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A framework for protein-level interpretation of genetic associations and 

integration with large-scale DNA sequencing analysis 

 

Abstract 

 With recent rapid decrease in exome and genome sequencing price 

amount of the available sequencing data has dramatically increased. While 

analysis of common genetic variation has succeeded with GWAS and fine-

mapping methodology, systematic large-scale approach to rare protein-coding 

DNA variation analysis and interpretation is still in its early days. Rare variation, 

unlike GWAS, enables deep insight into the personalized disease predisposing 

factors and better understanding of underlying biology and, thus, facilitates 

potential new drug discoveries. In this thesis, we have focused on developing 

methods for interpretation of the genetic association results using protein-protein 

interaction models to aid the prioritization of disease risk genes and provide 

insights into involved biological pathways. 

 We created a composite approach for rare DNA variation analysis in case-

control cohorts. Our approach was initially tested in the medium-sized cohort of 

focal segmental glomerulosclerosis patients, identifying several new risk genes 

that were validated using proof-of-concept mouse model. This methodology was 

then extended to the large-scale analysis of the germline cancer cohort (over 
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2,000 samples matched to more than 7,000 controls). We identified common 

features shared by known cancer predisposing genes and created a strategy for 

identification of the new cancer driving genes. List of novel candidate genes was 

created for several cancer phenotypes and some of the candidates were 

subjected to validation in mouse model successfully proving tumor suppressor 

activity of the encoded proteins.  

 Analysis of the genetic risk factors provides only unstructured pieces of 

information about the biology of a disorder. Generally, after identification of the 

associated loci massive follow-up studies are required to, first, prove the causal 

relationship, and, most importantly, understand the molecular mechanism of 

causality. Which locus should be prioritized for protein-level studies is currently 

determined based on empirical knowledge of protein function. Integration of the 

experimentally proven individual proteins functionality is then aimed to identify 

pathways affected by disease. Alternatively to this extensive approach, we 

developed a statistical framework that integrates genetic association data from 

multiple sources (GWAS, RVAS, etc.) and finds the protein-protein network 

returning the best cumulative association score. Using Bayesian model 

association results are then refined with evidence of the specific gene 

appearance in the best network. Our method provides a ranked list of genes 

prioritized based on both association strength and integration in the functional 

pathway. Such approach is essential for understanding biology of the disorders 

where it is impossible to build adequate animal model – autism, schizophrenia 

and other neuropsychiatric diseases. 
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Introduction 
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Linking genetic variation to phenotype 

 

Human medical genetics studies are focused on finding associations 

between DNA variation and phenotype. According to central dogma of molecular 

biology alterations in the protein functions or expression levels that are encoded 

in DNA are main causes of a phenotype. If a phenotype could be observed due 

to an alteration of a single gene (and as a result – corresponding protein), such 

trait is called mendelian. First experimental methods provided very limited 

information about DNA sequence. Restriction sites in the DNA sequence were 

used as genetic markers linked to neighboring mutations. Inheritance of such 

markers could be traced within family. Respectively, markers linked with disease 

predisposing mutations should segregate with observed phenotype. While finding 

a disease linked marker is a challenge, it is even more challenging to map 

marker sequence to a specific location in the genome. 

Inheritance of severe mendelian traits is relatively easy to trace within 

kindred and it is reasonable that first research efforts involved large families with 

multiple affected and unaffected members. The first gene was mapped to 

phenotype in 1983 by James Gusella and colleagues1. Family of more than 

5,000 members with history of Huntington’s disease was discovered in Central 

America. After decade of intensive phenotyping and analyzing DNA marker 

segregation HD gene was discovered with a variable length of trinucleotide 

repeats. However, mendelian disorders like Huntington’s disease or cystic 

fibrosis, which could be exactly mapped to a specific fully penetrant mutation are 
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extremely rare2. Majority of diseases are complex – associated with contributions 

from multiple genes in combination with environmental factors. Mapping of 

complex disorder markers within a family is largely impeded because of 

incomplete penetrance and significantly smaller effect size compared with 

mendelian traits. This fact promoted methods development for study of genetic 

markers frequencies in population moving the study design towards case-control 

approach.  

With improvements in sequencing and genotyping technology the list of 

discovered genetic associations is rapidly expanding. Interpretation of 

association signals in the scope of disease biology yet remains to be a challenge. 

Thus, a unified integrative framework reconstructing the trajectory of how a 

mutation in the DNA sequence affects protein functionality and discovering 

involved pathways could provide the most valuable information about potential 

therapeutic target.  

 

Architecture of genetic studies 

	 Almost every disease has contribution of genetic, epigenetic and 

environmental factors. Mendelian disorders, like cystic fibrosis and sickle cell 

anemia are results of a single DNA mutation. Another extreme is pathogenic 

disorders, like HIV, which are caused by environmental factors. However, for vast 

majority of diseases conclusions could be made only about relative contributions 

to overall risk from each of factors. Case-control study design for complex 

genetic disorders relies on a careful assortment of individuals for case and 
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control groups. General approach is to maximize number of individuals with early 

onset of severe disease symptoms and family history of a disorder in a case 

group and minimize in controls3.  

 Next step is identification of genotypes in both affected and non-affected 

individuals. Methods, like linkage studies and GWAS were successful in 

identification of the risk loci, however, they do not have sufficient resolution to 

highlight individual genes or specific mutations and largely limited to common 

variation. Success of 1000 genomes4 and HapMap5 projects has contributed 

important tool for mapping of association signal to a limited set of genes, 

although not sufficient to identify causal mutations. It is important to mention, that 

complex disorders usually require great statistical power (i.e. large cohort size) to 

achieve significant results due to small effect size carried by common variation. 

Introduction of next generation sequencing methods increased resolution of 

genetic studies up to individual base pairs. In 2010 this led to the first precise 

determination of genetic cause of disease of a particular patient. Two mutations 

in Charcot-Marie-Tooth (CMT) patient were identified in SH3TC2 gene, known 

cause of CMT. Further sequencing studies showed, that majority of disease 

associated variants are located in the exome – 1% of DNA sequence that 

encodes proteins6. Exome sequencing provided cheaper and efficient alternative 

to full genome studies. Traditionally, study design for exome sequencing studies 

could be based on familial or population data. Familial approach is similar to 

linkage studies with main difference that now individual protein-coding mutations 

are used as genetic markers. Once the marker linked to a phenotype is identified 
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problem of association signal mapping to a gene highly challenging in linkage 

studies is naturally solved due to usage of coding variation for analysis. Though, 

main advancement brought by next-generation sequencing is ability to study rare 

variation in population, similarly to common variant analysis in GWAS. 

 Analysis of rare variation requires more complex approach than GWAS. 

While individual variants are analyzed in GWAS, contrarily in rare variant studies 

because of low frequency it is unlikely for any of the individual variants to achieve 

statistically significant association. Rare variation in a given gene is pooled in 

case and controls group and burden of alternative alleles is then assessed7. 

There are several pitfalls in this approach. First, there is no well-defined 

threshold for allele frequency to be called “rare”. Commonly used cutoff is 1%, 

however, frequency of actual causal variation depends on disease genetic profile 

and prevalence. Second, the stronger effect on the protein functionality is carried 

by allele the stronger should be selection pressure on the carriers of such alleles. 

As a consequence frequency of large-effect mutations is expected to be smaller 

than those with modest effect size. Uniform pooling of rare variants in a gene 

based association test looses this valuable information.  

 Several statistical approaches were proposed to overcome these 

problems. Instead of using hard allele frequency threshold for pooling of the 

variants, it was proposed to assign statistical weight to each variant base on 

observed minor allele frequency and vary the frequency threshold defining which 

variants should be pooled7. Variable threshold test was confirmed to have 

greater statistical power both in simulated and empirical data. Interestingly, 
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variable threshold approach does not make implicit assumptions about the 

relationship between allele frequency and odds ratio, though naturally recovers 

this property. 

 However, even in phenotypically relevant genes, many variants will be 

neutral. Statistical power of rare variant analysis has been even further enhanced 

with idea of comparing variant distributions between cases and controls8. 

Analysis of distribution allows binning of variants into several groups. Variants 

increasing risk should be more common in cases, protective variants should be 

more common in controls and neutral ones should be observed in both cohorts at 

a similar frequency. C-alpha test was developed to detect neutral variation and 

focus on the most likely functional. While providing sufficient power improvement 

for rare variation analysis it is not suitable for singletons – variants that are 

observe only once in the dataset. They do not have a distribution of alleles 

between cases and controls and in this case C-alpha statistic becomes just a 

burden test. 

 Composite approach of common variants GWAS and target sequencing 

for rare-variation analysis provide more complete information about disease 

genetics. Genetic studies of Chron’s disease are a great illustration of multi-

model association testing9. It is a complex disorder caused by combination of 

pathogen and immune factors in genetically predisposed individuals. More than 

71 susceptibility loci were discovered through GWAS, suggesting a complex 

genetic structure of the disease. In 2011, through pooled sequencing of 56 genes 

identified in GWAS 70 low-frequency protein-altering variants associated with 
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Chron’s disease were discovered. Completing of allele spectrum in complex 

disease with targeted rare variation study increases fraction of explained trait 

heritability. 

 Identifying type of disease causing variation is critical for most powerful 

analysis. Numerous variation annotation tools became essential for 

understanding of the effect carried by a variant. Protein-truncating mutations 

could carry both loss-of-function effect if found in the beginning of a gene and 

gain-of-function effect once found in the last exon. However, interpretation of 

missense variants – resulting in change of a single amino acid, is challenging. As 

advanced association tests are focusing in identifying and eliminating from 

analysis likely benign variants, measuring of individual variant functional 

significance becomes critical. Tools like PolyPhen-210 and SIFT11 use information 

about protein structure and amino acid conservation to predict severity of 

disruption in protein functionality. Integration of such predictions with expression 

data enables transcript-specific annotation. 

 Development of computational tools for joint variant calling (GATK312–14) 

made possible assembly of the large datasets of human DNA coding variation. 

Exome Aggregation Consortium pioneered in this field by producing dataset of 

more than 60,000 samples of multiple ancestries that were processed through 

the unified alignment, variant calling and quality check pipeline15. Estimates of 

the observed singleton variants in each gene resulted in creation of the 

evolutionary conservation metrics. Probability of loss-of-function intolerance and 
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missense constrain Z-score demonstrated great agreement with ClinVar and 

achieved great performance in filtering out likely benign variation16.  

 Final step is data interpretation. Despite critical importance of 

understanding biology underlying observed genetic association this step up until 

recently was left for experimental molecular biology research.  

 

Protein network analysis 

	

	 With the exponential growth of expression data numerous disease 

pathways were discovered – DNA reparation in cancer, insulin secretion and 

TGF-beta signaling pathways in type II diabetes, etc. For newly discovered risk 

genes of particular interest becomes identification of functional modules, sharing 

common cellular function beyond the classical disease pathways.  

Protein-protein interaction databases are important reference set for 

building novel disease pathways. Recently, it has become feasible to 

experimentally map large-scale protein-protein interaction networks. Reliability of 

the reported interactions is essential component enabling usage of this data as 

reference for pathway discovery. High-throughput methods of screening aided 

assembly of large experimentally derived interactomes like BioPlex17. However, 

experimental data is usually biased due to usage of a specific cell type. Also, 

probability of detecting an interaction between two proteins depends on their 

localization within the cell and level of expression.  
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Group of Kasper Lage at performed extensive analysis of the protein-

protein interaction data reported in the literature to create as scored interactome. 

Scores, in this case, represent reliability of the observed interaction and are 

derived from number of times that interaction was observed in independent 

experiments. Such approach does not fully eliminate experimental biases and 

noise, however, it does provide an estimate of the data robustness. Most recent 

version of the database – InWeb_InBioMap has several fold more interactions 

more interactions and better biological relevance than comparable resources. 

Integration of the protein-protein interactions with GTEX database of gene 

expression data resulted in construction of tissue-specific references that are 

better powered for interpretation of the biological data18. 

It has previously been observed that different genes harboring causal 

mutations for the same Mendelian disease often physically interact. To evaluate 

the degree to which this is true of genes within strongly associated loci in 

complex disease, computational tool DAPPLE was developed19. It was observed 

that number of direct protein-protein interactions between genes found in 

genome-wide significant loci is significantly greater than in non-associated loci. 

However, choice of genes that DAPPLE should be seeded on was chosen 

subjectively with no formal metric evaluating what threshold for association signal 

should be used. 

In fact, problem of finding functional modules within biological networks is 

common in systems biology. General approach was developed in statistical 

package BioNet20,21. Algorithm that uses Steiner decision tree and exactly solves 
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problem of finding the best scoring module of nodes from the reference network 

was proposed. Originally, this method was used for analysis of protein-protein 

interactions in microarray data. However, further developments were made in the 

field of metabolomics. Reference pathways and interactions in metabolomics are 

known at a much better level of confidence than protein-protein interactions. For 

example, using original Dittrich algorithm, analysis of the metabolic networks 

identified key modules responsible for polarization of macrophages22. Search 

algorithm uses p-values of individual instances (genes, metabolites, etc.) to 

construct node and edge weighted graph. Until emergence of the gene-based 

association tests mapping of the genetic association signal to an individual genes 

was limited. Because of this reason network analysis in genetic studies was not 

widely used up to date. 

Summary 

 Emergence of the large exome and genome sequencing datasets made 

analysis of the rare variation in population possible. However, lack of 

methodology for analysis led to quite few successful rare variant association 

studies up to date. Moreover, in case of identification of a novel risk gene further 

interpretation and functional credentialing was left for molecular biologist. For this 

thesis, we wanted to create a systematic pipeline for analysis of the rare coding 

variation integrating multiple statistical models and create methods for biological 

interpretation of the observed associations. 

 We first developed approach for rare variant association tests 

incorporating multiple models of causal variation. We used separate analysis of 
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protein truncating variants, missense and ultra-rare (filtered with ExAC database 

allele frequencies) variation for analysis of group of cases with focal segmental 

glomerulosclerosis. Proof-of-concept analysis was validated using mouse model 

and confirmed that even with modest size of case and control cohorts composite 

approach identifies novel susceptibility genes (Chapter 2). 

 Next, we tested our rare variant association methodology on the large 

case-control dataset (about 37,000 samples) of germline variation in cancer. 

Analysis of the multiple phenotypes of both sporadic and genetically selected 

cases identified common features of variation observed in known cancer risk 

genes. Specifically, in cutaneous melanoma cohort we identified a novel causal 

gene and functional testing confirmed its tumor suppressive activity. To fully 

explore rare causal variation we looked at blood somatic variation in adult-onset 

cancers and found intriguing association between solid tumor cancer and burden 

of mosaic protein truncating variants in blood (Chapter 3). 

 Rare variation association studies have significant advantage over GWAS 

– they are focused on the coding variation and mapping of the association signal 

to a gene becomes straightforward. At the same time, complex disorders require 

large cohorts to gain enough statistical power for association detection, which 

cannot be achieved due to sequencing cost limitations. Integration of large 

GWAS statistical power and mapping simplicity of RVAS aligned on the map of 

protein interactions is a missing resource that will link genetic data to disease 

biology that can explain observed phenotype. We then focused on the integration 

of the available solutions for microarray data with multiple interactome 



	 12	

permutation schemes that would test hypotheses of network non-randomness 

(Chapter 4). 

 In summary, we developed a composite multi-model rare variant 

association test methodology and integrated it with novel approach for 

interpreting and refining results of genetic association studies. Our methodology 

uses protein interactions data to find the most associated subset of connected 

genes. 
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Chapter 2 
Composite model for gene based association tests. A role for genetic 

susceptibility in sporadic focal segmental glomerulosclerosis 
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Abstract 

Focal segmental glomerulosclerosis (FSGS) is a syndrome that involves kidney 

podocyte dysfunction and causes chronic kidney disease. Multiple factors 

including chemical toxicity, inflammation, and infection underlie FSGS; however, 

highly penetrant disease genes have been identified in a small fraction of 

patients with a family history of FSGS. Variants of apolipoprotein L1 (APOL1) 

have been linked to FSGS in African Americans with HIV or hypertension, 

supporting the proposal that genetic factors enhance FSGS susceptibility. Here, 

we used sequencing to investigate whether genetics plays a role in the majority 

of FSGS cases that are identified as primary or sporadic FSGS and have no 

known cause. Given the limited number of biopsy-proven cases with ethnically 

matched controls, we devised an analytic strategy to identify and rank potential 

candidate genes and used an animal model for validation. Nine candidate FSGS 

susceptibility genes were identified in our patient cohort, and three were 

validated using a high-throughput mouse method that we developed. Specifically, 

we introduced a podocyte-specific, doxycycline-inducible transactivator into a 

murine embryonic stem cell line with an FSGS-susceptible genetic background 

that allows shRNA-mediated targeting of candidate genes in the adult kidney. 

Our analysis supports a broader role for genetic susceptibility of both sporadic 

and familial cases of FSGS and provides a tool to rapidly evaluate candidate 

FSGS-associated genes. 
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Introduction 
	

	 The glomerulus of the kidney is a specialized capillary bed that generates 

an ultrafiltrate that, after modification by the kidney tubule system, becomes 

urine. Diseases of the glomerulus often lead to chronic kidney disease, a major 

health care problem affecting between 5% and 10% of the adult population in 

developed countries1. Treatment options are limited, in part owing to the poor 

understanding of the pathogenesis of glomerular disease. Better insights into the 

root cause of this disease will offer hope for improvement of this situation. 

One of the most common glomerular syndromes is focal segmental 

glomerulosclerosis (FSGS). The pathologic change of FSGS is a scar that 

develops focally (in some but not all glomeruli) and segmentally (in only part of a 

glomerulus). While originally considered a disease, FSGS is now thought to 

consist of a variety of different syndromes. These include primary (idiopathic) 

FSGS, which is thought to be caused by a circulating factor, and secondary 

FSGS, which may be caused by viruses, medications, and genetic mutations. 

The most common form of secondary FSGS follows glomerular hyperfiltration 

arising from a mismatch between metabolic load and glomerular capacity and is 

associated with obesity, low birth weight, reduced renal mass, and other causes. 

Genetic mutations alone can be sufficient to cause disease (Mendelian) or may 

increase susceptibility to FSGS by potentiating the effects of environmental 

factors. 

The glomerulus is composed of 3 different cell types: endothelial cells, 

mesangial cells, and epithelial cells known as podocytes. The podocyte is an 
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unusual cell that covers the outside of the capillary wall and interdigitates with 

other podocytes to create small slits that allow the passage of fluid and small 

solutes into the urinary space. It is now clear that podocyte dysfunction is 

responsible for FSGS as well as other glomerular diseases such as minimal 

change disease, membranous glomerulopathy, and congenital nephrotic 

syndrome. Current models suggest that increased podocyte loss is the primary 

lesion in FSGS2–5. 

Over the past 10 years, various genetic approaches have identified 

mutations in over 20 podocyte genes as causative or leading to increased 

susceptibility to FSGS6,7. Mutations in these genes, however, explain only a 

small fraction of familial and sporadic FSGS cases8–10. A larger fraction of cases 

may involve non-Mendelian forms of FSGS that could involve variants in multiple 

genes that interact together to generate susceptibility to podocyte injury and loss. 

Further gene discovery in oligogenic disease is challenged, however, by the fact 

that mutations will be distributed across many genes and be difficult to 

distinguish from numerous neutral gene variants11,12. A greater understanding of 

genetic causes of FSGS has the potential to elucidate molecular pathways that 

are involved in the disease. 

In terms of the number of people affected, the most significant genetic 

contributor to FSGS susceptibility identified to date is APOL1. FSGS-associated 

alleles of APOL1, called G1 and G2, are common in West African populations, 

likely as a consequence of providing resistance to trypanosomiasis13–15. The 

presence of 2 variant alleles significantly increases the risk of 
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arterionephrosclerosis (hypertensive nephropathy) (odds ratio [OR] = 7), FSGS 

(OR = 17), or HIV-associated nephropathy (OR = 29) in African Americans15,16 

and in South Africans (OR = 89)17. Approximately 13% of African Americans 

carry 2 variant alleles and are at increased risk for chronic kidney disease. These 

variants by themselves largely explain the increased frequency of FSGS among 

African Americans. Despite this, the mechanisms by which APOL1 variants 

cause or predispose individuals to glomerular damage remain unknown. As 

these variants are absent from individuals lacking any African ancestry, they are 

not documented to play a role in FSGS susceptibility in individuals of other 

ancestries. 

Here, we used high-throughput sequencing of DNA from FSGS patients of 

Northern European ancestry to identify genes that are potentially involved in 

susceptibility to the disease. The challenge of studying the genetics of sporadic 

FSGS is the possibility that a large number of genes may be involved and the 

likelihood that each gene contributes only a small amount of risk for the disease. 

In addition, the relatively low incidence of FSGS in adult and pediatric 

populations (~5/million/year)1 and the even fewer number of cases that are 

confirmed by kidney biopsy preclude the assembly of a cohort of the size 

required for standard genetic approaches like GWAS, whole-genome 

sequencing, or exome sequencing18. Thus, most genetic studies of FSGS have 

been family studies. 

Here, we sequenced DNA from 214 patients of European ancestry with 

biopsy-confirmed FSGS and tested a variety of analytic approaches to mitigate 
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our limited sample size. Since FSGS is considered a disease of podocytes, we 

focused our sequencing analysis on 2,500 genes that are highly and/or 

specifically expressed in podocytes. This approach significantly reduced the 

multitest penalty. We also developed a robust analytic pipeline permitting the use 

of individuals sequenced for other genetic studies as controls. Since there is no 

in vitro assay for FSGS, we developed a screening method using mice. Our 

system is based on a murine embryonic stem (ES) cell line with an FSGS-

susceptible genetic background that allows for efficient, targeted delivery of 

shRNAs to generate mice that are nearly 100% derived from the ES cells, 

eliminating the need for subsequent breeding. This method allowed us to rapidly 

test 6 candidate genes and validate 3 new FSGS susceptibility genes. We expect 

that our system will allow for large numbers of candidate genes constituting the 

network of FSGS genes to be validated and that it will provide critical insight into 

the pathogenesis of this disease syndrome. In addition, our experimental 

approach should be broadly applicable to studying other uncommon diseases in 

which susceptibility genes are suspected. 
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Results 

We conducted high-throughput DNA-sequencing studies focusing on 

2,500 genes (~7 Mb) that are highly expressed in podocytes, reasoning that the 

genetic susceptibility would be intrinsic to the podocyte (Figure 2.1).  

 

Figure 2.1. 2,500 genes clustered and defined as “podocyte exome”. 

  

The list of genes that we sequenced included most genes currently 

implicated in familial FSGS19–23, approximately 200 genes that are functionally 

linked to these genes, 677 genes chosen on the basis of their high expression in 

microdissected human glomeruli24, and 1,600 human orthologs of highly 

expressed genes identified by DNA microarrays of mouse podocytes25–27. 
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We performed sequencing of DNA from 214 patients of European 

ancestry with biopsy-confirmed FSGS, including 192 patients with sporadic 

FSGS and 22 with familial FSGS. DNA samples were obtained from patients 

participating in a multicenter NIH study of biopsy-confirmed FSGS16 and from 

patients diagnosed at Washington University. All subjects provided informed 

consent for the genetic studies. We focused on patients of European ancestry, 

because a well-characterized control set used for a genetic study of autism but 

unascertained for kidney disease was available that had a similar genetic 

ancestry28. A similar control dataset for African or African admixture patients was 

not available at the time we performed this sequencing study, which prevented 

us from including these patients in our analysis. 

To validate that our patient sequencing data were comparable to those of 

our control group, we processed data for both patients and controls in a single 

batch, with raw data aligned to the human genome29–31. The depth of coverage 

was compared between patients and controls, and only those exons covered 

adequately (>20 times) and similarly in both patients and controls were advanced 

to the analysis stage. In summary, 16,784 exons and 2,769,942 bp were 

confidently covered in both patient and control cohorts, resulting in 16,008 SNPs 

and 1,724 genes analyzed in the final dataset. SNP calls were equally 

represented in patients and controls. 

Thirty-two patients were removed from the study but reserved for follow-up 

because trace Hispanic ancestry was detected by principal component analysis 

(PCA) (Figure 2.2, A-C). Three patients were removed because the call rate of 
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SNPs was less than 95%. The remaining FSGS patients (157 sporadic and 22 

familial) had a similar number of SNPs, heterozygous genotypes, and genotypes 

containing an alternative allele per sample (Figure 2.2, E-G), allowing us to 

proceed to association analysis.  

