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Abstract

High-dimensional count data arising from multinomial sampling is ubiquitous in mi-

crobiome studies. This dissertation aims to develop flexible Bayesian framework to model

high-dimensional count data, which provides reliable and automatic inference for biolog-

ical questions in microbiome studies.

In Chapter 1, we present a nonparametric Bayesian model for dependent distribu-

tions to depict simultaneously multiple species sampling sequences. Our marginal prior

for each sampling sequence is a normalized Gamma process and the dependence between

the sequences is represented by a low-dimensional latent factors. The resulting posterior

samples of model parameters can be used to evaluate uncertainty in analyses routinely

applied in microbiome studies such as ordination.

In Chapter 2, we extend the latent factor model in Chapter 1 to enable estimating of

effect of covariates. We proved analytically and numerically that this augmented model

is identifiable and it separates the effect of covariates and that of latent factors accurately.

We provides techniques to transform model parameters to interpretable results. An ap-

plication of this model on a longitudinal microbiome dataset illustrates the use of this

model in microbiome studies.

Chapter 3 focuses more on a bioinformatics tool that simulates realistic microbiome

data and benchmarks statistical tools for microbiome studies. We model the count as

over-dispersed Poisson outcome by a hierarchical lognormal distribution. We then pro-

pose a heuristic algorithm which generates data that resemble real microbiome data. A

benchmark of a previously published method illustrates the simulated data provide ac-

curate characterization of the method.

iii



Contents

Title page . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . i

Abstract . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

Table of Contents . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

1 Bayesian nonparametric ordination for the analysis of microbial communities 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Probability Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.2.1 Construction of a Dirichlet Process . . . . . . . . . . . . . . . . . . . . 7

1.2.2 Dependent Dirichlet Processes . . . . . . . . . . . . . . . . . . . . . . 9

1.2.3 Prior on biological sample parameters . . . . . . . . . . . . . . . . . . 11

1.3 Posterior Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.3.1 Self-consistent estimates of biological samples’ similarity . . . . . . . 16

1.4 Visualizing uncertainty in ordination plots . . . . . . . . . . . . . . . . . . . 17

1.5 Simulation Study . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

1.6 Application to microbiome datasets . . . . . . . . . . . . . . . . . . . . . . . 21

1.6.1 Global Patterns dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

1.6.2 The Vaginal Microbiome . . . . . . . . . . . . . . . . . . . . . . . . . . 24

1.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2 Bayesian nonparametric mixed effect latent variable model in microbiome data

analysis 29

iv



2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.1 Dependent Dirichlet process . . . . . . . . . . . . . . . . . . . . . . . 33

2.2.2 Dependent Dirichlet process with fixed effect . . . . . . . . . . . . . . 36

2.2.3 Identification of model parameters . . . . . . . . . . . . . . . . . . . . 38

2.3 Posterior simulation and visualization . . . . . . . . . . . . . . . . . . . . . . 40

2.3.1 Gibbs sampler for subject-specific latent factor model . . . . . . . . . 41

2.3.2 Converting the model parameters to interpretable results . . . . . . . 42

2.4 Simulation results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

2.4.1 Estimate the correlation matrix S and regression coefficients v . . . . 43

2.4.2 Estimating the relationship between the continuous covariate and

the probabilities of species . . . . . . . . . . . . . . . . . . . . . . . . . 44

2.5 Diabimmune data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5.1 Estimating the effect of age . . . . . . . . . . . . . . . . . . . . . . . . 46

2.5.2 Estimating the effect of nationality . . . . . . . . . . . . . . . . . . . . 48

2.5.3 Estimating the effect of seroconversion . . . . . . . . . . . . . . . . . 50

2.5.4 Relationship between species . . . . . . . . . . . . . . . . . . . . . . . 50

2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3 A Hierarchical probabilistic model of microbial community structure 54

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2.1 Model for the null feature matrix . . . . . . . . . . . . . . . . . . . . . 59

3.2.2 Calibration on real microbial community measurements . . . . . . . 61

3.2.3 Validation datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

3.2.4 Generating null matrices . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.2.5 Building association patterns . . . . . . . . . . . . . . . . . . . . . . . 63

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

3.3.1 SparseDOSSA accurately models global microbial abundance pat-

terns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

v



3.3.2 Modeling correlation structure between taxonomic features and sam-

ple metadata . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.3.3 Simulating controlled correlation structure among modeled micro-

bial features . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

3.3.4 SparseDOSSA accurately reproduces quantitative microbial com-

munity analysis results . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

A Appendix 77

A.1 Supplementary materials of Chapter 1 . . . . . . . . . . . . . . . . . . . . . . 77

A.1.1 Approximating a Poisson Process using Beta random variables . . . 77

A.1.2 Proof of Proposition 1.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.1.3 Proof of Proposition 1.2 . . . . . . . . . . . . . . . . . . . . . . . . . . 78

A.1.4 Total variation bound of Laplace approximate of p(Qi,j|Qi,−j,mσ,T,n) 81

A.1.5 Details of self-consistent estimates in Section 3.1 . . . . . . . . . . . . 82

A.1.6 Standard PCoA for ordination of simulated dataset, Global Patterns

dataset and Ravel’s vaginal microbiome dataset . . . . . . . . . . . . 85

A.1.7 Benchmarking the MCMC sampler . . . . . . . . . . . . . . . . . . . . 86

A.2 Supplementary materials of Chapter 2 . . . . . . . . . . . . . . . . . . . . . . 90

A.2.1 Proof of Proposition 2.1 . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.3 Supplementary materials of Chapter 3 . . . . . . . . . . . . . . . . . . . . . . 92

References 95

vi



List of Figures

1.1 Correlation between Dependent Dirichlet processes . . . . . . . . . . . . . . 10

1.2 Plate diagram of model in Chapter 1 . . . . . . . . . . . . . . . . . . . . . . . 13

1.3 Results of simulation studies in Chapter 1 . . . . . . . . . . . . . . . . . . . . 22

1.4 Results for GlobalPatterns datasets . . . . . . . . . . . . . . . . . . . . . . . . 25

1.5 Results for Ravel’s vaginal microbiome dataset . . . . . . . . . . . . . . . . . 27

2.1 Observed data generated from model in Chapter 2 . . . . . . . . . . . . . . . 37

2.2 Simulation results indicate identifiability of model parameters . . . . . . . . 44

2.3 Interpretable relationship between abundance and covariate . . . . . . . . . 45

2.4 Estimated relationship between age and species abundances in DIABIM-

MUNE dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.5 Estimated relationship between country and species abundances in DIA-

BIMMUNE dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

2.6 Cross-sectional relationship between species in DIABIMMUNE dataset . . . 51

3.1 SparseDOSSA provides a generative hierarchical Bayesian model for mi-

crobial community taxonomic profiles . . . . . . . . . . . . . . . . . . . . . . 60

3.2 The SparseDOSSA model accurately captures feature mean distributions

and beta diversities of microbial communities . . . . . . . . . . . . . . . . . . 67

3.3 Simulating categorical or continuously valued population variability among

microbial community samples . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

3.4 Simulating correlation structure among microbial features . . . . . . . . . . 70

3.5 SparseDOSSA reproduces biological diversity patterns among simulated

microbial communities and permits comparative evaluation of statistical

analysis techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

vii



A.1 Accuracy of the Laplace approximation . . . . . . . . . . . . . . . . . . . . . 83

A.2 Performance of self-consistent algorithm . . . . . . . . . . . . . . . . . . . . . 85

A.3 PCoA result for the simulated dataset generated for Figure 1.3(f) . . . . . . . 86

A.4 PCoA results for the Global Patterns dataset. . . . . . . . . . . . . . . . . . . 87

A.5 PCoA results for Ravel’s vaginal microbiome dataset . . . . . . . . . . . . . 87

A.6 Convergence diagnosis of the Gibbs sampler . . . . . . . . . . . . . . . . . . 89

A.7 Distribution of rank relative abundances for simulated data using naive

versus fully Bayesian methods . . . . . . . . . . . . . . . . . . . . . . . . . . 92

A.8 Distribution of rank relative abundances for simulated data using a model

that incorporates read depth . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

A.9 PCoA analysis for simulated data using a model that incorporates read depth 93

A.10 Relationship between observed feature-specific sparsity and mean abun-

dance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

viii



List of Tables

1.1 An example of OTU table in IBD studies . . . . . . . . . . . . . . . . . . . . . 6

2.1 A subset of DIABIMMUNE dataset . . . . . . . . . . . . . . . . . . . . . . . . 34

A.1 Computation time for the MCMC sampler . . . . . . . . . . . . . . . . . . . . 88

ix



Acknowledgments

I would like to thank my advisors, Lorenzo Trippa and Curtis Huttenhower, for being

so patient with me and teaching me so much in statistics and biology. I can’t imagine how

I could have tackled the mysterious Latin names of those bacetria and the even mysteri-

ous behaviors of my nonparametric priors without the help from them.

I would also like to thank Sergio Bacallado and Giovanni Parmigiani for their in-

valuable advices throughout my working on the dissertation. Sergio’s ideas never fail

to illuminate me and Giovanni’s questions never fail to remind me of how little I have

reflected on my own projects.

I would also like to thank all my friends in Boston. There are unfortunately not too

many people to name here, but it also means everyone I mentioned is so special to me.

I want to thank Siyuan, for sharing his time to discuss with me all the random stuff that

cross my mind and sporadically, some serious statistics and existential crises. Thank you

Jeremiah, for all those enlightening lunches and dinners. Thank you Emma and Himel,

for all the small group meetings we suffered and enjoyed togther. Thank you Galeb and I

shall return your favor as long as I still know statistics. Thank you Ilaria, for soothing me

before my defense and being a great collegue to chat with. Last but not the least, I want to

thank all my students, especially all those in the Inference II class, for their understanding

on my slow progress in grading and scribbled lab materials.

I would especially like to thank my wife, Yutong He for being an amazing person

and partner. You have been incredibly supportive of me and you always inspire me to be

a better husband and a better person. The past six years have been extremely special in

many ways and that is only possible because of you.

Finally, I would like to thank my parents, for their constant support on all the deci-

sions I made and all the difficulties I faced with in my PhD years. I consider myself very

lucky to call you my family.

x



Bayesian nonparametric ordination for the analysis of
microbial communities

Boyu Ren

Department of Biostatistics

Harvard Graduate School of Arts and Sciences

Sergio Bacallado

Department of Pure Mathematics and Mathematical Statistics

University of Cambridge

Stefano Favaro

Departimento di Scienze Economico-Sociali e Matematico-Statistiche

Università di Torino
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1.1 Introduction

Next generation sequencing (NGS) has transformed the study of microbial ecology.

Through the availability of cheap efficient amplification and sequencing, marker genes

such as 16S rRNA are used to provide inventories of bacteria in many different environ-

ments. For instance soil and waste water microbiota have been inventoried (DeSantis

et al., 2006) as well as the human body (Dethlefsen et al., 2007). NGS also enables re-

searchers to describe the metagenome by computing counts of DNA reads and matching

them to the genes present in various environments.

Over the last ten years, numerous studies have shown the effects of environmental and

clinical factors on the bacterial communities of the human microbiome. These studies en-

hance our understanding of how the microbiome is involved in obesity (Turnbaugh et al.,

2009a), Crohn’s disease (Quince et al., 2013), or diabetes (Kostic et al., 2015). Studies are

currently underway to improve our understanding of the effects of antibiotics (Dethlef-

sen and Relman, 2011), pregnancy (DiGiulio et al., 2015), and other perturbations to the

human microbiome.

Common microbial ecology pipelines either start by grouping the 16S rRNA sequences

into known Operational Taxonomic Units (OTUs) or taxa as done in Caporaso et al. (2010),

or denoising and grouping the reads into more refined strains sometimes referred to as

oligotypes, phylotypes, or ribosomal variants (RSV) (Rosen et al., 2012; Eren et al., 2014;

Callahan et al., 2016). We will call all types of groupings OTUs to maintain consistency. In

all cases the data are analyzed in the form of contingency tables of read counts per sample

for the different OTUs , as exemplified in Table 2.1. Associated to these contingency ta-

bles are clinical and environmental covariates such as time, treatment, and patients’ BMI,

information collected on the same biological samples or environments. These are some-

times misnamed “metadata”; this contiguous information is usually fundamental in the

analyses. The data are often assembled in multi-type structures, for instance phyloseq

(McMurdie and Holmes, 2013) uses lists (S4 classes) to capture all the different aspects of

the data at once.

Currently bioinformaticians and statisticians analyze the preprocessed microbiome data

2



using linear ordination methods such as Correspondence Analysis (CA), Canonical or

Constrained Correspondence Analysis (CCA) , and Multidimensional Scaling (MDS) (Ca-

poraso et al., 2010; Oksanen et al., 2015; McMurdie and Holmes, 2013). Distance-based or-

dination methods use measures of between-sample or Beta diversity, such as the Unifrac

distance (Lozupone and Knight, 2005). These analyses can reveal clustering of biolog-

ical samples or taxa, or meaningful ecological or clinical gradients in the community

structure of the bacteria. Clustering, when it occurs indicates a latent variable which

is discrete, whereas gradients correspond to latent continuous variables. Following these

exploratory stages, confirmatory analyses can include differential abundance testing (Mc-

Murdie and Holmes, 2014a), two-sample tests for Beta diversity scores (Anderson et al.,

2006), ANOVA permutation tests in CCA (Oksanen et al., 2015), or tests based on gen-

eralized linear models that include adjustment for multiple confounders (Paulson et al.,

2013a).

The interaction between these tasks can be problematic. In particular, the uncertainty in

the estimation of OTUs’ prevalence is often not propagated to subsequent steps (Peiffer

et al., 2013). Moreover, unequal sequencing depths generate variations of the number

of OTUs with zero counts across biological samples. Finally, the hypotheses tested in

the inferential step are often formulated after significant exploration of the data and are

sensitive to earlier choices in data preprocessing.

These issues motivate a Bayesian approach that enables us to integrate the steps of the an-

alytical pipeline. Holmes et al. (2012a); La Rosa et al. (2012); Ding and Schloss (2014) have

suggested the use of a simple Dirichlet-Multinomial model for these data; however, in

those analyses the multinomial probabilities for each biological sample are independent

in the prior and posterior, which fails to capture underlying relationships between bio-

logical samples. The simple Dirichlet-Multinomial model is also not able to account for

strong positive correlations (high co-occurrences (Faust et al., 2012a)) or negative correla-

tions (checker board effect (Koenig et al., 2011)) that can exist between different species

(Gorvitovskaia et al., 2016).

We propose a Bayesian procedure, which jointly models the read counts from different

OTUs and sample-specific latent multinomial distributions, allowing for correlations be-

3



tween OTUs. The prior assigned to these multinomial probabilities is highly flexible, such

that the analysis learns the dependence structure from the data, rather than constraining

it a priori. The method can deal with uncertainty coherently, provides model-based vi-

sualizations of the data, and is extensible to describe the effects of observed clinical and

environmental covariates.

Bayesian analysis with Dirichlet priors is a convenient starting point for microbiome data,

since the OTU distributions are inherently discrete. Moreover, Bayesian nonparametric

priors for discrete distributions, suitable for an unbounded number of OTUs, have been

the topic of intense research in recent years. General classes of priors such as normal-

ized random measures have been developed, and their properties in relation to classical

estimators of species diversity are well-understood (Ferguson, 1973; Lijoi and Prünster,

2010). The problem of modeling dependent distributions has also been extensively stud-

ied since the proposal of the Dependent Dirichlet Process (MacEachern, 2000) by Müller

et al. (2004), Rodrı́guez et al. (2009), and Griffin et al. (2013)).

In this paper, we try to capture the variation in the composition of microbial communities

as a result of a group of unobserved samples’ characteristics. With this goal we introduce

a model which expresses the dependence between OTUs abundances in different envi-

ronments through vectors embedded in a low dimensional space. Our model has aspects

in common with nonparametric priors for dependent distributions, including a general-

ized Dirichlet type marginal prior on each distribution, but is also similar in spirit to the

multivariate methods currently employed in the microbial ecology community. Namely,

it allows us to visualize the relationship between biological samples through low dimen-

sional projections.

The paper is organized as follows. Section 2 describes a prior for dependent microbial dis-

tributions, first constructing the marginal prior of a single discrete distribution through

manipulation of a Gaussian process and then extending this to multiple correlated distri-

butions. The extension is achieved through a set of continuous latent factors, one for each

biological sample, whose prior has been frequently used in Bayesian factor analyses. Sec-

tion 3 derives an MCMC sampling algorithm for posterior inference and a fast algorithm

to estimate biological samples’ similarity. Section 4 discusses a method for visualizing the

4



uncertainty in ordinations through conjoint analysis. Section 5 contains analyses of sim-

ulated data, which serve to demonstrate desirable properties of the method, followed by

applications to real microbiome data in Section 6. Section 7 discusses potential improve-

ment and concludes. The code for implementing the analyses discussed in this article is

included in the Supplementary Materials.

1.2 Probability Model

In Table 2.1, we illustrate an example of a typical OTU table with 10 biological samples,

where half are healthy subjects, and half are Inflammatory Bowel disease (IBD) patients.

This contingency table is a subset of the data in Morgan et al. (2012a) and records the

observed frequencies of five most abundant genus level OTUs in all biological samples

based on 16S rRNA sequencing results. Let Zi be the ith observed OTU (e.g. Z1 is Bac-

teroides) and ni,j be the observed frequency of OTU Zi in biological sample j. As an

example, n11 = 1822 is the observed frequency of Bacteroides in the biological sample

Ctrl1. We will denote an OTU table as (ni,j)i≤I,j≤J , where I is the number of observed

OTUs and J the number of biological samples.

For the biological sample j, we will assume the vector (n1,j, . . . , nI,j) follows a multino-

mial distribution, noting that our analysis extends easily to the case in which the total

count
∑I

i=1 nij is a Poisson random variable.The unobserved multinomial probabilities

of OTUs present in biological sample j determine the distribution of the frequencies ni,j .

These probabilities form a discrete probability measure, which we call a microbial distri-

bution, on the space Z of all OTUs.

We denote this discrete measure as P j and P j({Zi}) gives the probability of sampling Zi

from biological sample j. If we consider all J biological samples, we expect there will

be variation in the respective P j’s. This variation usually can be explained by specific

characteristics of the biological sample. For instance, in Table 2.1, we can see the empirical

multinomial probability of Enterococcus is higher in healthy controls than in IBD patients

on average. This variation has been discovered in prior publication (Morgan et al., 2012a)

and is attributed to the IBD status. Microbiome studies aim to elucidate the characteristics

5



Table 1.1: An example of OTU table derived from data published in Morgan et al. (2012a).
OTU Ctrl1 Ctrl2 Ctrl3 Ctrl4 Ctrl5 IBD1 IBD2 IBD3 IBD4 IBD5

Bacteroides 1822 913 147 2988 4616 172 3516 657 550 1423
Bifidobacterium 0 162 0 0 84 0 85 1927 0 286

Collinsella 1359 0 0 206 0 327 0 0 160 122
Enterococcus 621 0 0 3 40 0 0 0 0 0
Streptococcus 75 139 2161 110 97 1820 85 58 5 294

that explain these types of variations.

Our method focuses on modeling the distributions P j’s and the variations among them.

For biological samples labelled in J = {1, . . . , J}, we assume they have the same infinite

set of OTUs Z1, Z2, . . . ∈ Z. We let the number of OTUs present in a biological sample be

infinity to make our model nonparametric in consideration of the fact that there might be

an unknown number of OTUs that are not observed in the experiment. We specify the

probability mass assigned to a group of OTUs A ⊂ Z as

P j(A) = M j(A)/M j(Z),

M j(A) =
∞∑
i=1

I(Zi ∈ A)σi〈Xi,Y
j〉+2,

(1.1)

where σi ∈ (0, 1), Xi,Y
j ∈ Rm, I(·) is the indicator function, and x+ = x × I(x > 0). In

addition, 〈·, ·〉 is the standard inner product in Rm.

In this model specification, σi is related to the average abundance of OTU i across all bi-

ological samples. When σi is large, the average probability mass assigned to OTU Zi will

also be large. We refer to Xi and Yj as OTU vector and biological sample vectors respec-

tively. The variation of the P j’s is determined by the vectors Yj , which can be treated as

latent characteristics of the biological samples that associate with microbial composition;

for example, an unobserved feature of the subject’s diet, such as vegetarianism, could

affect the abundance of certain OTUs. We assume there are m such characteristics, and

the lth component in Yj is the measurement of the lth latent characteristic in biological

sample j. The vector Xi denotes the effects of each of the m latent characteristics on the

abundance of the OTU Zi. Therefore Xi has m entries.

