



## A Clock-Phased Sigma Factor Cascade Is Required for Global Circadian Transcriptional Rhythms in Cyanobacteria

Permanent link

http://nrs.harvard.edu/urn-3:HUL.InstRepos:39987946

## Terms of Use

This article was downloaded from Harvard University's DASH repository, and is made available under the terms and conditions applicable to Other Posted Material, as set forth at http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

## **Share Your Story**

The Harvard community has made this article openly available. Please share how this access benefits you. <u>Submit a story</u>.

**Accessibility** 

## A Clock-Phased Sigma Factor Cascade is Required for Global Circadian Transcriptional Rhythms in Cyanobacteria

A dissertation presented by Kathleen Fleming

to

The Department of Molecular and Cellular Biology

in partial fulfillment of the requirements for the degree of Doctor of Philosophy in the subject of Biology

> Harvard University Cambridge, Massachusetts

> > July 7<sup>th</sup>, 2017

© 2017 Kathleen Fleming All rights reserved. A Clock-Phased Sigma Factor Cascade is Required for Global Circadian Transcriptional Rhythms in Cyanobacteria

#### Abstract

The circadian clock of the cyanobacterium *Synechococcus elongatus* PCC 7942 drives oscillations in global mRNA transcript abundances with 24 h periodicity under continuous light conditions. The transcription factor RpaA controls the timing of circadian gene expression, but the mechanisms underlying RpaA's indirect control of 90-percent of circadian transcripts are not well understood. Here we show that four RpaA-dependent sigma factors – *rpoD2, rpoD6, rpoD5,* and *sigF2* – are sequentially activated downstream of active RpaA and are required for proper expression of circadian genes. We find that the sigma factors RpoD6, RpoD5, and SigF2 exhibit circadian oscillations with different timing relative to each other at the level of their mRNA expression, protein abundance, and binding enrichment at genomic targets in constant light conditions. We measure global gene expression in strains modified to individually lack *rpoD2, rpoD6, rpoD5,* and *sigF2,* and identify how expression of circadian genes – including expression of sigma factor genes – is altered in the absence of each sigma factor. Broadly, our findings suggest that a single transcription factor, RpaA, is sufficient to generate complex circadian expression patterns in part by regulating an interdependent sigma factor cascade.

### **Table of Contents**

| INTRODUCTION                                                                   |
|--------------------------------------------------------------------------------|
| RESULTS AND DISCUSSION                                                         |
| RpaA-dependent timing of rpoD2, rpoD6, rpoD5, and sigF2 transcripts and their  |
| encoded protein products5                                                      |
| ChIP-seq reveals the landscape of RpoD6, RpoD5, and SigF2 binding upstream of  |
| transcription start sites for circadian genes12                                |
| rpoD2, rpoD6, rpoD5, and sigF2 are required for proper expression of circadian |
| genes15                                                                        |
| CONCLUDING REMARKS                                                             |
| EXPERIMENTAL PROCEDURES                                                        |
| Plasmid construction                                                           |
| Cyanobacterial strain construction35                                           |
| Cyanobacterial growth conditions                                               |
| Western blot analysis                                                          |
| Chromatin immunoprecipitation                                                  |
| ChIP-Seq library preparation and sequencing41                                  |
| ChIP-Seq data analysis42                                                       |
| Determination of transcription start site locations genome-wide42              |
| Identification of reproducible circadian genes42                               |
| Isolation of total RNA43                                                       |
| qPCR for gene expression44                                                     |
| <i>RNA-seq library preparation and sequencing</i> 45                           |

| REFERENCES           | 47 |
|----------------------|----|
| SUPPLEMENTARY TABLES | 50 |

## List of figures and tables

| <b>Figure 1.</b> Measurement of $rpoD2$ , $rpoD6$ , $rpoD5$ , and $sigF2$ mRNA levels and encoded protein products over time in constant light conditions and following induction of active RpaA in $kaiBC\Delta$ , $rpaA\Delta$ , $Ptrc::rpaA(D53E)$ strain |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Figure 2.</b> Expression levels of <i>purF</i> , <i>rpoD6</i> , <i>rpoD5</i> , and <i>sigF2</i> in the epitope-tagged sigma factor strains over time in constant light conditions                                                                         |
| Figure 3. Measurement of RpoD6, RpoD5, and SigF2 protein levels over time in constant light                                                                                                                                                                  |
| <b>Figure 4.</b> Measurement of RpoD6, RpoD5, and SigF2 protein levels before and after induction of active RpaA in $kaiBC\Delta$ , $rpaA\Delta$ , $Ptrc::rpaA(D53E)$ strain                                                                                 |
| <b>Figure 5.</b> Dynamics of RpoD6, RpoD5, and SigF2 enrichment upstream of transcription start sites (TSS) of circadian transcripts over time                                                                                                               |
| <b>Figure 6.</b> Induction of RpaA-D53 expression in strains individually lacking <i>rpoD2</i> , <i>rpoD6</i> , and <i>rpoD5</i>                                                                                                                             |
| <b>Figure 7.</b> Levels of phosphorylated RpaA protein in the wild-type strain lacking <i>sigF2</i> over time in constant light assessed by Phos-tag western blotting                                                                                        |
| <b>Figure 8.</b> Expression of circadian genes in strains individually lacking <i>rpoD2</i> , <i>rpoD6</i> , <i>rpoD5</i> , and <i>sigF2</i>                                                                                                                 |
| <b>Figure 9.</b> Heatmap showing how timing and peak expression of circadian transcripts are altered in the absence of <i>rpoD2</i> , <i>rpoD6</i> , <i>rpoD5</i> , and <i>sigF2</i>                                                                         |
| <b>Figure 10.</b> Alterations to sigma transcript levels in sigma factor knockout strains reveal dependencies amongst the sigma factors                                                                                                                      |
| <b>Table 1.</b> Cyanobacterial strains used in this study                                                                                                                                                                                                    |
| <b>Table 2.</b> Primers used for RT-qPCR in this study45                                                                                                                                                                                                     |
| <b>Supplementary Table 1.</b> Location of transcription start sites for high-confidence circadian genes determined by analysis of time-course ChIP-seq datasets for RNA polymerase locked at initiation sites genome-wide by rifampicin treatment            |
| <b>Supplementary Table 2.</b> RpoD6 genomic binding sites determined by analysis of time-course ChIP-seq datasets that are proximal to transcription start sites of high confidence circadian genes                                                          |

| Supplementary Table 3. RpoD5 genomic binding sites determined by analysis of time-cou         | rse |
|-----------------------------------------------------------------------------------------------|-----|
| ChIP-seq datasets that are proximal to transcription start sites of high confidence circadian |     |
| genes                                                                                         | 63  |
|                                                                                               |     |
| Supplementary Table 4. SigF2 genomic binding sites determined by analysis of time-course      | se  |
| ChIP-seq datasets that are proximal to transcription start sites of high confidence circadian |     |
| oenes                                                                                         | 67  |

This dissertation is dedicated with love to my aunt Terry Clements.

### Introduction

Organisms across different kingdoms of life have evolved anticipatory mechanisms circadian clocks – that enable coordination of their physiology and behavior with the day-night cycle. Circadian clocks are endogenous 24 h-period oscillators that can keep time for multiple days in constant conditions and can be phase-adjusted to match environmental variation – for example, daily cycling of temperature and light availability (Dunlap et al. 1999; Dunlap 2004; Bell-Pederson el al. 2005). In the simplest model system known to possess a circadian clock, the cyanobacterium Synechococcus elongatus PCC 7942, the clock drives daily genome-wide oscillations of mRNA abundances that display a variety of waveforms, amplitudes, and phases (Liu et al., 1995; Golden et al., 1997; Ito et al., 2009; Vijavan et al., 2009). The circadian clock provides S. elongatus with competitive advantage when grown in 24 h light-dark cycles (Ouyang et al., 1998; Woelfle et al., 2004). Some of this growth advantage is likely a product of clockcontrolled dynamics of gene expression enabling efficient temporal partitioning of biological activities, such as photosynthesis to hours of expected light, and catabolic metabolism pathways (e.g. glycogen degradation, glycolysis, and oxidative pentose phosphate pathway) to hours of expected night (Vijayan et al., 2009; Diamond et al., 2015). The molecular mechanisms underlying the generation of pervasive circadian transcript oscillations are still poorly understood.

The core oscillator in *S. elongatus* is comprised of three proteins (KaiA, KaiB, and KaiC) that sequentially interact to generate circadian (i.e. ~24 h) oscillations in the phosphorylation state of KaiC (Nishiwaki et al., 2007; Rust et al., 2007). Timing information is encoded in the KaiC phosphorylation state and is transduced via two histidine kinases (SasA and CikA) to modulate the phosphorylation state of RpaA, a transcription factor that is required for proper

expression of all circadian genes (Takai et al., 2006; Gutu and O'Shea, 2013; Markson et al., 2013). RpaA phosphorylation and its binding to DNA oscillate in concert with a 24 h period with minimal levels at subjective dawn and maximal levels at subjective dusk (Markson et al., 2013; 'subjective dusk' and 'subjective dawn' refer to an internal estimate of time in the absence of external cues). Remarkably, mimicking the accumulation of active RpaA (RpaA~P) from low levels at subjective dawn to high levels at subjective dusk – by inducing expression of a RpaA phosphomimetic mutant (RpaA-D53E) in cells lacking clock proteins – is sufficient to trigger sequential expression of circadian genes in an order similar to that observed in a natural circadian cycle (Markson et al., 2013). Thus, active RpaA is both necessary and sufficient to transduce information about time of day from the core KaiABC oscillator to circadian gene expression. However, these results do not explain how active RpaA triggers sequential expression of all circadian transcripts as RpaA directly binds upstream of only a small fraction of circadian genes (Markson et al., 2013). RpaA must time the majority of circadian transcript abundances via secondary regulators that function individually or in combination to modulate the synthesis or stability of circadian transcripts.

Top candidates for secondary regulators are four sigma factors – RpoD2, RpoD6, RpoD5, and SigF2 – whose promoters are bound by RpaA and whose expression is altered when RpaA is absent (Markson et al., 2013). Given their RpaA-controlled expression and their predicted roles as global transcriptional activators, these sigma factors could be key regulatory nodes necessary for timing and propagation of the time signal to the entire transcriptome. Across bacterial systems, sigma factors function as transcriptional activators by directing the catalytic core of RNA polymerase to specific transcription start sites and aiding in the initiation of transcription (Felistov et al. 2014). Genomes of many bacterial species, including cyanobacteria, encode

multiple alternative sigma factor genes in addition to a housekeeping sigma factor that directs the bulk of essential gene expression during active growth (Imarua and Asayama 2009). Alternative sigma factors have been implicated in promoting transcription of specialized genes necessary for coping with stress (e.g. iron starvation, nitrogen limitation, reactive oxygen species, temperature, hyperosmolarity, acidic pH) and for driving developmental programs (e.g. endospore formation in *B. subtilis and S. coelicolor*) (Gross et al. 1998; Ishihama 2000; Gruber and Gross 2003). In these examples, the activity of individual sigma factors is temporally controlled by diverse mechanisms including conditional expression of sigma factor proteins, modulation of sigma factor proteins, regulated proteolytic turnover of sigma factor proteins, and sequestration of sigma factor proteins in a manner that abrogates complexing with RNA polymerase (Gruber and Gross 2003). How the eight alternative sigma factor genes encoded in the *S. elongatus* genome are regulated to mediate expression of genes over circadian time or in response to stress has not been systematically determined.

Here we apply biochemical and genetic methods to investigate the roles of the four RpaA-dependent alternative sigma factors RpoD2, RpoD6, RpoD5, and SigF2 in regulating circadian gene expression. We find that protein abundances of RpoD6, RpoD5, and SigF2 and their binding to genomic loci rise and fall in concert with 24 h periodicity and exhibit distinct phasing relative to one another in constant light conditions. Finally, by measuring global gene expression in strains modified to individually lack *rpoD2*, *rpoD6*, *rpoD5*, and *sigF2*, we identify how expression of circadian genes – including expression of the sigma factor genes – are altered in the absence of each sigma factor. Based on our data, we propose that the sigma factor genes *rpoD2*, *rpoD6*, *rpoD5*, and *sigF2* constitute an interdependent and ordered cascade that functions

downstream of active RpaA and forms the basis of a transcriptional network that is required, along with RpaA, to time expression of circadian genes.

#### **Results and Discussion**

# RpaA-dependent timing of *rpoD2*, *rpoD6*, *rpoD5*, and *sigF2* transcripts and their encoded protein products

Given that *rpoD2*, *rpoD6*, *rpoD5*, and *sigF2* are part of the RpaA regulon and may direct expression of circadian genes downstream of RpaA, we sought to investigate the timing of their expression both at the mRNA and protein level. Transcripts encoding RpoD2, RpoD6, RpoD5, and SigF2 oscillate with 24 h periodicity and exhibit peak expression at different circadian times, with *rpoD2* peaking at T=24 h and 48 h, *rpoD6* peaking at T=32 and 56 h, and both *rpoD5* and *sigF2* peaking at T=36 and 60 h (Figure 1A). Consistent with prior results of Markson et al., we find that sequential changes to *rpoD2*, *rpoD6*, *rpoD5*, and *sigF2* mRNA abundances can be triggered by induction of constitutively active RpaA (phosphomimetic mutant RpaA(D53E)) in cells lacking *kaiBC*. This demonstrates that the sequential timing of sigma factor transcripts is triggered by accumulation of active RpaA downstream of the core KaiABC clock (Figure 1B).

To determine if protein levels of these sigma factors also change over circadian time in a sequential manner that is dependent on RpaA, we measured sigma factor protein levels by immunoblotting over 48 h in constant light (Figure 1A) and over 12 h following induction of constitutively active RpaA in cells lacking *kaiBC* (Figure 1B). To do this, we generated strains in which the sole copy of the respective sigma factor was epitope-tagged and expressed from its native promoter at a neutral locus in the genome. We were able to successfully construct functional, epitope-tagged RpoD6, RpoD5, and SigF2 strains (with functionality assessed by measuring expression of representative circadian genes, including the sigma factor genes; Figure 2), but were unable to generate a functional, epitope-tagged RpoD6, RpoD5, and SigF2 strain. We found that in both in free-running and "active" RpaA induction conditions, RpoD6, RpoD5, and SigF2 protein

levels change over time and peak sequentially with RpoD6 first, then RpoD5, and finally SigF2 (Figure 1A-B, Figure 3, Figure 4). Thus, we conclude that the circadian production of RpoD6, RpoD5, and SigF2 is controlled by RpaA activity, in a manner independent of the KaiABC clock. Notably, for RpoD6, RpoD5, and SigF2 there are differences in the timing of their transcript and protein abundances, revealing that timing of these sigma factor protein levels additionally requires RpaA-dependent translational or post-translational regulation.



**Figure 1.** Measurement of *rpoD2*, *rpoD6*, *rpoD5*, and *sigF2* mRNA levels and encoded protein products over time in constant light conditions and following induction of active RpaA in  $kaiBC\Delta$ ,  $rpaA\Delta$ , Ptrc::rpaA(D53E) strain.

(A) (Top) Quantification of sigma factor transcript levels in wild-type cells over 48 h, starting at T=24 h after release into constant light. Transcript levels were measured by qRT-PCR and normalized to interval [0 1]; points in the plot represent the mean of three independent experiments with error bars displaying standard deviation. (Bottom) Quantification of sigma factor protein levels over 48 h in epitope-tagged sigma factor strains, starting at T=24 h after release into constant light. Protein levels were measured by immunoblotting and, for each timeseries protein, levels were normalized to interval [0 1]; points in the plot represent the mean of three independent experiments with error bars displaying standard deviation. (B) (Top) Quantification of sigma factor transcript abundances in OX-D53E strain ( $kaiBC\Delta$ ,  $rpaA\Delta$ , Ptrc::rpaA(D53E); as described in Markson et al., 2013) before (T=0 h) and after induction of phosphomimetic RpaA by addition of ispropyl-β-D-1-thiogalactopyranoside (IPTG) to 100 µM final concentration. Transcript abundances were measured by RNA-seq and normalized to interval [0 1]; points in the plot represent the mean of two independent experiments with error bar displaying the range. (Bottom) Quantification of sigma factor protein levels in OX-D53E before (T=0 h) and after induction of phosphomimetic RpaA; points in the plot represent the mean of two independent experiments with the error bar displaying the range.



**Figure 2.** Expression levels of *purF*, *rpoD6*, *rpoD5*, and *sigF2* in the epitope-tagged sigma factor strains over time in constant light conditions.

Quantification of transcript levels in wild-type and sigma factor epitope-tagged strains over 36 h, starting at T=24 h after release into constant light. Transcript abundances were measured by qRT-PCR and normalized relative to the minimum and maximum values measured in the wild-type strain.

**Figure 3.** Measurement of RpoD6, RpoD5, and SigF2 protein levels over time in constant light. Western blots for measuring sigma factor protein levels over 48 h, starting at T=24 h after release into constant light in epitope-tagged sigma factor strains; (A) RpoD6, (B) RpoD5, and (C) SigF2. Equal total protein content for each lysate, as determined by Bradford assay, was loaded to each lane; duplicate gels stained with Coomassie dye served as a loading controls. An example of a Coommassie stained gel for one of the replicate time-series is shown.



Figure 3 (Continued).



- With induction of RpaA(D53E) replicate1
- With induction of RpaA(D53E) replicate 2

**Figure 4.** Measurement of RpoD6, RpoD5, and SigF2 protein levels before and after induction of active RpaA in  $kaiBC\Delta$ ,  $rpaA\Delta$ , Ptrc::rpaA(D53E) strain.

