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Abstract

Humans interact with each other both online and in-person, forming and dissolving

social ties throughout our lives. The flexible architecture of networks or graphs make them

a useful paradigm for modeling these complex relationships at the individual, group, and

population levels. Social networks have been shown to have a direct impact on public health

from leveraging network properties to target highly connected individuals in public health

interventions to finding that households that refuse to have their children vaccinated against

polio have a disproportionate number of social ties to other vaccine-reluctant and vaccine-

refusing households. Social network data has traditionally been collected from surveys,

mostly capturing small, static network snapshots at one point in time. Dozens of different

metrics have been created to quantify and study the structure of these simple networks.

However, with the recent availability of increasingly rich, complex network data, limitations

of these metrics have become increasingly clear. In the first chapter of this dissertation, we

extend definitions of edge overlap, the proportion of friends two connected individuals share,

to weighted and directed networks, and we present closed-form expressions for the mean

and variance of each version for the classic Erdős-Rényi random graph and its weighted

and directed counterparts. We apply these results to social network data collected in rural

villages in India, and we use our analytical results to quantify the extent to which the average

edge overlap in the empirical social networks deviates from that of corresponding random

graphs. Finally, we carry out comparisons across attribute categories including sex, caste,

and age, finding that women tend to form more tightly clustered friendship circles than men,
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where the extent of overlap depends on the nature of social interaction in question.

In social networks the notion of tie strength, and the factors that influence it, have

received much attention in a myriad of disciplines for decades. With the internet and cellular

phones providing additional avenues of communication, measuring and inferring tie strength

has become much more complex. Measuring and predicting tie strength, and moreover,

understanding the factors that drive tie strength, has been an expanding area of interest,

with increasing utility and complexity in the digital age, i.e., the ever-increasing forms of

communication via mobile phones and social media. Knowledge of the strength of a tie,

as well as the social dynamics contributing to tie strength, has been shown to increase the

accuracy of link prediction, enhance the modeling of the spread of disease and information,

and lead to more targeted marketing. Numerous models incorporating indicators of tie

strength have been proposed and used to quantify relationships in both online and offline

social networks, and a standard set of structural network metrics have been applied to

predominantly online social media sites to predict tie strength. The second chapter of this

dissertation details tie strength prediction methodology. We introduce the concept of the

“social bow tie” framework, which for any given network tie is a small subgraph of the

network that consists of a collection of nodes and ties that surround the tie of interest,

forming a topological structure that resembles a bow tie. We also define several intuitive and

interpretable metrics that quantify properties of the bow tie which enable us to investigate

associations between the strength of the “central” dyadic tie and properties of the bow tie.

We combine the bow tie framework with machine learning to investigate what aspects of the

bow tie are most predictive of tie strength in two very different types of social networks, a

collection of medium-sized social networks from 75 rural villages in India and a nationwide

call network of European mobile phone users. For two connected individuals, we find that

the more their friendship circles overlap, the stronger the tie between them. Conversely, the

more close-knit each individual’s separate friendship network, the weaker the tie between

them. Our findings also demonstrate that incorporating properties of the bow tie results in

more accurate predictions of tie strength and a more nuanced understanding of the factors
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that are associated with it.

Missing data and non-response are common occurrences in, and great hindrances to,

the analysis of social network data. While any kind of statistical analysis can be negatively

affected by missingness, the effects can be even more detrimental in network data analysis

due to the high sensitivity of missing data on network topology and the complexity of

network surveys and data collection. Many imputation methods have been introduced in

the classical statistics literature as a way to maintain power and sample size in the presence of

missing data. However, the extension of these methods to the networks framework has been

scarcely studied. The third chapter of this dissertation addresses the issue of missing data in

statistical analyses of network data. We use Super Learner to impute both edge and nodal

attributes of a nationwide call network of European mobile phone users with varying amounts

of missingness. We impute the age, age category, and sex of individuals, and the total call

duration and text message communication between two individuals over a three-month time

period. We find that Super Learner performs better or as well as any individual learning

algorithm alone for the imputation of each attribute, and that the amount of missingness does

not significantly affect performance. Additionally, we find that the accuracy of age category

imputation is sensitive to the choice of categorical thresholding. A thresholding scheme that

results in approximately equal proportions of individuals in each category ensures a gain

in age-stratified accuracy over the null accuracy of random assignment, but a lower overall

accuracy when compared to thresholding resulting in imbalanced categories.
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1.2.2 Erdős-Rényi Random Graph Models . . . . . . . . . . . . . . . . . . 7
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1

Generalizations of Edge Overlap to Weighted and Di-

rected Networks

Abstract

With the increasing availability of behavioral data from diverse digital sources, such as

social media sites and cell phones, it is now possible to obtain detailed information on the

strength and directionality of social interactions in various settings. While most metrics

used to characterize network structure have traditionally been defined for unweighted and

undirected networks only, the richness of current network data calls for extending these

metrics to weighted and directed networks. One fundamental metric, especially in social

networks, is edge overlap, the proportion of friends shared by two connected individuals.

Here we extend definitions of edge overlap to weighted and directed networks, and we present

closed-form expressions for the mean and variance of each version for the classic Erdős-Rényi

random graph and its weighted and directed counterparts. We apply these results to social

network data collected in rural villages, and we use our analytical results to quantify the

extent to which the average edge overlap in the empirical social networks deviates from

that of corresponding random graphs. Finally, we carry out comparisons across attribute

categories including sex, caste, and age, finding that women tend to form more tightly

clustered friendship circles than men, where the extent of overlap depends on the nature of

social interaction in question.
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Term Notation Description

adjacency matrix A

A square matrix whose elements Aij have a
value different from 0 if there is an edge
from some node i to some node j. Aij = 1 if
the link is a simple connection (unweighted
graph). Aij = wij when the link is assigned
some kind of weight (weighted graphs). If
the graph is undirected (links connect nodes
symmetrically), A is symmetric.

degree ki
The number of nodes a node i is connected
to

in-degree kin
i

In a directed network, the number of
incoming edges to a node i

out-degree kout
i

In a directed network, the number of
outgoing edges emanating from a
node i

weight wij
In a weighted network, weight assigned to
an edge from some node i to
some node j

strength si =
∑ki
j=1 wij

The sum of weights attached to ties
belonging to some node i

Erdős-Rényi G(n, p)
A random graph of n nodes and edges
generated by connecting a pair of nodes
with some

random graph model
probability p independently of all other
edges

Call Detail Records CDRs

Digital records of the attributes of a certain
instance of a telecommunication transaction
(such as the start time or duration of a
call), but not the content.

Table 1.1: Networks Terminology and Notation
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1.1 Introduction

Humans interact with each other both online and in-person, forming and dissolving social

ties throughout our lives. The flexible architecture of networks or graphs make them a useful

paradigm for modeling these complex relationships at the individual, group, and population

levels. Social network nodes typically represent individuals, and edges the connections be-

tween individuals, such as friendships, sexual contacts, or cell phone calls. Social networks

have been shown to have a direct impact on public health Christakis and Fowler (2007,

2008); Fowler and Christakis (2008a,b); Goodreau et al. (2009). For example, a recent study

examined the social networks of households in Malegaon, India, finding that households that

refuse to have their children vaccinated against polio have a disproportionate number of

social ties to other vaccine-reluctant and vaccine-refusing households Onnela et al. (2016).

Several studies have now successfully modeled the spread of epidemics through various popu-

lations, finding that different network structures have an effect on the potential efficacy of an

intervention Banerjee et al. (2013); Valente (2005); VanderWeele (2011). Studies have also

leveraged network properties to target highly connected individuals in public health inter-

ventions Kim et al. (2015). The structure of connections in contact networks have also been

shown to affect statistical power in cluster randomized trials Banerjee et al. (2013); Staples

et al. (2015). Additionally, new classes of connectivity-informed study designs for cluster

randomized trials have been proposed recently, and these designs appear to simultaneously

improve public health impact and detect intervention effects Banerjee et al. (2013); Harling

and Onnela (2016); Kim et al. (2016).

There is also accumulating evidence that the habits of our friends influence our own

behavior, such as the uptake of smoking or lifestyle choices that can lead to obesity Chris-

takis and Fowler (2007, 2008); Fowler and Christakis (2008a,b). Moreover, electronic billing

records have been used to study patient-physician interaction networks to learn about struc-

tural properties of these networks and how these properties are associated with the quality

and cost of health care Kim et al. (2016); Landon et al. (2012); Sima et al. (2010).
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Network structure can be studied at different scales ranging from local to global. Micro-

scopic (local) structures include one or a few nodes, macroscopic (global) structures involve

most to all nodes, and mesoscopic structures lie between the microscopic and macroscopic

scales. It has been shown that the different structures are not independent Fortunato (2010).

Specifically, several microscopic mechanisms are known to give rise to microsopic, mesoscopic,

and macroscopic structure Bianconi et al. (2014); Fortunato (2010); Kumpula et al. (2007).

For example, triadic closure, the process of getting to know a friend of a friend, can generate

network communities Fortunato (2010); Kumpula et al. (2007); Porter et al. (2009). The

term community here refers to a group of nodes that are densely connected to one another

but only sparsely connected to the rest of the network. Community structure is of particular

interest because most social networks have meaningful community structure that is related

to their function. Communities also arise from humans forming tightly-knit groups through

shared interests and similar characteristics, and they play an important role in the spread

of disease and information Christakis and Fowler (2007, 2008); Fortunato (2010).

Social network data has traditionally been collected from surveys, mostly capturing

small, static network snapshots at one point in time Wasserman and Faust (1994). Dozens

of different metrics have been created to quantify and study the structure of these sim-

ple networks. However, with the recent availability of increasingly rich, complex network

data, limitations of these metrics have become increasingly clear. For example, betweenness

centrality, the number or proportion of all pairwise shortest paths in a network that pass

through a specified node, is used quite broadly but becomes much more computationally

demanding as the size of the network increases and, even more importantly, it is unclear how

meaningful this metric is in very large social networks. Another example of a widely used

metric is the clustering coefficient, which is defined as the fraction of paths of length two in

the network that are closed, i.e., groups of three nodes where “the friend of my friend is also

my friend” Watts and Strogatz (1998).

The clustering coefficient has subsequently been extend to weighted and directed net-

works Saramaki et al. (2007); Tore (2013). For the classic Erdős-Rényi random graph, the
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local clustering coefficient (the average clustering coefficient taken across all nodes in the

network) asymptotically tends to p where p is the probability of forming a tie between any

two nodes in the network Reinert (2012). Most social networks are more clustered than

corresponding random networks Newman (2003, 2010). This observation is expected since

people are more likely to become friends with others whom they meet through their current

friends. While an expression has been derived for the mean of the local clustering coefficient,

an expression for the variance has not been presented. Thus, classification of a given value

for clustering as either high or low, and whether that value is statistically significant, is not

currently possible and its value cannot be compared across networks.

The rest of this chapter is organized as follows. In Section 1.2, we introduce the micro-

scopic metric known as edge overlap and define extensions of edge overlap for weighted and

directed networks. We then present two closed-form expressions for the mean and variance of

each version of edge overlap for the Erdős-Rényi random graph and its weighted and directed

counterparts. We then demonstrate the accuracy of our mean and variance approximations

through simulation. Finally, we apply our results to empirical social network data and quan-

tify the difference in the observed average overlap to the value expected for a corresponding

random graph. We present the results of our data analysis in Section 1.3 and discuss our

conclusions in Section 1.4. Derivations and additional figures are presented in sections 1.5,

1.6, 1.7 and 1.8.

1.2 Methods

1.2.1 Overlap Extensions

A central microscopic metric, which captures the effect of triadic closure and is related to

the clustering coefficient, is edge overlap, the proportion of common friends two connected

individuals share. In mathematical terms, the overlap between two connected individuals i

and j is defined as

oij =
nij

(ki − 1) + (kj − 1)− nij
(1.1)
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where nij is the number of common neighbors of nodes i and j, and ki (kj) denotes the

degree, or number of connections, node i (j) has. Note that the tie between nodes i and j

is not included in the calculation; overlap for the edge (i, j) is defined only where Aij = 1

and k1 + kj > 2. Currently, edge overlap is only defined for simple networks in which edges

are both unweighted and undirected Onnela et al. (2007). Moreover, expressions for the

mean and variance of edge overlap do not yet exist, making it hard to carry out statistical

comparisons of this metric across networks, in particular networks of different sizes.

In a weighted network, each edge has a weight assigned to it. We define weighted overlap

in Eq. (1.2) as the proportion of total weight associated with ties to common friends nodes

i and j share, and denote it oWij :

oWij =

∑nij

k=1(wik + wjk)

si + sj − 2wij
. (1.2)

Here, nij is the number of common neighbors of nodes i and j, wij denotes the weight

associated with the tie between nodes i and j, and si (sj) denotes the strength of node i

(j). According to the definition, the common friends of two connected individuals are first

identified, the weights associated with these edges are summed together, and this sum is then

divided by the combined strengths of the two nodes excluding the tie that connects them.

The last step is intended to ensure consistency with the original version of edge overlap, i.e.,

the weight of the tie between the two individuals being considered is not included in the

calculation of oWij . Also, the metric is only defined for wij > 0 and for si + sj > 2wij.

In a directed network, each edge has a direction associated with it. Thus, ties between

nodes can be reciprocated, meaning that there can be an edge pointing from node i to j

and another edge pointing from j to i. For directed networks, the concept of a ‘common

friend’ of two individuals is ambiguous due to the directionality associated with the ties. We

define a common friend as a node that creates a directed path of length two between the two

nodes either from i to j, j to i, or both. Defining a common friend in this manner allows

information to flow between i and j via a neighbor of both i and j. To illustrate this, let

i and j be the two connected individuals of interest, and k a potential common friend. If

there is a directed edge from i to k and a directed edge from k to j, then there is a path a
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length two from i to j through k, and k is considered a common friend. Using this criterion,

we define directed overlap in Eq. (1.3) as the proportion of paths of length two between two

connected individuals, and denote it oDij :

oDij =

∑n
k=1(AikAkj + AjkAki)

min(kin
i , k

out
j ) + min(kin

j , k
out
i )− 1

. (1.3)

Here, Aij is the (i, j) element of the directed adjacency matrix, kin
i (kin

j ) denotes the in-degree

of node i (j), kout
i (kout

j ) denotes the out-degree of node i (j), and min(·, ·) the minimum of

the two arguments. We consider each edge separately, even in the case of unreciprocated

edges, and again, the tie between nodes i and j is not included in the calculation. The metric

is only defined if min(kin
i , k

out
j ) + min(kin

j , k
out
i ) > 1.
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Figure 1.1: Schematics of edge overlap for (a) an unweighted network, (b) weighted network,
and (c) directed network. Nodes are labeled with letters and weights are labeled with
numbers.

1.2.2 Erdős-Rényi Random Graph Models

With the extensions of edge overlap defined above, one can easily compute the mean overlap

(simple or weighted or directed) across all edges in the network. However, in order to make

meaningful comparisons, such as to learn whether the observed value is small or large for the

given network, or whether it represents a statistically significant deviation from what might

be expected to occur at random, one needs to consider suitable null models and derive both

the expected value and the variance of overlap under these null models. The Erdős-Rényi

random graph model, often denoted G(n, p), is the simplest model for generating random

graphs Erdős and Rényi (1959). In this model, graphs are created by considering
Ä
n
2

ä
distinct
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pairs of n nodes and connecting each pair with probability p independently of all other dyads

(node pairs). The random process can therefore be thought of as a series of Bernoulli trials

or coin flips. Suppose we have a coin that lands on heads with probability p. If the coin flip

results in heads, the two nodes are connected, otherwise, they are not. Note that here the

number of edges is not fixed, but rather the probability of creating an edge.

The weighted random graph (WRG) is the weighted counterpart of the canonical Erdős-

Rényi random graph Garlaschelli (2009). In this case, a network of n nodes is generated

by selecting each pair of nodes and carrying out a series of independent Bernoulli trials

for each pair with success probability p. This process is continued until the first failure is

encountered, and every success preceding the failure adds a unit weight to the tie. Note

that if the first Bernoulli trial is a failure, the two nodes will not be connected. We can

again relate this to the tossing of a coin. If the coin lands on heads with probability p, the

weight associated with an edge is given by the number of heads flipped until the first tails

appears, and therefore tie weights are distributed according to the geometric distribution.

