepts removed for clarity 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1344 on 597 degrees of freedom 
Multiple R-squared:  0.7859, Adjusted R-squared:  0.7683  
F-statistic: 44.72 on 49 and 597 DF,  p-value: < 2.2e-16 
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Shrinkage / Decay Models  

Similarly to the growth models, we utilize the classifications generated by TumGr 

and the test exponential model fits that determined which patients have tumors that are 

shrinking.  

 

As with the growth models, the model specification is the same. The fit checks 

are shown, as is the summary of the model. The decay model appears to have an even 

better fit than the growth models.  

ln 𝑇𝑢𝑚𝑜𝑟	𝑆𝑖𝑧𝑒4 = 2.0499 +	𝛽6G − 0.015287 ∗ 	𝑇𝑖𝑚𝑒_𝐸𝑙𝑎𝑝𝑠𝑒𝑑4 + 𝜖 

Call: 
lm(formula = log(Tumor_Size) ~ Time_Elapsed + factor(patient_id),  
    data = TumGR_Data_Decayers) 
 
Residuals: 
     Min       1Q   Median       3Q      Max  
-0.51459 -0.08395  0.00401  0.09149  0.42491  
 
Coefficients: 
                       Estimate Std. Error t value Pr(>|t|)     
(Intercept)            2.049901   0.056485  36.291  < 2e-16 *** 
Time_Elapsed          -0.015287   0.001755  -8.713  < 2e-16 *** 
factor(patient_id)122  0.177187   0.067366   2.630 0.008771 **  
factor(patient_id)124  0.140562   0.065246   2.154 0.031644 *   
… Other patient level fixed-effects intercepts removed for clarity 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.1378 on 553 degrees of freedom 
Multiple R-squared:  0.6935, Adjusted R-squared:  0.6702  
F-statistic: 29.79 on 42 and 553 DF,  p-value: < 2.2e-16 
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Stable Tumor Models 

Finally, we fit the stable tumor models using untransformed linear model with 

patient level fixed-effects. The results of this are shown.  

𝑇𝑢𝑚𝑜𝑟N4OPG = 8.44 +	𝛽6G + 0.0237 ∗ 	𝑇𝑖𝑚𝑒_𝐸𝑙𝑎𝑝𝑠𝑒𝑑4 + 𝜖 

Call: 
lm(formula = (Tumor_Size) ~ Time_Elapsed + factor(patient_id),  
    data = TumGR_Data_Flatliners) 
 
Residuals: 
    Min      1Q  Median      3Q     Max  
-3.0438 -0.4645  0.0061  0.5145  4.5449  
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Coefficients: 
                       Estimate Std. Error t value Pr(>|t|)     
(Intercept)            8.439716   0.216115  39.052  < 2e-16 *** 
Time_Elapsed           0.023684   0.009715   2.438 0.014991 *   
factor(patient_id)109  1.578723   0.293124   5.386 9.51e-08 *** 
factor(patient_id)110 -2.407095   0.356532  -6.751 2.83e-11 *** 
… Other patient level fixed-effects intercepts removed for clarity 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Residual standard error: 0.8773 on 791 degrees of freedom 
Multiple R-squared:  0.7622, Adjusted R-squared:  0.7405  

F-statistic:  35.2 on 72 and 791 DF,  p-value: < 2.2e-16 
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Other model types 

In addition to the logged-linear models that were utilized, other models were 

tested. Panel data models were tested using R package plm, for panel linear models. 

The results of this fixed effects panel regression generated identical findings to that 

using patient level fixed-effects in a regular linear model, which is unsurprising. The 

results are shown for the growth model fit. 

 
 
Oneway (individual) effect Within Model 
 
Call: 
plm(formula = log(Tumor_Size) ~ Time_Elapsed, data = TumGR_Data_Growers,  
    model = "within", index = c("patient_id")) 
 
Unbalanced Panel: n=49, T=5-22, N=647 
 
Residuals : 
    Min.  1st Qu.   Median  3rd Qu.     Max.  
-0.74800 -0.07130  0.00356  0.07100  0.53200  
 
Coefficients : 
             Estimate Std. Error t-value  Pr(>|t|)     
Time_Elapsed 0.023598   0.001568   15.05 < 2.2e-16 *** 
--- 
Signif. codes:  0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1 
 
Total Sum of Squares:    14.866 
Residual Sum of Squares: 10.777 
R-Squared:      0.27505 
Adj. R-Squared: 0.25379 
F-statistic: 226.501 on 1 and 597 DF, p-value: < 2.22e-16 
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Model Parameters – Ultrasound Diagnostic Categories 
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Initial Metastases – Pooled Analysis 
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Serum TSH – Pooled Analysis 

Benign: 

 

Malignant: 
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Postoperative Complications – Pooled Analysis 
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Recurrence Rates – Pooled Analysis 
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Analytic Code  

PTMC_Linear_Model 5.R 

# Load Packages 
# library(plm) 
# library(gplots) 
library(car) 
library(plyr) 
# library(ggplot2) 
library(tumgr) 
library(stats) 
library(lmtest) 
# library(ggfortify) 
library(MASS) 
 
 
# Data file was modified within SQL Server to drop any rows where the dates 
# were the same but the tumor size was different. I decided to keep the 
# largest tumor size value of the duplicates.  
# Read in Data and select the patients we want to keep 
PTMC <- read.csv('/Users/craigwhite3/Google Drive/Grad School/Harvard/Research/Papillary Thyroid 
Cancer/Background/Natural History Data/PTMC Data TXT File - Clean - Unique.csv') 
#Get a list of patients who are under age 18 and drop them 
bad.patients.age <- as.numeric(unique(PTMC$patient_id[(PTMC$Age <18)])) 
PTMC <- PTMC[!(PTMC$patient_id %in% bad.patients.age),] 
# Get a list of patients who have tumor size measurements of 0 and drop them 
bad.patients.tumor_size <- as.numeric(unique(PTMC$patient_id[(PTMC$Tumor_Size < 4)])) 
PTMC <- PTMC[!(PTMC$patient_id %in% bad.patients.tumor_size),] 
 
# Create the master data table with only patients who have more than 3 readings 
bad.patients.readings <- as.numeric(names(table(PTMC$patient_id)))[table(PTMC$patient_id)<3]  
Thyroid_Master<-PTMC[!PTMC$patient_id %in% bad.patients.readings,] 
  
TumGR_Data <- Thyroid_Master[,c("patient_id", "Time_Elapsed", "Tumor_Size")] 
TumGR_Data <- rename(TumGR_Data, c("patient_id"="name", "Time_Elapsed"="date", 
"Tumor_Size"="size")) 
 
###### Take a look at the data. Include this code if you want 
###### to view some of the data visually and for checking 
# head(Thyroid_Master) 
# scatterplot(Tumor_Size~Time_Elapsed|patient_id, boxplots=FALSE, smooth=FALSE, 
data=Thyroid_Master, legend.columns = 19) 
# plotmeans(Tumor_Size ~ patient_id, main="Heterogeneity across patients", data=Thyroid_Master) 
# hist(Thyroid_Master$Tumor_Size, prob=TRUE) 
# curve(dnorm(x, mean=mean(Thyroid_Master$Tumor_Size), sd=sd(Thyroid_Master$Tumor_Size)), 
col="darkblue", lwd=2, add=TRUE, yaxt="n") 
# shapiro.test(Thyroid_Master$Tumor_Size) 
# Look at the density of the time distribution. This is obviously not normal, looks almost 
bimodal...  
# plot(density(Thyroid_Master$Time_Elapsed)) 
 
#################################################################################################
###### 
#-----------------------------------Tumor Growth Models (exponential)----------------------------
-----# 
#------------------------------------------------------------------------------------------------
-----# 
# Tumor Growth Model Fits - Does not utilize any covariates.  
# Automagically identifiies growers and shrinkers.  
# Need to use days in time field since it requires integer readings (I think). Doesn't work with 
years 
#------------------------------------------------------------------------------------------------
-----# 
#------------------------------------------------------------------------------------------------
-----# 
model.fit <- gdrate(TumGR_Data, pval = 0.05, plots = FALSE) 
model.gx <- model.fit$results[model.fit$results$selectedFit == "gx",] 
model.dx <- model.fit$results[model.fit$results$selectedFit == "dx",] 
model.not_fit <- model.fit$results[model.fit$results$selectedFit == "not fit",] 
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# Get the three groups of patients based upon growth status 
Thyroid_Master$Time_Elapsed <- Thyroid_Master$Time_Elapsed/365 # Convert days to years 
TumGR_Data_Growers <- Thyroid_Master[Thyroid_Master$patient_id %in% model.gx$name,] 
TumGR_Data_Shrinkers <- Thyroid_Master[Thyroid_Master$patient_id %in% model.dx$name,] 
TumGR_Data_Stable <- Thyroid_Master[Thyroid_Master$patient_id %in% model.not_fit$name,] 
 
#-----------------------------------Linear Models for Stable-------------------------------------
-# 
#------------------------------------------------------------------------------------------------
-----# 
# Using the fitted models from the exponential models just run, create linear models for the 
group of 
# patients for whom the exponential models didn't fit either growth of decay (Assume too flat for 
fit) 
# plot(Model.fe.Stable, las = 1, which = c(1:6)) 
# qqPlot(Model.fe.Stable) 
#------------------------------------------------------------------------------------------------
-----# 
#------------------------------------------------------------------------------------------------
-----# 
# Create the patient level fixed effects linear model(s) using only the non-growing patients  
# Option 1 
Model.fe.Stable <-lm(Tumor_Size ~ Time_Elapsed + Age + factor(patient_id), 
data=TumGR_Data_Stable) 
# summary(Model.fe.Stable) # summary of model 
# autoplot(Model.fe.Stable) # Diagnostics look OK, QQ plot is good, and residuals appear 
homoscedastic. Pattern due to integer nature of data? 
# Look at the residuals and see if they are normally distributed, if not, we should double check 
model spec and / or run with robust errors 
# plot(density(Model.fe.Stable$residuals)) # Do these look normal? SW test says no.  
# curve(dnorm(x, mean=mean(Model.fe.Stable$residuals), sd=sd(Model.fe.Stable$residuals)), 
col="darkblue", lwd=2, add=TRUE, yaxt="n") 
# coeftest(Model.fe.Stable, vcov = vcovHC(Model.fe.Stable, "HC1")) # Robust SEs make very little 
difference to estimates. 
# shapiro.test(Model.fe.Stable$residuals) # SW rejects the null, but this may be due to 
integerization again! 
 
# Generate Fitted Values and plot model fits.  
# yhatGR_Stable <- Model.fe.Stable$fitted 
# TumGR_Data_Stable["yhatGR_Stable"] <- yhatGR_Stable  
# scatterplot(yhatGR_Stable~TumGR_Data_Stable$Time_Elapsed|TumGR_Data_Stable$patient_id, 
boxplots=FALSE, xlab="Time_Elapsed", ylab="TumGR_Data_Stable",smooth=FALSE, legend.columns = 17) 
# model.fit.line <- abline(lm(TumGR_Data_Stable$Tumor_Size~TumGR_Data_Stable$Time_Elapsed + 
factor(TumGR_Data_Stable$patient_id)),lwd=3, col="red") 
# plot <- ggplot(TumGR_Data_Stable, aes(x = Time_Elapsed, y = Tumor_Size, color = 
factor(patient_id))) + geom_point() + geom_smooth(method = lm, se=FALSE) 
# plot + theme(legend.position="none") 
 
Stable_Growth_Rate_Per_Year <- coef(summary(Model.fe.Stable))["Time_Elapsed", c("Estimate", "Std. 
Error")] 
# Stable_Growth_Rate_Per_Year <- Model.fe.Stable$coefficients["Time_Elapsed"] 
# Stable_SD_Growth_Rate_Per_Year <- sqrt(diag(vcov(Model.fe.Stable)))["Time_Elapsed"] 
 
#################################################################################################
###### 
 
#-----------------------------------Linear Models for Growers------------------------------------
-----# 
#------------------------------------------------------------------------------------------------
-----# 
# Using the fitted models from the exponential models just run, create linear models for the 
group of 
# patients for whom the exponential models fit a growth model 
#------------------------------------------------------------------------------------------------
-----# 
#------------------------------------------------------------------------------------------------
-----# 
# Create the patient level fixed effects linear model(s) using only the patient with growing 
tumors  
# OPTION 1 - Log the DV, which we think is exponential, so that we linearize it.  
Model.fe.Growers <-lm(log(Tumor_Size) ~ Time_Elapsed + Age + factor(patient_id), 
data=TumGR_Data_Growers) 
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# summary(Model.fe.Growers) # summary of model (don't forget to exponentiate the coefficients!) 
# autoplot(Model.fe.Growers) # Diagnostics look OK, QQ plot is good, and residuals appear 
homoscedastic conditional on interegerization. Pattern due to integer nature of data? 
# Look at the residuals and see if they are normally distributed 
# If not, we should doule check model spec and / or run with robust errors 
# plot(density(Model.fe.Growers$residuals)) # Do these look normal? 
# curve(dnorm(x, mean=mean(Model.fe.Growers$residuals), sd=sd(Model.fe.Growers$residuals)), 
col="darkblue", lwd=2, add=TRUE, yaxt="n") 
# coeftest(Model.fe.Growers, vcov = vcovHC(Model.fe.Growers, "HC1")) # Robust SEs make very 
little difference to estimates. 
# shapiro.test(Model.fe.Growers$residuals) # bummer SW rejects the null 
# bptest(log(Tumor_Size) ~ Time_Elapsed + factor(patient_id), data=TumGR_Data_Growers, 
studentize=TRUE) # bummer... BP rejects the null, but I think this is because of the integer 
values issue.  
 
