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Abstract

Genetic association studies are frequently characterized by high-dimensional datasets

containing rare and weak signals. To detect these signals, it is important to choose infer-

ence methods that are both robust and powerful under such challenging settings. In this

work we study the theoretical properties of popular existing techniques, and we propose

new methods which aim to increase the accuracy and detection ability of genetic associa-

tion testing.

In chapter 1, we discuss improper inference in Genome-Wide Environment Interac-

tion Studies (GWEIS). Modeling gene-environment (GxE) interactions is often challenged

by the unknown functional form of the environment term in the true data-generating

mechanism. We study the impact of misspecification of the environmental exposure ef-

fect on inference for the GxE interaction term in linear and logistic regression models.

We first examine the asymptotic bias of the GxE interaction regression coefficient, allow-

ing for confounders as well as arbitrary misspecification of the exposure and confounder

effects. For linear regression, we show that under gene-environment independence and

some confounder-dependent conditions, when the environment effect is misspecified, the

regression coefficient of the GxE interaction can be unbiased. However, inference on the

GxE interaction is still often incorrect. In logistic regression, we show that the regression

coefficient is generally biased if the genetic factor is associated with the outcome directly

or indirectly. Further we show that the standard robust sandwich variance estimator for

the GxE interaction does not perform well in practical GxE studies, and we provide an

alternative testing procedure that has better finite sample properties.

In chapter 2, we propose a new set-based test for genetic association studies. Study-
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ing the effects of groups of Single Nucleotide Polymorphisms (SNPs), as in a gene, genetic

pathway, or network, can provide novel insight into complex diseases, above that which

can be gleaned from studying SNPs individually. Common challenges in set-based ge-

netic association testing include weak effect sizes, correlation between SNPs in a SNP-set,

and scarcity of signals, with single-SNP effects often ranging from moderately sparse to

extremely sparse in number. Motivated by these challenges, we propose the General-

ized Berk-Jones (GBJ) test for the association between a SNP-set and outcome. The GBJ

extends the Berk-Jones (BJ) statistic by accounting for correlation among SNPs, and it

provides advantages over the Generalized Higher Criticism (GHC) test when signals in

a SNP-set are moderately sparse. We also provide an analytic p-value calculation pro-

cedure for SNP-sets of any finite size. Using this p-value calculation, we illustrate that

the rejection region for GBJ can be described as a compromise of those for BJ and GHC.

We develop an omnibus statistic as well, and we show that this omnibus test is robust

to the degree of signal sparsity. An additional advantage of our methods is the ability

to conduct inference using individual SNP summary statistics from a Genome Wide As-

sociation Study (GWAS). We evaluate the finite sample performance of the GBJ though

simulation studies, and we apply the method to gene-level association analysis of breast

cancer risk using data from the Cancer Genetic Markers of Susceptibility GWAS.

In chapter 3, we investigate the power of different set-based tests for genetic asso-

ciation studies. It has become increasingly popular to perform set-based inference with

a class of methods, popularized by the Higher Criticism statistic, which has asymptotic

optimality properties in detecting sparse alternatives. However the choice of which test

to use is not always clear. A key distinction between these methods is the manner they

account for correlation among features in a set - either through a transformation to decor-

relate the data, as in the innovated Higher Criticism (iHC), or by building the correlation

into the test statistic, as in the Generalized Higher Criticism (GHC). In this paper we

show that, depending on the correlation structure of the features, the decorrelation step

in innovation-based methods can greatly increase power when testing for associations

between one explanatory variable and a set of multiple outcomes, which we term the

multiple phenotype setting. However when testing the association between one outcome
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and a set of explanatory variables, which we term the SNP-set setting, the same advan-

tages are no longer present. We validate our findings through simulation and application

to both a methylation quantitative trait loci study of lung cancer patients and a GWAS of

breast cancer risk.
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1.1 Introduction

Many human diseases possess an etiology which is characterized by complex relation-

ships between genetic and environmental risk factors. Studying gene-environment (GxE)

interactions can help us understand biological mechanisms that cause these complex dis-

eases (Thomas, 2010). There has been a dramatic increase in the number of GenomeWide

Environmental Interaction Studies (GWEIS) over the past decade, yet remarkably, the

number of replicable GxE interactions in the literature is only a handful (Aschard et al.,

2012; Hutter et al., 2013). The lack of success in identifying GxE interactions is often

attributed to study design issues, such as inadequate sample size and population hetero-

geneity (Thomas, 2010), but it also suggests limitations with current statistical methodol-

ogy.

The standard approach to GWEIS performs single-marker analysis over a large num-

ber of Single Nucleotide Polymorphisms (SNPs) across the genome, repeatedly fitting a

gene-environment interaction generalized linear model - e.g. linear regression for con-

tinuous traits and logistic regression for binary traits. In these models, the effect of the

environmental exposure is often modeled parametrically. However we generally do not

know the correct functional form of the environment covariate in the true data-generating

mechanism (Aschard et al., 2012). Therefore the exposure effects can be misspecified, re-

sulting in invalid model-based inference, as in the case of Cornelis et al. (2012). Environ-

ment misspecification may also cause the appearance of heteroscedasticity with respect

to the exposure, which can similarly invalidate inference (Almli et al., 2014).

Our work is motivated by a GWEIS from the Harvard School of Public Health Super-

fund Research Project. One of the main goals of the Superfund program is to study how

toxic metal exposures and genetic variants interact to affect neurodevelopment outcomes,

such as Bayley Scales of Infant Development (BSID) scores, among infants. Data are

available on approximately 500 infants in Bangladesh and 400 infants in Mexico. About

500,000 SNPs are used in an initial analysis, and a standard GxE interaction linear model

is fit for each SNP. The QQ-plots of p-values generated by testing for GxE interaction

show large departures from uniformity across many different exposures, multiple out-
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comes, both cohorts, and even in meta-analyses of the two cohorts together. See Figure

1.2 for an example. However, tests for the main effects of SNPs (G) while adjusting for

exposure (E) produce a very uniform distribution of p-values. These diagnostics suggest

misspecification of the GxEmeanmodel, as described and explained in detail by Voorman

et al. (2011). Surprisingly, GxE inference which utilizes the Huber-White ’sandwich’ vari-

ance estimator, a commonly-proposed remedy for incorrect inference in GWEIS (Voorman

et al., 2011; Tchetgen and Kraft, 2011; Almli et al., 2014) often produces inflated p-values

that show a larger departure from uniformity than p-values calculated frommodel-based

standard errors. Again, see Figure 1.2 for an example. Here inflation means there is an

excess of small p-values, while deflation refers to the opposite.

The impact of performing inference with misspecified models for the effects of co-

variates has been investigated by many authors, primarily in main effects models. The

GWEIS setting is unique, because we are interested in testing a possibly misspecified in-

teraction term and not amain effect. Additionally, we allow for confounders in themodel,

and these confounders may be arbitrarily misspecified. In contrast, past work primarily

focuses on main effects models and often assumes the term of interest is completely inde-

pendent of other covariates in the model. Relevant literature includes Gail, Weiand and

Piantadosi (1984), Lagakos (1988), and Begg and Lagakos (1992).

For interaction models, Vansteelandt et al. (2008) derived a set of multiply robust es-

timators for interaction effects, but these estimators require specification of a distribution

for each SNP conditional on the other covariates in the model, a complicated task with

hundreds of thousands of SNPs. Rosenblum and van der Laan (2009) and Tchetgen and

Kraft (2011) studied misspecification constrained to the setting when G is completely in-

dependent of all other terms in the fitted model, including the outcome. In this scenario,

they showed that the estimated GxE interaction effect will be asymptotically unbiased

under the null, even under environment misspecification. While important, these find-

ings are heavily constrained by the independence assumption. For example, under the

infinitesimal model of genetic contribution to disease (Gibson, 2012), a large number of

G terms are associated with an outcome, so a large proportion of tests in GWEIS will vi-

olate the assumption. Furthermore, adjusting for population stratification with genotype
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principal components is important in genetic association studies. The principal compo-

nents will introduce regression covariates that are associated with G, another example of

common practice that violates the above assumption. Our work considers arbitrary de-

pendence among all covariates in the model and can hence incorporate confounders like

principal components. We allow for misspecification of these confounders as well.

There are twomain objectives to this paper. First, we provide conditions for valid GxE

interaction inference under the null hypothesis of no interaction effect when the environ-

mental exposure, and possibly other covariates, are misspecified in the generalized linear

model. We perform asymptotic bias analysis to show that for a linear regression model,

the estimated interaction coefficient is asymptotically unbiased under the null if the ge-

netic factor is independent of the environment and all additional covariates in both the

true and fitted model are independent of either gene or environment. However, standard

inference on the GxE interaction is incorrect even under these conditions. In addition, we

show that for a logistic regression model, the asymptotic estimate of the interaction co-

efficient will generally be biased under environmental misspecification when the genetic

factor is associated directly or indirectly with the outcome, even under gene-environment

independence. For both models we confirm that bias in the model-based standard error

estimate can lead to inflated and deflated QQ-plots.

Secondly, we describe why the often-proposed sandwich variance estimator may not

be a panacea for inference in practical GWEIS with moderate sample sizes. Specifically,

we show that the sandwich estimate can be plagued by high variability under environ-

mental misspecification. We propose an estimator that has better finite sample properties

and illustrate its utility through both simulation and application to the Superfund dataset.

1.2 Exposure misspecification in GxE inference

1.2.1 Assumptions and standard approach

Suppose that the outcome Yi is related to covariates Gi, Ei, Zi, and Mi by the generalized

linear model (McCullagh and Nelder, 1989)

g(µi) = �0 + �GGi + �Ef(Ei) + �IGih(Ei) + ZT
i �Z +MT

i �M , (1.1)
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where µi = E (Yi|Gi, Ei,Zi,Mi). For binary outcomes, g(·) is the logistic link. For con-

tinuous outcomes, g(·) is the identity link and var(Yi|Gi, Ei,Zi,Mi) = �2. Let Gi de-

note a discrete genetic marker and Ei an environmental exposure variable. The addi-

tional covariates ZT
i = (Z1i, ..., Zpi) are correctly modeled, and the covariates MT

i =

(M1i, ...,Mqi) are subject to mismodeling. Take f(·) and h(·) to be known, possibly non-

linear functions of E . In vector notation, we have � = (�0, �G, �E , �I ,�T
Z ,�

T
M)

T and

Xi =

�

1, Gi, f(Ei), Gih(Ei),ZT
i ,M

T
i

 T so that g(µi) = XT
i �. In the context of GWEIS,

which are hypothesis-generating procedures, we are most interested in inference about

whether �I = 0.

Suppose that the observed data consist of n independent and identically distributed

random vectors (Yi, Gi, Ei,Zi,Wi) for i = 1, ..., n, where additional observed covari-

ates WT
i = (W1i, ...,Wri) are a possibly misspecified version of MT

i . The only restric-

tion we place on Wi is that E (Yi|Gi, Ei,Zi,Mi,Wi) = E (Yi|Gi, Ei,Zi,Mi), or in other

words, the misspecified covariates do not add information about Yi above that given by

(Gi, Ei,Zi,Mi).

The standard test for gene-environment interaction fits the misspecified model

g(eµi) = ↵0 + ↵GGi + ↵EEi + ↵IGiEi + ZT
i ↵Z +WT

i ↵W (1.2)

and performs inference on H0 : ↵I = 0. We use eµi to denote that this is a misspecified

model and not the true conditional mean.

Let ↵ =

�

↵0,↵G,↵E ,↵I ,↵T
Z ,↵

T
W

�T and eXi =
�

1, Gi, Ei, GiEi,ZT
i ,W

T
i

�T so that g(eµi) =

eXT
i ↵. We denote ↵ to be the large sample limiting value of the parameter in the fitted

model and let b↵ represent the data estimate of ↵.

1.2.2 Misspecification of the exposure effect may appear as het-
eroscedasticity

Almli et al. (2014) studied GxE interaction models in a post-traumatic stress disorder

dataset and reported that the presence of heteroscedasticity was invalidating their in-

ference. The authors found that the residual variance was a function of the environment,

which led a QQ-plot to show heavily inflated p-values when performing genome-wide
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interaction testing with the standard GxE model. We show in this section that for lin-

ear regression, misspecification of the exposure effect may cause the appearance of het-

eroscedasticity in the environment as reported by Almli et al. (2014).

Suppose the true linear GxE interaction model is given by

Yi = �0 + �GGi + �Ef(Ei) + �IGih(Ei) + ✏i,

where f(·) and h(·) are known non-linear functions of Ei, and ✏i ⇠ N(0, �2
). Assume we

fit the misspecified GxE interaction model with a linear effect of Ei:

Yi = ↵0 + ↵GGi + ↵EEi + ↵IGiEi + ei. (1.3)

One can easily show that under the misspecified model (1.3),

E(e2i |Gi, Ei) = �2
+ d(Gi, Ei),

where d(Gi, Ei) = {µi(Gi, Ei)� µi,mis(Gi, Ei)}2 , and

µi(Gi, Ei) = �0 + �GGi + �Ef(Ei) + �IGih(Ei)
µi,mis(Gi, Ei) = ↵0 + ↵GGi + ↵EEi + ↵IGiEi.

If f(·) is not linear in Ei, then the function d(Gi, Ei) is generally not 0 even under the

null hypothesis �I = 0. Thus there will appear to be heteroscedasticity with respect to

the effect of the environment. This example suggests that it is possible GxE studies of

continuous outcomes may misdiagnose exposure misspecification as heteroscedasticity;

such studies may also find the following results relevant to their work.

1.3 Inference in the misspecified model

1.3.1 Asymptotic bias of fitted coefficients for identity link

Although our primary concern lies in testing ↵I , it is often also of interest to estimate the

parameters (↵0,↵G,↵E ,↵T
Z ,↵

T
W ) for interpretability reasons or joint tests such as the 2-df

test of H0 : ↵G = ↵I = 0 proposed by Kraft et al. (2007) and utilized by Almli et al. (2014).
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When g(·) is the identity link, the p + r + 4 score equations for estimating

(↵0,↵G,↵E ,↵I ,↵T
Z ,↵

T
W ) under the fitted model (1.2) are

1

n�2

n
X

i=1

(1, Gi, Ei, GiEi,ZT
i ,W

T
i )

T
h

Yi � eXT
i ↵

i

= 0(p+r+4)⇥1.

The asymptotic limit ↵ of the MLE b↵ is the value such that

E
h

(1, G, E , GE ,ZT ,WT
)

T
⇣

X� � eX↵
⌘i

= 0(p+r+4)⇥1. (1.4)

Under distributional assumptions, it is possible to solve equation (1.4) in closed form

and find the asymptotic bias of each fitted covariate. In derivations for this section, we

will assume without loss of generality that the covariates G and E are centered at 0. Also,

subscripts on µ will denote the expectation of those subscripts, so that µGE = E(GE) =

Cov(G, E).
The asymptotic value of ↵I takes the general form:

↵I = �E ⇤ C1 + �I ⇤ C2 +CT
3 �M ,

where C1, C2 denote constants andC3 denotes a q⇥1 vector of constants. These constants

depend on the form of misspecification as well as the marginal and joint distribution of

the covariates. ↵G is similarly a complicated function of the true effect sizes. The full

expansions are unwieldy and difficult to examine, so we leave them to Appendix 1.8.1.

Under the null, we can perform valid inference on ↵I if C1 = C2 = 0 and C3 = 0q⇥1. The

same is true for the constants relating to ↵G.

In the following paragraphs, we briefly highlight some of the most interpretable con-

sequences of the equations and describe the implications on GWEIS study design. For an

arbitrary set of covariates and dependence structures, we offer an R package GEint that

is able to calculate the exact magnitude of bias in fitted coefficients, given some inputs on

the true model. This software offers a very flexible platform for users to analyze bias on

a case-by-case basis, and it can also be used, for example, to perform thorough sensitivity

analysis on GWEIS models.

• Consider first a simple testing case where only the environment term is misspecified

in the fitted model, that is, W = M = 0. Under H0 : �I = 0, sufficient conditions for

7



↵I = 0 are gene-environment independence combined with

µGEZ1 = ... = µGEZp = 0. (1.5)

The sufficient conditions are achieved under gene-environment independence and

if at least one of G or E is independent of each Zj for all j = 1, ..., p.

• Additionally, under the joint null H0 : �G = �I = 0, sufficient conditions for ↵G =

↵I = 0 are gene-environment independence combined with

µGZ1 = ... = µGZp = 0. (1.6)

The sufficient condition (1.6) is achieved if G is independent of each Zj for all j =

1, ...p, which is muchmore stringent. This result suggests the joint test is much more

susceptible to issues of bias due to model misspecification.

• Next consider the case where other covariates are also misspecified, so that W 6=
M. Under the null H0 : �I = 0, two sufficient conditions for ↵I = 0 are gene-

environment independence combined with

µGEZ1 = ... = µGEZp = µGEM1 = ... = µGEMq = µGEW1 = ... = µGEWr = 0. (1.7)

The sufficient condition (1.7) is achieved if at least one of E or G is independent

of each Z1...Zp, each M1...Mq, and each W1...Wr (in addition to gene-environment

independence). The result of Rosenblum and van der Laan (2009) is a special case

of this result.

• Under the joint null H0 : �G = �I = 0, two sufficient conditions for ↵G = ↵I = 0 are

gene-environment independence combined with

µGZ1 = ... = µGZp = µGM1 = ... = µGMq = µGW1 = ... = µGWr = 0. (1.8)

The sufficient condition (1.8) is achieved if G is independent of each Z1, ..., Zp, each

M1, ...,Mq, and eachW1, ...,Wr.
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The scenarios discussed above suggest that when genetic and environmental covari-

ates are independent, GWEIS inference is likely to be more robust to model misspecifica-

tion. When G and E are dependent and the effect of E is misspecified, the estimate of the

interaction term will often be asymptotically biased. In addition, the results suggest that

introducing many precision covariates into the model, for instance to reduce the standard

error of estimated coefficients, is likely to increase the chance of model misspecification

and cause biased inference on GxE interactions. It is desirable to have more parsimo-

nious models for GxE studies, as they are likely to contain fewer conditions that must be

satisfied for valid inference on the interaction term.

1.3.2 Controlling for the confounding effects of population stratifica-
tion

Population stratification due to heterogeneous populations is common in genome-wide

association studies and is routinely adjusted for by introducing genetic principal compo-

nents into the model as covariates. In the presence of population stratification and use

of principal components, the results in (1.7) suggest that if the environmental exposure

varies with sub-populations, misspecification of the exposure effects is likely to result

in biased inference on the GxE interaction. For instance, if a study cohort is composed

of Northern and Southern Europeans, and the exposure of interest is differentiated be-

tween these two sub-population groups, neither the environmental term nor the genetic

term will be independent of the principal components covariates. Then inference on ↵I is

likely to be sensitive to misspecification of the exposure effects.

1.3.3 Asymptotic bias of fitted coefficients for logistic link

For binary outcomes and a logistic regression model, the score equations become:

0 =

1

n

n
X

i=1

(1, Gi, Ei, GiEi,ZT
i ,W

T
i )

T
n

Yi � µi(
eXT

i ↵)

o

, (1.9)

where µ(x) = g�1
(x) = exp(x)/ {1 + exp(x)}. The asymptotic limit ↵ is the value such

that

E
h

(1, G, E , GE ,ZT ,WT
)

T
n

Y � µ(eX↵)

oi

= 0. (1.10)
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These equations generally do not have closed forms. Rosenblum and van der Laan

(2009) and Tchetgen and Kraft (2011) studied the case where �G = �I = 0 and G is inde-

pendent of all other terms in the true model (1.1). The authors showed that in this setting,

↵G = ↵I = 0 even under environment misspecification.

Here we focus on situations where the independence assumptions do not hold. We

perform asymptotic bias calculations by numerically solving (1.10) for specific cases to

demonstrate that when the Rosenblum and van der Laan conditions are not met, ↵I will

likely be biased. That is, if G has some association with Y and the effect of the environ-

ment is misspecified, then ↵I is generally biased away from 0 under the null.

Figure 1.1 illustrates the asymptotic bias in the interaction term under four different

misspecification scenarios. To be completely clear, we assume in these scenarios and for

the rest of this section that the main effect of the exposure exists in the true model and has

beenmisspecified in the fittedmodel. In all cases, we solve the asymptotic score equations

(1.10) using numerical methods. For each setting we assume G has a Binomial(2,0.3)

distribution, and it is correlated with the underlined variable by an amount given on the

x-axis. The variable correlated with G is assumed to be a mixture of normal random

variables, with mean conditional on G, and it has marginal mean 0 and variance 1. In

scenarios 2, 3, and 4, the environment term is independently generated as a standard

normal random variable. In scenario 3,M = W 2 provides additional misspecification.

We see that in scenario 1, the interaction coefficient is biased because G is associated

with E , which is in the true model. Thus when there is no gene-environment indepen-

dence, the interaction coefficient will be biased. In scenarios 2 and 3, the interaction co-

efficient is biased because G is indirectly associated with Y through correlation with Z

and W respectively. Thus if the true model includes principal components to control for

population stratification, ↵I will be biased. In scenario 4, G is correlated with W , but W

has no association with terms in the true model, so there is no bias.

These four scenarios cover a wide range of possibilities, and they show that the es-

timate of the interaction term is generally biased under environment misspecification if

the genetic term is directly or indirectly associated with the outcome. In Appendix 1.8.2

we are able to provide some more intuition on how bias arises in the simplest situations

10



Figure 1.1: Bias of the fitted interaction coefficient in logistic regression over four different
misspecification settings. The underlined terms are correlated, with the magnitude of cor-
relation given on the x-axis. At each data point we solved the score equations numerically
and confirmed these results through simulation.
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where there are no additional covariates. If G is not directly or indirectly associated with

the outcome Y through correlation with other terms in the true model, then the interac-

tion regression coefficient will be asymptotically unbiased under the null.