 

Figure 2.2. (A) PCA plot of FSGS patients and 1,000 genome samples. 
The inset shows the distribution of putative Northern European FSGS patients in 
the PCA plot in relationship to 1,000 genome samples. (B) Magnified view of the 
inset area in A. (C) PCA analysis of patients and controls is depicted as the 
distance from the origin. Thirty-two patients with a highly similar variant profile 
but with a distance of more than 0.9 were removed and used as a follow-up 
group. (D) Fisher’s exact test of the common (MAF >5%) variants showed the 
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Figure 2.2 (Continued) absence of stratification and confirmed the validity and 
quality of our method for case-control matching. (E) Comparison of the total 
number of variants per sample showed that patients and controls were similar. 
(F) Comparison of the total number of heterozygous genotypes showed that 
patients and controls were similar. (G) Comparison of the total number of 
heterozygous and homozygous genotypes containing an alternative allele 
showed that patients and controls were similar. EUR, European; HISP, Hispanic; 
AFR, African; EAS, East Asian; VAR, variants; HET, heterozygous; PC1, 
principal component 1; PC2, principal component 2; KG, from 1000 Genomes 
Database. 

 

Our final dataset contained 179 patients and 378 controls and included 

157 sporadic and 22 familial FSGS patients. The accuracy of our analysis 

strategy was confirmed by resequencing key SNPs using Sanger sequencing 

and by showing that sequencing the same sample at both the Broad Institute and 

Washington University gave similar results. 

An association test examining single variants (minor allele frequency 

[MAF] >1%) was performed using Fisher’s exact test. No variants were detected 

with a P value below the multitest threshold (2x10–5). The lack of significance is 

not surprising, given the relatively small size of our sample. This analysis did 

confirm that the distribution of synonymous and missense variants was similar 

between patients and controls (Figure 2.2 D). Table 1 shows a list of the 10 

highest-scoring variants. All the variants are missense variants. As a follow-up, 

we analyzed the 32 samples with Hispanic admixture, combined with 23 

additional European ancestry samples that were sequenced from the Nephrotic 

Syndrome Study Network (NEPTUNE) cohort32. This confirmed enrichment of 3 

of the missense sequence variants in WNK4, KANK1, and ARHGEF17 (Table 
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2.1). Interestingly, KANK1 was recently identified as a susceptibility gene for 

familial nephrotic syndrome33. 

 

Table 2.1. Single variants enriched in patients versus controls and in the follow-
up cohort. POS, chromosome position of the variant; REF, reference allele; ALT, 
alternative allele; MINA, number of alternative alleles in patients; SMINA, number 
of alternative alleles in cases with sporadic FSGS; FMINA, number of alternative 
alleles in cases with familial FSGS; MINU, number of alternative alleles in 
controls; ESP EA, allele frequencies in European Americans in the NHLBI 
Exome Sequencing Project; ESP AA, allele frequencies in African Americans in 
the NHLBI Exome Sequencing Project; P, Fisher’s exact test p-value; FLW ALT, 
number of alternative alleles in follow-up cohort; FLW AF, allele frequency in the 
follow-up cohort. The frequency of single variants (MAF>1%) was assessed in 
patients versus controls and high-scoring variants with odds ratio greater than 
2.5 are shown in this table ranked by p-value. 
 

POS Gene Name REF ALT MINA S 
MINA 

F 
MINA MINU ESP EA ESP 

AA P FLW 
ALT FLW AF 

chr17 
40947320 WNK4 C T 6 6 0 0 1.3x10-3 0.5 1.00x10-3 2 1.8x10-2 

chr9 
710966 KANK1 G A 15 15 0 8 8.0x10-3 0.5 1.10x10-3 14 0.13 

chr2 
113737630 IL36G C A 5 5 0 0 1.0x10-3 0.12 1.50x10-3 0 0 

chr11 
73020633 ARHGEF17 G C 5 5 0 0 2.0x10-3 0.13 2.80x10-3 9 8.20x10-2 

chr17 
40939855 WNK4 G T 5 5 0 0 1.2x10-3 0.2 3.20x10-3 2 1.80x10-2 

chr22 
36661906 APOL1 A G 5 5 0 0 3.4x10-4 0.2 3.20x10-3 7 0.64 

 
 

Rare variant analysis identified 6 new potential FSGS susceptibility genes. 

We analyzed the rare variants (MAF <1%) using tests that compared the total 

numbers of rare variants between patients and controls. Currently, it is believed 

that there is an inverse correlation between the frequency of the allele and the 

potential risk. Thus, at each gene, we tested 2 distinct modes of inheritance for 

FSGS: the increased presence of extremely rare alleles that are predicted to be 

highly damaging and therefore highly penetrant (model 1), or the presence of 

low-frequency and less-damaging alleles with risk and protective variation 
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intermingled with neutral variation (model 2). To discriminate between these 2 

models, we analyzed 2 subsets of variants. For the first model, we used the 

Exome Aggregation Consortium (ExAC)34 browser to identify 5,662 missense 

and loss-of-function variants in our dataset that are present at a frequency of less 

than 0.01% in the European population. We then tested the burden of these rare 

variants in FSGS patients versus controls35. Using this analysis, we found that no 

genes reached a level of statistical significance for rare, highly penetrant variants 

under this model. 

To examine the second model involving low-frequency risk and protective 

variants, we selected all missense and loss-of-function variants with a MAF of 

less than 1% and compared their distribution between patients and controls using 

2 different rare variant tests: the variable threshold (VT)36 and the C-α test37. 

Because the effect sizes of variants differ, the accuracy of each method can vary 

depending on the specific situation. Using a P value of less than 0.05 

(Bonferroni-corrected P ≤ 3x10-5) as a cutoff, no genes were identified that 

exceeded this value, but 8 genes (WNK4, APOL1, DLG5, GCC1, XYLT1, 

KAT2B, BPTF, and COL4A4) had P values close to the Bonferroni-corrected 

value (P < 6x10-5 to P < 8x10-4, Table 2.2). Since the Bonferroni test tends to be 

conservative and APOL113–15 and COL4A438 are known FSGS genes, we 

selected these genes for further analysis as potential FSGS susceptibility genes. 

Our analysis of extremely rare variants (MAF <0.01%) in this set of 8 

genes showed enrichment in 3 of these genes: GCC1, APOL1, and COL4A4. 

Examination of our follow-up group (55 samples) confirmed enrichment of a 
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subset of the same rare variants found in our larger cohort in all of the genes 

except COL4A4 (Table 2.2), supporting the findings of our rare variant analysis. 

 

Table 2.2. Top genes identified by rare variant analyses. Rare, missense and 
nonsense variants (MAF<1%) were pooled for rare variant analysis using 
variable threshold (VT) and C-α tests. The top genes identified by each test are 
shown ranked by P-value. Genes with P-values of less than 8x10-4 were selected 
for further analysis.  

Gene 
C-α test Variable 

threshold test Allele counts 

P-value P-value Patients 
(N=178) 

Controls 
(N=378) 

XYLT1 1.74x10-4 1.38x10-3 29 18 
APOL1 3.36x10-4 1.78x10-3 8 2 
KAT2B 4.37x10-4 8.59x10-2 8 5 
WNK4 7.63x10-4 3.10x10-4 40 18 
BPTF 7.68x10-4 2.58x10-3 24 27 

COL4A4 2.34x10-2 6.75x10-5 22 9 
DLG5 2.96x10-3 7.71x10-5 50 38 
GCC1 2.91x10-3 4.84x10-4 14 5 

 

 

Since APOL1 and COL4A4 were already known13–15,38, the remainder of 

the identified genes (BPTF, DLG5, GCC1, KAT2B, WNK4, and XYLT1) could 

represent 6 new potential FSGS susceptibility genes. Notably, WNK4 was also 

identified by single-variant analysis. 

Interestingly, 4 patients with sporadic FSGS carried the APOL1 G1 variant 

(G1), a known risk variant for FSGS that is present in 29% of African Americans 

but is a rare variant (0.03%) in European Americans. This finding was also seen 

in the follow-up set, in which 7 of 55 additional samples were identified with this 

mutation. Since the allele frequency of the APOL1 G1 allele in approximately 
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5,500 Hispanic samples in the ExAC dataset was only 0.5%, this represents 

significant enrichment, regardless of the Hispanic admixture. 

Family studies have identified nearly 30 genes that cause familial FSGS7. 

To determine whether a set of 20 of these genes are also involved in sporadic 

FSGS, we assessed the frequencies of predicted damaging, rare coding variants 

(missense and loss-of-function with a MAF <1%) in these genes in patients and 

controls. Approximately 36.9% of patients (66 of 179) had at least 1 predicted 

deleterious rare variant in these 20 genes compared with 3.4% of controls (13 of 

378). The distribution of variants between familial and sporadic cases was similar 

and consistent with previous studies showing that approximately 30% of steroid-

resistant nephrotic syndrome patients presenting before the age of 25 have a 

variant in one of the known disease genes39. There was also a difference in the 

total number of unique rare variants identified in patients (32.9%, 59 variants in 

179 patients) versus controls (3.9%, 15 variants in 378 control subjects). The 

significance of this finding was tested using a permutation analysis of differences 

in variants between patients and controls in all potential random groups of 20 

genes chosen from our database of 1,724 genes. This showed, however, that 

27% of the random sets of 20 genes had a similar or higher burden of rare 

variants compared with the set of 20 FSGS genes. This suggests that our patient 

dataset contains additional novel FSGS susceptibility genes with strong genetic 

effects. 

Since FSGS cannot be modeled in vitro and most confirmatory studies are 

performed today in zebrafish33,40–42, we developed a genetic system in mice to 
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examine the function of candidate genes in vivo. Our strategy involved inhibiting 

the expression of candidate genes in podocytes from mice on a genetic 

background that is prone to develop FSGS. Mice that are heterozygous for 2 

podocyte genes, Cd2ap and Synpo, develop FSGS with an incomplete 

penetrance (~25%–50%) and significant albuminuria occurring at about 6 months 

of age43. Assuming that FSGS is an oligogenic disease, we reasoned that 

knocking down a bona fide disease gene in this background would accelerate 

disease onset. 

We generated a mouse ES cell line that was Cd2ap+/– and Synpo+/– 

using standard methods. The ES cell also expresses a podocyte-specific and 

doxycycline-inducible (DOX-inducible) transactivator (Nphs1-rtTA3G) that allows 

inducible expression of an shRNA44 (Figure 2.3 A). We reasoned that inducible 

RNAi would allow us to study the role of a gene in the mature kidney without 

worrying about developmental effects. The new method using laser-assisted 

microinjection into 8-cell embryos45 allowed us to generate mice that were nearly 

100% derived from the ES cells without further breeding (Figure 2.3 B). 

Consistent with mice generated by conventional breeding, approximately 50% of 

the mice generated from these ES cells developed mild proteinuria after 12 to 16 

weeks of age (Figure 2.3 C). 
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Figure 2.3. Development of ES cells sensitized for FSGS. (A) Identification of 
FSGS-sensitized ES cells. Our breeding strategy predicted that 1 of 8 embryos 
would have the correct genotype. ES cells were generated using standard 
approaches and genotyped for Cd2ap heterozygosity (upper panel), the NEFTA 
transgene (middle panel), and the Y chromosome (lower panel). (B) Laser-
assisted injection generated mice with high chimerism. In the example shown, 
the ES cell line (agouti) was injected into 8-cell C57/BL6 (black) embryos. 
Compared with noninjected embryos (resulting in the 2 black mice shown on the 
bottom), all of the injected embryos generated pups that were close to being 
purely agouti. Injection of ES cells into C57/BL6 albino embryos resulted in 
completely agouti animals (not shown). (C) Mice generated from ES cells 
developed mild proteinuria after 4 months, with no DOX treatment. Fifteen mice 
were generated from the sensitized ES cells and treated with or without DOX in 
the drinking water. Urine was tested every month by measuring the 
albumin/creatinine ratios. Mice developed low-level proteinuria at 4 months of 
age, but the level of proteinuria was not affected by DOX treatment.
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 To eliminate variability introduced by random integration of an RNAi 

transgene, we targeted a single copy of the RNAi transgene into the mouse 

Hprt1 locus46 that allows the use of 6-thioguanine for efficient selection (Figure 

2.4 A). 

 

Figure 2.4. Validation of the system using CD2AP knockdown. (A) Targeting 
strategy used to integrate a miR30-shRNA transgene into the Hprt1 locus. (B) 
Knockdown efficiency of a miR30-shRNA for Cd2ap (sh877). Immunoblot shows 
endogenous CD2AP in NIH3T3 cells stably transduced with FF3 (control shRNA) 
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Figure 2.4 (Continued) or sh877. Panel B represents multiple experiments (n = 
3) conducted to test the efficiency of the RNAi. (C) Sixteen mice generated with 
ES cells with the Cd2ap shRNA that was targeted to the Hprt1 locus were treated 
with or without DOX, and urine was analyzed by measuring the urine 
albumin/creatinine ratio at 4 and 8 weeks. (D) Histology from a representative 
Cd2ap RNAi mouse treated with DOX showing protein casts (indicated with 
asterisks; n >5). (E) Representative electron microscopic image from a Cd2ap 
RNAi mouse treated with DOX shows podocyte foot process (FP) effacement. 
En, endothelial cells (n = 9). (F) Thirteen control mice were generated with a 
control luciferase RNAi targeted to the Hgprt locus. Mice were treated with (n = 6) 
or without (n = 7) DOX, and urine was analyzed by measuring the 
albumin/creatinine ratio at 4 and 8 weeks. A 2-tailed Mann-Whitney U test was 
used to calculate the P values in C and F. A P value of less than 0.05 was 
considered statistically significant. 
 

 Since CD2AP is an FSGS disease gene47 and knockout (KO) mice 

develop severe proteinuria48, we validated our system by generating Cd2ap RNAi 

mice. Multiple Cd2ap-specific RNAis were tested for their ability to inhibit Cd2ap 

expression (Figure 2.4 B), and the RNAi showing the greatest inhibition (sh877) 

was embedded into a miR30 sequence that allows for DOX-inducible 

expression49. An RNAi for the firefly luciferase gene (FF3) was used as a control. 

Half of the founder (F0) animals were treated with DOX at 2 weeks of age to 

induce shRNA transgene expression. All of the DOX-treated mice developed 

sustained proteinuria that was over 150-fold higher than that seen in the control 

animals (Figure 2.4 C). Histological analysis of the kidneys revealed protein 

casts in the tubules (Figure 2.4 D). Electron microscopic examination of the 

kidney showed widespread foot process effacement, a marker of proteinuria 

(Figure 2.4 E), validating that our RNAi strategy could be used to test candidate 

FSGS genes. Interestingly, the proteinuric mice recovered after removal of DOX 

treatment. In contrast, FF3-RNAi mice did not show proteinuria after treatment 



	 33	

with DOX for 8 weeks (Figure 2.4 F), and no abnormalities were detected by 

electron microscopy or histology. 

 Three of the six genes, WNK4, DLG5, and KAT2B, identified by rare 

variant analysis were chosen for testing. We also chose the 3 single-variant 

candidates, KANK1, WNK4, and ARHGEF17. Since WNK4 was present on both 

lists, a total of 5 genes were selected for analysis. Because the exact mouse 

ortholog for human KANK1 is unknown, because Kank2 is more highly 

expressed in mouse podocytes50, and because Kank1 and Kank2 were recently 

identified as susceptibility genes for nephrotic syndrome, we targeted both Kank1 

and Kank2. Multiple shRNAs were generated for the 6 candidate genes. Their 

efficacy was validated in vitro, and the best one was targeted to the Hprt1 locus 

(Figure 2.5 A). Two independent clones for each candidate gene were selected, 

and 15–30 mice were generated by laser-assisted microinjection.  

Half of each cohort was given DOX, and proteinuria (albumin/creatinine), 

an indicator of podocyte function, was assessed at 4 and 8 weeks after DOX 

treatment (Figure 2.5 B–G). All 3 RNAi transgenes, Wnk4, Arhgef17, and Kank2, 

induced substantial proteinuria, with a level of proteinuria that was significantly 

higher than that seen in the control mice (Figure 2.5 B–E). In contrast, the Dlg5, 

Kat2b, and Kank1 RNAi mice did not show statistically significant elevations of 

proteinuria after 4 or 8 weeks of DOX treatment. Because there was a slight 

trend toward increased proteinuria in the Kat2b and Kank1 mice, we followed the 

proteinuria levels for an additional 4 weeks. After 12 weeks, Kank1 mice had a 

clear proteinuric phenotype, while the proteinuria present in Kat2b mice was still 
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not significant. Thus, Wnk4, Arhgef17, Kank1, and Kank2 mice were positive for 

proteinuria, while Dlg5 and Kat2b mice were negative for proteinuria. 

 

 

Figure 2.5. Validation of 5 candidate FSGS disease genes. (A) Validation of 
shRNAs for Arhgef17, Dlg5, Kank1, Kank2, Wnk4, and Kat2b. As described in 
Methods, shRNAs were tested for the ability to inhibit a target sequence fused to 
GFP in 293 cells. GFP immunoblotting was used to measure the degree of 
inhibition. Each immunoblot is representative of at least 3 independent 
experiments measuring RNAi efficiency. (B–G) Mouse validation screening for 
candidate FSGS genes. ES cells were generated with the specific RNAis   
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Figure 2.5 (Continued) targeted to the Hgprt locus. Essentially pure chimeric 
mice were generated by laser-assisted microinjection of ES cells into C57BL6 8-
cell embryos. Injections generally resulted in cohorts of 14 to 30 animals; smaller 
cohorts of animals were not used. Mice were divided into 2 groups and treated 
with or without DOX to induce expression of the RNAi transgene. Urine 
albumin/creatinine ratios were measured 4 and 8 weeks after DOX treatment. 
Albumin/creatinine ratios are shown for each cohort of mice at the indicated time 
points. A 2-tailed Mann-Whitney U test was used to calculate the P values for B–
G. A P value of less than 0.0083 was considered statistically significant (multitest 
penalty was used). 
 

We confirmed the Dlg5 result by obtaining Dlg5-KO mice51 and generating 

Dlg5, Cd2ap, and Synpo triple-heterozygous mice using conventional breeding. 

No kidney dysfunction was detected, confirming our RNAi result. As expected, 

electron microscopic examination of the kidneys showed podocyte foot process 

effacement in Arhgef17, Kank1 (12 week-time point), Kank2, and Wnk4 mice, but 

not in Dlg5 RNAi mice. While the overall morphology was normal, some focal 

areas of mild foot process effacement could be seen in the Kat2b mice. 

We added KANK1, WNK4, and ARHGEF17 to the list of the 20 known 

FSGS genes and reanalyzed differences in the number of rare variants between 

patients and controls. Approximately 53.5% of patients (84 of 179) had at least 1 

predicted deleterious rare variant in these 23 genes compared with 5.6% of 

controls (21 of 378) (Table 2.3). We separated the patients by sporadic and 

familial FSGS and found a similar distribution, with 50% of sporadic FSGS 

patients and 64% of familial FSGS patients having variants in these 23 genes. 
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Table 2.3. Variant distribution from sequencing analyses. 

 EA Sporadic 
FSGS 

EA Familial 
FSGS 

Total EA 
FSGS 

Replication 
Cohort 

Total # of 
Controls 

Total samples 
sequenced 171 11 182 32 378 

Samples that 
passed QC 168 11 179 32 378 

Patients with 
deleterious 

variants in 20 
known FSGS 

genes 

60 6 66 11 13 

Patients with 
known 

APOL1 G1 
allele 

4 0 4 7 0 

Patients with 
rare 

deleterious 
variants in 8 

genes* 

52 3 55 16 43 

Patients with 
variants in 3 

validated 
genes** 

32 3 35 10 12 

Percentage of 
patients with 
variants in 3 

validated 
genes 

19.0% 27.3% 19.6% 31.3% 3.2% 

Patients with 
variants in 20 

known + 3 
validated 

genes 

84 7 91 18 21 

Percentage of 
patients with 
variants in 20 

known + 3 
validated 

genes 

50.0% 63.6% 50.8% 56.0% 5.6% 

 
* - Genes identified by rare variants analyses (Table 2.2). 
** - Genes validated by mouse model (ARGHEF17, KANK2, WNK4) 
EA – European American 
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We tested random sets of 23 genes by permutation analysis of patients 

and controls, which showed that only 0.67% (P < 1.6 × 10–27) of random sets of 

23 genes chosen from the controls equaled or matched the burden of rare 

variants seen in the patients for these 23 genes. This supports the idea that 

genetic variants in these 23 genes account for most of the disparity between 

patients and controls in the numbers of rare variants. This also supports the idea 

that a specific subset of genes may function more broadly to create a susceptible 

background for the development of sporadic FSGS. 



	 38	

Discussion 
	

 FSGS is a syndrome of diverse etiology that shares a common histologic 

pattern of focal and segmental glomerular scarring, together with glomerular 

proteinuria and progressive loss of renal function. The majority of FSGS cases 

involve primary FSGS, adaptive FSGS, or APOL1 FSGS; less common are viral 

FSGS, Mendelian FSGS, and medication-associated FSGS. As there are no 

validated methods to specifically distinguish sporadic (non-familial) FSGS, the 

present study included subjects with both primary and adaptive FSGS as well as 

subjects with familial FSGS. Because of the strong predictive power of family 

history, and because only a small percentage of individuals affected by known 

etiological factors develop FSGS, the genetic background of the individual is 

thought to play an important role6. 

 The critical locus of injury in FSGS is now thought to be the podocyte2, a 

terminal-differentiated cell that has limited replication potential52. In the normal 

kidney, small numbers of podocytes are continuously lost over time4, and when 

podocyte numbers drop below a critical level, kidney failure inexorably 

ensues2,5,53. Environmental insults and genetic susceptibility are thought to 

enhance the rate of podocyte loss, and this increases the probability of 

developing FSGS. Interpreted this way, the FSGS “lesion” likely represents the 

common outcome of a wide variety of pathogenetic causes. 

In validating genetic susceptibility in sporadic FSGS, a significant 

challenge is the likelihood that a large number of genes may be involved and that 

each gene contributes only a small amount of risk for the disease. Additionally, 
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the role of mutations in a specific gene may affect only a small number of 

patients. This substantially increases the challenge of gene identification in any 

large genetic study. An additional complication is that sporadic FSGS is relatively 

uncommon, and most patients do not have a biopsy-confirmed diagnosis. This 

currently precludes the assembly of a large enough cohort for strong statistical 

analysis. Because of this, most of the FSGS disease genes identified to date are 

from family studies, from the sequencing of candidate genes based on the 

phenotype of mouse models, or from admixture linkage studies of African 

Americans15,19–23,25,47,54–57. 

Here, we used next-generation sequencing to identify FSGS susceptibility 

genes. Because of our relatively modest sample size, we adjusted our analytic 

approach to maximize our ability to identify candidate genes. As both rare and 

common variants have allele frequencies that are determined by ancestry, well-

matched controls for ancestry are required. Since large control datasets for 

individuals of European ancestry are already available, we focused on FSGS 

subjects of European ancestry. Because DNA variant calling can be different 

between institutions and between platforms, we established a pipeline to validate 

that the datasets were comparable. FSGS is more common in African 

Americans, but the complex genetic admixture in this population will require a 

large and complex control dataset that is currently not available. Our focus on 

genes expressed in podocytes allowed us to focus on higher-likelihood genes 

and minimized the multitest penalty. 
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Genetic analysis of FSGS is challenging because of the potentially broad 

genetic heterogeneity of the disease and the relatively small number of subjects 

available for analysis when the subjects’ ancestry needs to be controlled. Rare 

variant analysis in ethnically admixed populations such as those found in the 

United States will require new statistical approaches and the development of 

large, ancestrally matched control datasets. Nonetheless, our work shows that 

current statistical approaches, combined with focused sequence analysis, can 

identify candidate genes from a relatively small sample for a syndrome like FSGS 

that has widely divergent etiologies. While our sample size was sufficient to 

extract a list of candidate genes using rare variant analysis, a sample size of at 

least one order of magnitude larger would be necessary to generate statistically 

significant data for the single variants18. Here, we used next-generation 

sequencing to identify FSGS susceptibility genes. Because of our relatively 

modest sample size, we adjusted our analytic approach to maximize our ability to 

identify candidate genes. As both rare and common variants have allele 

frequencies that are determined by ancestry, well-matched controls for ancestry 

are required. Since large control datasets for individuals of European ancestry 

are already available, we focused on FSGS subjects of European ancestry. 

