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Abstract

In this work, we consider three problems in applied statistics motivated by complex datasets,

with approaches from both Frequentist and Bayesian paradigms. Chapter 2 is motivated by

case-control data collected for the Army Study to Assess Risk and Resilience in Servicemem-

bers. We derive estimation and testing methods for data sampled by a composite indicator

matched on covariates, with an added complexity of misclassified outcomes. Chapter 3 is mo-

tivated by multilevel data collected from the Consumer Assessment of Healthcare Providers

and Systems surveys. We develop a spatial-temporal Bayesian random effects model with a

flexible parameterization, and formulate a Bayesian hat matrix to transparently assess how

information is being used in construction of the model estimates. Finally, a cross-validation

approach is implemented to evaluate models. Chapter 4 is motivated by observational data

from a large administrative database of Medicare beneficiaries, containing patients clustered

by hospital providers. We propose a Bayesian hierarchical model to assess associations at the

hospital level of the model. A case-mix adjustment is provided at the patient level, with ad-

justment for hospital-level confounders at the second level. A skew-t distribution is used for

the random effects to allow greater flexibility and to compare model adequacy.
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1

Introduction

Modern datasets are frequently characterized by complications that do not allow analyses

via standard methods. To provide accurate inference or prediction, statistical methods need

to account for the complexities of the data, be it an irregular sampling scheme, correlated

outcomes, an intricate hierarchical structure, or otherwise.

In Chapter 2, we study case-control data with multiple correlated binary outcomes, an

unconventional sampling scheme, and misclassified outcomes. Correlated binary outcomes,

such as multiple disease indicators for one patient, arise frequently in public health research.

When an individual outcome of interest is rare, sampling the data via a case-control design

is preferred for its higher power, but when analyzing multiple outcomes, it is more feasible

to sample based on a composite outcome. Ignoring this composite sampling in the analysis

produces biased estimates for the odds ratios. An additional layer of complication arises when

gold standard outcome information is not available due to practical difficulties in ascertaining

the outcomes. Under such settings, the outcome status is often estimated based on predicted

probabilities derived from fitting a risk prediction model in a validation set using electronic

medical records. Traditionally, such estimated probabilities are thresholded to classify the

true outcome status, resulting in potentially misclassified outcomes. In this chapter, we dis-
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cuss estimation and testing procedures to improve power by directly modeling the predicted

probabilities, along with inverse probability weighting to account for the composite sampling.

We show via simulation results that the proposed methods performwell in finite samples. Esti-

mation results show a reduced bias when accounting for the composite sampling, while testing

results show increased power when using the predicted probabilities. The methodology is il-

lustrated on data from the Army Study to Assess Risk and Resilience in Servicemembers New

Soldier Study.

In Chapter 3, we study sufficient statistics for survey data summarized by areas nested

within states and across multiple years. Each year, surveys are conducted to assess the qual-

ity of care for Medicare beneficiaries, using instruments from the Consumer Assessment of

Healthcare Providers and Systems program. In each state, depending on the heterogeneity of

survey measures for Fee-for-Service beneficiaries, their results are currently presented pooled

at the state level or unpooled for smaller substate areas nested within the state. We fit spatial-

temporal Bayesian random effects models using a flexible parameterization to estimate mean

scores for each of the domains formed by 94 areas in 32 states measured over 5 years. A

Bayesian hat matrix provides a heuristic interpretation of the way the model combines infor-

mation for estimates in these domains. The model can be used to choose between reporting of

state- or substate-level direct estimates in each state, or as a source of alternative small area

estimates superior to either direct estimate. We compare several candidate models using log

pseudo-marginal likelihood and posterior predictive checks. Results from the best-performing

model for 8 measures surveyed from 2012 to 2016 show substantial reductions inmean squared

2



error over direct estimates.

In Chapter 4, we study patient data clustered by hospitals in search of an average causal

effect at the hospital level, while controlling for patient-level characteristics. Hospital profil-

ing is a method of evaluating medical providers based on a set outcome, typically performed

using mortality rates. In this paper, we are interested in extending the models used in hospital

profiling to perform a hospital-level analysis to determine the relationship between palliative

care received and the aggressiveness of end-of-life (EOL) treatments (e.g. chemotherapy, ra-

diotherapy, re-admissions) for patients with advanced cancer. This analysis will also allow us

to identify hospital-specific characteristics that explain the variation in EOL outcomes across

hospitals. Towards these goals, we develop Bayesian hierarchical models for our dataset of

408 hospitals, including 20,400 Medicare patients with advanced lung, pancreas, colorectal, or

brain cancer. At the first stage of the model, we adjust for case-mix bias using patient-level

data. At the second stage, we estimate hospital-level risk of EOL outcomes, and adjust for

hospital-level covariates to assess the association between hospital-level receipt of palliative

care on EOL outcomes in hospitals. Characterizing between-hospital variability and determin-

ing whether receiving palliative care reduces treatment aggression is important due to the

important health policy implications in the utilization of EOL care.

3
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2.1 Introduction

For a single binary outcome, a case-control study provides valid estimators of odds ratios,

provided the outcome of interest is the variable that defines the case-control sampling (Prentice

& Pyke, 1979). However, when there are multiple correlated binary outcomes, it is often more

pragmatic to sample based on a composite outcome, where cases are subjects with any of the

binary outcomes, and controls are subjects with none of the binary outcomes. This sampling

can be matched based on some covariates. Using a composite outcome for sampling optimizes

the amount of information used, which is particularly important when the cost of attaining

accurate data is high. If this atypical sampling is ignored in analyzing the data, the resulting

odds ratios for the multiple outcomes will be biased, because the variables being analyzed are

not the same as the variables defining the case-control sampling. Problems of similar nature

have been discussed in the literature. One example is the analysis of secondary phenotypes in

case-control genome-wide association studies, where subjects are sampled based on a different

primary outcome. Proposed solutions include inverse probability weighting (Richardson et al.,

2007; Monsees et al., 2009; Schifano et al., 2013), and retrospective likelihood (Lin & Zeng,

2009).

In addition to this composite sampling issue, binary outcomes can be potentially misclas-

sified in practice, as gold standard information is not always available due to difficulties in

its ascertainment. Methods to account for outcome misclassification have been studied exten-
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sively in the literature, and typically model the misclassification rates using information from

a smaller validation set where the true outcomes are available (Pepe, 1992; Bollinger & David,

1997; Lyles et al., 2011; Edwards et al., 2013). Outcome misclassification in case-control studies

have been covered (Jurek et al., 2013; Gilbert et al., 2014), but not with multiple outcomes and

composite sampling. Among the literature on binary outcome misclassification, there have

been few applications analyzing datasets that contain the probability of the outcome in addi-

tion to the misclassified binary indicator, which is a distinct advantage of electronic medical

record (EMR) phenotyping (Liao et al., 2015). These probabilities are typically generated from

risk prediction models in validation sets. While the probabilities can be thresholded to yield

potentially misclassified outcomes, Sinnott et al. (2014) showed that directly modeling these

probabilities instead of the thresholded outcomes improve effect estimation and testing power.

In this chapter, we extend the work done by Sinnott et al. (2014) to account for multiple

outcomes with a composite sampling scheme. Specifically, we jointly model the probability

of the multiple outcomes, use inverse probability weighting (IPW) to address the composite

sampling issue, and derive marginal and global score tests to assess the association between

single-nucleotide polymorphism (SNP) sets and a group of correlated outcomes. These meth-

ods yield unbiased estimates of odds ratios and improved testing efficiency over methods in-

volving the binary misclassified outcomes. We demonstrate the efficacy of our methods in

finite samples via simulation results, and apply the methods to the New Soldier Study dataset

from the Army Study to Assess Risk and Resilience in Servicemembers (Army STARRS).

The remainder of this chapter is organized as follows. In Section 2.2, we describe the data

6



structure, composite sampling, and the models used for estimation and testing. Section 2.3

provides simulation results suggesting the use of IPW to adjust for estimation bias arising from

composite sampling, and the use of predicted probabilities to improve power in testing. The

proposed procedures are applied to the New Soldier Study dataset in Section 2.4. A discussion

and concluding remarks are presented in Section 2.5.

2.2 Case-Control Model

Genome-wide association studies seek associations between SNPs and traits of interest such

as diseases. For large populations of interest, it may be too costly or impractical to genotype

every individual to acquire their SNPs, so subjects are typically sampled into a case-control

study and subsequently genotyped. That is, complete data including SNPs are available for the

case-control population but not the target population. Additionally, in the presence of misclas-

sified outcomes, a small validation set containing the true outcomes is needed to establish the

misclassification rates and to generate the predicted probabilities for each outcome.

2.2.1 Data Structure

Suppose our observable data come from a case-control design of size n sampled from a target

population of size N, and consist of independent and identically distributed random variables[
pki, d̃ki,wi, s

⊺
i , x

⊺
i

]⊺
, k = 1, . . .K, i = 1, . . . , n, where K is the number of outcomes, pki is the

predicted probability of the outcome, d̃ki is the binary outcome thresholded from pki, wi is the

7



inverse probability of being sampled into the case-control data, si is a vector of the number

of risk alleles at various SNPs, and xi is a vector of covariates (including intercept) for which

we wish to adjust, such as age, gender, and principal components (Price et al., 2006). Let dki

represent the true gold standard outcome, which is not observed. For each true outcome, we

assume that a standard logistic regression holds, with

P (dki = 1|xi, si) = g
(
α⊺

0kxi + β⊺0ksi
)

where g (x) = ex/ (1+ ex). Our goal is to make inferences on the true odds ratios eβ0k . Naively

modeling P
(
d̃ki = 1|xi, si

)
will generally yield incorrect inferences, as discussed in Section

2.2.3.

2.2.2 Description of Composite Sampling

In a standard case-control study, cases
(
d̃ki = 1

)
and controls

(
d̃ki = 0

)
are sampled for each

outcome k. However, doing a separate case-control study for each outcome would lead to

subjects that were genotyped for the analysis of one outcome but not necessarily used in the

analysis of other outcomes. Due to the cost of genotyping, we would like for such subjects to

be used as efficiently as possible. As a result, the sampling is done on a composite outcome

d̄i = I
(∑K

k=1 d̃k > 0
)
= 1−

∏K
k=1

(
1− d̃ki

)
, where subjects with any outcome are potential

cases, while subjects with no outcomes are potential controls. In this setting, all genotyped

subjects are used in the analysis for all outcomes. Cases (d̄i = 1) are sampled with probability

8



λ ∈ (0, 1], and controls (d̄i = 1) are sampled to equal the number of cases, possibly matched

on one or more covariates. The sampling indicator is vi = I (subject i is sampled) ∼ Bern (πi),

and we define the inverse probability weight of being sampled as wi =
vi
πi . In our setting, wi is

known ahead of time, although it can be shown that estimating wi is counterintuitively more

efficient (Wooldridge, 2007).

The composite sampling is one of many atypical sampling procedures that necessitate the

use of IPW. Monsees et al. (2009) showed that the IPW method has no biases, valid Type I

error rates, but generally larger variances of parameter estimates across all scenarios. They

provided some qualitative intuition behind how IPW address the sampling bias. The theo-

retical reasoning behind using IPW to correct this sampling problem has been explained by

viewing the case-control study as a two-stage design (Reilly & Pepe, 1995; Siegmund et al.,

1999), or a missing data problem (Robins et al., 1995; Robins & Rotnitzky, 1995; Wacholder,

1996).

2.2.3 Justification for Using Predicted Probabilities

Suppose the true outcome status dk is known for a small validation set, from which we are

able to construct an algorithm that uses electronic medical records to predict the probability

pki = P (dki = 1|uki) for each subject, for some variables uki determined by the algorithm. The

pki are assumed to be generated such that each pki is conditionally independent of covariates

9



xi and the SNPs zi, given the true binary outcome dki. That is, we assume

pki ⊥ xi, si|dki (∗)

The d̃ki are then obtained by thresholding the pki at a cutoff ck satisfying certain sensitivity

sek = P
(
d̃ki = 1|dki = 1

)
or specificity spk = P

(
d̃ki = 0|dki = 0

)
conditions. That is, d̃ki =

I (pki > ck), where ck is determined in the validation set. To prioritize a high positive predictive

value (PPV), we set a high specificity, as PPVki=
sek

sek+(1−spk)
P(dki=0)
P(dki=1)

. We see that PPV increases

with specificity, even if sensitivity is low.

Ultimately, we are interested in the association between SNPs indicated by si and the true

outcome statuses dk, which are not observed. One method (Kurreeman et al., 2011) would be

to fit a standard logistic regression model using d̃k, or

P
(
d̃ki = 1|xi, si

)
= g

(
α∗⊺

0kxi + β∗⊺0k si
)

However, Magder & Hughes (1997) showed that under assumption (∗),
(
α∗

0k, β
∗
0k
)
do not gen-

erally equal the true (α0k, β0k). Neuhaus (1999) provides an adjustment for this by noting that

E

(
d̃ki − 1+ spk
sek − 1+ spk

∣∣∣∣∣ xi, si
)

= g
(
α⊺

0kxi + β⊺0ksi
)
= P (dki = 1|xi, si) (2.1)

That is, for estimation, we are able to use the outcome d∗k =
d̃ki−1+spk
sek−1+spk

in place of dk and get

unbiased estimators for α0k and β0k.
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Similarly, by modeling pk directly, we can show that, under assumption (∗),

E

(
pki − μkp0
μkp1 − μkp0

∣∣∣∣∣ xi, si
)

= P (dki = 1|xi, si)

Details are provided in Appendix A. Here, μkp1 = E (pk|dk = 1) and μkp0 = E (pk|dk = 0) are

derived from the validation set. Now let

yki =
pki − μkp0
μkp1 − μkp0

,E (yki|xi, si) = P (dk = 1|xi, si) (2.2)

We are interested in estimation and testing using the transformed probabilities yki instead of

the misclassified d̃ki or adjusted d∗ki. The predicted probabilities pki provide more information

about the accuracy of the outcome classification than d̃ki, as a pki high above the threshold has

more certain outcome status than a pki barely above the threshold.