1.3.4 Asymptotic standard error of fitted coefficients

Most earlier works on model misspecification (Rosenblum and van der Laan, 2009; Voor-

man et al., 2011; Tchetgen and Kraft, 2011; Almli et al., 2014) advocate that using a robust

sandwich standard error estimate will provide asymptotically correct Type I error when

↵I is unbiased under the null. The same theory holds for the models we study, because

the asymptotic covariance matrix of b↵ is given by:

Vb↵ = B(↵)

�1A(↵)

�

B(↵)

�1
)

 T
;

B(↵) = E

(

@ (eX,↵)

@↵T

)

, A(↵) = E
n

 (eX,↵) (eX,↵)T
o

where  (eX,↵) are the p+r+4 score equations from above. The model-based variance es-

timator assumes that B(↵) = �A(↵), which is incorrect under exposure misspecification

and will invalidate the inference even if the regression coefficient estimate is unbiased.

Denote by bmb↵I the model-based standard error estimate of b↵I . We show in Appendix

1.8.3 that the model-basedWald statistic for testing the interaction term Tmod = (b↵I/bmb↵I )
2

asymptotically follows a scaled chi-square distribution c�2
1, where the expressions of c for

linear and logistic regression are given in that appendix. If c > 1 for many SNPs across

the genome, then the QQ-plot for GxE interactions using model-based standard errors

will be inflated. If c < 1 for many SNPs, then the QQ-plot will be deflated. The value of c

is determined both by the true model and the design matrix of fitted coefficients.

Using a sandwich estimator with b↵ instead of ↵ in the above expression will give a

consistent variance estimate. However, when we utilized this strategy in simulation and

on our actual dataset, the p-values calculated with the robust standard error actually ap-

peared less uniform than those p-values calculated with the model-based standard error

(as shown in Figure 1.2).
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1.4 Alternative standard error estimates

1.4.1 Inflation caused by the sandwich estimator

Even though many studies suggest using the robust sandwich variance estimator, the

Superfund data (n ⇡ 400 and n ⇡ 500), the study of Almli et al. (n > 3000), and the

analysis of Cornelius et al. (n > 5000) are a few examples where inference conducted

with the sandwich estimator appears to return an excess of highly significant p-values.

It is known that the sandwich estimator is often biased downwards and is more variable

than model-based estimators (Kauermann and Carroll, 2001) even when the model is not

misspecified, and these characteristics can cause inflated Type I error in hypothesis testing

(Kauermann and Carroll, 2001).

Exposure misspecification can exacerbate the variability of the sandwich estimator in

linear regression. This occurs because the sandwich estimator is a linear combination of

the squared regression residuals, and the squared regression residuals have more vari-

ance under exposure misspecification. We demonstrate in detail in Appendix 1.8.4 how

the variance of the sandwich estimator can be much larger under model misspecification

than when the model is correctly specified. The natural downward bias of the sandwich

estimator as well the additional variability caused by exposure misspecification provide

intuition for the heavily inflated sandwich p-values seen in the Superfund data.

A similar derivation incorporating residual variability in logistic regression is com-

plicated by the difficulty of specifying a distribution for the residuals. However, in our

simulations, we find that testing for binary outcomes with the sandwich standard error

can have slightly incorrect size as well. Thus it is of interest to find variance estimators

which can better protect the level of the test when performing inference under exposure

misspecification.

1.4.2 Bootstrap Inference with Corrected Sandwich

As an alternative to the model-based and sandwich variance estimators, we propose a

resampling-based method. The proposed method can be thought of as a finite sample

correction to the sandwich. Denote by Tsand = (b↵I/bsb↵I )
2 a test statistic for the interac-
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tion effect calculated using the sandwich standard error estimate bsb↵I . This test statistic

should asymptotically have a �2
1 distribution under the null. If the sandwich estimator

is biased in finite samples, then the bias will cause the test statistic to instead have an

approximately scaled chi-square distribution: Tsand ⇡ c�2
1. We can approximate the c�2

1

distribution by resampling the test statistic and matching the moments of its sampling

distribution with a Satterthwaite-type idea as folows:

Fit model (2) on the observed data to find the estimated interaction coefficient b↵(init)
I

and sandwich test statistic T (init)
sand . For each of b = 1, 2, ..., B, say B = 1000, boot-

strap iterations, perform a nonparametric bootstrap by sampling (Yi, eXi) from the orig-

inal data n times with replacement. Fit model (2) on the new sample. Calculate the

squared, centered bootstrap test statistics T (b)
sand = {(b↵(b)

I � b↵(init)
I )/bs(b)b↵I

}2 where b↵(b)
I and

bs(b)b↵I
are the regression coefficient and the sandwich standard error estimate for the in-

teraction term based on the bth bootstrap sample. Match the mean and variance of

T =

⇣

T (1)
sand, ..., T

(B)
sand

⌘

to the moments of a k�2
a distribution, where we solve for k, a us-

ing the equations k = Var(T)/ {2 ⇤Mean(T)} and a = Mean(T)/k. Find the p-value of

the original test statistic T (init)
sand using k�2

a as the reference distribution. We will refer to

this method as the Bootstrap Inference with Corrected Sandwich (BICS) procedure. We

would also like to note that a natural alternative, using the empirical standard error of

b↵(1)
I , ..., b↵(B)

I instead of the sandwich standard error, does not work well.

1.5 Simulation studies

We conduct a variety of simulations to evaluate control of Type I error rate in GWEIS for

different testing procedures over a range of misspecification scenarios. All misspecified

models we consider are generated under the null of �I = 0, and all satisfy the conditions

for valid inference discussed previously, that is, ↵I = 0 asymptotically. The Type I error

rate of the tests should be controlled at the nominal size of 0.05 with an unbiased standard

error estimator. In all simulations we fit the model (1.2) with Zi = Wi = 0. We use

a Wald t-test to generate p-values with the naive and sandwich standard errors. Each

misspecified model is tested at sample sizes of 400, 800, and 1600 to reflect the finite

14



sample problem which affects the Superfund study. We perform 50000 replications of the

simulation at each parameter setting and report the percentage of times that each testing

procedure rejects the null.

We first describe the misspecification for continuous outcomes. Simulation A has

outcome Y generated from the model Yi = �EE2
i + ✏i, ✏i ⇠ N(0, 1) where �E is chosen

such that E explains 10% of the variance in Y . In Simulation B we increase the degree

of misspecification by taking the true model to be Yi = �EE3
i + ✏i, ✏i ⇠ N(0, 1), where

�E is again chosen such that E explains 10% of the variance in Y . For both Simulations

A and B, we generate Ei ⇠ N(1, 1). Simulations C and D have the same true model

as A and B, except we generate Ei ⇠ Beta(2,5) to introduce skewness into the exposure

variable. We also adjust �E so that E continues to explain 10% of the variance in Y . Finally,

Simulation E differs from the previous four in that we generate the outcome as Yi =

�GGi + �EE2
i + ✏i, with Ei and ✏i again as they were in Simulation A. This situation mimics

testing for interaction with a SNP that has a marginal effect but no interaction effect. The

values of �G and �E are chosen such that E and G would explain 10% and 1% of the

variance in Y respectively if G had minor allele frequency 0.3. For all scenarios above,

G is simulated by using HAPGEN2 to generate the number of minor alleles at a random

SNP on chromosome 1 (HapMap3 CEU population used as reference), thus G and E are

always independent.

We see from Table 1 that the sandwich estimator constantly produces inflated Type

I error rates. BICS performs very well, protecting the size almost exactly in every single

situation. Of course, the sandwich estimator performs progressively better as the sample

size increases. In contrast, BICS does not appear to show a trend in n and increases its

relative superiority over the sandwich estimator at the smallest sample sizes. The naive

estimator is always biased and shows the most inflation. These results closely reflect the

trends in our data example, where QQ-plots of p-values calculated with the sandwich

and naive estimators show very early departures from the 45-degree line, indicating lack

of uniformity.

Next we consider binary outcomes. Simulations F,G,H,I, and J are conducted in the

same spirit as the previous five. The outcome Yi in simulation F is generated from the
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Table 1.1: Type I error rate at level ↵ = 0.05 when testing H0 : ↵I = 0 with naive model-
based standard error (N), sandwich standard error (S), and Bootstrap Inference with Cor-
rected Sandwich (BICS). Simulation parameters A-E correspond to continuous outcomes
and F-J to binary outcomes. Inference with the sandwich estimator shows inflated Type
I error rates for continuous outcomes. Inference with the naive estimator shows inflated
Type I error rates for continuous outcomes and deflated Type I error rates for binary out-
comes. The BICS procedure protects the Type I error rate in all simulations.

Simulation (n) Continuous Outcome Binary Outcome
N S BICS N S BICS

A/F
(400) 0.073 0.063 0.052 0.037 0.047 0.050
(800) 0.077 0.060 0.053 0.039 0.048 0.051
(1600) 0.074 0.053 0.049 0.038 0.049 0.051

B/G
(400) 0.086 0.065 0.052 0.037 0.049 0.052
(800) 0.088 0.058 0.050 0.037 0.048 0.050
(1600) 0.089 0.055 0.050 0.037 0.050 0.051

C/H
(400) 0.051 0.059 0.050 0.049 0.050 0.053
(800) 0.052 0.055 0.050 0.049 0.050 0.052
(1600) 0.054 0.053 0.051 0.050 0.051 0.052

D/I
(400) 0.065 0.063 0.052 0.048 0.049 0.052
(800) 0.064 0.056 0.050 0.049 0.050 0.052
(1600) 0.065 0.055 0.051 0.048 0.048 0.050

E/J
(400) 0.074 0.065 0.053 0.035 0.048 0.051
(800) 0.073 0.056 0.049 0.037 0.049 0.051
(1600) 0.076 0.054 0.051 0.036 0.049 0.051
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model:

Yi ⇠ Bernoulli(⇡i); ⇡i =
exp(0.4E2

i )

1 + exp(0.4E2
i )
.

The parameter �0 = 0 is chosen to give a subject with E = 0 a disease probability

of 0.5. Simulation G is conducted under a higher degree of misspecification as we take

the true probability of disease to be ⇡i = exp (0.2E3
i ) / {1 + exp (0.2E3

i )}. For simulations F

and G we generate Ei ⇠ N(0, 1). Simulations H and I have ⇡i = exp (E2
i ) / {1 + exp (E2

i )}
and ⇡i = exp (E3

i ) / {1 + exp (E3
i )} respectively with Ei ⇠ Beta(2,5). Finally, in Simulation

J each SNP has a marginal effect with ⇡i = exp (0.1Gi + 0.4E2
i ) / {1 + exp (0.1Gi + 0.4E2

i )},
and Ei ⇠ N(0, 1) again.

In these logistic regression simulations we see that the sandwich estimator actually

performs fairly well, with the correct size in most situations. It can be slightly conserva-

tive when n = 400. BICS similarly performs well, although it appears to be slightly less

conservative than using the sandwich estimate. In absolute terms, BICS and the sandwich

estimator both appear to deviate a similar amount from the expected size. Once again the

naive standard error estimate is biased and produces tests at the incorrect size.

Based on the results of our simulation study, we recommend that our resampling

methods be used quite widely in linear regression GWEIS of moderate sample sizes, as

exposure misspecification is likely to occur to some degree when testing for GxE inter-

action. A simple and fast implementation is available through GEint. When n is large

or logistic regression is used, we agree with previous suggestions that the sandwich esti-

mator should be employed for its speed and simplicity, however BICS can be used as an

alternative if diagnostic QQ-plots appear worrisome. In a practical setting, the environ-

ment term will remain constant for each SNP, while in our simulation the environment

term is newly generated with each different SNP. This choice was made to present the

fairest possible comparison in simulation. When the environment term is held constant

for each SNP, the difference between BICS and the sandwich estimator can be even more

drastic (again see Figure 1.2).
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1.6 Application to Superfund data

One major goal of the Superfund Research Program is to study the interplay of genes

and toxic metal exposures on childhood neurological outcomes. The metal exposure of

interest is lead concentration in the umbilical cord blood. The neurological outcome is

Mental Development Index (MDI) score from the BSID.

There exists evidence that high levels of exposure to certain metals during the prena-

tal period can seriously impair the cognitive development of infants (Claus Henn et al.,

2012), but to date we are unaware of any previous gene-environment interaction studies

covering toxic metal exposures and neurodevelopment outcomes.

The participants enrolled in the study come from two cohorts. Recruitment in Mex-

ico was described in Burris et al. (2013), with 389 of the recruited mother-infant pairs

having complete genetic and covariate data. Recruitment in Bangladesh was described

in Kile et al. (2014), with 497 of these mother-infant pairs having complete genetic and

covariate data. Briefly, women were enrolled during hospital visits in the early weeks

of their pregnancy, and covariate information was collected upon subsequent visits to

the hospital. Genotyping was performed using the Illumina OmniExpressExome-8 in the

Bangladesh cohort and the Illumina HumanOmni1-Quad Beadchip in the Mexico cohort.

About 500,000 SNPs common to both cohorts remained after quality control.

We conducted a standard GWEIS by repeatedly fitting the model

Yi = ↵0 + ↵GGi + ↵EEi + ↵IGiEi + ZT
i ↵Z + ✏i, (1.11)

where Zi is an 8⇥1 vector of additional covariates including sex, birthweight, gestational

age, education of mother (binary, 1 if primary school or greater), household environmen-

tal smoke (binary), child’s age at time of assessment, and the first two genotype principal

component vectors. Here E is the logarithm of umbilical cord blood lead concentration.

Two distinct genome-wide scans were conducted, one for each cohort. A meta-analysis

was then performed to pool the data, and the meta-analysis was examined for SNPs with

highly significant p-values.

The initial analyses implemented with a model-based standard error produced QQ-
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plots of highly non-uniform p-values (Figure 1.2 and Figure 1.3). We conjectured that a

major cause of the non-uniformity was misspecification of the effect of the environmen-

tal covariate. To investigate possible misspecification, we repeated the initial analyses

but introduced a spline term for the environment instead of modeling it linearly. QQ-

plots produced after this modification improved somewhat but still showed some non-

uniformity. We also performed a standard GWAS by removing the interaction term from

the fitted model and only testing for the marginal effect of G. QQ-plots for the GWAS

seemed relatively uniform.

Under model misspecification, the theoretical results derived in Section 1.3 suggest

that we can have robust tests of the null hypothesis under some independence conditions,

which we believe are reasonable to assume here. However, as shown in Figure 1.2, the

QQ-plot based on sandwich standard errors is inflated.

We next re-analyze the data by fitting model (1.11) and using the resampling-based

methods to generate p-values for the cohort-specific GWEIS. These resampling-based p-

values are much more uniform than p-values calculated using the naive or sandwich

variance estimate. It appears that our assumptions about independence mostly hold,

as there is little inflation using BICS. The corrected p-values seem to reflect that ↵I = 0

throughout much of the genome, and inflation seen from using the sandwich estimate can

likely be attributed to the drawbacks discussed in Section 1.4. For the meta-analysis, we

use METAL (Willer et al., 2010) to perform a sample size based analysis on the corrected

p-values, and again the corrected meta-analysis p-values seem uniformly distributed.

After applying BICS and accounting for multiple testing, we do not find any SNPs to

be significant at the genome-wide level in either of the cohorts. No SNPs reach genome-

wide significance in the meta-analysis either. However, the meta-analysis does suggest

a promising region for future study. Two of the top SNPs identified in the meta-analysis

are rs9642758 and rs10503970 (p-values of 8.79⇥10

�6 and 2.57⇥10

�5 respectively), which

are both located on chromosome 8 in the region of the gene UNC5D. UNC5D encodes a

receptor for netrin, which may be involved in axon guidance and could plausibly affect

infant neurodevelopment through interaction with toxic metals. We believe the interac-

tion between UNC5D, exposure to lead, and neurodevelopment outcomes is a promising
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Figure 1.2: QQ-plots of p-values generated by testing for interaction effect in Model (1.11)
with naive model-based variance, sandwich variance, and BICS procedure. The outcome
is BSID Mental Development Index score. The exposure is logarithm of umbilical cord
blood lead concentration. On the left side is the Mexico cohort and on the right side is
the Bangladesh cohort. A uniform distribution of p-values would adhere very closely
to the 45-degree line; we expect this outcome as we believe an overwhelming majority
of our tests should be conducted under the null hypothesis. However in both cohorts
the sandwich and naive p-values show very early departures from the line. Such behav-
ior is worrisome because it indicates the inference procedure is not producing uniform
p-values under the null, and thus all inferences we make may be invalidated. A quanti-
tative measure of the departure from uniformity is given by the genomic inflation factor,
provided in the legend. This factor is defined as the ratio of the median of the empir-
ically observed test statistics to the expected median of a chi-squared distribution with
one degree of freedom.
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Figure 1.3: QQplots of p-values generated from the meta-analysis of the p-values shown
in Figure 1.2. We use METAL to perform the meta-analysis by combining weighted p-
values from the Bangladesh and Mexico cohorts. The default genomic control option in
METAL is turned off. Again we see the p-values calculated using the sandwich and naive
variance estimates depart from the 45-degree line very early.
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candidate for further study.

1.7 Discussion

It is often the case in the standard GWEIS approach that the environment covariate is

likely to be misspecified. We have demonstrated conditions under which inference for the

interaction effect is still valid under model misspecification. These results provide guid-

ance on fitting GxE interaction models. We show that for linear regression models, the es-

timate of the interaction effect will be asymptotically unbiased under gene-environment

independence and if either the genetic or environment term is independent of each other

true and fitted coefficient in the model. For logistic regression models, the estimate of

the interaction effect will generally only be asymptotically unbiased if the genetic term is

neither directly nor indirectly associated with the outcome.

When the conditions for valid inference on GxE interactions are met, hypothesis test-

ing may still be difficult to conduct because the model-based estimate of standard error

is biased under environment misspecification, and the Huber-White sandwich estimator

can lead to excess Type I error. We provide a resampling-based method of obtaining p-

values and show its advantages both in simulation and through application to the Super-

fund dataset. We recommend BICS be widely used in linear regression GWEIS with mod-

erate sample sizes. After reanalysis of the Superfund data, we have identified UNC5D as

a strong candidate gene for further study in how lead exposure can affect infant neurode-

velopment.

While our resampling method can be computed rather quickly and has been found

to work well in practical studies of moderate sample size, it is still a minor drawback to

perform a bootstrap procedure for every SNP across the genome. It is of future research

interest to develop more computationally efficient and robust inference methods for test-

ing GxE interactions in GWEIS. In addition, as more and more GWEIS are conducted, it

will be necessary to develop semiparametric gene-environment interaction models that

are more robust to model misspecification in both the exposure and confounder covari-

ates.
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1.8 Appendix

1.8.1 Solutions to asymptotic score equations for linear regression from
Section 1.3.1

Here we present the unsimplified versions of the asymptotic values of

(↵0,↵G,↵E ,↵I ,↵T
Z ,↵

T
W ).

First, a few comments on our notation. Remember that Z = (Z1, Z2, ..., Zp) and W =

(W1,W2, ...,Wr) are vectors, so whenwewrite an expression of the form µGZ, wemean the

p ⇥ 1 vector
�

µGZ1 , µGZ2 , ..., µGZp

�T . Sometimes we will also use expressions of the form

µZTZ, which refers to the matrix of expectations where the (1,1) element is E(Z2
1), the (1,2)

and (2,1) elements are E(Z1Z2), and so on. This is distinct from µT
ZµZ, which corresponds

to taking the expectations of the vectors first, then multiplying to form a matrix - i.e. the

(1,1) element is E(Z1)
2. Finally, whenever we add a scalar term to a vector, what we mean

is to add that scalar term to each element of the vector.

For sake of presentation, we provide the solutions in nested form, so that the solution

to ↵0 depends on (↵G,↵E ,↵I ,↵T
Z ,↵

T
W ), the solution to ↵G depends on (↵E ,↵I ,↵T

Z ,↵
T
W ),

and so on. Recall that we assumed the genetic and environment covariates are centered at

0, so µG and µE will not appear. We use f for f(E) and h for h(E) so that µGf = E{Gf(E)}
and µGh = E{Gh(E)}.

The solution to ↵0 is:

↵0 = �0 + �Eµf + �IµGh � ↵IµGE + (�Z �↵Z)
T µZ + �T

MµM �↵T
WµW.

The solution to ↵G is:

↵G = �G � �

↵EµGE � �EµGf + ↵IµG2E � �IµG2h + (↵Z � �Z)
TµGZ +↵T

WµGW � �T
MµGM

�

/µG2 .

The solution to ↵E is:

↵E = {�E (µEf � µGfµGE/µG2
) + �I (µGEh � µG2hµGE/µG2

) + ↵I (µG2EµGE/µG2 � µGE2
)

+(�Z �↵Z)
T
(µEZ � µGZµGE/µG2

) + �T
M (µEM � µGMµGE/µG2

) +↵T
W (µGWµGE/µG2 � µEW)}

/(µE2 � µ2
GE/µG2

).
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Next we want to solve for ↵Z . Since ↵Z is a vector, to solve for it we have p equations

of the form
0

B

B

B

B

@

P1

.

.

.
Pp

1

C

C

C

C

A

=

0

B

B

B

B

@

O11 . . . O1p

.

.

.
Op1 . . . Opp

1

C

C

C

C

A

0

B

B

B

B

@

�Z1 � ↵Z1

.

.

.
�Zp � ↵Zp

1

C

C

C

C

A

where we will designate the vector of constants on the left as P and the p⇥ pmatrix asO.