Because DNA variant calling can be different between institutions and between 

platforms, we established a pipeline to validate that the datasets were 

comparable. FSGS is more common in African Americans, but the complex 

genetic admixture in this population will require a large and complex control 

dataset that is currently not available. Our focus on genes expressed in 
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podocytes allowed us to focus on higher-likelihood genes and minimized the 

multitest penalty. 

Genetic analysis of FSGS is challenging because of the potentially broad 

genetic heterogeneity of the disease and the relatively small number of subjects 

available for analysis when the subjects’ ancestry needs to be controlled. Rare 

variant analysis in ethnically admixed populations such as those found in the 

United States will require new statistical approaches and the development of 

large, ancestrally matched control datasets. Nonetheless, our work shows that 

current statistical approaches, combined with focused sequence analysis, can 

identify candidate genes from a relatively small sample for a syndrome like FSGS 

that has widely divergent etiologies. While our sample size was sufficient to 

extract a list of candidate genes using rare variant analysis, a sample size of at 

least one order of magnitude larger would be necessary to generate statistically 

significant data for the single variants. 

An innovation of our approach was the development of a robust pipeline 

that allowed the use of data on individuals sequenced for other studies as 

controls. The ability to combine datasets generated at different institutions for 

different types of studies will become increasingly important and powerful as 

sequencing becomes more widespread. In our initial studies, we found that batch 

effects caused by different approaches used for sequencing among different 

institutions could be a confounding factor precluding the use of analyzed data 

generated at 2 different institutions. However, by applying the same sequencing 

read alignment and variant calling pipelines to the primary sequencing data from 
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both patients and controls, we were able to eliminate this variable. We validated 

our approach by establishing a method for case-control genotype matching and 

removal of any stratification as well as verifying that primary sequencing data 

from 2 different institutions using the same control DNA sample gave similar 

results. 

Using a P value of less than 0.05, no genes were identified by rare or 

single-variant analysis that reached genome-wide significance because of 

Bonferroni’s multiple test correction. Because the Bonferroni test tends to be 

conservative, we assembled a list of the top 8 genes identified by rare variant 

analysis and the top 3 genes identified by single-variant analysis with P values 

that were close to the Bonferroni corrected P value. Supporting the veracity of 

this analysis, 3 of the genes, APOL1, COL4A4, and KANK1, were already known 

FSGS susceptibility genes15,16,33,38, and WNK4 was identified on both lists. 

 We initially sequenced over 700 biopsy-confirmed FSGS samples, but 

most of these samples were genetically admixed, preventing further analysis 

because of the lack of matched controls. We therefore focused only on the 

patients of European ancestry as defined by PCA. Because the number of 

patients of European ancestry with biopsy-confirmed FSGS is extremely small, it 

is not possible to assemble a true replication study. Also, because of cost, case-

control studies with replication using whole-exome or whole-genome sequencing 

have, in general, been extremely limited and are not yet commonplace in the 

literature. As a confirmatory approach, we used the 33 samples that we had 

eliminated because of Hispanic admixture and 23 additional European ancestry 
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samples that we had sequenced subsequent to the original analysis as a 

confirmatory or follow-up dataset. Our analysis of this second dataset confirmed 

an increased burden of rare variants in the 6 listed rare variants as well as an 

increase in 3 common variants (Table 2.1). Since WNK4 was identified by both 

processes and APOL1, COL4A4, and KANK1 are known genes, at least 7 new 

candidate genes were identified by our sequencing analysis. While the groups 

were small, the distribution of variants did not seem to differ significantly between 

the sporadic and familial FSGS cases.  

 We were surprised to identify the APOL1 G1 variant in 4 of our subjects 

and in 7 of the subjects in our follow-up set, as it is rare in non-African 

populations. The enrichment of this variant in 11 of 208 of our non-African 

subjects suggests that this particular allele may interact with other variants, 

leading to susceptibility to FSGS. This is supported by the enrichment of rare, 

predicted deleterious APOL1 variants in our subjects. The enrichment in our 

European American subjects with variants that are common in African 

Americans, but rare in European Americans, was also found in WNK4, KANK1, 

and ARHGEF17. The absence of neighboring African SNPs suggests that these 

are ancestral variants and not due to admixture. 

 With the availability of large-scale DNA sequencing of human populations, 

the identification of disease candidate genes and potential disease-associated 

variants will become more common. How these candidate genes and variants will 

be validated is unclear. Here, we demonstrate a pipeline that uses common and 

rare variant association analyses to identify candidate genes from sporadically 
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affected unrelated individuals and control sequence data that were previously 

generated. We then developed a method to allow these candidates to be tested 

in vivo. Our method relied on generating an ES cell line that was sensitized for 

the development of FSGS. It should be possible to generate ES cells on other 

disease-specific backgrounds to allow for validation studies that will be required 

to facilitate the discovery of genetic variants associated with both rare and 

common diseases. 
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Materials and Methods 

	 Sample preparation and sequencing were carried out using standard 

protocols for targeted capture and Illumina sequencing. In brief, genomic DNA 

was fragmented to 150 to 200 bp using a Covaris E220 Focused Ultrasonicator. 

The ends of the fragmented DNA were repaired using a mixture of T4 DNA 

polymerase, Klenow polymerase, and T4 polynucleotide kinase. Subsequently, 

adapters for Illumina sequencing were ligated onto the fragments. These libraries 

were then hybridized to biotinylated DNA probes from regions of interest 

(manufactured by MyGenostics). After washing away DNA libraries that bound 

nonspecifically to the probes, DNA of interest was recovered using Dynabeads 

MyOne Streptavidin T1 (Life Technologies). Resulting DNA libraries were 

amplified, if needed, for sequencing on an Illumina HiSeq 2500. 

We performed alignment of the raw sequencing data and variant calling 

according to GATK best practices with the BWA/Picard/GATK software pipeline 

of the Broad Institute. To insure that gene loci were equally covered in both 

patients and controls, we performed quality control on patients’ and controls’ 

genotypes separately, applying the following filters: (a) retention of only variants 

that PASS all GATK quality filters; (b) retention of genotypes with 

DP>10,GQ>30,AB for hets 0.3<AB<0.7, for homozygous alternative AB<0.3; and 

(c) retention of all variants with less than 5% missing genotypes. After applying 

these filters, variants were combined from patients and controls, and only those 

variants with less than 5% missing genotypes in both patients and controls were 

kept for further analysis. Our final dataset contained 16,108 SNPs in 1,874 
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genes. The sequencing data were deposited in the NCBI’s Sequence Read 

Archive (http://www.ncbi.nlm.nih.gov/sra/), under accession number SRP067711. 

PCA was performed with Eigenstrat software using the common (MAF 

>5%) variants found in autosomes only. We computed a Euclidean distance from 

each point on the PCA plot to the origin and plotted distributions of this 

parameter for both patients and controls. Using the 3-sigma rule, 30 samples of 

mixed Hispanic ancestry were identified as outliers and removed from the 

dataset. 

Sample statistics and case-control–matching metrics were computed 

using PLINK/SEQ analysis software. We used the number of variants called per 

sample, the number of heterozygous genotypes per sample, and the number of 

genotypes with minor allele per sample as a metric representing the genetic 

background of the cohort. The similarity between the genetic background of 

patients and controls was established by matching the mean and variance of 

patient and control distributions for every metric. We tested the validity of this 

approach by running Fisher’s exact test on the common variation and QQ-plot of 

the P values. This showed no inflation, confirming the absence of any population 

stratification in the case-control dataset. 

Mouse strains. Cd2ap+/– mice were generated previously48. Synpo–/– 

mice were obtained from Peter Mundel’s laboratory58. The Nphs1-rtTA3G 

(NEFTA) strain was a gift from Jeffrey Miner’s laboratory44. The Dlg5+/– mouse 

strain was a gift from Valeri Vasioukhin’s laboratory51. All mouse strains were 

genotyped by established methods. 
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Generation of a male Cd2ap+/–, Synpo+/–, NEFTA+ ES cell line. To 

generate a male ES cell line that was sensitized to FSGS, we bred Cd2ap+/– 

Synpo–/– males with NEFTA+ females. The females were superovulated using 

standard methods. After mating, the embryos were isolated at the 8-cell stage 

(morulae) and cultured overnight in EmbryoMax KSOM medium (MR-121-D; 

EMD Millipore) microdrops overlaid with mineral oil at 5% CO2 and 37°C. 

Blastocysts were transferred, 1 per well, into 48-well plates with γ-irradiated 

mouse embryonic fibroblast (MEF) feeders and standard ES cell media 

containing 15% ES-qualified FBS (SH30070.03E; Hyclone). The inner cell mass 

(ICM) was allowed to grow out and was trypsinized after 5 to 7 days, depending 

on the size and shape of the outgrowth. Cells were cultured until ES colonies 

were identified. The colonies were expanded and genotyped using standard 

methods. 

Generation of miR30-shRNA knockin transgenic mice. Integration of a 

single-copy transgene into the Hprt1 locus using 6-thioguanine was performed as 

we previously described46 and was modified by the addition of a puromycin 

resistance cassette to increase the efficiency of selection of a positive ES clone. 

A PGK-Puro cassette was inserted between the left and right arm of the pHPRT 

targeting vector. The miR30-based shRNA-expressing transgene that was driven 

by the tetracycline-responsive promoter (TRE) was inserted between the left arm 

and the PGK-Puro cassette. The linearized targeting vector was transfected into 

ES cells. Twenty-fours hours after transfection, the ES cells were treated with 1 

µg/ml puromycin for 48 hours. After passaging once, the ES cells were treated 
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with 6-thioguanine (5 µg/ml) for an additional 48 hours. Surviving ES cell colonies 

were selected, expanded, and examined by genomic PCR across the right arm 

(forward primer: 5′-CAAGCCCGGTGCCTGATCTAGATCATAATC-3′; reverse 

primer: 5′-CTGTAAAGGTCTCTGAACTACCAATTGCAC-3′). Positive ES cells 

were then stocked for injection. 

Laser-assisted microinjection. The ES cells were maintained at the 

expansion phase before injection. Eight ES cells were injected into a recipient 

embryo at the 8-cell stage by following a protocol published previously45. Since 

the ES cell line produces mice with agouti coat color, albino B6 (C57BL/6J-Tyrc–

2J) mice were used as hosts to allow for direct evaluation of chimerism by coat 

color. 

Cell culture and lentiviral infection. Immortalized murine podocytes were 

maintained and differentiated as described previously25. To examine the 

knockdown efficiency of CD2AP-sh877, podocytes were infected with lentiviral 

vectors encoding miR30-sh877. A control lentiviral vector encoding miR30-FF3 

that targets firefly luciferase cDNA was used as a control. CD2AP expression 

was examined by immunoblot analysis of the whole-cell lysates. 

Design and validation of the miR30-shRNA constructs for genes of 

interest. The shRNA oligo sequences were chosen using an online algorism 

(http://katahdin.cshl.org/siRNA/RNAi.cgi?type=shRNA) as described previously 

(48). The miR30-shRNA backbone was subcloned by PCR from pPRIME-CMV-

GFP-FF3 (https://www.addgene.org/11663/) and inserted into a pcDNA3.1-

Zeo(+) vector to generate the pcMIR vector. To examine knockdown efficiency, 
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the miR30-shRNA construct and its artificial target were cotransfected into 

HEK293T cells at a molar ratio of 5:1. The expression of EGFP in whole-cell 

lysates was examined by immunoblot analysis. 

Abs. The Abs used for immunoblotting were mouse anti-XFP (632381; 

1:10,000 dilution; Clontech); rabbit anti-ERK2 (sc-154; 1:5,000 dilution; Santa 

Cruz Biotechnology Inc.); mouse anti–β-actin (A2228; 1:10,000 dilution; Sigma-

Aldrich); and rabbit anti-CD2AP (generated in our previous study; 1:10,000 

dilution). 

Albumin-creatinine assay. Mouse urine samples were collected at the time 

points indicated in the figures, and urinary albumin (E90-134; Bethyl Laboratories 

Inc.) and creatinine (DICT-500; BioAssay Systems) were quantified by ELISA 

according to the manufacturers’ protocols. 

Transmission electron microscopy. Portions of kidney cortex were fixed 

with 2% paraformaldehyde and 2% glutaraldehyde. Specimen processing, 

ultrathin sectioning, and imaging were performed by the Electron Microscopy 

(EM) Core Facility at Washington University. 

Statistics. P values of all albumin/creatinine ratio plots (Figure 2.4, C and 

F, and Figure 2.5, B–G) were calculated using a 2-tailed Mann-Whitney U test. 

For Figure 3, C and F, a P value of less than 0.05 was considered statistically 

significant. For Figures 2.5, B–G, a P value of less than 0.0083 was considered 

statistically significant (the multitest penalty was applied). All error bars represent 

the mean ± SEM. 
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Study approval. All animal experiments were conducted with the approval 

of the Washington University Animal Studies Committee. Because all of the 

patient samples were deidentified, the Washington University IRB deemed these 

studies exempt from IRB approval. 
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A strategy for large-scale systematic pan-cancer germline rare variation 

analysis 

	

	 Abstract 

	 Vast majority of cancer risk genes was identified with tumor-normal tissue 

comparison. While somatic mutations undoubtedly are the main drivers of the 

disease onset in sporadic and late-onset cases, patients with early onset and/or 

familial history of cancer are likely to carry significant inherited risk in their 

germline DNA. Here we sought to analyze large dataset of genetically enriched 

cancer cases and unselected cancer cases cohorts with cutaneous and ocular 

melanoma, colon, breast cancers and identify common features of the risk 

variation in the germline DNA. We observe that almost entirely statistical signal 

was driven by singleton protein-truncating variants in the genes tolerant to loss-

of-function mutations that followed autosomal dominant inheritance pattern. 

Interestingly, both unselected and genetically enriched cases show burden of risk 

variation compared to large pool of matched controls. 

 

Introduction 

 Analysis of inherited predisposition to cancer usually involves cohorts of 

early disease onset patients or large kindreds. Here we analyzed a large cohort 

of genetically enriched (early onset and/or familial) and unselected cases of 

breast cancer, colon cancer and cutaneous and ocular melanomas (in total about 
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2,000 cases matched to more than 7,000 non-cancer controls) to systematically 

search for novel germline cancer risk genes. By first analyzing known cancer 

predisposition genes, we demonstrate that protein truncating, rather than 

missense, mutations are the main driver of inherited cancer predisposition and 

generally these occur in genes tolerant of loss-of-function mutations – distinct 

from the highly constrained genes more often somatically mutated and found to 

be drivers in tumors. Interestingly, we find that unselected cancer cases have a 

significant burden of protein-truncating variants in known cancer risk genes, 

similar to that observed in genetically enriched (familial and early-onset, herein 

referred to as ‘selected’) patients. Using these observations to design our search 

for new cancer genes, we analyzed individual cancer cohorts with matched 

controls and constructed a ranked list of new potential candidate risk genes. 

Results 

	 Cohort and overview. For this study, germline DNA from selected 

“genetically-enriched” cases (individuals with familial cancer or onset of the 

disorder at age of 35 or earlier) of breast cancer, colon cancer, cutaneous and 

ocular melanomas, and Li-Fraumeni syndrome (with primary breast cancer) was 

collected (Inclusion criteria is included in Supplementary Methods). For a 

discovery set a total of 273 cutaneous melanoma (M/F 128/145), 99 ocular 

melanoma (M/F 46/53), 355 breast cancer (M/F 1/354), 43 Li-Fraumeni 

syndrome (M/F 7/36), 75 colon cancer (M/F 27/48) and 7924 controls (M/F 

5689/2235) passed quality-check and were included in the subsequent analysis. 

Germline DNA sequences from TCGA were used as “unselected” cancer cases 
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(not controlling for family history or age of onset): 820 breast cancer (M/F 9/811), 

250 colon cancer (M/F 135/115), 379 cutaneous melanoma (M/F 233/146) and 

47 ocular melanoma (M/F 27/20). 

In order to ensure close ancestral matching, we performed principal 

component analysis (PCA; Figure 3.1A) of the case and control cohorts.  Since 

there were few samples outside the large cluster representing predominantly 

European ancestry, our analysis was then restricted to this cluster of samples 

only. Within European-ancestry samples we performed relatedness analysis and 

removed all duplicates and first-degree relatives. Examination of common 

synonymous variants (MAF>5%) revealed a null-distribution of the test statistic 

between cases and controls (Figure 3.1B). 
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Figure 3.1. Case-control matching results. (A) Principal component analysis and 
closer image of European ancestry cluster. (B) Analysis of common synonymous 
mutations in cases and controls. QQ-plot shows null-distribution. 

 

Search strategy for new cancer risk genes. Recent studies of multiple 

pediatric cancer phenotypes provide insights into the prevalence of inherited 

pathogenic mutations in known cancer genes1. In order to define an exome-wide 
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strategy to search for new cancer predisposition genes, we began by analyzing 

rare genetic variation in known risk genes. Specifically, we examined the 

prevalence of risk alleles in lists of known genes subdivided by reported model of 

inheritance to identify features common to genes in each list and also to compare 

genetic association observed in selected and unselected cancer cases. Out of 

four lists that we tested – autosomal dominant, autosomal recessive, tumor 

suppressor and Ras-Sos pathway genes, only the autosomal dominant model list 

shows enrichment in cancer cases (Table 3.1, Figure 3.2A). We looked into the 

frequency spectrum for the variants with MAC<=10 and observed that this 

association signal is driven almost entirely by singletons (Figure 3.2B). 
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Figure 3.2. Autosomal dominant model analysis. (A) Genes with protein-
truncating mutations show enrichment in cases. (B) Allele frequency spectrum of 
protein-truncating variants. 
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Table 3.1. Burden test of models of different inheritance. 
Autosomal dominant. Protein-truncating variants 

Selected	
Cases	
(N=822) 

Controls	
(N=7924) P 

Unselected	
Cases	

(N=1514) 

Controls	
(N=7924) P 

40 105 5.26x10-10 44 94 6.41x10-6 
Autosomal dominant. Damaging missense variants 

196 1962 0.68 340 1678 0.37 
Autosomal recessive. Protein-truncating variants (homozygotes or double hets) 

0 0 1 0 0 1 
Autosomal recessive. Damaging missense variants (homozygotes or double 

hets) 
3 14 0.21 3 13 0.73 

Ras-Sos	pathway	genes.	Protein-truncating	variants	
2	 16	 0.68	 2	 15	 1	

Ras-Sos	pathway	genes.	Damaging	missense	variants	
12	 154	 0.42	 21	 154	 0.18	

Tumor	suppressor	genes.	Protein-truncating	variants	
8	 102	 0.43	 17	 81	 0.67	

Tumor	suppressor	genes.	Damaging	missense	variants	
225	 2141	 0.87	 287	 1762	 0.02	

 

Separate analysis of protein-truncating variants (nonsense, frameshift and 

essential splice site) and damaging missense (Supplementary Methods) was 

performed. Interestingly, unselected cases (p=6.41*10-6; OR=2.45; OR CI=1.66-

3.56) show similar significant enrichment to genetically enriched cases 

(p=5.26*10-10; OR=3.67; OR CI=2.47-5.37) with rare (minor allele count less or 

equal to 10) protein-truncating variants only, while we observed no enrichment in 

damaging missense variation (p=0.68 and p=0.37 for selected and unselected 

respectively, Figure 3.3). 
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Figure 3.3. Prevalence of alternative alleles in (A) Protein-truncating variants; 
(B) Damaging missense variants. 
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however the counts were still very low and inconclusive, thus the recessive 

model was ruled out.  

We then asked whether there were any additional features characterizing 

which genes within the autosomal dominant list were driving the truncating 

variant association signal. Using a metric of genic tolerance to truncating 

variation (pLI) defined by the Exome Aggregation Consortium (ExAC), we 

separately estimated association in genes tolerant of loss-of-function mutations 

(pLI<0.1) and intolerant of such variation (pLI>0.9) (Figure 3.4A). While this list 

contains genes that carry either heritable risk of cancer or high-risk somatic 

mutations (or both) we observe high enrichment of protein-truncating variants in 

highly tolerant genes (p=1.5*10-6 early and p=3*10-4 late onset, Figure 3.4B-C), 

consistent with limited selective pressure from generally later adult onset of 

disease.  

Using these identified properties of the known cancer susceptibility genes, 

we can infer what features we should expect to observe in novel germline 

candidate genes. We therefore targeted our search for mutations (primarily 

truncating) with autosomal dominant model of inheritance, in genes tolerant of 

loss-of-function mutations (as predicted by pLI score metric) and driven by a 

substantial burden of singletons (or independent variants) in both genetically 

enriched and unselected cases. 
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Figure 3.4. Analysis of the autosomal dominant model genes with pLI constraint 
metric. (A) pLI spectrum for autosomal dominant genes. (B) Prevalence of 
alternative alleles in cases in genes tolerant to loss-of-function variation 
(pLI<0.1). (C) Prevalence of alternative alleles in genes intolerant to loss-of-
function variation (pLI>0.9). 
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Cases	

1	 1514	 15	 7924	 0.49	
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selected and unselected cases respectively. We kept only genes with pLI<0.1 for 

further analysis. Because of earlier demonstrated significant contribution of 

inherited risk in unselected cases we joined both case cohorts for further 

analysis. Considering the burden of singleton truncating variants, among the top 

5 genes identified with our methodology, 3 are known cancer risk genes – 

BRCA1, BRCA2 and ATM. While this serves as a good proof-of-concept and 

suggests that the exome sequencing and analysis approach has some degree of 

both sensitivity and specificity, there are no clearly significant novel candidates 

arising from this approach. 

 Individual Cohorts Analysis. We then performed analysis of the individual 

phenotypic cohorts for each cancer. Additional 3526 controls were matched to 

the unselected cases and were used as a replication set. In addition to our 

primary analysis focused on burden of protein-truncating variants, several other 

previously reported models for rare variant association studies (RVAS) were 

used for analysis2 which added additional variants to the truncating variants: 

addition of the missense mutations (c-alpha, VT tests) and ultra-rare variation 

analysis (variants filtered for MAF<10-5 in ExAC).  

 For each gene we record the best p-value out of 3 models and 

respectively adjusted the null-statistics by performing the same choice of the best 

p-value from 3 independent draws from uniform distributions of p-values. 

For the analysis of the breast cancer patients, we eliminated all male samples 

from the dataset, resulting in comparison of 354 genetically enriched cases with 

2190 matched controls. Despite the screening of the previously known BRCA1 
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risk mutations in the breast cancer cohort we still observe genome-wide 

significant rare loss-of-function variants burden in this gene. Analysis was 

performed using three different but related statistical models and the minimal p-

value was chosen for each gene. Genes with minimal p-value less than 10-4 were 

subjected to replication. MKL2 was also included in the short-list of genes as it 

appears second only to BRCA1 in the burden of protein-truncating variants. 

According to GTEx database3 – MKL2 is primarily expressed in adipose and 

mammary tissues. Two genes show evidence of replication – BRCA1 and 

HSD17B1. Interestingly, four genes out of our short-list of candidates are known 

to be associated with worse outcome of breast cancer, once mutated or amplified 

in tumors – BRCA1, HSD17B1, PCDHB15 and MED284–7 (Table 3.2).  

Similarly, ATM appears as a top gene in RVAS of the colon cancer cohort. 