In subsection 1.2.1 we consider a single microbial distribution P j with fixed parameter

Yj and define a prior on σ = (σ1, σ2, . . . ) and (Xi)i≥1 which makes P j a Dirichlet process

6



(Ferguson, 1973). The degree of similarity between the discrete distributions {P j; j ∈ J }
is summarized by the Gram matrix (φ(j, j′) = 〈Yj,Yj′〉; j, j′ ∈ J ). Subsection 1.2.2 dis-

cusses the interpretation of this matrix. Subsection 1.2.3 proposes a prior for the parame-

ters {Yj, j ∈ J } which has been previously used in Bayesian factor analysis, and which

has the effect of shrinking the dimensionality of the Gram matrix (φ(j, j′)) and is used to

infer the number of latent characteristics m. The parameters {Yj, j ∈ J } or (φ(j, j′)) can

be used to visualize and understand variations of microbial distributions across biological

samples.

1.2.1 Construction of a Dirichlet Process

The prior on σ = (σ1, σ2, . . .) is the distribution of ordered points (σi > σi+1) in a Poisson

process on (0, 1) with intensity

ν(σ) = ασ−1(1− σ)−1/2, (1.2)

where α > 0 is a concentration parameter. Denote the index of component of Yj and Xi

as l. Fix j, and let Yj = (Yl,j, l ≤ m) be a fixed vector in Rm such that 〈Yj,Yj〉 = 1. We let

Xi = (Xl,i, l ≤ m) be a random vector for i = 1, 2, . . . and Xl,i be independent and N(0, 1)

a priori for l = 1, 2, . . . ,m and i = 1, 2, . . . Finally, letG be a nonatomic probability measure

on the measurable space (Z,F), where F is the sigma-algebra on Z , and Z1, Z2, . . . is a

sequence of independent random variables with distribution G. We claim that the prob-

ability distribution P j defined in Equation (1.1) is a Dirichlet Process with base measure

G.

We note that the point process σ defines an infinite sequence of positive numbers, the

products 〈Xi,Y
j〉, i = 1, 2, . . ., are independent Gaussian N(0, 1) variables, and that the

intensity ν satisfies the inequality
∫ 1

0
σdν <∞. These facts directly imply that with prob-

ability 1, 0 < M j(A) <∞when G(A) > 0. It also follows that for any sequence of disjoint

setsA1, A2, . . . ∈ F the corresponding random variablesM j(Ai)’s are independent. In dif-

ferent words, M j is a completely random measure (Kingman, 1967). The marginal Lévy

intensity can be factorized as µM(ds)×G(dz), where

µM(ds) ∝
∫ 1

0

ν(σ)

(
1

σ

)1/2

s−1/2 exp
(
− s

2σ

)
dσ ds

7



∝ exp(−s/2)

s
ds, for s ∈ (0,∞).

The above expression shows that M j is a Gamma process. We recall that the Lévy inten-

sity of a Gamma process is proportional to the map s 7→ exp(−c × s) × s−1, where c is

a positive scale parameter. In Ferguson (1973) it is shown that a Dirichlet process can be

defined by normalizing a Gamma process. It directly follows that P j is a Dirichlet Process

with base measure G.

Remark. Our construction can be extended to a wider class of normalized random measures

(James, 2002; Regazzini et al., 2003) by changing the intensity ν that defines the Poisson process

σ. If we set

ν(σ) = ασ−1−β(1− σ)−1/2+β,

β ∈ [0, 1), in our definition ofM j , then the Lévy intensity of the random measure in (1.1) becomes

proportional to

s−1−β exp(−s/2).

In this case the Lévy intensity indicates that M j is a generalized Gamma process (Brix, 1999). We

recall that by normalizing this class one obtains normalized generalized Gamma processes (Lijoi

et al., 2007), which include the Dirichlet process and the normalized Inverse Gaussian process

(Lijoi et al., 2005) as special cases.

A few comments capture the relation between our definition of P j(A) in (1.1) and alterna-

tive definitions of the Dirichlet Process. If we normalize h independent Gamma(α/h, 1/2)

variables, we obtain a vector with Dirichlet(α/h, . . . , α/h) distribution. To interpret our

construction we can note that, when α/h < 1/2, each of the Gamma(α/h, 1/2) compo-

nents can be obtained by multiplying a Beta(α/h, 1/2−α/h) variable and an independent

Gamma(1/2, 1/2). The distribution of the 〈Xi,Y
j〉+2 variables in (1.1) is in fact a mixture

with a Gamma(1/2, 1/2) component and a point mass at zero. Finally if we let h increase

to∞, the law of the ordered Beta(α/h, 1/2−α/h) converges weakly to the law of ordered

points of a Poisson point process on (0, 1) with intensity ν (see Supplementary Document

S1).
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1.2.2 Dependent Dirichlet Processes

We use the representation for Dirichlet processes from Equation (1.1) to define a family

of dependent Dirichlet processes labelled by a general index set J . The dependency

structure of this family is related to (φ(j, j′) = 〈Yj,Yj′〉)j,j′∈J . Geometrically φ(j, j′) is the

cosine of the angle between Yj and Yj′ . The dependent Dirichlet processes is defined by

setting

P j(A) =

∑
i I(Zi ∈ A)× σi〈Xi,Y

j〉+2∑
i σi〈Xi,Yj〉+2

, ∀j ∈ J , (1.3)

for every A ∈ F . Here the sequence (Z1, Z2, . . .) and the array (X1,X2, . . .), as in Section

1.2.1, contain independent and identically distributed random variables, while σ is our

Poisson process on the unit interval defined in (1.2). We will use the notation Qi,j =

〈Xi,Y
j〉. This construction has an interpretable dependency structure between the P j’s

that we state in the next proposition.

Proposition 1.1. There exists a real function η : [0, 1]→ [0, 1] such that the correlation between

P j(A) and P j′(A) is equal to η (φ(j, j′)) for every A that satisfies G(A) > 0. In different words,

the correlation between P j(A) and P j′(A) does not depend on the specific measurable set A, it is a

function of the angle defined by Yj and Yj′ .

The proof is in the Supplementary Document S2. The first panel of Figure 1.1 shows

a simulation of P j’s. In this figure J = {1, 2, 3, 4}. When φ(j, j′), the cosine of the

angle between two vectors Yj and Yj′ , corresponding to distinct biological samples j

and j′, decreases to −1 the random measures tend to concentrate on two disjoint sets.

The second panel shows the function η that maps the φ(j, j′)’s into the correlations

corr(P j(A), P j′(A)) = η(φ(j, j′)). As expected the correlation increases with φ(j, j′).

We want to point out that the construction in (1.3) extends easily to the setting where we

are given any positive semi-definite kernel φ : J × J → (−1, 1) capturing the similar-

ity between biological samples labelled by J . Mercer’s theorem (Mercer, 1909) guaran-

tees the kernel is represented by the inner product in an L2 space, whose elements are

infinite-dimensional analogues of the vectors Yj . The analysis presented in this section is

unchanged in this general setting.
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Figure 1.1: (Left) Realization of 4 microbial distributions from our dependent Dirichlet
processes. We illustrate 10 representative OTUs and set α = 100. The miniature figure
at the top-left corner shows the relative positions of the four biological sample vectors
Yj . The OTUs are those associated to the 10 largest σ’s. As suggested by this panel, the
larger the angle between two Yj’s, the more the corresponding random distributions tend
to concentrate on distinct sets. (Right) Correlation of two random probability measures
when the cosine φ(j, j′) between Yj and Yj′ varies from−1 to 1. We consider five different
values of the concentration parameter α. The blue and the red curves indicate the limiting
cases when α → 0 and α → ∞ respectively. We also mark with crosses the correlations
between P j(A) and P j′(A) for pairs of biological samples j, j′ considered in the left panel.
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The next proposition provides mild conditions that guarantee a large support for the de-

pendent Dirichlet processes that we defined.

Proposition 1.2. Consider a collection of probability measures (Fj, j = 1, . . . , J) on Z and a

positive definite kernel φ. Assume thatJ = {1, . . . , J} and the support ofG coincides withZ . The

prior distribution in (1.3) assigns strictly positive probability to the neighborhood {(F ′1, . . . , F ′J) :

|
∫
fidF

′
j −

∫
fidFj| < ε, i = 1, . . . , L, j = 1, . . . , J}, where ε > 0 and fi, i = 1, . . . , L, are

bounded continuous functions.

In what follows we will replace the constraint 〈Yj,Yj〉 = 1 with the requirement

〈Yj,Yj〉 <∞. The two constraints are equivalent for our purpose, because we normalize

M j(·) =
∑

i I(Zi ∈ ·)× σi〈Xi,Y
j〉+2, and 〈Yj,Yj〉 can be viewed as a scale parameter.

1.2.3 Prior on biological sample parameters

This subsection deals with the task of estimating the parameters Yj, j ∈ J = {1, . . . , J},
that capture most of the variability observed when comparing J biological samples with

different OTU counts. We define a joint prior on these factors which makes them con-

centrate on a low dimensional space; equivalently, the prior tends to shrinks the nuclear

norm of the Gram matrix (φ(j1, j2))j1,j2∈J . The problem of estimating low dimensional

factor loadings or a low-rank covariance matrix is common in Bayesian factor analysis,

and the prior defined below has been used in this area of research.

The parameters Yj can be interpreted as key characteristics of the biological samples that

affect the relative abundance of OTUs. As in factor analysis, it is difficult to interpret

these parameters unambiguously (Press and Shigemasu, 1989; Rowe, 2002); however, the

angles between their directions have a clear interpretation. As observed in Figure 1.1,

if the kernel φ(j1, j2) ≈
√
φ(j1, j1)φ(j2, j2), the two microbial distributions P j1 and P j2

will be very similar. If φ(j1, j2) ≈ 0, then there will be little correlation between OTUs’

abundances in the two samples. If φ(j1, j2) ≈ −
√
φ(j1, j1)φ(j2, j2), then the two micro-

bial distributions are concentrated on disjoint sets. This interpretation suggests Principal

component analysis (PCA) of the Gram matrix (φ(j1, j2))j1,j2∈J as a useful exploratory

data analysis technique.
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It is common in factor analysis to restrict the dimensionality of factor loadings. In our

model, this is accomplished by assuming Yj to be in Rm and adding an error term ε in the

definition of Qi,j , the OTU-specific latent weights,

Qi,j = 〈Xi,Y
j〉+ εi,j, (1.4)

where the εi,j are independent standard normal variables. Recall that each sample-specific

random distribution P j is obtained by normalizing the random variables σi(Q+
i,j)

2. If

we denote the covariance matrix of (Qi,1, . . . , Qi,J) as Σ, this factor model specifica-

tion indicates Σ = YᵀY + I conditioning on Y, where I is the identity matrix and

Y = (Y1, . . . ,YJ). As a result, the correlation matrix S induced by Σ only depends

on Y.

In most applications the dimensionality m is unknown. Several approaches to estimate

m have been proposed (Lopes and West, 2004; Lee and Song, 2002; Lucas et al., 2006;

Carvalho et al., 2008; Ando, 2009). However, most of them involve either calculation of

Bayes Factors or complex MCMC algorithms. Instead we use a normal shrinkage prior

proposed by Bhattacharya and Dunson (2011). This prior includes an infinite sequence

of factors (m = ∞), but the variability captured by this sequence of latent factors rapidly

decreases to zero. A key advantage of the model is that it does not require the user to

choose the number of factors. The prior is designed to replace direct selection of m with

the shrinkage toward zero of the unnecessary latent factors. In addition, this prior is

nearly conjugate, which simplifies computations. The prior is defined as follows,

γl ∼ Gamma(al, 1), γ′l,j ∼ Gamma(v/2, v/2),

Yl,j|γ ∼ N

(
0, (γ′l,j)

−1
∏
k≤l

γ−1
k

)
, l ≥ 1, j ∈ J , (1.5)

where the random variables γ = (γl, γ
′
l,j; l, j ≥ 1) are independent and, conditionally on

these variables, the Yl,j’s are independent.

When al > 1, the shrinkage strength a priori increases with the index l, and therefore

the variability captured by each latent factor tends to decrease with l. We refer to Bhat-

tacharya and Dunson (2011) for a detailed analysis of the prior in (1.5). In practice, the

assumption of infinitely many factors is replaced for data analysis and posterior compu-
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tations by a finite and sufficiently large number m of factors. The choice of m is based on

computational considerations. It is desirable that posterior variability of the last compo-

nents (l ∼ m) of the factor model in (1.4) is negligible. This prior model is conditionally

conjugate when paired with the dependent Dirichlet processes prior in subsection 1.2.2,

a relevant and convenient characteristic for posterior simulations. We summarize the full

model with a plate diagram, shown in Figure 1.2.

Yl,j

γ′
l,j

γl

v

al

Qi,j

Xl,i

εi,j

S

Pj

σi α

ni,j

j = 1, . . . , Jl = 1, . . . ,m

i = 1, . . . , I

i = 1, . . . , I

i = 1, . . . , I

Figure 1.2: Plate diagram. We include the factor model for the latent variables Qi,j as well
as the matrix S. Nodes encompassed by a rectangle are defined over the range of indices
indicated at the corner of the rectangle, and the connections shown within the rectangle
are between nodes with the same index. We use j to index biological samples, i to index
microbial species and l to index the components of latent factors.

1.3 Posterior Analysis

Given an exchangeable sequence W1, . . . ,Wn from P j = M j × M j(Z)−1 as defined in

subsection 1.2.1, we can rewrite the likelihood function using variable augmentation as

in James et al. (2009),
n∏
i=1

P j({Wi}) =

∫ ∞
0

exp[−M j(Z) T ]× T n−1

Γ(n)

I∏
i=1

M j({W ∗
i })nidT. (1.6)
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Here W ∗
1 , . . . ,W

∗
I is the list of distinct values in (W1, . . .Wn) and n1, . . . , nI are the occur-

rences in (W1, . . .Wn), so that
∑I

i=1 ni = n. We use expression (1.6) to specify an algorithm

that allows us to infer microbial abundances P 1, . . . , P J in J biological samples.

We proceed, similarly to Muliere and Tardella (1998) and Ishwaran and James (2001), us-

ing truncated versions of the processes in subsection 1.2.2. We replace σ = {σi, i ≥ 1}
with a finite number I of independent Beta(εI , 1/2 − εI) points in (0, 1). Supplementary

Document S1 shows that when I diverges, and εI = α/I , this finite dimensional ver-

sion converges weakly to the process in (1.2). Each point σi is paired with a multivari-

ate normal Qi = (Qi,1, . . . , Qi,J) with mean zero and covariance Σ. The distribution of

Mi,j = σi(Q
+
i,j)

2 is a mixture of a point mass at zero and a Gamma distribution. In this

section Q and σ are finite dimensional, and the normalized vectors P j , which assign ran-

dom probabilities to I OTUs in J biological samples, are proportional to (M1,j, . . . ,MI,j),

j = 1, . . . , J . Note that P j conditional on I(Q1,j > 0), . . . , I(QI,j > 0) follows a Dirichlet

distribution with parameters proportional to I(Q1,j > 0), . . . , I(QI,j > 0).

The algorithm is based on iterative sampling from the full conditional distributions. We

first provide a description assuming that Σ is known. We then extend the description to

allow sampling under the shrinkage prior in Section 1.2.3 and to infer Σ.

With I OTUs and J biological samples, the typical dataset is n = (n1, . . . ,nJ), where

nj = (n1,j, . . . , nI,j) and ni,j is the absolute frequency of the ith OTU in the jth bio-

logical sample. We use the notation nj =
∑I

i=1 ni,j , ni =
∑J

j=1 ni,j , σ = (σ1, . . . , σI),

Y = (Yj, j = 1, . . . , J) and Q = (Qi,j, 1 ≤ i ≤ I, 1 ≤ j ≤ J). By using the representa-

tion in (1.6) we introduce the latent random variables T = (T1, . . . , TJ) and rewrite the

posterior distribution of (σ,Q) :

p(σ,Q|n) ∝
(

J∏
j=1

I∏
i=1

(
σiQ

+2
i,j

)ni,j)× J∏
j=1

(
I∑
i=1

σiQ
+2
i,j

)−nj
× π(σ,Q) (1.7)

∝
∫
π(σ,Q)

J∏
j=1

{(
I∏
i=1

(
σiQ

+2
i,j

)ni,j) T n
j−1

j exp
(
−Tj

∑
i σiQ

+2
i,j

)
Γ(nj)

}
dT, (1.8)

where π is the prior. In order to obtain approximate (σ,Q) sampling we specify a Gibbs
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sampler for (σ,Q,T) with target distribution

p(σ,Q,T|n) ∝π(σ,Q)
J∏
j=1

{(
I∏
i=1

(
σiQ

+2
i,j

)ni,j) T n
j−1

j exp
(
−Tj

∑
i σiQ

+2
i,j

)
Γ(nj)

}
. (1.9)

The sampler iterates the following steps:

[Step 1] Sample Tj independently, one for each biological sample j = 1, . . . , J ,

Tj|Q,σ,n ∼ Gamma(nj,
∑
i

σiQ
+2
i,j ).

[Step 2] Sample Qi independently, one for each OTU i = 1, . . . , I . The conditional density

of Qi = (Qi,1 . . . Qi,J) given σ,T,n is log-concave, and the random vectors Qi, i = 1, . . . , I ,

given σ,T,n are conditionally independent.

We simulate, for j = 1, . . . , J , from

p(Qi,j|Qi,−j,σ,T,n) ∝ Q
+2ni,j
i,j × exp

(
−TjσiQ+2

i,j

)
× exp

(
−(Qi,j − µi,j)2

2s2
j

)
, (1.10)

where Qi,−j = (Qi,1, . . . , Qi,j−1, Qi,j+1, . . . , Qi,J), µi,j = E[Qi,j|Qi,−j], s2
j = var[Qi,j|Qi,−j],

with the proviso 00 = 1. Since Qi is a multivariate normal, both µi,j and sj have simple

closed form expressions.

When ni,j = 0 the density in (1.10) reduces to a mixture of truncated normals:

(1− p1)N(Qi,j;
µi,j
∆i,j

,
s2
j

∆i,j

)I(Qi,j > 0) + p1N(Qi,j;µi,j, s
2
j)I(Qi,j ≤ 0),

p1 =
Φ(0;µi,j, s

2
j)N(0;

µi,j
∆i,j

,
s2j

∆i,j
)

Φ(0;µi,j, s2
j)N(0;

µi,j
∆i,j

,
s2j

∆i,j
) +N(0;µi,j, s2

j)
(

1− Φ(0;
µi,j
∆i,j

,
s2j

∆i,j
)
) ,

and ∆i,j = 1 + 2σiTjs
2
j . Here N(·;µ, s2) and Φ(·;µ, s2) are the density and cumulative

density functions of a normal variable with mean µ and variance s2.

When ni,j > 0 the density p[Qi,j|Qi,−j,σ,T,n] remains log-concave, and the support be-

comes (0,+∞). We update Qi,j using a Metropolis-Hastings step with proposal identical

to the Laplace approximation N(µ̂i,j, ŝ
2
i,j) of the density in (1.10),

µ̂i,j =
µi,j/s

2
j +

√
µ2
i,j/s

4
j + 8ni,j(2σiTj + 1/s2

j)

2(2σiTj + 1/s2
j)

, ŝ2
i,j =

(
2ni,j
µ̂2
i,j

+ 2Tjσi +
1

s2
j

)−1

. (1.11)
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Here µ̂i,j maximizes the density (1.10), and ŝ2
i,j is obtained from the second derivative of

the log-density at µ̂i,j . We found the approximation accurate. In Supplementary Docu-

ment S4 we provide bounds of the total variation distance between the target (1.10) and

the approximation (1.11). When ni,j increases, the bound of the total variation decreases

to zero. See also Figure S1 in the Supplementary Document.

[Step 3] Sample σi independently, one for each OTU i = 1, . . . , I , from the den-

sity p(σi|Q,T,n) ∝ π(σi)σ
ni
i exp(−σi

∑J
j=1 TjQ

+2
i,j ). The σi’s are a priori indepen-

dent Beta(α/I, 1/2 − α/I) variables. We use piecewise constant bounds for σ →
exp(−σi

∑J
j=1 TjQ

+2
i,j ), σ ∈ [0, 1] and an accept/reject step to sample from p(σi|Q,T,n).

We now consider inference on Σ using the prior on Y in subsection 1.2.3. The goal is to

generate approximate samples of Y from the posterior. We exploit the identity of the con-

ditional distributions of Y given (σ,T,Q,n) and Q. In order to sample Y from the poste-

rior we can therefore directly apply the MCMC transitions in Bhattacharya and Dunson

(2011), with Q replacing the observable variables in their work.