Then to solve the equations we have↵Z = �Z�O�1P. We will assume thatP is invertible

- clearly if it is singular then we cannot solve for ↵Z . The forms ofO and P are:

P = �E {�µfµZ � µGfµGZ/µG2
+ µfZ +A (µEf � µGfµGE/µG2

)}
+�I {µGhZ � µGhµZ � µG2hµGZ/µG2

+A (µGEh � µG2hµGE/µG2
)}

+↵I {µGEµZ + µG2EµGZ/µG2 � µGEZ +A (µG2EµGE/µG2 � µGE2
)}

+

n

A (µEM � µGMµGE/µG2
)

T � µZµ
T
M � µGZµ

T
GM/µG2

+ µZMT

o

�M

+

n

A (µGWµGE/µG2 � µEW)

T
+ µZµ

T
W + µGZµ

T
GW/µG2 � µZWT

o

↵W

O =

n

�

µZµ
T
Z + µGZµ

T
GZ/µG2 � µZZT

��A (µEZ � µGZµGE/µG2
)

T
o

A = (µGEµGZ/µG2 � µEZ) /(µE2 � µ2
GE/µG2

).

The solution to ↵W similarly involves inverting a matrix:

↵W = �Q�1R

R = �E {�µfµW � µGfµGW/µG2
+ µfW +B (µEf � µGfµGE/µG2

)}
+C�E {�µfµZ � µGfµGZ/µG2

+ µfZ +A (µEf � µGfµGE/µG2
)}

+�I {�µGhµW � µG2hµGW/µG2
+ µGhW +B (µGEh � µG2hµGE/µG2

)}
+C�I {µGhZ � µGhµZ � µG2hµGZ/µG2

+A (µGEh � µG2hµGE/µG2
)}

+

n

�µWµT
M � µGWµT

GM/µG2
+ µWMT +B (µEM � µGMµGE/µG2

)

T
o

�M

+C
n

A (µEM � µGMµGE/µG2
)

T � µZµ
T
M � µGZµ

T
GM/µG2

+ µZMT

o

�M

+↵I {µGEµW + µG2EµGW/µG2 � µGEW +B (µG2EµGE/µG2 � µGE2
)}

+C↵I {µGEµZ + µG2EµGZ/µG2 � µGEZ +A (µG2EµGE/µG2 � µGE2
)}

Q =

n

µWµT
W + µGWµT

GW/µG2 � µWWT +B (µGWµGE/µG2 � µEW)

T
o
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+C
n

A (µGWµGE/µG2 � µEW)

T
+ µZµ

T
W + µGZµ

T
GW/µG2 � µZWT

o

B = (µGEµGW/µG2 � µEW) /(µE2 � µ2
GE/µG2

)

C =

n

�µWµT
Z � µGWµT

GZ/µG2
+ µWZT +B (µEZ � µGZµGE/µG2

)

T
o

⇥O�1.

Finally the solution to ↵I is:

↵I = S/T

S = �E {�µfµGE � µGfµG2E/µG2
+ µGEf +D (µEf � µGfµGE/µG2

)}
+E�E {�µfµZ � µGfµGZ/µG2

+ µfZ +A (µEf � µGfµGE/µG2
)}

+�I {�µGhµGE � µG2hµG2E/µG2
+ µG2Eh +D (µGEh � µG2hµGE/µG2

)}
+E�I {µGhZ � µGhµZ � µG2hµGZ/µG2

+A (µGEh � µG2hµGE/µG2
)}

+ {µGEM � µMµGE � µGMµG2E/µG2
+D (µEM � µGMµGE/µG2

)}T �M

+E
n

A (µEM � µGMµGE/µG2
)

T � µZµ
T
M � µGZµ

T
GM/µG2

+ µZMT

o

�M

�F�E {�µfµW � µGfµGW/µG2
+ µfW +B (µEf � µGfµGE/µG2

)}
�FC�E {�µfµZ � µGfµGZ/µG2

+ µfZ +A (µEf � µGfµGE/µG2
)}

�F�I {�µGhµW � µG2hµGW/µG2
+ µGhW +B (µGEh � µG2hµGE/µG2

)}
�FC�I {µGhZ � µGhµZ � µG2hµGZ/µG2

+A (µGEh � µG2hµGE/µG2
)}

�F
n

�µWµT
M � µGWµT

GM/µG2
+ µWMT +B (µEM � µGMµGE/µG2

)

T
o

�M

�FC
n

A (µEM � µGMµGE/µG2
)

T � µZµ
T
M � µGZµ

T
GM/µG2

+ µZMT

o

�M

T = F {µGEµW + µG2EµGW/µG2 � µGEW +B (µG2EµGE/µG2 � µGE2
)}

+FC {µGEµZ + µG2EµGZ/µG2 � µGEZ +A (µG2EµGE/µG2 � µGE2
)}

��

µ2
GE + µ2

G2E/µG2 � µG2E2
+D (µG2EµGE/µG2 � µGE2

)

 

�E {µGEµZ + µG2EµGZ/µG2 � µGEZ +A (µG2EµGE/µG2 � µGE2
)}

D = (µGEµG2E/µG2 � µGE2
) /(µE2 � µ2

GE/µG2
)

E = {µGEZ � µZµGE � µGZµG2E/µG2
+D (µEZ � µGZµGE/µG2

)}T ⇥O�1

F = [{µWµGE + µGWµG2E/µG2 � µGEW +D (µGWµGE/µG2 � µEW)}T

+E
n

A (µGWµGE/µG2 � µEW)

T
+ µZµ

T
W + µGZµ

T
GW/µG2 � µZWT

o

]⇥Q�1.
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1.8.2 Intuition on how bias arises in logistic regression models from
Section 1.3.3

To develop a sense for how the bias arises in the simplest models, assume for now that G

is binary, as in a dominant genetic model. Also assume that we have gene-environment

independence and that Z = M = W = 0. The asymptotic limit of the four score equations

is then:

E
⇥

(1, G, E , GE)T �Y � g�1
(↵0 + ↵GG+ ↵EE + ↵IGE) ⇤ = 0.

Taking the expectation with respect to G and performing some simple algebra gives:

E
�

g�1
(�0 + �Ef(E))� g�1

(↵0 + ↵EE)
 

= 0 (1.12)

E
�Eg�1

(�0 + �Ef(E))� Eg�1
(↵0 + ↵EE)

 

= 0. (1.13)

See that ↵0 and ↵E are determined wholly by �0 and �E in these two equations. Thus ↵G

and ↵I are entirely determined by �G and �I in the other two equations.

Now suppose that �0, �E , �I are fixed. If we substitute in different values of �G and

attempt to solve the system of 4 equations, then ↵0 and ↵E will stay constant (since (1.12)

and (1.13) are constant as �G varies), and ↵G and ↵I will generally both vary. Thus ↵I

will rarely be unbiased for a specific value of �I except in special cases, such as when

�G = �I = 0. Intuitively, this argument shows that when there is a relationship between

G and Y (captured by �G 6= 0), then the interaction coefficient will be asymptotically

biased.

1.8.3 Explanation of biased model-based variance estimates from Sec-
tion 1.3.4

Even if the conditions for valid inference from Section 3.2 are met, we showed in Section

3.3 that the model-based standard error estimates are incorrect under exposure misspec-

ification. Test statistics calculated using the naive model-based standard error estimates

will not have the assumed �2
1 distribution under the null hypothesis. Here we show how

the naive inference leads to non-uniform p-values, and we explain the effects of the de-

sign matrix and the form of misspecification.
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Denote by bmb↵I a model-based standard error estimate for b↵I . Assume that the con-

ditions for valid inference are met, so that ↵I = 0 asymptotically. By a modification of

Theorem 1 from Rotnitzky and Jewell (1990), we can show that the test statistic calculated

using the model-based standard error Tmod = (b↵I/bmb↵I )
2 will have an asymptotic scaled

chi-square distribution: Tmod = c�2
1 + op(1). For the identity link, the scale factor is given

by:

clin =

Pn
i=1

eD2
i

⇣

Yi � eXT
i ↵

⌘2

E

⇢

⇣

Yi � eXT
i ↵

⌘2
�

Pn
i=1

eD2
i

where eDi = D(1)
i �D(2)

i

⇣

Pn
j=1 D

(2)T
j D(2)

j

⌘�1 ⇣
Pn

j=1 D
(2)T
j D(1)

j

⌘

withD(1)
i = GiEi andD(2)

i =

�

1, Gi, Ei,ZT
i ,W

T
i

�

.

For the logistic link, the scale factor is given by:

clog =

Pn
i=1

eD2
i
eV �2
i

n

Yi � g�1
(

eXT
i ↵)

o2

Pn
i=1

eD2
i
eV �1
i

with eDi = D(1)
i � D(2)

i

⇣

Pn
i=1 D

(2)T
i

eV �1
i D(2)

i

⌘�1 ⇣
Pn

i=1 D
(2)T
i

eV �1
i D(1)

i

⌘

where D(1)
i =

GiEi eµi (1� eµi),D
(2)
i =

�

1, Gi, Ei,ZT
i ,W

T
i

�⇥ eµi (1� eµi), eVi = eµi (1� eµi), and eµi = g�1
(

eXT
i ↵).

If c > 1 throughout the genome, then our model-based test statistics will be inflated,

and vice versa. These expressions highlight the importance of the design matrix in deter-

mining the distribution of naive test statistics calculated with the model-based standard

error. Specifically, in the identity link case, eD has an interpretation as the projection of

the interaction vector onto the orthogonal complement of the column space of the other

vectors in the design matrix. If the residuals are often larger when eDi is larger, then we

can expect inflated test statistics, and vice versa.

1.8.4 Variance of the sandwich estimator under misspecification from
Section 1.4.1

Suppose that we fit the model (2) from Section 2.1. Then the sandwich estimator of the

variance of b↵I is:

bsb↵I =

n
X

i=1

a2i (Yi � bYi)
2
=

n
X

i=1

a2ib✏
2
i
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ai = lT (eXT
eX)

�1
eXi

l =

�

0 0 0 1 0 ... 0

�T

1⇥(q+r+4)
.

Assume the true linear model is still given by (1):

Yi = �0 + �GGi + �Ef(Ei) + �IGih(Ei) + ZT
i �Z +MT

i �M + ✏i, ✏i ⇠ N(0, �2
).

Then we can find the distribution of the n⇥1 residual vector conditional on eX. This is (we

omit the conditioning statement in the following derivations for sake of presentation):

b✏ =

✓

I� eX
⇣

eXT
eX
⌘�1

eXT

◆

Y

=

�

I�HeX
�

Y

⇠ MVN
n

�

I�HeX
�

E
⇣

Y|eX
⌘

,
�

I�HeX
�

�2I
�

I�HeX
�T
o

= MVN
�

✓,
�

I�HeX
�

�2
 

✓ =

�

I�HeX
�

E
⇣

Y|eX
⌘

.

Due to the misspecification, ✓ will generally not equal 0 by a similar argument to

Section 2.2. If we had correctly specified the model then it would be true that ✓ = 0.

Denote by hii the (i, i) element of I�HeX. Now we can calculate Var (b✏2i ):

Var
�

b✏2i
�

= E
�

b✏4i
�� �

E
�

b✏2i
� 2

= ✓4i + 6✓2i (1� hii)�
2
+ 3(1� hii)

2�4 � �

✓2i + (1� hii)�
2
 2

= ✓4i + 6✓2i (1� hii)�
2
+ 3(1� hii)

2�4 � ✓4i � 2✓2i (1� hii)�
2 � (1� hii)

2�4

= 4✓2i (1� hii)�
2
+ 2(1� hii)

2�4.

The next step is to calculate Cov(b✏2i ,b✏2j):

Cov(b✏2i ,b✏
2
j) = E

�

b✏2ib✏
2
j

�� E
�

b✏2i
�

E
�

b✏2j
�

= E
�

b✏2jE
�

b✏2i |b✏j
� � �

✓2i + (1� hii)�
2
 �

✓2j + (1� hjj)�
2
 

.

Recall that if (X, Y ) have a bivariate normal distribution with correlation ⇢, then the

conditional distribution X|Y is:

X|Y ⇠ N

⇢

µX + ⇢
�X

�Y
(Y � µY ), (1� ⇢2)�2

X

�

.
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So we have

E
�

b✏2ib✏
2
j

�

= E
�

b✏2jE
�

b✏2i |✏j
� 

= E



b✏2j

⇢

✓2i + 2⇢✓i
�i

�j
(b✏j � ✓j) + ⇢2

�2
i

�2
j

(b✏2j � 2b✏j✓j + ✓2j ) + (1� ⇢2)�2
i

��

= E

⇢

b✏4j

✓

⇢2
�2
i

�2
j

◆

+ b✏3j

✓

2⇢✓i
�i

�j
� 2⇢2✓j

�2
i

�2
j

◆�

+E

⇢

b✏2j

✓

✓2i � 2⇢
�i

�j
✓i✓j + ⇢2

�2
i

�2
j

✓2j + (1� ⇢2)�2
i

◆�

=

�

✓4j + 6✓2j�
2
j + 3�4

j

�

✓

⇢2
�2
i

�2
j

◆

+

�

✓3j + 3✓j�
2
j

�

✓

2⇢✓i
�i

�j
� 2⇢2✓j

�2
i

�2
j

◆

+

�

✓2j + �2
j

�

✓

✓2i � 2⇢
�i

�j
✓i✓j + ⇢2

�2
i

�2
j

✓2j + (1� ⇢2)�2
i

◆

= ✓4j⇢
2�

2
i

�2
j

+ 6✓2j⇢
2�2

i + 3⇢2�2
i �

2
j + 2✓i✓

3
j⇢

�i

�j
� 2✓4j⇢

2�
2
i

�2
j

+ 6✓i✓j⇢�i�j

�6✓2j⇢
2�2

i + ✓2i ✓
2
j � 2✓i✓

3
j

�i

�j
+ ✓4j⇢

2�
2
i

�2
j

+ ✓2j (1� ⇢2)�2
i + ✓2i �

2
j

�2✓i✓j⇢�i�j + ✓2j⇢
2�2

i + (1� ⇢2)�2
i �

2
j

= 2⇢2�2
i �

2
j + 4✓i✓j⇢�i�j + ✓2i ✓

2
j + ✓2j�

2
i + ✓2i �

2
j + �2

i �
2
j

= 2Cov(b✏i,b✏j)2 + 4✓i✓jCov(b✏i,b✏j) + ✓2i ✓
2
j + ✓2i �

2
j + ✓2j�

2
i + �2

i �
2
j

= 2Cov(b✏i,b✏j)2 + 4✓i✓jCov(b✏i,b✏j) +
�

✓2i + (1� hii)�
2
� �

✓2j + (1� hjj)�
2
�

,

and finally the covariance is:

Cov(b✏2i ,b✏
2
j) = E

�

b✏2ib✏
2
j

�� E
�

b✏2i
�

E
�

b✏2j
�

= E
�

b✏2jE
�

b✏2i |b✏j
� � �

✓2i + (1� hii)�
2
 �

✓2j + (1� hjj)�
2
 

= 2Cov(b✏i,b✏j)2 + 4✓i✓jCov(b✏i,b✏j).

The variance of the sandwich estimator for the interaction term is then

Var (bsb↵I ) =

n
X

i=1

a4i
�

4✓2i (1� hii)�
2
+ 2(1� hii)

2�4
 

+

X

i 6=j

a2i a
2
j

�

2h2
ij�

4 � 4✓i✓jhij�
2
�

,

which is larger than it would be if the model were correctly specified and ✓ = 0.
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2.1 Introduction

Genome-Wide Association Studies (GWAS) have been successful in identifying the asso-

ciation between thousands of Single Nucleotide Polymorphisms (SNPs) and hundreds of

complex traits (Manolio et al., 2009). A traditional GWAS analysis tests for the effect of

each individual SNP, and this approach has shown that single-SNP effects are often weak

across the genome (Visscher et al., 2012). Recently, set-based tests which jointly analyze

a group of SNPs - e.g. SNPs in a gene, pathway, or network - have become increasingly

popular as complementary tools which can boost analysis power in GWAS (Wu et al.,

2010). These tests are also standard for rare variant analysis in whole genome sequencing

studies (Lee et al., 2014).

SNPs can be aggregated into sets based on a variety of genomic features. For exam-

ple, they can be grouped by physical position, such as location in a gene or Linkage Dis-

equilibrium (LD) block, or similar biological functions, such as membership in a genetic

pathway or protein network. Set-based analyses then allow for some natural advantages

over individual SNP methods. Besides reducing the number of multiple comparisons

across the genome, SNP-set methods can increase power by pooling sparse and weak

effects into a stronger aggregated signal, as well as by incorporating biological informa-

tion into the test (Wu et al., 2011). In addition, set-based interpretations of association

may be more meaningful than their single-marker counterparts, such as in a gene-level

or pathway-level analysis.

A number of set-based tests for genetic association studies have been developed in

recent years, including burden tests (Li and Leal, 2008), the Sequence Kernel Association

Test (SKAT) (Wu et al., 2011), the minimum p-value test (MinP) (Conneely and Boehnke,

2007), and most recently the Generalized Higher Criticism (GHC) (Barnett, Mukherjee

and Lin, 2016). SKAT and burden tests are examples of methods more suitable for detect-

ing dense signals. If the signals reside in only a few SNPs that are not correlated with

noise SNPs, then the power of SKAT and burden tests will suffer.

While certain SNP-sets may contain a large number of signals, it is more common

that genomic constructs formed with GWAS data will have only a few signal SNPs. In-

31



terestingly, within tests designed for this sparse alternative setting, there are still subtle

differences in performance. Under extreme sparsity, as in the case of only one or very

few signals in the entire set, the minimum p-value test and the GHC have good power for

detecting a SNP-set effect. However GHC andMinP can lose power undermoderate spar-

sity settings, which are relatively common in gene and pathway level analyses of GWAS

data. For example, in the Cancer Genetic Markers of Susceptibility (CGEMS) GWAS for

breast cancer risk (Hunter et al., 2007), four out of 42 SNPs in the FGFR2 gene, a known

breast cancer risk loci, showed strong evidence of association without reaching genome-

wide significance. It is hence of substantial interest to develop testing procedures that can

reliably detect associations across a range of alternatives in the sparse signal regime.

When factors in a set are independent, several goodness-of-fit type methods have

been proposed to perform set-based tests in the presence of sparse signals. (Donoho and

Jin, 2004; Jager andWellner, 2007; Walther, 2013). These methods test for the effect of a set

by aggregating evidence from marginal test statistics, and they have been shown to pos-

sess attractive asymptotic properties when the size of a set goes to infinity. Specifically,

they reach a so-called detection boundary when signals are sparse. In a certain sense, they

are able to detect the weakest signals detectable by any statistical procedure under the

sparse alternative. The class of tests with this ability includes the Higher Criticism (HC)

(Donoho and Jin, 2004) and the Berk-Jones (BJ) (Berk and Jones, 1979). Compared to the

HC and BJ tests, the minimum p-value test, for example, is known to attain the detection

boundary over a smaller portion of the sparse regime. In terms of finite sample perfor-

mance, it has been demonstrated through simulation that Berk-Jones outperforms Higher

Criticism over a range of moderately sparse alternatives when marginal test statistics are

independent (Walther, 2013; Li and Siegmund, 2015). Donoho and Jin (2004) provide an

explanation for this result by showing that HC disproportionately weights evidence from

the most extreme observed marginal test statistic, at the cost of losing sensitivity to detect

signals in other locations.

However, a direct application of BJ to SNP-set testing is not desirable, as standard p-

value calculations for BJ rely on independence of the observations (Moscovich-Eiger and

Nadler, 2017). This assumption is violated by LD-induced correlation between neigh-
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boring SNPs in a SNP-set. In addition, we will see that even if we correct the inference

procedure of the Berk-Jones, the power of BJ can fall dramatically in high LD settings.

To overcome the challenges posed by correlated SNPs, this paper proposes the Gen-

eralized Berk-Jones (GBJ) statistic for testing the association between a SNP-set and out-

come. GBJ accounts for LD among SNPs in a set while still preserving the ability to detect

moderately sparse and weak signals in finite samples. In fact, GBJ reduces to the Berk-

Jones statistic when all SNPs in a set are independent. GBJ can also be applied to SNP-set

tests using both individual-level genotype data or GWAS summary statistics from single

SNP analysis. To facilitate use, we additionally provide an analytic p-value calculation

for GBJ. Our method is more computationally efficient than permutation and is shown to

be accurate even at the extremely small levels required for genome-wide significance.

Additional insight into the strengths and weaknesses of GBJ is provided by study-

ing the rejection regions of SNP-set tests developed for sparse alternatives. The rejection

regions allow us to quantitively describe how the power of each test is susceptible to

changes in parameters such as the amount of correlation between SNPs or the size of the

SNP-set. Since in practice we never have knowledge of the type of alternative, we also

propose an omnibus test that combines GBJ, GHC, MinP, and SKAT for added robustness

to different degrees of sparsity. An extensive simulation study demonstrates that GBJ

outperforms alternative methods in testing SNP-set effects when signals are weak and

moderately sparse, and we also show that the omnibus test is robust to a wide range of

sparsity levels.

The remainder of the paper is organized as follows. Section 2.2 discusses the SNP-

set testing framework using both individual-level data and GWAS summary statistics.

In Section 2.3 we propose the Generalized Berk-Jones statistic for testing the association

between a SNP-set and outcome. We also provide an analytic p-value calculation for

GBJ and develop the omnibus test. Section 2.4 compares the rejection regions of GBJ

and other tests designed for the sparse regime. In Section 2.5 we demonstrate the finite

sample performance of GBJ through simulation. Finally Section 2.6 presents an analysis

of the CGEMS data, and we conclude with a discussion in Section 2.7.
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2.2 The SNP-set testing framework

2.2.1 Individual-level genotype data

We begin by describing the SNP-set testing framework using individual-level data on

genotype, outcome, and other covariates for n total subjects. Suppose for subject i, i =

1, ..., n, we observe the outcome Yi, a genotype vector Gi = (Gi1, ..., Gid)
T of d SNPs in a

SNP-set, and a vector of q covariates Xi = (Xi1, ..., Xiq)
T . Assume that Yi conditional on

(Gi,Xi) follows a distribution in the exponential family (McCullagh and Nelder, 1989)

with the density function f(Yi) = exp {(Yi✓i � b(✓i))/ai(�) + c(Yi,�)}, where a(·), b(·), and
c(·), are known functions, ✓i is a canonical parameter, and � is a dispersion parameter. Let

µi = E(Yi|Gi,Xi) denote the conditional mean of Yi and assume it follows the Generalized

Linear Model (GLM)

g(µi) = XT
i ↵+GT

i �.

where g(·) is a differentiable monotone link function. We here only consider canonical

link functions for simplicity. In matrix notation, the data take the form Y = (Y1, ..., Yn)
T ,

Gn⇥d = [

G1, ...,Gn ]

T , and Xn⇥q = [

X1, ...,Xn ]

T .

