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ABSTRACT

Biological and artificial light-harvesting systems as well as ion-trap quantum computing all have physics

which are highly dependent on electron-nuclear interactions, so it is important to be precise in how we treat

these interactions. People very commonly, however, invoke the approximation that molecules do not absorb

or emit light differently, no matter what the state is of their nuclear geometry is; put more technically, that

the molecular dipoles do not change with respect to nuclear coordinate. The first person to make this

approximation was E.U. Condon (in 1928), and so it is named after him. Now, however, that state-of-the-art

spectroscopy has short-enough pulses to isolate nuclear motion, this approximation is being shown to have

limitations in the context of modern investigations of the interactions between electronic and nuclear

degrees of freedom.

We start with an example of how a variation in the transition dipole moment can completely change the

interpretation of an entire class of experiment by confusing one physical effect for another when

investigating the mechanism of photosynthetic energy transfer. Recognizing that having a non-Condon

transition dipole moment can be a problem, we investigate a method for estimating the functional form of

the transition dipole as a function of the nuclear coordinate through a linear electronic absorption

spectroscopy experiment. Then, we look at how a variation in the transition dipole moment actually causes a

molecule to heat during the operation of an ultrafast laser spectroscopy and how that heating would manifest

as an isotropic infrared signal. Then, finally, we look at how relaxing the Condon approximation both

heating up and causes loss of fidelity in a trapped-ion Molmer-Sorenson gate: a ubiquitous architecture in

the field of trapped ion quantum computing.

iii



Contents

1 INTRODUCTION 1
1.1 Electric Field Interactions with Quantum Systems . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 What are we trying to learn? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.2 What is physically going on? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.3 The Dipole Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.1.4 Putting it all together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

1.2 Time-Dependent Quantum Mechanics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.3 Perturbation Treatment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

1.4 Electric Field Emissions from Quantum Systems . . . . . . . . . . . . . . . . . . . . . . . 12

1.4.1 What is Actually Being Measured . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.4.2 Adding together multiples orders of perturbation . . . . . . . . . . . . . . . . . . 14

1.5 Phase-Matching Conditions: or, Whither my Signal’s direction? . . . . . . . . . . . . . . . 15

1.6 Absorption Spectra . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

1.6.1 Bringing it all together . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.6.2 Real Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

1.7 Pump Probe Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.8 Higher Order Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

1.9 Representations of the Nuclear Coordinate . . . . . . . . . . . . . . . . . . . . . . . . . . 26

1.9.1 What Happens when you apply a ladder operator to the wrong eigenstate? . . . . . 30

1.10 Nuclear Structure of the Electronic Transition Dipole Moment and the Condon Approximation 31

1.10.1 Different Potential Energy Wells . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

I Non-Condon Effects in Dynamic Spectroscopy 36

2 PROBLEMS WITH DETECTION OF ELECTRONIC COHERENCES IN SYSTEMS WITH COORDINATE-

VARYING TRANSITION DIPOLE 38
2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

2.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

2.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

2.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

2.5 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3 DETECTING NON-CONDON TRANSITION DIPOLE MOMENTS WITH ABSORPTION SPEC-

TROSCOPY 57
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 System Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.3 Effects on Linear Absorption Spectroscopy . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Corrections to Tetracene . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.6 Acknowledgments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

3.7 Supplementary Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.7.1 Absorption Harmonic Oscillator Model . . . . . . . . . . . . . . . . . . . . . . . 75

iv



4 NON-CONDON HEATING DURING LASER SPECTROSCOPY 82
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4.2 System Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3 Mode Heating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3.1 Resonance Raman . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

4.3.2 Simulations of Non Condon Heating . . . . . . . . . . . . . . . . . . . . . . . . . 89

4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5 DECOHERENCE AND HEATING IN MOLMER SORENSON GATES BECAUSE OF NON-

CONDON TRANSITION DIPOLES 95
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

5.2 Typical values for c(i) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4 Supplemental Material . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4.1 Rabi Frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.4.2 Proper Unitary Dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

II Other Electronic Spectroscopy Tools 109

6 GETTING DOWN TO THE HEART OF MATTER 111

7 OTHER METHODS OF ELECTRONIC SPECTROSCOPY 115
7.1 Transient Grating as a Witness for Electronic Coherence . . . . . . . . . . . . . . . . . . . 115

7.1.1 Pump Probe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

7.1.2 Transient Grating . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116

7.1.3 Pump Probe Equivalence with Transient Grating . . . . . . . . . . . . . . . . . . 119

7.1.4 Pump Probe Facsimiles . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

7.1.5 Experimental Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

7.1.6 Delta-Function Pulse Limit for a two level system with one vibrational coordinate . 125

7.1.7 Transient Grating for a Coherent Monomer . . . . . . . . . . . . . . . . . . . . . 129

7.1.8 TG of a Coherent Dimer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 134

7.2 Quantum Process Tomography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

7.2.1 Quick Introduction to Quantum Process Tomography . . . . . . . . . . . . . . . . 145

7.2.2 Experimental Determination of c . . . . . . . . . . . . . . . . . . . . . . . . . . 146

7.2.3 The Goal . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.2.4 Initial Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7.2.5 Simplifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152

7.2.6 Initial Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

7.2.7 More Correct Forms for Laser Amplitude . . . . . . . . . . . . . . . . . . . . . . 170

7.2.8 Ancilla . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171

7.2.9 Experimental Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

7.2.10 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177

7.3 Investigating Conical Intersections Using Pulse-width Dependent Dynamics . . . . . . . . 177

7.3.1 Adiabatic Representation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

7.3.2 Detecting A Conical Intersection . . . . . . . . . . . . . . . . . . . . . . . . . . . 182

v



8 COMPUTATIONAL METHODS USED 184
8.1 Working with Natural Units: or, Why Mess with SI? . . . . . . . . . . . . . . . . . . . . . 184

8.1.1 Setting Constants equal to 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185

8.1.2 Setting units equal to 1 or: Finding the “Natural” units . . . . . . . . . . . . . . . 186

8.1.3 Setting other things equal to 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187

8.1.4 Conclusion on Units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.2 Discrete Fourier Transform . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189

8.3 Choosing the Parameters of Space . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

8.3.1 Momentum-Space Considerations . . . . . . . . . . . . . . . . . . . . . . . . . . 191

8.3.2 One-Interaction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

8.3.3 Two-Interactions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

8.3.4 Summarize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193

8.4 ApplyingU(t) Numerically: the Split Operator Method . . . . . . . . . . . . . . . . . . . 194

8.5 Trapezoidal Integration for Perturbation Theory Calculations with Smaller Time Discretization196

8.6 Calculation Method For Heating Calculations . . . . . . . . . . . . . . . . . . . . . . . . . 198

8.7 Notorious RWA: the Rotating Wave Approximation . . . . . . . . . . . . . . . . . . . . . 202

III Conclusion 204

9 CONCLUSION 206

vi



For Mom and Dad,
who always made me answer my own questions, instead of just telling me the answer

...this is what you get...

vi



Acknowledgments

It seems standard to have a sappy acknowledgments section in every thesis so this will be no exception.

Many tears went into writing this section so please read it.

My grad school story starts after orientation when a kind first-year graduate student who had been a

Harvard undergrad offers me a tour of campus beyond the department. Jacob Sanders’ initial kindness

turned into a great friendship that got us through many boring seminars, teaching together and an exciting

trip 20 hour to Paris after a 3 day layover at a conference on Quantum Effects in Biology.

My co-hort had many other special people whose constant friendship helped me get through grad school

and the particularly tough first year. Especially Ryan Babbush, Amy Gilson, Katherine Phillips and Denise

Alfonso.

The classes that came after mine weren’t so bad either, actually, and I’m particularly grateful for the stoic

realism of Thomas Markovich and the free hugs of Jennifer Wei; they were both great friends in Grad

School.

Then of course, there are the awesome older grad students to whom I owe a great deal. Jarrod McClean is

by far the most intellectually impressive person I have ever met and I had some incredibly eye-opening

conversations with him as I was starting out in the research group. Roberto Olivares was also so kind as to

take me on during my rotation in the research group even though I’m reasonably confident I actively slowed

him down. Joel Yuen, who started basically all of the work that my PhD was on, also helped me a great deal.

Jon Welch was also a constant friend and colleague who I owe a lot to.

I also owe a tremendous debt to many of the fantastic postdocs that have been in the group while I’ve

been here. Starting with the most important: Jacob Krich. My PhD would probably not happened if he

hadn’t offered to mentor me as if he was still a postdoc from his new faculty job in Ottawa, as I was lost and

adrift as a third year student. I will forever be grateful to him.

I also want to mention Johannes Hachman, John Parkhill, David Tempel, Man Hong Yung, Xavier

Andrade, Joonsuk Huh, Dmitrij Rappoport, and Sule Atahan-Evrenk who all taught me little bits here and

there and who I all owe a debt of gratitude for making grad school a much more interesting experience.

***

Outside of the lab I have many people to thank! Starting close to the lab, I have to thank the former

department administrator Allen Aloise for helping me through some difficult and more bureaucratic parts of

vii



grad school.

Stepping a bit further away from lab, I always greatly enjoyed my teaching obligations, and Gregg Tucci

was always an incredible resource for teaching and navigating the department. But I also have to particularly

thank Pia Sorenson for hiring me to teach the most awesome course possibly in Harvard’s History: “Science

and the Physical Universe 27: Science and Cooking” not once but twice. Still sorry I couldn’t have taught it

even more times, but finishing this document took some precedence, alas.

I also must admit to spending a lot of time outside of lab engaged in the most fulfilling music and

theatrical performance opportunities I have ever had–and likely will ever have.

Each show with the Harvard-Radcliffe Gilbert and Sullivan players was an absolute joy and gave me

reasons to laugh and to sing and the people were amazing to work with; there are far too many to mention

them all.

Then, 4 years in the Harvard University Choir gave me the constant feeling that I was a terrible musician

but I loved every minute of it; I particularly want to thank Laszlo Seress for being such a good friend and

literally dragging me to auditions, and also Edward Elwyn Jones (Gund University Choirmaster and

Organist in the Memorial Church at Harvard University: a Space of Grace®in Harvard Yard) who was an

inspiriationally patient leader, wonderful parent and outstanding musician.

Working as a resident tutor in Pforzheimer House has also been an immense joy and honor. That would

never have happened without Emily Stokes-Rees, Anne Harrington and John Durant. And it would have

been a lot more boring without Gabe Katsch and David Francis! I have learned from all of my students in

the house, and there are once again too many to mention.

Then there was the UC Berkeley Alumni Club of New England which I got myself involved with when I

went with my good friend Michael Chang, to a football watching party near Fenway and eventually ended

up leading it after my other good friend Chad Smith left for California. I too left this last year, and want to

thank Geoffrey Liou for helping me not worry; I know the group is in great hands!

The more science I learned, the more I realized the whole Universe is mind-boggingly complex,

wonderful, and mysterious. Contrary to what one might expect, I think I came out of grad school more

Catholic than I started, and I want to thank Fr. George Salzmann (who is also a scientist with a PhD in

biochemistry) for being such a great friend and intellectual conversationalist these 4 years. I never thought a

friendly but unexpected lunch invitation after mass one Sunday would turn into such a long friendship.

***

Coming back to science, I have to thank Keith Nelson and Dudley Herschebach for being on my Graduate

viii



Advising Committee. I chose them both, as much for their reputation as scientists, as for their reputations as

decent human beings. That being said, the handful of chances I got to present my research and ideas to

them, I was constantly blown away by their scientific insight and probing questions. One of my biggest

regrets in grad school is not meeting with these amazing scientists more often. I also owe a tremendous debt

of gratitude to Rick Heller for stepping in to be on my dissertation defense committee.

Then there’s the people who got me in to science in the first place. OF many professors at my undergrad

UC Berkeley, there’s the late, great David Chandler who introduced me to the beauty of statistical

mechanics; then Marcin Majda who was a great general advisor and gave me countless pieces of invaluable

advice over the 4 years there. Then, last but not least, Rich Saykally whose lab I worked in for 3 years and

who allowed me to learn so many cool things I never woudl have otherwise. His vouching for me gave me

an embarassingly good choice of where to study for graduate school. I will always remember his kindness

and especially his sense for drama; he was who taught me scientists could actually be funny and theatrical

instead of the stereotypical. I also have to mention Rich’s grad students Paul Peng, Neil Switz, Rob Onorato

and Dale Otten who all certainly prolonged their PhDs dealing with undergrad-Joey but whose help and

encouragement was invaluable to me as well.

***

My family has been incredibly important to me throughout this whole experience. My Dad (Greg

Goodknight) in particular has always been there to talk with me when I needed and been very patient about

not seeing me as much as he did when I was in college in California. I know my dear mother (Teri Cahill)

would be just as helpful had we not lost her over 15 years ago to cancer. I wish more than anything she was

here to read this acknowledgement in person, but I have faith she may now have other means of reading it

now. My amazing step-mother (Rosie Stephenson-Goodknight) has been there for me and so supportive. As

have her two sons, my amazing stepbrothers Sean and John who were always both so excited to hear me

describe my research at Christmas and Thanksgiving.

***

Then there is the person who has made the last year+ of grad school the best year of my life despite being

stressed out of my mind. Tess Brooks: the love of my life has made my life full in a way I never knew

before. If you’re reading this at some point in the future because some dude named “Joseph Knightbrook”

claimed he wrote it; he’s not lying. He just got married to the most amazing woman in the world and

changed his name from what is on the front. I can’t wait to spend the rest of my life with her.

ix



***

Then there’s the man who’s second in line behind me for fault on this PhD: my advisor Alán

Aspuru-Guzik. Many graduate students have to go through graduate school constantly wondering if their

bosses actually care about them as a person as opposed to caring about them as a citation-producing

machine, but I never had that problem. Alán cultivates the most friendly and healthy atmosphere in his lab

and never says no to a crazy new idea. I thank my advisor Alán from the bottom of my heart for taking a

chance on a kid from Berkeley with no theory experience at all and for helping me through a wild ride.

x



Further Acknowledgements by Chapter

CHAPTER 2 contains content that has been previously published in the following article:

– Joseph Goodknight, Peter Rose, Jacob Krich, Alán Aspuru-Guzik “Coordinate-varying

transition dipole effects on the witness for electronic coherences.” (To Be Submitted).

CHAPTER 3 contains content that has been previously published in the following article:

– Joseph Goodknight, Jacob Krich, Alán Aspuru-Guzik “ Detecting Non-Condon Transition

Dipole Moments with Absorption Spectroscopy.” (To Be Submitted).

CHAPTER 6 contains content that has been previously published in the following article:

– Joseph Goodknight, Alán Aspuru-Guzik “Taking six-dimensional spectra in finite time.”

Science Science. 356 (2017): 1333.

ix

http://aspuru.chem.harvard.edu/publications/
http://aspuru.chem.harvard.edu/publications/
http://aspuru.chem.harvard.edu/publications/
http://aspuru.chem.harvard.edu/publications/
http://science.sciencemag.org/content/356/6345/1333


1
Introduction

As a young graduate student, I was incredibly disappointed by the resources available to me to learn the

physics about what is going on in electronic spectroscopy. Thus, I am going to use the opportunity here to

attempt to write a useful and pedagogical introduction to the physics behind Electronic Spectroscopy in the

hopes that future students can hit the ground running faster than I was able to.

1.1 ELECTRIC FIELD INTERACTIONS WITH QUANTUM SYSTEMS

Let’s imagine that we have in our possession a two-level Quantum System with a Hamiltonian like so:

H =

0

@ 0 0

0 E
1

1

A
(1.1.1)

We don’t have to assume a two level system and indeed, most of the time we won’t know the exact nature of

the system before we begin the experiment. For the purposes of explaining what’s going on, however, the

two level system more than suffices and is much easier to type (for me) and write (for you) so we will stick

with it for now.

Anyway, we have decided that we want to see what happens when we hit this guy with light. Why? What

are we going to learn?

1.1.1 WHAT ARE WE TRYING TO LEARN?

When we hit the system with light, we can learn about the structure of the system and the dynamics of how

that structure evolves.

This happens because when the system is excited with light, it will, itself, emit light. The light that comes

forth from our system will encode very basic information about the system and out theory here can predict

what it will say.

1



1.1. Electric Field Interactions with Quantum Systems

1.1.2 WHAT IS PHYSICALLY GOING ON?

We have in our possession a femtosecond laser which can output electric fields of the following Gaussian

form:

~E(t) =~e
Ap
2ps2

e�(t�T )2/2s2

⇣
ei~k·~r�iwct+if + e�i~k·~r+iwct�if

⌘
(1.1.2)

Where the parameters are as follows:

~e the polarization and of the beam

s spread parameter of the beam in time

wc the frequency of the carrier wave

~k the wave-vector of the beam

T the center-time of the pulse

f the phase of the pulse

What’s that you say? The magnetic field? We’re going to assume it’s negligible since |B| µ |E|/c and c is

generally assumable to be a big number.

You may be rightfully asking at this point: how is this electric field going to interact with our quantum

system? For that answer, we must appeal to electrodynamics and, specifically, the electrodynamic quantum

mechanical Hamiltonian (which we will refrain from deriving or otherwise generating).

H = Â
i

���~pi� qi
c
~A(~ri, t)

���
2

2mi
+qif(~ri, t) (1.1.3)

Where the sum is over all particles in the system. Theoretically, this is all we need to begin simulations. Just

define a vector potential for the input field and then a vector and scalar potential for the system and you’re

done.

Unfortunately, that’s not going to work. While in theory a simulation like that is possible, the scaling

would be awful and even with a modern supercomputer, there’s not way we could treat anything more than a

small system. Furthermore, we were talking about our system in terms of energy states, not particles, so we

need to find a way to get this Hamiltonian to look like it will play well with energy states. To do this, let’s

expand out the Hamiltonian.

H = Â
i


~p2i
2mi

+qif(~ri, t)
�
� qi

2mc

⇣
~pi ·~A(~ri, t)+~A(~ri, t) ·~pi

⌘
+

q2i
2mic2

~A(~ri, t)2 (1.1.4)

2



Chapter 1. Introduction

Let’s now assume that we’re in the Coulomb gauge and the following are true:

— ·~A= 0 (1.1.5)

~E =�∂~A
∂ t

(1.1.6)

~B= —⇥~A (1.1.7)

Since the momentum operator is the gradient, that gives us our first simplification:

H = Â
i


~p2i
2mi

+qif(~ri, t)
�
� qi

2mc
~A(~ri, t) ·~pi+ q2i

2mic2
~A(~ri, t)2 (1.1.8)

Now the trick we want here is to make yet another gauge transformation like so:

f = ~A ·~r (1.1.9)

(1.1.10)

Which will affect

~A like so

~A! ~A+— f

= ~A+— ·~A

—
⇣
~A ·~r

⌘
= ~A⇥ (—⇥~r)+~r⇥ (—⇥~A)+(~A ·—)~r+(~r ·—)~A

=~r⇥~B+~A+(~r ·—)~A

~A! 2

~A+~r⇥~B+(~r ·—)~A

and f like so:

f ! f � ∂
∂ t

f

! f � ∂
∂ t

~A ·~r

! f +~E ·~r
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1.1. Electric Field Interactions with Quantum Systems

Alright, now the electric field appears. Going back to the Hamiltonian:

H = Â
i


~p2i
2mi

+qif(~ri, t)
�

+qi~E(t,~ri) ·~ri
� qi

2mc

⇣
2

~A(~ri, t)+~ri⇥~B(~ri, t)+~ri ·—i

⌘
·~pi

+
q2i

2mic2
⇣
2

~A(~ri, t)+~ri⇥~B(~ri, t)+~ri ·—i

⌘
2

This looks workable, does it not? OK, so given that in molecular systems, the Hamiltonian is just a

collection of Coulomb terms with no time dependence, we will say that the first line of the above equation is

the system Hamiltonian and all the time dependence of f is just manifest in the Electric field of the

incoming light.

We now make the famous Electric Dipole Approximation which basically says that since c is large, the

only term that matters in the above expression is the Electric field. Why do we call is the electric dipole

approximation? Because it involves the dipole operator:

H 0(t) = Â
i
qi~E(t,~ri) ·~ri

Which, if we assume the electric field is constant across all the particles in the system (another big part of

the electric dipole approximation), we can calculate matrix elements,

H 0
ab(t) = ~E(t,~r) · ha|Â

i
qi~ri |bi

H 0
ab(t) = ~E(t,~r) ·~µab (1.1.11)

We now have a way of describing the interaction of light with an electronic system.
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Chapter 1. Introduction

1.1.3 THE DIPOLE MATRIX

The dipole matrix we have just derived is a very useful thing. The first claim I want to make is that it is a

completely off-diagonal matrix.

1.1.3.1 OFF-DIAGONAL

To explain this, let’s go to one dimension and assume some position space form for the energy

eigenfunctions of the system:

µaa =
Z •

�•
a†(x)xa(x)dx (1.1.12)

If the claim is that this is equal to zero, I can prove this simply by proving that

a†(�x)� xa(�x) =�a†(x)xa(x) which is equivalent to determining a†(�x)a(�x) = a†(x)a(x) because of

our friend the x operator. This itself is equivalent to determining that the function for a and its hermitian

conjugate have the same parity (± behavior under coordinate mirroring).

a†(�x) =±a†(x) (1.1.13)

a(�x) =±a(x) (1.1.14)

To do this, let’s assume that they have the opposite behavior:

a†(�x) =�a†(x) (1.1.15)

a(�x) = a(x) (1.1.16)

And try to normalize the wavefunction

1=
Z •

�•
a†(x)a(x)dx (1.1.17)

=
Z

0

�•
a†(x)a(x)dx+

Z •

0

a†(x)a(x)dx (1.1.18)

=�
Z

0

•
a†(�x)a(�x)dx+

Z •

0

a†(x)a(x)dx (1.1.19)

=�
Z •

0

a†(x)a(x)dx+
Z •

0

a†(x)a(x)dx= 0 (1.1.20)
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1.1. Electric Field Interactions with Quantum Systems

Clearly then, our original assumption is false and they have the same parity behavior and the dipole matrix is

off-diagonal

1.1.3.2 PHYSICAL MEANING OF THE DIPOLE MATRIX

But what does the Dipole Matrix represent? To understand this, let’s look at the matrix representation:

~µ =

0

@ 0

~µ
01

~µ
10

0

1

A
(1.1.21)

Let’s imagine a wavefunction in the ground state:

|Yi=
0

@ 1

0

1

A
(1.1.22)

What happens when we act the dipole operator on the wavefunction?

~µ |Yi=
0

@ 0

~µ
01

~µ
10

0

1

A

0

@ 1

0

1

A
(1.1.23)

=

0

@ 0

~µ
10

1

A
(1.1.24)

It induces a transition from the ground state to the excited state, which corresponds to the Absorption of a

photon. It is for this reason that it is sometimes called the “Transition Dipole Operator”. Just for fun, let’s

act it on the excited state as well.

|Yi=
0

@ 0

1

1

A
(1.1.25)

~µ |Yi=
0

@ 0

~µ
01

~µ
10

0

1

A

0

@ 0

1

1

A
(1.1.26)

=

0

@ ~µ
01

0

1

A
(1.1.27)

It just brought it down to the excited state. This corresponds to the “Stimulated Emission” of a photon.

Given that this operator induces transition, the following notation makes it easier to understand what’s going
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Chapter 1. Introduction

on:

~µ =

0

@ 0

~µ
0 1

~µ
1 0

0

1

A
(1.1.28)

1.1.3.3 TRANSITION DIPOLE MATRIX NOTATION

The transition Dipole Matrix has a dual role as an operator and a vector in space. Which makes the notation

of

~µ seem incomplete. Therefore, I propose the following notation instead:

~µµ=

0

@ 0

~µ
0 1

~µ
1 0

0

1

A
(1.1.29)

Pronounced “Double-mu” for hopefully obvious reasons, each ’mu’ represents a part of the nature of the

object: either operator or vector. I hope you will like it.

Furthermore, there may also come a day when we need a non-matrix representation of the dipole operator

for convenience’s sake.

~µµ= Â
i6= j

~µ j i | jihi| (1.1.30)

1.1.4 PUTTING IT ALL TOGETHER

After some algebra we can now go back to the physics of the situation. Recall that we’re dealing with a

two-level system like this:

H =

0

@ 0 0

0 E
1

1

A
(1.1.31)

And now we have a Hamiltonian which describes how this system interacts with radiation:

H 0(t) = ~E(r, t) ·~µµ (1.1.32)

~E(~r, t) =~e
Ap
2ps2

e�(t�T )2/2s2

⇣
ei~k·~r�iwct�if + e�i~k·~r+iwct�if

⌘
(1.1.33)
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1.2. Time-Dependent Quantum Mechanics

We now know fully how light interacts with a quantum system but only at a very high level of the

Hamiltonian. We just have this weird object which we know nothing about how to manipulate yet.

Furthermore, how does this system emit light? First let’s tackle how to incorporate this Hamiltonian into a

wavefunction.

1.2 TIME-DEPENDENT QUANTUM MECHANICS

With any Hamiltonian you can just go about solving the Quantum-Mechanical differential equation

d
dt

|Y(t)i=� i
h̄
H |Y(t)i

in any way you desire. If H is time-independent and you can precisely identify the wavefunction at an initial

time t
0

, this is super easy since you just solve a dead-simple differential equation to get:

|Y(t)i= e�
i
h̄ H0

(t�t
0

) |Y(t
0

)i

|Y(t)i=U(t, t
0

) |Y(t
0

)i

WhereU(t, t
0

) is the “Time-Evolution Operator”.

We can not, however, do something quite this simple for a generalized time-dependent Hamiltonian

1.3 PERTURBATION TREATMENT

To treat a time-dependent Hamiltonian, we have to go back to the initial equation:

d
dt

|Y(t)i=� i
h̄
H(t) |Y(t)i

Rearrange it to get the beginning of the solution to the differential equation:

d |Y(t)i=� i
h̄
H(t) |Y(t)idt

8



Chapter 1. Introduction

Now let’s integrate both sides from t
0

to a general time t:

|Y(t)i� |Y(t
0

)i=� i
h̄

Z t

t
0

H(t) |Y(t)idt

|Y(t)i= |Y(t
0

)i� i
h̄

Z t

t
0

H(t) |Y(t)idt

And there we have solved it ... Oh wait, shoot, this equation is self-referential. No matter, we’ll just plug it

in again,

|Y(t)i= |Y(t
0

)i� i
h̄

Z t

t
0

H(t) |Y(t
0

)idt +
✓
i
h̄

◆
2

Z t

t
0

H(t)
Z t

t
0

H(t 0)
��Y(t 0)

↵
dt 0dt

Since this seems to be going on for infinity (spoiler alert: it is), it seems best to define then a series of

wavefunctions like so:

|Y(t)i= Â
i

���Y(i)(t)
E

(1.3.1)

���Y(0)(t)
E
= |Y(t

0

)i (1.3.2)

���Y(n)(t)
E
=� i

h̄

Z t

t
0

H(t)
���Y(n�1)(t)

E
dt (1.3.3)

What is happening here? The first perturbation term is the Hamiltonian acting on the system once. In our

case, it’s almost always a photon so what is happening, here, is the first order term is one photon interacting,

the second two photons etc.

The integral, it will soon become clear, is taking every time that the light beam is “on” and could interact

with the system once, and interfering together, all the possible times that the interaction could happen. This

is more clear, ironically, when we shift around these equations into what is called the ”interaction picture”:

1.3.0.1 THE INTERACTION PICTURE

The perturbation integrals are probably going to be rather difficult to calculate and, since the integrand is

never going to equal zero, we won’t be able to cut any corners to save time. You will recall, however, that

the Gaussian pulses we are looking to hit our system with do approach zero. For that reason, let’s start by

9



1.3. Perturbation Treatment

splitting the Hamiltonian into a time-independent and time-dependent part:

H(t) = H
0

+H 0(t) (1.3.4)

For the time-independent part, we know we can define the propagatorU
0

(t, t
0

) = e�i(t�t
0

)H
0

/h̄
which is how

the system evolves in time if there is no time-dependent interaction term. Note that because this is merely

the evolution when there is not time-dependent perturbation, if we are working in a density matrix

formalism, this could easily include dephasing.