Western blots for measuring sigma factor protein levels in OX-D53E strains modified to have the sole copy of the sigma factor epitope-tagged and expressed from native promoter at a neutral locus in the genome before (T=0 h) and after induction of phosphomimetic RpaA by addition of IPTG to 100  $\mu$ M final concentration. Equal total protein content for each lysate, as determined by Bradford assay, was loaded to each lane.

# ChIP-seq reveals the landscape of RpoD6, RpoD5, and SigF2 binding upstream of transcription start sites for circadian genes

If sigma factors compete for association with the core RNA polymerase, and if different forms of RNA polymerase holoenzymes can recognize S. elongatus promoters, we predict that RpoD6, RpoD5, and SigF2 will bind circadian promoter targets maximally at different times of day. To identify RpoD6, RpoD5, and SigF2 binding sites at a genome-wide level and characterize the dynamics of their binding over time, we utilized our functional, epitope-tagged sigma factor strains to perform circadian time course chromatin immunoprecipitation, analyzed by high-throughput sequencing (ChIP-seq), for each sigma factor every 4 h over 48 h in constant light conditions. To make initial assignments of sigma factor binding sites to specific transcripts, we first determined the locations of transcription start sites genome-wide. To do this, we utilized a functional, epitope-tagged RNA polymerase strain (gift of A. Puszynska, Harvard University) to perform circadian time course ChIP-seq on cells treated with rifampicin to lock RNA polymerase at initiation sites genome-wide (Supplementary Table 1; see Experimental Procedures). We focused our analysis on high-confidence circadian genes (n=336), a subset of the circadian genes defined by Markson et al. that have greater than 1.75 ratio of peak to trough expression in wild-type cells grown in constant light conditions, and have a transcription start site within 250 base pairs upstream of their start codon. We find that RpoD6, RpoD5, and SigF2 bind upstream of transcription start sites for circadian genes maximally at different times of day: RpoD6 at T=28 and 52 h, RpoD5 at T=32/36 and 56/60 h, and SigF2 at T=40 and 64 h (Figure 5A, Supplementary Tables 2-4). Furthermore, these three sigma factors bind their promoter targets maximally when their protein abundance is also maximal, consistent with a model of sigma factors competing to bind RNA polymerase, which could time the transcription of

different circadian genes. We note also that RpoD6, RpoD5, and SigF2 all bind their own promoters as well as promoters of other sigma factors. For instance, RpoD6 binds the promoter of *rpoD5* and RpoD5 binds the promoter of *rpoD6*, which suggest presence of auto- and crossregulatory feedback mechanisms. In total, we determined that 132 of the 336 high-confidence circadian transcripts (40-percent) are bound by RpoD6, RpoD5, or SigF2, and 41 of 132 are bound by more than one sigma factor (Figure 5B). Intriguingly, the circadian promoter targets of a given sigma factor are not expressed with a similar phase (Figure 5A), suggesting that there are additional factors directing the timing of peak transcript abundances.

Consistent with the possibility that RpoD6, RpoD5, and SigF2 could control other genes whose product can modulate gene expression, we find three transcription factors (*synpcc7942\_0090, synpcc7942\_0556*, and *sypncc7942\_1159*) and three sigma factors (*rpoD1*, *rpoD3*, and *rpoD4*) as members of their putative regulons. RpoD6 binds the promoters of *synpcc7942\_0090, synpcc7942\_0556, rpoD1*, and *rpoD4*. RpoD5 binds the promoters of *synpcc7942\_0090, synpcc7942\_0556, sypncc7942\_1159, rpoD3*, and *rpoD4*. Given that transcript abundances of these transcription factors and sigma factors exhibit circadian oscillations, these factors may act like RpoD6, RpoD5, and SigF2 to compete to complex with RNA polymerase, bind circadian promoters at specific times of day, and contribute to circadian timing of specific transcript abundances.





(A) ChIP-Seq was performed every 4 h for 48 h starting at T=24 h after release into constant light. Enrichment relative to the mock IP was calculated at the location of maximum ChIP-Seq read density within each binding site. (Left) Each row in the heatmaps represents the enrichment relative to the mock immunoprecipitation, normalized to interval [0 1]. (Right) Transcript abundance in wild-type cells of mRNAs encoded immediately downstream of each circadian promoter target shown on the left, over 24 h after release into constant light. Transcript abundances were normalized to interval [0 1].

(B) Venn diagram displaying overlap of circadian targets bound by RpoD6, RpoD5, and SigF2.

#### rpoD2, rpoD6, rpoD5, and sigF2 are required for proper expression of circadian genes

To determine whether the sigma factors RpoD2, RpoD6, RpoD5, and SigF2 are required for proper expression of circadian transcripts, we sought to investigate if and how inactivation of individual sigma factor genes altered expression of circadian genes. Previously, Nair et al. deleted *rpoD2* and *rpoD5* in a *PkaiBC::luxAB* reporter strain and found that inactivation of rpoD2 increased the period of PkaiBC::luxAB expression with no effect on amplitude, while inactivation of *rpoD5* decreased the amplitude of PkaiBC::luxAB expression with no affect on period length (Nair et al., 2002). Given that changes in the expression of *kai* proteins can perturb Kai protein stoichiometry and disrupt KaiABC clock function (Takai et al., 2006; Markson et al., 2013), it is possible that KaiABC clock function is disrupted or altered in cells singly lacking rpoD2 or rpoD5. To avoid secondary affects to gene expression that might arise if there exists sufficient disruptive feedback from sigma factor genes to KaiABC clock function or RpaA regulation, we prioritized deleting sigma factor genes in the OX-D53E strain that has upstream KaiABC and RpaA regulation genetically abolished and has RpaA-dependent gene expression output artificially restored (OX-D53E strain:  $kaiBC\Delta$ ,  $rpaA\Delta$ , Ptrc::rpaA(D53E), as we used for Figure 1B). We generated deletion strains of *rpoD2*, *rpoD6*, and *rpoD5* in the OX-D53E background. Despite our repeated attempts, we were unable to generate a complete deletion of sigF2 in this background, and therefore generated the sigF2 deletion in a wild-type background only. After confirming that induction of active RpaA or its phosphorylation profile remained unaffected in the sigma deletion strains (Figure 6, Figure 7), we analyzed by RNA-seq the kinetics and peak levels of mRNA accumulation following induction of RpaAD53E in *rpoD2*, rpoD6, rpoD5 deletion strains (Figure 8A), and overall transcriptome changes in the sigF2 deletion strain (Figure 8B). We find that individual inactivation of *rpoD2*, *rpoD6*, *rpoD5*, and

sigF2 (in the wild type background) alters temporal transcript levels and peak abundance for some circadian genes and not others.

**Figure 6.** Induction of RpaA(D53) expression in strains individually lacking *rpoD2*, *rpoD6*, and *rpoD5*.

(A) Western blot analysis of phosphomimetic RpaA protein levels before (T=0 h) and after induction of phosphomimetic RpaA by addition of IPTG to 100  $\mu$ M final concentration in OX-D53E strain, OX-D53E strain lacking *rpoD2*, OX-D53E strain lacking *rpoD6*, and OX-D53E strain lacking *rpoD5*. RpaA(D53E) protein levels over time in each strain were normalized to interval [0 1]. Equal total protein content for each lysate, as determined by Bradford assay, was loaded to each lane.

(B) Western blot analysis comparing the abundance of RpaA(D53E) at T=12 h after induction of phosphomimetic RpaA for replicate 1 of all strains shown in (A). Equal total protein content for each lysate, as determined by Bradford assay, was loaded to each lane.



Figure 6 (Continued.)





(Top) Phos-tag western blot of phosphorylated and unphosphorylated RpaA over time. Lysates were prepared from wild-type cells lacking sigF2 and equal total protein content for each lysate, as determined by Bradford assay, was loaded to each lane.

(Bottom) Quantification of RpaA~P levels over 24 h in constant light in the wild-type strain lacking *sigF2* (red) compared to levels in wild-type strain (black; data from Markson et al., 2013).

**Figure 8.** Expression of circadian genes in strains individually lacking *rpoD2*, *rpoD6*, *rpoD5*, and *sigF2*.

(A) Time courses of transcript levels for circadian genes (n=336) in OX-D53E strain and in OX-D53E strains modified to lack individual sigma factor genes rpoD2, rpoD6, and rpoD5. Gene expression was measured by RNA-seq before (T=0 h) and after induction of phosphomimetic RpaA in two independent experiments for each strain. Mean time-series transcript levels for each strain were normalized to the interval [0 1] and sorted based on peak expression in wild-type cells (see panel B). To compare how the peak transcript abundance of each circadian gene is changed in the sigma factor deletion strain relative to the OX-D53E strain, the ratio is displayed as a colored row normalized to interval [0.3 3.0], reflecting  $\geq$ 3-fold reduction and  $\geq$ 3-fold increase respectively in peak transcript abundance in the sigma factor deletion strain. (B) Time courses of transcript levels for circadian genes (n=336) in wild-type strain and in a wild-type strain modified to lack the *sigF2* gene. Gene expression was measured by RNA-seq over one circadian cycle in two independent experiments for each strain starting at T=24 h after release into constant conditions. Mean time-series transcript levels for each strain were normalized to the interval [0 1] and sorted based on peak expression in wild-type cells. To compare how the peak transcript abundance of each circadian gene is changed in the sigF2deletion strain relative to the wild-type strain, the ratio is displayed as a colored row normalized to interval [0.3 3.0], reflecting  $\geq$ 3-fold reduction and  $\geq$ 3-fold increase respectively in peak transcript abundance in the *sigF2* deletion strain.



To compare how transcript levels for circadian genes are altered across sigma factor deletion strains, we generated a heatmap based on two metrics for each circadian gene in the four sigma factor deletion strains. The first metric is the cross-correlation value of the time-series transcript levels, normalized to the interval [0 1], in the sigma factor deletion strain compared to in the reference strain (e.g. transcript levels in the OX-D53E strain lacking *rpoD2* compared to the OX-D53E strain). This value ranges from -1 reflecting a strong negative correlation to +1reflecting a strong positive correlation. The second metric is the ratio of peak expression in the sigma factor deletion strain compared to peak expression in the reference strain. Together the two metrics describe how timing of transcript levels and peak expression are altered for each circadian gene. The heatmap we generated based on these two metrics for each sigma factor deletion strain reveals that transcript levels for some circadian genes are altered differently depending on which sigma factor is inactivated, while transcript levels of other circadian genes are altered similarly in two or more sigma factor deletion strains (Figure 9). For example, cluster I in Figure 9 contains circadian genes for which transcript timing is not altered in cells lacking *rpoD6*, *rpoD5*, or *sigF2*, but in cells lacking *rpoD2* the transcript level timing is altered and peak expression is elevated. In contrast, cluster II in Figure 9 contains circadian genes for which transcript timing is similar in the cells individually lacking the four sigma factors, but transcript peak expression is altered to different extents depending on which sigma factor is inactivated with similar reductions often observed in cells lacking rpoD6 and in cells lacking rpoD5. As one final example, cluster III in Figure 9 contains circadian genes for which transcript timing is similar in cells lacking rpoD6, rpoD5, or sigF2, but in cells lacking rpoD2 the transcript level timing is altered and peak expression is repressed. These complex alterations to the expression of circadian genes are inconsistent with a simple model in which the sigma factors function

independently of one another to modulate circadian gene expression. Instead, the function of the sigma factors must be required interdependently for proper gene expression.

Our data reveals that interdependence amongst the sigma factors is partially set at the level of sigma factor expression. For example, in OX-D53E cells lacking *rpoD6* we observed unperturbed *rpoD2* levels and constitutively low levels of *rpoD5* and *sigF2* (Figure 10A). This is consistent with rpoD6 acting downstream of rpoD2 and upstream of rpoD5 and sigF2 by activating their expression. In OX-D53E cells lacking rpoD5 we observed unperturbed rpoD2 levels, constitutively low levels of sigF2, and rpoD6 levels that remain elevated at later times (Figure 10A). This is consistent with rpoD5 acting downstream of rpoD2 to activate sigF2 expression and to repress rpoD6 expression. In OX-D53E cells lacking rpoD2 we observed that sigF2 levels were six-fold upregulated at T=0 h prior to induction of active RpaA and following induction rpoD6, rpoD5, and sigF2 levels increased, but with altered temporal profiles – the kinetics of *rpoD6* reducing in level are altered and both *rpoD5* and *sigF2* levels increase by T=12 h, but exhibit peak expression that is reduced two-fold. (Figure 10A). This is consistent with rpoD2 levels being required at subjective dawn (when RpaA activity is at minimum) to repress *sigF2* and RpaA-dependent early repression of *rpoD2* being required upstream of changes to rpoD6, rpoD5, and sigF2 levels. To test if constitutively high levels of rpoD2 are sufficient to block activation of rpoD6, rpoD5, and sigF2 levels, we replaced the native promoter region of *rpoD2* with a constitutive promoter (*PSynpcc7942 0456*) that is not dependent on RpaA activity and measured by qRT-PCR the changes in rpoD6, rpoD5, and sigF2 transcript levels following induction of RpaAD53E. In cells with constitutive *rpoD2* expression we observed constitutively low levels of rpoD6, rpoD5, and sigF2 (Figure 10A). This pattern of regulation is consistent with RpaA-dependent reduction of *rpoD2* levels being required to relieve rpoD2-dependent repression of downstream sigma factors rpoD6, rpoD5, and sigF2. In total, the

observed dependencies amongst the sigma factors include: *rpoD2*-dependent repression of *rpoD5*, and *sigF2*, *rpoD6*-dependent activation of *rpoD5* and *sigF2*, *rpoD5*-dependent repression of *rpoD6*, and *rpoD5*-dependent activation of *sigF2*. Based on these genetic interactions we propose that *rpoD2*, *rpoD6*, *rpoD5*, and *sigF2* constitute an interdependent and ordered cascade that is triggered by RpaA-dependent repression of *rpoD2* (Figure 10B). We further propose that this sigma factor network is required with active RpaA to properly time expression of circadian genes between subjective dawn and subjective dusk. The only inferred relationship that is potentially direct is the binding of RpoD6 to activate *rpoD5* expression, as we found that RpoD6 binds upstream of *rpoD5*. Potentially the *rpoD5*-dependent activation of *sigF2 syppcc7942\_1159*, *rpoD4*, or *sypncc7942\_1108* all of which are bound by RpoD5, exhibit reduced expression in cells lacking *rpoD5*, and encode proteins that are predicted to modulate transcription (i.e. transcription factor, sigma factor, nucleoid associated protein).





The heatmap was generated based on two metrics calculated for each circadian transcript based on data shown in Figure 9. The first metric is the cross-correlation value of the time-series transcript levels normalized to interval [0 1] in the sigma factor deletion strain compared to in the reference strain (e.g. transcript levels in the OX-D53E strain lacking *rpoD2* compared to the OX-D53E strain); this value ranges from -1 reflecting a strong negative correlation to +1 reflecting a strong positive correlation. The second metric is the ratio of peak expression in the sigma factor deletion strain compared to peak expression in the reference strain; the ratio is displayed normalized to interval [0.3 3.0], reflecting  $\geq$ 3-fold reduction and  $\geq$ 3-fold increase respectively in peak transcript abundance in the sigma factor deletion strain. Together the two metrics describe how timing of transcript levels and peak expression are altered for each circadian gene. The heatmap rows were ordered based on hierarchical clustering that sought to minimize Euclidean distance. **Figure 10.** Alterations to sigma transcript levels in sigma factor knockout strains reveal dependencies amongst the sigma factors.

(A) RpaAD53E-induced dynamics of *rpoD2*, *rpoD6*, *rpoD5*, and *sigF2* mRNA levels before
(T=0 h) and after induction of phosphomimetic mutant RpaA (RpaA(D53E)) in the OX-D53E strain, OX-D53E strain lacking *rpoD6*, OX-D53E strain lacking *rpoD5*, OX-D53E strain lacking *rpoD2*, and OX-D53E strain with *PrpoD2* replaced by *Psynpcc7942\_0456*. Transcript levels of *rpoD2*, *rpoD6*, *rpoD5*, and *sigF2* were measured by RNA-seq and are shown normalized to the interval [0 1,] with 0 and 1 reflecting the minimum and maximum expression in the OX-D53E strain respectively; points in the plot represent the mean of two independent experiments. For the OX-D53E strain with *PrpoD2* replaced by *Psynpcc7942\_0456* transcript levels were measured by qRT-PCR; points in the plot represent the mean of two independent experiments.
(B) Diagram reflects the synthesis of genetic interactions between the sigma factor genes *rpoD2*, *rpoD6*, *rpoD5*, and *sigF2* inferred from data displayed in (A).



Figure 11 (Continued).
### **Concluding remarks**

RpaA is a master transcriptional regulator, required for proper expression of all circadian genes. In this study, we demonstrate that RpaA times circadian gene expression in part via the alternative sigma factors rpoD2, rpoD6, rpoD5, and sigF2. Our core finding is that individual inactivation of *rpoD2*, *rpoD6*, *rpoD5*, or *sigF2* alters the timing and peak expression of some circadian genes downstream of active RpaA, while the expression of other circadian genes is unaffected (Figure 8). The expression changes that we observe in the different sigma factor deletion strains (Figure 9) suggest that the sigma factors rpoD2, rpoD6, rpoD5, and sigF2 function interdependently to affect mRNA abundances of circadian genes downstream of active RpaA accumulation (Figure 10). Notably, our data reveals that the sigma factor interdependence is at least partially set at the level of sigma factor expression, as deletion of a sigma factor (e.g. rpoD6) alters the transcript levels of other sigma factors (e.g. rpoD5 and sigF2). In total, the genetic interactions among the sigma factors that we observe are consistent with the sigma factors rpoD2, rpoD6, rpoD5, and sigF2 constituting an ordered cascade (Figure 10B) that is triggered by RpaA-dependent repression of rpoD2. Given that we observe expression defects when the timing and peak abundance of rpoD2, rpoD6, rpoD5, and/or sigF2 transcripts are disrupted (Figure 8), these sigma factor genes must at least partially underlie the generation of global circadian gene expression in this cyanobacterium.