Being a known predisposing gene for this phenotype it does not reach 

significance threshold due to statistical power limitations (Table 3.3). However, 

OBP2A is not expressed in colon tissues and TMEM4C does not have 

expression specificity to colon tissues.  
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Table 3.2. Early Onset Breast Cancer RVAS female cases and controls. 
Target Set Replication Set 

Gene 
Name Method Cases 

(N=354) 
Controls 
(N=2190) P Cases 

(N=504) 
Controls 
(N=1870) P 

ENPP5 VT 11 16 3.00x10-6 3 14 1 

BRCA1 PTV 
Burden 11 7 5.30x10-6 5 3 0.014 

PCDHB15 ExAC 
Burden 6 1 2.18x10-5 0 0 1 

USP35 VT 46 124 4.20x10-5 15 53 0.76 
CCDC9 VT 10 18 4.84x10-5 5 12 0.224 
COL5A2 C-alpha 23 72 7.38x10-5 6 34 0.39 
MED28 C-alpha 7 6 8.54x10-5 0 6 1 

HSD17B1 C-alpha 15 22 8.77x10-5 3 5 0.039 

MKL2 PTV 
Burden 5 2 8.85x10-4 2 1 0.2 

 

Table 3.3. Early onset colon cancer RVAS. 
Target Set Replication Set 

Gene 
Name Method 

Cases 
(N=75) 

Controls 
(N=7654) P 

Cases 
(N=190) 

Controls 
(N=3526) P 

ATM 
PTV 

burden 4 12 1.66x10-5 1 6 0.31 

OBP2A 
ExAC 

burden 5 43 4.81x10-5 1 9 0.26 
TMEM14C C-alpha 2 12 9.83x10-5 0 10 1 

 

Discussion 
	

Our study develops a systematic approach for search of the novel cancer 

risk genes through analysis of the rare variation in the known susceptibility 

genes. Moreover, we observe notable enrichment of the known inherited genetic 

risk factors in the unselected cancer cohort (TCGA). Despite common beliefs that 

sporadic cancer cases are mostly elucidated by aging and carcinogen exposure, 

genetic predisposition plays substantial role in the disease onset, comparable to 

genetically enriched cohort. List of the genes that we used as a training model 

includes well-known high-risk genes. Expectedly, we did not find potential 
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candidate genes in our dataset with comparable effect size. At the same time, 

lower-risk genes require large cohorts providing enough statistical power. 

Individual cohort analysis provides alternative approach to the search for 

candidate genes. We identified three potential candidates – HSD17B1, 

PCDHB15, MED28 with reported association to worse outcome for patients with 

somatic mutations in these genes. The HSD17B1 gene produces an enzyme that 

catalyzes the conversion of estrone to estradiol and estrogen exposure 

influences risks of breast and endometrial cancer5. Instead of looking at the true 

cancer driver genes, inclusion of the missense variation allows to screen 

regulatory genes potentially altering functionality of the driver genes. Intriguingly, 

Lu et al. found that overexpression of full-length MED28 in HEK293 human 

embryonic kidney cells or human breast cancer cell lines caused significantly 

increased in vitro cell proliferation8. Also, functional studies report importance of 

the MED28 for breast cancer progression. MED28 modulates cell growth through 

FOXO3a and NFkB in human breast cancer cells7. Not only is MED28 involved in 

cellular migration and invasion but also in cell cycle progression in human breast 

cancer cells7.  

Analysis of the colon cancer cohort is strongly influenced by the small 

cohort size, although it still reveals a known predisposition gene – ATM. While 

proving the concept, a significantly larger genetically enriched cohort would be 

needed to facilitate discovery of the new candidates. 
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Materials and Methods 
	

Patient cohorts. All patients provided written consent for this study and were 

enrolled at 4 sites- the Massachusetts General Hospital (MGH; cutaneous 

melanoma (CM), breast cancer (BC) and Li-Fraumeni syndrome patients), the A. 

Sygros Hospital in Athens, Greece (CM patients) and the Massachusetts Eye 

and Ear Infirmary (MEEI; ocular melanoma (OM) patients) in Boston, MA, the 

Memorial Sloan Kettering Cancer Center in New York, NY (MSKCC; BC and 

colon cancer (CC) patients) - in accordance with protocols approved at these 

institutions.   

 All probands were considered “genetically enriched” based on the 

following criteria. 

1. MGH:  

a. CM: a histologically-proven CM AND at least one 1st degree 

affected relative OR >2 affected relatives on one side of the family 

regardless of degree of relationship (proband CM + relative with 

CM, “Familial CM/CM”; proband CM + relative with OM, “Familial 

CM/OM”) OR >3 primary melanomas regardless of family history 

(“MPM CM-CM”). 

b. BC: a histologically-proven BC AND at least one 1st degree affected 

relative (Familial BC) OR age at clinical diagnosis less than 35 

years old (early onset BC).  

c. Li-Fraumeni syndrome: diagnosed with Li-Fraumeni syndrome at 

MGH cancer center AND age at clinical diagnosis less than 45. 
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2. The A. Sygros Hospital: a histologically-proven CM AND >1 affected 

relative on one side of the family (“Familial CM/CM”) OR >2 primary 

melanoma (“MPM CM-CM”).  

3. MEEI: a histologically or clinically diagnosed OM AND >1 relative affected 

with either CM or OM (proband OM + relative with OM, “Familial OM/OM”; 

proband OM + relative with CM, “Familial OM/CM”) OR a second CM 

(“MPM OM-CM”). 

4. MSKCC:  

a. BC: a histologically-proven BC AND at least one 1st degree 

affected relative (Familial BC) OR age at clinical diagnosis less 

than 35 years old (early onset BC).  

b. CC: a histologically-proven CC AND at least one 1st degree 

affected relative (Familial CC) OR age at clinical diagnosis less 

than 35 years old (early onset CC).  

 

 

Exome sequencing, Variant processing and calling. Whole exome libraries were 

prepared using a modified version of Agilent's Exome Capture kit and protocol, 

automated on the Agilent Bravo and Hamilton Starlet.  Libraries were then 

prepared for sequencing using a modified version of the manufacturer's 

suggested protocol, automated on the Agilent Bravo and Hamilton Starlet, 

followed by sequencing on the Illumina HiSeq 2000.  We used an aggregated set 

of samples consented for joint variant calling resulting in 37,607 samples 
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(germline from 292 cutaneous melanoma patients, 101 ocular melanoma 

patients, 397 TCGA cutaneous melanoma patients, 47 TCGA ocular melanoma 

patients, 355 breast cancer patients, 43 Li-Fraumeni syndrome with primary 

breast cancer patients, 75 colon cancer patients, 697 TCGA breast cancer 

patients, 250 TCGA colon cancer patients, 24,612 controls and 10,738 other 

individuals not used for association studies).  All samples were sequenced using 

the same capture reagents at the Broad Institute and aligned on the reference 

genome with BWA9 and the best-practices GATK/Picard Pipeline, followed by 

joint variant calling with all samples processed as a single batch using GATK v 

3.1-144 Haplotype Caller10–12. The resulting dataset had 7,094,027 distinct 

variants.  Haplotype Caller, which was used for the ExAC database13, was also 

used to detect indels.  Selected mutations in CDKN2A, BRCA1 and BAP1 were 

confirmed with Sanger sequencing. 

 We performed principal component analysis (PCA) on common 

(MAF>5%) autosomal independent SNPs to filter out all non-European samples 

with Eigenstrat14. Relatedness analysis among Europeans was conducted with 

PLINK15,16  as suggested in the PLINK best practices. We used VEP17 for 

functional annotation of the DNA variants.  Common and rare variants analyses 

were conducted using PLINK/SEQ18, which allows indexing of the large datasets. 

A burden test was used for rare protein truncating variants.  In addition, the VT19 

and C-alpha20 tests were chosen as an adaptive burden test and variance-

component test, respectively, to complement each other and to boost the power 
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of rare missense and protein truncating variation association detection21.  See 

details in supplementary methods. 

 

Statistical Methods. Gene-based association was performed using 3 distinct, but 

related, analytical frameworks. In the first analysis, a burden test was applied to 

all rare (MAF<1%) protein truncating variants (PTV) since the functional impact is 

presumed to be severe and most directly inferred.  Then, to expand on all rare 

variants (missense and PTV), a second analysis using both the C-alpha and 

variable threshold (VT) tests was employed.  A third analysis applied the burden 

test to examine “ultra-rare” (MAF<0.0001; ExAC database13) variants as these 

may represent the most highly penetrant alleles.  In the case of a single-model 

association test – the null statistic was represented by the uniform distribution of 

p-values.  Since four different test statistics (i.e. VT, C-alpha, burden of PTVs 

and burden of ExAC filtered variants) were applied and the lowest p-value was 

chosen, the null distribution was constructed by choosing the smallest p-value 

from 4 null single-statistic models (4 sets of uniform p-values). This process 

simulates the procedure of selecting the best p-value out of 4 different test 

statistics that was used for gene-association testing thus making it a more 

conservative approach. Genome-wide significance was determined by Bonferroni 

correction (0.05 /17,337 genes tested, i.e. p<2.88x10-6). 
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Mosaic mutations in blood dna sequence are associated with solid tumor 
cancers 
	

Abstract 

Recent understanding of the causal role of blood-detectable somatic 

protein-truncating DNA variants in leukemia prompts questions about the 

generalizability of such observations across cancer types. We used TCGA 

exome sequencing (~8,000 samples) to compare 22 different cancer phenotypes 

with more than 6,000 controls using a case-control study design and 

demonstrate that mosaic protein truncating variants in these genes are also 

associated with solid-tumor cancers. The absence of these cancer-associated 

mosaic variants from the tumors themselves suggest these are not themselves 

tumor drivers.  

Through analysis of different cancer phenotypes we observe gene-

specificity for mosaic mutations. We confirm a specific link between PPM1D and 

ovarian cancer, consistent with previous reports linking PPM1D to breast and 

ovarian cancer. Additionally, glioblastoma, melanoma and lung cancers show 

gene specific burdens of mosaic protein truncating mutations.  Taken together, 

these results extend existing observations and broadly link solid-tumor cancers to 

somatic blood DNA changes. 
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Introduction 
 

Several recent studies1,2 have reported associations of mosaic protein 

truncating  variants (PTV) in PPM1D, TET2, ASXL1 and DNMT3A with blood 

cancers. Intriguingly, such mosaic mutations in PPM1D have also been 

convincingly associated with breast and ovarian cancer3 – however, since these 

mutations are somatic, rather than germline, their role in causation has not been 

clear.  We sought to more fully explore the relationship of these somatic 

mutations, clearly causally linked to blood cancers, in solid tumor cancer using a 

large assembly of germline and somatic exome DNA sequences of 7,979 cancer 

cases from TCGA4 and performed a large-scale case-control study with 6,177 

population controls with no cancer phenotype reported.  

 

Results 
 

Using data available from dbGAP, we performed a large-scale joint variant 

calling of sequences generated from blood-derived germline DNA samples from 

cancer cases and controls – primarily from an assembly of TCGA samples 

(cases) compared with unselected population controls (with no known cancer 

status) from several studies (NHLBI-ESP, 1000 Genomes, ATVB, T2D, Ottawa 

Heart) appropriately consented for broad use as controls.  Importantly, all cases 

and controls in this analysis have age at DNA sampling available. 

Observations of the mosaic mutations might be affected by several 

parameters – both biological (age5, clinical interventions6,7) and technical (depth 
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of coverage, variant calling accuracy). To make the case-control comparison 

robust we first identified what adjustments to the model of association are 

needed.  

We observed 348 PTVs (stop gain, essential splice site, frameshift 

mutations) in the four established somatic leukemia genes. Detection of somatic 

mutations with low non-reference allele balance is heavily dependent on 

sequencing depth. To ensure equal sensitivity in cases and controls we first 

compared coverage of these genes in cancer germline (average 33X coverage) 

and control (average 29X coverage) data.  We next looked specifically at cases 

and controls carrying PTVs. For germline heterozygous sites the expected allele 

balance is 0.5, so we applied a binomial test to detect significantly low allele 

balance genotypes based on depth of coverage and number of alternative reads. 

Those with p<0.001 (i.e., heterozygotes with significantly less than 50% non-

reference allele) and more than 20x coverage were determined to be mosaic and 

kept for further analysis (Figure 3.5, 3.6). 



	 81	

	

Figure 3.5. Allele balance for protein-truncating variants observed in blood DNA 
in TCGA cases in (A) ASXL1; (B) DNMT3A; (C) PPM1D; (D) TET2. 
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Figure 3.6. Allele balance for protein-truncating variants observed in blood DNA 
in controls in (A) ASXL1; (B) DNMT3A; (C) PPM1D; (D) TET2. 
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compared the probability of calling a protein truncating DNA variant in cases and 

controls with respect to coverage (Figure 3.7). 

 

Figure 3.7. Probability of detection of a protein-truncating variant with respect to 
depth of coverage. 
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shown to be a strong predictor of the existence of somatic mosaic mutations, 

inclusion of age in the association model is critical. Older samples expectedly 

have higher probability of finding a mosaic variant (Figure 3.8)5. 

 

 

Figure 3.8. Probability of observing mosaic protein truncating variant with 
respect to age of DNA sampling. 
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(p=0.116), radiation therapy (p=0.348), pathologic tumor stage (p=0.354) or other 

outcome variables when adjusted for age and cancer subtype with mosaic PTV 

carrier status. This observation is consistent with previous reports of mosaicism 

in cancer case-control study8. Jacobs et al. reported no associations to smoking 

or cancer therapy using GWAS arrays, while confirmed associations to age and 

cancer status. Thus, we did not incorporate clinical parameters into further case-

control model. 

We then tested the association between mosaic PTV and cancer status by 

generating a data set consisting of 7,979 cancer cases and 6,177 controls. We 

applied a binomial generalized linear model considering age, coverage depth and 

mosaic PTV carrier status and found significant evidence of association with 

cancer status (P=0.00108, OR=1.26; OR CI=1.1-1.47). Since it was previously 

shown that PPM1D PTVs are associated with breast and ovarian cancers, we 

removed breast and ovarian cancer samples and repeated the analysis. It 

confirmed the observed association (P=5.67x10-4, OR=1.3; OR CI=1.12-1.52) – 

suggesting that reported observations regarding PPM1D and breast and ovarian 

cancers are more general. We also adjusted our model for minor coverage 

differences between cases and controls. 

It is known that PTVs in the last exon of PPM1D specifically that carry 

‘gain-of-function’ effect are enriched in cases of breast and ovarian cancer1. We 

observed the same enrichment in our dataset – of 18 mosaic PTVs in PPM1D, 

17 were in the last exon of the gene. We tested the ‘gain-of-function’ PTV 

hypothesis in other candidate genes as well (Figure 3.9). 
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Figure 3.9. Exon specificity of mosaic protein truncating mutations. 

 

 ASXL1 follows the same pattern as PPM1D - 35 out of 40 PTVs in this 

gene are found in the last exon. TET2 has strong enrichment of exon 3 – 44 out 

of 50 PTVs. This is intriguing because TET2 transcript ENST00000305737 has 3 

exons and demonstrates enrichment of the last exon. Moreover, this transcript is 

mostly expressed in whole blood and EBV-transformed lymphocytes according to 

GTEx database. DNTM3A has no known pattern of mosaic PTVs distribution 

within the gene. Genovese et al, reported enrichment of the last exons of 

DNMT3A with mosaic missense mutations in leukemia cases. We observed 
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confirm whether missense mutations in this region also have ‘gain-of-function’ 

effect similar to the other candidate genes. 

As previously demonstrated, mosaic PTVs in the list of candidate genes 

have been demonstrated to precede and predict the development of leukemia, 

indicating a causative role1,2,9–11. To determine the role of mosaic mutations in 

solid tumors we evaluated the quantity of mosaic PTVs between tumor and 

germline DNA in cancer samples. Mosaic PTVs in the candidate genes present 

in blood DNA were largely absent in tumor DNA from the same individual (Figure 

3.10). 

 

Figure 3.10. Allele balance of protein-truncating sites in blood DNA and in tumor 
DNA in (A) PPM1D; (B) TET2; (C) DNMT3A; (D) TET2. 
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Complete absence of these mutations in tumor sample is impossible due to 

ineluctable blood contamination of any tumor sample, however our data strongly 

indicates that these events in the blood did not represent residual evidence from 

driver mutations involved in tumor development (in which case we would have 

expected higher, or perhaps 100% of the mutated allele to be found). As before, 

we compared coverage in tumor and germline DNA samples and, consistent with 

the design of TCGA, that tumors have similar or better coverage indicating that 

the deficit of these mosaic events in tumors is not sensitivity based. This 

observation is consistent with the findings of mosaic PPM1D variants in 

breast/ovarian cancers3.  

We considered whether presence of mosaic PTVs showed any evidence 

of cancer specificity. Under the null hypothesis, mosaic PTVs are expected to be 

found in all candidate genes at the same rate in each of 20 cancer phenotypes. 

We first tested if any of the cancer phenotypes shows an unusual burden of 

mosaic PTVs. The empirical significance of observed mosaic PTV frequency 

deviation from null was assessed using the following scheme: For each cancer 

phenotype of N cases we drew random set of N samples from the pool of all 

cancer cases. Since age strongly affects the frequency of mosaic variants within 

cohort, only random sets with insignificant (as shown by Wilcoxon test) age 

difference from the target set were accepted. The empirical p-value was then 

calculated as the fraction of random sample sets with a mosaic PTVs frequency 

greater than the target set. Statistical significance threshold is given by multiple 

hypothesis testing correction considering 20 tested phenotypes – 0.05/20 
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(0.0025) (Figure 3.11A). Glioblastoma, melanoma and lung cancers 

demonstrate a significantly increased burden of mosaic PTVs compared to other 

cancers. We then examined the distribution of mosaic PTVs across the candidate 

genes in each cancer phenotype (Figure 3.11B). 

 

Figure 3.11. Testing for unusual burden of mosaic protein truncating variants. 
(A) Empirical significance of burden observed in all genes. (B) Empirical 
significance of burden observed in individual genes. 
 

A similar approach was used as before: for each phenotype we estimated 

mosaic PTV frequencies in each of the candidate genes. Next, random sets of 

cancer cases with similar age distribution were generated. For each candidate 

gene the significance was estimated as fraction of random sets with greater 

mosaic PTV frequency in a gene of interest. The hypothesis of whether any gene 

has prevalent burden has been tested in 20 phenotypes, resulting in Bonferroni 

correction 0.05/20 for statistical significance threshold. It appears that several 
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genes. Intriguingly, ovarian cancer is specifically associated with PPM1D 

mutations, which is supported by previous report3. We also observe associations 

of head and neck squamous cell carcinoma with PPM1D, colorectal 

adenocarcinoma and glioblastoma with TET2. Interestingly, cutaneous 

melanoma is associated with ASXL1 mosaic mutations as ASXL1 has protein-

interaction with BAP1, a well-established risk factor for melanoma12. Lung cancer 

shows a burden of mosaic mutations that is distributed across several genes with 

DNMT3A being the most statistically significant. However, ASXL1 and TET2 

show a nearly significant trend, suggesting no specificity in accumulation of the 

mosaic mutations.  

We used the previously reported set of samples from Swedish national 

patient registers1 to estimate the frequency of mosaic PTVs and associated solid-

tumor cancer development in a population unselected for cancer. Accurate 

clinical records are available for this cohort so we sought to confirm our statistical 

approach for TCGA cohort.  

We removed from analysis all samples that had an evidence of leukemia 

or lymphoma developed before the DNA collection as well as those samples that 

have mosaic missense mutations in DNMT3A to estimate the contribution of the 

PTVs only. The final dataset for this analysis consisted of  (83 mosaic PTV 

carriers and 10867 non-carriers) samples. There were 11 individuals with pre-

DNA collection record of the solid-tumor cancer in the cohort of mosaic PTV 

carriers and 1,105 samples with record of solid-tumor cancer among non-

carriers. We tried using different thresholds for age of the samples to estimate 
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significance of enrichment. However, due to a small incidence of the mosaic 

mutations in the population unselected for cancer, this test was inconclusive. 

 We added mosaic missense DNMT3A mutations carriers to the mosaic 

samples cohort and repeated population analysis. This resulted in a total of 153 

mosaic mutation carriers. There were 26 individuals (~17%) with pre-DNA 

collection record of the solid-tumor cancer in the cohort of mosaic PTV carriers 

(1,104 – about 10% cancer records in 10,870 non-mosaic samples). Once 

corrected for age this enrichment appears to be insignificant, thus for samples 

unselected for cancer a much larger cohort is needed to reach a significant 

conclusion. However, we do observe a trend towards higher incidence of mosaic 

mutations in samples with cancer history. We analyzed effect of smoking among 

4926 samples and saw no enrichment of smokers or former smokers in mosaic 

carriers (p=0.965 PTVs only, p=0.691 PTVs and mosaic missense in DNMT3A).  

Analysis of larger clinical data should provide a clearer answer to whether 

mosaic mutations are precursors of cancer (and potentially play a causal role) or 

perhaps are non-causally associated as byproduct of previous therapy for an 

earlier cancer. Our analyses of these features are power-limited at this point and 

there is as yet no consensus surrounding this question. While genetic studies 

suggest that there is no correlation between cancer therapy and burden of 

mosaic mutations8, clinical reports suggest that chemotherapy is one of the 

strong drivers of clonal expansion6,7. 
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Discussion 
 

Our study investigates the association of the mosaic protein-truncating 

variants in 4 genes previously associated with blood cancer risk in blood samples 

from patients with solid-tumor diagnoses. 

We extend the previously observed strong association of mosaic PTVs 

with increased risk of leukemia to solid-tumor cancers. There are several 

possible explanations for such an observation. Recent findings in ovarian and 

breast cancer suggest a significant role of chemotherapy exposure in observed 

burden of mosaic PTVs in PPM1D6,7. Though our study lacks sufficiently detailed 

records of chemotherapy treatment to extend those observations, the breadth 

and robustness of the results here suggest that such an effect of treatment 

exposure may more generally apply to other candidate genes, cancer 

phenotypes and specific therapeutics. At the same time analysis of cancer case-

control GWAS arrays did not report any association with cancer therapy 

regimens, or carcinogen exposure (smoking)8. While there is no unity in the field 

on this question, our observations of differences in PTV burden gene specificity 

according to cancer phenotype suggests that there could be some level of 

specificity of chemotherapy drugs to cause expansion/survival of certain mutated 

peripheral blood mononuclear cells clones.  Importantly, however, such a link 

may provide a more general – and detectable – connection between early solid 

tumor diagnoses and enriched later incidence of leukemia. 

There are other possible explanations for the observed association.  First, 

there could be immune system changes in response to early pre-clinical stage of 
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cancer. Our additional screening of early onset cancer cases (breast and ovarian 

cohort with cancer onset before 35, N=374) shows no enrichment in mosaic 

PTVs suggesting that this hypothesis is likely irrelevant and age of the samples 

plays important role (or serving as a trigger) for emergence of clonal expansion. 

Second, is a potential causal relationship. While a direct role as tumor drivers is 

ruled out by the absence of PTVs in tumors, we cannot completely eliminate the 

possibility that these represent a background cancer risk state but find no strong 

support for this hypothesis.  Given fewer than 1% of the population carries a PTV 

in one of these candidate genes, a large-scale population study with a long-term 

pre- and post-cancer DNA collection and detailed treatment details will be 

needed to confidently answer the question whether blood mosaic PTVs are 

precursors or result of treatment for solid-tumor cancers. 

 

Materials and Methods 
	

Patient Cohorts 

We used The Cancer Genome Atlas samples available at the Broad 

Institute (N=7979) and population controls without known cancer phenotype at 

the time of DNA collection (N=6177). All of the samples were sequenced at the 

Broad Institute. Libraries were then prepared for sequencing using a modified 

version of the manufacturer's suggested protocol, automated on the Agilent 

Bravo and Hamilton Starlet, followed by sequencing on the Illumina HiSeq 2000. 

Alignment and variant calling was performed using BWA/GATK/Picard pipeline 

where all of the samples were processed as a single batch. We removed sites 



	 94	

with differential coverage to remove any potential bias between cases and 

controls. 

A total of 12,380 Swedish research participants with psychiatric diagnoses 

were ascertained from the Swedish National Hospital Discharge Register, which 

captures all inpatient hospitalizations. Controls were randomly selected from 

population registers. We treated cases and controls as a single cohort for all 

analyses presented below, as none of the mutational variables analyzed below 

showed any relationship to psychiatric diagnosis after controlling for other factors 

such as age and smoking. Research participation and DNA sampling took place 

from 2005 to 2013. The 12,380 samples collected were sequenced in twelve 

separate waves. The first wave employed an earlier version of the hybrid-capture 

procedure (Agilent SureSelect Human All Exon Kit), which targets ~28 million 

base pairs of the human genome, partitioned in ~160,000 intervals, whereas the 

samples from the other waves used a newer version (Agilent SureSelect Human 

All Exon v.2 Kit), which targets ~32 million base pairs of the human genome, 

partitioned in ~190,000 intervals. The first wave was sequenced using Illumina 

GAII instruments and the remaining waves were sequenced using Illumina HiSeq 

2000 and HiSeq 2500 instruments, with pair ended sequencing reads of 76 base 

pairs across all waves. Sequencing was performed at the Broad Institute of MIT 

and Harvard across the period of time from 2010 to 2013. 