2.2.4 Inverse Probability Weighted Estimator

Throughout this section, our outcome will be yki as defined in (2.2). For simplicity, let θk =

(αk, βk) denote the full set of coefficients and zi = (1, x⊺i , s
⊺
i )

⊺ denote the full set of regres-

sors so that E (yki = 1|zi) = g
(
θ⊺0kzi

)
. A weighted logistic regression for each outcome k

corresponds to solving the set of estimating equations

Ψn (θk) = n−1
n∑

i=1
wizi

[
yki − g

(
θ⊺kzi

)]
= 0 (2.3)
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Let θ̂k be the solution to Ψn (θk) = 0, where θ̂k
p→ θ0k (Van der Vaart, 2000). Let ψθ0k =

wizi
[
yki − g

(
θ⊺0kzi

)]
so that ψ′

θ0k = wiziz
⊺
i g
(
θ⊺0kzi

) [
1− g

(
θ⊺0kzi

)]
. The asymptotic distribu-

tion of θ̂k is then (Van der Vaart, 2000)

√
n
(
θ̂k − θk

)
d→ N

(
0,
[
E
(
ψ′
θ0k

)]−1 E
(
ψθ0kψ

⊺
θ0k

) [
E
(
ψ′
θ0k

)]−1
)

Details are provided in Appendix B. Estimation of θ0k involves directly solving the estimating

equation (2.3) with a Newton-Raphson algorithm, as existing software for logistic regression

require the outcome to be between 0 and 1, which is not satisfied when transforming the pk

into yk.

For comparison, we would also expect θ̂k
p→ θ0k if we replace yki in (2.3) with d∗ki, as seen

in (2.1). However, estimation bias occurs when using d̃ki as the outcome, since θ0k in general

is not the solution to E
(
wizi

[
d̃ki − g

(
θ⊺kzi

)])
= 0.

2.2.5 Score Test Statistics

For a given SNP set s, we are interested in the association between s and a particular outcome,

or H0 : βk = 0. In the presence of multiple correlated outcomes, we may be interested in the

association between s and all the outcomes, in which case a marginal test will not suffice. In

that case, we would like the global test H0 : β1 = β2 = · · · = βK = 0.

We first develop a marginal score test H0 : βk = 0 for each outcome, based on the inverse
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probability weighted estimating equation (2.3). Let

Ŝk (α̃k) = n−1
n∑

i=1
wisi

[
yki − g

(
α̃⊺
kxi
)]

where α̃k is an estimate for αk under H0. Then (Appendix C)

√
nŜk (α̃k)

d→ N
(
0,Σk = E

[
ξkiξ

⊺
ki

])

where

ξki = wi

(
si − E

[
wisix

⊺
i g

′ (α⊺
kxi
)] (

E
[
wixix

⊺
i g

′ (α⊺
kxi
)])−1 xi

) [
yki − g

(
α⊺
kxi
)]

Two test statistics to consider are

M1 = nŜ⊺k (α̃k)Σ−1
k Ŝk (α̃k) ∼ χ2m

M2 = nŜ⊺k (α̃k) Ŝk (α̃k) ∼
m∑
i=1

λi (Σk) χ21

where m = dim (s) and λi (Σk) are the non-zero eigenvalues of Σk. M1 is a standard score

test and has a simpler distribution, but in the presence of highly correlated SNPs, Σk may be

singular, in which caseM2 is preferred. Simulations show thatM2 generally has higher power

than M1, so we report results for M2 only.
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For global tests H0 : β1 = β2 = · · · = βK = 0, we have

√
n⃗S (α̃) :=

√
n
[
Ŝ⊺1 (α̃1) , . . . , Ŝ

⊺
K (α̃K)

]⊺

where α̃k are estimates for αk under H0. Then (Appendix D)

√
n⃗S (α̃) d→ N

(
0, Σ⃗ = E

(⃗
ξi⃗ξ

⊺
i

))

where ξ⃗i = [ξ⊺1i, . . . , ξ
⊺
Ki]

⊺. We once again consider two test statistics

G1 = n⃗S⊺ (α̃) Σ⃗
−1
S⃗ (α̃) ∼ χ2mK

G2 = n⃗S⊺ (α̃) S⃗ (α̃) ∼
mK∑
i=1

λi
(
Σ⃗
)
χ21

where λi
(
Σ⃗
)

are the non-zero eigenvalues of Σ⃗. Once again, we report results for G2 only,

due to its higher power in simulations (results not shown).

2.3 Simulation Study

Simulation studies are performed to evaluate the performance of the proposed methods in

finite samples. We consider two main tasks: estimating βk, and performing the marginal test

H0 : βk = 0 or global test H0 : β1 = · · · = βK = 0. Comparisons are made based on the

presence or absence of IPW, and across outcomes dk (gold standard), d̃k (binary thresholded
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probabilities), d∗k (adjusted d̃k), and yk (transformed probabilities).

Using R, 2000 datasets are generated for each empirical calculation. For each simulated

dataset, we generate genetics, covariates, and outcomes for N = 40, 000 subjects. SNPs from

the ASAH1 gene on chromosome 8 are generated using HAPGEN2 software (Su et al., 2011),

and a single covariate indicating the quartile of childhood adversity is generated. Composite

sampling matched on childhood adversity is performed on the 40, 000 subjects to generate the

case-control data. Four disorders are generated, with prevalences of 0.20, 0.15, 0.10, and 0.05,

respectively. For each disorder, we generate risk scores uk from a N
(
μ0 + μ1dk, σ

2
k

)
distribu-

tion, where μ1 is set to achieve a desired Area Under the Receiver Operating Characteristic

Curve (AUC) when using pk to predict dk in the validation set of size 400.

Due to the small size of the validation set, the performance of d∗k and yk depend heavily on

the reliability of information gathered from the validation set. In our referenced simulation

results, a new validation set is generated for each of the 2000 simulated datasets, which allows

the variability of the validation set to have minimal effect on the results we observe. By con-

trast, when we generate one validation set for all 2000 simulated datasets, the results are more

variable, although the major takeaways are still evident.

For estimation, we expect IPW estimating equations with outcome d∗k and yk to provide

unbiased estimates of β. Bias is expected when using d̃k for estimation, regardless of the use

of IPW. For testing, it is of interest to compare the power of our score tests based on the IPW

score equations across outcomes d̃k, d∗k , and yk. For the marginal tests, comparisons are also

made against the SNP-set Sequence Kernel Association Test (SKAT) (Wu et al., 2011) without
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any IPW.

2.3.1 Estimation

To demonstrate the effect of the IPW with minimal complexity, estimation is performed using

1 simulated SNP (rs17515264 from ASAH1 on chromosome 8) with a minor allele frequency

of 0.15. For each of the four disorders, the true βk = 0.4, corresponding to an odds ratio

of about 1.5. For dk and d̃k, standard logistic regression is used, while the coefficients for yk

and d∗k are solved using a Newton-Raphson algorithm. For the validation set, we consider

specificity levels of 0.95 and 0.97, and AUCs of 0.90 and 0.94. Results of the estimation for

these configurations are presented in Figure 3.1.
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Figure 2.1: Estimation Bias

Within each plot, each group of four bars represents a separate disorderwith prevalence indicated below.
The four bars represent the four outcomes used in estimation of the bias. dk is the gold standard true
outcome, d̃k is the thresholded probability, d∗k is the adjusted d̃k, and yk is the transformed probability.
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Generally, the gold standard dk has the lowest bias across all scenarios, while the misclassi-

fied d̃k has the highest bias. Using the transformed probabilities yk or the adjusted d∗k instead

of d̃k reduced some of the bias, with yk slightly outperforming d∗k . When using the naive esti-

mator, we observe attenuation of effect estimates as indicated by a general negative bias that

increases as the disorder gets rarer. For dk, d∗k , and yk, this bias is removed through the IPW

estimator, with the exception of some noise in the rarest (5% prevalence) disorder. For the

misclassified d̃k, this bias is slightly reduced through the IPW estimator.

As expected, changes in AUC do not affect the gold standard dk, but a higher AUC improves

the estimation accuracy for d̃k, d∗k , and yk for both naive and IPW estimators. We see virtually

no bias in the IPW estimators for d∗k and yk when the AUC is 0.94 and the disorder prevalence

is 10% or greater. Additionally, a higher specificity (0.97 instead of 0.95) appears to increase the

bias in many scenarios. However, this effect is not significant when using the IPW estimator

with a high AUC.

2.3.2 Testing

All tests are verified to have valid size (simulations not shown). Using 9 tagged SNPs from

the ASAH1 gene on chromosome 8, testing is performed on four disorders of interest with

prevalences of 0.20, 0.15, 0.10, and 0.05, respectively. Once again, for the validation set, we

consider specificity levels of 0.95 and 0.97, and AUCs of 0.90 and 0.94. Comparisons are made

using the score tests with dk, d̃k, d∗k , and yk as the outcome. For an additional comparison with
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the marginal tests, we compute the power from SKAT on the binary outcomes dk and d̃k. At

the time of this analysis, there are no SKAT packages incorporating IPW or multiple outcomes.

2.3.3 Marginal Tests

Due to the high correlation of the SNPs, all tests are done based on the test statistic

M2 = nŜ⊺k (α̃k) Ŝk (α̃k) ∼
m∑
i=1

λiχ21

In order to illustrate the differences between the variousmethods, we did not want the strength

of association βk to be overwhelmingly large or small. As a result, two causal SNPs are selected,

with log odds ratio 0.1 or 0.2 for each disorder, as shown in Figure 3.2. In all cases, when using

the score test, the gold standard dk has the highest power, while the misclassified d̃k has the

lowest power. Using the transformed probabilities yk or the adjusted d∗k increases power, with

yk outperforming d∗k . While d∗k reduced estimation bias compared to d̃k, we see that both

outcomes have similar power when used in testing. SKAT does not incorporate the composite

sampling, so its power is much lower power in all scenarios, with SKAT using dk having higher

power than SKAT using d̃k. As the disorders get rarer, we see a general decrease in power, but

no change in the rankings of the outcomes.
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Figure 2.2: Power fromMarginal Tests

Within each plot, each group of four bars represents a separate disorder with prevalence indicated
below. The first four of the six bars represent the four outcomes used in the power calculations. dk is
the gold standard true outcome, d̃k is the thresholded probability, d∗k is the adjusted d̃k, and yk is the
transformed probability. The last two of the six bars represent the power from SKAT using dk and d̃k.
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Changes in AUC do not affect the gold standard dk, but a higher AUC improves the testing

power for d̃k, d∗k , and yk. There does not appear to be significant changes in power when using

a specificity of 0.97 compared to a specificity of 0.95.

2.3.4 Global Tests

Due to the high correlation of the SNPs, all tests are done based on the test statistic

G2 = n⃗S⊺ (α̃) S⃗ (α̃) ∼
mK∑
i=1

λiχ21

Once again, two causal SNPs are selectedwith log odds ratio 0.2, as shown in Figure 3.3. Strong,

mild, and weak associations are determined based on the number of outcomes associated with

the causal SNPs, as well as the strength of the association. We see a similar pattern in the

performance of the outcomes as in the marginal tests. In all cases, the gold standard dk has

higher power than yk, which has higher power than d∗k and d̃k. While d∗k reduced estimation

bias compared to d̃k, we see that in this case d̃k has higher power than d̃∗k across all scenarios.

The changes in AUC and specificity have similar effects in the global tests as in the marginal

tests.
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Figure 2.3: Power fromGlobal Tests

Within each plot, each group of four bars represents a separate disorderwith prevalence indicated below.
The four bars represent the four outcomes used in the power calculations. dk is the gold standard true
outcome, d̃k is the thresholded probability, d∗k is the adjusted d̃k, and yk is the transformed probability.
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2.4 Data Example: Army STARRS New Soldier Study

Both composite sampling and outcome misclassification are issues in the data from the Army

Study To Assess Risk and Resilience in Servicemembers (Army STARRS), which is the largest

study of mental health ever conducted among military personnel. The multi-component study

hopes to address many issues centered around suicide prevention. Formed in 2009 by the US

Army in partnership with the National Institute of Mental Health, Army STARRS was moti-

vated by the increasing suicide rate among soldiers, which surpassed the suicide rate among

civilians with similar demographics in the late 2000s (Kuehn, 2009). Since the study’s incep-

tion, the research team has worked at 75 locations worldwide, collected data from over 100,000

soldiers, and published a variety of papers on topics such as suicide risk factors (Schoenbaum

et al., 2014), prevalence of mental illnesses (Nock et al., 2014), and the study design (Kessler

et al., 2013).

Within Army STARRS is a genome-wide association study for multiple correlated psychi-

atric disorders, whose goal is to assess how each of the disorders are related to genetic variants

denoted as SNPs. Towards these goals, soldiers were subsampled into the New Soldier Study

(NSS) for genotyping based on composite sampling of having any DSM-IV disorders of inter-

est, including major depressive disorder, generalized anxiety disorder, panic disorder, PTSD,

suicide attempt, and other deliberate self-harm. The binary DSM-IV disorders are based on

thresholded probabilities using electronic medical records. We are also able to directly model
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these probabilities by making the transformation discussed in Section 2.2.3. At the time of this

analysis, the predicted probability is available only for PTSD, so we are unable to apply our

methods to multiple outcomes. The New Soldier Study is broken down into NSS1 and NSS2,

based on genotyping method and the timeline of data collection.

We perform joint analyses to test the association of a SNP set and PTSD, based on the top

20 variants in the European-American meta-analysis by Duncan et al. (2017). We also perform

a univariate test using the genetic risk score (Dudbridge, 2013) calculated from the aforemen-

tioned SNP set. As a basis for comparison, unweighted analysis using binary thresholded

PTSD outcomes is performed. Rare variants with minor allele frequency less than 0.1 are re-

moved, along with SNPs in high LD, yielding 5 SNPs from Duncan et al. (2017). The results

are summarized in Tables 2.1 and 2.2.