 
#----------------------------------- GENERATE SOME PREDICTIONS ----------------------------------
-----# 
# newdata <- data.frame(Time_Elapsed = c(0,10), patient_id = 101, Age = 65, Female  = 1, RadHx = 
0, FamHxPTC = 0, Susp_LNM = 0, Susp_MF = 0) 
# prediction <- predict(Model.fe.Growers, newdata = newdata, se.fit = TRUE) 
# prediction$fit <- exp(prediction$fit) #convert log values to mm size 
# prediction 
 
Growers_Growth_Rate_Per_Year <- coef(summary(Model.fe.Growers))["Time_Elapsed", c("Estimate", 
"Std. Error")] 
# Confint.Growers <- confint(Model.fe.Growers, parm = "Time_Elapsed", level = 0.95) 
# Growers_SD_Growth_Rate_Per_Year <- (Confint.Growers[2] - Confint.Growers[1])/3.92 * 
sqrt(length(unique(TumGR_Data_Growers$patient_id))) 
# Alternative method # Growers_SD_Growth_Rate_Per_Cycle <- 
sqrt(diag(vcovHC(Model.fe.Growers)))["Time_Elapsed"] 
#################################################################################################
###### 
# OPTION 2 - NLS model using exp covariate for Time_Elapsed 
# library(nlstools) 
# Model.fe.Growers.nls <-nls(Tumor_Size ~ Const + exp(Time_Coef*Time_Elapsed), 
data=TumGR_Data_Growers, start = list(Const=0, Time_Coef=0)) 
# summary(Model.fe.Growers.nls) # summary of model (don't forget to exponentiate the 
coefficients!) 
# Resids <- nlsResiduals(Model.fe.Growers.nls) # Diagnostics look OK, QQ plot is good, and 
residuals appear homoscedastic conditional on interegerization. Pattern due to integer nature of 
data? 
# plot(Resids, which = 0) 
 
#----------------------------------- GENERATE SOME PREDICTIONS For Model Option 2----------------
-----# 
# newdata <- data.frame(Time_Elapsed = c(0,10), patient_id = 101, Age = 65, Female  = 1, RadHx = 
0, FamHxPTC = 0, Susp_LNM = 0, Susp_MF = 0) 
# prediction <- predict(Model.fe.Growers.nls, newdata = newdata, se.fit = TRUE) 
# prediction$fit <- exp(prediction$fit) #convert log values to mm size 
# prediction 
 
#-----------------------------------Linear Models for Shrinkers----------------------------------
-----# 
#------------------------------------------------------------------------------------------------
-----# 
# Using the fitted models from the exponential models just run, create linear models for the 
group of 
# patients for whom the exponential models fit a growth model 
#------------------------------------------------------------------------------------------------
-----# 
#------------------------------------------------------------------------------------------------
-----# 
# Create the patient level fixed effects linear model(s) using only the patient with growing 
tumors  
# Option 1 - Log the DV, which we think is exponential, so that we linearize it.  
Model.fe.Shrinkers <-glm(log(Tumor_Size) ~ Time_Elapsed + Age + factor(patient_id), 
data=TumGR_Data_Shrinkers) 
# summary(Model.fe.Shrinkers) # summary of model (don't forget to exponentiate the coefficients!) 
# autoplot(Model.fe.Shrinkers) # Diagnostics look OK, QQ plot is good, and residuals appear 
homoscedastic conditional on interegerization. Pattern due to integer nature of data? 
# Look at the residuals and see if they are normally distributed 
# If not, we should doule check model spec and / or run with robust errors 
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# plot(density(Model.fe.Shrinkers$residuals)) # Do these look normal? 
# curve(dnorm(x, mean=mean(Model.fe.Shrinkers$residuals), sd=sd(Model.fe.Shrinkers$residuals)), 
col="darkblue", lwd=2, add=TRUE, yaxt="n") 
# coeftest(Model.fe.Shrinkers, vcov = vcovHC(Model.fe.Shrinkers, "HC1")) # Robust SEs make very 
little difference to estimates. 
# shapiro.test(Model.fe.Shrinkers$residuals) # bummer SW rejects the null 
# bptest(log(Tumor_Size) ~ Time_Elapsed + factor(patient_id), data=TumGR_Data_Shrinkers, 
studentize=TRUE) # bummer... BP rejects the null, but I think this is because of the integer 
values issue.   
 
Shrinkers_Growth_Rate_Per_Year <- coef(summary(Model.fe.Shrinkers))["Time_Elapsed", c("Estimate", 
"Std. Error")] 
# Shrinkers_Growth_Rate_Per_Year <- Model.fe.Shrinkers$coefficients["Time_Elapsed"] 
# Shrinker_SD_Growth_Rate_Per_Year <- coef(summary(Model.fe.Shrinkers))["Time_Elapsed", "Std. 
Error"] 
# Confint.Shrinkers <- confint(Model.fe.Shrinkers, parm = "Time_Elapsed", level = 0.95) 
# Shrinker_SD_Growth_Rate_Per_Year <- (exp(Confint.Shrinkers[2]) - 
exp(Confint.Shrinkers[1]))/3.92 * sqrt(length(unique(TumGR_Data_Shrinkers$patient_id))) 
 
# Shrinker_SD_Growth_Rate_Per_Year <- sqrt(diag(vcov(Model.fe.Shrinkers)))["Time_Elapsed"] 
#-------------------------------FOR TESTING AND VALIDATION ONLY----------------------------------
-----# 
#-------------------------------Panel Linear Model-----------------------------------------------
-----# 
#------------------------------------------------------------------------------------------------
-----# 
# Use PLM package for panel linear model. Pooling works which implies the data are in the right 
format.  
# Estimates on Within model are same as with alternate FE model specification! Good.  
# p-val is the same also 
#  
#------------------------------------------------------------------------------------------------
-----# 
#------------------------------------------------------------------------------------------------
-----# 
# Thyroid.plm.fe <- plm(log(Tumor_Size) ~ Time_Elapsed, data=TumGR_Data_Growers, index = 
c("patient_id"), model="within") 
# summary(Thyroid.plm.fe) 
# summary(fixef(Thyroid.plm.fe)) 
# bptest(Tumor_Size~Age + Time_Elapsed + Female, data=TumGR_Data_Growers, studentize = TRUE) 
# coeftest(Thyroid.plm.fe, vcovHC) 
 
#-------------------------------Regression Mdoel Type Selection----------------------------------
-----# 
#------------------------------------------------------------------------------------------------
-----# 
# Do we need to use a discrete linear DV regression? If so, I have no idea which one... 
# Since this is panel data, and the DV takes integer values (technically they should be real  
# valued but they're being rounded to integer values for the tumor size in almost all cases) 
# What should we do? Poisson and NegBin don't really apply, since these are for count data from 
# distinct individuals or samples. This isn't that type of data. 
# I think it's safe to assume that the DV is actually a real valued variable for a couple of 
reasons 
# 1) Some of the values are real values, so if we made them integers we'd have to decide what to 
do 
# with the,. Also, there's nothing technically wrong with treating integers as real values, 
especially 
# if we know they were drawn from a real valued dataset. What we're really saying is that the DV 
has  
# some measurement error, and that the error is probably unbiased, so it's OK.   
# 2) If we remain cognizant of this, we can interpret the BP and SW tests accordingly. It 
basically 
# invalidates the BP test for homoscedasticity. Since the residuals exhibit a pattern that is  
# not symmetrical around each integer value, we'll never get a good BP test result, I expect.  
# Model.NegBin <- glm.nb(Tumor_Size ~ Time_Elapsed + Age + factor(patient_id), 
data=TumGR_Data_Growers) 
# summary(Model.NegBin) 
rm(model.dx) 
rm(model.gx) 
rm(model.not_fit) 
rm(TumGR_Data) 
rm(Thyroid_Master) 
rm(bad.patients.readings) 
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rm(bad.patients.age) 
rm(bad.patients.tumor_size) 
rm(Model.fe.Shrinkers) 
rm(Model.fe.Growers) 
rm(Model.fe.Stable) 
rm(model.fit) 
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Appendix 3 – Supplementary Materials for Chapter 3 

Initial Analyses  

 

 

 

DISTRIBUTION OF SBP READINGS

¡ Distribution of Systolic BP 
scores is “peaky” with peaks at 
multiples of 10’s

DISTRIBUTION OF DBP READINGS

¡ Distribution of Diastolic BP 
scores is “peaky” with peaks 
at multiples of 10’s
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SBP PROBABILITY OF RECEIVING HT PRESCRIPTION

¡ For SBP, the probability of 
receiving a prescription for an 
antihypertensive is affected by 
SBP score (higher score -> 
higher probability) and 
unexpectedly, by evenness of 
the score. (even reading -> 
Higher probability)

red = below 140mmHg guideline threshold, blue = at or above 140mmHg threshold

DBP PROBABILITY OF RECEIVING HT PRESCRIPTION

¡ For DBP, the probability of receiving a 
prescription for an antihypertensive 
is affected by DBP score (higher 
score -> higher probability) and 
unexpectedly, by evenness of the 
score. (even reading -> Higher 
probability)

red = below 90mmHg guideline threshold, blue = at or above 90mmHg threshold
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Analytic Code 

Hypertension Functions 

###################################################################################### 
################### Formula to generate the predictions ############################## 
# Variables:  
# model_object = glm model object created by speedglm or glm 
#  
# returns: a data.frame with the predictions for each systolic BP value 
# 
###################################################################################### 
generate_predictions <- function(model_object, age_is_factor = FALSE, age = 18, systolic_values = 
data.frame(seq(101,200,1)), physician = 1, gender = 0, race = 0, ethnicity = 0, marital = 0, 
employment = 1, comorbid = 0 ) 
{ 
  # TODO: check for model object validity here. e.g. Make sure it is an lm or glm object 
  glm.fit.systolic <- data.frame(as.numeric(systolic_values)) 
  colnames(prediction_data)[1] = "SYSTOLIC_VALUE" 
  prediction_data$EVEN_SYSTOLIC <- 1-prediction_data$SYSTOLIC_VALUE %% 2 
  prediction_data$SHOULD_BE_TREATED <- prediction_data$SYSTOLIC_VALUE > 139 
   
  prediction_data$SYSTOLIC_VALUE_5MM <- cut(prediction_data$SYSTOLIC_VALUE, breaks = 
seq(min(systolic_values), max(systolic_values), 5), labels = c("SBP 101-105", "SBP 106-110", "SBP 
111-115", "SBP 116-120", "SBP 121-125", "SBP 126-130", "SBP 131-135", "SBP 136-140", "SBP 141-
145", "SBP 146-150", "SBP 151-155", "SBP 156-160", "SBP 161-165", "SBP 166-170", "SBP 171-175", 
"SBP 176-180", "SBP 181-185", "SBP 186-190", "SBP 191-195", "SBP 196-200"), ordered_result = 
FALSE) 
  #prediction_data$DIASTOLIC_VALUE_5MM <- cut(prediction_data$DIASTOLIC_VALUE, breaks = seq(55, 
125, 5), labels = c("DBP 56-60", "DBP 61-65", "DBP 66-70", "DBP 71-75", "DBP 76-80", "DBP 81-85", 
"DBP 86-90", "DBP 91-95", "DBP 96-100", "DBP 101-105", "BP 106-110", "BP 111-115", "BP 116-120", 
"BP 121-125"), ordered_result = FALSE) 
   
  prediction_data$IS_PHYSICIAN_CODE <- factor(physician, levels = c(0,1), labels = c("Non-
Physician", "Physician")) 
  prediction_data$PATIENT_GENDER_CODE <- factor(gender, levels = c("0", "1"), labels = c("Male", 
"Female")) 
  prediction_data$PATIENT_RACE_CODE <- factor(race, levels = c("0", "1", "2", "3", "4", "9", 
"99"), labels = c("White", "Black","Asian","Native-American","Hawaii/Pac. Island", "Unknown", 
"Not-Entered")) 
  prediction_data$PATIENT_ETHNICITY_CODE <- factor(ethnicity, levels = c("0", "1", "9", "99"), 
labels = c("Non-Hispanic", "Hispanic", "Unknown", "Not Entered")) 
  prediction_data$PATIENT_MARITAL_STATUS_CODE <- factor(marital, levels = c("0", "1", "2", "3", 
"4", "5", "9", "99"), labels = c("Married", "Single", "Widowed/Widower", "Divorced", "Separated", 
"Partnered", "Unknown", "Not-Entered")) 
  prediction_data$PATIENT_EMPLOYMENT_STATUS_CODE <- factor(employment, levels = c("0", "1", "2", 
"9", "99"), labels = c("Unemployed", "Employed", "Retired", "Unknown", "Not-Entered")) 
  prediction_data$EVEN_SYSTOLIC <- factor(prediction_data$EVEN_SYSTOLIC, levels = c(0,1), labels 
= c("Odd", "Even")) 
  prediction_data$SHOULD_BE_TREATED <- factor(prediction_data$SHOULD_BE_TREATED, levels = 
c("FALSE","TRUE"), labels = c("No", "Yes")) 
  prediction_data$HasComorbidities <- factor(comorbid, levels = c(0,1), labels = c("FALSE", 
"TRUE")) 
  if(age_is_factor) {prediction_data$AGE_ON_OBS_DATE <- cut(age, breaks = c(17, 30, 40, 50, 60, 
70, 80, Inf), labels = c("Age 18-30", "Age 30-40", "Age 40-50", "Age 50-60", "Age 60-70", "Age 
70-80", "Age 80+"))} 
  if(!age_is_factor) {prediction_data$AGE_ON_OBS_DATE <- age} 
  prediction_data$predicted <- exp(predict(model_object, newdata = prediction_data)) 
  return(prediction_data) 
} 
 
###################################################################################### 
################### Formula to run the regressions ################################### 
# Variables:  
# reg_eqn = equation with regression formula 
# dataset = dataset with data for the regression. data.frame 
# regression_name = friendly name for the regression, used for excel worksheet name 
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# 
###################################################################################### 
run_logistic_regression <- function(reg_eqn, dataset, regression_name) 
{ 
  glm.fit <- speedglm(formula = reg_eqn, data = dataset, family = binomial(link = "logit"), 
na.action = na.exclude, fitted = TRUE)  
  results <- na.omit(as.data.frame(coef(summary(glm.fit)))) 
  results$Estimate <- na.omit(exp(coef(glm.fit))) 
  colnames(results)[1] = c("Odds_Ratio") 
  results$Probability <- results[, "Odds_Ratio"]/(1 + results[, "Odds_Ratio"]) 
  #results$95CI_Lower <- confint.default(glm.fit)$ 
  Today <- format(Sys.time(), format="%B %d %Y") 
  xls_filename <- paste0('Hypertension Regression Outputs Auto Generated Sample ',Today,'.xlsx', 
sep="") 
  write.xlsx(results, xls_filename, paste(regression_name, ' n=', nrow(dataset), sep = ""), 
append = TRUE) 
  return(glm.fit) 
} 
 