To spare an awkward derivation I’ll cut right to the chase: for any operator and for the actual, true

wavefunction, we define the “interaction” operator and wavefunctions:

|YI(t)i=U†

0

(t, t
0

) |Y(t)i (1.3.5)

AI(t) =U†

0

(t, t
0

)A(t)U
0

(t, t
0

) (1.3.6)

Why did we do that? Just wait, all will be revealed. I will leave it up to you to confirm that:

d
dt

|YI(t)i= i
h̄
HI(t) |YI(t)i (1.3.7)

Huh, OK so that means that our perturbation series stays the same as well with the addition of I subscripts:

|YI(t)i= Â
i

���Y(i)
I (t)

E
(1.3.8)

���Y(0)
I (t)

E
= |YI(t0)i (1.3.9)

���Y(n)
I (t)

E
=� i

h̄

Z t

t
0

H 0
I(t)

���Y(n�1)
I (t)

E
dt (1.3.10)

Let’s begin by examining the zero order term and bringing it back into the actual wavefunction picture:

���Y(0)
I (t)

E
= |YI(t0)i (1.3.11)

U†

0

(t, t
0

)
���Y(0)(t)

E
=U†

0

(t
0

, t
0

) |Y(t
0

)i (1.3.12)

���Y(0)(t)
E
=U

0

(t, t
0

) |Y(t
0

)i (1.3.13)

This means that after our interaction picture transformation, zero-order estimate for the wavefunction’s

evolution is just how the wavefunction would evolve without a perturbation, which hopefully makes a lot of
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Chapter 1. Introduction

sense. Now let’s look at the first order correction:

U†

0

(t, t
0

)
���Y(1)(t)

E
=� i

h̄

Z t

t
0

U†

0

(t, t
0

)H 0(t)U
0

(t, t
0

)
���Y(0)(t

0

)
E
dt (1.3.14)

���Y(1)(t)
E
=� i

h̄

Z t

t
0

U
0

(t,t)H 0(t)
���Y(0)(t)

E
dt (1.3.15)

Here we have the system evolving, minding its own business until time t when it decides to interact with

the perturbation which in this case is also interacting with a photon: absorbing or emitting. After it has

interacting with the photon, it goes again on its merry way, evolving in time without the perturbation. The

system can ’decide’ to interact with a photon at any time the perturbation is ’on’, so the integral serves to

average over all possible time the photon can interact with the system.

It should further be clear that the 0th order correction is 0 photons interacting with the system, the first

order is one photon, second two photons, ad nauseum. So from now on, we take the interaction picture

derivation as moot and use the following equations to do all of our time-dependent Quantum Mechanics:

|Y
0

(t)i=U
0

(t, t
0

) |Y(t
0

)i (1.3.16)

|Y(n)(t)i=� i
h̄

Z t

t
0

ˆH(t) |Y(n�1)(t)idt (1.3.17)

1.3.0.2 MULTIPLE HAMILTONIANS

Whenever you can express the perturbation Hamiltonian as a sum of other Hamiltonians (like in a multiple

laser beam spectroscopy experiment), you may want to talk about applying them in a certain order in which

case the above notation is far too simplistic,

H 0(t) = ˆH 0
1

(t)+ ˆH 0
2

(t)+ ˆH 0
3

(t) (1.3.18)

|Y
1

(t)i=� i
h̄

Z t

t
0

ˆH
1

(t) |Y
0

(t)idt (1.3.19)

|Y
1,2(t)i=� i

h̄

Z t

t
0

ˆH
2

(t) |Y
1

(t)idt (1.3.20)

Where the interactions can be read from left to right. So for example, that last equation represents one

interaction of the first perturbation, followed by another interaction of the second Hamiltonian
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1.4. Electric Field Emissions from Quantum Systems

1.4 ELECTRIC FIELD EMISSIONS FROM QUANTUM SYSTEMS

We’re still missing a huge piece, though. Sure, we could now go on to calculate how the wavefunction

evolves in time... but how we measure this? Fear not, for our savior comes in the form of the dipole

operator. Recall from your Electricity and Magnetism courses that an oscillating dipole will produce

radiation. So let’s plan on doing that: on taking the time-expectation value of the dipole operator:

~Di(t) = hY(t)|~µµ |Y(t)i (1.4.1)

That is for the dipole on one molecule or one system. For multiple systems, you sum the dipoles together to

get the macroscopic “Polarization”. For our General case, we use Mukamel

37

Equation 4.75 but ignore the

term for phase matching, assuming that it’s always fulfilled for the systems we will treat.

~E
emission

(t) = i
2p

n(ws)

ws

c
lP(t) = iÂ

j
D j(t) (1.4.2)

This number is actually dimensionless so in the interest of accuracy, we want to know what the prefactor is.

According to Griffith’s

15

, the form of the electric field for a simple oscillating dipole (form given below)

and far away from the source is:

~p(t) = q
0

dẑcoswt = ~p
0

coswt (1.4.3)

~E(t) =� p
0

4pe
0

w2

c2
cosw

⇣
t� r

c

⌘
(r̂ cosq � ẑ) (1.4.4)

The prefactor constants are not terribly important for our purposes, but the w2

could very important as it will

be different for different signals. Generally, however, we can ignore it, except in some cases, especially

where I compare to experiment. So I will then take a hybrid approach in those cases where we keep the

imaginary factor as it is a result of Quantum Mechanics but establish the pre-factor of

1

4pe
0

w2

c2 . The factor

r/c retarding the dipole does not concern us here, neither does the direction of the dipole. The direction

would also matter if we were investigating systems where there were multiple dipoles at different directions,

but we do not have that in any of the systems of interest in this thesis.
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Chapter 1. Introduction

1.4.1 WHAT IS ACTUALLY BEING MEASURED

Imagine you have an input pulse

~E
in

(t) and then some molecular output

~E
out

(t). Most detectors actually

detect the intensity of light which is the mod squared of the electric field. So that detector is actually

measuring:

I
total

(t) =
���~E

in

(t)+~E
out

(t)
���
2

(1.4.5)

=
⇣
~E
in

(t)+~E
out

(t)
⌘⇣

~E
in

(t)+~E
out

(t)
⌘⇤

(1.4.6)

= I
in

(t)+ I
out

(t)+~E⇤
out

(t) ·~E
in

(t)+~E
out

(t) ·~E⇤
in

(t) (1.4.7)

We now have a simple complex number arithmetic problem in from of us

a= ar+ iai

b= br+ ibi

ab⇤ = arbr+aibi+ i(�arbi+aibr)

a⇤b= arbr+aibi+ i(arbi�aibr)

ab⇤+a⇤b= 2(arbr+aibi)

ab⇤+a⇤b= 2Re [ab⇤] = 2Re [a⇤b]

which bringing it back:

I
total

(t) = I
in

(t)+ I
out

(t)+2Re

h
~E
out

(t) ·~E⇤
in

(t)
i

(1.4.8)

OK, so there first term here is big (we are using a laser after all) and most likely known (although not

necessarily always). Then the second term is interesting but is going to be much smaller then the next term

which describes the interference between the input pulse and the output emission. This third term will be

what we measure most of the time, since it provides a way to make it easier to measure the small signal we

care about, since it’s attached to a large signal we know [almost] everything about.
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1.4. Electric Field Emissions from Quantum Systems

1.4.2 ADDING TOGETHER MULTIPLES ORDERS OF PERTURBATION

OK, given we have two different perturbations added together which we will call 1 and 2, the overall

wavefunction will look like so:

|Yi(t) = |y
0

(t)i+ |y
1

(t)i+ |y
2

(t)i+ |y
1,2(t)i+ |y

2,1(t)i+ |y
1,1(t)i+ |y

2,2(t)i+ · · · (1.4.9)

and that will go on infinitely. I call this the Grand Electric Field Expansion (GEFE) The molecule’s electric

field output will then have many different terms

�i~E = hY(t)|~µµ |Y(t)i

= hy
0

(t)|~µµ |y
0

(t)i

+ hy
0

(t)|~µµ |y
1

(t)i+ hy
1

(t)|~µµ |y
0

(t)i+ hy
2

(t)|~µµ |y
0

(t)i+ hy
0

(t)|~µµ |y
2

(t)i

+ hy
0

(t)|~µµ |y
1,2(t)i+ hy

1

(t)|~µµ |y
1

(t)i+ · · ·

which will similarly go on infinitely. As is done with all perturbation calculations, you can truncate the

expansion to a specific order in perturbation order and approximate all further to be zero. Still, even if we

said we only cared about the first order, there are 4 signals in just this one case of two perturbations.

Thankfully there are a few more tricks to simplify this expansion.

Take the zero order electric field:

�i~E = hY(t)|~µµ |Y(t)i+ · · ·

One often works in electronic spectroscopy with something like

~µµ= ~mu
0

(|gihe|+ |eihg|) indicating light

can excite the system from the ground to an excited state. Ignoring any time dependence for now, the zero

order signal in a system with that dipole and starting off in |gi will be:

�i~E = ~mu
0

hg|(|gihe|+ |eihg|) |gi+ · · ·

= ~mu
0

hg|ei= 0

So in systems with an off-diagonal

~µµ, all terms in the Grand Electric Field Expansion for which the bra

and ket interact with the perturbation an odd number of times will be zero.

There’s one last trick and it’s the biggest so it gets its own section.
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Chapter 1. Introduction

1.5 PHASE-MATCHING CONDITIONS: OR, WHITHER MY SIGNAL’S DIRECTION?

With a theoretical framework in place now for how to calculate the polarization and thus the emitted electric

field, we are in a position, now, to ask: what does this light look like and what direction is the light going to

come out of? We haven’t thought about this yet at all. How to we figure this out? Let’s look at the

perturbation we’re applying generally applying in all ultrafast laser spectroscopy experiments:

~E(~r, t) =~e
Ap
2ps2

e�(t�T )2/2s2

⇣
ei~k·~r�iwct+if + e�i~k·~r+iwct�if

⌘
(1.5.1)

The

~k vector represents the direction of the light is propagating. There is, you can plainly see, a positive

and a negative term, here. What do those physically represent: is there a wave going backwards? Kind of. It

is helpful to think here of splitting up the real electric field into two imaginary (complex to be strictly

mathematical) beam components:

~E(~r, t) = ~E(�)(~r, t)+~E(+)(~r, t) (1.5.2)

~E(t) =~e
Ap
2ps2

e�(t�T )2/2s2

(1.5.3)

~E(�)(~r, t) = ~E(t)e�i~k·~r+iwct�if
(1.5.4)

~E(+)(~r, t) = ~E(t)ei~k·~r�iwct+if
(1.5.5)

and we can then learn something by applying the energy operator to both:

ˆH = ih̄
d
dt

(1.5.6)

ˆH~E(±)(~r, t) =±h̄w~E(±)(~r, t) (1.5.7)

So the positive k vector can be thought of as a positive energy component which will excite a system, and

the negative part as being a negative energy component which will relax the system via stimulated emission.

But let’s imagine we have a two beam setup and we interact the positive part of each beam once:

|Y
1+,2+(t)i (1.5.8)
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1.5. Phase-Matching Conditions: or, Whither my Signal’s direction?

and let’s pick out the component of electric field with just those two interactions:

E(t) = ihY
0

(t)|~µµ |Y
1+,2+(t)i (1.5.9)

That’s all fine and good but what direction is this electric field going to be coming out? We haven’t looked at

that yet.

To think about that, imagine that our molecules, in the approximation we’re looking at, are simply

radiating dipoles. The derivation is complicated but you can prove that the emitted electric field for an

oscillating dipole looks something very roughly like this:

~E ⇡~µ ei|~k|r

r
(1.5.10)

meaning that any given dipole is radiating out in all directions (note that the numerator of the above fraction

has no vectors in it, so it is emitting in all directions) indiscriminately. Does that all signals are coming out

in all direction?

The short answer is no: the laser has a finite focal point and every molecule within that focal point will be

emitting dipole radiation. Imagine you’re a molecule at~ri within the laser spot. Because the incoming laser

beams have defined k-vectors, when laser 1 hits you, it will have a phase based on your location:

~E µ ei~k1·~ri (1.5.11)

Which will then be imparted onto your dipole emission like so:

~Ei ⇡~µ ei|~k1||~r�~ri|

|~r�~ri| ei~k1·~ri (1.5.12)

Then in the case when the molecule interacts with the +~k
2

part of the next beam, you will get another phase:

~Ei ⇡~µ ei|~k1+~k2||~r�~ri|

|~r�~ri| ei(~k1+~k2)·~ri (1.5.13)

In this case, once you’ve added up all of the molecules within the spot of your laser, you will only get light

emitting in the

~k
1

+~k
2

direction also called the “phase matching” direction because the wavevector of the

emitted light matches the phase given to each of the individual dipoles. It is easier to show than to prove so

check out phaseMatchingDemo.py on my GitHub or just look below and trust me that I’m a good
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Chapter 1. Introduction

programmer:

Figure 1.1: An example of how phase matching actually works. The red dots are all emitting molecules and
the black bar pointing up and the black bar pointing to the right are the k-vectors of the input beams. The
Emissions are then all added up and I’ve plotted the intensity, along with the addition of the two k-vectors to
show they are both most definitely going in the same direction.

The vertical and horizontal black bars are the input k-vectors and the skewed black bar is the phase

matching direction which you can see significant intensity of light coming out of. Red dots are the

individual dipoles used in this simulation (100 in this case).

You will often hear the argument that phase matching is just a product of conservation of momentum.

You had a photon with momentum k
1

coming in and then another with k
2

coming in: of course the output

will have a k-vector of k
1

+ k
2

. That intuition will actually never lead you astray, so feel free to use it, but

know that it’s not physical. When the molecule absorbs the photon, the momentum conservation happens

right then and there: there’s recoil in the molecule once the photon hits it. The later-emitting dipole radiation

is going out in all directions, but interfering with all the neighboring dipoles

17



1.6. Absorption Spectra

1.5.0.1 DETERMINING THE DIRECTION OF A TERM IN THE GRAND ELECTRIC FIELD EXPAN-

SION

Phase matching comes from the imprinting of a k phase on a molecule but the above derivation was done,

implicitly, only considering phases applied to a bra term. What if you care about the following term from the

Grand Electric Field Expansion:

hy
1+,2�(t)|~µµ |y

1+,3+(t)i

the bra will contribute phase of k
1

+ k
3

but the bra is less obvious. The physics of excitation by pulse one,

followed by relaxation of pulse 2 is still there, so it’s counter-intuitive, but the phase is flipped from the

notation in the argument of the bra. You’ll have to watch out, though, as you go out into the real world as

some authors prefer the opposite convention: keeping the intuition for phases and leaving behind the

intuition of + exciting and - relaxing. Also if you ever see a thing called a double-sided Feynman diagram,

they are just another tool to make sense of the Grand Electric Field Expansion

*

. I prefer the latter because

it’s more physical and intuitive in my mind. So then in what direction does the above term radiate in? The

answer is k
3

+ k
2

.

1.6 ABSORPTION SPECTRA

An absorption/emission spectrum is the most basic of spectroscopies we will cover here. The setup in

question is a light source comes into a system and excites it: only one interaction although multiple

interactions will occur, as we will see, the most important interaction is just one absorption.

This process of light interaction provides lots of information about a moleculeâ

˘

A

´

Zs structure through the

energy transitions allowed by the method of spectroscopy. The method can be tuned to tell you more about

electrons absorbing energy or the nucleus absorbing energy either through vibrations (Infrared/Raman

spectroscopy) or the nuclear spin state through Nuclear Magnetic Resonance (NMR) spectroscopy and its

variants.

The different forms of absorption spectroscopy are the oldest form of spectroscopy. Indeed, the first

absorption experiment could be said to have taken place in 1802 when Wollaston first noticed odd dark

bands in sunlight he had just separated by his improved version of Newtonâ

˘

A

´

Zs prism

57

. It turns out the

*

Double-sided Feynman diagrams also aid in the understanding of de-phasing when one is doing calculations which

involve the density matrix of a system but we are not treating that here.
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Chapter 1. Introduction

gaps Wollaston observed in the spectrum were molecules between the sun and the experimenter.

Spectroscopy like that eventually proved indispensable to detecting molecules and learning about their

structure. Today thereâ

˘

A

´

Zs not a working scientist whose work doesnâ

˘

A

´

Zt benefit from absorption

spectroscopy whether they directly use it or not.

I will focus on electronic absorption but the techniques are quite interchangeable.

But what does absorption mechanistically look like? After the system absorbs a photon, the system then

proceeds to emit light. If the incoming beam had a k-vector k
1

then the emission will also be in the same

direction. Mathematically this looks like this:

E
Abs

(t) = i
1

4pe
0

w2

c2
hY

0

(t)|~µµ |Y
1+(t)i (1.6.1)

For the basic example of a vibrational monomer, what will this signal look like? First a little

Housekeeping/definitions. We start with a two-level system.

H
0

= h̄we |eihe| (1.6.2)

U
0

(t,t) = |gihg|+ e�iwe(t�t) |eihe| (1.6.3)

but we want a vibrational coordinate on both electronic sites as well for our purposes, so we introduce one,

H
0

= Â
n
h̄wg

✓
n+

1

2

◆
|ngi |gihg|hng |+Â

m

✓
h̄we

✓
m+

1

2

◆
+we

◆
|mei |eihe|hme | (1.6.4)

U
0

(t,t) = Â
n
e�iwg(n+ 1

2

)(t�t) |ngi |gihg|hng |+Â
m
e�i(we(m+ 1

2

)+we)(t�t) |mei |eihe|hme | (1.6.5)

and it interacts with an electric field thusly to get the first order term

|y
1+(t)i=� i

h̄

Z t

�•
U(t,t) ˆH 0

1+(t) |y0

(t)idt (1.6.6)

=� i
h̄

Z t

�•
U(t,t)E

1+(t) ˆµe�iw
0

t |0gi |gidt (1.6.7)

=� i
h̄

Z t

�•
U(t,t)E

1+(t)e�iw
0

tµ(x) |0gi |eidt (1.6.8)

where we now must change the vibrational basis

|y
1+(t)i=� i

h̄

Z t

�•
U(t,t)E

1+(t)e�iw
0

t Â
n
|neihne |µ(x) |0gi |eidt (1.6.9)

19



1.6. Absorption Spectra

where we let hne |µ(x) |0gi= µn
0

|y
1+(t)i=� i

h̄ Â
n

Z t

�•
U(t,t)E

1+(t)e�iw
0

tµn
0

|nei |eidt (1.6.10)

and the time-evolution operator can now be applied

|y
1+(t)i=� i

h̄ Â
n
µn
0

Z t

�•
E
1+(t)e�iw

0

te�iw 0
e,n(t�t) |nei |eidt (1.6.11)

where w 0
e,n is the energy of the excited state in the nth vibrational level. We simplify:

|y
1+(t)i=� i

h̄ Â
n
µn
0

e�iw 0
e,nt
Z t

�•
E
1+(t)ei(w 0

e,n�w
0

)t |nei |eidt (1.6.12)

If we now assume we primarily care about the time after which the pulse or perturbation has turned off, then

we can extend the limit out to positive infinity and define Dwe,n = w 0
e,n�w

0

|y
1+(t)i=� i

h̄ Â
n
µn
0

e�iw 0
e,nt
Z •

�•
E
1+(t)eiDwe,nt |nei |eidt (1.6.13)

Now this looks an awful lot like a Fourier transform and it is. Now we need a specific form for the electric

field envelope:

E
1+(t) =

Ap
2ps2

e�
(t�t

1

)2

2s2 e�iwc(t�t
1

)
(1.6.14)

Z •

�•
E
1+(t)eiwtdt = Aeiwt

1e�
s2

2

(w�wc)
2

= ˜E
1+(w) (1.6.15)

which we can then put into the expression:

|y
1+(t)i=� i

h̄ Â
n
e�iw 0

e,ntµn
0

˜E
1+(Dwe,n) |nei |ei (1.6.16)

As a side note, this is an incredibly versatile trick. If you ever have a perturbation Ea(t) which effectively

turns off at a certain time, the perturbed wavefunction will always look like a sum of all the accessible

energy states multiplied by the transition dipole moment, multiplied by the amplitude of the electric field at

the relevant energy level transition so long as the time you are interested in is after the perturbation turns off.

I will use that a lot going forward.
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1.6.0.1 2 VIBRATIONAL COORDINATES

What if we were to instead look at a 2-dimensional vibrational coordinate? Then we have to go back to the

beginning

|y
1+(t)i=� i

h̄

Z t

�•
U(t,t)E

1+(t) ˆµe�iw
0

t |0,0gi |gidt (1.6.17)

=� i
h̄

Z t

�•
U(t,t)E

1+(t)e�iw
0

tµ(x) |0,0gi |eidt (1.6.18)

and this time, the basis change will be more difficult. We have to multiply in a 2D identity:

I = Ân,m |n,meihn,me |

|y
1+(t)i=� i

h̄

Z t

�•
U(t,t)E

1+(t)e�iw
0

t Â
n,m

|n,meihn,me |µ(x) |0,0gi |eidt (1.6.19)

=� i
h̄ Â
n,m

Z t

�•
U(t,t)E

1+(t)e�iw
0

t |n,meiµn,m
0,0 |eidt (1.6.20)

at this point, it’s clear we will end up with an incredibly similar situation as before:

|y
1+(t)i=� i

h̄ Â
n,m

e�iw 0
e,n,mtµn,m

0,0
˜E
1+(Dwe,n,m) |n,mei |ei (1.6.21)
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1.6. Absorption Spectra

1.6.1 BRINGING IT ALL TOGETHER

With all the relevant perturbations collected, we return to calculating the signal.

|y
1+(t)i=� i

h̄ Â
n
e�iw 0

e,ntµn
0

˜E
1+(Dwe,n) |nei |ei (1.6.22)

|y
0

(t)i= e�iw 0
g,0t |0gi |ei (1.6.23)

P
Abs

(t) =� i
h̄ Â

n
e�i

⇣
w 0
e,n�w 0

g,0

⌘
tµ⇤n

0

µn
0

˜E
1+(Dwe,n) (1.6.24)

E
Abs

(t) =
1

h̄
1

4pe
0

c2 Â
n

�
w 0
e,n�w 0

g,0
�
2 e�i

⇣
w 0
e,n�w 0

g,0

⌘
tµ⇤n

0

µn
0

˜E
1+(Dwe,n) (1.6.25)

˜E
Abs

(w) =
1

h̄
1

4pe
0

c2 Â
n

�
w 0
e,n�w 0

g,0
�
2 µ⇤n

0

µn
0

˜E
1+(Dwe,n)

d
h
w �

⇣
w 0
e,n�w 0

g,0

⌘i

dt
(1.6.26)

=
1

h̄
1

4pe
0

c2
w2Â

n
µ⇤n
0

µn
0

˜E
1+(Dwe,n)

d
h
w �

⇣
w 0
e,n�w 0

g,0

⌘i

dt
(1.6.27)

=Cw2Â
n
µ⇤n
0

µn
0

˜E
1+(Dwe,n)d [w �Dwe,n] (1.6.28)

As one might expect from the name absorption spectrum, we see an oscillation at all the frequency

transitions from the ground state to all possible excited vibrational states. This is tempered by the amplitude

of the excitation pulse at the relevant transition energy and the dipole element, often referred to as the

Franck-Condon factor µn
0

µn
0

.

1.6.2 REAL DATA

Experimentalists will often give us the the molar extinction constant, what do we do with that and what is it?

It’s e below:

A= cle(w) = log

✓
I
0

(w)

I(w)

◆

cle(w) = log

✓
I
0

(w)

I
0

(w)+d I(w)

◆

cle(w) = log

0

@ 1

1+ d I(w)
I
0

(w)

1

A
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let’s then investigate this dimensionless parameter:

d I(w)

I
0

(w)

but what is d I(w)? Well in reality, we are putting the light source exciting the molecule into the system, at

the same time that it is emitting light. So what we’re actually measuring is:

I(w) =
��
˜E
1+(w)+E

abs

(w)
��2

=
��
˜E
1+(w)

��2+2¬
⇥
E
Abs

(w) ˜E⇤
1+(w)

⇤
+ |E

Abs

(w)|2

= I
0

(w)+2¬
⇥
E
Abs

(w) ˜E⇤
1+(w)

⇤
+ |E

abs

(w)|2

d I(w) = 2¬
⇥
E
Abs

(w) ˜E⇤
1+(w)

⇤
+ |E

Abs

(w)|2

Starting with the first term using our previous model:

¬
⇥
E
Abs

(w) ˜E⇤
1+(w)

⇤
= ¬


Cw2Â

n
µ⇤n
0

µn
0

˜E
1+(Dwe,n)d [w �Dwe,n] ˜E⇤

1+(w)

�

= ¬

Cw2Â

n
µ⇤n
0

µn
0

d [w �Dwe,n] ˜E1+(Dwe,n) ˜E⇤
1+(Dwe,n)

�

= ¬

Cw2Â

n
µ⇤n
0

µn
0

d [w �Dwe,n]
��
˜E
1+(Dwe,n)

��2
�

=Cw2Â
n
µ⇤n
0

µn
0

d [w �Dwe,n] I0(w) = X(w)I
0

(w)

The delta-function doing a lot there to make the calculations simpler. This is a cool result, here, showing

that there is a dimensionless function we’ll call X(w) that is multiplied by the input laser source intensity to

get the first term of d I. Now we check out the second term

|E
Abs

(w)|2 =
����Cw2Â

n
µ⇤n
0

µn
0

˜E
1+(Dwe,n)d [w �Dwe,n]

����
2

=

����Cw2Â
n
µ⇤n
0

µn
0

d [w �Dwe,n]

����
2

I
0

(w)
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1.6. Absorption Spectra

I’m about to do something a lot of people won’t like... and that is to take the square of the delta function to

be delta. Close your eyes if you don’t like that sort of mathematical liberty:

|E
Abs

(w)|2 =C2w4Â
n
(µ⇤n

0

µn
0

)2 d [w �Dwe,n] I0 (w)

= X2(w)I
0

(w)

X has turned out to be very useful as here we see it again being squared. We can now go back to our

dimensionless intensity ratio which is:

d I(w)

I
0

(w)
= 2X(w)+X2(w)

bringing this back to the measured molar extinction coefficient

cle(w) = log

0

@ 1

1+ d I(w)
I
0

(w)

1

A

= log

✓
1

1+2X(w)+X2(w)

◆

= log

 
1

(1+X(w))2

!

=�2log(1+X(w))

=�2Â
n

Â
i
(�1)i

(X(w))i+1

i+1

⇡�2X(w)

cle(w)⇡Cw2Â
n
µ⇤n
0

µn
0

d [w �Dwe,n]

The last approximation is justified by noting this is essentially a series in the fine structure constant:

Cw2 ⇤µ2 µCw2 ⇤ e2l2

µ
✓

1

4pe
0

c2h̄

◆
w2e2l2

=

✓
e2

4pe
0

c2h̄

◆
w2l2

= aw2l2
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1.7 PUMP PROBE EXPERIMENTS

With absorption spectroscopy, we put one laser beam, but why not put in more? Pump Probe is what

happens when we put two laser beams in and instead of measuring how much of the first beam is absorbed,

we look at how much of the second beam is absorbed. Then, because we only care about the signal which

will come out in the direction of the probe beam, we have to only consider terms in the Grand Electric Field

Expansion which will output in the probe direction. There are 4 and they have names based on the physical

phenomenon they are measuring.