24



Table 2.1: Estimation and Testing Results from the NSS

Unweighted, Binary PTSD Weighted, Probability PTSD

SNP chr NSS1 OR (SE) NSS2 OR (SE) MA-p NSS1 OR (SE) NSS2 OR (SE) MA-p

chr8_125827954_I 8 1.13 (0.067) 0.94 (0.107) 0.042 1.10 (0.104) 0.93 (0.224) 0.266

rs7400289 13 1.05 (0.070) 1.16 (0.120) 0.091 1.17 (0.105) 1.52 (0.229) 0.008

chr4_154022605_I 4 1.10 (0.057) 1.05 (0.091) 0.053 1.12 (0.086) 0.86 (0.186) 0.077

chr4_63080381_D 4 0.95 (0.057) 1.07 (0.089) 0.164 0.95 (0.087) 0.90 (0.166) 0.270

rs577266 9 0.97 (0.053) 0.92 (0.082) 0.187 0.91 (0.081) 0.94 (0.167) 0.168

Global p-value 0.198 0.601 0.119 0.273 0.591 0.162

GRS 0.278 0.878 0.244 0.188 0.080 0.015

Estimated odds ratios (OR) and log odds ratio standard errors (SE) for the 5 SNPs from Duncan et al.
(2017). The global p-value is for the joint significance of the entire SNP set shown, while the GRS
p-value is for the significance of the genetic risk score calculated from the entire SNP set.
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Table 2.2: Estimates and Standard Errors of Principal Components

Unweighted, Binary PTSD Weighted, Probability PTSD

PC NSS1 log OR (SE) NSS2 log OR (SE) NSS1 log OR (SE) NSS2 log OR (SE)

1 1.99 (3.87) -6.26 (6.01) 1.51 (5.75) -6.99 (11.45)

2 6.14 (3.82) -2.63 (5.73) 2.13 (6.00) -4.86 (11.39)

3 0.51 (3.82) -4.75 (5.94) -2.67 (5.91) 1.55 (12.07)

4 -4.21 (3.83) 1.16 (6.27) -8.15 (5.86) -1.85 (12.42)

5 -2.48 (3.86) 7.64 (6.14) -4.32 (5.85) 10.40 (12.51)

6 -4.86 (3.78) -1.05 (6.02) -6.97 (5.74) -15.64 (12.20)

7 1.99 (3.86) 6.63 (5.84) -2.15 (6.11) -2.24 (11.77)

8 -1.71 (3.84) 1.62 (5.91) -3.20 (5.80) 8.66 (11.68)

9 8.87 (3.85) 9.67 (6.15) 13.26 (5.91) 28.33 (12.67)

10 -3.75 (3.84) 1.49 (5.78) -1.36 (6.00) -4.66 (11.39)

Estimated log odds ratios (OR) and log odds ratio standard errors (SE) for the first 10 principal compo-
nents.

The joint analysis and genetic risk score analysis show no significant global association

between these SNPs and PTSD as a binary or probability outcome. This is not surprising, as

Duncan et al. (2017) performedmeta-analyses of their data with the NSS data (Stein et al., 2016),

only to find no genome-wide significant associations. For estimation, the weighted analysis
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did not appear to impact the odds ratio estimates, indicating weights that are potentially incon-

sistent with the sampling design. As expected, the standard errors are higher in the weighted

probability estimator.

2.5 Discussion

In this chapter, we propose estimation and testing procedures for data with composite sam-

pling and misclassified outcomes. In particular, we incorporate inverse probability weighting

to adjust for the atypical sampling, and directly model the probability of outcome to improve

estimation accuracy and testing power. These methods are applied to the Army STARRS New

Soldier Study, globally testing the SNP set comprised of SNPs proposed by Duncan et al. (2017).

The lack of global significance across our tests generally corroborate the most recent literature

by Duncan et al. (2017) of no genome-wide significant single variants.

Numerical studies suggest that our methods contain the least bias and highest power when

compared to naive or existing methods. Estimation using the predicted probabilities produces

lower bias than logistic regression with the misclassified outcomes, and estimation using the

adjusted binary outcomes. Across all outcomes of interest, our predicted probabilities demon-

strated the highest power in testing. Our methods also demonstrate higher power and flexi-

bility than SKAT, as the latter incorporates neither IPW nor multiple outcomes. In practical

applications, the performance of our methods depend on the reliability of estimates produced

from the validation set. A validation set with a low AUC or too high or low specificity will

27



induce bias and reduce testing power of our proposed methods, but this is true for all methods

wishing to account for misclassified outcomes.

We can observe further gains in power by augmenting our existing estimators and score

test statistics with some ϵ̂ = n−1∑n
i=1 (1− wi) φi (zi)

p→ 0, where ϵ̂ is a function of auxiliary

covariates zi related to the SNPs. Improving the efficiency of our estimators and test statis-

tics in this case amounts to selecting an optimal φi. While simulations have shown that this

augmentation improves efficiency, there is typically no set way in practice to find the best aux-

iliary variables zi for this task. Details for this augmentation step are provided in Appendix

E.
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2.6 Appendix A: Expectation of pk

Under the assumption pki ⊥ xi, si|dki, we can simplify

E (pk|x, s) =

∫ 1

0
P (pk > γk|x, s) dγk

=

∫ 1

0
P
(
pk > γk|x, s, dk = 1

)
P (dk = 1|x, s) dγk

+

∫ 1

0
P
(
pk ≤ γk|x, s, dk = 0

)
P (dk = 0|x, s) dγk

=

∫ 1

0
P
(
pk > γk|dk = 1

)
P (dk = 1|x, s) dγk

+

∫ 1

0
P
(
pk ≤ γk|dk = 0

)
P (dk = 0|x, s) dγk

= E (pk|dk = 1)
exp

(
α⊺
k0x+ β⊺

k0s
)

1+ exp
(
α⊺
k0x+ β⊺

k0s
)

+E (pk|dk = 0) 1
1+ exp

(
α⊺
k0x+ β⊺

k0s
)

Let μkp1 = E (pk|dk = 1) and μkp0 = E (pk|dk = 0) so that

E

(
pk − μkp0
μkp1 − μkp0

∣∣∣∣∣ x, s
)

=
exp

(
α⊺
k0x+ β⊺

k0s
)

1+ exp
(
α⊺
k0x+ β⊺

k0s
) = P (dk = 1|x, s)
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2.7 Appendix B: Asymptotic Distribution of θ̂k

In the case-control study, θ̂k is the solution to

Ψn (θk) = n−1
n∑

i=1
wizi

[
yki − g

(
θ⊺kzi

)]
= 0

where wi =
vi
π i

and θ̂k
p→ θk0 under regularity conditions. Then a Taylor expansion of Ψn (θk)

around the true θk0 gives

0 = Ψn (θk0) +
∂Ψn (θk)

∂θ⊺k

∣∣∣∣
θk=θk∗

(
θ̂k − θk0

)

for some θk∗ satisfying ∥θk∗ − θk0∥ ≤
∥∥∥θ̂k − θk0

∥∥∥ so that θk∗ − θk0 = op (1). Let ψθ0k
=

wizi
[
yki − g

(
θ⊺0kzi

)]
so that ψ ′

θ0k
= wiziz

⊺
i g
(
θ⊺0kzi

) [
1− g

(
θ⊺0kzi

)]
. Then, under regularity

conditions,

∂Ψn (θk)
∂θ⊺k

∣∣∣∣
θk=θk∗

p→ −E
(
ψ ′

θ0k

)
and

√
n
(
θ̂k − θk0

)
= E

(
ψ ′

θ0k

)−1 √nn−1
n∑

i=1
wizi

[
yki − g

(
θ⊺kzi

)]
d→ N

(
0,
[
E
(
ψ ′

θ0k

)]−1 E
(
ψθ0k

ψ⊺
θ0k

) [
E
(
ψ ′

θ0k

)]−1
)
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2.8 Appendix C: Marginal Score Tests

For each outcome k = 1, . . . ,K, the weighted score is

Sk (θk) = n−1
n∑

i=1
wizi

[
yki − g

(
θ⊺kzi

)]

=

 n−1∑n
i=1 wixi

[
yki − g

(
θ⊺kzi

)]
n−1∑n

i=1 wisi
[
yki − g

(
θ⊺kzi

)]


Under H0 : βk = 0, the score is

Ψk (αk) = n−1
n∑

i=1
wixi

[
yki − g

(
α⊺
kxi
)]

Let α̃k be the solution to Ψk (αk) = 0 so that α̃k is a consistent estimator of αk0 under H0.

Now, consider the score test using

Ŝk (α̃k) = n−1
n∑

i=1
wisi

[
yki − g

(
α̃⊺
kxi
)] p→ 0 under H0

We now need to find the distribution of
√
nŜk (α̃k). A Taylor expansion around αk0 gives

√
nŜk (α̃k) =

√
nŜk (αk0)− n−1

n∑
i=1

wisix
⊺
i g

′ (α⊺
k∗xi
)√

n (α̃k − αk0)
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for some αk∗ satisfying ∥αk∗ − αk0∥ ≤ ∥α̃k − αk0∥ so that αk∗ − αk0 = op (1). Let Ak =

E
[
wisix

⊺
i g

′ (α⊺
k0xi
)]

and Bk = E
[
wixix

⊺
i g

′ (α⊺
kxi
)]

. Then n−1∑n
i=1 wisix

⊺
i g

′ (α⊺
k∗xi
) p→ Ak,

and
√
n (α̃k − αk0) =

√
nn−1∑n

i=1 wiB−1
k xi

[
yki − g

(
α⊺
k0xi
)]

so that

√
nŜk (α̃k) =

√
nŜk (αk0)− Ak

√
nn−1

n∑
i=1

wiB−1
k xi

[
yki − g

(
α⊺
k0xi
)]

=
√
nn−1

n∑
i=1

wi
(
si − AkB−1

k xi
) [

yki − g
(
α⊺
k0xi
)]

d→ N
(
0, Σk = E

[
ξkiξ

⊺
ki

])

where

ξki = wi

(
si − E

[
wisix

⊺
i g

′ (α⊺
kxi
)] (

E
[
wixix

⊺
i g

′ (α⊺
kxi
)])−1 xi

) [
yki − g

(
α⊺
kxi
)]

Let dim (s) = m so that Ŝk (α̃k) is an m× 1 vector. We can then use

M1 = nŜ⊺k (α̃k) Σ−1
k Ŝk (α̃k) ∼ χ2

m

Alternatively, we can use M2 = nŜ⊺k (α̃k) Ŝk (α̃k). To derive the distribution of M2, look at

Z = Σ
− 1

2
k

√
nŜk (α̃k) ∼ N (0, Im×m)
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so that

M2 =
[√

nŜk (α̃k)
]⊺√

nŜk (α̃k) =

(
Σ

1
2
kZ
)⊺(

Σ
1
2
kZ
)

= Z⊺ΣkZ

Since Σk is symmetric, we can use spectral decomposition to write Σk = UΛU⊺ for an orthog-

onal matrix U and diagonal matrix

Λ =



λ1 0 · · · 0

0 λ2 · · · 0

...
... . . . ...

0 0 · · · λm



where λi are the eigenvalues of Σk. By the properties of orthogonalmatrices, letX = [X1, . . . ,Xm]
⊺ =

U⊺Z ∼ N (0, Im×m). Then,

M2 = Z⊺ΣkZ

= Z⊺UΛU⊺Z

= X⊺ΛX

=
m∑
i=1

λi (Σk)X2
i

By the properties of the multivariate normal distribution, Xi are iid N (0, 1) so that X2
i ∼ χ2

1.

Then the distribution ofM2 is a linear combination of independent χ2
1 random variables, where

the weights λi (Σk) are the eigenvalues of Σk.
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2.9 Appendix D: Global Score Tests

With the distribution of
√
nŜk (α̃k), we can formulate the global test H0 : β1 = β2 = · · · =

βK = 0 using

√
n⃗S (α̃) :=

√
n



Ŝ1 (α̃1)

Ŝ2 (α̃2)

...

ŜK (α̃K)



=
√
n


n−1∑N

i=1 ξ1i

...

n−1∑N
i=1 ξKi



Let ξ⃗ i = (ξ1i, . . . , ξKi). Then
√
n⃗S (α̃) d→ N

(
0, Σ⃗
)

where

Σ⃗ = E
(
ξ⃗ iξ⃗

⊺
i

)
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We can similarly formulate test statistics

G1 = n⃗S⊺ (α̃) Σ⃗
−1
S⃗ (α̃) ∼ χ2

K

G2 = n⃗S⊺ (α̃) S⃗ (α̃) ∼
K∑
i=1

λi
(
Σ⃗
)
χ2
1

where λi
(
Σ⃗
)
are the eigenvalues of Σ⃗.

2.10 Appendix E: Augmentation Methods

Let the augmentation term be ϵ̂ = n−1
n∑

i=1
e (1− wi) ν⊺zai

p→ 0 for some coefficient ν and

auxiliary covariates zai . e is a vector of 0s and 1s where the 1s indicate the corresponding

parameters of θ̂k to be augmented. Let θ̂ak = θ̂k + ϵ̂. From Appendix B, we are able to write

√
n
(
θ̂k − θk0

)
= E

(
ψ ′

θ0k

)−1 √nn−1
n∑

i=1
wizi

[
yki − g

(
θ⊺kzi

)]
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Then

√
n
(
θ̂
a
k − θk0

)
=

√
n
(
θ̂k − θk0

)
+
√
nϵ̂

= E
(
ψ ′

θ0k

)−1 √nn−1
n∑

i=1
zi
[
yki − g

(
θ⊺kzi

)]
+E

(
ψ ′

θ0k

)−1 √nn−1
n∑

i=1
(wi − 1) zi

[
yki − g

(
θ⊺kzi

)]
+
√
nn−1

n∑
i=1

e (1− wi) ν⊺zai

=
√
nn−1

n∑
i=1

E
(
ψ ′

θ0k

)−1 zi
[
yki − g

(
θ⊺kzi

)]
+
√
nn−1

n∑
i=1

(wi − 1)
[
E
(
ψ ′

θ0k

)−1 zi
[
yki − g

(
θ⊺kzi

)]
− eν⊺zai

]

Now let

F0 =
√
nn−1

n∑
i=1

E
(
ψ ′

θ0k

)−1 zi
[
yki − g

(
θ⊺kzi

)]
Fa =

√
nn−1

n∑
i=1

(wi − 1)
[
E
(
ψ ′

θ0k

)−1 zi
[
yki − g

(
θ⊺kzi

)]
− eν⊺zai

]

Here F0 and Fa converge to a joint normal distribution and are independent. First,

F0
d→ N

(
0,E

(
ψ ′

θ0k

)−1 Σ0E
(
ψ ′

θ0k

)−1
)

where

Σ0 = E
[
ziz

⊺
i
(
yki − g

(
θ⊺kzi

))2]
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There is nothing we can do to reduce Σ0. Next,

Fa
d→ N (0, Σa)

Let D represent the available data. Then

Σa = Var
[
(wi − 1)

(
E
(
ψ ′

θ0k

)−1 zi
[
yki − g

(
θ⊺kzi

)]
− eν⊺zai

)]
= E

[
Var

[
(wi − 1)

(
E
(
ψ ′

θ0k

)−1 zi
[
yki − g

(
θ⊺kzi

)]
− eν⊺zai

)
|D
]]

= E
[
Var (wi|D)