  



	 95	

Dataset  

Genotypes dataset was created by joint variant calling of cancer cases 

and non-cancer controls using HaplotypeCaller (GATK-3.0)14–16 with Broad 

Institute calling pipeline.  For functional annotation of variants we used Variant 

Effect Predictor by Ensembl17.  

 PCA was performed to keep for analysis only samples of European 

ancestry to eliminate possible population effects. PCA was performed with 

EIGENSTRAT18,19. 

 Resulting genotype file was used to create a PLINK/SEQ20 project for 

further manipulations. 

 

Clinical data  

 For testing relevance of the mosaic PTVs to medical treatment/outcome 

clinical data was downloaded from TCGA web-site https://tcga-

data.nci.nih.gov/tcga/dataAccessMatrix.htm. All patients provided informed 

consent for research use of the collected data. 

 

Generalized linear model and statistical tests 

 For all statistical tests we used R-3.021.  

Defining mosaic genotypes: We kept only well-covered genotypes for 

further analysis (DP>=20). We used binomial test on the number of alternative 

reads for heterozygous sites to detect unusual distribution of reads suggesting a 

mosaic event. Under the null-hypothesis for heterozygous genotypes 50% of 
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alternative reads are expected. So, using our lower boundary of 20x coverage, 

that provides minimal adequate statistics for binomial test we expect that only 

several alternative reads should evidence mosaic event rather than a true 

heterozygote. So, we required binomial p<=0.001 for true mosaics, which 

ensures matching with expectation (e.g. 3 alt reads vs 17 reference p= 

0.002577). 

 

Controlling for coverage differences: To ensure that distribution of alternative and 

reference reads in PTV carriers does not depend on the cancer status we set up 

general linear model: (Ref reads, Alt reads) = β0 + β1*Cancer Status. With 

p=0.279 it appears that cancer cases and controls have similar distribution of the 

reads in the heterozygous genotypes at protein-truncating variants. Since age 

has strong impact on the mosaic status we adjusted the above model for age by 

performing it in two steps, fitting cancer status to age (Cancer Status = β0 + 

β1*Age) and then fitting the pairs of reference and alternative reads for each het 

genotype to the residues of the first fitting: (Ref reads, Alt reads) = β’0 + 

β’1*Resid(Cancer Status = β0 + β1*Age), adjusted for age p=0.898 confirms that 

there is no technical bias in reads distribution. We estimated probability of 

detecting a protein-truncating variant in cases and controls (Sup. Fig. 3), that is 

affected by quality of the DNA samples. Under the null we expect same 

probability of PTV detection with respect to coverage amongst cases and 

controls. Despite the difference between cases and controls is very tiny, we still 

adjusted association model for the mean coverage of the sample. 
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Controlling for biological parameters effects: We have set of parameters 

available from clinical data – age at the time of DNA sampling, neoadjuvant 

therapy and radiation therapy treatment, pathologic tumor stage. We used 

general linear model to assess significance of their contribution: 

1) Age: We adjusted the model for coverage similarly to the previous 

model.  

Mosaic Status = β0 + β1*Coverage 

Age = β’0 + β’1*Resid(Mosaic Status = β0 + β1*Coverage) 

2) Clinical Intervention: Model was adjusted for both coverage and age 

in order to ensure no bias is present. 

Mosaic Status = β0 + β1*Coverage 

Age = β’0 + β’1*Resid(Mosaic Status = β0 + β1*Coverage) 

Resid(Age = β’0 + β’1*Resid(Mosaic Status = β0 + β1*Coverage)) = β’’0+ 

+β’’1*Neoadjuvant Therapy + β’’2*Radiation Treatment + β’’3*Tumor Stage 

 

Case-Control association model: As we identified to ensure a robust comparison 

of cancer cases to controls model needs to be adjusted for age and coverage. 

Mosaic Status = β0 + β1*Coverage 

Age = β’0 + β’1*Resid(Mosaic Status = β0 + β1*Coverage) 

Cancer Status = β’’0 + β’’1* Resid(Age = β’0 + β’1*Resid(Mosaic Status = β0 + 

β1*Coverage)) 
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Unusual burden of the mosaic variants in cancer phenotype. Under the null 

model mosaic PTVs should have no specificity to cancer phenotype. This means, 

that frequency of the mosaic PTVs observation should be the same among each 

cancer cohort once accounted for age. Frequency of mosaic PTVs in a certain 

cancer phenotype cohort needs to be compared against large number of 

randomized sets of cancer samples that have similar age distribution. To 

generate the random sets of samples we ran a permutation scheme that ensures 

the age matching between the target and random cohorts. Example: Let the 

cancer phenotype A cohort have N=100 samples. We would randomly draw 100 

samples out of all cancer samples in the dataset (N=7979) with age within two 

standard deviations of mean age in phenotype A cohort. We then ran Mann-

Whitney test to confirm similarity of the age distributions between random and 

target sets of samples. If p<0.05 – we rejected this permutation and start over. 

For each permutation we recorded number of mosaic PTVs observed in random 

set of samples. Fraction of random sets with greater number of mosaic PTVs 

than in cohort with phenotype A is determined to be empirical p-value. 

 

Mosaic gene specificity to cancer phenotype. This method is largely similar to the 

previous section. For each phenotype we estimated mosaic PTV frequencies in 

each of candidate genes. Next, random sets of cancer cases with similar age 

distribution were generated. For each candidate gene significance was estimated 

as fraction of random sets with greater mosaic PTV frequency in a gene of 

interest. Hypothesis of whether any gene has prevalent burden has been tested 
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in 20 phenotypes, resulting in Bonferroni correction 0.05/20 for statistical 

significance threshold. 
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Rare variant, gene-based association study of hereditary melanoma using 
whole exome sequencing 
	

Abstract 
	

Extraordinary progress has been made in our understanding of common 

variants in many diseases, including melanoma.  Since the contribution of rare 

coding variants is not as well characterized, we performed an exome-wide, gene-

based association study of familial cutaneous melanoma (CM) and ocular 

melanoma (OM).   

Using 11,990 jointly processed cases and controls, whole exome 

sequencing was performed followed by large-scale joint variant calling using 

GATK. Plink/SEQ was used for statistical analysis of genetic variation. Four 

models were used to estimate association among different types of variants. In 

vitro functional validation was performed using 3 human melanoma cell lines in 

2D and 3D proliferation assays. In vivo tumor growth was assessed using 

xenografts of human melanoma A375 melanoma cells in nude mice (8 mice per 

arm).  All statistical tests were two-sided. 

Strong signals were detected for CDKN2A (p=6.16x10-8) in the CM cohort 

(n=273) and BAP1 (p=3.83x10-6) in the OM (n=99) cohort.  Eleven genes which 

exhibited borderline association (p<10-4) were independently validated using the 

TCGA melanoma cohort (379 CM, 47 OM) and a matched set of 3,563 European 

controls with CDKN2A (p=0.009), BAP1 (p=0.03) and EBF3 (p=4.75x10-4), a 

candidate risk locus, all showing evidence of replication.  EBF3 was then 
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evaluated using germline data from a set of 132 familial melanoma cases and 

4,769 controls of U.K. origin (joint p=1.37x10-5).  Somatically, loss of EBF3 

expression correlated with progression, poorer outcome and high MITF tumors.  

Functionally, induction of EBF3 in melanoma cells reduced arrested cell growth 

in vitro, retarded tumor formation in vivo, and reduced MITF levels.   

The results of this large rare variant germline association study further 

define the mutational landscape of hereditary melanoma and implicate EBF3 as 

a possible CM predisposition gene.   

 

Introduction 
 

 In 2016, an estimated 76,380 Americans will develop cutaneous 

melanoma (CM) and 10,130 will succumb to this disease making CM the fifth and 

seventh most common cancer among men and women, respectively1.  Ocular 

melanoma (OM) is much rarer with only 2,500 estimated cases annually in the 

United States2.  There is evidence for a strong genetic influence on melanoma 

risk.  Ten percent of CM patients report a family history of melanoma3,4, which 

confers a 2-fold risk of melanoma 1st degree relatives5 and approximately 5-fold if 

two or more 1st-degree relatives are affected.  Twin studies have estimated the 

heritability of melanoma to be 58%, which is statistically significantly higher than 

the 33% for cancers overall6.   

 Prior to the advent of high-density human genomic maps, linkage efforts 

implicated familial melanoma loci on 1p367 and 9p218; interval gene screening 

revealed deleterious germline alterations of CDKN2A in a subset of 9p21-linked 
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families.  Subsequent linkage efforts have produced additional candidate loci on 

chromosomes 1p367, 9q219, 5q3110 and 1p2211 without isolation of specific 

disease causing mutations.  Rare germline mutations in CDK4, BAP1, MITF, 

TERT (promoter), POT1, ACD and TERF2IP have also been reported in both OM 

and CM families though, collectively, they account for <5% of all hereditary 

melanoma cases12,13. Finally, a rare functional polymorphism in MITF (pE318K) 

has been shown to double melanoma risk and alter MITF sumoylation14.  

 Common variant association studies (i.e. genome-wide association 

studies (GWAS)) recently culminated in an analysis of 15,990 CM cases and 

26,409 controls, which substantiated 20 genome-wide statistically significant 

loci15.  The general synthesis from GWAS and other candidate association 

studies is that loci associated with pigmentation (MC1R, TYR, ASIP, OCA2 and 

SLC45A2), nevus count (CDKN2A-MTAP, PLA2G6 and TERT), DNA repair 

(PARP1 and ATM) and telomere length (TERT, OBFC1) represent core drivers of 

a risk phenotype that has been delineated by epidemiologic studies16–23.   

 The systematic pursuit of rare disease-causing variants is just emerging.  

Given the high cost of sequencing in the past, linkage analysis provided a robust 

method to leverage recombination for positional information.  For relatively 

common endpoints, linkage has been largely unsuccessful as, beyond rare 

examples of single pedigrees that are sufficiently large and carry a near-fully 

penetrant mutation to generate statistically significant linkage, the polygenic 

nature of common disease precludes gene localization. To overcome the fact 

that rare variants are distributed across many genes, we and others have 
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proposed methodologies for gene discovery through rare variant association 

studies (RVAS24,25). One common approach is to group the individual variants 

into sets (e.g. gene-based association) and compare the aggregate frequency 

distribution in cases vs. controls. Using this framework, we set out to 

comprehensively map the mutational landscape of cutaneous and ocular 

melanoma by performing whole exome sequencing followed by a gene-based 

association study of melanoma cases and PCA-matched European non-cancer 

controls.  

	

Results 
	

Cohort and overview 

For the discovery set, individuals with familial CM/OM or multiple primary 

CM/OM were identified and their germline DNA were subjected to whole exome 

sequencing.  A total of 273 CM (M/F 128/145; Figure 3.12A), 99 OM (M/F 46/53) 

and 7,629 (M/F 5451/2178) European non-cancer controls passed quality control 

and were included in the subsequent analysis (19 CM and 2 OM cases failed 

QC). The first replication cohort included 379 CM (18 samples were eliminated in 

case-control matching procedure) and 47 OM cases from TCGA and 3,563 

European non-cancer controls.  These additional samples were jointly processed 

through the same alignment and variant calling pipeline as the initial discovery 

set and subjected to the same quality control standards.  To ensure ancestral 

matching, we performed principal component analysis (PCA; Figure 3.12B) 
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between the cases and control cohorts in both the primary and TCGA replication 

cohorts. 

 

Figure 3.12. Study cohorts.  (A) Cutaneous melanoma and ocular melanoma 
cases used in analysis.  (B). Principal component analysis using the PCA module 
in PLINK; cases showing close matching with European controls. (C) Histogram 
of common synonymous SNPs between cases and controls and 
observed:expected ratios. MPM, multiple primary melanoma; CM, cutaneous 
melanoma; OM, ocular melanoma; PCA, principal component analysis; SNPs, 
single nucleotide polymorphisms; TCGA, The Cancer Genome Atlas; repl, 
replication study. 
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 Our analysis was then restricted to European cluster of samples only.  

Examination of common synonymous variants (MAF>5%) revealed a null-

distribution of the test statistic between cases and controls. There was an 

average of 25,633 SNPs per sample, which is within the expected range for a 

typical European germline exome26.  In total, 11,990 samples were jointly 

processed and PCA-matched for analysis. 

 For EBF3, a second replication was performed using allele counts derived 

from 133 familial melanoma cases (i.e. 77 cases (66 families) from Leeds, U.K. 

and 56 cases (9 families) from Sydney, Australia) and 4,769 non-cancer controls 

from the UK10K population project; whole genotypes were not available for the 

U.K. replication cohort and thus were not matched by PCA.   

 

Mutational landscape of cutaneous and ocular melanoma 

 We first interrogated our melanoma cases for rare PT mutations among 

known melanoma predisposition genes and their associated complexes or 

pathways (i.e. RB, telomerase/shelterin, BAP1).  As expected, the strongest 

associations were for CDKN2A (p=6.16x10-8 statistically significant with CM) and 

BAP1 (p=0.005 for CM and p=3.83x10-6 for OM).  We detected 5 rare POT1 

mutations (p=0.002), including novel nonsense (p. Ser522X) and splice donor 

(chr7:124475332 C/T) mutations and a previously reported p.D224N variant. For 

MC1R, we examined red hair color (RHC) variants and observed 184 alternative 

alleles among CM (N=273) cohort and 2891 in controls (N=7,629) (p=5.00x10-12; 

cumulative allele odds ratio=1.80, 95% CI: 1.53-2.10).  
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 Figure 3.13A shows the Pmin Manhattan plot for all 17,337 genes that 

were analyzed for association. 

 

Figure 3.13. Mutational landscape of melanoma.  (A). Manhattan plot showing 
gene-based associations across all loci.  Genome-wide statistical significance is 
indicated by solid line.  Genes which show near- statistically significant 
associations fall within the shaded region (p<10-4).  (B). Calculated -log10(P 
values) for genes in both CM and OM analyses.  BAP1 and CDKN2A clearly 
show strong preferential associations with OM and CM, respectively.   
 

CDKN2A exhibited the strongest association (Pmin = 6.16x10-8) and was the only 

locus to reach genome-wide statistical significance.  Other candidates, which 

were near, but not reaching, genome-wide statistical significance were 

considered novel and which were subjected for further study included ACTR8 

(Pmin=2.18x10-5, C-alpha), ECHD1 (Pmin=3.73x10-5, C-alpha), COL11A2 

(Pmin=5.42x10-5, PTV burden) and EBF3 (Pmin=8.22x10-5, C-alpha).  
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In similar analyses for OM BAP1 was the leading risk gene (Pmin=3.83x10-6; Figure 3.13B) 

though it did not quite reach genome-wide statistical significance.  Other borderline 

candidates that were subjected to further analysis include IAH1 (Pmin=2.27x10-5, C-alpha), 

NHLRC3 (Pmin=6.88x10-5, C-alpha), RSRC1 (Pmin=1x10-4, C-alpha), PAPOLG (Pmin=1x10-4, 

C-alpha). 

 All CM and OM loci with a association level of p<1.00x10-4 (6 CM genes, 5 OM 

genes) were then subjected to replication using the TCGA cohort as outlined above (Table 

3.4). For CM, CDKN2A (p=9.31x10-3; PTV burden) and EBF3 (p=4.75x10-4; C-alpha) both 

remained statistically significant while, for OM, BAP1 also remained statistically significant 

(p=2.64x10-2; PTV burden).  As EBF3 represents a potentially novel risk gene, we 

performed a second replication with this gene by interrogating whole exome and genome 

sequence data for 133 familial melanoma cases from 81 melanoma-prone kindreds.  We 

identified a Leeds family with a p.N455S mutation which was detected in 1 of 2 affected 

members and a Sydney family with a p.G21S variant that was present in 2 of 6 affected 

members.  Similar evaluation of 4,769 individuals from the UK10K cohort revealed 21 EBF3 

mutation carriers in this control set.  In aggregate (Table 3.4), a joint burden test across all 

EBF3 cohorts resulted in a statistically significant association between EBF3 and 

cutaneous melanoma (9/784 cases and 42/15,961 controls; OR= 4.95 (95% CI 2.35-10.41), 

p=1.37x10-5, Mantel-Haenszel chi-square test); to remove possible bias due to relatedness 

of carriers, we censored one of the two p.G21S carriers in the Sydney family while 

accounting for all non-carriers (i.e. 3 mutations out of 133 cases were identified in the U.K. 

replication but 2 carriers out of 132 individuals used for Mantel-Haenszel test).  
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Taken together, these results confirm the known contribution of CDKN2A 

and BAP1 as strong risk loci for CM and OM, respectively, and nominate EBF3 

as a novel risk candidate for CM.  In addition, the recovery of these known 

hereditary melanoma loci further verified the technical and methodological 

pipeline used in this RVAS. 

Although the study was not designed to compare genes which selectively 

confer risk for either, or both, CM and OM, we did compare the Pmin’s for each 

gene relative to their melanoma type (Figure 3.13C).   There was some evidence 

that LCE1E can confer risk for both CM and OM (Pmin=1.59x10-4 for OM and 

2.56x10-3 for CM) though neither reached genome-wide statistical significance. 

 

Functional validation of EBF3 

 Among the secondary candidates, none has been previously linked 

to cancer predisposition.  Since EBF3 ranked in 3 of 4 framework analyses, was 

replicated in the TCGA and European cohorts and has been reported to possess 

tumor suppressive activity in a number of non-melanoma cancers27,28, we 

decided to examine EBF3 in greater detail.  Among melanoma cases, there were 

4 mutations in our discovery set (one p.Q137R, one p.A409T and two p.N484S), 

3 mutations in the TCGA cohort (one p.P594L and two p.G459C) and 2 variants 

in the U.K.-descent melanoma panel (p. N455S and p. G21S).  Among the EBF3 

variants in our cases, 2 have been previously observed - p.N484S 

(MAF=3.00x10-5; European/Non-Finnish) and p.G21S (MAF=2.21x10-4; 

European/Non-Finnish) albeit at a much lower rate.  The p.Q137R mutation falls 
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within the DNA binding domain, the p.A409T mutation lies in the third helix of the 

HLHLH domain and the p.N484S alteration sits in and the C-terminal 

Pro/Ser/Thr-rich (PST) region.  As EBF3 have had minimal connection to 

melanoma biology, we set out to perform proof-of-concept validation for EBF3 as 

a tumor suppressor using available somatic data and empirical cell-based 

assays. 

Cancer susceptibility loci (e.g. CDKN2A and BAP1), often function as 

tumor suppressor genes and thus exhibit structural damage and/or expression 

loss during malignant progression. To this end, we surveyed the TCGA 

melanoma tumors for evidence of EBF3 somatic copy-number loss.  As shown in 

Figure 3.14A, EBF3 harbored statistically significantly more deletions than other 

genes (p=2.00x10-151, Wilcoxon test), which may, in some cases, reflect loss of 

the entire 10q arm.  There is evidence of concurrent shallow deletions of EBF3 

and PTEN (also on 10q) though deep deletions of EBF3 are uncommon and 

independent of PTEN while expression levels of the two genes appear to be also 

uncorrelated. On a mutation level, there were there were 28 missense alterations 

identified in the TCGA melanoma cohort with no loss-of-function variants. 

With regards to expression, primary melanomas exhibited lower EBF3 

RNA levels when compared to either normal skin or benign nevi (Figure 3.14B; 

melanoma vs nevus, p=0.005, ANOVA) suggesting that loss of EBF3 may 

contribute to melanoma progression.  Diminished EBF3 expression was also 

associated with heightened tumor aggressiveness.  Using microarray data from a 

panel of 125 stage III melanoma tumor specimens obtained at Lund University 
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and RNA-seq data from 470 TCGA tumor specimens, we found that lower EBF3 

levels showed a statistically significant correlation with poorer overall survival in 

the Lund data set (Figure 3.14C; p=0.02, log-rank test) and a marginal trend 

toward a worsened outcome among the TCGA tumors (p=0.10, log-rank test). 
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Figure 3.14. EBF3 validation.  (A).  Copy number profile of EBF3 (shaded red 
box) and various melanoma drivers among TCGA tumor specimens. Two-sided 
Wilcoxon test was used to compute p-values. (B). EBF3 expression in normal 
skin, benign nevi and primary melanoma. P-values calculated using two-sided 
Wilcoxon test.  (C). Lund University Medical Center and TCGA patients survival 
with metastatic stage III melanoma with high and low EBF3 expression. Two-
sided Cox proportional model was used to estimate significance. (D) EBF3 
expression in different molecular subtypes of melanoma (E) Spearman  
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Figure 3.14 (continuied) correlations for both EBF3 and MITF and melanocyte 
lineage genes in the Lund and TCGA data sets; error bars indicate half-width of 
95% confidence interval (F) Induction of EBF3 in G-mel and UACC-62 cells using 
a Tet-responsive promoter. Dox, doxycycline, error bars represent mean +/- SD.  
 

 

To better understand the molecular context of EBF3 function, we 

examined EBF3 levels across known molecular subtypes of melanoma.  

Strikingly, EBF3 appears to be inversely correlated with the MITF-anchored 

classes, i.e. EBF3 expression was lowest in the MITF-hi (“Pigmentation”) subtype 

from the Lund cohort and highest in the “MITF-lo” subtype from the TCGA set 

(Figure 3.14D).   Given this intriguing relationship, we searched for interactions 

between levels of EBF3 and melanocyte lineage genes.  There was a statistically 

significant inverse relationship between EBF3 and MITF expression levels in both 

the Lund (Spearman r, -0.36, 95% CI: -0.47 to -0.24, p<0.0001) and TCGA 

(Spearman r, -0.30, 95% CI: -0.40 to -0.18, p<10-4) tumor sets.  Moreover, 

examination of several known MITF targets (Figure 3.14E; TYR, MLANA) and 

upstream regulators of MITF (TCF4, SOX10, PAX3) all revealed a consistent 

pattern whereby lineage genes which positively correlated with MITF (i.e. TYR, 

MLANA, SOX10 and PAX3) were negatively correlated with EBF3 while TCF4, a 

known negative regulator of MITF, was positively correlated with EBF3.  These 

results reveal a reciprocal relationship between EBF3 and MITF and raise the 

possibility that EBF3 may antagonize MITF.  To test this hypothesis, we induced 

EBF3 in two MITF-expressing melanoma lines (G-mel and UACC-62) using a 
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Tet-responsive system and found a concomitant reduction of MITF in both cell 

lines (Figure 3.14F). 

We next sought to phenotypically credential EBF3 in cellular and animal 

experiments.  As shown in Figure 3.15A, there was dose-dependent 

suppression of cellular proliferation with escalating levels of EBF3 in 3 distinct 

melanoma cell lines; exposure of cells with the Tet-GFP control vector to 

doxycycline had no measurable effect on survival (data not shown).   A375 and 

LOX cells were then subjected to a 3-D matrigel spheroid formation assay and, 

for both lines, there was a statistically significant reduction in colony volume with 

the introduction of EBF3 (Figure 3.15B).  Finally, overexpression of EBF3 in 

A375 melanoma cells led to statistically significant suppression of tumor growth 

in nude mice (Figure 3.15C).  Taken together, these results suggest that EBF3 is 

a veritable tumor suppressor in melanoma, a function consistent with the role as 

a predisposition gene. 



	 116	

 

Figure 3.15. Functional accreditation of EBF3. (A).  Cell viability assay 
demonstrating growth arrest  of human melanoma cell lines with EBF3 
upregulation by dose-dependent induction with doxcycyline; experiments were 
performed in triplicates (relative mean viability +/- SD) and independently 
replicated using three different cell lines (LOX, UACC 62 and A375).  (B) 3D 
spheroid formation is dramatically reduced by the induction of EBF3 (relative 
mean tumor colony size  +/- SD)  (C). Constitutive overexpression of EBF3 in 
A375 cells led to a profound suppression of tumor growth in nu/nu mice (n=8 in 
each arm; mean tumor volume +/- SD). P-values generated from two-sided T-
tests are shown above each time point.  Five representative dissected tumors 
from each arm are also shown. Vec, vector; Dox, doxycycline. 
 

Discussion 
	

 The contribution of rare coding mutations to disease risk, such as 

melanoma, remains a bourgeoning but largely unexplored domain in human 

genomics. To the best of our knowledge, this is the first exome-based, rare 
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variant association study in melanoma.  Several technical advancements, which 

were introduced to permit the robust assembly of the large exome sequence 

dataset include joint variant calling and an advanced quality-check protocol.   