Signal Ket Interactions Bra Interactions Name

1 pu+, pu-, pr+ none Ground State Bleach 1

2 pu+, pr+ pu+ Excited State Absorption

3 pu+ pu+, pr- Stimulated Emission

4 pr+ pu+, pu- Ground State Bleach 2

and then the output electric

fields look like so:

E
1

(t) = ihy
0

(t)| ˆµ |y
pu+, pu-, pr+

(t)i (1.7.1)

E
2

(t) = ihy
pu+

(t)| ˆµ |y
pu+, pr+

(t)i (1.7.2)

E
3

(t) = ihy
pu+, pr-

(t)| ˆµ |y
pu+

(t)i (1.7.3)

E
4

(t) = ihy
pu+, pu-

(t)| ˆµ |y
pr+

(t)i (1.7.4)

E
pp

(t) = E
1

(t)+E
2

(t)+E
3

(t)+E
4

(t) (1.7.5)

S
pp

(T ) = 2Re

Z
E⇤
pp

(t)E
pr+

(t)dt
�

(1.7.6)

1.8 HIGHER ORDER EXPERIMENTS

There are many types of higher-order experiments and not terribly hard to concoct a new spectroscopy

scheme. The most common as 2-D techniques where instead of just one pump beam, there are two pump

beams, and the same for the probe. Then by scanning not just the middle gap between the pump pair and the

probe pair, you also scan the two gaps between the pump/pairs. Then by Fourier transforming the gap

between the pairs, you can get a picture of the energy input and the energy output of the system under

investigation. That’s just a high level explanation; I won’t be going into detail as my PhD did not include

much work on 2D spectroscopy.

As mentioned, you can go even higher than 4 pulses and I recently had the honor of providing a
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1.9. Representations of the Nuclear Coordinate

perspective for an article on a 6th order laser spectrum which I reproduce in Chapter 6.

1.9 REPRESENTATIONS OF THE NUCLEAR COORDINATE

For the rest of this thesis, we will be very interested in forms of the transition dipole which are not just

constant numbers but exist as functions. In particular, the science I have worked on has all involved

vibrational coordinate dependence of the transition dipole moment. In order to understand how to do algebra

with operators that are proportional to vibrational coordinates, it is worthwhile to understand the raising and

lowering operator formulation of the Harmonic oscillator.

The Harmonic oscillator Hamiltonian looks like so:

ˆH =
p̂2

2m
+

1

2

mw2 (x̂� x̄
0

)2

which has eigenstates |ni for which:

ˆH |ni=
✓
nw +

1

2

◆
|ni (1.9.1)

And it is useful to define operators:

â=
r

mw
2h̄

✓
x̂� x̄

0

+
i

mw
p̂
◆

â† =
r

mw
2h̄

✓
x̂� x̄

0

� i
mw

p̂
◆

such that

â†â=
mw
2h̄

✓
x̂� x̄

0

� i
mw

p̂
◆✓

x̂� x̄
0

+
i

mw
p̂
◆

(1.9.2)

=
mw
2h̄


(x̂� x̄

0

)2+
1

m2w2

p̂2� i
mw

( p̂x̂� x̂ p̂)
�

(1.9.3)

we know, however, that:

[x̂, p̂] = x̂ p̂� p̂x̂= ih̄ (1.9.4)
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â†â=
mw
2h̄


(x̂� x̄

0

)2+
1

m2w2

p̂2+
i

mw
ih̄
�

(1.9.5)

=
mw
2h̄


(x̂� x̄

0

)2+
1

m2w2

p̂2� h̄
mw

�
(1.9.6)

=
mw
2h̄

(x̂� x̄
0

)2+
mw
2h̄

1

m2w2

p̂2� mw
2h̄

h̄
mw

(1.9.7)

=
mw
2h̄

(x̂� x̄
0

)2+
1

2h̄
1

mw
p̂2� 1

2

(1.9.8)

we now note that with a little manipulation:

ˆH = h̄w
✓
â†â+

1

2

◆
(1.9.9)

So we define the product of those two operators in that manner as the number operator:

ˆN = â†â (1.9.10)

because when you act it on an eigenstate:

ˆN |ni= n |ni (1.9.11)

We can now note that because the ladder operators are made of position and momentum operators that they

themselves will have commutators as well

⇥
â†, â

⇤
= 1 (1.9.12)

⇥
ˆN, â
⇤
=�â (1.9.13)

⇥
ˆN, â†

⇤
= â† (1.9.14)

Now we might ask what happens when we act the number operator on an eigenstate for which the operator

â† has been appended:

ˆNâ† |ni= � ˆNâ†+ â† ˆN� â† ˆN
� |ni

=
�
[N, â†]+ â† ˆN

� |ni

=
�
â†+ â† ˆN

� |ni

= (1+n) â† |ni
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implying that the operator â† adds a quanta of energy. Similarly:

ˆNâ |ni= � ˆNâ+ â ˆN� â ˆN
� |ni

=
�
[N, â]+ â ˆN

� |ni

=
��â+ â ˆN

� |ni

= (n�1) â |ni

and that â operator takes away a quanta. But what exactly does an application of one of these operators look

like?

â |ni=p
n |n�1i

â† |ni=p
n+1 |n+1i

Because I don’t feel like deriving them right now.

1.9.0.1 POSITION AND MOMENTUM OPERATORS

We can take the ladder operators and turn them into position and momentum operators,

â=
r

mw
2h̄

✓
x̂� x̄

0

+
i

mw
p̂
◆

â† =
r

mw
2h̄

✓
x̂� x̄

0

� i
mw

p̂
◆

say we add them together:

â†+ â= 2

r
mw
2h̄

(x̂� x̄
0

)

(x̂� x̄
0

) =

r
h̄

2mw
�
â†+ â

�

which gives us as a final answer:

x̂= x̄
0

+

r
h̄

2mw
�
â†+ â

�
(1.9.15)
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similarly when we subtract the ladder operators:

â†� â=�2

r
mw
2h̄

i
mw

p̂

=�i
r

2

h̄mw
p̂

giving us:

p̂= i

r
h̄mw
2

�
â†� â

�
(1.9.16)

1.9.0.2 THE HUANG-RHYS PARAMETER

Say we want a dimensionless quantity that will tell us something about the difference between two potential

energy wells. This would mean we have two Hamiltonians:

ˆHg =
p̂2

2mg
+

1

2

mg w2

g
�
x̂� x̄g

�
2

+Eg

and

ˆHe =
p̂2

2me
+

1

2

me w2

e (x̂� x̄e)
2+Ee

We could look at the value of one potential energy surface(ignoring any constant offset) at the difference

between the two center points:

Ve(x̄g) =
1

2

me w2

e (Dx̄)
2

Dx̄= x̄e � x̄g

this is called the reorganization energy, because it is the amount of energy that would be “lost” or “gained”

to go from one equilibrium point to another. This is not, however, dimensionless but it will be if we divide it

by a quanta of energy:

Ve(x̄g)

h̄we
=

me we
2h̄

(Dx̄)2 = S
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1.9. Representations of the Nuclear Coordinate

Which is called the Huang-Rhys Parameter or S in our notation and characterizes the change in equilibrium

position between two harmonic potential energy wells. Now, at this point, you should be asking: Isn’t this

an equally valid measure of the difference between two potential energy wells?

Vg(x̄e)

h̄wg
=

mg wg
2h̄

(Dx̄)2 = S

and I think you would be right but I do not know how to resolve this paradox... What you COULD do is note

that these dimensionless parameters suggest the existence of dimensionless units of measurement of

distance.

Se =
me we
2h̄

(Dx̄)2

=
1

2

✓r
me we
h̄

Dx̄
◆
2

and then just take the square of the difference between the two dimensionless locations of the center of the

potential energy wells:

S=
1

2

✓r
me we
h̄

x̄e �
r

mg wg
h̄

x̄g

◆
2

but apparently the proper convention (citation needed) is

S=
me wemg wg (Dx̄)2

me we +mg wg

Which would reduce to the previous formula is both the masses and both the frequencies were the same.

1.9.1 WHAT HAPPENS WHEN YOU APPLY A LADDER OPERATOR TO THE WRONG EIGEN-

STATE?

For the purposes of this thesis, we will often encounter two different potential energy wells on the same

molecule (one for its ground state, g , and the other for its excited state, e). Does it matter if we apply a

ladder operator from g to e? Let’s see.

â†g |nei
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Chapter 1. Introduction

but we only know for sure how the operator works in its own basis so we transform to that basis using the

identity operator Âi |igihig | and my shorthand for the frank-Condon factor hag |bei= Ob
a:

â†g |nei= â†g Â
i
On
i |igi

= Â
i
On
i â

†

g |igi

= Â
i
On
i
p
i+1 |i+1gi

Now what if we bring it back into the original basis?

â†g |nei= Â
i, j
On
i O

j
i+1

p
i+1 | jei

If we had mistakenly assumed the ladder operators were the same, we would have gotten:

â†g |nei 6=
p
n+1 |n+1ei

But what is the amplitude that really ends up in the |n+1ei state?

hn+1e | â†g |nei= Â
i, j
On
i O

j
i+1

p
i+1d j,n+1

= Â
i
On
i O

n+1

i+1

p
i+1

So one must be very, very careful to apply the correct ladder operators to the correct state.

1.10 NUCLEAR STRUCTURE OF THE ELECTRONIC TRANSITION DIPOLE MOMENT AND THE

CONDON APPROXIMATION

One of the more common transition dipole moments to see looks like this,

~µµ=~µ
0

(|eihg|+ |gihe|) (1.10.1)

where

~µ
0

is just a constant vector which does not depend on any other variable. Edward Condon in 1928

made with surprisingly little justification the above approximation that the electronic transition dipole did

not depend on the nuclear position at all. But that should seem wrong, because shouldn’t a molecule be
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Approximation

more likely to transition when it’s in a nuclear configuration that is more similar to the state it’s not in?

There is no reason that instead of

~µ
0

, we can substitute an arbitrary function of the nuclear position

~µ(~R).

For the purposes of illustration, we will always collapse this object into a scalar which is only a function of

one coordinate µ(x). We also then expand it into a polynomial basis,

µ(x) = µ
0Â

i
kixi (1.10.2)

but we know from above that this can be expressed in terms of creation and annihilation operators,

µ(x) = µ
0Â

i
ci
�
â+ â†

�i
(1.10.3)

To keep things as simple as possible in analytic expressions, we normally will only work with the linear

correction.

µ(x) = µ
0

+µ 0x (1.10.4)

1.10.1 DIFFERENT POTENTIAL ENERGY WELLS

If we take the above operator, we realize we need it to be able to act it on two potential energy wells g and e

with their own sets of eigenstates: {|ngi} and {|nei}. What will that operator look like in terms of the ladder

operators for each well? We’ll start with the g state:

µ(x) = µ
0

+µ 0
 
x̄g +

s
h̄

2mg wg

�
â†g + âg

�
!

(1.10.5)

=
�
µ
0

+µ 0x̄g
�
+µ 0

s
h̄

2mg wg

�
â†g + âg

�
(1.10.6)

and the epsilon will look frightfully similar:

µ(x) =
�
µ
0

+µ 0x̄e
�
+µ 0

s
h̄

2me we

�
â†e + âe

�
(1.10.7)
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but we want them to look neat, so we define a few more variables:

µ(x) = ¯µg +µ 0
g
�
â†g + âg

�
(1.10.8)

= ¯µe +µ 0
e
�
â†e + âe

�
(1.10.9)

¯µg =
�
µ
0

+µ 0x̄g
�

(1.10.10)

¯µg =
�
µ
0

+µ 0x̄e
�

(1.10.11)

µ 0
g = µ 0

s
h̄

2mg wg
(1.10.12)

µ 0
e = µ 0

s
h̄

2me we
(1.10.13)

Then if we wanted to make the operator exceedingly simple in one basis, g , what would the constants look

like for e?

µ(x) = 1+ c
�
â†g + âg

�

¯µg = 1= µ
0

+µ 0x̄g

µ 0
g = c= µ 0

s
h̄

2mg wg

µ(x) = d+ ce
�
â†e + âe

�

¯µe = d = µ
0

+µ 0x̄e

µ 0
e = ce = µ 0

s
h̄

2me we

we can now do some algebra:

1�d = µ 0x̄g �µ 0x̄e

d = 1�µ 0 �x̄e � x̄g
�

or in terms of c:

d = 1� c

r
2mg wg

h̄
Dx
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and some more algebra:

ce
c

=

s
h̄

2me we

r
2mg wg

h̄

ce
c

=

r
mg wg
me we

ce = c
r

mg wg
me we

1.10.1.1 GETTING A DIMENSIONLESS c

We initially defined the transition dipole function as

µ(x) = µ
0

+µ 0x (1.10.14)

but suppose we want a dimensionless number to describe the slope, let’s construct one:

µ(x) = µ
0

✓
1+

µ 0

µ
0

x
◆

(1.10.15)

= µ
0

✓
1+Dx µ

0

µ
0

x
Dx

◆
(1.10.16)

where Dx= x̄e � x̄g . We can then define l = Dx µ 0
µ
0

as a completely dimensionless way to describe how much

variation in the transition dipole a wavepacket would experience when traversing the potential energy wells

µ(x) = µ
0

⇣
1+l x

Dx

⌘
(1.10.17)

1.10.1.2 A NATURAL ESTIMATE OF l

Looking at the paper “Vibronic effects in the spectroscopy and dynamics of C-phycocyanin”

58

, and,

specifically, figure 9c, the black line represents the author’s worst (most non-Condon) transition dipole that

they calculated. The transition dipole is roughly linear, with a value of -3 Debye at x=0 and decreasing .5

Debye in .5 distance units giving a slope of 1 Debye per dimensionless distance unit . They quote the

34



Chapter 1. Introduction

dimensionless displacement as being .4 which we can then use to extract an estimate for l in a real system.

µ(x)⇡�3� .5

.5
x

=�3

⇣
1+

x
3

⌘

=�3

✓
1+

x
3

d
d

◆

=�3

✓
1+

d
3

x
d

◆

l =
d
3

=
.4

3

= .1¯3
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2
Problems with Detection of Electronic Coherences

in Systems with Coordinate-Varying Transition

Dipole

Apart from minor modifications, this chapter originally appeared as:

“Coordinate-varying transition dipole effects on the witness for electronic coherences”. Joseph

Goodknight, Peter Rose, Jacob Krich, Alán Aspuru-Guzik, (To Be Submitted)

ABSTRACT

Frequency-integrated pump-probe experiments with ultrafast pump and probe have been

previously proposed to provide a witness for electronic coherence. That is, given a coherent

oscillation of interest, such an experiment can distinguish whether the coherence has electronic

character or is solely a vibrational effect. That proposal assumed the Condon approximation, that

the transition dipole moments are independent of the nuclear coordinates. We consider the effects

of non-Condon transition dipoles on the witness protocol and show that for systems with small

Huang-Rhys factor, the witness protocol will give false positives even with very small non-Condon

effects. For larger Huang-Rhys factors, we show that a modified interpretation of the pump probe

data continues to give a functioning witness protocol, up to a limiting strength of non-Condonicity,

which we quantify.

Revised Saturday 5th August, 2017, at 13:40
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Chapter 2. Problems with Detection of Electronic Coherences in Systems with

Coordinate-Varying Transition Dipole

2.1 INTRODUCTION

Since the discovery of long-lived oscillations in cross peaks of the two-dimensional electronic

spectrum of the Fenna-Matthews-Olsen (FMO) complex

12

, there has been a great deal of interest

because the observed oscillations could mean that photosynthetic chlorophylls were keeping a

stable superposition of electronic-excited-states for much longer than a chaotic biological

environment was expected to allow

19,31,43

. A long-lived electronic superposition (coherence) can

have positive consequences for energy transfer rates and efficiencies

12

, so biological protection

against electronic decoherence would be a profoundly interesting result of natural selection–one

that we might hope to emulate. There is further suggestion that the FMO and other photosynthetic

complexes may have an optimal dephasing rate for energy transfer efficiency between perfect

coherence and strong dephasing, both of which are sub-optimal

35 8,13,43

. There is also great

interest in being able to mimic these evolution-tuned efficiencies for artificial designs

11

.

The assignment of the off-diagonal oscillations to electronic effects is, however, disputed, as

vibrations can cause similar signatures. While much useful work has been done to pinpoint the

unique signatures of electronic coherence and the unique signatures of vibrational coherence in a

two-dimensional electronic spectroscopy experiment

7,17,19,29,30,42,52

, such signatures remain

disputed, and a simpler, unambiguous tool to distinguish electronic from vibrational coherences is

valuable.

Yuen-Zhou et al. proposed such an experiment

60

, which aims to give a concrete yes or no

answer (called a witness in the language of quantum information

41

) to the question of whether a

given coherent oscillation has electronic character. That work proposed using only a one

dimensional pump-probe experiment in the impulsive (i.e., ultrashort pulse) limit. They showed

that for impulsive pulses, there are no oscillations in the frequency-integrated pump probe signal

when a system has only vibrational coherences. Oscillations in the pump-probe signal are a
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2.1. Introduction

witness for electronic coherence. Thus for the rest of this paper, we will refer to the proposed

procedure as “The Witness”.

The effects of pulse widths on pump-probe spectroscopy had been studied previously

25

but the

proposed witness uniquely suggested using pulse width as an independent variable in an

experiment, which should be feasible given developments in two-dimensional spectroscopy using

pulse-shaping devices

1,49,50,54

.

Johnson et al.

23

showed that the witness procedure works for finite-duration pulses and

proposed to use several such pulse durations to extrapolate to the impulsive limit. Generally

speaking, if the oscillations in a pump probe experiment approach zero as the pulse duration

approaches 0, then there is no electronic coherence. If, however, the oscillations increase as the

pulse duration approaches 0, then there is an electronic coherence.

An essential assumption of Refs.

23,60

is the Condon approximation, that transition dipoles have

no variation with respect to nuclear coordinate

9,10

. This approximation is widely used in

molecular spectroscopy, and there are also well-known systems in which non-Condon effects are

highly important

20,21,33,58

. In this work, we show how well the witness protocol can tolerate a

violation of the Condon approximation. We show that for systems with small electron-vibration

coupling, quantified by the Huang-Rhys factor S, the witness protocol can give false-positive

results even with small non-Condon effects. For larger values of S, where the vibrational coherence

is more visible in optical experiments, the witness protocol is robust to larger non-Condon effects,

with a small modification to the interpretation of the data. We quantify the parameter range in

which the protocol is expected to work.

To test the effect of transition dipole variation on the witness experiment, we construct the

simplest possible system with vibrational effects but no electronic coherence and then simulate

pump probe experiments. Our system of choice has two electronic levels and a single harmonic
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Coordinate-Varying Transition Dipole

vibrational level. This system is the same as that studied in Refs.

23,60

, with the addition of

non-Condon effects in the transition dipole.

2.2 METHODS

We study a model system with two electronic levels, labelled |gi and |ei, coupled to a single

harmonic vibrational mode. The frequency of the vibration is wg , we when the system is in the

state |gi, |ei, respectively, giving a Hamiltonian

H
0

= Â
n
h̄wg

✓
n+

1

2

◆
|ngi |gihg|hng | (2.2.1)

+Â
m

✓
h̄we

✓
m+

1

2

◆
+we

◆
|mei |eihe|hme | . (2.2.2)

Greek indices correspond to the vibrational states and the roman indices correspond to the

electronic states. The ground-state vibrational wavefunctions hx |ngi are centered at vibrational

coordinate x= 0 while the excited-state vibrational wavefunctions hx |mei are centered at x= dx,

giving a Huang-Rhys factor of S= wg we (dx)2
h̄(wg+we )

.

We consider the transition dipole to be aligned with the optical pulse polarizations, for

simplicity, with a transition dipole

ˆµ(x) = µ(x)(|eihg|+ |gihe|) . (2.2.3)

In the Condon approximation, µ(x) = µ
0

is a constant. In the spirit of keeping things as simple as

possible to demonstrate the effect of transition dipole variations, we consider a linear form of µ(x):

µ(x) = µ
0

(1+kx) (2.2.4)
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To make k comparable for different values of dx, we define also the dimensionless quantity

l = dxk . The quantity l has the useful property that above l = 1, the variation of µ as the system

moves from the ground- to excited-state equilibrium position becomes larger than the mean value

µ
0

. As a reference, in C-phycocyanin, k has been calculated to be approximately 0.3 and l to be

approximately 0.1

58

.

We simulate Pump Probe spectroscopy using ideal Gaussian laser pulses, which differ only in

their pulse durations and arrival times. This means that both of our pulses (labeled pu for pump

and pr for probe) will have the form:

E
pu

=
E
0p

2ps2

e�
t2

2s2

⇥
e�iwct + eiwct

⇤
(2.2.5)

E
pr

=
E
0p

2ps2

e�
(t�T )2

2s2

h
e�iwc(t�T ) + eiwc(t�T )

i
(2.2.6)

We normalize the pulses as in Ref.

23

to keep the integral of the absolute value of the electric field

constant across with varying pulse widths. The pulse’s central frequency wc is always tuned to the

strongest absorption transition in the simulated system and the pulse width s is our main

experimental independent variable.

In the rotating wave approximation, it is helpful to further split the laser pulses into positive

frequency excitation pulses:

E
pu+(t) =

E
0p

2ps2

e�
t2

2s2 e�iwct
(2.2.7)

E
pr+(t) =

E
0p

2ps2

e�
(t�T )2

2s2 e�iwc(t�T )
(2.2.8)
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and negative frequency relaxation pulses:

E
pu�(t) =

E
0p

2ps2

e�
t2

2s2 eiwct
(2.2.9)

E
pr�(t) =

E
0p

2ps2

e�
(t�T )2

2s2 eiwc(t�T )
(2.2.10)

Assuming that the system begins in state |y
0

i, the first order perturbative wavepacket after one

interaction with pulse Q is

|yQ(t)i=� i
h̄

Z t

�•
U(t,t)EQ(t) ˆµ(x) |y0

(t)idt. (2.2.11)

A subsequent interaction with pulse P, which could be the same pulse, gives the second-order

perturbative wavepacket

|yQ,P(t)i=� i
h̄

Z t

�•
U(t,t)EP(t) ˆµ(x) |yQ(t)idt. (2.2.12)

Assuming an ensemble of identical systems distributed over a volume larger than the pulse

wavelength, contributions to the pump-probe signal require phase matching. In the rotating wave

approximation, these perturbative wavepackets allow construction of the pump probe signal
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SPP(T ) as

EGSB1(t,T ) = ihy
0

(t)| ˆµ(x) |y
pu+, pu-, pr+

(t,T )i

EESA(t,T ) = ihy
pu+

(t)| ˆµ(x) |y
pu+, pr+

(t,T )i

EGSB2(t,T ) = ihy
pu+, pr-

(t,T )| ˆµ(x) |y
pu+

(t)i

ESE(t,T ) = ihy
pu+, pu-

(t)| ˆµ(x) |y
pr+

(t,T )i

Si(T ) = 2Re

Z
E⇤
pr+

(t)Ei(t,T )dt
�

SPP(T ) = SGSB1(T )+SGSB2(T )+SESA(T )+SSE(T )

˜S(W) =
Z

SPP(T )eiWT dT,

G =
Z

|SPP(T )� ¯SPP|2dT

where t is the laboratory time, T is the time delay between the pump and probe pulses. The main

object investigated in this work is

˜S(W), the Fourier transform of SPP(T ). When W is chosen equal

to the vibrational frequency, we explore the changing amplitude of

˜S(W) with pulse duration s for

a range of systems with varying Huang-Rhys factors S and non-Condonicities k .

We calculate these quantities using time-domain wavepacket propagation, as described

previously

37,38,51,61

. In this work, we consider only systems with a single electronic excited state,

so they have no excited-state electronic coherence. All oscillatory effects in the pump-probe signal

are vibrational, so we want to show when the modified witness successfully characterizes these

oscillations as vibrational in origin. In all simulations, we choose the central frequency of the

optical pulses to be resonant with the strongest transition in the calculated absorption spectrum.

We begin with initial states in the lowest-energy vibrational state of the ground state manifold and

do not consider thermal or orientational averaging effects, which we do not believe are important

for the present study. We do not consider dephasing or inhomogeneous broadening processes.
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If we consider the impulsive limit, then we can show that thethe Pump-Probe signals simplfy to:

SGSB2 = E4

0

Â
k
cos

⇥
wg (k�h)T

⇤�hhg |µ2(x) |kgi
�
2

(2.2.13)

SSE = E4

0

Â
j,l
cos [we ( j� l)T ] (2.2.14)

⇥hhg |µ(x) | jeih je |µ2(x) |leihle |µ(x) |hgi (2.2.15)

SESA = 0 (2.2.16)

SGSB1 = E4

0

Â
k
cos

⇥
wg (k�h)T

⇤�hhg |µ2(x) |kgi
�
2

(2.2.17)

which because the vibrational states are eigenfunctions, this will be zero unless µ(x) is

non-constant. So we do expect oscillations at the impulsive limit for non-Condon systems, but we

will address the question of how they approach the impulsive limit numerically.
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2.2. Methods

Figure 2.1: In the case where there is no transition dipole variation, when the transition dipole operator is
applied (with an impulsive pulse), the ground state wavepacket’s shape is perfectly replicated as seen in a. If,
however, we introduce a linear variation, the wavepacket’s shape is distorted as we see in b. THis distortion
is, in itself, a change in the vibrational coherence which manifests as a demonstrable di�erence in the pump
probe signal as seen in c and could. What is not clear is how the the signal changes as the pulse width changes
for di�erent transition dipole slopes, so we set out to investigate and see if this change keeps the protocol for
electronic coherence detection proposed in 23,60 from working properly.
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2.3 RESULTS AND DISCUSSION

We can consider a variety of model systems, characterized by their vibrational frequencies wg , we ,

Huang-Rhys factor S, and non-Condonicity l . For the commonly considered case with wg ⇡ we ,

we show that the witness protocol breaks down for the smallest values of S but is robust for a larger

range of l when S is larger. We begin by considering the smallest values of S, where the witness is

broken, and then consider larger values of S and propose a modified protocol that remains robust

even in the presence of some non-Condonicity. For strongly non-Condon transition dipoles, the

witness does not work at any S. For specificity, we consider wg = we = 640cm

�1

, but all

timescales can be easily scaled for any other vibrational frequency of interest.

The worst case scenario for the witness protocol occurs when S= 0. In that limit, in the

Condon-approximation with wg = we , the only allowed optical transition is the 0-0 transition, from

the lowest vibrational state of the ground state to the lowest vibrational state of the excited state.

There is no coherence of any variety, so there is no oscillation in the pump-probe signal, and

˜SPP(we) = 0 always. Even in the Condon approximation, this case is difficult for the witness

protocol, as the signal is independent of pulse duration s , rather than monotonically decreasing as

s is decreased. This case does, however, illustrate the effects of a non-Condon transition dipole.

In the non-Condon case, the 0-0 and 0-1 transitions are both allowed, producing a vibrational

coherence in the singly-excited manifold and a nonzero

˜SPP(we). This oscillatory pump-probe

signal becomes stronger as s becomes smaller, which looks qualitatively similar to the case of a

Condon electronic coherence, as shown for several values of k in Fig. 2.2. That is, this witness

technique cannot distinguish an electronic coherence from a non-Condon vibrational-only system.

We now consider S= 0.005, which is close to photosynthetic Huang-Rhys factors 44

, with

results in Fig. 2.3. For this small S, the witness protocol essentially does not work for any

l > 10

�3

.
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Figure 2.2: Pump-probe oscillations at the vibrational frequency, ˜SPP(w), for a system with S = 0 and
wg = we = w = 640 cm�1, for various values of k. The signal is log scaled due to the signal’s fourth-order
dependence on µ(x); small di�erences in k make very large di�erences in signal. In all of these systems, an ex-
perimenter using the proposed protocol would conclude that an electronic coherence exists in the system when
there’s not even a vibrational coherence in the ground state, absent a non-constant transition dipole.
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Figure 2.3: G as a function of l and the pulse width s in a system where S = 0.005, we = .9wg. and wg =
640cm�1. Tw is the same as defined in reference23: the peak of the signal before it goes down again. Some
traces in l have local minima as well when the signal goes up and we plot those as sup. In the case where the
signal just goes up as the pulse width goes down, then Tw is set as s = 0.
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We now consider S= 0.2, with results in Fig. 2.5. For this larger value of S, for l < 0.1, the

witness signature is apparent in the data, with a declining pump-probe signal as s is reduced, until

the pulse duration sup is reached. For s < sup, the signal again increases, due to the

non-Condonicity. This upturn occurs at short pulse durations, after the usual peak structure of a

negative witness is well established, coming from large s to Tw down to sup.

We propose a modified witness protocol that declares a negative witness (i.e., vibrational-only

coherence) in experiments that observe a peak at Tw and a short-duration upturn at sup. We

consider such a structure to be observed if the signal

˜SPP(w) at Tw is more than twice the value of

the signal at sup, and we call this ratio w. In such a case, the experiment has determined both the

vibrational character of the relevant coherence as well as the presence of a non-Condon

contribution to the transition dipole. Further methods for detecting and measuring non-Condon

transition dipoles can be found in Ref.