How the sigma factors RpoD2, RpoD6, RpoD5, and SigF2 directly and indirectly contribute to waveforms, amplitudes, and phasing of circadian transcripts remains unclear. We did find that RpoD6, RpoD5, and SigF2 protein abundances and occupancy upstream of target circadian genes changes over circadian time with distinct phasing relative to one another. Based on this, we propose that directed changes to pools of sigma factor species over circadian time and sigma

28

factors competing to recruit RNA polymerase to specific genomic regions could contribute to transcript synthesis rates for specific circadian genes. Direct measurement of sigma factors complexing with RNA polymerase over circadian time and of genome-wide nascent RNA levels generated by distinct sigma factor/RNA polymerase holoenzymes relative to those generated by all species of RNA polymerase holoenzymes will determine if basic tenets of this model are correct.

Also meriting future investigation is the timing of *rpoD2*, *rpoD6*, *rpoD5*, and *sigF2* transcript levels. How are transcript abundances of these sigma factors reproducibly and sequentially timed downstream of active RpaA? The interdependencies among the sigma factors that we elucidated (Figure 10B) may guarantee the ordering of their peak transcript abundances, but are alone unlikely to control the reproducible time intervals between their activations that we observe in constant light conditions (Figure 1A). Potentially, the time intervals between sigma factor peak transcript abundances are tied to the dynamics of active RpaA accumulation. This coupling would ensure that the sigma factor cascade remains synchronized with time of day information stored in the KaiABC clock. A potential mechanism for this could be the combination of sigma factor expression being driven by different levels of active RpaA, and RpaA's transcriptional activity at promoters of rpoD6, rpoD5, and sigF2 requiring outputs generated by earlier sigma factors (e.g. rpoD5-dependent output needed with RpaA binding at a threshold level of active RpaA to activate sigF2 expression). Said another way, each step of the sigma factor cascade could require both completion of the previous cascade stage and a threshold level of active RpaA. This 'AND' gate model predicts that different dynamics of RpaA phosphorylation over 24 h will alter the timing between sigma factors (e.g. delaying or accelerating transitions) without changing the cascade sequence. Additionally, this model predicts that natural environmental

variations (e.g. changes in light intensity) that transiently or reversibly alter RpaA action – such as those predicted to be mediated by the response regulator RpaB (Espinosa et al., 2015) – may be sufficient to transiently stall progression of the sigma factor cascade. This model could be tested either by altering the dynamics of active RpaA accumulation in OX-D53 cells (e.g. by adding different concentrations of IPTG inducer) or by abrogating RpaA binding at specific sigma factor promoters in OX-D53E cells (e.g. replacing the RpaA consensus motif upstream of sigma factor transcription start sites with a scrambled DNA sequence). The former test would be predicted to change the relative timing between sigma factor transcript activations with the rate of active RpaA accumulation correlating inversely with time delays between peak expression of *rpoD2/rpoD6* and *rpoD6/rpoD5*. The latter test would be predicted to prevent the activation of downstream sigma factors, thus stalling progression of the sigma factor cascade.

#### **Experimental Procedures**

## **Plasmid construction**

All plasmids for strain construction were generated using Gibson assembly (Gibson et al., 2009) and verified by Sanger sequencing.

- i. The KF-P-05 plasmid was constructed by insertion of DNA sequence for PrpoD5::rpoD5-GSGS-3XFLAG<sub>C</sub> into the XhoI site of the NS2.2 (Gm<sup>R</sup>; gentamicin resistance) targeting vector. The DNA sequence for PrpoD5::rpoD5-GSGS-3XFLAG<sub>C</sub> was generated by a series of nested PCR reactions. The PrpoD5 was taken as 600 base pairs of sequence located upstream of the rpoD5 translation start codon (ATCC PCC 7942 chromosomal sequence 1916020 to 1916619 bps). The rpoD5-GSGS-3XFLAG<sub>C</sub> was generated by appending the coding sequence of rpoD5 (chromosomal sequence 1916620 to 191781 bps) to the DNA sequence for the GSGS-3XFLAG epitope tag (GGCAGCGGCA GCGATTACAA AGATCACGAT GGCGATTACA AAGATCACGA TATCGATTAC AAAGATGATG ATGATAAA) which itself was appended to the DNA sequence for a stop codon (TAG).
- ii. The KF-P-13 plasmid was constructed by insertion of PrpoD5::rpoD5-GSGS-3XFLAG<sub>C</sub> sequence from KF-P-05 into SalI site of the NS1 (Sp<sup>R</sup>; spectinomycin resistance) targeting vector (pAM1303, gift of Dr. Susan Golden, University of California, San Diego).
- iii. The KF-P-06 plasmid was constructed by insertion of DNA sequence for PrpoD6::rpoD6-GSGS-3XFLAG<sub>C</sub> into XhoI site of the NS2.2 (Gm<sup>R</sup>; gentamicin resistance) targeting vector. The DNA sequence for PrpoD6::rpoD6-GSGS-3XFLAG<sub>C</sub> was generated by a series of nested PCR reactions. The PrpoD6 was taken as the 600 base pairs of sequence located upstream of the rpoD6 translation start codon (reverse complement of chromosomal sequence 1614397-1614996 bps). The rpoD6-GSGS-3XFLAG<sub>C</sub> was generated by appending the coding sequence

of *rpoD6* (reverse complement of chromosomal sequence 1613467 to 1614396 bps) to the DNA sequence for the GSGS-3XFLAG epitope tag (GGCAGCGGCA GCGATTACAA AGATCACGAT GGCGATTACA AAGATCACGA TATCGATTAC AAAGATGATG ATGATAAA) which itself was appended to the DNA sequence for a stop codon (TAG).

- iv. The KF-P-14 plasmid was constructed by insertion of PrpoD6::rpoD6-GSGS-3XFLAG<sub>C</sub> sequence from KF-P-06 into SalI site of the NS1 (Sp<sup>R</sup>; spectinomycin resistance) targeting vector (pAM1303).
- v. The KF-P-08 plasmid was constructed by insertion of DNA sequence for PsigF2::sigF2-GSGS-3XFLAG<sub>C</sub> into XhoI site of the NS2.2 (Gm<sup>R</sup>; gentamicin resistance) targeting vector. The DNA sequence for PsigF2::sigF2-GSGS-3XFLAG<sub>C</sub> was generated by a series of nested PCR reactions. The PsigF2 was taken as the 600 base pairs of sequence located upstream of the sigF2 translation start codon (chromosomal sequence 1851929 to 1852528 bps). The sigF2-GSGS-3XFLAG<sub>C</sub> was generated by appending the coding sequence of sigF2 (chromosomal sequence 1852529 to 1853311 bps) to the DNA sequence for the GSGS-3XFLAG epitope tag (GGCAGCGGCA GCGATTACAA AGATCACGAT GGCGATTACAA AGATCACGAT TATCGATTAC AAAGATGATG ATGATAAA) which itself was appended to the DNA sequence for a stop codon (TAG).
- vi. The KF-P-16 plasmid was constructed by insertion of P*sigF2*::*sigF2*-GSGS-3XFLAG<sub>C</sub> sequence from KF-P-08 into SalI site of the NS1 (Sp<sup>R</sup>; spectinomycin resistance) targeting vector (pAM1303).
- vii. The KF-P-75 plasmid was constructed by insertion of DNA homologous to sequence located upstream of the *rpoD6* coding sequence, nourseothricin resistance cassette (Nat<sup>R</sup>; nourseothricin resistance), and DNA homologous to sequence located downstream of the

rpoD6 coding sequence into the KpnI site of the puc18 vector (ATCC 37253). The insert DNA sequence was generated by a series of nested PCR reactions: stitching the DNA sequence of chromosomal position 1612464 to 1613464 bps to the DNA sequence of the nourseothricin resistance cassette (Nat<sup>R</sup>: AAGCAGGCTG AGCAGGTTTT AATTCTCATG TTTGACAGCT TATCATCGAA TTATAGGAAT AGAGCAAACA AGCAAAGGAA ATTTTGTCAA AATAATTTTA TTGACAACGT CTTATTAACG TTGATATAAT TTAAATTTTA TTTGACAAAA ATGGGCTCGT GTTGTACAAT AAATGTAGTG AGGTGGATGC AATGGCGATG ACGTTGTCCG ATATTAAAAG ATCGCTTGAT GGGAATTTAG GTAAAAGGCT GACGTTAAAA GCAAACGGTG GCCGGATCCA TATGACCACC CTGGATGATA CCGCCTACCG CTACCGCACC AGCGTTCCCG GTGATGCCGA AGCCATCGAA GCCCTGGATG GCAGCTTTAC CACCGATACC GTGTTTCGCG TGACCGCCAC GGGTGATGGC TTTACCCTGC GCGAAGTGCC CGTCGATCCC CCTCTGACCA AAGTGTTTCC CGATGATGAA AGTGATGATG AATCGGATGC TGGCGAAGAT GGCGATCCCG ATAGCCGCAC CTTTGTGGCC TACGGTGATG ATGGCGATCT GGCTGGCTTT GTGGTGGTGA GCTACAGCGG CTGGAATCGC CGCTTGACCG TGGAAGATAT TGAAGTGGCT CCCGAACACC GCGGTCACGG CGTTGGTCGC GCTCTGATGG GCCTGGCCAC CGAATTTGCT CGCGAACGCG GTGCTGGCCA CCTGTGGCTGG AAGTGACCAA CGTGAACGCTC CCGCTATCCA CGCCTATCGC CGCATGGGCT TCACCCTGTG TGGCCTGGAT ACCGCTCTGT ACGATGGCAC CGCCAGTGAT GGCGAACAGG CCCTGTACAT GAGCATGCCC TGCCCCTAAG GCCGGCCAGC CCGCCTAATG AGCGGGCTTT TTTTT) to the DNA sequence of chromosomal position 1614396 to 1615396 bps.

- viii. The KF-P-76 plasmid was constructed by insertion of DNA homologous to sequence located upstream of the *rpoD5* coding sequence, nourseothricin resistance cassette (Nat<sup>R</sup>; nourseothricin resistance), and DNA homologous to sequence located downstream of the *rpoD5* coding sequence into the KpnI site of the puc18 vector (ATCC 37253). The insert DNA sequence was generated by a series of nested PCR reactions: stitching the DNA sequence of chromosomal position 1915620 to 1916619 bps to the DNA sequence of the nourseothricin resistance cassette to the DNA sequence of chromosomal position 1917816 to 1918816 bps.
  - ix. The KF-P-78 plasmid was constructed by insertion of DNA homologous to sequence located upstream of the *sigF2* coding sequence, nourseothricin resistance cassette (Nat<sup>R</sup>; nourseothricin resistance), and DNA homologous to sequence located downstream of the *sigF2* coding sequence into the KpnI site of the puc18 vector (ATCC 37253). The insert DNA sequence was generated by a series of nested PCR reactions: stitching the DNA sequence of chromosomal position 1851529 to 1852528 bps to the DNA sequence of the nourseothricin resistance cassette to the DNA sequence of chromosomal position 18515159 to 1852528 bps to the DNA sequence of 1853311 to 1854311 bps.
  - x. The KF-P-79 plasmid was constructed by insertion of DNA homologous to sequence located upstream of the *rpoD2* coding sequence, the nourseothricin resistance cassette (Nat<sup>R</sup>; nourseothricin resistance), and DNA homologous to sequence located downstream of the *rpoD2* coding sequence into the KpnI site of the puc18 vector (ATCC 37253). The insert DNA sequence was generated by a series of nested PCR reactions: stitching the DNA sequence of chromosomal position 1815600 to 1816599 bps to the DNA sequence of the nourseothricin resistance cassette to the DNA sequence of chromosomal position 1817562 to 1818562 bps.

xi. The KF-P-80 plasmid was constructed by insertion of DNA homologous to sequence located upstream of the *rpoD2* coding sequence, the nourseothricin resistance cassette (Nat<sup>R</sup>; nourseothricin resistance), DNA homologous to sequence located upstream of the *synpcc7942\_0456* coding sequence, and coding sequence of *rpoD2* into the KpnI site of the puc18 vector (ATCC 37253). The insert DNA sequence was generated by a series of nested PCR reactions: stitching the DNA sequence of chromosomal position 1817770 to 1818427 bps to the DNA sequence of the nourseothricin resistance cassette to the DNA sequence of chromosomal position 444209 to 445208 bps to the DNA sequence of chromosomal position 1817562 bps.

# Cyanobacterial strain construction

Strains were constructed using standard procedures for genomic integration by homologous recombination (Clerico et al., 2007). All strains were analyzed by colony PCR to verify target integration into the genome. Strain AMC408 was a gift from Dr. Susan Golden (University of California, San Diego).

| Table 1. | Cyanobact | erial strains u | used in this | study |
|----------|-----------|-----------------|--------------|-------|
|----------|-----------|-----------------|--------------|-------|

| Strain description                                         | Strain genotype                                                                                                                                                                                                                                                   | Strain construction                                                                                                                  |
|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------|
| FLAG-tagged RpoD6                                          | NS2::PpurF::luxAB (NS2, Cm <sup>R</sup> targeting vector) NS1::PpsbA1::luxCDE (NS1 Sp <sup>R</sup> targeting vector), rpoD6::Km <sup>R</sup> , NS2.2::PrpoD6::rpoD6-GSGS-<br>3XFLAGc (NS2.2 Gm <sup>R</sup> targeting vector)                                     | AMC408 transformed with pAG(plasmid for replacing <i>rpoD6</i> coding locus with Km <sup>R</sup> ; gift of Andrian Gutu) and KF-P-06 |
| FLAG-tagged RpoD5                                          | NS2::PpurF::luxAB (NS2 Cm <sup>R</sup> targeting vector) NS1::PpsbA1::luxCDE (NS1 Sp <sup>R</sup> targeting vector), rpoD5::Km <sup>R</sup> , NS2.2::PrpoD5::rpoD5-GSGS-3XFLAGC (NS2.2 Gm <sup>R</sup> targeting vector)                                          | AMC408 transformed with pAG(plasmid for replacing <i>rpoD5 coding</i> locus with Km <sup>R</sup> ; gift of Andrian Gutu) and KF-P-05 |
| FLAG-tagged SigF2                                          | NS2::PpurF::luxAB (NS2 Cm <sup>R</sup> targeting vector) NS1::PpsbA1::luxCDE (NS1 Sp <sup>R</sup> targeting vector), sigF2::Km <sup>R</sup> , NS2.2::PsigF2::sigF2-GSGS-3XFLAGc (NS2.2 Gm <sup>R</sup> targeting vector)                                          | AMC408 transformed with pAG(plasmid for replacing <i>sigF2</i> coding locus with Km <sup>R</sup> ; gift of Andrian Gutu) and KF-P-08 |
| OX-D53E                                                    | <i>kaiBC::Cm<sup>R</sup></i> , <i>rpaA::Km<sup>R</sup></i> , NS2.2::Ptrc::rpaA(D53E) (NS2.2 Gm <sup>R</sup> targeting vector)                                                                                                                                     | Described in Markson et al. 2013                                                                                                     |
| OX-D53E lacking<br>rpoD2                                   | $kaiBC::Cm^{R}, rpaA::Km^{R}, NS2.2::Ptrc::rpaA(D53E)$ (NS2.2 Gm <sup>R</sup> targeting vector), $rpoD2\Delta$                                                                                                                                                    | OX-D53E transformed with KF-P-79                                                                                                     |
| OX-D53E with<br>Psypncc7942_0456<br>replacing PrpoD2       | <i>kaiBC::Cm<sup>R</sup></i> , <i>rpaA::Km<sup>R</sup></i> , NS2.2::Ptrc::rpaA(D53E) (NS2.2 Gm <sup>R</sup> targeting vector), Psypncc7942_0456::rpoD2                                                                                                            | OX-D53E transformed with KF-P-80                                                                                                     |
| OX-D53E lacking<br>rpoD6                                   | <i>kaiBC::Cm<sup>R</sup></i> , <i>rpaA::Km<sup>R</sup></i> , NS2.2::Ptrc::rpaA(D53E) (NS2.2 Gm <sup>R</sup> targeting vector), <i>rpoD6::Nat<sup>R</sup></i>                                                                                                      | OX-D53E transformed with KF-P-75                                                                                                     |
| OX-D53E lacking<br>rpoD5                                   | kaiBC::Cm <sup>R</sup> , rpaA::Km <sup>R</sup> , NS2.2::Ptrc::rpaA(D53E) (NS2.2 Gm <sup>R</sup> targeting vector), rpoD5::NatR                                                                                                                                    | OX-D53E, transformed with KF-P-76                                                                                                    |
| Wild-type lacking <i>sigF2</i>                             | sigF2::Nat <sup>R</sup>                                                                                                                                                                                                                                           | ATCC PCC 7942, transformed with KF-P-78                                                                                              |
| OX-D53E lacking<br>rpoD6 with FLAG-<br>tagged RpoD6        | <i>kaiBC::Cm<sup>R</sup></i> , <i>rpaA::Km<sup>R</sup></i> , NS2.2::Ptrc::rpaA(D53E) (NS2.2 Gm <sup>R</sup> targeting vector), <i>rpoD6::Nat<sup>R</sup></i> , NS1::PrpoD6::rpoD6-GSGS-3XFLAGc (NS1 Sp <sup>R</sup> targeting vector)                             | OX-D53E transformed with KF-P-75 and KF-P-14                                                                                         |
| OX-D53E lacking<br><i>rpoD5</i> with FLAG-<br>tagged RpoD5 | <i>kaiBC::Cm<sup>R</sup></i> , <i>rpaA::Km<sup>R</sup></i> , <i>NS2.2::Ptrc::rpaA(D53E)</i> ( <i>NS2.2 Gm<sup>R</sup></i> targeting vector), <i>rpoD5::Nat<sup>R</sup></i> , <i>NS1::PrpoD5::rpoD5-GSGS-3XFLAGc</i> ( <i>NS1 Sp<sup>R</sup></i> targeting vector) | OX-D53E transformed with KF-P-76 and KF-<br>P-13                                                                                     |
| OX-D53E lacking sigF2<br>with FLAG-tagged<br>SigF2         | <i>kaiBC::Cm<sup>R</sup></i> , <i>rpaA::Km<sup>R</sup></i> , <i>NS2.2::Ptrc::rpaA(D53E)</i> ( <i>NS2.2 Gm<sup>R</sup></i> targeting vector), sigF2::Nat <sup>R</sup> , NS1::PsigF2::sigF2-GSGS-3XFLAGc (NS1 Sp <sup>R</sup> targeting vector)                     | OX-D53E transformed with KF-P-78 and KF-P-16                                                                                         |

