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Correcting for Biases Arising in Epidemiologic Research

ABSTRACT

In chapter 1, we explore the performance of naive least squares estimators for latency parameters
in linear models in the presence of measurement error. We prove that in many scenarios under a
general measurement error setting, the least squares estimator for the latency parameter remains
consistent, while the regression coefficient estimates are inconsistent as has previously been found
in standard measurement error models where the primary disease model does not involve a latency
parameter. Conditions under which this result holds are generalized to a wide class of covariance
structures and mean functions. The findings are illustrated in a study of body mass index in relation
to physical activity in the Health Professionals Follow-up Study

In chapter 2, we extend the results obtained in chapter 1 to the survival setting when the exposure
of interest is a time-varying recent-moving cumulative average. We show that when the disease out-
come is rare, the latency parameter for a surrogate exposure is approximately the same as the latency
parameter for the corresponding true exposure. We show these results in a series of simulations and
illustrate the findings in a study of air pollution and incidence lung cancer in the Nurses Health
Study.

In chapter 3, we specificy a statistical framework for estimation and inference based on inverse

probability weighting (IPW) to adjust for selection bias in EHR-based research that allows for a
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hierarchy of missingness mechanisms to better align with the complex nature of electronic health
record (EHR) data. We show that this estimator is consistent and asymptotically Normal, and we
derive the form of the asymptotic variance. We use simulations to highlight the potential for bias in
EHR studies when standard approaches are used to account for selection bias. We use this approach

to adjust for selection in an on-going, multi-site EHR-based study of bariatric surgery on BMI.
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1.I INTRODUCTION

Identification of the latency period of a time-varying exposure can be key when assessing the effects
of many environmental, nutritional, and behavioral risk factors. The latency period is the time win-
dow leading up to the occurrence of an outcome during which time the exposure predicts the out-
come. Outside the latency period, the exposure has no effect. Latency periods have been discussed
in many different frameworks. Caplan et al’ provided a general formula for weighting exposure
metrics in assessing dose-response associations in epidemiological studies. Salvan et al* proposed
methodology for selecting a lag time, after which the exposure has no effect, in models for relative
risk. Hauptmann et al® proposed the use of sliding time windows, which fits a series of risk models
which contain cumulative exposure during fixed times intervals, for the exploratory analysis of tem-
poral effects of smoking histories on lung cancer risk. Others have considered spline functions and
lag models to estimate latency patterns#°. Wang et al” derived likelihood-based methods to esti-
mate latency parameters for survival models for a range of latency and exposure metrics. Although
there have been methods proposed for estimating a latency function or period of susceptibility, thus
far, none has considered the performance of these estimators in the presence of exposure measure-
ment error.

Measurement error is a broad term that generally refers to the deviation of some measured value
from its true value. It can be present in exposure, confounding, and outcome variables. It can simply
be random noise, or it can be dependent on any number of factors, including the true exposure

itself and outcome variables. In many cases, measurement error leads to bias®. Methods have been



developed to estimate and correct for this bias in a number of settings, including linear and logistic

regression %120

' and other nonlinear models™*. In a regression setting, these methods often
implement a regression calibration approach, which requires estimation of, or historical knowledge
of, the underlying measurement error model. None of these methods, however, has been applied to
a setting where the model includes one or more latency parameters. Therefore, the effect of exposure
measurement error on the estimation of a latency parameter, and subsequent regression coefhicients,
is unknown.

In this paper, we explore the performance of naive least squares estimators for both the latency
parameter and the regression coefficients in linear models, when exposure measurement error is
present but ignored in the analysis, assuming a linear measurement error model. The findings are

illustrated in a study of physical activity in relation to body mass index (BMI) in the Health Profes-

sionals Follow-up Study (HPES).

1.2 METHODS

1.2.1 LATENCY METRIC

When studying the effect of timing of exposure, for example, a latency period or age-related suscep-
tibility, an appropriate exposure metric needs to be specified. Some of these include mid-life or later-
life-related susceptibility windows, exposure during a critical period of susceptibility, and age-related
or time-related moving exposure with a lag”. In Table 1.1, we define some time-varying exposure met-

rics for an individual, 7, that include a single latency parameter, 4, and a time-varying exposure, X;(z),



which have previously been considered in epidemiologic research.

Table 1.1. Exposure metrics with a single latency parameter

hi(ﬂ, l‘)
Continuous Discrete
Metric Average Total Average Total
t
| SR
Recent Moving Jia }:(S)ds [ L Xi(s)ds % Z Xi(s)

DX,

Susceptibility window w f; X;(s)ds P Z Xi(s)
| Sxo
Exposure during period of susceptibility j;"ﬂx%(ti)‘is [7 Xi(s)ds % Z Xi(s)
t—a =
DX,
Moving exposure with a lag f"’ti:i(:o & [ X (s)ds % Z Xi(s)
s=t,
One-time exposure effect X;(a)
A lag type model Xi(t—a)

Though results of this paper can be generalized to all exposure metrics presented in Table 1.1, we
focus on the recent moving cumulative average. The recent moving cumulative average at a given
time ris defined as the average exposure over (# — 4, ¢). With a continuously measured exposure at

time ¢, this can be written as

f:_a X,'(s)ds.

a

/71'(61, l‘) =

This function is not observed; rather, it is measured at discrete points in time, X;(s) for s = 5o, 51, ...



Hence we represent b;(a, t) by its discrete approximation using empirical data

> X

hi(a,t) = 75:;:_ .

Recent moving cumulative average is often used in air pollution epidemiology (e.g.,"""®) where 2
defines the beginning of the recent exposure susceptibility period. While this paper focuses on the

recent moving cumulative average, any single-parameter latency metric can be used as »;(a, 7).

1.2.2 LEAST SQUARES EsTIMATION

We consider a least squares approach for estimating b, o, a,, and a,. This corresponds to minimiz-

ingL = 7 Z l;, where 7 is the number of independent individuals in the study and

=1

l = {Yl(tl) — Qo — alh?(b, fi) — DCZTC,‘}Z.

By the Weak Law of Large Numbers (WLLN)"7, as the sample size (i.e. the number of individuals

n

for a fixed amount of follow-up time) goes to infinity, L converges in probability to h_{n NTE, 5 o).
n o0 n _I 1y&1y ™1
n

Define ¢ (b, a0, oy, 21, as EY,Z,C[L] = 2 ZEYi,Z,Ci[Zi]’WhereZ = (Z,Zz, ...,Z,,), Y =

1=I

(Y, ..., Yp),and C= (G, ..., Cy). As shown in Appendix A.2,

b L 1 b
) Qo Oy, Ay —> argmin | im e (b, ao, oy, ;)
n—r 00



P . e S e
where —> denotes convergence in probability as # — 00, and b, &, &, &, are the least squares

estimators for b, o, o, a,, respectively. We show in Appendix A.3 that for any fixed b,

&, | = Liprayx(pra) Aot

where Q = iz G (1 cr br(b, z‘i)> and A = iz i [I cl (b, fi)] 8,

i=1
bz*(bv ti) bf(ba l‘,')
n n
Defineg, = 7 Z b (a,t;)and g, = Z b; (b, t;). Using the results above, we show in Appendix
i=1 i=1
A .4 that under the surrogacy assumption, which states that conditional on 5(, and C,, Zi does not

provide any additional information about Y, the minimum of e (4, ., a1, 2t,) is equivalent to the

maximum of

—~ ~ T~~~ — T~y o~
Covy, + 2Cov, Covey X Cov(;a + VaryCovg, 2 Covcy,

6‘* (b) Ao, O, 0‘2) = EZ,C ’

~_1 ~

Vary — CovaZ Couvcp

where Eo/vab Zb* a, )b (b, ;) — — Zh* a,t;) ( Zh* (b, t; > is the empirical covari-
£5%(a, 1), b (b, 1;), Cor Cb*bl—f Gl ES (b, 1) | isacol :
ance of b’ (a, 1;), b (b, t;), Covcy = Z %) Z (nz *( t)) is a column vec

n
tor of the empirical covariance of C;, b} (b, 1;), Covc,z = Z Cih (a, t;)— Z C; (I Z b (a, ti)>
n <
1=1
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n n
— 1
is a column vector of the empirical covariance of G, b} (4, 1;), Vary, = - E br(b, ;) — - E b (b, 1)
i=I1 [

n n n T
~ I I
is the scalar empirical variance of 47 (b, £;),and ¢ = -+ g cGl — = E G| - E C; | isthe
i=1 1=I 1=I

empirical variance-covariance matrix of Cj.

1.2.3 CONSISTENCY OF THE LEAST SQUARES ESTIMATOR OF THE LATENCY PARAMETER

. . . Cov,
We can see simply that in the absence of confounders (i.e. p = o), €* reduces to Ej | ==
Vary

n n

Var,Vars~ a VoS o 1 E 2 1 } : .

EZ [%} = EZ [Vﬂraeab]:Where VﬂVa = P : b:((ﬂ, ti) — ; : b?(g7 [i) is the
=1 i=1

scalar empirical variance of b} (4, ;) and is not a function of b, and g, = —~2&— is the empirical

Var,Vary

correlation between b} (a, 1;) and b7 (b, #;). Given that any correlation is bounded between -1 and
I, and that /I/;;”a > o, the maximum of ¢* is equal to the maximum of ¢ ,, which is 1. Under the
assumption that¢ , = rifand only if # = b, this implies that ¢* is maximized at & = 4, and the least
squares estimator, b, is consistent for the true latency parameter for the exposure measured without
error, 4.

We further show in Appendix A.s that when the empirical correlation between C; and b7 (b, #;)
is constant over time (i.e. EJqu is not a function of b), the expression for e* (4, ato, a1, ot,) in (2.3)
is again maximized when'¢ , = 1. Under the same assumption that¢ , = rifand onlyifz = b,
¢* (b, ao, o4, a,) is maximized at b = 4, and the least squares estimator for the latency parameter is
consistent for the true latency parameter, a.

. T . . .. , . .
Conditions under which & —> 4 regarding covariances can empirically verified in any given

dataset. They also allow for a wide class of covariance structures, including but not limited to, the



compound symmetric covariance structure where the covariance of Z; for repeated measures of Z
within an individual is constant at ¢ < 1for discrete time points, and AR(1) covariance structures,

where the correlation in Z; between two time points is of the form gl |

< 1whereg < 1for
discrete and continuous time points. Proofs can be found in the web supplement.

Although the least squares estimator for the latency parameter is consistent in the presence of ex-
posure measurement error, the estimated regression coefficients are not necessarily consistent. When
the latency parameter is known, the least squares regression of the outcome model in (3) reduces to
ordinary linear regression with 4} (, ;) as the exposure of interest, which is known to be biased in
the presence of exposure measurement error*#. If we know or can estimate the linear model for the
measurement error in the exposure (e.g. by a validation study), we can use this information to derive
the measurement error model for the latency metric. For example, according to the recent moving
cumulative average exposure metric, if X;(s) = v, + 3,Zi(s) + ¢(s), where 3, and v, are known or
can be estimated and ¢;(s) are independent, identically distributed with mean o and finite variance,
then it follows that

ti ti
Gy 0 + )

bi(ﬂa ti) - =% + ')/Ibf(ﬂ, ti) + Ei,
a a

~ ti . . .
where ¢; = 2 ft'tfa ¢; has mean o and finite variance. Thus we are able to derive the measurement
1
error model for the recent moving cumulative average. Note that a similar approach can be taken for
any of the exposure metrics. This will allow us to correct for any bias in the least squares estimates of

oo and a, using regression calibration-type methods*°, ultimately giving us consistent estimates of



the latency parameter and regression coefficients.

1.3 ILLUSTRATIVE EXAMPLE

We used the results above to examine the relationship between physical activity history and BMI
in the Health Professionals Follow-up Study (HPFS), and to evaluate the performance of the least

squares estimator for the latency parameter in the presence of exposure measurement error.

3.1 STUDY POPULATION

We included 16,731 men who were participants in the HPFS with complete BMI information in
2006, complete physical activity history between 1986 and 2006, and reported age and race. HPFS
is a prospective cohort study that began in 1986, enrolling 51,529 men, ages 40 to 75 years*. Base-
line questionnaires were mailed to all participants to collect information on demographics, medical
history, and lifestyle factors. A follow-up questionnaire was mailed to participants every 2 years col-
lecting information, including current physical activity and BMI. As shown in Table 1.2, the men in
the HPFS were primarily white, reflecting the demographics of male health professionals during the
era in which they trained. Mean reported physical activity increased over time, which is consistent

with previous studies of the long-term physical activity among health professionals**.

10



Table 1.2. Characteristics of 16,371 men in the HPFS

Race, %
White 92.4
Black 0.4
Asian 1.3
Other 5.9
BMI in 2006, mean(sd) 25.9(3.6)
Age in 1986, mean(sd) 52.0(8.5)

Physical activity in 1986 in MET-hrs/wk, mean(sd)  22.0(29.5)
Physical activity in 1996 in MET-hrs/wk, mean(sd)  37.6(39.9)
Physical activity in 2006 in MET-hrs/wk, mean(sd)  43.9 (45.5)

1.3.2 PHYSICAL ACTIVITY AND BMI ASSESSMENT

Physical activity is defined as total activity MET-hrs/wk. Participants reported hours spent perform-
ing a list of physical activities on each questionnaire. Weekly expenditure of metabolic equivalents
(METs-hrs/wk) for each of these activities and total weekly expenditure were calculated. Last ob-
served exposure was carried forward when activity was missing for a given questionnaire or if the
questionnaire was not returned. Physical activity was treated as a continuous variable in this analy-
sis. The utcome of interest in this analysis was BMI reported in 2006. Men who died prior to 2007,

were missing age in 1986, or were missing race information were excluded from the analysis.

1.3.3 LATENCY ESTIMATION

We fit a linear regression model with BMI in 2006 as the dependent variable and the recent moving

2006 X; ( t’)

t=2006—a

cumulative average of physical activity b;(a) = pa

, where X;(¢) is the physical activity for

individual 7 at time ¢, as the outcome, adjusting for race and age. The latency parameter was selected

II



as that corresponding to the recent moving cumulative average that, when included in the linear
regression model, minimized the mean squared error (MSE). In Figure 1.1, we see the MSE plotted

for each possible value of the latency parameter. We conclude the ‘true’ latency parameter is 10 years.