27

.

With this modified protocol in mind, we construct figure 2.4 where we show the ratio w for 5

values of S. With our criteria that w 0.5 there are quite a few regions where the proposed

protocol will still work, but even more where it will give false positives.

Reference

23

proposed using the entire frequency-integrated pump-probe signal

G =
R |SPP(T )� ¯SPP|2dT , where ¯SPP is the average value of the pump-probe signal and the integral

is taken only for T > 3smax, to avoid pulse-overlap effects, where smax is the largest pulse duration

studied in the experiment. In this work we have considered the frequency-resolved pump-probe

signal

˜SPP(w), but the analysis for G is similar and gives the same regions of (S,l ) where the

modified witness protocol functions.

To investigate the dips in signal seen in figures 2.3 and , we introduce figure 2.8, where we look

at S= .2 and k = .037. When the nonzero k is turned off and set to zero, we get a decreasing

oscillatory signal approaching zero as the laser pulse width approaches zero just as predicted by

23

.
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Figure 2.4: The ratio w of the oscillation amplitude at the minimum pulse width to the oscillation amplitude
at the local maxima (or witness time Tw) for various values of S. The region shaded in green is where our mod-
ified protocol does not produce a false-positive.
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Figure 2.5: G as a function of l and the pulse width s in a system where S=0.2, we = .9wg. and wg =
640cm�1.
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Figure 2.6: G as a function of l and the pulse width s in a system where S = 0.4. we = .9wg. and wg =
640cm�1.
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Figure 2.7: dT as a function of l and the pulse width s in a system where S = 1.0, we = .9wg. and wg =
640cm�1.
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Figure 2.8: ˜SPP(wg ) Here we have plotted the ground state oscillations for 3 systems: k = .037,S = 0;
k = .037,S = 0.2; and k = 0.0,S = 0.2. This shows roughly that the e�ects of a non-Condon monomer with-
out vibrational displacement add together with the e�ects of a Condon monomer to get the result for a non-
Condon monomer with a vibrational displacement

If, however, we turn on the nonzero k , we see the while there is a dip at a certain point in the

signal, it increases as the pulse width approaches zero. Indeed, even if we set S= 0.0 but keep the

same value of k , and thus have a system that should have almost no oscillations, there is still an

increasing oscillation signal. The shape of these three curves suggests that there is an interference

interplay between the tendency of a vibrational coherence to go down as the pulse width

approaches zero and the tendency of an oscillation induced by a linear transition dipole variation to

increase as the pulse width gets toward zero.
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2.4 CONCLUSION

The proposed witness for electronic coherences

23,60

relied on the Condon approximation. We have

found that in vibrational systems with very small Huang-Rhys factors S, small non-Condon effects

can give false-positive effects, where a system with no electronic coherence is incorrectly

determined to have an electronic coherence. For larger S, the witness protocol can be successfully

used for larger values of l . It is possible that modified experimental procedures could increase the

domain of (S, k) in which the witness protocol will function. In order to apply the witness

protocol, one must be able to estimate or measure the non-Condon effects to be sufficiently small.

Methods to measure non-Condonicity are proposed in Ref.

27

.
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3
Detecting Non-Condon Transition Dipole Moments

with Absorption Spectroscopy

Apart from minor modifications, this chapter originally appeared as:

“Detecting Non-Condon Transition Dipole Moments with Absorption Spectroscopy”. Joseph

Goodknight, Jacob Krich, Alán Aspuru-Guzik, (In Preparation)

ABSTRACT

The Condon approximation assumes that transition dipole moments do not vary with nuclear

coordinates. It is often employed in physical chemistry and spectroscopy settings without fully

verifying if the approximation is justified. Recent scholarship shows both that such variation

non-trivially affects spectroscopic observables and that many systems do indeed exhibit significant

variation in their electronic transition dipole moments. The most striking recent example is the

work of Heller and co-workers

20

where non-varying transition dipole moments were essential to

understand the spectra of polyacetylene and graphene. Thus a better understanding of how such

phenomenon affects even basic spectroscopic variables would be useful, as would a tool to

measure the extent to which a system has a variation in its transition dipole moment. We discuss

how polynomial variation with respect to the nuclear coordinate in the electronic transition dipole

moment affects the interpretation of the electronic absorption spectrum and use the result to

investigate the transition dipole structure of tetracene.
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3.1. Introduction

3.1 INTRODUCTION

In 1928, Edward Condon introduced the useful approximation that the transition dipole moment

does not depend on variations of nuclear coordinates

9

. Deviations from the approximation are

crucial for the explanation of Raman Spectroscopy

39

.

The Condon approximation is often employed without verifying what are the effects of lifting it.

Recently, Heller and co-workers have shown that the variation in transition dipole moment is

crucial to explain the Raman spectrum of graphene

20

. Furthermore, recent studies suggest a

highly noticeable transition dipole moment in photosynthetic pigments

58

. Van Voorhis and

co-workers have recently stressed the role of non-Condon effects in electron transfer

33

. Finally,

our own work indicates that non-Condon effects may make the application of witnesses of

electronic spectroscopy

23,60

harder than originally thought

28

.

In this work, we examine the role of non-Condon effects in one of the simplest forms of

spectroscopy, linear absorption spectroscopy.

3.2 SYSTEM SETUP

For the purposes of this work, we will employ a simple model that consists of a one-mode

vibrational monomer with a ground electronic state |gi and an excited electronic state |ei and

assume the vibrational frequency is the same in both states. In principle, however, this method is

extensible to more vibrational degrees of freedom. Using this assumption, we can write the

Hamiltonian for the system as,

H
0

= Â
n
h̄w
✓
n+

1

2

◆
|ngi |gihg|hng | (3.2.1)

+Â
m

✓
h̄w
✓
m+

1

2

◆
+we

◆
|mei |eihe|hme | (3.2.2)
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Here, the Greek indices corresponding to the vibrational states and the roman indices

corresponding to the electronic states. The ground and excited electronic states are represented by

|gi and |ei, and the set of |igi is the set of vibrational eigenstates in the ground electronic state

manifold, and |iei is the set of vibrational eigenstates in the electronic excited state. The

vibrational quanta is w and we is the electronic energy gap. The electronic transition dipole

moment

ˆµ varies spatially as a function of the x coordinate in an object µ(x),

ˆµ = µ(x)(|eihg|+ |gihe|) (3.2.3)

For the purposes of this study, we construct a generic polynomial transition dipole moment, which

one can be expressed as ladder operators for easier calculation,

µ(x) = µ
0 Â
i=0

kixi (3.2.4)

= µ
0 Â
i=0

ci
�
â+ â†

�i
(3.2.5)

or as a vibrational matrix element,

µa,b = hag |µ(x) |bgi (3.2.6)

Going forward, we will use the a notation of ({i}) to indicate the polynomial orders of x we

included. In a simple linear variation setting would be,

µ(1)
a,b = µ

0

h
da,b+ c

⇣p
b�1da,b�1

+
p
bda,b+1

⌘i
(3.2.7)
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but for a cubic variation would be,

µ(3)
a,b =µ

0

⇣
da,b+ c

3

⇣
2da+1,b+

p
6da+3,l

⌘⌘

and so on for higher orders.

3.3 EFFECTS ON LINEAR ABSORPTION SPECTROSCOPY

The change in transition dipole moment from the Condon approximation will not affect the

frequency of the transitions in our model, so instead we look only at peak heights: specifically the

absorptivity normalized to the frequency squared

e(w)

w2

= K(w) = Â
h ,i

hh ,i fL(w,s ,Dwh ,i) (3.3.1)

where fL is a line-shape function which integrates to unity, sigma s is the width parameter(s) for

the line-shape. Finally and most importantly, hh ,i and Dwh ,i are the strength and frequency,

respectively, of the transition from the ground vibrational state h to the excited vibrational state i.

Normally a researcher can compare the kth and k+1th transition strengths to ascertain the

Huang Rhys Parameter S:

hh ,k+1

hh ,k
=

Âl ,n µh ,lµh ,nOk+1

l Ok+1

n

Âl,n µh ,lµh ,nOk
l Ok

n
= H(h ,k) (3.3.2)

Where Ok
l is the Franck-Condon overlap factor between a electronic ground vibrational energy

state l and an electric excited vibrational energy state k. If one starts out in the 0th state and

assumes constant transition dipole moment(0th order as indicated in the subscript to H), the
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relation is quite simple:

H(0)(0,k) =
S

k+1

(3.3.3)

But going one step further to a linear-only transition dipole variation, one obtains the relation

between subsequent peak heights of

H(1)(0,k) =
S

k+1

��
1+ c

p
S
�
1� k+1

S

���2
��
1+ c

p
S
�
1� k

S

���2
(3.3.4)

Of crucial relevance to our argument is that if one only employs the ratio of the 0! 1 peak to the

0! 0 peak under the assumption of linear variation of the transition dipole moment, one is not

extracting a pristine Huang-Rhys parameter, but rather an effective Huang-Rhys parameter S
eff

,

S
eff

= S

��
1+ c

p
S
�
1� 1

S

���2
��
1+ c

p
S
��2

(3.3.5)

In Figure 3.1, we plot the potential error in the estimation of the Huang-Rhys parameter as a

function of the variation of the linear dependence of the transition dipole moment.
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3.3. Effects on Linear Absorption Spectroscopy

Figure 3.1: The relative measurement error as the ratio of the e�ective Huang-Rhys parameter over the actual
Huang-Rhys parameter (Se�/S ) as a function of S for the ratio of the 0! 1 peak to the 0! 0 peak, for various
values of S and an entirely real linear-variation in the transition dipole moment: c. If the Huang-Rhys parame-
ter is small, even small linear variations of the transition dipole moment with coordinate can induce large errors
in its estimation.

62



Chapter 3. Detecting Non-Condon Transition Dipole Moments with Absorption Spectroscopy

3.4 CORRECTIONS TO TETRACENE

The use of the peak heights in absorption spectra to determine the coordinate dependence of

transition dipole moments has been employed for more than 60 years. In 1954, Fraser described

how to map out the precise coordinate dependence of transition dipoles in high-resolution

electronic-vibrational absorption spectra of diatomics

14

. But in solution, one often far fewer peaks

so a full map is not possible. Here we describe a method to find an approximate low-order

polynomial transition dipole variation for just one mode in a molecule in solution.

To demonstrate this, we take the absorption spectrum of tetracene in dichloromethane

40

and in

toluene

4

. We chose tetracene because of its important role in organic electronics and recently in

singlet-fission studies

6

and because it has a sufficiently large Huang-Rhys parameter S that results

in a spectrum with multiple line-shapes.

We fit Equation 3.3.1 to the addition of 5 Voigt line-shape for the Toluene spectrum and 6 Voigt

line-shapes for the DCM spectrum. The Voigt profile allows peaks to have varying amount of

Gaussian and Lorentzian line-shape character. The results of this fit are shown in Figures 3.2 and

3.3. We then employed the centers of the line-shapes and fit a Morse oscillator model, the results

of which are summarized in Table 3.1 which allowed us to conclude that the harmonic

approximation is sufficient for an accurate description of this system.

Then to fit to Equation 3.3.2, we employed a trust region reflective algorithm least-squares

fitting procedure as implemented in the Scipy package by fitting to the

26,55

. Because there are

Parameter DCM Toluene

V
0

/ cm

�1

20421.87 20420.06

we / cm
�1

1404.74 1388.87

cewe / cm
�1

-.9501 -1.5

r2 0.9999 1.0000

Table 3.1: Fit of the calculated peak heights to a Morse potential model. Because of the small value of cewe
relative to we, we conclude that the harmonic approximation is reasonable for this system.
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Figure 3.2: The fit for Voigt line-shapes to the spectra of tetracene in dichloromethane from Ref. 40

Parameter DCM Toluene
S
Condon

1.52 1.185

r2
Condon

.743 .829

S(2) 1.263 1.201

c
2

-0.063 0.006

r2(2,) 0.833 0.830

S(3) 1.245 1.064

c
3

-0.021 -0.011

r2(3,) 0.806 0.838

S(9) 1.082 0.994

c
9

-3.31e-5 -1.82e-5

r2(9,) 0.985 0.965

S(9,7) 1.202 1.110

c
9

-5.05e-5 -3.35e-5

c
7

3.72e-4 3.31e-4

r2(9,7) 0.990 0.976

Table 3.2: Fit of certain parameters
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Figure 3.3: The fit for Voigt line-shapes to the spectra of tetracene in toluene from Ref.4
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multiple solutions for c and q for all orders, we include a small regularization term in the fitting

procedure to keep the solutions close to the Condon value of S.

Our method was unable to find a better fit than the Condon solution for for the (1) model, but

fitting the second order, H(2)(k,0), improved the fit slightly. The fit for an order 2 correction,

however, is barely better than the Condon fit as evidenced in Figures 3.5 and 3.4.

We do, however, expect odd-order-polynomials to be the most physically relevant because of the

broken symmetry when the molecule gets excited; we expect the molecule to preferentially absorb

to the excited state when the nuclear configuration is closer to the shape of the excited state. We

tried many models and found that the best fits were around order 9, suggesting that in addition to

having small coeffiicents, the non-Condon corrections in this system are high-order polynomials.

In Figures 3.7 and 3.6, we see that the 9th order really matches the experimental data very well.

Then, because we have enough data points to fit more than just two parameters, we go ahead and

fit H(9,7)(k,0) and find that the this model fits the data even better. Figures 3.7 and 3.6 show that

the fit, while only marginally better than order 9, is much better. Table 3.2 summarizes the

parameters found for all the investigated orders.

We can also look at the functional form of µ(x). The result of this for (9,7) is shown in Figure

3.10. Despite the slightly different values found for c
9

, c
7

and S for the Toluene and DCM for the

(9,7) correction, the derived transition dipole moments seem roughly similar, at least up until

x= 2x
0

, given that we are only able to discern information about the transition dipole moment

where it overlaps with |0gi, we do expect more uncertainty about the transition dipole as x gets

large compared to x
0

.
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Figure 3.4: The Voigt-derived values of H(0,k) from tetracene in DCM, fit to the model for H(2)(0,k) and a
purely Condon model. Note that the Condon model does not fit the trend very well at all whereas the non-
Condon model tracks the trend very well.
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Figure 3.5: The Voigt-derived values of H(0,k) from tetracene in toluene, fit to the model for H(2)(0,k) and
a purely Condon model. Note that the Condon model does not fit the trend very well at all whereas the non-
Condon model tracks the trend very well.
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Figure 3.6: The Voigt-derived values of H(0,k) from tetracene in DCM, fit to the model for H(9)(0,k) and a
purely Condon model. Note that the Condon model does not fit the trend very well at all whereas the non-
Condon model tracks the trend very well.
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Figure 3.7: The Voigt-derived values of H(0,k) from tetracene in toluene, fit to the model for H(9)(0,k) and
a purely Condon model. Note that the Condon model does not fit the trend very well at all whereas the non-
Condon model tracks the trend very well.
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Figure 3.8: The Voigt-derived values of H(0,k) from tetracene in DCM, fit to the model for H(9,7)(0,k) and
a purely Condon model. Note that the Condon model does not fit the trend very well at all whereas the non-
Condon model tracks the trend very well.
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Figure 3.9: The Voigt-derived values of H(0,k) from tetracene in toluene, fit to the model for H(9,7)(0,k) and
a purely Condon model. Note that the Condon model does not fit the trend very well at all whereas the non-
Condon model tracks the trend very well.
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Figure 3.10: The fitted functional form for the transition dipole moment calculated for the Voigt-derived val-
ues of H(0,k) to the model for H(9,7)(0,k). THe units of the x axis are the characteristic distance of the ground
electronic state harmonic oscillator x

0

.
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3.5 CONCLUSION

We have developed a method to provide estimates of the vibrational structure of an electronic

transition dipole moment by fitting the linear electronic absorption spectrum to lineshape profiles

and then fitting the transition strengths to a polynomial non-Condon model. We then applied this

method to tetracene in two different solvents. This method can make it clear–when a system is

highly harmonic–that the system has a non-constant transition dipole moment with respect to

nuclear coordinates. We caution against using this method to precisely define the functional form

of the transition dipole ithout more peak heights. More peak hieghts removes the need to assume

that certain orders are zero and thus means the modeller does not have to pick a model to fit the

data, which is not on the most solid statistical footing. Further work on data from sources such as

molecular spectroscopic databases will be useful to further explore the magnitude of the

corrections studied in this work.
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3.7 SUPPLEMENTARY INFORMATION

3.7.1 ABSORPTION HARMONIC OSCILLATOR MODEL

We will find useful here the generic form of the Franck Condon Overlap factor for a displaced

harmonic oscillator with the same curvature in the ground and excited states:

On
m = (�1)n

r
e�SSm+n

m!n!

min(m,n)

Â
j=0

m!n!(�1) jS� j

j!(m� j)!(n� j)!
(3.7.1)

3.7.1.1 LINEAR CORRECTION

To calculate the electric field ratio for a linear non-Condon correction for a system starting in the

0th state:

µ
0,l =µ

0

h0|�1+ c
1

�
â+ â†

�� |l i

=µ
0

�
d
0,l + c

1

d
1,l
�

H(1)(0,k) =
Âl ,n

⇥
d
0,l + c⇤dl ,1

⇤
[d

0,n + cdn ,1]Ok+1

l Ok+1

n

Âl,n [d0,l + c⇤dl,1] [d0,n+ cdn,1]Ok
l Ok

n
(3.7.2)

=

⇥
Ok+1

0

+ c⇤Ok+1

1

⇤⇥
Ok+1

0

+ cOk+1

1

⇤
⇥
Ok
0

+ c⇤Ok
1

⇤⇥
Ok
0

+ cOk
1

⇤
(3.7.3)

=

��Ok+1

0

+ cOk+1

1

��2
��Ok

0

+ cOk
1

��2
(3.7.4)

=

 
Ok+1

0

Ok
0

!
2

���1+ cO
k+1

1

Ok+1

0

���
2

���1+ cO
k
1

Ok
0

���
2

(3.7.5)

For this, several quantities can be computed
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Ok+1

0

= (�1)k+1

s
e�SSk+1

(k+1)!
(3.7.6)

Ok+1

1

= (�1)k+1

s
e�SS1+k+1

(k+1)!

min(1,k+1)

Â
j=0

(k+1)!(�1) jS� j

j!(1� j)!(k+1� j)!
(3.7.7)

= (�1)k+1

s
e�SS1+k+1

(k+1)!
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� (k+1)!S�1
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�
(3.7.8)

= (�1)k+1
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e�SS1+k+1
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
1� (k+1)

S

�
(3.7.9)

then the desired ratio is

Ok+1

1

Ok+1

0

=
(�1)k+1
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e�SS1+k+1

(k+1)!

h
1� (k+1)

S
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1� (k+1)

S

�
(3.7.11)

=
p
S

1� (k+1)

S

�
(3.7.12)

as for the other ratio:

Ok
0

= (�1)k
r

e�SSk

k!
(3.7.13)

Ok
1

= (�1)k
r

e�SS1+k

k!

min(1,k)

Â
j=0

k!(�1) jS� j

j!(1� j)!(k� j)!
(3.7.14)

first we start with the case where k � 1

Ok
1

= (�1)k
r

e�SS1+k

k!


k!
k!

� k!S�1

(k�1)!

�
(3.7.15)
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r

e�SS1+k

k!


1� k

S

�
(3.7.16)
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if k = 0 then the summation above will be unity and the same equation will thus work for both.

Now when we bring it back into the ratio:

Ok
1

Ok
0

=
(�1)k

q
e�SS1+k

k!

⇥
1� k

S

⇤

(�1)k
q

e�SSk
k!

(3.7.17)

=
p
S

1� k

S

�
(3.7.18)

Which after substitution leads to

H(1)(0,k) =
S

k+1

��
1+ c

p
S
�
1� k+1

S

���2
��
1+ c

p
S
�
1� k

S

���2
(3.7.19)

3.7.1.2 QUADRATIC CORRECTION

but for a quadratic correction:
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which gives us for the peak ratios instead
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+ c0
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(3.7.21)

Instead of getting algebraic expressions for Ok
n�2

as we did for Ok
1

, we instead implement

Equation 3.7.1 directly in our solver.

3.7.1.3 3 CORRECTION

The cubic correction looks like so:
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which indicates it makes more sense to treat (1,3) and not just (3):

µ(1,3)
0,l =µ

0

⇣
d
0,l +d

1,l (2c3+ c
1

)+ c
3

p
6d

3,l
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1

d
1,l + c

3

p
6d

3,l

⌘

c0
1

=(2c
3

+ c
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=c
3
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3p
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3.7.1.4 4 CORRECTION

Looking at a quadratic correction:

µ(4)
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⇣
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â+ â†
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much like for (3) we had to consider (1,3) to be more accurate, it makes no sense to consider (4) on

its own; we’ll need to introduce (2) as well to get (2,4):

µ(2,4)
0,l =µ

0

⇣
d
0,l (1+ c

2

+3c
4
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which when inverted turns into:
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3.7.1.5 GENERIC CORRECTION

It becomes clear that we should be able to define an arbitrary-order correction (at least for h = 0)

rather simply by adding together generic xn operator

µ
0,l = Â

n
cnµ(n)

0,l =Â
n
cn h0|

�
â+ â†

�n |l i

this would then feed in to our expression for H:

H({i})(0,k) =
S

k+1

���1+Âl={i} c0l
Ok+1

l
Ok+1

0

���
2

���1+Âl={i} c0l
Ok
l

Ok
0

���
2

(3.7.22)
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where the transformation from c0 back into c would have to be calculated for any individual H({i})

but is non-trivial. We saw above that the squared operator brought amplitude back to zero and in

general, all even operators will bring back amplitude to all even operators in order below and the

same with odd operators.
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4
Non-Condon Heating during Laser Spectroscopy

ABSTRACT

The Condon approximation that off-diagonal electronic transition dipole moments do not vary with

nuclear coordinates, is not as solid an approximation in the world of ultrafast, dynamic

spectroscopies as it was in the days of gas-phase rovibrational spectroscopy when Condon first

made the approximation. Recent scholarship shows both that such variation non-trivially effects

spectroscopic observables and that many systems do indeed exhibit variation in their transition

dipole moments. Thus a better understanding of how such phenomenon affects even basic

spectroscopic variables would be useful, as would a tool to measure the extent to which a system

has a variation in its transition dipole moment. We discuss the effects of a simple, linear transition

dipole moment variation on the vibrational state of the molecule during laser excitation and predict

that for an IR-active vibrational mode, one would see isotropic signal at the fundamental

vibrational frequency if and only if there is a non-trivial transition dipole moment in the impulsive

pulse limit. We the look at this IR effect for real pulses and conclude that it would not a useful

discriminator between Condon and non-Condon moments.

4.1 INTRODUCTION

Edward Condon in 1928

9

made with surprisingly little justification the approximation that the

electronic transition dipole did not depend on the nuclear position at all. That approximation has
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Chapter 4. Non-Condon Heating during Laser Spectroscopy

stood in great stead until recently its effects, particularly in dynamic spectroscopy, have become

particularly clear.

There are no doubt many more, but among the recent work include invoking a nontrivial

transition dipole to explain graphene’s anomalous Raman spectrum

20

. Furthermore, recent

calculations also predict a highly noticeable transition dipole moment in photosynthetic systems

58

.

There is also most probably a noticeable effect in some electron-transfer systems of a varying

transition dipole moment

33

. Lastly, the introduction of a linear variation in transition dipole,

completely broke a proposed detection scheme for electronic versus vibrational coherence.

Thus, as more and more scholarship begins to make clear the importance of variation of the

transition dipole to the field of dynamic spectroscopy, it would seem to be eminently useful to have

a tool to measure these variations. While experiments can infer the presence of a nontrivial

transition dipole, we believe it is important to work towards an experiment which definitively can

determine the structure of a transition dipole moment.

4.2 SYSTEM SETUP

For our purposes we construct the simplest system for which transition dipole variation can affect

its spectra: a vibrational monomer with a ground electronic state |gi and an excited electronic state

|ei with a different harmonic vibration in both the ground and excited state such that the

Hamiltonian looks like this:

H
0

= Â
n
h̄wg

✓
n+

1

2

◆
|ngi |gihg|hng | (4.2.1)

+Â
m

✓
h̄we

✓
m+

1

2

◆
+we

◆
|mei |eihe|hme | (4.2.2)
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4.2. System Setup

With the Greek indices corresponding to the vibrational states and the roman indices

corresponding to the electronic states. We give this system an electronic transition dipole:

ˆµ(x) = µ(x)(|eihg|+ |gihe|) (4.2.3)

Where we put all the nuclear variation of the transition dipole moment into the function µ(x).

Considering what a varying transition dipole may look like, we construct the simplest possible

variation: a linear-varying moment, which one can transform into ladder operators for easier

calculation:

µ(x) = µ
0

⇥
1+ c

�
âg + â†g

�⇤
(4.2.4)

where âg and â†g are ladder operators in the ground state vibrational potential. One can imagine a

more general form of the transition dipole for more than just linear variation:

µ(x) = µ
0 Â
i=0

kixi (4.2.5)

= µ
0 Â
i=0

ci
�
â+ â†

�i
(4.2.6)

but we will concerns ourselves exclusively with the linear variation here. Depending on the

context, it can be useful to transition dipole of the transition dipole as more of a vibrational matrix

element:

µa,b = hag |µ(x) |bgi (4.2.7)

This equation shows that a nonzero c will cause an application of µa,b to deform the wavefunction,

but how?
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4.3 MODE HEATING

We instead want to work with an object which only exhibits interesting dynamics when there is an

interesting transition dipole, like |y+,�(t)i.

If you imagine hitting our monomer with the positive energy delta-function laser pulse, and then

hitting it again immediately after (really at the same time) with the negative energy part of the laser

pulse to get a second order perturbation. Without a transition dipole that varies, one would expect

to have a perfect copy of the original vibrational wavepacket, back in the ground electronic state

after an instantaneous trip to the excited state. If, however, there is a variation in the transition

dipole, then you would have no longer have a perfect copy, but you would have induced a

ground-state vibrational coherence. Putting this mathematically, we would only expect interesting

or novel effects from |y+,�(t)i, if the transition dipole varies, but it’s boring if there is no

variation. Putting it yet another way, a non-trivial transition dipole moment causes a vibrational

coherence in the ground state of |y+,�(t)i where there would be none if the transition dipole

moment is constant.

Mathematically, it would look like this assuming a delta-function laser beam at t = 0 and

starting in the 0th state:

|y+,�(0)i= (4.3.1)

= µ2

0

⇥
1+ c

�
âg + â†g

�⇤⇥
1+ c⇤

�
âg + â†g

�⇤ |0gi |gi (4.3.2)

= µ2

0

h
1+(c+ c⇤)

�
âg + â†g

�
+ |c|2 �âg + â†g

�
2

i
|0gi |gi (4.3.3)

= µ2

0

h
(1+ |c|2) |0gi+(c+ c⇤) |1gi+

p
2|c|2 |2gi

i
|gi (4.3.4)

So for the case of a delta function pulse, the wavefunction is either trivially the same ground state

if the transition dipole is constant (c= 0) or it can be a vibrational coherence for nonzero c. That
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4.3. Mode Heating

vibrational coherence implies that the ground state has heated up; the average vibrational quantum

number is now higher. We set out to find a way to make a signal out of that.

4.3.1 RESONANCE RAMAN

The simplest signal that could be constructed for this would be

E(t) =�iw2 hy
0

(t)| ˆµ |y+,�(t)i

but the transition dipole we introduced earlier would mean this is zero as both the bra and ket are in

the ground electronic state, and the transition dipole operator is off-diagonal in the electronic basis.