This process is repeated for every distinct pair of nodes in the network.

The directed random graph is the directed version of the Erdős-Rényi random graph,

and it is generated in a very similar manner as its canonical counterpart. For two nodes i

and j, in a network of n nodes, an edge pointing from i to j is created with probability p

and, likewise, an edge pointing from j to i is also connected independently with probability

p Bollobás (1985); Erdős and Rényi (1959, 1960). In this case, in the coin analog of the

model, we flip a coin twice for each pair of nodes, one flip for each direction. This process is

repeated for every pair of nodes in the network.

1.2.3 Erdős-Rényi Overlap

In order to perform inference about overlap, i.e., to compare point estimates of overlap

across networks, we need to know the mean and variance of each version of overlap under

the null model in question. To fix our notation, we will let uppercase letters stand for random

variables: Ki denotes the degree of node i, Nij the number of common neighbors of nodes i
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and j, Si the strength of node i, Wij the weight of the edge connecting nodes i and j, Kin
i

the in-degree of node i, Kout
i the out-degree of node i, and Aij the adjacency matrix element,

where a nonzero (positive) value represents the existence of an edge between nodes i and j

(binary in the case of unweighted graphs).

For the Erdős-Rényi random graph, a given node is connected to each of the remaining

n − 1 nodes with probability p, and its resulting degree can thus be viewed as a sum of

independent Bernoulli trials. Therefore, as is well known, Ki ∼ binomial(n − 1, p), which

can be approximated by a Poisson(np) distribution for large n. For any pair of (connected)

nodes, the probability of both nodes being connected to the same neighboring node, meaning

that they have a common neighbor, is p2 as each edge occurs independently of any others.

Moreover, the total number of possible common friends two nodes can have is n− 2. Thus,

Nij ∼ binomial(n − 2, p2), which can similarly be approximated by a Poisson(np2) random

variable for large n. With these definitions, the numerator of edge overlap is a Poisson

random variable, and the denominator is the difference of two Poisson random variables,

known as a Skellam random variable Skellam (1946). In this case, the denominator is a

Skellam(2np− 2− np2) random variable. We can now view overlap as a random variable as

in Eqn. (1.4).

Oij =
Nij

(Ki − 1) + (Kj − 1)−Nij

(1.4)

Edge overlap is a ratio of two dependent random variables since the maximum number

of possible common friends is bounded by the min(Ki, Kj). This dependency increases the

difficulty of deriving exact expressions for the mean and variance of overlap. However, despite

this dependence, we can approximate both the mean and variance in two different ways.

The first approach observes the weakness of the dependence between the numerator and

denominator and simply ignores it, defining the ratio as a function of independent random

variables. Approximations for the mean and variance of the ratio are then derived using

Taylor expansions of the function about the means of the random variables Elandt-Johnson

and Johnson (1998); Stuart and Ord (1998). This results in Eqs. (1.5) and (1.6) (for details,
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see section 1.5.1).

E[Oij] =
p

2− p
(1.5)

Var(Oij) =
np2

(2np− 2− np2)2
+
n2p4(2np− 2 + np2)

(2np− 2− np2)4
. (1.6)

Our second approach incorporates results from Lin (2007), where the local clustering

coefficient for an Erdős-Rényi random graph is also written as a ratio of dependent random

variables with the intention of deriving its distribution. The dependency is eliminated by

replacing the random variable in the denominator with its expectation, and this approx-

imation turns the denominator into a constant. Thus, the distribution of the clustering

coefficient is approximated by a scaled version of the random variable in the numerator. It is

subsequently shown that this is a good approximation for the actual distribution. We adopt

the same approach here, and approximate the distribution of edge overlap by replacing the

denominator with its expectation. We then derive the mean and variance of Oij using the

distributional properties of the numerator. This results in the expressions in Eqs. (1.7) and

(1.8) (for details, see section 1.6.1):

E[Oij] =
p

2− p
(1.7)

Var(Oij) =
np2

(2np− 2− np2)2
. (1.8)

Note that the expressions for the mean, Eqs. (1.5) and (1.7), are equivalent, but the ex-

pressions for the variance, Eqs. (1.6) and (1.8) differ, with the expression for Eq. (1.8)

corresponding to the first term of Eq. (1.6).

We use the same two approaches for the weighted and directed cases. For the weighted

Erdős-Rényi random graph (WRG), we first define the distributions of Wij and Si. Given how

WRGs are constructed (as given above), the tie weights follow a geometric distribution, such

that if an edge is placed between a pair of nodes with probability p, tie weight distribution
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will be Wij ∼ geometric(1− p). It then follows that node strength Si is a sum of geometric

random variables, i.e., is the sum of the weights of the ties that are adjacent to the given

node, leading to Si ∼ negative binomial(n− 1, 1− p) Garlaschelli (2009).

For the first approach, the numerator can be written as
∑Nij

k=0(Wik + Wjk), where Nij

is again the number of common neighbors of nodes i and j, and is distributed as in the

unweighted Erdős-Rényi random graph. Thus, the numerator is a sum of geometric random

variables, where the number of summed variables is itself a random variable. Moreover, we

must have Wik > 0 and Wjk > 0 since a common neighbor of two nodes can only exist

if both nodes are attached to the node in question (the common neighbor). To address

this constraint, each of the random variables must first be transformed into zero-truncated

geometric random variables, and their mean and variance altered correspondingly. We can

now write weighted overlap as a random variable as in Eqn. (1.9).

OW
ij =

∑Nij

k=1(Wik +Wjk)

Si + Sj − 2Wij

. (1.9)

Now hierarchical models can be used to find the mean and variance of the numerator,

and these results combined with the mean and variance values of the denominator can be

used to derive the expressions in Eqs. (1.10) and (1.11) (see section 1.5.2 for details):

E[OW
ij ] = p (1.10)

Var(OW
ij ) =

p+ 1

n
. (1.11)

The second approach again replaces the denominator with its expectation. The mean

and variance derivations are then straightforward and result in the expressions in Eqs. (1.12)

and (1.13). Again, the expressions for the mean are equivalent for both approaches, and the

variance expressions are quite similar (See section 1.6.2 for details):
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E[OW
ij ] = p (1.12)

Var(OW
ij ) =

np2(p+ 2)

2(np− 1)2
. (1.13)

The derivations for the directed Erdős-Rényi random graph are more complicated and do

not have a closed form due to the minimum expressions in the denominator. Focusing on the

numerator, each of the AikAkj and AjkAki terms is equal to one if and only if both adjacency

matrix values are equal to 1, which happens with probability p2 since each edge is indepen-

dent. Thus, each of the terms is a Bernoulli(p2) random variable, and the numerator consists

of a sum of 2n independent Bernoulli random variables, meaning it is a binomial(2n, p2) ran-

dom variable, which we will again approximate with a Poisson(2np2) random variable. The

denominator includes the minimum of two identically distributed random variables Kin
i and

Kout
i . Due to the definition given in Section 3.1, the in and out degrees of nodes i and j

cannot equal 0, making them zero-truncated binomial(n− 1, p) random variables, which will

also be approximated as zero-truncated Poisson(np) random variables since n is assumed to

be large. We can now write directed overlap as a random variable as in Eqn. (1.14).

OD
ij =

∑n
k=1(AikAkj + AjkAki)

min(K in
i , K

out
j ) + min(K in

j , K
out
i )− 1

. (1.14)

The mean and variance of the denominator can now be calculated and used to derive the

expressions in Eqs. (1.15) and (1.16) Stuart and Ord (1998) (for details, see section 1.5.3):

12



E[OD
ij ] =

np2

e−2np
∑(n−1)
k=1

[∑(n−1)
j=k

(np)j

j!

]2
− 0.5

(1.15)

Var(OD
ij ) =

2n2p4

(2e−2np
∑(n−1)
k=1

[∑(n−1)
j=k

(np)j

j!

]2
− 1)2

(1.16)

+
32n3p5enp

enp−1

î
1− np

enp−1

ó
(2e−2np

∑(n−1)
k=1

[∑(n−1)
j=k

(np)j

j!

]2
− 1)2

.

The second approach again replaces the denominator with its expectation, and the mean

and variance derivations result in the expressions in Eqs. (1.17) and (1.18) (see section 1.6.3

for details). Again, the expressions for the mean are equivalent for both approaches, but note

that the expression for the variance using the second approach in Eq. (1.18) is equivalent to

the first term of the variance resulting from the first approach in Eq. (1.16).

E[OD
ij ] =

np2

e−2np
∑(n−1)
k=1

[∑(n−1)
j=k

(np)j

j!

]2
− 0.5

(1.17)

Var(OD
ij ) =

2n2p4

(2e−2np
∑(n−1)
k=1

[∑(n−1)
j=k

(np)j

j!

]2
− 1)2

(1.18)

1.2.4 Simulation Studies

We conducted simulation studies to evaluate the accuracy of the proposed mean and variance

expressions for each version of Erdős-Rényi edge overlap. We simulated 5,000 realizations

of networks with n = 1, 000 nodes for various values of p ∈ (0, 1). The mean and variance

of edge overlap was calculated for each network realization, and those values subsequently

averaged over all simulations. We considered values of p > 1/n, such that the resulting

average degree np > 1, which ensures (asymptotically) that the graphs have non-vanishing

largest connected components.
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Figure 1.2 displays the simulation results and accuracy of our approximations. The

top row contains the results for the mean unweighted overlap (Figure 1.2a), mean weighted

overlap (Figure 1.2b) and mean directed overlap (Figure 1.2c). In each plot, the red dots

represent the simulated results, black lines represent the theoretical values using the first

approach and blue lines the second approach. Note that each expression for average overlap

is equivalent for the two approaches, making only the black lines visible. The bottom row

of panels shows the results for the variance of unweighted overlap (Figure 1.2d), weighted

overlap (Figure 1.2e) and directed overlap (Figure 1.2f). In each plot, black lines represent

the theoretical values using the first approach, blue lines the second approach, and the red

dots the simulated values.

For each version of overlap, our theoretical approximations of the mean closely match

the simulations, with the unweighted case being the best fit for all values of np. The approx-

imations of the variance overall are not as accurate, where the accuracy of the fit depends on

the value of np. In the unweighted case (Figure 1.2d), both theoretical approaches match the

simulated values for average degree np ≥ 10 until about np = 100. The first approximation

then deviates from the simulated values, followed by the second approach deviating from

them when np ≈ 300. In the weighted case (Figure 1.2e) the first approximation is more

accurate than the second for average degree less than or equal to about 30. The approaches

are then equally precise until the average degree is approximately 170; after this point, the

second approximation is closer to the simulated values. In the directed case (Figure 1.2f) the

two approximations are equivalent and closely match the simulated values until the average

degree reaches about 10. After that point, approach two is more accurate. Furthermore, in

all cases, both approximations systematically overestimate variability. We stress that this

overestimation leads to inflated standard errors and thus to conservative hypothesis tests,

which is preferable over the opposite situation, i.e., having deflated standard errors and

anti-conservative tests.
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Figure 1.2: Simulation results for the mean (top row) and variance (bottom row) of each
type of Erdős-Rényi overlap. The first column corresponds to the unweighted Erdős-Rényi
overlap, the second column to the weighted Erdős-Rényi overlap and the third to the directed
Erdős-Rényi overlap case. The top row plots (a), (b) and (c) plot the average overlap on
the y-axis and average degree (np) on the x-axis. The red dots represent values from the
simulations, and the black line represents the theoretical outcome using approach 1 and the
blue line represents the theoretical outcome using approach 2. Note that the blue lines are
completly covered by the black lines since the values for average overlap are the same for
both approaches. The bottom row plots (d), (e) and (f) plot the variance of edge overlap on
the y-axis and average degree (np) on the x-axis. In each plot, the red dots represent values
from the simulations, the black line represents the theoretical outcome using approach 1 and
the blue line represents the theoretical outcome using approach 2.

15



1.2.5 Data Analysis

As an application of our derivations to analysis of empirical social networks, we used so-

cial network data collected in 2006 from 75 villages housed in 5 districts in rural southern

Karnataka, India, all within 3 hours driving distance from Bangalore (Figure 1.3) Banerjee

et al. (2013). The data were collected as part of a study that examined how participation

in a microfinance program diffuses through social networks. First, a baseline survey was

conducted in all 75 villages. The survey consisted of a village questionnaire, a full census

that collected data on all households in the villages, and a detailed follow-up survey fielded

to a subsample of individuals. The village questionnaire collected data on village leadership,

the presence of pre-existing non-governmental organizations (NGOs) and savings self-help

groups and various geographical features of the area. The household census gathered demo-

graphic information, GPS coordinates of each household and data on a variety of amenities

for every household in each village (roof type, latrine type, and access to electric power).

The individual surveys were administered to a random sample of villagers in each village and

were stratified by religion and geographic sub-location. Over half of the households in each

stratification were sampled, yielding a sample of about 46% of all households per village.

The individual questionnaire asked for information including age, sub-caste, education, lan-

guage, native home, and occupation of the person. Additionally, the survey included social

network data along 12 dimensions: friends or relatives who visit the respondent’s home,

friends or relatives the respondent visits, any kin in the village, nonrelatives with whom

the respondent socializes, those who the respondent receives medical advice from, who the

respondent goes to pray with, from whom the respondent would borrow money, to whom

the respondent would lend money, from whom the respondent would borrow or to whom the

respondent would lend material goods, from whom the respondent gets advice, and to whom

the respondent gives advice.

The median pairwise distance between villages was 46km and the number of cross-

village ties was minimal, allowing the villages to be regarded as independent networks. The

villages were linguistically homogeneous but had variability in caste. Each village contained
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Figure 1.3: A map of the districts of Karnataka, India. The five districts colored in green
house all of the villages included in the data set. The districts included are Bangalore,
Bangalore Rural, Kolar, Ramanagara and Chikballapura Hijmans (2009); Mukerjee (2013).

anywhere from 354 to 1775 residents, with a total population of 69,441 people in the 75

villages combined. The number of edges across all social networks totaled 2,361,745 which

included 480 self-loops and 6,402 isolated dyads. The average degree was 6.79 (standard

deviation of 4.03), and the average number of connected components was 17.99 per village.

Among the respondents for whom covariate data was collected via the individual surveys,

55.4% were female and 44.6% were male. The mean age was 39 years with a range of 10 to

99 years. Four different castes were represented: scheduled caste, scheduled tribe, general

caste, and OBC (“other backward castes”), with a majority of respondents members of the
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general and OBC castes (≈ 69.5%) Banerjee et al. (2013).

Label Type of social interaction

1 The respondent borrows money from this individual
2 The respondent gives advice to this individual
3 The respondent helps this individual make a decision
4 The respondent borrows kerosene or rice from this individual
5 The respondent lends kerosene or rice to this individual
6 The respondent lends money to this individual
7 The respondent obtains medical advice from this individual
8 The respondent engages socially with this individual
9 The respondent is related to this individual
10 The respondent goes to temple with this individual
11 The respondent has visited this individual’s home
12 The respondent has been invited to this individual’s home

Table 1.2: The types of social interactions recorded for individuals in each village.

We first calculated the average unweighted overlap for each type of social relationship

(labeled 1-12, see Table 1.2) for each village by treating all ties as undirected and by removing

all self-loops since they do not contribute to edge overlap (Figure 1.7). Then we standardized

each average overlap by subtracting the expected mean and dividing by the standard devi-

ation under the null; the results from the unweighted Erdős-Rényi overlap derivations using

the first approach discussed above (Figure 1.8 in section 1.7). We stratified edges according

to the availability of nodal attributes (since not all villagers completed an individual survey),

sex, caste and age. Here we detail our results from stratifying by sex with Figures 1.4 and

1.5 showing raw and standardized overlap for female-female (F/F), male-male (M/M) and

male-female (M/F) ties. For details and figures of stratification by attribute availability, age

and caste, see section 1.7.

We next collapsed the twelve unweighted networks into one weighted network. Specif-

ically, the weight of a tie between two individuals corresponds to the number of types of

social relationships they are engaged in with each other. For example, if individual i bor-

rows money from, gives advice to and goes to temple with individual j, the weight of the

(undirected) tie between i and j would be equal to 3. Similar to the unweighted networks,
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we stratified the weighted networks by nodal attributes, including the presence or absence of

attribute information, sex, caste and age. Figure 1.6 shows the distributions of raw and stan-

dardized weighted overlap for F/F, M/M and M/F ties. See section 1.7 for figures stratified

by attribute availability, caste and age.