 Our results indicate that in the landscape of hereditary melanoma, 

CDKN2A and BAP1 exhibit the strongest association with CM and OM, 

respectively.  By design, we did not exclude these samples from analysis but 

blindly included the cases in the entire pipeline as “positive” controls; we were 

reassured that our methodology did recover these genes.  There were additional 

risk loci which approached genome-wide statistical significance, one of which, 

EBF3, was further replicated in the TCGA and European melanoma cohorts.   

 We propose that EBF3 has many of the features of melanoma 

predisposition gene based on multiple lines of investigation: (i) the enrichment for 

germline EBF3 variants among individuals with melanoma across disparate 

cohorts, (ii) the presence of deletions at the EBF3 locus in tumor specimens, (iii) 

the increased clinical aggressiveness associated with EBF3 loss, (iv) the 

reciprocal interaction between EBF3 and the known lineage oncogene MITF and 

(v) the direct inhibitory effects of EBF3 on cellular growth and tumor formation.  In 

two families where multiple affected cases were available for analysis, EBF3 

mutations were identified only in a fraction of the cases (1/2 and 2/6 affected 

members) suggesting that these mutations are moderate risk alleles, which is 

similar to the risk conferred by the MITF(E318K)14 variant and consistent with 

EBF3’s calculated odds ratio of ~5. 
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 EBF3 belongs to a family of transcription factors (EBF1-4) known to be 

involved in B cell differentiation and the pathogenesis of several tumor types27,28.  

Although speculative, it is conceivable that the role of EBF proteins in immune 

cell specification27,29 could explain, in part, the observed association between 

EBF3 and the “high immune” melanoma subclass. The EBF3 gene is located on 

the chromosome 10q26.3 and encodes a 596 amino acid protein with a 

conserved N-terminal DNA binding region, an IPT/TIG domain, an unusual helix-

loop-helix-loop-helix (HLHLH) motif and a C-terminal PST domain30. Functionally, 

the EBF transcription factors bind to DNA with a consensus sequence of 5′-

CCCNNGGG-3′ as homo- or heterodimers and can interact with p30027. Our 

mutations do not appear to cluster in any single domain though 

genotype/functional experiments are currently underway.   

 For melanoma, there is a single report of EBF1 SNPs being correlated 

with survival among stage III and IV patients31.  In our study, EBF3 showed 

strong association in all tests except the LoF burden test.  The gene is highly 

intolerant of LoF variation (ExAC; pLI=1.0) thereby suggesting that full loss of 

EBF3 function may undergo strong negative selection.  The precise mechanism 

of EBF3 action in melanoma remains to be elucidated though one recent report 

suggests that EBF3 might play a role in cell migration, and possibly proliferation, 

in a subset of melanoma lines32.  There is precedence for transcription factors in 

cancer-predisposition.  Perhaps the most relevant is a low-prevalence SNP in the 

MITF transcription factor (p.E318K) which alters a sumoylation site and which 

confers risk for both cutaneous melanoma and renal cell carcinoma14,33.  
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Germline mutations in other transcription factors such as TP53 and RUNX1 also 

produce strong cancer phenotypes in Li-Fraumeni syndrome (OMIM #151623) 

and familial AML (OMIM #601399), respectively.  

 The design of our study incorporates several classic RVAS strategies25 

though there are also several limitations.  Full exome sequencing is still more 

expensive compared to genotyping but the costs are converging.  Although we 

enriched for genetic causation by focusing on rarer familial and multiple tumor 

cases, statistical power is still lower than those reported for common variant 

GWAS.  Recognizing this risk, we subjected all available cases to our analytical 

pipeline including the CDKN2A and BAP1 families and were reassured that 

statistically significant association signals were readily detected for these loci.  

 Despite limitations, the analyses in this report represent a major first step 

towards understanding the landscape of rare mutations in hereditary melanoma.  

The statistical methodologies which were blindly deployed in the case/control 

design unequivocally recovered several anticipated signals (i.e. CDKN2A and 

BAP1).  Moreover, several sub-threshold loci have been nominated for future 

studies including a proof-of-concept validation of one such gene, EBF3. 

 

Materials and Methods 
 

Patient cohorts.   

Primary discovery set. Cutaneous and ocular melanoma patients provided 

written consent for this study and were enrolled at 3 sites- the Massachusetts 

General Hospital (MGH; CM patients), the A. Sygros Hospital in Athens, Greece 
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(CM patients) and the Massachusetts Eye and Ear Infirmary (MEEI; OM patients) 

in Boston, MA- in accordance with protocols approved at these institutions.   

 All probands were considered “genetically enriched” based on the 

following criteria. 

5. MGH: a histologically-proven CM AND at least one 1st degree affected 

relative OR >2 affected relatives on one side of the family regardless of 

degree of relationship (proband CM + relative with CM, “Familial CM/CM”; 

proband CM + relative with OM, “Familial CM/OM”) OR >3 primary 

melanomas regardless of family history (“MPM CM-CM”). 

6. The A. Sygros Hospital: a histologically-proven CM AND >1 affected 

relative on one side of the family (“Familial CM/CM”) OR >2 primary 

melanoma (“MPM CM-CM”).  

7. MEEI: a histologically or clinically diagnosed OM AND >1 relative affected 

with either CM or OM (proband OM + relative with OM, “Familial OM/OM”; 

proband OM + relative with CM, “Familial OM/CM”) OR a second CM 

(“MPM OM-CM”). 

The dataset is registered in dbGAP under study number dbGaP Study 

Accession: phs000823.v1.p1. 

 

Validation cases 

1. Sydney cases: Individuals with a family history of melanoma were 

ascertained to the Genetic Epidemiology of Melanoma study at the Centre for 

Cancer Research, Westmead Institute of Medical Research; ultimately this 
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was as part of the international GenoMEL consortium (www.genomel.org), a 

multidisciplinary study of the genetic epidemiology of melanoma34.  Briefly, 

multiple-case melanoma families have been ascertained from south eastern 

Australia since the 1980s through either: (i) a family member who attended 

the Sydney Melanoma Unit (the largest dedicated melanoma treatment 

service in the world, now Melanoma Institute Australia), the Victorian 

Melanoma Service, or other clinics, for treatment of melanoma, (ii) referral 

from health professionals such as clinical geneticists or dermatologists or 

occasionally, (iii) self-referral after media publicity of melanoma. Data on 

family structure, cancer history, illness characteristics, skin phenotype, other 

melanoma risk factors, and genotype are collected. Sequenced families had 6 

or more cases of melanoma 

2. U.K. cases.  The cohort used for the whole exome analysis included families 

recruited to the U.K. Familial Melanoma Study (Section of Epidemiology and 

Biostatistics, University of Leeds (Leeds, UK)35–38.  Inclusion for sequencing 

were families with 5 or more melanoma cases.  

Blood samples were collected from eligible patients and DNA was extracted 

using routine commercial kits at the local institutions. 

 

Exome sequencing, variant processing and calling. Whole exome libraries 

were prepared using a modified version of Agilent's Exome Capture kit and 

protocol, automated on the Agilent Bravo and Hamilton Starlet, followed by 

sequencing on the Illumina HiSeq-2000.  We used an aggregated set of samples 
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consented for joint variant calling resulting in 37,607 samples (germline from 292 

CM patients, 101 OM patients, 397 TCGA CM patients, 47 TCGA OM patients, 

24,612 controls and 12,158 other individuals included for joint variant calling 

only).  All samples were aligned on the reference genome with BWA39 and the 

best-practices GATK/Picard Pipeline, followed by joint variant calling with all 

samples processed as a single batch using GATK v 3.1-144 Haplotype 

Caller26,40,41. The resulting dataset had 7,094,027 distinct variants.  Haplotype 

Caller, which was used for the ExAC database42, was also used to detect indels.  

Selected mutations in CDKN2A and BAP1 were confirmed with Sanger 

sequencing. 

 We performed principal component analysis (PCA) on common 

(MAF>5%) autosomal independent SNPs to filter out all non-European samples 

with Eigenstrat43. Relatedness analysis among Europeans was conducted with 

PLINK44  as suggested in the PLINK best practices45. We used VEP46 for 

functional annotation of the DNA variants.  Common and rare variants analyses 

were conducted using PLINK/SEQ, which allows indexing of the large datasets. 

A burden test (Fisher’s test with aggregated allele counts per gene) was used for 

rare protein truncating variants.  Additionally, the VT and C-alpha tests were 

chosen as an adaptive burden test and variance-component test, respectively, to 

complement each other and to boost the power of rare missense and protein 

truncating variation association detection47. 
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Statistical Methods. Gene-based association was performed using three 

distinct, but related, analytical frameworks. In the first analysis, a burden test was 

applied to all rare (MAF<1%) protein truncating (PT) variants since the functional 

impact is presumed to be severe and most directly inferred.  Then, to expand on 

all rare variants (missense and PTV), a second analysis using both the C-alpha 

and variable threshold (VT) tests was employed.  A third analysis applied the 

burden test to examine “ultra-rare” (MAF<0.0001; ExAC database 

http://exac.broadinstitute.org/gene/) variants as these may represent the most 

highly penetrant alleles.  In the case of a single-model association test – the null 

statistic was represented by the uniform distribution of p-values.  Since four 

different test statistics (i.e. VT, C-alpha, burden of PTVs, and burden of ExAC 

filtered variants) were applied and the lowest p-value was chosen, the null 

distribution was constructed by choosing the smallest p-value from four null 

single-statistic models (four sets of uniform p-values). This process simulates the 

procedure of selecting the best p-value out of four different test statistics that was 

used for gene-association testing thus making it a more conservative approach. 

Genome-wide statistical significance was adjusted by Bonferroni correction (i.e. 

0.05 /17,337 genes tested, i.e. p<2.88x10-6).  

 P-values in animal experiments were calculated using the Student T test.  

Burden of somatic deletions in EBF3 was tested with Wilcoxon test.  Survival 

correlation with EBF3 expression level was assessed using log-rank test. All 

statistical tests were two-sided. 
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EBF3 validation  

EBF3 and human melanoma specimens.  TCGA RNAseq level 3 data (release 

3.1.14.0, n=470) was quantile-normalized, and transformed as log2(data+1). 

Expression of EBF3 was extracted from metastatic TCGA samples, divided into 

"low" and "high" groups by median expression.  Survival analysis was performed 

using Kaplan Meier curves and log-rank test with TCGA follow-up data as of 

October 2015.  To determine EBF3 expression across gene expression 

subtypes, the subset of 329 TCGA samples with reported TCGA expression 

subtypes (Cancer Genome Atlas Consortium, 2015), was assigned to the Lund 

expression subtypes, as described previously48. From the TCGA copy number 

level 3 data (n=469) segmentation values were extracted for genes that have 

been reported to be lost or gained in melanoma, as well as for EBF3.  For 

survival analysis in the Swedish data set, EBF3 expression was extracted from 

the stage III patients of the Lund expression set48, and survival analysis was 

performed as described for the TCGA cohort. To determine EBF3 expression in 

normal skin, nevi and primary melanomas we used GSE57715 (GEO). Overall, 

we used gene expression data from 11 nevi and 237 primary melanomas to 

determine differences in EBF3 expression.   

 Correlations between EBF3 and MITF, TYR, MLANA, TCF4, SOX10 and 

PAX3 and between MITF and the same panel of genes were generated using the 

mRNA Expression z-Scores (RNA Seq V2 RSEM) available through the 

cBioPortal website and calculated using Graphprism 6.0.  Spearman correlations 
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between MITF and all genes and EBF3 and all genes were derived from the co-

expression module of cBioPortal.  Similar analyses were done using the Lund 

stage III melanoma set. 

 

Cloning of EBF3 in Tet-On inducible expression vector. The pCMV6-Myc-

DDK-hEBF3 cDNA clone was purchased from the OriGene Company (Rockville, 

MD) while PLVX-TRE3G-ZsGreen1 the tetracycline inducible, cDNA expression 

vector was purchased from Clontech Lab., (Mountain View, CA).  Pseudo-typed 

lentiviruses were produced per manufacturer’s protocols using the Lenti-X HTX 

Packaging Mix2 (Clontech) and Xfect polymer (Clontech) in HEK293FT (ATCC) 

producer cells.  A day before transfection, 2.5 million HEK293FT cells were 

seeded on a 60 mm plate, in 5 ml of tetracycline free growth medium and 

incubated at 37ºC, 5% CO2 incubator overnight.  48 hrs after transfection, the 

lentiviral supernatant was collected, centrifuged (500xg, 10 min), aliquoted and 

stored at –80°C until use. The virus production was estimated by using Lenti-X 

GoStix (Clontech).  

 LOX, UACC-62, G-mel and A375 melanoma cells were transduced with 

the lentiviral supernatant along with polybrene 8 µg/ml for 24 hrs.  24 hrs after 

infection, tetracycline-free growth medium containing Puromycin (4-6 µg/ml; 

Sigma-Aldrich) was added to the cells for antibiotic selection as described 

previously49,50.   Stably transduced melanoma cells were utilized for further 

experiments. 
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Cell Proliferation Assay. Cell proliferation was measured CellTiter-Glo®  

(Promega).  Briefly, viable cells were seeded at a density of 1,000 cells (in 150µl) 

per well in 96-well white plates (Corning, NY) with and without doxycycline in 

escalating doses (0, 10, 100, 1000 ng/ml).  Cell viability was determined at 

regular 24-hour intervals for up to 6 days. Briefly, 30 µl of luminescence-based 

cell lysis/ATP reagent (CellTiter-Glo®) was added to each well and incubated on 

an orbital shaker for 15 minutes at room temperature. The luminescence was 

recorded on a spectrophotometer (SpectraMaxplus, Sunnyvale, CA) to measure 

cell viability. Background-subtracted luminescence values were plotted as fold 

change using GraphPad Prism.  

 

RNA extraction for Real-Time PCR. Total RNA was isolated from ∼1x107 cell 

pellet using RNeasy mini kit (Qiagen, Valencia, CA) according to the 

manufacturer’s instructions. First-Strand cDNA Synthesis was performed by 

reverse transcription with high capacity RNA-to-cDNA Kit (Applied Biosystems, 

Waltham, MA) as instructed by the manufacturer. Levels of individual genes were 

quantified using a TaqMan Gene Expression Assays (Life Technologies): MITF 

(Hs01117294_m1), EBF3 (Hs00406051_m1) and Human GUSB (4333767 T, 

Life Technologies, Grand Island, NY); GUSB was used as an endogenous 

control. Real-time QPCR was performed using the LightCycler480 (Roche, 

Indianapolis, IN) with denaturation at 95°C for 10 minutes followed by 

amplification at 95°C for 10 seconds, 55°C to 60°C for 10 seconds and 72°C for 
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45 cycles. The normalized, relative ratios of the genes between samples were 

expressed fold change. 

 

Cell lysate preparation and Western Blotting. LOX, UACC-62, G-mel and 

A375 melanoma cells engineered with tetracycline-inducible EBF3 were seeded 

in 10% tetracycline free fetal bovine serum (Atlanta Biologicals Flowery Branch, 

GA) 1x DMEM (Corning Manassas, VA) medium with and without doxycycline 

(Sigma Louis, MO) 100ng/ml for 2-4 days, and then washed with chilled 

phosphate-buffered saline and lysed with RIPA buffer supplemented with Halt 

protease inhibitor cocktail (Thermo Scientific, Rockford, IL). Equal amounts of 

protein (15 µg) were resolved onto 4–20% SDS polyacrylamide mini-gels (Bio-

Rad, Hercules, CA) and transferred to nitrocellulose membranes. After blocking 

with nonfat 5% milk (Bio-Rad Hercules, California) in 1xTris-buffered saline–

Tween20 for 1 hour, blots were incubated with primary antibodies against MITF 

1:2000 (MS-771-P, Neo Markers Fremont, CA) and EBF3 1:2000 (SC-81999, 

Santa Cruz Biotechnology Dallas, Texas) for 2 hours, followed by horseradish 

peroxidase–conjugated secondary antibody (1:2,000) for 1h hour. Antigen–

antibody complexes were detected by enhanced chemiluminescence (Bio-Rad 

Hercules, California).  

 

3-D spheroid assay.  Pre-chilled 96 well plates were coated with matrigel (BD 

Biosciences, San Jose, CA) (100 µl/well) and incubated for 30 min at 37°C.  Both 

EBF3-inducible and control melanoma cells (A375 and LOX) were seeded on 
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matrigel (500 cells in 100 µl media/well) and incubated for 30 min at 37°C.  Then 

100 µl media containing 10% matrigel was added to each well and incubated at 

37°C for 24 hr.  Then 100 ng/ml of Dox was added and incubated for 5 days to 

induce expression of EBF3. Images of colonies were taken using Olympus 

confocal microscope and the sizes of the colonies were measured and analyzed.  

 

Animal studies. All experiments were performed in accordance with an 

approved Institutional Animal Care and Use Committee (IACUC) protocol. 6-

week old nude mice (Gnotobiotic Mouse\Cox7 Core, MGH, Boston, MA) were 

injected subcutaneously with CD516B-2 (vector) or CD516B-2 – EBF3 

transduced A375 cells. The cells were suspended in ice-cold HBSS and 1×106 

cells were injected via 100 µl suspension in to the right hind leg of mice. There 

were 8 mice used per group. Animal body weights and tumor development were 

monitored and dimensions were measured by a Mitutoyo caliper (MSC, Melville, 

NY) every 48 hours.  Tumor volume was calculated using mm3= length × width2 × 

0.5.  Animals were maintained in well-ventilated animal facility and tested in 

accordance with the MGH Animal Care and Use Committee guidelines. Data 

were expressed as mean ± S.D.; differences in tumor volume between vector- 

and EBF3-infected tumors were tested using the T-test at each time point. 
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Insight into somatic variation in cancer: gender disparity and mutation 

burden in metastatic melanoma 

	

Abstract 
	

Gender differences in melanoma incidence and outcome have been 

consistently observed but remain biologically unexplained. We hypothesized that 

tumors are genetically distinct between men and women and analyzed the 

mutation spectra in 266 metastatic melanomas (102 women and 164 men) from 

The Cancer Genome Atlas (TCGA). We found a statistically significantly greater 

burden of missense mutations among men (male median 298 vs female median 

= 211.5; male-to-female ratio [M:F] = 1.85, 95% confidence interval [CI] = 1.44 to 

2.39). We validated these initial findings using available data from a separate 

melanoma exome cohort (n = 95) and found a similar increase in missense 

mutations among men (male median 393 vs female median 259; M:F = 1.59, 

95% CI = 1.12 to 2.27). In addition, we found improved survival with increasing 

log-transformed missense mutation count (univariate hazard ratio = 0.82, 95% CI 

= 0.69 to 0.98) for TCGA samples. Our analyses demonstrate for the first time a 

gender difference in mutation burden in cutaneous melanoma. 

Introduction 
	

Gender differences in both melanoma incidence and outcome are now 

well established. Last year, there were an estimated 43,890 cases of melanoma 
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among men and only 32,210 cases among women1. Moreover, men accounted 

for 67% of the 9,710 melanoma-related deaths recorded in the United States in 

20141. This survival advantage among women has been confirmed in several 

additional studies2–6. While nonbiological explanations, including differences in 

clothing, sun-seeking behavior, and skin screening, have been hypothesized as 

sources of the disparity, little is known about intrinsic biological differences 

between melanomas from men and women. With the availability of several whole 

exome sequencing datasets for cutaneous melanoma, we set out to determine if 

genomic differences exist between male and female tumors. 

 

Results 
	

 We analyzed the autosomal mutation spectra in 266 metastatic 

melanomas (102 women and 164 men) from The Cancer Genome Atlas (TCGA). 

Biospecimens from tumors were obtained from patients, with appropriate 

informed consent and institutional review board or ethics board approval 

facilitated by the National Cancer Institute (NCI) and National Human Genome 

Research Institute (NHGRI). A positive NRAS mutation status was determined if 

the tumor sample contained any of the following mutations: p.Q61H, p.Q61K, 

p.Q61L, p.Q61R, p.G12A, p.G12D, p.G12R, p.G13D, p.G13R, and 

p.61_62QE>HK. Positive BRAF mutation status was determined if the sample 

contained any of the following mutations: p.V600E, p.V600K, p.V600R, and 

p.600_601VK>E. Negative binomial regression predicting missense mutation 

counts in univariate and multivariable analyses were performed. Survival 
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analyses were performed by fitting the Cox proportional hazard model. The 

effects of missense mutations are taken to be constant over time and 

implemented as ‘stationary coefficients.’ The proportional hazards assumption 

was tested by assessing correlation between survival times and Schoenfeld 

residuals. A P value of less than 0.05 was considered statistically significant, and 

all statistical tests were two-sided. 

We found a statistically significantly greater burden of missense mutations 

among men (male median = 298 vs female median = 211.5; univariate male-to-

female ratio [M:F] = 1.85, 95% confidence interval [CI] = 1.44 to 2.39), even after 

adjusting for age at diagnosis, primary tumor site, stage at diagnosis, site of 

sequenced tumor, history of neoadjuvant treatment, and BRAF and NRAS 

mutation status (multivariable M:F = 1.55, 95% CI = 1.19 to 2.02)7. Overall, there 

was also a greater burden of nonsense (M:F = 1.81, 95% CI = 1.39 to 2.36), stop 

loss (M:F = 2.83, 95% CI = 1.24 to 6.45), frameshift (M:F = 1.44, 95% CI = 1.18 

to 1.77), and splice variant (M:F = 1.76, 95% CI = 1.38 to 2.25) mutations among 

men. Because the mutation imbalance was preserved for frameshift mutations 

and the number of “UV signature” tumors was not statistically significantly 

different between men and women (143/164 men vs 82/102 women, Fisher P = 

0.16), it is unlikely that UV exposure differences would fully explain the gender 

mutation disparity8. 

To determine if the gender mutation differential was specific for 

melanoma, we also compared missense mutation load between men and women 

in 18 other TCGA cancers (Figure 3.16A). Only cutaneous melanoma 
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demonstrated statistically significant gender differences in mutation burden 

among the 19 cancers after adjusting for multiple testing using the Holm-

Bonferroni method. However, it is possible that tumors with smaller samples 

sizes and/or lower mutation counts were underpowered to detect a difference. 

We subsequently validated our TCGA findings on an additional 95 

melanoma exomes published by Hodis and colleagues (46 women and 49 men)9. 

There were statistically significant enrichments for missense (M:F = 1.59, 95% CI 

= 1.12 to 2.27), nonsense (M:F = 1.54, 95% CI = 1.09 to 2.17), and splice variant 

(M:F = 1.76, 95% CI = 1.26 to 3.02) mutations among men compared with 

women. Because the clinical information between the two cohorts was neither 

uniform nor consistently available, we performed a separate multivariable 

analysis of the validation set and found that gender mutation differences did not 

retain statistical significance. This may be due, in part, to the smaller validation 

sample size (n = 95), the statistically significant age disparity between men and 

women, and ascertainment differences between the TCGA and Hodis cohorts. 

Missense mutation burden has been recently shown to be associated with 

survival in response to ipilimumab10. We next sought to determine if missense 

mutation burden influenced outcome of the TCGA patients and observed 

statistically significantly improved survival with increasing log-transformed 

missense mutation count (univariate hazard ratio [HR] = 0.82, 95% CI = 0.69 to 

0.98; multivariable HR = 0.76, 95% CI = 0.63 to 0.91) independent of all other 

variables. The point of maximum statistical significance occurred with a missense 

mutation threshold of approximately 130 per tumor, a definition we used to plot 
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survival curves (Figure 3.16B). We also tested for a gender interaction with 

missense mutation but observed no statistically significant interaction (P = 0.40). 