The null hypothesis of no association between a SNP-set and outcome, after control-

ling for covariates, is given by H0 : � = 0. Both the dimension of d and the sparsity of

signals can vary greatly between sets, i.e. from gene to gene, and the number of nonzero

�j is unknown. Our aim is to develop a test suitable for different levels of sparsity while

also accounting for the correlation among individual SNP test statistics.

The marginal score statistic for �j , j = 1, ..., d, is

Zj =
GT

.j(Y � ˆµ0)
q

GT
.jPG.j

,

where G.j denotes the jth column vector of G, P = W � WX(XTWX)

�1XTW is the

projection matrix, W = diag {a1�v(µ̂01), ..., an�v(µ̂0n)}, µ̂0i = g(XT
i ˆ↵0), ˆ↵0 is the MLE of

↵ under the null hypothesis, and v(µi) = b00(✓i) is the variance function.

The d marginal score test statistics have an asymptotic multivariate normal distribu-
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tion

Z = (Z1, · · · , Zd)
T ⇠ N(0d⇥1,⌃d⇥d)

under the null, where ⌃jj = 1 for all j, and for j 6= k we can estimate

ˆ

⌃jk =
GT

.jPG.k
q

GT
.jPG.j

p

GT
.kPG.k

. (2.1)

2.2.2 GWAS summary statistics

Many GWAS may not release individual-level data due to logistical challenges or data

confidentiality agreements. Instead it is much more likely that a marginal test statistic for

association with the outcome is available for each individual SNP (Pasaniuc and Price,

2016). It is hence of great interest to be able to perform SNP-set testing using precom-

puted Zj from across the genome. To test a set of precomputed Zj with GBJ, we require

estimation of their correlation matrix ⌃ using external information.

Assumewe have a panel of reference genotypes from nr subjects of the same ethnicity

as those used to construct the summary statistics. For example, this could come from the

publicly available 1000 Genomes dataset (1000 Genomes Project Consortium, 2015). We

estimate ⌃ using equation (2.1) but replace G.j and X with G(r)
.j and X(r), where G(r)

.j is

the nr ⇥ 1 genotype vector of SNP j from the reference panel, X(r)
= (1,PC1, ...,PCm),

PC1, ...,PCm are the first m principal component vectors calculated from the reference

panel, and m is the same number of principal components as was used to control for

population stratification (Price et al., 2006) in the original GWAS analysis of the data. Ad-

ditionally for each subject we estimate v(µ̂0i) by setting µ̂0i equal to the sample mean of

the outcome. For a normally distributed outcome, this is exact as v(·) = 1. For a binary

outcome, since population stratification is the primary confounder of the SNP-outcome

relationship in GWAS, and because µi0 generally varies slowly with the principal com-

ponents, this approximation is practically reasonable. Ultimately we are approximating

GT
.jPG.k in (2.1) by G(r)T

.j G(r)
.k �G(r)T

.j X(r){X(r)TX(r)}�1X(r)TG(r)
.j up to a scale parameter,

with the scale parameter eventually cancelled out in ˆ

⌃jk.
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2.3 The Generalized Berk-Jones test for SNP-set effects

2.3.1 The Berk-Jones statistic

We briefly review the Berk-Jones statistic in this section to help introduce the Generalized

Berk-Jones statistic in Section 2.3.2. The BJ statistic is designed to test for H0 : � = 0

against the alternative that a nonempty subset of the �j are nonzero, assuming the

marginal test statistics are independent. Let ¯�(t) = 1� �(t) denote the survival function

of a standard normal random variable and �

�1
(t) denote its inverse. Let |Z|(j) denote the

order statistics of the vector that results from applying the absolute value operator to each

element of Z, so that |Z|(1) is the smallest value of Z in magnitude.

Set S(t) =

Pd
j=1 1 (|Zj| � t), which is the number of marginal test statistics with a

magnitude greater than some threshold t. For a fixed t � 0, and if Zj
iid⇠ N(0, 1) for all j,

then S(t) has a binomial distribution with the size d and the mean parameter ⇡ = 2

¯

�(t).

This viewpoint motivates the Berk-Jones statistic for independent observations (Donoho

and Jin, 2004) as:

BJd = max

t>|Z|(d/2)



S(t) log

⇢

S(t)

2d¯�(t)

�

+ {d� S(t)} log
⇢

1� S(t)/d

1� 2

¯

�(t)

��

I

⇢

2

¯

�(t) <
S(t)

d

�

(2.2)

= max

1jd/2
log

2

6

6

4

Pr
⇢

S(|Z|(d�j+1)) = j

�

�

�

�

⇡ = j/d

�

Pr
⇢

S(|Z|(d�j+1)) = j

�

�

�

�

⇡ = 2

¯

�

�|Z|(d�j+1)

�

�

3

7

7

5

I

⇢

2

¯

�

�|Z|(d�j+1)

�

<
j

d

�

,

where the second line uses the characterization of S(t) ⇠ Bin(d, ⇡). We see that BJ can

roughly be explained as the maximum of a one-sided likelihood ratio test on the mean

parameter of S(t), performed over the larger half of observed test statistic magnitudes.

Implicit in this interpretation are the assumptions that the test statistics Zj are inde-

pendent and have a common mean. Specifically, under the binomial likelihood null, the

common mean of the Zj is 0, and under the binomial likelihood alternative the common

mean at t = |Z|(d�j+1) is µ̂j,d, where µ̂j,d > 0 solves the equation

j/d = 1� �

�(|Z|(d�j+1) � µ̂j,d)� �(�|Z|(d�j+1) � µ̂j,d)
 

. (2.3)

We say binomial likelihood null and alternative to make clear that we are talking about
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an interpretation of the Berk-Jones statistic and to distinguish from the actual set-based

null and alternative hypotheses being tested.

Note that the Higher Criticism test differs from the Berk-Jones by replacing the likeli-

hood ratio statistic in (2.2) with the Pearson Chi-square statistic {S(t)�2

¯

�(t)}2/{2¯�(t)(1�
¯

�(t)}. Let k be the number of causal SNPs in a set. The sparse regime is designated as

k < d1/2, and we call d1/4 < k < d1/2 moderately sparse, with k  d1/4 referred to as

extremely sparse. Donoho and Jin (2004) showed that, when the Zj are all mutually inde-

pendent, both HC and BJ are able to reach the detection boundary over the entire sparse

signal regime as d ! 1. Walther (2013) and Li and Siegmund (2015) showed that the BJ

statistic generally has better power than HC when the size of the set d is finite and the

signals are moderately sparse.

If Z1, ..., Zd are correlated, as they will be for test statistics arising from neighboring

SNPs in a gene, then S(t) no longer has a binomial distribution under the null. In this

case, the standard Berk-Jones statistic no longer has a meaningful interpretation, and we

may expect it to lose efficiency. In fact, we will show later that the rejection region of the

Berk-Jones has a less desirable shape under various correlation structures, leading to a

significant loss in power when the test statistics are not independent. Therefore we are

interested in developing a modified BJ statistic that can account for correlation among the

marginal test statistics in a set and thus possesses rejection regions which are more robust

to arbitrary correlation structures.

2.3.2 The Generalized Berk-Jones statistic

We now propose the Generalized Berk-Jones statistic for testing the association between a

SNP-set and outcome. Following the spirit of Berk-Jones, GBJ considers a likelihood ratio

type statistic on the mean parameter of S(t), but the key difference is GBJ explicitly ac-

counts for the correlation structure of Z1, ..., Zd. More precisely, we define the GBJ statistic

as:

GBJd = max

1jd/2
log

2

6

6

4

Pr
⇢

S
�|Z|(d�j+1)

�

= j

�

�

�

�

⇡ = j/d, cov(Z) = ⌃

�

Pr
⇢

S
�|Z|(d�j+1)

�

= j

�

�

�

�

⇡ = 2

¯

�

�|Z|(d�j+1)

�

, cov(Z) = ⌃

�

3

7

7

5
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·I
⇢

2

¯

�

�|Z|(d�j+1)

�

<
j

d

�

When the Zj are correlated, S(t) follows either an underdispersed or overdispersed

binomial distribution instead of the standard binomial. However finding the exact distri-

bution of S(t)when ⌃ 6= I is difficult. For a general⌃, computing Pr {S(t) = m} requires
iterating through d choose m terms and is very time consuming. In special cases, such as

when⌃ has an exchangeable correlation structure with⌃ = (1�⇢)I+⇢11T , the calculation

is much easier. However these scenarios occur rarely, if ever, in practice.

We propose to approximate the full distribution of S(t) using an Extended Beta-

Binomial (EBB) distribution (Prentice, 1986). The Extended Beta-Binomial is a reparam-

eterization and extension of the standard Beta-Binomial(↵, �) distribution with the stan-

dard Beta-Binomial being a special case of the EBB. A random variable V ⇠ EBB (d,�, �)

has probability mass function

Pr (V = v; d,�, �) =

✓

d
v

◆ v�1
Y

k=0

(�+ �k)
d�v�1
Y

k=0

(1� �+ �k)

� d�1
Y

k=0

(1 + �i), (2.4)

where we follow the convention
Qa

k=0 ck = 1 for a < 0. The mean of V is given by

E(V ) = d� and the variance is Var(V ) = d�(1� �) {1 + (d� 1)�(1 + �)�1}.
The Extended Beta-Binomial distribution reduces to the Beta-Binomial distribution if

we set � = ↵/(↵ + �) and � = (↵ + � + 1)

�1 / {1� (↵ + � + 1)

�1} for ↵, � > 0. Because

the standard Beta-Binomial distribution requires ↵, � > 0, it cannot accommodate under-

dispersion and never reduces to the binomial distribution. In contrast, the EBB allows for

both overdispersion and underdispersion, and it reduces exactly to the binomial distri-

bution when � = 0. This mechanism allows our GBJ statistic to reduce to the Berk-Jones

when there is no correlation among the observations.

2.3.3 Calculation of the Generalized Berk-Jones statistic

We now describe more precisely the mechanics of calculating the GBJ statistic. To begin,

check if the condition I
�

2

¯

�

�|Z|(d�j+1)

�

< j
d

 

is satisfied at any j  d/2. If the condition

is never satisfied, then the observed value of GBJ is 0 and we do not need to perform any
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more computation. The following steps should only be taken on indices j  d/2 where

the condition is satisfied.

At each qualifying j, we approximate the distribution of S(|Z|(d�j+1)) by an Extended

Beta-Binomial random variable under both the binomial likelihood null and the binomial

likelihood alternative. Denote these two variables by V (j)
0 ⇠ EBB(�(j)

0 , �(j)
0 ) and V (j)

a ⇠
EBB(�(j)

a , �(j)
a ). We solve for (�(j)

0 , �(j)
0 ) through moment matching equations

�(j)
0 = E0

�

S(|Z|(d�j+1))
 

/d,

�(j)
0

1 + �(j)
0

=

Var0
�

S(|Z|(d�j+1))
 � d�(j)

0 (1� �(j)
0 )

d(d� 1)�(j)
0 (1� �(j)

0 )

,

where E0 and Var0 denote the expectation and variance conditional on Z ⇠ MVN(0,⌃).

Similarly, we solve for (�(j)
a , �(j)

a ) using the same equations except withEa and Vara, which

are the expectation and variance conditional on Z ⇠ MVN(µ,⌃). Analogous to the BJ

statistic, µ = (µ̂j,d, ...., µ̂j,d)
T
d⇥1 where µ̂j,d > 0 is again the root of (2.3).

The first moment matching equation is simple to solve, since clearly

E0

�

S(|Z|(d�j+1))
 

= 2d¯�(|Z|(d�j+1)) and Ea

�

S(|Z|(d�j+1))
 

= j. The variance term

in the second equation is more difficult. We can use Theorem 1 of Barnett et al. (2016) for

Var0. For Vara, we need the following theorem:

Theorem 1: Define ¯ri = 2
d(d�1)

P

1k<ld (
P

kl)
i and let Hi(t) be the probabilists’ Her-

mite polynomials. Under the binomial likelihood alternative Z ⇠ MVN(µ,⌃) where

µ = (µ̂j,d, ...., µ̂j,d)
T
d⇥1, the variance of S(|Z|(d�j+1)) is given by

Vara
�

S(|Z|(d�j+1))
 

= d(d� 1)

(

¯

�(t� µ̂j,d)
2
+ �(t� µ̂j,d)

2 ·
1
X

i=1

H2
+
¯ri

i!

)

+d(d� 1)

(

1� 2

¯

�(�t� µ̂j,d) +
¯

�(�t� µ̂j,d)
2
+ �(�t� µ̂j,d)

2 ·
1
X

i=1

H2� ¯ri

i!

)

�2d(d� 1)

(

�(t� µ̂j,d)�(�t� µ̂j,d) ·
1
X

i=1

H+H� ¯ri

i!

)

+2d(d� 1)

�

¯

�(t� µ̂j,d)� ¯

�(t� µ̂j,d)
¯

�(�t� µ̂j,d)
 

+ j

✓

1� j

d

◆

� d(d� 1)

✓

j

d

◆2

H+ = Hi�1(t� µ̂j,d)

H� = Hi�1(�t� µ̂j,d).
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The proof of this theorem is given in the Supplementary Materials. The terms in the

infinite sum shrink very quickly, and in practice we see good accuracy using only the first

seven.

After matching all four parameters (�(j)
0 , �(j)

0 �(j)
a , �(j)

a ), we calculate

GBJ (j)
d = log

8

<

:

Pr
⇣

V (j)
a = j; d,�(j)

a , �(j)
a

⌘

Pr
⇣

V (j)
0 = j; d,�(j)

0 , �(j)
0

⌘

9

=

;

.

The maximum value of GBJ (j)
d among all qualifying j is then the observed Generalized

Berk-Jones statistic.

2.3.4 Analytic p-value calculation for the Generalized Berk-Jones
statistic

LetGd be a general supremum-based global statistic such as the GBJ statistic. SupposeGd

is constructed using independent marginal test statistics Z1, ..., Zd. Denote the observed

value of this statistic by g, where higher values of g indicate more evidence for the alter-

native. As noted by Moscovich-Eiger and Nadler (2017), the p-value for g can often be

written

Pr (Gd � g) = 1� Pr
⇢

8j = 1, 2, ..., d : |Z|(j)  bj

�

�

�

�

Zj
iid⇠ N(0, 1)

�

,

where 0  b1  b2  ...  bd are ’boundary points’ that come from inversion of the

test statistic. Moscovich-Eiger and Nadler (2017) proposed a method that can calculate

the p-value of Gd very quickly if Z1, ..., Zd are independent. However when Z1, ..., Zd are

correlated, their techniques for a fast calculation are not applicable.

An exact p-value for GBJ, and for any global test applied to correlated observations,

must take into account the covariance structure of Z. The p-value for these tests is then

Pr (Gd � g) = 1� Pr
⇢

8j = 1, 2, ..., d : |Z|(j)  bj

�

�

�

�

Z ⇠ MVN(0,⌃)

�

. (2.5)

We are unaware of any computationally feasible expressions to calculate the distribution

of the order statistics |Z|(1), ..., |Z|(d) when d is moderate or large. The Supplementary

Materials provides a procedure to compute this probability by partitioning the region into
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d! separate sections, but the method is very computationally expensive and not feasible

for use with d greater than 10.

However, an alternative way to write the rejection region of equation (2.5) is

Pr
⇢

8j : |Z|(j)  bj

�

�

�

�

Z ⇠ MVN(0,⌃)

�

= Pr
⇢

8j : S(bj)  (d� j)

�

�

�

�

Z ⇠ MVN(0,⌃)

�

. (2.6)

The right hand side of (2.6) suggests that the quantity can be calculated recursively. In-

deed, define b0 = 0 and qj,a = Pr
n

S(bj) = a,
Tj�1

k=1 S(bk)  d� k
o

. The quantity in (2.6) is

just qd,0 and can be calculated recursively as

qj,a =

d�j+1
X

m=a

Pr

(

S(bj) = a, S(bj�1) = m,
j�2
\

k=1

S(bk)  d� k

)

=

d�j+1
X

m=a

Pr

(

S(bj) = a

�

�

�

�

S(bj�1) = m,
j�2
\

k=1

S(bk)  d� k

)

qj�1,m

⇡
d�j+1
X

m=a

Pr
⇢

S(bj) = a

�

�

�

�

S(bj�1) = m

�

qj�1,m. (2.7)

We use an EBB approximation to calculate the first probability in equation (2.7), with the

equations

�j =

¯

�(bj)
¯

�(bj�1)

�j
1 + �j

=

P

u<v



Pr{|Zu|,|Zv |�bj}
Pr{|Zu|,|Zv |�bj�1} �

n

�̄(bj)
�̄(bj�1)

o2
�

d(d� 1)�l(1� �l)

to match the moments. Finally, set Pr {S(bj) = a|S(bj�1) = m} := Pr (Vj = a) where Vj ⇠
EBB(m,�j, �j). Evaluation of Pr (|Zj|, |Zk| � bj) follows from steps similar to the proof of

Theorem 1.

Note that we can generalize the scheme described above to calculate p-values

for many different supremum-based global tests by adopting the general approach of

Moscovich-Eiger and Nadler (2017). As long as the test statistic can be inverted to cre-

ate the bounds b1, ..., bd, we can use equation (2.7) to calculate its p-value when applied

to correlated observations. In particular we can use this procedure to perform p-value

calculations for the HC, GHC, BJ, and GBJ statistics. Both the calculation and the Gen-
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eralized Berk-Jones test are implemented in the R package GBJ, freely available on the

CRAN repository.

2.3.5 The omnibus test

While we will show that the Generalized Berk-Jones test possesses an attractive finite

sample rejection region when signals are moderately sparse, GBJ may also lose power in

the presence of very sparse or dense signals. As SNP-set inference involves testing for a

composite alternative H1 : � 6= 0, there is no uniformly optimal test for both sparse and

dense alternatives. As signal sparsity varies between genes, the best test will also change

from gene to gene, but it is unknown prior to scanning the genome. Thus we propose an

omnibus test that offers robust power over a range of different sparsity levels.

The omnibus test is constructed by combining the SKAT, GBJ, GHC, and minimum

p-value statistics, which have been described above. The motivation for choosing these

four methods is to combine tests that are known to have good power when signals are

dense, moderately sparse, very sparse, and the sparsest possible, respectively. The MinP

method uses the set’s largest marginal test statistic in magnitude |Z|(d) as a test statistic.

When the Zj are independent, Donoho and Jin (2004) showed that MinP asymptotically

reaches the same detection boundary as HC and BJ in the very sparse regime k  d1/4, but

not the moderately sparse regime d1/4 < k < d1/2. In finite samples, MinP can have better

power than the other three tests when there are only one or two causal SNPs. In contrast,

SKAT is known to have high power when signals in a SNP-set are dense.

The omnibus test first applies each of the four tests to the same SNP-set, and then it

carries forward the smallest p-value from the four tests as a test statistic. Specifically, the

omnibus test statistic is defined as:

OMNI = min (pGBJ , pGHC , pSKAT , pMinP ) ,

where pGBJ , pGHC , pSKAT , and pMinP denote the p-values of the four tests applied on the

same SNP-set. As these tests are applied to the same data, the four p-values will be

correlated.

Calculations of the p-value for OMNI must again account for the correlation be-
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tween tests. We employ a Gaussian copula approximation for the joint distribution of

the inverse-normal transformed p-values:

pOMNI = 1� �M

h

�

�

�1
(OMNI),��1

(OMNI),��1
(OMNI),��1

(OMNI)
 

4⇥1
;R4⇥4

i

,

where �M(·;R) denotes the joint cumulative distribution function of a multivariate nor-

mal distribution with mean vector zero and correlation matrix R. The correlation matrix

R of the four component test statistics is estimated through parametric bootstrap under

the null. For each subject i in the study, we simulate a new outcome based on the null

mean µ̂0i. When individual-level data is not available, we take µ̂0i to be the same constant

for all subjects as an approximation. Then each of the four tests are applied with the sim-

ulated outcome instead of the original one. The original design matrix, or approximated

design matrix if working with summary statistics, is used each time. Each of the four

p-values is then inverse-normal transformed; under the null hypothesis the four trans-

formed values have marginal normal distributions with mean zero. As we only need to

estimate the correlation matrix R, only a small number of parametric bootstrap samples

are needed. In practice, this procedure is repeated 100 times, and then we set R equal to

the sample correlations of the inverse-normal transformed statistics. We will see that this

omnibus test performs well across a variety of settings.

2.4 Rejection region analysis of different SNP-set tests

We study in this section the finite sample rejection regions for the BJ, GBJ, HC, and GHC

tests, and we advocate for viewing these statistics as boundary-defining algorithms. By

using the p-value calculation from Section 2.3.4, we can employ standard root-finding

routines to find the observed value g which would result in a p-value of ↵ for a given

SNP-set size, correlation structure, and global test statistic. Then by inverting g to find the

boundary points b1, ..., bd, we can define the rejection region as bounds on the observed

test statistic magnitudes. Plotting these bounds for different tests shows us exactly what

types of signals a given test is well-powered to detect.

To numerically compare the rejection boundaries, consider a simplified model of

SNP-set correlation structure where the set is partitioned into only two sections. Let one
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section be the independence section, where all SNPs in this portion are completely in-

dependent of all other SNPs in the set. Let the other section be the correlated section,

where all SNPs in this portion have common pairwise correlation ⇢ with other SNPs in

the section. For our numerical study, ⇢ = 0.3 for the correlated section. We investigate

SNP-sets of size d = 20 and 100, correlated sections which contain 25%, 50%, and 75% of

the SNPs, and tests at size ↵ = 0.01. These parameters are chosen to represent reason-

able boundaries on the correlation structures seen in common GWAS data; Dawson et al.