If, however, the vibrational mode is IR-active, it will have a transition dipole that is diagonal in the

electronic basis:

ˆµIR = dg |gihg|
�
â†g + âg

�
+de |eihe|

�
â†e + âe

�
(4.3.5)

which will give us a signal like so:

EIR(t) = iw2 hy
0

(t)| ˆµIR |y+,�(t)i (4.3.6)

which due to phase matching will be isotropic. This is very similar to the phenomenon of

resonance Raman

39

but we are predicting an additional isotropic signal as opposed to

To generalize this to real pulses, we treat a more general laser pulse perturbation of the form:

H 0(t) = E(t)µ(x)(|eihg|+ |gihe|) (4.3.7)
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and a starting wavefunction of

|y
0

(0)i= |hgi |gi (4.3.8)

If we consider times t only after the pulse has turned off, and let ˜E±(w) be the positive and negative

frequency parts of the Fourier transform of E(t), we get first as the excitation perturbation:

|y+(t)i= Â
l ,k

˜E+

⇣
W(k)

e �W(h)
g

⌘
µh ,lOk

l e
�iW(k)

e |kei |ei

Going forward we define W(k)
e �W(h)

g = DW(k)
(h)

|y+(t)i= Â
l ,k

˜E+

⇣
DW(k)

(h)

⌘
µh ,lOk

l e
�iW(k)

e |kei |ei

then we bring in the relaxation or negative frequency part of the perturbation and apply again to

get:

|y+,�(t)i=

Â
l ,k,a,b

˜E+

⇣
DW(k)

(h)

⌘
˜E�
⇣
�DW(k)

(b)

⌘
µh ,lµa,bOk

lO
k
ae

�iW(b)
g |bgi |gi

Now we apply the IR transition dipole to the ground state

ˆµIR |y0

(t)i=dge�iW(h)
g t
⇣p

h |h �1gi+
p

h +1 |h +1gi
⌘
|gi

which we then combine together with the perturbed wavefunction to get:
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1

w2

g dg
EIR(t) =

p
h Â

l ,k,a

˜E+

⇣
DW(k)

(h)

⌘
˜E�
⇣
�DW(k)

(h�1)

⌘
µh ,lµa,h�1

⇥Ok
lO

k
ae

iwg t

+
p

h +1 Â
l ,k,a

˜E+

⇣
DW(k)

(h)

⌘
˜E�
⇣
�DW(k)

(h+1)

⌘
µh ,lµa,h+1

⇥Ok
lO

k
ae

�iwg t

if we assume the 0th state initially it gets a little simpler:

1

w2

g dg
EIR(t) =

Â
l ,k,a

˜E+

⇣
DW(k)

(0)

⌘
˜E�
⇣
�DW(k)

(1)

⌘
µ
0,lµa,1

⇥Ok
lO

k
ae

�iwg t

which is certainly more complicated than before. What does this signal look like in the Condon

approximation?

1

µ2

0

w2

g dg
EIR(t) =

Â
k

˜E+

⇣
DW(k)

(0)

⌘
˜E�
⇣
�DW(k)

(1)

⌘

⇥Ok
0

Ok
1

e�iwg t
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which in the impulsive limit

˜E(w) = E
0

reduces to:

EIR(t) = µ2

0

w2

g dgE
2

0

Â
k
Ok
0

Ok
1

e�iwg t

= µ2

0

w2

g dgE
2

0

h0g |1gie�iwg t = 0

So in the impulsive limit and with a non-Condon transition dipole moment, there is no IR emission

on resonant excitation.

4.3.2 SIMULATIONS OF NON CONDON HEATING

We now have three relevant parameters. Assuming we’re working with Gaussian moments, we can

call the first the pulse width but measured here by the ratio of amplitude for the 0! 1 to the 0! 0

transition. Then, the ratio of the laser’s energy in the 0! 0 transition to the vibrational energy:

t =
˜E�
⇣
�DW(0)

(1)

⌘

˜E+

⇣
DW(0)

(0)

⌘
(4.3.9)

k =
µ
0

˜E+

⇣
�DW(0)

(0)

⌘

h̄wg
(4.3.10)

and then of course c.

We decide to integrate Schrodinger’s equation directly because all orders of perturbation that

end up in the ground electronic state will give IR signal. We want to explore an experimental

protocol for determining whether there is a linear transition dipole as discussed above.

We want to describe how the ground state of vibrational system can be heated up through the

continuous application of a varying transition dipole moment. We showed above that to second

order in perturbation theory, there is a definitive heating of the ground state mode. We will
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4.3. Mode Heating

mathematically show heating as being the average of the vibrational quanta:

n̄(t) = Â
n
n
��hg|hng |Y(t)i��2

But then what does the time-dependent wavefunction look like? We’re interested in the exact

picture. The interaction Hamiltonian is

ˆH 0(t) = E(t)(|gihe|+ |eihg|)µ(x)

and the time-independent Hamiltonian is as above:

H
0

= Â
n
h̄wg

✓
n+

1

2

◆
|ngi |gihg|hng | (4.3.11)

+Â
m

✓
h̄we

✓
m+

1

2

◆
+we

◆
|mei |eihe|hme | (4.3.12)

If we turn the electronic degrees of freedom, putting it into Matrix form, we then have:

ˆH(t) =

2

64
Hg(x) E(t)µ(x)

E(t)µ(x) He(x)

3

75

no that won’t work since the coefficients of the Pauli matrices won’t commute...

Let’s think about this in terms of time-dependent coefficients. We assume the following form of

the time-varying wavefunction:

|Y(t)i= Â
a
Ga(t) |agi |gi+Â

b
Eb(t) |bei |ei
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This can be re-cast as a matrix problem,

d
dt

2

64
Ga(t)

Eb(t)

3

75=� i
h̄

2

64
W(a) E(t)µb

a

E(t)µb
a Wb

3

75 ·

2

64
Ga(t)

Eb(t)

3

75

Let’s look, now at µb
a . In the Condon approximation it’s

µ
0

Ob
a

If instead we have

µ(x) = µ
0

(1+lx)

= µ
0

�
1+ c

�
a+a†

��

µb
a = µ

0

⇣
Ob
a+ c

⇣p
aOb

a�1

+
p
a+1Ob

a+1

⌘⌘

4.4 RESULTS

So we look at two cases: c= 0.0001 as effectively zero and c= .1 for a Huang Rhys Parameter of

0.8.

Unfortunately, there is no qualitative difference, here, between the two Figures 4.2 and 4.3

despite the fact that they are 5 orders of magnitude in c away from each other, so we conclude that

there is likely not a way to discriminate between these two situations using IR spectroscopy. We

suspect it would be more fruitful to look into resonance Raman

39

as a distinguishing method.
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4.4. Results

Figure 4.1: This is a representative plot of the average value of the ground and excited state vibrational quan-
tum number of a system with S=0.8 and a nonzero c, while a laser interacts with it. The heating is notable in
both wells and we’d expect to be able to see signatures of this heating.
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Figure 4.2: This is a plot of the spectral power at the frequency of the ground vibrational state for c = 0.0001
as a function of t and k for S= 0.8
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4.4. Results

Figure 4.3: This is a plot of the spectral power at the frequency of the ground vibrational state for c= 0.1 as a
function of t and k for S= 0.8
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5
Decoherence and Heating in Molmer Sorenson

Gates because of Non-Condon Transition Dipoles

ABSTRACT

Molmer Sorenson gates have emerged as a promising architecture for Quantum computing in

recent years. Theoretical treatments of the architecture implicitly make the approximation that

transitions between electronic states do not alter the nuclear state. This approximation, sometimes

called the Condon approximation, is very often valid but recent scholarship suggests that

non-trivial transition dipole moments are important for physics in many different systems. We

investigate here the effect such a perturbation would have on a Molmer-Sorenson gate and estimate

its effect.

5.1 INTRODUCTION

The idea of using trapped ions for quantum computing has been around for a long time

34,46

but one

of the most promising turned out to be the architecture proposed by Molmer and Sorenson in

1999

47

which then began to be achieved experimentally soon after

36,56

.

One of the problems turned out, however, to be heating during the operation of the gate

2,16,24

.

The ability of the gate to perform universal quantum computation depends on the system’s

vibrational quantum number staying reasonably constant. Much work looked at possible
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5.1. Introduction

mechanisms for observed heating including r.f. heating

53

and micromotion.

The basic Hamiltonian is, as laid out by Molmer and Sorenson

47

.

ˆH = ˆH
0

+ ˆH
int

ˆH
0

= h̄n
✓
â†â+

1

2

◆
+

h̄weg

2

Â
i

szi

ˆH
int

= Â
i

h̄Wi

2

⇣
s+iei[hi(â†+â)�wit] +s�ie�i[hi(â†+â)�wit]

⌘

To which we will focus on

ˆH
int

. The form supplied in these equations makes the tacit assumption

that the transition strength is constant with respect to the nuclear configuration of the system; the

only nuclear component of the transition comes from the recoil operator(e�ihi(â†+â)
) coming from

the laser momentum projected onto the direction of the trap. Put another way, the actual Rabi

frequency Wi approximately does not change with vibrational state. Condon first articulated this

approximation

9

for molecular spectra in 1928 but recent scholarship has shown lots of ways this

approximation can lead to incorrect interpretation of experiments involving electronic

transitions

20,33,58

. In particular, because (if one thinks of things in the position basis) a transition

dipole variation such as this will deform the wavefunction upon application, this does imply that

the system is heated upon laser excitation if this is indeed the case. Since Heating is a constant

problem for the operation of any quantum computer, we take it upon ourselves to investigate the

effect a variation in transition dipole will have on a Molmer-Sorenson type System.

Mathematically, this means we are taking Wi and adding a position dependence which can then
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Transition Dipoles

be decomposed into creation and annihilation operators

Wi ! Wiµ(x) (5.1.1)

µ(x) = µ
0 Â
i=0

k(i)xi (5.1.2)

= µ
0 Â
i=0

c(i)
�
â+ â†

�i
(5.1.3)

We assume that c(1) = 0 and all odd numbered corrections because the excited vibrational manifold

is no different than the excited vibrational manifold so only symmetric orders in x should

physically be present. Furthermore, and linear dependence would directly effect the calculated

Rabi Frequency

˜W but we are looking for an insipid effect to explain heating, not a major effect

that should have been noticed by now.

We then explore a rather drastic shift and set c(2) = .1 and explore the effect it would have on the

dynamics of the system. To wit, we recreate Figure 2 in

47

with this system in our Figure 5.2. This

is a very large effect which would doubtless make a system completely unusable.

We next look at the Fidelity

3

of the state compared to the ideal, unitary dynamics for multiple

values of c(2) from 10

�5 ! 1 and plot the result in Figure 5.3. As would be expected, small

corrections don’t induce much of a problem at all, but larger correction have the potential to affect

the fidelity a great deal.

Another way of looking at this would be the average quantum number of the gate during

operation and we plot that for the same values of c(2) in Figure 5.4. The laser beam appears to

impart some heat at the beginning based on the value of c(2) but the value is not much. What is

increasing is the variation in the expected quantum number. If we calculate, instead, the standard

deviation of the vibrational quantum number, there is a clear trend up as c(2) goes up as seen in

Figure 5.5
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5.1. Introduction

Figure 5.1: This is a reproduction of Figure 2 from the original paper by Molmer and Sorenson where they
proposed using a gate which operates like this to perform quantum computations. Any needed state is accessi-
ble by turning o� the excitation lasers at a given time during operation.
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Transition Dipoles

Figure 5.2: This is what Figure 2 from the original paper by Molmer and Sorenson would have looked like with
a large quadratic term in the transition dipole µ(x). Note that the nice unitary dynamics are almost completely
gone. This is not due, however, to heating but tot he
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5.1. Introduction

Figure 5.3: This show on a log scale the deviation from the ideal unitary dynamics for various values of c(2).
Notably, the larger the value of c(2), the greater the deviation. The e�ect is still not very big.

100



Chapter 5. Decoherence and Heating in Molmer Sorenson Gates because of Non-Condon

Transition Dipoles

Figure 5.4: This show on a log scale the expected value of the vibrational quantum number during gate oper-
ation, for various values of c(2). Once again, the larger the value of c(2), the greater the amount of heating but
oddly, compared to such e�ects in ultrafast systems, the system very quickly reaches the higher level of heat,
and then very slowly declines as the laser continues operation. This e�ect is also not terribly large
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Figure 5.5: This show on a linear scale the standard deviation of the vibrational quantum number during gate
operation, for various values of c(2). There is a very clear increasing relationship between this variation and c(2).
This increases uncertainty in the state of the gate when the laser is turned o�.
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Transition Dipoles

5.2 TYPICAL VALUES FOR c(i)

If we take Yb+, and do a back of the envelope calculation. The

5.3 CONCLUSION

We have shown the effect that a term quadratic in the nuclear position on the transition operator,

can do to the fidelity of a Molmer-Sorenson gate. Values of this term are, however, likely not large

enough to be of any concern to experimentalists as they are very small. As trap frequencies get

higher and traps begin to include more and more atoms, this effect could potentially cascade and

cause problems for future implementations of trapped-ion quantum computers.

5.4 SUPPLEMENTAL MATERIAL

5.4.1 RABI FREQUENCY

We want to see how this will nuclear dependence of the transition dipole will affect the calculated

Rabi Frequency (to second order). The formula in the original paper is

✓
˜W
2

◆
2

=
1

h̄2

����Â
m

heen|H
int

|mihm|H
int

|ggni
Eggn+ h̄wi�Em

����
2

Our H
int

for this derivation will assume h = hi = h
2

and W = W
1

= W
2

and has the added

vibrational transition dipole moment f (z)

ˆH
int

=
h̄W
2

Â
i

⇣
f (z)s+iei[h(â

†+â)�wit] + f ⇤(z)s�ie�i[h(â†+â)�wit]
⌘

now we act this on the appropriate states:
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ˆH
int

|ggni= h̄W
2

f (z)eih(â
†+â) �|egnie�iw

1

t + |genie�iw
2

t�

ˆH
int

|eeni= h̄W
2

f ⇤(z)e�ih(â†+â) �|egnieiw2

t + |genieiw1

t�

if we do as the paper does and restrict m to be |egn+1i , |gen�1i

hgen�1| ˆH
int

|ggni= h̄W
2

hgen�1| f (z)eih(â†+â) �|egnie�iw
1

t + |genie�iw
2

t�

=
h̄W
2

hn�1| f (z)eih(â†+â) |nie�iw
2

t

hegn+1| ˆH
int

|ggni= h̄W
2

hegn+1| f (z)eih(â†+â) �|egnie�iw
1

t + |genie�iw
2

t�

=
h̄W
2

hn+1| f (z)eih(â†+â) |nie�iw
1

t

then the de-excitations from the doubly excited state

hgen�1| ˆH
int

|eeni= h̄W
2

hgen�1| f ⇤(z)e�ih(â†+â) �|egnieiw2

t + |genieiw1

t�

=
h̄W
2

hn�1| f ⇤(z)e�ih(â†+â) |nieiw1

t

hegn+1| ˆH
int

|eeni= h̄W
2

hegn+1| f ⇤(z)e�ih(â†+â) �|egnieiw2

t + |genieiw1

t�

=
h̄W
2

hn+1| f ⇤(z)e�ih(â†+â) |nieiw2

t

Now is the time to think. Our vibrational correction to the electronic transition moment, should

only have even corrections to it. And Molmer and Sorenson only expanded the laser recoil operator

out to first order, meaning a typical matrix element from above will look like:

hn+1| f ⇤(z)e�ih(â†+â) |ni ⇡ �ih hn+1| f ⇤(z)�â†+ â
� |ni
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and since f will look like this:

f (z) = 1+ c(2)
�
â†+ â

�
2

= 1+ c(2)
�
â†â†+ ââ†+ â†â+ ââ

�

quick math aside:

[â, â†] = 1

ââ†� â†â= 1

ââ†� ˆN = 1

ââ† = 1+ ˆN

f (z) = 1+ c(2)
�
â†â†+

�
1+ ˆN

�
+ ˆN+ ââ

�

= 1+ c(2) +2c(2) ˆN+ c(2)
�
â†â†+ ââ

�

So this indicates that we must be very careful when adding an f (z) term as we’re trying to imply

an effect that hasn’t been seen before, so we ought to renormalize and keep the Rabi Frequency the

same as what we saw before we knew there was a polynomial transition dipole.

f (z) = 1� c(2)(1+2n̄
0

)+ c(2)
�
â†+ â

�
2

5.4.2 PROPER UNITARY DYNAMICS

According to Molmer and Sorenson’s original paper, when you input both detunings to both ions,

you get the following dynamics which are essentially a quantum process matrix... after a little bit
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of algebra

|ggi ! cos

✓
˜WT
2

◆
|ggi+ isin

✓
˜WT
2

◆
|eei

|eei ! cos

✓
˜WT
2

◆
|eei+ isin

✓
˜WT
2

◆
|ggi

|gei ! cos

✓
˜WT
2

◆
|gei� isin

✓
˜WT
2

◆
|egi

|egi ! cos

✓
˜WT
2

◆
|egi� isin

✓
˜WT
2

◆
|gei

If we want to know what the density matrix elements are, this requires some more work: being a

bit more mathematically precise we get:

U(T ) |ggi= cos

✓
˜WT
2

◆
|ggi+ isin

✓
˜WT
2

◆
|eei

U(T ) |eei= cos

✓
˜WT
2

◆
|eei+ isin

✓
˜WT
2

◆
|ggi

U(T ) |gei= cos

✓
˜WT
2

◆
|gei� isin

✓
˜WT
2

◆
|egi

U(T ) |egi= cos

✓
˜WT
2

◆
|egi� isin

✓
˜WT
2

◆
|gei
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which will give us the elements ofU(T ),

hgg|U(T ) |ggi= cos

✓
˜WT
2

◆

hee|U(T ) |ggi= isin
✓

˜WT
2

◆

hee|U(T ) |eei= cos

✓
˜WT
2

◆

hgg|U(T ) |eei= isin
✓

˜WT
2

◆

hge|U(T ) |gei= cos

✓
˜WT
2

◆
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◆

heg|U(T ) |egi= cos

✓
˜WT
2

◆

hge|U(T ) |egi=�isin
✓

˜WT
2

◆

so there are all the nonzero elements of the time-evolution operator.

U(T ) =

2

6666666664
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⇣
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0 0 isin

⇣
˜WT
2

⌘

0 cos
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0 �isin
⇣

˜WT
2

⌘
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⌘
0
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⇣

˜WT
2

⌘
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⇣
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2

⌘

3

7777777775
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You can see from above thatU†U = I as we would expect And we can use this operator to

calculate the time-dependent density matrix through:

r(T ) = |Y(T )ihY(T )|

=U(T ) |Y(0)ihY(0)|U†(T )

=U(T )r(0)U†(T )
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6
Getting Down to the Heart of Matter

Apart from minor modifications, this chapter originally appeared as:

“Getting Down to the Heart of Matter”. Goodknight, Joseph and Aspuru-Guzik Alan, Science

(In Press)

ABSTRACT

Spectroscopy exploits the electromagnetic field to interrogate the properties of matter. If laser

pulses are employed, in general, one can gain more information about matter the more laser pulses

involved. Therefore, one of the main goals of the field has been the detection of signals involving

many light-matter interaction events. Spencer et. al. report in Nature Communications

48

on the

newest form of laser spectroscopy on the block: GAMERS (gradient-assisted multidimensional

electronic Raman spectroscopy) and its application to several dye molecules. GAMERS uses 6

pulses to measure perhaps the most complex multidimensional spectroscopic signals yet obtained.

GAMERS allows for the possibility of obtaining intricate detail on the coupling of electronic states

to nuclear vibrational motion. Through this newly-gained insight into electron-nuclear coupling,

GAMERS is poised to provide new information related to quantum dynamics involving perovskite

solar cells

64

, singlet fission materials

6

, quantum nanostructures

5

, and photosynthestic

complexes

12

. All of these systems exhibit details of the electronic-vibrational interactions that

require further exploration and that have been the subject of several discussions in the literature.

Once pulsed lasers became available in the mid-20th century, the movement of molecules was
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subject to scrutiny. The most basic spectroscopies which accomplishes this are those in the family

of pump-probe methods. Pump probe techniques employ one laser beam to excite the molecule

and then another which comes in after some time to probe what has happened since the pump.

Pump probe gave many insights into chemical dynamics, and culminated in the 1999 Nobel Prize

to Ahmed Zewail for his work in the field

63

.

As pulses become shorter, so does the energy range they have to cover owing to the time-energy

uncertainty principle DEDt � h̄
2

. Once ultra-fast pulses became commonplace, experimentalists

began to replace the one pump (and probe) beam with two beams which, through controlling the

spacing and careful data analysis, allowed different initial states to be created, and different final

states detected.

These 4-pulse techniques are called 2D spectroscopies because of the two time-dimensions

scanned: one in between the two pumps and the other between the two probes. This process

generates a “map” of the energy that flows in, to the energy output detected as a function of the

time gap between the pairs, providing great amounts of detail to study energy transfer during that

gap. 2D techniques were first used in NMR, but eventually were employed in the Infrared to learn

about many things about chemical vibrations

32

and eventually in electronic spectroscopy to learn

about electronic energy transfer in many different systems, including photosynthetic light

harvesting systems

12,22,45

.

The experiments on photosynthetic complexes discussed above generated a lot of discussion as

they suggested that in certain cases, electronic excited states might be in a quantum coherent

superposition that lasted long enough to transport like a wave, instead of like a particle–which

would be slower–through an array of chromophores. If true, biomolecular engineering for

sustaining wavelike transport, would be a of interest for basic and applied research. A use that

would hopefully begat better light collection devices. Other groups, however, have emphasized the
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role of molecular vibrations

52

. Enter the group of Prof. Elad Harel who we hope may have

developed the methodology for finally settling this matter

48

.

Austin Spencer, William Hudson and Prof. Harel have managed the complicated task of adding

yet another pulse to a 2D Electronic spectroscopy. This additional pulse controls the initial

vibrational state of the molecule. During the time between between the first and the second pulse,

the vibrational state changes. By looking at the subsequent changes to the electronic coupling

based on the starting vibrational state, Harel’s team can determine how vibrations change the

electronic coupling, which is not generally possible with other spectroscopies.

If one were to use traditional setups, a full set of data collection for a GAMERS experiment

would require over a week to collect all necessary data points. That is technically very challenging

because state of the art lasers are not guaranteed to be stable enough for that period of time.

Therefore, a 6-pulse spectroscopy would be out of the question, if not for the ingenious GRAPES

method developed by Harel, Engel and co-authors in 2011

18

for 4 pulse spectroscopy. Instead of

delaying two beams by physically changing the beam path and measuring in the same location,

GRAPES tilts the two beams relative to each other (see beam 2 and 3 in Fig. 1) and takes the

detection as a 2D image, thus performing all the necessary experiments at once and drastically

reducing the time to solution. GAMERS uses the GRAPES technique for the delay between the

middle two pulses, thus reducing the acquisition time from a week to mere hours.

There are some drawbacks, however. The GAMERS protocol requires a molecular vibration

which is Raman-active. A Raman active vibration is one that allows light to scatter, losing energy

to the vibration but not every vibration can accomplish this with a strong-enough signal.

Furthermore, while there is no doubt that this is an experimental tour-de-force and some very

useful information will come out, there is work to be done on the theory front to understand

precisely what information GAMERS encodes. It may be particularly useful to consider GAMERS
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in the context of Quantum-Process Tomography

62

as the addition of more pulses makes the

experiment probe more elements of the Quantum Process matrix.

The real power of GAMERS will be, as mentioned before, in its application for the

understanding of several photophysical processes involved in systems related to light-harvesting

processes and optoelectronics. We hope those experiments are forthcoming soon.

Figure 6.1: Reprinted and adapted from the original paper48. a The top is a diagram of the 5 separate laser
pulses focusing in to the target. The bottom part of the figure showing pulse the pulses coming in to the sys-
tem; it also gives a sense for the experimental complexity involved: at minimum, T

0

, t and T all have to be
scanned without GRAPES18. Note the tilt between beams 1 and 2 in the circular inset, which is GRAPES’
hallmark. Also note that the 0th pulse interacts with the system twice, which is why GAMERS is considered
a 6-pulse experiment. b An example of the kind of 4-dimensional data they get, showing correlations between
energy levels wherever there is signal where the pump(x) frequency is di�erent from the probe(y) frequency.

114



7
Other Methods of Electronic Spectroscopy

7.1 TRANSIENT GRATING AS A WITNESS FOR ELECTRONIC COHERENCE

The work which came before me in References

23,60

was all using Pump-Probe Spectroscopy as

the Tool. But then Juergen Hauer came to my collaborator Jacob Krich and wanted to know if he

could perform the suggested electronic coherence witness with transient grating instead? WE then

worked to see if it was possible.

7.1.1 PUMP PROBE

First a review on Pump Probe. Two beams coming at a target from different directions, separated

by a time T , the signal comes out in the same direction as the second (or probe, pr) beam.

Signal Ket Interactions Bra Interactions Name

1 pu+, pu-, pr+ none Ground State Bleach 1

2 pu+, pr+ pu+ Excited State Absorption

3 pu+ pu+, pr- Stimulated Emission

4 pr+ pu+, pu- Ground State Bleach 2
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E
1

(t) = ihy
0

(t)| ˆµ |y
pu+, pu-, pr+

(t)i (7.1.1)

E
2

(t) = ihy
pu+

(t)| ˆµ |y
pu+, pr+

(t)i (7.1.2)

E
3

(t) = ihy
pu+, pr-

(t)| ˆµ |y
pu+

(t)i (7.1.3)

E
4

(t) = ihy
pu+, pu-

(t)| ˆµ |y
pr+

(t)i (7.1.4)

E
pp

(t) = E
1

(t)+E
2

(t)+E
3

(t)+E
4

(t) (7.1.5)

S
pp

(T ) =?2Re

Z
E⇤
pp

(t)E
pr+

(t)dt
�

(7.1.6)

7.1.2 TRANSIENT GRATING

There are three input beams all at different directions. The signal is then measured in the

k
1

� k
2

+ k
3

direction via means of a spectrometer or a 4th local oscillator beam. This allows a

spectrum to be taken for every value of T because in a pump probe experiment, generally the local

oscillator beam would be too intense to place a spectrometer in the path of the probe beam. The

same effect can be had, however, by scanning the 4th local oscillator beam in time to get a signal in

t
3

and then Fourier transforming. Thus what comes out is essentially a different absorption

spectrum for every value of T . The terms in the grand electric field expansion are pretty much the

same as pump probe with 1/2 substituting for pump and 3 substituting for probe and, if used, also

the local oscillator 4 beam.
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Signal Ket Interactions Bra Interactions Name

a 1+, 2-, 3+ none Ground State Bleach 1

b 1+, 3+ 2+ Excited State Absorption

c 1+ 2+, 3- Stimulated Emission

d 3+ 2+, 1- Ground State Bleach 2

Ea(t) = ihy
0

(t)| ˆµ |y
1+, 2-, 3+

(t)i (7.1.7)

Eb(t) = ihy
1+

(t)| ˆµ |y
2+, 3+

(t)i (7.1.8)

Ec(t) = ihy
2+, 3-

(t)| ˆµ |y
1+

(t)i (7.1.9)

Ed(t) = ihy
1+, 2-

(t)| ˆµ |y
3+

(t)i (7.1.10)

E
TG

(T, t) = Ea(t)+Eb(t)+Ec(t)+Ed(t) (7.1.11)

S
TG

(T,w) =

����
Z

E
TG

(T, t)e�wtdt
����
2

(7.1.12)

The last line or signal can differ based on the implementation of the experiment. Sometimes a

local oscillator in the TG direction gets used to smooth out the signal although this comes at a

considerable cost to acquisition time.