1.3.1 Self-consistent estimates of biological samples’ similarity

We discuss an EM-type algorithm to estimate the correlation matrix S of the vectors

(Qi,1, . . . , Qi,J), i = 1, . . . , I . Under our construction in subsection 1.2.3, we interpret S

as the normalized version of Gram matrix (φ(j, j′))j,j′∈J between biological samples. In

this subsection we describe an alternative estimating procedure, distinct from the Gibbs

sampler, which does not require tuning of the prior probability model. The algorithm

can be used for MCMC initialization and for exploratory data analyses. It assumes

that the observed OTU abundances are representative of the microbial distributions, i.e.

P j = (n1,j/n
j, . . . , nI,j/n

j). Under this assumption, for each biological sample j,

σiQ
+2
i,j × I(ni,j > 0) ∝ ni,j, i = 1, . . . , I,

and Qi,j ≤ 0 when ni,j = 0. (1.12)

For σi, i = 1, . . . , I , we use a moment estimate σ̂i = (1/J)
∑

j

(
ni′,j/

∑
i 6=i′ ni,j

)
. The

procedure uses these estimates and at iteration t+ 1 generates the following results:

[Expectation] Impute repeatedly Q, ` = 1, . . . , D times, consistently with the constraints
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(1.12) and using a N(0,Σt) joint distribution. Here Σt is the estimate of Σ, the covariance

matrix of (Qi,1, . . . , Qi,J), after the t-th iteration. For each replicate ` = 1, . . . , D, we fix Q`
i,j

for all (i, j) pairs with strictly positive ni,j counts at
√
ni,j/σ̂i and sample jointly, condi-

tional on these values, negative Q`
i,j values for the remaining (i, j) pairs with ni,j = 0. We

use theseQ`
i,j values to approximate L(Σ), the full data log-likelihood, our target function

as in any other EM algorithm.

[Maximization] Set Σt+1 equal to the empirical covariance matrix of the (Q`
i,1, . . . , Q

`
i,J)

vectors, thus maximizing the L(Σ) approximation.

We iterate until convergence of Σt. Then, after the last iteration, the inferred covariance

matrix of (Qi,1, . . . , Qi,J) directly identifies an estimate of S. We evaluated the algorithm

using in-silico datasets from the simulation study in Section 1.5. Overall it generates

estimates that are slightly less accurate compared to posterior estimation based on MCMC

simulations. We use the datasets considered in Figure 1.3(a), with number of factors fixed

at three and nj at 100,000, for a representative example. In this case the average RV-

coefficient between the true S and the estimated matrix is 0.93 for the EM-type algorithm

and 0.95 for posterior simulations. In our work the described procedure reduced the

computing time to approximately 10% compared to the Gibbs sampler. More details on

this procedure are provided in the Supplementary Document S5.

1.4 Visualizing uncertainty in ordination plots

Ordination methods such as Multidimensional Scaling of ecological distances or Canoni-

cal Correspondence Analysis are central in microbiome research. Given posterior samples

of the model parameters, we use a procedure to plot credible regions in visualizations

such as Fig 1.3(f). The methods that we consider here are all related to PCA and use the

normalized Gram matrix S between biological samples. We recall that in our model S

is the correlation matrix of (Qi,1, . . . , Qi,J). Based on a single posterior instance of S, we

can visualize biological samples in a lower dimensional space through PCA, with each

biological sample projected once. Naively, one could think that simply overlaying pro-

jections of the principal component loadings generated from different posterior samples
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of S on the same graph would show the variability of the projections. However, these

super-impositions could be spurious if we carry out PCA for each S sample separately.

One possible problem is principal component (PC) switching, when two PCs have simi-

lar eigenvalues. Another problem is the ambiguity of signs in PCA, which would lead to

random signs of the loadings that result in symmetric groups of projections of the same

biological sample at different sides of the axes. More generally PCA projections from dif-

ferent posterior samples of S are difficult to compare, as the different lower dimensional

spaces are not aligned.

We alternatively identify a consensus lower dimensional space for all posterior samples

of S (Escoufier, 1973; Lavit et al., 1994; Abdi et al., 2005). We list the three main steps used

to visualize the variability of S.

1. Identify a normalized Gram matrix S0 that best summarizes K posterior samples

of normalized Gram matrix S1, . . . ,SK . One simple criterion is to minimize L2 loss

element-wise. This leads to S0 = (
∑

i Si)/K. Alternatively, we can define S0 as

the normalized Gram matrix that maximizes similarity with S1, . . . ,SK . One pos-

sible similarity metric between two symmetric square matrices A and B is the RV-

coefficient (Robert and Escoufier, 1976), RV(A,B) = Tr(AB)/
√

Tr(AA)Tr(BB). We

refer to Holmes (2008) for a discussion on RV-coefficients.

2. Identify the lower dimensional consensus space V based on S0. Assume we want

dim(V ) = 2; the basis of V will be the orthonormal eigenvectors v1 and v2 of S0

corresponding to the largest eigenvalues λ1 and λ2. The configuration of all bi-

ological samples in V is visualized by projecting rows of S0 onto V : (ψ0
1,ψ

0
2) =

S0(v1λ
−1/2
1 ,v2λ

−1/2
2 ). As in a standard PCA, this configuration best approximates

the normalized Gram matrix in the L2 sense: (ψ0
1,ψ

0
2) = argmin〈ψ1,ψ2〉=0 ‖S0 −

(ψ1,ψ2)(ψ1,ψ2)′‖2.

3. Project the rows of posterior sample Sk onto V by (ψk
1 ,ψ

k
2) = Sk(v1λ

−1/2
1 ,v2λ

−1/2
2 ).

Overlaying all the ψk displays uncertainty of S in the same linear subspace. Poste-

rior variability of the biological samples’ projections is visualized in V by plotting

each row of the matrices (ψk
1 ,ψ

k
2), k = 1, . . . , K, in the same figure. A contour plot
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is produced for each biological sample (see for example Fig 1.3(f)) to facilitate visu-

alization of the posterior variability of its position in the consensus space V .

1.5 Simulation Study

In this section, we evaluate the procedure described in Section 1.3 and explore whether

the shrinkage prior allows us to infer the number of factors and the normalized Gram

matrix between biological samples S. We also consider the estimates E(P j|n) obtained

with our joint model, one for each biological sample j, and compare their precision with

the empirical estimator. Throughout the section, we assumed the number of factors is

m = 10 when running the posterior simulations.

We first defined a scenario with distributions P j generated from the prior (1.1), with

I = 68 OTUs and J = 22 biological samples. The true number of factors is m0, and

for biological samples j = 1, . . . ,m0/2, the vector Yj = (Yl,j, 1 ≤ l ≤ m0) has elements

l = m0/2 + 1, . . . ,m0 equal to zero, while symmetrically, for j = J/2 + 1, . . . , J , the vectors

Yj have the elements l = 1, . . . ,m0/2 equal to zero. The underlying normalized Gram

matrix S is therefore block-diagonal. After generating the distributions P j , we sampled

with fixed total counts (nj) per biological sample nj= 1,000. We produced 50 replicates

with m0 =3, 6, and 9. In our simulations the non-zero components Yl,j’s are independent

standard normal.

We use PCA-type summaries for the posterior samples of Y generated from p(Y|n). Com-

putations are based on the J × J normalized Gram matrix S. At each MCMC iteration

we generate approximate samples Y from the posterior, compute S by normalizing the

Gram matrix Y′Y, and operate standard spectral decomposition on S. This allows us

to estimate the ranked eigenvalues, i.e. the principal components’ variance of our Q la-

tent vectors (after normalization), by averaging over the MCMC iterations. Figure 1.3(a)

shows the variability captured by the first 10 principal components, with the box-plots

illustrating posterior means’ variability across our 50 replicates. The proportion of vari-

ability associated to each principal component decreases rapidly after the true number of

factors m0 = 3, 6, 9. This suggests that the shrinkage model (Bhattacharya and Dunson,
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2011) tends to produce posterior distributions for our Y latent variables that concentrates

around a linear subspace.

Figure 1.3(c) illustrates the accuracy of the estimated normalized Gram matrix Ŝ with nj

equal to 1,000, 10,000, and 100,000. We estimated the unknown J × J normalized Gram

matrix S with the posterior mean of the normalized Gram matrix, which we approximate

by averaging over MCMC iterations. We summarized the accuracy using the RV coeffi-

cient between Ŝ and S, see Robert and Escoufier (1976) for a discussion on this metric.

The box-plots illustrate variability of estimates’ accuracy across 50 simulation replicates.

As expected, when the total counts per sample increases from 10,000 to 100,000, we only

observe limited gain in accuracy. Indeed the overall number of observed OTUs with pos-

itive counts per biological sample remains comparable, with expected values equal to 30

and 33 when the total counts per biological sample are fixed at 10,000 and 100,000 respec-

tively. We also note that when m0 increases, the accuracy decreases.

We investigate interpretability of our model by using distributions P j generated from

a probability model that slightly differs from the prior. More precisely, the ith random

weight in P j , conditionally on Y and X, is defined proportional to a monotone function

of 〈Xi,Y
j〉+. We considered for example

P j(A) =

∑
i σi〈Xi,Y

j〉+aIZi(A)∑
i σi〈Xi,Yj〉+a , a > 0. (1.13)

When the monotone function is quadratic the probability model becomes identical to

our prior. In Figure 1.3(b) and Figure 1.3(d) we used model (1.13) with a = 1 to gener-

ate datasets. We repeated the same simulation study summarized in the previous para-

graphs.

We evaluated the effectiveness of borrowing information across biological samples for es-

timating the vectors P j . The accuracy metric that we used is the total variation distance.

We compared the Bayesian estimator E(P j|n) and the empirical estimator P̃ j which as-

signs mass ni,j/nj to the ith OTUs. The advantage of pooling information varies with

the similarity between biological samples. To reflect this, we generated P j with non-zero

components of Y sampled from a zero mean multivariate normal with cov(Yl,j, Yl,j′) equal

to θ. We considered the case when P j is generated either from our prior or model (1.13)
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with a = 0.5, 1, 3. In addition, we considered θ = 0.5, 0.75, 0.95, I = 68, J = 22, and

m0 = 3, while nj varies from 10 to 100.

The results are summarized in Figure 1.3(e) which shows the average difference in total

variation, contrasting the Bayesian and empirical estimators. The results, both when the

model is correctly specified, and when mis-specified, quantify the advantages in using a

joint Bayesian model.

We complete this section with one illustration of the method in Section 1.4. We simulate

a dataset with two clusters by generating Yl,j for l = 1, . . . ,m0 from N(−3, 1) when j =

1, . . . , J/2 and from N(3, 1) when j = J/2 + 1, . . . , J . All Yl,j are different from zero. We

expected a low nj to be sufficient for detecting the clusters. We sampled P j from the prior

and set J = 22, I = 68, m0 = 3, and nj = 100. The PC plot and the biological sample

specific credible regions are shown in Figure 1.3(f). In the PC plot the two clusters are

illustrated with different colors. In this simulation exercise the posterior credible regions

leave little ambiguity both on the presence of clusters and also on samples-specific cluster

membership. To compare this with the Principal Coordinates Analysis (PCoA) method

used in microbiome studies, we plot the ordination results using PCoA based on the Bray-

Curtis dissimilarity matrix derived from the empirical microbial distributions (See Figure

S3). We can see that the PCoA point estimate is similar to the centroids identified by the

proposed Bayesian ordination method.

1.6 Application to microbiome datasets

In this section, we apply our Bayesian analysis to two microbiome datasets. We show

that our method gives results that are consistent with previous studies, and we show our

novel visualization of uncertainty in ordination plots. We start with the Global Patterns

data (Caporaso et al., 2011) where human-derived and environmental biological samples

are included. We then considered data on the vaginal microbiome (Ravel et al., 2011a).
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Figure 1.3: (a-b) Estimated proportion of variability captured by the first 10 PCs. Each
box-plot here shows the variability of the estimated proportion across 50 simulation repli-
cates. We show the results when the data are generated from the prior (Panel a) and from
the model in (1.13) with a = 1 (Panel b). (c-d) Accuracy of the correlation matrix esti-
mates Ŝ. The box-plots show the variability of the accuracy in 50 simulation replicates,
with data generated from the prior (Panel c) and from model (1.13) with a = 1 (Panel
d). We vary the true number of factors m0 (colors) and nj and show the corresponding
accuracy variations. (e) Comparison between Bayesian estimates of the underlying micro-
bial distributions P j and the empirical estimates. We consider the average total variation
difference, averaging across all J biological samples. Each curve shows the relationship
between nj and average accuracy gain. We set m0 = 3 and the parameter a varies from
0.5 to 3 (shapes). The similarity parameter θ is equal to 0.5, 0.75 or 0.95 (colors). (f) PCoA
plot with confidence regions. We visualize the confidence regions using the method in
Section 1.4. Each contour illustrates the uncertainty of a single biological sample’s posi-
tion. Colors indicate cluster membership and annotated numbers are biological samples’
IDs.
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1.6.1 Global Patterns dataset

The Global Patterns dataset includes 26 biological samples derived from both human and

environmental specimens. There are a total of 19,216 OTUs, and the average total counts

per biological sample is larger than 100,000. We collapsed all taxa OTUs to the genus

level—a standard operation in microbiome studies—and yielded 996 distinct genera. We

treated these genera as OTUs’ and fit our model to this collapsed dataset. We ran one

MCMC chain for 50,000 iterations and recorded posterior samples every 10 iterations.

We first performed a cluster analysis of biological samples based on their microbial com-

positions. For each posterior sample of the model parameters, we computed P j for

j = 1, . . . , J and calculated the Bray-Curtis dissimilarity matrix between biological sam-

ples. We then clustered the biological samples using this dissimilarity matrix with Par-

titioning Among Medoids (PAM) (Tibshirani et al., 2002). By averaging over the MCMC

iterations for the clustering results from each dissimilarity matrix, we obtained the pos-

terior probability of two biological samples being clustered together. Figure 1.4(a) illus-

trates the clustering probabilities. We can see that biological samples belonging to a spe-

cific specimen type are tightly clustered together while different specimens tend to define

separate clusters. This is consistent with the conclusion in Caporaso et al. (2011), where

the authors suggest, that within specimen microbiome variations are limited when com-

pared to variations across specimen types. We also observed that biological samples from

the skin are clustered with those from the tongue. This is to some extent an expected re-

sult, because both specimens are derived from humans, and because the skin microbiome

has often OTUs frequencies comparable to other body sites (Grice and Segre, 2011).

We then visualized the biological samples using ordination plots and applying the

method described in Section 1.4. We fixed the dimension of the consensus space V at

three. We plotted all biological samples’ projections onto V along with contours to vi-

sualize their posterior variability. The results are shown in Figure 1.4(b-d). We observe

a clear separation between human-derived (tongue, skin, and feces) biological samples

and biological samples from free environments. This separation is mostly identified by

the first two compromise axes. The third axis defines a saline/non-saline samples separa-
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tion. Biological samples derived from saline environment (e.g. Ocean) are well separated

when projected on this axis from those derived from non-saline environment (e.g. Creek

freshwater). We observed small 95% credible regions for all biological samples projec-

tions. This low level of uncertainty captured by the small credible regions in Figure 1.4(b-

d) is mainly explained by the large total counts nj for all biological samples. Finally, to

compare the ordination results to those given by standard methods used in microbiome

studies, we generated ordination results using PCoA. Figure S4 shows that the relative

positions of different types of biological samples in PCoA plots and in the Bayesian ordi-

nation plots are similar.

1.6.2 The Vaginal Microbiome

We also consider a dataset previously presented in Ravel et al. (2011a) which contains

a larger number of biological samples (900) and a simpler bacterial community struc-

ture. These biological samples are derived from 54 healthy women. Multiple biological

samples are taken from each individual, ranging from one to 32 biological samples per

individual. Each woman has been classified, before our microbiome sequencing data

were generated, into vaginal community state subtypes (CST). This dataset contains only

species level taxonomic information, and we filtered OTUs by occurrence. We only re-

tain species with more than five reads in at least 10% of biological samples. This filtering

resulted in 31 distinct OTUs. We ran one MCMC chain with 50,000 iterations.

We performed the same analyses as in the previous subsection. The results are shown

in Figure 1.5. Clustering probabilities indicate strong within CST similarity (panel a).

There is one exception, CST IV-A samples, in some cases, presenting low levels of sim-

ilarities when compared to each other and tend to cluster with CST I, CST III, and CST

IV-B samples. This is because CST IV-A is characterized as a highly heterogeneous sub-

type (Ravel et al., 2011a). The ordination plots are consistent with the discoveries in Ravel

et al. (2011a). A tetrahedron shape is recovered, and CST I, II, III, IV-B occupy the four

vertices. CST II is well separated from other CSTs by the third axis. This pattern is similar

to the one observed in the plots generated using PCoA (Figure S5). We also observed a

sub-clustering in CST II which has not been detected and discussed in Ravel et al. (2011a).
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Figure 1.4: (a) Posterior Probability of each pair of biological samples (j, j′) being clus-
tered together. The labels on axes indicate the environment of origin for each biological
sample. (b-d) Ordination plots of biological samples and 95% posterior credible regions.
We illustrate the first three compromise axes with three panels. Panel (b) plots projections
on the first and second axes. Panel (c) plots projections on the first and third axes. Panel
(d) plots projections on the second and third axes. The percentages on the three axes are
the ratios of the corresponding S0 eigenvalues and the trace of the matrix. The credible
regions for some biological samples are so small that appears as single points. Colors and
annotated text indicate the environments.
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This difference in the results can be due to distinct clustering metrics in the analyses.

Note that there are two biological samples with large credible regions, indicating high

uncertainty of the corresponding positions. This uncertainty propagates on their cluster

membership. Both biological samples have small total counts compared to the others.

The lack of precision when using biological samples with small sequencing depth leads

to high uncertainty in ordination and classification. It is therefore important to account

for uncertainty in the validation of subgroups biological differences—in our case CST

subtypes—based on microbiome profiling. Our example suggests also the importance

of uncertainty summaries when microbiome profiles are used to classify samples. Uncer-

tainty summaries allow us to retain all samples, including those with low counts, without

the risk of overinterpreting the estimated locations and projections. This also argues for

the retention of raw counts in microbiome studies (McMurdie and Holmes, 2014a). By

using raw counts, we can evaluate the uncertainty of our estimates and exploit the infor-

mation and statistical power carried by the full dataset; whereas if we downsample the

data we lose information and increase uncertainty on the projections.

It is ubiquitous to have biological samples with relevant differences in their total counts,

and in some cases the number of OTUs and the total number of reads can be comparable.

In this cases, the empirical estimates of microbial distributions are not reliable, and an

assessment of the uncertainty is necessary for downstream analyses. The two biological

samples with low total counts in the vaginal microbiome dataset are examples. For bio-

logical samples with a scarce amount of data our model provides measures of uncertainty

and allows uncertainty visualizations with ordination plots.

1.7 Conclusion

We propose a joint model for multinomial sampling of OTUs in multiple biological sam-

ples. We apply a prior from Bayesian factor analysis to estimate the similarity between

biological samples, which is summarized by a Gram matrix. Simulation studies give

evidence that this parameter is recovered by the Bayes estimate, and in particular, the in-

herent dimensionality of the latent factors is effectively learned from the data. The simu-
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Figure 1.5: (a) Posterior Probability of each pair of biological samples (j, j′) being clus-
tered together. The labels on axes indicate the CST for each biological sample. (b-d)
Ordination plots of biological samples and posterior credible regions. We illustrate the
first three compromise axes with three panels. The percentages on the three axes are the
ratios of the corresponding S0 eigenvalues and the trace of the matrix. Colors and indicate
CSTs.
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lation also demonstrated that the analysis yields more accurate estimates of the microbial

distributions by borrowing information across biological samples.

In addition, we provide a robust method to visualize the uncertainty in ecological ordina-

tions, furnishing each point in the plot with a credible region. Two published microbiome

datasets were analyzed, and the results are consistent with previous findings. The second

analysis demonstrates that the level of uncertainty can vary across biological samples due

to differences in sampling depth, which underlines the importance of modeling multino-

mial sampling variations coherently. We believe our analysis will mitigate artifacts arising

from rarefaction, thresholding of rare species, and other preprocessing steps.

There are several directions for development which are not explored here. We highlight

the possibility of incorporating prior knowledge about the biological samples, such as the

subject or group identifier in a clinical study. To achieve this, we can augment the latent

factors Yj by a vector of covariates (b1w
j
1, . . . , bpw

j
p), whose coefficients b could be given

a normal prior, for example. The posterior distribution of the coefficients could be used

to infer the magnitude of covariates’ effects. A less straightforward extension involves

moving away from the assumption of a priori exchangeability between OTUs to include

prior information about phylogenetic or functional relationships between them. In our

present analysis, these relationships are not taken into account in the definition of the

prior for microbial distributions.
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2.1 Introduction

Large scale survey of microbial composition of host- and environmentally-associated

communities becomes readily available by the rapid advancement of Next generation se-

quencing (NGS) technology. By targeting at the unique marker genes such as 16S rRNA,

researchers are able to measure the abundances of microbes by counting the frequencies

them in multiple samples. These measurements of microbial abundances are usually or-

ganized into a contingency table known as operational taxonomic unit (OTU) table, which

serves as the start point of many microbiome studies. This type of data enables quanti-

tative characterization of microbial communities. Particularly, it can be used to estimate

the association between sample metadata and microbial abundances, which are relevant

for a wide range of biological and clinical questions.