# Multiple plot function 
# 
# ggplot objects can be passed in ..., or to plotlist (as a list of ggplot objects) 
# - cols:   Number of columns in layout 
# - layout: A matrix specifying the layout. If present, 'cols' is ignored. 
# 
# If the layout is something like matrix(c(1,2,3,3), nrow=2, byrow=TRUE), 
# then plot 1 will go in the upper left, 2 will go in the upper right, and 
# 3 will go all the way across the bottom. 
# 
multiplot <- function(..., plotlist=NULL, file, cols=1, layout=NULL) { 
  library(grid) 
   
  # Make a list from the ... arguments and plotlist 
  plots <- c(list(...), plotlist) 
   
  numPlots = length(plots) 
   
  # If layout is NULL, then use 'cols' to determine layout 
  if (is.null(layout)) { 
    # Make the panel 
    # ncol: Number of columns of plots 
    # nrow: Number of rows needed, calculated from # of cols 
    layout <- matrix(seq(1, cols * ceiling(numPlots/cols)), 
                     ncol = cols, nrow = ceiling(numPlots/cols)) 
  } 
   
  if (numPlots==1) { 
    print(plots[[1]]) 
     
  } else { 
    # Set up the page 
    grid.newpage() 
    pushViewport(viewport(layout = grid.layout(nrow(layout), ncol(layout)))) 
     
    # Make each plot, in the correct location 
    for (i in 1:numPlots) { 
      # Get the i,j matrix positions of the regions that contain this subplot 
      matchidx <- as.data.frame(which(layout == i, arr.ind = TRUE)) 
       
      print(plots[[i]], vp = viewport(layout.pos.row = matchidx$row, 
                                      layout.pos.col = matchidx$col)) 
    } 
  } 
} 
 

Dataset Cleansing Code 

######################################################################## 
### RUN THIS FILE FIRST 
######################################################################## 
 
library(plyr) 
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#setwd("C:/Users/Craig/Google Drive/Grad School/Harvard/Research/Hypertension/Data Pull") # Use 
for PC version 
if((Sys.info()["nodename"]) == "MacBook-Pro-4" | (Sys.info()["nodename"]) == "MacBook-Pro-
4.local" | (Sys.info()["nodename"]) == "Craig-Macbook-Pro-Ethernet") 
{ 
  setwd("/Users/craigwhite3/Google Drive/Grad School/Harvard/Research/Hypertension/Data Pull/") # 
use for Macbook Pro 
} else {setwd("/Users/craigwhite/Google Drive/Grad School/Harvard/Research/Hypertension/Data 
Pull/")} # use for Macbook 12" 
 
##################################################################################### 
# Load Functions from Other Files 
##################################################################################### 
if(!exists("generate_predictions", mode="function")) source("Hypertension_Functions.R") 
 
 
##################################################################################### 
# Global Variables Definitions 
##################################################################################### 
SBP_threshold_upper <- 144 # For the threshold analysis, upper limit on SBP 
SBP_threshold_lower <- 135 # For the threshold analysis, lower limit on SBP 
DBP_threshold_upper <- 92 
DBP_threshold_lower <- 86 
max_systolic_value <- 200 
min_systolic_value <- 100 
min_diastolic_value <- 55 
max_diastolic_value <- 125 
SBP_DBP_gap <- 10 # how far apart must the patient's SBP and DBP be to be a valid reading. e.g. 
SBP must be 10mm higher than DBP 
samplesize <- NULL # Set this to the size of the sample desired for regression models. Set to 
NULL to use entire dataset.  
Use_GP_Only = TRUE 
##################################################################################### 
GenerateCorrelationPlots <- RunROCCurve <- StartNew <- 'n' 
 
#StartNew <- tolower(StartNew <- readline("Delete all existing data - start fresh? y/n:  ")) 
#RunROCCurve <- tolower(RunROCCurve <- readline(" Do you want to generate ROC curves? \n THIS CAN 
TAKE A LONG TIME! y/n:  ")) 
#GenerateCorrelationPlots <- tolower(GenerateCorrelationPlots <- readline("Do you want to 
generate correlation plots? \ This will show the aggregate correlation between even and odd BP 
reports \n y/n:  ")) 
 
# Data file was modified within Oracle and using a sample (either 2%, 5%, 10% or 25%) 
# Read in Data and select the patients we want to keep 
NewDatasetCreated <- "FALSE" 
if(!exists("Hyp") | StartNew == 'y') 
{ 
  if(!exists("Hyp_Raw") | StartNew == 'y') 
  { 
    # Take a smaple from this if you want a smaller dataset   
    Hyp_Raw <- read.csv('Hypertension Data Sample 100pc - NEW - BMI.csv') # 25% Sample - 
14,750,387 
  } 
  # Create a clean master dataset by dropping incomplete cases, weird blood pressure readings and 
patients who are already on medications for HT 
  # Hyp_Raw <- cbind("generated_uid3" = sprintf("%03d", 1:nrow(Hyp_Raw)), Hyp_Raw) 
  Hyp <- Hyp_Raw[complete.cases(Hyp_Raw[,c(1, 3)]),] # keep only records where there is a 
systolic and diastolic BP - 14,733,003 
  Hyp$BP_OBS_DATE <- as.Date(Hyp$BP_OBS_DATE, "%d-%b-%y") # Convert the observation date to a 
date type  
  #Hyp <- na.omit(Hyp[Hyp$BP_OBS_DATE < as.Date("2013-12-17"),]) # Drop any observations that 
were after the JNC8 guidelines came into effect 
  Hyp <- Hyp[Hyp$SYSTOLIC_VALUE <= max_systolic_value & Hyp$SYSTOLIC_VALUE > min_systolic_value & 
Hyp$DIASTOLIC_VALUE > min_diastolic_value & Hyp$DIASTOLIC_VALUE <= max_diastolic_value,] # - 
13,721,016 
  Hyp <- Hyp[(Hyp$DIASTOLIC_VALUE+SBP_DBP_gap < Hyp$SYSTOLIC_VALUE),] # Drop records where the 
systolic is not 10mmHg greater than the diastolic value (n=1) - 13,720,453 
  Hyp <- Hyp[Hyp$ON_EXISTING_HT_MEDICATION == 0,] # Drop any record where patient is already 
being treated for HT - 21,113,985 
   
  NewDatasetCreated <- TRUE 
} 
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######################################################################## 
### CREATE NEW VARIABLES for Regression Models 
### Flag patients who have any of the labeled comorbidities (Diabetes, CVA, IHD, MI, PVD, CHF) 
### CREATE THE LABELS for all the numeric coding 
### This is useful for the regression covariates labeling 
######################################################################## 
if (NewDatasetCreated == TRUE) 
{ 
  Hyp$HasComorbidities <- (Hyp$DIABETIC_DURING_VISIT + Hyp$HIST_CVA_DURING_VISIT + 
Hyp$HIST_IHD_DURING_VISIT + Hyp$HIST_MI_DURING_VISIT + Hyp$HIST_PVD_DURING_VISIT + 
Hyp$HIST_CHF_DURING_VISIT) > 0 
# Create the rounded versions of the BP values for "bucketing" to deal with the oscillations in 
probability 
  Hyp$SYSTOLIC_VALUE_RND2 <- as.integer(round_any(Hyp$SYSTOLIC_VALUE, 2, floor)) 
  Hyp$DIASTOLIC_VALUE_RND2 <- as.integer(round_any(Hyp$DIASTOLIC_VALUE, 2, floor)) 
# Flag even and odd records to use it in the regression (instead of bucketing) 
  Hyp$EVEN_SYSTOLIC <- 1 - Hyp$SYSTOLIC_VALUE %% 2 
  Hyp$EVEN_DIASTOLIC <- 1 - Hyp$DIASTOLIC_VALUE %% 2 # Create a new variable 
  systolic_pct_even <- mean(Hyp$EVEN_SYSTOLIC) 
  diastolic_pct_even <- mean(Hyp$EVEN_DIASTOLIC) 
  Hyp$Zero_End_Digit_Systolic <-  Hyp$SYSTOLIC_VALUE %% 10 == 0 
  Hyp$Zero_End_Digit_Diastolic <- Hyp$DIASTOLIC_VALUE %% 10 == 0 
  systolic_zero_end_digit <- mean(Hyp$Zero_End_Digit_Systolic) 
  diastolic_zero_end_digit <- mean(Hyp$Zero_End_Digit_Diastolic) 
# Integer value of the % of this physician's readings that are even for systolic and diastolic 
  Hyp$PHYS_PCT_SYS_EVEN <- Hyp$PHYS_PROB_SYS_EVEN*100 # Variable showing for this physician what 
their % of even systolic readings in the dataset is 
  Hyp$PHYS_PCT_DIA_EVEN <- Hyp$PHYS_PROB_DIA_EVEN*100 # Variable showing for this physician what 
their % of even diastolic readings in the dataset is 
# Create Factor variables with appropriate cutpoints   
  Hyp$AGE_ON_OBS_DATE <- cut(Hyp$AGE_ON_OBS_DATE, breaks = c(17, 30, 40, 50, 60, 70, 80, Inf), 
labels = c("Age 18-30", "Age 30-40", "Age 40-50", "Age 50-60", "Age 60-70", "Age 70-80", "Age 
80+")) 
  Hyp$SYSTOLIC_VALUE_5MM <- cut(Hyp$SYSTOLIC_VALUE, breaks = seq(100, 200, 5), labels = c("SBP 
100-104", "SBP 105-109", "SBP 110-114", "SBP 115-119", "SBP 120-124", "SBP 125-129", "SBP 130-
134", "SBP 135-139", "SBP 140-144", "SBP 145-149", "SBP 150-154", "SBP 155-159", "SBP 160-164", 
"SBP 165-169", "SBP 170-174", "SBP 175-179", "SBP 180-184", "SBP 185-189", "SBP 190-194", "SBP 
195-199"), ordered_result = FALSE, right = FALSE) 
  Hyp$DIASTOLIC_VALUE_5MM <- cut(Hyp$DIASTOLIC_VALUE, breaks = seq(55, 125, 5), labels = c("DBP 
55-59", "DBP 60-64", "DBP 65-69", "DBP 70-74", "DBP 75-79", "DBP 80-84", "DBP 85-89", "DBP 90-
94", "DBP 95-99", "DBP 100-104", "BP 105-109", "BP 110-114", "BP 115-119", "BP 120-124"), 
ordered_result = FALSE, right = FALSE) 
  Hyp$SYSTOLIC_VALUE_10MM <- cut(Hyp$SYSTOLIC_VALUE, breaks = seq(100, 200, 10), labels = c("SBP 
100-109", "SBP 110-119", "SBP 120-129", "SBP 130-139", "SBP 140-149", "SBP 150-159","SBP 160-
169","SBP 170-179", "SBP 180-189", "SBP 190-199"), ordered_result = FALSE, right = FALSE) 
  Hyp$DIASTOLIC_VALUE_10MM <- cut(Hyp$DIASTOLIC_VALUE, breaks = seq(55, 125, 10), labels = c("DBP 
55-64", "DBP 65-74", "DBP 75-84", "DBP 85-94", "DBP 95-104", "BP 105-114", "BP 115-124"), 
ordered_result = FALSE, right = FALSE) 
   
   
  # Label and reformat existing variables  
  Hyp$IS_PHYSICIAN_CODE <- factor(Hyp$IS_PHYSICIAN_CODE, levels = c(0,1), labels = c("Non-
Physician", "Physician")) 
  Hyp$PATIENT_GENDER_CODE <- factor(Hyp$PATIENT_GENDER_CODE, levels = c("0", "1"), labels = 
c("Male", "Female")) 
  Hyp$PATIENT_RACE_CODE <- factor(Hyp$PATIENT_RACE_CODE, levels = c("0", "1", "2", "3", "4", "9", 
"99"), labels = c("White", "Black","Asian","Native-American","Hawaii/Pac. Island", "Unknown", 
"Not-Entered")) 
  Hyp$PATIENT_ETHNICITY_CODE <- factor(Hyp$PATIENT_ETHNICITY_CODE, levels = c("0", "1", "9", 
"99"), labels = c("Non-Hispanic", "Hispanic", "Unknown", "Not Entered")) 
  Hyp$PATIENT_MARITAL_STATUS_CODE <- factor(Hyp$PATIENT_MARITAL_STATUS_CODE, levels = c("0", "1", 
"2", "3", "4", "5", "9", "99"), labels = c("Married", "Single", "Widowed/Widower", "Divorced", 
"Separated", "Partnered", "Unknown", "Not-Entered")) 
  Hyp$PATIENT_EMPLOYMENT_STATUS_CODE <- factor(Hyp$PATIENT_EMPLOYMENT_STATUS_CODE, levels = 
c("0", "1", "2", "9", "99"), labels = c("Unemployed", "Employed", "Retired", "Unknown", "Not-
Entered")) 
  Hyp$EVEN_SYSTOLIC <- factor(Hyp$EVEN_SYSTOLIC, levels = c(0,1), labels = c("Odd", "Even")) 
  Hyp$EVEN_DIASTOLIC <- factor(Hyp$EVEN_DIASTOLIC, levels = c(0,1), labels = c("Odd", "Even")) 
  Hyp$SHOULD_BE_TREATED <- factor(Hyp$SHOULD_BE_TREATED, levels = c(0,1), labels = c("No", 
"Yes")) 
  Hyp$HasComorbidities <- factor(Hyp$HasComorbidities, levels = c('FALSE','TRUE'), labels = 
c("FALSE", "TRUE")) 
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  Hyp$Phys_Specialty <- factor(Hyp$PROVIDER_SPECIALTY) 
} 
if(Use_GP_Only == TRUE) # If we want to use GP data only - This will go away if I have to run the 
SQL again, since non-GPs will be removed in SQL 
{ 
  Hyp <- Hyp[Hyp$Phys_Specialty %in% c("internal medicine", "family practice", "cardiology"),] 
} 
 
########################################################################################### 
### Mosaic display of the BP data with Friendly-like 
### color coding of the residuals 
######################################################################## 
# - Odd and Even correlation check ------------------------------------# 
if(GenerateCorrelationPlots == 'y') 
{ 
  Hyp_Cor_Data <- Hyp[,c("SYSTOLIC_VALUE", "EVEN_SYSTOLIC","DIASTOLIC_VALUE", "EVEN_DIASTOLIC")] 
  Hyp_Cor_Data <- Hyp_Cor_Data[complete.cases(Hyp_Cor_Data),c("EVEN_DIASTOLIC", "EVEN_SYSTOLIC")] 
  set.seed(1071) 
  BP_chisq <- coindep_test(table(Hyp_Cor_Data), indepfun = function(x) sum(x^2)) 
  labs <- round(prop.table(table(Hyp_Cor_Data)), 3) 
  mosaic(table(Hyp_Cor_Data), pop = FALSE, colorize = TRUE, 
labeling_args=list(gp_labels=(gpar(fontsize=14)))) 
  labeling_cells(text = labs, margin = 0, fontsize = 20) (table(Hyp_Cor_Data)) 
} 
 

Hypertension Regression Models 

# Load Packages 
library(arm) 
library(MASS) 
library(stats) 
library(vcd) 
library(utils) 
library(car) 
 
library(speedglm) 
library(xlsx) # For writing output files to Excel 
library(caret) # For creating testing and training datasets 
#library(effects) # Used for plotting effects, but only works for GLM, not SpeedGLM? 
 