MSE of fitted model for each possible latency parameter

[oe]
©
©
N _
%]
= <
©
©
8
© A
- T T T T T
0 5 10 15 20

Figure .. MSE for each possibly latency parameter value

1.3.4 MEASUREMENT ERROR SIMULATION

To assess the impact of measurement error on the estimation of the latency parameter, we per-
formed a simulation to add in varying amounts of measurement error, based on these data from
HPFS. For each simulation, we sampled from the 16,731 men, with replacement, augmented their
physical activity history, and estimated the latency parameter by the same procedure as the full co-
hort. Measurement error was added using the following approach:

Step 1: sample size N from full cohort: X, matrix of physical activity history, where N ranged

from 5o to 1 million

I2



Step 2: generate E, ; error matrix

Step 3: estimate latency parameter using Z,x; = Xpxr + Euxt
The error matrix, E, «, was generated by sampling 7 times from a multivariate normal with mean
and covariance matrix 2. These parameters were varied such that . = o, #, or sin(#/#); the com-
pound symmetric covariance matrix X had diag(X) =¢* and oft-diag(X) =¢¢?, where ¢ = 10, 100, 1000,
or2000and ¢ = 0.20r0.4;and N € [s0, 1,000, 000]. We also included a simulation where no er-
ror was added for comparison. Results are shown in Table 1.3.

‘We see that for all covariance structures considered and all mean functions for the error matrix,
the percent bias in the mean estimated latency parameter approaches o as sample size increases. As
expected, when the sample size is small, the percent bias in the mean estimated latency parameter is
high and unstable; however, this appears to be primarily driven by the sample size rather than the
measurement error, as can be seen by comparing to the no error case in the top row. As the mea-
surement error increases (e.g. larger variability in errors), the percent bias also increases relative to
simulation with no measurement error. Note that these simulations extend beyond the linear mea-
surement error model in (2) as they include a possible time-varying mean, but we observe that the
mean of the measurement error has little effect on the bias in the latency parameter in all simula-
tions. However, this mean would affect the least squares estimator of the regression coefficients, as

has been consistently reported in the measurement error literature (e.g.'*).

3



Table 1.3. Mean % bias in latency estimation based on 1ooo simulation replicates for each setting

Mean % Bias

2 @ e N=so0 N=1K N=10K N=40K N=100K N=:1MIL
No Error - - -17 IS 14 5 2 o
10 0.2 -13 10 16 6 2 o
0.4 -16 16 12 5 2 o
10 02 a6 o135 . o
o 0.4 -15 7 3 2 o
tco 02 21 6 8 6 6 1
0.4 -21 -8 -7 -3 -2 o
2000 02 25 -8 8 8 ;5
0.4 -28 -I1 -11 -8 -7 o
10 0.2 -13 10 16 6 2 o
0.4 -16 16 12 5 2 o
10 02 a6 1t 13 s . o
t 0.4 -15 7 3 2 o
tc0 02 21 68 6 6 1
0.4 -21 -8 -7 -3 -2 o
000 02 25 8 8 8 ;5
0.4 -2.8 -11 -11 -8 -7 -1
10 0.2 -18 13 12 5 2 o
0.4 -18 13 11 5 2 o
t0 02 s o2 s 3 o
sin(¢/ ) 0.4 -16 10 8 3 2 o
t0 02 s s 9 7 s 1
0.4 -16 -9 -7 -4 -1 o
2000 02 a8 6 9 7 73
0.4 -24 -13 11 -8 -6 o
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1.4 DISCUSSION

As seen from the analytic results, the naive least squares estimator for the latency parameter is consis-
tent under the assumption that Corr [0} (a, t;), b} (b, ;)] = 1ifand onlyif @ = b. This applies to
linear measurement error models, where the errors in the outcome model are independently, iden-
tically distributed with mean o and finite variance, and the empirical correlation between C; and

b (b, 1;) does not depend on . These results were found to hold in a simulation study, as demon-
strated by augmenting physical activity data with additional synthetic error in the Health Profession-
als Followup Study. If we know or can estimate the model for the measurement error in the expo-
sure by a validation study, we can use extrapolate using the estimate of the latency parameter and the
functional form of the latency metric to determine the measurement error model in the latency met-
ric. For instance, when the measurement error is linear, the measurement error in the recent moving
cumulative average will also be linear. This will allow us to correct for any bias in the least squares
estimates of the regression coefficients.

The primary limitation of the key result is that correlation between C; and 4} (b, ;) is fixed, or
independent of . While this may be a reasonable assumption in many settings, for instance when
demographics or sex is the confounder, there are certainly situations in which this may not be a rea-
sonable assumption. For example, consider the situation where Cis a continuous baseline exposure.
It is plausible that Cis strongly correlated with Z(0), e.g. at baseline, but less correlated with Z(20),
e.g. after 20 years of follow-up. This would imply the correlation between C; and 4} (b, #;) changes

as a function of b. Further investigation to the impact of this heteroskedasticity is required to deter-

I5



mine the effect it may have on the consistency of the least squares estimator when the correlation
between C; and b} (b, ;) changes with time.

In future research, we hope to investigate the extent to which these results hold in generalized
linear models and survival models. We also intend to define strategies for inference of the latency
parameter in the presence of exposure measurement error, and derive equations for confidence inter-
vals and investigate the impact of measurement error on the variance of b,

In summary, the naive least squares estimator for the latency parameter is consistent. When the
model for the measurement error in the exposure is known or can be estimated, this information
can be used to model the measurement error in the latency metric, namely the recent moving cumu-
lative average, and existing approaches for bias correction can be implemented to achieve unbiased

regression coeflicient estimators.

16



1§ APPENDIX

A.1 DERIVATION OF THE EXPOSURE-OUTCOME MODEL BASED ON Z;

By the surrogacy assumption, EYi|2i7Ci = EX,’IZ,QEY;'\ZX;C,' = EXiIZi,CiEYi\ii,Ci’ thus we can write

EYiléhci = EX{|Z,C1‘EYQ\5Q,C1'
= E5 5 [ﬁ —i—ﬁb'(ﬂ %) +BTC']
Xi|Z;,Ci o 1 7E\" 1 2 1

= lgo + lBIEXiléi,Ci [hi(ﬂ’ ti)] + BZTC;

Given that /; can be written as an integral, and the expectation with respect to X; is an integral, we
can exchange the order of integration, and indeed Ey. xe is a linear function of the latency metric

using Z;and C,.

P T
A.2 PROOF THAT b, &, &y, &, —> argmin [hm e(b, oo, oy, 1)
n—oo

Let (a0, otz &by, b) = &,. That s, for the sequence of real-valued outcomes, ¥; has the structure

Vi=fi&) +e

where fi(§,) = a0 + aub? (b, #;) + ol C; is a known, continuous function. In order to estimate &,

we use e = Ey 5 (L) and denote

q(5) = 875’

7



the estimating function from L. We know that E[g(§)]] _ = obecause &, is the true value. So

we can write

where we exchange between expectation and derivatives under regularity conditions. That is,

Oe

ggr (fo) = 0.

If e has a unique global minimum, this implies that argmin [e (b, oo, a4, &t,)] = &, which holds as
n — 00. Finally, we can use the result shown in Jennrich 8 that under regularity conditions, the least
squares estimators for non-linear equations are consistent. These regularity conditions are met for

. S . . . P T
(3), which proves b, &, o, &, —> &, = argmin | lim e (b, oo, o4, ocz)] .
n—r 00

18



A.3 DERIVATION OF EQUATIONS FOR &, &, AND &,

Given b, and the linear nature of model for Y;|Z;, C;, we can write &, &, and &, as functions of &

using the usual estimating equations:

n <

n
P S Eyse G [yi — (&0 + b (b, 1) + 47C)]

br (b, 1;)

By the surrogacy assumption, we again have

°- i Z G [(8, + Bovo + Byt (a, 1) + B1C) — (&0 + &b (b, 1) + 2] C)] .
- P (b, t;)
1
Define 4= Z G| (Bt 8o+ Bbi(an) +8C).
7 br(b,t;)

n

I
It follows that A:;Z C; [I C}T i (b, fi)] 8,

bi (b, 1) 2

19



n

Therefore, | 4. Q(PJrz Yx (p-+2) A(p+2)><l, where Q0 = £ Z C [I cT b (b, fi):|'

i=1

o br(b, 1;)

A.4 MINIMIZING € (b, oo, 0y, 21,)

By the surrogacy assumption, we can rewrite ¢ = Ey 5 [h]ase = Ej ¢ {EXiIZ,C,-EYiIXi,Ci li}.

Therefore, we can write out e (b, cto, ot;, @t,) as

I
- 7 EE:'EEhCi{li&LZAEI%ﬂXgCJQ]}

i=1

- iz e Exiz.c { oo + b (bt) + "G — 2 [B, + Bhila, 1) + 8,7 C] [ao + aub (b, 1) + 2,7 Ci] }

- 22

n
I
= — - T —
nZEzi,ci <ao o, oc1> G
i=I1

2 [8, + Byo + Bybi (@) + B,7C <zxo o oc1> G

b;(b,Q)

20



I

n T2 n
I . I . N
= Ezcq 5 2 [ATQ {‘ A ti)] ] —2> 870 G| [+ B+ Bnbi(a) +8,7C

hi (b, 1;)
. 1T

E; ¢ {n > [ T b (b, t)] QAATQ™ [I cr b (b, 4)

= EZ,C {trace (; Z [I CiT bl-*(b, fi):| Q—IAATQ—I [I CiT bl-*(b, fi):| ) — ZATQ_IA}

i=1

5, {tme (;Z{I cr b;(b,f,-)]r[x cr /o;(b,[i)] Q‘AATQ‘>—2ATQ‘A}

— zATQ_‘A}

= Ez ¢ {trace (QQ'AATQ ™) —2ATQ7'A}

=Lz ¢ {trace (ATQ7'A) —2ATQ'A}  (using the cyclic property of the trace function)

= E;{—ATQ7'A}.
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Define

I - *
@—n;mwm

1iw@m

Za

n
~ 1 k * * — 1 ¢ * 2
£= ; Zbi (ﬂv Z‘i)bi (b7 ti)? & = ; Z bi (177 ti) )
_ 1 i
C=- G )
nlz; (p X 1vector)

(p X 1vector),

n
I
Co=~ Z Cibi (a,1;)
I n
Cy = ; Z Cib; (b, t:)
=1

n
— I
d ¢==-) ccrt
nd T =23060;

i=1

(p X 1vector),

(p X p matrix).

\(‘/o + \!/Igﬂ

Letl, = B, + By, + B, Cand ), = B, Notethat A = C. + .G, |» which we
o I

Voo + &

Iy
denoteas | 5 |. Define

%
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Q(p+2)><(p+2): C C G| — s

o G o .
b ol

p A7+ A7B(D— B"AB)'BTA —A'B(D— B"AB)™
) —(D—B"47'B)'BT A (D—B"47B)™
A7+ 1A4BBTAT —147'B
e ;
| kAT + AT BBT AT —47B
o —BTA™ .
where k = D — BTA7'B isascalar,
1+17C (G- G'CH) G —'C (G —GC)™
and 47" =
~(@-ad) e (@ -G T

1+ C(G-¢cchH"Cc —C'(C-CC)™
—(G-cchHC (¢ —cch

1+ C'KC —C'K™ .
= , where Ky, = C* — CC.




_ ﬁl (1x1) ﬁz (1xp) L
Denote F = A = where f,, = Kp_x . Note that 4, and subsequently K

]?; (1xp) oz (pxp)

and F, do not depend on b or Z. Minimizinge = Ej .. {—ATQ"A} is equivalent to maximizing

¢=E;c {ATQ7'A},and

kF+ FBBTF —FB 2 d
e=FE; ¢ AT Z where 9(,41)5; =

—BTF I dy 0,
(

kFd+ FBBTFd —FBd, | |
<JT 33> P

—BTF X

k
3TkF3 + 0T FBBTF3 — 20T FBY, + &
=Fzc

. { OTkE3 + 3TFBBTFS — 3TFB, — 3,BTF) + & }
—£zc

k

B kGd + GBBTG™ — 2GBd, + &
- TEC 2 — BTFB ’

where G = 3T Fisat x (p + 1) vector. Note that Ej ¢ [kGd/g, — BTFB| = Ej . [Gd]isnota

function of b, so maximizing e with respect to & is equivalent to maximizing

GBBTG" —2GBd; + &
! o — BTFB

We have
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3= (Vo + Yiga)” =2+ 2t + ik

38 = (Tl + %) (Tl +,G) =T CHa TG+ 2CC,

2= (Vg +12)’ = ot + 2o + g
5= (Vo + Viga) (Cdo + ¥, G) = YiC+ VigaCa+ Vo (Ca + 8aC)
505 = (Vo + Vga) (Voo + 12 = Vot + ngal + Vol (gagp + 2)
8= (o + 4G (ot + 48 = ViTor+ G+ Yo, (Ca + T
GB = <gx g2(1><p)> (i) =48 + &(wop)Ch

So we can write
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., [GBBTGT—2GBi + 5,
°T Fc o — BTFB

(g8 +£GC)" — 2 (g +£C) (Vo + ig) +Vags + 24Vt + Vig?