But say we do want a smooth signal, and use a local oscillator in the form of a fourth pulse and

translate it’s center forward from the location of the third pulse by an amount t but while

integrating the emitted electric field along laboratory time t to smooth out the signal:

S
TG

(T,t) =
Z

E
4

(t� t) ·E
TG

(t)dt (7.1.13)
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If, however, we have a spectrometer in front of the signal we’d be measuring the Fourier transform:

˜S
TG

(T,w) =
Z

eiwt
Z

E
4

(t� t) ·E
TG

(T, t)dtdt (7.1.14)

which we can manipulate to our advantage:

˜S
TG

(T,w) =
Z ✓Z

eiwtE
4

(t� t)dt
◆
·E

TG

(T, t)dt (7.1.15)

substitute u= t� t

˜S
TG

(T,w) =�
Z ✓Z

eiw(u+t)
Z

E
4

(u)du
◆
·E

TG

(t)dt (7.1.16)

=�
✓Z

eiwuE
4

(u)du
◆
·
✓Z

eiwtE
TG

(t)dt
◆

(7.1.17)

=� ˜E
4

(T,w) · ˜E
TG

(T,w) (7.1.18)

Notice we left out the dependence on T until the end: sorry about that. But what is the form of this

Fourier transform? Assuming a standard Gaussian beam

E
4

(t) =
Ap
2ps2

e�iwc(t�T )e�
(t�T )2

2s2

(7.1.19)

˜E
4

(w) =
Z •

•
E
4

(t)eiwtdt (7.1.20)

=
Ap
2ps2

Z •

•
e�iwc(t�T )e�

(t�T )2

2s2 eiwtdt (7.1.21)

= AeiwT e�
1

2

s2(w�wc)2
(7.1.22)

but if for whatever reason, we were to have defined the Fourier Transform integral as being using
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e�iwt
, we’d get something different

˜E 0
4

(w) = Ae�iwT e�
1

2

s2(w+wc)2
(7.1.23)

So what are the relationships between these two different methods?

˜E 0
4

(�w) = ˜E
4

(w) (7.1.24)

7.1.3 PUMP PROBE EQUIVALENCE WITH TRANSIENT GRATING

It is often said that we could integrate the transient grating signal to get the pump probe signal.

How is that?

S
TG

(T,w) =
Z

eiwt
Z

E
4

(t� t) ·E
TG

(t)dtdt (7.1.25)

Z
S
TG

(T,w)dw =
Z Z

eiwt
Z

E
4

(t� t) ·E
TG

(t)dtdtdw (7.1.26)

=
Z Z Z

eiwtdw
�
E
4

(t� t) ·E
TG

(t)dtdt (7.1.27)

=
Z Z

2pd (t)E
4

(t� t) ·E
TG

(t)dtdt (7.1.28)

= 2p
Z

E
4

(t) ·E
TG

(t)dt (7.1.29)

7.1.4 PUMP PROBE FACSIMILES

There may come a time when you do not have access to the full, phased transient grating signal:

you may be performing a transient grating experiment with just a spectrometer in the direction of
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the signal output.

S
J

(T,w) =
��
˜ETG(w,T )

��n
(7.1.30)

=

����
Z

eiwtETG(t,T )dt
����
n

(7.1.31)

=

����
Z

eiwtETG(t,T )dt
Z

e�iwt 0E⇤
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0,T )dt 0
����

n
2

(7.1.32)

=

����
Z Z

eiw(t�t 0)ETG(t,T )E⇤
TG(t

0,T )dtdt 0
����

n
2

(7.1.33)

=
��
˜ETG(w,T ) ˜E⇤TG(w,T )

�� n2
(7.1.34)

Now we would take an integral over the frequency space to try and understand this. I use S instead

of S for this pump probe because it’s kind of like S, but not quite.

SPP(T ) =
Z

S
J

(T,w)dw (7.1.35)

=
Z ��

˜ETG(w,T )
��n dw (7.1.36)

=
Z �

˜ETG(w,T )
⇥
˜ETG(w,T )

⇤⇤� n
2 dw (7.1.37)

=
Z ⇣

¬
⇥
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⇤
2�¡

⇥
˜ETG(w,T )

⇤
2

⌘ n
2 dw (7.1.38)

=
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¬
⇥
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⇤
+¡

⇥
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¬
⇥
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⇤�¡
⇥
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(7.1.39)

Let’s simplify by making the simplification ETG(t,T ) = f (t,T )

SPP(T ) =
Z ⇥�

¬
⇥
˜f (w,T )

⇤
+¡

⇥
˜f (w,T )

⇤��
¬
⇥
˜f (w,T )

⇤�¡
⇥
˜f (w,T )

⇤�⇤ n
2 dw (7.1.40)
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Let’s look at these separately since things are getting crowded
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and the other one:
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with that last step just being so we can recombine the two integrals
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=
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Z Z ⇣
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wt 0 � p

4

⌘
¬
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⇤
+ sin
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wt 0+

p
4

⌘
¡
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⌘
¡ [ f (t)]

⌘
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=
�1

2p

Z Z
¬
⇥
f (t 0)

⇤
¬ [ f (t)]

�
sin(w(t� t 0))� cos(w(t+ t 0))

�
+ (7.1.55)
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⇥
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⇤
¡ [ f (t)]

�
sin(w(t+ t 0))� cos(w(t� t 0))

�
+ (7.1.56)

¡
⇥
f (t 0)

⇤
¬ [ f (t)]

��sin(w(t� t 0))� cos(w(t+ t 0))
�
+ (7.1.57)

¡
⇥
f (t 0)

⇤
¡ [ f (t)]

�
sin(w(t+ t 0))� cos(w(t� t 0))

�
dtdt 0 (7.1.58)

7.1.5 EXPERIMENTAL CONSIDERATIONS

If an experimentalist puts the output of a TG experiment into a spectrometer AND include a local

oscillator beam at the same time as the third pulse, you would then be measuring:

I(w) = ILO(w)+2¬ [E⇤
TG(w)ELO(w)]+ ITG(w)

It is easy to measure ILO(w) by just putting it in the spectrometer by itself. Then, we can assume

that ITG(w)<< 2¬ [E⇤
TG(w)ELO(w)] because we expect the power of the laser to be very high.

Which means the experimenter will be measuring just the interference term:

I(w) = 2¬E⇤
TG(w)ELO(w)
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Chapter 7. Other Methods of Electronic Spectroscopy

But is there a way to extract the magnitude of the transient grating electric field from just this

measured intensity? Generally the Local oscillator signal will look like a very general Gaussian:

ELO(t) = E
0

e�
(t�T )2

2s2 e�i(wc(t�T )+fLO(w))

˜ELO(w) = E 0
0

eiwT e�if(w)e�
s2

2

(w�wc)
2

or more generally, if all we know is that the laser beam is centered at a specific time T :

ELO(t) =V (t�T )

˜ELO(w) = ˜V (w)eiwT

= | ˜ELO(w)|eiwT�ifLO(w)

But we don’t want that constant phase factor as we don’t really know what it is; it is rather hard to

measure. We can, however, get rid of it. If we take the frequency signal and Fourier transform it

into the time-domain (we’ll call the resultant function B), we’ll get:

B(t) = 2

Z
e�iwt¬ [E⇤

TG(w)ELO(w)]dw

= 2

Z
e�iwt¬

h
|ETG(w)|e�ifTG(w) |ELO(w)|ei(wT�fLO(w))

i
dw

= 2

Z
e�iwt |ETG(w)| |ELO(w)|¬

h
e�ifTG(w)ei(wT�fLO(w))

i
dw

= 2

Z
e�iwt |ETG(w)| |ELO(w)|cos(wT +f(w))dw
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7.1. Transient Grating as a Witness for Electronic Coherence

where f(w) = fTG(w)�fLO(w))to make things easier to write, I will define

A(w) = |ETG(w)| |ELO(w)|

B(t) = 2

Z
e�iwtA(w)cos(wT +f(w))dw

=
Z

e�iwtA(w)
⇣
e�i(wT+f(w)) + ei(wT+f(w))

⌘
dw

=
Z

A(w)
⇣
e�i(w(t+T )+f(w)) + e�i(w(t�T )�f(w))

⌘
dw

=
Z ⇣

A(w)e�i(w(t+T )+f(w)) +A(w)e�i(w(t�T )�f(w))
⌘
dw

=
Z ⇣

A(w)e�if(w)e�iw(t+T ) +A(w)eif(w)e�iw(t�T )
⌘
dw

= ˜A�(t+T )+ ˜A+(t�T )

which we can then filter out one of these terms numerically to get B0(t):

B0(t) = ˜A+(t�T )

This does assume that there will be two distinct humps of signal centered at the positive and

negative time of the Local oscillator. Assuming this is true, then we Fourier transform back into

frequency space:

C(w) =
Z

eiwt
˜A+(t�T )dt

= A(w)e�i(wT+f(w))

Which we can then take the absolute value of:

|C(w)|= A(w) = |ETG(w)| |ELO(w)|
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Chapter 7. Other Methods of Electronic Spectroscopy

and divide by the relatively easily measurable |ELO(w)|

|C(w)|
|ELO(w)| = |ETG(w)|

and we now have the transient grating intensity without the effect of the phase of the pulse messing

it up at all.

7.1.6 DELTA-FUNCTION PULSE LIMIT FOR A TWO LEVEL SYSTEM WITH ONE VIBRATIONAL

COORDINATE

We now want to ask ourselves, what is the precise form of ETG(w) when the pulses used to

generate it are delta-functions. Let us remember what goes into the delta function pulses:

Signal Ket Interactions Bra Interactions Name

a 1+, 2-, 3+ none GSB

b 1+, 3+ 2+ ESA

c 1+ 2+, 3- SE

d 3+ 2+, 1- GSB

Ea(t) = ihy
0

(t)| ˆµ |y
1+, 2-, 3+

(t)i (7.1.59)

Eb(t) = ihy
1+

(t)| ˆµ |y
2+, 3+

(t)i (7.1.60)

Ec(t) = ihy
2+, 3-

(t)| ˆµ |y
1+

(t)i (7.1.61)

Ed(t) = ihy
1+, 2-

(t)| ˆµ |y
3+

(t)i (7.1.62)

E
TG

(T, t) = Ea(t)+Eb(t)+Ec(t)+Ed(t) (7.1.63)

We can borrow liberally from our earlier work on pump probe.

125



7.1. Transient Grating as a Witness for Electronic Coherence

|y
0

(t)i= e�iw(h)t |hgi |gi (7.1.64)

|y
1+(t)i=� i

h̄
E
0

µÂ
j
O j

he�iw( j)t | jei |ei= |y
2+(t)i (7.1.65)

|y
3+(t)i=� i

h̄
E
0

µe�iw(h)TH(t�T )Â
j
O j

he�iw( j)(t�T ) | jei |ei (7.1.66)

|y
1+,2�(t)i=� 1

h̄2
E2

0

µ2e�iw(h)t |hgi |gi (7.1.67)

|y
1+,3�(t)i=� 1

h̄2
E2

0

µ2H(t�T )Â
j,k
O j

hO
j
ke

�iw( j)T e�iw(k)(t�T ) |kgi |gi (7.1.68)

|y
1+,2�,3+(t)i= i

h̄3
E3

0

µ3e�iw(h)TH(t�T )Â
j
O j

he�iw( j)(t�T ) | jei |ei (7.1.69)

Now we can begin to calculate the components.

Ea(T, t) = ihy
0

(t)| ˆµ |y
1+, 2-, 3+

(t)i (7.1.70)

= i
�
e�iw(h)t |hgi |gi

�
†

ˆµ

 
i
h̄3

E3

0

µ3e�iw(h)TH(t�T )Â
j
O j

he�iw( j)(t�T ) | jei |ei
!

(7.1.71)

=� 1

h̄3
E3

0

µ4eiw(h)te�iw(h)TH(t�T )Â
j
O j

hO
j
he�iw( j)(t�T )

(7.1.72)

=� 1

h̄3
E3

0

µ4H(t�T )Â
j
O j

hO
j
he

�iw( j)
(h)(t�T )

(7.1.73)
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Chapter 7. Other Methods of Electronic Spectroscopy

on to the b signal... except it’s zero because this is two level system. Instead we continue with c:

Ec(t) = ihy
2+, 3-

(t)| ˆµ |y
1+

(t)i (7.1.74)

= i

 
� 1

h̄2
E2

0

µ2H(t�T )Â
j,k
O j

hO
j
ke

�iw( j)T e�iw(k)(t�T ) |kgi |gi
!

†

ˆµ

 
� i
h̄
E
0

µÂ
l
Ol

he
�iw(l)t |lei |eiv

!

(7.1.75)

=� 1

h̄3
E3

0

µ4H(t�T ) Â
j,k,l

O j
hO

j
ke

iw( j)T eiw(k)(t�T )Ol
he

�iw(l)tOl
k (7.1.76)

=� 1

h̄3
E3

0

µ4H(t�T ) Â
j,k,l

O j
hO

j
kO

l
hO

l
ke

iw( j)
(k)T e�iw(l)

(k)t
(7.1.77)

Well... THAT is not pretty but it is what it is. Now for the final signal:

Ed(t) = ihy
1+, 2-

(t)| ˆµ |y
3+

(t)i (7.1.78)

= i
✓
� 1

h̄2
E2

0

µ2e�iw(h)t |hgi |gi
◆

†

ˆµ

 
� i
h̄
E
0

µe�iw(h)TH(t�T )Â
j
O j

he�iw( j)(t�T ) | jei |ei
!

(7.1.79)

=� 1

h̄3
E3

0

µ4H(t�T )Â
j
O j

hO
j
he

�iw( j)
(h)(t�T )

(7.1.80)

OK, we are all set and ready to continue. I do think it will be good to work in the Fourier

domain instead.

˜f (W,w) =
Z Z

eiWT eiwtH(t�T )ewateWaT dTdt (7.1.81)

=
p
2pd (W+Wa+w +wa)

 �i
W+Wa

+pd (W+Wa)

�
(7.1.82)

We have two options here. We can consider the effect of the Heaviside theta function or just

assume that we don’t care about it for the time being and assume a nice, clean Fourier Transform
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7.1. Transient Grating as a Witness for Electronic Coherence

with two delta functions. We will employ the latter strategy at this point:

˜ESE(W,w) =� 1

h̄3
E3

0

µ4 Â
j,k,l

O j
hO

j
kO

l
hO

l
kd
⇣

W�w( j)
(k)

⌘
d
⇣

w +w(l)
(k)

⌘
(7.1.83)

This is interesting

˜EGSB(W,w) =� 2

h̄3
E3

0

µ4Â
j
O j

hO
j
hd
⇣

W�w( j)
(h)

⌘
d
⇣

w +w( j)
(h)

⌘
(7.1.84)

We are looking for cancellations so we will start with the GSB terms and see if there are matches

in the SE term. Considering that the GSB term is only nonzero when the population and laboratory

time frequencies are the negative of each other, that simplifies things:

˜EGSB

⇣
w( j)
(h),�w( j)

(h)

⌘
=� 2

h̄3
E3

0

µ4Oj
hO

j
h [d (0)]2 (7.1.85)

so we look at similar terms in the stimulated emission signal:

˜ESE

⇣
w( j)
(h),�w( j)

(h)

⌘
=� 1

h̄3
E3

0

µ4Oj
hO

j
hO

j
hO

j
h [d (0)]2 (7.1.86)
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7.1.7 TRANSIENT GRATING FOR A COHERENT MONOMER

Using our previous definitions for the Transient Grating signal, we can begin to calculate the

components.

Ea(T, t) = ihy
0

(t)| ˆµ |y
1+, 2-, 3+

(t)i (7.1.87)

= i
�
e�iw(h)t |hgi |gi
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E3
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j
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he�iw( j)(t�T ) | jei |ei
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(7.1.88)
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he

�iw( j)
(h)(t�T )

(7.1.90)

on to the b signal... except it’s zero because this is two level system. Instead we continue with c:

Ec(t) = ihy
2+, 3-

(t)| ˆµ |y
1+

(t)i (7.1.91)

= i
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(7.1.92)
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h̄3
E3

0

µ4H(t�T )H(t) Â
j,k,l
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hO

j
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iw( j)T eiw(k)(t�T )Ol
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�iw(l)tOl
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=� 1

h̄3
E3

0

µ4H(t�T )H(t) Â
j,k,l

O j
hO

j
kO

l
hO

l
ke

iw( j)
(k)T e�iw(l)

(k)t
(7.1.94)
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Well... THAT is not pretty but it is what it is. Now for the final signal:

Ed(t) = ihy
1+, 2-

(t)| ˆµ |y
3+

(t)i (7.1.95)

= i
✓
� 1

h̄2
E2

0

µ2H(t)e�iw(h)t |hgi |gi
◆

†
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E
0
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!
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=� 1

h̄3
E3
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µ4H(t�T )H(t)Â
j
O j

hO
j
he

�iw( j)
(h)(t�T )

(7.1.97)

7.1.7.1 ANALYZING THE SIGNAL WITHOUT DECAY CONSTANTS: LIMITED COLLECTION

TIME

if instead we keep out the step of introducing decay constants, we will get a different expression:

Sobs(w,T ) = F

�����

Z •

�•
eiwt Â

a,b
Ca,bH(t�T )H(t)eiwateiWbT dt

�����

n

But this won’t do much either. We need to recognize, here, that the spectrometer will only be

measuring the modes for a certain amount of time, making this expression more correct:

Sobs(w,T ) = F

�����

Z TD

0

eiwt Â
a,b

Ca,bH(t�T )eiwateiWbT dt

�����

n

where TD is the amount of time the detector is on for. We can now simplify from here:

S
˜PP(T ) = F 0

Z •

�•

�����Âa,b
Ca,b

eiWbT

w +wa

⇣
ei(w+wa)T � ei(w+wa)TD

⌘�����

n

dw

= F 0
Z •

�•

"

Â
a,b,c,d

Ca,bC⇤
c,d

ei(Wb�Wd)T

(w +wa)(w +wc)

⇣
ei(w+wa)T � ei(w+wa)TD

⌘⇣
e�i(w+wc)T � e�i(w+wc)TD

⌘#n/2
dw

= F 0
Z •

�•

"

Â
a,b,c,d

Ca,bC⇤
c,d

ei(Wb�Wd)T

(w +wa)(w +wc)

⇣
ei(wa�wc)T � ei(wa�wc)TD + · · ·

⌘#n/2
dw

130



Chapter 7. Other Methods of Electronic Spectroscopy

7.1.7.2 ANALYZING THE SIGNAL WITH DECAY CONSTANTS

Now that the signal is all put together, we are left with how to deal with it. In general, we now have

this object:

ETG(t,T ) = Â
a,b

Ca,bH(t�T )H(t)eiwateiWbT
(7.1.98)

but our experimentalist friends are actually only getting the Fourier transform of the laboratory

time variable and on top of that, only the absolute value of the entire thing and then applying some

power to it in processing. So we define the observed signal as

Sobs(w,T ) = F

�����

Z •

�•
eiwt Â

a,b
Ca,bH(t�T )H(t)eiwateiWbT dt

�����

n

(7.1.99)

= F

�����Âa,b
Ca,beiWbT

"
pd (w +wa)+ i

ei(w+wa)T

w +wa

#
dt

�����

n

(7.1.100)

but this is not true, as all good things must come to an end, every signal will decay and indeed, that

fact should make our calculations much easier:

Sobs(w,T ) = F

�����

Z •

�•
eiwt Â

a,b
Ca,bH(t�T )H(t)eiwat�gateiWbT�GbT dt

�����

n

(7.1.101)

= F

�����Âa,b
Ca,beiWbT�(Gb+ga)T

"
egaTH(�T )� ei(w+wa)T (H(�T )�1)

ga� i(w +wa)

#�����

n

(7.1.102)

for the time being, we only consider positive population times because although we can get that

data, I don’t think experimentalists normally do:

Sobs(w,T ) = F

�����Âa,b
Ca,beiWbT�(Gb+ga)T

"
ei(w+wa)T

ga� i(w +wa)

#�����

n

(7.1.103)
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this seems eminently calculable. We know from our previous calculations thatCa,b is entirely real,

but may be negative so we proceed with caution of simplifications involving that term. We also

note that the facsimile we create for the pump probe signal involves integration over the laboratory

time frequency w:

S
˜PP(T ) = F

Z •

�•

�����Âa,b
Ca,b

ei(Wb+w+wa)T�(Gb+ga)T

ga� i(w +wa)

�����

n

dw (7.1.104)

= F
Z •

�•

"

Â
a,b,c,d

Ca,b
ei(Wb+w+wa)T�(Gb+ga)T

ga� i(w +wa)
C⇤
c,d

e�i(Wd+w+wc)T�(Gd+gc)T

gc+ i(w +wc)

#n/2
dw (7.1.105)

= F
Z •

�•

"

Â
a,b,c,d

Ca,b
ei(Wb+wa)T�(Gb+ga)T

ga� i(w +wa)
C⇤
c,d

e�i(Wd+wc)T�(Gd+gc)T

gc+ i(w +wc)

#n/2
dw (7.1.106)

= F
Z •

�•

"

Â
a,b,c,d

Qa,b,c,d
ei(Wb+wa�Wd�wc)T�(Gb+ga+Gd+gc)T

[ga� i(w +wa)] [gc+ i(w +wc)]

#n/2
dw (7.1.107)

so we now find the Fourier transform of this pseudo-pump-probe signal:

˜S
˜PP(W) =

Z •

0

eiWT

0

@F
Z •

�•

"

Â
a,b,c,d

Qa,b,c,d
ei(Wb+wa�Wd�wc)T�(Gb+ga+Gd+gc)T

[ga� i(w +wa)] [gc+ i(w +wc)]

#n/2
dw

1

AdT

(7.1.108)

OK, well at this point it’s painfully clear because of the 4-index summation underneath a possibly

fractional power, that anything other than n= 2 is going to be very hard if not impossible to

calculate so we’ll work with just n= 2 that going forward.

˜S(2)
˜PP(W) =

Z •

0

eiWT

 
F
Z •

�•
Â

a,b,c,d
Qa,b,c,d

ei(Wb+wa�Wd�wc)T�(Gb+ga+Gd+gc)T

[ga� i(w +wa)] [gc+ i(w +wc)]
dw

!
dT (7.1.109)

=
Z •

0

eiWT

 
F Â

a,b,c,d
Qa,b,c,d

2pei(wa�wc+Wb�Wd)T�(Gb+ga+Gd+gc)T

ga+ gc� i(wa�wc)

!
dT (7.1.110)
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now we can continue with the second Fourier transform,

˜S(2)
˜PP(W) = F 0

Z •

0

eiWT Â
a,b,c,d

Qa,b,c,d
ei(wa�wc+Wb�Wd)T�(Gb+ga+Gd+gc)T

ga+ gc� i(wa�wc)
dT (7.1.111)

= F 0 Â
a,b,c,d

Qa,b,c,d

[ga+ gc� i(wa�wc)] [Gb+ ga+Gd + gc� i(W+wa�wc+Wb�Wd)]

(7.1.112)

Now we can indulge in the whole point of this exercise: taking all the decay constants to zero,

˜S(2)
˜PP(W) =�F 0 Â

a,b,c,d

Qa,b,c,d

(wa�wc)(W+wa�wc+Wb�Wd)
(7.1.113)

7.1.7.3 NO DECAY CONSTANTS: “INFINITE” COLLECTION TIME

We can return to the form of the expression before we introduced the decay constants which had a

delta-function term in addition to the sinc-like term.

S
˜PP(T ) = F

Z •

�•

�����Âa,b
Ca,beiWbT

"
pd (w +wa)+ i

ei(w+wa)T

w +wa

#�����

n

dw (7.1.114)

= F
Z •

�•

"

Â
a,b,c,d

Ca,beiWbT

"
pd (w +wa)+ i

ei(w+wa)T

w +wa

#
C⇤
c,de

�iWdT

"
pd (w +wc)� i

e�i(w+wc)T

w +wc

##n/2
dw

(7.1.115)

= F
Z •

�•

"

Â
a,b,c,d

Ca,bC⇤
c,de

i(Wb�Wd)T

"
pd (w +wa)+ i

ei(w+wa)T

w +wa

#"
pd (w +wc)� i

e�i(w+wc)T

w +wc

##n/2
dw

(7.1.116)
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But then we’re left with the square of a delta function which is formally infinite because of the part

of the integral we know to be zero from above. If we set n= 2, we can do some more work

S
˜PP(T ) = F Â

a,b,c,d
Ca,bC⇤

c,de
i(Wb�Wd)T

"
p2

Z •

�•
d (w +wa)d (w +wc)dw + ip ei(wc+wa)T

wc+wa
� ip e�i(wa+wc)T

wa+wc

#

(7.1.117)

= F Â
a,b,c,d

Ca,bC⇤
c,de

i(Wb�Wd)T


p2

Z •

�•
d (w +wa)d (w +wc)dw �2p sin [(wc+wa)T ]

wc+wa

�

(7.1.118)

but then we’re still seemingly stuck with the delta function integral being infinite always, unless

there just happens to be a symmetry such thatCa,bC⇤
c,d =�Cc,bC⇤

a,d which I highly doubt.

7.1.8 TG OF A COHERENT DIMER

We are interested in investigating the form of the Transient Grating spectrum for a coherent dimer:

2 coupled two level systems given a two level system. That will help inform how well a TG would

work for a witness as we also need to show what a positive identification of electronic coherence

would look like.