######################################################################## 
### 
### ------- Analyze using some Logistic models --------------# 
### Specify the models 
######################################################################## 
options(scipen = 10) # Make sure coefficients show without scientific notation 
 
# Regression Model specifications 
reg_formula_systolic_simple <- ANTIHYPERTENSIVE_PRESCRIBED ~ SYSTOLIC_VALUE*SHOULD_BE_TREATED 
reg_formula_diastolic_simple <- ANTIHYPERTENSIVE_PRESCRIBED ~ DIASTOLIC_VALUE*SHOULD_BE_TREATED 
 
reg_formula_systolic <- ANTIHYPERTENSIVE_PRESCRIBED ~ SYSTOLIC_VALUE*SHOULD_BE_TREATED + 
EVEN_SYSTOLIC + IS_PHYSICIAN_CODE + PATIENT_GENDER_CODE + PATIENT_RACE_CODE + 
PATIENT_ETHNICITY_CODE + PATIENT_MARITAL_STATUS_CODE + PATIENT_EMPLOYMENT_STATUS_CODE + 
PATIENT_BMI + AGE_ON_OBS_DATE + HasComorbidities 
reg_formula_diastolic <- ANTIHYPERTENSIVE_PRESCRIBED ~ DIASTOLIC_VALUE*SHOULD_BE_TREATED + 
EVEN_DIASTOLIC + IS_PHYSICIAN_CODE + PATIENT_GENDER_CODE + PATIENT_RACE_CODE + 
PATIENT_ETHNICITY_CODE + PATIENT_MARITAL_STATUS_CODE + PATIENT_EMPLOYMENT_STATUS_CODE + 
PATIENT_BMI + AGE_ON_OBS_DATE + HasComorbidities 
 
reg_formula_systolic_5mm <- ANTIHYPERTENSIVE_PRESCRIBED ~ SYSTOLIC_VALUE_5MM + SHOULD_BE_TREATED 
+ EVEN_SYSTOLIC + IS_PHYSICIAN_CODE + PATIENT_GENDER_CODE + PATIENT_RACE_CODE + 
PATIENT_ETHNICITY_CODE + PATIENT_MARITAL_STATUS_CODE + PATIENT_EMPLOYMENT_STATUS_CODE + 
PATIENT_BMI + AGE_ON_OBS_DATE + HasComorbidities 
reg_formula_diastolic_5mm <- ANTIHYPERTENSIVE_PRESCRIBED ~ DIASTOLIC_VALUE_5MM + 
SHOULD_BE_TREATED + EVEN_SYSTOLIC + IS_PHYSICIAN_CODE + PATIENT_GENDER_CODE + PATIENT_RACE_CODE + 
PATIENT_ETHNICITY_CODE + PATIENT_MARITAL_STATUS_CODE + PATIENT_EMPLOYMENT_STATUS_CODE + 
PATIENT_BMI + AGE_ON_OBS_DATE + HasComorbidities 
 
reg_formula_systolic_10mm <- ANTIHYPERTENSIVE_PRESCRIBED ~ SYSTOLIC_VALUE_10MM + 
SHOULD_BE_TREATED + EVEN_SYSTOLIC + IS_PHYSICIAN_CODE + PATIENT_GENDER_CODE + PATIENT_RACE_CODE + 
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PATIENT_ETHNICITY_CODE + PATIENT_MARITAL_STATUS_CODE + PATIENT_EMPLOYMENT_STATUS_CODE + 
PATIENT_BMI + AGE_ON_OBS_DATE + HasComorbidities 
reg_formula_diastolic_10mm <- ANTIHYPERTENSIVE_PRESCRIBED ~ DIASTOLIC_VALUE_10MM + 
SHOULD_BE_TREATED + EVEN_SYSTOLIC + IS_PHYSICIAN_CODE + PATIENT_GENDER_CODE + PATIENT_RACE_CODE + 
PATIENT_ETHNICITY_CODE + PATIENT_MARITAL_STATUS_CODE + PATIENT_EMPLOYMENT_STATUS_CODE + 
PATIENT_BMI + AGE_ON_OBS_DATE + HasComorbidities 
 
# Subgroup Regression Model Specifications 
reg_formula_gender   <- ANTIHYPERTENSIVE_PRESCRIBED ~ SYSTOLIC_VALUE*SHOULD_BE_TREATED + 
EVEN_SYSTOLIC + IS_PHYSICIAN_CODE +                       PATIENT_RACE_CODE + 
PATIENT_ETHNICITY_CODE + PATIENT_MARITAL_STATUS_CODE + PATIENT_EMPLOYMENT_STATUS_CODE + 
PATIENT_BMI + AGE_ON_OBS_DATE + HasComorbidities 
reg_formula_comorbid <- ANTIHYPERTENSIVE_PRESCRIBED ~ SYSTOLIC_VALUE*SHOULD_BE_TREATED + 
EVEN_SYSTOLIC + IS_PHYSICIAN_CODE + PATIENT_GENDER_CODE + PATIENT_RACE_CODE + 
PATIENT_ETHNICITY_CODE + PATIENT_MARITAL_STATUS_CODE + PATIENT_EMPLOYMENT_STATUS_CODE + 
PATIENT_BMI + AGE_ON_OBS_DATE 
reg_formula_age      <- ANTIHYPERTENSIVE_PRESCRIBED ~ SYSTOLIC_VALUE*SHOULD_BE_TREATED + 
EVEN_SYSTOLIC + IS_PHYSICIAN_CODE + PATIENT_GENDER_CODE + PATIENT_RACE_CODE + 
PATIENT_ETHNICITY_CODE + PATIENT_MARITAL_STATUS_CODE + PATIENT_EMPLOYMENT_STATUS_CODE + 
PATIENT_BMI +                   HasComorbidities 
reg_formula_race     <- ANTIHYPERTENSIVE_PRESCRIBED ~ SYSTOLIC_VALUE*SHOULD_BE_TREATED + 
EVEN_SYSTOLIC + IS_PHYSICIAN_CODE + PATIENT_GENDER_CODE +                     
PATIENT_ETHNICITY_CODE + PATIENT_MARITAL_STATUS_CODE + PATIENT_EMPLOYMENT_STATUS_CODE + 
PATIENT_BMI + AGE_ON_OBS_DATE + HasComorbidities 
 
reg_formula_age_diastolic      <- ANTIHYPERTENSIVE_PRESCRIBED ~ DIASTOLIC_VALUE*SHOULD_BE_TREATED 
+ EVEN_DIASTOLIC + IS_PHYSICIAN_CODE + PATIENT_GENDER_CODE + PATIENT_RACE_CODE + 
PATIENT_ETHNICITY_CODE + PATIENT_MARITAL_STATUS_CODE + PATIENT_EMPLOYMENT_STATUS_CODE + 
PATIENT_BMI + HasComorbidities 
 
# Models for the threshold analyses 
 
Hyp_Sys_Threshold_SBP <- Hyp[Hyp$SYSTOLIC_VALUE < SBP_threshold_upper & Hyp$SYSTOLIC_VALUE > 
SBP_threshold_lower,] 
reg_formula_sys_threshold <- ANTIHYPERTENSIVE_PRESCRIBED ~ SYSTOLIC_VALUE_5MM + SHOULD_BE_TREATED 
+ IS_PHYSICIAN_CODE + PATIENT_GENDER_CODE + PATIENT_RACE_CODE + PATIENT_ETHNICITY_CODE + 
PATIENT_MARITAL_STATUS_CODE + PATIENT_EMPLOYMENT_STATUS_CODE + PATIENT_BMI + AGE_ON_OBS_DATE + 
HasComorbidities 
 
######################################################################################### 
# -------------------------------- Overall Analysis ------------------------------------# 
######################################################################################### 
####################--------------- Whole Population ----------------------############## 
######################################################################################### 
# Create a dataset for regression model and run the regressions on it, then predictions 
if(is.null(samplesize)) 
{ 
  Hyp_Sample <- Hyp 
} 
if(!is.null(samplesize) && exists("Hyp_Sample")) 
{ 
  if(max(nrow((Hyp_Sample)) != samplesize))  
  {  
    Hyp_Sample <- Hyp[sample(1:nrow(Hyp), samplesize, replace = FALSE),] # Use a sample to avoid 
crashing my machine 
  }  
} 
if(!is.null(samplesize) && !exists("Hyp_Sample")) 
{ 
  Hyp_Sample <- Hyp[sample(1:nrow(Hyp), samplesize, replace = FALSE),] 
} 
Hyp_Sample <- na.exclude(Hyp_Sample) 
 
glm.fit.systolic <- run_logistic_regression(reg_eqn = reg_formula_systolic, dataset = Hyp_Sample, 
regression_name = "Sys Overall Pop") 
glm.fit.systolic_simple <- run_logistic_regression(reg_eqn = reg_formula_systolic_simple, dataset 
= Hyp_Sample, regression_name = "Overall SBP Pop") 
glm.fit.systolic_5mm <- run_logistic_regression(reg_eqn = reg_formula_systolic_5mm, dataset = 
Hyp_Sample, regression_name = "Overall-SBP 5mm") 
glm.fit.systolic_10mm <- run_logistic_regression(reg_eqn = reg_formula_systolic_10mm, dataset = 
Hyp_Sample, regression_name = "Overall-SBP 10mm") 
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Hyp_Sample$fitted.glm.fit.systolic <- fitted(glm.fit.systolic) 
Hyp_Sample$fitted.glm.fit.systolic_5mm <- fitted(glm.fit.systolic_5mm) 
Hyp_Sample$fitted.glm.fit.systolic_10mm <- fitted(glm.fit.systolic_10mm) 
 
 
glm.fit.diastolic <- run_logistic_regression(reg_eqn = reg_formula_diastolic, dataset = 
Hyp_Sample, regression_name = "Dia Overall Pop") 
glm.fit.diastolic_simple <- run_logistic_regression(reg_eqn = reg_formula_diastolic_simple, 
dataset = Hyp_Sample, regression_name = "Overall DBP Pop") 
glm.fit.diastolic_5mm <- run_logistic_regression(reg_eqn = reg_formula_diastolic_5mm, dataset = 
Hyp_Sample, regression_name = "Overall - DBP 5mm") 
glm.fit.diastolic_10mm <- run_logistic_regression(reg_eqn = reg_formula_diastolic_10mm, dataset = 
Hyp_Sample, regression_name = "Overall - DBP 10mm") 
 