1.3 Results

Here we detail our observations of the figures in the previous section where overlap is stratified

by sex. For explanations about the figures detailing stratification by attribute information,

caste and age, see section 1.8. In Figure 1.4, the median average unweighted overlap is the

largest for F/F ties, followed by M/F ties and then M/M ties. There is a clear separation

in the values of average overlap between F/F and M/M ties with no overlap in values for

interaction types 1, 2, 3, 4, 5, 6, 8, and 11. For more details, see Table ?? in section 1.7. This

suggests that women in these villages tend to form ‘cliques’, tighter friendship circles where

most individuals interact with each other more regularly and intensely than others in the

same setting, much more than men for every type of social interaction. This kind of social

development is quite common among females and has been studied in the social sciences

Hwong et al. (2016a,b). However, this trend could also be due to the significant difference

in the average degree for males and females across the villages (Figure 1.21 in section 1.7).

The degrees of two attached nodes directly effects the value of overlap; it is easier for pairs

of nodes with smaller degrees to have a higher value of overlap due to the smaller number

of neighbors they need to have in common. The values of average overlap

for the M/F ties are closer to the values for F/F ties than M/M ties and their distributions

tend to have smaller variance compared to the other types of ties. This suggests that individ-

uals who have mixed-sex social ties typically have more friends in common than individuals

who are part of a M/M social tie. Interestingly, when the average overlap values are stan-

dardized, which effectively adjusts for differences in average degree, M/F and M/M ties have

much more similar values and are still well below the F/F ties values. The only exceptions

are for interaction types 9 and 10 where the F/F and M/M ties have comparable values. All
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Figure 1.4: Distribution of average unweighted overlap for each village for each type of social interaction stratified by sex. A
female individual is labeled with an ‘F’ and a male individual is labeled with an ‘M’. We stratified the edges by sex, and labeled
an edge between two female individuals as ‘F/F’, an edge between two male individuals as ‘M/M’, and an edge between a
female individual and a male individual as ‘M/F’. The y-axis represents the proportion of average edge overlap and the x-axis
represents the type of social interaction.

values are significantly higher than expected under the null, which is not surprising.

Figure 1.6 shows that when ties are aggregated across interaction types, the values of

average weighted overlap for F/F and M/F ties are very similar. The distribution for F/F

ties has larger values and more variation, but its median is almost equivalent to that of the

M/F ties distribution. It can also be seen that the values for average weighted overlap are

much smaller for M/M ties; in fact there is no overlap in values between the M/M ties and

the F/F and M/F ties. This again points to females having the tendency to create social

‘cliques’ more often than males. This trend is also seen when all values are standardized

(Figure 1.6b). Again, all values are significantly higher than expected for each type of tie,

as we would expect from Figure 1.5 above.

1.4 Conclusions and Discussion

In this paper we introduced extensions of edge overlap for weighted and directed networks.

We also used the classic Erdős-Rényi random graph and its weighted and directed counter-

parts to define a null model and derive approximations for the expected mean and variance of

edge overlap for each type of graph. Edge overlap can be standardized using these approxima-
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Figure 1.5: Distribution of standardized unweighted overlap for each village for each type of social interaction stratified by sex.
A female individual is labeled with an ‘F’ and a male individual is labeled with an ‘M’. We stratified the edges by sex, and
labeled an edge between two female individuals as ‘F/F’, an edge between two male individuals as ‘M/M’, and an edge between
a female individual and a male individual as ‘M/F’. The y-axis represents the standardized value, also known as the Z-score,
and the x-axis represents the type of social interaction.

tions allowing its comparison across networks of different size. We used these approximations

in a data analysis of the social networks of 75 villages in rural India. We found that overall,

the average proportion of overlap was much higher than expected under the null for each

type of social interaction, especially when the social activity was going to temple together.

We also found that there is a marked difference in the amount of overlap between female-

female ties and male-male ties, with female-female ties consistently achieving much higher

values of overlap. This could be a consequence of two types of mechanisms; the average

degrees of males versus females and the tendency of women forming friendship ‘cliques’ with

other women much more frequently than men forming the same types of friendship circles

with other men. We found that in this case, men have a significantly higher degree than

women across all networks. Whichever mechanism is at work here, this structural information

could lead to an alternative method of eliciting social network data to optimize diffusion or

intervention strategies based on the type of tie.

While our work generalizes a central microscopic network metric, making it more broadly

applicable, there are limitations to our work. The Erdős-Rényi random graph model is a

simple and somewhat naive null model in the context of social networks. This model does
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Figure 1.6: Distribution of average weighted overlap (a) and standardized weighted overlap
(b) stratified by sex. A female individual is labeled with an ‘F’ and a male individual is
labeled with an ‘M’. We stratified the edges by sex, and labeled an edge between two female
individuals as ‘F/F’, an edge between two male individuals as ‘M/M’, and an edge between a
female individual and a male individual as ‘M/F’. The y-axis in (a) represents the proportion
of average weighted edge overlap, and the y-axis in (b) represents the standardized value,
also known as the Z-score.

not preserve the degree distribution and is relatively easy to reject. An alternative would

be to derive these expressions for the configuration model, which does preserve the degree

distribution. However, deriving the mean and variance under the configuration model null

model would be considerably more difficult. Another limitation with our mean and vari-

ance approximations is the ignoring of the correlations that are present among the random

variables in the overlap expressions. In each version of overlap, the number of common

neighbors is constrained by the degree of the edge-sharing nodes, making the numerator de-

pendent upon the denominator. While our approximations are quite precise for the majority

of values of mean degree, they could be improved if the correlation were also included in the

approximations.
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1.5 Approach 1 Mean and Variance Derivations

1.5.1 Original Erdős-Rényi Overlap

Edge overlap is considered a random variable with mean and variance (See Eq. (1.19)).

We first define the distributions of the variables used to define overlap (denoted by uppercase

letters) and then proceed to approximate its mean and variance. For each approximation,

we assume n is large.

Oij =
nij

(ki − 1) + (kj − 1)− nij
⇒ Nij

Ki +Kj − 2−Nij

=
Nij

Hij

(1.19)

Suppose we have an Erdős-Rényi random graph with n nodes and connection probability

p. The probability that both i and j are connected to a common neighbor k is equal to p2,

and the total number of possible common neighbors is equal to n−2. Thus, the distribution

of the number of common neighbors, Nij, is a binomial random variable with n − 2 trials

and connection probability p2. For large n, this can be approximated with a Poisson(np2)

distribution. Similarly, the probability that one node is connected to another is p, and each

node has a total of n − 1 other nodes it could connect to. Thus, the degree distribution,

Ki, is also a binomial random variable with n − 1 trials and probability p. This can also

be approximated by a Poisson(np2) for large n. Using the Possion approximations, the

denominator becomes the difference between two Poisson random variables, Hij = (Ki +

Kj − 2) and Nij, which is a Skellam random variable Skellam (1946). Table 1.3 summarizes

these distributions.

Variable Distribution Mean Variance
Nij Poisson(np2) np2 np2

Ki, Kj Poisson(2np− 2) 2np− 2 2np− 2
Hij Skellam(2np− 2− np2) 2np− 2− np2 2np− 2 + np2

Table 1.3: The distribution, mean and variance for each random variable included in Erdős-
Rényi overlap.

Edge overlap is the ratio of two random variables and its mean and variance can be

approximated using a Taylor series expansion Elandt-Johnson and Johnson (1998); Stuart
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and Ord (1998). The general form of a first order Taylor series expansion for a function

g(x) = g(x1, x2, . . . , xk) about θ = (θ1, θ2, . . . , θk) is

g(x) = g(θ) +
k∑
i=1

g′i(θ)(xi − θi) +O(n−1) (1.20)

where g′(x) denotes the derivative of g(x). Here, the function is the ratio of Nij over

Hij. Define g(Nij, Hij) = Nij

Hij
where Hij has no mass at 0. This assumption is assured by the

constraints defined in the Methods section of the paper. Equation (1.21) shows the Taylor

series expansion for g(Nij, Hij) about the mean, θ = (E(Nij),E(Hij)).

g(Nij, Hij) = g(θ) +
2∑
i=1

g′i(θ)(xi − θi) +O(n−1) (1.21)

= g(θ) + g′Nij
(θ)(Nij − θNij

) + g′Hij
(θ)(Hij − θHij

) +O(n−1)

= g(θ) + g′Nij
(θ)(Nij − E(Nij)) + g′Hij

(θ)(Hij − E(Hij)) + O(n−1)

Using the above approximation, the expectation of the ratio, E[g(Nij, Hij)], can be

derived as in Eq. (1.22).

E[g(Nij, Hij)] = E[g(θ) + g′Nij
(θ)(Nij − E(Nij)) (1.22)

+ g′Hij
(θ)(Hij − E(Hij)) + O(n−1)]

= E[g(θ)] + E[g′Nij
(θ)(Nij − E(Nij))] + E[g′Hij

(θ)(Hij − E(Hij))]

= E[g(θ)] + g′Nij
(θ)E[Nij − E(Nij)] + g′Hij

(θ)E[Hij − E(Hij)]

= E[g(θ)] + 0 + 0 ≈ g(E(Nij),E(Hij)) =
E(Nij)

E(Hij)

=
np2

2np− 2− np2
≈ p

2− p
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Using the definition of variance and the result that E[g(Nij, Hij)] ≈ g(θ) from Eq. (1.22),

the variance of g(Nij, Hij) can be first approximated by Eq. (1.23).

Var(g(Nij, Hij)) = E
¶
[g(Nij, Hij)− E(g(Nij, Hij))]

2
©

(1.23)

≈ E
¶
[g(Nij, Hij)− g(θ)]2

©
Using the first order Taylor expansion for g(Nij, Hij) from Eq. (1.21), we have

Var(g(Nij, Hij)) ≈ E{[g(θ) + g′Nij
(θ)(Nij − E(Nij)) (1.24)

+ g′Hij
(θ)(Hij − E(Hij))− g(θ)]2}

= E
¶
[g′Nij

(θ)(Nij − E(Nij)) + g′Hij
(θ)(Hij − E(Hij))]

2
©

= E[g′Nij

2(θ)(Nij − E(Nij))
2 + g′Hij

2(θ)(Hij − E(Hij))
2

+ 2g′Nij
(θ)(Nij − E(Nij))g

′
Hij

(θ)(Hij − E(Hij))]

= g′Nij

2(θ)Var(Nij) + g′Hij

2(θ)Var(Hij)

+ 2g′Nij
(θ)g′Hij

(θ)Cov(Nij, Hij).

In this case, g(Nij, Hij) = Nij

Hij
, g′Nij

= 1
Hij

, g′Hij
= −Nij

H2
ij

, and θ = (E(Nij),E(Hij)),

g′Nij
(θ)g′Hij

(θ) = −E(Nij)

E3(Hij)
, g′Nij

2(θ) = 1
E2(Hij)

, g′Hij

2(θ) = E2(Nij)

E4(Hij)
. Placing these expressions into
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(1.24) we have that

Var(g(Nij, Hij)) ≈
Var(Nij)

E2(Hij)
+

E2(Nij)Var(Hij)

E4(Hij)
− 2

Cov(Nij, Hij)E(Nij)

E3(Hij)
(1.25)

=
E2(Nij)

E2(Hij)

ñ
Var(Nij)

E2(Nij)
+

Var(Hij)

E2(Hij)
− 2

Cov(Nij, Hij)

E(Nij)E(Hij)

ô
=

np2

(2np− 2− np2)2
+
n2p4(2np− 2 + np2)

(2np− 2− np2)4
− 2

np2Cov(Nij, Hij)

(2np− 2− np2)3
.

Note that Cov(Nij, Hij) > 0 since Nij 6⊥⊥ Hij. The value for the covariance could be simu-

lated, but for simplicity we choose to ignore this dependence and include only the first two

terms of (1.25) in the variance approximation.

A second order Taylor series expansion can be used as a more precise approximation of

the mean. The second order Taylor expansion for the overlap ratio is

g(Nij, Hij) = g(θ) + g′Nij
(θ)(Nij − θNij

) + g′Hij
(θ)(Hij − θHij

) (1.26)

+
1

2
g′′NijNij

(θ)(Nij − θNij
)2 +

1

2
g′′HijHij

(θ)(Hij − θHij)2

+ g′′NijHij
(θ)(Nij − θNij)(Hij − θHij) +O(n−1)

= g(θ) + g′Nij
(θ)(Nij − E(Nij)) + g′Hij

(θ)(Hij − E(Hij))

+
1

2
g′′NijNij

(θ)(Nij − E(Nij))
2 +

1

2
g′′HijHij

(θ)(Hij − E(Hij))
2

+ g′′NijHij
(θ)(Nij − E(Nij))(Hij − E(Hij)) + O(n−1).
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Thus, a better approximation of E(g(Nij, Hij)) about θ = (E(Nij),E(Hij)) is

E[g(Hij, Nij)] = E[g(θ) + g′Nij
(θ)(Nij − E(Nij)) + g′Hij

(θ)(Hij − E(Hij)) (1.27)

+
1

2
g′′NijNij

(θ)(Nij − E(Nij))
2 1

2
g′′HijHij

(θ)(Hij − E(Hij))
2

+ g′′NijHij
(θ)(Nij − E(Nij))(Hij − E(Hij)) + O(n−1)]

= E[g(θ) +
1

2

¶
g′′NijNij

(θ)Var(Nij) + g′′HijHij
(θ)Var(Hij)

©
]

+ g′′NijHij
(θ)Cov(Nij, Hij) +O(n−1)].

For g(Nij, Hij) = Nij

Hij
, g′′NijNij

= 0, g′′NijHij
= −1

H2
ij

, g′′HijHij
= 2Nij

H3
ij

. Plugging these expres-

sions into (1.27) results in Eq. (1.28).

E[g(Nij, Hij))] =
E(Nij)

E(Hij)
+

Var(Hij)E(Nij)

E3(Hij)
− Cov(Nij, Hij)

E2(Hij)
(1.28)

=
np2

2np− 2− np2
+

(2np− 2 + np2)(np2)

(2np− 2− np2)3
− Cov(Nij, Hij)

(2np− 2− np2)2

=
p

2− p
+

(2np− 2 + np2)(np2)

(2np− 2− np2)3
− Cov(Nij, Hij)

(2np− 2− np2)2
.

Again, Cov(Nij, Hij) > 0 since Nij 6⊥⊥ Hij. The value for the covariance could be

simulated, but for simplicity we chose to ignore this dependence and only include the first

two terms of (1.28) in the approximation of the mean.

1.5.2 Weighted Erdős-Rényi Overlap

Now suppose we introduce weights to the network edges and construct a WRG with n nodes.

The weighted Erdős-Rényi overlap can be written as in Eq. (1.29). Nij is again the of the
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number of common neighbors nodes i and j share, Wij is the weight of the tie between nodes

i and j and Si(Sj) is the strength of node i(j). The ratio is denoted as Vij over Mij. We again

define the distribution of each of the random variables in the expression and then use the

Taylor series expansion approximation outlined in the previous section to derive expressions

for the mean and variance of weighted overlap.

OW
ij =

∑nij

k=1(wik + wjk)

si + sj − 2wij
⇒

∑Nij

k=1(Wik +Wjk)

Si + Sj − 2Wij

=
Vij
Mij

(1.29)

For each pair of nodes, an edge is created between them with probability p, and a

unit weight is added to that edge again with probability p until the first ‘failure’. This

describes a geometric distribution, meaning Wij ∼ geometric(1− p). However, to ensure the

existence of overlap, we are assuming that the values of all weights are > 0. Consequently,

Wij is a zero-truncated geometric(1 − p). The strength of a node is the sum of the weights

associated with the edges between that node and all other nodes in the network. Thus, the

strength of any node is the sum of n− 1 geometric random variables, meaning Si ∼ negative

binomial(n−1, 1−p) Garlaschelli (2009). Regardless of the weight of the edge, the probability

of an edge existing between nodes i and j is equal to p. Therefore, the distribution of Nij is

identical to that described in the previous section; a binomial(n− 2, p2). This can again be

approximated by a Poisson(np2) distribution for large n.