## Cyanobacterial growth conditions

Cultures were grown in tissue culture flasks (Fischer Scientific) illuminated with 100 mE m<sup>-2</sup> s<sup>-1</sup> (mmoles photons m<sup>-2</sup> s<sup>-1</sup>) of cool fluorescent light and bubbled continuously with 1% CO<sub>2</sub> in air. Cell density was maintained near OD<sub>750nm</sub> near 0.3 by measuring OD<sub>750nm</sub> every 2 h and making necessary dilutions with fresh BG-11 medium supplemented with 10 mM HEPES-KOH pH 8.0 to maintain pH. Cultures were exposed to two 12h light–12h dark cycles (light: 100 mE m<sup>-2</sup> s<sup>-1</sup> of cool fluorescent light) at 30°C for entrainment before release into constant light (100 mE m<sup>-2</sup> s<sup>-1</sup> of cool fluorescent light) at 30°C. For phosphomimetic RpaA mutant overexpression experiments, cultures were grown initially in absence of IPTG, treated with two 12h light-12h dark cycles, and released into constant light (100 mE m<sup>-2</sup> s<sup>-1</sup>) concomitant with addition of IPTG to a final concentration of 100  $\mu$ M.

#### Western blot analysis

Cells from 15 ml of culture were harvested by vacuum filtration onto cellulose acetate filters (Whatman). Filters were flash-frozen in liquid nitrogen and stored at -80°C until lysis. To prepare lysates, cells were eluted from the filters using 300  $\mu$ l ice-cold lysis buffer (7.5 M urea, 20 mM HEPES pH 8.0, 1 mM DTT, and 1 Roche Complete protease inhibitor tablet per 50 ml, with 1 mM EDTA). Resuspensions were transferred to 500  $\mu$ l screw-cap tubes containing 0.1 mm glass beads (Fischer Scientific). Cells were lysed by bead-beating resuspensions at 4 C for six cycles of 30 sec each separated by at least 30 sec of cooling on ice. To clarify cellular debris, the lysates were centrifuged 10 min at 14,000 x *g* at 4°C; after which the supernatants were transferred to new microcentrifuge tubes. The total protein content of each sample was measured by Bradford assay (Bio-Rad) using bovine serum albumin (BSA, Bio-Rad) diluted over 10-fold

range into lysis buffer to generate a standard curve of protein concentration versus OD<sub>595nm</sub> value measured by Bradford assay. For each western blot, an equal mass quantity of each lysate was loaded to respective lanes of a SDS-PAGE gel (4-20% Novek Tris-Glycine, Invitrogen). SDS-PAGE gels were run at 150 V for 1.5 h at 4°C, after which gels were transferred to nitrocellulose membrane using semi-dry apparatus run at constant Volt/Amp setting for 1 h at 25°C. Blots were then incubated with 5% milk (Skim milk powder, VWR) in TBST for 1 h at 4 C to block nonspecific binding of proteins to primary antibody, and probed with primary antibody (anti-FLAG M2, Sigma-Aldrich, 1:1000 dilution; anti-RpaA, Gutu and O'Shea 2013, 1:1000 dilution) diluted in 5% TBST overnight at 4°C. To disturb non-specific binding interactions and to remove unbound primary antibody, blots were washed with TBST for 10 min three consecutive times. Secondary antibody (Goat Anti-Mouse IgG-HRP Conjugate, Bio-Rad #1721011 at 1:12500 dilution; Goat Anti-Rabbit IgG, Peroxidase Conjugated, Pierce Biotechnology #32460 at 1:1000 dilution) diluted in 5% TBST was incubated with respective blots for 1 h at 25°C. To disturb non-specific binding interactions and remove unbound secondary antibody blots were washed with TBST for 10 min three consecutive times. Bands were visualized using Super Signal West Femto Maximum Sensitivity Substrate kit (Fischer Scientific) and AlphaImager EP software (Alpha Innotech). For measuring RpaA phosphorylation we implemented modifications to the above western blotting procedure as previously described for Phos-tag (Gutu and O'Shea, 2013).

# Chromatin immunoprecipitation

For each chromatin immunoprecipitation (ChIP) reaction, approximately 18  $OD_{750 \text{ nm}}$  units of culture were crosslinked for 15 min with 1% formaldehyde followed by quenching for 5 min with 125 mM glycine. For the chromatin immunoprecipitation of epitope-tagged RNA

polymerase (gift of A. Puszynska), cells were treated with rifampicin for 20 min at 30°C prior to crosslinking with 1% formaldehyde and quenching with 125 mM glycine. Cells were collected by centrifugation for 10 min at 6000 x g at 4°C and then washed twice with 30 ml of ice-cold phosphate-buffered saline (PBS), centrifuging for 10 min at 3000 x g at 4 C after each wash. Samples were then resuspended in 1 ml ice-cold PBS and pelleted in a microcentrifuge tube for 3 min at 3000 x g at 4°C. The supernatant was discarded and the pellet was flash frozen in liquid nitrogen and stored at 80 C. Samples were thawed on ice and resuspended in 300 µl of ice-cold lysis buffer (50 mM HEPES pH 7.5, 140 mM NaCl, 1 mM EDTA, 1% Triton X-100, 0.1% sodium deoxycholate, and 1x Roche Complete EDTA-free Protease Inhibitor Cocktail). Cells were lysed by bead beating at 4°C in 2 ml screw-top tubes with 0.1 mm glass beads for 10 cycles of 30 s each separated by at least 30 s of cooling on ice. Lysate was separated from the beads by piercing the bottom of each tube with a small-diameter needle, placing the tube into a clean 1.5 ml microcentrifuge tube, and centrifuging for several minutes at 1000 x g at 4°C to transfer the lysate to the 1.5-ml tube. Chromatin was then sheared to a length of 250-400 bp by sonication at 4°C in Covaris S220 sonicator with settings: peak incident power 175, duty factor 10, cycles per burst 200, time 160 s. Cell debris was removed by centrifuging twice at 14,000 x g for 15 min each at 4 C. Protein concentration in the lysates was determined by BCA assay using BSA as a standard. For a given ChIP time-course, equal mass quantities (typically 1 mg) of lysate from each time point were prepared in 500 ul of lysis buffer each. For anti-FLAG ChIP, 40 ul (bed volume) of anti-FLAG magnetic beads (Sigma) equilibrated in lysis buffer were added to each tube. Samples were incubated overnight in the dark at 4°C with continuous rotation. Beads were isolated by placement on magnetic stand for 1 min. Beads were then washed twice with 1 ml lysis buffer, once with 1 ml of buffer B (50 mM HEPES pH 7.5, 500 mM NaCl, 1 mM EDTA,

1% Triton X-100, 0.1% sodium deoxycholate), once with 1 ml of wash buffer (10 mM TrisCl pH 8.0, 250 mM LiCl, 1 mM EDTA, 0.5% NP-40, 0.1% sodium deoxycholate) and finally with 1 ml of TE pH 7.5 (10 mM TrisCl pH 7.5, 1 mM EDTA); each wash was conducted for 5 min at room temperature on a tube rotator followed by isolation of beads by centrifugation for 1 min at 1000 x g at 25°C. Protein-DNA complexes were then eluted with 250 µl elution buffer (50 mM TrisCl pH 8.0, 10 mM EDTA, 1% SDS) for 1 hr at 65°C. For both the eluate and a matched sample of lysate not subjected to immunoprecipitation, crosslinks were reversed for 6-18 hr at 65°C. Next, 250 µl of TE was added to each sample to dilute the SDS, followed by addition of 100 µg of proteinase K and 80 µg of glycogen. Samples were incubated for 2 hr at 37°C to digest proteins. Samples were then supplemented with 55 µl of 4 M LiCl and extracted with 1 ml of phenol/chloroform/isoamyl alcohol followed by extraction with 1 ml chloroform. DNA in the aqueous phase was precipitated with 0.3 M NaOAc pH 5.2 and 1 ml ethanol at for 1 h at -20°C. Precipitated DNA was pelleted by centrifugation 14000 x g at 4°C for 30 min. Pellets were airdried and then resuspended in 50 µl of TE containing 20 ng/ml of DNase-free RNase (Fermentas) and incubated for 1 hr at 37°C to digest RNA. Samples were then supplemented with 150 µl of TE and 22.2 µl of 3 M sodium acetate pH 5.2, extracted with phenol/chloroform/isoamyl alcohol, and precipitated with 0.3 M NaOAc and ethanol for 1 h at -20°C. Precipitated DNA was pelleted by centrifugation 14000 x g at 4°C for 30 min. Pellets were air-dried and then resuspended in 50 µl of TE. DNA concentration in ChIP samples was estimated by PicoGreen assay (Invitrogen). Typical immunoprecipitation efficiencies (fraction of flag-tagged sigma factor depleted from the lysate) were greater than 50%.

#### ChIP-Seq library preparation and sequencing

Libraries for Illumina sequencing of ChIP DNA were prepared following a protocol developed by Ethan Ford (http://ethanomics.files.wordpress.com/2012/09/chip\_truseq.pdf), with modifications. Specifically, 0.15-3 ng of ChIP DNA was used for each sample. DNA ends were blunted by treatment with 1.4 units of T4 DNA polymerase (NEB), 0.45 units of Klenow fragment (NEB), 4.5 units of T4 polynucleotide kinase (NEB), and 0.4 mM dNTPs (NEB) in 1x T4 DNA ligase buffer (NEB) in a total of 50 µl volume for 30 min at 20°C. DNA was purified using 50 µl of AMPure XP beads (Beckman) and 50 µl of a solution containing 20% PEG8000 (Sigma) and 1.25 M NaCl. DNA was eluted in 16.5 µl of TE/10 (10 mM TrisCl pH 8.0, 0.1 mM EDTA). DNA was then A-tailed at the 3' ends by treating the eluate with 2.5 units of Klenow fragment lacking 3' to 5' exonuclease activity (NEB) and 0.2 mM dATP (GE Healthcare) in 1x NEB Buffer 2 (NEB) in a total volume of 20 µl for 30 min at 37°C. TruSeq adapters (Eurofins MWG Operon) were ligated onto the A-tailed DNA by addition of 25 µl of 2X Quick Ligase Buffer (NEB), 0.5 µl of 250 nM TruSeq adaptor, 3 µl of nuclease-free H2O, and 1.5 µl of Quick Ligase (NEB) followed by incubation for 20 min at 21°C. The ligation reaction was stopped by addition of 5 µl of 0.5 M EDTA pH 8.0 (Ambion). Next, DNA was purified using 55 µl of AMPure XP beads without additional PEG or salt. DNA was eluted in 15.5 µl of TE/10. The Yshaped adapters were then linearized with 5 cycles of PCR (initial denaturation of 30 s at 98 C followed by 5 cycles of [10 sec at 98°C, 30 sec at 60°C, 30 sec at 72°C] followed by 5 min at 72°C) using Phusion polymerase (Life Technologies) and 1 µl of TruSeq primers (25 µM) in a total volume of 31  $\mu$ L. Linearized DNA was purified using 30  $\mu$ l of AMPure XP beads without additional PEG or salt. DNA was eluted in 30 µl of TE/10. Fragments between 300 and 500 base pairs in length were size-selected using agarose gel purification and the QIAquick gel extraction

kit (QIAGEN). Purified DNA was further amplified with 13-14 cycles of PCR, as described above, in a total volume of 62.5 μl. Following PCR, DNA was purified using 51 μl of AMPure XP beads without additional PEG or salt. DNA was eluted in 12 μl of TE/10. Average fragment sizes for libraries were assessed using a DNA High Sensitivity chip on Agilent 2200 Tapestation. Samples were sequenced at the Harvard FAS Center for Systems Biology. Reads were aligned to the *S. elongatus* genome (chromosome: NC\_007604.1; plasmids: NC\_004073.2 and NC\_004990.1) using Bowtie (Langmead et al., 2009) counting only those aligned uniquely to one location with up to three mismatches.

# ChIP-Seq data analysis

Data were analyzed using a modified form of the PeakSeq algorithm (Rozowsky et al., 2009) that narrows the regions identified as peaks by requiring that each 50-bp window within a putative peak be enriched (p < 0.05) relative to mock ChIP (as described by Markson et al. 2013). The fold enrichment for each peak was calculated by finding the maximum ChIP-to-mock ratio within 50 bp of the location of the peak maximum in the raw ChIP-Seq signal.

#### Identification of reproducible circadian genes

In order to focus our analysis on genes that show reproducible circadian oscillations, we restricted analysis a subset (n=336) of the 856 high-confidence circadian coding genes previously annotated (Markson et al., 2013) that exhibit greater than 1.75 ratio peak to trough expression in wild-type cells grown in constant light conditions and have a transcription start site located within 250 bp upstream of their start codons; transcription start sites were annotated genome-wide (this work) by performing circadian timecourse ChIP-seq on cells with functional,

42

epitope-tagged RNA polymerase (gift of A. Puszynska) treated with rifampicin (Sigma-Aldrich) to lock RNA polymerase at initiation sites genome-wide.

#### **Isolation of total RNA**

Cells from 50 ml of culture were harvested by vacuum filtration onto nitrocellulose filters (Whatman). Filters were flash-frozen in liquid nitrogen and stored at -80°C until lysis. To prepare lysates, cells were eluted from the filters using 12 ml of ice-cold AE buffer (50 mM NaOAc pH 5.2, 0.5 M EDTA, DEPC treated water). Cell suspensions were transferred to SS34 tubes and lysed by addition of 800 µl of 25% SDS and 12 mL unbuffered acid phenol (pH 4.3). Cells were lysed for 10 min while being incubated in 65°C water bath and intermittently vortexed. Lysates were incubated 5 min on ice. Cell debris were pelleted by centrifugation at 12000 rpm at 4°C for 30 min. Supernatants were transferred to phase lock heavy tubes with 12 ml chloroform and centrifuged for 10 min at 3000 rpm. Nucleic acids in supernatants were precipitated for 1 h at -20°C in presence of 1 mL 3 M NaOAc pH 5.2 and 10 mL isopropanol. Precipitated nucleic acids were pelleted by centrifugation at 12000 rpm at 4°C for 30 min. Cell pellets were washed with 5 mL 70% EtOH and pelleted by centrifugation at 12000 rpm at 4°C for 10 min. The supernatants were discarded and pellets were air dried at 25°C for 1 h. Pellets were resuspended in 500 µl of TE containing 25 µl of Promega RQ1 RNAse free DNAse (1000 Units/ml) and incubated for 1 h at 37°C to digest DNA. Samples were extracted with equal volume phenol/chloroform/isoamyl alcohol and precipitated at -20°C in presence of 0.3 M NaOAc pH 5.2 and 1 mL ethanol. Precipitated nucleic acids were pelleted by centrifugation at 12000 rpm at 4°C for 30 min, air-dried at 25°C for 1 h, and resuspended in 50 µl of nuclease free water. The quality of the isolated total RNA was estimated by the ratio of absorbance at 260 nm

43

to 280 nm. The presence of contaminating DNA was checked by setting up PCR reactions with a 1000-fold range of resuspended cell pellets and assessing by gel electrophoresis. Samples containing isolated and high-quality total RNA free of contaminating DNA were flash frozen and stored at -80°C.