(2002) estimated that the average r2 between SNPs separated by 100kb is around 0.1.

The rejection regions for all each SNP-set are plotted in Figure 2.1. At the jth coor-

dinate on the x-axis, if the observed |Z|(j) lies above the boundary of a particular test at

that coordinate, then we would reject the null for that test at level ↵ = 0.01. The lines on

the graph are added to aid in visualization, but there should be no interpretation of inter-

polation between the points. It does not make sense to think of the boundary at |Z|(2.5),
for example. While standard methods for inference on HC and BJ are invalid in the pres-

ence of correlation, valid p-values for these tests can be computed with the same ideas

we have introduced for GBJ inference, specifically following equation (2.7). Thus we can

show that HC and BJ sometimes have much less desirable rejection regions when SNPs

in a set are correlated.

One of the clearest trends from Figure 2.1 is that the HC and GHC boundaries are

lower for a small region around |Z|(d), and then the BJ and GBJ boundaries quickly be-

come smaller as we move left. This behavior indicates that HC and GHC are better at

detecting the sparsest alternatives with only one or two signals, as those signals would

almost always manifest as the test statistics with the largest magnitude. In contrast, the

plots demonstrate that BJ and GBJ can have more power to detect weaker, less sparse sig-

nals which may be more easily found by examining the test statistic which is, say, fifth or

tenth largest in magnitude. The boundaries of HC and GHC can drop below BJ and GBJ

again for the smallest observed magnitudes, but signals would only be found in these

observations if they are particularly dense, a setting which is not the focus of our efforts.

The intuition we can glean from this figure is closely aligned with the theoretical devel-

opment of Donoho and Jin (2004) and the simulations of Li and Siegmund (2015) when
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20 SNPs, 50% correlated, α=0.01
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20 SNPs, 75% correlated, α=0.01
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Figure 2.1: Rejection region of Berk-Jones, Generalized Berk-Jones, Higher Criticism, and
GeneralizedHigher Criticism tests, plotted according to the order statistics of the absolute
values of the test statistics. At each point j on the x-axis, if the jth smallest test statistic in
magnitude is greater than the boundary point for a specific test at j, then we would reject
the null using that test at level ↵ = 0.01. The difference between BJ and GBJ becomes
much more pronounced as both the size of the set and the amount of correlation increase.
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the marginal test statistics Zj are independent. These authors showed that HC is attuned

to detect sparse signals arising at the very tail of the observed distribution, while BJ has

more power as the number of signals rises.

These results also show why BJ is likely to have low power for detecting sparse sig-

nals when the level of correlation is high. When 75% of the SNPs are correlated, the

rejection boundary for BJ at the largest few observations is the highest by multiple orders

of magnitude on the p-value scale. It would not be desirable to apply BJ in these types

of settings, as the test loses an extremely large amount of sensitivity to detect signals in

the most outlying values. BJ is still likely to be suitable for detecting dense signals in

these situations. Here, GBJ acts as a compromise between BJ and GHC under high corre-

lation. GBJ provides a much lower boundary than BJ at the tail in exchange for slightly

higher boundaries near the middle. Thus, GBJ can detect both sparse and dense signals

in this example. On the other hand, GBJ provides a slightly higher boundary than GHC

at the tail in exchange for lower boundaries past the tail, so it trades some power in the

extremely sparse regime for more power to detect moderately sparse signals.

We see that choosing a different statistic is essentially choosing a different boundary-

setting algorithm, and this choice should ideally be informed by parameters such as the

amount of correlation and estimated sparsity level. Ultimately these plots illustrate that

there is no single best global test for all types of alternatives. A genome-wide analysis

strategy using the omnibus test will be likely to have robust power across different spar-

sity settings, correlation structures, and SNP-set sizes.

2.5 Simulation results

2.5.1 Type I error of the Generalized Berk-Jones test

We first illustrate that our p-value calculations for the GBJ and omnibus tests are accu-

rate enough to control the Type I error rate at levels required to declare genome-wide

significance of a SNP-set. To replicate the setting of traditional GWAS data, we perform

the size simulation on a high-LD subset of the FGFR2 gene and also a low-LD subset of

the FGFR2 gene. All SNP-sets are simulated with HAPGEN2 (Su, Marchini and Donnelly,
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2011) using the CEU population fromHapMap3 as a reference. We choose FGFR2 because

it contains both high and low LD regions, and because it will later be the most significant

gene in our analysis of the CGEMS data.

In all simulations the outcome is generated as Y ⇠ N(0, 1), and we fit the linear

regression model (1) with � = 0 and Xi = 1. For our SNP-sets, we generate eight

pre-determined SNPs from FGFR2 which are known to be in high LD and then eight

pre-determined SNPs which are known to be in low LD. Each simulation is repeated 20

million times, and we report the Type I error down to 10

�5. Table 2.1 shows that our GBJ

p-value calculation is accurate and protects the correct size for correlation structures seen

in actual data. The p-value calculation for the omnibus test is similarly accurate at the

most stringent significance levels, but it is somewhat conservative at larger significance

levels.

Table 2.1: Type I error of GBJ and GHC tests computed over 20 million simulations. The
strong LD setting refers to eight SNPs from FGFR2 which are highly correlated. The weak
LD setting refers to eight SNPs from FGFR2 which demonstrate only a small amount of
correlation with each other.

Significance Level GBJ, Strong LD GBJ, Weak LD OMNI, Strong LD OMNI, Weak LD
1 · 10�2

8.50 · 10�3
9.65 · 10�3

6.89 · 10�3
7.22 · 10�3

1 · 10�3
9.18 · 10�4

9.67 · 10�4
7.16 · 10�4

6.95 · 10�4

1 · 10�4
9.82 · 10�5

9.74 · 10�5
9.01 · 10�5

7.61 · 10�5

1 · 10�5
1.12 · 10�5

9.40 · 10�5
1.35 · 10�5

9.50 · 10�5

2.5.2 Power of the Generalized Berk-Jones test under varying sparsity
and correlation structures

To study the power of the GBJ, we conduct simulations under a variety of correlation

structures and sparsity settings. The performance of the GBJ is compared to GHC, SKAT,

the minimum p-value test, and the omnibus test described in Section 2.3.5. For GBJ and

GHC, we calculate the p-value through the method described in Section 2.3.4. The MinP

test p-value is calculated by casting MinP as a boundary-defining test with bj = |Z|(d) for
all j. For SKAT, we use the corresponding R package.

To study how power is impacted by different correlation structures between the
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SNPs, we utilize block correlation structures which are slightly more complex than those

used for the rejection region analysis in Section 2.4. Specifically, consider a set of causal

SNPs that are correlated amongst themselves with common pairwise correlation ⇢1. All

other SNPs are then non-causal, andwe allow half of them to have an exchangeable corre-

lation structure with correlation ⇢3; the other half of the non-causal SNPs are completely

independent of all other non-causal SNPs. Finally the pairwise correlation between a

causal SNP and a non-causal SNP is set at ⇢2. The three correlations ⇢1, ⇢2, ⇢3 will vary

between 0 and 0.3. All SNPs are generated to have minor allele frequency of 0.3.

We demonstrate the effects of signal sparsity by using a large SNP-set of d=200 SNPs

and varying the number of causal SNPs from k = 1 to k = 15. This allows us to examine

power profiles in the very sparse regime (one to four causal SNPs), in the moderately

sparse regime (four to 14 causal SNPs), and at the edge of the dense regime (greater than

14 causal SNPs). Within each set of simulations, we hold constant the percentage of vari-

ance in the outcome explained by the causal SNPs. That is, we lower the per-SNP effect

size as the number of causal SNPs increases, which can cause the power to fall even as

the number of signals grows in Figures 2.2-2.3. Hence in these power curves the main

comparison should be made vertically across different methods at the same sparsity, as

opposed to horizontally for one method across different sparsity levels. The percentage

of variance explained by causal SNPs is set at R2
= 0.01 when the correlation between

causal SNPs is ⇢1 = 0.3, and it is set at R2
= 0.02 when the correlation between causal

SNPs is ⇢1 = 0.

The true disease model is

Yi =

k
X

j=1

�jGij + ✏i, ✏i ⇠ N(0, 1), (2.8)

where all the �j are the same and depend on the number of causal SNPs k. We perform

500 simulations at each different value of k and test at ↵ = 0.01. Figure 2.2 considers the

case where the noise SNPs are independent and Figure 2.3 considers the case where the

noise SNPs are correlated. All the power curves are smoothed to show empirical power.

The first significant trend appearing in Figure 2.2 is the effect of sparsity on power.

We see that GHC andMinP performwell when the number of causal SNPs is low, as these
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Figure 2.2: Power of set-based tests when noise SNPs are independent. On the left, all
SNPs are completely independent of each other, and causal SNPs collectively explain 2%
of the variance in the outcome. On the right, causal SNPs are correlated within them-
selves at ⇢1 = 0.3, and they collectively explain 1% of the variance in the outcome. As the
number of causal SNPs increases, we decrease the per-SNP effect size so that the percent-
age of variance explained is constant within each figure, thus power can fall even as the
number of causal SNPs increases.
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200 SNPs, ρ1=0.3, ρ2=0.3, ρ3=0.3, R2=0.01
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Figure 2.3: Power of set-based tests when there is correlation within noise SNPs (left) and
across all SNPs (right). The correlation structure on the right is slightly simpler than the
previous three structures, as we switch to an exchangeable correlation matrix in order
to accommodate ⇢2 = 0.3 while keeping the correlation matrix positive definite. As the
number of causal SNPs increases, we decrease the per-SNP effect size so that the percent-
age of variance explained is constant within each figure, thus the power can fall even as
the number of causal SNPs increases.
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tests often have themost power in the very sparse regime. In both panels of Figure 2.2, the

transition to GBJ having the most power occurs in the moderately sparse regime. Then

as the number of causal SNPs increases into the dense regime, SKAT begins to catch up

and eventually becomes the most powerful test. This behavior matches our intuition as

well as previously published simulation results. GHC andminimum p-value place excess

weight on the most outlying observations, so they are well-tuned to detect the very sparse

signals. The rejection region of GBJ is better-suited to find moderately sparse signals, and

SKAT is known to perform well with dense signals.

The relationship between sparsity and power can be modified by the total amount

of correlation. In the left panel of Figure 2.3 we set ⇢1 = ⇢3 = 0.3, and MinP and GHC

become the top-performing tests for a larger range of sparsity settings, with GBJ losing

some of its advantage in the moderately sparse regime. SKAT has almost no power in

these situations, as the signals are sparse and there is no correlation between causal and

non-causal SNPs. It appears that a large amount of correlation between the non-causal

SNPs is detrimental to the performance of GBJ. An explanation for this behavior can be

found in the rejection region analysis of Figure 2.1. We see that the bounds of GBJ appear

less favorable compared to GHC when the amount of correlation is high. Since over half

of the SNPs in Figure 2.3 are correlated with ⇢1 = ⇢3 = 0.3, these settings represent a

much larger amount of total correlation than was present in Figure 2.2. In the right panel

of Figure 2.3 we investigate the setting of ⇢2 6= 0 by using an exchangeable correlation

structure, and SKAT dominates as the most powerful test across almost all sparsity levels.

Here we break slightly from the above framework by using exchangeable correlation to

accommodate ⇢2 = 0.3 while still allowing the correlation matrix to be positive definite.

GBJ is a close second to SKAT under most sparsity settings with these parameters. SKAT

is known to have good performance in the presence of LD between causal SNPs and noise

SNPs, which makes signals appear to be dense. The increased density of signals also

buoys the performance of GBJ compared to GHC and minimum p-value, which perform

the worst under exchangeable correlation.

As the second or third best test across all settings, the omnibus test appears to be

robust to LD structure and sparsity. Although it is never the most powerful test, similar
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to GBJ, it never loses too much power compared to the best test. This behavior is expected

as OMNI integrates information from tests which perform well across multiple sparsity

settings.

Overall, GBJ demonstrates good power in a variety of situations, and it is the best-

performing test when the level of sparsity is moderate and there is weak correlation

among the noise SNPs. The correlation between causal and non-causal SNPs can also

be an important driver of performance, as when ⇢2 is nonzero it makes signals appear

more dense, so SKAT shows the most power with GBJ as a close second. However un-

like SKAT, which can have almost no power in certain situations, GBJ demonstrates more

robustness with respect to signal sparsity and between-SNP correlation These results sug-

gest that GBJ is a good choice to use when the signal sparsity is unknown. The omnibus

test is also robust to different degrees of sparsity. GHC and MinP outperform when the

signal is very sparse, or when there is excess correlation among the noise SNPs. Power for

the standard BJ is not plotted in the interest of space, but it behaves like a dense test, sim-

ilar to SKAT, under correlation. This behavior again matches Figure 2.1, which showed

that BJ is more suited to detect dense signals as the amount of correlation increases.

2.5.3 Power of GBJ under actual chromosome 5 correlation structures

We conduct one final simulation to investigate the power of Generalized Berk-Jones un-

der the unstructured LD patterns found in real GWAS data. Blocks of 40 SNPs are chosen

at random locations on chromosome 5, and then genotype data are generated using HAP-

GEN2 (Su et al., 2011), with the entire HapMap3 CEU population used as reference. We

choose 40 because this is approximately the median size of genes in our CGEMS analysis

below. A total of 160 different blocks on the chromosome are selected, and then 20 are as-

signed to each sparsity level from one to eight causal genes. We perform 100 simulations

for each block, for a total of 2000 at each sparsity setting. We set constant �j = 0.07 in

equation (2.8). Testing is performed at ↵ = 1 · 10�5.

We see in Figure 2.4 that GBJ, GHC, SKAT, and the omnibus test all have very similar

power curves in this setting, while minP lags slightly behind. As the number of causal

SNPs increases, GBJ demonstrates the best power by a small amount. These results are
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Figure 2.4: Power of set-based tests with correlation structures found in actual chromo-
some 5 data. On the left, we show all 2000 simulations at each sparsity setting, and on
the right we only use simulations where the median value of ⇢2 is greater than 0; this
corresponds to roughly half of the data. The effect size is kept constant at �j = 0.07, so
the power continues to grow as the number of causal SNPs increases. In both panels GBJ
is the best-performing test by a small amount as the number of causal SNPs increases.

rather homogenous because sparsity levels are more coarse, and because the parameters

are a mix of the values defined in Figures 2.2 and 2.3. When restricting our analysis to

the blocks which have median ⇢2 > 0, we see that power is higher across the board, but

the relative performance of all tests remains approximately unchanged. Median ⇢2 is not

a perfect summary measure, as it cannot single-handedly capture the large number of

parameters in an unstructured correlation matrix. Further parsing of the data would be

necessary to see larger differences in performance. In a practical setting, we might switch

between tests based on certain SNP-set characteristics, such as applying GBJ when the set

is large and likely to have moderately sparse signals. These results do again demonstrate

the robustness and power of GBJ across multiple situations, as it provides the most power

across a large portion of the sparse regime.

2.6 Gene-level analysis of the CGEMS GWAS data

The CGEMS breast cancer dataset contains a case-control sample of 1145 breast cancer

cases, all postmenopausal women with European ancestry, and 1142 controls recruited

from the Nurses’ Health Study. These womenwere genotyped at 528143 SNPs with the Il-
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lumina HumanHap500 array. The dataset was originally analyzed by Hunter et al. (2007)

in the single-marker GWAS approach. The authors did not find any individual SNPs to

reach the genome-wide significance level of 5 ⇥ 10

�8, but they highlighted FGFR2 as a

strong candidate for future studies based on four SNPs in the gene that showed sugges-

tive association with breast cancer. Such a situation succinctly illustrates the burden of

adjusting for multiple comparisons when testing individual SNPs. Gene-level analysis

provides an attractive alternative strategy that can reduce the number of comparisons

and also aggregate evidence of signals across multiple SNPs in a gene. Here we perform

a gene-level analysis to study the association between genes and breast cancer risk.

Since individual-level genotype data were available for this study, we first calculated

the marginal test statistics for each SNP using the model in Section 2.2.1. Specifically, we

fit a logistic regression model with covariates age and the first three genotype principal

components. Then, for each of 14991 genes, we collected the marginal test statistics for

all SNPs located within the region defined by that gene. Each gene with more than one

marginal SNP test statistic was analyzed with GBJ, GHC, SKAT, MinP, and the omnibus

test.

In Table 2.2, we rank the top ten genes according to the smallest p-value produced by

any of the five tests. In this sample, GBJ provides the strongest evidence of association

for the top four genes, and five of the top ten. Most of these genes are ranked highly by

multiple other methods, however no other method provides the lowest p-value for more

than two of the top ten genes. In fact, GHC and MinP produce the smallest p-value only

once between the two of them. One possible explanation for the underperformance of

GHC and MinP is that there may be multiple tagged SNPs surrounding the true causal

loci for each of these genes, which could create a lack of extremely sparse alternatives.

The lowest p-value for any gene over all five tests is produced by testing FGFR2 with

GBJ, supporting the conclusions of Hunter et al. (2007). Since FGFR2 appears to have

signals coming from at least four different SNPs and contains 35 SNPs in total, it would

seem to fall into the category of moderate signal sparsity, where GBJ has good perfor-

mance. Thus we may have expected beforehand that GBJ would be the most powerful

test for this gene. FGFR2 has been further validated as a breast cancer associated locus in
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Table 2.2: Top significant genes in gene-level analysis of CGEMS breast cancer GWAS
data, ranked by minimum p-value produced by any of the five tests. The test which
produces the smallest p-value for each gene is highlighted in red.

Gene GHC GBJ MinP SKAT OMNI d
FGFR2 2.84 · 10�5

4.58 · 10�6
8.20 · 10�5

3.32 · 10�5
2.58 · 10�5

35

CNGA3 3.00 · 10�4
4.04 · 10�5

1.75 · 10�3
8.34 · 10�5

1.84 · 10�4
26

PTCD3 1.21 · 10�4
5.50 · 10�5

3.16 · 10�4
1.87 · 10�4

6.83 · 10�5
12

POLR1A 9.58 · 10�5
6.19 · 10�5

4.62 · 10�4
4.23 · 10�4

3.87 · 10�4
17

ZNF263 4.89 · 10�4
3.90 · 10�4

8.09 · 10�4
1.26 · 10�3

6.84 · 10�5
3

VWA3B 4.20 · 10�4
2.32 · 10�4

1.43 · 10�3
1.48 · 10�4

4.87 · 10�4
51

TBK1 7.04 · 10�4
3.35 · 10�4

1.27 · 10�3
1.48 · 10�4

6.05 · 10�4
11

ABCA1 3.74 · 10�3
1.65 · 10�4

7.92 · 10�3
4.99 · 10�4

2.26 · 10�4
63

MMRN1 2.31 · 10�4
5.51 · 10�4

1.72 · 10�4
3.34 · 10�2

7.73 · 10�4
10

TIGD7 5.79 · 10�4
3.78 · 10�4

1.32 · 10�3
1.33 · 10�3

2.05 · 10�4
4

multiple follow-up studies (Meyer et al., 2008; Liang et al., 2008).

Besides FGFR2, genes such as PTCD3 and POLR1A have also been implicated as risk

loci in independent investigations (Boehm et al., 2007; Jia et al., 2011). The overlap of our

findings with other studies and other statistics provides a level of reassurance that GBJ

performs well in identifying truly significant genes and not simply spurious associations.

Alternately, ABCA1 is an example of a gene that may not have received further scrutiny if

we were not utilizing the GBJ test. ABCA1 expression has been linked with breast cancer

risk (Smith and Land, 2012), but MinP and GHC do not provide the same strength of

evidence that GBJ does. It seems likely that there are more than a few signal SNPs in

ABCA1, especially since ABCA1 contains a relatively large number of SNPs compared to

the other genes in this dataset.

Perhaps due to the limited sample size, no test produces a p-value low enough to be

declared significant after Bonferroni correction for 14991 genes. Still, this analysis high-

lights the advantages of Generalized Berk-Jones compared to alternative tests. The GBJ

p-value for FGFR2 does come very close to the Bonferroni-corrected level (3.34 ⇥ 10

�6),

and it certainly provides more evidence of association than the single SNP statistics. Ad-

ditionally, GBJ often gives the highest measure of significance, and never the lowest, in

the genes displayed, demonstrating its robustness across different set sizes and LD pat-

terns.
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2.7 Discussion

We have proposed the Generalized Berk-Jones statistic to test for association between a

SNP-set and an outcome. Our GBJ generalizes the standard Berk-Jones by modifying the

BJ statistic to directly account for the correlation between individual SNPs. This mod-

ification results in a test that is more powerful when SNPs are in LD. We also provide

an analytic p-value calculation for GBJ and generalize it to a class of supremum-based

global tests, allowing valid inference for HC, GHC, BJ, and other methods when these

procedures are applied as SNP-set tests using correlated marginal test statistics. Rejec-

tion region analysis demonstrates that GBJ can be described as a compromise between

Berk-Jones and Higher Criticism-type tests in terms of finite sample performance.

For example, while our numerical analysis shows situations where GBJ does not set

the lowest boundary at either |Z|(d) or |Z|(d/2), GBJ generally comes very close to the low-

est boundary at both locations, which affords it both robustness to signal sparsity and

power to detect moderately sparse signals. GHC and HC often set the lowest bound-

ary around |Z|(d), but in return they concede a large amount of volume past the first few

most extreme observations, which lowers power in the moderately sparse regime. BJ

frequently sets the lowest boundary past the tail, but its tail boundary can be orders of

magnitude larger than that of GBJ, HC, and GHC. Bounds in the expected signal regions

must be viewed holistically, so slightly lower bounds at a few locations are not necessarily

desirable if the price is much higher bounds in other signal locations, as in the case of BJ.