Individually, one monomer looks like this:

ˆHM1

= wM1

|e1ihe1|

ˆU(t) = |g1ihg1|+ e�iwM1

t |e1ihe1|

with a simple transition dipole:

ˆµM1

=~µM1

(|e1ihg1|+ |e1ihg1|)
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and the other looks like:

ˆHM2

= wM2

|e2ihe2|

ˆU(t) = |g2ihg2|+ e�iwM2

t |e2ihe2|

ˆµM2

=~µM2

(|e2ihg2|+ |e2ihg2|)

After combining the two systems, we get a Hamiltonian like this:

ˆHD = wM1

|geihge|+wM2

|egiheg|+ J (|egiheg|+ |geihge|)+(wM1

+wM2

) |eeihee|

which we can redefine into energy eigenstates for easier calculation:

ˆHD = wa |aiha|+wb |b ihb |+w f | f ih f |

ˆUD(t) = |gihg|+ e�iwa t |aiha|+ e�iwb |b ihb |+ e�iw f | f ih f |

where the energies are

wa =
wM1

+wM2

2

+
1

2

q
(wM1

�wM2

)2+ J2 (7.1.119)

wb =
wM1

+wM2

2

� 1

2

q
(wM1

�wM2

)2+ J2 (7.1.120)
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and the wavefunctions are able to be defined thusly::

q =arctan

✓
J

wM1

�wM2

◆
(7.1.121)

|ai=� sin(q) |egi+ cos(q) |gei (7.1.122)

|b i=cos(q) |egi+ sin(q) |gei (7.1.123)

|egi=� sin(q) |ai+ cos(q) |b i (7.1.124)

|gei=cos(q) |ai+ sin(q) |b i (7.1.125)

The transition dipole is a bit more complex:

ˆµD =~µM2

(|ggihge|+ |geihgg|+ |egihee|+ |eeiheg|)

+~µM1

(|ggiheg|+ |egihgg|+ |geihee|+ |eeihge|)

This recognizes the fact that the transition dipoles are local but it would be convenient to get this in

the energy eigenbasis. For now I’m just going to posit that we CAN transform it and leave the

details for later or possibly never:

ˆµD =~µag (|giha|+ |aihg|)

+~µbg (|gihb |+ |b ihg|)

+~µa f (| f iha|+ |aih f |)

+~µb f (| f ihb |+ |b ih f |)

Crucially, we note that there is no dipole transition between the a and b states
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7.1.8.1 SIGNAL CALCULATION

We now can calculate the contributions to the Transient Grating Signal in this system

|y
0

(t)i= |gi

|y
1+(t)i= c

�
e�iwa t

˜E
1+ (wa)~e ·~µag |ai+ e�iwb t

˜E
1+
�
wb
�
~e ·~µbg |b i

�

|y
2+(t)i= c

�
e�iwa t

˜E
2+ (wa)~e ·~µag |ai+ e�iwb t

˜E
2+
�
wb
�
~e ·~µbg |b i

�

|y
3+(t)i= c

�
e�iwa t

˜E
3+ (wa)~e ·~µag |ai+ e�iwb t

˜E
3+
�
wb
�
~e ·~µbg |b i

�

|y
1+,2�(t)i= c2

h
˜E
1+
�
wb
�
˜E
2�
��wb

��
~e ·~µbg

�
2

+ ˜E
1+ (wa) ˜E2� (�wa)(~e ·~µag)

2

i
|gi

|y
1+,2+(t)i= c2

⇥
˜E
1+
�
wb
�
˜E
2+
�
dwb f

��
~e ·~µbg

��
~e ·~µb f

�
+ ˜E

1+ (wa) ˜E2+ (dwa f )(~e ·~µag)(~e ·~µa f )
⇤
e�iw f t | f i

|y
2+,3+(t)i= c2

⇥
˜E
2+
�
wb
�
˜E
3+
�
dwb f

��
~e ·~µbg

��
~e ·~µb f

�
+ ˜E

2+ (wa) ˜E3+ (dwa f )(~e ·~µag)(~e ·~µa f )
⇤
e�iw f t | f i

|y
2+,3�(t)i= c2

⇣
˜E
2+ (wa) ˜E3� (�wa)(~e ·~µag)

2+ ˜E
2+
�
wb
�
˜E
3�
��wb

��
~e ·~µbg

�
2

⌘
|gi

|y
1+,2�,3+(t)i= c3

h
˜E
1+
�
wb
�
˜E
2�
��wb

��
~e ·~µbg

�
2

+ ˜E
1+ (wa) ˜E2� (�wa)(~e ·~µag)

2

i

⇥ �e�iwa t
˜E
3+ (wa)~e ·~µag |ai+ e�iwb t

˜E
3+
�
wb
�
~e ·~µbg |b i

�

ˆµ |y
0

(t)i= �~µag |ai+~µbg |b i
�

ˆµ |y
1+(t)i= c

�
e�iwa t

˜E
1+ (wa)~e ·~µag (~µag |gi+~µa f | f i)+ e�iwb t

˜E
1+
�
wb
�
~e ·~µbg

�
~µbg |gi+~µb f | f i

��

ˆµ |y
3+(t)i= c

�
e�iwa t

˜E
3+ (wa)~e ·~µag (~µag |gi+~µa f | f i)+ e�iwb t

˜E
3+
�
wb
�
~e ·~µbg

�
~µbg |gi+~µb f | f i

��

We are now in the business of examining the Transient Grating Signal. WE start with Ea:

Ea(t) =ihy
0

(t)| ˆµ |y
1+, 2-, 3+

(t)i

=c3
h
˜E
1+
�
wb
�
˜E
2�
��wb

��
~e ·~µbg

�
2

+ ˜E
1+ (wa) ˜E2� (�wa)(~e ·~µag)

2

i

⇥~µag
�
e�iwa t

˜E
3+ (wa)~e ·~µag

�
+~µbg

�
e�iwb t

˜E
3+
�
wb
�
~e ·~µbg

�
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Now we move on to Eb:

Eb(t) = ihy
1+

(t)| ˆµ |y
2+, 3+

(t)i

= ic
�
eiwa t

˜E⇤
1+ (wa)(~e ·~µag)~µa f + eiwb t

˜E⇤
1+

�
wb
��
~e ·~µbg

�
~µa f

�

⇥ c2
⇥
˜E
2+
�
wb
�
˜E
3+
�
dwb f

��
~e ·~µbg

��
~e ·~µb f

�
+ ˜E

2+ (wa) ˜E3+ (dwa f )(~e ·~µag)(~e ·~µa f )
⇤
e�iw f t

= ic3
⇣
e�i(w f�wa )t

˜E⇤
1+ (wa)(~e ·~µag)~µa f + e�i(w f�wb )t

˜E⇤
1+

�
wb
��
~e ·~µbg

�
~µa f

⌘

⇥ ⇥ ˜E
2+
�
wb
�
˜E
3+
�
dwb f

��
~e ·~µbg

��
~e ·~µb f

�
+ ˜E

2+ (wa) ˜E3+ (dwa f )(~e ·~µag)(~e ·~µa f )
⇤
e

then Ec:

Ec(t) = ihy
2+, 3-

(t)| ˆµ |y
1+

(t)i (7.1.126)

= ic3
⇣
˜E⇤
2+ (wa) ˜E⇤

3� (�wa)(~e ·~µag)
2+ ˜E⇤

2+

�
wb
�
˜E⇤
3�
��wb

��
~e ·~µbg

�
2

⌘
|gi (7.1.127)

⇥ �e�iwa t
˜E
1+ (wa)(~e ·~µag)~µag+ e�iwb t

˜E
1+
�
wb
��
~e ·~µbg

�
~µbg

�
(7.1.128)

and lastly the d term:

Ed(t) = ihy
1+, 2-

(t)| ˆµ |y
3+

(t)i

= ic3
h
˜E⇤
1+

�
wb
�
˜E⇤
2�
��wb

��
~e ·~µbg

�
2

+ ˜E⇤
1+ (wa) ˜E⇤

2� (�wa)(~e ·~µag)
2

i

⇥ �e�iwa t
˜E
3+ (wa)(~e ·~µag)~µag+ e�iwb t

˜E
3+
�
wb
��
~e ·~µbg

�
~µbg

�
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7.1.8.2 JUERGEN’S APPLICATION

What our experimentalist friend Juergen is doing is taking the frequency-resolved TG spectrum and

performing an operation But we want the Fourier transform so let’s begin by looking at the a term:

˜Ea(w) =ihy
0

(t)| ˆµ |y
1+, 2-, 3+

(t)i

=c3
h
˜E
1+
�
wb
�
˜E
2�
��wb

��
~e ·~µbg

�
2

+ ˜E
1+ (wa) ˜E2� (�wa)(~e ·~µag)

2

i

⇥~µag
�
d (w �wa) ˜E3+ (wa)~e ·~µag

�
+~µbg

�
d
�
w �wb

�
˜E
3+
�
wb
�
~e ·~µbg

�

But those delta functions aren’t terribly useful if we’re going to perform operations on them. If

instead we assume they are decay exponentials then we can get something to work with:

Z •

�•
e�wte�iwqt�GtH[t]dt

C
2G� i(w �wa)

C
2G� i(w �wa)

2G+ i(w �wa)

2G+ i(w �wa)

C
2G+ i(w �wa)

4G2+(w �wa)
2

Now we can put this in to our signal work from earlier:

˜Ea(w) =ihy
0

(t)| ˆµ |y
1+, 2-, 3+

(t)i

=ic3C
h
˜E
1+
�
wb
�
˜E
2�
��wb

��
~e ·~µbg

�
2

+ ˜E
1+ (wa) ˜E2� (�wa)(~e ·~µag)

2

i

⇥
"
~µag

 
2G+ i(w �wa)

4G2+(w �wa)
2

˜E
3+ (wa)~e ·~µag

!
+~µbg

 
2G+ i

�
w �wb

�

4G2+
�
w �wb

�
2

˜E
3+
�
wb
�
~e ·~µbg

!#
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7.1. Transient Grating as a Witness for Electronic Coherence

We now are interested in seeing the effect of one of the operators ¬,¡. I represent this generic

operator as N . There are going to be 4 relevant terms

˜Ea(w)/c3C =i ˜E
1+
�
wb
�
˜E
2�
��wb

��
~e ·~µbg

�
2~µag

 
2G+ i(w �wa)

4G2+(w �wa)
2
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!

+ i ˜E
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�
wb
�
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�
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�
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�
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�
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�
2

˜E
3+
�
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�
~e ·~µbg

!

+ i ˜E
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2

˜E
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!
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!

Now we apply the operator:
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⇤
=~µag

�
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Now it would be worthwhile getting out a form for the pulses. The first two pulses will look like so:

E
1/2(t) =N(s)e�

t2

2s2

⇥
e�iwct + e+iwct

⇤

E
3

(t) =N(s)e�
(t�T )2

2s2

h
e�iwc(t�T ) + e+iwc(t�T )

i
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and the Fourier Transforms:

˜E±1/2(w) = ˜N(s)e�(w⌥wc)2
s2

2

˜E±3

(w) = ˜N(s)e�(w⌥wc)2
s2

2 eiwT

So if we define an envelope function V±(w,s) to take away all the strictly real components of the

laser fields we get:
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⇤
=~µag
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2
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�
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#

So all we care about when taking the real or imaginary part or some combination of the two for this

term at least is the quantity:

N ⇥i(2G+ i(w �wa))eiwaT
⇤

(7.1.129)

N ⇥(2iG� (w �wa))eiwaT
⇤

(7.1.130)

so now we can turn N into real operators:

¬
⇥
(2iG� (w �wa))eiwaT

⇤
=�2Gsin(waT )+(w �wa)cos(waT ) (7.1.131)

¡
⇥
(2iG� (w �wa))eiwaT

⇤
= 2Gcos(waT )+(w �wa)sin(waT ) (7.1.132)
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Back to the full signal expression for a:
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⇤
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if we’re integrating in frequency space and for simplicity we assume we’re only looking at signal

with the same polarization as the laser, then all of the constants are going to boil down to:

N ⇥ˆe · ˜ETG(w)/c3C
⇤
= AN

"
i
2G+ i(w �wa)

4G2+(w �wa)
2

eiwaT

#
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��
2

ei(w f�wb)T
#

Where all of the pulse width dependence is in the constants A,B,C,D. Mathematica isn’t

budging on doing any of these integrals... but what if I turn it back into a d -function?

N ⇥ˆe · ˜ETG(w)/c3C
⇤
= AN ⇥id (w �wa)eiwaT

⇤

+BN ⇥id �w �wb
�
eiwbT
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+CN
h
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i

+DN
h
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�
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��
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i
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If we integrate over all frequencies to get a pump-probe facsimile, then what we are left with is:

˜SPP(T ) = A0N ⇥ieiwaT
⇤

(7.1.133)

+B0N ⇥ieiwbT
⇤

(7.1.134)

+C0N
h
iei(w f�wa)T

i
(7.1.135)

+D0N
h
iei(w f�wb)T

i
(7.1.136)

If we were to then take the Fourier transform of this signal: Take just the first term. IF it were real

we would get this:

˜SPP(T ) = A0¬
⇥
ieiwaT

⇤
+ · · · (7.1.137)

=�A0
sin [waT ]+ · · · (7.1.138)

=�A0 1
2i
�
eiwaT � e�iwaT

�
+ · · · (7.1.139)

˜S0PP(W) =�A
1

2i
[d (W�wa)�d (W+wa)]+ · · · (7.1.140)

Note that here

˜S0PP(wa) =� ˜S0PP(�wa). If I chose the imaginary operator instead, we would have:

˜SPP(T ) = A0¡
⇥
ieiwaT

⇤
+ · · · (7.1.141)

= A0
cos [waT ]+ · · · (7.1.142)

= A0 1
2

�
eiwaT + e�iwaT

�
+ · · · (7.1.143)

˜S0PP(W) =�A
1

2i
[d (W�wa)+d (W+wa)]+ · · · (7.1.144)
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Contrasting from taking the real part, when we take the imaginary part,

˜S0PP(wa) = ˜S0PP(�wa). Do

either of these relationships change when we realize that we’re only getting signal for T > 0?

F [sin(w
0

t)H[t]] =
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p
8p

w �w
0

+
1/
p
8p

w +w
0

+ i
r

p
8
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0

)� i
r

p
8

d (w +w
0

)

F [cos(w
0

t)H[t]] =
i/
p
8p

w �w
0

+
i/
p
8p

w +w
0

+

r
p
8

d (w �w
0

)+

r
p
8

d (w +w
0

)

The symmetry is broken a little bit but is in general still dominated by the delta functions. Thus it

appears that if one constructs Pump-Probe facsimiles from the Transient Grating Signal in this

manner, you should get the exact same pulse width dependence of oscillations in the signal

regardless of whether one uses a real or imaginary operation to manipulate the transient grating

signal. The only thing that *might* cause there to be a difference would be some kind of signal

processing which ends up adding together the positive and negative frequency amplitudes, because

they sum to zero.

There still might be odd behavior for the absolute value, however. That calculation is more

complex.

7.2 QUANTUM PROCESS TOMOGRAPHY

Early on in my graduate school career, I was asked to develop a polarization control Quantum

Process Tomography protocol to make it easier to perform QPT on experimental systems where it

was not easy to manipulate the laser central frequency. We ended up running into issues with the

solubility of the equations generated, despite the fact that they were n equations with n unknowns.

The project ended up being dropped but here is a summary of what we did.
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7.2.1 QUICK INTRODUCTION TO QUANTUM PROCESS TOMOGRAPHY

Having a time-dependent density matrix for a system does not tell the whole story of what is going

on, because you don’t know which elements are turning in to which other elements along the way.

To use a distinctly classical analogy, the professor may know that his students are going from the

no-paper state to the paper state after a certain time T , but he does not know how much time was

spent on REPLACE BAD JOKE along the way.

To use a more apt, quantum analogy, at a time T , say we want to know how much amplitude is

on coherence ab but we want to be able to distinguish how much came from coherence ba versus

came from populationbb. How might we do that?

Let’s start out by looking at the density matrix time-evolution:

r(T ) =U(T,0)r(0)U†(T,0) (7.2.1)

and expand it out for matrix multiplication:

ri j(T ) = Â
k

Â
l
Uil(T,0)rlk(0)U†

k j(T,0) (7.2.2)

ri j(T ) = Â
k,l
Uil(T,0)U†

k j(T,0)rlk(0) (7.2.3)

And there we have it. We can then define an object ci j lk(T ) which maps the initial density matrix

element lk to the time T element i j, giving you an exact description of how each element of a

density matrix evolves. This matrix is called the Quantum Process Matrix and finding its elements

for a set of time points is called Quantum Process Tomography. Showing that such a tensor exists
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for open systems is a little more involved and will be included in a later edition but rest assured it

does exist. The only occasion for which it would get very complicated is with a time-dependent

Hamiltonian.

7.2.2 EXPERIMENTAL DETERMINATION OF c

With the knowledge that we want to figure out the process matrix for a system, we are now faced

with the daunting task of asking an experimentalist to perform the experiment. Why? For an N

level system, there are, of course, N2

elements of the density matrix and each of those N2

elements

which we need to set up experiments for. Each of those experiments, however, can evolve into

ANY of the possible N2

elements. Which means we’re asking for someone to do N4

experiments

which for a two-level system is already 16, and that’s assuming you don’t need to do different

experiments for each point in time. Or is it really that much?

The short answer is no. Let’s start with one fact: every operator in quantum mechanics

(including the density operator) must be hermitian, that means that only half of the off-diagonal

elements are unique which means that there are

N2+N
2

possible elements for the beginning and end

making the total number of required experiments now

(N2+N)2
4

or just 9 experiments for our

two-level system. How does this manifest in the process matrix?

ri j(T ) = Â
k,l

ci j kl(T )rkl(0) (7.2.4)

ci j kl(T ) =Uil(T,0)U⇤
k j(T,0) (7.2.5)

=
⇥
Ujk(T,0)U⇤

li(T,0)
⇤⇤

(7.2.6)

ci j kl(T ) = c⇤
ji lk(T ) (7.2.7)

Or physically that the pathway from ab to cd is the same (to within a complex conjugate) as the
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pathway taking ba to dc. Which, if you think about it, should make some sense (~µag ·~e1)We will

use these facts in the next subsection to simplify problems significantly.

7.2.3 THE GOAL

Is it possible to get a full or partial Quantum Process Matrix for a dimer, from a 2D electronic

spectrum, just by controlling the polarizations? We take Joel’s equations for a dimer developed in

references

59,62

.

7.2.4 INITIAL EQUATIONS

In a marked change from Joel’s work in

59,62

I am transforming theC

C
Joey

!� iC
Joel

C
Joey

=l
p
2ps2e�s2(wpg�wi)

2/2

S
Joey

!� Im [S
Joel

]

Which removes the confusing, unnecessary presence of the imaginary unit i from many of his

expressions.

From here, we get the amplitude values of the diagonal and off-diagonal peaks in for different

experiments labeled with superscripts indicating the different polarizations. We start with all in the

same direction (we use z to denote this direction but because of the isotropic averaging, it does not

matter: only the relative directions of the pulses)
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Now for the other polarization configuration: subsequent pulses at 90 degrees to each other or

xzxz:
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Which then gives us the system of equations:

⌦
Sba
↵xzxz

=b
10

�
cgg bb �caa bb �1

�
+b

11

cab ab +b
12

cbb bb

⌦
Sbb
↵xzxz

=b
7

caa bb �b
8

cba ab +b
9

�
cgg bb �cbb bb �1

�

hSaaixzxz =b
4

(cgg aa �caa aa �1)+b
5

cab ba +b
6

cbb aa

⌦
Sab
↵xzxz

=b
1

caa aa +b
2

cba ba +b
3

�
cgg aa �cbb aa �1

�

⌦
Sba
↵zzzz

=a
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�
cgg bb �caa bb �1

�
+a

11

cab ab +a
12

cbb bb

⌦
Sbb
↵zzzz

=a
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caa bb +a
8

cba ab +a
9

�
cgg bb �cbb bb �1

�

hSaaizzzz =a
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cab ba +a
6

cbb aa

⌦
Sab
↵zzzz

=a
1

caa aa +a
2

cba ba +a
3

�
cgg aa �cbb aa �1

�

Which can in principle be solved... but we can make it easier to do so still

7.2.5 SIMPLIFICATIONS

The Quantum Process Matrix has a few mathematical bounds it has to follow. Namely:

Â
a

caa cd = dcd

which together are essentially just conservation of probability. For our case, this constraint gives us

three equations:

cgg gg+caa gg+cbb gg = 1

cgg aa +caa aa +cbb aa = 1

cgg bb +caa bb +cbb bb = 1
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Which we will use to get rid of the terms dumping amplitude into the ground state. In general,

though, we assume that no process will evolve the system from the ground state during free

evolution and thus that the first equation in the group above will simply be 1= 1.

cgg aa = 1�caa aa �cbb aa

cgg bb = 1�caa bb �cbb bb

Which then changes the system of equations to be this:

⌦
Sba
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which becomes this upon simplification:
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But we are not done: density matrices must remain hermitian and thus, we have another constraint

on our quantum process matrix:

cab cd = c⇤
ba dc

Which means that all of the population-to-anything and anything-population terms are real and that

cba ba = c⇤
ab ab

cba ab = c⇤
ab ba
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Getting rid of an additional two terms in our system of equations:
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Also now that we know more about the real and imaginary structure of the problem, this

necessitates splitting the problem in two:
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From which we can define an over-defined matrix equation

~S(T ) =M~c(T ) (7.2.8)

which must be positive and semi-definite like all quantum process matrices. Thus it follows this

relationship.

Â
i, j,q,p

z⇤iqci j qpz jp � 0 (7.2.9)

For any matrix z. We use the numerical package cvxopt to ensure that our optimization routine

outputs a semi-definite map even in the presence of noise. Then, we solve for each time step of the

problem, in principle. See there are many problems here. First is that we probably won’t know the

precise amplitudes of the system at any given time. We can solve that though because we know the

initial conditions.
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7.2.6 INITIAL CONDITIONS

The aforementioned initial condition is:

ccd ab(0) = dcaddb (7.2.10)

which intuitively tells us that at time T = 0, no state can have changed from its initial state yet

(since there has been non time to evolve) such that only terms looking like ci j i j are 1 and

everything else is zero. For us, this gives us the terms:

caa aa(0) = 1

cbb bb (0) = 1

Re
⇥
cab ab (0)

⇤
= 1

Re
⇥
cba ba(0)

⇤
= 1
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Which we can then plug in to the matrix equation to get a sanity check on the experimental signal
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And it’s clear here that we can get some algebraic brevity easily by combining real and imaginary:
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Now let’s put in their actual values for ai and b j:
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Now we want to use these 16 different equations to set the constants that all of the a and b

constants are in terms of: namelyCi jk.

Starting with theC constants we have a lot of options open to us depending on how comfortable

we are with various possible approximations:
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The first column is the safest assumption: that each different combinations will, for whatever

unpredictable oddities, be different. The next approximation assumes that the amplitude of the nth

pulse is consistent across the different constants–which this author expects is the appropriate level
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of approximation since the pulses shouldn’t change. The next column reflects that it’s likely, given

that in the theory or other non-idealities that each pulse that in each pulse, the a and the b

amplitude will be the same (the subscript is the number of times b appears). The last, least safe,

approximations is that all the beams are the same which would be semi-justified if the overlap of

the laser spectrum with the a peak of the absorption spectrum was about the same as the overlap

with the b peak.

Only 6 of the 8 f or l constants show up in the initial conditions and assuming that all beams are

exactly the same gives an unsolvable set of equations. So, for now, we will assume that each beam

is the same but with different amplitudes for a and for b and that we know the transition dipoles.

To make notation simpler, we assign a= µ2

ag and b= µ2

bg.
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15
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�
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x
0

a2
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Sab
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1

1

15

�
a2�ab

�

We are now ready to apply these equations to data obtained from Professor Greg Engel. He gave

us zzzz and xzxz polarized 2D-Electronic Spectroscopy data on Light-Harvesting Complex 2

(LH2). A typical time slice looked like Figure 7.1. By feeding this into the algorithm we

developed, we can get the elements of the QPT matrix. First up is Figure 7.2 which rather

non-controversially shows the excited populations decaying. Showing the populations decay

another way is Figure 7.3 which instead shows the proportion which has gone to the ground state.

We see slightly faster decay fro the higher energy b state.

Then for Coherences there are the decay terms in Figure 7.4 showing a trend towards zero as
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Figure 7.1: This is data obtained from the Engel group for LH2. Specifically this is the xzxz polarization set-
ting at T = 0.

would be expected with decoherence from interactions with the thermal bath. In Figure 7.5, there

are real and imaginary parts of the coherence transfer element; they simply show the sloshing back

and forth of the coherence term between the two possible density matrix elements.

Then lastly we have what turned out to be the problem element: the population transfer terms in

Figure 7.6. This figure indicates that there is a small, but insignificant uphill energy transfer. Now

this would be really cool if it were true as it would indicate that the bath imparted some useful

energy to the light-harvesting apparatus of LH2. But extraordinary claims require extraordinary

evidence, so we need to revisit how we got here. to develop these Quantum Process Matrices, we

had to assume that all three laser excitation pulses have the same power amplitude at both the a
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Figure 7.2: These are the two elements of the calculated Process Matrix which determine what proportion of
the singly excited populations stay in the same state

165



7.2. Quantum Process Tomography

Figure 7.3: These are the two elements of the calculated Process Matrix which determine the decay of the
singly excited populations to the ground state population
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Figure 7.4: These are the two elements of the calculated Process Matrix which show what proportion of the
singly excited coherences stay in the same coherent state
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Figure 7.5: These are the two elements of the calculated Process Matrix which determine what proportion of
the singly excited coherences flop to the other coherence.
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Figure 7.6: These are the two elements of the calculated Process Matrix which determine the transfer of the
singly excited populations to the other singly excited population. This is where we ran into problems. The bb
population is higher in energy than the aa population so if this graph was correct, there would be uphill energy
transfer.
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and b transitions and at both polarizations. This should not quite be true, and this assumption

could very easily affect the expected probabilities of transfer into and out of a and b states. So we

go back and see if we can correct this loose assumption.

7.2.7 MORE CORRECT FORMS FOR LASER AMPLITUDE

Knowing that we need to be more ignorant about the pulses, we recognize that for the xzxz

experiments, it is not reasonable to assume that all the beams are the same because they have

different polarizations, we have to stop and go back a level of approximation. We now assume that

the x pulse amplitudes are the same and the z pulse amplitudes are the same

⌦
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and let’s move things around to simplify them:
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Which should, in principle, be soluble with 8 equations and 8 unknowns. For the 4 zzzz

equations, the solution is trivial. When we put the four for xzxz into Mathematica, both
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numerically and symbolically, it gives the null set. What do we do?

7.2.8 ANCILLA

We find that turning the equation into a quadratic with ancilla variables allows Mathematica to

solve. First some definitions

⌦
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now our ancilla variables:
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which turns the original system into:
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for Matlab fsolve, we need to turn into an equation which equals 0:
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we also need to split into real and imaginary equations
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but this strategy does not yield answers in fsolve.
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7.2.9 EXPERIMENTAL CONSIDERATIONS

Perhaps by considering the experimental setup, we can eliminate variables and make the equations

solvable. The Engel group tells us they generate an x polarization by putting a half waveplate in

front of the beam. They use a different waveplate for the first and third pulse, unfortunately, but for

now we are going to assume they both impart a perfect, identical phase-shift and contemplate how

this additional information changes the equations.

Half waveplates are designed to import a p phase-shift. The amplitude effect of this is eip =�1.

This means that A
1

=�A
2

and the same for B. We turns these constants into just A and B.
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and further simplifies to

⌦
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But this method did not yield a solution either.
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7.2.10 CONCLUSION

While we thought that we could get out a process matrix for data given to us by the Engel group,

and we did get one that had some radical claims in it with equally dubious assumptions behind

them, we found no way to de-dubify the assumptions and thus we left it at this.

7.3 INVESTIGATING CONICAL INTERSECTIONS USING PULSE-WIDTH DEPENDENT DYNAM-

ICS

A very simple molecular Hamiltonian looks like this:

ˆH =
1

2µ
—2

R+
1

2me
—2

r +
Z
1

Z
2

R2

+
Z
1

r2
1

+
Z
2

r2
2

Which we can separate into a nuclear kinetic, an electronic kinetic, a nuclear potential and an

electron-nuclear potential:

ˆH = Tn+Te+Vn(R)+Ve(R)+Ven(R,r)

If we assume we can separate the components which solve the wavefunction into an electronic and

a nuclear part:

Y(R,r) = y(R)f(r)

which is the heart of the Born-Oppenheimer approximation. But it’s not terribly physical. This

approximation, effectively, says that even if you compress the bond in, say, a hydrogen molecule,

to some fraction of the equilibrium length, the electronic configuration would be the same. Which

is clearly not true. As the nuclei move, you would of course expect the oppositely charged
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electrons to “follow” them around.

So the next level of approximation down is to say that the nuclei will still probably not see the

electrons moving around, the electrons will definitely see the nuclei if they change positions and

because the electrons move around much faster, than the nuclei, it would make sense that we

would see them react to a change in position of the nuclei. So we change the prototype

wavefunction to have a nuclear part and an electronic part, conditioned on the nuclear coordinates:

Y(R,r) = y(R)f(r;R)

You can imagine this will complicate things but still allow us more simplicity and tractability than

would be had through not separating things at all. For example, this gives us the ability to solve the

electronic part of the equation for every possible nuclear configuration R to come up with an

electronic energy landscape:

ˆHef(r;R) = (Te+Ve(R)+Ven(R,r))f(r;R) = E(R)f(r;R)

where it’s important here to recognize we are able to solve for the full electronic spectrum

ˆHef(r;R) = ˆHeÂ
n
anfn(r;R) = f(r;R) = Â

n
En(R)anfn(r;R)

But that’s not the whole equation is it? We can take this solution to the electronic equation and put

it back into the full equation:

ˆH [y(R)f(r;R)] = (Tn+Te+Vn(R)+Ve(R)+Ven(R,r)) [y(R)f(r;R)]

= (Te+Ve(R)+Ven(R,r)) [y(R)f(r;R)]+(Tn+Vn(R)) [y(R)f(r;R)]
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none of the operators in the front will change the nuclear part of the wavefunction in any manner

so that we can just substitute in the solution to the electronic problem: E(R). It seems a natural

pairing to go with VN(R) so we do that

ˆH [y(R)f(r;R)] = (E(R)+Vn(R)) [y(R)f(r;R)]+Tn [y(R)f(r;R)]

and are left with one term. Which is going to cause some problems. This is because it will

introduce new terms as the nuclear kinetic operator acts on the electronic wavefunction also,

TnY(R,r) =
1

2µ
—2
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=
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The third term is the boring old nuclear kinetic energy we know about from the

Born-Oppenheimer approximation wavefunction, but the first two terms complicate things and

they are the heart of why we are talking here. If we decide to ignore then:

ˆH [y(R)f(r;R)] = (E(R)+Vn(R)) [y(R)f(r;R)]+f(r;R)Tny(R)

= f(r;R)(E(R)+Vn(R)+Tn)y(R)

ˆHy(R) = (E(R)+Vn(R)+Tn)y(R)

we can basically prescribe that you go solve the electronic problem E(R) and then come back to

solve the nuclear problem. The solutions to this problem are called the “Adiabatic

Representation” and represent the solutions which preserve ordering of the energy levels so for
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the energy eigenstates of the problem, Yi(R,r) = yi(R)fi(r;R) the set of Ei’s form a ladder of

energies, going up from 0 to infinity.