Focusing on the numerator, Vij is a sum of zero-truncated geometric random variables

where the number of variables summed is itself a random variable. More specifically, Vij is a

negative binomial random variable with a parameter that depends on the value of Nij. We

use hierarchical models to calculate the mean (Eq. (1.30)) and variance (Eq. (1.31)) of Vij.

E[Vij] = E[E[Vij|Nij]] = E

ñ
2Nij

(1− p)

ô
(1.30)

=
2

(1− p)
E[Nij] =

2np2

(1− p)
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Var(Vij) = E[Var(Vij|Nij)] + Var(E[Vij|Nij]) (1.31)

= E

ñ
2pNij

(1− p)2

ô
+ Var

Ç
2Nij

(1− p)

å
=

ñ
2p

(1− p)2

ô
E[Nij] +

ñ
2

(1− p)

ô2

Var(Nij)

=
2np2(p+ 2)

(1− p)2

The distribution of Mij is more convoluted. In fact, it is unknown, and its mean and

variance must be calculated directly (Eqs. (1.32) and (1.33)). Table 1.4 summarizes all of

these distributions.

E[Mij] = E[Si] + E[Sj]− E[2Wij] (1.32)

=
(n− 1)p

(1− p)
+

(n− 1)p

(1− p)
− 2

(1− p)
≈ 2np− 2

(1− p)

Var(Mij) = Var(Si) + Var(Sj) + Var(2Wij) (1.33)

=
(n− 1)p

(1− p)2
+

(n− 1)p

(1− p)2
− 4p

(1− p)2
=

2np

(1− p)2

Now that the mean and variance of the numerator and denominator have been defined,

the mean and variance of weighted overlap can be approximated. Define g(Vij,Mij) = Vij
Mij

.

Using the same equations introduced in the previous section, we have

E[g(Vij,Mij)] ≈ g(E(Vij),E(Mij)) =
E(Vij)

E(Mij)
=

np2

np− 1
≈ p (1.34)
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Variable Distribution Mean Variance
Wij Zero-truncated Geometric(1− p) 1

(1−p)
1

(1−p)2

Si, Sj Negative Binomial(n− 1, 1− p) (n−1)p
(1−p)

(n−1)p
(1−p)2

Nij Poisson(np2) np2 np2

Vij Negative Binomial 2np2

(1−p)
2np2(p+2)

(1−p)2

Mij Unknown 2np−2
(1−p)

2np
(1−p)2

Table 1.4: The distribution, mean and variance for each random variable included in weighted
Erdős-Rényi overlap.

Var(g(Vij,Mij)) ≈
E2(Vij)

E2(Mij)

ñ
Var(Vij)

E2(Vij)
+

Var(Mij)

E2(Mij)
− 2

Cov(Vij,Mij)

E(Vij)E(Mij)

ô
(1.35)

= p2

ñ
p+ 2

2np2
+

1

2np
− (1− p)2Cov(Vij,Mij)

2np2(np− 1)

ô
=
p+ 1

n
.

Note that Cov(Vij,Mij) > 0 since Vij 6⊥⊥ Mij. The value for the covariance could be

simulated, but for simplicity we chose to ignore this dependence and do not include the

covariance term in the final approximation.

Again, a second order Taylor series expansion can be used as a more precise approxima-

tion of the mean. Using the same equations introduced in the previous section, the second

order Taylor approximation for the weighted overlap mean is

E[g(Vij,Mij))] =
E(Vij)

E(Mij)
+

Var(Mij)E(Vij)

E3(Mij)
− Cov(Vij,Mij)

E2(Mij)
(1.36)

≈ p+
n2p3

(np− 1)3
− (1− p)2Cov(Vij,Mij)

4(np− 1)2
.

Again, Cov(Vij,Mij) > 0 since Vij 6⊥⊥ Mij. The value for the covariance could be

simulated, but for simplicity we chose to ignore this dependence and only include the first

two terms of Eq. (1.36) in the approximation of the mean.
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1.5.3 Directed Erdős-Rényi Overlap

Now suppose we introduce directionality to the network edges and construct a directed ran-

dom graph with n nodes and connection probability p. The directed Erdős-Rényi overlap

can be written as Eq. (1.37). Aij is the adjacency matrix value from node i to node j. If

Aij = 1, there is a directed edge from i to j. K in
i and Kout

i denote the in and out-degree

distributions of node i, respectively. Note that because Kin
i and Kout

i are identically dis-

tributed for each node i, min(kin
i , k

out
j ) = min(kin

j , k
out
i ), and w.l.o.g., we write their sum as

2min(K in
j , K

out
i ). We denote the numerator and denominator using Dij and Cij respectively.

Again we define the distribution of each of the random variables in the expression and then

use the Taylor series expansion approximation outlined in the previous sections to derive

expressions for the mean and variance of directed overlap. However, directed version deriva-

tions are more complicated and do not have a closed form due to the minimum expressions

in the denominator.

OD
ij =

∑n
k=1(AikAkj + AjkAki)

min(kin
i , k

out
j ) + min(kin

j , k
out
i )− 1

⇒ Dij

2min(K in
j , K

out
i )− 1

=
Dij

Cij
(1.37)

Focusing on the numerator, each of the AikAkj and AjkAki terms is equal to one if

and only if both adjacency matrix values are equal to 1, which happens with probability p2

since each generation of an edge is independent. Thus, each of the terms is a Bernoulli(p2)

random variable, and the numerator consists of a sum of 2n Bernoulli random variables,

meaning it is a binomial(2n, p2) random variable. For large n, this can be approximated by

a Poisson(2np2) distribution.

The denominator includes the minimum of two, identically distributed random variables,

Kin
i and Kout

i . Due to the constraint of existence mentioned in section 3.1 above, the in and

out degrees of nodes i and j can not equal 0, making them zero-truncated binomial(n− 1, p)

random variables. We again approximate this with a zero-truncated Poisson(np) distribution.

The distribution of the minimum of two Poisson random variables is unknown. However, an

expression for the exact mean (Eq. (1.38)) and an upper bound for the variance (Eq. (1.39))

can be derived Papadatos (1995). We denote the minimum of two random variables as K(1)
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Variable Distribution Mean Variance
AikAkj Bernoulli(p2) p2 p2(1− p2)
Dij Poisson(2np2) 2np2 2np2

K in
i , K

out
i Zero-truncated npenp

enp−1
npenp

enp−1

î
1− np

enp−1

ó
Poisson(np)

K(1) Unknown e−2np∑(n−1)
k=1

[∑(n−1)
j=k

(np)j

j!

]2
2npenp

enp−1

î
1− np

enp−1

ó
Cij Unknown 2e−2np∑(n−1)

k=1

[∑(n−1)
j=k

(np)j

j!

]2
− 1 8npenp

enp−1

î
1− np

enp−1

ó
Table 1.5: The distribution, mean and variance for each random variable included in directed
Erdős-Rényi overlap.

and Ki
in, K

i
out as simply Ki. Table 1.5 summarizes these random variables.

E[K(1)] =
(n−1)∑
k=1

P (K(1) ≥ k) =
(n−1)∑
k=1

P (K1 ≥ k)2 (1.38)

=
(n−1)∑
k=1

(n−1)∑
j=k

P (Ki = j)

2

= e−2np
(n−1)∑
k=1

(n−1)∑
j=k

(np)j

j!

2

Var(K(1)) = 2Var(Ki) =
2npenp

enp − 1

ï
1− np

enp − 1

ò
(1.39)

Now that the mean and variance of the numerator and denominator have been defined,

the mean and variance of directed overlap can be approximated. Define g(Dij, Cij) = Dij

Cij
.

Using the same equations introduced in the previous section, we have

E[g(Dij, Cij)] ≈ g(E(Dij),E(Cij)) (1.40)

=
E(Dij)

E(Cij)
=

np2

e−2np
∑(n−1)
k=1

[∑(n−1)
j=k

(np)j

j!

]2
− 0.5
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Var(g(Dij, Cij)) ≈
E2(Dij)

E2(Cij)

ñ
Var(Dij)

E2(Dij)
+

Var(Cij)

E2(Cij)
− 2

Cov(Dij, Cij)

E(Dij)E(Cij)

ô
(1.41)

=
2n2p4

(2e−2np
∑(n−1)
k=1

[∑(n−1)
j=k

(np)j

j!

]2
− 1)2

+
32n3p5enp

enp−1

î
1− np

enp−1

ó
(2e−2np

∑(n−1)
k=1

[∑(n−1)
j=k

(np)j

j!

]2
− 1)2

− 4np2Cov(Dij, Cij)

(2e−2np
∑(n−1)
k=1

[∑(n−1)
j=k

(np)j

j!

]2
− 1)3

.

Note that Cov(Dij, Cij) > 0 since Dij 6⊥⊥ Cij. The value for the covariance could be

simulated, but for simplicity we chose to ignore this dependence and do not include the

covariance term in the final approximation.

Again, a second order Taylor series expansion can be used as a more precise approxima-

tion of the mean. Using the same equations introduced in the previous section, the second

order Taylor approximation for the directed overlap mean is

E[g(Dij, Cij))] =
E(Dij)

E(Cij)
+

Var(Cij)E(Dij)

E3(Cij)
− Cov(Dij, Cij)

E2(Cij)
(1.42)

=
np2

e−2np
∑(n−1)
k=1

[∑(n−1)
j=k

(np)j

j!

]2
− 0.5

+
16n2p3enp

enp−1

î
1− np

enp−1

ó
(2e−2np

∑(n−1)
k=1

[∑(n−1)
j=k

(np)j

j!

]2
− 1)3

− Cov(Dij, Cij)

(2e−2np
∑(n−1)
k=1

[∑(n−1)
j=k

(np)j

j!

]2
− 1)2

.

Again, Cov(Dij, Cij) > 0 since Dij 6⊥⊥ Cij. The value for the covariance could be
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simulated, but for simplicity we chose to ignore this dependence and only include the first

two terms of Eq. (1.42) in the approximation of the mean.

1.6 Approach 2 Mean and Variance Derivations

1.6.1 Original Erdős-Rényi Overlap

Again, suppose we have an Erdős-Rényi random graph with n nodes and connection

probability p. Edge overlap is again viewed as a random variable with the same distributions

for the numerator and denominator defined in the first approach described in section A.3.

The expectation of the denominator is equal to (2np− 2− np2), and we can rewrite Oij as

Eq. (1.43).

Oij =
Nij

Hij

≈ Nij

E[Hij]
=

1

2np− 2− np2
Nij (1.43)

The distribution of overlap is now a scaled version of the distribution of Nij, making it

a scaled Poisson(np2) random variable and its mean (Eq. (1.44)) and variance (Eq. (1.45))

can be easily derived.

E[Oij] =
1

2np− 2− np2
E[Nij] =

np2

2np− 2− np2
≈ p

2− p
(1.44)

Var(Oij) =
1

(2np− 2− np2)2
Var(Nij) =

np2

(2np− 2− np2)2
(1.45)

Note that the mean is equivalent to the mean derived in the first approach while the

variance is equal to the first term of the variance derived in the first approach. Additionally,

there can not be a second order approximation of the mean using this approach since a

Taylor expansion has not been used.

1.6.2 Weighted Erdős-Rényi Overlap

Now suppose we have a WRG with n nodes and connection probability p, and weighted

overlap is again viewed as a random variable with the same distributions for the numerator
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and denominator defined in section A.2. The expectation of the denominator is equal to

2(n−1)p−2
(1−p) , and we can rewrite OW

ij as Eq. (1.46).

OW
ij =

Vij
Mij

≈ Vij
E[Mij]

=
(1− p)
2np− 2

Vij (1.46)

The distribution of weighted overlap is now a scaled version of the distribution of Vij,

making it a scaled Compound Poisson random variable. The mean (Eq. (1.47)) and variance

(Eq. (1.48)) are now easily derived.

E[OW
ij ] =

(1− p)
2np− 2

E[Vij] =
(1− p)
2np− 2

Ç
2np2

1− p

å
≈ p (1.47)

Var(OW
ij ) =

(1− p)2

(2np− 2)2
Var(Vij) (1.48)

=
(1− p)2

(2np− 2)2

Ç
2np2(p+ 2)

(1− p)2

å
≈ np2(p+ 2)

2(np− 1)2

Note that the mean is equivalent to the mean derived in the first approach while the

variance is equal to the first term of the variance derived in the first approach. Additionally,

there can not be a second order approximation of the mean using this approach since a

Taylor expansion has not been used.

1.6.3 Directed Erdős-Rényi Overlap

Now suppose we have a directed Erdős-Rényi random graph with n nodes and connection

probability p, and directed overlap is again viewed as a random variable with the same

distributions for the numerator and denominator defined in section A.3. The expectation of

the denominator is equal to 2e−2np∑(n−1)
k=1

[∑(n−1)
j=k

(np)j

j!

]2
− 1, and we can rewrite OD

ij as Eq.

(1.49).

OD
ij =

Dij

Cij
≈ Dij

E[Cij]
=

1

2e−2np
∑(n−1)
k=1

[∑(n−1)
j=k

(np)j

j!

]2
− 1

Dij (1.49)
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The distribution of directed overlap is now a scaled version of the distribution of Dij,

making it a scaled Poisson(2np2) random variable. The mean (Eq. (1.50)) and variance (Eq.

(1.51)) are now easily derived.

E[OD
ij ] =

1

2e−2np
∑(n−1)
k=1

[∑(n−1)
j=k

(np)j

j!

]2
− 1

E[Dij] (1.50)

=
np2

e−2np
∑(n−1)
k=1

[∑(n−1)
j=k

(np)j

j!

]2
− 0.5

Var(OD
ij ) =

1

(2e−2np
∑(n−1)
k=1

[∑(n−1)
j=k

(np)j

j!

]2
− 1)2

Var(Dij) (1.51)

=
2np2

(2e−2np
∑(n−1)
k=1

[∑(n−1)
j=k

(np)j

j!

]2
− 1)2

Note that the mean is equivalent to the mean derived in the first approach while the

variance is equal to the first term of the variance derived in the first approach. Additionally,

there can not be a second order approximation of the mean using this approach since a

Taylor expansion has not been used.

1.7 Additional Analysis

As was stated in the Data Analysis section (section 2.5) of this paper, we calculated the

average unweighted and weighted overlap for each type of social relationship for each village

before and after stratification by attribute availability, sex, caste and age. The figures and

conclusions regarding stratification by sex are included in sections 2.5 and 3 of the paper.

Here, we provide the figures and details of overlap before stratification and after stratifying

by attribute availability, caste and age.

Figures 1.7 and 1.8 show the distributions of raw and standardized unweighted overlap

for all edges in the network before stratification. Similarly, figure 1.9 shows the distributions

of raw and standardized weighted overlap for all edges in the network regardless of nodal

attribute information.
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We first stratified edges according to the availability of nodal attributes due to the

fact that not all villagers completed an individual survey. We labeled nodes with attribute

information available ‘A’ (for attribute) and nodes without attribute information available

‘U’ (for unknown). Raw and standardized unweighted average overlap for each of the 12 social

interactions were calculated separately for ties with both nodes having attribute information

(A/A ties), neither node having attribute information (U/U ties), and one node having

attribute information and the other not (A/U ties). See Figures 1.10 and 1.11. Figure 1.12

shows the distributions of raw and standardized weighted overlap for A/A, U/U and A/U

ties after collapsing the twelve unweighted networks into one weighted network.

It is worth noting a subtle caveat to our method of calculating the standardized overlap

values after stratification related to the presence or absence of attribute data. To illustrate,

suppose we have a network of 20 people. If no attribute information is available, all of

the edges are interchangeable and the total number of possible edges in the network is

the usual
Ä
n
2

ä
=
Ä

20
2

ä
. Now suppose we introduce attribute information to all of the nodes

and label 5 of them male and 15 of them female. The total number of possible male-male

ties is
Ä

5
2

ä
, the total number of possible female-female ties is

Ä
15
2

ä
, and the total number of

possible male-female ties is
Ä

20
2

ä
−
Ä

5
2

ä
−
Ä

15
2

ä
= 75. We could then use this information to

update the denominator of the connection probability for the null model for each type of

edge. However, now suppose we only have attribute information for half of the network,

say 2 males and 8 females. We could again calculate the total number of possible edges for

each type of tie, but we would then be ignoring the contribution of the edges connected to

nodes without attribute information. Additionally, after stratification, we calculate overlap

for each eligible edge regardless of the neighbors of the nodes attached to the edge having

attribute information. To overcome this dilemma, we chose to use
Ä
n
2

ä
as the total number

of possible edges in all calculations, regardless of the type of tie. If one did wish to use the

the nodal attribute information to update the denominator of the connection probability

for each specific type of tie, one could use induced subgraphs. Specifically, if a subgraph

included only the nodes with attribute information available, and only the edges connecting
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two nodes with attribute information, then one could proceed with calculations as in the case

where every node had attribute information. We chose to not use these induced subgraphs

since they ignore all edges attached to nodes without attribute information, which made up

over half of the nodes in each network in this case.