(
E
(
ψ ′

θ0k

)−1 zi
[
yki − g

(
θ⊺kzi

)]
− eν⊺zai

)
(
E
(
ψ ′

θ0k

)−1 zi
[
yki − g

(
θ⊺kzi

)]
− eν⊺zai

)⊺]
= E

[
1− π i

π i

(
E
(
ψ ′

θ0k

)−1 zi
[
yki − g

(
θ⊺kzi

)]
− eν⊺zai

)
(
E
(
ψ ′

θ0k

)−1 zi
[
yki − g

(
θ⊺kzi

)]
− eν⊺zai

)⊺]

Here I = E
(
ψ ′

θ0k

)−1
zi
[
yki − g

(
θ⊺kzi

)]
is the influence function for θ̂k. We care about reduc-

ing the diagonal elements of Σa corresponding to the genetic variants. That is, the estimator

β̂
a
k has a corresponding β̂

a
ks for each SNP s, and we can minimize Var

(
β̂
a
ks

)
by choosing an

optimal ν. For an individual SNP, the row s column s element of Σa depends on the s element
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of I through

Σa [s, s] = E
[
1− π i

π i
(I [s]− ν⊺zai )

2
]

:= E
[
1− π i

π i
(Isi − ν⊺zai )

2
]

= E
[
wi

1− π i

π i
(Isi − ν⊺zai )

2
]

where Isi is the influence function for β̂wks. This corresponds to a weighted linear regression

with outcome Isi and covariates zai to find the optimal ν for each SNP. Putting everything

together gives

√
n
(
θ̂
a
k − θk0

)
= F0 + Fa

d→ N
(
0,E

(
ψ ′

θ0k

)−1 Σ0E
(
ψ ′

θ0k

)−1
+ Σa

)

For testing, we can similarly reduce the variance of Ŝk (α̃k) by augmenting it with ϵ̂. The

derivation is the same except we use the influence function of Ŝk (α̃k) instead of θ̂k. Once
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again, let Ak = E
[
wisix

⊺
i g

′ (α⊺
k0xi
)]

and Bk = E
[
wixix

⊺
i g

′ (α⊺
kxi
)]

. Then,

√
nŜk (α̃k) +

√
nϵ̂ =

√
nn−1

n∑
i=1

wi
(
si − AkB−1

k xi
) [

yki − g
(
α⊺
k0xi
)]

+
√
nn−1

n∑
i=1

e (1− wi) ν⊺zai

=
√
nn−1

n∑
i=1

(
si − AkB−1

k xi
) [

yki − g
(
α⊺
k0xi
)]

+
√
nn−1

n∑
i=1

(wi − 1)
[(
si − AkB−1

k xi
) [

yki − g
(
α⊺
k0xi
)]

− eν⊺zai
]

Using the same derivation we did for the asymptotic distribution of θ̂ak, we get

√
nŜk (α̃k)

d→ N (0,W0 +Wa)

where

W0 = E
((
si − AkB−1

k xi
) [

yki − g
(
α⊺
k0xi
)] (

si − AkB−1
k xi

)⊺ [yki − g
(
α⊺
k0xi
)]⊺)

Wa = E
(
1− π i

π i

[(
si − AkB−1

k xi
) [

yki − g
(
α⊺
k0xi
)]

− eν⊺zai
]

×
[(
si − AkB−1

k xi
) [

yki − g
(
α⊺
k0xi
)]

− eν⊺zai
]⊺)
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3.1 Introduction

TheMedicare system in the United States is a government-sponsored program which provides

health insurance to most legal residents over 65 years old, and younger residents with partic-

ular disabilities and conditions. In 2015, Medicare covered 55 million people for $648 billion

in total expenditures (Centers for Medicare & Medicaid, 2016). Medicare beneficiaries may

be directly insured by the government through Fee-for-Service (FFS) Medicare, or enroll in a

private “Medicare Advantage” (MA) plan reimbursed by the Medicare sponsoring agency, the

Centers for Medicare and Medicaid Services (CMS).

Since 1997, quality experiences of beneficiaries enrolled in MA plans have been monitored

through the Consumer Assessments of Healthcare Providers and Systems (CAHPS) survey for

Medicare (Crofton et al., 1999), or MCAHPS, administered annually to samples of beneficia-

ries of each MA plan. A version of the MCAHPS survey in its current form has also been

administered to FFS beneficiaries, annually since 2007. These surveys were designed as part

of a monitoring system, aimed at motivating and guiding quality improvement activities and

informing consumer choice (Goldstein et al., 2001). Most MA plans operate in a state, part of a

state, or in a few cases, in two or three contiguous states. Thus, it is natural to similarly design

the FFS survey to represent states. For national representativeness, and to provide more de-

tailed information on states with large Medicare enrollments, state FFS samples are designed

to yield response counts proportional to enrollment (given historical response rates), with a
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floor sample size yielding about 1200 responses. Previous studies on MA and FFS survey data

suggest geographic variations across areas and across plans within areas (Keenan et al., 2010).

A concise set of survey results is distributed in a handbook to each beneficiary, and a larger

set is made available on the Medicare Compare website. Published MCAHPS scores are an

information resource for beneficiaries choosing among locally available plans or FFS. Benefi-

ciaries seeking information about available MA plans in comparison to FFS enter a ZIP (postal)

code to look up locally relevant information on the Medicare Compare website, which serves

up responses distinguished below the state level. For this purpose, 94 substate reporting areas

were defined in the 32 states whose samples were designed to provide at least twice the stan-

dard 1200 responses targeted for collection in the smallest states. The areas were composed of

contiguous counties, had approximately equal sample sizes, and were centered around major

metropolitan areas. Thus, estimates for these areas were about as accurate as those for the

states receiving the standard minimum sample. Reporting at the state level introduces bias,

but direct domain estimates in smaller areas could have high variance. An annual decision to

report survey measures at the state or substate level is made for each state, based on an ad hoc

F-test procedure.

We estimate Bayesian random effects models for all substate area means, jointly modeling

these domains of 94 areas in 32 states across 5 years. In the spirit of Reiter (2000), estimates

from our best-fittingmodels are used to identify the proper amount of pooling for presentation

of direct estimates (state or substate level in each state), as well as to propose alternative small

area estimates superior to either direct estimate, if such are allowed. The best-performing
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model was determined using log pseudo-marginal likelihood (Chen et al., 2008) and posterior

predictive checks. Using a Bayesian hat matrix, we show heuristically how each domain esti-

mate from our random effects model combines information from other domains.

In the sections that follow, Section 3.2 describes the survey data and the decision procedure

used in production of reports since 2007. Section 3.3 presents our Bayesian random effects

model, the Bayesian hat matrix, and methods for model comparison. Section 3.4 applies these

methods to FFS CAHPS data. Section 3.5 discusses the implications of the results.

3.2 The FFS CAHPS Survey and Reporting Rule

The FFS CAHPS survey is administered in February to May of each year to a sample of 275,000

beneficiaries, allocated to states and areas as described in the Introduction. We analyzed data

from 2012-2016, with 8measures that were used in public reporting for part or all of this period.

These include one yes/no item on immunization, two overall rating items on a 0-10 scale, and

five composites of two or more items on an ordinal never/sometimes/usually/always scale,

as shown in Table 3.1 and Zaslavsky & Cleary (2002). Survey measure means for each state

and area were weighted to match the MA distribution over counties and adjusted for effects

of covariates using linear regression models, and sampling variances of adjusted means (or

composites of means) were estimated by Taylor linearization (Agency for Healthcare Research

and Quality, 2012).
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Table 3.1: FFSData SurveyMeasures

Measure
Range of

Response Values

Mean† SD†
Mean #

Responses†

Coordination of Care1 3.39-3.71 3.60 0.044 690

Customer Service1 3.12-3.83 3.50 0.089 782

Get Care Quickly1 3.06-3.50 3.26 0.082 744

Get Needed Care1 3.27-3.72 3.58 0.050 596

Flu Immunization2 0.56-0.85 0.73 0.041 792

Doctor Communication1 3.60-3.79 3.71 0.031 660

Rating of Care 8.16-8.85 8.55 0.117 790

Rating of Plan 7.60-8.77 8.31 0.182 763

1Composite measures of two or more items.
2Binary indicator of immunization.
3Rating on a scale from 1 to 10.
†Applied over all domains (substate sample means over five years).

For each measure, the weighted sample mean and its sampling variance, after adjusting for

respondent covariate effects, were calculated for 94 areas nested in 32 states across the 5 years

(2012-2016), for a total of 470 entries. Of the 32 states in the dataset, 17 have the minimum

of 2 areas, while the largest states (California, Florida, New York, and Texas) have 5 or more
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areas. For each measure, Table 3.1 summarizes the domain means and the mean number of

responses, which varies across measures due to skip patterns in the survey (Klein et al., 2011).

Since 2007, the annual reporting decision has been made using an ad hoc F-test procedure

for each state. If yijk is the sample mean for area j (of state i) in year k, vijk is the sampling

variance of yijk, and ni is the number of areas in state i, this hypothesis testing procedure uses

the statistic

Fik =
1

ni − 1

ni∑
j=1

v−1
ijk

(
yijk −m

)2
,m =

∑ni
j=1 v

−1
ijk yijk∑ni

j=1 v
−1
ijk

This statistic can be calculated from the sufficient statistics yijk and vijk instead of individual

level data, which are undefined for composite measures. In the interest of predictive accuracy,

we seek a difference in AIC (equivalent to Fik for linear models) greater than 2 for the two

models corresponding to the two reporting methods, which would indicate improved accuracy

of prediction of the substate estimates over the state estimates. Under this hypothesis testing

approach, the annual reported survey measures within each state and its areas are estimated

using only data from that state and year, which can lead to estimates with high variances for

smaller areas.

3.3 Methods

The structure of the FFS data is naturally well-suited for a hierarchical model, with areas nested

within states across years. We follow Fay & Herriot (1979) in estimating our hierarchical
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model from aggregated data, so the complexities of unequal weighting and skipped items enter

the hierarchical model only through the sufficient statistics of sample mean and sampling

variance. Similar models using CAHPS data are discussed by O’Malley & Zaslavsky (2008),

and Zaslavsky (2007).

3.3.1 Bayesian Random Effects Model

At the first stage of the hierarchical model, let yi ∼ N (ηi, vi), where ηi is the weighted, ad-

justed population mean for a domain defined by a substate area and year, and yi is the corre-

sponding weighted, adjusted sample mean. We assume further that yi has negligible bias as

an estimator of ηi, and that the variance vi is known. At the second stage of the hierarchical

model, the population mean is modeled as

ηi = E
(
yi|θ1,t(i,1), . . . , θG,t(i,G)

)
=

G∑
g=1

θg,t(i,g), i = 1, . . . , n, g = 1, . . . ,G, t = 1, . . . , Tg

where the parameters θgt are modeled as either fixed or random effects depending on the spec-

ification of their prior distributions. In most of our model specifications, the year effect is

modeled as a fixed effect, since five years of data would not provide much information for

estimating a variance component for a random year effect. The index g labels the effect being

modeled, while t indexes the levels of that effect. For example, a state random effect would

be labeled by a particular g, and in the design specification would take one of Tg = 32 levels,

t = 1, . . . , 32, where the state t depends on the domain i. This parameterization expresses ηi
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as the sum of G independent θ parameters characterized by a matrix of indices. Similar pa-

rameterizations of multilevel models are presented by (Gelman & Hill, 2006). This formulation

provides a concise and general framework for writing out the random effects model and de-

riving the corresponding conditional posterior distributions, while accommodating complex

structures such as crossed and nested random effects. The indexing scheme is simple and ef-

ficient computationally, and facilitates adding or removing random effect terms by adding or

removing columns from the index matrix.

Thefixed effect, corresponding to g = 1, ismodeledwith a diffuseNormal priorN
(
0, τ2

)
for

arbitrarily large τ . Random effects are modeled with a Normal prior θgt ∼ N
(
0, σ2

gs(t)

)
. The

index s allows σ2
gs(t) to potentially vary by a set of indices

{
s (1) , . . . , s

(
Tg
)}

⊂
{
1, . . . , Tg

}
.

For example, a random effect for the substate area could have a separate variance parameter

for each state, rather than one variance parameter for all areas. However, in most model

specifications, we use a single variance for each random effect group g, or s (t) = 1, t =

1, . . . , Tg.

For each yi, fixing θgt for g ̸= g0, we have G residual components defined by

rig0 = yi −
∑
g ̸=g0

θg,t(i,g) ∼ N
(
θg0,t(i,g0), vi

)

At the third stage of the hierarchical model, we give variance components σ2
gs(t) a noninfor-

mative Inverse-Gamma prior IG (α, β) for small α and β. Using the likelihood for data rig and
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our prior distributions, we can write the conditional posteriors as

θ1t ∼ N

((∑
i∈I1t

ri1v−1
i

)(
τ−2 + A1t

)−1
,
(
τ−2 + A1t

)−1
)
, t = 1, . . . , T1

θgt|σ2
gs ∼ N

∑
i∈Igt

rigv−1
i

(σ−2
gs + Agt

)−1
,
(
σ−2
gs + Agt

)−1

 , g = 2, . . . ,G, t = 1, . . . , Tg

σ2
gs|θgk ∼ IG

α +
#
{
Tgs
}

2
, βg +

1
2
∑
t∈Tgs

θ2
gt

 , g = 2, . . . ,G, s = 1, . . . , Sg

Derivations appear in Appendix A, with a general form for multiple outcomes in Appendix B.

Here we have defined Igt = {i : t (i, g) = t} as all the domain-level data belonging to level t

of group g, and Agt =
∑

i∈Igt v
−1
i , g = 1, . . . ,G, t = 1, . . . , Tg. Similarly, we defined Tgs =

{t : s (t (g)) = s} as all the t-level data belonging to level s of group g, where #
{
Tgs
}

is the

cardinality of the set Tgs.

To fit these models, we used Markov chain Monte Carlo methods with Gibbs sampling steps

to update parameters for the conditional posterior distributions (Casella & George, 1992). At

each iteration, we individually sample the θgt for each g and t, followed by a sample of the σ2
gs

for each g and s. The Gibbs procedure was run for 50,000 iterations, and samples were thinned

to reduce autocorrelation by taking every 50th sample.