predictions_5mm <- data.frame(SBP_Range = seq(101,200, 5)) 
predictions_5mm$All_Patients_Actual <- tapply(Hyp_Sample$ANTIHYPERTENSIVE_PRESCRIBED, 
Hyp_Sample$SYSTOLIC_VALUE_5MM, mean) # All patients 
predictions_5mm$All_Patients_Model <- tapply(Hyp_Sample$fitted.glm.fit.systolic_5mm, 
Hyp_Sample$SYSTOLIC_VALUE_5MM, mean) # All patients 
predictions_5mm$White_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == 
"White",]$fitted.glm.fit.systolic_5mm, Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == 
"White",]$SYSTOLIC_VALUE_5MM, mean) # White patients 
predictions_5mm$Black_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == 
"Black",]$fitted.glm.fit.systolic_5mm, Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == 
"Black",]$SYSTOLIC_VALUE_5MM, mean) # Black patients 
predictions_5mm$Asian_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == 
"Asian",]$fitted.glm.fit.systolic_5mm, Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == 
"Asian",]$SYSTOLIC_VALUE_5MM, mean) # Asian patients 
predictions_5mm$Male_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_GENDER_CODE == 
"Male",]$fitted.glm.fit.systolic_5mm, Hyp_Sample[Hyp_Sample$PATIENT_GENDER_CODE == 
"Male",]$SYSTOLIC_VALUE_5MM, mean) # Male patients 
predictions_5mm$Female_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_GENDER_CODE == 
"Female",]$fitted.glm.fit.systolic_5mm, Hyp_Sample[Hyp_Sample$PATIENT_GENDER_CODE == 
"Female",]$SYSTOLIC_VALUE_5MM, mean) # Female patients 
predictions_5mm$Comorbid_Patients <- tapply(Hyp_Sample[Hyp_Sample$HasComorbidities == 
"TRUE",]$fitted.glm.fit.systolic_5mm, Hyp_Sample[Hyp_Sample$HasComorbidities == 
"TRUE",]$SYSTOLIC_VALUE_5MM, mean) # Comorbid patients 
predictions_5mm$Healthy_Patients <- tapply(Hyp_Sample[Hyp_Sample$HasComorbidities == 
"FALSE",]$fitted.glm.fit.systolic_5mm, Hyp_Sample[Hyp_Sample$HasComorbidities == 
"FALSE",]$SYSTOLIC_VALUE_5MM, mean) # Comorbid patients 
predictions_5mm$White_Male_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == "White" 
& Hyp_Sample$PATIENT_GENDER_CODE == "Male",]$fitted.glm.fit.systolic_5mm, 
Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == "White" & Hyp_Sample$PATIENT_GENDER_CODE == 
"Male",]$SYSTOLIC_VALUE_5MM, mean) # White patients 
predictions_5mm$Black_Male_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == "Black" 
& Hyp_Sample$PATIENT_GENDER_CODE == "Male",]$fitted.glm.fit.systolic_5mm, 
Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == "Black" & Hyp_Sample$PATIENT_GENDER_CODE == 
"Male",]$SYSTOLIC_VALUE_5MM, mean) # Black patients 
predictions_5mm$Asian_Male_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == "Asian" 
& Hyp_Sample$PATIENT_GENDER_CODE == "Male",]$fitted.glm.fit.systolic_5mm, 
Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == "Asian" & Hyp_Sample$PATIENT_GENDER_CODE == 
"Male",]$SYSTOLIC_VALUE_5MM, mean) # Asian patients 
predictions_5mm$White_Female_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == 
"White" & Hyp_Sample$PATIENT_GENDER_CODE == "Female",]$fitted.glm.fit.systolic_5mm, 
Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == "White" & Hyp_Sample$PATIENT_GENDER_CODE == 
"Female",]$SYSTOLIC_VALUE_5MM, mean) # White patients 
predictions_5mm$Black_Female_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == 
"Black" & Hyp_Sample$PATIENT_GENDER_CODE == "Female",]$fitted.glm.fit.systolic_5mm, 
Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == "Black" & Hyp_Sample$PATIENT_GENDER_CODE == 
"Female",]$SYSTOLIC_VALUE_5MM, mean) # Black patients 
predictions_5mm$Asian_Female_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == 
"Asian" & Hyp_Sample$PATIENT_GENDER_CODE == "Female",]$fitted.glm.fit.systolic_5mm, 
Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == "Asian" & Hyp_Sample$PATIENT_GENDER_CODE == 
"Female",]$SYSTOLIC_VALUE_5MM, mean) # Asian patients 
predictions_5mm$Age18_30_Patients <- tapply(Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 18-
30",]$fitted.glm.fit.systolic_5mm, Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 18-
30",]$SYSTOLIC_VALUE_5MM, mean) # 18-30 patients 
predictions_5mm$Age30_40_Patients <- tapply(Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 30-
40",]$fitted.glm.fit.systolic_5mm, Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 30-
40",]$SYSTOLIC_VALUE_5MM, mean) # 30-40 patients 
predictions_5mm$Age40_50_Patients <- tapply(Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 40-
50",]$fitted.glm.fit.systolic_5mm, Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 40-
50",]$SYSTOLIC_VALUE_5MM, mean) # 40-50 patients 
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predictions_5mm$Age50_60_Patients <- tapply(Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 50-
60",]$fitted.glm.fit.systolic_5mm, Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 50-
60",]$SYSTOLIC_VALUE_5MM, mean) # 50-60 patients 
predictions_5mm$Age60_70_Patients <- tapply(Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 60-
70",]$fitted.glm.fit.systolic_5mm, Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 60-
70",]$SYSTOLIC_VALUE_5MM, mean) # 60-70 patients 
predictions_5mm$Age70_80_Patients <- tapply(Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 70-
80",]$fitted.glm.fit.systolic_5mm, Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 70-
80",]$SYSTOLIC_VALUE_5MM, mean) # 70-80 patients 
predictions_5mm$Age80_Patients <- tapply(Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 
80+",]$fitted.glm.fit.systolic_5mm, Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 
80+",]$SYSTOLIC_VALUE_5MM, mean) # 80+ patients 
Today <- format(Sys.time(), format="%B %d %Y %H-%M") 
xls_filename <- paste0('Hypertension Regression Prediction Outputs Auto Generated Sample 
',Today,'.xlsx', sep="") 
prediction_name <- "Predictions 5mm Model" 
write.xlsx(predictions_5mm, xls_filename, paste(prediction_name,' n=', nrow(Hyp_Sample), sep = 
""), append = TRUE) 
 
predictions_10mm <- data.frame(SBP_Range = seq(101,200, 10)) 
predictions_10mm$All_Patients_Actual <- tapply(Hyp_Sample$ANTIHYPERTENSIVE_PRESCRIBED, 
Hyp_Sample$SYSTOLIC_VALUE_10MM, mean) # All patients 
predictions_10mm$All_Patients_Model <- tapply(Hyp_Sample$fitted.glm.fit.systolic_10MM, 
Hyp_Sample$SYSTOLIC_VALUE_10MM, mean) # All patients 
predictions_10mm$White_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == 
"White",]$fitted.glm.fit.systolic_10MM, Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == 
"White",]$SYSTOLIC_VALUE_10MM, mean) # White patients 
predictions_10mm$Black_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == 
"Black",]$fitted.glm.fit.systolic_10MM, Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == 
"Black",]$SYSTOLIC_VALUE_10MM, mean) # Black patients 
predictions_10mm$Asian_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == 
"Asian",]$fitted.glm.fit.systolic_10MM, Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == 
"Asian",]$SYSTOLIC_VALUE_10MM, mean) # Asian patients 
predictions_10mm$Male_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_GENDER_CODE == 
"Male",]$fitted.glm.fit.systolic_10MM, Hyp_Sample[Hyp_Sample$PATIENT_GENDER_CODE == 
"Male",]$SYSTOLIC_VALUE_10MM, mean) # Male patients 
predictions_10mm$Female_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_GENDER_CODE == 
"Female",]$fitted.glm.fit.systolic_10MM, Hyp_Sample[Hyp_Sample$PATIENT_GENDER_CODE == 
"Female",]$SYSTOLIC_VALUE_10MM, mean) # Female patients 
predictions_10mm$Comorbid_Patients <- tapply(Hyp_Sample[Hyp_Sample$HasComorbidities == 
"TRUE",]$fitted.glm.fit.systolic_10MM, Hyp_Sample[Hyp_Sample$HasComorbidities == 
"TRUE",]$SYSTOLIC_VALUE_10MM, mean) # Comorbid patients 
predictions_10mm$Healthy_Patients <- tapply(Hyp_Sample[Hyp_Sample$HasComorbidities == 
"FALSE",]$fitted.glm.fit.systolic_10MM, Hyp_Sample[Hyp_Sample$HasComorbidities == 
"FALSE",]$SYSTOLIC_VALUE_10MM, mean) # Comorbid patients 
predictions_10mm$White_Male_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == "White" 
& Hyp_Sample$PATIENT_GENDER_CODE == "Male",]$fitted.glm.fit.systolic_10MM, 
Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == "White" & Hyp_Sample$PATIENT_GENDER_CODE == 
"Male",]$SYSTOLIC_VALUE_10MM, mean) # White patients 
predictions_10mm$Black_Male_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == "Black" 
& Hyp_Sample$PATIENT_GENDER_CODE == "Male",]$fitted.glm.fit.systolic_10MM, 
Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == "Black" & Hyp_Sample$PATIENT_GENDER_CODE == 
"Male",]$SYSTOLIC_VALUE_10MM, mean) # Black patients 
predictions_10mm$Asian_Male_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == "Asian" 
& Hyp_Sample$PATIENT_GENDER_CODE == "Male",]$fitted.glm.fit.systolic_10MM, 
Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == "Asian" & Hyp_Sample$PATIENT_GENDER_CODE == 
"Male",]$SYSTOLIC_VALUE_10MM, mean) # Asian patients 
predictions_10mm$White_Female_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == 
"White" & Hyp_Sample$PATIENT_GENDER_CODE == "Female",]$fitted.glm.fit.systolic_10MM, 
Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == "White" & Hyp_Sample$PATIENT_GENDER_CODE == 
"Female",]$SYSTOLIC_VALUE_10MM, mean) # White patients 
predictions_10mm$Black_Female_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == 
"Black" & Hyp_Sample$PATIENT_GENDER_CODE == "Female",]$fitted.glm.fit.systolic_10MM, 
Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == "Black" & Hyp_Sample$PATIENT_GENDER_CODE == 
"Female",]$SYSTOLIC_VALUE_10MM, mean) # Black patients 
predictions_10mm$Asian_Female_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == 
"Asian" & Hyp_Sample$PATIENT_GENDER_CODE == "Female",]$fitted.glm.fit.systolic_10MM, 
Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == "Asian" & Hyp_Sample$PATIENT_GENDER_CODE == 
"Female",]$SYSTOLIC_VALUE_10MM, mean) # Asian patients 
predictions_10mm$Age18_30_Patients <- tapply(Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 18-
30",]$fitted.glm.fit.systolic_10MM, Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 18-
30",]$SYSTOLIC_VALUE_10MM, mean) # 18-30 patients 
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predictions_10mm$Age30_40_Patients <- tapply(Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 30-
40",]$fitted.glm.fit.systolic_10MM, Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 30-
40",]$SYSTOLIC_VALUE_10MM, mean) # 30-40 patients 
predictions_10mm$Age40_50_Patients <- tapply(Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 40-
50",]$fitted.glm.fit.systolic_10MM, Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 40-
50",]$SYSTOLIC_VALUE_10MM, mean) # 40-50 patients 
predictions_10mm$Age50_60_Patients <- tapply(Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 50-
60",]$fitted.glm.fit.systolic_10MM, Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 50-
60",]$SYSTOLIC_VALUE_10MM, mean) # 50-60 patients 
predictions_10mm$Age60_70_Patients <- tapply(Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 60-
70",]$fitted.glm.fit.systolic_10MM, Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 60-
70",]$SYSTOLIC_VALUE_10MM, mean) # 60-70 patients 
predictions_10mm$Age70_80_Patients <- tapply(Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 70-
80",]$fitted.glm.fit.systolic_10MM, Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 70-
80",]$SYSTOLIC_VALUE_10MM, mean) # 70-80 patients 
predictions_10mm$Age80_Patients <- tapply(Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 
80+",]$fitted.glm.fit.systolic_10MM, Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 
80+",]$SYSTOLIC_VALUE_10MM, mean) # 80+ patients 
Today <- format(Sys.time(), format="%B %d %Y %H-%M") 
xls_filename <- paste0('Hypertension Regression Prediction Outputs Auto Generated Sample 
',Today,'.xlsx', sep="") 
prediction_name <- "Predictions 10mm Model" 
write.xlsx(predictions_10mm, xls_filename, paste(prediction_name,' n=', nrow(Hyp_Sample), sep = 
""), append = TRUE) 
 
predictions_1mm <- data.frame(SBP_Range = seq(101,199, 1)) 
predictions_1mm$All_Patients_Actual <- tapply(Hyp_Sample$ANTIHYPERTENSIVE_PRESCRIBED, 
Hyp_Sample$SYSTOLIC_VALUE, mean) # All patients 
predictions_1mm$All_Patients_Model <- tapply(Hyp_Sample$fitted.glm.fit.systolic, 
Hyp_Sample$SYSTOLIC_VALUE, mean) # All patients  
predictions_1mm$White_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == 
"White",]$fitted.glm.fit.systolic, Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == 
"White",]$SYSTOLIC_VALUE, mean) # White patients 
predictions_1mm$Black_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == 
"Black",]$fitted.glm.fit.systolic, Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == 
"Black",]$SYSTOLIC_VALUE, mean) # Black patients 
predictions_1mm$Asian_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == 
"Asian",]$fitted.glm.fit.systolic, Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == 
"Asian",]$SYSTOLIC_VALUE, mean) # Asian patients 
predictions_1mm$Male_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_GENDER_CODE == 
"Male",]$fitted.glm.fit.systolic, Hyp_Sample[Hyp_Sample$PATIENT_GENDER_CODE == 
"Male",]$SYSTOLIC_VALUE, mean) # Male patients 
predictions_1mm$Female_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_GENDER_CODE == 
"Female",]$fitted.glm.fit.systolic, Hyp_Sample[Hyp_Sample$PATIENT_GENDER_CODE == 
"Female",]$SYSTOLIC_VALUE, mean) # Female patients 
predictions_1mm$Comorbid_Patients <- tapply(Hyp_Sample[Hyp_Sample$HasComorbidities == 
"TRUE",]$fitted.glm.fit.systolic, Hyp_Sample[Hyp_Sample$HasComorbidities == 
"TRUE",]$SYSTOLIC_VALUE, mean) # Comorbid patients 
predictions_1mm$Healthy_Patients <- tapply(Hyp_Sample[Hyp_Sample$HasComorbidities == 
"FALSE",]$fitted.glm.fit.systolic, Hyp_Sample[Hyp_Sample$HasComorbidities == 
"FALSE",]$SYSTOLIC_VALUE, mean) # Comorbid patients 
predictions_1mm$White_Male_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == "White" 
& Hyp_Sample$PATIENT_GENDER_CODE == "Male",]$fitted.glm.fit.systolic, 
Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == "White" & Hyp_Sample$PATIENT_GENDER_CODE == 
"Male",]$SYSTOLIC_VALUE, mean) # White patients 
predictions_1mm$Black_Male_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == "Black" 
& Hyp_Sample$PATIENT_GENDER_CODE == "Male",]$fitted.glm.fit.systolic, 
Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == "Black" & Hyp_Sample$PATIENT_GENDER_CODE == 
"Male",]$SYSTOLIC_VALUE, mean) # Black patients 
predictions_1mm$Asian_Male_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == "Asian" 
& Hyp_Sample$PATIENT_GENDER_CODE == "Male",]$fitted.glm.fit.systolic, 
Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == "Asian" & Hyp_Sample$PATIENT_GENDER_CODE == 
"Male",]$SYSTOLIC_VALUE, mean) # Asian patients 
predictions_1mm$White_Female_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == 
"White" & Hyp_Sample$PATIENT_GENDER_CODE == "Female",]$fitted.glm.fit.systolic, 
Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == "White" & Hyp_Sample$PATIENT_GENDER_CODE == 
"Female",]$SYSTOLIC_VALUE, mean) # White patients 
predictions_1mm$Black_Female_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == 
"Black" & Hyp_Sample$PATIENT_GENDER_CODE == "Female",]$fitted.glm.fit.systolic, 
Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == "Black" & Hyp_Sample$PATIENT_GENDER_CODE == 
"Female",]$SYSTOLIC_VALUE, mean) # Black patients 
predictions_1mm$Asian_Female_Patients <- tapply(Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == 
"Asian" & Hyp_Sample$PATIENT_GENDER_CODE == "Female",]$fitted.glm.fit.systolic, 
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Hyp_Sample[Hyp_Sample$PATIENT_RACE_CODE == "Asian" & Hyp_Sample$PATIENT_GENDER_CODE == 
"Female",]$SYSTOLIC_VALUE, mean) # Asian patients 
predictions_1mm$Age18_30_Patients <- tapply(Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 18-
30",]$fitted.glm.fit.systolic, Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 18-
30",]$SYSTOLIC_VALUE, mean) # 18-30 patients 
predictions_1mm$Age30_40_Patients <- tapply(Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 30-
40",]$fitted.glm.fit.systolic, Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 30-
40",]$SYSTOLIC_VALUE, mean) # 30-40 patients 
predictions_1mm$Age40_50_Patients <- tapply(Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 40-
50",]$fitted.glm.fit.systolic, Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 40-
50",]$SYSTOLIC_VALUE, mean) # 40-50 patients 
predictions_1mm$Age50_60_Patients <- tapply(Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 50-
60",]$fitted.glm.fit.systolic, Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 50-
60",]$SYSTOLIC_VALUE, mean) # 50-60 patients 
predictions_1mm$Age60_70_Patients <- tapply(Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 60-
70",]$fitted.glm.fit.systolic, Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 60-
70",]$SYSTOLIC_VALUE, mean) # 60-70 patients 
predictions_1mm$Age70_80_Patients <- tapply(Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 70-
80",]$fitted.glm.fit.systolic, Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 70-
80",]$SYSTOLIC_VALUE, mean) # 70-80 patients 
predictions_1mm$Age80_Patients <- tapply(Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 
80+",]$fitted.glm.fit.systolic, Hyp_Sample[Hyp_Sample$AGE_ON_OBS_DATE == "Age 
80+",]$SYSTOLIC_VALUE, mean) # 80+ patients 
prediction_name <- "Predictions 1mm Model" 
write.xlsx(predictions_1mm, xls_filename, paste(prediction_name,' n=', nrow(Hyp_Sample), sep = 
""), append = TRUE) 
 