We next stratified by caste membership. Due to the low number of respondents who

were members of the scheduled tribe, general caste or scheduled caste, we grouped members

of these castes into one caste category and labeled them ‘Other’. Members in the OBC caste

were labeled ‘OBC’. The distributions of the raw and standardized average overlap stratified

by caste are shown in Figures 1.13 and 1.14. Edges between two individuals in the ‘Other’

caste are labeled as ‘Other’, edges between two individuals in the OBC caste are labeled

‘OBC’, and edges between one individual in the ‘Other’ caste and one individual in the

OBC caste are labeled ‘Mixed’. Figure 1.15 shows the distributions of raw and standardized

weighted overlap stratified by caste.

Finally, we stratified by age. Similar to caste membership, age was categorized into 4

approximately equally sized groups; 10-29 years, 30-39 years, 40-49 years and 50-99 years.

The distributions of the raw and standardized average overlap stratified by age are shown in

Figures 1.17 and 1.18. Each age category contains edges connecting two nodes belonging to

the same age category. Figure 1.16 shows the distributions of raw and standardized weighted

overlap stratified by age.
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Figure 1.7: Distribution of average unweighted overlap for each type of social interaction.
The average overlap was calculated for each type of interaction for each of the 75 villages.
The y-axis represents the proportion of average edge overlap and the x-axis represents the
type of social interaction. See Table 1.2 above for full descriptions interaction types.
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Figure 1.8: Distribution of standardized unweighted overlap for each village for each type of
social interaction. Using the approximations from Approach 1, each standardized value was
calculated by first subtracting the expected mean overlap under the null from the observed
average overlap (the values in Figure 1.7), and then dividing that value by the expected
standard deviation under the null. The y-axis represents the standardized value, also known
as the Z-score, and the x-axis represents the type of social interaction. See Table 1.2 above
for full descriptions interaction types.

39



0.00

0.25

0.50

0.75

1.00

W
ei

gh
te

d 
O

ve
rla

p

(a)

ll

0

5

10

15

20

25

Z
−

S
co

re
(b)

Figure 1.9: Distribution of average weighted overlap (a) and standardized weighted overlap (b) for all villages.

l
l
l

l

l

l

l
l

l
l

l

l

l
l

l

ll

l
l

l

lll

l
l

l

l

l

l

ll

l

l

l
l

l

l

l
l

l

l

l

l

l

l

l

l

l

l

l

l

l

l

ll

l

0.00

0.25

0.50

0.75

1.00

1 2 3 4 5 6 7 8 9 10 11 12
Type of Relationship

U
nw

ei
gh

te
d 

O
ve

rla
p

Tie Type
A/A
A/U
U/U

Figure 1.10: Distribution of average unweighted overlap for each village for each type of
social interaction stratified by the presence or absence of nodal attributes.
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Figure 1.11: Distribution of standardized unweighted overlap for each village for each type of social interaction stratified by the
presence or absence of nodal attributes.

0.00

0.25

0.50

0.75

1.00

 W
ei

gh
te

d 
O

ve
rla

p

Tie Type
A/A
A/U
U/U

(a)

l

l

l

0

10

20

30

Z
−

sc
or

e Tie Type
A/A
A/U
U/U

(b)

Figure 1.12: Distribution of average weighted overlap (left) and standardized weighted overlap (right) stratified by the presence
or absence of nodal attributes.
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Figure 1.13: Distribution of average unweighted overlap for each village for each type of social
interaction stratified by caste. We stratified the edges by caste and labeled an edge between
two individuals in the OBC caste ‘OBC’, edges between two individuals in the Scheduled
Caste, Scheduled Tribe or General caste as ‘Other’, and edges between two individuals in
different castes as ‘Mixed’. The y-axis represents the proportion of average edge overlap and
the x-axis represents the type of social interaction. See Table 1.2 above for full descriptions
interaction types.
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Figure 1.14: Distribution of standardized unweighted overlap for each village for each type
of social interaction stratified by caste.
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Figure 1.15: Distribution of average weighted overlap (a) and standardized weighted overlap
(b) stratified by caste.
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Figure 1.16: Distribution of raw weighted overlap (a) and standardized weighted overlap (b)
stratified by age.
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Node Type

Attribute

Unknown

Figure 1.19: Visualization of the interaction type 2 (the respondent gives advice to this
individual) network in village 10, stratified by sex. Individuals with attribute data available
are colored orange and individuals without attribute information available are colored blue.
An edge between two individuals with attribute information is colored orange, an edge
between two individuals without attribute information is colored blue and an edge between
one individual with attribute information and one individual without is colored black.
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Figure 1.20: Distribution of average unweighted overlap for each village for each type of social
interaction stratified by the presence or absence of nodal attributes, after randomization of
attributes.
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tion. Average degree is plotted on the y-axis, and type of social interaction is represented
on the x-axis.
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1.8 Additional Results

Figure 1.7 illustrates the average raw unweighted overlap for each type of social interaction for

each village. Each distribution is fairly normally distributed with the exception of interaction

types 2, 7 and 10. Each distribution also showcases minimal variance and medians above 0.5.

It is also clear that the values of average overlap for social interaction type 10 are very large

and could indicate the importance of attending temple among these villages. Figure 1.8 shows

the distributions of the standardized unweighted overlaps. Clearly, every value of average

unweighted overlap is significantly larger than expected under the null of a random network;

the minimum values for each type of interaction never fall below 10 standard deviations from

the mean, and the maximum value is greater than 60 standard deviations from the mean.

Again, the values from interaction type 10 are among the largest values, suggesting that

villagers who attend temple together have a significantly higher proportion of mutual friends

compared to other types of interaction and the null model. Values significantly higher than

expected under the null are not unusual since social networks are known to have a larger

amount of clustering compared to random graphs due to different social mechanisms that

drive the formation of clustered ties. Additionally, the Erdős-Rényi random graph model

is the simplest null model and is easily rejected when analyzing empirical social networks.

The distribution of average weighted overlap (Figure 1.9a) is normally distributed with a

mean of 0.548 and standard deviation of 0.046. Each village’s average weighted overlap is

significantly different from what is expected under each corresponding null value (Figure

1.9b). This is expected given the values in Figure 1.8 for each type of social interaction are

also significantly higher than expected, and that humans do not typically create friendships

randomly.

Figure 1.10 shows a clear pattern in average unweighted overlap when stratified by the

existence of attribute information. For every type of social interaction, the median average

overlap for U/U ties is the largest, followed by A/U ties, and finally A/A ties. The one ex-

ception is for interaction type 9 (the respondent is related to this individual) where A/A ties
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have a larger median value than A/U ties. In most relationships, the median average overlap

is 50% higher among U/U ties compared to A/A and A/U ties. When standardized (Figure

1.11), the values for the A/A and A/U ties are very similar, except for interaction types 2,

9 and 10 where the values for the A/A ties are much higher. For more details see Figure ??.

The values for the U/U ties are still significantly higher than the other types of ties, with

the exception of interaction types 9 and 10 where they are quite similar to A/A ties, with

none of the values falling within 15 standard deviations from the mean. Surprisingly, there

are several values for the A/A and A/U ties that are not statistically significantly different

from the mean of the null model. Such a discrepancy in the values of overlap (both raw

and standardized) suggests that individuals who were not sampled to complete an individ-

ual survey form more tightly-knit groups and point to a possible sampling bias. Villagers

were randomly sampled to complete an individual survey after stratifying by religion and

geographic sub-location. However, as in most attribute information collection, the structure

of the network was not taken into account when sampling individuals to administer the sur-

vey to. This leads to a loss of information for significant parts of the network which could

include much of the network’s community structure and inhibit analysis of the network (See

Figure 1.19). If attribute information were truly randomly sampled, we would expect to see

very similar values of overlap for each type of tie, as in Figure 1.20 in section 1.7, where we

randomly assigned attribute information to individuals in each village and calculated average

overlap again. This could point to a potential bias in the sampling of villagers for completing

individual surveys, and could indicate that overlap would be a useful metric to include in a

sampling scheme or for recognizing sampling bias for network data. The average weighted

overlap stratified by node attribute information (Figure 1.12a) follows, not surprisingly, the

same pattern as its unweighted counterpart (Figure 1.10). The values of average weighted

overlap are extremely similar for A/A and A/U edges, and the values for U/U nodes are

significantly larger. All of the values of weighted overlap are significant (Figure 1.12b), which

is again expected from the unweighted distributions in Figure 1.11.

The median average unweighted overlap is quite similar for the OBC and ‘Other’ caste
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categories across all interaction types (Figure 1.13). The ‘Mixed’ category has the least

amount of overlap across all interaction types, except type 10 which again suggests the

importance of going to temple together. It isn’t surprising that the ‘Mixed’ category would

have the lowest values of overlap; most social interaction is done among members of the same

caste. The standardized overlap plot (Figure 1.14) shows an interesting pattern. The ‘Mixed’

category has the most significant values as well as the only non-significant values. The values

that did not reach significance are not surprising due to the low amount of social activity

across castes. The significant values could be due to those individuals having lower degree

or the small amount of cross-caste ties. The OBC and ‘Other’ distributions are much more

similar to each other and less significant overall with the exception of several outliers. The

distributions of average weighted overlap follow a similar pattern as seen in the unweighted

case; the OBC and ‘Other’ categories values are comparable and significantly higher than

the ‘Mixed’ category values (Figure 1.15a). This pattern holds after standardization (Figure

1.15b), which is a departure from what was seen in the unweighted case (Figure 1.14). All

values are significantly higher than expected under the null except for a few values in the

‘Mixed’ category. This could again be due to the small number of cross-caste ties in those

villages.

Figure 1.17 shows a distinct pattern in the median unweighted overlap values for all

interaction types when stratified by age. The 10-29 year age category contains the highest

values of overlap, followed by the 30-39 age group, then the 50-99 age group and finally the

40-49 age group. The differences in values across age categories are minimal for interaction

type 10, which once again suggests that regardless of category, individuals of similar ages

who attend temple together have a high proportion of friends in common. Interestingly, a

slightly different pattern is observed when overlap is standardized (Figure 1.18). Except

for types 9 and 10, the median values of overlap decrease by age category. All categories

are comparable for types 9 and 10. All of the standardized values are again significantly

larger than expected under the null. Figure 1.16a showcases the same pattern among the

age categories for the average weighted overlap as seen in the unweighted plot in Figure

50



1.17. The median value for average weighted overlap is highest among the 10-29 age group,

the 30-39 age group is the second largest, followed by the 50-99 age group, and finally the

40-49 age group. The same trend holds for the standardized values, and all of the values are

significantly larger than the expected value under the null hypothesis (Figure 1.16b).
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2

The Social Bow Tie

Abstract

In social networks the notion of tie strength, and the factors that influence it, have received

much attention in a myriad of disciplines for decades. With the internet and cellular phones

providing additional avenues of communication, measuring and inferring tie strength has

become much more complex. Numerous models incorporating indicators of tie strength have

been proposed and used to quantify relationships in both online and offline social networks,

and a standard set of structural network metrics have been applied to predominantly online

social media sites to predict tie strength. Here, we introduce the concept of the “social

bow tie” framework, which for any given network tie is a small subgraph of the network that

consists of a collection of nodes and ties that surround the tie of interest, forming a topological

structure that resembles a bow tie. We also define several intuitive and interpretable metrics

that quantify properties of the bow tie which enable us to investigate associations between

the strength of the “central” dyadic tie and properties of the bow tie. We combine the

bow tie framework with machine learning to investigate what aspects of the bow tie are

most predictive of tie strength in two very different types of social networks, a collection of

medium-sized social networks from 75 rural villages in India and a nationwide call network

of European mobile phone users. For two connected individuals, we find that the more

their friendship circles overlap, the stronger the tie between them. Conversely, the more

close-knit each individual’s separate friendship network, the weaker the tie between them.
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Our findings also demonstrate that incorporating properties of the bow tie results in more

accurate predictions of tie strength and a more nuanced understanding of the factors that

are associated with it.

2.1 Introduction

The strength of any kind of relationship between two individuals lies on a spectrum. People

in general have a close relationship with only a few friends or family members, a somewhat

weaker tie with a larger group of individuals with whom they interact less frequently, and an

even weaker connection with a large number of casual acquaintances. This tradeoff between

tie strength and the number of people a person is connected to through his or her ties was

elegantly captured by Dunbar Dunbar (1992). Measuring and predicting tie strength, and

moreover, understanding the factors that drive tie strength, has been an expanding area of

interest, with increasing utility and complexity in the digital age, i.e., the ever-increasing

forms of communication via mobile phones and social media. Knowledge of the strength

of a tie, as well as the social dynamics contributing to tie strength, has been shown to

increase the accuracy of link prediction, enhance the modeling of the spread of disease and

information, and lead to more targeted marketing Li et al. (2013); Linyuan and Tao (2010);

Sá and Prudêncio.

Several indicators of tie strength have been proposed, perhaps most notably by Mark

Granovetter in his seminal work The Strength of Weak Ties Granovetter (1973). Granovetter

differentiated between strong and weak ties and proposed the weak ties hypothesis: the

stronger the tie between any two people, the higher the fraction of friends they have in

common Granovetter (1973). Much of the current methodology centered on tie strength

has stemmed from Granovetter’s weak ties hypothesis and his proposed four dimensions

of tie strength: the amount of time spent interacting with someone, the level of intimacy,

the level of emotional intensity, and the level of reciprocity. More recently, three additional

dimensions of tie strength have been proposed: 1) emotional support Marsden and Campbell

(1984); Wellman and Wortley (1990), 2) structural variables, i.e. network topology Ellison
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et al. (2007); Lin et al. (1981); Xiang et al. (2010), and 3) social distance, i.e. the difference

in socioeconomic status, education level, political affiliation, race, and gender He et al.

(2006); Lin et al. (1981). These categories have facilitated the definition and quantification

of numerous possible predictors of tie strength; some generalizable to any network, and

some specific to a limited number of social networks. Of importance to this analysis is a

corresponding perspective outlined by Elizabeth Bott Bott (1957) that suggests that the

degree of clustering in an individual’s network has the potential to draw them away from a

dyadic tie if there are not mutual ties.

Initially, highly generalizable similarity indices such as the number of common neighbors

two nodes share, preferential attachment, and path distance were used to infer tie strength.

These metrics were most commonly used for link prediction and were shown to provide

some information regarding tie strength Linyuan and Tao (2010); Pappalardo et al. (2012).

However, it was quickly discovered that the addition of nodal attributes and other metrics

not solely based on network topology greatly enhanced the measurement and prediction of

tie strength Kahanda and Neville; Luarn and Chiu (2015). Gilbert and Karahalios defined

indicators of tie strength specific to a network of Facebook users and built a predictive

model that achieved 85% accuracy for binary tie strength (weak vs. strong) classification

Gilbert and Karahalios (2009). They found that the act of communicating once leads to a

significant increase in tie strength, and that educational difference plays a role in determining

tie strength. Pappalardo et al. introduced a measure of tie strength using multiple online

social networks and found that the strength of a tie is related to the number of interactions

between the two individuals Pappalardo et al. (2012). In addition, several studies have

shown that frequent communication, both online and offline, is positively related to tie

strength Marsden and Campbell (1984); Wiese et al..

While previous studies have provided advances and valuable insights, they suffer from a

binary definition of tie strength (weak vs strong), low diversity in the types of social networks

studied (the vast majority being social media sites), and non-representative samples. In this

work, we propose a decomposition of a social network into an ensemble of interconnected
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“social bow ties,” constellations consisting of nodes and ties that surround each network

tie. We call any such subgraph a “social bow tie” because the topological structure that

surrounds each tie resembles a bow tie. We also introduce several simple metrics that

quantify properties of the bow tie. Further, we use random forests and linear regression to

build models that predict categorical and continuous measures of tie strength from different

properties of the bow tie, including nodal attributes (covariates) of the nodes included in

the bow tie. We apply our framework to two social networks, a collection of 75 social

networks from the villages of Karnataka, India, and a call network of European mobile phone

subscribers. We find that the bow tie framework contributes to more accurate predictions of

tie strength and provides insights on which metrics are the most informative of tie strength.