B ﬁl ﬁz b
& — 543 CbT
fo ) \Go

We can rewrite the components of the block matrix in Fas:

fa=1+C £,C,

= —C'fa,

fo=1aC,
and f,, = K,
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which does not involve &. It follows that the components of matrix G can be written as

. fa fa
GIX(H‘P) = |:g1(1><1) gz(lxp):| - (\I/o + \[/,ga \LOC + \I/ICZ> ’
&
6= (Yot V) it (VT +Ch) A
= (Yo huta) (14 TT) — (VT + 1, CF) T
= Vo + Vs + Vo C €t NaC fiaC — o C fiC — N CLer €
= Vo + Ua + NgaC fiaC — U CLferC

= \Lo + \I‘/I |:gﬂ +gﬂETﬁ2?_ CZ 226i| )

and g = (Y + o) fo (4T + %G )
= Vofis + Vi + Vo€ o + %, Cifaa
=~y C = uC o + o C fon + A Cof
= ¥, C i = Y& foo + ¥, C i + Y Cie
= —&C for + U Cifan
=, [CZ - gaﬂ foar
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We also have

4= {\Po +, [ga +£aC fiC— Can?} }

= 9V g+ CTRC— IR o [ + sl C— CTT

ngb = \l—/l [CZ —gazﬂ ﬁsza

(&G) =7 { [CZ —gaET]fzsz}z,

and g (6:G) = { Vo + ¥ g0 +8C fuC— CIful] | i | €1~ | £

= VoV [CZ —gaﬂ f2Co + [ga +2.C fiaC — C’Zﬁf} [CZ —ga?T] e

2.8



We can rewrite the denominator £ as:

. fu fo| [ &
k=g - <gb G )
fo fu) \G
Sugp + £2Co
.
fogp + f2Co

=0 — & (fag + £oG) — G (fogs + £ Cp)
=& — Gfn — /G — Cofay — Cp f2Co
=0 — & (g + 2C) — Gy (fige + /o)
=0 — Gfa — 200/ Ch — CLCh

_ =T . = —T T
=& — % —5HC f2C+20C £.C — G f2.C

=o-86- (@C—G) fu(@C—G).
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Focusing on the numerator inside the expectation in (3), we have

numerator = (ggy + £:C)* — 2 (68 + £:C) (Voo + V2) + Vg + 2 Vg + V7
=46+ (©G)" + 200 (©G) — 2 [agi b, + 80tV + 2 (@) Vo +2(2:G) V]
e 2o + g
=46+ (©G)" + 200 (©C) — 2 [ad b, + 808V + 8 (@) Y, +2(0G) V]
+ag + 2o g + g

2 2 =T, =\2 —\2 —T, = =
= Vi {leg — & + 86 (ChC) + 8 (CfuC) — 20 C £ CCLfC
T2 GC il — 2af CofaC+ (CHfGo) + & (CfaGh) = 20uChfeGiC Gy
T —T —I » =T —T ~ ==T
+2gbgacaﬁzcb - Zgbgagac f;sz + ZgbgaC ﬁzCCa 52 Cp — ZgngC f;.zCC f;sz
—20,CT£,CCT£,Cy + 20,0.CT£,CC £,y

20,047 fsC + 2048CT£.C — 22CT £, Ch + 220,C fon Ch} .

Note that }// is positive and does not depend on 4, so we only need to maximize the other terms.

We can show that
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-~ — T — ~ —T —
(gt — ) (Co— @) " fi (Ca = Ca) = (s — &) (Cir — Capin) (Cu — )
. - =T =T, =
= (gagp — 2 (CbezzCa — 64C£C— C fuCa + a6 C fzzC)
= 20 ClfssCa — £ CLiC — 2adiC fCa + £ C €

— ZCTf12Ca + 2aChfisC + 20C f22Ca — 22486C £3:C,

and [(Ch— Cp)"fo (Ca = C) | = (CHfuCa = @ ClfaC— @€+ 200 CfiC)
= (CfuCa) + & (GUf0) + 6 (CuCa) + s (CT4C)
— 2, C,,Tj;z C, C,,szzf’ — 29 Cbeu C'aE'TfZZ Ca + 20,9 Cbezz C aZ'TfZZE'

+ 2040, CL . CC £,C, — 280, CL i CC £,C — 2048C £:2CuC foaC.

Thus the numerator inside the expectation (3) above reduces to

numerator = [gags — 1° + [ (Go — Qo) " for (Ca — )| 20— ) (G~ G) " for (Ca— Caa).

Now we can again look at é:

lgagy — 3+ [ (G0~ Co) " (G~ Ca) | +2 (g0 ~ D) (G — C) " fin (G — Caa)
-8 (@C— Cb)szz (2C— G)

(e R84
|

i
a
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We can define the following, which are empirical variances, covariances, and variance-covariance

matrices of the exposure, confounders and outcome data:

7é;”b =0 — &

Covgy = g~ 2agb,

— — T

Covcy, = (Cp — Cgp)
o - T

Covcy = (Ca - Cga) )

and EC —C_cc.

This allows us to rewrite ¢ as

2 ~ T 15— 12 o T 1 ~ ~— T <1 \2
- Cov,y, + | CovgpZc Covey| + 2Cov, Covey X Covey, (COUab + Covg X Covc4>
e=FL;¢ — P s T—— :EZ,C ~ T ~—1
Vary — Cove X Covey Vary — Cove, X Covey
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- ~ T ~—p ~ -
Define ¢* = ¢+ EZ,C [COUCJZC C'm)cﬂ} , where ¢* — ¢ does not depend on b, a,, and «,. We have

(Covab + E(;vgbi_ Covca)

~ T ~—1 ~
€* = EZ,C — pom— + COUCaZC COUCa
Vary — CovaZC Covcp
Cov, + 2Covas Covgy > Covea  CoveySe CovcuCovgySe Co
ov, 2.Cov,44 Cov ovc, ov, ovc, Cov ovc, T =1+
Ezc = - C;bINC e : Cfli L+ Cove, X Cove,
Vary, — CovaZC Couvcy Vary — CovaZC Covcp
2 —~— T =Z—1 — — o T Z—1
E- Cov,y, + 2.Cov,4 Covgy X COUCa + VaryCovg, X Covcy,
zc Po—
Vary — CovaZC Couvcy

Ase (b, &, ay, at,) 1S MINIMIZED WHEN ¢, = I

We can see simply that in the absence of confounders (i.e. p = o), e* reduces to £ [Cov } which
Z
is maximized at & = if the expected empirical correlation between b7 (4, #;) and b} (b, 1;) is 1. Now

we will show the same holds when p > o.

CWC(/)b

If we denote gvc(j)b as the " element of Covcy and ecipp = == where ZC(” is the (7, /)
A/ ZC(/ HVare
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element of X¢. Covcy, and Covc, can be written as

— — —~ T
COUcb = |:COUC(1)b7 ceny COUC(p)b)}

T
|:EC(I)IJ \/ ZC(I,I) Vﬂ}"b, ’/EC(‘[])IJ \/ ZC(PvP) Vﬂrb:|
T
~/ Vﬂ}"}, |:EC(I)IJ \/ ZC(I,I)’ ...,gc@)b \/ ZC(P7P)} 3
T
and Covc, = \/ Var, [EC(I)M/ZC(I,I% ...,gc(ma\/zc([,,p)] .

Define

~ Covyy,

» Couc, ~ < ~ 5 !
fa = \//Tf - |:€C(I)“ ZC(I’I)"“’ec(P)a\/;(M]

- Covcy, ~ < ~ S ’
and ¢, = \/j = [ec(l)b ZC(IJ)"'”gC(p)b\/;(P»P)] :



This allows us to write

Therefore, ¢* reduces to

~ T =—1 TSI
Cove, 2 Cove, = Varagch €,

~ T ~—1 ~

Covey 2 Covep = ﬁ?rbg{i:gb,

Coot 5o Covey =\ VaraVamz' 52,

M ~ T 1 — ~—T -1
Covzb + 2C00,, Covpy, 2o Covey + VaryCove, 2 Cove,
— ~ T ~—1 —
L Vary — Cove, 2 Covgy
Covy, + 2Covap\| VardVang 3¢ ¢, + VanVarag 2c ¢,

Var, — Varyg! 2¢ g,

(3, VaraVary + 33, VaraVan a5, + ?Z»b%agjig"gﬂ]

Vary, — Varggl 3¢ 2,

(& Vary + 22, Varsa 'S¢ ¢, + %agjigga]

L I_Eziggb

Here we make the assumption that gb is not a function of . Note that all quantities in the above

expression, aside from ¢ i are therefore considered fixed with respect to 4, conditional on Zand C.
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We now examine how the function inside the expectation in ¢* changes across values of ¢ ,. We have

e

¢ g

I

0 |@Var,+23,Vara 2 g, + ?Jragjig‘ga] agVara+2Varg 3¢ g,
1= EbT Zc 8

aEah 1— Aél;r
Because ¢, is not a function of b, we know ¢, = ¢_. Hence, this derivative simplifies to

2Var,

gab +E§§g ga]
1—¢,2ce,

Note that

36



r T
~TS I~ ~ = ~ = =1 |~ = ~ =
6, 2c 6, = fcaV 2 Sc(p)aV ZC(zwv)} Zc |:€C(I)a \V 2@ o c(p)a\/ ZC(p,p)}

- _EC(I)&I’

= |8c()a

= EC(I)a’

iC(I,I)
...,gc(ma}
o
Ve
s Bep)e]
)
EC(I)a
3 8c(p)a) ZCC
EC(p)a_

(0]

ey

2c

Xc

Vet

(o]

EC(I)a

_eC(p)a_

EC(I)(I

| Sc(p)al

T —L.
where ¢ is the observed correlation matrix for C;, i = 1, ..., n. Therefore, gZZC ¢, is equal to the

coefficient of multiple determination, which is guaranteed to be € [o,1]. Forg , € [o,1], we see

that

~ — ~ — ~ T o ~ T
Therefore 2 Varg 2" gVar, I3 " y+Var(g) T I3
p)

2Var,

IR Ea]
1 7/552(: Aéa

~ TSI~
- X
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2.1 INTRODUCTION

Researchers are often interested in estimating the effect of time-varying exposure variables in re-
lation to disease endpoints. In particular, interest lies in effects of cumulatively updated total or
cumulatively updated average levels of time-varying exposures. For example, Gillies et al** investi-
gated cumulative exposure of radiation and non-cancer mortality among nuclear workers on Europe.
Barul et al ¥ studied the cumulative level of occupational exposure to chlorinated solvents and the

risk of head and neck cancer. Carroll et al*®

reported the effects of cumulative smoking and depres-
sive symptoms on the risk of subclinical heart disease.

Not only are we interested in estimating he effects of these exposures, but also in determining
the relevant, critical period of susceptibility. Belenchia et al*” showed that the fetal period is an
important window of susceptibility during which a vitamin D deficiency predisposes offspring to

obesity and metabolic disease later in life. Lin et al 28

examined how exposure to amoxicylin in early
pregnancy is associated with an increased risk of oral clefts. Identification of this critical period of
susceptibility, often denoted a latency period, is an important component of assessing the public
health impact of environmental, behavioral, or occupational exposures. Wang et al” developed ap-
proaches to both identify these periods of susceptibility for a range of exposure metrics and estimate
the effects of exposures during this period.

One major obstacle in public health research is that many exposures are prone to measurement

error. In many cases, exposure measurement error leads to bias®. Methods have been developed

to estimate and correct for this bias in a number of settings, including linear and logistic regres-
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sion ¥4 and other nonlinear models™. The primary approach to correct for measurement
error of exposures in survival models is regression calibration, which relies on the assumption of a
rare disease and requires estimation of, or historical knowledge of, the underlying measurement er-
ror model*>*°. Further approaches have been developed to correct for bias when the outcome is not
rare, and therefore the measurement error model may change over time*°. As shown in Chapter 1,
we have explored the effect of exposure measurement error on estimating latency parameters in lin-
ear models, and we proved the naive least squares estimator for the latency parameter is consistent
for the true latency parameter when the exposure is prone to linear measurement error. What has
yet to be addressed, however, is the impact of exposure measurement error on the estimation of a la-
tency parameter, which defines the susceptibility window, and the relevant effect in survival models.
In this paper, we explore the impact of this when the disease is rare, and we demonstrate how to use
previously proposed methods to estimate parameters and generate confidence intervals for both the

latency parameter and regression coefficients. We apply this approach to air pollution data from the

Nurses’ Health Study (NHS).

2.2 METHODS

2.2.1 LATENCY METRIC

We focus on estimation of the recent moving cumulative average. For an individual, 7, a latency pa-

rameter, 4, and a time-varying exposure X;(7), recent moving cumulative average is defined as the
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average exposure over (¢ — a, ). With a continuous exposure, this can be written as

ftt—a X;(s)ds

lﬂi a,t) =
(ar1) = 212
With discrete exposure measurements, s = 0,1, 2, ..., as is the case in empirical data, this can be
expressed as a sum
t
> Xils)
sS=t—a
hi(at) = ——.

a—+1
2.2.2 HAZARD FUNCTION AND LINEAR MEASUREMENT ERROR

Assume the true hazard function, based on the recent moving cumulative average and the latency

parameter, is

% (113) = Aele) exp {@a, )}

where A (?) is the baseline hazard function, and X; is the history of X; or the vector of X;. Define

Z;(1) as the exposure measured with error, where the model for the error is linear:

Xi(8) = 7o + 7 Zi(0) + «i(1)

where var(¢;)) = ¢ and E[¢;] = o. Assume the true hazard function, based on the recent moving

cumulative average of Z; and the latency parameter, is
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N (1Z;) = Au(2) exp {abf (b, 1)}

t (5)d B
with b¥ (b, 1) = @ and Az(7) is the baseline hazard function, and Z is the history of Z or vec-
tor of Z. We will show that this is either exactly true or approximately true in a number of scenarios.

Our goal is to evaluate the measurement error-caused bias & — z and a — , as the sample size goes to

infinity, where 4 is the mis-measured latency parameter.

Prentice* shows that if the three following conditions hold,

(A1) the proportional hazards model holds in the perfectly measured covariates
A (1) = Melhla, 1) = Aule) exp {@hi(a, )}
(A.2) measurement error is nondifferential (isn’t this also surrogacy assumption?)
M (t1X:, Zi) = A(t|bi(a, 1), b} (b, 1)) = A(t|bi(a, 1))
(A.3) there is random censorship conditional on the observed surrogate exposure

A (#/Z;, no censorship in [o, £)) = A(#|h} (b, 1), no censorship in [o, £)) = A(#|b} (b, 1))

then the hazard function for the surrogate exposure can be written as

M (t1Z;) = Mt|b; (b, 1)) = Ae(2)E [exp {@hi(a, 1)} |Zi, T > 1],

where T is the time-to-event for individual 7.
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2.2.3 RARE DISEASE ASSUMPTION

When a disease is rare, it implies that P (7; > ¢) is close to 1. In that case, we have the approximation

E [exp {hi(a,0} |Z:, T; > 1] ~ E [exp {Bhi(a, D)} |Z:] .

From this, we know the critical quantity is £ [exp {8b(a, 1)} | Z]. If we want to evaluate this exactly,
we need to assume a model for the full distribution of X|Z. Alternatively, we can use approximation

by using moment assumptions only. That s,

AN Z) = Xe(2) E [exp {Bh(a, 1)} | Z] rare disease assumption

~ Ao(2) exp { BE [hi(a, 1)| Zi(1)] } using a first-order approximation.