3.3.2 Analysis of Borrowing Strength

The concept of “borrowing strength,” introduced by Tukey, is prevalent today in empirical

Bayes and other areas of statistics (Brillinger, 2002). In small-area estimation, it involves im-
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proving prediction for a domain using information from other domains. We illustrate this

concept with a “Bayesian hat matrix” (a term proposed by Steece (1989) in the context of single-

level regression with a prior) that identifies the leverage of each area’s data on each (same or

other) area’s estimate. The n× n Bayesian hat matrix H satisfies η̂ = Hy, or η̂i = H⊺
i y, where

η̂i is the posterior mean of ηi, andH has rowsHi that sum to 1 (Appendix C). Here, η̂i is a linear

combination of all the sample estimates for each domain (y), where the sum of the coefficients

of that linear combination is 1. This indicates that the results are “translation-invariant,” as

expected: if we increased every observed sample mean by the same amount, the posterior

means would also shift by nearly the same amount, a consequence of the vague prior on the

yearly fixed effects. We summarize these coefficients by adding them up based on relation-

ship between domain i and all other domains. This expresses η̂i as a linear combination of

weighted sample estimates within relationship group, and helps us to understand how our

data are combined to estimate domain values.

Following up from Section 3.3.1, we can formulate our data in vector form as η = Xθ, y ∼

N (η,V), where X is an n×p design matrix of 0s and 1s with p columns for each of the p (g, t)

pairs, θ is a p × 1 vector of all θgt, and V is an n × n diagonal matrix with elements vi. Then

θ ∼ N (0,Ω)whereΩ is a p×p diagonal matrix made up of the corresponding σ2 parameters

of the θ (σ2
gs for θgt, and τ2 for the fixed effect). For a fixed Ω,

f (θ|y,Ω) ∝ f (y|θ) f (θ|Ω)

∼ N
[(
Ω−1 + X⊺V−1X

)−1 X⊺V−1y,
(
Ω−1 + X⊺V−1X

)−1
]
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Then the estimated η̂ can be written as

η̂ = E (η|Ω, y) = E (Xθ|Ω, y) = X
(
Ω−1 + X⊺V−1X

)−1 X⊺V−1y

:= H (Ω) y

To get the hat matrix for unconditional posterior means, we averageH (Ω) over draws of theΩ

components to getH. Note thatH here is not the traditional hat matrix from linear regression,

as we have an additional Ω component, and X is not the standard design matrix. Nonetheless,

the rows of H sum to 1, as shown in Appendix C.

Because this 470 × 470 matrix is too big for ready examination, we summarize the coeffi-

cients by grouping them up based on the relationship between domain i and each other domain,

and summing them in each group. This expresses η̂i as a linear combination of weighted sam-

ple estimates within relationship group. We then average the group weights over domains,

yielding insight into how the data are combined to calculate domain estimates. The groups

are:

1. Same area and year.

2. Same area, different year.

3. Different area in the same state, same year.

4. Different area in the same state, different year.

5. Different state, same year.

6. Different state, different year.
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To summarize, we first view the estimated η̂i as a linear combination of all the existing

data y where the coefficients are from the corresponding row of H and sum to 1. We then

would like to know how much weight is attributed to the existing data from each of the six

relationship categories, revealing where and how much information is being borrowed from

other domains.

3.3.3 Cross-Validation for Hierarchical Models

Traditional Bayesian model comparison methods such as Bayes factors (Kass & Raftery, 1995)

could be difficult to compute or approximate for complex hierarchical models. Additionally,

it is difficult to formulate our model structure to make entirely comparable models without

resorting to the use of arbitrary constants, such as the variance parameter of our fixed effects.

Since our primary interest is predictive accuracy, we would like to perform cross-validation.

However, this is difficult due to the computational burden of re-fitting our model n times for

leave-one-out cross-validation.

We instead propose using importance sampling weighting to compute a cross-validated pre-

diction, motivated by outlier detection methods by Zaslavsky & Bradlow (2010). Instead of re-

fitting a model n times, importance sampling allows us to re-weigh our posterior draws of θ to

calculate leave-one-out cross-validated prediction errors. For a new ỹi andmodelM, we select

themodel that maximizes the log pseudo-marginal likelihood ℓ (M) =
∑n

i=1 log
[
p
(
yi|y(−i)

)]
(Chen et al., 2008), where p

(
yi|y(−i)

)
is estimated using importance sampling, shown in Ap-
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pendix D. We can then estimate ℓ̂ (M) =
∑n

i=1 log
(
T

[∑T
t=1

1
p
(
yi|θ(t)(−i)

)
]−1)

, where T is

the number of draws of from the posterior distribution. Similar derivations are provided by

(Gelfand & Dey, 1994).

3.4 Application to FFS CAHPS Data

A comparison of posterior distributions of the variance components quantifies the contribu-

tions of random effects at different levels to variation in the domain means. State and substate

random-effects variances are larger than the substate by year interaction random-effects vari-

ances, by an average factor of 7 over all measures. As is typical for a shrinkage estimator

(Ghosh & Rao, 1994), the Bayesian estimators from the model had about 1/3 the variance of

the direct estimates, over all measures. The hat-matrix analysis revealed a large weight at-

tributed to data from the same domain across years (groups 1 and 2), but this amount varied

by measure. Finally, we were able to use the model estimates to evaluate the performance of

the naive state or substate estimators through mean squared error calculations.

3.4.1 Model Selection

We fit five Bayesian random effects models using the flexible parameterization described in

Section 3.3.1. In order of simplicity, these models were:

1. An annual model separately for each year, with an intercept fixed effect, state random
effect, and substate random effect.
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2. A “base” model with a year fixed effect, state random effect, substate random effect, and
substate by year random effect.

3. A substate by year model, which is the base model with a substate by year random
effect.

4. A “rich” model, which is the substate by year model whose substate random effect has
a variance parameter that varies by state.

5. A “full” model with an intercept fixed effect, year random effect, state random effect,
substate random effect, state by year random effect, and substate by year random effect.

The model specifications are presented in Table 3.2. In most cases we estimated the year

effect as fixed, with a large prior variance, since it is more feasible to estimate the annual trend

using the ample data than it is to try to estimate variance components for a parameter with

only five data points. These models were applied to all 8 measures, with data from 94 areas in

32 states, spanning 2012 to 2016.
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Table 3.2: Specification of CandidateModels

Parameter # Levels (Tg)

Annual

Model

Base

Model

State by Year

Model‡

Rich

Model‡

Full

Model

intercept θ0 1 ✓ ✓

year effect θ1t 5 ✓ ✓ ✓ ✓ ✓

state effect θ2t 32 ✓ ✓ ✓ ✓ ✓

substate effect θ3t 94 ✓ ✓ ✓ ✓

state by year effect θ4t 160 ✓ ✓ ✓

substate by year effect θ5t 470 ✓ ✓ ✓ ✓

‡These two models differ in the variance specification of the substate random effect θ3t. In the state by
year model, θ3t ∼ N (0, σ2

3). In the rich model, θ3t ∼ N (0, σ2
3s), where s is the state defined by substate

t.

Table 3.3 shows the calculation of the log pseudo-marginal likelihood for our five candidate

models, where the base model has the highest ℓ̂ (M) across virtually all measures. Addition-

ally, a posterior predictive check on the sample variance of all domains was performed and

shown in Table 3.4, where posterior predictive p-values for the base model are the most rea-

sonable out of all candidate models. Based on these diagnostics, we decided to use our base

model.
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Table 3.3: Values and Ranks of ℓ̂ (M) for CandidateModels

Measure
Annual Base State by Year Rich Full

Model Model Model Model Model

Coordination of Care 896 (5) 1033 (1) 1027 (2) 1023 (4) 1027 (3)

Customer Service 516 (1) 516 (2) 515 (4) 501 (5) 516 (3)

Get Care Quickly 623 (5) 937 (1) 928 (2) 928 (4) 928 (3)

Get Needed Care 823 (5) 888 (1) 880 (3) 875 (4) 880 (2)

Flu Immunization 875 (5) 1114 (1) 1113 (3) 1112 (4) 1114 (2)

Doctor Communication 990 (5) 1057 (1) 1050 (3) 1041 (4) 1050 (2)

Rating of Care 400 (5) 508 (1) 504 (3) 503 (4) 504 (2)

Rating of Plan 293 (5) 446 (1) 444 (3) 442 (4) 444 (2)

The log pseudo-marginal likelihood ℓ̂ (M) is shown, along with its rank in parentheses among the five
candidate models.

55



Table 3.4: Posterior Predictive Check of Empirical Standard Deviation

Measure ŝd (y)

Posterior Predictive p-values

Annual Base State by Year Rich Full

Model Model Model Model Model

Coordination of Care 0.044 0.239 0.276 0.139 0.023 0.138

Customer Service 0.089 0.082 0.231 0.170 0.011 0.189

Get Care Quickly 0.082 0.408 0.336 0.235 0.153 0.260

Get Needed Care 0.050 0.449 0.483 0.380 0.051 0.418

Flu Immunization 0.041 0.288 0.157 0.080 0.016 0.075

Doctor Communication 0.031 < 0.001 0.017 0.005 < 0.001 0.001

Rating of Care 0.117 0.381 0.398 0.324 0.115 0.342

Rating of Plan 0.182 0.359 0.471 0.464 0.275 0.478

Draws of the posterior predictive distribution are generated from samples of the posterior distribution
of η.

3.4.2 Base Model Results

The posterior distributions of the variance components σ2
gs of each random effect is standard-

ized by the mean v̄ of the sampling variance for each measure, and summarized on a log scale
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in Figure 3.1. Similar patterns are apparent for all measures except the Customer Service mea-

sure. The posterior means of variances of the state and substate random effects range from

0.34 to 4.71 and are generally larger than the corresponding variances of the substate by year

interaction random effect, which range from 0.10 to 0.28. The consistently small variation in

substate by year effects suggest that these measures are fairly stable from year to year. Get

CareQuickly stands out as having very high variability in its state and substate random effects,

but not in year interactions, possibly reflecting persistent local variations in the adequacy of

the supply of medical professionals. Flu immunization similarly shows large state and substate

variation, possibly due to climate-related variations in immunization rates. Customer Service

is an outlier from these typical patterns. Its state and substate random effects show much less

variation than for any other measure, even less than the substate by year interaction; this is

consistent with the absence of a locally-oriented customer service staff for FFS Medicare. The

year main effects range from 3 to 4 for the composite measures, 0.65 to 0.80 for the binary flu

measure, and 8 to 9 for the ratings of care and plan. These differences among the year fixed

effects are substantially larger than the corresponding estimates for random effects.

57



Figure 3.1: Posterior Distributions of Random-Effects Variances

Each of the four random-effects variances are summarized in a different row for eachmeasure, separated
by the dotted grey lines. The posterior mean, median, and 25% and 75% quantiles are plotted. To remove
the uninteresting differences in variance components due to the use of difference scales for different
measures, the samples of the posterior variances were scaled relative to the mean v̄ of the sampling
variance for each measure. To account for the large differences in the variability of random effects
among the different measures, the samples are plotted on a log scale.

Figure 3.2 compares the posterior variances of the domain estimates from the Bayesian

model to the sampling variances of the corresponding direct estimates. Within each measure,

areas in small states see the most variance reduction, while areas in larger states have the

least. Customer Service shows greater variance reduction than all other measures, with pos-
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terior variances of the domain estimates at roughly 20-30% of their corresponding sampling

variances. This is consistent with the random-effects variances for Customer Service, which

are relatively small (Figure 3.1), indicating that data from other areas, states, and years are

informative for model estimates in each domain. By contrast, Flu Immunization has posterior

variances at roughly 40-45% of their corresponding sampling variances, which is consistent

with its higher state and substate random-effects variances, and the relatively small sampling

variances due to the high item response rate to this measure.

Figure 3.2: Variance Reduction, Bayesian vs. Direct Area Estimates

For eachmeasure, the ratio of the posterior variance and sampling variance for domains are summarized
and stratified based on the size of the domain’s state.
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3.4.3 Bayesian Hat Matrix Analysis

We compute the hat matrix H for each measure. Results for Get Care Quickly are summarized

in Table 3.5, and are typical of most measures. The more distinctive patterns for Customer

Service are also shown in Table 3.6.

Table 3.5: HatMatrix Results for Get CareQuickly

Get Care Quickly

Relationship1
Average # Mean of 5%-ile of 95%-ile of

Domains2 Weight3 Weight3 Weight3

1 1 0.34 0.20 0.47

2 4 0.60 0.50 0.71

3 2.6 0.03 0.01 0.06

4 10.2 0.01 -0.01 0.04

5 90.4 0.63 0.50 0.76

6 361.8 -0.62 -0.74 -0.49

1Relationships are coded as 1: same area and year, 2: same area, different year, 3: different area in the
same state, same year, 4: different area in the same state, different year, 5: different state, same year, 6:
different state, different year.
2Average over all rows of the number of domains in each relationship group.
3Weight is the sum of coefficients by group for a particular row. Mean and percentiles are over all rows
of H.
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Table 3.6: HatMatrix Results for Customer Service

Customer Service

Relationship1
Average # Mean of 5%-ile of 95%-ile of

Domains2 Weight3 Weight3 Weight3

1 1 0.26 0.10 0.42

2 4 0.24 0.17 0.32

3 2.6 0.06 0.02 0.12

4 10.2 0.15 0.06 0.26

5 90.4 0.68 0.51 0.86

6 361.8 -0.39 -0.51 -0.28

1Relationships are coded as 1: same area and year, 2: same area, different year, 3: different area in the
same state, same year, 4: different area in the same state, different year, 5: different state, same year, 6:
different state, different year.
2Average over all rows of the number of domains in each relationship group.
3Weight is the sum of coefficients by group for a particular row. Mean and percentiles are over all rows
of H.

For a particular model estimate for a domain, group 1 represents the direct estimate for that

particular domain (substate area and target year). Group 2 contains direct estimates of the

same area, but from the four other years in the dataset. The average of the group 2 domain

means can be viewed as as an estimator for the domain mean outside the target year. Group

5 represents direct estimates of out-of-state areas from the same year, while group 6 repre-
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sents direct estimates of out-of-state areas from different years. Thus, the average difference

between the group 5 and 6 domain means can be viewed as estimate of the overall trend be-

tween the target year domain mean and the mean of other years. This trend, in combination of

the group 2 domainmeans, provide a trend-corrected estimate for the target domain. The small

magnitude of our substate by year interaction random effects suggests that this trend adjust-

ment should be about the same in every area. Similarly, group 3 and 4 provide an analogous

trend, but within the target state.