Thus GBJ offers good power to detect moderately sparse effects without losing too much

power when single-SNP signals are extremely sparse.

Simulation results reinforce the conclusions we find from examining the rejection re-

gions of GHC and GBJ. Additionally we see that the MinP test performance is quite good

when signals are very sparse, similar to GHC, but MinP does not perform as well as GHC

when signals become more dense. SKAT has a unique power profile, as it can be very

powerful when signals are dense or there is correlation between causal and non-causal

SNPs, but it is also not robust to different correlation structures and will often have very

little power when there is no correlation between causal and non-causal SNPs. The om-
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nibus test is another test which offers robust power across different sparsity levels, and

while it is never the best test, it also never has the worst power. When applied to data

from the CGEMS study, we see that GBJ often produces the most significant p-values,

perhaps owing to its versatility across different parameter settings.

In demonstrating that the BJ statistic can be adapted for increased robustness to corre-

lation, we have also demonstrated that these types of boundary-defining algorithms can

be modified to increase finite sample power under specific set-level parameters. It would

be of interest to develop different boundary-defining methods that offer more favorable

rejection regions in narrow but well-defined settings. For example, we see that GBJ’s

advantage over GHC in the moderately sparse regime tends to decrease as the level of

correlation increases. It would be convenient to have another test which dominates both

GHC and GBJ when the set is large and the level of correlation is extremely high, for the

rare occasion that we find such a set in the data. While this kind of test may possess poor

boundaries in the majority of common situations, it could be very useful in a toolbox-type

approach that matches each SNP-set with a specially tuned test.

In a similar vein, it would be interesting to understand the boundary shapes for other

previously proposed boundary algorithms (Jager and Wellner, 2007) in the class of Berk-

Jones and Higher Criticism. While many of these algorithms share the same asymptotic

guarantees of BJ and HC, little is known about their comparative finite sample perfor-

mance, especially when observations in a set are correlated. These other methods might

also have great value as part of the toolbox technique mentioned above.

As genomic data collection techniques continue to evolve, it may be necessary to

adapt the GBJ as well. In particular, the rise of whole genome sequencing and fine map-

ping studies is leading to the discovery of more SNPs with extremely rare minor alleles.

Marginal test statistics generated from these SNPs are known to be non-Gaussian in finite

samples, and thus they will not have the distribution we assume for GBJ. GBJ will need

to account for null distributions that are not standard normal before SNP-sets containing

these rare variants can be tested.
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2.8 Appendix

2.8.1 Proof of Theorem 1 from Section 2.3.3

We are interested in the variance of

S(t) =

d
X

j=1

1 (|Zj| � t) ,

Z ⇠ MVN(µ,⌃).

Assume that all the Zj have a common mean with µ = (µ̂,j,d, ..., µ̂j,d). Then the variance is

given by

Var {S(t)} = n⇡(1� ⇡) + 2

X

1j<kd

Cov(Zj, Zk),

⇡ = 1� �

¯

�(t� µ̂j,d)� ¯

�(�t� µ̂j,d)
 

,

and term involving the covariances can be rewritten as

2

X

1j<kd

Cov(Zj , Zk) = 2

X

1j<kd

�

Pr (|Zj |, |Zk| � t)� ⇡2
 

= �d(d� 1)⇡2
+ 2

X

1j<kd

Pr (Zj , Zk � t) + 2

X

1j<kd

Pr (Zj , Zk  �t)

+2

X

1j<kd

Pr (Zj  �t, Zk � t) + 2

X

1j<kd

Pr (Zj � t, Zk  �t) .

Each of the four types of probabilities can be reexpressed using the standard Mehler
kernel for the bivariate normal distribution:

X

1j<kd

Pr (Zj , Zk � t)

=

X

1j<kd

Z 1

t

Z 1

t
�2 {(zj � µ̂j,d), (zk � µ̂j,d); ⇢jk} dzjdzk

=

X

1j<kd

Z 1

t

Z 1

t
�(zj � µ̂j,d)�(zk � µ̂j,d)

1
X

r=0

⇢rjk
r!

Hr(zj � µ̂j,d)Hr(zk � µ̂j,d)dzjdzk

=

X

1j<kd

(

¯

�(t� µ̂j,d)
2
+ �(t� µ̂j,d)

2
1
X

r=1

Hr�1(t� µ̂j,d)
2

r!
⇢rjk

)

=

d(d� 1)

2

¯

�(t� µ̂j,d)
2
+ �(t� µ̂j,d)

2
1
X

r=1

Hr�1(t� µ̂j,d)
2

r!

X

1j<kd

⇢rjk

=

d(d� 1)

2

¯

�(t� µ̂j,d)
2
+

d(d� 1)

2

�(t� µ̂j,d)
2

1
X

r=1

Hr�1(t� µ̂j,d)
2

r!
¯⇢r.
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Here �2(x, y; ⇢) represents the standard bivariate normal distribution with mean 0, unit

variances, and correlation parameter ⇢. Also, ¯⇢r = 2

P

1j<kd ⇢
r
jk/{d(d� 1)}. We skip the

similar derivation for the other three probabilities and give only the final expressions:

2

X

1j<kd

Pr (Zj , Zk � t)

= d(d� 1)

(

¯

�(t� µ̂j,d)
2
+ �(t� µ̂j,d)

2
1
X

r=1

Hr�1(t� µ̂j,d)
2

r!
¯⇢r

)

,

2

X

1j<kd

Pr (Zj , Zk  �t)

= d(d� 1)

(

1� 2

¯

�(�t� µ̂j,d) +
¯

�(�t� µ̂j,d)
2
+ �(�t� µ̂j,d)

2
1
X

r=1

Hr�1(�t� µ̂j,d)
2

r!
¯⇢r

)

,

and

2
X

1j<kd

Pr (Zj  �t, Zk � t)

= d(d� 1)⇥
(
�̄(t� µ̂j,d)� �̄(t� µ̂j,d)�̄(�t� µ̂j,d)� �(t� µ̂j,d)�(�t� µ̂j,d)

1X

r=1

Hr�1(t� µ̂j,d)Hr�1(�t� µ̂j,d)

r!
⇢̄r

)
.

So in total we have:

2
X

1j<kd

Cov(Zj , Zk)

= �d(d� 1)⇡2 + d(d� 1)

"
�̄(t� µ̂j,d)

2 + �(t� µ̂j,d)
2

1X

r=1

Hr�1(t� µ̂j,d)2

r!
⇢̄r

#

+d(d� 1)

 
1� 2�̄(�t� µ̂j,d) + �̄(�t� µ̂j,d)

2 + �(�t� µ̂j,d)
2

1X

r=1

Hr�1(�t� µ̂j,d)2

r!
⇢̄r

!

+2d(d� 1)⇥
(
�̄(t� µ̂j,d)� �̄(t� µ̂j,d)�̄(�t� µ̂j,d)� �(t� µ̂j,d)�(�t� µ̂j,d)

1X

r=1

Hr�1(t� µ̂j,d)Hr�1(�t� µ̂j,d)

r!
⇢̄r

)
.

Put it all back together for the result given in the theorem.

2.8.2 Exact p-value calculation using equation 2.5 from Section 2.3.4

We are interested in calculating the probability

Pr (Gd � g) = 1� Pr
⇢

8j = 1, 2, ..., d : |Z|(j)  bj

�

�

�

�

Z ⇠ MVN(0,⌃)

�

.

Using the law of total probability, our quantity of interest is

Pr
⇢

8j : |Z|(j)  bj

�

�

�

�

Z ⇠ MVN(0,⌃)

�

=

X

a2A
Pr
⇢

8j : |Z|(j)  bj and |Z|(j) = |Zaj |
�

�

�

�

Z ⇠ MVN(0,⌃)

�

,
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A = {(1, 2, ..., d� 1, d) , (1, 2, ..., d, d� 1) , ...., (d, d� 1, ..., 2, 1)}
(All d! possible permutations of the integers from 1 to d).

Thus the p-value can be expressed as

Pr (G � g)

= 1�
X

a2A
Pr
�

0  |Za1 |  b1, |Za1 |  |Za2 |  b2, ...., |Zad�1 |  |Zad |  bd|Z ⇠ MVN(0,⌃)

 

.

At this point it is apparent that we will need some sort of distribution function for Y =

|Z|, where Y is the result of applying the absolute value operator on every element of Z.

Y is also known as the multivariate half-normal distribution. If Z ⇠ MVN(0,⌃), then

the probability density function ofY can be written as

fY(y) =

X

s2S
(2⇡)�

d
2 |⌃s|� 1

2
exp

⇢

�1

2

yT⌃�1
s y

�

, (2.9)

S = {(�1, ..., �d) : �j = ±18j} ,
⇤s = {diag (s)},

⌃�1
s = ⇤s⌃

�1
⇤s.

Note that there are 2d elements in S. With the use of (2.9), the p-value can be expressed as

a d-dimensional integral:

Pr (G � g) = 1�
X

a2A

X

s2S

Z b1

0

Z b2

Y1

...

Z bd

Yd�1

(2⇡)�
d
2 |⌃(a)

s |� 1
2
exp

⇢

�1

2

yT
�

⌃(a)
s

��1
y

�

dYd...dY1.

(2.10)

By the use of ⌃(a)
s we mean the variance matrix that is permuted to account for the order-

ing a. It can be defined as:

⌃

(a)
s = P (a)⌃sP

(a)T

P (a)
=

0

B

B

B

B

@

eTa1
eTa2
.
.
eTad

1

C

C

C

C

A

P (d,d�1,...,3,2,1)
=

0

B

B

B

B

B

B

@

1

1

.
.

1

1

1

C

C

C

C

C

C

A
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where ei denotes the d ⇥ 1 vector with a 1 in the ith position and 0 everywhere else.

Although equation (2.10) appears to be calculable through many calls to a multivariate

normal distribution solver, the lower bounds are functions of variables in the integra-

tion, which is not a feature supported by many statistical computing packages. To put

the expression into a form more accessible for computation, we can reinterpret the d-

dimensional integral:

Z a1

0

Z a2

Y1

...

Z ad

Yd�1

(2⇡)�
d
2 |⌃(a)

s |� 1
2
exp

⇢

�1

2

yT
⇣

⌃(a)
s

⌘�1
y

�

dYd, ..., dY1

= Pr
n

0  Y1  b1, Y1  Y2  b2, ..., Yd�1  Yd  bd;Y ⇠ MVN(0,⌃(a)
s )

o

= Pr
n

0  Y1  b1, Y2  b2, Y3  b3, ..., Yd  bd, Y2 � Y1 � 0, ..., Yd � Yd�1 � 0;Y ⇠ MVN(0,⌃(a)
s )

o

.

Now we can easily find the distribution of (Y1, Y2, ..., Yd, Y2 � Y1, ..., Yd�1 � Yd) so that the
last line above becomes

Pr
n

0  Y1  b1, Y2  b2, Y3  b3, ..., Yd  bd, Y2 � Y1 � 0, ..., Yd � Yd�1 � 0;Y ⇠ MVN(0,⌃(a)
s )

o

= Pr (0  T1  b1, T2  b2, T3  b3, ..., Td  ad, Td+1 � 0, ..., T2d�1 � 0) ,

T ⇠ MVN
⇣

0(2d�1)⇥1,�d⌃
(a)
s �

T
d

⌘

,

�d =

✓

Id⇥d

D

◆

(2d�1)⇥d

,D =

0

B

B

B

B

@

�1 1

�1 1

. .

. .
�1 1

1

C

C

C

C

A

(d�1)⇥d

.

And the final p-value is given by

Pr (G � g) = 1�
X

a2A

X

s2S
Pr (L  Ta,s  U) , (2.11)

Ta,s ⇠ MVN
�

0(2d�1)⇥1,�d⌃
(a)
s �

T
d

�

,

L = (0,�1, ...,�1
| {z }

d�1

, 0, ..., 0
| {z }

d�1

),

U = (b1, b2, ..., bd,1, ...,1
| {z }

d�1

).

Equation (2.11) gives us the integral bounds as constants, at a cost of increasing the di-

mension of the multivariate normal distribution of interest from d to 2d � 1. This final

expression can be used in any number of computing packages to produce the desired

probability.
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3.1 Introduction

Genetic association studies commonly attempt to perform inference on the association

between a single variable of interest and a large number of possibly related features.

However, signals among the features are often rare and weak, and the high number of

tests creates a large multiple testing burden, so power to detect associations at the indi-

vidual feature level is low. Common examples of such analyses include Genome Wide

Association Studies (GWAS), where only a small number of Single Nucleotide Polymor-

phisms (SNPs) will show association with an outcome of interest (Manolio et al., 2009),

and Phenome Wide Association Studies (PheWAS), which invert the GWAS design by

testing many phenotypes for their association with one SNP (Denny et al., 2013).

Because of the challenges associated with testing features individually, it has become

increasingly popular to group features into sets and then perform set-based association

tests (Lee et al., 2014). For example, in the GWAS setting, SNPs can be grouped into sets by

their location in the same gene or pathway (Wu et al., 2011). In the PheWAS framework,

diseases can be categorized by the similarity of their symptoms or the biological networks

they affect. Set-based tests then offer the ability to increase power by pooling signals to

make them stronger (Lee et al., 2012) or by reducing the multiple testing burden. Set-

based interpretations may also be more useful to clinicians and other researchers.

As set-based inference has become more prevalent, the number of methods designed

to performed this type of inference in rare-weak genetics settings has also grown. Many

of these methods drawn inspiration from the Higher Criticism (HC) statistic (Donoho and

Jin, 2004), which is notable for developing the idea of a rare-weak detection boundary. In

brief, the Higher Criticism, Berk-Jones (BJ), and a class of related tests are asymptotically

able to detect the sparsest and weakest signals detectable by any statistical test when fea-

tures in a set are independent. This optimality property has made it a very attractive

choice for genomics applications, where true signal features are expected to be rare and

have small effects. In finite samples HC is known to excel at detecting extremely sparse

signals, while BJ has more power in moderately sparse settings (Walther, 2013; Li and

Siegmund, 2015). However because this class of tests was designed to aggregate inde-
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pendent marginal test statistics, the tests cannot be directly applied to genomic features,

which are often not independent and will thus produce correlated marginal test statistics.

To adapt the Higher Criticism for use with correlated data, Hall and Jin (2010) pro-

posed the innovated Higher Criticism (iHC), which first decorrelates marginal test statis-

tics through a linear transformation. The original Higher Criticism statistic can then be

applied to the decorrelated data. This principle can be applied to other tests in the same

family, producing, for example, the innovated Berk-Jones (iBJ). A drawback of the innova-

tion idea is that the transformation has been observed to reduce the magnitude of signals.

For example, in the Cancer Genetic Markers of Susceptibility (CGEMS) GWAS, four SNPs

in the FGFR2 gene show strong evidence of association with breast cancer risk, producing

marginal p-values less than 1.2 ·10�5. However, after decorrelation, the smallest marginal

p-value is only 1.2 · 10�4, leading to an insignificant iHC p-value for the association be-

tween FGFR2 and breast cancer risk. As FGFR2 has been validated to be breast cancer

risk gene in multiple follow-up studies (Stevens et al., 2006; Eliassen et al., 2007), this is

a disappointing result for iHC and demonstrates the disadvantages of the decorrelation

step.

The Generalized Higher Criticism (GHC) (Barnett et al., 2016) and Generalized Berk-

Jones (GBJ) (Sun and Lin, 2017) were recently proposed as alternatives to apply the princi-

ples of Higher Criticism and Berk-Joneswithout needing to first transform the data. These

tests adapt the HC and BJ test statistics to directly incorporate the correlation among test

statistics in a set. Thus the GHC and GBJ provide better finite sample rejection regions

thanHC and BJ when features are correlated (Sun and Lin, 2017). Applying GHC andGBJ

to FGFR2 in the CGEMS data produces gene-based p-values that are approximately two

orders of magnitude smaller than iHC, in large part because these tests can be applied

directly to the four original single-SNP signals.

In this paper we seek to derive analytically an understanding of the factors which de-

termine performance of set-based tests for sparse alternatives. While development of the

GHC and GBJ was originally motivated by dissatisfaction with the attenuation of signals

in innovated tests, as in the FGFR2 example above, there are also situations where the

decorrelation transformation may increase the magnitude of test statistics. Additionally,
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both iHC and GHC are known to provide certain asymptotic guarantees in the same vein

as Higher Criticism (Hall and Jin, 2010; Barnett et al., 2016). Thus it is often not clear

which test a researcher should choose for any given dataset. In particular, little is known

about the performance of innovated methods relative to non-innovated tests. Our goal is

to provide some guidance regarding the power of these procedures so that statisticians

may perform more informed inference.

In our work we uncover a strong relationship between the correlation structure of

features in a set and the resulting performance of innovated tests, but this behavior oc-

curs only in models which test the association between one explanatory variable and a

set of outcomes, which we term multiple phenotype testing for its similarity to PheWAS.

When the model is designed to test the association between one outcome and a set of

explanatory variables, which we term SNP-set testing for its connection to GWAS, the

correlation structure of the features produces less of an impact on the power of innovated

tests. Based on these findings, we recommend that innovated tests be used in multiple

phenotype settings, especially those where the correlation between features is high, while

non-transformationmethods be used in SNP-set settings. Other elements, for example the

strength and direction of individual signals, clearly may also play large roles in perfor-

mance, but the correlation structure and class of test are generally the only parameters

known to the researcher in advance, which motivates our focus.

We further use simulation to demonstrate how correlation, and specifically the cor-

relation between signal and noise features, leads to crucial differences in performance

between transformation-based and non-transformation tests in the multiple phenotype

setting but not the SNP-set setting. As a case study of how these properties are repre-

sented in actual genomic data, we investigate the multiple phenotype setting by testing

how individual SNPs affect DNA methylation at various locations along the genome. In

the SNP-set setting, we use GWAS data to perform an analysis of the genes that most sig-

nificantly affect breast cancer. For the remainder of the manuscript we will interchange-

ably use ’K:1’ to denote the multiple phenotype setting with K outcomes and 1 explana-

tory variable and ’1:K’ to denote the SNP-set setting with 1 outcome and K explanatory

variables.
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The rest of the paper is organized as follows. Section 3.2 introduces the models for

SNP-set and multiple phenotype association testing. Section 3.2 explains how decorrela-

tion can be cast as an eigendecomposition and demonstrates how correlation structures

can upweight or downweight signals differently in the 1:K and K:1 settings. Section 3.4

explores how differences in rejection region and signal sparsity can affect performance

of innovated and non-innovated tests. Section 3.5 validates our analytic results through

simulation. Section 3.6 presents our applications to searching for regions methylated by

lung cancer risk SNPs and discovering genes associated with breast cancer. We conclude

with a discussion in Section 3.7.

3.2 Frameworks for SNP-set and multiple phenotype test-
ing

3.2.1 The K:1 multiple phenotype testing framework

In the K:1multiple phenotype setting, each feature is an outcome, andwe are interested in

aggregating the results fromK different regressionmodels. A typical motivating example

for this framework is the search for pleiotropic effects between one SNP and multiple

diseases. To simplify the development of our results on the efficacy of decorrelation, we

consider the following standardized regression model.

Suppose the data consist of n individuals, and for each individual i we observe

(G(P )
i ,Y(P )

i ) where G(P )
i is a scalar explanatory variable of interest, i.e. the number of

minor alleles at a certain SNP, andY(P )
i =

⇣

Y (P )
i1 , ..., Y (P )

iK

⌘

is a vector ofK possibly corre-

lated outcomes. Assume that each Y(P )
.k =

⇣

Y (P )
1k , ..., Y (P )

nk

⌘T

, k = 1, ..., K is centered and

scaled to have mean 0 and variance 1, and also assume that G(P )
=

⇣

G(P )
1 , ..., G(P )

n

⌘T

is

centered withmean 0 and scaled so that ||G(P )||2 = 1. Let the model for the kth phenotype

be

Y (P )
ik = �(P )

k G(P )
i + ✏(P )

ik (3.1)

where ✏(P )
i =

n

✏(P )
i1 , ..., ✏(P )

iK

oT

⇠ N
⇣

0,⌃(P )
K⇥K

⌘

describes the correlation among the pheno-

types. Covariates can be incorporated into this model by first regressing the outcomes on
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the covariates and then using the regression residuals as the outcomes in equation (3.1).

The global null hypothesis H0 : �(P )
= 0 corresponds to the situation where no out-

comes in the set are associated with our explanatory variable. Under this null, we can

calculate a marginal score statistic for each outcome as Z(P )
k =

�

G(P )
�T

Y(P )
.k , and we then

have

Z(P ) H0⇠ N(0,⌃(P )
).

Under the alternative, E
�

Z(P )
�

= �(P ), which we assume to be a sparse vector.

At this point in the analysis, the choice of set-based test will dictate the next step.

Either GHC or GBJ can be applied directly to Z(P ), or the innovated tests can be applied if

we first decorrelate Z(P ) through multiplication by a matrixAwhich satisfiesA⌃(P )AT
=

I. In general A is not unique, because if A⌃(P )AT
= I then (QA)⌃(P )

(QA)

T
= I also,

where Q is any orthogonal matrix. Hall and Jin (2010) choose A to be the inverse of the

Cholesky decomposition of Z(P ), so that A =

�

L(P )
��1 is the inverse of the unique lower

triangular matrix L(P ) such that L(P )
�

L(P )
�T

= ⌃(P ).

In our work, we will find it more convenient to work with the eigendecomposition

of Z(P ). Let ⌃(P ) be a symmetric, positive definite covariance matrix. Then it can be

decomposed as⌃(P )
= U(P )⇤(P )

�

U(P )
�T where⇤(P ) is a diagonal matrix consisting of the

eigenvalues of⌃(P ), sorted so that⌃(P )
1,1 contains the largest eigenvalue and⌃(P )

K,K contains

the smallest. U(P ) is then an orthogonal matrix where the kth column is the eigenvector

corresponding to the eigenvalue at ⌃(P )
k,k . We can see that

n

�

⇤(P )
��1/2 �

U(P )
�T
o

⌃(P )
n

�

⇤(P )
��1/2 �

U(P )
�T
oT

= I

as well. As noted previously,
�

⇤(P )
��1/2 �

U(P )
�T

= Q
�

L(P )
��1 where Q is the orthogonal

matrix with columns that are eigenvectors of
�

L(P )
�T

L(P ).