This first order approximation holds when one of the following conditions holds:

(B.1) normally distributed errors for b;(a, £)|Z; with constant variance (EXACT)
(B.2) normally distributed errors and small 8*var (bi(a, 1)|Z;)
(B.3) Small RR and small @*var (bi(a, 1)| Z;)

(B.4) Small RR and 4;(4, £)| Z; has constant variance

Finally, we show in appendix 6.1 that we can substitute the measurement error model to arrive at

)\(t|2i) A Ae(2) exp {(GE [b,-(a, t)|Z~(t)] } = Ne(t) exp{By, texp {8y, /i (a,1)}.  (21)
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As mentioned, this approximation is of the form A; (£Z;) = A,(¢) exp {ah (b, t)}. When the
latency metric is the recent moving cumulative average, we see that there are only three scenarios

under which these equations are equivalent:

(1) @ = oand 8 = oor7y, = o. This s the trivial case of either not effect (¢ = oand 8 = o) or

the surrogate exposure is independent of the true exposure (y, = o).

(2) Xor Zis constant over time. This is the trivial case where the latency parameter is unidentifi-

able because there is no change in the exposure over time.

(3) b = a. Thisis the non-trivial case where the latency parameter for the true exposure is ap-

proximately the same as the latency parameter for the surrogate exposure.

Therefore, in the non-trivial case where there is an affect of the recent moving cumulative average,
the surrogate exposure is not independent of the true exposure, and the latency parameter is identi-
fiable, it must be the case that the latency parameter for the true exposure is approximately the same
as the latency parameter for the surrogate exposure, and there is no effect of linear measurement er-
ror on the estimation of the latency parameter. We also note that in this non-trivial case, & =~ Sy,
implying that there is an effect of linear measurement error on the estimation of the regression coef-

ficient.

2.2.4 POINT ESTIMATION

Given that the latency parameter for the surrogate exposure is approximately equal to the latency
parameter for the true exposure, we propose a two-stage estimation approach wherein we first esti-
mate the latency parameter for the surrogate exposure, then use this as a plug-in estimator for the
latency parameter and correct for the bias in the regression coefficient using a validation data. All

estimations are presented for discrete data points, as is the case for the majority of empirical data.
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EsTiMaTION OF LATENCY PARAMETER

Methods have been developed to estimate the latency parameter and regression coefficients via a
p y P g
generalized maximum partial likelihood estimator (MPLE) in the survival setting”. More specifically,

when there are no ties, the partial likelihood based on X;is

e d) = exp {hi(a, T;) }
(a, ) gzyj(mexp{ggw, 7))}

J

where J is a subset containing all the cases, and Y;(#) is the at-risk process for the ith individual,
equal to 1 if at risk at time rand o otherwise. Let N;() be the counting process for the number of
observed failures on (o, #]. The partial likelihood score function based on data available up to a speci-

fied time ¢ is

( > " B[Ohi(a, u)/da) x Y;(u) exp {Bh;(a, x) }
B[0hi(a, u) /9] — =2

S 1 ep{ hlaw}
t
Dag) =3 / AN ()
icF 7°
Z hj(ﬂa ”)
j€F

hi(n,a) — S v exp] hylan)} )

We can also do this for the partial likelihood based on Z;:
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. exp (b (6. T)}
L*(b, o) = P2
g > YTy exp {oc/v,-*(b, Ti)}
j

( > (05 (b, 4) /98] x Y() exp {abj*(b, %)}
o [0B% (b, u) ) OB] — 7

S @exp{ b (bu)}
t
D*(b,a) = Z/ AN;(n)
i€eF Ve
> B (b, )

jeF
S v exp{ b (bu)}

bi(u,a) —

To obtain the point estimate of the latency parameter, denoted 4, we combine a grid search and
the Newton-Raphson approach. That is, we use Newton-Raphson to fit a Cox proportional hazard
model for all possibly latency parameter values, then determine the estimator for the latency parame-

ter as that which corresponds to the model that provides the maximum partial likelihood.

EsTiMATION OF REGRESSION COEFFICIENT

Using the MPLE for the latency parameter, we can proceed to correct for the bias in the regression
coefficient due measurement error by performing ordinary regression calibration (ORC)****, Us-
ing validation data, we fit the linear measurement error model to obtain estimates for 9 and y,,

denoted 7, and %,. We then proceed to predict X; for all individuals in the study, and fit the Cox
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proportional hazard model with the exposure

2.2.5 INFERENCE

ProFILE LiIkKELIHOOD CONFIDENCE INTERVAL FOR THE LATENCY PARAMETER

Given that the latency parameter for the surrogate exposure is approximately equal to the latency pa-
rameter for the true exposure, we can implement the method developed by Wang et al” to produce

a profile likelihood confidence interval for the latency parameter when performing analyses on expo-
sure data collected at discrete time points. In this approach, a a-level profile likelihood confidence

interval is determined as all possible values of z that satisty
log PL(a, az) > log PL (2,2) — ~2}(1 — &),
2

where PL (2, &) is the partial likelihood evaluated at the point estimates zand @, PL(a, ) is the
partial likelihood evaluated at a given possible value of z and the corresponding «,, determined as the
maximum partial likelihood estimator for the regression coefficient when the latency parameter is

equal to 4, and x; is the cumulative function of the x? distribution with 1 degree of freedom.
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CONFIDENCE INTERVAL FOR THE REGRESSION COEFFICIENT

While we have demonstrated that the latency parameter for the surrogate exposure is approximately
equal to the latency parameter for the true exposure, the regression coeflicient is not. Therefore,
adjustment for measurement error must be considered not only in the point estimate, but also in
generating valid confidence intervals. We have seen in previous studies that while there is some vari-
ability involved in estimating the latency parameter, this estimation has very little effect impact on
the variability in estimating the regression coeflicient when there is no measurement error”. We ar-
gue that in this scenario, it may be unnecessary to adjust for the variability involved in estimating the
latency parameter when generating confidence intervals for regression coefficients even in the pres-
ence of measurement error. Therefore, we propose treating the latency parameter as fixed and gener-
ating confidence intervals for regression parameters using regression calibration methods developed
by Spiegelman et al® and Wang et al”. In this case, the asymptotic distribution of the regression coef-
ficients is normal with mean zero. Software to calculate these confidence intervals is readily available

using the %blinplus() SAS macro*.

2.3 SIMULATION

We performed a series of finite-sample simulations to examine the performance of the naive estima-
tor for the latency parameter when the time-varying exposure is subject to linear measurement error.

120

This simulation is based oft Liao et al*°, wherein investigators generated survival data with a recent

moving cumulative average as the primary exposure.
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2.3.1 DATA GENERATION

The true and surrogate exposures, X; and Z; were generated as follows:

Z;i ~ MVN (u,,%;)
eir ~ N (o, o)

Xi(t) =% + ylzi(t) =+ eéit,

where u, is the mean vector for Z,and X, is a compound symmetric covariance matrix with diago-
nal entries o, and off-diagonal entries ¢, o7, for time points # = 1, ..., 10. Without loss of generality,
we consider the simple data generation case with x, = 0,0, = o,and ¢, = o.2and the linear
measurement error model with o, = rand j, = o.5. We varied the linear measurement error model

by ¢, to be 1 or 2. For comparison, we also included a simulation with no measurement error where

The true and surrogate recent moving cumulative average were calculated as follows:

> Xis)

hi(ﬂv t) = S:t;:_ I
t
Z Zi(s)
) = =
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fora € 1,...,10. The survival data were generated according to the hazard model A(#b;(4, 7)) =
Ao (2) exp {Bhi(a, ) }. For all simulations, we set the event rate to 0.03 to ensure the disease rare

assumption applied.

2.3.2 LATENCY AND COEFFICIENT ESTIMATION

To estimate the latency parameter, 2 and the coefficient @, we calculated 4} (4, ¢) for all values 2 =
1, .., 10, fit a Cox proportional hazards model using 4} (4, t) as the exposure, then selected z as the
value that maximizes the profile likelihood. After selecting 2, we fit a Cox proportional hazards

model using 47 (4, £) to find B, the estimate for @.

2.3.3 REsuLTs

Mean estimated values for the latency parameter, 2 can be found in Table 2.1. We see that across all
measurement error models, including the scenario with no measurement error, as the sample size
increases, the estimated values for the latency parameter approach the true value, 4. This is to be
expected, as the latency parameter for the surrogate exposure is approximately equivalent to the

latency parameter for the true exposure in this setting.

Mean estimated values for the regression coefficient, ‘23, can be found in Table 2.2. We wee that
when there is no measurement error or the error is random (i.e. %, = oand y, = 1), the estimated
regression coefficient approaches the true value, 8. However, when the error is not random, the
estimation regression coefficient approaches 7, 8. This is consistent with what we expect under linear

measurement error, where we see the hazard model for the surrogate exposure is approximately
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Table 2.1. Mean estimated latency parameter

a
7 =500 7 =1,000 7/ =§,000 7 =10,000 7 =25,000
a=1
No Error 2.15 1.58 1.01 1.00 1.00
Random Errore =1 1.80 1.44 1.01 1.00 1.00
Random Errore =2 1.82 1.28 1.00 1.00 1.00
Yo =2, =050 =I 3.52 2.76 1.48 1.13 1.02
Yo =2 ), = 05,0 =2 3.35 2.71 1.36 1.13 1.02
a=3
No Error 4.04 3.77 3.16 3.05 3.00
Random Errore =1 4.14 3.75 3.12 3.03 3.00
Random Errore =2 4.00 3.57 3.13 3.03 3.00
Yo =2% =050 =1 435 434 3.76 3.47 3.07
Yo =2 =050 =2 4.50 4.24 3.74 3.47 3.07
a=s
No Error 5.08 5.32 5.23 5.11 5.02
Random Errore =1 5.22 5.33 5.18 5.09 5.02
Random Errore =2 5.12 5.25 5.19 5.09 5.01
Yo =2,%, = 05,0 I 4.66 4.86 5.19 5.36 5.09
Yo =2, = 05,0 =2 4.86 5.06 5.22 5-41 5.09
a=38
No Error 5.92 6.86 7.76 7.94 8.03
Random Errors =1 5.79 6.80 7.75 7.98 8.02
Random Errore =2 6.04 6.56 7.79 8.01 8.04
Yo =2,%, = 05,0 I 5.08 5.51 6.62 7.22 7.79
Yo =2, = 05,0 =2 5.01 5.43 6.61 7.30 7.90
a=10
No Error 6.25 7.19 8.88 9.31 9.82
Random Errore =1 6.42 7.26 8.91 9.43 9.81
Random Errore =2 6.58 7.30 8.96 9.42 9.80
Yo = 2% = 05,0 I 5.12 5.49 7.18 7.92 8.90
Vo =2,%, = 05,0 =2 4.98 5.56 7.25 7.91 8.92
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Table 2.2. Mean estimated regression coefficient

7 =500 7 =1,000 7/ =§,000 7 =10,000 7 =25,000
a=1
No Error I.12 1.06 1.00 1.00 1.00
Random Errore =1 1.08 1.03 0.99 0.99 0.99
Random Errore =2 1.07 1.01 0.98 0.98 0.98
Yo =2, = 05,0 =1 0.64 0.61 0.52 0.50 0.50
Yo =2 ), = 05,0 =2 0.62 0.59 0.51 0.50 0.50
a=3
No Error 1.17 1.09 1.01 1.01 1.00
Random Errore =1 1.14 1.08 1.01 1.00 1.00
Random Errore =2 I.12 1.06 1.00 1.00 0.99
Yo = 2,7, = 05,0 1 0.64 0.60 0.53 0.51 0.50
Yo =2, = 05,0 =2 0.62 0.61 0.53 0.51 0.50
a=s
No Error I.I1 1.08 1.01 1.00 1.00
Random Error¢ =1 I.IT 1.06 1.01 1.00 1.00
Random Errore =2 1.08 1.05 1.00 1.00 0.99
Yo =2,%, = 05,0 I 0.60 0.56 0.52 0.51 0.50
Yo =2,%, =050 =2 0.62 0.58 0.52 0.51 0.50
a=38
No Error 1.03 1.08 1.01 1.00 1.00
Random Errore =1 I.I1 1.06 1.01 1.00 1.00
Random Error¢ =2 1.06 1.01 1.01 1.00 1.00
Vo =2, = 0.5, 7 I 0.58 0.54 0.51 0.50 0.50
Yo =2,% =050 =2 0.56 0.53 0.51 0.50 0.52
a =10
No Error 1.02 1.00 1.00 0.99 1.00
Random Errore =1 1.03 1.00 0.99 0.99 1.00
Random Errore =2 1.03 1.00 0.99 0.99 1.00
Yo = 2% = 05,7 I 0.54 0.52 0.50 0.49 0.51
Yo =2,% =0.5,0 =2 0.47 0.52 0.50 0.50 0.51

53



proportionate to exp { By, b} (4, t) }, as shown in equation (2.1).

2.4 ILLUSTRATIVE EXAMPLE

We applied the methodology above to estimate the latency parameter and regression coefficient for
the recent moving cumulative average of ambient particulate matter < 2.sum (PM, ;) exposure and
its association with lung cancer in the NHS This analysis is based off a previously reported study by
Puett et al**, wherein investigators estimated the association between 72-month cumulative average

PM,  exposure, as measured by nearest monitor, and lung cancer incidence between 1994 and 2010.

2.4.1 NURSES’ HEALTH STUDY

The NHS is an ongoing prospective cohort of 121,700 female nurses who were enrolled between

the ages of 30 and 55 in 1976. Participants complete biennial questionnaires by mail and provide in-
formation on potential risk factors and self-report new diagnoses of health outcomes. Included in
this analysis are 103,650 women who were alive and free of cancer (except for non-melanoma skin
cancer) before follow-up and had PM,  information. Lung cancers were either, self-reported by the
participants, reported by next of kin, or identified from death certificates and medical records. A
number of potential confounders were selected 4 priori as known confounders or effect modifiers
previously associated with lung cancer or exposure in the NHS. These confounders included geo-
graphic region of residence (Northeast, South, Midwest, West), body mass index (BMI; kilograms
per meter squared, continuous), physical activity in metabolic equivalent hours per week (MET

hr/week; < 3,3 to <18, > 18), overall diet quality (Alternative Health Eating Index, continuous)*,
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alcohol consumption (dichotomized at o g/day), smoking status (current, former, never), months
since quitting for former smokers (continuous), pack-years (continuous), exposure to secondhand
smoke at home, at work, and during childhood, median household income, and median house value.
Table 2.3 shows the age-adjusted descriptive statistics of these potential confounders averaged over

follow-up (1994-2010).