rm(glm.fit.systolic)  
rm(glm.fit.systolic_simple) # remove the glm objects 
rm(glm.fit.systolic_5mm) 
rm(glm.fit.systolic_10mm) 
 
rm(glm.fit.diastolic)  
rm(glm.fit.diastolic_simple) # remove the glm objects 
rm(glm.fit.diastolic_5mm) 
rm(glm.fit.daistolic_10mm) 
gc() # garbage collection to free up memory 
 
#################################################################################### 
# ------------------ Subgroup Analyses by Age, Sex, Comobrbidities ----------------# 
#################################################################################### 
####################--------------- FEMALE ----------------------################### 
# Get the dataset 
if(is.null(samplesize)) 
{ 
  Hyp_Reg_Naive_Female <- Hyp[Hyp$PATIENT_GENDER_CODE == "Female",] 
} 
if(!is.null(samplesize) && exists("Hyp_Reg_Naive_Female")) 
{ 
  if(max(nrow((Hyp_Reg_Naive_Female)) != samplesize))  
  { Hyp_Reg_Naive_Female <- Hyp[sample(1:nrow(subset(Hyp, Hyp$PATIENT_GENDER_CODE == "Female")), 
samplesize, replace = FALSE),] } 
} 
if(!is.null(samplesize) && !exists("Hyp_Reg_Naive_Female")) 
{ 
  Hyp_Reg_Naive_Female <- Hyp[sample(1:nrow(subset(Hyp, Hyp$PATIENT_GENDER_CODE == "Female")), 
samplesize, replace = FALSE),] 
} 
Hyp_Reg_Naive_Female <- na.exclude(Hyp_Reg_Naive_Female) 
 
# Run the regression 
 
glm.fit.systolic.female <- run_logistic_regression(reg_eqn = reg_formula_gender, dataset = 
Hyp_Reg_Naive_Female, regression_name = "Gender Female") 
Hyp_Reg_Naive_Female$fitted.glm.fit.systolic.female <- fitted(glm.fit.systolic.female) 
#Master_data <- merge(Hyp_Sample, Hyp_Reg_Naive_Female, by = "row.names", all.x = TRUE) 
# Clean up and free memory 
rm(glm.fit.systolic.female) 
gc() # garbage collection to free up memory 
 
####################---------------- MALE -----------------------################### 
# Get the data 
if(is.null(samplesize)) 
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{ 
  Hyp_Reg_Naive_Male <- Hyp[Hyp$PATIENT_GENDER_CODE == "Male",] 
} 
if(!is.null(samplesize) && exists("Hyp_Reg_Naive_Male")) 
{ 
  if(max(nrow((Hyp_Reg_Naive_Male)) != samplesize))  
  { Hyp_Reg_Naive_Male <- Hyp[sample(1:nrow(subset(Hyp, Hyp$PATIENT_GENDER_CODE == "Male")), 
samplesize, replace = FALSE),] } 
} 
if(!is.null(samplesize) && !exists("Hyp_Reg_Naive_Male")) 
{ 
  Hyp_Reg_Naive_Male <- Hyp[sample(1:nrow(subset(Hyp, Hyp$PATIENT_GENDER_CODE == "Male")), 
samplesize, replace = FALSE),] 
} 
Hyp_Reg_Naive_Male <- na.exclude(Hyp_Reg_Naive_Male) 
glm.fit.systolic.male <- run_logistic_regression(reg_eqn = reg_formula_gender, dataset = 
Hyp_Reg_Naive_Male, regression_name = "Gender Male") 
#generate_predictions(glm.fit.systolic.male) 
 
rm(glm.fit.systolic.male) 
gc() # garbage collection to free up memory 
 
####################--------------- COMORBID ---------------------################### 
# Get the data 
if(is.null(samplesize)) 
{ Hyp_Reg_Naive_Comorbid_Patients <- Hyp[Hyp$HasComorbidities == "TRUE",] } 
if(!is.null(samplesize) && exists("Hyp_Reg_Naive_Comorbid_Patients")) 
{ if(max(nrow((Hyp_Reg_Naive_Comorbid_Patients)) != samplesize)) 
{ Hyp_Reg_Naive_Comorbid_Patients <- Hyp[sample(1:nrow(subset(Hyp, Hyp$HasComorbidities == 
"TRUE")), samplesize, replace = FALSE),] } 
} 
if(!is.null(samplesize) && !exists("Hyp_Reg_Naive_Comorbid_Patients")) 
{ Hyp_Reg_Naive_Comorbid_Patients <- Hyp[sample(1:nrow(subset(Hyp, Hyp$HasComorbidities == 
"TRUE")), samplesize, replace = FALSE),] } 
Hyp_Reg_Naive_Comorbid_Patients <- na.exclude(Hyp_Reg_Naive_Comorbid_Patients) 
# Run the regression 
glm.fit.systolic.comorbid <- run_logistic_regression(reg_eqn = reg_formula_comorbid, dataset = 
Hyp_Reg_Naive_Comorbid_Patients, regression_name = "Comorbid Patients") 
#generate_predictions(glm.fit.systolic.comorbid) 
# Write the output to a file 
rm(glm.fit.systolic.comorbid) 
gc() # garbage collection to free up memory 
 
####################---------------- HEALTHY ---------------------################### 
# Get the data 
if(is.null(samplesize)) 
{ 
  Hyp_Reg_Naive_OtherwiseHealthy_Patients <- Hyp[Hyp$HasComorbidities == "FALSE",] 
} 
if(!is.null(samplesize) && exists("Hyp_Reg_Naive_OtherwiseHealthy_Patients")) 
{ 
  if(max(nrow((Hyp_Reg_Naive_OtherwiseHealthy_Patients)) != samplesize)) 
  {Hyp_Reg_Naive_OtherwiseHealthy_Patients <- Hyp[sample(1:nrow(subset(Hyp, Hyp$HasComorbidities 
== "FALSE")), samplesize, replace = FALSE),]} 
} 
if(!is.null(samplesize) && !exists("Hyp_Reg_Naive_OtherwiseHealthy_Patients")) 
{ Hyp_Reg_Naive_OtherwiseHealthy_Patients <- Hyp[sample(1:nrow(subset(Hyp, Hyp$HasComorbidities 
== "FALSE")), samplesize, replace = FALSE),] } 
Hyp_Reg_Naive_OtherwiseHealthy_Patients <- na.exclude(Hyp_Reg_Naive_OtherwiseHealthy_Patients) 
# Run the regression 
glm.fit.systolic.healthy <- run_logistic_regression(reg_eqn = reg_formula_comorbid, dataset = 
Hyp_Reg_Naive_OtherwiseHealthy_Patients, regression_name = "Healthy Patients") 
#generate_predictions(glm.fit.systolic.healthy) 
rm(glm.fit.systolic.healthy) 
gc() # garbage collection to free up memory 
 
####################----------------- Age Analyses ---------------################### 
####################---------------- 18 - 30 ---------------------################### 
# Could do this as a loop using the factor (e.g. for(x = 1 to 5), then set the factor 
# to be a subset of the master dataset (e.g. Hyp[Hyp$AGE_ON_OBS_DATE == x])) 
# Get the data 
 
#-----------------------------------------------------------------------------------# 
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if(is.null(samplesize)) 
{ 
  Hyp_Reg_Naive_Patients_Age18_30 <- Hyp[Hyp$AGE_ON_OBS_DATE == "Age 18-30",] 
} 
if(!is.null(samplesize) && exists("Hyp_Reg_Naive_Patients_Age18_30")) 
{ 
  if(max(nrow((Hyp_Reg_Naive_Patients_Age18_30)) != samplesize)) 
  {Hyp_Reg_Naive_Patients_Age18_30 <- Hyp[sample(1:nrow(subset(Hyp, Hyp$AGE_ON_OBS_DATE == "Age 
18-30")), samplesize, replace = FALSE),]} 
} 
if(!is.null(samplesize) && !exists("Hyp_Reg_Naive_Patients_Age18_30")) 
{ Hyp_Reg_Naive_Patients_Age18_30 <- Hyp[sample(1:nrow(subset(Hyp, Hyp$AGE_ON_OBS_DATE == "Age 
18-30")), samplesize, replace = FALSE),] } 
Hyp_Reg_Naive_Patients_Age18_30 <- na.exclude(Hyp_Reg_Naive_Patients_Age18_30) 
# Run the regression 
glm.fit.systolic.18_30 <- run_logistic_regression(reg_eqn = reg_formula_age, dataset = 
Hyp_Reg_Naive_Patients_Age18_30, regression_name = "18_30yo Patients") 
glm.fit.diastolic.18_30 <- run_logistic_regression(reg_eqn = reg_formula_age_diastolic, dataset = 
Hyp_Reg_Naive_Patients_Age18_30, regression_name = "18_30yo Patients") 
 
#generate_predictions(glm.fit.systolic.18_30) 
rm(glm.fit.systolic.18_30) 
gc() # garbage collection to free up memory 
 
####################---------------- 30 - 40 ---------------------################### 
# Get the data 
if(is.null(samplesize)) 
{ 
  Hyp_Reg_Naive_Patients_Age30_40 <- Hyp[Hyp$AGE_ON_OBS_DATE == "Age 30-40",] 
} 
if(!is.null(samplesize) && exists("Hyp_Reg_Naive_Patients_Age30_40")) 
{ 
  if(max(nrow((Hyp_Reg_Naive_Patients_Age30_40)) != samplesize)) 
  {Hyp_Reg_Naive_Patients_Age30_40 <- Hyp[sample(1:nrow(subset(Hyp, Hyp$AGE_ON_OBS_DATE == "Age 
30-40")), samplesize, replace = FALSE),]} 
} 
if(!is.null(samplesize) && !exists("Hyp_Reg_Naive_Patients_Age30_40")) 
{ Hyp_Reg_Naive_Patients_Age30_40 <- Hyp[sample(1:nrow(subset(Hyp, Hyp$AGE_ON_OBS_DATE == "Age 
30-40")), samplesize, replace = FALSE),] } 
Hyp_Reg_Naive_Patients_Age30_40 <- na.exclude(Hyp_Reg_Naive_Patients_Age30_40) 
# Run the regression 
glm.fit.systolic.30_40 <- run_logistic_regression(reg_eqn = reg_formula_age, dataset = 
Hyp_Reg_Naive_Patients_Age30_40, regression_name = "30-40yo Patients") 
glm.fit.diastolic.30_40 <- run_logistic_regression(reg_eqn = reg_formula_age_diastolic, dataset = 
Hyp_Reg_Naive_Patients_Age30_40, regression_name = "30_40yo Patients") 
 
#generate_predictions(glm.fit.systolic.30_40) 
rm(glm.fit.systolic.30_40) 
gc() # garbage collection to free up memory 
 
####################---------------- 40 - 50 ---------------------################### 
# Get the data 
if(is.null(samplesize)) 
{ 
  Hyp_Reg_Naive_Patients_Age40_50 <- Hyp[Hyp$AGE_ON_OBS_DATE == "Age 40-50",] 
} 
if(!is.null(samplesize) && exists("Hyp_Reg_Naive_Patients_Age40_50")) 
{ 
  if(max(nrow((Hyp_Reg_Naive_Patients_Age40_50)) != samplesize)) 
  {Hyp_Reg_Naive_Patients_Age40_50 <- Hyp[sample(1:nrow(subset(Hyp, Hyp$AGE_ON_OBS_DATE == "Age 
40-50")), samplesize, replace = FALSE),]} 
} 
if(!is.null(samplesize) && !exists("Hyp_Reg_Naive_Patients_Age40_50")) 
{ Hyp_Reg_Naive_Patients_Age40_50 <- Hyp[sample(1:nrow(subset(Hyp, Hyp$AGE_ON_OBS_DATE == "Age 
40-50")), samplesize, replace = FALSE),] } 
Hyp_Reg_Naive_Patients_Age40_50 <- na.exclude(Hyp_Reg_Naive_Patients_Age40_50) 
# Run the regression 
glm.fit.systolic.40_50 <- run_logistic_regression(reg_eqn = reg_formula_age, dataset = 
Hyp_Reg_Naive_Patients_Age40_50, regression_name = "40-50yo Patients") 
glm.fit.diastolic.40_50 <- run_logistic_regression(reg_eqn = reg_formula_age_diastolic, dataset = 
Hyp_Reg_Naive_Patients_Age40_50, regression_name = "40_50yo Patients") 
 
#generate_predictions(glm.fit.systolic.40_50) 
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rm(glm.fit.systolic.40_50) 
gc() # garbage collection to free up memory 
 