Denote byV(P ) the decorrelated test statistics in themultiple phenotype setting. Then

under the null hypothesis,V(P ) H0⇠ N (0, I), and under the alternative,

Ea

�

V(P )
�

=

�

⇤(P )
��1/2 �

U(P )
�T

�(P ).

Note that the inverses of the square roots of the eigenvalues acts as weights on the signal

in
�

U(P )
�T

�(P ).

66



3.2.2 The 1:K SNP-set testing framework

In the 1:K SNP-set setting, each feature is an explanatory variable. A typical motivating

example for this framework is testing for the association between one phenotype and all

the SNPs in a genetic construct, for instance a gene or a pathway. A naive approach is to

fit all K features in the same regression model and perform a K degree of freedom test,

but whenK is large this test can lose much of its power.

Again assume that we have data for n individuals, and for each individual i we ob-

serve (G(S)
i , Y (S)

i ), where Y (S)
i is the scalar outcome of interest, andG(S)

i =

⇣

G(S)
i1 , ..., G(S)

iK

⌘

is a vector ofK possibly correlated explanatory variables, as in the SNPs located in a gene.

Assume that Y(S)
=

⇣

Y (S)
1 , ..., Y (S)

n

⌘T

is centered and scaled to have mean 0 and variance

1, and also assume that each G(S)
.k =

⇣

G(S)
1k , ..., G

(S)
nk

⌘T

is centered with mean 0 and scaled

so that ||G(S)
.j ||2 = 1. Denote by G(S)

=

⇣

G(S)
.1 , ...,G(S)

.K

⌘

the entire n ⇥ K feature matrix.

The correlation matrix of the features is given by ⌃(S)
=

�

G(S)
�T

G(S).

Let the model for Y (S)
i be

Y (S)
i = �(S)

1 G(S)
i1 + ...+ �(S)

K G(S
iK + ✏(S)i (3.2)

with ✏(S)i ⇠ N
�

0, (�2
)

(S)
 

. Under the null hypothesis H0 : �(S)
= 0, a marginal score

statistic for each �k is given by Z(S)
k =

⇣

G(S)
.k

⌘T

Y(S), and the distribution of the entire

vector of test statistics is

Z(S) H0⇠ N(0,⌃(S)
).

Under the alternative, E
�

Z(S)
�

= ⌃(S)�(S).

Again, at this point we can either apply GHC or GBJ to Z(S), or we can choose to

decorrelate the Z(S). When⌃(S) is a symmetric, positive definite covariance matrix, it can

be decomposed as⌃(S)
= U(S)⇤(S)

�

U(S)
�T . Denote byV(S) the decorrelated test statistics

in the SNP-set setting. Then under the null hypothesis, V(S) H0⇠ N (0, I), and under the

alternative,

Ea

�

V(S)
�

=

�

⇤(S)
��1/2 �

U(S)
�T

⌃(S)�(S)
=

�

⇤(S)
�1/2 �

U(S)
�T

�(S).

Note that the square roots of the eigenvalues acts as weights on the signal
�

U(S)
�T

�(S).
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3.3 Effect of correlation on signal strength

3.3.1 Eigendecomposition of block correlation matrices

We see that a key advantage of using eigendecomposition to perform the innovation step

is that the eigenvalues of the covariancematrix can be viewed as signal weights. Tomodel

how correlation structure impacts the power of our set-based tests, we will utilize block

matrix structures of the form

⌃ =



⌃1 ⌃2

⌃T
2 ⌃3

�

(3.3)

where⌃1 = ⇢11K1⇥11T
K1⇥1 + (1� ⇢1)IK1⇥K1 ,⌃2 = ⇢21K1⇥11T

K0⇥1, and⌃3 = ⇢31K0⇥11T
K0⇥1 +

(1� ⇢3)IK0⇥K0 . Here ⌃1 represents the correlation between the K1 causal features, which

we model with an exchangeable structure described by ⇢1. Then ⌃2 represents the corre-

lations between causal features and noise features, which we set to always be ⇢2. Finally,

⌃3 characterizes the correlation between the K0 noise features, which we also take to be

exchangeable with common pairwise correlation ⇢3. In our work we are interested in

sparse alternatives, so generallyK0 � K1.

Clearly the signal strengths after decorrelation are also dependent on
�

U(P )
�T

�(P )

and
�

U(S)
�T

�(S), however in practice we never have knowledge of �(P ) or �(S). Thus we

restrict ourselves to analysis of the eigenvalues. We do make the one assumption that

⇢2 6= 0 in equation (3.3), so the signal features are not completely independent of the

noise. In our simplified block correlation model, ⇢2 = 0 means that only the eigenvalues

corresponding to ⌃1 will be relevant. While this situation can be interesting in its own

right, assuming ⇢2 6= 0 will allow for a broader range of results that naturally also cover

the more restrictive case.

3.3.2 Eigenvalues as signal weights

Under the structure in equation (3.3), ⌃ has four distinct eigenvalues. These eigenvalues

are

�1,�2 =

g +
p

g2 � 4h

2

,
g �p

g2 � 4h

2

(3.4)

g = 2 + (K1 � 1)⇢1 + (K0 � 1)⇢3,
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h = 1 + (K1 � 1)⇢1 + (K0 � 1)⇢3 + ⇢1⇢3(K1 � 1)(K0 � 1)� ⇢22K0K1,

with �3 = 1 � ⇢1 and �4 = 1 � ⇢3. These four will not always fall in the same order,

for instance sometimes �2 will be the smallest eigenvalue, but we will continue to refer

to them with the above labels to prevent confusion. The eigenvalue �3 has multiplicity

K1 � 1 and �4 has multiplicityK0 � 1, for a total ofK = K0 +K1 eigenvalues.

One immediate conclusion we can draw is that a higher level of correlation among

the signals, the noise, or both will all lead to larger post-decorrelation signal weights in

the multiple phenotype setting and smaller post-decorrelation signal weights in the SNP-

set setting. As ⇢1 and ⇢3 increase, �3 and �4 will continue to fall. Since
�

⇤(P )
��1/2 is the

weight matrix in the K:1 setting while
�

⇤(S)
�1/2 is the weight matrix in the 1:K setting,

clearly a larger value of ⇢1 and ⇢3 helps the case for innovation in the K:1 setting, and vice

versa in the 1:K setting.

In a certain sense, the increase in ⇢1 and ⇢3 helps the K:1 setting more than it hurts the

1:K setting. Let w(P )
3 = (1 � ⇢1)�1/2 be the weight corresponding to �3 in the K:1 setting

and let w(S)
3 = (1 � ⇢3)1/2 be the weight corresponding to �3 in the 1:K setting. Then

@w(P )
3 /@⇢1 = (1� ⇢1)�3/2/2 while @w(S)

3 /@⇢1 = �(1� ⇢3)�1/2/2, so an increase in ⇢1 causes

a sharper increase in w(P )
3 than the corresponding decline in w(S)

3 .

Another important factor in the performance of innovated tests is the value of ⇢2. We

can see from equation (3.4) that ⇢2 only impacts two eigenvalues, �1 and �2 , but these are

arguably the most important eigenvalues because they are often either the two largest,

or the largest and the smallest, and thus they have outsized effects. As ⇢2 increases, �1

increases and �2 decreases by the same amount. By an elementary linear algebra fact, the

sum of the eigenvalues of⌃ is equal to the trace of⌃. Since⌃ in our work is a correlation

matrix, this means that the sum of the eigenvalues is equal toK, and it follows that, for a

fixed ⇢1 and ⇢3, an upper bound on �1 is 2 + (K1 � 1)⇢1 + (K0 � 1)⇢3 while a lower bound

on �2 is 0.

As ⇢2 increases, �1 and �2 will separate more and more, and this separation can

greatly increase the power of innovated tests in the multiple phenotype setting. To under-

stand why, note that both �1 and �2 are greater than or equal to 1 when ⇢2 = 0. Thus they
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are downweighting the signal in the multiple phenotype setting. As �1 grows, it contin-

ues to provide a poor weight for the K:1 setting, but as �2 nears zero, it can dramatically

upweight its corresponding signal. More precisely, we have @w(P )
2 /@⇢2 = O(⇢�3/2

2 ), which

can be very large when ⇢2 is near 0. Thus as the correlation between causal and noise

features increases, we can expect the decorrelation step to provide more and more power

for iHC and iBJ. In fact, the value of ⇢2 matters most when (K0 � 1)⇢3 = (K1 � 1)⇢1.

When this occurs, @w(P )
2 /@⇢2 reaches its maximum, and an increase in ⇢2 causes the

largest corresponding increase in w(P )
2 . Under the sparse signal assumption, we have

(K0 � 1)⇢3 = (K1 � 1)⇢1 when ⇢1 is much larger than ⇢3.

However ⇢2 does not have the same outsized effect in the SNP-set setting. In the

K:1 setting ⇢2 was driving a change from two poor weights to one poor weight and one

very good weight, but in the 1:K setting, ⇢2 drives a change from two good weights to

one poor weight and one very good weight. The increase in w(S)
1 happens at a rate of

@w(S)
1 /@⇢2 = O(⇢2), and the decrease in w(S)

2 occurs at the same rate. Therefore an increase

in the correlation between causal and noise features does not provide the same increase

in power for innovated tests in the 1:K setting as it did in the K:1 setting.

3.4 Effect of correlation on rejection region and signal spar-
sity

3.4.1 Varying rejection regions

The GHC andGBJmethods are designed to test whether a vector of marginal test statistics

arises from a multivariate normal distribution with mean zero and covariance ⌃. That is,

the null hypothesis changes with the correlation of the features. Therefore the rejection

region also changes with ⌃. However the innovated tests always apply Higher Criticism

and Berk-Jones on data that has been decorrelated. Thus for a given K, the rejection

regions of iHC and iBJ are constant in⌃. This distinction can cause the rejection regions of

GHC and GBJ to become less favorable compared to the rejection regions of the innovated

tests as the total amount of correlation among the features increases.

Unfortunately we are unaware of any tractable closed-form expression for the rejec-
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tion regions corresponding to any of these tests. Instead, following Sun and Lin (2017),

we can invert the p-value calculation for each test to numerically determine rejection re-

gions under different correlation structures. Recall the block correlation matrix of Equa-

tion (3.3). Although there is no notion of causality in the present discussion, it will be

useful to appropriate the structure. Let ⇢1 = 0, ⇢2 = 0, and ⇢3 = 0.3, let d = 50, and

suppose we let K0 take the values K0 = 13, 25, 38, 50. As K0 increases, we are allowing a

larger proportion of the SNPs in the set to be correlated, thus raising the total amount of

correlation.

Figure 3.1 depicts the rejection regions for iHC and GHC at ↵ = 0.01 as K0 becomes

25%, 50%, 75%, and 100% of the set size. At each point j on the x-axis, if the jth smallest

test statistic in magnitude crosses the boundary for a particular setting, then we can reject

the null hypothesis for that setting. Although the lines are added to in visualization, we

note that the rejection region is only defined at the whole numbers from 1 toK.

We can see that as K0 increases, the boundaries for GHC also increase slightly for

each ordered test statistic magnitude. This is a general trend across GHC and GBJ. On the

other hand, the iHC rejection region is constant inK0, because the test statistics are always

assumed to be independent before HC is applied. However the relative superiority of the

iHC rejection region asK0 increases does not necessarily lead to a direct increase in power,

as K0 will alter the form of ⇤ and U, which are used to decorrelate the data. Rather, the

more forgiving region can simply provide a slight advantage to innovated tests as the

total amount of correlation increases.

3.4.2 Signal sparsity after transformation

As noted in Section 3.3.1, while we never have knowledge of the product UT�, the re-

sulting vector will often be more dense than the original signal vector �. The increased

density of the signal plays a large role in increasing power for the innovated tests in the

multiple phenotype setting. However, in a situation similar to Section 3.3.2, the effect on

the SNP-set setting is much less muted.

Recall E
�

Z(P )
�

= �(P ) and E
�

V(P )
�

=

�

⇤(P )
��1/2 �

U(P )
�T

�(P ) in the K:1 setting.

Thus, before decorrelation the mean vector is only sparsely populated with signals, but
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Figure 3.1: Rejection regions of the GHC under four different correlation matrices ⌃. For
each of these correlation patterns, the iHC rejection region is the same. The rejection re-
gion of the GHC becomes less and less favorable compared to the iHC as the total amount
of correlation rises.

after transformation the mean vector often has a high density of signals. Since the den-

sity of signals is intimately connected to the power of these sparse tests (Donoho and

Jin, 2004), the decorrelation transformation in the K:1 setting has the potential to give

innovated tests distinctly improved performance over the GHC and GBJ. In contrast,

E
�

Z(S)
�

= ⌃(S)�(S)
= U(S)⇤

�

U(S)
�T and E

�

V(S)
�

=

�

⇤(S)
�1/2 �

U(S)
�T

�(S) in the 1:K

setting, so the mean vector is often dense both before and after transformation. An excep-

tion is when ⇢2 = 0 in our block correlation structure, as noted in Section 3.3.1. However,

in general, we would not expect the innovation to have a dramatic impact on sparsity in

the SNP-set setting.

3.5 Simulation

We conduct a variety of simulation studies to illustrate how innovation can improve

power in the multiple phenotype setting but not the SNP-set setting. Test statistics are
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simulated again using the block correlation structure from Section 3.3. We vary the cor-

relation parameters ⇢1, ⇢2, and ⇢3 to demonstrate how the correlation plays a large role in

the performance of each type of test. The number of features is fixed at K = 40 and the

number of causal features is set at K1 = 4 so that effects are moderately sparse. Addi-

tionally we let the mean vector of the signal be µ = (µ1, µ2, µ3, µ4, 0, ...0) /
q

P4
j=1 µ

2
j/M ,

where µj ⇠ U(�1, 1) for j = 1, 2, 3, 4 and M is a constant chosen for each setting that

allows power to vary widely between 0 and 1. To interpret this mean vector in terms of n

and the effect size of each explanatory variable, we can calculate that R2
j ⇡ µ2

j/n, where

R2
j is the percent of variance in the outcome explained by the covariate corresponding to

�j .

Power is calculated empirically from 500 simulations at each 0.01 increment of the

correlation parameters, and we test at ↵ = 0.01 always. For comparison, we also include

a variance-component type test which is known to be powerful for detecting dense signals

(Liu and Lin, 2017). This test corresponds to SKAT (Wu et al., 2011) in the 1:K setting. The

variance component test can be seen as providing a benchmark for the point at which

signals are dense and strong enough that the tests designed for rare-weak regimes lose

their superiority.

We begin by demonstrating the large effect that ⇢2 has on innovated tests in the K:1

setting. In Figure 3.2, ⇢1 = ⇢3 = 0.4 are fixed, and we vary ⇢2 along the x-axis. As the

correlation between signal and noise features increases, we can see that there is a large

increase in power of iHC and iBJ in the multiple phenotype framework. In particular, the

increase in power begins around the point of ⇢2 = 0.35, which is when the eigenvalue �2

approaches 1. In other words, at ⇢2 ⇡ 0.35, �2 begins to upweight the signal, whereas

previously �2 was attenuating the signal. Thus the signals in the mean vector of iHC and

iBJ become particularly strong as ⇢2 passes this point. In contrast, the power of GHC and

GBJ stay constant as ⇢2 varies in the K:1 setting; the signals of the non-innovated tests are

not affected by ⇢2 in the samemanner. In the SNP-set setting, we see that the powers of all

sparse tests remain reasonably constant. As explained in Section 3.3.2, the innovated tests

do not receive the same upweighting benefits in the 1:K setting, and following Section

3.4.2, we know that the mean vector is already relatively dense in the original Z(S), so the
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Figure 3.2: Power of iBJ, iHC, VC as ⇢2 increases, for each 0.01 increment of ⇢2 that admits
a positive definite correlation matrix. See that the powers of iBJ and iHC greatly increase
in the multiple phenotype setting as ⇢2 increases. The powers of GBJ and GHC show
almost no change in the K:1 setting because the expectation of the untransformed test
statistics does not change in ⇢2. In the 1:K setting, the cumulative change in w(S)

1 and w(S)
2

is not as favorable, which explains why iBJ and iHC do not show a power increase. Both
the expectation of the untransformed test statistics and the rejection region for GBJ and
GHC change with ⇢2 in the 1:K setting, and the combined effect appears to give it more
power than the innovated tests.

innovation transformation does not create many more signals.

In Figure 3.3, we build upon the previous simulation and consider the situationwhere

⇢2 has the most weight, which occurs when (K0 � 1)⇢3 = (K1 � 1)⇢1. We set ⇢1 = 0.7/3,

⇢3 = 0.02, and we again vary ⇢2. Although ⇢2 can only take values up to 0.14, we see that

it has the ability to dramatically increase the power of innovated tests in the K:1 setting.

Similar to Figure 3.2, the power of non-innovated tests in the K:1 setting and the power

of all tests in the 1:K setting is mostly constant as ⇢2 increases. Note that the power of the

variance component test in the K:1 setting increases with the innovated tests, suggesting

that it benefits from upweighted signals as ⇢2 increases as well.

Finally in Figure 3.4 we investigate varying ⇢1 and ⇢3 as well, utilizing an exchange-

able correlation structure with ⇢1 = ⇢2 = ⇢3 = ⇢ and varying them all at the same time. In

the K:1 setting, the power of the innovated tests again increases quite dramatically, start-

ing at almost 0 and increasing to 1 as ⇢ = 0.9. We see that signal strength and sparsity

can be overshadowed by correlation strength as the driving parameters of performance,
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Figure 3.3: Power of iBJ, iHC, VC as ⇢2 increases, for each 0.01 increment of ⇢2 that admits
a positive definite correlation matrix. Notice that the powers of iBJ and iHC in the mul-
tiple phenotype setting increase even faster than in Figure 3.2. The powers of GBJ and
GHC show little change in both the 1:K and K:1 settings.

as the same signal vector can go from almost never detected to almost always detected

depending on the correlation between features. This occurs because innovated tests in the

K:1 setting haveK0 � 1weights of the form 1/
p
⇢3 andK1 � 1weights of the form 1/

p
⇢1,

so obviously when ⇢1 = ⇢3 = 0.9, almost all of the weights are extremely large. However

the non-innovated tests do not receive the same benefits and show constant power as the

correlation matrix changes. In the 1:K setting, the innovated tests have K1 � 1 weights

of the form
p
⇢1 and K0 � 1 weights of the form

p
⇢3, which become very small as ⇢ in-

creases, but there is also one weight of the form
p
�1, which becomes incredibly large as

⇢ increases. In fact, this weight becomes so large that the single signal it affects appears

to make up for the downweighting of all the other signals. However, performance of the

innovated tests still falls below that of the non-innovated tests.

3.6 Application to breast cancer and lung cancer datasets

In this section, we apply innovated and non-innovated tests to case studies in both the

K:1 and 1:K settings. For the K:1 setting, we study how one particular lung cancer risk

SNP affects DNA methylation across the genome. Sets of DNA methylation probes are

grouped according their nearest gene transcription factor start site, and then we test if
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Figure 3.4: Power of iBJ, iHC, VC as ⇢2 increases, for each 0.01 increment of ⇢2 that ad-
mits a positive definite correlation matrix. The power for iBJ and iHC in the multiple
phenotype setting rises from near 0 to 1 as we change only the exchangeable correlation
parameter ⇢1 = ⇢2 = ⇢3 = ⇢, demonstrating the strong influence of correlation on these
tests. The power for GHC and GBJ in the K:1 setting change very little, and the power for
all tests in the 1:K setting do not vary much at all for reasons discussed above.

methylation at each group of probes is affected by our SNP of interest. The objective

is to discover if the known risk SNP is possibly inducing disease processes through its

effect on the methylation patterns of other genes. In the 1:K setting, we investigate which

genes are most associated with breast cancer risk. Using GWAS data, we group SNPs into

sets according to their location in a gene, and then we test the association between breast

cancer disease status and the entire set of SNPs.

3.6.1 Analysis of lung cancer methylation data

Lung cancer was once thought to be a disease with largely environmental causes, in par-

ticular, cigarette smoke. However, epidemiological studies as well as multiple GWAS

have demonstrated that there is a significant genetic component to the disease as well

(Tokuhata and Lilienfeld, 1963; Lan et al., 2012). In particular, many studies have shown

that the SNP rs1051730, located in the the nicotine receptor gene CHRNA3, is significantly

associated with risk of the disease (Amos et al., 2008), even in subjects who do not smoke.

Because rs1051730 is associated with disease risk even in non-smokers, it could possibly

play a role in pathways outside of nicotine sensitivity as well. Here we investigate if the
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SNP is increasing disease risk through methylation of other genes that may be important

to the biological processes involved in lung cancer. Specifically, we study a sample of 77

lung cancer patients recruited from the TCGA Lung Adenocarcinoma (TCGA-LUAD) co-

hort, TCGA Lung Squamous Cell Carcinoma (TCGA-LUSC) cohort, and Massachusetts

General Hospital in Boston, all of whom provide genotype information on rs1051730 as

well as methylation data at over 450000 probes on the Illumina Infinium HumanMethy-

lation450 BeadChip. The TCGA-LUAD and TCGA-LUSC cohorts are two programs from

The Cancer GenomeAtlas (TCGA) project, a government initiative to catalogue themulti-

ple genomic dimensions of over 30 different cancers (The Cancer Genome Atlas Research

Network et al., 2013). The cohort from Massachusetts General Hospital is described in

Wang et al. (2017).