Specifically, we find that the larger the proportion of shared friends, the stronger the tie, and

the more clustered the individual friendship circles (consisting of non-overlapping friends),

the weaker the tie. Consequently, these findings provide evidence to support both the weak

ties hypothesis and a generalized version of the Bott hypothesis Bott (1957).

This paper is organized as follows. In Section 2.2 we describe the construction of each

social network, and our measures of tie strength. We then introduce our framework for tie

strength prediction and detail our method in Section 2.3. Model selection and results are

presented in Section 2.4, and we discuss our conclusions in Section 2.5. Additional figures

are included in Section 2.6.

2.2 Data Description

We analyzed two social network data sets. The first data set is social network data collected

in 2006 from 75 villages located in 5 districts in rural southern Karnataka, India. The data

were collected through household and individual surveys as part of a study by Banerjee et

al. Banerjee et al. (2013). Of relevance for this study, the survey included social network

data along 12 dimensions: friends or relatives who visit the respondent’s home, friends or

relatives the respondent visits, any kin in the village, non-relatives with whom the respondent

socializes, those from whom who the respondent receives medical advice, with whom who
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the respondent goes to temple to pray, from whom the respondent would borrow money, to

whom the respondent would lend money, from whom the respondent would borrow material

goods from, to whom the respondent would lend material goods, from whom the respondent

gets advice, and to whom the respondent gives advice. It is worth noting that these forms of

interaction are largely face-to-face, unlike the mediated material from the call detail records

(CDRs) described below. Additionally, a proportion of villagers were given individual surveys

that recorded age and sex, among other attributes.

For this data set, we define the strength of a tie as the number of distinct types of social

relationships reported to exist between the two individuals. For example, if individual i

borrows money from individual j and in addition gives advice to individual j, the weight

of the (undirected) tie between i and j would be equal to 2. If i and j also attend temple

together, their tie strength would be 3 and so on, with a minimum strength of 1 and a

maximum strength of 12 for any tie. Note that a tie strength of 0 implies that the two

individuals are not connected by any kind of social tie. We denote the strength of a tie

between individuals i and j as wij. Because we ignore the directionality of ties, our definition

of tie strength is symmetric.

The second data set consists of call detail records (CDRs) from a mobile phone provider

in an undisclosed European country where 68% of citizens own a smartphone and 85% own

a cellular phone. The data examined here span a period of three months in 2013, and

each record consists of the following daily aggregate communication summaries for pairs of

individuals: the date, anonymized caller ID, anonymized callee ID, daily call duration (in

minutes), daily number of calls, daily number of text messages (SMS), and daily number

of multimedia messages (MMS). Age, sex, and billing zip codes were available for a large

majority (72.3%) of individuals.

An undirected, weighted call network was created from the records by first summing the

call durations between any two individuals over the three-month period. If two individuals

spoke on the phone at least once during the period, we connected them with an edge of

strength wij, where the value of edge strength was set to the total amount of time spent on
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the phone with one another. Since tie strength is defined in terms of absolute time, it does

not take into account the total amount of time each individual spends on the phone, which

makes it somewhat difficult to quantify the relative strength of ties since the strength of a tie

is not measured on the same scale either for individuals or pairs of individuals. We therefore

normalized tie strength and represent it with two measurements: one that represents tie

strength from the perspective of individual i, and one that represents tie strength from the

perspective of individual j. Specifically, for each tie, the first measurement of tie strength

is the total call duration (wij) divided by the total time individual i spends on the phone

si, the strength of node i. similarly, the second measurement of tie strength is the total call

duration divided by the total time individual j spends on the phone sj, the strength of node

j. Dividing total call duration by the strength of each focal node results in a consistent

definition of tie strength. We denote these new tie strength measurements as yij and yji. We

created another summary measure of tie strength by taking the average of yij and yji, and

we denote this zij = 1
2
(yij + yji).

2.3 Methods

To introduce the “bow tie” structure, consider a weighted social network G, which may be

directed or undirected, and consider a tie with weight wij that connects two individuals i and

j. We call these two individuals the focal nodes of the bow tie. We use the term focal tie to

refer to the tie that links them. We start by partitioning i’s friends and j’s friends into three

disjoint sets. Group i, denoted gi, contains the nodes that are connected to only i; group j,

denoted gj, contains nodes that are connected to only j; and group ij, denoted gij , contains

nodes that are connected to both iand j. These three groups jointly make up the shared and

non-shared friends of i and j. We call this structure the ij bow tie. Formally, the groups gi,

gj and gij are induced subgraphs, where the node sets that induce them are the neighbors

of i, the neighbors of j, and the common neighbors of i and j, respectively. The bow tie ij,

denoted by Gij , is the subgraph that is induced by the union of all neighbors of i and j.

Note that Gij is more than the sum of gi, gj and gij : in addition to containing the same set
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of nodes and ties as those subgraphs do, it also contains the inter-group ties among this set

of nodes, i.e., the ties linking nodes across gi, gj and gij . Important to our analysis below

is the hierarchical structure of the bow tie: at the upper level of hierarchy we have the bow

tie Gij; at the intermediate level, we have the three groups, gi, gj and gij; and at the lowest

level we have the nodes and ties from which each group is composed. A simple example of

the bow tie structure surrounding nodes i and j is shown in Figure 2.1. The localized nature

of the bow tie framework gives rise to several topological metrics that can be used to predict

tie strength. We include unweighted Onnela et al. (2007) and weighted Mattie and Onnela

(2017) edge overlap, which we denote overlap and woverlap, respectively. Metrics based on

customized versions of the clustering coefficients of i and j are used, where the calculation of

a clustering coefficient is limited to the non-shared friends of each node, i.e., for node i, the

nodes and edges in gi are used to calculate the clustering coefficient of i, and similarly, gj is

used for node j. We denote the sum and absolute difference of these quantities as ccSum and

ccDiff for the unweighted clustering coefficients, and wccSum and wccDiff for the weighted

clustering coefficients. Here, we use the definition of weighted clustering coefficient provided

by Saramki et. al. Saramaki et al. (2007). Specifically, the weights of ties are considered

and the metric reflects how large triangle weights are compared to a network maximum.

Other predictors include the sum and absolute difference in the degrees of i and j (kSum

and kDiff ), the sum and absolute difference in the strengths of i and j (sSum and sDiff ),

the number of nodes and edges in gij (nij and eij), and the sum and absolute difference in

the number of nodes and the number of edges in gi and gj (nSum, nDiff, eSum and eDiff ).

Predictors created from the attributes of i and j include the sum and absolute difference in

the ages of i and j (AgeSum and AgeDiff ), the paired sex category (male-male, male-female,

female-female) denoted SexPair, and an indicator if i and j have the same billing zip code,

denoted ZipPair. See Table 2.1 for a detailed description of each variable.

To predict tie strength and study how it is associated with different metrics, we used

regression as well as Random Forest (RF) regression and classification Breiman (2001). For

the India social network, tie strength is discrete with wij ∈ {1, . . . , 12}. Thus, the weight of a
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Figure 2.1: A simple example of the social bow tie. The center panel highlights the nodes
and edges that comprise the overlapping friendship circle of nodes i and j, denoted gij. The
left and right panels contain the individual (non-overlapping) social circles of the focal nodes,
denoted gi for node i and gj for node j.

tie can be viewed as a categorical outcome, allowing RF classification and Poisson regression

to be used to predict tie strength, or as continuous with RF regression used for prediction.

For the CDR call network, tie strength is most naturally treated as a continuous variable,

and we used RF regression and linear regression to predict both measures of tie strength.

In addition to ordinary least squares (OLS) regression, least absolute shrinkage and

selection operator (LASSO) and ridge regression were used to fit more parsimonious and

interpretable models as well as increase prediction accuracy. Before using LASSO and ridge

regression, all data was centered around the mean and 10-fold cross validation was performed

to select the best tuning parameters; denoted λL for LASSO and λR for ridge regression. For

RF classification, the number of trees used was 200, and the maximum number of features

(covariates) considered when splitting a node was
√
n where n is the total number of features.

For RF regression, 200 trees were used and the maximum number of features considered when

splitting a node was n.

Nodal attributes were expected to be informative of tie strength and were therefore

included in the models. All missing attributes were imputed for each data set. Because both

age and sex were recorded for a subset of the villagers in India, full attribute information

was available for some individuals but completely missing for others. This resulted in three

types of ties: those with complete attribute information available for both individuals, those
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Variable Name Description

kSum Sum of the degrees of i and j (ki + kj)
kDiff Absolute difference in the degrees of i and j (|ki − kj |)
sSum Sum of the strengths of i and j (si + sj)
sDiff Absolute difference in the strengths of i and j (|si − sj |)
ccSum Sum of the clustering coefficients of i and j
ccDiff Absolute difference in the clustering coefficients of i and j
wccSum Sum of the weighted clustering coefficients of i and j
wccDiff Absolute difference in the weighted clustering coefficients of i and j
AgeSum Sum of the ages of i and j
AgeDiff Absolute difference in the ages of i and j
SexPair Categorical variable; Male-Male, Male-Female, Female-Female
ZipPair Indicator if i and j have the same billing zip code
overlap Unweighted overlap of edge between i and j
woverlap Weighted overlap of edge between i and j
nij Number of common friends of i and j
eij Number of edges among the common friends of i and j

Table 2.1: Descriptions of predictors of tie strength used in the analyses.

with attribute information available for only one individual, and those missing all attribute

information. To use all available information, imputation was performed in three stages

for this data set. We first imputed individual i’s sex and age if individual j’s attributes

were known, using j’s attributes to infer i’s attributes. We then imputed individual j’s

attributes if individual i’s attributes were known, similarly using i’s attributes to infer j’s

attributes. Finally, attributes for both i and j were imputed if neither individual’s attributes

were known. In each stage, RF classification was used to impute sex and RF regression was

used to impute age. Individuals in the CDR call network could have any combination

of age, sex and billing zip code information missing. We again used RF classification to

impute sex and RF regression to impute age. Because of the abundance of billing zip code

possibilities, rather than imputing billing zip code directly, we created a paired billing zip

code dichotomous variable equal to 1 if the two focal nodes had the same billing zip code

and 0 if they did not. We then used RF classification to impute paired billing zip code.
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2.4 Results

2.4.1 India Social Network

The India network contained 69,444 nodes, of which 16,984 (24.5%) had full attribute in-

formation available, and 294,778 edges after the removal of isolated ties. Of these, 37,714

(12.8%) edges were between two individuals with complete attribute information available,

107,739 (36.5%) were between one individual with and one individual without attribute in-

formation available, and 149,492 (50.7%) were between two individuals without any attribute

information available. We discovered tie strength had a bimodal distribution with ≈ 46%

of ties having a strength of 12. This was due to the fact that the majority (≈ 96%) of ties

between individuals living in the same household had a weight of 12. We decided to exclude

ties between individuals from the same household and only included cross-household ties.

This resulted in a Poisson distribution of tie tie strength.

RF regression and classification were used to fit three models both before and after nodal

attribute imputation, where ties with complete attribute information available were included

in the analysis before imputation and all ties were included after imputation. Model 1 is the

full model and includes all covariates described in 2.1 with the exception of ZipPair since it

is specific to the CDR data set; Model 2 includes all covariates except weighted overlap; and

Model 3 includes all covariates except unweighted overlap. It has been shown that categorical

predictors do not need to be split into multiple dichotomous covariates (referred to as dummy

variables) when implementing RF if there are a small number of them and their cardinality is

low Breiman (2001); Hastie et al. (2001). Therefore, the variable SexPair was not split into

two separate dummy variables due to its low cardinality and it being the single categorical

predictor. Accuracy was measured as the residual, the absolute difference between empirical

tie strength (wij) and predicted tie strength (ŵij). Figure 2.2(a) shows the accuracy of

RF regression and classification after imputation for Model 3. RF regression predicted tie

strength exactly with 52.9% accuracy, and RF classification with 71.6% accuracy. Within

one unit of tie strength, an accuracy of 70.1% and 80.8% was achieved by RF regression
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and classification, respectively. The accuracy of all three models using RF regression and

classification, both before and after imputation, are shown in Figures 2.4(a) and 2.5(a) in

section 2.6.1. Imputation boosts regression accuracy by approximately 15% and classification

accuracy by approximately 10%. Furthermore, Model 3 outperforms models 1 and 2.

Feature importance for each of the three models after imputation for both RF regression

and classification is shown in Figure 2.2(b)-(d). The horizontal bars represent how informa-

tive the predictor is with a longer bar meaning more informative. The black vertical line

represents the value of an equilibrium or null importance if every predictor were equally

informative. For both classification and regression, weighted overlap is the most informative

variable in models 1 and 3, and the sum of the clustering coefficients is the most informa-

tive in model 2, followed by unweighted overlap. These results provide evidence that the

proposed indicators of tie strength in the weak ties and Bott hypotheses (the overlap of

friendship circles and the amount of clustering in the non-overlapping friendship circles) are

predictive of tie strength. Feature importance plots using RF regression and classification

before and after imputation are shown in Figures 2.4(b)-(d) and 2.5(b)-(d) in the supplemen-

tary material. The results before and after imputation are quite similar for both regression

and classification.

Poisson regression was used to model the associations between tie strength and each

of the predictors, and the coefficients of significant predictors with magnitude greater than

±0.2 are reported in Table 2.3. The predictors with the largest magnitudes include woverlap,

ccSum, and MF . Weighted overlap is positively associated with tie strength, illustrating the

greater the proportion of strength among overlapping friends of the focal nodes, the stronger

the tie between the focal nodes, and showing evidence to support Granovetter’s hypothesis.

The sum of the clustering coefficients of the focal nodes is positively associated with tie

strength, meaning tie strength decreases as the amount of clustering in the non-overlapping

friendship circles increases. This provides quantitative evidence of Bott’s hypothesis in

a novel population. Finally, the predictor MF is positively associated with tie strength,

indicating that on average, MF ties are stronger than MM ties; the reference group.
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Figure 2.2: Accuracy and feature importance plots for the India social network. Accuracy,
measured as the absolute difference between empirical tie strength (wij) and predicted tie
strength (ŵij), for Model 3 using both RF regression (R) and classification (C) after im-
putation is shown in (a). Feature importance using RF regression and classification after
imputation are shown for Model 1 (b), Model 2 (c) and Model 3 (d). The horizontal bars
represent how informative the predictor is with a longer bar meaning more informative. The
black vertical line represents the value of an equilibrium or null importance if every predictor
were equally informative.
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Model Predictors Coefficient Adjusted R2

A woverlap 4.91 0.8021
ccDiff 0.78
wccSum -0.22
nij -1.38

B woverlap 4.61 0.8001
ccDiff 0.77
wccSum -0.28
nij -1.01

C woverlap 4.82 0.8002
ccDiff 0.79
wccSum -0.47
nij -1.28

Table 2.2: Poisson regression results for the India social network. Predictors, coefficients
and the adjusted R2 value is reported.

2.4.2 CDR Call Network

The CDR call network contained 2,276,495 nodes and 12,345,848 edges. Age was available

for 89.25% of the individuals and had a mean of 48.2 (sd = 18.2) years. Of the 89.03% of

individuals whose sex was recorded, 52.51% were male. Billing zip code was available for

99.35% of individuals. Due to the large size of the network, a random sample of 500,000

edges was drawn. After the removal of isolated ties, a total of 496,941 edges remained. Full

attribute information was available for both focal nodes for 359,367 (72.3%) edges.

Similar to the India data set, three models were fit with RF regression both before and

after nodal attribute imputation for each measure of tie strength and are denoted Models

1-3. Figure 2.3(a) shows the accuracy for RF regression after imputation for all three models

and each measure of tie strength. The difference in accuracy for all models is very mini-

mal and only one curve is visible for each tie strength measure. Within 0.05 units (a 5%

difference between empirical and predicted tie strength), an accuracy of 61% was achieved

for normalized tie strength, and 56.7% for averaged tie strength. Within 0.1 units, an accu-

racy of 76.5% was achieved for normalized tie strength and 77.3% for averaged tie strength.