Group weight means and percentiles were computed for all domains, or rows of the hat

matrix. Group 1 weights range from a mean of 0.25 to 0.39 across all measures. Group 2

weights range from amean of 0.24 to 0.57 across all measures, making each of the four domains

in group 2 less informative than the single domain in group 1. When combined, group 1 and

2 account for a mean weight of 0.77 to 0.94 for all measures except Customer Service, whose

combined weight for groups 1 and 2 is 0.50. This indicates that direct estimates for the same

area in the same year and over other years are both very informative for our small-domain

estimates.

The average number of domains used in computing each weight was displayed to demon-

strate that a large number of minor effects can sum up to have a significant weight. For

example, the group 2 effect is represented by four domain estimates (the other four years from

the same area), and combine to have a weight of 0.60 for Get Care Quickly. The group 5 effect

for Get Care Quickly is 0.63, but is a combination of (on average) 90 other domains, depend-

ing on the area and year. Although the workings of the estimators under the Bayesian model
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are entirely mechanical, this analysis provides a heuristic explanation for the model’s results,

which can be important when the results are publicly reported and have policy significance.

3.4.4 Formulating a Decision Rule by Comparing MSE

The original motivating problem was to formulate a decision rule for reporting either at the

state (pooled) or substate area (unpooled) level, for each state i and year k. In this scenario,

we suppose that the direct estimates are the only allowable estimates that could be published,

so the role of the Bayesian model is to choose between pooled or unpooled estimates in each

state and year. We evaluate the naive direct estimates by estimating predictive mean square

error (MSE). This uses the Bayesian estimates to determine which states would benefit from

pooling in the long run, given the variance components and sampling errors of each state’s

design, but without looking at the specific estimates for each year.

Let η∗ be the future η for a particular year and state s, where Is = {i : t (i, 2) = s} are the

domains in state s (recall that g = 2 refers to the state effect), and ns is the number of areas in

state s. Let ȳ∗s and η̄∗s be the corresponding pooled state s averages of y∗i and η∗i , respectively.

To account for the future covariation of η∗ and the corresponding future data y∗, we compute

63



for each state s

MSEunpooled =
∑
i∈Is

E
[
(y∗i − η∗i )

2] =∑
i∈Is

Var (y∗i ) =
∑
i∈Is

v∗i

MSEpooled =
∑
i∈Is

E
[
(ȳ∗s − η∗i )

2] =∑
i∈Is

{
E
[
(ȳ∗s − η̄∗s )

2]+ E
[
(η̄∗s − η∗i )

2]}
=

∑
i∈Is

{
Var (ȳ∗s ) + E

[
(η̄∗s − η∗i )

2]}

v∗i is estimated as the value of vi for the most recent year of data, Var (ȳ∗s ) is estimated as a

weighted average of the v∗i based on sample size in each area, and E
[
(η̄∗s − η∗i )

2] is estimated

using draws from the distribution of η∗i . To sample from the distribution of η∗i , we sample from

the predictive distributions of the future θ parameters, denoted by a ‘∗’ superscript. Because

θ∗2t (state random effect) and θ∗3t (substate random effect) do not vary by year, we sample them

directly from their joint posterior distribution. However, θ∗4t (substate by year random effect)

are sampled from the updated prior distribution N
(
0, σ2

4|y
)
, where σ2

4|y is sampled from its

posterior distribution. We can then calculate η∗i =
∑G

g=1 θ
∗
g,t(i,g).

The ratios MSEpooled
MSEpooled+MSEunpooled

puts the comparison of pooled and unpooled MSE on a scale

from 0 to 1, where 0 and 1 indicate error-free estimation of pooled and unpooled means, re-

spectively, and 0.5 represents equal MSE for pooled and unpooled estimates. These values are

plotted in Figure 3.3 for each state, where each vertical series of five dots represent the ratios

across the five years. A simple decision rule would be to report pooled state estimates for

ratios below 0.5, and to report unpooled substate estimates for ratios above 0.5. In these plots,

a higher ratio indicates higher heterogeneity of measure results within states for a particular
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year.

Figure 3.3:MSERatios for Future Year

States are in increasing order by number of areas. For each measure, the top number is the number of
states where unpooled substate estimates have lower MSE, and the bottom number is the number of
states where pooled state estimates have lower MSE.
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Not surprisingly, the larger states tend to have higher MSE for the pooled state estimates,

which is most evident for Get CareQuickly and Flu Immunization. This trend is a reflection of

the substate variation within large states. For most other measures, and especially Customer

Service, the unpooled MSE is higher, suggesting reporting at the state level for all states and

years.

3.5 Discussion

Our Bayesian random effects model for small area estimation provides a general framework

for small area estimation of measures repeated over time in nested geographic domains. In

our application to a major health care quality survey, model-based small area estimates are

substantially more precise than the corresponding direct estimates. We can either report these

improved Bayesian estimates in place of the direct estimates, or use our model to evaluate the

direct state and substate estimates, providing a decision rule for reporting either one.

Variance component estimates under the Bayesian model have important policy implica-

tions. The substate by year interaction random effects have generally small posterior variances,

highlighting the stability of quality differences over time within each area. On the other hand,

state and substate random effects are generally more variable. Customer service stands out

as a measure with particularly low variability. This is an unsurprising consequence of the ab-

sence of a distinctive local customer service “presence” in FFS comparable to that of private

plans in Medicare Advantage, where customer service assessments are both more variable and
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more volatile. Other composite measures and ratings tend to have the most variability at the

state level, followed by the substate level, which indicates some heterogeneity between areas

in the same state, but not as much as the amount between states. Flu Immunization, potentially

provided by a wide range of local institutions with differing resources and effectiveness, has

the most variability at the substate level. These differences in statistical properties among the

measures present an additional challenge, as it may not be feasible to select different reporting

procedures for different measures.

A Bayesian hat matrix summarizes the way information is borrowed across domains to

obtain the model estimates. Summaries of the hat matrix allow us to see how much weight

data from other domains have in the estimate in each domain, as well as how much variability

there is among these weights. The hat matrix demonstrates a novel way of understanding the

way model estimates borrow information across domains. In most cases, the majority of the

weight for the estimate of the domain means is allotted to the direct estimates of that domain,

along with the corresponding direct estimates from past years. If the model-based estimates

are reported, these summaries may help to give some transparency to what otherwise is a

rather opaque procedure.

The options available under the present system are very limiting. The same reporting rule

must be used for all measures, even though it is clear from our results that certain measures be-

have differently than others. Additionally, we are currently forced to choose between state or

substate estimates for each state, across all measures. This could be troublesome if some mea-

sures demonstrate higher heterogeneity within states than others. However, these conditions
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may be reasonable from a policy point of view, as direct state or substate estimates are easy

for beneficiaries to understand, compared to a more sophisticated model. Ultimately, it will be

up to policymakers to weigh the advantages and disadvantages of using our methodologies.

The correlations among the multiple measures are ignored when they are analyzed sepa-

rately. Using the relationships among the measures can lead to more precise estimates, and

possibly more consistent recommendations for reporting of all measures than would come

from unlinked analyses. A natural extension of this work would be to develop a multivariate

version of the existing model.
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3.6 Appendix A: Univariate Posterior Distribution

The joint posterior can be formulated as

p (θ|r) ∝ L (r|θ) π
(
θ|σ2) π (σ2) =

N∏
i=1

G∏
g=1

1√
2πvi

exp
[
− 1

2vi
(
rig − θgt

)2]
T1∏
t=1

1√
2πτ2

exp
(
− 1

2τ2 θ
2
1t

)
(fixed effect), g = 1

G∏
g=2

Tg∏
t=1

1√
2πσ2

gs

exp
(
− 1

2σ2
gs
θ2gt

)
(random effects)

G∏
g=2

Sg∏
s=1

(
σ2
gs

)−α−1
exp

(
− β
σ2
gs

)
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Fixing a t fixes a particular set of i as well. Define Igt : {i : t (i, g) = t}. Fixing an s fixes a

particular set of t as well. Define Tgs : {t : s (t (g)) = s}. Then the conditional posteriors are

p
(
θgt|σ2

gs

)
∝ exp

−∑
i∈Igt

1
2vi
(
rig − θgt

)2 − 1
2σ2

gs
θ2gt


g = 2, . . . ,G, t = 1, . . . , Tg

∼ N

∑
i∈Igt

rigv−1
i

σ−2
gs +

∑
i∈Igt

v−1
i

−1

,

σ−2
gs +

∑
i∈Igt

v−1
i

−1
p (θ1t) ∼ N

((∑
i∈I1t

ri1v−1
i

)(
τ−2 +

∑
i∈I1t

v−1
i

)−1

,

(
τ−2 +

∑
i∈I1t

v−1
i

)−1)

p
(
σ2
gs|θgt

)
∝

(
σ2
gs

)− 1
2

(∑
t∈Tgs 1

)
−α−1

exp

− 1
2σ2

gs

∑
t∈Tgs

θ2gt −
βg
σ2
gs


g = 2, . . . ,G, s = 1, . . . , Sg

∼ IG

α +
#
{
Tgs
}

2
, βg +

1
2
∑
t∈Tgs

θ2gt


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3.7 Appendix B: Multivariate Posterior Distribution

The joint posterior can be formulated as

p (θ|r) ∝ L (r|θ) π
(
θ|σ2) π (σ2)

=

N∏
i=1

G∏
g=1

(2π)−
M
2 |Vi|−

1
2 exp

[
−

1
2
(
rig − θgt

)⊺ V−1
i
(
rig − θgt

)]
T1∏
t=1

(
2πτ2

)−M
2 exp

(
− 1

2τ2 θ
⊺
1tθ1t

)
(fixed effect), g = 1

G∏
g=2

Tg∏
t=1

(2π)−
M
2
∣∣Σgs

∣∣− 1
2 exp

(
−

1
2
θ⊺gtΣ

−1
gs θgt

)
(random effects)

G∏
g=2

Sg∏
s=1

∣∣Σgs
∣∣− ν+M+1

2 exp
[
−

1
2
tr
(
ΨΣ−1

gs

)]

Fixing a t fixes a particular set of i as well. Define Igt : {i : t (i, g) = t}. Fixing an s fixes a

particular set of t as well. Define Tgs : (t : s (t (g)) = s). Then the conditional posteriors are
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p
(
θgt|Σgs

)
∝ exp

−∑
i∈Igt

1
2
(
rig − θgt

)⊺ V−1
i
(
rig − θgt

)
−

1
2
θ⊺gtΣ

−1
gs θgt


g = 2, . . . ,G, t = 1, . . . , Tg

∼ N

Σ−1
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3.8 Appendix C: Proof of
∑

iHi = 1

We would like to show that H1 = 1, where 1 is an n× 1 vector where each element is equal to

1. Note that by construction, 1 ∈ col (X), so we are able to write 1 = Xe for some p× 1 vector

e. Then

H1 = X
(
Ω−1 + X⊺V−1X

)−1 X⊺V−1Xe (3.1)

1 = Xe = X
(
Ω−1 + X⊺V−1X

)−1 (Ω−1 + X⊺V−1X
)
e (3.2)

It suffices to show that the difference X
(
Ω−1 + X⊺V−1X

)−1 Ω−1e between (3.1) and (3.2) ap-

proaches 0.

We require the entries of Ω to be strictly positive with probability 1, which is ensured

through the Inverse-Gamma specification for the variance components. Assume that we have

one fixed effect, whose corresponding entries in Ω approach ∞. We show that under this

condition, Ω−1e → 0, which would complete the proof. Note that having one fixed effect is a

consequence of the model, as Hwould not be well-defined with two or more fixed effects. Par-

tition Ω =

Ω1 0

0 Ω2

 ,Ω1 = τ2I, where τ2 is the variance of the diffuse Normal prior used for

the fixed effect. Similarly, we can partition X = [X1,X2], where the columns of X1 correspond

to the fixed effect terms in θ. This partition allows us to write Xe =

[
X1 X2

]e1
0

 = 1 for
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some vector e1, since 1 ∈ col (X1). That is, the elements in e corresponding to random effects

are all 0.

Then

Ω−1e =

Ω−1
1 0

0 Ω−1
2


e1
0

 =

τ−2Ie1

0

→ 0 as τ2 → ∞

3.9 Appendix D: Log Pseudo-Marginal Likelihood

Let θ(−i) be the set of θgt parameters without the substate by year random effect corresponding

to domain i, and let y(−i) be the data without yi, so that

p
(
θ(−i)|y(−i)

)
∝

p
(
θ(−i)|y

)
p
(
yi|θ(−i)

)
where yi|θ(−i) = yi|θ − θg′t ∼ N

(∑
g ̸=g′ θg,t(i,g), vi + σ2

g′s

)
, where g′ is the substate by

year interaction random effect group. Suppose we let pu
(
θ(−i)|y(−i)

)
=

p(θ(−i)|y)
p(yi|θ(−i))

so that

pu
(
θ(−i)|y(−i)

)
p (yi) = p

(
θ(−i)|y(−i)

)
. Then we know p

(
θ(−i)|y(−i)

)
up to a proportionality
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constant, and can use self-normalized importance sampling to get, for a new ỹi,

p
(
ỹi|y(−i)

)
=

∫
p
(
yi|θ(−i)

)
p
(
θ(−i)|y(−i)

)
dθ(−i)

.
=

∑T
t=1 p

(
yi|θ(t)(−i)

) pu
(
θ(t)
(−i)|y(−i)

)
p
(
θ(t)
(−i)|y

)
∑T

t=1
pu
(
θ(t)
(−i)|y(−i)

)
p
(
θ(t)
(−i)|y

)

=

∑T
t=1 p

(
yi|θ(t)(−i)

)
1

p
(
yi|θ(t)(−i)

)∑T
t=1

1
p
(
yi|θ(t)(−i)

)

= T

 T∑
t=1

1
p
(
yi|θ(t)(−i)

)
−1

where t represents draws from the posterior distribution of θ(−i).
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3.10 Appendix E: Alternative Decision Rule

In this “opportunist” method, we seek which set of direct estimates (state or substate area)

are closest to the Bayesian estimates. This allows us to capitalize on chance for the data in

the given year. In one year the substate estimates could happen to be close to the Bayesian

estimates, and subsequently reported, but in another year they could be far from the Bayesian

estimates and not selected for reporting.