Many statistical methods for association studies with microbial survey data borrow the

basic framework of association studies in gene expression data (Morgan et al., 2012b;

Paulson et al., 2013a; McMurdie and Holmes, 2013). These methods start with normal-

izing the raw counts of all microbes within each biological sample to remove artificial

variability due to technical variation. The normalized counts are then used for the hy-

pothesis testing of individual microbes’ association with sample covariates. Typically,

this test is carried out one microbe at a time by using a generalized linear model (GLM)

with a distribution family that are over-dispersed and sparse to accommodate the char-

acteristics of microbial abundance data (Li, 2015a). Common choices of such families

include zero-inflated log-normal distribution and zero-inflated negative binomial distri-

bution (Xu et al., 2015). This univariate framework is inefficient as it cannot borrow infor-

mation across different microbes when estimating the effect of sample metadata. More-

over, it ignores the correlation structure between microbes, which may cause problems

when adjusting for multiple hypothesis testing.

Recently, people begin to consider multivariate statistical models for microbial survey

data (Holmes et al., 2012b; Xia et al., 2013a). Because sequencing data can be treated as

multinomial sampling results, it is natural to target on the underlying multinomial dis-

tributions of microbes for the association studies. In Holmes et al. (2012b) and Xia et al.
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(2013a), the authors model the multinomial probabilities using parametric families on

simplex. Both models link the sample metadata to the parameters of the assumed distri-

bution through a multivariate regression. In Holmes et al. (2012b), a Dirichlet distribu-

tion is used and in Xia et al. (2013a), a multivariate logistic normal distribution. Although

these two models can overcome the difficulties mentioned above in the univariate anal-

yses and are computationally feasible, neither of them is flexible enough to fully capture

the characteristics of the underlying multinomial distributions of microbes. Specifically,

components of a Dirichlet distribution can only be negatively correlated, which is not

consistent with the fact that some OTUs can only exist in tight-knit communities. And

the multivariate logistic normal distribution cannot recapitulate the sparseness observed

in real microbial survey data.

The limitations in parametric families on simplex can be resolved by considering non-

parametric models for discrete distributions. Current development in normalized ran-

dom measures (Regazzini et al., 2003; James et al., 2009) opened up the possibility of

applying nonparametric models for microbial abundance data in Bayesian paradigm. At-

tempts of using nonparametric methods in microbiome analyses usually employ the most

common Bayesian nonparametric model, Dirichlet process, to depict the distributions of

microbes. In O’Brien et al. (2016), the authors assume a marginally exchangeable struc-

ture of biological samples. Therefore, a series of independent Dirichlet processes are used

a priori to model each of the biological samples. This exchangeability assumption ren-

ders incorporating information of covariates into the model impossible and therefore is

not suitable for the association studies in microbiome research. Arbel et al. (2014) allows

for dependence structure between biological samples but only focuses on a univariate

summary of each microbial distribution.

We discovered a recent Bayesian nonparametric model for microbiome data (Ren et al.,

2016) is very relevant to the task of association studies for microbiome data. This model

respects the fact that microbial distributions are non-exchangeable by connecting a group

of sample-specific latent variables to the collection of microbial distributions. This con-

struction induces a Dependent Dirichlet Processes prior on the microbial distributions,

which possesses desirable properties. For example, it assigns positive prior probability to
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every possible collection of microbial distributions and tends to produce a parsimonious

set of latent variables. The framework lends a convenient extension for association anal-

yses in microbiome studies. If we add the observed sample covariates on top of the latent

variables as the potential factors that affect the probabilities of microbes, we can draw

conclusion about whether certain covariates are associated with microbial abundances

significantly by estimating the magnitude of those effects. We will discuss this extension

in details in the remainder of this paper.

The paper is organized as follows: Section 2 will be focused on the description of the

extension and some discussion about the model identifiability. Section 3 deals with the

computational aspect of the model, offering an overview of the sampling algorithm. Sec-

tion 4 will be results from simulation studies, in which we are mainly interested in evalu-

ating the performance of our model in terms of estimating parameters and translating the

parameters to interpretable results. Section 5 demonstrates an application of the model

to a longitudinal microbiome dataset collected from infants. Section 6 concludes and dis-

cusses several future directions.

2.2 Method

In this section, we will first review the construction of the Dependent Dirichlet process

in Ren et al. We then introduce the extension of this model which incorporates sample

covariates and discuss the identifiability of the model parameters, especially the parame-

ters that correspond to the effect of covariates. The data we are working with is the OTU

table (ni,j)i∈N+,j∈J where ni,j is the observed frequency of species i in biological sample j

and J is the set of biological samples. We want to leverage the information of microbial

abundances in heterogeneous samples to discover the relationships between microbial

compositions and observed sample characteristics.

2.2.1 Dependent Dirichlet process

To make the notations and definitions more concrete, we illustrate in Table 2.1 an example

of a typical OTU table with 12 biological samples, where half are healthy subjects and half
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Table 2.1: An example OTU table derived from data published in Vatanen et al. (2016).
Species G69147 G69149 G69152 G69155 G69156 G69158

Bifidobacterium longum 0 73222 3014074 14294 7291 9228
Bifidobacterium bifidum 3594189 49223 0 11177 11656816 14759

Escherichia coli 4210380 23025 635855 29700 7508 556208
Bifidobacterium breve 0 136 245827 19312 7223273 0

Bacteroides fragilis 0 88751 0 6257732 343 75506
Bacteroides vulgatus 0 7454 0 4745 0 25859

Bacteroides dorei 0 0 0 0 0 0
Bifidobacterium adolescentis 0 111248 1626357 735715 1194 0

Bacteroides uniformis 0 3901 0 5859 1633 28638
Ruminococcus gnavus 145485 33004 92101 253830 29 1186774

are Inflammatory Bowel disease (IBD) patients. This type of contingency table records the

observed frequencies of 10 genus level OTUs in a collection of biological samples based

on 16S sequencing results. Let Zi be the ith observed OTU (e.g. Z1 is Bacteroides) and ni,j

be the observed frequency of OTU Zi in biological sample j. As an example, n11 = 1822 is

the observed frequency of Bacteroides in the biological sample Control.1. We will denote

an OTU table as (ni,j)i≤I,j≤J , where I is the number of observed OTUs and J the number

of biological samples.

For the biological sample j, we will assume the vector (n1,j, . . . , nI,j) follows a multino-

mial distribution, noting that our analysis extends easily to the case in which the total

count
∑I

i=1 nij is a Poisson random variable.The unobserved multinomial probabilities of

OTUs present in biological sample j determine the distribution of frequencies completely.

These probabilities form a discrete probability measure, which we call a microbial distri-

bution, on the set of all OTUs. We denote this discrete measure as P j and P j({Zi}) gives

the probability of sampling Zi from biological sample j. If we consider all J biological

samples, we expect there will be variation in the respective P j’s. This variation usually

can be explained by specific characteristics of the biological sample. For instance, in Ta-

ble 2.1, we can see the empirical probability of Enterococcus is higher in healthy controls

than in IBD patients. This variation is attributed to the IBD status (Morgan et al., 2012b).

Microbiome studies aim to elucidate the characteristics that explain this kind of variation.

We focus on modeling the P j’s and the variation among them. For biological sam-

ples labelled in J = {1, . . . , J}, we assume they have the same infinite set of OTUs
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Z1, Z2, . . . ∈ Z. We let the number of OTUs present in a biological sample be infinity

to make our model nonparametric in consideration of the fact that there might be an

unknown number of OTUs that are not observed in the experiment. We specify the prob-

ability mass assigned to a group of OTUs A ⊂ Z as

P j(A) = M j(A)/M j(Z),

M j(A) =
∞∑
i=1

I(Zi ∈ A)σi〈Xi,Y
j〉+2,

(2.1)

where σi ∈ (0, 1), Xi,Y
j ∈ RK , I(·) is the indicator function and x+ = x × I(x > 0). In

addition, 〈·, ·〉 is the standard inner product in RK .

In this model specification, σi is related to the average abundance of OTU i across all bi-

ological samples. When σi is large, the average probability mass assigned to OTU Zi will

also be large. We refer to Xi and Yj as OTU vector and biological sample vectors respec-

tively. The variation of the P j’s is determined by the vectors Yj , which can be treated as

latent characteristics of the biological samples that associate with microbial composition;

for example, an unobserved feature of the subject’s diet, such as vegetarianism, could af-

fect the abundance of certain OTUs. We assume there are at most K such characteristics.

Xi has the same dimension as Yj and it denotes the effect of each latent characteristic of

the biological samples on the abundance of the OTU Zi.

If we assume σ1 > σ2 > σ3 . . . , are ordered points from a Poisson process a priori on

(0, 1) with intensity ν(σ) = ασ−1(1 − σ)−1/2, priors on Xl,i are iid N(0, 1) for i = 1, 2, . . .,

l = 1, 2, . . . , K, and 〈Yj,Yj〉 < ∞ for all j ∈ J , the induced prior on P j is a Dirichlet

process marginally (Ren et al., 2016). To see this heuristically, we note that this prior im-

plies that fixing j, Q+2
i,j (i = 1, 2, . . .) are independent and are mixtures of a point mass at

zero and a Gamma distribution with shape parameter 1/2. In addition, for a fixed m, the

prior distribution of (σ1, . . . , σm) can be approximated by Beta(α/m, 1/2 − α/m). There-

fore, when α/m < 1/2, the prior distribution of normalized (σ1Q
+2
1,j , . . . , σmQ

+2
m,j) follows

approximately Dirichlet(α/m, . . . , α/m). As a result, if m goes to infinity, we expect the

prior distribution of P j becomes a Dirichlet process.

When applied to real data, we need to specify the dimension of Yj . Usually, we want to

find a set of Yj with reasonably small dimension but can approximate the angles between
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samples well. We applied a shrinkage prior (Bhattacharya and Dunson, 2011) on the com-

ponents of Yj to achieve this goal. This prior tries to make the first several components

of Yj capture as much variation as possible and shrink Yl,j towards zero for each j ∈ J
when l is large.

2.2.2 Dependent Dirichlet process with fixed effect

Microbiome studies usually seek to discover relationships between microbial composi-

tions and sample characteristics. For example, in the studies of Inflammatory Bowel Dis-

ease(IBD), researchers are interested to find microbes that are correlated with the onset of

IBD and try to devise the treatment accordingly. Such problems are usually solved by us-

ing a regression model with the abundances of microbes as the outcome. The estimates of

regression coefficients are interpreted as the measurement of associations between sam-

ple covariates and microbial abundances. Following the same strategy, we expanded the

model in Section 2.2.1 to perform a multivariate regression analysis to jointly estimate the

effect of covariates on all observed species. This extended model is very flexible in that it

allows for correlation structures in the regression residuals.

Assume there are K ≥ 1 observed covariates. Denote the observed covariates for sample

j as wj = (w1,j, . . . , wK,j)
ᵀ and the effect of this set of covariates on species i as vi =

(v1,i, . . . , vK,i)
ᵀ. Our extended model directly modify the term Qi,j in (2.1) by adding a

linear function of wj :

Qi,j = 〈Xi,Y
j〉+ vᵀ

iw
j + εi,j, (2.2)

where εi,j
iid∼ N (0, 1) are pure noise.

In this construction, vi and wj can be seen as additional dimensions of Xi and Yj . It

follows that the concatenated vector (wj,Yj)ᵀ indicates the position of sample j in a sub-

space and the angle between (wj,Yj)ᵀ and (wj′ ,Yj′)ᵀ measures the similarity of distri-

butions of microbes in biological sample j and j′. The concatenated vector (vi,Xi)
ᵀ is

interpreted similarly. We added the noise term εi,j to capture the variability that cannot

be explained by the linear term 〈Xi,Y
j〉+ vᵀ

iw
j . The variance of this error is fixed at one

due to the fact that any scaling of Qi,j will result in the same model on P j . Specifying a
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variance parameter for εi,j is thus redundant. We put an independent MVN(0, I) prior

on each vi. When fixing the latent factors Yj and preserving the prior specification of Xi

and σi in Section 2.2.1, the marginal prior of P j induced by (2.2) remains to be a Dirichlet

process. This can be proved using the same argument as in Section 2.2.1.
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Figure 2.1: Effect of a one-dimensional covariate on the probability of a species. We con-
sidered the case where the covariate is w, sin(w) and I(w > 0). For each scenario, we plot
the the expected (Left panel) and observed (Right panel) probabilities of a species as a
function of w when w ranges from −5 to 5.

The model in (2.2) is effectively a generalized multivariate linear regression model with

unobserved covariates, in which Xi and vi quantify the effect of the unobserved and ob-

served covariates respectively. Due to the randomness in the model specification, the

observed microbial abundance is not necessarily a monotone function of the covariate

values (Figure 2.1). We are mainly interest in vi as it is immediately related to the biologi-

cal questions in real applications. (2.2) is more flexible than the typical multivariate linear
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regression in that when estimating vi, we can non-parametrically adjust for latent covari-

ates Yj that contribute to the variations of the multinomial distributions. Since there is no

clear interpretation of the estimated latent factor Yj , Xi is not of major interest in our anal-

yses. The more important information carried by Yj is the Gram matrix (〈Yj,Yj′〉)j,j′∈J ,

which represents the similarity structure between the residuals of the regression.

2.2.3 Identification of model parameters

In this section, we consider the identifiability of the model parameters σi, Yj and vi in the

likelihood. We integrate out Xi since our major interest is on vi and YᵀY. Throughout

the section, we assume that
∑

i ni,j is large enough such that ni,j/(σiQ+2
i,j ) = cj > 0 for

every i and j. This assumption holds approximately when the number of species are

much smaller than the total number of cells that are counted in each biological sample. It

is reasonable as modern high-throughput sequencing platforms can easily achieve large

read-depth (nj).

We notice that the observed data are finite species sampling sequences data. The labelling

of species based on this type of data is usually arbitrary since there is no inherent order

of species. Usually, we label the first observed species in the first biological samples as

species 1, the second as species 2 and so on. Indeed, if we assume the species have label

{1, 2, . . .}, the labels given by this assignment rule is a permutation π of 1, 2, . . .. When

we refer to species i and Zi,j , σi, vi in the rest of this section, we are actually referring

to Zπi,j , σπi and vπi , where πi is the ith element of π. The joint distribution of all Zπi,j

is different from the joint distribution Zi,j only in the normalizing constant since species

are exchangeable. Therefore, if the distribution of (Zπi,j)i≥1,j≤J are different under two

sets of model parameters, the distributions of (Zi,j)i≥1,j≤J are also different. As a result,

analyzing the distribution of Zπi,j , σπi and vπi in the argument of model identifiability is

sufficient.

Let w = (w1, . . . ,wJ) and Y = (Y1, . . . ,YJ). We first notice the fixed effect model in (2.2)

implies that

(Qi,1, . . . , Qi,J)ᵀ ∼MVN(Yᵀvi,Σ),
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where Σ = YᵀY + IJ and IJ is the J × J identity matrix. Since ni,j/(σiQ+2
i,j ) = cj , we

have ni,j = 0 ⇔ Qi,j < 0. Consider a transformed dataset, denoted as (Zi,j)i≥1,j∈J , where

Zi,j = I(Qi,j = 0). zi,j = I(ni,j > 0) is a realization of the random variable Zi,j . If the

model parameters are identifiable under the reduced dataset (Zi,j)i≥1,j∈J , it follows that

those parameters are also identifiable using the full dataset (ni,j)i≥1,j∈J . In the following

discussion, we will mainly use the reduced dataset to investigate the identifiability of

parameters. But we will also consider the full dataset if necessary.

The probability mass function of (Zi,j)i≥1,j∈J can be written as

P (Zi,j = zi,j, i ≥ 1, j ∈ J ; {σi}, {Yj}, {vi})

=
∏
i

[∫
Ai

(2π)−J/2|Σ|−1/2 × exp

(
−1

2
(Qi − µi)ᵀΣ−1(Qi − µi)

)
dQi

]
.

(2.3)

Here Qi = (Qi,1, . . . , Qi,J)ᵀ, µi = wᵀvi and Σ = YᵀY+IJ . Ai = ×Jj=1Ai,j andAi,j = (−∞, 0]

if zi,j = 0, Ai,j = [0,∞) if zi,j = 1. To illustrate the identifiability of the model parameters,

we start with two simplified cases and then give a proposition for the general case.

1. No ranodm effect (Y = 0). In this scenario, we only need to consider two sets of pa-

rameters, {σi} and {vi}. Using the reduced dataset (Zi,j)i≥1,j∈J , we can argue that all

vi are identifiable. Indeed, for a fixed i, the likelihood of (Zi,1, . . . , Zi,J) is exactly the

likelihood of a standard probit model, where the mean vector and covariance ma-

trix of the underlying normal random variables is wᵀvi and IJ respectively. Based

on the asymptotic theory of generalized linear model, the MLE of vi is consistent

when J → ∞, if wj are iid and Ewj(wj)ᵀ is positive definite. The consistency of an

estimator of vi implies immediately the identifiability of it. Using argument similar

to the proof of Proposition 2.1, we can also prove that σi/σi′ is identifiable for every

pair of i 6= i′ based on the full dataset (ni,j)i≥1,j≤J .

2. No fixed effect (vi = 0). We now only need to identify {σi} and Y (or Σ equivalently).

Consider the distribution of (Z1,j, Z1,j′), it can be written as

P (Z1,j = z1,j, Z1,j′ = z1,j′) ∝
∫
A1

|Σj:j′ |−1/2 exp

(
−1

2
QᵀΣ−1

j:j′Q

)
dQ,

where Σj:j′ =

(
Σj,j Σj,j′

Σj′,j Σj′,j′

)
and A1 = A1,j × A1,j′ , A1,j = (−∞, 0] if z1,j = 0

and A1,j = [0,∞) if z1,j = 1. Theorem 3.1 in Ledoux and Talagrand (2013) shows
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that P (Z1,j = z1,j, Z1,j′ = z1,j′) is an increasing function of the correlation between

j and j′, Σj,j′/
√

Σj,jΣj′,j′ . This implies that the correlation matrix S induced by

YᵀY + IJ is identifiable from the data. In fact, this conclusion cannot be improved

by considering the full data. This is because the likelihood function of the full data

is also invariant under the standardization of the covariance matrix YᵀY + IJ . The

identifiability of σi/σi′ can be established using the same argument in Proposition

2.1.

3. Both fixed and random effect. This general case can be treated as the integration of the

previous two scenarios. To have identifiability, we put a constraint on the sample

covariates wj such that wj iid∼ f , where f is a continuous distribution on Rk. We

give the following proposition for the identifiability of the model parameters based

on the absence-presence data (Zi,j = I(Qi,j > 0))i≥1,j≤J as well as the full dataset

(ni,j)i≥1,j≤J . The proof is in the appendix.

Proposition 2.1. Assume Ewj(wj)ᵀ is positive definite and
∑

j Σj,j = 1. Consider two

different sets of model parameters {(σi)i≥1, (vi)i≥1,Σ} and {(σ′i)i≥1, (v
′
i)i≥1,Σ

′}. The dis-

tribution of the data (Zi,j)i≥1,j≤J is the same under these two sets of parameter values if and

only if vi = v′i and Σ = Σ′ for every i ≥ 1. Moreover, if there exists a pair of i 6= i′ such

that σi/σi′ 6= σ′i/σ
′
i′ , the distribution of (ni,j)i≥1,j≤J will be different under these two sets of

parameter values.

2.3 Posterior simulation and visualization

In this section, we focus on the computational aspects of our model. In Section 2.3.1, we

introduce a subject-specific latent factor model and the posterior simulation algorithm we

used for this model. This special case of the model in (2.2) utilizes information of subjects

in longitudinal dataset and will be used in our real data application. In Section 2.3.2,

we discuss a summary statistic that transforms the estimates of parameter vi into inter-

pretable results regarding the effect of covariates on species. This statistic is necessary as

the value of vi does not directly indicate the relationship between covariates and relative

abundances of species.
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2.3.1 Gibbs sampler for subject-specific latent factor model

We first define the subject-specific latent factor model. Denote sj as the subject index

of the jth sample. The subject-specific latent factor model puts an additional restriction

on the mixed effect model in (2.2) by forcing the latent factor Yj to be identical for all

samples that are derived from the same subject. To be more specific, we require Yj = Yj′

when sj = sj′ . Assume there are N subjects in the dataset, and denote the latent factor

corresponds to subject s as Ỹs, we can rewrite (2.2) as

Qi,j = 〈Xi, Ỹ
sj〉+ vᵀ

iw
j + εi,j. (2.4)

The indicators of subjects of all samples can be collected in a J ×N matrix B as in linear

mixed effect model. Specifically, Bj,s = 1 when sample j belongs to subject s and zero

otherwise. Using this matrix, we can write the model specification in a more compact

way:

Qi = Xᵀ
i ỸBᵀ + vᵀ

iw + εi,

where Ỹ = (Ỹ1, . . . , ỸN).