# qPCR for gene expression

RT-qPCR was performed on isolated total RNA as described previously (Vijayan and O'Shea, 2013).

| Target          | RT | -qPCR Primers           | Reference               |
|-----------------|----|-------------------------|-------------------------|
|                 | F: | TATATCTACTAAGTGGGACTGTG |                         |
| sypncc7942_0905 | R: | CCTAAAGTGAAGTCACTATTAGT | This work               |
|                 | F: | ACTTGGTCAACACGGTTG      |                         |
| synpcc7942_0004 | R: | ATCGTCAGGCTAAAGGC       | This work               |
|                 | F: | CAGATCTGGATCGAGCAA      |                         |
| sypcc7942_1760  | R: | GGCTCCTTAACCTTGACAA     | This work               |
|                 | F: | CAATGTCACCCTCATTAATGG   |                         |
| sypncc7942_0834 | R: | AGCAAGTAATCGGCTTCAA     | This work               |
|                 | F: | TTCTGCCATTAAATTGCGTAG   |                         |
| sypncc7942_1746 | R: | GGAATACATCCAAATGAAC     | This work               |
|                 | F: | CGAGGACTAGAGCTTCTC      |                         |
| sypncc7942_1849 | R: | CGAATCGTCCGACTTTG       | This work               |
|                 | F: | AGGAAACTCTTGCCATC       |                         |
| sypncc7942_1557 | R: | TGAGCCAAATCCGCAAA       | This work               |
|                 | F: | TGTTCAGCTCAATCTAGGG     |                         |
| sypncc7942_1784 | R: | GTATATAGGGCACTGCAAAG    | This work               |
|                 | F: | CAGACCAACTGATTCGAGCG    |                         |
| sypncc7942_0599 | R: | GGAGGCCAGGAGCAGTC       | Vijayan and O'Shea 2013 |

**Table 2.** Primers used for RT-qPCR in this study

## **RNA-seq library preparation and sequencing**

Ribosomal RNA was depleted from 500 ng of isolated total RNA using the Ribo-Zero rRNA removal kit (Illumina) according to manufacturer's instructions. Strand-specific RNA-sequencing libraries were prepared from 100 ng of rRNA-depleted RNA using the TruSeq Stranded mRNA Sample Prep Kit (Illumina). Samples were multiplexed and sequenced on an Illumina HiSeq machine by the core facility at the Harvard FAS Center for Systems Biology. Reads were aligned to the *S. elongatus* genome (chromosome: NC\_007604.1; plasmids: NC\_004073.2 and NC\_004990.1) using Bowtie (Langmead et al., 2009) counting only those aligned uniquely to one location with up to three mismatches. To quantify gene expression, we summed the number of sequencing reads with 5' end between start and stop positions of

annotated mRNA, tRNA, rRNA, and high-confidence noncoding RNA (Vijayan et al., 2011). We performed median normalization (described in Anders and Huber, 2010; Markson et al., 2013) to normalize gene expression values between samples.

# References

Dunlap JC. (1999). Molecular bases for circadian clocks. Cell. 96 (2): 271-90.

Dunlap JC, Loros JJ, De Coursey PJ, eds 2004. Chronobiology: Biological Timekeeping. Sunderland, MA: Sinauer. 406 pp.

Bell-Pedersen, D., Cassone, V.M., Earnest, D.J., Golden, S.S., Hardin, P.E., Thomas, T.L., and Zoran, M.J. (2005). Circadian rhythms from multiple oscillators: lessons from diverse organisms. Nat. Rev. Genet. *6*, 544–556.

Liu, Y., Tsinoremas, N., Johnson, C., Lebdeva, N., Golden, S., Ishiura, M., and Kondo, T. (1995). Circadian orchestration of gene expression in cyanobacteria. Genes Dev. *9*, 1469–1478.

Golden, S., Ishiura, M., Johnson, C.H., and Kondo, T. (1997). Cyanobacterial circadian rhythms. Annu. Rev. Plant Physiol. Plant Mol. Biol. *48*, 327–354.

Ito, H., Mutsuda, M., Murayama, Y., Tomita, J., Hosokawa, N., Terauchi, K., Sugita, C., Sugita, M., Kondo, T., and Iwasaki, H. (2009). Cyanobacterial daily life with Kai-based circadian and diurnal genome-wide transcriptional control in Synechococcus elongatus. Proc. Natl. Acad. Sci. USA *106*, 14168–14173.

Vijayan, V., Zuzow, R., and O'Shea, E.K. (2009). Oscillations in supercoiling drive circadian gene expression in cyanobacteria. Proc. Natl. Acad. Sci. USA *106*, 22564–22568.

Ouyang, Y., Andersson, C.R., Kondo, T., Golden, S.S., and Johnson, C.H. (1998). Resonating circadian clocks enhance fitness in cyanobacteria. Proc. Natl. Acad. Sci. USA *95*, 8660–8664.

Woelfle MA, Ouyang Y, Phanvijhitsiri K, Johnson CH. (2004). The adaptive value of circadian clocks: an experimental assessment in cyanobacteria. Curr. Biol. *14*, 1481–1486.

Diamond S, Jun D, Rubin BE, Golden SS. (2015). The circadian oscillator in Synechococcus elongatus controls metabolite partitioning during diurnal growth. Proc Natl Acad Sci USA *112*, E1916–E1925.

Nishiwaki T, Satomi Y, Kitayama Y, Terauchi K, Kiyohara R, Takao T, Kondo T. (2007). A sequential program of dual phosphorylation of KaiC as a basis for circadian rhythm in cyanobacteria. EMBO J. *26*, 4029–37.

Rust MJ, Markson JS, Lane WS, Fisher DS, O'Shea EK. (2007). Ordered phosphorylation governs oscillation of a three-protein circadian clock. Science *318*, 809–812.

Takai N, Nakajima M, Oyama T, Kito R, Sugita C, Sugita M, Kondo T, Iwasaki, H. 2006. A KaiC associating SasA–RpaA two-component regulatory system as a major circadian timing mediator in cyanobacteria. Proc. Natl. Acad. Sci. USA *103*, 12109–14.

Gutu A, O'Shea EK. (2013). Two antagonistic clock-regulated histidine kinases time the activation of circadian gene expression. Mol. Cell *50*, 288–94.

Markson JS, Piechura JR, Puszynska AM, O'Shea EK. (2013). Circadian control of global gene expression by the cyanobacterial master regulator RpaA. Cell *155*, 1396-1408.

Feklistov A, Sharon BD, Darst SA & Gross CA. (2014). Bacterial sigma factors: a 713 historical, structural, and genomic perspective. Annu. Rev. Microbiol. *68*, 357–376

Imamura S, Asayama M. (2009). Sigma factors for cyanobacterial transcription. Gene Regul. Syst. Bio. *3*, 65–87.

Gross C, Chan C, Dombroski A, Gruber T, Sharp M, et al. (1998) The functional and regulatory roles of sigma factors in transcription. In: Cold Spring Harbor symposia on quantitative biology. Cold Spring Harbor Laboratory Press, *63*, 141–156.

Ishihama A. (2000). Functional modulation of Escherichia coli RNA polymerase. Annual Reviews in Microbiology *54*, 499–518.

Gruber TM and Gross CA. (2003). Multiple sigma subunits and the partitioning of bacterial transcription space. Annual Review of Microbiology *57*, 441–466.

Nair U, Ditty JL, Min H, Golden SS. (2002). Roles for sigma factors in global circadian regulation of the cyanobacterial genome. J. Bacteriol. *184*, 3530–38.

Espinosa J, Boyd J, Cantos R, Salinas P, Golden S, Contreras A. (2015). Cross-talk and regulatory interactions between the essential response regulator RpaB and cyanobacterial circadian clock output. Proc Natl Acad Sci U S A *112*, 2198–2203.

Anders, S. & Huber, W. (2010). Differential expression analysis for sequence count data. Genome Biol. *11*, R106.

Clerico EM, Ditty JL, Golden SS. (2007). Specialized techniques for site-directed mutagenesis in cyanobacteria. Methods Mol. Biol. *362*, 155–171.

**Supplementary Table 1.** Location of transcription start sites for high-confidence circadian genes determined by analysis of time-course ChIP-seq datasets for RNA polymerase locked at initiation sites genome-wide by rifampicin treatment

| Supplementary  | Table 1  | (Continued). |
|----------------|----------|--------------|
| Suppremental y | I WOIC I | (Commaca)    |

|           | Transcript information |            |                 |          |                      |        | Conomic location (bn) of maximum ChIP soc signal from DNA |            |             |            |           |        | Upstream                     |
|-----------|------------------------|------------|-----------------|----------|----------------------|--------|-----------------------------------------------------------|------------|-------------|------------|-----------|--------|------------------------------|
| JCI ID    | Synpcc_7942            |            | Strand ('+' dir | ect; '-' | Ratio of<br>peak to  | Genor  | polymer                                                   | ase locked | at initiati | on site by | rifampici | 1<br>1 | distance (bp)<br>of 5'TSS to |
|           | number                 |            | Translation sta | art (bp) | trough<br>expression | T=24 h | T=28 h                                                    | T= 32 h    | T= 36h      | T= 40h     | T= 44 h   | Mean   | translation<br>start         |
| 637798409 | 'Synpcc7942_0004'      | <b>'+'</b> | Chromosome      | 4596     | 3.3                  | 4543   | 4540                                                      | 4542       | 4542        | 4542       | 4540      | 4542   | 54                           |
| 637798419 | 'Synpcc7942_0014'      | <u></u>    | Chromosome      | 13411    | 1.8                  | 13372  | 13420                                                     | 13423      | 13419       | 13419      | 13365     | 13403  | -8                           |
| 637798424 | 'Synpcc7942_0019'      | <b>'+'</b> | Chromosome      | 18615    | 3.2                  | 18341  | 18473                                                     | 18473      | 18471       | 18471      | 18316     | 18424  | 191                          |
| 637798425 | 'Synpcc7942_0020'      | <b>'+'</b> | Chromosome      | 20490    | 2.8                  | 20541  | 20340                                                     | 20367      | 20309       | 20309      | 20339     | 20368  | 122                          |
| 637798427 | 'Synpcc7942_0022'      | Ψ.         | Chromosome      | 23049    | 2.0                  | 23025  | 23350                                                     | 23350      | 23350       | 23350      | 23350     | 23296  | 247                          |
| 637798428 | 'Synpcc7942_0023'      | Ψ.         | Chromosome      | 24121    | 1.8                  | 24161  | 24152                                                     | 24159      | 24154       | 24154      | 24155     | 24156  | 35                           |
| 637798431 | 'Synpcc7942_0026'      | Ψ.         | Chromosome      | 28059    | 1.8                  | 28130  | 28162                                                     | 28164      | 28163       | 28163      | 28159     | 28157  | 98                           |
| 637798438 | 'Synpcc7942_0033'      | Ψ.         | Chromosome      | 33506    | 4.8                  | 33807  | 33807                                                     | 33807      | 33807       | 33807      | 33457     | 33749  | 243                          |
| 637798444 | 'Synpcc7942_0039'      | <b>'+'</b> | Chromosome      | 37130    | 10.6                 | 37094  | 37098                                                     | 37098      | 37096       | 37096      | 37096     | 37096  | 34                           |
| 637798445 | 'Synpcc7942_0040'      | <b>'+'</b> | Chromosome      | 38630    | 6.7                  | 38601  | 38603                                                     | 38603      | 38604       | 38604      | 38604     | 38603  | 27                           |
| 637798475 | 'Synpcc7942_0069'      | <b>'+'</b> | Chromosome      | 69079    | 5.2                  | 68915  | 68919                                                     | 68918      | 68919       | 68919      | 68917     | 68918  | 161                          |
| 637798492 | 'Synpcc7942_0086'      | Ψ.         | Chromosome      | 84955    | 2.9                  | 85036  | 85122                                                     | 85120      | 85119       | 85119      | 85110     | 85104  | 149                          |
| 637798496 | 'Synpcc7942_0090'      | <b>'+'</b> | Chromosome      | 88735    | 1.9                  | 88653  | 88650                                                     | 88646      | 88647       | 88647      | 88647     | 88648  | 87                           |
| 637798498 | 'Synpcc7942_0092'      | Ψ.         | Chromosome      | 90930    | 2.3                  | 90886  | 90895                                                     | 90881      | 90950       | 90950      | 90951     | 90919  | -11                          |
| 637798502 | 'Synpcc7942 0096'      | Ψ.         | Chromosome      | 94285    | 2.8                  | 94316  | 94316                                                     | 94315      | 94316       | 94316      | 94315     | 94316  | 31                           |
| 637798506 | 'Synpcc7942_0100'      | Ψ.         | Chromosome      | 101082   | 4.4                  | 101136 | 101136                                                    | 101137     | 101139      | 101139     | 101138    | 101138 | 56                           |
| 637798507 | 'Synpcc7942 0101'      | <b>'+'</b> | Chromosome      | 101259   | 1.8                  | 101136 | 101136                                                    | 101137     | 101139      | 101139     | 101138    | 101138 | 121                          |
| 637798509 | 'Synpcc7942 0103'      | Ψ.         | Chromosome      | 103645   | 3.3                  | 103598 | 103946                                                    | 103946     | 103944      | 103944     | 103946    | 103887 | 242                          |
| 637798554 | 'Synpcc7942_0148'      | <b>'+'</b> | Chromosome      | 148646   | 2.6                  | 148613 | 148615                                                    | 148620     | 148619      | 148619     | 148564    | 148608 | 38                           |
| 637798567 | 'Synpcc7942_0161'      | <b>'+'</b> | Chromosome      | 162764   | 2.3                  | 162762 | 162760                                                    | 162762     | 162763      | 162763     | 162762    | 162762 | 2                            |
| 637798579 | 'Synpcc7942_0173'      | Ψ.         | Chromosome      | 173071   | 2.1                  | 173081 | 173093                                                    | 173090     | 173088      | 173088     | 173086    | 173088 | 17                           |
| 637798611 | 'Synpcc7942_0205'      | <b>'+'</b> | Chromosome      | 206198   | 1.9                  | 206141 | 206141                                                    | 206143     | 206142      | 206142     | 206142    | 206142 | 56                           |
| 637798621 | 'Synpcc7942_0215'      | Ψ.         | Chromosome      | 217813   | 2.6                  | 217839 | 217839                                                    | 217839     | 217839      | 217839     | 217839    | 217839 | 26                           |
| 637798642 | 'Synpcc7942_0236'      | <b>'+'</b> | Chromosome      | 232018   | 1.9                  | 231963 | 231967                                                    | 231964     | 231941      | 231941     | 231952    | 231955 | 63                           |
| 637798650 | 'Synpcc7942_0244'      | Υ.         | Chromosome      | 241156   | 9.2                  | 241388 | 241386                                                    | 241383     | 241385      | 241385     | 241383    | 241385 | 229                          |
| 637798651 | 'Synpcc7942_0245'      | Ψ.         | Chromosome      | 242229   | 19.7                 | 242257 | 242259                                                    | 242260     | 242262      | 242262     | 242275    | 242263 | 34                           |
| 637798658 | 'Synpcc7942 0252'      | 2          | Chromosome      | 248136   | 2.1                  | 248261 | 248256                                                    | 248252     | 248252      | 248252     | 248252    | 248254 | 118                          |
| 637798662 | 'Synpcc7942_0256'      | <b>'+'</b> | Chromosome      | 252873   | 2.1                  | 252886 | 252839                                                    | 252873     | 252873      | 252873     | 252875    | 252870 | 3                            |
| 637798684 | 'Synpcc7942 0278'      | <b>'+'</b> | Chromosome      | 273657   | 35.0                 | 273560 | 273589                                                    | 273561     | 273565      | 273565     | 273555    | 273566 | 91                           |
| 637798685 | 'Synpcc7942 0279'      | <b>'+'</b> | Chromosome      | 274154   | 6.0                  | 273855 | 273936                                                    | 273926     | 273939      | 273939     | 273880    | 273913 | 241                          |
| 637798694 | 'Synpcc7942_0288'      | <u></u>    | Chromosome      | 283962   | 2.0                  | 284090 | 284084                                                    | 284085     | 284084      | 284084     | 284088    | 284086 | 124                          |
| 637798697 | 'Synpcc7942_0291'      | <b>'+'</b> | Chromosome      | 288312   | 2.0                  | 288280 | 288287                                                    | 288288     | 288288      | 288288     | 288246    | 288280 | 32                           |
| 637798701 | 'Synpcc7942_0295'      | <b>'+'</b> | Chromosome      | 291417   | 2.5                  | 291349 | 291361                                                    | 291356     | 291356      | 291356     | 291355    | 291356 | 61                           |