####################---------------- 50 - 60 ---------------------##################### 
# Get the data 
if(is.null(samplesize)) 
{ 
  Hyp_Reg_Naive_Patients_Age50_60 <- Hyp[Hyp$AGE_ON_OBS_DATE == "Age 50-60",] 
} 
if(!is.null(samplesize) && exists("Hyp_Reg_Naive_Patients_Age50_60")) 
{ 
  if(max(nrow((Hyp_Reg_Naive_Patients_Age50_60)) != samplesize)) 
  {Hyp_Reg_Naive_Patients_Age50_60 <- Hyp[sample(1:nrow(subset(Hyp, Hyp$AGE_ON_OBS_DATE == "Age 
50-60")), samplesize, replace = FALSE),]} 
} 
if(!is.null(samplesize) && !exists("Hyp_Reg_Naive_Patients_Age50_60")) 
{ Hyp_Reg_Naive_Patients_Age50_60 <- Hyp[sample(1:nrow(subset(Hyp, Hyp$AGE_ON_OBS_DATE == "Age 
50-60")), samplesize, replace = FALSE),] } 
Hyp_Reg_Naive_Patients_Age50_60 <- na.exclude(Hyp_Reg_Naive_Patients_Age50_60) 
# Run the regression 
glm.fit.systolic.50_60 <- run_logistic_regression(reg_eqn = reg_formula_age, dataset = 
Hyp_Reg_Naive_Patients_Age50_60, regression_name = "50_60yo Patients") 
glm.fit.diastolic.50_60 <- run_logistic_regression(reg_eqn = reg_formula_age_diastolic, dataset = 
Hyp_Reg_Naive_Patients_Age50_60, regression_name = "50_60yo Patients") 
 
#generate_predictions(glm.fit.systolic.50_60) 
rm(glm.fit.systolic.50_60) 
gc() # garbage collection to free up memory 
 
####################---------------- 60 - 70 ---------------------################### 
# Get the data 
if(is.null(samplesize)) 
{ 
  Hyp_Reg_Naive_Patients_Age60_70 <- Hyp[Hyp$AGE_ON_OBS_DATE == "Age 60-70",] 
} 
if(!is.null(samplesize) && exists("Hyp_Reg_Naive_Patients_Age60_70")) 
{ 
  if(max(nrow((Hyp_Reg_Naive_Patients_Age60_70)) != samplesize)) 
  {Hyp_Reg_Naive_Patients_Age60_70 <- Hyp[sample(1:nrow(subset(Hyp, Hyp$AGE_ON_OBS_DATE == "Age 
60-70")), samplesize, replace = FALSE),]} 
} 
if(!is.null(samplesize) && !exists("Hyp_Reg_Naive_Patients_Age60_70")) 
{ Hyp_Reg_Naive_Patients_Age60_70 <- Hyp[sample(1:nrow(subset(Hyp, Hyp$AGE_ON_OBS_DATE == "Age 
60-70")), samplesize, replace = FALSE),] } 
Hyp_Reg_Naive_Patients_Age60_70 <- na.exclude(Hyp_Reg_Naive_Patients_Age60_70) 
# Run the regression 
glm.fit.systolic.60_70 <- run_logistic_regression(reg_eqn = reg_formula_age, dataset = 
Hyp_Reg_Naive_Patients_Age60_70, regression_name = "60-70yo Patients") 
glm.fit.diastolic.60_70 <- run_logistic_regression(reg_eqn = reg_formula_age_diastolic, dataset = 
Hyp_Reg_Naive_Patients_Age60_70, regression_name = "60_70yo Patients") 
 
#generate_predictions(glm.fit.systolic.60_70) 
rm(glm.fit.systolic.60_70) 
gc() # garbage collection to free up memory 
 
####################---------------- 70 - 80 ---------------------################### 
# Get the data 
if(is.null(samplesize)) 
{ 
  Hyp_Reg_Naive_Patients_Age70_80 <- Hyp[Hyp$AGE_ON_OBS_DATE == "Age 70-80",] 
} 
if(!is.null(samplesize) && exists("Hyp_Reg_Naive_Patients_Age70_80")) 
{ 
  if(max(nrow((Hyp_Reg_Naive_Patients_Age70_80)) != samplesize)) 
  {Hyp_Reg_Naive_Patients_Age70_80 <- Hyp[sample(1:nrow(subset(Hyp, Hyp$AGE_ON_OBS_DATE == "Age 
70-80")), samplesize, replace = FALSE),]} 
} 
if(!is.null(samplesize) && !exists("Hyp_Reg_Naive_Patients_Age70_80")) 
{ Hyp_Reg_Naive_Patients_Age70_80 <- Hyp[sample(1:nrow(subset(Hyp, Hyp$AGE_ON_OBS_DATE == "Age 
70-80")), samplesize, replace = FALSE),] } 
Hyp_Reg_Naive_Patients_Age70_80 <- na.exclude(Hyp_Reg_Naive_Patients_Age70_80) 
# Run the regression 
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glm.fit.systolic.70_80 <- run_logistic_regression(reg_eqn = reg_formula_age, dataset = 
Hyp_Reg_Naive_Patients_Age70_80, regression_name = "70-80yo Patients") 
glm.fit.diastolic.70_80 <- run_logistic_regression(reg_eqn = reg_formula_age_diastolic, dataset = 
Hyp_Reg_Naive_Patients_Age70_80, regression_name = "70_80yo Patients") 
 
#generate_predictions(glm.fit.systolic.70_80) 
rm(glm.fit.systolic.70_80) 
gc() # garbage collection to free up memory 
 
####################---------------- 80+ ---------------------################### 
# Get the data 
if(is.null(samplesize)) 
{ 
  Hyp_Reg_Naive_Patients_Age80_ <- Hyp[Hyp$AGE_ON_OBS_DATE == "Age 80+",] 
} 
if(!is.null(samplesize) && exists("Hyp_Reg_Naive_Patients_Age80_")) 
{ 
  if(max(nrow((Hyp_Reg_Naive_Patients_Age80_)) != samplesize)) 
  {Hyp_Reg_Naive_Patients_Age80_ <- Hyp[sample(1:nrow(subset(Hyp, Hyp$AGE_ON_OBS_DATE == "Age 
80+")), samplesize, replace = FALSE),]} 
} 
if(!is.null(samplesize) && !exists("Hyp_Reg_Naive_Patients_Age80_")) 
{ Hyp_Reg_Naive_Patients_Age80_ <- Hyp[sample(1:nrow(subset(Hyp, Hyp$AGE_ON_OBS_DATE == "Age 
80+")), samplesize, replace = FALSE),] } 
Hyp_Reg_Naive_Patients_Age80_ <- na.exclude(Hyp_Reg_Naive_Patients_Age80_) 
# Run the regression 
glm.fit.systolic.80_ <- run_logistic_regression(reg_eqn = reg_formula_age, dataset = 
Hyp_Reg_Naive_Patients_Age80_, regression_name = "80+ yo Patients") 
glm.fit.diastolic.80_ <- run_logistic_regression(reg_eqn = reg_formula_age_diastolic, dataset = 
Hyp_Reg_Naive_Patients_Age80_, regression_name = "80+ yo Patients") 
 
#generate_predictions(glm.fit.systolic.80_) 
rm(glm.fit.systolic.80_) 
gc() # garbage collection to free up memory 
 
####################---------------- Black ---------------------################### 
# Get the data 
if(is.null(samplesize)) 
{ 
  Hyp_Reg_Naive_Patients_Black <- Hyp[Hyp$PATIENT_RACE_CODE == "Black",] 
} 
if(!is.null(samplesize) && exists("Hyp_Reg_Naive_Patients_Black")) 
{ 
  if(max(nrow((Hyp_Reg_Naive_Patients_Black)) != samplesize)) 
  {Hyp_Reg_Naive_Patients_Black <- Hyp[sample(1:nrow(subset(Hyp, Hyp$PATIENT_RACE_CODE == 
"Black")), samplesize, replace = FALSE),]} 
} 
if(!is.null(samplesize) && !exists("Hyp_Reg_Naive_Patients_Age80_")) 
{ Hyp_Reg_Naive_Patients_Black <- Hyp[sample(1:nrow(subset(Hyp, Hyp$PATIENT_RACE_CODE == 
"Black")), samplesize, replace = FALSE),] } 
Hyp_Reg_Naive_Patients_Black <- na.exclude(Hyp_Reg_Naive_Patients_Black) 
# Run the regression 
glm.fit.systolic.Black <- run_logistic_regression(reg_eqn = reg_formula_race, dataset = 
Hyp_Reg_Naive_Patients_Black, regression_name = "Black Patients") 
#generate_predictions(glm.fit.systolic.Black) 
rm(glm.fit.systolic.Black) 
gc() # garbage collection to free up memory 
######################################################################################### 
### Test a model where we only have patients with BP values near the threshold 
### Include only those with SBP 135 - 145 
### 
######################################################################################### 
 
Hyp_Threshold_SBP <- Hyp[Hyp$SYSTOLIC_VALUE <= SBP_threshold_upper & Hyp$SYSTOLIC_VALUE >= 
SBP_threshold_lower & Hyp$DIABETIC_DURING_VISIT == FALSE,] 
reg_formula_threshold_SBP <- ANTIHYPERTENSIVE_PRESCRIBED ~ SYSTOLIC_VALUE*SHOULD_BE_TREATED + 
IS_PHYSICIAN_CODE + PATIENT_GENDER_CODE + PATIENT_RACE_CODE + PATIENT_ETHNICITY_CODE + 
PATIENT_MARITAL_STATUS_CODE + PATIENT_EMPLOYMENT_STATUS_CODE + PATIENT_BMI + AGE_ON_OBS_DATE + 
HasComorbidities 
# Run the regression 
glm.fit.threshold_SBP <- run_logistic_regression(reg_eqn = reg_formula_threshold_SBP, dataset = 
Hyp_Threshold_SBP, regression_name = "Threshold Analysis - SBP") 
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Hyp_Sys_Threshold_DBP <- Hyp[Hyp$DIASTOLIC_VALUE <= DBP_threshold_upper & Hyp$DIASTOLIC_VALUE >= 
DBP_threshold_lower & Hyp$DIABETIC_DURING_VISIT == FALSE,] 
reg_formula_threshold_DBP <- ANTIHYPERTENSIVE_PRESCRIBED ~ DIASTOLIC_VALUE*SHOULD_BE_TREATED + 
IS_PHYSICIAN_CODE + PATIENT_GENDER_CODE + PATIENT_RACE_CODE + PATIENT_ETHNICITY_CODE + 
PATIENT_MARITAL_STATUS_CODE + PATIENT_EMPLOYMENT_STATUS_CODE + PATIENT_BMI + AGE_ON_OBS_DATE + 
HasComorbidities 
glm.fit.threshold_DBP <- run_logistic_regression(reg_eqn = reg_formula_threshold_DBP, dataset = 
Hyp_Sys_Threshold_DBP, regression_name = "Threshold Analysis - DBP") 
 
#generate_predictions(glm.fit.threshold) 
rm(glm.fit.threshold) 
gc() # garbage collection to free up memory 

Hypertension Table 1 Epidemiology Statistics 

# Table 1: Epidemiology Stats.  
# Need to show: 
# 1) Gender Male vs. Female vs Unknown 
# 2) Age buckets as reported in the regression (18-29, 30-39, 40-49, 50-59, 60-69, 70-79, 80+) 
# 3) Marital Status by code (married, single, divorced, etc...) 
# 4) Employment Status 
# 5) Race Code (white, black, asian etc.) 
# 6) Ethnicity Code (Hispanic, Non-Hispanic) 
# 7) Comorbidities (Diabetes, MI, IHD, PVD, CHF) 
install.packages("xtable") 
library(xtable) 
Table1Data <- Hyp_Raw 
Table_1_Mean_SBP <- mean(Table1Data$SYSTOLIC_VALUE) 
Table_1_SD_SBP <- sd(Table1Data$SYSTOLIC_VALUE) 
Table_1_Mean_DBP <- mean(Table1Data$DIASTOLIC_VALUE) 
Table_1_SD_DBP <- sd(Table1Data$DIASTOLIC_VALUE) 
Table_1_Age_Dist <- prop.table(xtabs(~Table1Data$AGE_ON_OBS_DATE, data=Table1Data)) 
Table_1_Phys_Type <- prop.table(xtabs(~Table1Data$IS_PHYSICIAN_CODE, data=Table1Data)) 
tmp <- prop.table(xtabs(~Table1Data$PROVIDER_SPECIALTY)) 
Table_1_Phys_Specialty <- tmp[tmp>0.01] 
Table_1_Gender <- prop.table(xtabs(~Table1Data$PATIENT_GENDER_CODE)) 
Table_1_Marital_Status <- prop.table(xtabs(~Table1Data$PATIENT_MARITAL_STATUS_CODE)) 
Table_1_Employment_Status <- prop.table(xtabs(~Table1Data$PATIENT_EMPLOYMENT_STATUS_CODE)) 
Table_1_Race <- prop.table(xtabs(~Table1Data$PATIENT_RACE_CODE)) 
Table_1_Ethnicity <- prop.table(xtabs(~Table1Data$PATIENT_ETHNICITY_CODE)) 
Table_1_Diabetes <- prop.table(xtabs(~Table1Data$DIABETIC_DURING_VISIT)) 
Table_1_MI <- prop.table(xtabs(~Table1Data$HIST_MI_DURING_VISIT)) 
Table_1_CVA <- prop.table(xtabs(~Table1Data$HIST_CVA_DURING_VISIT)) 
Table_1_IHD <- prop.table(xtabs(~Table1Data$HIST_IHD_DURING_VISIT)) 
Table_1_PVD <- prop.table(xtabs(~Table1Data$HIST_PVD_DURING_VISIT)) 
Table_1_CHF <- prop.table(xtabs(~Table1Data$HIST_CHF_DURING_VISIT)) 
Table_1_Physician <- prop.table(xtabs(~Table1Data$IS_PHYSICIAN_CODE)) 
Table_1_Sample_Size <- nrow(Table1Data) 
 

Hypertension Descriptive Statistics 

######################################################################## 
### RUN THIS FILE AFTER THE HYPERTENSION REGRESSIONS FILE.  
######################################################################## 
 