Table 2.3. Age-adjusted descriptive characteristics averaged over follow-up (1994-2010)

among 103,650 participants in the Nurses’ Health Study

Lung cancer cases 2,155
Person-years™ 1,510,027
Age [years (mean £ SD)]* 67.01+ 8.3
BMI [kg/m* (mean &+ SD)] 25.6 £ 7.5
Pack-years of smoking (mean 3= SD) 13.4 £ 20.0
Months since quit smoking (mean % SD) 123.9 + 178.8
Alternative healthy eating index (mean %+ SD) 180.4 + 108.5
Census-tract median household income (mean £ SD) 63,518 £ 24,491
Census-tract median home value (mean £ SD) 170,126 £ 125,261
Region (%)

Northeast S1.1

Midwest 17.3

West 13.7

South 18.0
Alcohol category (%)

Nondrinker (o g/day) 15.0

Drinker 71.4

Missing 13.6
*Not age adjusted
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Table 2.3 (continued). Age-adjusted descriptive characteristics averaged over follow-up

(1994-2010) among 103,650 participants in the Nurses? Health Study

Physical activity

<3 MET hr/week 21.5
3 to <18 MET hr/week 38.8
> 18 MET hr/week 30.7
Missing 9.0
Second hand smoke during childhood (%)
None 25.1
From mother 3.8
From father 33.9
From both parents 14.7
Missing 22.6
Home secondhand smoke (%)
None 33.2
Occasional 18.6
Regular 17.1
Missing 31.2
Occupational secondhand smoke (%)
None 15.0
Occasional 29.3
Regular 22.6
Missing/not working 33.1
*Not age adjusted

2.4.2 PM,; Exposure IN NHS

As part of the NHS biennial questionnaire, reported residential address information was updated
every 2 years. All available addresses were geocoded to obtain the corresponding latitude and lon-
gitude, and monthly PM, ; exposure was estimated using models for the nearest air monitoring-

station. These models and their previous use in assessing chronic PM exposures among the NHS
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cohort are described in detail elsewhere’ #4745, This nearest monitor PM, s exposure is certainly
prone to measurement error in that nearest monitor may not perfectly reflect the true geography of

each participant during each month.

2.4.3 PM, ; EXTERNAL VALIDATION STUDY

The details of the selected validation study and corresponding populations have been described pre-
viously #39:3%:37:3:39,49,4542:43 Both personal and ambient exposures of PM, ¢ were available from a
series of short-term panel exposure studies performed in the US between 1999 and 2002. Reported
personal PM, ; is considered the ‘true’ exposure and ambient PM, ; is considered the surrogate expo-

sure.

2.4.4 LATENCY ESTIMATION

Figure 2.1 shows the estimated partial log likelihood for the Cox proportional hazards model for
lung cancer incidence, using age as the time scale, and using the surrogate exposure (recent moving
cumulative average ambient PM, ) for all possible latency parameters between 6 and 120 months.
The first plot shows the partial log likelihood adjusted for geographic region and calendar year
(partially adjusted), and the second shows this for the model adjusted for all 2 priori selected con-
founders (fully adjusted). The point estimate for the latency parameter corresponds to the value
of a that maximizes this log likelihood, which is 65 months in the partially adjusted model and 70
months for the fully adjusted model. We also calculated the profile likelihood confidence interval,

which in fact included the entire range of possible latency parameters (6, 120) for both the partially
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adjusted and fully adjusted models. This is not unexpected as we have seen in previous studies that
since air pollution exposure is highly correlated over time and the regression coefficient is close to
zero, there is relatively low power to detect the latency parameter and thus particularly wide confi-

dence intervals.
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Figure 2.1: Estimated partial likelihood

58



2.4.5 MEASUREMENT ERROR CORRECTION

We used ordinary regression calibration based on the external validation study to adjust the hazard
ratio (HR) for PM, ; exposure. Table 2.4 shows the uncorrected and corrected HRs for both the

partially adjusted and fully adjusted models.

Table 2.4. Latency parameter in months and HR (95% confidence intervals) of the association of incident
lung cancer 1994-2010 per 10-ug/m? increase in recent moving cumulative average PM,  exposures among

103,650 participants of the Nurses Health Study

Model Latency parameter Uncorrected HR Corrected HR
Partially adjusted* 65 (6, 120) 1.08 (0.90, 1.30) 1.20(0.77, 1.86)
Fully adjusted** 70 (6, 120) 1.09 (0.91, 1.32) 1.24 (0.79, 1.92)

* Adjusted for geographic region and calendar year

**Adjusted for geographic region, calendar year, BMI, alcohol consumption, physical activity, overall diet
quality, smoking status (when not stratified by status) and pack-years, months since quitting smoking,
secondhand smoke exposure at home, work, and during childhood, and census-tract median home value,

and median income.

We see that overall, there appears to be an increased risk of lung cancer among women who were
exposed to higher average levels of PM,  during the prior 65 months of 70 months. Although this
increased risk is not statistically significant at the o.05 level, the estimated risk increases after correct-

ing for measurement error.

2.5 DISCUSSION

Public health researchers are often interested in estimating the effects of cumulatively updated total

or cumulatively updated average levels of time-varying exposures and identifying critical windows of
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susceptibility. Although it is widely known that many measurements are prone to error, no one has
yet considered its impact on the estimation of latency parameters in survival models. We have shown
that when a time-varying exposure is subject to linear error, under the recent moving cumulative av-
erage latency metric, the latency parameter for the exposure with error is approximately equal to the
latency parameter for the exposure without error. This was evident in a series of finite sample sim-
ulations. Although there appears to be no asymptotic impact of measurement error on the latency
parameter, the regression coefficients may still be biased. For this, we recommend a two-step estima-
tion approach wherein you first estimate the latency parameter by performing a grid search across
all possible latency parameter values and selecting the value that maximizes the profile likelihood,
then correcting the regression coefficient by performing regression calibration on the calculated la-
tency metric. We used this approach to estimate the latency parameter for PM, ; exposure and its
corresponding association to lung cancer incidence in the NHS.

One major drawback to the proposed approach is the reliance on a rare disease. When a disease is
not rare (generally more than 5% of the target population develops the disease), we cannot directly
apply the results from Prentice*. Instead, we have seen in preliminary simulations that the latency
parameter may be approximately the same, but the regression coefficient will again be biased. To
correct for measurement error, one must employ a risk set calibration approach such as the method

120

proposed by Liao et al*® to allow for a time-varying measurement error model.
In future research we hope to extend this to other exposure metrics and generalize to a wider class

of measurement error models. Additionally, it may be beneficial to develop an analytic approach

to generate confidence intervals for regression parameters that do account for the variability due to
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estimating the latency parameter. Ultimately, it is quite important to note that although validation
data may be necessary to estimate associations between latency metrics and disease incidence, the
estimation of the latency parameter itself is robust to exposure measurement error. Thus, we can

gain a great deal of insight from time-varying data even in the presence of measurement error.
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2.6 APPENDIX

2.6.1 FIRST ORDER APPROXIMATION OF THE HAZARD FUNCTION WHEN THE DISEASE IS

RARE

As shown by Prentice (1982), E [exp {h;(a,2)} | Z;, T > t] ~ E [exp {Bhi(a,1)} |Z;] when the

disease is rare. Using a first order approximation, we find

E [exp {Bhi(a, 1)} |Z] ~ exp { BE [hi(a, t)\Z,(t)] }

We can substitute the linear measurement error model to obtain an expression in terms of Z:
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Xi(t) = 7o + 0 Zil8) + w(t)
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exp { BE [hi(a,1)|Zi(0)] } = exp {B (v, + b (a.1))}

= exp {8y, } exp { ¥,/ (4, 1)}

Thus we conclude E [exp {8h;(a, )} |Z] =~ exp {By,} exp {8y, b} (a, 1)} and

NH|Zi) m Me(8) exp { BE [Pila, 1) Zi(0)] } = Me(2) exp {By, } exp { By b (a,1)}
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3.1 INTRODUCTION

Electronic Health Records (EHR) data provide a number of unique opportunities and substantial
promise for public health research. They often include a broad range of collected information not
always available in cohort studies, they house information for very large patient populations, they
follow patients for a longer time-frame than many prospective cohorts can, and they have a relatively
low cost because data are already collected "%, It is for these reasons the Institute of Medicine
recently called for a prioritization of EHR data in public health research’*.

Beyond the several advantages, there are many challenges faced by researchers using EHR data.
Given that EHRs are typically developed for clinical and/or billing purposes, without a specific re-
search question in mind, researchers using EHR data must therefore beg the question of whether or
not the EHR data is in fact suitable for the research agenda. This includes consideration of whether
or not the study population, which is by default rather than by design, is generalizable to the popu-
lation of interest, whether all covariates relative to the research goals have been routinely collected,
whether the covariates that have been measured are done so consistently across patients and time,
and finally whether those measures are complete and reliable. Oftentimes the collection of these
relevant data is left to the discretion of the physician or the patient. Without consideration of these
issues, naive analyses may be subject to numerous biases, the most commonly cited of which is con-
founding bias due to a non-randomized study population®. There are several methods to adjust for
confounding bias, including stratification by subgroup** and regression approaches 57555559,

Another important and often underappreciated type of bias that may arise in this setting is selec-
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tion bias as a result of incomplete data. That is, patients who are identified as being eligible for inclu-
sion in the study are found to have insufficient data to be included in the analysis*®. This could be a
result of missing baseline covariate information, missing treatment information, or missing outcome
measurements during follow-up. This could also arise when patients disenroll from the health plan
prior to the end of follow-up. It is important to note that selection bias is distinct from confounding
bias in that the bias results from conditioning on a common effect rather than from the existence

of common causes of exposure and outcome*?. While there have been numerous papers dedicated
to understanding the role of confounding bias in electronic health records research, there has been
little to no focus on the impact of selection bias in EHR-based studies in the literature to date, as it is
often cast as a simple missing data problem. In this paper, we focus on the issue of selection bias due
to incomplete data.

Statistical methodology is flooded with approaches to handle missing data®. Once researchers
have described what it means to have complete or incomplete data, they continue with one of several
approaches: (1) assume data are missing completely at random and perform a complete data analy-
sis, (2) assume data are missing at random and use a known approach like multiple imputation or
inverse probability weighting (IPW), or (3) conclude data are not missing at random and either addi-
tional data need to be collected or the study is no longer feasible. Most relevant to the current data

setting, Robins et al o1

developed methodology to specifically account for missing data when we have
repeated outcomes measured. To date, most literature has focused on approaches to handle data that

are missing at random by which researchers aver a particular ‘missingness mechanism’ and perform

analyses that account for the missingness. Per Haneuse and Daniels (2016), we suggest reframing
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this as ‘data provenance’, or a process by which some data are complete and others are not. When
framed as a missing-data problem, standard methods are often applied to control for selection bias.
In EHR-based studies, however, data provenance involves the interplay of many clinical decisions
made by patients, health care providers, and the health system; thus standard methods fail to capture
the complexity of the data. In this paper, we build on Haneuse and Daniels’ data provenance ap-
proach to develop a general framework for estimation and inference based on IPW that better aligns
with the complex nature of EHR data.

Table 3.1. Baseline characteristics of patients in the DURABLE study who underwent

bariatric surgery between 1997 and 2010

All Patients Complete Cases
N =16,282 n=s5,636
All RYGB VSG All RYGB VSG
Age atsurgery, mean (sd)  45.7(10.7)  45.7(10.7)  45.6(10.9) | 47.1(10.7) 47.1(10.7) 46.7(10.6)
Year of surgery category, %
1997-2005 25.1 27.9 0.4 5.1 6.0 0.0
2006-2008 37.3 40.3 10.5 42.8 48.6 11.8
2008-2010 37.6 31.8 89.1 52.1 45.4 88.2
Prior enrollment years, 8.4(s5.7) 8.2(s.5) 10.7(7.2) 10.3 (6.4) 100(6.2)  11.7(7.4)
mean (sd)
Male, % 16.9 16.6 19.3 15.7 5.0 19.4
Site, %
KW 9.2 10.1 0.9 7.2 8.5 0.3
KNC 43.6 48 4.1 29.5 34.2 3.7
KSC 472 41.8 95 63.4 57-3 95.9
Baseline BMI, mean (sd) - - - | 449(7.3)  45.0(7.3)  44.2(6.9)
BMI pre slope, mean (sd) - - - -1.7 (2.6) -1.8(2.7) -1.1 (2.0)
BMI at 5 years, mean (sd) - - - 34.7 (7.0) 34.4 (6.9) 36.5(7.3)
BMI post slope, mean (sd) - - - | -10.1(5.9) -10.6(5.8) -7.7(5.4)
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We see immediately that there is a substantial amount of missing information. In particular, only
n = 5,363 patients of the N' = 16, 282 who were identified as satisfying the eligibility criteria have
complete information relevant for the research question. Figure 3.1 provides a summary of BMI-
related information for 6 patients in DURABLE who underwent bariatric surgery between 1997
and 2010. There is substantial heterogeneity in the amount of information available for different
patients. Some patients are missing baseline information, some disenroll from a participating health-
care plan, and some are simply missing a BMI measurement at 5 years. All of these would results
in ‘incomplete data’ for for a patient, but the reasons are quite distinct. Further, this missingness
appears to be heterogenous across potential confounders. For instance, we see in Table 3.1 that pa-
tients who underwent surgery between 1997 and 2005 are less likely to have complete information
than individuals who underwent surgery between 2008 and 2010. It is evident that whether or not
an individual has complete data is more complicated than simple dropout, but rather the result of
a complex series of decisions made by patients, health care providers, and the health system. Thus,
even in a rich EHR-data setting, such as the DURABLE study, it is important to ask ourselves how
do some people have complete information and others do not. In EHR data, this process is referred

to as the data provenance®.
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Figure 3.1: Summary of BMI-related information for 6 patients in DURABLE

In each panel, a blue vertical line indicates complete baseline information, including but not lim-
ited to pre-surgery BMI; grey shading indicates enrollment in one of the participating healthcare
plans; black dots indicate a BMI measurement after surgery but before s years; red dots indicate a

BMI measurement s years after surgery.