 

Figure 3.16. Tumor Mutation Burden Associated with Gender and Survival. (A) 
To the left of the dotted line , boxplots depicting missense mutation distribution 
for 19 cancers on a log-scale are plotted in order of increasing median missense 
mutation count. To the right of the dotted line , boxplots depict missense mutation 
counts by gender from Hodis et al. (2012). TCGA and Hodis et al. (2012) 
samples are depicted on a normal scale to right of the main figure. Diamonds 
designate mean missense mutation count. Boxplot whiskers correspond to first 
and third quartiles of data. (B) While the positive relationship between mutation 
burden and survival is continuous, we determined that a definition of “high” vs 
“low” groups of missense mutation burden based on the threshold of 130 
optimally captured survival differences for visualization purposes (univariate 
hazard ratio [HR] = 0.46, 95% confidence interval [CI] = 0.32 to 0.67; 
multivariable HR = 0.43, 95% CI = 0.28 to 0.64). These plots show survival 
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Figure 3.16 (continued) curves for high mutation tumors vs low mutation tumors 
among women on left and high mutation tumors vs low mutation tumors among 
men on right based on the 130 mutations threshold. Mutation counts will vary 
based on sequencing platform and bioinformatic pipeline and thus the ‘130’ is not 
intended to represent an exact threshold of predictive discrimination for survival. 
A statistically significant survival advantage is observed for the women 
(univariate HR = 0.31, 95% CI = 0.17 to 0.58; multivariable HR = 0.32, 95% CI = 
0.16 to 0.62) and men (univariate HR = 0.57, 95% CI = 0.36 to 0.92; multivariable 
HR = 0.49, 95% CI = 0.30 to 0.81). Among patients with “high mutation” tumors, 
the median survival was 167.9 months for women and 112.6 months for men. 
Events per patient at risk are indicated for 2000 days intervals below survival 
curves. Asterisks indicate a statistically significant difference (P < 0.05) in 
missense mutation burden by gender. P values were determined from the 
negative binomial regression model with use of two-sided Wald tests. 
 
 

Our analysis indicates that male tumors harbor a higher mutation burden 

than female tumors. Yet, a higher mutation burden is also independently 

associated with better melanoma survival, which is supported by the recent 

ipilimumab findings10. It is worth noting that the mutation threshold (130), which 

optimizes survival differences in the TCGA metastatic samples (Figure 3.16B) is 

similar to the previously reported 100 threshold for ipilimumab responses10. This 

link between mutation burden and immune response may explain, in part, the 

female survival advantage observed clinically. A recent study found that female 

patients with melanoma had a statistically significantly higher frequency of tumor-

associated, antigen-specific CD4+ T-cells than their male counterparts11. 

Furthermore, investigators have shown that anti-B16 melanoma immunity was 

better in B7-H1(-/-) female mice compared with syngeneic male mice as a result 

of reduced regulatory T-cell function12. Damian and colleagues have also shown 

that women are more resistant to UV-mediated immunosuppression compared 

with men13. Taken together, an “immune fitness” hypothesis suggests that men 
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exhibit less effective antitumor immune surveillance, either because of innate or 

UV-mediated mechanisms, and are thus less able to clear the mutation-rich 

population of tumor cells compared with women; this may lead to a higher overall 

mutation burden in the tumor cell population. UV is an essential part of the model 

because the chronic DNA damage can lead to the generation of neo-epitopes 

and fuels immunogenicity. There are several corollaries to this hypothesis. First, 

melanomas on chronically irradiated skin (ie, head/neck) should harbor more 

mutations and show a higher male constituency—both of these appear to be 

supported by the TCGA data. Second, women should exhibit better survival than 

men, especially among the mutation-rich tumors. There appears to be a trend for 

improved survival among women with high-mutation (>130 mutations) tumors 

compared with men (median survival = 167.9 vs 112.6 months respectively, Wald 

test P = 0.13) (Figure 3.16B). Third, men should exhibit a higher risk of all skin 

cancers at chronically irradiated sites if in fact tumor immunity is fundamentally 

less fit; this male predominance has been in fact reported for other nonmelanoma 

skin cancer, including Merkel cell carcinoma, basal cell carcinoma, and 

squamous cell carcinoma14–16. 

This study has important limitations. First, the TCGA has delineated 

predominantly exomic sequences, and thus gender differences in the noncoding 

regions remain unscrutinized. Second, information about systemic, adjuvant 

therapy was only available for 36% (97) of the individuals and could not be 

incorporated into analyses. Lastly, accurate sun exposure history was not 

available to allow for gene-environment analyses. Despite these shortcomings, 
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our results do begin to unravel, at a molecular level, the Gordian knot of gender 

disparity in melanoma. 

Materials and Methods 
	

All clinical and somatic mutation data for 19 cancers (SKCM, ACC, BLCA, 

COAD, GBM, HNSC, KICH, KIRC, KIRP, LAML, LGG, LIHC, LUAD, LUSC, 

PAAD, PCPG, READ, SKCM, STAD, THCA) in TCGA 

(http://cancergenome.nih.gov) were downloaded from the BROAD Firehose 

pipeline management system via the R package RTCGAToolbox 

(http://mksamur.github.io/RTCGAToolbox/; version 1.1.4), using the “20141017” 

run date17. The mutational data were restricted to autosomes. Duplicate somatic 

mutation calls for the same tumor sample, resulting from multiple comparisons 

between tumor sample sequences and multiple normal tissue sample 

sequences, were removed.  We removed two individuals as extreme outliers 

from the collective dataset: TCGA-IB-7651 in PAAD and TCGA-AG-A002 in 

READ as these individuals were 412 and 249 interquartile ranges greater than 

the third quartiles respectively.  

TCGA has predominantly metastatic melanoma tumor samples and a 

small set of primary tumor samples, and these analyses were restricted to tumor 

samples resected from non-primary sites, including regional cutaneous or 

subcutaneous tissue (includes satellite and in-transit metastasis), regional lymph 

nodes, and distant metastases. Data for two individuals, TCGA-D9-A4Z5 and 

TCGA-ER-A197, did not include tumor sample location.  Pathology reports 

suggested these samples were sequenced primary tumors, and they were 



	 142	

excluded from the analysis. Two individuals, TCGA-ER-A19T and TCGA-ER-

A2NF, had multiple tumors collected from different sites and were likewise 

dropped from the analysis.  Individual TCGA-ER-A2NC had both an NRAS and 

BRAF mutation and was removed out of concern for contamination.  Seven 

individuals (TCGA-D3-A3C1, TCGA-D3-A3C3, TCGA-D3-A51G, TCGA-ER-

A19O, TCGA-FR-A3YO, TCGA-RP-A695, TCGA-HR-A2OG) had no available 

time to event data and were excluded.  In total, 266 tumor samples (102 females 

and 164 males) were included for final analysis.  

The melanoma clinical dataset from Firehose did not include site of 

primary tumor, a variable that might be a statistically significant confounder, as 

there are known gender differences in incidence of melanoma by anatomic site, 

and anatomic sites are thought to have different amounts of sun exposure18. 

Therefore, anatomic site of primary tumor and pathology reports for each 

melanoma patient were downloaded directly from TCGA (https://tcga-

data.nci.nih.gov/tcga/).  Ambiguously coded sites such as “Extremities|Trunk” 

were recoded, after analyzing the available pathology report, to the most 

appropriate anatomic site or as not available (TCGA-EE-A2GR recoded as 

“Extremities”; TCGA-EE-A3JI recoded as not available; TCGA-D3-A2J9 recoded 

as not available; TCGA-D9-A4Z2 recoded as “Trunk”; TCGA-D3-A3CC recoded 

as not available; TCGA-ER-A194 recoded as “Trunk”; TCGA-ER-A198 recoded 

as not available).  Only two individuals had a primary site other than extremities, 

trunk, or head and neck and were collapsed into an “other” category. American 
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Joint Committee on Cancer (AJCC) stage at initial diagnosis was collapsed to 

Stage 0, I, or II and Stage III and IV7. 

 

Validation Set 

Gender status and mutation subtype counts for each individual included in 

the Hodis et al. 2012 literature were extracted from supplementary materials. 

This patient cohort was restricted to individuals with localization of primary 

melanoma to “skin” in order to exclude the uveal and mucosal melanomas in the 

dataset. AJCC stage at initial diagnosis was recoded as Stage 0, I, or II and 

Stage III and IV7.  Anatomic sites of primary tumor were recoded as extremities, 

trunk, head and neck, or other.  

 

Missing Data 

For the pan-cancer analyses, only a small subset of clinical variables 

overlapped for all cancer types and analyses were restricted to univariate 

analyses comparing missense count and gender. There was no missing data for 

these variables, and thus complete data analysis was performed for pan-cancer 

analyses.  For the melanoma cohorts, analyses were not restricted to univariate 

analyses. Notably, the variable with the most missing data is anatomic site of 

primary tumor (44 individuals; 16.5%) for the TCGA data and stage at initial 

diagnosis (21 individuals; 22.1%) for the Hodis validation set. For the melanoma 

mutation count analyses, we implemented multiple imputation using a 
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bootstrapping-based EM algorithm with the Amelia II package (version 1.7.3) in R 

using the default and recommended parameters19.  

 

Statistical Methods 

All analyses were performed using the statistical software R (R 

Development Core Team, 2010) version 3.1.1. Mutation subtype counts of 

missense, nonsense, frameshift, and splice variants among autosomes were 

tabulated in R. Negative binomial regression predicting missense mutation 

counts in univariate and multivariate analyses were performed. For the TCGA 

analysis, the multivariate model predicting mutation subtype counts included 

gender, age at diagnosis, anatomical site of primary, site of tumor sample 

sequenced, stage at diagnosis, history of neoadjuvant treatment, and BRAF and 

NRAS status as covariates. A matching multivariate analysis could not be 

performed on the Hodis validation set given the limited availability of clinical 

variables.  However, a multivariate model including gender, age at diagnosis, 

anatomic site of primary, tumor stage at diagnosis, and BRAF/NRAS mutation 

status was performed. These analyses were implemented post-imputation with 

Amelia II using the ‘zelig’ package (http://gking.harvard.edu/zelig; version 3.5.4) 

in R19. For comparison across all 19 cancers, univariate analyses using negative 

binomial regression compared missense mutation burden by gender for each 

cancer. P-values were adjusted using the Holm-Bonferroni method for multiple 

testing.  Regression coefficients and standard errors were converted to male-to-

female mutation count ratios and confidence intervals.  We also classified TCGA 
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samples using a validated UV signature definition of tumors — C>T transitions at 

dipyrimidine sites for ≥ 60% of the total mutation burden or ≥ 5% CC>TT 

mutations8. 

For survival analysis in the TCGA, plotting of Kaplan-meier curves and 

calculating hazard ratios using the Cox proportional model using the R packages 

‘survival’ (http://cran.r-project.org/web/packages/survival/; version 2.37-7) and 

‘zelig’ (http://gking.harvard.edu/zelig; version 3.5.4). The effects of missense 

mutations are taken to be constant over time and implemented as ‘stationary 

coefficients’. Missense mutation counts were log-transformed for survival 

analyses. Proportional hazards assumption was tested by assessing correlation 

between survival times and Schoenfeld residuals, followed by two-sided χ2 test, 

using the cox.zph() command in the R ‘survival’ package.  

 

Threshold for Modeling High vs. Low mutation burden 

We tested a range of threshold definitions, ranging from the first decile of 

missense mutation count and increasing by increments of 10 to the last decile of 

mutation count, using univariate analyses. We identified the threshold resulting in 

the maximum distance from 1 that had a statistically significant adjusted p-value 

(<0.05). P values were determined using the Cox proportional hazards model 

using two-sided Wald tests, adjusted for multiple testing using the Holm-

Bonferroni method.   
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Abstract 
	

Analysis of the genetic risk factors provides only unstructured pieces of 

information about the biology of a disorder. Generally, after identification of the 

associated loci massive follow-up studies are required to, first, prove the causal 

relationship, and, most importantly, understand the molecular mechanism of 

causality. Which locus should be prioritized for protein-level studies is currently 

determined based on empirical knowledge of protein function. Integration of the 

experimentally proven individual proteins functionality is then aimed to identify 

pathways affected by disease. Alternatively to this extensive approach, we 

developed a statistical framework that integrates genetic association data from 

multiple sources (GWAS, RVAS, etc.) and finds the protein-protein network 

returning the best cumulative association score. Using Bayesian model 

association results are then refined with evidence of the specific gene 

appearance in the best network. Our method provides a ranked list of genes 

prioritized based on both association strength and integration in the functional 

pathway. Such approach is essential for understanding biology of the disorders 

where it is impossible to build adequate animal model – autism, schizophrenia 

and other neuropsychiatric diseases. 
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Introduction 
	

Since publication of the first draft of human genome in 20021 the ultimate 

aim for the computational biology was to aid therapy and drug discovery. 

Essential step in this is revealing disease biology by connecting genetic data to 

patient phenotype. Huntington’s disease gene HTT (HD)2 was the first in history 

gene mapped to a disease in 1983, followed by discoveries of cystic fibrosis 

causal CFTR gene in 19853. These are examples of mendelian disorders which 

are caused by a specific type of alteration in patient’s DNA. However, most of the 

common genetic disorders are complex (polygenic) and this makes interpretation 

of each individual risk locus significantly more challenging. 

Methods like linkage analysis and GWAS were successful in identification 

risk loci but did not always point to specific genes and generally highlight not yet 

understood regulatory mechanisms. Fine-mapping4 of GWAS hits has limited 

power and is mostly applicable for monogenic loci or in case when associated 

SNPs fall in coding sequence. Unfortunately, such ideal scenarios are quite rare. 

Lab techniques made limited progress in development of long-range DNA 

interactions maps. Thus interpretation of vast majority of the GWAS associations 

remains a challenge.  

Additionally, many complex disorders have common risk factors (e.g. 

MC1R in cutaneous melanoma) and at the same time there are less frequently 

observed alterations in gens that are often left intact in affected samples (e.g. 

EBF3 or POT1 in cutaneous melanoma). Yet, such genes less frequently 

observed to be mutated in case cohorts provide valuable information about 
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disease pathways. Often, they cannot be integrated together based on just 

genetics evidence and require additional reference from proteomics about 

functions of their downstream gene-products5.  

Phrase ‘pathway and network analysis’ would, thus, denote any analytic 

technique that benefits from biological pathway or molecular network information 

to gain insight into a biological system. The fundamental aim is to reduce data 

involving thousands of altered genes and proteins to a smaller and more 

interpretable set of altered processes. This process-oriented view helps generate 

testable hypotheses, identify drug targets, find cancer tumor subtypes with 

clinically distinct outcomes and identify disease-specific pathways5. 

Rare variation association studies have significant advantage6 – they are 

focused on the coding variation and mapping of the association signal to a gene 

becomes straightforward. At the same time, complex disorders require large 

cohorts to gain enough statistical power for association detection, which cannot 

be achieved due to sequencing cost limitations. Integration of large GWAS 

statistical power and mapping simplicity of RVAS aligned on the map of protein 

interactions is a missing resource that will link genetic data to disease biology 

that can explain observed phenotype. 

There are several conventional principles described in the literature for 

inferring molecular networks from different systems level data. These are 

matched to current experimental capabilities and will need revamping as 

technological leaps produce new types of data (e.g., more quantitative data and 

with real-time dynamics). 
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The key assumption used for network generation is that interaction 

between instances (e.g. proteins) generate statistical relations in the observed 

data. However, observed correlations in the data reflect only potential 

interactions. Robust reference set and statistical testing for significance of the 

observation are the base of the weighted approach.  

Various statistical solutions have been successfully applied to network 

inference7,8. The commonality between the frameworks is that they model a 

target's behavior as a function of its regulators and search for the most predictive 

regulator set. More advanced model, using protein-protein interactions as a 

reference for the known pathways was developed by Dittrich et al9, their 

algorithm utilizes Steiner decision tree to identify the best scoring network.  

Protein-protein interactions databases have recently become important 

source of information that could serve as a basis for integration of genetic 

association results with functionality of the encoded proteins. Initial steps in this 

directions were made with DAPPLE software10, which detected significantly 

higher connectivity within a set of proteins, encoded by genes identified in 

inflammatory bowel disease GWAS. Suggesting, that a truly causal genes should 

form a cluster of proteins with higher connectivity than random set. This 

observation is extended in breast cancer, where all of the genes that are 

currently screened in clinic for therapeutic needs form a highly interconnected 

cluster of proteins (mostly regulating DNA reparation pathway), which is never 

seen in random permutations. 



	 153	

Moreover, while first assemblies of the protein-protein interactions were 

unreliable and quite often had a substantial amount of false positives, current 

increased interest resulted in functionally validated databases (BioPlex11, 

InWeb12). Recently released tissue specific PPI data could even further expand 

potential to use this data in interpretation of the genetic data and prioritization of 

the drug targets. 

Results 
 

 Solution proposed by Dittrich et al9,13 was implemented for microarray 

data.  We sought to adapt this for the genetic associations data. Original 

approach uses association p-values to determine additive statistical weights for 

individual genes that are then used for search of the network maximizing 

cumulative score. Scores of individual genes are estimated using signal and 

noise decomposition of the p-values distribution. In this way genes with p-values 

falling into signal category receive positive scores and the noise ones receive 

negative scores (Figure 4.1).  

 Unlike in microarray data, in GWAS p-values of the significant 

associations could range between 10-8 and 10-100. Original scoring method thus 

implies that genes with extremely small p-values would receive large positive 

scores. This makes the search of the most affected network very permissive and 

results in uninterpretable results. We restricted all of the genes with significant 

association p-values to receive the least positive score observed. In this way, all 

significant genes are treated equally inline with common interpretation of the 

association studies.  
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Figure 4.1. Betta-uniform fitting of the p-value distribution. A – true positive; B – 
false negative; C – false positive; D – true negative. Figure from Dittrich et al9. 
 

 Significance threshold (τ) by default is given as Bonferroni derived 

correction for association test (0.05/number of genes tested). In case of a study 

that does not have any significant association observed significance threshold is 

determined from Betta-Uniform fitting for noise-signal decomposition13.  

 To test non-randomness of the network we applied the scheme of 

connectivity-conserved permutations to generate random interactomes10. For 

each randomized interactome we repeated the search of the best scoring 

network and recorded its cumulative score and connectivity (number of edges 

per node). 

 

Interpretation of the association studies 

S.Pounds and S.W.Morris

Table 1. Outcomes of a hypothesis test

Declare significance Fail to declare significance

False null hypothesis True Positive (A) False Negative (B)
True null hypothesis False Positive (C) True Negative (D)

with two degrees of freedom (Casella and Berger, 1990).
The confidence region for a and λ can be transformed into
a confidence interval for πub. The 1−α confidence interval
for πub is given by the range of π⋆

ub = λ⋆ + (1 − λ⋆)a⋆

for all a⋆ and λ⋆ within the confidence region defined by
(4). Confidence intervals for other quantities (such as the
error quantities mentioned in what follows) based on the
estimates of a and λ can be constructed by finding the
range of the quantity for values of a and λ within the
confidence region.

ESTIMATING THE OCCURRENCE OF ERRORS
Four hypothesis testing outcomes
A hypothesis test is an attempt to use available information
to infer whether the null hypothesis is false. A hypothesis
test can reach one of two decisions: to declare significance
(i.e. to conclude that there is sufficient evidence to infer
that the null hypothesis is false) or to fail to declare
significance (i.e. to conclude that there is insufficient
evidence to infer that the null hypothesis is false). Because
the null hypothesis is either true or false, a hypothesis
test can have four possible outcomes: (A) declaring
significance when the null hypothesis is false, also known
as a true positive; (B) failing to declare significance when
the null hypothesis is false, also known as a false negative
or a Type II error; (C) declaring significance when the null
hypothesis is true, also known as a false positive or a Type
I error; and (D) failing to declare significance when the
null hypothesis is true, also known as a true negative. The
four possible outcomes are illustrated in Table 1.

Partitioning the estimated density
When p-values are used in hypothesis testing, significance
is determined on the basis of the comparison of the p-
value to a threshold τ . Significance is declared when the
p-value is less than τ . Failure to declare significance
occurs when the p-value is greater than τ . Once τ is
selected, the estimated density f̂ (x) can be partitioned
into four regions, and each region corresponds to a unique
hypothesis testing outcome (Fig. 1). There are two straight
lines that form the partition: the vertical line at x =
τ and the horizontal line at y = π . The region to
the left of the vertical line corresponds to the p-values
declared significant and the region to the right corresponds
to p-values declared insignificant. The region above the

p-value
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Fig. 1. Graphical illustration of error-control quantities. Region A
corresponds to the occurrence of true positives because it lies above
the horizontal line (the alternative component) and to the left of
the vertical line (declared significant). Region B corresponds to the
occurrence of false negatives because it lies above the horizontal
line (the null component) and to the right of the vertical line (not
declared significant). Region C corresponds to the occurrence of
false positives because it lies below the horizontal line (the null
component) and to the left of the vertical line (declared significant).
Region D corresponds to the occurrence of true negatives because it
lies below the horizontal line (the null component) and to the right
of the vertical line (declared significant).

horizontal line y = π is the alternative component
of the distribution: the portion of the distribution of p-
values arising from the alternative hypothesis. The region
below the horizontal line is the null component of the
distribution: the portion corresponding to the distribution
of p-values arising from the null hypothesis. The area of
each region is an estimate of the proportion of hypothesis
tests resulting in the corresponding outcome. The areas of
the regions A, B, C and D in Figure 1 are computed by

p̂A(τ ) = F̂(τ ) − π̂ubτ, (5)
p̂B(τ ) = 1 − F̂(τ ) − (1 − τ )π̂ub,

p̂C (τ ) = π̂ubτ, and
p̂D(τ ) = (1 − τ )π̂ub,

respectively, where F̂(τ ) = λ̂τ + (1 − λ̂)τ â .

The false discovery rate (FDR)
Various error control quantities of interest can be esti-
mated by using (5). For example, an estimated upper
bound of the FDR (the proportion of tests declared signif-
icant that are false positives) introduced by Benjamini and
Hochberg (1995) is given by

ˆFDRub(τ ) =
p̂C (τ )

p̂A(τ )+ p̂C (τ )
(6)
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 We tested this approach on the GWAS meta-analysis of coronary artery 

disease14. There are 48 previously known GWAS-identified loci associated with 

coronary artery disease reported and 8 new loci discovered in the meta-anlaysis. 

We used p-values for identified associated loci to build the most associated 

network. For polygenic loci the same p-value was assigned to each of the genes. 

Resulting network has significantly larger total score compared to the best 

network obtained from randomized interactome (p<0.001) and has significantly 

higher connectivity (1 edge per node, p=0.042), suggesting that clustering of 

these genes is non-random (Figure 4.2). 

 

Figure 4.2. The best scoring networks from genetic association analysis of 
coronary artery disease patients (CAD) and patients with history of myocardial 
infarction (MI). 
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Two different functional clusters of proteins were identified within the 

network – lipid metabolism and inflammation proteins. Interestingly, we capture 

common drug targets for CAD – Pcsk9 from lipid limb of the network for lowering 

blood LDL levels. We repeated analysis with association results obtained from 

cases with record of myocardial infarction. Three genes – SMAD3, PLG and 

PDGFD form the best scoring network for MI phenotype. Expectedly, these 

genes are also found in CAD network. These three genes are the core of the 

inflammation limb of the network. Suggesting, that inflammatory protein module 

has the strongest association in cases with history of MI. 

Polygenic GWAS loci interpretation 

Fine-mapping of the GWAS associations so far had limited success in 

identification of the signal driving genes4. It is common to find multiple genes 

within the same locus without clear evidence of any gene functionality to be 

relevant for the phenotype. In case of reasonably small number of genes (usually 

less than 5) it is possible to follow up with molecular biology studies to identify 

most likely relevant gene. However, quite often the number of genes within the 

locus is too large which makes wet-lab approach too expensive. Our default 

approach was to assign the same p-value for all genes within polygenic locus. 

However, based on functional relatedness evidence to the other candidate genes 

we are able to prioritize a specific gene from each locus. For example locus 

mapped to SLC22A3-LPAL2-LPA genes contributes only LPA to the most 

associated functional network (Figure 4.2). While this does not imply that LPA is 
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the only candidate from this locus it does provide valuable information for 

prioritizing candidate genes. 

Posterior association statistics 

The fact that a gene appears in the best-scoring network provides extra 

information about its association signal. We sought to develop an empirical 

method to refine observed genetic association signal with protein-level data. 

There are two main factors contributing to chances of a gene to be selected for 

the best scoring network. First, the more positive is the score of a gene the more 

beneficial is inclusion of this gene to the network. In this way, genes with stronger 

association signals are more likely to be found in resulting network. Second, 

genes with greater connectivity despite their association signal strength are more 

likely to become a hub for positively scoring libs of the network. To test 

contribution of both factors we applied Bayesian approach for estimation of the 

posterior p-value of genetic association, given that a gene A with N connections 

is found in the best scoring network (Equation 4.1). 