Based on this model formulation, it is straightforward to derive the full conditional dis-

tribution of the species factor Xi and species regression coefficient vi based on the results

in Ren et al. (2017):

Xi|Ỹ,Qi,vi ∼MVN((BỸᵀỸBᵀ + I)−1BỸᵀ(Qi − vᵀ
iw), (BỸᵀỸBᵀ + I)−1),

vi|Ỹ,Xi,Qi ∼MVN((wᵀw + I)−1wᵀ(Qi −Xᵀ
i ỸB), (wᵀw + I)−1).

The only part that is different will be the sampling of Ỹs as it is now shared by multiple

samples. Denote the number of repeated measures for subject s as ms, the full conditional

posterior distribution of Ỹs is

Ỹs|Xi,Qi,vi,Σs ∼MVN((Xᵀ
iXi + 1/msΣs)

−1Xᵀ
i

∑
j:sj=s

(Qi,j − vᵀ
iw

j), (msX
ᵀ
iXi + ΣY )−1),

where ΣY is derived from the shrinkage prior we assumed for Yj . Notice now this shrink-

age prior is effectively applied to Ỹs and thus we do not need to rewrite the sampling

algorithm for updating the hyper-parameters in the shrinkage prior.
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2.3.2 Converting the model parameters to interpretable results

In this section, we discuss a summary statistics we used to demonstrate relationship be-

tween covariates and microbial abundances based on estimates of vi. In the scenario

where one component of wj is continuous (assume it is wk,j), we usually want to know

how the microbial abundance changes when wk,j changes for each biological sample. We

propose to estimate this relationship by calculating the first order derivative of the esti-

mated species abundance at the observed biological samples. It will be sensitive to rapid

changes in microbial abundance and can be potentially useful when detecting disruptive

events of microbial communities. Notice the derivative here captures the model-based

rate of change specific to each biological sample, which is affected by between-subject

variability.

Using the model specification, we can derive a closed-form expression for the derivatives.

Recall the probability of species i in biological sample j is P j({Zi}) = σiQ
+2
i,j /(

∑
i σiQ

+2
i,j ).

It follows that the derivative of this quantity over a continuous covariate wk,j can be writ-

ten as

∂P j({Zi})
∂wk,j

=∂[
σi(X

ᵀ
iY

j + viw
j + εi,j)

+2∑
l σl(X

ᵀ
l Y

j + vᵀ
l w

j + εl,j)+2
]/∂wk,j

=
2σivk,iQ

+
i,j

∑
l σlQ

+2
l,j − 2σiQ

+2
i,j

∑
l σkvk,lQ

+
l,j

(
∑

l σlQ
+2
l,j )2

,

whereQi,j = Xᵀ
iY

j+viw
j+εi,j . We can calculate the posterior distribution of this quantity

based on the MCMC simulation results. In the calculation, we average over multiple

realization of εi,j to get rid of effect of pure noise.

2.4 Simulation results

In this section, we focus on the subject-specific model specification introduced in Sec-

tion 2.3.1 and illustrate that we can estimate the parameters of interest accurately, which

verifies numerically our results on model identifiability. We then use the posterior sam-

ples of the model parameters to estimate the rate of change of relative abundances over a

continuous covariate in individual level and the overall trends in population level. This
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simulation demonstrates that we can transform the model parameters into interpretable

and biologically interesting results, which recapitulate the ground truth accurately.

In all the simulation studies we carried out, we assume there are 100 species (I = 100)

and 300 biological samples (J = 300). The 300 biological samples are repeated measures

from 50 subjects (N = 50), with each subject measured 6 times. We assume the total

number of reads for each biological sample is nj = 105. This large read depth makes the

approximation in Proposition 2.1 reasonable. We included in the simulation a continuous

covariatew1,j , generated independently fromN(0, 1), and a subject-specific binary covari-

ate w2,j , generated from a Bernoulli distribution with probability 0.5. We also added the

interaction term w1,j ×w2,j to mimic the scenario where trends over time differ in the two

groups of subjects. For the latent factor Ỹ, we assumed the true dimension of it is four

(Ỹs ∈ R4) and for the first half of the subjects, s = 1, . . . , 25, we set Ỹ3,s = Ỹ4,s = 0 and

for the other half, s = 26, . . . , 50, we set Ỹ1,s = Ỹ2,s = 0. The non-zero components in Ỹs

were simulated from N(0, 1) independently. This specification of Ỹ makes the underly-

ing correlation matrix S to be block diagonal. In the latent scale, we specify the first eight

species to have increasing trends over w1 and the following eight species to have decreas-

ing trend. Within each eight species, we further assume half of them are more abundant

in subjects with w2,j = 1 and the other half less abundant. Moreover, we assume the

trends over w1 are either amplified, evened out or flipped when changing from one of the

groups to the other in these 16 species. The rest of the species will have no relationship

with w. This results in the following specification of v:

v =

(
5 5 5 5 5 5 5 5 −5 −5 −5 −5 −5 −5 −5 −5 0 . . . 0
5 5 5 5 −5 −5 −5 −5 5 5 5 5 −5 −5 −5 −5 0 . . . 0
10 −5 −5 −10 10 −5 −5 −10 −10 5 5 10 −10 5 5 10 0 . . . 0

)
.

2.4.1 Estimate the correlation matrix S and regression coefficients v

We consider first the estimation of S and v, which are the most interesting parameters we

want to recover from the data. We only focus on the between-subject correlation matrix S̃,

which is given by normalizing ỸᵀỸ+I. Since v is identifiable up to a constant determined

by the ratio between estimated Σ and the true Σ (see Proposition 2.1), we scaled the

posterior samples of v by the posterior mean of this ratio, which makes them comparable
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to the true values. In Figure 2.2, we show the results from the above simulation. The

plots suggest in general, the estimates of v are accurate. Several exceptions (e.g. Species

15) are species with low overall abundances. The estimate of S is also highly accurate,

with negligible level of non-zero correlation between two groups of subjects. Both results

confirm the conclusion in Proposition 2.1, which validates the usefulness of our model

specification.
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Figure 2.2: Bayesian estimates accurately recover the truth. (a) Rescaled estimates of
regression coefficients v. The boxplots show the posterior distribution of each component
of v for the first 16 species. The black dots indicate the corresponding true values. (b)
Posterior mean of between-subject correlation matrix S̃ compared to the truth. The lower
triangle of the matrix shows the truth and the upper triangle shows the corresponding
posterior mean.

2.4.2 Estimating the relationship between the continuous covariate and
the probabilities of species

As we have mentioned in Section 2.3.2, the values of v are not directly related to the trend

of relative abundances due to normalization. We thus want to check if we can estimate the

trend of species abundances over the continuous covariate w1. We consider two different

kinds of estimates in this section. The first is generated using the algorithm described in

Section 2.3.2 and it provides individual-level information about the relationship between

w1 and relative abundances of species. The second provides instead the population level

trend of relative abundances over w1. For each posterior sample of all model parameters,

we generate a curve of relative abundances over w1 for each subject. By averaging all

those curves, we can get a population average trend over w1. We generated all estimates
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Figure 2.3: Posterior estimates of individual- and population- level relationship between
w1 and relative abundances, stratified by w2. (Left) Increasing trend for group 0 and
faster increasing trend for group 1. (Middle) Increasing trend for group 0 and no trend
for group 1. (Right) Increasing trend for group 0 and decreasing trend for group 1. Higher
abundance in group 1 overall for all three species.

stratified by w2. Results for three representative species are summarized in Figure 2.3.

From the results we can see both the estimated derivatives of species abundances and

the estimates of the population average trend over w1 are close to the corresponding

truth. In addition, the 95% posterior credible intervals/bands cover the truth well. For the

population average trend, the credible bands tend to shrink when the observed species

abundance is high, which is concordant with the fact that more information is available

for those species. For species that are with low abundance (e.g. species 4), the relative

discrepancy between the estimated curve and the truth tends to get larger, where the

relative width of the credible bands are also larger. Overall, the plots suggest our model

captures accurately both the individual- and population-level information about the effect

of the continuous covariate w1. It also indicates the evaluation of the uncertainty on the

estimates is sensible.
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2.5 Diabimmune data analysis

In this section, we apply our model to a gut microbiome dataset (DIABIMMUNE) col-

lected on 157 newly-born infants over a period extended to 1600 days after birth, yielding

762 samples and 55 genera (Vatanen et al., 2016). These infants are from Finland, Estonia

and Russia and seven of them are seroconverted, an indicator of onset of type I diabetes.

This dataset also includes dietary information as well as demographic and clinical infor-

mation. Vatanen et al. discovered a large collection of potential associations between

relative abundances of taxa and sample covariates. Among these associations, the most

significant ones are related to nationality and age of the infants. Although the goal of

collecting this dataset is to examine the relationship between seroconversion and gut mi-

crobiome, there is only limited evidence of changes in microbiome profile that are corre-

lated with seroconversion. Based on the previous findings and the aim of this study, we

include nationality, age, seroconversion and the interaction between age and nationality

into our Bayesian model as fixed effects. We want to first check whether we can recover

the results in the literature about nationality and age. Furthermore, we want to see if

truly there is not enough information to determine the relationship between seroconver-

sions and microbial distributions in human gut. We ran our MCMC sampler for 100,000

iterations with a burn-in of 20,000 and collected every 50th sample to thin the chain.

2.5.1 Estimating the effect of age

We first estimated the trend over age of the microbiome profile. In particular, we check

the derivatives of species abundances over age for each individual subjects and the pop-

ulation average trend over age when controlling the seroconversion status to be negative.

In Figure 2.4, we showed two examples with the most significant association with age,

Bifidobacterium and Bacteroides. We plotted the estimated derivatives and population

average curves along with the observed relative abundances for both genera.

The derivative curve for Bifidobacterium is significantly smaller than zero for most of

the samples, indicating a consistent decreasing trend of this genus in infants’ gut micro-

biome, which is in accordance with the underlying biology since bacteria from this genus
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Figure 2.4: (Top) Derivatives of probabilities of two genera with respect to age, colored
by nationality. We only show a random subset of 150 samples. The error bars indicate
the point-wise 95% credible intervals of the estimates. (Bottom) Estimated population
average trend of species abundance, colored by nationality. We hold the seroconversion
status to be negative for all three curves. The shaded areas illustrate the point-wise 95%
posterior confidence bands of all three curves.
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are associated with breastfeeding. This decreasing trend is confirmed by the population

average curves, which show very similar trajectories for Finnish and Estonian popula-

tions. The curve for Russian infants exhibits a more extreme decreasing trend at early

age (before 600 days old), which is consistent with the significantly larger derivatives ob-

served in Russian samples. Indeed, this difference between Russian and the other two

populations is already reported in Vatanen et al. (2016) and can be recognized directly

from the relative abundance data.

The trend associated with genus Bacteroides is not as strong as in the case of Bifidobac-

trium. The derivatives of this genus are positive with high credibility when age is smaller

than 300 days for all three populations and become slightly negative when infants are

older in only Estonian and Finnish populations. The Russian infants instead have slight

increasing trend even at older age. The population average curves replicate these behav-

iors and it is clear that the increasing trend is more extreme in Russian overall. The real

data also supports what we found here. Specifically, when age is larger than 900 days,

there are observable decrease for both the Estonian and Finnish samples, although the

decrease is relatively small. In addition, Russian samples tend to have very low abun-

dance Bacteroides at early age (¡150 days) and pick up the genus rapidly after 300 days.

We would like to point out that there are only a few Russian samples after age 900 days.

This means the leveled-out trend in the population curve is mainly an extrapolation based

on the curve before 900 days and might not reflect the underlying population trend accu-

rately.

2.5.2 Estimating the effect of nationality

The nationality of the infants supposedly introduces a strong effect on the gut micro-

biome. Association between nationality and microbiome profile is reported in Vatanen

et al. (2016) and for some genera, the effect is strong. In our model specification, the

difference in countries is captured by a constant shift as well as a linear function of age

due to the interaction term in the latent scale Q. Therefore the changes of probability of

species associated with nationality will depend on age. As a result, we check the average

changes of probabilities over five consecutive age windows and explore possible age win-
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dows corresponding to strong country effect. In Figure 2.5, we plot the estimated changes

associated with nationality for two genera, Bacterioides and Bifidobactirum, which are

previous identified as significantly less abundance and more abundance in Russian re-

spectively.
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Figure 2.5: Estimated average difference in probabilities of two genera in five consecutive
age groups when comparing Russian and Estonian to Finnish infants. The boxplots indi-
cate the posterior distributions of the corresponding differences and the numbers on top
of each boxplot is the one-sided posterior probability of zero.

From the result we can see clearly there is a strong depletion of Bacteroides in Russian

infants comparing to Finnish infants. This depletion diminishes when infants get older.

At the last age window (670-1160 days), the posterior credible interval covers zero with

high probability, indicating the two populations have very similar abundance profiles

for Bacteroides. There is no significant difference between Estonian and Finnish infants

throughout the five age windows. On the other hand, we observe a large increase in

the abundance of Bifidobacterium in Russian infants while Estonian and Finnish infants

still possess similar abundance profiles. The increase observed in Russian infants again

diminishes when the infants get older and completely disappear at the last age window.

These results are aligned with the discoveries in Vatanen et al. (2016). Since our Bayesian

method evaluate the uncertainty of the estimates using all data available, the significant

results given by the model should reflect the underlying patterns in this cohort and are

interesting for further validations and investigations from biological perspectives.
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2.5.3 Estimating the effect of seroconversion

We further explored microbiome associations with seroconversion, specifically the pres-

ence of at least one autoantibody, as reported in Vatanen et al. (2016). We calculated the

posterior distributions of the difference of average abundances of seroconverted samples

and controls when holding other covariates to be constant. We also stratified the analy-

sis by age groups, since even though there is no interaction between seroconversion and

age on the latent scale, normalization to relative abundances could introduce potential

interactions. Among the 55 genera analyzed by the resulting model, the most significant

was Lachnospiraceae at age window (0, 218) days with one-sided posterior probability

of zero at 0.176. The results thus indicate no evidence of genus-level associations with

seroconversion on a population scale. This may be due to associations at a more specific

level within the microbiome (e.g. species, strain, or functional elements), or even this

more nuanced model may be under-powered to recover associations given the extensive

inter-individual variation (only 37 out of 762 samples were seroconverted).

2.5.4 Relationship between species

As a by-product of our model, we can examine the cross-sectional relationship between

species by using the correlation between species vector X. The interpretation of this cor-

relation matrix is the similarity between species in samples with fixed covariate values.

Since a natural way to describe the relationship between microbial genera is by phyloge-

netic tree. We sorted the estimated correlation matrix based on the phylogenetic distances

such that rows or columns that are close to each other belong to genera with small phy-

logenetic distance. We further evaluated the uncertainty of the patterns observed in the

posterior mean estimate of the correlation matrix. An simultaneous ordination analysis

of multiple correlation matrices is used (Escoufier, 1973) to visualize the posterior uncer-

tainty of the correlation matrix between species. The results are summarized in Figure

2.6.

From the figure we can see the correlation matrix estimated using the latent factors X

reveals more structure than the raw correlation. It also removes the apparent correla-
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tion introduced by fixed effects. We observed three clusters of genera in the estimated

correlation matrix and the ordination results suggests genera in the same cluster tend

to have overlapped credible region of their ordination coordinates. All of these clusters

are formed by phylogenetically related genera as confirmed by the phylogenetic tree we

showed in the figure. The first and largest cluster is formed by 13 genera from phylum

Firmicutes (Clostridium, Ruminococcus, etc). This cluster corresponds to the cluster at

the bottom-left corner of the ordination plot. The second cluster is formed by seven gen-

era in Proteobacteria. They are mostly accounted for by the cluster at the upper-right

corner of the ordination. The last cluster includes five genera in Bacteroidetes, which oc-

cupies the cluster at the upper-left corner of the ordination plot. We want to point out that

the correlation estimated here is not only restricted to demonstrate relationships between

microbial taxa. In general, since our model can be applied to any count tables that arise

from multinomial sampling, we can visualize the relationships between genes, proteins

and metabolites by using the appropriate types of data.

2.6 Conclusion

We propose a mixed effect Bayesian factor model to perform multivariate regression anal-

ysis for microbiome data. This regression analysis estimates the effect of covariate on mi-

crobial composition while allowing for flexible correlation structure between the residu-

als. Under regularity conditions, we proved the model parameters are identifiable, which

indicates with enough amount of data, the posterior estimates can be close to the truth.

We verified this by numerical experiments. By appropriate transformation, the model

parameters can be converted into interpretable and biologically interesting results. These

transformations are further proved to be well-defined by simulation studies as the truth

can be accurately recovered by the estimates. We finally applied this model on a longitu-

dinal microbiome dataset and replicated results that are reported in existing literatures.

We would like to point out at least two major limitations of this model. The first one has

to do with the computation cost. The current posterior computation is implemented via

a Gibbs-sampler, which can be inefficient especially when the number of parameters are
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large. This is usually the case when the numbers of species and biological samples are

large. In this scenario, the mixing of the posterior samples deteriorates and the compu-

tational cost for each iteration increases. A more efficient algorithm, such as Hamilto-

nian Monte Carlo, which jointly samples all parameters, can help with the mixing speed

whereas variational inference algorithm can be useful to reduce the computational cost

per iteration. The other limitation is more about the scenario where the model might

behave poorly. Specifically, if the underlying truth dictates most of the species to have

similar trends over a continuous covariate, the inference given by the model might be

unstable since the observed data, which reflects the normalized latent variables, might

exhibit little to none trend. The inference will then be determined mostly by the prior and

might give meaningless results.

There are also several future directions which we want to explore. We would like to in-

vestigate appropriate variable selection techniques for the fixed effect. This is especially

helpful when there are a large collection of covariates and no prior knowledge is known

with regard to the important ones. A more flexible model for the fixed effect is also desir-

able. Currently, the relationship between the abundances of species and the covariates are

depicted by a linear function in the latent scale, which indicates the model only captures

continuous trends over continuous covariates. In microbiome studies, there are scenarios

where disruption of microbial profiles happens. In these circumstances, a step function

or a wavelet bases might be more relevant even in the latent scale. Finally, we notice that

the number of regression coefficients vi increases as the number of species increases and

the current prior on vi does not regularize these coefficients. This prior specification ig-

nores potential relationship between vi imposed by prior knowledge of the relationship

between the corresponding species. A systematic way to incorporate such information

on vi will be helpful in efficiency of the estimates.
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3.1 Introduction

Understanding the structure and interactions of host- and environmentally-associated

microbial communities is a fast-growing focus in biological and biomedical research.

While work in this area has benefitted immensely from advances in high-throughput

DNA sequencing, extracting biologically relevant trends from these data requires care-

fully designed statistical methods. To date, a number of statistical methods have been

proposed to derive biological trends from metagenomic sequencing data, including eco-

logical associations among community taxa (Faust et al., 2012b; Friedman and Alm, 2012;

Fang et al., 2015), as well as associations between community features and sample meta-

data (Xia et al., 2013b; Chen and Li, 2013; Lin et al., 2014; Paulson et al., 2013b). However,

it is challenging to benchmark these methods in a systematic manner: a critical limita-

tion for researchers who must identify and choose among appropriate tools for executing

their particular microbial community studies. Moreover, the historical absence of a stan-

dard evaluation framework for statistical analyses of the microbiome has likely hindered

methods development in the area.

One means for carrying out statistical methods benchmarking is data simulation. When

working with simulated data, the true signals and structures of the data are known, thus

enabling objective evaluation of a method’s performance (for example, true positive and

false positive rates). However, for these evaluations to be meaningful, the simulation

must provide a very close approximation of the underlying biology. This frequently re-

quires the use of a sophisticated statistical model. Such models have been previously

described in the context of gene expression profiles analysis (Smyth, 2005; Anders and

Huber, 2010; Robinson et al., 2010). Indeed, many models specific to gene expression data

simulation are currently available (Van den Bulcke et al., 2006; Hoops et al., 2006; Long

and Roth, 2008), including stochastic, deterministic, and network-guided approaches

(Van den Bulcke et al., 2006; Hoops et al., 2006), as well as alternative approaches fo-

cused on introducing predefined variability within simulated expression data [which are

particularly well-suited to sensitivity analysis (Long and Roth, 2008)]. Collectively, these

methods have proven useful for exploring gene expression patterns and mechanisms, as
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well as validating statistical approaches to the analysis of gene expression data (Meyer

et al., 2007; Li et al., 2010; Carrera et al., 2009).