# Supplementary Table 1 (Continued)

| 637798710 | 'Synpcc7942 0304' | '+'        | Chromosome | 302833 | 36.6 | 302811 | 302811 | 302811 | 302810 | 302810 | 302811 | 302811 | 22  |
|-----------|-------------------|------------|------------|--------|------|--------|--------|--------|--------|--------|--------|--------|-----|
| 637798711 | 'Synpcc7942_0305' | <b>'+'</b> | Chromosome | 303815 | 6.4  | 303776 | 303787 | 303789 | 303789 | 303789 | 303791 | 303787 | 28  |
| 637798718 | 'Synpcc7942_0312' | Ψ.         | Chromosome | 311708 | 4.3  | 311761 | 311754 | 311758 | 311757 | 311757 | 311738 | 311754 | 46  |
| 637798722 | 'Synpcc7942_0316' | Ψ.         | Chromosome | 314623 | 4.3  | 314724 | 314744 | 314769 | 314769 | 314769 | 314772 | 314758 | 135 |
| 637798737 | 'Synpcc7942_0331' | Ψ          | Chromosome | 327926 | 2.0  | 327627 | 327965 | 327966 | 327966 | 327966 | 327969 | 327910 | 16  |
| 637798738 | 'Synpcc7942_0332' | '+'        | Chromosome | 328854 | 2.3  | 328792 | 328790 | 328789 | 328789 | 328789 | 328791 | 328790 | 64  |
| 637798742 | 'Synpcc7942_0336' | '+'        | Chromosome | 330878 | 2.0  | 330712 | 330929 | 330921 | 330929 | 330929 | 330872 | 330882 | -4  |
| 637798744 | 'Synpcc7942_0338' | '+'        | Chromosome | 333517 | 2.5  | 333494 | 333479 | 333485 | 333481 | 333481 | 333486 | 333484 | 33  |
| 637798747 | 'Synpcc7942 0341' | '+'        | Chromosome | 335633 | 1.9  | 335600 | 335594 | 335593 | 335592 | 335592 | 335598 | 335595 | 38  |
| 637798755 | 'Synpcc7942 0349' | 2          | Chromosome | 342443 | 1.8  | 342637 | 342625 | 342629 | 342629 | 342629 | 342629 | 342630 | 187 |
| 637798757 | 'Synpcc7942 0351' | '+'        | Chromosome | 343699 | 2.0  | 343626 | 343617 | 343617 | 343619 | 343619 | 343617 | 343619 | 80  |
| 637798775 | 'Synpcc7942 0369' | <b>'+'</b> | Chromosome | 362147 | 15.3 | 362117 | 362105 | 362124 | 362124 | 362124 | 362102 | 362116 | 31  |
| 637798776 | 'Synpcc7942_0370' | <b>'+'</b> | Chromosome | 363763 | 4.1  | 363657 | 363671 | 363659 | 363658 | 363658 | 363660 | 363661 | 102 |
| 637798783 | 'Synpcc7942_0377' | Ψ.         | Chromosome | 372206 | 2.4  | 372407 | 372220 | 372253 | 372291 | 372291 | 372408 | 372312 | 106 |
| 637798784 | 'Synpcc7942_0378' | <b>'+'</b> | Chromosome | 372532 | 2.2  | 372407 | 372233 | 372253 | 372291 | 372291 | 372408 | 372314 | 218 |
| 637798789 | 'Synpcc7942_0383' | Ψ.         | Chromosome | 376448 | 3.3  | 376517 | 376481 | 376561 | 376517 | 376517 | 376483 | 376513 | 65  |
| 637798794 | 'Synpcc7942_0388' | Ψ.         | Chromosome | 381991 | 2.7  | 381952 | 382024 | 381963 | 381964 | 381964 | 381964 | 381972 | -19 |
| 637798797 | 'Synpcc7942_0391' | Ψ.         | Chromosome | 385125 | 4.2  | 385233 | 385233 | 385230 | 385233 | 385233 | 385268 | 385238 | 113 |
| 637798800 | 'Synpcc7942_0394' | Ψ.         | Chromosome | 388220 | 2.4  | 388320 | 388247 | 388248 | 388312 | 388312 | 388458 | 388316 | 96  |
| 637798807 | 'Synpcc7942_0401' | Ψ.         | Chromosome | 395731 | 1.8  | 395794 | 395886 | 395888 | 395793 | 395793 | 395879 | 395839 | 108 |
| 637798817 | 'Synpcc7942_0411' | Ψ.         | Chromosome | 402991 | 2.0  | 403027 | 403022 | 403019 | 403016 | 403016 | 403019 | 403020 | 29  |
| 637798827 | 'Synpcc7942_0421' | Ψ.         | Chromosome | 411946 | 1.9  | 411984 | 412031 | 412101 | 412072 | 412072 | 412104 | 412061 | 115 |
| 637798828 | 'Synpcc7942_0422' | <b>'+'</b> | Chromosome | 412147 | 2.6  | 411984 | 412031 | 412101 | 412072 | 412072 | 412104 | 412061 | 86  |
| 637798829 | 'Synpcc7942_0423' | Ω.         | Chromosome | 413614 | 2.8  | 413798 | 413812 | 413816 | 413815 | 413815 | 413818 | 413812 | 198 |
| 637798873 | 'Synpcc7942_0466' | <b>'+'</b> | Chromosome | 451838 | 3.6  | 451889 | 451825 | 451809 | 451803 | 451803 | 451817 | 451824 | 14  |
| 637798876 | 'Synpcc7942_0469' | Ω.         | Chromosome | 456664 | 2.4  | 456727 | 456739 | 456735 | 456736 | 456736 | 456735 | 456735 | 71  |
| 637798889 | 'Synpcc7942_0482' | Ψ.         | Chromosome | 468773 | 1.8  | 469074 | 468780 | 468784 | 468789 | 468789 | 468811 | 468838 | 65  |
| 637798890 | 'Synpcc7942_0483' | Ψ.         | Chromosome | 469219 | 1.9  | 469365 | 469300 | 469262 | 469269 | 469269 | 469363 | 469305 | 86  |
| 637798892 | 'Synpcc7942_0485' | '+'        | Chromosome | 470975 | 2.0  | 470929 | 470928 | 470928 | 470928 | 470928 | 470929 | 470928 | 47  |
| 637798897 | 'Synpcc7942_0490' | <b>'+'</b> | Chromosome | 477395 | 2.8  | 477339 | 477377 | 477382 | 477377 | 477377 | 477336 | 477365 | 30  |
| 637798898 | 'Synpcc7942_0491' | '+'        | Chromosome | 479700 | 3.5  | 479636 | 479637 | 479650 | 479649 | 479649 | 479652 | 479646 | 54  |
| 637798905 | 'Synpcc7942_0498' | <b>'+'</b> | Chromosome | 484585 | 2.3  | 484529 | 484526 | 484529 | 484528 | 484528 | 484530 | 484528 | 57  |
| 637798906 | 'Synpcc7942 0499' | Ψ.         | Chromosome | 488370 | 5.0  | 488557 | 488544 | 488476 | 488528 | 488528 | 488518 | 488525 | 155 |
| 637798912 | 'Synpcc7942_0505' | Ψ.         | Chromosome | 492867 | 1.9  | 492986 | 492986 | 492987 | 492988 | 492988 | 492986 | 492987 | 120 |
| 637798935 | 'Synpcc7942_0527' | Ψ.         | Chromosome | 512234 | 8.2  | 512271 | 512277 | 512277 | 512223 | 512223 | 512535 | 512301 | 67  |
| 637798937 | 'Synpcc7942_0529' | <b>'+'</b> | Chromosome | 513543 | 2.9  | 513512 | 513513 | 513515 | 513512 | 513512 | 513512 | 513513 | 30  |
| 637798952 | 'Synpcc7942_0544' | <b>'+'</b> | Chromosome | 526892 | 1.9  | 526793 | 526837 | 526842 | 526842 | 526842 | 526841 | 526833 | 59  |
| 637798964 | 'Synpcc7942_0556' | Ψ.         | Chromosome | 539219 | 12.9 | 539252 | 539250 | 539249 | 539251 | 539251 | 539256 | 539252 | 33  |

| Supplementary | Table 1 | (Continued).                          |
|---------------|---------|---------------------------------------|
|               |         | · · · · · · · · · · · · · · · · · · · |

| 637798976 | 'Synpcc7942_0568' | 2          | Chromosome | 550687 | 2.1  | 550712 | 550717 | 550711 | 550716 | 550716 | 550713 | 550714 | 27  |
|-----------|-------------------|------------|------------|--------|------|--------|--------|--------|--------|--------|--------|--------|-----|
| 637798977 | 'Synpcc7942_0569' | Ψ.         | Chromosome | 551653 | 2.3  | 551704 | 551704 | 551697 | 551699 | 551699 | 551702 | 551701 | 48  |
| 637798981 | 'Synpcc7942_0573' | Ψ.         | Chromosome | 555533 | 8.2  | 555649 | 555627 | 555636 | 555643 | 555643 | 555646 | 555641 | 108 |
| 637798989 | 'Synpcc7942_0581' | Ψ.         | Chromosome | 562981 | 19.3 | 562984 | 562984 | 562978 | 562932 | 562932 | 562932 | 562957 | -24 |
| 637799006 | 'Synpcc7942_0595' | Ψ.         | Chromosome | 583398 | 2.2  | 583429 | 583425 | 583425 | 583430 | 583430 | 583430 | 583428 | 30  |
| 637799010 | 'Synpcc7942_0599' | Ψ.         | Chromosome | 588404 | 20.4 | 588434 | 588431 | 588430 | 588430 | 588430 | 588705 | 588477 | 73  |
| 637799011 | 'Synpcc7942_0600' | Ψ.         | Chromosome | 590060 | 2.6  | 590253 | 590259 | 590254 | 590254 | 590254 | 590255 | 590255 | 195 |
| 637799013 | 'Synpcc7942_0602' | Ψ.         | Chromosome | 591454 | 2.0  | 591571 | 591523 | 591522 | 591523 | 591523 | 591523 | 591531 | 77  |
| 637799020 | 'Synpcc7942_0609' | <b>'+'</b> | Chromosome | 596382 | 1.9  | 596249 | 596326 | 596331 | 596330 | 596330 | 596325 | 596315 | 67  |
| 637799026 | 'Synpcc7942_0615' | <b>'+'</b> | Chromosome | 605836 | 1.9  | 605727 | 605704 | 605704 | 605704 | 605704 | 605703 | 605708 | 128 |
| 637799028 | 'Synpcc7942_0617' | Ψ.         | Chromosome | 607688 | 2.3  | 607751 | 607750 | 607755 | 607757 | 607757 | 607757 | 607755 | 67  |
| 637799035 | 'Synpcc7942_0623' | <b>'+'</b> | Chromosome | 613972 | 2.7  | 613950 | 613965 | 613950 | 613964 | 613964 | 613951 | 613957 | 15  |
| 637799042 | 'Synpcc7942_0630' | <b>'+'</b> | Chromosome | 622432 | 2.3  | 622403 | 622409 | 622405 | 622407 | 622407 | 622406 | 622406 | 26  |
| 637799051 | 'Synpcc7942_0639' | <b>'+'</b> | Chromosome | 630677 | 2.1  | 630567 | 630566 | 630566 | 630567 | 630567 | 630566 | 630567 | 110 |
| 637799056 | 'Synpcc7942_0644' | Ψ          | Chromosome | 637075 | 4.5  | 637034 | 637034 | 637034 | 637035 | 637035 | 637033 | 637034 | 41  |
| 637799059 | 'Synpcc7942_0647' | <b>'+'</b> | Chromosome | 641196 | 4.0  | 641163 | 641163 | 641163 | 641163 | 641163 | 641164 | 641163 | 33  |
| 637799061 | 'Synpcc7942_0649' | Ψ.         | Chromosome | 643966 | 1.9  | 644136 | 644128 | 644128 | 644128 | 644128 | 644131 | 644130 | 164 |
| 637799067 | 'Synpcc7942_0655' | '+'        | Chromosome | 650232 | 2.6  | 650159 | 650174 | 650174 | 650175 | 650175 | 650173 | 650172 | 60  |
| 637799080 | 'Synpcc7942_0668' | Ψ.         | Chromosome | 664446 | 3.9  | 664459 | 664456 | 664424 | 664420 | 664420 | 664419 | 664433 | -13 |
| 637799082 | 'Synpcc7942_0670' | '+'        | Chromosome | 665121 | 1.9  | 665049 | 665049 | 665027 | 665039 | 665039 | 665002 | 665034 | 87  |
| 637799084 | 'Synpcc7942_0672' | '+'        | Chromosome | 666887 | 2.2  | 666799 | 666802 | 666789 | 666799 | 666799 | 666795 | 666797 | 90  |
| 637799085 | 'Synpcc7942_0673' | '+'        | Chromosome | 667849 | 2.6  | 667667 | 667597 | 667614 | 667633 | 667633 | 667611 | 667626 | 223 |
| 637799086 | 'Synpcc7942_0674' | '+'        | Chromosome | 669347 | 1.8  | 669205 | 669201 | 669203 | 669204 | 669204 | 669204 | 669204 | 143 |
| 637799089 | 'Synpcc7942_0677' | 2          | Chromosome | 672462 | 2.5  | 672660 | 672662 | 672660 | 672661 | 672661 | 672662 | 672661 | 199 |
| 637799092 | 'Synpcc7942_0680' | '+'        | Chromosome | 674334 | 4.8  | 674297 | 674303 | 674299 | 674294 | 674294 | 674252 | 674290 | 44  |
| 637799099 | 'Synpcc7942_0687' | <b>'+'</b> | Chromosome | 682128 | 1.8  | 681973 | 681966 | 681961 | 681966 | 681966 | 681967 | 681967 | 161 |
| 637799111 | 'Synpcc7942_0699' | '+'        | Chromosome | 691619 | 1.9  | 691609 | 691609 | 691624 | 691607 | 691607 | 691607 | 691611 | 8   |
| 637799115 | 'Synpcc7942_0703' | <b>'+'</b> | Chromosome | 694072 | 5.2  | 693996 | 694043 | 694045 | 694044 | 694044 | 694041 | 694036 | 36  |
| 637799157 | 'Synpcc7942_0742' | '+'        | Chromosome | 735651 | 3.0  | 735654 | 735625 | 735625 | 735627 | 735627 | 735584 | 735624 | 27  |
| 637799171 | 'Synpcc7942_0756' | <b>'+'</b> | Chromosome | 750406 | 3.4  | 750332 | 750337 | 750333 | 750333 | 750333 | 750346 | 750336 | 70  |
| 637799186 | 'Synpcc7942_0770' | '+'        | Chromosome | 762159 | 2.5  | 761863 | 761963 | 761943 | 761953 | 761953 | 761941 | 761936 | 223 |
| 637799196 | 'Synpcc7942_0780' | Ψ.         | Chromosome | 773958 | 2.0  | 774194 | 774168 | 774211 | 774189 | 774189 | 774209 | 774193 | 235 |
| 637799197 | 'Synpcc7942_0781' | 2          | Chromosome | 776520 | 2.6  | 776551 | 776552 | 776552 | 776551 | 776551 | 776551 | 776551 | 31  |
| 637799205 | 'Synpcc7942_0789' | 2          | Chromosome | 785167 | 2.7  | 785160 | 785464 | 785456 | 785455 | 785455 | 785457 | 785408 | 241 |
| 637799212 | 'Synpcc7942_0796' | '+'        | Chromosome | 791175 | 4.9  | 791067 | 791065 | 791071 | 791071 | 791071 | 791074 | 791070 | 105 |
| 637799213 | 'Synpcc7942_0797' | '+'        | Chromosome | 792010 | 12.3 | 791998 | 791998 | 791999 | 792000 | 792000 | 791999 | 791999 | 11  |
| 637799215 | 'Synpcc7942_0799' | <u></u>    | Chromosome | 794390 | 2.1  | 794412 | 794418 | 794416 | 794415 | 794415 | 794416 | 794415 | 25  |
| 637799225 | 'Synpcc7942_0808' | Ψ.         | Chromosome | 802980 | 2.0  | 803071 | 803073 | 803091 | 803093 | 803093 | 803080 | 803084 | 104 |

| Supplementary | Table 1 | (Continued). |
|---------------|---------|--------------|
|               |         | · /          |