# Load Packages 
library(arm) 
library(ggplot2) 
library(stats) 
library(ggfortify) 
library(base) 
 
Hyp_Diastolic <- read.csv('Probability of Prescription DIASTOLIC - NEW.csv') 
Hyp_Systolic <- read.csv('Probability of Prescription SYSTOLIC - NEW.csv') 
Hyp_Systolic_Diastolic <- read.csv('Probability of Prescription and Medication SYSTOLIC AND 
DIASTOLIC - NEW.csv') 
Hyp_Systolic_Diastolic <- Hyp_Systolic_Diastolic[complete.cases(Hyp_Systolic_Diastolic[,1:2]),] 
 
######################################################################## 
### Create the plots with separate regression lines for above and below 
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### threshold values of 90mmHg, 130mmHg and 140mmHg 
### Do this for prescription probability only 
### Show separate charts for diabetics and non-diabetics 
### Only show for naive patients (e.g. those not already on therapy) 
######################################################################## 
# Plot the conditional Densities for Diastolic - Prescription 
Hyp_Diastolic_No_Diab <- Hyp_Diastolic[Hyp_Diastolic$DIABETIC_DURING_VISIT == 0 & 
Hyp_Diastolic$ON_EXISTING_HT_MEDICATION == 0,] 
diastolic_plot_No_Diab <- ggplot(Hyp_Diastolic_No_Diab, 
aes(Hyp_Diastolic_No_Diab$DIASTOLIC_VALUE, Hyp_Diastolic_No_Diab$PROBABILITY_OF_PRESCRIPTION, 
color = factor(Hyp_Diastolic_No_Diab$SHOULD_BE_TREATED))) 
diastolic_plot_No_Diab <- diastolic_plot_No_Diab + geom_point() + geom_vline(xintercept = 90, 
linetype = "dashed", alpha = 0.6) 
diastolic_plot_No_Diab <- diastolic_plot_No_Diab + ylab("Probability of Prescription") 
diastolic_plot_No_Diab <- diastolic_plot_No_Diab + stat_smooth(method = "glm", method.args = 
list(family = "gaussian", weights = as.vector(Hyp_Diastolic_No_Diab$N)), fullrange = FALSE, alpha 
= 0.3) + stat_smooth(method = "glm", method.args = list(family = "gaussian"), fullrange = TRUE, 
linetype = "dashed", lwd = 0.5, alpha = 0.15) + geom_point() 
# diastolic_plot_No_Diab <- diastolic_plot_No_Diab + annotate("text", x = 75, y = 0.25, label = 
lm_eqn(lm(Hyp_Diastolic_No_Diab$PROBABILITY~Hyp_Diastolic_No_Diab$DIASTOLIC_VALUE, 
Hyp_Diastolic_No_Diab)), size = 3, parse=TRUE) 
diastolic_plot_No_Diab <- diastolic_plot_No_Diab + ylim(0.05, 0.4) + xlim(55, 110) + 
xlab("Diastolic Blood Pressure Reading") + theme(legend.position = "none") + ggtitle(" (a) Naive 
Nondiabetic Patients - Diastolic") 
 
# Plot the conditional Densities for Diabetics for Diastolic - Prescription 
Hyp_Diastolic_Diabetes <- Hyp_Diastolic[Hyp_Diastolic$DIABETIC_DURING_VISIT == 1 & 
Hyp_Diastolic$ON_EXISTING_HT_MEDICATION == 0,] 
diastolic_plot_Diabetes <- ggplot(Hyp_Diastolic_Diabetes, 
aes(Hyp_Diastolic_Diabetes$DIASTOLIC_VALUE, Hyp_Diastolic_Diabetes$PROBABILITY_OF_PRESCRIPTION, 
color = factor(Hyp_Diastolic_Diabetes$SHOULD_BE_TREATED))) 
diastolic_plot_Diabetes <- diastolic_plot_Diabetes + geom_point() + geom_vline(xintercept = 90, 
linetype = "dashed", alpha = 0.6) 
diastolic_plot_Diabetes <- diastolic_plot_Diabetes + ylab("Probability of Prescription") 
diastolic_plot_Diabetes <- diastolic_plot_Diabetes + stat_smooth(method = "glm", method.args = 
list(family = "gaussian", weights = as.vector(Hyp_Diastolic_Diabetes$N)), fullrange = FALSE, 
alpha = 0.3) + stat_smooth(method = "glm", method.args = list(family = "gaussian"), fullrange = 
TRUE, linetype = "dashed", lwd = 0.5, alpha = 0.15) + geom_point() 
# diastolic_plot_Diabetes <- diastolic_plot_Diabetes + annotate("text", x = 75, y = 0.25, label = 
lm_eqn(lm(Hyp_Diastolic_Diabetes$PROBABILITY~Hyp_Diastolic_Diabetes$DIASTOLIC_VALUE, 
Hyp_Diastolic_Diabetes)), size = 3, parse=TRUE) 
diastolic_plot_Diabetes <- diastolic_plot_Diabetes + ylim(0.1, 0.4) + xlim(55, 110) + 
xlab("Diastolic Blood Pressure Reading") + theme(legend.position = "none") + ggtitle("(b) Naive 
Diabetic Patients - Diastolic") 
 
# Plot the conditional Densities for Systolic - Prescription 
Hyp_Systolic_No_Diab <- Hyp_Systolic[Hyp_Systolic$DIABETIC_DURING_VISIT == 0 & 
Hyp_Systolic$ON_EXISTING_HT_MEDICATION == 0,] 
systolic_plot_No_Diab <- ggplot(Hyp_Systolic_No_Diab, aes(Hyp_Systolic_No_Diab$SYSTOLIC_VALUE, 
Hyp_Systolic_No_Diab$PROBABILITY_OF_PRESCRIPTION, color = 
factor(Hyp_Systolic_No_Diab$SHOULD_BE_TREATED))) 
systolic_plot_No_Diab <- systolic_plot_No_Diab + geom_point() + geom_vline(xintercept = c(140), 
linetype = "dashed", alpha = 0.6) 
systolic_plot_No_Diab <- systolic_plot_No_Diab + ylab("Probability of Prescription") 
systolic_plot_No_Diab <- systolic_plot_No_Diab + stat_smooth(method = "glm", method.args = 
list(family = "gaussian"), fullrange = FALSE, alpha = 0.4) + stat_smooth(method = "glm", 
method.args = list(family = "gaussian"), fullrange = TRUE, linetype = "dashed", lwd = 0.5, alpha 
= 0.15) + geom_point() 
systolic_plot_No_Diab <- systolic_plot_No_Diab + ylim(0.05, 0.25) + xlim(110,160) + 
xlab("Systolic Blood Pressure Reading") + theme(legend.position = "none") + ggtitle("(c) Naive 
Nondiabetic Patients - Systolic") 
 
# Plot the conditional Densities for Diabetics for Systolic - Prescription 
Hyp_Systolic_Diab <- Hyp_Systolic[Hyp_Systolic$DIABETIC_DURING_VISIT == 1 & 
Hyp_Systolic$ON_EXISTING_HT_MEDICATION == 0,] 
systolic_plot_Diab <- ggplot(Hyp_Systolic_Diab, aes(Hyp_Systolic_Diab$SYSTOLIC_VALUE, 
Hyp_Systolic_Diab$PROBABILITY_OF_PRESCRIPTION, color = 
factor(Hyp_Systolic_Diab$SHOULD_BE_TREATED))) 
systolic_plot_Diab <- systolic_plot_Diab + geom_point() + geom_vline(xintercept = c(130), 
linetype = "dashed", alpha = 0.6) 
systolic_plot_Diab <- systolic_plot_Diab + ylab("Probability of Prescription") 
systolic_plot_Diab <- systolic_plot_Diab + stat_smooth(method = "glm", method.args = list(family 
= "gaussian"), fullrange = FALSE, alpha = 0.4) + stat_smooth(method = "glm", method.args = 
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list(family = "gaussian"), fullrange = TRUE, linetype = "dashed", lwd = 0.5, alpha = 0.15) + 
geom_point() 
systolic_plot_Diab <- systolic_plot_Diab + ylim(0.10, 0.4) + xlim(110, 160) + xlab("Systolic 
Blood Pressure Reading") + theme(legend.position = "none") + ggtitle("(d) Naive Diabetic Patients 
- Systolic") 
 
multiplot(systolic_plot_No_Diab, systolic_plot_Diab, diastolic_plot_No_Diab, 
diastolic_plot_Diabetes,  cols = 2) 
######################################################################## 
### Histograms of density, with Normal distribution overlays 
### Shown for Systolic and Diastolic 
### 
######################################################################## 
# Diastolic 
gg_d_density <- ggplot(Hyp, aes(x=Hyp$DIASTOLIC_VALUE)) + geom_histogram(color = "black", fill = 
"white", aes(y = ..density..), bins = (((max(Hyp$DIASTOLIC_VALUE)) - 
(min(Hyp$DIASTOLIC_VALUE)))/2+1)) 
gg_d_density <- gg_d_density + scale_x_continuous(breaks = round(seq(min(Hyp$DIASTOLIC_VALUE)-1, 
max(Hyp$DIASTOLIC_VALUE), by = 5),1)) + ylab("Probability") 
gg_d_density <- gg_d_density + theme(text = element_text(size=20)) 
gg_d_density <- gg_d_density + xlab("Diastolic Blood Pressure Reading") + geom_vline(xintercept = 
90, linetype = "dashed", color = "dark green", size = 1) 
gg_d_density <- gg_d_density + stat_function(fun=dnorm, args=list(mean=mean(Hyp$DIASTOLIC_VALUE), 
sd=sd(Hyp$DIASTOLIC_VALUE)), color = "red", size = 1, linetype = "dashed", aes(color = "Normal 
Dist.")) 
gg_d_density 
 
# Plot distribution by race - diastolic 
facet_diastolic <- ggplot(Hyp, aes(x=Hyp$DIASTOLIC_VALUE)) + geom_histogram(color = "black", fill 
= "white", aes(y = ..density..), bins = (((max(Hyp$DIASTOLIC_VALUE)) - 
(min(Hyp$DIASTOLIC_VALUE)))/2+1)) 
facet_diastolic <- facet_diastolic + facet_wrap(~PATIENT_RACE_CODE) 
facet_diastolic <- facet_diastolic + xlab("Diastolic Blood Pressure Reading") + 
geom_vline(xintercept = 90, linetype = "dashed", color = "dark green") 
facet_diastolic + ylim(0, 0.1) 
 
# Systolic 
gg_s_density <- ggplot(Hyp, aes(x=Hyp$SYSTOLIC_VALUE)) + geom_histogram(color = "black", fill = 
"white", aes(y = ..density..), bins = (((max(Hyp$SYSTOLIC_VALUE)) - 
(min(Hyp$SYSTOLIC_VALUE)))/2+1)) 
gg_s_density <- gg_s_density + scale_x_continuous(breaks = round(seq(min(Hyp$SYSTOLIC_VALUE)-1, 
max(Hyp$SYSTOLIC_VALUE), by = 5),1)) + ylab("Probability") 
gg_s_density <- gg_s_density + theme(text = element_text(size=20)) 
gg_s_density <- gg_s_density + xlab("Systolic Blood Pressure Reading") + geom_vline(xintercept = 
140, linetype = "dashed", color = "dark green") 
gg_s_density + stat_function(fun=dnorm, args=list(mean=mean(Hyp$SYSTOLIC_VALUE), 
sd=sd(Hyp$SYSTOLIC_VALUE)), color = "red", linetype = "dashed", aes(color = "Normal Dist.")) 
 
# Plot distribution by race - systolic 
facet_systolic <- ggplot(Hyp, aes(x=Hyp$SYSTOLIC_VALUE)) + geom_histogram(color = "black", fill = 
"white", aes(y = ..density..), bins = (((max(Hyp$SYSTOLIC_VALUE)) - 
(min(Hyp$SYSTOLIC_VALUE)))/2+1)) 
facet_systolic <- facet_systolic + facet_grid(. ~ PATIENT_RACE_CODE) 
facet_systolic <- facet_systolic + xlab("Systolic Blood Pressure Reading") + 
geom_vline(xintercept = 140, linetype = "dashed", color = "dark green") 
facet_systolic + ylim(0, 0.1) 
 
multiplot(gg_d_density, gg_s_density, cols = 1) 
# PDF of density by BP reading - placeholder in case useful. 
plot(density(Hyp$SYSTOLIC_VALUE)) 
curve(dnorm(x, mean=mean(Hyp$SYSTOLIC_VALUE), sd=sd(Hyp$SYSTOLIC)), col="darkblue", lwd=2, 
add=TRUE, yaxt="n") 
 
# Using data from the entire dataset, plot the surface showing treatment                  # 
# probabilities for each systolic reading, conditional on a specific diastolic reading    # 
p <- ggplot(Hyp_Systolic_Diastolic[Hyp_Systolic_Diastolic$DIASTOLIC_VALUE>86 & 
Hyp_Systolic_Diastolic$DIASTOLIC_VALUE<89 & Hyp_Systolic_Diastolic$DIABETIC_DURING_VISIT == 0 & 
Hyp_Systolic_Diastolic$ON_EXISTING_HT_MEDICATION == 0,], aes(SYSTOLIC_VALUE, 
PROBABILITY_OF_PRESCRIPTION, color = factor(N_DIASTOLIC))) + geom_point(size = 0.06) + 
geom_vline(xintercept = 140, linetype = "dashed", color = "dark green") 
p + facet_wrap(~DIASTOLIC_VALUE, ncol = 4) + theme(strip.text = element_text(size=8)) + 
theme(legend.position="none") + theme(axis.text = element_text(size = 8)) + 
scale_y_continuous(limits = c(0, 0.4)) 
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p <- ggplot(Hyp_Systolic_Diastolic[Hyp_Systolic_Diastolic$SYSTOLIC_VALUE %in% seq(111, 169, by = 
2),], aes(DIASTOLIC_VALUE, PROBABILITY_OF_PRESCRIPTION, color = factor(N))) + geom_point(size = 
0.08) + geom_vline(xintercept = 90, linetype = "dashed", color = "dark green") 
p + facet_wrap(~SYSTOLIC_VALUE, ncol = 10) + theme(strip.text = element_text(size=8)) + 
theme(legend.position="none") + theme(axis.text = element_text(size = 8)) + 
scale_y_continuous(limits = c(0, 0.4)) 
 