For each probe, we first search for the gene transcription start site that is nearest to

the probe. All probes nearest the same gene transcription start site are treated as a set, and

the methylation level at each probe is treated as a separate outcome. For all outcomes we

fit the multiple phenotype model in equation (3.1), where the number of minor alleles at

rs1051730 is the single explanatory variable in each model. The correlation between the

outcomes is estimated by taking the sample correlations across the probes. We then apply

the GHC, GBJ, iHC, and iBJ to each gene.

The results in Table 3.1 show that iHC provides the most evidence of significance for

the seven of the top ten significant genes in our study, while GBJ provides the lowest

p-value for the other three. This outcome would seem to support the conclusion that

innovated tests will generally have more power in the K:1 setting. Using a Bonferroni

correction for the 14991 genes studied, our nominal level of significance is set a 3.34⇥10

�6,

which none of the genes meet, possibly due to our smaller sample size. However, it

should be noted that GBJ provides the lowest p-value across all tests for any gene. iHC

and iBJ do appear to find evidence of significance in some genes that GBJ and GHC rank

very lowly, which shows that the transformation andweighting of signals can have a large

impact. On the other hand, for the three genes that GBJ provides the lowest p-value, the

iHC and iBJ also show relatively strong evidence of association.
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Table 3.1: P-values of genes for whichmethylation is most associated with the lung cancer
risk SNP rs1051730. Most significant p-value for any gene is highlighted in red.

Gene GBJ GHC iBJ iHC K
B3GALT6 9.06 · 10�4

1.53 · 10�3
6.63 · 10�2

2.14 · 10�2
13

RAD18 8.60 · 10�1
8.09 · 10�1

6.25 · 10�3
1.07 · 10�3

37

SNRK-AS1 8.16 · 10�1
8.04 · 10�1

5.46 · 10�3
1.09 · 10�3

23

UROS 3.64 · 10�1
2.89 · 10�1

2.88 · 10�3
1.17 · 10�3

6

SLC44A2 1 9.81 · 10�1
6.88 · 10�3

1.25 · 10�3
31

GRN 1.59 · 10�3
1.67 · 10�3

4.78 · 10�2
1.18 · 10�2

24

POLR2A 1 8.03 · 10�1
8.62 · 10�3

1.64 · 10�3
30

USP2 7.21 · 10�1
8.44 · 10�1

9.83 · 10�3
1.83 · 10�3

31

MIR4469 1.86 · 10�3
2.14 · 10�3

1.76 · 10�2
1.38 · 10�2

4

TMEM97 5.77 · 10�1
8.18 · 10�1

9.87 · 10�3
2.12 · 10�3

21

3.6.2 Analysis of breast cancer GWAS data

Breast cancer is known to possess a complex genetic etiology, and it has also been ex-

tensively analyzed in the GWAS format. The Cancer Genetic Markers of Susceptibility

(CGEMS) is one such GWAS dataset, with a case-control sample of 1145 European an-

cestry cases and 1142 controls recruited from the Nurses’ Health Study. The Illumina

HumanHap500 array was used collect genotype information, and 528143 SNPs remained

after quality control. Hunter et al. (2007) first analyzed this dataset and did not find any

SNPs to reach genome-wide significance, but they did identify FGFR2 as a gene of in-

terest based on four SNPs in the gene which showed suggestive evidence of association.

Follow-up set-based approaches using GHC and GBJ (Barnett et al., 2016; Sun and Lin,

2017) have appeared to confirm that FGFR2 is indeed a gene contributing to breast cancer

risk.

We fit a slightly more complicated 1:K model than given in equation (3.2), using a

logistic regression model with additional covariates for age and the first three genotype

principal components to control for population stratification. The correlation between

test statistics was estimated as in Section 2.1 of Sun and Lin (2017). Then for each gene,

we collected the marginal test statistics for all SNPs located with the gene boundaries and

analyzed the set with each of our four tests.

As we can see from Table 3.2, the Generalized Berk-Jones and Generalized Higher
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Table 3.2: P-values of genes which aremost associatedwith breast cancer. Most significant
p-value for any gene highlighted in red.

Gene GBJ GHC iBJ iHC K
FGFR2 4.58 · 10�6

2.84 · 10�5
2.19 · 10�2

4.21 · 10�3
35

CNGA3 4.04 · 10�5
3.00 · 10�4

1.56 · 10�2
3.27 · 10�3

26

PTCD3 5.50 · 10�5
1.21 · 10�4

2.30 · 10�3
6.12 · 10�4

12

POLR1A 6.19 · 10�5
9.58 · 10�5

5.13 · 10�3
1.15 · 10�3

17

ZNF263 3.90 · 10�4
4.89 · 10�4

8.32 · 10�5
2.83 · 10�3

3

LOC643923 4.55 · 10�1
7.70 · 10�1

2.98 · 10�4
8.42 · 10�5

10

ELMOD1 3.98 · 10�1
6.05 · 10�1

8.72 · 10�4
1.62 · 10�4

24

ABCA1 1.65 · 10�4
3.74 · 10�3

6.38 · 10�3
4.26 · 10�2

63

PDE8B 6.89 · 10�1
3.97 · 10�1

1.77 · 10�4
4.24 · 10�2

74

MMRN1 5.51 · 10�4
2.31 · 10�4

2.88 · 10�2
1.51 · 10�2

10

Criticism provide the strongest evidence of association for six of the top ten genes in the

entire set, including all of the top four. This result agrees with our simulations, which

suggest that the non-innovated tests are slightly more powerful in the SNP-set setting.

Interestingly, the p-values for innovated and non-innovated tests are often extremely dif-

ferent for the same gene. The discrepancy suggests that inference can take completely

opposite directions depending on the choice of test. None of the four most significant

genes according to Generalized Berk-Jones and Generalized Higher Criticism is seen as

highly associated with breast cancer according to iHC and iBJ, demonstrating again that

the decorrelation transformation can greatly alter signals in the original test statistics.

Similarly, the genes which iBJ and iHC find significant are assigned relatively large p-

values by GBJ and GHC.

3.7 Discussion

We have studied the differences between innovated and non-innovated set-based tests

for sparse outcomes in the multiple phenotype and SNP-set settings. In particular, we

have demonstrated the importance of the correlation between signal and noise features

in driving the power of innovated tests under the K:1 setting. When in the multiple phe-

notype setting, power can be gained as the total amount of correlation increases by using

iHC and iBJ, since weights on the signals become much more favorable. The decorrela-
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tion procedure is also able to increase the density of signals and offers a slightly larger

rejection region. Thus when there appears to be a high degree of correlation between out-

comes in a set, we should prefer the innovated tests. When the amount of correlation is

low, the difference between innovated and non-innovated tests is not large.

In the 1:K SNP-set setting, the advantages of high correlation for innovated tests falls

away. The difference is due to the form of the signal weights, which are the inverse of

those in the K:1 setting. Additionally, the decorrelation transformation does not make the

signal any more dense, and it has the potential to attenuate some of the originally large

test statistics, as was seen in the analysis of CGEMS data. Simulation results seem to show

that the GHC and GBJ are preferred in this setting under most correlation patterns.

An interesting remaining question is whether the advantages of innovation can be

harnessed in the 1:K setting as they are in the K:1 setting. We see in our application

to the CGEMS study that the decorrelation transformation often reduces the magnitude

of marginal test statistics from each factor, but it seems plausible that a more suitable

transformation could be tailored for specific situations. More specifically, since the decor-

relation is still valid after we multiply the eigen-transformation matrix by any orthogonal

matrix, it seems that there would be some orthogonal matrix which strengthens the exist-

ing signals rather than attenuating them.

Another interesting area of further research is whether power gains can be achieved

by removing some subset of factors and applying a set-based test with smaller sets. If

many factors receive very small weights, then it could be counterproductive to introduce

them into the set as they will largely provide more noise. It is possible that a strategy

which only makes use of highly upweighted factors could provide more finite sample

power.

80



References

1000 GENOMES PROJECT CONSORTIUM (2015). A global reference for human genetic

variation. Nature 526 68–74.

ALMLI, L., DUNCAN, R., FENG, H., GHOSH, D., BINDER, E., BRADLEY, B., RESSLER, K.,

CONNEELY, K. and EPSTEIN, M. (2014). Correcting systematic inflation in genetic asso-

ciation tests that consider interaction effects: application to a genome-wide association

study of posttraumatic stress disorder. JAMA Psychiatry 71 1392–1399.

AMOS, C. I., WU, X., BRODERICK, P., GORLOV, I. P., GU, J., EISEN, T., DONG, Q.,

ZHANG, Q., GU, X., VIJAYAKRISHNAN, J., SULLIVAN, K., MATAKIDOU, A., WANG,

Y. and ET AL., G. M. (2008). Genome-wide association scan of tag snps identifies a

susceptibility locus for lung cancer at 15q25.1. Nature Genetics 40 616–622.

ASCHARD, H., LUTZ, S., MAUS, B., DUELL, E., FINGERLIN, T., CHATTERJEE, N., KRAFT,

P. and VAN STEEN, K. (2012). Challenges and opportunities in genome-wide environ-

mental interaction (gweis) studies. Human Genetics 131 1591–1613.

BARNETT, I., MUKHERJEE, R. and LIN, X. (2016). The generalized higher criticism for

testing snp-set effects in genetic association studies. Journal of the American Statistical

Association Doi:10.1080/01621459.2016.1192039.

BEGG, M. and LAGAKOS, S. (1992). Effects of mismodeling on tests of association based

on logistic regression models. The Annals of Statistics 20 1929–1952.

BERK, R. H. and JONES, D. H. (1979). Goodness-of-fit test statistics that dominate the

kolmogorov statistics. Z. Wahrsch. Verw. Gebiete 47 47.

81



BOEHM, J. S., ZHAO, J. J., YAO, J., KIM, S. Y., FIRESTEIN, R., DUNN, I. F., SJOSTROM,

S. K., GARRAWAY, L., WEREMOWICZ, S. and RICHARDSON, A. (2007). Integrative

genomic approaches identify ikbke as a breast cancer oncogene. Cell 129 1065.

BURRIS, H., BRAUN, J., BYUN, H., TARANTINI, L., MERCADO, A., WRIGHT, R.,

SCHNAAS, L., BACCARELLI, A., WRIGHT, R. and TELLEZ-ROJO, M. (2013). Associ-

ation between birth weight and dna methylation of igf2, glucocorticoid receptor and

repetitive elements line-1 and alu. Epigenomics 5 271–281.

CLAUS HENN, B., SCHNASS, L., ETTINGER, A., SCHWARTZ, J., LAMADRID-FIGUEROA,

H., HERNNDEZ-AVILA, M., AMARASIRIWARDENA, C., HU, H., BELLINGER, D., R.,

W. and TLLEZ-ROJO, M. (2012). Associations of early childhood manganese and lead

coexposure with neurodevelopment. Environmental Health Perspectives 120 126–131.

CONNEELY, K. and BOEHNKE, M. (2007). So many correlated tests, so little time! rapid

adjustment of p-values for multiple correlated tests. The American Journal of Human

Genetics 81 1158.

CORNELIS, M., TCHETGEN, E., LIANG, L., QI, L., CHATTERJEE, N., HU, F. and KRAFT,

P. (2012). Gene-environment interactions in genome wide association studies: a com-

parative study of tests applied to empirical studies of type 2 diabetes. American Journal

of Epidemiology 120 191–202.

DAWSON, E., ABECASIS, G. R., BUMPSTEAD, S., CHEN, Y., HUNT, S., BEARE, D. M.,

PABIAL, J., DIBLING, T., TINSLEY, E., KIRBY, S., CARTER, D., PAPASPYRIDONOS, M.,

LIVINGSTONE, S., GANSKE, R., LHMUSSAAR, E., ZERNANT, J., TONISSON, N., REMM,

M., MGI, R., PUURAND, T., VILO, J., KURG, A., RICE, K., DELOUKAS, P., MOTT, R.,

METSPALU, A., BENTLEY, D. R., CARDON, L. R. and DUNHAM, I. (2002). A first-

generation linkage disequilibrium map of human chromosome 22. Nature 418 544–548.

DENNY, J. C., BASTARACHE, L., RITCHIE, M. D., CARROLL, R. J., ZINK, R., MOSLEY,

J. D., FIELD, J. R., PULLEY, J. M., RAMIREZ, A. H., BOWTON, E. and MELISSA A BAS-

FORD, E. A. (2013). Systematic comparison of phenome-wide association study of elec-

82



tronic medical record data and genome-wide association study data. Nature Biotechnol-

ogy 31 1102–1111.

DONOHO, D. and JIN, J. (2004). Higher criticism for detecting sparse heterogeneous

mixtures. The Annals of Statistics 32 962–994.

ELIASSEN, A. H., TWOROGER, S. S., MANTZOROS, C. S., POLLAK, M. N. and HANK-

INSON, S. E. (2007). Circulating insulin and c-peptide levels and risk of breast cancer

among predominately premenopausal women. Cancer Epidemiology Biomarkers and Pre-

vention 16 161–164.

GAIL, M., WEIAND, S. and PIANTADOSI, S. (1984). Biased estimates of treatment effect in

randomized experiments with nonlinear regressions and omitted covariates. Biometrika

71 431–444.

GIBSON, G. (2012). Rare and common variants: twenty arguments. Nature Reviews Genet-

ics 13 135–145.

HALL, P. and JIN, J. (2010). Innovated higher criticism for detecting sparse signals in

correlated noise. The Annals of Statistics 38 1686–1732.

HUNTER, D., KRAFT, P., JACOBS, K., COX, D., YEAGER, M., HANKINSON, S., WA-

CHOLDER, S., WANG, Z., WELCH, R., HUTCHINSON, A. and WANG, J. (2007). A

genome-wide association study identifies alleles in fgfr2 associated with risk of spo-

radic postmenopausal breast cancer. Nature Genetics 39 870–874.

HUTTER, C., MECHANIC, L., CHATTERJEE, N., KRAFT, P. and GILLANDERS, E. (2013).

Gene-environment interactions in cancer epidemiology: a national cancer institute

think tank report. Genetic Epidemiology 37 643–657.

JAGER, L. and WELLNER, J. A. (2007). Goodness-of-fit tests via phi-divergences. The

Annals of Statistics 35 2018–2053.

JIA, P., ZHENG, S., LONG, J., ZHENG, W. and ZHAO, Z. (2011). dmgwas: dense module

83



searching for genome-wide association studies in proteinprotein interaction networks.

Bioinformatics 27 95–102.

KAUERMANN, G. and CARROLL, R. (2001). A note on the efficiency of sandwich covari-

ance matrix estimation. Journal of the American Statistical Association 96 1387–1396.

KILE, M., RODRIGUES, E., MAZUMDAR, M., DOBSON, C., DIAO, N., GOLAM, M.,

QUAMRUZZAMAN, Q., RAHMAN, M. and CHRISTIANI, D. (2014). A prospective cohort

study of the association between drinkingwater arsenic exposure and self-reportedma-

ternal health symptoms during pregnancy in bangladesh. Environmental Health 13 29.

KRAFT, P., YEN, Y., STRAM, D., MORRISON, J. and GAUDERMAN, W. (2007). Exploiting

gene-environment interaction to detect genetic associations. Human Heredity 63 111–

119.

LAGAKOS, S. (1988). Effects of mismodelling and and mismeasuring explanatory vari-

ables on tests of their association with a response variable. Statistics in Medicine 7 257–

274.

LAN, Q., HSIUNG, C. A., MATSUO, K., HONG, Y.-C., SEOW, A., WANG, Z., II, H.

D. H., CHEN, K., WANG, J.-C., CHATTERJEE, N., HU, W. and ET AL., M. P. W.

(2012). Genome-wide association analysis identifies new lung cancer susceptibility loci

in never-smoking women in asia. Nature Genetics 44 1330–1335.

LEE, S., ABECASIS, G. R., BOEHNKE, M. and LIN, X. (2014). Rare-variant association

analysis: study designs and statistical tests. The American Journal of Human Genetics 95

5–23.

LEE, S., WU, M. C. and LIN, X. (2012). Optimal tests for rare variant effects in sequencing

association studies. Biostatistics 13 762–775.

LI, B. and LEAL, S. M. (2008). Methods for detecting associations with rare variants for

common diseases: application to analysis of sequence data. The American Journal of

Human Genetics 83 311.

84



LI, J. and SIEGMUND, D. (2015). Higher criticism: p-values and criticism. The Annals of

Statistics 43 1323–1350.

LIANG, J., CHEN, P., HU, Z., ZHOU, X., CHEN, L., LI, M., WANG, Y., TANG, J., WANG,

H. and SHEN, H. (2008). Genetic variants in fibroblast growth factor receptor 2 (fgfr2)

contribute to susceptibility of breast cancer in chinese women. Carcinogenesis 29 2341–

2346.

LIU, Z. and LIN, X. (2017). A geometric perspective on the power of principal component

association tests in multiple phenotype studies. Submitted .

MANOLIO, T. A., COLLINS, F. S., COX, N. J., GOLDSTEIN, D. B., HINDORFF, L. A.,

HUNTER, D. J. and MCCARTHY, M. I. (2009). Finding the missing heritability of com-

plex diseases. Nature 461 747–753.

MCCULLAGH, P. and NELDER, J. A. (1989). Generalized Linear Models. CRC press.

MEYER, K. B., MAIA, A.-T., O’REILLY, M., TESCHENDORFF, A. E., CHIN, S.-F., CALDAS,

C. and PONDER, B. A. (2008). Allele-specific up-regulation of fgfr2 increases suscepti-

bility to breast cancer. PLoS Biology 1 e108.

MOSCOVICH-EIGER, A. and NADLER, B. (2017). Fast calculation of boundary crossing

probabilities for poisson processes. Statistics & Probability Letters 123 177–182.

PASANIUC, B. and PRICE, A. L. (2016). Dissecting the genetics of complex traits using

summary association statistics. Nature Genetics Reviews 18 117–127.

PRENTICE, R. L. (1986). Binary regression using an extended beta-binomial distribution,

with discussion of correlation induced by covariate measurement errors. Journal of the

American Statistical Association 81 321–327.

PRICE, A. L., PATTERSON, N. J., PLENGE, R. M., WEINBLATT, M. E., SHADICK, N. A. and

REICH, D. (2006). Principal components analysis corrects for stratification in genome-

wide association studies. Nature Genetics 38 904–909.

85



ROSENBLUM, M. and VAN DER LAAN, M. (2009). Using regression models to analyze

randomized trials: asymptotically valid hypothesis tests despite incorrectly specified

models. Biometrics 65 937–945.

SMITH, B. and LAND, H. (2012). Anticancer activity of the cholesterol exporter abca1

gene. Cell Reports 2.3 580–590.

STEVENS, V., RODRIGUEZ, C., PAVLUCK, A., THUN, M. and CALLE, E. (2006). Associa-

tion of polymorphisms in the paraoxonase 1 gene with breast cancer incidence in the

cps-ii nutrition cohort. Cancer Epidemiology Biomarkers and Prevention 15 1226–1228.

SU, Z., MARCHINI, J. and DONNELLY, P. (2011). Hapgen2: simulation of multiple disease

snps. Bioinformatics 27 2304–2305.

SUN, R. and LIN, X. (2017). Set-based tests using the generalized berk-jones statistic in

genetic association studies [ph.d. thesis]. Harvard University .

TCHETGEN, E. and KRAFT, P. (2011). On the robustness of tests of genetic associations

incorporating gene-environment interaction when the environmental exposure is mis-

specified. Epidemiology 22 257–261.

THE CANCER GENOME ATLAS RESEARCH NETWORK, WEINSTEIN, J. N., COLLISSON,

E. A., MILLS, G. B., SHAW, K. R. M., OZENBERGER, B. A., ELLROTT, K., SHMULEVICH,

I., SANDER, C. and STUART, J. M. (2013). The cancer genome atlas pan-cancer analysis

project. Nature Genetics 45 1113–1120.

THOMAS, D. (2010). Gene-environment-wide association studies: emerging approaches.

Nature Reviews Genetics 11 259–272.

TOKUHATA, G. K. and LILIENFELD, A. (1963). Familial aggregation of lung cancer in

humans. Journal of the National Cancer Institute 30 289–312.

VANSTEELANDT, S., VANDERWEELE, T., TCHETGEN, E. and ROBINS, J. (2008). Multiply

robust inference for statistical interactions. Journal of the American Statistical Association

103 1693–1704.

86



VISSCHER, P. M., BROWN, M. A., MCCARTHY, M. I. and YANG, J. (2012). Five years of

gwas discovery. The American Journal of Human Genetics 90 7–24.

VOORMAN, A., LUMLEY, T., MCKNIGHT, B. and RICE, K. (2011). Behavior of qq-plots

and genomic control in studies of gene-environment interaction. PLOS ONE 6 e19416.

WALTHER, G. (2013). The average likelihood ratio for large-scale multiple testing and

detecting sparse mixtures. In From Probability to Statistics and Back: High-Dimensional

Models and Processes, vol. 9. IMS, Beachwood, OH.

WANG, Z., WEI, Y., ZHANG, R., SU, L., MCKAY, J., BRENNAN, P., STILP, A., LAURIE,

C., DOHENY, K., PUGH, E., XIAO, X., PIKIELNY, C., HUNG, R. J., AMOS, C. I., LIN,

X. and CHRISTIANI, D. C. (2017). Integrative analysis of multi-omics data reveal a

network of hypoxia-inducible factors family and a hub gene epas1 associated with lung

adenocarcinoma. Submitted .

WU, M. C., KRAFT, P., EPSTEIN, M. P., TAYLOR, D. M., CHANOCK, S. J., HUNTER, D. J.

and LIN, X. (2010). Powerful snp-set analysis for case-control genome-wide association

studies. The American Journal of Human Genetics 86 929–942.

WU, M. C., LEE, S., CAI, T., LI, Y., BOEHNKE, M. and LIN, X. (2011). Rare-variant

association testing for sequencing data with the sequence kernel association test. The

American Journal of Human Genetics 89 82–93.

87