We are looking to estimate the MSE of the state or substate direct estimates, given the

current data. For the substate direct estimate yi, this is

Eηi|yi
[
(yi − ηi)

2] = (Eηi|yi [yi − ηi]
)2

+ Varηi|yi (yi − ηi)

= (yi − η̂i)
2 + V̂ar (ηi)

where η̂i is the posterior mean and V̂ar (ηi) is the posterior variance. Similarly, for the state

direct estimate yi·, the MSE is

Eηi|yi
[
(yi· − ηi)

2] = (yi· − η̂i)
2 + V̂ar (ηi)

Then the MSE for each direct estimate is calculated by summing across areas within a state, to

produce a value for each state and year. A decision rule can then be formulated by identifying

the lower MSE among the pooled or unpooled estimator, for each state and year.
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4.1 Introduction

Hospital profiling has a widespread impact on government, insurers, physicians, and patients

(Gatsonis, 1998; Normand, 2005; Normand & Shahian, 2007). Methods used to profile hospitals

are not standard for a myriad of reasons. First, hospital profiling needs to account for both pa-

tient and hospital-level characteristics, as well as the correlation between outcomes of patients

at the same hospital. This necessitates the use of multi-level models (Gelman &Hill, 2006). Sec-

ond, an adjustment for case-mix bias at the patient level is necessary to ensure that hospitals

are not profiled negatively by virtue of treating sicker individuals (Salem-Schatz et al., 1994;

Shahian & Normand, 2008; Ash et al., 2012). Lastly, hospital size can vary substantially, and

methods need to account for the varying size of each hospital unit.

Traditionally, hospitals are profiled based on a binary outcome of interest that characterizes

patient health, such as estimated mortality or morbidity rates. Hierarchical models have long

been recommended to account for the nested structure of the data (Goldstein & Spiegelhalter,

1996; Normand et al., 1997; Leyland & Boddy, 1998). Typically, there is a case-mix adjustment

using patient characteristics at the first level of themodel, and hospital characteristics included

in the second level of themodel to obtain a standardized outcome for each hospital. Frequentist

methods generally use hypothesis testing or confidence intervals for ratios or differences of

observed and expected outcome rates. Common models include logistic regression, where

hospital effects can be specified as fixed (using indicator variables), random (using multi-level
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models), or not specified (DeLong et al., 1997). Bayesian methods for hospital profiling include

Bayesian hierarchical models (Normand et al., 1997; Shen& Louis, 1998; Racz & Sedransk, 2010)

and empirical Bayes (Thomas et al., 1994).

Classical methods to adjust for measured confounding include propensity score matching

(Rosenbaum & Rubin, 1983; Austin, 2011), inverse probability weighting (Robins et al., 2000;

Joffe et al., 2004), and doubly robust estimators (Bang & Robins, 2005; Kennedy et al., 2016).

Varewyck et al. (2014) and Shahian & Normand (2015) have structured the hospital profiling

question within a causal inference framework. However, all of these methods estimate an av-

erage causal effect at the individual (patient) level, and have not been developed in the context

of nested data where the focus is on estimation of a causal effect at the second (hospital) level

of the hierarchical model. In our scenario, we need the first level to provide the patient case-

mix adjustment, while our scientific interest lies in hospital-level associations at the second

level, but not necessarily causal associations.

In this chapter, we use a Bayesian hierarchical model in the spirit of Normand et al. (1997) to

estimate the hospital-level association between palliative care received and the aggressiveness

of end-of-life treatments. At the first stage of the model, we provide a patient-level case-mix

adjustment. We include a propensity score adjustment at the second level of the hierarchical

model, modeling the receipt of palliative care treatment as either binary, or continuous using

a normal and quasi-binomial propensity function (Imai & Van Dyk, 2004). Our methods are

applied to a dataset of deceased Medicare FFS beneficiaries diagnosed with brain, lung, colon,

or pancreatic cancer.
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The remainder of this chapter is organized as follows. In Section 4.2, we describe the work-

ing data, study population, our hospital-level definition of palliative care received, and confirm

the existence of confounding in our working data. Section 4.3 includes our Bayesian hierar-

chical models used to analyze our data. Section 4.4 contains the results of our data analysis,

which are discussed with concluding remarks in Section 4.5.

4.2 Data

Our data are collected from Medicare inpatient and post-acute care claims, and medicare en-

rollment files. This includes a cohort of Medicare FFS beneficiaries 65+ discharged with prin-

cipal discharge diagnosis code of lung (162.xx), pancreas (157.xx), colorectal (153.xx), or brain

(191.xx) cancers (from Medicare Part A claims), with a 2-year follow-up period. From there,

we applied the inclusion and exclusion criteria presented in Table 4.1.
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Table 4.1: Inclusion and Exclusion Criteria

Inclusion Exclusion

• principal diagnosis code (and confir-
mation that these are new diagnoses)
for the aforementioned cancers in
2009

• FFS beneficiaries only

• enrollment in FFS at least 12 months
prior to first condition-specific admis-
sion

• continuous enrollment in Medicare af-
ter diagnosis, at least 12 months of
follow-up after diagnosis

• discharged from a short-term acute
care hospital

• beneficiaries who resided in 50 states
plus Puerto Rico and DC

• in-hospital biopsy/resection

• initial or first condition-specific hospi-
talization

• receipt of chemotherapy within 120
days of diagnosis

• continuous enrollment in Medicare
FFS plan after initial diagnosis

• metastatic cancer patients only (sec-

ond malignant neoplasm ICD-9 code)

• diagnosis of any other cancer

• receipt of prior major cancer surgery

• failed to merge with denominator files

• transferred to another acute-care hos-
pital

• in-hospital death

• unreliable death data

• discharged from a critical access hos-
pital

• receipt of prior major cancer surgi-
cal procedures at any time during the
study period

• patients who had another cancer

within 3 years prior to the initial can-

cer diagnosis
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4.2.1 Study Population

As part of the inclusion criteria, patients from the data were selected based on having a first

hospital discharge between January 2009 and December 2010, corresponding to initial hospital

admission dates between October 2008 and December 2010, and death dates between January

2009 and December 2012. In order to define end-of-life outcomes and treatments for patients

and hospitals, our study population only included deceased patients from hospitals with 30 or

more discharged patients. Figure 4.1 shows the admission, discharge, and death dates for a

random sample of 100 patients in our study population of 20,400 patients over 408 hospitals.

Figure 4.1: Discharge, Admission, and Death Dates for Study Population
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We are interested in various binary outcomes related to the aggressiveness of end-of-life

care, as shown in Table 4.2. Due to the low prevalence of chemotherapy and radiotherapy

within 30 days of death, the outcome for our analysis is a binary indicator of receiving either

of these two forms of EOL care within 30 days of death. Chemotherapy and radiotherapy can

begin before or after palliative care interventions. We are concerned with whether chemother-

apy and radiotherapy continued through to end-of-life, defined as within 30 days of death.

Table 4.2: End-of-Life Outcomes of Interest

Outcome Prevalence

Chemotherapy within 30 days of death 0.103

Radiotherapy within 30 days of death 0.114

Hospital readmission within 30 days of discharge 0.229

Prevalence is based on number of patients with the outcome in our study population.

4.2.2 Defining Palliative Care Received

Palliative care is a specialized form holistic health care targeted at patients with severe illnesses

such as cancer, cardiac disease, and psychiatric disorders. The primary intent of palliative care

is to improve the quality of life by assuaging physical and mental pain stemming from the

disease (Rome et al., 2011). Palliative care can begin at any stage of a serious illness, and can

co-exist with traditional curative treatment, or act as a segue to hospice for incurable illnesses.
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Patient-level palliative care encounters are defined by the ICD-9 code V66.7 for “encounter

for palliative care.” For hospitals defined by their six digit MEDPAR provider number, we

define the hospital-level receipt of palliative care as ai = pi
ni ,where pi is the number of patients

discharged by hospital i in 2009 or 2010 who received palliative care (based on the ICD-9 code)

from hospital i during the 2-year follow-up period, and ni is the number of patients discharged

by hospital i in 2009 or 2010. We can then threshold the level of palliative care received to get

a binary treatment PCi = I (ai > ω) for each hospital i.

The amount of palliative care received is plotted for the 408 hospitals in Figure 4.2. We see a

high amount of variation in the geographic location of the hospitals, the amount of palliative

care by geographic area, and the size of hospitals by geographic area. In general, there appears

to be more palliative care received in the northeast and midwest.
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Figure 4.2: Palliative Care Received

4.2.3 Assessment of Confounding using Binary Treatment

We define the treated population as the 203 hospitals with palliative care received ai greater

than ω = 0.1, and the control population as the remaining 205 hospitals with ai ≤ 0.1. We

chose 0.1 as a starting value for ω since it balances the number of treated and untreated hos-

pitals. To look for possible sources of confounding, we looked at the balance of potential

confounders in the treated and untreated groups before and after propensity score adjustment

(Rosenbaum & Rubin, 1983), where the propensity score model is fitted with all the available

hospital-level covariates. For each covariate z, we can compute the absolute standardized dif-
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ference (ASD) between the treated (trt) and control (ctr) populations as

d= |z̄trt − z̄ctr|√
(ntrt−1)s2trt+(nctr−1)s2ctr

ntrt+nctr−2

The ASDs before propensity score adjustment are sorted in descending order and represented

by the red dots in Figure 4.3, so that the most unbalanced covariates are at the top of the figure.

For propensity score adjustment, we considered matching, and stratification. The ASDs after

propensity score adjustment are plotted in Figure 4.3, where the green dots represent 1 to 1

matching based on log odds of the propensity score, and the blue dots represent stratifying

based on quartiles of the propensity score. In the latter case, the ASDs in each quartile are

calculated and averaged based on the size of the quartiles.
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Figure 4.3: Absolute Standardized Differences of Hospital Covariates before and after Propensity ScoreMatch-

ing
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4.2.4 Assessment of Confounding using Continuous Treatment

As an alternative, we can directly use the palliative care received ai as a continuous treatment.

Imai & Van Dyk (2004) showed that a uniquely parameterized propensity function p (ai|zi)

satisfies the properties of a balancing score and the strong ignorability of treatment assignment

assumption. We consider a propensity function

p (ai|zi) =
1√
2πσ2

exp
[
− 1

2σ2
(
ai − γTzi

)2]

For each covariate, calculating the ASD between two populations is akin to testing the signif-

icance of a binary treatment on that covariate. With a continuous treatment, we are not able

to use the ASD. Instead, to assess the balance of covariates, we proceed as in Imai & Van Dyk

(2004) by regressing each covariate on ai, using logistic regression for binary covariates and

linear regression for continuous ones. Figure 4.4 shows the standard normal quantile plot of

the 34 t-statistics (362 degrees of freedom). There is a lack of balance in the covariates due to

the extreme values of the t-statistics shown in the tails, indicating strong association between

the treatment and certain covariates. After adjusting for the propensity score âi = γ̂Tzi, we

see t-statistics closer to 0, indicating balance after adjustment.
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Figure 4.4: Quantile Plots of t-Statistics for the Coefficient of ai

4.3 Methods

We consider two methods that differ based on the modeling of the palliative care received

variable ai. First, for a binary treatment, we extend the random intercept Bayesian hierarchical

model proposed by Normand et al. (1997) to incorporate a propensity score adjustment at

the second level of the model, with a sensitivity analysis on the threshold for defining the

binary treatment. Second, we use the same Bayesian hierarchical model, but with a continuous

treatment and a propensity function, as defined by Imai & Van Dyk (2004). This amounts to

a comparison between four Bayesian hierarchical models differing based on adjustment for

confounding: one with regression adjustment, one with propensity score adjustment, and two

89



different propensity functions for adjustment.

4.3.1 Model Specification

The Bayesian hierarchical model makes a strong assumption that we can adjust for confound-

ing using a linear regression model, and we describe its most general form as follows. At

the first level of the hierarchical model, for hospital i and patient j, assume the outcome

yij ∼ Bern (pij) , with

logit (pij) = α i + βTxij, β ∈ RP, i = 1, . . . , I, j = 1, . . . , ni

The patient-level covariates xij provide the necessary case-mix adjustment to ensure that the

α i represent the hospital-specific random intercepts, after adjusting for patient-level case-mix

bias. In our data, the case-mix adjustment is performed using a univariate estimated severity

of sickness (details in Appendix C). At the second level of the hierarchical model, we specify

priors

α i ∼ skew-t

μ = θ0 + θag (ai) +
Q∑

q=1
θqzqi, v, k, γ

 , i = 1, . . . , I

β ∼ N
(
0, τ2βIP

)
, τβ = 103

The z1i, . . . zQi are hospital-level confounders associated with α i, and our coefficient of interest

is θa. Receipt of palliative care is ai, where g (ai) = I (ai > ω) for models using a binary treat-
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ment, and g (ai) = ai for models with continuous treatment. Instead of a normal distribution,

we specify a more flexible skew-t distribution (Fernández & Steel, 1998; Lee &Thompson, 2008)

for α i, where the normal distribution is a special case with k = ∞, γ = 1. This specification

allows for heavier tails, skewed random effects, and allows us to check the quality of model

fit for the random effects α i. The final level of the hierarchical model specifies priors

θ0, θa, θq ∼ N
(
0, τ2θ

)
, τβ = 103, q = 1, . . . ,Q

v ∼ IG (a, b) , a, b = 10−3

We include a propensity score adjustment at the second level of the hierarchical model, namely

α i ∼ skew-t

μ = θ0 + θag (ai) + h (PSi) +
Q∑

q=1
θqzqi, v, k, γ

 , i = 1, . . . , I

for some function h (·) of the propensity score PSi. Details of the derivation of the posterior

distributions are presented in Appendix A, along with information about the MCMC sampler

in Appendix B.

In order to have a meaningful analysis, we had to choose a threshold for the minimum

hospital size to include in our working data. A low threshold meant more hospitals in the

data, providing more information to estimate hospital-level effects, but it is not informative to

include hospitals with only a few patients (a large number of hospitals contained exactly one

patient). Conversely, a high threshold meant many patients in each hospital, but not many
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data points to estimate hospital-level effects.

4.3.2 Binary Treatment

We define the binary palliative care treatment as PCi = I (ai > ω) for hospital iwith palliative

care received ai. To begin, we set ω = 0.1 to achieve an approximately equal proportion of

treated and control hospitals, and a sensitivity analysis is conducted for various levels of ω. In

the case of a binary treatment, we use a classic propensity score model logit (PSi) = γTvi for

confounders vi and PSi = P (PCi = 1) = P (ai > ω) . At the second level of the hierarchical

model, we can adjust for propensity score by including it directly, or by including indicators

of propensity score strata.