3.2 CHARACTERIZING THE OBSERVED DATA PROVENANCE

The importance of the data provenance in an EHR-based setting is the classification of the process
by which data is observed. In an effort to capture the complex nature of EHR data, we use the novel
data provenance framework proposed by Haneuse and Daniels (2016). This approach focuses on

a modularization of the data provenance wherein investigators break down the series of decisions

70



that cause a patient to have incomplete data with respect to a particular research question. For ease
of illustration, we present this approach using the DURABLE data with the aim of examining the

impact of bariatric surgery on BMI after s years.

3.2.1 CHOOSING THE QUESTION OF INTEREST

Suppose N' = 16, 282 patients are identified in the EHR as satisfying a set of pre-specified inclu-
sion/exclusion criteria. Ideally, all N patients would have ‘complete’ information on the exposure,
potential confounders and the outcome. If we cast selection bias as a missing data problem, there are
many well-known approaches we can use moving forward. The concept of missing data, however, is
only relevant in the context of a specific research question. We may be interested in the association
between a single baseline exposure and a single outcome, the trajectory of a biological measure over
time, or even time-to-event outcomes. In the context of the DURABLE study, this could be BMI at
5 years, trajectory of BMI over s years, or time to reduce BMI by some pre-specified amount. Only
once the data question has been established can we identify what is necessary for an individual to
have complete information and proceed with an approach to account for any missingness. For con-
creteness, we take the outcome to be BMI measured at 5 years in this paper, but recognize that there

are numerous questions that could be asked of the DURABLE study data.

3.2.2 THE STANDARD SINGLE MECHANISM APPROACH

Following inspection of the observed data, suppose only » = 5,363 < N patients have complete

BMI information at 5 years and complete baseline information on potential confounders; for sim-
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plicity we temporarily ignore the potential for incomplete data in the primary exposure. In principle
one can cast the challenge of only having complete data on n patients as a missing data problem and
make use of a broad range of existing methods. Regardless of the specific method chosen, analysts
must first consider whether or not the data are missing completely at random (MCAR), missing at
random (MAR) or missing not at random (MNAR). In practice, this is often operationalized by
first defining a binary random variable, say, R which indicates whether or not a patient has complete
data (o/1 = incomplete/complete); Figure 3.2(a) provides a graphical representation. Based on this,
an analyst can work with subject-matter experts to identify covariates associated with R and, con-
sider whether or not the data are MCAR, MAR or MNAR, ad eventually build a model for an IPW

approach to adjust for selection if appropriate.

3.2.3 MODULARIZATION OF DATA PROVENANCE

While reasonable in many research settings, the use of a single mechanism will be a gross oversimpli-
fication of reality in most EHR-based studies. Figure 3.1 illustrates this with EHR- derived informa-
tion for six patients on BMI following bariatric surgery. If we are specifically interested in BMI at 5
years, we would mark four of these patients as having incomplete data: (c) and (d) are missing base-
line information, (b) has complete baseline information but disenrolled from a participating health
plan prior to s years, and (a) has complete baseline information, stayed enrolled in a participating

health plan through s years, but failed to have a BMI measurement at s years.
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R Missing baseline
! information, n4=5,621

R=0 Rx=0
R Incomplete BMI data, R Disenrolled prior to
ne=10,646 2 5 years, n;=2,339
R=1 Ro=1

R Missing BMI at
3 5 years, n;=2,686

(a) Simple specification (b) Detailed specification

Figure 3.2: Alternative specifications for data provenance in hypothetical study

For EHR-based data such as that presented in Figure 3.1, naive application of standard missing
data methods/strategies will generally result in inadequate adjustment for selection bias. For exam-
ple, if a single logistic model is assumed to estimate IP weights, when in face the data provenance
is more complex, as in Figure 3.1(b), the estimates from outcome model based on these weights are
not guaranteed to be consistent. Towards ensuring as thorough control as possible, we propose a

novel framework for selection bias based on modularizing the data provenance into a set of sub-
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mechanisms, each corresponding to a decision made by a patient and/or health care provider. To il-
lustrate this, Figure 3.2(b) highlights the fact that for a patient to have ‘complete’ BMI data at 5 years
they must have: (1) complete baseline information for all potential confounders, (2) been enrolled
in the health plan/system at 5 years; and (3) had a BMI measurement recorded at 5 years. Intuitively,
each of these requirements can be thought of as a distinct ‘sub-decision’ in the flow of decisions

that make up the data provenance. Having performed this modularization, researchers bene- fitin a
number of important ways. First, in collaboration with subject-matter experts, the consideration of
missing data assumptions can be tailored to each sub-mechanism. It may be, for example, that MAR
is plausible for one or two of the sub-mechanisms but MNAR suspected for the other(s). Second,
statistical models can be built for each sub-mechanism, giving researchers the flexibility to consider
different link functions, different sets of covariates and explicitly accommodate the fact that relevant
covariates may vary over time (see Figure 3.1). Finally, sensitivity analyses can be tied specifically to
those sub-mechanisms for which MNAR is suspected. Note that for the purposes of this paper, we
focus on monotone data provenances. That is, in order for a patient to have ‘complete’ data at any
particular sub-mechanism, the patient must have complete data for all prior sub-mechanisms. This

restriction to monotone data provenances has been used by Robins et al o1

to perform approaches
to handle missing data for repeated outcomes. Collectively, these benefits exploit the more realistic

representation of data provenance that Figure 3.2(b) provides so that researchers can expect corre-

sponding adjustments to be superior to those based on Figure 3.2(a)** .
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3.3 ESTIMATION AND INFERENCE

Returning briefly to the complete data setting, suppose, given a sample of complete data of size N,

interest lies in estimating the components of a model for
lu'i — E[le|)(u; Xzi; X}i; @] :g_I ()(Iia Xzia X}i; ) ) (31)

where Yis the outcome of interest (BMI at § years), X; is a vector of exposures of interest (type of
bariatric surgery), X, is a vector of potential confounders or effect modifiers that are not associated
with selection, Xj is a vector of potential confounders or effect modifiers that are associated with se-
lection, and B s a vector of unknown regression coefhicients. Interest may lie in main effects, namely
the association between X; and Y, conditional on potential confounders, or in both main effects and
effect modification, where the form of ¢ allows for interactions between X; and potential effect

modifiers.

Given complete data on the N individuals in the EHR, estimation could proceed by solving

2 DI (Timw) =3 Ui(® =o,

i=1

where D; = O, /0B, Vi = Var[Yi| Xy, X,i, Xy, and Uj is the " individual’s contribution to score
equation for 8. Given complete data on solely » < N patients, the analysis could proceed in one of
several ways, inverse probability weighting (IPW), including saturated models, multiple imputation

(MI) and pattern mixture models (PMM) *>%7.
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3.3.1 STANDARD IPW

Suppose now that we wish to estimate the coefficients in the outcome model (1) above, but we are
faced with incomplete data due to selection. We can proceed by using IPW to account for selection
in the outcome model. Let #; = P(R; = 1) be the probability of having complete data, X; be a
vector of potential confounders that affects selection as noted above, and X, be a vector of covariates
associated with selection and with outcome, Y, but not with the main exposure, X;. Note that this
implies X, is not a confounder of the association between X; and Y when the data are complete. A

consistent estimator of @3 is obtained by solving the usual weighted estimating equation

N
ZRifr;IUf(a, (3) =0,

i=1

where U is the #*” individual’s contribution to the score equation for weighted outcome model and
7ri is consistent for ;. We can take a standard IPW approach to estimate ;%" That is, we specify a
single regression model

mi=g (Zia),

where Z = {X;, X,, X;} C Xis the vector of all covariates relevant to whether or not complete data
is observed, some of which may be main effects or confounders in out main outcome model, and
¢ (+)isasingle link function. We would proceed by substituting estimates of a into our estimating

equation:

ZRi g (Zsa)] U (e, B) = o, (3.2)
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which can be solved to obtain ‘ZZ, an estimate of 8. The literature has shown thatif 7; = ¢7* (Z;; )
is correctly specified, 8 s a consistent estimator for @ with a Multivariate Normal (MVN) asymp-

totic sampling distribution ®°.

3.3.2 MoDULARIZED IPW

In most EHR-based settings, as argued in section 3.3, a single mechanism will be overly simplis-

tic and insufficient to characterize the data provenance. Suppose instead that 7; # ¢ " (Z; a),

but rather the underlying data provenance has K distinct nested sub-mechanisms. Figure 3.2(b)
shows how the data provenance for our bariatric surgery study can be decomposed into three sub-
mechanisms. We outline an approach to perform IPW estimation when the data provenance is more

complex than a single mechanism.

MODEL SPECIFICATION

A key initial step to performing estimation is to specify the model for the data provenance. Essen-
tially we want to translate the data provenance, like Figure 3.2(b), into a statistical framework, and
we will make decisions about how to structure this framework based on domain knowledge. For
each sub-mechanism, define R, ; = {o,1} as an indicator for a “positive’ state required for data to
be complete. In this setting, an individual has complete data if and only if all R, ; = 1, so we would
then consider 7; = P(Ry; =1, ..., Rxi = 1).

There are many ways we could structure the K sub-mechanisms, and the interplay of these sub-

mechanisms is vital. If they are independent, we can model each one separately. However, if they are
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nested, we would need to model them sequentially. In this paper, we focus on the situation where

the decomposition of the data provenance is monotone, which implies 2 (R(k)) > o only if RY —

i i

k— .
.= Rl( V= (fork = 2, ..., K. Thus, we can write
K
v~ ][
k=1
where 7 ; = P(Ry; = 1| R; = ... = Rp—y; = 1). This aligns directly with the data provenance in

Figure 3.2(b) where, for example, a BMI measurement at 5 years (R; ;) is only relevant if a subject is
still enrolled at 5 years (R, ; = 1).

In addition to the specification of the structure of these sub-mechanisms, it is important to de-
cide how to model each particular sub-mechanism. For instance, a generalized linear model (GLM)
may be most appropriate to model the binary outcome of a positive or negative state. More specifi-
cally, one could specify a logistic or probit regression model for ¥,

i

Thi =g 1 (Zrion)

where Z, C Zisis a vector of covariates relevant to whether or not complete data is observed and
¢ k() is the chosen link function for sub-mechanism &.

Some mechanisms fall more naturally into a survival model, especially if folks are censored. For
example, in Figure 3.2(b), patients need to remain enrolled intheir healthcare plan until 5 years. We

may instead wish to model time to disenrollment for a mechanism like this, in which case g is
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defined as P(T; > #), where #;, is the pre-specified enrollment requirement. This can be done using

a fully parametric model, such as an exponential model, where

- T
Thi =& Ivk (Zk,idk) = exp {—fk/Zk,i“k} .
Alternatively, we could take a semi-parametric approach, such as estimating a Cox proportional
hazards model, then using a Breslow estimator for the baseline hazard 68 In this case,

mhi = 3 (Zhin) = Son(n) P 4,

where S, 1 (#) is the unknown baseline survival function for mechanism &, evaluated at the pre-
specified time #. For notational convenience, we will denote 3, = ay, if the model for sub-mechanism
k is fully parametricand %, = (o, So x(%)) if the model for sub-mechanism # is a semi-parametric
Cox proportional hazards model.

EsTimMaTION

Based off the specified data provenance and models for the sub-mechanisms, we can directly substi-

tute estimates for 9% to obtain

Thi=g i (Zk,i; §k) .
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Substituting estimates of all relevant 3, € 3 yields

> R [H 7Ark7i] Ui (%,8) = o, (33)

which can be solved to obtain 3, an estimate of 3.

ASYMPTOTICS

As shown by van der Vaart®®, under typical regularity conditions, solutions of unbiased estimating
equations are asymptotically linear, have a unique influence function, and have a normal limiting
distribution. If our models for 7, ; are correctly specified, the estimating equation (3) is unbiased,
and therefore ,23 is consistent for @ with a normal limiting distribution.

More specifically, if 8 is the true value of 8 and 9 is the true value of 9, we have
\/]T](ﬁ - ﬂ*) — Normal(o, Q),

Hence, we can write

VN(8-g") - Nomul(o,0)

where Q = J7IJ " and T = Var [US(¥, 8%) — QL' M(S) — ... — Qxl M (5%)], the

components of which are defined as follows:
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o
J= gEle ,@n\

0 \
0= 5 ElU (5.0

0
I = @E[Mk,i (Sk)]‘ ,

= i

and M, ; is the " individual’s contribution to the score equation for . The full Taylor series ex-

pansion to derive these equations can be found in the appendix.

INFERENCE IN PRACTICE

In practice, we will need to estimate the components defined in the asymptotic distribution of 8. We
can rely on Slutsky’s theorem  and use plug-in estimators for these quantities to obtain estimates of
the asymptotic variance-covariance matrix of 8. After performing regressions to find all appropriate

estimates 3 for k = 1, ..., K, and 8, we can estimate QO = /~'I'’/7", where
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Explicit equations for these are provided in the appendix for logistic, exponential survival, and Cox

proportional hazards sub-mechanisms.

3.3.3 SATURATED MODELS

One may also attempt to remove selection bias in the main outcome model by adjusting for all co-
variates associated with selection®. This can be done by fitting a saturated main outcome model
that includes all covariates of interest (either exposures, potential confounders, or effect modifiers)
as well as covariates that affect selection. Rather than fitting a model for equation (1) above, investi-

gators would instead fit a model for

[L(,i =K [le|)(117 X2i7 X;ia X4.i; ﬁ] = g_l (X;iv X2i7 X}ia 7X4i; (@) . (34)

When g is the identity link function, this approach can provide unbiased point estimates for re-
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gression coefficients without the need for inverse probability weighting. However, this is not guar-
anteed for other link functions. For example, when the main outcome model requires a logistic link
function, estimates for 8 from fitting a model for (4) do not necessarily converge to the estimates
we would have received by fitting a model for (1) when there are no missing data. This is a result of
the non-collapsibility of the odds ratio. Ultimately, fitting saturated outcome models can remove

selection bias in some scenarios, but is flawed for generalized linear models.

3.4 SIMULATIONS

In most EHR-based settings, ZZ, the regression coefficient of interest when estimated using a modu-
larized IPW, will be expected to exhibit less bias than B, the regression coefficient of interest when
estimated using a modularized IPW. However, given the extra models required for estimation of ‘23,
one would also expect its (asymptotic) variance to be larger. As such, researchers will likely contend
with a bias-variance trade-ff. To illustrate this, we have conducted a simulation study examining
the performance of these estimators, as well as other commonly used approaches, in a number of

settings where we may expect to see bias.