Now let’s look at what happens when we put those exact adiabatic solutions into the full

Hamiltonian:

ˆHYi(R,r) = fi(r;R)(E(R)+Vn(R)+Tn)yi(R)+
1

2µ
�
yi(R)—2
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�

(7.3.1)

and let’s average away the electronic degrees of freedom by coming in with f j(r;R) and

integrating out the electronic degrees of freedom:

Z
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So we have additional quantities to calculate from the electronic states:
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Which when all is said and done, we are left with a final answer of:

Hi j(R)yi(R) = di j (E(R)+Vn(R)+Tn)yi(R)+T (2)
i j (R)yi(R)+~T (1)

i j (R) ·—Ryi(R) (7.3.9)

=
h
di j (E(R)+Vn(R)+Tn)+~T (1)

i j (R) ·—R+T (2)
i j (R)

i
yi(R) (7.3.10)

We can prove that

Re[~T (1)
i j (R)] = 0 (7.3.11)

~T (1)
aa (R) = 0 (7.3.12)

7.3.1 ADIABATIC REPRESENTATION

Say we don’t care about energy ordering, and we only care about the electronic character of the

wavefunctions staying the same. We can instead pick some arbitrary geometry–let’s call it R
0

–and

then solve the full Hamiltonian for each of those geometries:

Y(R,r) = Â
i

fi(r;R0

)y(0)
i (R) (7.3.13)

And now let’s do what we did last time and act the Hamiltonian on the electronic part of the

wavefunction:

ˆHfi(r;R0

) = (Tn+Te+Vn(R)+Ve(r)+Ven(R,r))fi(r;R0

)

= (Te+V (r,R
0

))fi(r;R0

) = Ei(R0

)fi(r;R0

)
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and that will be the equation we solve to get the electronic states. We can then put the whole thing

with the vibrational part back in

ˆHfi(r;R0

)y(0)
i (R) = (Tn+Te+Vn(R)+Ve(r)+Ven(R,r))fi(r;R0

)y(0)
i (R)

= (Te+V (R,r)+Tn)fi(r;R0

)y(0)
i (R)

= (Te+V (R,r)+V (R
0

,r)�V (R
0

,r)+Tn)fi(r;R0

)y(0)
i (R)

= (Te+V (R
0

,r))fi(r;R0

)y(0)
i (R)+(Tn+V (R,r)�V (R

0

,r))fi(r;R0

)y(0)
i (R)

= Ei(R0

)fi(r;R0

)y(0)
i (R)+(Tn+V (R,r)�V (R

0

,r))fi(r;R0

)y(0)
i (R)

Now we come in with the jth basis function and integrate out over the electronic degrees of

freedom

ˆHi jy(0)
i (R) =

Z
drf j(r;R0

)Ei(R0

)fi(r;R0

)y(0)
i (R)

+
Z

drf j(r;R0

)(Tn+V (R,r)�V (R
0

,r))fi(r;R0

)y(0)
i (R)

= di jEi(R0

)y(0)
i (R)+di jTny(0)

i (R)+
Z

drf j(r;R0

)(V (R,r)�V (R
0

,r))fi(r;R0

)y(0)
i (R)

= di j [Ei(R0

)+Tn]y(0)
i (R)+Uji(R)y(0)

i (R)

Uji(R) =
Z

drf j(r;R0

)(V (R,r)�V (R
0

,r))fi(r;R0

)

7.3.2 DETECTING A CONICAL INTERSECTION

Looking at the diabatic energy corrections, one finds a term in the Hamiltonian which looks like

this:

2—Ry(R) ·—Rf(r;R) (7.3.14)
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the second part of which can be integrated out to find a vector-like coupling between two different

electronic states and the first part of which is clearly the nuclear momentum. This ends up giving a

term in the Hamiltonian proportional to:

~pr · ~Ji, j (7.3.15)

So why not manipulate the momentum of the wavefunction to manipulate the dynamics and thus

create a way of detecting a electronic vector coupling

~Ji, j. Preliminary work on this proved not to

be fruitful. I wasn’t, however, entirely sure what I was looking for and would return to this

hypothesis again if I ever think that I have found something that might actually be different. By

including this in my thesis, even though no one will read it, I hope to possibly inspire someone to

continue this work.
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8
Computational Methods Used

I put a lot of blood sweat and tears into making my code work. It is available on my github page:

github.com/jgoodknight. I made heavy use of the numpy and scipy libraries

26,55

There are

some details I wish to point out, however, in my thesis and this seems the appropriate place to do

so.

8.1 WORKING WITH NATURAL UNITS: OR, WHY MESS WITH SI?

While an experimentalist needs a systems of units he or she can measure, we theorists prefer to

have a system of units which is easy to write down, so we can worry less about dropping factors

here and there. Take for example the hydrogen atom Hamiltonian:

ˆH =� h̄2

2me
—2� 1

4pe
0

e2

r

That is a lot of constants. Wouldn’t it be better if we could just write this out:

ˆH =�1

2

—2� 1

r

This easy-to-not-mess-up Hamiltonian can be yours with a little algebra and a bit of thought.

184

github.com/jgoodknight


Chapter 8. Computational Methods Used

8.1.1 SETTING CONSTANTS EQUAL TO 1

The astute observer will note that one can get the miraculous Hamiltonian Transformation by

making the following algebraic declarations:

h̄= 1

e= 1

me = 1

1

4pe
0

= ke = 1

You may now be wondering how they can be 1. You’ve probably had many professors talk to you

for many hours about the painstaking effort that went into determining the exact values of these

constants throughout the history of physics, and here I go, willy-nilly just setting them to one:

doesn’t this throw off all of physics into non-physical nonsense? Yes and no.

There is, unsurprisingly, a limit to the number of units you can set to being 1. This limit is

imposed by the fine-structure constant a:

a =
kee2

h̄c

Which, unless you listen to some theoretical cosmologists, is completely constant in our universe

and has a value of

⇠
1/137. So in our system of units we have set all but one of these constants

which make up the fine-structure constant to be unity (the absolute limit), so we must get out that

c= 1

a to keep our system of units from describing a universe other than our own.
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8.1.2 SETTING UNITS EQUAL TO 1 OR: FINDING THE “NATURAL” UNITS

The only reason we are able to set these units to be one is because we now measure things like

energy, distance and time in units which MAKE the constants one. h̄ for example is not really just

1; it’s 1 atomic-energy-unit-atomic-time-unit or 1Ea · ta. To figure out exactly what these atomic

units are, we do this for each constant noting that energy will be Ea = mal2a/t2a :

h̄= 1Ea · ta = ma
l2a
ta

ke = 1

En · la
q2a

We’ve already defined our charge units to be e and our mass units to be me (although that can

easily change).

h̄
me

=
l2a
ta

kee2 = me
l2a
t2a

· la

Now with two equations and two unknowns, we begin to solve

h̄
me

=
l2a
ta

ta =
l2ame

h̄

t2a =
l3ame

kee2

l4am2

e

h̄2
=

l3ame

kee2

la =
h̄2

mekee2
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Which the astute observer will note has an a hidden in there... somewhere:

la =
h̄

meac

And the even more astute observer will notice that it is the Bohr radius. This quickly emits the time

and then energy units:

1la =
h̄

meac
= a

0

⇡ 5.29⇥10

�11

m

1ta =
h̄

mea2c2
⇡ 2.419⇥10

�17

s

1Ea = mea2c2 ⇡ 4.3597⇥10

�18

J

wavenumbers come up a lot on spectroscopy so let’s figure out what the atomic wavenumber unit

is:

1wa =
1Ea

hc
= 219474.6 cm�1 =

1

1la

hc= 2p h̄c= 2p
a

= 861.022576Ea · la

So to convert a wavenumber w into an atomic energy unit:

Ea(w) =
w
1wa

2p
a

= w
✓
0.00392310807

Ea

cm

�1

◆

8.1.3 SETTING OTHER THINGS EQUAL TO 1

Now let’s say you are reading a paper which quotes all of its energy units in wavenumbers, all of

its position units in square-root-centimeters and time units in femtoseconds. How do you make
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sense of this?

Let’s say this particular paper is talking about harmonic oscillators, the Hamiltonian of which

looks like so:

ˆH =
h̄2p2

2m
+

1

2

mw2(x� x
0

)2

In the paper, however, the author quotes the Hamiltonian as being thus:

ˆH =
p2

2

+
1

2

w2(x� x
0

)2

and all energy units are given in terms of wavenumbers. All-together, these implies 3 unitary unit

relationships:

h̄= 1

hc= 1

m= 1

Luckily, we don’t care about coulomb relations so we can just set c= 2p and let the electron

charge and Coulomb constant float to strange numbers. Anyway, as we know from earlier, these

really do have units associated with them so we add them in, calling them j units.

h̄= 1Ej · t j

m= 1mj

The author has chosen wavenumbers as the units of choice for energy: specifically 100
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wavenumbers.

1Ej ⇠ 100.0 cm�1

1Ej = hc(100.0 cm�1) = 1.986⇥10

�21

J

which also gives us the natural units for time:

1t j =
h̄
1Ej

= 5.308837⇥10

�12

s= 5.3 ps

8.1.4 CONCLUSION ON UNITS

I have shown you the basic derivation for how to get the system of natural units (units with a bunch

of constants equal to one) known as atomic units. Hopefully you can follow my logic to create any

easy-to-derive-with system of units that you desire. Up for a challenge? Let the mass and charge

float, set c= 1 and then figure out how to set Boltzmann’s constant and the universal gravitational

constant equal to 1 also. These are known as the Planck units and are cool because they set all the

fundamental constants of the forces to 1, instead of any property of an object

8.2 DISCRETE FOURIER TRANSFORM

Let’s say you want a computer to do the following integral

˜f (w) =
Z

eiwt f (t)dt (8.2.1)

And your t values stretch from 0! nd t. We could then do the integral like a Riemann Sum:

˜f (w) = d t
n

Â
j=0

eiw jd t f ( jd t) (8.2.2)
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but how to discretize w? I’m going to skip over why but say that Numpy’s Fast Fourier Transform

algorithm takes a list of function values { fm} and returns:

˜fk =
n�1

Â
m=0

e�2pi mkn fm (8.2.3)

which implies we get dw = 2p
nd t with �n�1

2

< k < n�1

2

. But we defined our Fourier transforms in

terms of the positive exponent. We’re in luck, however, because numpy’s inverse FFT algorithm

looks like this:

fm =
1

n

n�1

Â
k=0

e2pi mkn ˜fk (8.2.4)

8.3 CHOOSING THE PARAMETERS OF SPACE

In the course of simulation, we have to figure out a proper value for the box we put our

wavefunctions in that doesn’t affect the observables. So we need something big enough in position

space and big enough in momentum space (small enough Dx. Let’s look at a ladder of harmonic

oscillators:

Hi =
1

2mi
p̂2+

1

2

miw2

i (x� x̄i)2 (8.3.1)

for the sake of simplicity, we’ll say that all the oscillators are accessible to each other via transition

dipole moments and that oscillator 0 is the leftmost. The ground state we will say has

non-negligible amplitude from x
0

±ns
0

where s
0

=
q

h̄
mwi

.

When the ground state (or any initial state but we’re being simple here) from the 0th state end

ups in the oscillator j whose center is furthest away from its center, the center’s have distance

Dx
max

= Dx
0 j = (x j� x

0

). Because of the magic of Gaussian wavepackets in harmonic potentials,
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the wavepacket will distort and swing to the other side of the potential energy surface and settle at

the classical turning point intact. That wavepacket will now have approximate extent of

x
0

+2Dx
max

+ns
0

. Which, is the furthest out the wavepacket can ever get. So If we’re only

simulating a one-interaction experiment,

x
min

= x
0

�ns
0

(8.3.2)

x
max

= x
0

+2Dx
max

+ns
0

(8.3.3)

x
max

� x
min

= 2Dx
max

+2ns
0

(8.3.4)

If, however, we are interacting more than once, things get slightly more complicated. We have to

assume that at some point, the wavepacket centered about x= x
0

+2Dx
max

will once again end up

in the 0th oscillator. Which means that it will swing all the way over to center around

x= x
0

�2Dx
max

and thus for more than two interactions:

x
min

= x
0

�2Dx
max

�ns
0

(8.3.5)

x
max

= x
0

+2Dx
max

+ns
0

(8.3.6)

x
max

� x
min

= 4Dx
max

+2ns
0

(8.3.7)

8.3.1 MOMENTUM-SPACE CONSIDERATIONS

Alas, if only computers did not require us to simulate things discretely, we would not have to

worry about momentum space but they do and thus we do. We must chose N points to simulate the

system on. When you discrete Fourier transform a function in x, you get values of k ranging from

roughly � p
dx to

p
dx which means we must chose a dx which is small enough to study the largest

momentum the problem will end up seeing.
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8.3.2 ONE-INTERACTION

How do we do this? Well, consider that our rightmost amplitude is at x= x
0

+2Dx
max

+ns
0

. For

one interaction, the highest momentum we will see is when it gets to the center of the jth well.

Thinking classically, that rightmost piece of amplitude will be motionless at the top and then be

potential energy-less at the center so we can say:

p2
max

2mj
=Vj(x0+2Dx

max

+ns
0

) (8.3.8)

Since p= h̄k and we already know the form of the potential energy surface:

(h̄k
max

)2

2mj
=

1

2

mjw2

j (x0+2Dx
max

+ns
0

� x j)2 (8.3.9)

k
max

=
1

h̄
m jw j (Dxmax

+ns
0

) =
p
dx

(8.3.10)

dx=
p h̄

m jw j (Dxmax

+ns
0

)
=

xmax� x
min

N
(8.3.11)

p h̄
m jw j (Dxmax

+ns
0

)
=

2Dx
max

+2ns
0

N
(8.3.12)

N =
2mjw j (Dxmax

+ns
0

)2

p h̄
(8.3.13)

8.3.3 TWO-INTERACTIONS

But what if that wavepacket at it’s absolute rightmost position is then suddenly plummeted down to

the leftmost 0th potential energy well? Then there will be a non-trivially larger maximum
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momentum as it will have much further to travel to get to the center of the potential energy well.

(h̄k
max

)2

2m
0

=V
0

(x
0

+2Dx
max

+ns
0

) (8.3.14)

k
max

=
1

h̄
m
0

w
0

(x
0

+2Dx
max

+ns
0

� x
0

) =
p
dx

(8.3.15)

dx=
p h̄

m
0

w
0

(2Dx
max

+ns
0

)
=

xmax� x
min

N
(8.3.16)

h̄p
m
0

w
0

(2Dx
max

+ns
0

)
=

4Dx
max

+2ns
0

N
(8.3.17)

N =
2m

0

w
0

(2Dx
max

+ns
0

)2

p h̄
(8.3.18)

8.3.4 SUMMARIZE

8.3.4.1 ONE-INTERACTION

x
min

= x
0

�ns
0

(8.3.19)

x
max

= x
0

+2Dx
max

+ns
0

(8.3.20)

N =
2pmjw j (Dxmax

+ns
0

)2

h̄
(8.3.21)

dx=
h̄

pmjw j (Dxmax

+ns
0

)
(8.3.22)

8.3.4.2 TWO-INTERACTIONS

x
min

= x
0

�2Dx
max

�ns
0

(8.3.23)

x
max

= x
0

+2Dx
max

+ns
0

(8.3.24)

N =
2pm

0

w
0

(2Dx
max

+ns
0

)2

h̄
(8.3.25)

dx=
h̄

pm
0

w
0

(2Dx
max

+ns
0

)
(8.3.26)

193



8.4. ApplyingU(t) Numerically: the Split Operator Method

8.3.4.3 MORE-THAN-TWO-INTERACTIONS

With a third interaction, one must consider the scenario where the wavepacket at its leftmost is

promoted to the rightmost potential energy well where it can again go out to the rightmost edge of

the jth potential energy well giving us a different maximum distance needed and different

maximum potential needed.

8.4 APPLYING U(t) NUMERICALLY: THE SPLIT OPERATOR METHOD

Let’s say you want to apply an exponential operator to something:

U = e�itH/h̄

This does not appear to be terribly difficult at first sight if you know how to take the exponential of

whateverH is. Let’s just make life difficult and callH the Hamiltonian of a quantum system which

would makeU the time-evolution operator:

U = e�it/h̄H(p,x) = e�it/h̄(T (p)+V(x))

So now it appears to be rather difficult as the potential energy is best expressed in the position basis

whereas the kinetic energy is best expressed in the momentum basis. We might consider doing this

(to make our lives easier, define l = �it
h̄ ) to make things simpler:

U = el (T +V) = elT elV

Then we could apply the first bit, Fourier transform, apply the second bit and then inverse Fourier

transform back to the original basis. Is this, correct, though? Let’s look at the Taylor Series for the
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two. First the “correct” operator:

U = el (T +V)

=
•

Â
k=0

l k

k!
(T +V)k

= 1+l (T +V)+ l 2

2

(T 2+V2+T V+VT )

+
l 3

6

(T 3+V3+T V2+T 2V+T VT +VT 2+VT V+V2T )+O(l 4)

Now the proposed correction:

U = elT elV

=
•

Â
k=0

l k

k!
T k

•

Â
l=0

l l

l!
Vk

= 1+l (T +V)+ l 2

2

(T 2+V2+2T V)+ l 3

6

(T 3+V3+3T V2+3T 2V)+O(l 4)

So because normally you have commutivity xy= yx, because the kinetic and potential operators

don’t necessarily commute, there is an error term here:

E = el (T +V)� elT elV

=
l 2

2

(T V�VT )+O(l 3)

=
l 2

2

[T ,V]+O(l 3)

So our approximation is good, so long as l is small enough to keep l 2

sufficiently small. This can

be accomplished by letting t = NDt and applying the operator for Dt, N times.

You can get even better accuracy at the cost of more Fourier transforms using certain schemes as
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Discretization

shown below. (I will spare you the proofs of these)

U ⇡ elT /2elVelT /2+O(l 3)

U ⇡
⇣
eglT /2eglVeglT /2

⌘⇣
e(1�2g)lT /2e(1�2g)lVe(1�2g)lT /2

⌘⇣
eglT /2eglVeglT /2

⌘
+O(l 4)

= eglT /2eglVe(1�g)lT /2e(1�2g)lVe(1�g)lT /2eglVeglT /2+O(l 4)

g =
1

2� 3

p
2

You can, in principle, get a splitting method for an arbitrary level of accuracy, but it will involve

more computational time.

*

8.5 TRAPEZOIDAL INTEGRATION FOR PERTURBATION THEORY CALCULATIONS WITH SMALLER

TIME DISCRETIZATION

The integral one performs to do one “interaction” with a perturbative Hamiltonian H 0(t) with a

time-independent Hamiltonian H
0

is:

|Y0(t)i=� i
h̄

Z t

�•
e�

i
h̄ H0

(t�t)H 0(t) |Y(t)idt

Where |Y(t)i is the underlying wavefunction being interacted with, t represents the different times

that the interaction can happen at and e�
i
h̄ H0

(t�t) =U
0

(t,t) is the non-perturbative time-evolution

operator. This integral phenomenologically represents some field represented by H 0
having being

able to interact at many different points in time–all where the field is nonzero. At each of these

points in time (represented by t), one must interact the field with the underlying wavefunction and

then propagate that wavefunction out to the time-point of interest. Then, for every t before t there

is a contribution to the interacted wavefunction at time t that is averaged over by the integral.

*

Referenced http://www.pci.uni-heidelberg.de/tc/usr/andreasm/academic/handouthtml/node13.html for part of this

derivation
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Now it is not hard to imagine that a naive implementation of this integral would be numerically

very expensive. Indeed, if you turn my above paragraph into an algorithm directly, if the

perturbation is “on” for N time steps, you are storing O(N2) wavefunctions which gets hairy very

quickly.

We can do better, though and we will: to start with, we will assume that our perturbation can be

“turned on” at a time t
0

>�• without affecting the calculation at all, the integral reduces to this.

|Y0(t)i=� i
h̄

Z t

t
0

U
0

(t,t)H 0(t) |Y(t)idt

now we shall discretize time: ti = t
0

+ id t and t j = t
0

+ jd t. t and t have the same initial value

because t is never lower than t. Later on we will exploit this to simplify the expression but for

now, I shall keep t separate to make it abundantly clear that it is the variable which represents the

point at which the perturbation acts on the system.

We decide to perform the integral with a simple Riemann sum:

Z t f

t
0

f (t)dt = d tÂ
n
f (tn)+O(d t2)

which gives us:

|Y0(ti)i=� i
h̄

d t
j=i

Â
j=0

U
0

(ti,t j)H 0(t j) |Y(t j)i

now at this point, we decide to try mathematical induction for the heck of it and we calculate

|Y0(ti+1

)i=� i
h̄

d t
j=i+1

Â
j=0

U
0

(ti+1

,t j)H 0(t j) |Y(t j)i

=� i
h̄

d t

"
j=i

Â
j=0

U
0

(d t)U
0

(ti,t j)H 0(t j) |Y(t j)i+U
0

(ti+1

,ti+1

)H 0(ti+1

) |Y(tti+1

)i
#
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which, since tn = tn we can say

|Y0(ti+1

)i=U
0

(d t) |Y0(ti)i� i
h̄

d tH 0(ti+1

) |Y(tti+1

)i

which has a really interesting interpretation. At each time step, we merely take the previous time

step’s perturbation and propagate it forward one step in time. Then, we take the perturbation and

interact it with the current step of the wavefunction and add it to the propagated step and that is the

current step’s perturbed wavefunction. This is a phenomenal savings in space and time of

calculation over an naive implementation of the integral.

This is not without it’s problems, however. The error in this integration is of the order d t2

whereas the error for most split-operator propagation methods (if one is being smart) is of the order

d t3. This is entirely a failing of the Riemann sum algorithm. Remembering back to High school

calculus, though, one might recall another method called trapezoidal rule for integration.

Z t f

t
0

f (t)dt =
d t
2

"
f (t

0

)+ f ( f f )+2

n= f�1

Â
n=1

f (tn)

#
+O(d t3)

which we make use of to get an even lower error

|Y0(ti+1

)i=U
0

(d t) |Y0(ti)i� i
h̄

d t
2

U
0

(d t)H 0(ti) |Y(ti)i� i
h̄

d t
2

H 0(ti+1

) |Y(ti+1

)i

8.6 CALCULATION METHOD FOR HEATING CALCULATIONS

To look at molecular heating, we would care most about the average vibrational quantum number

n̄(t) = Â
n
n
��hg|hng |Y(t)i��2
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But then what does the time-dependent wavefunction look like? We’re interested in the exact

picture. The interaction Hamiltonian is

ˆH 0(t) = E(t)(|gihe|+ |eihg|)µ(x)

and the time-independent Hamiltonian is as above:

H
0

= Â
n
h̄wg

✓
n+

1

2

◆
|ngi |gihg|hng | (8.6.1)

+Â
m

✓
h̄we

✓
m+

1

2

◆
+we

◆
|mei |eihe|hme | (8.6.2)

If we turn the electronic degrees of freedom, putting it into Matrix form, we then have:

ˆH(t) =

2

64
Hg(x) E(t)µ(x)

E(t)µ(x) He(x)

3

75

no that won’t work since the coefficients of the Pauli matrices won’t commute...

Let’s try a blast form undergrad and calculate the time-dependent coefficients! We assume the

following form of the time-varying wavefunction:

|Y(t)i= Â
a
Ga(t) |agi |gi+Â

b
Eb(t) |bei |ei

where we know the initial conditions are G
0

(0) = 1,Ga6=0

(0) = 0,Eb(0) = 0. We now take the full

time-dependent Schrodinger equation:

d
dt

|Y(t)i=� i
h̄
ˆH(t) |Y(t)i
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starting with the left and simplest side:

d
dt

|Y(t)i= Â
a

dGa(t)
dt

|agi |gi+Â
b

dEb(t)
dt

|bei |ei

Then the right side can be split in twain:

� i
h̄
�
ˆH
0

+ ˆH 0(t)
� |Y(t)i

the easiest part of that being:

ˆH
0

|Y(t)i= Â
a
Ga(t)


Eg+Eg

✓
a+

1

2

◆�
|agi |gi

+Â
b
Eb(t)


Ee+Ee

✓
b+

1

2

◆�
|bei |ei

= Â
a
Ga(t)W(a) |agi |gi

+Â
b
Eb(t)W(b) |bei |ei

and now for the interaction term:

ˆH 0(t)
E(t)

|Y(t)i= Â
a
Ga(t)µ(x) |agi |ei+Â

b
Eb(t)µ(x) |bei |gi

we may find it useful to diagonalize the vibrational eigenstates into the same manifold as the

electronic state using the identities: Âq |qgihqg | and Â j | jeih je |. We also define µb
a = hag |µ(x) |bei:

ˆH 0(t)
E(t)

|Y(t)i= Â
a,q

Ga(t)µq
a |qei |ei+Â

b,r
Eb(t)µb

r |rgi |gi
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Now we put everything together:

✓
d
dt

+
i
h̄
ˆH
0

◆
|Y(t)i=� i

h̄
ˆH 00(t) |Y(t)i

Â
a

✓
dGa(t)
dt

+
i
h̄

W(a)

◆
|agi |gi+Â

b

✓
dEb(t)
dt

+
i
h̄

W(b)
◆
|bei |ei

=�E(t)
i
h̄

"

Â
a,q

Ga(t)µq
a |qei |ei+Â

b,r
Eb(t)µb

r |rgi |gi
#

Now we can pick out specific terms by ket-ing in with |gi |agi and |bi |bei.

✓
dGa(t)
dt

+
i
h̄

W(a)

◆
=�E(t)

i
h̄ Â

b
Eb(t)µb

a

and then:

✓
dEb(t)
dt

+
i
h̄

W(b)
◆
=�E(t)

i
h̄ Â

a
Ga(t)µb

a

This can be re-cast as a matrix problem,

d
dt

2

64
Ga(t)

Eb(t)

3

75=� i
h̄

2

64
W(a) E(t)µb

a

E(t)µb
a Wb

3

75 ·

2

64
Ga(t)

Eb(t)

3

75

Then this is put into a numeric first order differential equation solver. At every point I make sure

there is not too much amplitude in the highest vibrational state and then re-start the calculation if

so, ensuring no nonphysical results from truncation of the Hilbert Space.
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8.7 NOTORIOUS RWA: THE ROTATING WAVE APPROXIMATION

There’s another trick we can use to save a lot of computational time called the rotating wave

approximation. Let’s take a look at some laser excitation operator:

ˆH 0
+(t) = E

0

e�iwcte
t2
2s2 |eihg|

if we assume the ground state has zero energy and the excited state has energy/frequency (because

h̄= 1 here) W then we expect the zero and first order perturbation to look like:

|y
0

(t)i= |gi

|y+(t)i=� i
h̄

Z t

�•
U(t,t) ˆH 0

+(t) |gidt

=� iE
0

h̄

Z t

�•
U(t,t)e�iwcte

t2
2s2 |eidt

=� iE
0

h̄

Z t

�•
e�iW(t�t)e�iwcte

t2
2s2 |eidt

=� iE
0

h̄
e�iWt |ei

Z t

�•
e�i(wc�W)te

t2
2s2 dt

so we see that after the excitation perturbation only depends on wc�W or the difference between

the central frequency of the pulse and the laser. Which means that we can wrap those two things

together and say that the energy of the excited state is zero and that the laser oscillates at a

frequency of wc�W instead.

|y
0

(t)i= |gi

|y+(t)i=� iE
0

h̄
|ei
Z t

�•
e�idwte

t2
2s2 dt
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What does that give us computationally? It means, primarily, that we can use a smaller time step

and have the same accuracy, which will greatly speed up the calculation. One must be careful,

though. It only works for diagonal Hamiltonians. Once one has a diagonal (or block diagonal)

Hamiltonian, one can use this trick to consider the possible transitions between the diagonal states.
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9
Conclusion

The Work contained in this thesis hopefully makes it painfully clear that the Condon

Approximation, must be tested against for all proposed protocols and it should be included in all

molecular models going forward. Molecules have non-trivial transition dipoles which can and do

affect not just their electronic spectroscopy, but their electron-transfer rates

33

and their Raman

Spectra

20

. It’s just a matter of time before more effects are found.
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