𝑃𝑣𝑎𝑙| 𝑔𝑒𝑛𝑒 𝐴 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑛𝑒𝑡𝑤𝑜𝑟𝑘

=
𝑃𝑟𝑜𝑏 𝑔𝑒𝑛𝑒 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑛𝑒𝑡𝑤𝑜𝑟𝑘 𝑃𝑣𝑎𝑙 ∗ 𝑃𝑣𝑎𝑙

𝑃𝑟𝑜𝑏 𝑔𝑒𝑛𝑒 𝑤𝑖𝑡ℎ 𝑁 𝑐𝑜𝑛𝑛𝑒𝑐𝑡𝑖𝑜𝑛𝑠 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑏𝑒𝑠𝑡 𝑛𝑒𝑡𝑤𝑜𝑟𝑘  (𝑬𝒒𝒖𝒂𝒕𝒊𝒐𝒏 𝟒.𝟏) 

 

Individual contributions of the association strength and connectivity were 

tested using two permutation schemes. First, to figure out prior probability of the 

gene with N connections to be included in the best network we randomly shuffled 

association p-values (Pval, Equation 4.1) for all genes. With this only effect of 

gene connectivity contributes to overall chances of gene selection. Ratio of the 
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number of genes with the same number of connections found in resulting 

network to the total number of genes in the resulting network would return the 

probability of any gene with N connections to be found in the best scoring 

network. 

 Second, we estimated contribution of the association strength. We applied 

connectivity-conserved permutation scheme, similar to DAPPLE10 and estimated 

ratio of the number of genes with association strength greater or equal than gene 

A to the total number of genes in the resulting network. 

 We used ranked list of genes from FSGS study15 (Chapter 2) to find best-

scoring PPI network. None of the genes originally reached significance threshold 

(0.05/1642 genes represented in reference interactome = 3x10-5). Resulting 

network consists of five genes – WNK4, COL4A4, DLG5, KAT2B, UBC (Figure 

4.3). 

 

Figure 4.3. The best scoring network of FSGS rare-variant association study15. 
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 Then, posterior p-values of genetic association (probability of a gene 

being not associated to phenotype) were then calculated. 3 genes became 

significant – COL4A4, DLG5, WNK4 (Table 4.1).  

 

Table 4.1. Posterior association signal for FSGS rare-variant association study. 

Gene Original P-value Posterior P-value 
COL4A4 6.76x10-5 4.51x10-6 

DLG5 7.71x10-5 1.54x10-5 
KAT2B 4.4x10-4 8.73x10-4 
UBC 3.4x10-3 1.4x10-4 

WNK4 3.1x10-4 3.57x10-5 
 

 
Interestingly, 2 genes had more than 10 fold improvement in association 

signal: COL4A4 – is a known risk gene for FGSG; our mouse model15 (Chapter 

2) demonstrates that mice with non-functional WNK4 develop proteinuria and 

FSGS, thus proving its causal role. DLG5, while gaining significance, has very 

modest improvement in posterior statistic – less than 3 fold enrichment, which is 

on the order of magnitude of the noise introduced by permutations to prior p-

values. Our mouse model ruled out DLG5 as a causal gene, as mice do not 

develop histologically proven FSGS with knockout of this gene. 

One of the main challenges of our approach is NP-hardness of underlying 

combinatorial problem solved by FastHeinz algorithm13. While it is not a problem 

for the identification of the differential network, analysis of empirical significance 

requires tens of thousands runs to analyze random networks. We developed the 

R-based package ‘PPItools’ performing network analysis, beta-version of which 

is currently available at the Broad Institute computational cluster and undergoes 
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testing by community. It uses parallel computations with UGER job scheduling 

environment16 to perform individual random network analysis on a separate CPU. 

Source code could be found in the Appendix. 

To overcome the computational challenges we replaced the permutation 

scheme for generation of the random interactomes with de-novo assembly of the 

interaction graph with pre-specified node connectivity. This solution has 

important benefit – it ensures uniform probability of each random graph to be 

generated. In this way a true estimate of the null distribution for the random 

networks could be achieved. This update is to appear in the second version of 

‘PPItools’ package. 

 

Discussion 
 

Here, we developed a novel approach for interpreting and refining results 

of genetic association studies. Our methodology uses protein interactions data to 

find the most associated subset of connected genes. Interpretation of the 

biological mechanism underlying disorder and discovery of the therapeutic 

targets remains ultimate goal of genetic studies. Using examples of different 

disorders we show how our tool could be used for interpretation of polygenic 

GWAS loci, discovering network modules with different functions (lipid 

metabolism/inflammation in CAD) and statistical assessment of significance for 

individual genes within a network.  

 Currently, significant knowledge is accumulated about coding DNA 

regions, yet less is known about regulatory sequence. Interpreting of the eQTLs 
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and non-coding variants (vast majority of known GWAS signals) still remains a 

great challenge. Composite methods taking into account long-range interactions 

within DNA locus, relevance of the protein product to a phenotype and its 

integration in the protein pathways are essential for integration of the genetic 

studies with molecular biology. Accordingly, our method is one of the modules of 

future integrated pipeline that interprets genetic studies to satisfy therapeutic 

demands. 
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 The main goal of this thesis was to develop a statistical method for 

interpretation of the genetic association data. First, we created a composite 

approach for rare variation tests that was used to extract a list of candidate 

genes from a modest-sized cohort of FSGS samples. Our statistical model 

predictions were validated in mouse knockout model that identified new 

susceptibility genes and proved genetic basis of sporadic FSGS. Second, on the 

larger scale case-control study our model identified a novel cutaneous melanoma 

gene – EBF3, through functional accreditation it was proven to have tumor 

suppressive properties. Finally, we built a software package for the interpretation 

of the genetic association studies results that finds differential network between 

cases and controls.  

 

Summary of results 

 Composite model for rare DNA variation analysis 

 In this case-control study of sporadic and familial FSGS we used multiple 

gene-based association tests for analysis of rare coding DNA variants. While test 

statistics are related they have different power of capturing signal within specific 

effect size. Fisher’s test is most suitable for ultra-low frequency high-impact 

protein-truncating variants, while VT and C-α tests are capturing cumulative 

effect of multiple moderate effect mutations that skew overall genotype 

distribution towards risk. Combination of all three models resulted in a short list of 

candidate genes – WNK4, KAT2B, DLG5, ARGHEF17, KANK1 (Table 2.2). All 

except DLG5 were subjected for functional accreditation in the mouse model and 

found to cause proteinuria and development of FSGS phenotype (Figure 2.5). 
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Given the modest size of the case and control cohorts in this study our model 

was powerful enough to identify new susceptibility genes. 

  

 Large-scale analysis of cancer exome sequencing 

 We performed joint analysis of about 1,000 of early onset and about 1,500 

unselected cancer cases with cutaneous and ocular melanoma, breast cancer 

and colon cancer versus about 8,000 matched controls. We identified common 

properties for the germline DNA variation in the list of known causal genes. 

Almost entirely statistical signal was driven by singleton protein-truncating 

variants in the genes tolerant to loss-of-function mutations that followed 

autosomal dominant inheritance pattern (Figure 3.2, Table 3.1, Figure 3.3). 

Analysis of pan-cancer dataset suggested that it is unlikely to find novel genes in 

this category with comparable effect size to the already known risk genes.  

Thus, we concluded that there were two major directions of novel 

candidate genes search. First, identify genes that are intolerant of loss-of-

function mutations but functionally are linked to the known cancer genes. We 

used earlier introduced composite model to analyze cutaneous melanoma cohort 

to identify novel susceptibility gene – EBF3 (Table 3.4). Through functional 

accreditation overexpression of EBF3 was found to correlate with suppression of 

MITF - a known cancer gene (Figure 3.14). We also sought to explain a known 

difference in survival rate among women and men with cutaneous melanoma. 

Analysis of somatic variation in metastatic tumors suggested, that a burden of the 

missense mutations in tumor have discriminative effect for gender disparity.  
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Second, we looked at another type of variation observed in blood DNA – 

somatic mutations. Mosaic mutations were known to cause leukemia and 

lymphoma. However, only several studies reported relevance to the solid-tumor 

cancers. We analyzed about 8,000 exomes from The Cancer Genome Atlas and 

identified significant burden of mosaic protein truncating variants in the leukemia 

genes (Figure 3.8). Interestingly, such mutations were absent in tumor (Figure 

3.10). While, we only found statistical association, we were unable to conclude 

whether this is a predisposing factor or a consequence of the cancer phenotype.  

 

Statistical framework for interpretation and improvement of association 

studies 

We next used data-driven network inference algorithms to build a software 

module that identifies differential protein-protein interaction network most 

significantly perturbed in genetic association studies. Using generation of the 

random reference interactomes we assessed empirical significance of identified 

networks. With Bayesian statistics we designed a scheme for refinement of the 

association signal for individual genes using the evidence of inclusion to the best 

differential network. Our approach identified key functional differences between 

coronary artery disease patients with and without prior history of myocardial 

infarction (Figure 4.2). We also used data from analysis of FSGS cohort to 

predict which genes are most likely to be functionally relevant (Figure 4.3). Two 

of four genes validated with mouse model were predicted to be significant by our 

model. 
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 Below is a code for generation of single round of permutations for 

Bayesian analysis of the protein-protein network significance: 

#!/bin/env Rscript 
 
rm(list = ls(all = TRUE)) 
 
task.id <- Sys.getenv("SGE_TASK_ID") 
#Run Parameters 
n_perm<-1 
args=commandArgs(trailingOnly=TRUE) 
output_folder<-args[1] 
input_file<-args[2] 
GeneScoringMethod<-args[3] 
prefix<-args[4] 
reference_folder<-args[5] 
 
 
substrRight<-function(x,n){ 
 substr(x, nchar(x)-n+1, nchar(x)) 
} 
if (as.character(unlist(substrRight(output_folder,1)))=="/"){ 
 output_folder<-paste(output_folder,task.id,sep="") 
} 
system(paste("mkdir",output_folder,sep=" ")) 
 
library(BioNet) 
library(igraph) 
 
 
#Load references 
network <- loadNetwork.tab(paste(reference_folder,"inweb_im_ppi.txt",sep=""), 
header=FALSE,format="graphNEL", directed=FALSE) 
network2 <- rmSelfLoops(network) 
connectivity<-
read.table(paste(reference_folder,"inweb_im_gns_connections.txt",sep=""), 
header=T,sep="\t") 
 
#prepare inweb network 
nodes_inWeb<-as.character(unlist(nodes(network))) 
nodes_inWeb<-cbind(nodes_inWeb,nodes_inWeb) 
colnames(nodes_inWeb)<-c("nodes_inWeb","V2") 
 
connectivity_inWeb<-merge(nodes_inWeb,connectivity,by.x="nodes_inWeb",by.y="gns") 
connectivity_inWeb<-connectivity_inWeb[,-2] 
connectivity_rank<-rank(connectivity_inWeb[,2]) 
connectivity_rank<-.bincode(connectivity_rank,breaks=seq(0,17590,10)) 
connectivity_inWeb<-cbind(connectivity_inWeb,connectivity_rank) 
connectivity_inWeb<-
connectivity_inWeb[match(nodes_inWeb[,1],connectivity_inWeb$nodes_inWeb),] 
connectivity_inWeb<-cbind(connectivity_inWeb,connectivity_inWeb[,1]) 
colnames(connectivity_inWeb)[[1]]<-"Permuted_Nodes" 
colnames(connectivity_inWeb)[[4]]<-"nodes_inWeb" 
 
### Permute labels 
permuteLabel<-function(x){ 
x[,1]<-sample(x[,1]) 
return(x) 
} 
 
 
#Dataset preparation 
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tt<-read.table(input_file) 
colnames(tt)<-c("InWebID","pvals") 
tt<-merge(tt,connectivity,by.x="InWebID",by.y="gns") 
tt<-tt[!duplicated(tt),] 
connectivity_rank<-rank(-as.numeric(as.character(unlist(tt$connections)))) 
tt<-cbind(tt,connectivity_rank) 
#####define funcitons 
#Gene scoring function: 
scoreGenes<-function(x,method,FDR,GWSthreshold){ 
if (method=="B"){ 
 if(missing(GWSthreshold)){ 
  GWSthreshold<-0.05/length(nodes(network2)) 
 } 
 maxSign<-max(x[which(x<GWSthreshold)],na.rm=T) 
 x[which(x<GWSthreshold)]<-maxSign 
 if(length(x)<length(nodes(network2))){ 
  tmpPvals<-c(x,runif(length(nodes(network2))-length(x))) 
 }  
 fb<-fitBumModel(tmpPvals,plot=FALSE) 
 scoreEstimate<-function(y){ 
  return((fb$a-1)*(log(y,base=10)-log(GWSthreshold,base=10))) 
 } 
 scores<-mapply(scoreEstimate,y=x) 
  
 return(scores) 
} 
if (method=="FDR"){ 
 if (missing(FDR)){ 
  FDR<-0.05 
 } 
 fb<-fitBumModel(x,plot=FALSE) 
 subnet<-subNetwork(names(x),network2) 
 scores <- scoreNodes(subnet, fb, fdr = FDR) 
 return(scores) 
} 
  
} 
# 
#Network Permutations 
NetworkPEstimate<-function(tt,network_interactome,connectivity_interactome,n_perm){ 
sim_scores<-NULL 
nNodes<-NULL 
nEdges<-NULL 
EdgesPerNode<-NULL 
number_of_gws_nodes<-NULL 
allNodes<-NULL 
 
 scatterRanks<-
split(connectivity_interactome,connectivity_interactome$connectivity_rank) 
 scatterRanks<-lapply(scatterRanks,permuteLabel) 
 connectivity_rank<-rank(connectivity_interactome[,2]) 
 gatherRanks<-gatherRanks<-do.call(rbind,scatterRanks) 
 gatherRanks<-gatherRanks[match(nodes_inWeb[,1],gatherRanks$nodes_inWeb),] 
 gatherRanks<-
gatherRanks[which(is.na(as.character(unlist(gatherRanks$Permuted_Nodes)))==FALSE),] 
 gatherRanks<-gatherRanks[match(nodes_inWeb[,1],gatherRanks$nodes_inWeb),] 
 
 
 nodes(network_interactome)<-as.character(unlist(gatherRanks$Permuted_Nodes)) 
 pvals<-tt$pvals 
 names(pvals)<-tt$InWebID 
 subnet<-subNetwork(names(pvals),network_interactome) 
 scores<-scoreGenes(pvals,GeneScoringMethod) 
 module <- runFastHeinz(subnet, scores) 
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 node_list<-unique(c(c(getEdgeList(module)[,1]),getEdgeList(module)[,2])) 
 sim_scores<-
c(sim_scores,sum(scores[which(is.element(names(scores),node_list)==TRUE)])) 
 gws_nodes<-subset(tt,pvals<0.05/length(nodes(network2))) 
 number_of_gws_nodes<-
c(number_of_gws_nodes,length(which(is.element(nodes(module),gws_nodes[,1])==TRUE))) 
 nNodes<-c(nNodes,length(nodes(module))) 
 nEdges<-c(nEdges,length(unlist(edgeL(module)))/2) 
 EdgesPerNode<-
c(EdgesPerNode,(length(unlist(edgeL(module)))/2)/length(nodes(module))) 
 allNodes<-c(allNodes,nodes(module)) 
 
output<-cbind(sim_scores,number_of_gws_nodes,nNodes,nEdges,EdgesPerNode) 
colnames(output)<-
c("Score","Number_of_gws_nodes","Number_of_Nodes","Number_of_Edges","Number_of_edges_p
er_node") 
return(list(output,allNodes)) 
} 
# 
############# 
#P(node in network) estimation 
NodePEstimate<-function(tt,network_interactome,n_perm){ 
 allNodes<-NULL 
 pvals<-tt$pvals 
 names(pvals)<-sample(tt$InWebID) 
 subnet<-subNetwork(names(pvals),network_interactome) 
 scores<-scoreGenes(pvals,GeneScoringMethod) 
 module<-runFastHeinz(subnet,scores) 
 allNodes<-c(allNodes,nodes(module)) 
 
return(allNodes) 
} 
#### 
 
perm_scores<-replicate(n_perm,NetworkPEstimate(tt,network,connectivity_inWeb,1)) 
assembly_scores<-perm_scores[[1]] 
assembly_nodes<-as.character(unlist(perm_scores[[2]])) 
perm_node_list<-replicate(n_perm,NodePEstimate(tt,network,1)) 
perm_node_list<-as.character(unlist(perm_node_list)) 
#Save the scores of randomly drawn networks (connectivity-conserved permutations) 
write.table(assembly_scores,paste(output_folder,"permuted_inweb_network_score.txt",sep
="/"),row.names=F,quote=F,sep="\t") 
#Save the nodes that appeared in the randomly drawn networks (connectivity-conserved 
permutations) 
write.table(assembly_nodes,paste(output_folder,"permuted_inweb_network_nodes.txt",sep=
"/"),row.names=F,quote=F,col.names=F) 
#Save the nodes that appeared in the randomly drawn networks (only p-values are 
permuted) 
write.table(perm_node_list,paste(output_folder,"permuted_pvals_network_nodes.txt",sep=
"/"),row.names=F,quote=F,col.names=F)
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Results of multiple permutations are then assembled and Bayesian model is 

used to estimate posterior significance for genetic association signal: 

#!/bin/env Rscript 
 
rm(list = ls(all = TRUE)) 
 
 
 
library(BioNet) 
library(igraph) 
args=commandArgs(trailingOnly=TRUE) 
input_file<-args[1] 
GeneScoringMethod<-args[2] 
prefix<-args[3] 
reference_folder<-args[4] 
 
 
substrRight<-function(x,n){ 
 substr(x, nchar(x)-n+1, nchar(x)) 
} 
 
 
#Load references 
network <- loadNetwork.tab(paste(reference_folder,"inweb_im_ppi.txt",sep=""), 
header=FALSE,format="graphNEL", directed=FALSE) 
network2 <- rmSelfLoops(network) 
connectivity<-
read.table(paste(reference_folder,"inweb_im_gns_connections.txt",sep=""), 
header=T,sep="\t") 
 
#prepare inweb network 
connectivity<-connectivity[!duplicated(connectivity[,1]),] 
nodes_inWeb<-as.character(unlist(nodes(network2))) 
nodes_inWeb<-cbind(nodes_inWeb,nodes_inWeb) 
colnames(nodes_inWeb)<-c("nodes_inWeb","V2") 
 
connectivity_inWeb<-merge(nodes_inWeb,connectivity,by.x="nodes_inWeb",by.y="gns") 
connectivity_inWeb<-connectivity_inWeb[,-2] 
connectivity_rank<-rank(connectivity_inWeb[,2]) 
connectivity_inWeb<-cbind(connectivity_inWeb,connectivity_rank) 
connectivity_inWeb<-
connectivity_inWeb[match(nodes_inWeb[,1],connectivity_inWeb$nodes_inWeb),] 
connectivity_inWeb<-cbind(connectivity_inWeb,connectivity_inWeb[,1]) 
colnames(connectivity_inWeb)[[1]]<-"Permuted_Nodes" 
colnames(connectivity_inWeb)[[4]]<-"nodes_inWeb" 
 
 
#Dataset preparation 
tt<-read.table(input_file) 
colnames(tt)<-c("InWebID","pvals") 
tt<-merge(tt,connectivity,by.x="InWebID",by.y="gns") 
tt<-tt[!duplicated(tt),] 
connectivity_rank<-rank(-as.numeric(as.character(unlist(tt$connections)))) 
tt<-cbind(tt,connectivity_rank) 
 
#####define funcitons 
#Gene scoring function: 
scoreGenes<-function(x,method,FDR,GWSthreshold){ 
if (method=="B"){ 
 if(missing(GWSthreshold)){ 
  GWSthreshold<-0.05/length(nodes(network2)) 
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 } 
 maxSign<-max(x[which(x<GWSthreshold)],na.rm=T) 
 x[which(x<GWSthreshold)]<-maxSign 
 if(length(x)<length(nodes(network2))){ 
  tmpPvals<-c(x,runif(length(nodes(network2))-length(x))) 
 }  
 fb<-fitBumModel(tmpPvals,plot=FALSE) 
 scoreEstimate<-function(y){ 
  return((fb$a-1)*(log(y,base=10)-log(GWSthreshold,base=10))) 
 } 
 scores<-mapply(scoreEstimate,y=x) 
  
 return(scores) 
} 
if (method=="FDR"){ 
 if (missing(FDR)){ 
  FDR<-0.05 
 } 
 fb<-fitBumModel(x,plot=FALSE) 
 subnet<-subNetwork(names(x),network2) 
 scores <- scoreNodes(subnet, fb, fdr = FDR) 
 return(scores) 
} 
  
} 
 
pvals<-tt$pvals 
names(pvals)<-tt$InWebID 
scores<-scoreGenes(pvals,GeneScoringMethod) 
 
subnet<-subNetwork(names(pvals),network2) 
subnet2 <- rmSelfLoops(subnet) 
 
module <- runFastHeinz(subnet2, scores) 
 
node_list<-nodes(module) 
target_score<-sum(scores[which(is.element(names(scores),node_list)==TRUE)]) 
target_score<-
c(target_score,length(which(is.element(nodes(module),subset(tt,pvals<0.05/length(nodes
(network2)))[,1])==TRUE)),length(nodes(module)),length(unlist(edgeL(module)))/2,(lengt
h(unlist(edgeL(module)))/2)/length(nodes(module))) 
names(target_score)<-
c("Score","Number_of_gws_nodes","Number_of_Nodes","Number_of_Edges","Number_of_edges_p
er_node") 
assembly_scores<-read.table("permuted_networks_scores.txt",header=T,sep="\t") 
assembly_nodes<-read.table("permuted_networks_nodes.txt",header=F) 
assembly_nodes<-as.character(unlist(assembly_nodes)) 
 
perm_node_list<-read.table("permuted_pvals_nodes.txt",header=F) 
perm_node_list<-as.character(unlist(perm_node_list)) 
 
output<-subset(tt,is.element(InWebID,node_list)==TRUE) 
refined_pvals<-NULL 
 
for(i in 1:length(output[,1])){ 
 worseGenes<-as.character(unlist(subset(tt,pvals<=output[i,2],select=InWebID))) 
 rankSet<-
as.character(unlist(subset(tt,connectivity_rank==output[i,4],select=InWebID))) 
 rankSet<-perm_node_list[which(is.element(perm_node_list,rankSet)==TRUE)] 
 refined_pvals<-
c(refined_pvals,length(which(is.element(worseGenes,node_list)==TRUE))*output[i,2]/leng
th(which(is.element(perm_node_list,rankSet)==TRUE))) 
} 
output<-cbind(output,refined_pvals) 
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write.table(output,paste(prefix,"posterior_pvals.txt",sep="_"),row.names=F,sep="\t",qu
ote=F) 
Pval_Score<-
length(which(assembly_scores[,1]>=target_score[1]))/length(assembly_scores[,1]) 
Pval_Connectivity<-
length(which(assembly_scores[,5]>=target_score[5]))/length(assembly_scores[,1]) 
target_score<-c(target_score,Pval_Score,Pval_Connectivity) 
names(target_score)[c(6,7)]<-c("Pval_Score","Pval_Connectivity") 
write.table(target_score,paste(prefix,"network_analysis.txt",sep="_"),col.names=F,sep=
"\t",quote=F) 
system("rm permuted_networks_scores.txt permuted_pvals_nodes.txt 
permuted_networks_nodes.txt") 
module<-subNetwork(as.character(unlist(output[,1])),network2) 
gws<-0.05/length(nodes(network2)) 
fchange<-NULL 
for (i in 1:length(output[,1])){ 
 idx<-which(output[,1]==nodes(module)[1]) 
 if (output[idx,2]>gws & output[idx,5]<=gws){ 
  fchange<-c(fchange,0) 
 } 
 if (output[idx,2]<gws){ 
  fchange<-c(fchange,10) 
 } 
 if (output[idx,5]>gws){ 
  fchange<-c(fchange,-10) 
 } 
} 
names(fchange)<-nodes(module) 
pdf(paste(prefix,"network.pdf",sep="_")) 
plotModule(module,diff.expr=fchange) 
legend("topleft",c("Significant","Posteriory\nSignificant","Not 
Significant"),fill=c("red","white","blue"),bty="n",pt.cex=1,cex=0.8) 
dev.off() 