3.41 DATA GENERATION

Figure 3.3 shows three different true data structures we consider in our simulation.

(a) No Effect Modification  (b) Effect Modification of  (c) Effect Modification of

X,on X, > Y X,onX, =Y
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Figure 3.3: DAGs showing data structure for hypothetical study

Consistent with the DURABLE study, X; is a binary exposure of interest, Y is a continuous out-
come of interest, X, is a confounder of the association between X} and Y that is not associated with
selection, Xj is a confounder of the association between X; and Y that is associated with selection,
and X, is a covariate associated with selection that is not independently associated with X;. We con-
sider two selection mechanisms: S; requires survival to a certain time #, and S, requires observance,
given S;. Figure 3.3(a) shows precisely this data structure in a directed acyclic graph (DAG). In 3(b)
we extend this by allowing X; to modify the association between X; and Y, and in 3(c) we extend this
by allowing X, to modify the association between X; and Y.

Throughout, we considered N = 10, 000 to examine only large sample properties, with Y, §; and

S, simulated using the following data generating mechanisms:
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(a) DGM-1: No Effect Modification
Vi N(8, + B X + 6, + B + , X, )
Sii=1(D; > 1), D~ Exp (oo + o Xy + otz 4 Xyi)
S,i ~ Bern (w = expit{a, o + c, 1 Xy + 0, ;. X5 + a0, , X,i})
(b) DGM-2: Effect Modification of X; on X; — ¥
Vi N (B, + B X + B, + B + £, Xy + , XXy, 72)
Sii=1(D; > 1), D~ Exp(oto+ o Xy + o1 4 X,0)
S,i ~ Bern (w = expit {ct, o + ctr 1 Xui + a0 ;. X5 + 01, 4 X,i})
(c) DGM-3: Effect Modification of X, on X; — ¥
Vin N (8, + 8%+ BXi + B X+ B Xy + B, XX, 7))
Sii=1(D; > 1), D~ Exp(oo+ o Xy + otz 4 Xyi)
S,i ~ Bern (w = expit{a, o + c, 1 Xy + 0, ;. X5 + a0, , X,i})
(d) DGM-4: No Effect Modification and logistic link function
Y; ~ Bern (7r = expit {‘BZ + ‘BIXU- + ‘BIXM' + ﬁngi + ﬁiXu})
Sii=1(D; > 1), D~ Exp(oyo+ o1 Xy + s 4 X,0)

S,i ~ Bern (w = expit {ct, 0 + ctr 1 Xy + a0 ;. X5 + 01, 4 X,i})
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X; and X, are binary variables generated with probability o.5, and X, and X, are generated from
zero-mean normal distributions. In all settings, we set o = 10, § : (,@o, B8, 8, {34, B, §I4> =
(0,2,1, =1, —1, —2, —2), oy = (A0, ry, s y) = (l0g(30), —1.5,0.5), s = (G0, Uay, sy Ay y) =
(15,2, —1,—1),# = 3,and ﬁT : (ﬂi, ﬁi, ﬁj, ‘QI, ﬁ;‘) = (0,1, .5, —.5, —1). Using these covariates, 59%

of all observations are considered complete, and 41% are excluded due to incomplete data.

3.4.2 OUTCOME MODELS

In a research study, investigators may be interested in estimating different mean models. In some
cases, they will intend to fit the a regression model that accounts for any effect modification main
association by including interaction terms. In other cases, however, they may be more interested

in estimating the marginal association between the primary exposure, X;, and the outcome, Y. Al-
though this is, in some sense, a misspecfication of the mean model, investigators may be interested in
the overall effect in the population and therefore still be interested in fitting a marginal model. Thus,

For each true data setting, we different potential mean models that may be of interest to a researcher:

E[Y1X, X, X5 = B, + B X, + B,X, + ., (24)
E[VX, X, X, = 8, + 8P X, + 8.X, + X, + § X.X, (Ma)
EYX, X, X, X,] = B, + B X, + B,X, + 8.X, + B, X, + B, XX, (M)
E[Y|X, X,, X,] = expir { @, + 87X, + g, + g1, + g1, | ()
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When there is no effect modification in the true data generation (i.e. Figure 3.3(a)), only the marginal
model A1 is fit. When X; is an effect modifier of the association between X; and Y (i.e. Figure
3.3(b)), both the marginal model 241 and the interaction model 443 are fit. When X, is an effect
modifier of the association between X; and Y (i.e. Figure 3.3(c)), both the marginal model 441 and
the interaction model A43 are fit. When the main outcome model is logistic (DGM-4), only the

marginal model 244 is fit.

3.4.3 ACCOUNTING FOR INCOMPLETE DATA

For each of the settings and outcome models outlined above, we consider a series of approaches
to account to incomplete data. For each simulation, we generated exposure and outcome data as
outlined above, then generated missing indicators based on the specification for o; and a,. We fit
the appropriate outcome models first using the full data (i.e. had we observed complete data for
all subjects), then compared the estimated coefficients to those resulting from the same regression
models using the following approaches using the incomplete data:

* Complete case - include only subjects with complete data

* Complete case with a saturated model - include only subjects with complete data, but addi-

tionally include all covariates associated with selection in the main outcome model

* Standard IPW - estimate IP weights using a single missingness mechanism (logistic model for
S)

* Modularized IPW - estimate IP weights using two missingness mechanisms (exponential

model for S, and logistic model for S,)

* Modularized IPW (Cox) - estimate IP weights using two missingness mechanisms (Cox pro-

portional hazards model for §; and logistic model for S,)
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* Modularized IPW (logistic) - estimate IP weights using two missingness mechanisms (logistic

model for §; and logistic model for S,)

3.4.4 SIMULATION RESULTS

EsTiMaTION

Percent bias and standard errors for the estimated regression coefficients for the association of in-
terest are presented in Table 3.2. Results for all three data generating mechanisms are provided, in-
cluding the mean estimated coefficient, as well as the percent bias observed using each approach to
account for incomplete data, relative to the estimate using the full data. We see that under all data
generation settings, the correctly specified modularized IPW using exponential model for S; is unbi-
ased, but the complete case, complete case with a saturated model, standard IPW, and modularized
IPW with a misspecified logistic link are prone to bias. The modularized IPW with a Cox PH model
for S, is also unbiased in all settings, which is expected as the true survival model for S, is exponen-
tial, which is a proportional hazards model. When there is no effect modification, the complete case
analysis with a saturated model is unbiased; however, this is insufficient to adjust for any selection
bias in the marginal model when there is effect modification, as seen for DGM-2 (M) and DGM-3
(Miz). We see that for all approaches, the bias in the estimated regression coefficient for the interac-
tion term (8 or 8 ) is either minimal or zero. When the main outcome model is logistic, DGM-4,
the resulting biases reflect the same pattern as those for DGM-1 (M), with the exception of the com-

plete case with a saturated model, which no longer provides an unbiased coefficient. This is due to
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the non-collapsibility of the odds ratio.

Across all data generating mechanisms and models, we see the modularized IPW approach is less
efficient than both the standard IPW approach and either of the complete case approaches. This
is to be expected, as we are fitting a larger number of models and we expect additional variability.
However, the modularized IPW is the only approach that is consistently unbiased across all data
generating mechanism and models. Thus, we observe a bias-variance trade-off in appropriately ad-

justing for selection in this setting.

INFERENCE

To evaluate the validity of the inference on these approaches, we calculated the coverage probabil-
ities for 95% confidence intervals for the coefficients of interest using each approach to adjust for
selection. Overall, the modularized IPW using either an exponential model or a Cox model achieved
the nominal coverage probability in all scenarios. The complete case, standard IPW, and modular-
ized IPW with a logistic model approaches only achieved the nominal coverage probability when the
estimate was unbiased. Full results can be found in the supplement.

Opverall, we see that both the complete case analysis standard IPW analysis are biased. The modu-
larized IPW using either an exponential model or a Cox PH for §; is always unbiased, however using
a Cox PH model for §; seems to have slightly lower confidence interval coverage. The complete case
analysis with a saturated model is unbiased with appropriate coverage for the marginal mean model
(M) when there is no effect modification and for the interaction models (M2) and (M3), but is bi-

ased with poor coverage for the marginal mean model (M1) when there is effect modification and is
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biased for the marginal mean model (M4) when the main outcome model is logistic. Here we see an
example of a scenario in which the standard framework fails to capture the complexity of the data
provenance and subsequently does not adequately correct for selection bias in the final model.

Table 3.2. Estimated coefficients of X,

Model Coeflicient  Approach % Bias  Relative Std Error
Complete case 28 0.79

Complete case with saturated model o 0.74

DGM-1 (M) ﬁ(MI) Standard IPW 29 0.80
! Modularized IPW with exponential S; o 1.00

Modularized IPW with Cox PH S, o 1.00

Modularized IPW with logistic S, -4 0.92

Complete case -12 0.79

Complete case with saturated model 17 0.75

DGMe2 (M) ﬂ(MI) Standard IPW -28 0.81
! Modularized IPW with exponential S; o 1.00

Modularized IPW with Cox PH S, o 1.00

Modularized IPW with logistic S, -4 0.93

7777777777777777 Completecase 29 o72

Complete case with saturated model o 0.68

Standard IPW -29 0.74

DGM-2 (M) ﬁI(MZ) Modularized IPW with exponential S; o 1.00
Modularized IPW with Cox PH S, o 1.00

Modularized IPW with logistic §; -4 0.94

7777777777777777 Completecase -4 o7z

Complete case with saturated model o 0.68

Standard IPW -4 0.74

DGM-2 (M) &3 Modularized IPW with exponential S; o 1.00
Modularized IPW with Cox PH S, o 1.00

Modularized IPW with logistic §; -4 0.94
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Table 3.2 (continued). Estimated coefficients of X;

Model Coefficient  Approach % Bias  Relative Std Error
Complete case -59 0.62
Complete case with saturated model -5 0.52
Standard IPW -58 0.65
DGM-3 (M1) QI(M!) Modularized IPW with exponential S; o 1.00
Modularized IPW with Cox PH S, o 1.00
Modularized IPW with logistic S, 11 0.80
7777777777777777 Completecass o o8y
Complete case with saturated model o 0.89
Standard IPW o 0.91
DGM-3 (M3) B‘(Mﬂ Modularized IPW with exponential ; o 1.00
Modularized IPW with Cox PH S, o 1.00
Modularized IPW with logistic S, o 0.97
7777777777777777 Completecss o om;
Complete case with saturated model o 0.72
Standard IPW o 0.73
DGM-3 (M3) B“* Modularized IPW with exponential S o 1.00
Modularized IPW with Cox PH S, o 1.00
Modularized IPW with logistic S, o 0.89
Complete case -5 0.88
Complete case with saturated model -35 1.00
Standard IPW -55 1.02
DGM-4 (M4) BI(M4) Modularized IPW with exponential §; o 1.00
Modularized IPW with Cox PH S, o 0.97

\
[

Modularized IPW with logistic S, 0.90

3.5 REsurts ForR DURABLE StuDY

Characteristics of N=16,282 patients are identified in DURABLE as having undergone bariatric

surgery between 1997 and 2010 are shown in Table 3.1. Patients who have complete baseline covari-
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ates (BMI at both 6 months prior to surgery and at the time of surgery), are enrolled at five years,
and have a BMI measurement at five years are considered to have ‘complete’ data. Characteristics
of these n=5,636 patients are also shown in Table 3.1. As we have seen through extensive simulation,
naive application of standard missing data methods/strategies will generally result in inadequate
adjustment for selection bias. To evaluate the impact of choosing different methods to account

for selection in these data, we proceed by implementing three approaches to estimate the effect of
bariatric surgery type on BMI s years after surgery: (1) complete case analysis, (2) standard IPW with
a single logistic model for complete data, and (3) modularized IPW with a logistic model for com-
plete baseline covariates, a Cox proportional hazards model for enrollment at 5 years given complete
baseline covariates, and a logistic model for BMI information at 5 years given complete baseline co-
variates and enrollment at 5 years. Results for the selection models are shown in Table 3.3 for both

a single-mechanism (standard IPW) approach where the probability of having complete data is esti-

mated using a single logistic model and the modularized IPW described above.

92



Table 3.3. Estimated regression coefficients for selection models

Coeflicient a (p-value)

Standard IPW Modularized IPW
S logistic S, logistic S, coxPH S, logistic

Covariate N =16,282 N =16,282 N = 10,661 N =38,332
VSG vs RYGB -0.43 (0.53) | -0.74 (0.29) | ©0.92 (0.12) | 0.67 (0.56)
Standardized age at surgery  0.08 (<o.01) | 0.04 (<o.01) | -0.08 (<o.01) | o.05 (<o.01)
Year of surgery, years 032 (<o.01) | 0.86 (<o.1) | ocor (0.064) | -0.13 (<o.01)
Prior enrollment years 0.05 (<o.01) | 0.002 (0.69) | -0.08 (<o.01) | 0.02 (<o.01)
Male -0.28 (<o.01) | -0.13 (0.04) | 022 (<o.01) | -022 (<o.01)
Site

KNC vs KW -0.06 (0.36) | -0.06 (0.49) | o.05 (0.56) | -o.01 (0.96)

KSCvs KW 0.43 (<o.01) | 0.69 (<o.01) | o.01 (0.87) | 042 (<o.01)
Standardized baseline BMI - - 0.03 (0.05) | -0.04 (0.03)
BMI pre slope - - 0.01 (0.35) | -0.02 (0.28)
Type * Site

VSG & KNC 0.80 (0.28) | 0.38 (0.63) | -1.23 (0.07) | -0.13 (0.91)

VSG & KSC 0.28 (0.69) | ©0.90 (0.21) | -1.17 (0.05) | -0.75 (0.52)

We see that several potential predictors of complete data have differential effects when we com-
pare the standard IPW approach to the modularized approach. For instance, men are less likely to
have complete data according to the standard IPW model (p<o.o1), but are less likely to have com-
plete baseline data (p<o.or), more likely to be enrolled at five years given complete baseline data
(p<o.01), and less likely to have a BMI measurement at 5 years given complete baseline data and en-
rollment (p<o.or). The simplified standard IPW fails to capture the nuanced association between
gender and complete data that is highlighted in the modularized IPW. We can further see the impact

of using the standard IPW by examining the predicted probabilities of complete data among those
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with complete data (Figure 3.4).
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Figure 3.4: Comparison of estimated probabilities of complete data

Here we see that while the probabilities predicted using the standard IPW approach and the mod-
ularized IPW approach are highly correlated, they are not identical. The standard IPW approach is
more likely to underestimate the probabilities of complete data relative to the modularized approach
for modularized IPW probabilities close to 0.5, and it is more likely to overestimate probabilities
closer tooand 1.