Accuracy for all models before and after imputation are shown in Figures B1(a) and B2(a).
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Imputation has a smaller impact on accuracy for this data set in all cases.

Feature importance for each of the three models after imputation is shown in Figure

2.3(b)-(d). The black vertical line represents the value of importance if every predictor were

equally informative. The most informative predictors in each model are sSum, sDiff, nSum

and kSum, with woverlap and AgeSum slightly more informative than the null importance

value in models 1 and 3. This suggests focal node strength, degree and number of non-

overlapping friends are the aspects of the bow tie most predictive of tie strength in this

network. Feature importance plots for all models and all tie strength measures before and

after imputation are presented in Figures B2(b)-(d) and B3(b)-(d) in the supplementary

material.

For each measure of tie strength, three different models, denoted Models A - C, were

fit using linear regression methods following imputation. Model A denotes the full model

that was fit using OLS regression. Model B was fit using LASSO and Model C using ridge

regression. Because the distributions of normalized and averaged tie strength are highly

skewed for this data set (see Figure 2.6 in section 2.6.2), we first log-transformed each

measure of tie strength and then centered them around the mean. All predictors were

standardized (centered around the mean with unit variance) before fitting models B and

C. Implementing LASSO and ridge regression require the selection of tuning parameters

that determine the extent of shrinkage administered when calculating coefficient estimates.

As the tuning parameter approaches 0, the corresponding coefficient estimates match the

OLS estimates. In this extreme, the amount of bias is minimal, if nonexistent, but the

amount of variance is comparatively high. As the tuning parameter is increased, the values

of the coefficients decrease and approach 0 once the tuning parameter is sufficiently large.

In this extreme, bias is increased but variance in the estimates is decreased. The optimal

choice for a tuning parameter balances the amount of bias and variance and can be selected

via cross-validation. We performed 10-fold cross validation to select values of the tuning

parameters λL and λR. The values of the LASSO coefficients as a function of λL and, as a

more interpretable measure, the l1 penalty ‖β̂Lλ ‖/‖β̂‖1 which represents the amount of
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|zij − ẑij|
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Figure 2.3: Accuracy and feature importance plots for the CDR call network with normalized
(N) and averaged (A) tie strengths. Accuracy, measured as the absolute difference between
empirical tie strength (yij, zij) and predicted tie strength (ŷij, ẑij), for all three models using
RF regression after imputation is shown in (a). Note that only one curve is visible for
each strength measure since the accuracy of all three models is indistinguishable. Feature
importance using RF regression after imputation are shown for Model 1 (b), Model 2 (c) and
Model 3 (d). The horizontal bars represent how informative the predictor is with a longer
bar meaning more informative. The black vertical line represents the value of an equilibrium
or null importance if every predictor were equally informative.
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shrinkage, are shown in Figures 2.7 and 2.9 in section 2.6.2. The values of the ridge regression

coefficients as a function of λR and the l2 penalty ‖β̂Rλ ‖/‖β̂‖2 are shown in Figures 2.8 and

2.10 in section 2.6.2. Significant predictors, their coefficients, adjusted R2 values and the

values of the tuning parameters for models B and C are presented in Table 2.3.

For normalized tie strength, λR was sufficiently large such that no shrinkage was imple-

mented, and the estimated ridge regression coefficients are equivalent to the OLS estimates.

The amount of LASSO shrinkage was approximately 12%, resulting in slightly different coef-

ficient estimates. In all models, overlap, kDiff, sSum, ccDiff and ZipPair were significantly

associated with tie strength. Edge overlap is positively associated with tie strength in all

models, showing that as the proportion of common friends two individuals share increases, so

does the strength of the tie between the two individuals, supporting Granovetter’s hypoth-

esis. Tie strength is negatively associated with kSum and sSum. This suggests that as the

focal nodes expand their social circles and the time spent interacting with friends, the weaker

the tie between them; an appearance of Dunbar’s tradeoff. The positive association between

ZipPair and tie strength implies having the same billing zip code increases the strength

of a tie and could suggest a geographical impact on tie strength. Analogous to the India

social network, ccDiff is positively associated with tie strength in this call network, and the

more dissimilar the non-overlapping clustering coefficients of the focal nodes, the stronger

their tie. Lastly, the R2 values for these models are on the lower side (0.112 on average).

This could be due to the network being constructed with phone-based communication rather

than face-to-face interactions among highly clustered villagers. Furthermore, quantifying tie

strength for CDR data is currently still rather ambiguous; the operationalization of using

communication as a proxy for tie strength has not yet been validated Wiese et al.. An

alternate measure of tie strength may increase the R2 values.

2.5 Discussion

In this work, we introduce the social bow tie; a novel framework we use to perform a

comprehensive analysis of the association between network structure and tie strength. Our
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Normalized Strength (yij) Averaged Strength (zij)
Model Predictor λ Coeff. Adj. R2 λ Coeff. Adj. R2

A overlap - 0.27 0.116 - 0.27 0.117
kDiff -0.35 -0.35
sSum -0.25 -0.25
sDiff - -0.20
ccDiff 0.29 0.29
ZipPair 0.23 0.23

B overlap 0.01 0.21 0.115 0.022 - 0.110
kDiff -0.33 -0.21
sSum -0.25 -0.39
ccDiff 0.23 0.24
ZipPair 0.23 0.23

C overlap 103 0.27 0.116 103 0.28 0.100
kDiff -0.35 -0.27
sSum -0.25 -0.49
sDiff - 0.31
ccDiff 0.29 0.36
ZipPair 0.23 0.24

Table 2.3: Poisson regression results for the India social network. Predictors, coefficients
and the adjusted R2 value is reported.

framework decomposes a social network into a collection of nodes and ties immediately

surrounding each network tie. This utilization of local structure produces easily interpretable

metrics that quantify social perspectives of tie strength and allows for analyses that are

computationally feasible for networks of any size. Through machine learning and regression

methods including LASSO and ridge regression, we determine which properties of the bow

tie structure are the most predictive of tie strength in two different types of social networks;

a contact network of Indian villagers and a nationwide call network of European mobile

phone users.

Overall, following Granovetter, we find that the more friends two individuals share, the

stronger their tie. Following Bott, the more tightly-knit their individual social circles, the

weaker their tie. Furthermore, we find Dunbar’s tradeoff between tie strength and the size

of an individual’s social circle present in both social networks. In addition, we find that the

bow tie framework provides metrics that predict tie strength with high accuracy for both
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networks.

In future work, it would be interesting to apply the bow tie framework to a social network

of married couples. In this case the dominant strong tie has properties that are not seen

in more casual social ties, namely the individuals constitute a particularly strongly defined

social institution that has both emotional (romantic attachment) as well as structural (e.g.

common responsibility for children and common ownership of capital investments such as a

home) elements that provide it resiliency. This would enable testing of the original version

of Bott’s hypothesis, rather than a generalized form as we present here. It would also be

interesting to test if the strength of in-person ties behaves similarly for the mobile phone

call network.
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2.6 Additional Figures

2.6.1 India Social Network

0.00

0.25

0.50

0.75

1.00

0 2 4 6 8 10 12

|wij − ŵij|
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Figure 2.4: Accuracy and feature importance plots for the India social network. Accuracy,
measured as the absolute difference between empirical tie strength (wij) and predicted tie
strength (ŵij), for all three models using RF regression before (B) and after (A) imputation
is shown in (a). Feature importance using RF regression before and after imputation are
shown for Model 1 (b), Model 2 (c) and Model 3 (d).
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Figure 2.5: Accuracy and feature importance plots for the India social network. Accuracy,
measured as the absolute difference between empirical tie strength (wij) and predicted tie
strength (ŵij), for all three models using RF classification before (B) and after (A) imputa-
tion is shown in (a). Feature importance using RF regression before and after imputation
are shown for Model 1 (b), Model 2 (c) and Model 3 (d).
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2.6.2 CDR Call Network
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Figure 2.6: Distributions of (a) normalized call duration yij, (b) the natural log of yij, (c)
averaged call duration zij, and (d) the natural log of zij.
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(a)

(b)

Figure 2.7: The standardized LASSO coefficients as a function of λL (a) and ‖β̂L‖/‖β̂‖1 (b)
using 10-fold cross validation for the CDR normalized tie strength data set after imputation.
Each line represents a different predictor. The dashed black line indicates the value of chosen
via cross validation.
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(a)

(b)

Figure 2.8: The standardized ridge regression coefficients as a function of λR (a) and
‖β̂L‖/‖β̂‖2 (b) using 10-fold cross validation for the CDR normalized tie strength data set
after imputation.
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(a)

(b)

Figure 2.9: The standardized LASSO coefficients as a function of λL (a) and ‖β̂L‖/‖β̂‖1 (b)
using 10-fold cross validation for the CDR averaged tie strength data set after imputation.
Each line represents a different predictor. The dashed black line indicates the value of chosen
via cross validation. The colored lines represent the predictors significantly different than 0.
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(a)

(b)

Figure 2.10: The standardized ridge regression coefficients as a function of λR (a) and
‖β̂L‖/‖β̂‖2 (b) using 10-fold cross validation for the CDR averaged tie strength data set
after imputation.
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3

Imputation in Social Networks Using Super Learner

Abstract

Missing data and non-response are common occurrences in, and great hindrances to, the

analysis of social network data. While any kind of statistical analysis can be negatively

affected by missingness, the effects can be even more detrimental in network data analysis

due to the high sensitivity of missing data on network topology and the complexity of network

surveys and data collection. Many imputation methods have been introduced in the classical

statistics literature as a way to maintain power and sample size in the presence of missing

data. However, the extension of these methods to the networks framework has been scarcely

studied. Here we use Super Learner to impute both edge and nodal attributes of a nationwide

call network of European mobile phone users with varying amounts of missingness. We

impute the age, age category, and sex of individuals, and the total call duration and text

message communication between two individuals over a three-month time period. We find

that Super Learner performs better or as well as any individual learning algorithm alone for

the imputation of each attribute, and that the amount of missingness does not significantly

affect performance. Additionally, we find that the accuracy of age category imputation

is sensitive to the choice of categorical thresholding. A thresholding scheme that results

in approximately equal proportions of individuals in each category ensures a gain in age-

stratified accuracy over the null accuracy of random assignment, but a lower overall accuracy

when compared to thresholding resulting in imbalanced categories.
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3.1 Introduction

Standard statistical methods are designed to analyze complete data sets where all data has

been observed. However, missing data and non-response are common occurrences in social

network data. Network data collection can be time consuming and complex, resulting in

missing nodes (individuals) and edges (social connections between individuals). One of the

main causes of missingness in social networks is non-response, of which there are two types:

unit non-response, where a node and all of its ties and attributes are missing, and item

non-response, where data is missing for particular ties or nodal attributes Huisman (2007).

While missingness hampers all statistical analyses, its impact can be substantially greater

for network data analyses since network structure and metrics are extremely sensitive to

missingness Burt (1987)Borgatti and Molina (2003).

The impact of not only missing data, but the mechanism driving the missingness, i.e.,

how missing variables are related to the underlying values of the variables in the data set,

were largely ignored until Rubin Rubin formalized missingness theory in 1976. The most

restrictive, and most commonly assumed mechanism in practice, is missing completely at

random (MCAR). In this scenario, the probability of missingness does not depend on the

values of missing or observed data. Missing at random (MAR) is less restrictive and assumes

missingness only depends on the observed data. A simple example being male patients

refusing to answer survey questions about depression, but their non-response not being

related to the level of their depression. The least restrictive assumption is that data is not

missing at random (NMAR), and missingness could also depend on the data not observed.

A common example of this mechanism is patients dropping out of a study due to a higher

severity of the disease being studied. Ignoring the cause of missingness or choosing the

incorrect missingness mechanism, results in invalid inference by introducing significant bias

and attenuation of regression coefficients. Perhaps even more detrimental to analysis, is

removing all missing data and analyzing only ‘complete cases’, which results in a loss of

information and statistical power due to a decrease in sample size, and the diminished ability
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to report conclusions about the target population being studied Little and Rubin (2002).

Methods for data analysis in the presence of missingness have been created and fall into

three main categories: likelihood-based methods, inverse probability weighting of complete

cases, and imputation. The focus of our work pertains to imputation.

Data imputation is the process of replacing missing data with plausible estimates. This

results in a complete data set with maintained sample size and no loss of information, which

can be analyzed using standard statistical techniques Little and Rubin (2002). Furthermore,

if the observed data provides information on the missing data mechanism, better predictions

of missing values can be obtained Little and Rubin (2002). Methods for selecting the best

value to substitute fall into main two categories; single and multiple imputation. Single

imputation methods for networks include reconstruction Stork and Richards (1992), where

the missing part of the network is reconstructed using the observed relations (ties) of the

missing actors, unconditional mean, i.e., imputing the density of a network as the probability

of imputing an edge, preferential attachment, where the probability that an individual i

will be connected to another individual j is proportional to the degree of j, and hot-deck

imputation where the attributes and structural properties of completely observed nodes are

used as ‘donors’ and replace missing nodes and edges. Initially, imputation was conducted

using only topological metrics as predictors. More recently, it was found that including

the attributes of nodes as predictors can increase the accuracy of both imputation and

link prediction, and several studies have since used a combination of structural metrics and

nodal attributes, as well as more advanced algorithms for imputation Gong (2014) Brea et al.

(2014) Dong et al. (2014) Zamal et al. (2012) Gong and Liu (2016). Brea et al. presented

the reaction-diffusion algorithm for the imputation of age of mobile phone users in Mexico

Brea et al. (2014). Age was partitioned into four categories and the probability of being

assigned to each category was updated at each time step with topological metrics and nodal

attributes impacting the probabilities. At the last time step, an individual was assigned

the age category with the highest probability. Dong et al. were the first to introduce an

algorithm for imputing two attributes (age and sex) simultaneously; the Double Dependent-
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Variable Factor Graph Model Dong et al. (2014). They use homophily in conjunction with

the maximization of objective functions to impute sex and categorical age for individuals

in a network created from phone call and SMS messages. While both of these more recent

algorithms show significant gains in accuracy, they are limited to binary and categorical

dependent variables.

In this work we employ the loss-based supervised learning method Super Learner to

impute binary, categorical, and continuous edge and nodal attributes of a nationwide call

network of European mobile phone users, and study how the amount of missingness affects

our results. Our analysis includes predictors that are novel to network attribute imputation,

and the optimal combination of a collection of prediction algorithms for the imputation of

each attribute. We find that Super Learner predicts attributes with greater or as much

accuracy as any of the other learning algorithms alone for each attribute. Our analysis

also provides evidence that the accuracy of imputation of age category is highly sensitive to

category thresholding.

The rest of this paper is as follows. In section 2 we describe the data set used for analysis.

Section 3 details the attributes imputed, the predictors chosen for imputation, the different

amounts and mechanism of missingness introduced, and the learning algorithms included in

the Super Learner library. Our results are presented in Section 4 and discussed in Section 5.

3.2 Data Description

The data set used consists of call detail records (CDRs) from a mobile phone provider in

an undisclosed European country where 68% of citizens own a smartphone and 85% own

a cellular phone. The records span a period of three months in 2013, and each record

consists of the following daily aggregate communication summaries for pairs of individuals:

the date, anonymized caller ID, anonymized callee ID, daily call duration (in minutes), daily

number of calls, daily number of text messages (SMS), and daily number of multimedia

messages (MMS). Age, sex, and billing zip codes were available for a large majority (72.3%)

of individuals. An undirected, weighted call network was created from the records by first
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summing the call durations and number of text messages between any two individuals over

the three-month period. If two individuals spoke on the phone or communicated via text

message at least once during the period, we connected them with an edge. Each edge is

characterized by two measures of strength; wCDij , the total amount of time spent on the

phone with each other, and wSMS
ij , the total number of text messages shared.

3.3 Methods

Imputation was performed for nodal attributes age (continuous and categorical) and sex

(binary), as well as the edge attributes total call duration between two individuals, and total

SMS communication between two individuals. We first introduce the variables used for the

imputation of age and sex for an individual i. Because age and sex are nodal attributes, we

used node-level metrics for imputation, with many based on the assumption of homophily.