| 637799245 'S | ynpcc7942 0828' | Ψ.         | Chromosome | 823241  | 2.4   | 823333  | 823339  | 823340  | 823340  | 823340  | 823340  | 823339  | 98  |
|--------------|-----------------|------------|------------|---------|-------|---------|---------|---------|---------|---------|---------|---------|-----|
| 637799246 'S | ynpcc7942 0829' | <b>'+'</b> | Chromosome | 823506  | 2.8   | 823333  | 823339  | 823340  | 823340  | 823340  | 823340  | 823339  | 167 |
| 637799250 'S | ynpcc7942 0834' | '+'        | Chromosome | 828582  | 299.6 | 828516  | 828491  | 828491  | 828493  | 828493  | 828517  | 828500  | 82  |
| 637799252 'S | ynpcc7942_0836' | Ψ.         | Chromosome | 832182  | 3.0   | 832326  | 832248  | 832253  | 832256  | 832256  | 832253  | 832265  | 83  |
| 637799271 'S | ynpcc7942_0855' | '+'        | Chromosome | 853629  | 5.6   | 853550  | 853547  | 853548  | 853549  | 853549  | 853548  | 853549  | 80  |
| 637799274 'S | ynpcc7942_0858' | Ψ          | Chromosome | 855893  | 3.5   | 855820  | 855828  | 855594  | 855797  | 855797  | 855803  | 855773  | 120 |
| 637799277 'S | ynpcc7942_0861' | Ψ.         | Chromosome | 865469  | 2.1   | 865610  | 865561  | 865554  | 865581  | 865581  | 865600  | 865581  | 112 |
| 637799278 'S | ynpcc7942_0862' | Ή          | Chromosome | 865596  | 3.2   | 865610  | 865561  | 865554  | 865581  | 865581  | 865600  | 865581  | 15  |
| 637799318 'S | ynpcc7942 0901' | ÷          | Chromosome | 909780  | 2.6   | 909678  | 909681  | 909681  | 909681  | 909681  | 909681  | 909681  | 99  |
| 637799322 'S | ynpcc7942_0905' | Ψ          | Chromosome | 915588  | 7.2   | 915516  | 915518  | 915558  | 915547  | 915547  | 915513  | 915533  | 55  |
| 637799344 'S | ynpcc7942_0926' | ÷          | Chromosome | 932734  | 1.9   | 932584  | 932594  | 932594  | 932596  | 932596  | 932634  | 932600  | 134 |
| 637799353 'S | ynpcc7942_0935' | 2          | Chromosome | 942838  | Inf   | 943041  | 942987  | 942982  | 942986  | 942986  | 943134  | 943019  | 181 |
| 637799359 'S | ynpcc7942_0941' | 5          | Chromosome | 947773  | 2.2   | 947813  | 947801  | 947798  | 947800  | 947800  | 947801  | 947802  | 29  |
| 637799364 'S | ynpcc7942_0946' | +          | Chromosome | 954141  | 2.0   | 954007  | 953963  | 953990  | 953998  | 953998  | 953999  | 953993  | 148 |
| 637799366 'S | ynpcc7942_0947' | 2          | Chromosome | 956714  | 2.0   | 956784  | 956777  | 956776  | 956780  | 956780  | 956810  | 956785  | 71  |
| 637799367 'S | ynpcc7942_0948' | 2          | Chromosome | 957546  | 4.6   | 957623  | 957536  | 957696  | 957706  | 957706  | 957705  | 957662  | 116 |
| 637799369 'S | ynpcc7942_0950' | ν.         | Chromosome | 959737  | 2.3   | 959895  | 959891  | 959891  | 959891  | 959891  | 959922  | 959897  | 160 |
| 637799386 'S | ynpcc7942_0967' | ÷          | Chromosome | 974099  | 2.0   | 974067  | 974059  | 974060  | 974059  | 974059  | 974059  | 974061  | 38  |
| 637799391 'S | ynpcc7942_0972' | <b>'+'</b> | Chromosome | 979369  | 2.3   | 979172  | 979178  | 979177  | 979177  | 979177  | 979177  | 979176  | 193 |
| 637799408 'S | ynpcc7942_0989' | Ψ.         | Chromosome | 997822  | 5.1   | 997863  | 997862  | 997866  | 997867  | 997867  | 997865  | 997865  | 43  |
| 637799412 'S | ynpcc7942_0993' | Ψ.         | Chromosome | 1003145 | 1.9   | 1003169 | 1003180 | 1003174 | 1003176 | 1003176 | 1003175 | 1003175 | 30  |
| 637799430 'S | ynpcc7942_1010' | Ψ.         | Chromosome | 1022700 | 1.9   | 1022737 | 1022735 | 1022695 | 1022705 | 1022705 | 1022736 | 1022719 | 19  |
| 637799439 'S | ynpcc7942_1019' | <b>'+'</b> | Chromosome | 1033300 | 1.8   | 1033284 | 1033257 | 1033267 | 1033266 | 1033266 | 1033271 | 1033269 | 31  |
| 637799462 'S | ynpcc7942_1040' | <b>'+'</b> | Chromosome | 1054722 | 3.7   | 1054693 | 1054691 | 1054692 | 1054693 | 1054693 | 1054690 | 1054692 | 30  |
| 637799464 'S | ynpcc7942_1042' | <b>'+'</b> | Chromosome | 1055645 | 3.5   | 1055570 | 1055609 | 1055612 | 1055614 | 1055614 | 1055505 | 1055587 | 58  |
| 637799479 'S | ynpcc7942_1057' | <b>'+'</b> | Chromosome | 1067527 | 1.9   | 1067416 | 1067458 | 1067462 | 1067445 | 1067445 | 1067446 | 1067445 | 82  |
| 637799486 'S | ynpcc7942_1064' | <b>'+'</b> | Chromosome | 1074007 | 3.2   | 1073923 | 1073933 | 1073934 | 1073950 | 1073950 | 1073955 | 1073941 | 66  |
| 637799492 'S | ynpcc7942_1068' | <b>'+'</b> | Chromosome | 1079478 | 2.0   | 1079419 | 1079494 | 1079494 | 1079421 | 1079421 | 1079421 | 1079445 | 33  |
| 637799497 'S | ynpcc7942_1072' | Ψ.         | Chromosome | 1084322 | 2.3   | 1084351 | 1084351 | 1084351 | 1084351 | 1084351 | 1084352 | 1084351 | 29  |
| 637799499 'S | ynpcc7942_1074' | Ψ.         | Chromosome | 1085562 | 7.0   | 1085544 | 1085563 | 1085555 | 1085555 | 1085555 | 1085561 | 1085556 | -6  |
| 637799519 'S | ynpcc7942_1093' | Ψ.         | Chromosome | 1111780 | 1.8   | 1111831 | 1111828 | 1111827 | 1111827 | 1111827 | 1111828 | 1111828 | 48  |
| 637799521 'S | ynpcc7942_1095' | <b>'+'</b> | Chromosome | 1112853 | 5.7   | 1112831 | 1112832 | 1112833 | 1112834 | 1112834 | 1112836 | 1112833 | 20  |
| 637799522 'S | ynpcc7942_1096' | Ψ.         | Chromosome | 1114724 | 3.3   | 1114940 | 1114941 | 1114939 | 1114939 | 1114939 | 1114940 | 1114940 | 216 |
| 637799534 'S | ynpcc7942_1108' | <b>'+'</b> | Chromosome | 1125373 | 4.6   | 1125135 | 1125144 | 1125141 | 1125137 | 1125137 | 1125136 | 1125138 | 235 |
| 637799555 'S | ynpcc7942_1129' | <b>'+'</b> | Chromosome | 1148540 | 1.9   | 1148515 | 1148516 | 1148520 | 1148517 | 1148517 | 1148515 | 1148517 | 23  |
| 637799561 'S | ynpcc7942_1135' | Ψ.         | Chromosome | 1157931 | 2.1   | 1157955 | 1157994 | 1157996 | 1157995 | 1157995 | 1157993 | 1157988 | 57  |
| 637799576 'S | ynpcc7942_1150' | Ψ.         | Chromosome | 1175734 | 12.6  | 1175774 | 1175771 | 1175770 | 1175770 | 1175770 | 1175770 | 1175771 | 37  |
| 637799582 'S | ynpcc7942_1156' | '+'        | Chromosome | 1183497 | 17.1  | 1183294 | 1183300 | 1183302 | 1183302 | 1183302 | 1183303 | 1183301 | 196 |

| <b>Supplementa</b> | ry Table 1 | (Continued).                          |
|--------------------|------------|---------------------------------------|
|                    | •/         | · · · · · · · · · · · · · · · · · · · |

| 637799585 Synpcc7942 1159' -   | Chromosome    | 1193292 | 2.5  | 1193298 | 1193297 | 1193297 | 1193297 | 1193297 | 1193296 | 1193297 | 5   |
|--------------------------------|---------------|---------|------|---------|---------|---------|---------|---------|---------|---------|-----|
| 637799590 'Synpcc7942_1164' '- | ' Chromosome  | 1197417 | 35.1 | 1197226 | 1197231 | 1197233 | 1197229 | 1197229 | 1197229 | 1197230 | 187 |
| 637799618 'Synpcc7942_1191' '- | ' Chromosome  | 1220349 | 2.1  | 1220259 | 1220223 | 1220238 | 1220239 | 1220239 | 1220278 | 1220246 | 103 |
| 637799622 'Synpcc7942_1195' '- | ' Chromosome  | 1223721 | 2.4  | 1223614 | 1223685 | 1223689 | 1223689 | 1223689 | 1223495 | 1223644 | 77  |
| 637799625 'Synpcc7942_1198' '- | Chromosome    | 1227244 | 1.9  | 1227545 | 1227284 | 1227269 | 1227278 | 1227278 | 1227279 | 1227322 | 78  |
| 637799629 'Synpcc7942_1202' '- | Chromosome    | 1232980 | 1.9  | 1232958 | 1233006 | 1232999 | 1233002 | 1233002 | 1233001 | 1232995 | 15  |
| 637799637 'Synpcc7942_1209' '- | Chromosome    | 1235230 | 3.0  | 1235286 | 1235321 | 1235321 | 1235323 | 1235323 | 1235320 | 1235316 | 86  |
| 637799640 'Synpcc7942_1212' '- | Chromosome    | 1236090 | 4.3  | 1236177 | 1236198 | 1236186 | 1236196 | 1236196 | 1236211 | 1236194 | 104 |
| 637799643 'Synpcc7942 1214' '- | ' Chromosome  | 1237017 | 2.0  | 1237015 | 1237012 | 1237017 | 1237014 | 1237014 | 1237014 | 1237014 | 3   |
| 637799655 'Synpcc7942_1226' '- | -' Chromosome | 1247104 | 2.0  | 1246982 | 1247008 | 1247006 | 1247008 | 1247008 | 1247003 | 1247003 | 101 |
| 637799656 'Synpcc7942_1227' '- | Chromosome    | 1249327 | 4.4  | 1249399 | 1249354 | 1249354 | 1249365 | 1249365 | 1249334 | 1249362 | 35  |
| 637799659 'Synpcc7942_1230' '- | Chromosome    | 1251846 | 2.4  | 1251903 | 1251870 | 1251861 | 1251868 | 1251868 | 1251874 | 1251874 | 28  |
| 637799661 'Synpcc7942_1232' '- | Chromosome    | 1253489 | 2.0  | 1253525 | 1253524 | 1253524 | 1253524 | 1253524 | 1253524 | 1253524 | 35  |
| 637799663 'Synpcc7942_1234' '- | ' Chromosome  | 1254739 | 7.8  | 1254540 | 1254524 | 1254516 | 1254512 | 1254512 | 1254517 | 1254520 | 219 |
| 637799675 'Synpcc7942_1246' '- | ' Chromosome  | 1270803 | 1.8  | 1270640 | 1270663 | 1270661 | 1270660 | 1270660 | 1270660 | 1270657 | 146 |
| 637799692 'Synpcc7942_1262' '- | Chromosome    | 1286647 | 2.0  | 1286735 | 1286673 | 1286750 | 1286735 | 1286735 | 1286749 | 1286730 | 83  |
| 637799701 'Synpcc7942_1271' '- | Chromosome    | 1296175 | 2.0  | 1296144 | 1296215 | 1296202 | 1296208 | 1296208 | 1296204 | 1296197 | 22  |
| 637799715 'Synpcc7942_1285' '- | Chromosome    | 1307200 | 2.0  | 1307359 | 1307274 | 1307277 | 1307275 | 1307275 | 1307275 | 1307289 | 89  |
| 637799720 'Synpcc7942_1290' '- | Chromosome    | 1313460 | 4.1  | 1313499 | 1313503 | 1313503 | 1313502 | 1313502 | 1313504 | 1313502 | 42  |
| 637799723 'Synpcc7942_1293' '- | Chromosome    | 1318598 | 1.9  | 1318899 | 1318643 | 1318643 | 1318899 | 1318899 | 1318692 | 1318779 | 181 |
| 637799729 'Synpcc7942 1299' '- | Chromosome    | 1327854 | 2.2  | 1327916 | 1327882 | 1327956 | 1327913 | 1327913 | 1327955 | 1327923 | 69  |
| 637799731 'Synpcc7942_1301' '- | ' Chromosome  | 1328678 | 4.6  | 1328664 | 1328683 | 1328691 | 1328692 | 1328692 | 1328663 | 1328681 | -3  |
| 637799758 'Synpcc7942_1327' '- | ' Chromosome  | 1360808 | 3.2  | 1360754 | 1360755 | 1360757 | 1360757 | 1360757 | 1360736 | 1360753 | 55  |
| 637799767 'Synpcc7942_1336' '- | ' Chromosome  | 1367261 | 5.9  | 1367090 | 1367076 | 1367046 | 1367073 | 1367073 | 1367073 | 1367072 | 189 |
| 637799770 'Synpcc7942_1339' '- | Chromosome    | 1373973 | 1.8  | 1373924 | 1373997 | 1374004 | 1374002 | 1374002 | 1374004 | 1373989 | 16  |
| 637799772 'Synpcc7942_1341' '- | ' Chromosome  | 1374756 | 2.7  | 1374667 | 1374614 | 1374498 | 1374615 | 1374615 | 1374663 | 1374612 | 144 |
| 637799785 'Synpcc7942_1354' '- | ' Chromosome  | 1386587 | 31.8 | 1386406 | 1386408 | 1386408 | 1386412 | 1386412 | 1386638 | 1386447 | 140 |
| 637799803 'Synpcc7942_1371' '- | Chromosome    | 1409368 | 4.1  | 1409407 | 1409398 | 1409398 | 1409438 | 1409438 | 1409422 | 1409417 | 49  |
| 637799814 'Synpcc7942_1382' '- | ' Chromosome  | 1427042 | 2.0  | 1426921 | 1426927 | 1426865 | 1426947 | 1426947 | 1426955 | 1426927 | 115 |
| 637799828 'Synpcc7942_1396' '- | Chromosome    | 1446000 | 4.6  | 1446139 | 1446143 | 1446140 | 1446140 | 1446140 | 1446143 | 1446141 | 141 |
| 637799829 'Synpcc7942_1397' '- | ' Chromosome  | 1446191 | 2.7  | 1446139 | 1446143 | 1446140 | 1446140 | 1446140 | 1446143 | 1446141 | 50  |
| 637799833 'Synpcc7942_1401' '- | Chromosome    | 1453104 | 1.8  | 1453149 | 1453134 | 1453142 | 1453132 | 1453132 | 1453150 | 1453140 | 36  |
| 637799834 'Synpcc7942 1402' '- | ' Chromosome  | 1453317 | 4.6  | 1453149 | 1453134 | 1453142 | 1453132 | 1453132 | 1453150 | 1453140 | 177 |
| 637799837 'Synpcc7942 1405' '- | ' Chromosome  | 1456260 | 3.4  | 1456221 | 1456209 | 1456208 | 1456204 | 1456204 | 1456178 | 1456204 | 56  |
| 637799839 'Synpcc7942 1407' '- | ' Chromosome  | 1458057 | 1.8  | 1457954 | 1457962 | 1457964 | 1457961 | 1457961 | 1457960 | 1457960 | 97  |
| 637799843 'Synpcc7942_1411' '- | Chromosome    | 1464358 | 2.5  | 1464378 | 1464371 | 1464387 | 1464373 | 1464373 | 1464383 | 1464378 | 20  |
| 637799844 'Synpcc7942_1412' '- | Chromosome    | 1464817 | 2.3  | 1464870 | 1464870 | 1464869 | 1464871 | 1464871 | 1464869 | 1464870 | 53  |
| 637799846 'Synpcc7942_1414' '- | Chromosome    | 1466434 | 1.8  | 1466493 | 1466479 | 1466735 | 1466479 | 1466479 | 1466473 | 1466523 | 89  |

| <b>Supplementa</b> | ry Table 1 | (Continued). |
|--------------------|------------|--------------|
|                    | •/         | · /          |