We consider three main outcome models relating bariatric surgery type to BMI at 5 years: (1)
BMTI slope (defined as BMI at five years - BMI at baseline), (2) BMI slope adjusted for potential
confounders, and (3) BMI slope adjusted for potential confounders and an interaction with gen-
der. Results for these outcome regression models examining the association between surgery type

and BMI at s years are shown in Table 3.4.
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Table 3.4. Estimated regression coefficient (95% confidence interval) for VSG vs RYGB

Outcome Model Complete Case Standard IPW Modularized IPW
BMI s year slope (unadjusted)  2.94 (2.52,3.36)  2.85 (2.59,3.11)  3.26 (279, 3.74)
BMI s yearslope (adjusted”) 3.7 (273,3.60) 2.8 (2.68,3.27) 343 (2.943.91)
Male 0.78 (0.38,1.19) 0.70 (0.41,0.99)  0.61 (0.28,0.93)
KNC 326 (2.53,3.78) 291 (2.43,3.39)  2.52 (1.61,3.44)
KSC 2.11 (1.53,2.70)  2.07  (1.63,2.51) 1.73 (0.92,2.53)
Year of surgery 0.15 (0.05,0.26) o.15 (0.05,0.26) -0.04 (-0.30,0.23)
Age (centered) 0.34 (0.27,0.41)  0.35 (0.30,0.40) 0.31 (0.19,0.43)
BMI pre slope -0.42 (-0.48,-0.36) -0.43 (-0.49,-0.36) -0.42 (-0.49,-0.35)
BMI s yearslope (adjusted™)  3.37  (2.89,3.84) 320 (280,3.51) 362 (3.14,4.10)
BMI s year slope * Male -1.08 (-2.11,-0.06) -1.06 (-1.71,-0.41) -0.91 (-1.55,-0.26)
Male 0.99  (054,1.43) o085  (os53,1.17) 073  (0.37,1.09)
KNC 308 (2.54,3.79) 292 (2.44,3.40) 2.53  (1.61,3.44)
KSC 2.12 (1.53,2.70)  2.07 (1.63,2.51) 1.72 (0.91,2.53)
Year of surgery o.15 (0.05,0.26) o.15 (0.05,0.25) -0.04 (-0.30,0.22)
Age (centered) 034 (0.27,0.41) 0.35  (0.30,0.40) 0.31 (0.19,0.43)
BMI pre slope -0.42 (-0.48,-0.36) -0.43 (-0.49,-0.36) -0.42 (-0.49,-0.35)

*Adjusted for gender, site, year of surgery, age at surgery, and prior BMI slope

**Additionally including a gender-BMI s year slope interaction
We see that in all three models, the standard IPW estimate is in fact in the opposite direction of the
complete case estimate than the modularized IPW estimate is. While most of the potential con-
founders are in the same direction across all three approaches, the magnitude and the confidence
intervals vary. This suggests that the standard IPW approach may be incorrectly estimating the prob-
abilities of complete information and therefore insufficiently correcting for selection bias. Note
that in this data provenance, we modeled enrollment using a Cox proportional hazards model. We
also considered an exponential survival model and a logistic model to estimate the probability of en-

rollment at § years, and the resulting modularized IPW estimates we very similar. Results using the
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exponential survival model and the logistic model can be found in the supplement.

3.6 DiscussioN

In EHR-based studies, data provenance relies on a complex structure determined by many clinical
decisions made by patients, health care providers, and the healthcare system. As seen in simulation,
the standard IPW approach may fail to capture this in EHR-based research, thus outcome models
using an oversimplified data provenance do not adequately correct for selection bias.

This result is particularly noteworthy in a number of scenarios, specifically when the true data
provenance is multi-stage with large effect sizes in opposite directions, when researchers are specifi-
cally interested in a marginal mean model, but the main association is modified by a covariate that
is associated with selection, and when the functional form of at least one of the data provenance
mechanisms is misspecified. We have shown through simulation that in a scenario such as this, we
find biased coefficient estimates and invalid inference with reduced coverage for confidence inter-
vals. It is important to not that this will not be the case in all scenarios, however. When true data
provenance is multi-stage with smaller effect sizes in the same direction across mechanisms, the stan-
dard approach will not necessarily lead to substantial residual selection bias. It may, however, lead
to more efficient regression estimators. It is for this reason we urge researchers to illicit guidance
from subject-matter experts and professionals in the healthcare system when performing EHR-based
research where data are incomplete.

In this paper, we focus on a small set of possible research questions, but there are plenty to con-

sider. Natural extensions of this methodology could be made to longitudinal analyses in which we

96



are interested in the trajectory of an outcome over time. Similarly, this paper only considers mono-
tone missingness mechanisms. In longitudinal data, however, non-monotone missingness is much
more common and should be accounted for. Finally, there are other approaches to estimation and
inference in the presence of missingness that this paper does not consider, namely multiple imputa-
tion or blended strategies. Further work should be done to extend the general framework outlined
in this paper to encompass a broader range of scientific questions and approaches to handling miss-
ing data.

While the advantages of performing a modularized approach are many; namely the flexibility in
specification of the sub-mechanisms and the ability to more closely reflect the true data provenance,
there may be a small sacrifice in efficiency relative to a standard approach. All of this must be consid-

ered when analyzing EHR data.
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Supplement

4.1 CHAPTER 1 SUPPLEMENT
411 Sig, =1 <= 4= bFORCOMPOUND SYMMETRIC COVARIANCE MATRICES IN
THE DISCRETE CASE

Here we note thatg , — ¢, asn — 00, where ¢ , is the theoretical correlation between 4} (a, 1;)

and b7 (b, t;). We prove that the theoretical correlation between b} (4, ;) and b} (b, #;) will be 1if
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and only if 2 = b, under the assumption that the covariance matrix for Z;is compound symmetric,
which implies the same will be true for the asymptotic empirical correlation ¢ ,. Under a compound
symmetric covariance matrix, Cov [Z;(s;), Zi(s,)] = ¢ when s, = 5, and Cov [Zi(s,), Zi(s,)] = ed®

when s, # 5,, where ¢ < 1.
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Given that Cov (b} (a, #;), b} (b, ;)] = e,/ Var b} (a, t;)] Var [b (b, 1;)], we can compare equa-

tions S.1.1 and S.1.2 above:

max{a, b} + 1 a+1

() ) (o

Coo (8, 1), 1 (b, 1)) — [ Vaar (17 (0, 5)) Var [ (b,1)] = & (”mx{”}e) - of\/ (I ”5) (I;ff )

—

Ifa =0, <%) - \/(I':j_l ) (Hl;j’_l ) = o, which implies ¢, = 1. However, if 2 # b,

(%) - \/(%) (‘*;_’;I ) + o, which implies ¢ , # 1.

S2¢, =1 <= a = bFORAR(1) COVARIANCES MATRICES IN THE DISCRETE AND

CONTINUOUS CASES

Under an AR(1) covariance matrix, Cov [Zi(s,), Zi(s,)] = ¢!l where ¢ < 1and § € [o,1]. We

also note thatif ¢, = 1 <= 2 = bholds in the continuous case, it must also hold for discrete

exposure measures. Given that Cov [ (a, 1;), b} (b, ;)] = ¢, \/Var [P} (a, ;)] Var [l (b, 1;)], we

argue that g , < 1if \/Var [b}(a, ;)] Var b7 (b, 1;)] < Cov[h}(a,t;), b} (b, )], or equivalently
if Var (b} (a,t;)| Var [bf (b, ;)] < Cov[b}(a, 1), b} (b, 1;)]*. Without loss of generality, we assume

a < b.

101



ti
mﬂ@@ﬂ:mWr/ am4
a ti—a
1\ 2 1 [f
= (—) Var[ / Zi(x)ds]
aJti—a
/ / Cov[Zi(51), Zi(s,)] dsids,
ti—a Jti—
1\ 2 i i
=(-) 7 sl dg s,
(4) [_a /ti_ e s, ds
Var b} (a, ;)| Var b (b, ;)] = g 2/ / =52l s dds, ></ / =52l s ds,
b ti—a Jti— ti— ti—
ti—
= / / =l 4y ds, x { / / |S‘ % s, ds, +
ﬂzbz ti—aJt; t t
+/t /t gls‘_’”dsldsz%—z/t /1 gx‘_“dxldxz] (S.2.1)
ti—a Jti—a ti—a Jti—b

a

b b
@4/ &@A/ 5@4
b ti—b
/ / Cov[Zi(s1), Zi(s,)] dsids,
ti—a Jti—
- lsi=sa| d51d52
ab /ti—a /t,'—b ¢

ti ti
Cov [b:((ﬂv ti)? hr(h ti)] = Cov |:I/ Zt( )dja Z,(S)d5:|
ti—a b l’,'—b

I02



0_4 ti ti—a ti ti 2
Cov [hF(a, 1), bF (b, £)]> = —— [ / / el ds ds, + / / g"‘”'dsldsz}
a2b? ti—a Jti—b ti—aJti—a
ot [</fi /fi—a o )2 </ti /fi - >2
= STRldsds, |+ =2l dsds,
a*b? ti—a Jti—b ¢ ti—a Jti—a ¢
t; ti—a t ti
—i—z/ / €|SI_S2|dJId52/ / 6ISI_SZ|] ($.2.2)
ti—a Jt;i—b ti—a Jti—a

103



4.2 CHAPTER 3 SUPPLEMENT

Supplemental Table 1. Coverage Probabilities of 95% Confidence Intervals for Coefficients of X,

Model Coefficient  Approach 95% CI
Complete case 0.01

Complete case with saturated model 0.95

DGM1 (M) @ (1) Standard IPW 0.00
! Modularized IPW with exponential S; 0.96

Modularized IPW with Cox PH S, 0.95

Modularized IPW with logistic S; 0.80

Complete case 0.61

Complete case with saturated model 0.25

DGM-2 (M) ﬁ(MI) Standard IPW 0.01
! Modularized IPW with exponential S; 0.96

Modularized IPW with Cox PH §; 0.95

Modularized IPW with logistic S; 0.81

7777777777777777 C?otinli)leiteic;sgiiiiiiiiiiii7777777770.70;7

Complete case with saturated model 0.95

DM (M) () Standard IPW 0.00
! Modularized IPW with exponential S; 0.96

Modularized IPW with Cox PH §; 0.95

Modularized IPW with logistic S; 0.80

7777777777777777 Completecase o086

Complete case with saturated model 0.95

Standard IPW 0.73

DGM-2 (M2) 5‘3 Modularized IPW with exponential S; 0.95
Modularized IPW with Cox PH S, 0.95

Modularized IPW with logistic S, 0.86
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Supplemental Table 1 (continued). Coverage Probabilities of 95% Confidence Intervals for Coefficients of X;

Model Coefficient  Approach 95% CI

Complete case 0.00

Complete case with saturated model 0.88

Standard IPW 0.00

DGM-3 (M1) Q(M!) Modularized IPW with exponential S; 0.99

Modularized IPW with Cox PH S, 0.95

Modularized IPW with logistic S, 0.65
7777777777777777 6o;n;)l;t;c;s;7777777777777777777777777770.79;7

Complete case with saturated model 0.95

Standard IPW 0.87

DGM-3 (M3) B‘(Mﬂ Modularized IPW with exponential ; 0.94

Modularized IPW with Cox PH S, 0.95

Modularized IPW with logistic S, 0.86
7777777777777777 (Eo;ni)l;t;c;s;7777777777777777777777777770.79;7

Complete case with saturated model 0.95

Standard IPW 0.87

DGM-3 (M) B“* Modularized IPW with exponential S 0.96

Modularized IPW with Cox PH S, 0.95

Modularized IPW with logistic S, 0.78

105



Table 8. Estimated regression coeflicient (95% confidence interval) for VSG vs RYGB using

modularized IPW with different models for enrollment at 5 years

Outcome Model Exponential Logistic Cox PH

BMI s year slope (unadjusted)  3.25 (2.77,3.73)  3.26 (2.78,3.73)  3.26 (2.79, 3.74)

BMI s year slope (adjusted*) 3.42  (2.93,3.92)  3.42  (2.93,3.91)  3.43 (2.94, 3.91)

Male 0.63 (0.30,0.95) 0.62 (0.29,0.94) 0.61 (0.28,0.93)
KNC 2.52 (1.61,3.43)  2.53 (1.62,3.44) 2.52 (1.61, 3.44)
KSC 1.72 (0.92,2.53) 1.73 (0.92,2.54) 1.73 (0.92,2.53)
Year of surgery -0.04 (-0.30,0.23) -0.04 (-0.30,0.23) -0.04 (-0.30,0.23)
Age (centered) 0.31 (0.18,0.43) 0.31 (0.19,0.43) 031 (0.19,0.43)
BMI pre slope -0.42 (-0.50,-0.35) -0.42 (-0.49,-0.36) -0.42 (-0.49,-0.35)

BMI 5 year slope (adjusted**) 3.61 (3.12,4.10)  3.62  (3.14,4.10) 3.62  (3.14,4.10)

BMI s year slope x Male -0.91 (-1.55,-0.26) -0.92 (-1.56,-0.27) -0.91 (-1.55,-0.26)
Male 0.75 (0.38,1.11) 0.74 (0.38,1.10) 0.73 (0.37, 1.09)
KNC 252 (1.61,3.44) 2.53 (1.62,3.44) 2.53 (1.61, 3.44)
KSC 1.72 (0.91,2.53) 1.73 (0.92,2.54) 1.72 (0.91,2.53)
Year of surgery -0.04 (-0.30,0.22) -0.04 (-0.30,0.22) -0.04 (-0.30,0.22)
Age (centered) 0.31 (0.18,0.43) o0.42 (0.19,0.43) 0.31 (0.19,0.43)
BMI pre slope -0.91 (-1.55,-0.26) -0.92 (-48,-0.35) -0.42 (-0.49,-0.35)

*Adjusted for gender, site, year of surgery, age at surgery, and prior BMI slope

**Additionally including a gender-BMI s year slope interaction
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