Much as biological models of gene expression data benefit statistical methods develop-

ment in transcriptomics, we expect a standard model of microbial community profile

structure to be similarity useful in microbiome analysis. Moreover, some features of gene

expression data and their analysis are shared with metagenomic profiles and analyses,

and thus aspects of existing gene expression models may be directly transferable to the

microbiome field. For instance, for both metagenomic and gene expression data, there is

an interest to simulate measurements for a large number of features across a large number

of synthetic samples, while simultaneously 1) insuring that the distributional properties

of the features and samples are biologically realistic, and 2) enforcing specific relation-

ships among individual features. However, metagenomic sequencing data also possess

unique properties that complicate direct application of gene expression models to micro-

biome analysis. For example, relative to gene expression data, metagenomic sequencing

data tends to be more variable and considerably more sparse (Li, 2015b): properties that

must be taken into account when building a microbiome-specific standard for statistical

analysis.

A small number of statistical models have been proposed to specifically model the proper-

ties of taxonomic profiles derived from metagenomic sequencing, including models based

on the Dirichlet-Mutinomial (DM) and Zero-inflated Gaussian (ZIG) distributions. One

DM-based approach (Chen and Li, 2013) utilized a hierarchical structure to share informa-

tion between taxonomic features and generate jointly multinomial count data, but failed

to capture the sparsity of real-world microbiome datasets. An alternative ZIG-based ap-

proach (Paulson et al., 2013b) addressed the sparsity issue and was less computational

demanding to fit, but did not consider dependence among microbes. Moreover, while the

ZIG-based model remains useful for simulating normalized microbiome data (i.e. with

effects of sample-specific sequencing depth removed), it does not prescribe a fully inter-

pretable generative process for raw metagenomic count data. Notably, the information

lost in the process of converting raw to normalized microbiome data has been proposed

to contribute to suboptimal downstream analysis under some circumstances (McMurdie
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and Holmes, 2014b), which suggests further limitations to the existing ZIG-based model

as an aid in benchmarking metagenomic analysis methods and results.

Motivated by the lack of comprehensive statistical models for explaining microbial tax-

onomic profiling data, we developed a statistical model that we implement and eval-

uate here as SparseDOSSA (Sparse Data Observations for the Simulation of Synthetic

Abundance). The method models the marginal distributions of metagenomic features

using zero-inflated log-normal distributions, the parameters of which are hierarchi-

cally linked to a parent log-normal distribution (which governs the global structure of

the dataset). This approach allows us to recapitulate both the variability and spar-

sity of real-world metagenomic sequencing datasets. Moreover, SparseDOSSA serves

as a generative model for raw metagenomic count data, making its outputs appropri-

ate for the analysis and benchmarking of a wide variety of experimental designs and

statistical methods. We demonstrate that SparseDOSSA can be fit using both fully

Bayesian and nave empirical approaches. Both approaches are successful in produc-

ing synthetic metagenomic datasets that recapitulate the structural properties of target

real-world datasets. In addition, SparseDOSSA can induce a correlation structure 1)

among pairs of metagenomic features and 2) between metagenomic features and sample

metadata. This option makes SparseDOSSA a powerful aid for evaluating microbiome-

focused statistical methods, which we demonstrate in a series of literature-based bench-

marking applications. SparseDOSSA is open source and available for download from

http://huttenhower.sph.harvard.edu/sparsedossa.

3.2 Methods

The SparseDOSSA generative model has three main components: 1) estimation of model

parameters for a null feature matrix, 2) generation of the null feature matrix, and 3) spik-

ing associations into the null feature matrix. Below, we introduce the terminology used

throughout the remainder of this section, and then describe these methodological steps in

detail. A feature matrix with I microbial community features (represented as rows) and

J biological samples (represented as columns) is denoted as Y and each of its entries take
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an integer (count-like) value; i.e. Yi,j ∈ N. The row corresponding to feature i is repre-

sented as Yi; similarly, the column corresponding to biological sample j is as Yj . A null

feature matrix Y(0) is defined as a feature matrix that lacks statistically significant cor-

relation structure among its component features and (optionally) with a given metadata

matrix. A metadata matrix is a feature matrix with J columns (corresponding to the J

biological samples from the null matrix) and K rows corresponding to metadata features;

metadata features may be continuously valued or discrete. A final spiked feature matrix

Y(1) is generated by inducing correlation structure among the rows of the null matrix or

between rows of the null matrix and metadata features.

3.2.1 Model for the null feature matrix

We employ a two-layer hierarchical model to capture the general patterns in microbial

community measurements. As a result, the null feature matrix can be simulated by this

model as it guarantees independence between microbiome features and between micro-

biome features and sample metadata. The model is specified as following

µi
iid∼ Lognormal(m0, s

2
0)

Y
(0)
i,j

iid∼ (1− pi)
⌊
Lognormal(µi, σ2

i )
⌋

+ piδ0.

Here µi is the parameter for the average abundance of feature i, whose distribution is

determined by the hyperparameters m0 and s0. The distribution of Y (0)
i,j is assumed to be

a mixture of a lognormal and a point mass at zero with mixture probabilty pi. We further

assume σi and pi are both functions of µi:

log(σi) = β0 + β1 log(µi)

logit(pi) = β′0 + β′1 log(µi).

In this model, the first layer controls the distribution of the means of all features. The

second layer controls the distribution of abundances of a given feature across samples.

Based on observations from microbial community sequencing data, we adopted a log-

normal distribution for the first layer and a zero-inflated lognormal distribution for the
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second layer. The lognormal distribution captures the high dynamic range of micro-

bial community and can be served as a computationally efficient approximation to the

negative-binomial model when zero-inflation in added. Note the negative-binomial dis-

tribution is widely accepted for counts data in genomic studies (Anders and Huber, 2010;

Robinson et al., 2010). The zero-inflated flavor of this distribution helps to distinguish two

biologically important interpretations of a zero measurement: 1) a feature that is truly ab-

sent versus 2) a feature that is present, but with abundance below the limit of detection

(i.e. insufficient to produce a count of at least 1). By visualizing the relationship of log-

transformed marginal mean and marginal standard deviation of species abundances, we

considered a simple linear model is sufficient. This assumption is further supported by

formal tests on three real datasets. A similar goodness-of-fit test is performed for the logit

model for the relationship between marginal sparsity and marginal mean abundance and

the results supported the choice. The model specification is also visualized as a plate

graph in Figure 3.1.

i
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p
)0, s0m(LN∼i.i.diµ

)iµlog(1β+0β) =iσlog(

)iµlog(1
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(0)

Y

�)i, σiµ(LN�)i
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(0)

Y

m0, s0: parameters of distribution of µi

µi: mean parameter of ith feature
σi: standard deviation parameter of ith feature
p
(0)
i : sparsity parameter of ith feature
β: parameters linking σi to µi

β′: parameters linking p
(0)
i to µi

Y
(0)
i,j : counts for feature i in sample j

N,M : number of samples and features

Figure 3.1: SparseDOSSA provides a generative hierarchical Bayesian model for mi-
crobial community taxonomic profiles. Individual microbial features are assumed to be
drawn from a zero-inflated lognormal distribution with marginal mean µi and standard
deviation σi with feature-specific sparsity (i.e. expected fraction of zeros) pi. µi also fol-
lows log-normal distribution with parameter m0 and s0. σi and pi are determined by
µi through parameters β and β′. Rectangles denote replication of the model, i.e. plate
structure, with the number of the replication labeled at the bottom-right corner.
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3.2.2 Calibration on real microbial community measurements

Our goal is to simulate realistic microbial community count-based abundance data, simi-

lar to those typically derived from marker gene-based surveys. To that end, we calibrate

the parameters of the model described in the previous section by fitting to real micro-

bial community datasets (referred to as template datasets). We have implemented two

methods to perform the fitting: a naive stepwise maximum likelihood estimation (MLE)

method and a fully Bayesian method. The nave method estimates µi, σi, pi using MLE

based only upon observations of individual feature i (see Figure 3.1 for more details). It is

only used for large datasets with many samples. Specifically, the method can only achieve

reasonable performance when the total number of reads per sample is much larger than

the number of OTUs and the OTUs are grouped to genus or higher taxonomic levels. β,β′

are then estimated using linear regression and logistic regression with estimated σi and pi

as responses and µi as covariate. The hyperparameters m0 and s0 are directly estimated

by fitting the density function of lognormal distribution to the collection of all estimated

µi. The detailed steps are listed below:

1. Calculate the marginal means and standard deviations of log-transformed non-zero

counts for each feature (µ̂i, σ̂i) and the fraction of zeros of each feature (p̂i) directly

from the data. Denote the vectors formed by feature-specific µ̂i, σ̂i, and p̂i values as

µ̂, σ̂ and p̂.

2. Fit a log-normal distribution on µ̂ to obtain the estimates of the mean and standard

deviation parameters (m̂0 and ŝ0) for the distribution of feature-specific marginal

mean parameters.

3. Perform a linear regression of σ̂ on log(µ̂) to obtain the ordinary least square (OLS)

estimates of regression coefficients β̂.

4. Perform a logistic regression of p̂ on log(µ̂) to obtain the OLS estimates of regression

coefficients β̂′.

The alternative, fully Bayesian method is performed using RStan (Carpenter et al., 2016)

and this is the default fitting procedure for the SparseDOSSA model. We assume a
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MVN(0, I2×2) prior for β and β′ and a non-informative prior on m0 and s0. RStan im-

plements a no-U-turn Hamiltonian Monte Carlo Markov Chain algorithm to sample from

the posterior distribution and is highly efficient for hierarchical models (Hoffman and

Gelman, 2014). We run three parallel chains with 5,000 total iterations and a burn-in pe-

riod of 1,000 iterations. The convergence of the HMC algorithm is examined first by the

traceplots and then by the Rhat statistics (Gelman and Rubin, 1992a). We conclude the

convergence is achieved when the traceplots of the three parallel chains mix well and the

Rhat statistics is smaller than 1.1. The final estimates of the parameters are taken as the

means of respective posterior medians over three parallel chains. We preserve the full set

of posterior samples to estimate the posterior predictive distribution of the data.

3.2.3 Validation datasets

To validate SparseDOSSA’s model for null matrices, we explored microbiome data from

two human body sites (stool and vagina) using shotgun metagenomes downloaded from

the HMP DACC (http://hmpdacc.org) and taxonomically profiled using MetaPhlAn2

v2.5.0 (Truong et al., 2015), plus one additional published dataset from patients with in-

flammatory bowel disease [the PRISM dataset (Morgan et al., 2012c)]. HMP species were

summarized at the genus level, resulting in 553 stool profiles spanning 312 genera and

234 vaginal samples with 156 genera. The PRISM dataset contained 250 samples and 158

genera (after summarizing OTUs).

When comparing real and simulated samples, it was necessary to pair real microbial fea-

tures (i.e. taxa, genera, or OTUs) with simulated features (which do not have any intrinsic

taxonomy). To do this, we matched the ranks of the real and simulated features’ marginal

means: the real taxon with the ith largest marginal mean was paired with the simulated

feature with the ith largest marginal mean. To validate this pairing in e.g. Figure 3.2(b),

we split the real dataset into training and testing sets containing equal numbers of sam-

ples, and produced a new synthetic dataset fit to the training data only. We applied the

pairing scheme for both the synthetic dataset and the testing set. We then jointly ordi-

nated all three datasets. As expected, the small region of deviation occurred only in the

deviated region, while the synthetic and (independent) validation samples showed ex-
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hibited closer agreement.

3.2.4 Generating null matrices

Null feature matrix generation. If using the naive fitting method, we set the values of

the parameters at their estimated values. If using the Bayesian fitting method, we take

a random draw of all model parameters from the estimated posterior distribution. Once

a set of parameter values is established, we follow the generative process defined by the

hierarchical model in Figure 3.1 to generate the null feature matrix.

Metadata matrix generation. To generate the metadata matrix X with K metadata fea-

tures, half of the K features are set as continuous and half as categorical. For the con-

tinuous case where k ∈ {1, . . . , bK/2c}, we draw Xk,j
iid∼ N(0, 1) for j = 1, . . . , J . For

the discrete case where p ∈ {bK/2c+ 1, . . . , K}, we define metadata features as quadrant

variables and draw Xk,j
iid∼ Multinomial(1,Θ), where Θ is set as (0.25,0.25,0.25,0.25). This

probability vector can be changed by user.

3.2.5 Building association patterns

One run of SparseDOSSA can only produce a dataset with either feature-feature correla-

tion or feature-metadata correlation, but not both. We followed this convention to accom-

modate the fact that most of the statistical tools developed in microbiome analysis only

focus on one of the correlation structures.

Feature-feature correlation. Correlation structure between features of the is introduced

by modifying the null feature matrix generation algorithm. Specifically, assume the cor-

relation matrix between a set of Mc features is denoted by Sc, the mean parameters µi

for these Mc features will be simulated using a multivariate lognormal distribution with

mean parameter m01Mc and covariance matrix s2
0Sc. The rest of the µi’s will be simulated

independently from Lognormal(m0, s
2
0). Matrix Sc is user-specified.

Feature-metadata correlation. Introduction of correlation structure between features and

metadata is done by additively spiking in signal from the metadata features into the data

(microbial) features. We carry out a standardization procedure for both features and meta-

data to ensure the counts of the modified feature are not dominated by the values of the
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target metadata but rather distributed similarly to real data. With the exception of sam-

ples with zero reads for the given feature, the standardized abundances of other samples

are added by a linear combination of all correlated standardized metadata. We repeat the

following procedure Mf (user-defined variable) times to introduce Mf modified features:

1. Randomly choose a feature vector Y
(0)
i from the simulated null matrix and pick Kf

metadata without replacement.

2. For each of the Kf metadata, calculate the marginal mean µ
(k)
X and standard devia-

tion σ(k)
X .

3. Calculate the mean µ
(i)
Y and standard deviation µ

(i)
Y of the non-zero samples from

the chosen feature vector Y
(0)
i . 4. For the non-zero samples of vector Yi, set

Y
(1)
i,j =

⌊
(Y

(0)
i,j + φ

∑
k ωk,i,j)/(Kfφ+ 1)

⌋
, where ωk,i,j = (Xk,j − µ

(k)
X )σ

(i)
Y /σ

(k)
X + µ

(k)
Y .

The index k is iterated over all covariates generated by Kc selected metadata, where

for categorical metadata, multiple dummy variables will be included and the con-

stant φ is a real-valued strength parameter. The zero-read samples of vector Yi are

unchanged.

3.3 Results

We developed SparseDOSSA as a hierarchical Bayesian model capable of both describ-

ing existing metagenomic sequencing data using a small number of parameters an-

donce fitsimulating new raw (count-based) taxonomic profiles that recapitulate real-

world datasets (with optional spiked-in correlation structure; Figure 3.1). We evaluated

two approaches for fitting this model: a fully Bayesian approach and a nave empirical ap-

proach (see Methods). We validated SparseDOSSA’s performance under the two model-

fitting schemes by comparing feature- and sample-level ecological properties between

simulated and real datasets. Finally, we demonstrated the method’s utility as a statistical

benchmarking tool in applications involving microbial biomarker discovery.

64



3.3.1 SparseDOSSA accurately models global microbial abundance
patterns

We first assessed the degree to which SparseDOSSA’s fitted two-layer model (Figure 3.1)

captured the marginal variation of microbial community taxonomic profiling data across

simulated microbial features. Specifically, we focused on a real-world dataset consisting

of 158 microbial genera quantified across 250 human gut microbiome samples derived

from patients with Inflammatory Bowel Disease [the “PRISM” dataset (Morgan et al.,

2012c)]. Using SparseDOSSA, we fit two models to this dataset: one using a fully Bayesian

approach and a second using a nave empirical approach. Each model was then used to

simulate a synthetic dataset with the same dimensions as the PRISM dataset (158 features

in 250 samples). Subsequent comparisons of the real and simulated datasets serve to both

benchmark the appropriateness of SparseDOSSA’s underlying hierarchical model, as well

as to compare the relative performance of the two model-fitting methods.

Rank-average abundance of microbial taxa is frequently applied as a quantitative de-

scription of microbial community structure (Börnigen et al., 2013); hence, to be useful,

a model fitted to real metagenomic data should produce simulated communities with

rank-abundance distributions similar to those of the template community. Indeed, we

observed strong agreement in rank-average abundance for the real versus SparseDOSSA-

simulated PRISM datasets, as inferred from a high degree of overlap between the esti-

mated trends [Figure 3.2(a)]. Furthermore, the 95% point-wise posterior credible interval

given by fully Bayesian fitting of the same model contains both curves, with the Bayesian

fitting being a more comprehensive but computationally expensive approach (see Meth-

ods). This credible interval suggests that the model SparseDOSSA assumed accurately

reproduces the marginal distribution of microbe-specific abundances of a real microbial

community. Moreover, the simulated data from the nave method agree with the pos-

terior predictive results from the full Bayesian method, suggesting that the nave fitting

approach is an accurate and efficient approximation of the fully Bayesian method. The

minor differences between the two rank-abundance distributions lie largely in the left

tail of the distributions (i.e. among rare, low-abundance organisms that are likely to be
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stochastically sampled even during the original biological sampling process). We ob-

served similar patterns of relative performance when fitting on two additional real-world

template datasets: human gut and vaginal metagenomes sampled during the Human Mi-

crobiome Project (HMP) (Turnbaugh et al., 2007) (Figure A.7). These results speak to the

generality of SparseDOSSA’s underlying model, as well as the effectiveness of the nave

fitting approach.

We further evaluated SparseDOSSA’s ability to recapitulate population-level patterns of

ecological similarity (beta diversity) between samples [Figure 3.2(b)]. We generated a

synthetic microbiome dataset by fitting SparseDOSSA to a template dataset of 234 HMP

vaginal samples using the nave fitting method and the Bayesian method. The vaginal mi-

crobiome is known to have a highly structured ecological ordination configuration (Ravel

et al., 2011b). We choose to compare with this dataset since it is visually more clear to

check if the simulated data produces the same ordination configuration. In order to com-

pare real and simulated samples required first aligning the real and simulated features

between the datasets, which we accomplished by comparing the ranks of the real and

simulated features’ marginal means (i.e. the real taxon with the ith largest marginal mean

was paired with the simulated feature with the ith largest marginal mean). Joint ordina-

tion of the real and simulated datasets revealed similar structural patterns ([Figure 3.2(b)],

suggesting that, in addition to generating synthetic microbiome datasets with realistic

feature-level behavior, SparseDOSSA’s model also captures population-level structural

phenomena among samples.

3.3.2 Modeling correlation structure between taxonomic features and
sample metadata

When used as a model for simulating realistic microbial community data, an important

feature of SparseDOSSA is the ability to impose known correlations between simulated

microbial features and sample metadata. This is done by first capturing the overall di-

versity pattern of a community and then subsequently inducing the artificial correlations.

Our hierarchical model allows the introduction of associations between simulated micro-

bial features and 1) categorical sample properties (e.g. health/disease status or soil type)
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and/or 2) continuous sample properties (e.g. subject BMI or soil pH). This is accom-

plished by adding a linear combination of associated metadata values to the raw values

of a target feature (see Methods).

We verified SparseDOSSA’s ability to include detectable categorical feature-metadata as-

sociations in its simulated output by artificially associating nine randomly selected fea-

tures with a binary sample property, focusing on the previously described PRSIM dataset

as a training template. For the convenience of visualization, we plot the difference in

average relative abundance across all samples between the two levels of the binary meta-

datum [Figure 3.3(a)]. The nine (true positive) synthetic associations are detected among

the 17 features of greatest effect size (as measured by the standardized by the overall

standard deviation). Notably, for each spiked-in feature, the approximated 95% confi-

dence interval for the difference in means does not cross zero, implying a statistically

significant effect size (p-value < 0.05). We also observed several false positives, which we

attribute not to the SparseDOSSA model but rather the known effects of compositionality

(i.e. relative abundance normalization) in ecological data (Pearson, 1896).

Simulated associations involving continuous sample properties were similarly successful

[Figure 3.3(b)]. Starting from a synthetic dataset trained on the PRISM dataset, one fea-

ture was modified to be correlated with a randomly generated continuous sample meta-

datum. By design, SparseDOSSA only manipulates samples with non-zero counts when

creating artificial correlation patterns, thus correctly preserving phenotypic associations

in a zero-inflated manner. This is useful as zero-inflation reflects the sparsity of real mi-

crobiome datasets. Statistical analysis algorithms that fail to capture this behavior will

have substantially lower statistical power in detecting associations.