4.3.3 Continuous Treatment

We first consider a normal propensity function defined by

ai|zi ∼ N
(
γTzi, σ2

a
)
,

where E (ai|zi) = γ̂Tzi can be estimated by linear regression. By the uniquely parameterized

propensity function assumption (Imai & Van Dyk, 2004), we can perform propensity score ad-

justment using γ̂Tzi, which characterizes the normal propensity function. One drawback to

this method is that ai is bounded between [0, 1] , and may not be suited for a normal distribu-

tion.
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We thus consider a quasi-binomial propensity function defined by

ai|zi ∼ Bern (π i) ,

where E (ai|zi) = π i,Var (ai|zi) = φπ i (1− π i) , and φ is the dispersion parameter to account

for the fact that ai is not binary. In this case, we can perform propensity score adjustment

through π̂ i estimated by logistic regression with ai as the independent variable.

4.3.4 Model Comparison

As our primary interest is at the hospital-level, we would like to examine the adequacy of

model fit for the hospital random effects α i. We consider posterior predictive checks (Gelman

et al., 1996) to compute a posterior predictive p-value for each hospital using the test statistic

yi+ =
∑ni

j=1 yij (Venturini et al., 2017). A small p-value for yi+ would correspond to hospitals

whose observed data is not predicted well by the model, along with possible misspecification

of the hospital random effects distribution for α i.

The model comparison portion contains two steps. In the first step, we only consider a

normal specification for the prior of α i, which is equivalent to fixing k = ∞, γ = 1 in the

skew-t prior. Posterior predictive checks are used to select a model out of the four proposed

in Section 4.3, based on having the fewest small p-values among the hospitals. Secondly, the

best-performing model from the first step is re-run 9 times with k = {10, 50,∞} and γ =

{0.8, 1, 1.25}, and posterior predictive checks are performed on those set of models to select
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values for k and γ .

4.4 Application to Medicare Data

Thehospital random intercepts α i are interpreted as the log odds of receiving the EOL outcome

for a patient at hospital i with average severity, which can be viewed as a standardized risk of

the EOL outcome. Analyses are provided for all EOL outcomes presented in Table 4.2. In all

analyses, the parameter of interest is θa, indicating the association (after adjusting for hospital-

level confounders) between palliative care received and α i.

4.4.1 Using a Normal Prior for α i

Weapplied four Bayesian hierarchical models with a normal prior on α i to theMedicare dataset

of 20,400 patients nested in 408 hospitals. The EOL outcome in this case is chemotherapy or

radiotherapy within 30 days of death. The results are summarized in Table 4.3.
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Table 4.3: Results with Normal Prior for α i

Model Model Specification θ̂a 95% Credible Interval

Regression ω = 0.10 -0.052 (-0.126, 0.016)

Binary Treatment

ω = 0.05 -0.035 (-0.121, 0.043)

ω = 0.10 -0.046 (-0.126, 0.026)

ω = 0.15 -0.064 (-0.129, -0.003)

ω = 0.20 -0.048 (-0.118, 0.016)

ω = 0.25 -0.027 (-0.141, 0.081)

Continuous Treatment
Normal -0.054 (-0.130, 0.005)

Quasi-Binomial -0.048 (-0.117, 0.011)

The parameter of interest is the log odds θa, indicating the association between palliative

care received and α i. Across all models, the posterior mean of θa ranged from -0.027 to -0.064

odds ratios of 0.97 and 0.94, respectively. For most models, the 95% credible interval for θa

contains 0. The sensitivity analysis on ω showed minor differences when ω = 0.10, 0.15, 0.20,

and more significant differences when ω = 0.05, 0.25, mostly due to the imbalance of treated

and controls for those extreme thresholds; ω = 0.05 corresponds to 73% of hospitals receiving

palliative care, while ω = 0.25 corresponds to 14% receiving palliative care. Based on the

normal prior for α i, there does not seem to be a strong association between palliative care

received and EOL chemotherapy/radiotherapy.
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4.4.2 Model Comparison Stage 1

Posterior predictive checks were performed on the test statistic yi+ =
∑ni

j=1 yij. The model

with binary treatment, propensity score adjustment, and ω = 0.1 generally had the fewest

low p-values, indicating the fewest number of hospitals with potentially misspecified hospital-

level random effects distributions for α i. Figure 4.5 shows scatterplots between the p-values

for this base model and all other candidate models.

Figure 4.5: Comparison of Posterior Predictive p-values

The scatterplots only consider low posterior predictive p-values below 0.1, as seen in the
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axes. Points below the diagonal line in the scatterplots indicate hospitals that had an unde-

sirably lower posterior predictive p-value in the candidate model being compared against our

base model. We proceed with this base model by varying the parameters k and γ to specify a

more flexible skew-t prior for α i.

4.4.3 Model Selection Stage 2: Using a Skew-t Prior for α i

A similar model comparison was made between our base model (binary treatment, propensity

score adjustment, and ω = 0.1) and 9 other models specified by k = {10, 50,∞} and γ =

{0.8, 1, 1.25}. The values for γ correspond to left skew, no skew, and right skew, respectively.

Once again, posterior predictive checks were performed on the test statistic yi+ =
∑ni

j=1 yij.

Posterior predictive checks strongly favor themodel with k = 10, γ = 1.25, indicating a heavy-

tailed right-skewprior for α i, which is reasonably consistentwith the exploratory data analysis.

This indicates that there are a number of hospitals with high log odds of chemotherapy or

radiotherapy within 30 days of death, after adjusting for patient-level case-mix bias. Figure

4.6 shows scatterplots between the p-values for various parameters of k and γ .
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Figure 4.6: Comparison of Posterior Predictive p-values

Based on these posterior predictive checks, we proceed with the final model using a right-

skew-t prior on α i with k = 10, γ = 1.25. For additional comparison, a regression-only ver-

sion (without propensity score adjustment) of the final model is included, as well as another

regression-only version of the final model using categorical variables for palliative care based

on its quartiles.
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4.4.4 Final Model

Credible intervals lying entirely above or below zero are highlighted in green, the credible

interval for θa is highlighted in blue, and the remaining intervals are highlighted in red. Results

from our final model are shown in the middle column of Figure 4.7, where the outcome of

interest is chemotherapy or radiotherapy within 30 days of death. Also shown in Figure 4.7 are

results from the final model applied the other EOL outcome of interest: hospital readmission

within 30 days of discharge. Figure 4.8 presents results from the two regression-only models

(without propensity score adjustment). The first column presents results from the regression-

only final model with a binary indicator for palliative care, while the second column presents

results from the regression-only final model with an ordinal palliative care variable based on

quartiles.
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Figure 4.7: 95%Credible Intervals for Hospital-Level Covariates, Models with PS

Figure 4.8: 95%Credible Intervals for Hospital-Level Covariates, Models without PS
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A more detailed summary of the posterior distribution of θa along with all green intervals

is presented in Table 4.4.

Table 4.4: Summary of Hospital-Level Covariates of Interest

Covariate Posterior Mean θa Description

Regression Model

Palliative Care Received -0.008 (-0.110, 0.116) having receipt of palliative care over 0.1

Chemo/Radio EOL

Palliative Care Q2 0.026 (-0.089, 0.176) 2nd quartile of palliative care

Ordinal Model Palliative Care Q3 -0.038 (-0.162, 0.129) 3rd quartile of palliative care

Chemo/Radio EOL Palliative Care Q4 -0.027 (-0.185, 0.124) 4th quartile of palliative care

JCAHO Hospital -0.199 (-0.391, -0.031) Joint Commission accredited

Final Model Palliative Care Received -0.022 (-0.142, 0.085) having receipt of palliative care over 0.1

Chemo/Radio EOL Poverty Rate -1.198 (-2.247, -0.270) rate of poverty in hospital’s zipcode

Final Model Palliative Care Received -0.135 (-0.256, -0.022) having receipt of palliative care over 0.1

Readmission EOL JCAHO Hospital -0.282 (-0.520, -0.049) Joint Commission accredited

Once again, the parameter of interest is the log odds θa, indicating the association between

palliative care received and α i. The regressionmodels suggest no association between hospital-

level palliative care received and EOL chemotherapy/radiotherapy. However, in the ordinal

model, there is a very slight negative association between Joint Commission accreditation

status and EOL chemotherapy/radiotherapy. Among the final models, hospital-level palliative
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care does not appear to be associated with EOL chemotherapy/radiotherapy, but does seem

to have a slight negative association with EOL hospital readmissions. Two confounders that

stand out in these final models include the poverty rate and the JCAHO status, affecting EOL

chemotherapy/radiotherapy and EOL hospital readmissions, respectively.

4.5 Discussion

We extended the work done by Normand et al. (1997) by introducing a causal framework at

the second (hospital) level of the Bayesian hierarchical model. This allowed us to adjust for

patient-level case-mix bias at the first level of the model, and to adjust for hospital-level con-

founding at the second level of the model. We considered candidate models in two steps. In

the first step, for a normal prior on α i, we looked at a regression only model, a binary treat-

ment model with propensity score adjustment, and two continuous treatment models using

propensity functions. Posterior predictive checks revealed the binary treatment model to have

the best performance. In the second step, for the binary treatment model, we looked at left

and right skew-t distributions as the prior on α i, and found an ideal right-skewed heavy-tailed

final model. Regression-only models based on this final model were provided for comparison

purposes.

Estimating parameters for the final model revealed no significant association between re-

ceipt of palliative care and EOL chemotherapy/radiotherapy, and a small negative association

between receipt of palliative care and hospital readmissions. Additionally, it revealed that the
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poverty rate in a particular hospital’s zipcode has a reasonably negative association with EOL

chemotherapy/radiotherapy, which is consistent with various articles on the importance of

considering poverty in conjunction with palliative care (Kumar, 2007; Kikule, 2003; Hughes,

2005). For hospital readmissions, the JCAHO status of a hospital had a small negative asso-

ciation. Including these confounders as interaction effects (with palliative care), or stratified

analyses using these confounders can provide further insight.

The aggressiveness of EOL treatments alone is just one aspect of quality of life. One area

not considered in this study is the impact of palliative care on the overall quality of life, which

is related to the aggressiveness of EOL treatments, but contains other aspects such as patient

surveys and mood outcomes. While it does not appear that implementation of palliative care

seems to be significantly helpful in reducing the aggressiveness of EOL treatments, palliative

care could have a significant impact on the overall quality of life (Temel et al., 2010).

Hospital-level associations were considered because relying on patient-level billing codes is

not ideal, as doctors who provider services that could be defined as palliative care may classify

those services under a more familiar billing code. Additionally, different doctors have varying

opinions on how to classify services. These are the primary reasons for not performing an anal-

ysis at the patient level, since control groups could include patients who received palliative

care but had it billed under a more common code. One caveat is that this definition does not

account for patients having access to palliative care but not actually receiving it. To address

these issues, we aggregate the patient-level palliative care into a hospital-level treatment. As-

suming that the billing inconsistencies are reasonably stable across hospitals, a hospital-level
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palliative care treatment is more robust to patient-level billing differences, and is more in line

with our scientific question of interest.

Of additional consideration is the correlation between the multiple EOL outcomes (hospi-

tal chemotherapy, radiotherapy, hospital readmission, home death, hospice enrollment, etc.),

which is not considered when looking at these outcomes separately. Jointly modeling these

outcomes could yield more precise estimates, and could identify hospital-level covariates that

affect all EOL outcomes. This work could naturally be extended to consider such multivariate

outcomes.
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4.6 Appendix A: MCMC Derivations

The likelihood function is

L
(
y|α, β, θ,σ2) =

I∏
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ni∏
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is the t distribution with location parameter μ and scale parameter v. Then the conditional

posterior for α i is

p
(
α i|β, θ, σ2, y

)
∝
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As a special case, when α i is normally distributed (k = ∞, γ = 1), we get
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The conditional posterior for β is

p (β|α, y) ∝
I∏

i=1

ni∏
j=1

exp [(α i + β⊺xij) yij]
1+ exp (α i + β⊺xij)

exp
(
− 1

2τ2β
β⊺β

)

∝
I∏

i=1

ni∏
j=1

exp (β⊺xijyij)
1+ exp (α i + β⊺xij)

exp
(
− 1

2τ2β
β⊺β

)

log [p (β|α, y)] =

I∑
i=1

ni∑
j=1

{β⊺xijyij − log [1+ exp (α i + β⊺xij)]} −
1

2τ2β
β⊺β

As a special case, when α i is normally distributed (k = ∞, γ = 1), we get

log [p (β|α, y)] =
I∑

i=1

ni∑
j=1

{β⊺xijyij − log [1+ exp (α i + β⊺xij)]} −
1

2τ2β
β⊺β

The conditional posterior for θq is

p
(
θq|α, σ2) ∝

I∏
i=1

2
γ + 1

γ

{
t
(
α i

γ

∣∣∣∣ μ = θ⊺zi, v, k
)
I[θ⊺zi,∞) (α i)

+t (γα i| μ = θ⊺zi, v, k) I(−∞,θ⊺zi) (α i)
}
exp

(
− 1

2τ2θ
θ2q

)

∝
I∏

i=1

 1√
v

[
1+ 1

kv

(
α i

γ
− θ⊺zi

)2
]− (k+1)

2

I[θ⊺zi,∞) (α i)

+
1√
v

[
1+ 1

kv
(γα i − θ⊺zi)2

]− (k+1)
2

I(−∞,θ⊺zi) (α i)

 exp
(
− 1

2τ2θ
θ2q

)

log
[
p
(
θ2q|α, σ2

)]
=

I∑
i=1

log

 1
√
v

[
1+ 1

kv

(
α i

γ
− θ⊺zi

)2
]− (k+1)

2

I[θ⊺zi,∞) (α i)

+
1√
v

[
1+ 1

kv
(γα i − θ⊺zi)2

]− (k+1)
2

I(−∞,θ⊺zi) (α i)

− 1
2τ2θ

θ2q

107



As a special case, when α i is normally distributed (k = ∞, γ = 1), we get conjugacy with
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4.7 Appendix B: MCMC Sampler

For all conditional posterior distributions, a random walk Metropolis algorithm was applied

with a normal proposal distribution. Univariate parameters were tuned to have acceptance

rates just under 0.5, while multivariate parameters were tuned to have acceptance rates just

under 0.3 (Rosenthal et al., 2011). Implementation of the MCMC sampler was done in R.

4.8 Appendix C: Case-Mix Adjustment

It was important to minimize the number of parameters estimated in our model, and an im-

portant part was limiting the number of case-mix adjustment variables. As our data contained

deceased patients, we were able to estimate the severity of their condition based on regressing

survival time against age, comorbidity, gender, and race.
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