The metrics included i’s degree, clustering coefficient, call duration strength, i.e., the total

time i spends on the phone, SMS strength, i.e., the total number of SMS messages sent

or received by i, the average degree of i’s friends, the average time i’s friends spend on the

phone, the average number of SMS messages sent or received by i’s neighbors, the proportion

of node i’s friends that are male, the proportion of friends that are female, the mean age

of i’s friends and its standard deviation, the median age of i’s friends, and the entropy of

node i’s call duration strength and SMS strength. Here, entropy measures how an individual

distributes their total strength, either call duration or SMS messages, among their neighbors,

where the value is maximized when strength is evenly distributed among all neighbors. See

Table3.1 for a full description of all variables. Note that for each individual with missing

attributes, we assume neither their age or sex is known. Therefore, the age of an individual

i is not used to impute the sex of individual i, and similarly the sex of an individual is not

used to impute their age or age category.

Similar metrics were chosen for the imputation of attributes of an edge between two

individuals i and j.The predictors chosen include standard network metrics as well as novel

metrics introduced in Mattie et al. (2017). The standard metrics include the sum and
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absolute difference in the degrees of i and j, unweighted Onnela et al. (2007) and weighted

Mattie and Onnela (2017) edge overlap. The metrics proposed by Mattie et al. (2017) include

the sum and absolute difference in customized versions of the clustering coefficients of i and

j, the number of friends i and j share, and the number of edges among the shared friends.

Predictors created from the attributes of i and j include the sum and absolute difference in

the ages of i and j, and an indicator of the paired sex category, i.e., male-male, male-female,

female-female. See Table3.2 for a full description of all variables.

The imputation of each attribute was performed using Super Learner with 10-fold cross-

validation. As required, we re-scaled all predictors (centered around the mean with unit

variance), and created indicator variables for all categorical variables (often referred to as

dummy variables) Polley and van der Laan (2010). Then, each sample was split into 10

groups of 100 observations. We then randomly removed attributes from p% of the obser-

vations with p ∈ {5, 10, 20, 25, 50}, simulating a MCAR missing data mechanism. Three

libraries of learning algorithms were created; one for the imputation of binary variables,

one for categorical variables, and one for continuous variables. The binary value library in-

cluded random forest (RF), logistic regression (LR), Naive Bayes (NB), k-nearest neighbors

(KNN), least absolute shrinkage and selection operator (LASSO), neural networks (NNET)

and support vector machines (SVM). The categorical variables library included RF, con-

ditional mean (MEAN), multinomial logistic regression (MLR) and multinomial log-linear

models via neural networks, also labeled NNET. The algorithms used for continuous at-

tribute values included mean imputation (MEAN), ridge regression (RIDGE), general linear

models (GLM), linear regression (LM), SVM, NNET, LASSO, and RF. The number of trees

used when implementing RF was 1000, and the number of predictors considered when split-

ting a node was 5. A value of k = 10 was used for KNN, and the shrinkage parameters for

LASSO and RIDGE were selected using 10-fold cross-validation. Accuracy of imputation

was measured as the absolute residual for continuous variables (age, wCDij and wSMS
ij ), and

precision, recall, F-measure and % hits were used for discrete variables (sex, age category).

The accuracy of Super Learner, along with all of the other learning algorithms, was quantified
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Variable Name Description

k Degree of node i
sCD The call duration strength of node i
sSMS The SMS strength of node i
cc The clustering coefficient of node i
avgk The average degree of node i’s neighbors
avgCD The average call duration strength of node i’s friends
avgSMS The average SMS strength of node i’s friends
pMale The proportion of node i’s friends that are male
pFemale The proportion of node i’s friends that are female
avgAge The average age of node i’s friends
sdAge The standard deviation of node i’s friends’ ages
medAge The median age of node i’s friends
entCD The entropy of node i’s call duration strength,

∑
i p
CD
i f(pCDi )

entSMS The entropy of node i’s SMS strength,
∑
i p
SMS
i f(pSMS

i )

Table 3.1: Variables used in the imputation of nodal attributes.

Variable Name Description

kSum Sum of the degrees of i and j (ki + kj)
kDiff Absolute difference in the degrees of i and j (|ki − kj |)
ccSum Sum of the clustering coefficients of i and j
ccDiff Absolute difference in the clustering coefficients of i and j
AgeSum Sum of the ages of i and j
AgeDiff Absolute difference in the ages of i and j
MM Indicator that i and j are both male
MF Indicator that i and j are opposite sexes
FF Indicator that i and j are both female
overlap Unweighted overlap of edge between i and j
woverlap Weighted overlap of edge between i and j
nij Number of common friends of i and j
eij Number of edges among the common friends of i and j
CD* The total call duration between i and j. *Used only for the imputation of SMS
SMS* The total number of text message communication between i and j.

* Used only for the imputation of CD.

Table 3.2: Variables used in the imputation of edge attributes.
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using the cross-validated risk estimate.

3.4 Results

The call network contained 2,276,495 nodes and 12,345,848 edges. Age was available

for 89.25% of the individuals and had a mean of 48.2 (sd = 18.2) years. Of the 89.03% of

individuals whose sex was recorded, 52.51% were male. Due to the large size of the network,

three random samples were drawn; two for edge attribute imputation and one for nodal

attribute imputation. The first sample was for call duration wCDij imputation and consisted of

1,000 randomly drawn edges with call duration greater than 0 and full attribute information

available for all nodes. The average call duration was 154 (sd = 290.63) minutes. Due to

the skewness of the distribution, wCDij was log-transformed before imputation. Similarly, the

second sample was for SMS imputation, and consisted of 1,000 randomly drawn edges with

wSMS
ij greater than 0 and full attribute information available for all nodes. The average

number of SMS messages was 36.62 (sd = 20.39). This distribution was also skewed, and

wSMS
ij was also log-transformed before imputation. The third sample was used for both

age and sex imputation and contained 1,000 randomly sampled nodes such that the nodes

sampled, as well as all of their neighbors, had full attribute information, i.e., age and sex,

available. Age was normally distributed with a mean of 47.2 (sd = 20.1) years. The average

clustering coefficient was 0.23, 47.2% of individuals were male, and the average degree was

equal to 10.89. Note that obtaining samples without any missing data ensured knowledge of

the ‘ground truth’ needed for quantifying the accuracy of our method.

Imputation accuracy results for age, total call duration wCDij and total text message

communication wSMS
ij are shown in Figure3.1. In each case, the proportion of missing data

has no significant impact on performance. Age within 17 years is predicted with an accuracy

of 75%. Total call duration within 13 minutes and total SMS communication within 18

messages can be predicted with 75% accuracy. Table 3 shows the F-measure, precision, and

recall results for sex and two different categorizations of age. The first categorization follows

that of Brea et al. (2014), and divides age into four categories: < 25, 25− 34, 35− 50,
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Figure 3.1: Imputation accuracy plots for a) age, b) age category, c) sex, d) total call
duration (wCDij ) and e) total text message communication (wSMS

ij ). Accuracy is measured
as the absolute residual for continuous variables (age (years), wCDij (minutes per 90 days),
and wSMS

ij (text messages per 90 days)). F-measure, recall and precision are presented as
accuracy measures for discrete variables (sex (M/F) and age category (< 25, 25−34, 35−50,
50+).
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Attribute F-measure Precision Recall

Sex 0.63 0.67 0.64
AgeCat1 0.34 0.21 0.86
AgeCat2 0.34 0.21 0.87

Table 3.3: Accuracy in terms of F-measure, precision and recall for sex (M/F), and both
categorizations of age. AgeCat1 refers to the < 25, 25− 34, 35− 50, 50+ categorization, and
AgeCat2 refers to the < 33, 33− 47, 48− 63, 63+ categorization.

Learning Algorithm

Category % Population SL1 SL2 RF NNET MLR MEAN

< 25 17.7% 41% 1.1% 41.2 % 39.5% 30% 0%
25− 34 9.7%. 4% 29.9% 6.2% 2.1% 0% 0%
35− 50 29.3% 60% 62.8% 60% 45.4% 51.2% 0%

50+ 43.3 % 81.5% 70.7% 81% 82.9% 83.8% 100%

Overall 60.6% 52.1% 60.6% 56.4% 56.6% 43.3%

< 33 24.9% 59% 30% 57% 55.8 % 55.4 % 2.8%
33− 47 25% 44% 66% 47.2% 36.8% 38% 15.6%
48− 63 25.4% 41%. 46.5% 36.2% 31.9% 32.7% 68.5%

63+ 24.7 % 69% 46.5% 70.4% 74.9% 74.5% 0%

Overall 52.9% 49% 52.6% 49.7% 50% 22%

Table 3.4: Accuracy of age category imputation overall, and stratified by category for both
categorizations. The category thresholds of the first group match those inBrea et al. (2014).
The thresholds of the second group ensure an approximately equal proportion of the popu-
lation in each category. SL1 denotes the Super Learner imputation of age category directly,
and SL2 denotes the categorization of the Super Learner imputation of continuous age. The
individual learning algorithms include random forest (RF), multinomial log-linear models
via neural networks (NNET), multinomial logistic regression (MLR) and conditional mean
imputation (MEAN).

and 50+. We denote this categorization AgeCat1. However, our call network consists of a

majority of older individuals, and these category thresholds create a heavy imbalance in the

proportion of individuals in each category. Here, 17.7% of individuals are < 25 years old,

9.7% are between 25 and 34, 29.3% are between 35 and 50, and 43.3% are over 50 years

old. Therefore, we categorized age again using thresholds that ensured an approximately

equal number of individuals in each category. The second set of categories are < 33, 33−47,

48 − 63 and 63+, which we denote AgeCat2. The overall accuracy (% hits) and accuracy

stratified by age category for Super Learner and the individual learning algorithms are shown
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in Table 4. The proportion of missing data again had no significant effect on the results and

the results with p = 10% are shown. In addition to the accuracy of direct age category im-

putation using Super Learner, we also calculated the accuracy of first imputing a continuous

value of age using Super Learner, and subsequently categorizing those values using the two

categorizations mentioned above. We denote the direct imputation of age category using

Super Learner as SL1, and the indirect imputation of age category via categorization of a

continuous imputation of age using Super Learner as SL2. With the first categorization, the

50+ age category is accurately classified 81.5% of the time; a 56.5% increase in accuracy

if age category were assigned randomly, and a 38.2% increase if age were set to the most

probable age category (50+). For the 35-50 year old age category, a gain of 35% was achieved

compared to randomly assigning age category. There was a gain of 16% over random as-

signment for the < 25 age category, but a significant loss in accuracy (21%) for the 25 − 34

age group. However, this is likely partially due to the high imbalance in the proportion of

individuals in each category since there is a significant gain in accuracy for the 25−34 group

when the proportions of individuals in each category are more evenly distributed. There

is an interesting tradeoff in overall accuracy versus age-stratified accuracy using the two

different thresholds for categorization. A more balanced thresholding (AgeCat2) guarantees

age-stratified accuracy will be higher for every category than if age category were randomly

assigned. However, the overall accuracy for a more balanced categorization is lower than

for the unbalanced (AgeCat1). Furthermore, the accuracy of the most populous category in

an unbalanced categorization is much higher than any one of the categories of a balanced

categorization. Additionally, in this data set, categorizing an imputed value of continuous

age (method SL2) does not increase overall accuracy, but does illustrate the sensitivity of

age-stratified accuracy. This sensitivity and variation in accuracy is visualized in Figure3.2.

The blue boxes indicate where the categorization of a continuous value of age would be

accurate. If all of the black dots fell into the shaded regions, the algorithm would achieve

100% accuracy.

The algorithm weights chosen by Super Learner for each attribute are shown in Table3.5.
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Figure 3.2: Visual representation of the relationship between thresholds of categorizing im-
putations of continuous age and accuracy. In each plot, the x-axis represents an individual’s
actual age, and the y-axis their predicted age using Super Learner. The red dashed lines
denote the age category thresholds for each categorization. Plot (a) is the < 25, 25 − 34,
35− 50, and 50+ categorization and plot (b) is the < 33, 33− 47, 48− 63, and 63+ catego-
rization. The blue boxes shade the accuracy area, i.e., if the actual age category matches the
predicted age category. If all dots were contained in the blue boxes, age category imputation
would be 100% accurate.

Random forest was given the majority of weight for the imputation of each attribute, reaching

a maximum of 0.86 for continuous age. Logistic regression was given a significant weight of

0.37 for the imputation of sex. Neural networks was also given significant weight for the equal

thresholding of age category (AgeCat2) and call duration wCDij . Note that the RF weights

were similar for both categorizations of age, but the second algorithm given positive weight

differed; MLR for AgeCat1 and NNET for AgeCat2. The graphical results of the accuracy

of Super Learner for p = 5% missingness are shown in Figure 3. As expected, Super Learner

performs as well or better than the most accurate algorithm van der Laan (2007)Polley and

van der Laan (2010). Random forest was the most accurate algorithm for imputing age,
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neural networks was the most accurate for total call duration wCDij , and Super Learner was

the most accurate for total SMS communication wSMS
ij .

Learning Algorithm
Attr. RF NNET LASSO SVM KNN NB LR LM RIDGE MEAN GLM MLR

Age 0.86 0.01 0 0.05 - - - 0 0.08 0 0 -
AgeCat1 0.90 0 - - - - - - - 0 - 0.10
AgeCat2 0.78 0.22 - - - - - - - 0 - 0
Sex 0.55 0.03 0.009 0.04 0 0.001 0.37 - - - - -
wCD

ij 0.476 0.412 0.07 0 - - - 0.002 0.013 0.027 0 -

wSMS
ij 0.66 0.131 0 0 - - - 0 0.2 0 0 -

Table 3.5: Average learning algorithm weights for Super Learner. The algorithms include
random forest (RF), neural networks (NNET), least absolute shrinkage and selection operator
(LASSO), support vector machines (SVM), k-nearest neighbors (KNN), Naive Bayes (NB),
logistic regression (LR), linear regression (LM), ridge regression (RIDGE), mean imputa-
tion (MEAN), generalized linear models (GLM) and multinomial logistic regression (MLR).
AgeCat1 references the < 25, 25 − 34, 35 − 50, and 50+ categorization, and AgeCat2 the
< 33, 33− 47, 48− 63, and 63+ categorization.

3.5 Discussion

In this work we perform network attribute imputation through the implementation of the

loss-based supervised learning method Super Learner. We define libraries of learning algo-

rithms for binary, categorical, and continuous responses as well as novel attribute predic-

tors based on network topology and homophily and apply our method to a nationwide call

network of European mobile phone users. We introduce different amounts of missingness

ranging from 5% to 50%, and impute the age, age category and sex of individuals, as well as

the total call duration and text message communication over a three-month period between

two individuals. We find that Super Learner performs as well as or better than any one

learning algorithm alone for the imputation of each attribute. We also find that the overall

and age-stratified accuracy of age category imputation is sensitive to category thresholding.

Specifically, if there is a roughly equal number of individuals who belong in each category,

accuracy stratified by age will be greater than if age category were randomly assigned. How-

ever, overall accuracy is increased if there is an imbalance in the proportion of membership in

each category. Interestingly, in either case, Super Learner outperforms the reaction-diffusion
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algorithm presented by Brea et al Brea et al. (2014); the first categorization of age (the im-

balanced thresholding) yields an accuracy increase of over 10%, and the second (balanced)

categorization an increase of 3%. While this is not a completely accurate comparison due

to the differences in data sets and age distributions in our study and the study by Brea et

al., our results seem to be promising and it would be worth applying their algorithm to our

data set for a more precise comparison.

In future work we would like to test if accuracy is altered by choosing different ensemble

methods when implementing Super Learner. Here we chose the most common method, non-

negative least squares, but could use non-negative log likelihood instead. Additionally, it

would be interesting to see how altering the missing-data mechanism to MAR or NMAR

impacts our results. Huisman implemented all three mechanisms on a small social network

of teenage girls and found that the mechanisms produce some differences in results Huisman

(2007). Specifically, he found that transitivity and assortativity were highly sensitive to the

missingness mechanism. We would also like to apply our method to different data sets to

see if the results depend on the type of network studied.
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Figure 3.3: Accuracy of Super Learner measured as cross-validation (CV) risk for continuous
attributes a) age, b) total call duration, and c) total SMS communication. The black dots
represent mean CV risk and the horizontal lines span ±2 standard deviations. Super Learner
performs better than or as well as all other algorithms.
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