3.3.3 Simulating controlled correlation structure among modeled mi-
crobial features

In addition to modeling associations between microbial features and sample properties

(metadata), SparseDOSSA provides a way to model ecological associations among micro-

bial features. In order to validate synthetic manipulation of feature-feature associations

using our hierarchical model, we produced a synthetic dataset trained on the real-world
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(b) Correlation of one feature into which an association to a continuously varied sample
metadatum has been spiked (Y-axis) with that metadatums value (X-axis).

250-sample PRISM dataset. Notably, the PRISM dataset includes several strong correla-

tions among its component features [absolute Pearson’s correlation larger than 0.5; Figure

3.4(a), above the diagonal]. We randomly selected 50 synthetic features and verified that,

among the raw synthetic data, no two were strongly correlated [Figure 3.4(a), below the

diagonal]. Next, we targeted ten random pairs of simulated microbial features and intro-

duced synthetic positive correlations between these pairs [Figure 3.4(b), above the diag-

onal]. The pattern of measured correlation among the modified synthetic data was con-

cordant with the intended correlation structure [Figure 3.4(b), below the diagonal], with

background association levels similar to those observed in the template PRISM dataset.

These results support SparseDOSSA’s ability to induce correlation structure within syn-

thetic microbiome datasets: a useful feature for evaluating statistical approaches to re-

constructing microbial ecological interaction networks (Faust et al., 2012b; Friedman and

Alm, 2012; Fang et al., 2015).

69



Null Synthetic Data

P
R

IS
M

 D
at

as
et

Ta
rg

et
 o

f S
pi

ke
d 

S
yn

th
et

ic
 D

at
a

Spiked Synthetic Data

(a) (b)Feature-feature correlations:
real data versus synthetic null

Feature-feature correlations:
Synthetic spike-in versus target

0 0.2 0.4 0.6 0.8 1
Pearson Correlation

Figure 3.4: Simulating correlation structure among microbial features. (a) The pairwise
(absolute) Pearson correlations based on raw counts between microbial features in the
PRISM cohort (above the diagonal) and in the SparseDOSSA fit to this dataset (below the
diagonal). (b) Pairs of features that are targeted to be correlated with each other (above
the diagonal) and pairwise Pearson correlations in the resulting modified dataset (below
the diagonal). Spiked-in correlations between features were constrained to have Pearsons
correlation larger than 0.1.
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3.3.4 SparseDOSSA accurately reproduces quantitative microbial com-
munity analysis results

Finally, we demonstrated that taxonomic count data simulated with SparseDOSSA can

be used to recapitulate published statistical analyses based on real data. Specifically,

we focused on Paulson et al.’s 2013 demonstration of the cumulative-sum scaling (CSS)

technique for normalizing differences in sequencing depth across samples upstream of

differential feature abundance testing (Paulson et al., 2013b). Paulson et al. compared

the taxonomic composition of mouse microbiomes adapted to high- versus low-fat diets

(Turnbaugh et al., 2009b) and found that their CSS technique identified a greater separa-

tion between the two diet groups than was observed using the more common total-sum

scaling (TSS) technique.

We trained a SparseDOSSA model on the same raw taxonomic count data from mice

used in the Paulson et al. study (Turnbaugh et al., 2009b), which consisted of 139 samples

and 10,172 operational taxonomic units (OTUs). We collapsed OTUs into 484 genus-level

taxonomic features and used this reduced dataset as our simulation template. To simu-

late the effects of adaption to two diet types, we generated a binary sample metadatum

that divided the samples into two groups (Group 1 and Group 2) and then induced a

correlation between this property and 10% of the 484 simulated features. We then re-

peated the analyses of the Paulson et al. study using our simulated dataset (Figure 3.5).

First, we performed multi-dimensional scaling (MDS) to assess visual separation between

Group 1 and Group 2 samples after normalizing for differences in sequencing depth us-

ing four different techniques [analogous to Figure 1(a-d) in (Paulson et al., 2013b)]: CSS

[Figure 3.5(a)], size-factor normalization [as implemented in DESeq (Anders and Huber,

2010); Figure 3.5(b)], trimmed mean of M-values (TMM) normalization [as implemented

in edgeR (Robinson et al., 2010); Figure 3.5(c)], and TSS [Figure 3.5(d)]. Under each nor-

malization scheme, SparseDOSSA’s simulated data exhibited similar ordination structure

to that observed among the real (template) data in the Paulson et al. study.

In addition to comparing the real vs. simulated sample separation in the context of unsu-

pervised ordination, we also applied supervised learning techniques to assess whether
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differentially abundant features could accurately distinguished Group 1 and Group 2

samples [Figure 3.5(e), analogous to Figure 1(e) in (Paulson et al., 2013b)]. Specifically,

we trained a sparse logistic classifier on the simulated data following application of each

of the four normalization methods (CSS, DESeq, TMM, and TSS). We then calculated the

leave-one-out odds ratio of belonging to Group 2 versus Group 1 for all samples across

normalization methods. Our findings based on simulated data mirrored those of the

original analysis based on the mouse samples: namely that CSS and TSS lead to nearly

the same classification power, while CSS outperforms the DESeq and TMM normaliza-

tion methods. Collectively, the results of these supervised and unsupervised validation

experiments demonstrate that SparseDOSSA’s model-simulated data can be used to reca-

pitulate results of statistical analyses originally based on real sequencing data.

3.4 Discussion

We have developed a hierarchical Bayesian model, implemented in the R package Sparse-

DOSSA, for fitting and/or simulating new microbial community taxonomic count data.

The model accurately captures the fundamental characteristics of real microbial commu-

nities, including the distribution of counts or relative abundance across community mem-

bers and the diversity of microbial composition across study populations. In addition, to

support quantitative benchmarking of new methods, SparseDOSSA is able to reliably in-

duce user-specified correlation structures involving feature-metadata or feature-feature

associations in simulated datasets. The underlying generative model thus efficiently and

effectively summarizes real microbial communities and recapitulates their latent structure

in a statistically viable and principled manner.

The SparseDOSSA model assumes that the characteristics of a template (real) micro-

bial community are well-captured by the baseline null distributions. More specifically,

this requires assuming 1) that features are independent and 2) that population substruc-

ture among samples and intrinsic associations among features are absent in the template

dataset (i.e. before optional spike-in of such structure). The former assumption will be

true for most ecologically diverse communities, which observationally follow power-law
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Figure 3.5: SparseDOSSA reproduces biological diversity patterns among simulated
microbial communities and permits comparative evaluation of statistical analysis tech-
niques. MDS analysis based on (a) cumulative sum scaling (CSS), (b) DESeq size factor
normalization, (c) edgeRs trimmed mean of M-values (TMM), and (d) total sum scaling
(TSS). (e) Linear discriminant analysis (LDA) posterior probability log-ratios for a syn-
thetic binary class label (Group 1 vs. Group 2) based on a sparse logistic classifier. Each
box corresponds to the distribution of leave-one-out posterior probability of assignment
to Group 2 following different upstream normalization methods.
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or log-normal behaviors (with a few abundant organisms and a long tail representing the

increasingly rare biosphere). The latter assumption holds reasonably well even when any

correlation structure originally present is weak or rare relative to overall microbial vari-

ance or affects only a small proportion of features. Inasmuch as the read count of each

feature depends on its own observed mean, variance, and sparsity, SparseDOSSA’s simu-

lated data will replicate the marginal distribution of the originating template community.

This guarantee on the null distribution of subsequently generated communities allows

correlation structure (with samples or among features) to be optionally added in isolation

for evaluation of microbial community analysis methods.

Our implementation of SparseDOSSA also provides two methods for fitting the hierar-

chical model to underlying data: one fully Bayesian method and a second nave method

based on capturing parameters’ simple stepwise maximum likelihoods. Since the nave

method is far more computationally efficient in practice, we suggest using it as the de-

fault, and we have shown that this yields model fits (and thus simulated data) consistent

with the posteriors of the fully Bayesian approach (e.g. Figure 3.2). Note that this does

not, however, mean that the actual estimates of the parameters given by the nave method

are also comparable to those given by the fully Bayesian approach. We assume that most

users’ interests will lie in simulating realistic taxonomic profiles based on observed data,

in which case consistency of the predictive distribution is sufficient to guarantee the va-

lidity of the nave method. For users interested instead in dimensionality reduction of

a microbial environment using the model’s parameterization, we suggest applying the

more computationally intensive but accurate Bayesian fit instead.

One limitation of our current probabilistic generative model is that we do not explicitly

consider the effect of read depth. In the current model, variation in read depth is cap-

tured as a consequence of variability in feature-specific marginal distributions. In reality,

the sampling scheme of microbial marker gene survey data suggests that variation in read

depth is caused by an independent process and in fact contributes to the variability of the

microbial abundances within a given feature across samples. One potential way to incor-

porate this would be to assume a sample-specific scaling factor that is dependent on read

depth. This would then modify the actual mean parameter of the log-normal distribution
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for each feature within a given sample. In pilot studies of such a modified model, the

resulting fits did not show significant improvement over SparseDOSSA’s default model

(which lacks the explicit scaling factor for read depth; Figure A.7 and A.9).

Another property of real datasets that we do not explicitly model is the full extent of

sparsity of features (i.e. microbes) with high estimated marginal means. That is, in some

ecologies, a subset of microbes occur that are abundant in a few samples but near- or

completely absent in most samples. Such behavior is evident in two HMP datasets, for

example (Figure A.10). Our model assumes a monotone relationship between sparsity

and marginal mean, which is insufficient to describe this bimodality of some extreme fea-

tures. By fitting a simple logistic regression, we potentially over-estimate such features’

sparsities. This may be the reason that the tails of simulated rank abundances for some

environments (e.g. Figure 3.1 and A.7) are uniformly slightly sparser than the underlying

data. Use of a mixture model in the sparsity structure for future versions of SparseDOS-

SAwhere the sparsity is derived either from an extreme value or is determined by the

marginal meansmay resolve this issue.

Apart from limitations in capturing the general structure of microbiome data, our way to

introduce correlation structures is also restrictive. The linear correlations we considered

serve only as a simple start point. We would like to explore the possibility of generating

more flexible correlation structure in our future work. For the correlation between meta-

data and microbiomes, instead of modifying the abundance of OTUs in the null commu-

nity, we can explicitly make the marginal means of OTUs to be functions of chosen meta-

data, which is strictly compatible with the standard assumption in (generalized) linear

model. For the correlation between species, we can consider a multivariate log-normal

distribution for the abundance of all species in each sample. By specifying the covari-

ance matrix of the multivariate log-normal distribution, we can construct a large class of

dependency structure between species. An even more flexible method to introduce cor-

relation between species is through copula (Weiss et al., 2016), which can be applied to

arbitrary pre-specified marginal distributions of species.

In practice, we expect SparseDOSSA to primarily be useful as a model for benchmark-

ing statistical methods that assess correlation structure in microbial taxonomic profiles. It
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can potentially also extend such systems by providing a set of marginal parameters with

lower dimensionality and potentially reduced noise relative to raw data, allowing sample

metadata covariates to be more accurately tested for association with microbial features.

In addition to the areas discussed above, future expansions of the model might include

longitudinal structure or other interdependencies among samples (i.e. population sub-

structure), as well as diversifying the application areas for the model (e.g. for power cal-

culations during microbial community study design). As currently implemented, Sparse-

DOSSA provides an end-to-end system that enables reproducible and efficient validation

of quantitative methods applied to microbial community taxonomic profiles, allowing

fair comparisons to be made between different methods or studies to establish a consis-

tent baseline for statistical validation.
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Appendix

A.1 Supplementary materials of Chapter 1

A.1.1 Approximating a Poisson Process using Beta random variables

Consider approximating a Poisson process on (0, 1) with intensity ν(σ) = ασ−1(1− σ)−1/2

by a finite counting process formed by n iid samples drawn from Beta(εn, 1/2− εn) where

εn < 1/2. Denote the Poisson process as N(t) and the approximating process as N ′n(t), we

first calculate the probability of having m points in interval (δ, t], where m ≤ n, t < 1 and

0 < δ � 1,

P [N((δ, t]) = m] =

[∫ t
δ
ασ−1(1− σ)−1/2dσ

]m
m!

exp

(
−
∫ t

δ

ασ−1(1− σ)−1/2dσ

)
,

P [N ′n((δ, t]) = m] =

(
n
m

)(
1

Beta(εn, 1/2− εn)

∫ t

δ

σ−1+εn(1− σ)−1/2−εndσ

)m
×(

1− 1

Beta(εn, 1/2− εn)

∫ t

δ

σ−1+εn(1− σ)−1/2−εndσ

)n−m
.

The moment generating functions (MGFs) of N((δ, t]) and N ′n((δ, t]) are

MN(λ) = exp

[(
eλ − 1

) ∫ t

δ

ασ−1(1− σ)−1/2dσ

]
,

MN ′
n
(λ) =

[
eλ − 1

Beta(εn, 1/2− εn)

∫ t

δ

σ−1+εn(1− σ)−1/2−εndσ + 1

]n
.

These two MGFs will be the same asymptotically if

lim
n→∞

n

Beta(εn, 1/2− εn)

∫ t

δ

σ−1+εn(1− σ)−1/2−εndσ = α

∫ t

δ

σ−1(1− σ)−1/2dσ. (A.1)

This will be satisfied when εn = α/n. Indeed, under this assumption, we have

lim
n→∞

n (σ/(1− σ))εn

Beta(εn, 1/2− εn)
= α.
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In addition, since when n is large enough, the map n 7→ n(σ/(1−σ))εn

Beta(εn,1/2−εn)
is a non-increasing

function, by Lebesgue’s monotone convergence theorem, we can establish the conver-

gence of the left hand side of (A.1) to the right hand side. Using this result, we can prove

the weak convergence of the finite dimension distribution: (N ′(δ, t1], . . . , N ′(δ, tn])
d→

(N(δ, t1], . . . , N(δ, tn]). This follows by a direct application of the multinomial theorem.

Now we need to verify the tightness condition, this is automatically satisfied as Nn(t)′ is

a càdlàg process (Daley and Vere-Jones, 1988) (Theorem 11.1. VII and Proposition 11.1.

VIII, iv, Volume 2). Therefore we prove the weak convergence of the process N ′n(t) to the

Poisson process N(t) when n→∞ and εn = α/n.

A.1.2 Proof of Proposition 1.1

We use the notation P j(·) =
∑
i I(Zi∈·)σiQ+2

i,j∑
i σiQ

+2
i,j

where Qi,j = 〈Xi,Y
j〉. Denote

((Qi,j, Qi,j′), i ≥ 1) as Q. The joint distribution of (Qi,j, Qi,j′) is a multivariate normal with

mean 0 and covariance φ(j, j′), and the vectors (Qk,j, Qk,j′), k = 1, 2, . . . , are independent.

We derive an expression for the covariance

cov[P j(A), P j′(A)] =E[E[P j(A)P j′(A)|σ,Q]]− E[P j(A)]E[P j′(A)]

=(G(A)−G2(A))E

[ ∑
i σ

2
iQ

+2
i,jQ

+2
i,j′∑

i σiQ
+2
i,j

∑
k σkQ

+2
k,j′

]
.

Similarly, we can get the expression for the variance,

var[P j(A)] = (G(A)−G2(A))E

[ ∑
i σ

2
iQ

+4
i,j∑

i σiQ
+2
i,j

∑
k σkQ

+2
k,j

]
.

It follows that

corr[P j(A), P j′(A)] = E

[ ∑
i σ

2
iQ

+2
i,jQ

+2
i,j′∑

i σiQ
+2
i,j

∑
k σkQ

+2
k,j′

]
×
(
E

[ ∑
i σ

2
iQ

+4
i,j∑

i σiQ
+2
i,j

∑
k σkQ

+2
k,j

])−1

.

Therefore the correlation is independent of the set A.

A.1.3 Proof of Proposition 1.2

We follow the framework of proofs for Theorem 1 and Theorem 3 in Barrientos et al.

(2012). Let P(Z) be the set of all Borel probability measures defined on (Z,F) and P(Z)J
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the product space of J P(Z). Assume Θ ⊂ Z is the support ofG. To show the prior assigns

strictly positive probability to the neighborhood in Proposition 2, it is sufficient to show

such neighborhood contains certain subset-neighborhoods with positive probability. As

in Barrientos et al. (2012), we consider the subset-neighborhoods U :

U(G1, . . . , GJ , {Ai,j}, ε∗) =
J∏
i=1

{Fi ∈ P(Θ) : |Fi(Ai,j)−Gi(Ai,j)| < ε∗, j = 1, . . . ,mi},

where Gi is a probability measure absolutely continuous w.r.t. G for i = 1, . . . , J ,

Ai,1, . . . , Ai,mi ⊂ Θ are measurable sets with Gi-null boundary and ε∗ > 0. The existence

of such subset-neighborhoods is proved in Barrientos et al. (2012). We then define sets

Bν1,1...νmJ,J
for each νi,j ∈ {0, 1} as

Bν1,1...νmJ,J
=

J⋂
i=1

mi⋂
j=1

A
νi,j
i,j ,

where A1
i,j = Ai,j and A0

i,j = Aci,j . Set

Jν = {ν1,1 . . . νmJ ,J : G(Bν1,1,...,νmJ,J
) > 0},

and letM be a bijective mapping from Jν to {0, . . . , k}where k = |Jν |−1. We can simplify

the notation using AM(ν) = Bν for every ν ∈ Jν . Define a vector si = (wi,0, . . . , wi,k) =

(Qi(A0), . . . , Qi(Ak)) that belongs to the k−simplex ∆k. Set

B(si, ε) = {(w0, . . . , wk) ∈ ∆k : |Qi(Aj)− wj| < ε, j = 0, . . . , k},

where ε = 2−
∑J
i=1miε∗. The derivation in Barrientos et al. (2012) suggests a sufficient

condition for assigning positive mass to U(G1, . . . , GJ , {Ai,j}, ε∗) is

Π([P i(A0), . . . , P i(Ak)] ∈ B(si, ε), i = 1, . . . , J) > 0. (A.2)

Here Π is the prior.

Now consider the following conditions

C.1 wi,l − ε0 < σl+1Q
+2
l+1,i < wi,l + ε0 for i = 1, . . . , J and l = 0, . . . , k.

C.2 0 <
∑

l>k+1 σlQ
+2
l,i < ε0.
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C.3 Zl+1 ∈ Al for l = 0, . . . , k.

ε0 in the above conditions satisfies the following inequality

w(i,l) − ε0
1 + (k + 2)ε0

≥ w(i,l) − ε
w(i,l) + 2ε0

1− (k + 1)ε0
≤ w(i,l) + ε

for i = 1, . . . , J and l = 0, . . . , k. This system of inequalities can be satisfied when k is large

enough. If conditions (C.1) to (C.3) hold, it follows that [P i(A0), . . . , P i(Ak)] ∈ B(si, ε) for

i = 1, . . . , J . Therefore, we have

Π([P i(A0), . . . , P i(Ak)] ∈ B(si, ε), i = 1, . . . , J) ≥
k∏
l=0

Π(w(i,l) − ε0 < σl+1Q
+2
l+1,i < w(i,l) + ε0, i = 1, . . . , J)×

Π(
∑
l>k+1

σlQ
+2
l,i < ε0, i = 1, . . . , J)×

k∏
l=0

Π(Zl+1 ∈ Al)× Π(Zl ∈ Z, l = k + 2, . . .).

Since (Ql,1, . . . , Ql,J) are multivariate normal random vectors with strictly positive definite

covariance matrix and σl are always positive, the vector (σl+1Q
+2
l+1,i, i = 1, . . . , J) has full

support on R+J and will assign positive probability to any subset of the space. If follows

that

Π(wi,l − ε0 < σl+1Q
+2
l+1,i < wi,l + ε0, i = 1, . . . , J) > 0 for l = 0, . . . , k.

Using the Gamma process argument, we know
∑

l>k+1 σlQ
+2
l,i is the tail probability mass

for a well-defined Gamma process and thus will always be positive and continuous for

all i. It follows that

Π(
∑
l>k+1

σlQ
+2
l,i < ε0, i = 1, . . . , J) > 0.

Since Z is the topological support of G, it follows that P (Zi+1 ∈ Ai) > 0 and P (Zi ∈ Z) =

1. Combining these facts, we prove that Equation (A.2) holds.
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A.1.4 Total variation bound of Laplace approximate of
p(Qi,j|Qi,−j,σ,T,n)

We consider the class of densities g(x; k, µ, s2)

g(x; k, µ, s2) ∝ I(x ≥ 0)x2kf(x;µ, s2), k ∈ N+

where f(x;µ, s2) is the density function of N(µ, s2). The Laplace approximation

of g(x; k, µ, s2) is written as f(x; µ̂, ŝ2). Here µ̂ = argmaxxg(x; k, µ, s2) and ŝ2 =

− ((∂2 log(g)/∂x2) |µ̂)
−1. We want to calculate the total variation distance between den-

sity f(x; µ̂, ŝ2) and g(x; k, µ, s2), denoted as dTV (f(x; µ̂, ŝ2), g(x; k, µ, s2)).

Define class of functions V (x; k, µ) for k ∈ N+, µ > 0:

V (x; k, µ) =

{
2k
[
log(x/µ)− (x/µ− 1) + 1

2
(x/µ− 1)2

]
x > 0

−∞ x ≤ 0

This function is non-decreasing and when x = µ, V (x; k, µ) = 0, dV/dx = 0 and d2V/dx2 =

0.

It follows that

log g(x; k, µ, s2)− log f(x; µ̂, ŝ2) = V (x; k, µ̂) + a0 + a1x+ a2x
2.

Moreover, since the µ̂ is the mode of both g(x; k, µ, s2) and f(x; µ̂, ŝ2), and the second

derivative of log g(x; k, µ, s2) and log f(x; µ̂, ŝ2) are identical at x = µ̂, we can find that

a1 = a2 = 0. Hence,

log g(x; k, µ, s2)− log f(x; µ̂, ŝ2) = V (x; k, µ̂) + a0

and g(x; k, µ, s2) = exp (V (x; k, µ̂) + a0) f(x; µ̂, ŝ2).

Since V (x; k, µ̂) is monotone increasing, the total variation distance between g(x; k, µ, s2)

and f(x; µ̂, ŝ2) can be expressed as

dTV (g(x; k, µ, s2), f(x; µ̂, ŝ2)) =

∫ +∞

x0

[exp (V (x; k, µ̂) + a0)− 1] f(x; µ̂, ŝ2)dx

=

∫ x0

−∞
[1− exp (V (x; k, µ̂) + a0)] f(x; µ̂, ŝ2)dx

where V (x0; k, µ̂) = −a0. If a0 ≤ 0, we have x0 ≥ µ̂ and∫ +∞

x0

[exp (V (x; k, µ̂) + a0)− 1] f(x; µ̂, ŝ2)dx
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≤
∫ +∞

x0

[exp (V (x; k, µ̂))− 1] f(x; µ̂, ŝ2)dx

≤
∫ +∞

µ̂

[exp (V (x; k, µ̂))− 1] f(x; µ̂, ŝ2)dx

Similarly, if a0 ≥ 0, we have∫ x0

−∞
[1− exp (V (x; k, µ̂) + a0)] f(x; µ̂, ŝ2)dx ≤

∫ µ̂

−∞
[1− exp (V (x; k, µ̂))] f(x; µ̂, ŝ2)dx

To summarize, we have

dTV (g(x; k, µ, s2), f(x; µ̂, ŝ2)) ≤ max

(∫ +∞

µ̂

[exp (V (x; k, µ̂))− 1] f(x; µ̂, ŝ2)dx,∫ µ̂

−∞
[1− exp (V (x; k, µ̂))] f(x; µ̂, ŝ2)dx

)
As we have shown in Equation (12) of the main manuscript, ŝ2 =

(
2k
µ̂2

+ C
)−1

, where

C > 0. This suggests that ŝ ≤ µ̂/
√

2k. Therefore

dTV (g(x; k, µ, s2), f(x; µ̂, ŝ2)) ≤ max

(∫ +∞

µ̂

[exp (V (x; k, µ̂))− 1] f(x; µ̂, µ̂/2k)dx,∫ µ̂

−∞
[1− exp (V (x; k, µ̂))] f(x; µ̂, µ̂/2k)dx

)
Since V (x;µ, s2) and f(x;µ, s2) are location-scale families, the above expression can be

made free of µ̂ and thus µ and s2:

dTV (g(x; k, µ, s2), f(x; µ̂, ŝ2)) ≤ max

(∫ +∞

1

[exp (V (x; k, 1))− 1] f(x; 1, 1/2k)dx,∫ 1

−∞
[1− exp (V (x; k, 1))] f(x; 1, 1/2k)dx

) (A.3)

This upper bound on the total variation distance decreases as k increases and it goes to

0 as k → ∞. This suggests the convergence of the approximating normal distribution to

the density family g in total variation sense. We also plot this upper bound as a function

of k to verify the conclusion. It is shown in the supplemental Figure A.1.

A.1.5 Details of self-consistent estimates in Section 3.1

First we estimate σ and then we transform the data ni,j into
√
ni,j/σi. If ni,j is represen-

tative and σ is estimated accurately, we have
√
ni,j/σi = cjQ

+
i,j . If the covariance matrix
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Figure A.1: Upper bound of the total variation distance of Laplace approximation in (12)
to the density in (11) as given in (A.3) when frequency k increases.
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of Qi is Σ, then the covariance matrix of (
√
ni,j/σi, j = 1, . . . , J) will be Σ̃ = ΛΣΛ where

Λ = diag{c1, . . . , cJ}.
It is obvious that (

√
ni,j/σi, j = 1, . . . , J) is MVN and the correlation matrix will be the

same as the induced correlation matrix from Σ. Methods on identifying the covariance

matrix using this truncated dataset are abundant and well-studied. One way to do it is

the EM algorithm. This estimated covariance matrix will by no means to be the same

as Σ, but the induced correlation matrix will be very close to the true correlation matrix

induced by Σ. Hence if our interest is on estimating correlation matrix, we can just treat

(
√
ni,j/σi, j = 1, . . . , J) as the truncated version of the true Qi and proceed.

The EM algorithm should then be derived for the following settings. Let Qi
iid∼

MVN(0,Σ). Instead of observing I independent Qi, we only observe the positive entries

in each Qi and know the rest of the entries are negative. Denote the observed data vector

as Q̃i. We want to estimate Σ from the data Q̃i, i = 1, . . . , I . A standard EM algorithm can

be easily formulated as following:

E-step Get the conditional expectation of full data log likelihood, given the observed data.

Define two index sets, Ai = {j|Q̃i,j > 0} and Bi = {j|Q̃i,j = 0}. For an arbitrary

index set I, denote QI = (Qi,j|j ∈ I). Denote A = {(i, j)|j ∈ Ai, i = 1, . . . , I} and

B = {(i, j)|j ∈ Bi, i = 1, . . . , I}. The E-step function at t+ 1 iteration is,

L(Σ|Σt) = E

[
−I

2
log |Σ| − 1

2
Tr(Σ−1

∑
i

QiQ
′
i)|Σt, QA = Q̃A, QB < 0

]
.

Notice this expectation is not easy to calculate in general. We use instead Monte

Carlo method to approximate it. We sample K copies of Qi from the conditional

distribution (Qi|QAi = Q̃Ai , QBi < 0) where Qi ∼MVN(0,Σt). The conditional dis-

tribution is a truncated multivariate normal distribution and we use the R package

tmvtnorm (Wilhelm, 2015) to sample from it. If we denote by Q1
i , . . . ,Q

K
i the K

samples of Qi, L can be approximated as

L̂(Σ|Σt) = − 1

K

K∑
k=1

[
Tr(Σ−1

∑
i

Qk
i (Q

k
i )
′)

]
− I

2
log |Σ|.
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M-step We seek to maximize L̂ with respect to Σ. Due to a well-known fact on the maxi-

mum likelihood estimate of covariance matrix of multivariate normal, it is straight-

forward to get

Σt+1 =
1

IK

∑
i,k

Qk
i (Q

k
i )
′.

We applied this algorithm to the simulated datasets generated for Figure 3(a) to estimate

the normalized Gram matrix S. A summary of the RV-coefficients between the estimates

from the above algorithm and the truth is shown in Figure A.2. We also compared the

estimates from this algorithm with those from MCMC simulations in Figure A.2. The

estimates of S from MCMC simulation are always better than those given by the self-

consistent algorithm but both perform very well.
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Figure A.2: (Left) Box-plots compare the distributions of RV-coefficients between esti-
mates from our self-consistent algorithm and between estimates from MCMC simulation
and truth. (Right) Scatter plot to show per simulation comparison of RV coefficients for
the self-consistent algorithm and MCMC sampling. Dashed line indicates where the two
algorithms have identical accuracy.

A.1.6 Standard PCoA for ordination of simulated dataset, Global Pat-
terns dataset and Ravel’s vaginal microbiome dataset

In this section, we include three sets of ordination figures generated using the standard

PCoA method in microbiome studies. We first calculate the dissimilarity matrix of bio-
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logical samples by applying Bray-Curtis dissimilarity metric on the empirical microbial

distributions. We then perform classic Multi-dimensional Scaling (MDS) to ordinate bio-

logical samples based on the dissimilarity matrix. In Figure A.3, we show the PCoA result

for the simulated dataset generated for Figure 3(f). In Figure A.4 and A.5, we illustrate

the PCoA results for the Global Patterns dataset and Ravel’s vaginal microbiome dataset

respectively. To be consistent with the main results, we show the ordination results based

on the first three principal coordinates for the Global Patterns dataset and Ravel’s vaginal

microbiome dataset.
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Figure A.3: PCoA result for the simulated dataset generated for Figure 1.3(f).

A.1.7 Benchmarking the MCMC sampler

In this section, we focus on evaluating the computational performance of our MCMC

sampler. We first consider the computational time of the sampler under different sce-

narios. We then illustrated a convergence diagnosis to check whether the sampler has

reached mixing in the setting of our simulation study in the main manuscript. In addi-

tion, we created two larger datasets to verify the number of iterations needed to reach

mixing will not be compromised if the underlying latent structure remains low dimen-

sional.
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Figure A.4: PCoA results for the Global Patterns dataset. We show the three two-
dimensional representations of the ordination given by the first three principal coordi-
nates.
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Figure A.5: PCoA results for Ravel’s vaginal microbiome dataset. We show the three
two-dimensional representations of the ordination given by the first three principal coor-
dinates.
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Computation time of the MCMC sampler

In Table A.1 we listed the elapsed time in seconds for the MCMC sampler to finish 1, 000

iterations under different scenarios. All the scenarios are run with a single thread on a

MacBook Pro with 2.7GHz Intel Core i5 and 8 GB 1867 MHz DDR3 RAM. In particular,

we evaluated the effect of the number of biological samples (J), the number of species (I),

the dimension of the latent factors (m), and the total counts per biological sample (nj).

Table A.1: Computation time (in seconds) of 1,000 iterations for the MCMC sampler
I = 68 I = 500 I = 1000

m = 5 m = 10 m = 20 m = 5 m = 10 m = 20 m = 5 m = 10 m = 20

J = 22
nj = 103 2.3 2.8 2.4 5.7 5.8 7.0 11.4 10.4 12.6
nj = 104 1.3 1.6 1.9 5.7 5.5 6.4 8.7 8.8 11.3
nj = 105 1.1 1.4 1.5 4.7 3.9 6.3 7.2 8.2 11.5

J = 100
nj = 103 3.6 3.7 5.5 11.5 14.6 17.1 21.8 21.0 30.2
nj = 104 3.3 3.7 5.4 11.5 12.1 20.4 18.1 21.1 29.5
nj = 105 3.4 4.0 5.5 12.3 18.9 17.8 19.2 21.5 31.1

J = 1000
nj = 103 31.4 34.3 49.6 121.2 118.4 152.1 152.1 173.8 251.0
nj = 104 28.2 33.4 53.1 96.3 144.3 159.7 143.7 164.8 254.2
nj = 105 40.1 38.2 52.2 129.1 111.5 138.2 163.2 171.7 246.0

Increasing the total number of reads per biological sample (nj) does not affect the compu-

tation time. On the other hand, there is a weak effect associated with the dimension of the

latent factors (m). In general, the computation time tends to increase withm. The number

of species (I) and the number of biological samples (J) affect the speed of computation

significantly. These results illustrate that the MCMC sampler can finish 50, 000 iterations

for a dataset with 100 samples and 1000 species in less than 20 minutes.

The table illustrates that it is possible to apply our model to microbiome datasets with

comparable numbers of biological samples. It is rare to have datasets with more than a

thousand confidently assigned OTUs (Callahan et al., 2016).

Convergence diagnosis of the MCMC sampler

We evaluate the convergence of the MCMC sampler in the setting of Section 5 (simulation

study). The number of biological samples is fixed at J = 22. We ran three parallel chains

for three scenarios I = 68, I = 500 and I = 1, 000. For each different I , we obtain the
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posterior samples of the first three eigenvalues of the normalized Gram matrix S in all

three chains and use R̂ statistics (Gelman and Rubin, 1992b) to check if the chains reached

mixing. We chose to visualize the eigenvalues of S since in our model S is identifiable.

The results are shown in Figure A.6.
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Figure A.6: Traceplots for the posterior samples of the first three eigenvalues of S. Each
row corresponds to a different I and each column to a different eigenvalue. The R̂ statis-
tics are shown in the title of each figure.

The R̂ statistics are all close to one supporting good MCMC mixing after 20,000 iterations,

so our choice of 50,000 total iterations seems reasonable for providing posterior inference.
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A.2 Supplementary materials of Chapter 2

A.2.1 Proof of Proposition 2.1

Before we prove Proposition 2.1, we want to introduce a lemma that will be used fre-

quently in the proof.

Lemma A.1. Assume Z1,Z2, . . . ,Zn are iid sample from a distribution F (z;β), where β is the

parameter of the distribution. If there exists an estimator β̂(Z1, . . . ,Zn) such that β̂ p→ β when

n→∞, then the distribution of Zi is the same under F (z;β) and F (z;β′) if and only if β = β′.

Proof of Lemma A.1. Ifβ = β′, the distribution of Zi will be identical by definition. Assume

there exist β 6= β′ such that F (z;β) = F (z;β′) for every z. If Z1, . . . ,Zn are iid samples

from F (z;β), by the assumption we have β̂(Z1, . . . ,Zn)→ β. Because F (z;β) = F (z;β′),

we also have β̂(Z1, . . . ,Zn) → β′. Since β 6= β′, this leads to a contraction. Therefore the

distribution of Zi will be the same only if β = β′.

We now consider Proposition 2.1. We know Qi = (Qi,1, . . . , Qi,J)ᵀ is distributed indepen-

dently as MVN(wᵀvi,Σ) conditioning on w = (w1, . . . ,wJ) for i = 1, 2, . . . and wj iid∼ f(·).

Denote Zi = (I(Qi,1 > 0), . . . , I(Qi,J > 0))ᵀ. Let U = diag(Σ
−1/2
1,1 , . . . ,Σ

−1/2
J,J ), the correlation

matrix induced by Σ is written as S = UΣU.

1. Identifiability of vi/‖vi‖. We first want to prove the identifiability of vi/‖vi‖ based on

Lemma A.1. Consider the single observation (Zi1,w
1), the model parameters linked

with it are f(·), Σ1,1 and vi. If we have n iid replicates of (Zi1,w
1) generated from

the model, denoted as (Z1,w
1
1), . . . , (Zn,w

1
n), it is straightforward to see that

P (Zi = zi|w1
i ) = Φ((2zi − 1)vᵀ

iw
1
i /
√

Σ1,1),

where zi ∈ {0, 1}. Based on the standard theory of GLM with probit link, the MLE

v̂i, defined as

v̂i = argmaxv

n∑
i=1

log(Φ((2zi − 1)vᵀw1
i )),

is consistent to vi/
√

Σ1,1. This implies that v̂i/‖v̂i‖ is an consistent estimator of

vi/‖vi‖. Using Lemma A.1, we know that vi/‖vi‖ is identifiable based on the data.
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2. Identifiability of S. Consider the data points (Zi,1,w
1) and (Zi,2,w

2). The joint distri-

bution of Zi,1 and Zi,2 conditioning on w1 and w2 can be written as

P (Zi,1 = z1, Zi,2 = z2|w1,w2) =

∫
A

1

2π
(1− ρ2

1,2)−1/2 exp

(
−1

2
qᵀS−1

1:2q

)
dq,

whereA = (−∞, (2z1−1)viw
1Σ
−1/2
1,1 ]×(−∞, (2z2−1)viw

2Σ
−1/2
2,2 ], ρ1,2 = corr(Qi,1, Qi,2)

and S1:2 =

(
1 ρ1,2

ρ1,2 1

)
.

If two different sets of parameter values {f,Σ, {vi}, J} and {f,Σ′, {v′i}, J} induce

the same joint distribution of (Zi,j,w
j) for j = 1, . . . , J , it follows that the condi-

tional distribution of (Zi,1, Zi,2) given w1,w2 is the same and also the conditional

distribution Zi,1|w1 and Zi,2|w2 remain the same.

We know that P (Zi,1 = z|w1) = Φ((2z − 1)vᵀ
iw

1Σ
−1/2
1,1 ), which is a monotone func-

tion of vᵀ
iw

1Σ
−1/2
1,1 . Therefore if {f,Σ, {vi}, J} and {f,Σ′, {v′i}, J} induce the same

distribution of Zi,1|w1, it is necessary that vᵀ
iw

1Σ
−1/2
1,1 = (v′i)

ᵀw1(Σ′1,1)−1/2. Similarly,

Zi,2|w2 remains the same only if vᵀ
iw

2Σ
−1/2
2,2 = (v′i)

ᵀw2(Σ′2,2)−1/2.

Hence, if the joint conditional distribution Zi,1, Zi,2|w1,w2 remains the same in the

two different sets of parameters, it is necessary that vᵀ
iw

1Σ
−1/2
1,1 = (v′i)

ᵀw1(Σ′1,1)−1/2

and vᵀ
iw

2Σ
−1/2
2,2 = (v′i)

ᵀw2(Σ′2,2)−1/2. Moreover, based on Theorem 3.1 in Ledoux and

Talagrand (2013), it is also necessary that ρ1,2 = ρ′1,2. If we apply this result for every

Zi,j, Zi,j′ |wj,wj′ where j 6= j′, we get that {f,Σ, {vi}, J} and {f,Σ′, {v′i}, J} induce

the same distribution of {Zi,j} only if S = S′, which implies the identifiability of S.

3. Identifiability of Σjj/Σj′j′ . We assume there are n replicates of (Zi,j,w
j, Zi,j′ ,w

j′).

Using the result in 1, it follows that there are two estimators that are consistent

to vi/Σ
1/2
j,j and vi/Σ

1/2
j′,j′ respectively. Therefore there is one consistent estimator of

Σj,j/Σj′,j′ provided that the underlying true vi 6= 0. This suggests the identifiability

of Σj,j/Σj′,j′ based on (Zi,j,w
j, Zi,j′ ,w

j′).

4. Identifiability of vi. Results in 3 suggests if we constrain Σ1,1 = c or
∑J

j=1 Σj,j = c,

each individual Σj,j is also identifiable. Using the result in 1, we can show that vi is

also identifiable.
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5. Identifiability of σi/σi′ . To analyze the identifiability of σi/σi′ , we need to use the

full data {ni,j}i≥1,j≤J . We still proceed under the assumption that ni,j/(σiQ+2
i,j ) = cj .

Consider N iid replicates of (ni,j, ni′,j,w
j), denoted as (nk, n

′
k,w

j
k)k≤N . By model

definition, we know that

nk/n
′
k × I(n′k > 0) =

σi
σi′

Q+2
k

(Q′k)
+2

I(Q′k > 0),

where (Qk, Q
′
k)

ᵀ iid∼ MVN((vᵀ
iw

j
k,v

ᵀ
i′w

j
k)

ᵀ,diag(Σj,j,Σj,j)). By weak law of large

number, we have

1

N

∑
i

nk
n′k

p→ σi
σi′
× E

(
Q+2
k

(Q′k)
+2

I(Q′k > 0)

)
.

This means we can construct a consistent estimator of σi
σi′

based on N replicates

of observed data. By invoking Lemma A.1, we proved that σi/σi′ is identifiable.

Notice the finite first moment of Q+2
k

(Q′
k)+2 I(Q′k > 0) relies on the conclusions for the

ratio between two non-centered Chi-square distributions (Hawkins and Han, 1986).

A.3 Supplementary materials of Chapter 3
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Figure A.7: Distribution of rank relative abundances for simulated data using naive
versus fully Bayesian methods. We show the performance of the model-fitting method
applied in SparseDOSSA for two additional datasets: HMP stool and HMP vaginal sam-
ples.
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Figure A.8: Distribution of rank relative abundances for simulated data using a model
that incorporates read depth. We repeated the experiment shown in Figure 3.2(a) from
the main text using an augmented model trained on the PRISM, HMP stool, and HMP
vaginal datasets.
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depth. We repeated the experiment shown in Figure 3.2(b) from the main text using an
augmented model trained on the PRISM, HMP stool, and HMP vaginal datasets.
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Figure A.10: Relationship between observed feature-specific sparsity and mean abun-
dance. We plot the proportions of zero-count samples for all features against the cor-
responding log-transformed mean log-transformed abundances. Red curves are results
of logistic regression for the relationship between sparsity and mean abundance. We re-
peated this procedure on the PRISM, HMP stool, and HMP vaginal datasets.
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