| 637799848 | 'Synpcc7942 1416' | '+'        | Chromosome | 1468344 | 2.7  | 1468212 | 1468202 | 1468223 | 1468192 | 1468192 | 1468174 | 1468199 | 145 |
|-----------|-------------------|------------|------------|---------|------|---------|---------|---------|---------|---------|---------|---------|-----|
| 637799856 | 'Synpcc7942_1424' | <b>'+'</b> | Chromosome | 1477713 | 2.3  | 1477497 | 1477459 | 1477461 | 1477462 | 1477462 | 1477464 | 1477468 | 245 |
| 637799857 | 'Synpcc7942_1425' | <b>'+'</b> | Chromosome | 1478240 | 1.8  | 1478202 | 1478204 | 1478207 | 1478205 | 1478205 | 1478205 | 1478205 | 35  |
| 637799858 | 'Synpcc7942_1426' | <b>'+'</b> | Chromosome | 1479461 | 2.3  | 1479301 | 1479299 | 1479301 | 1479300 | 1479300 | 1479300 | 1479300 | 161 |
| 637799878 | 'Synpcc7942_1446' | Ψ.         | Chromosome | 1500342 | 2.3  | 1500459 | 1500460 | 1500469 | 1500465 | 1500465 | 1500463 | 1500464 | 122 |
| 637799879 | 'Synpcc7942_1447' | <b>'+'</b> | Chromosome | 1500489 | 1.9  | 1500459 | 1500460 | 1500469 | 1500465 | 1500465 | 1500463 | 1500464 | 25  |
| 637799898 | 'Synpcc7942_1466' | <b>'+'</b> | Chromosome | 1519664 | 1.9  | 1519669 | 1519671 | 1519672 | 1519672 | 1519672 | 1519672 | 1519671 | -7  |
| 637799913 | 'Synpcc7942_1481' | Ω.         | Chromosome | 1532398 | 2.4  | 1532444 | 1532438 | 1532420 | 1532428 | 1532428 | 1532434 | 1532432 | 34  |
| 637799914 | 'Synpcc7942 1482' | <b>'+'</b> | Chromosome | 1532605 | 1.8  | 1532444 | 1532438 | 1532420 | 1532428 | 1532428 | 1532434 | 1532432 | 173 |
| 637799918 | 'Synpcc7942 1486' | Ω.         | Chromosome | 1536912 | 2.0  | 1536953 | 1536954 | 1536954 | 1536956 | 1536956 | 1536955 | 1536955 | 43  |
| 637799930 | 'Synpcc7942 1497' | Ω.         | Chromosome | 1548105 | 2.7  | 1548137 | 1548136 | 1548134 | 1548128 | 1548128 | 1548130 | 1548132 | 27  |
| 637799932 | 'Synpcc7942_1499' | Ψ.         | Chromosome | 1548930 | 2.2  | 1548991 | 1548998 | 1548997 | 1548998 | 1548998 | 1548999 | 1548997 | 67  |
| 637799937 | 'Synpcc7942_1504' | <b>'+'</b> | Chromosome | 1553330 | 3.2  | 1553287 | 1553282 | 1553246 | 1553293 | 1553293 | 1553306 | 1553285 | 45  |
| 637799939 | 'Synpcc7942_1506' | Ψ.         | Chromosome | 1556513 | 4.2  | 1556569 | 1556569 | 1556567 | 1556567 | 1556567 | 1556567 | 1556568 | 55  |
| 637799941 | 'Synpcc7942_1508' | Ψ.         | Chromosome | 1559209 | 2.0  | 1559304 | 1559300 | 1559300 | 1559302 | 1559302 | 1559299 | 1559301 | 92  |
| 637799942 | 'Synpcc7942_1509' | <b>'+'</b> | Chromosome | 1559329 | 2.1  | 1559304 | 1559300 | 1559300 | 1559302 | 1559302 | 1559299 | 1559301 | 28  |
| 637799946 | 'Synpcc7942_1513' | <b>'+'</b> | Chromosome | 1563532 | 1.8  | 1563418 | 1563415 | 1563416 | 1563416 | 1563416 | 1563416 | 1563416 | 116 |
| 637799950 | 'Synpcc7942_1517' | Ψ.         | Chromosome | 1568316 | 2.0  | 1568389 | 1568388 | 1568387 | 1568384 | 1568384 | 1568391 | 1568387 | 71  |
| 637799951 | 'Synpcc7942_1518' | <b>'+'</b> | Chromosome | 1568627 | 1.9  | 1568389 | 1568388 | 1568387 | 1568384 | 1568384 | 1568391 | 1568387 | 240 |
| 637799958 | 'Synpcc7942_1525' | <b>'+'</b> | Chromosome | 1583407 | 2.1  | 1583194 | 1583195 | 1583195 | 1583319 | 1583319 | 1583326 | 1583258 | 149 |
| 637799962 | 'Synpcc7942_1529' | <b>'+'</b> | Chromosome | 1589204 | 2.0  | 1589180 | 1589169 | 1589171 | 1589166 | 1589166 | 1589166 | 1589170 | 34  |
| 637799982 | 'Synpcc7942_1549' | <b>'+'</b> | Chromosome | 1606129 | 1.8  | 1605924 | 1605830 | 1605830 | 1605964 | 1605964 | 1605963 | 1605913 | 216 |
| 637799984 | 'Synpcc7942_1551' | <b>'+'</b> | Chromosome | 1608052 | 2.1  | 1607755 | 1608103 | 1607767 | 1607753 | 1607753 | 1607753 | 1607814 | 238 |
| 637799989 | 'Synpcc7942_1556' | <b>'+'</b> | Chromosome | 1612870 | 6.5  | 1612836 | 1612835 | 1612841 | 1612836 | 1612836 | 1612837 | 1612837 | 33  |
| 637799990 | 'Synpcc7942_1557' | Ψ.         | Chromosome | 1614396 | 7.1  | 1614546 | 1614539 | 1614541 | 1614541 | 1614541 | 1614543 | 1614542 | 146 |
| 637800000 | 'Synpcc7942_1567' | Ψ.         | Chromosome | 1626019 | 13.7 | 1626019 | 1626048 | 1626048 | 1626001 | 1626001 | 1625970 | 1626015 | -4  |
| 637800016 | 'Synpcc7942_1583' | <b>'+'</b> | Chromosome | 1648210 | 2.2  | 1648154 | 1648163 | 1648165 | 1648167 | 1648167 | 1648191 | 1648168 | 42  |
| 637800046 | 'Synpcc7942_1612' | Ψ.         | Chromosome | 1681905 | 83.8 | 1682016 | 1682014 | 1682017 | 1682016 | 1682016 | 1682016 | 1682016 | 111 |
| 637800052 | 'Synpcc7942_1616' | '+'        | Chromosome | 1683163 | 2.3  | 1682864 | 1683132 | 1683134 | 1683132 | 1683132 | 1683128 | 1683087 | 76  |
| 637800053 | 'Synpcc7942_1617' | <b>'+'</b> | Chromosome | 1683752 | 1.8  | 1683726 | 1683712 | 1683713 | 1683713 | 1683713 | 1683712 | 1683715 | 37  |
| 637800074 | 'Synpcc7942_1637' | Ψ.         | Chromosome | 1706484 | 2.2  | 1706655 | 1706646 | 1706652 | 1706651 | 1706651 | 1706652 | 1706651 | 167 |
| 637800080 | 'Synpcc7942_1643' | <b>'+'</b> | Chromosome | 1710353 | 1.9  | 1710290 | 1710271 | 1710293 | 1710293 | 1710293 | 1710300 | 1710290 | 63  |
| 637800081 | 'Synpcc7942 1644' | '+'        | Chromosome | 1712014 | 2.7  | 1711888 | 1711891 | 1711891 | 1711891 | 1711891 | 1711891 | 1711891 | 123 |
| 637800083 | 'Synpcc7942_1646' | '+'        | Chromosome | 1714348 | 3.8  | 1714182 | 1714192 | 1714222 | 1714187 | 1714187 | 1714147 | 1714186 | 162 |
| 637800093 | 'Synpcc7942_1656' | Ψ.         | Chromosome | 1728081 | 3.6  | 1728251 | 1728251 | 1728249 | 1728250 | 1728250 | 1728260 | 1728252 | 171 |
| 637800098 | 'Synpcc7942_1661' | '+'        | Chromosome | 1731159 | 39.4 | 1730960 | 1731033 | 1730960 | 1730958 | 1730958 | 1730955 | 1730971 | 188 |
| 637800102 | 'Synpcc7942_1664' | '+'        | Chromosome | 1733790 | 2.1  | 1733698 | 1733696 | 1733698 | 1733700 | 1733700 | 1733701 | 1733699 | 91  |
| 637800106 | 'Synpcc7942_1668' | '+'        | Chromosome | 1737882 | 10.3 | 1737771 | 1737767 | 1737813 | 1737821 | 1737821 | 1737781 | 1737796 | 86  |

| Supplementally Lable 1 (Continueu) | Supp | lementary | Table 1 | (Continued) |
|------------------------------------|------|-----------|---------|-------------|
|------------------------------------|------|-----------|---------|-------------|

| 637800108 | 'Synpcc7942 1670' | '+'              | Chromosome | 1741687 | Inf   | 1741536 | 1741695 | 1741611 | 1741713 | 1741713 | 1741704 | 1741662 | 25  |
|-----------|-------------------|------------------|------------|---------|-------|---------|---------|---------|---------|---------|---------|---------|-----|
| 637800109 | 'Synpcc7942 1671' | ' <del>'</del> ' | Chromosome | 1741836 | 5.3   | 1741537 | 1741746 | 1741611 | 1741713 | 1741713 | 1741704 | 1741671 | 165 |
| 637800138 | 'Synpcc7942 1700' | 2                | Chromosome | 1767849 | 1.8   | 1767933 | 1767927 | 1767928 | 1767928 | 1767928 | 1767928 | 1767929 | 80  |
| 637800139 | 'Synpcc7942 1701' | '+'              | Chromosome | 1767953 | 2.0   | 1767933 | 1767927 | 1767928 | 1767928 | 1767928 | 1767928 | 1767929 | 24  |
| 637800154 | 'Synpcc7942 1716' | 2                | Chromosome | 1787655 | 1.8   | 1787711 | 1787729 | 1787754 | 1787755 | 1787755 | 1787693 | 1787733 | 78  |
| 637800158 | 'Synpcc7942_1719' | 2                | Chromosome | 1791796 | 2.3   | 1791837 | 1791839 | 1791836 | 1791835 | 1791835 | 1791837 | 1791837 | 41  |
| 637800184 | 'Synpcc7942_1745' | 2                | Chromosome | 1816393 | 1.9   | 1816402 | 1816404 | 1816423 | 1816413 | 1816413 | 1816407 | 1816410 | 17  |
| 637800197 | 'Synpcc7942_1756' | 2                | Chromosome | 1824511 | 12.0  | 1824646 | 1824654 | 1824656 | 1824656 | 1824656 | 1824656 | 1824654 | 143 |
| 637800198 | 'Synpcc7942 1757' | '+'              | Chromosome | 1824648 | 15.2  | 1824646 | 1824654 | 1824656 | 1824656 | 1824656 | 1824656 | 1824654 | -6  |
| 637800201 | 'Synpcc7942 1760' | '+'              | Chromosome | 1826528 | 2.1   | 1826442 | 1826446 | 1826442 | 1826445 | 1826445 | 1826446 | 1826444 | 84  |
| 637800209 | 'Synpcc7942 1768' | <b>'+'</b>       | Chromosome | 1835596 | 1.8   | 1835458 | 1835438 | 1835499 | 1835463 | 1835463 | 1835503 | 1835471 | 125 |
| 637800217 | 'Synpcc7942 1776' | Ψ'               | Chromosome | 1840742 | 2.4   | 1840724 | 1840722 | 1840722 | 1840721 | 1840721 | 1840722 | 1840722 | 20  |
| 637800224 | 'Synpcc7942_1783' | <b>'+'</b>       | Chromosome | 1849303 | 3.3   | 1849086 | 1849159 | 1849158 | 1849158 | 1849158 | 1849156 | 1849146 | 157 |
| 637800225 | 'Synpcc7942_1784' | Ψ                | Chromosome | 1852529 | 11.0  | 1852468 | 1852450 | 1852450 | 1852452 | 1852452 | 1852473 | 1852458 | 71  |
| 637800240 | 'Synpcc7942_1799' | <b>'+'</b>       | Chromosome | 1868940 | 4.3   | 1868856 | 1868859 | 1868856 | 1868858 | 1868858 | 1868859 | 1868858 | 82  |
| 637800245 | 'Synpcc7942_1804' | Ψ.               | Chromosome | 1874397 | 3.0   | 1874469 | 1874440 | 1874432 | 1874440 | 1874440 | 1874433 | 1874442 | 45  |
| 637800267 | 'Synpcc7942_1826' | Ψ.               | Chromosome | 1897163 | 1.8   | 1897231 | 1897253 | 1897257 | 1897251 | 1897251 | 1897258 | 1897250 | 87  |
| 637800271 | 'Synpcc7942_1830' | Ψ.               | Chromosome | 1899550 | 2.3   | 1899628 | 1899589 | 1899589 | 1899627 | 1899627 | 1899716 | 1899629 | 79  |
| 637800272 | 'Synpcc7942_1831' | Ψ.               | Chromosome | 1901019 | 2.0   | 1901032 | 1901042 | 1901043 | 1901042 | 1901042 | 1901043 | 1901041 | 22  |
| 637800273 | 'Synpcc7942_1832' | Ψ.               | Chromosome | 1901601 | 2.0   | 1901750 | 1901747 | 1901750 | 1901747 | 1901747 | 1901746 | 1901748 | 147 |
| 637800279 | 'Synpcc7942 1838' | ${\bf U}_{i}$    | Chromosome | 1905957 | 9.4   | 1906010 | 1906015 | 1906015 | 1906015 | 1906015 | 1906015 | 1906014 | 57  |
| 637800290 | 'Synpcc7942 1849' | <b>'+'</b>       | Chromosome | 1916620 | 181.6 | 1916533 | 1916531 | 1916535 | 1916533 | 1916533 | 1916321 | 1916498 | 122 |
| 637800306 | 'Synpcc7942_1865' | <b>'+'</b>       | Chromosome | 1935472 | 2.5   | 1935457 | 1935444 | 1935444 | 1935445 | 1935445 | 1935444 | 1935447 | 25  |
| 637800337 | 'Synpcc7942_1896' | $\mathbf{v}$     | Chromosome | 1969898 | 3.0   | 1969920 | 1969921 | 1969921 | 1969920 | 1969920 | 1969923 | 1969921 | 23  |
| 637800356 | 'Synpcc7942_1914' | <b>'+'</b>       | Chromosome | 1990394 | 2.1   | 1990352 | 1990362 | 1990362 | 1990363 | 1990363 | 1990365 | 1990361 | 33  |
| 637800363 | 'Synpcc7942_1921' | <b>'+'</b>       | Chromosome | 1998203 | 3.0   | 1998188 | 1998190 | 1998191 | 1998190 | 1998190 | 1998190 | 1998190 | 13  |
| 637800386 | 'Synpcc7942_1944' | <b>'+'</b>       | Chromosome | 2018389 | 1.9   | 2018326 | 2018328 | 2018329 | 2018328 | 2018328 | 2018329 | 2018328 | 61  |
| 637800392 | 'Synpcc7942_1949' | '+'              | Chromosome | 2024003 | 3.2   | 2023978 | 2023977 | 2023977 | 2023976 | 2023976 | 2023987 | 2023979 | 24  |
| 637800393 | 'Synpcc7942_1950' | <b>'+'</b>       | Chromosome | 2024388 | 4.1   | 2024089 | 2024089 | 2024089 | 2024089 | 2024089 | 2024439 | 2024147 | 241 |
| 637800403 | 'Synpcc7942_1960' | Ψ.               | Chromosome | 2032696 | 6.2   | 2032722 | 2032728 | 2032729 | 2032731 | 2032731 | 2032734 | 2032729 | 33  |
| 637800421 | 'Synpcc7942_1976' | Ψ.               | Chromosome | 2047397 | 2.8   | 2047426 | 2047427 | 2047426 | 2047426 | 2047426 | 2047426 | 2047426 | 29  |
| 637800432 | 'Synpcc7942_1987' | '+'              | Chromosome | 2057819 | 2.7   | 2057788 | 2057788 | 2057789 | 2057787 | 2057787 | 2057783 | 2057787 | 32  |
| 637800438 | 'Synpcc7942_1993' | <b>'+'</b>       | Chromosome | 2063554 | 2.4   | 2063605 | 2063558 | 2063526 | 2063533 | 2063533 | 2063598 | 2063559 | -5  |
| 637800447 | 'Synpcc7942_2002' | <b>'+'</b>       | Chromosome | 2071335 | 2.3   | 2071305 | 2071306 | 2071308 | 2071308 | 2071308 | 2071304 | 2071307 | 28  |
| 637800457 | 'Synpcc7942_2012' | <b>'+'</b>       | Chromosome | 2081506 | 1.8   | 2081428 | 2081427 | 2081426 | 2081425 | 2081425 | 2081425 | 2081426 | 80  |
| 637800471 | 'Synpcc7942_2026' | <b>'+'</b>       | Chromosome | 2094451 | 2.3   | 2094443 | 2094411 | 2094417 | 2094412 | 2094412 | 2094414 | 2094418 | 33  |
| 637800478 | 'Synpcc7942_2033' | <b>'+'</b>       | Chromosome | 2102330 | 1.8   | 2102326 | 2102300 | 2102301 | 2102282 | 2102282 | 2102304 | 2102299 | 31  |
| 637800486 | 'Synpcc7942 2041' | <b>'+'</b>       | Chromosome | 2110181 | 1.8   | 2110182 | 2110227 | 2110171 | 2110165 | 2110165 | 2110182 | 2110182 | -1  |

| Supplementary | Table 1 | (Continued). |
|---------------|---------|--------------|
|               |         | · /          |

| 637800488 | 'Synpcc7942_2  | 043' ' | -          | Chromosome | 2112672 | 2.1  | 2112892 | 2112899 | 2112904 | 2112903 | 2112903 | 2112904 | 2112901 | 229 |
|-----------|----------------|--------|------------|------------|---------|------|---------|---------|---------|---------|---------|---------|---------|-----|
| 637800495 | 'Synpcc7942_2  | 050' ' | +'         | Chromosome | 2126401 | 1.8  | 2126286 | 2126277 | 2126278 | 2126279 | 2126279 | 2126279 | 2126280 | 121 |
| 637800498 | 'Synpcc7942 2  | 053' ' | +'         | Chromosome | 2130328 | 3.2  | 2130255 | 2130310 | 2130303 | 2130304 | 2130304 | 2130352 | 2130305 | 23  |
| 637800504 | 'Synpcc7942_2  | 059' ' | -'         | Chromosome | 2137272 | 2.1  | 2137356 | 2137364 | 2137363 | 2137363 | 2137363 | 2137362 | 2137362 | 90  |
| 637800524 | 'Synpcc7942_2  | 079' ' | -          | Chromosome | 2157755 | 8.5  | 2158049 | 2157889 | 2157890 | 2158056 | 2158056 | 2158056 | 2157999 | 244 |
| 637800525 | 'Synpcc7942_2  | 080' ' | +'         | Chromosome | 2158038 | 3.7  | 2158089 | 2157889 | 2157890 | 2158089 | 2158089 | 2158089 | 2158023 | 15  |
| 637800527 | 'Synpcc7942_2  | 082' ' | -'         | Chromosome | 2163575 | 11.1 | 2163700 | 2163700 | 2163702 | 2163702 | 2163702 | 2163700 | 2163701 | 126 |
| 637800528 | 'Synpcc7942_2  | 083' ' | +'         | Chromosome | 2163925 | 3.0  | 2163700 | 2163700 | 2163702 | 2163702 | 2163702 | 2163700 | 2163701 | 224 |
| 637800541 | 'Synpcc7942_2  | 096' ' | +'         | Chromosome | 2177467 | 2.1  | 2177383 | 2177385 | 2177386 | 2177386 | 2177386 | 2177384 | 2177385 | 82  |
| 637800547 | 'Synpcc7942 2  | 102' ' | +'         | Chromosome | 2183837 | 2.8  | 2183837 | 2183837 | 2183832 | 2183787 | 2183787 | 2183787 | 2183811 | 26  |
| 637800548 | 'Synpcc7942_2  | 103' ' | <b>-</b> ' | Chromosome | 2184523 | 3.3  | 2184565 | 2184558 | 2184556 | 2184558 | 2184558 | 2184580 | 2184563 | 40  |
| 637800554 | 'Synpcc7942_2  | 109' ' | +'         | Chromosome | 2189141 | 2.2  | 2189087 | 2189091 | 2189098 | 2189092 | 2189092 | 2189094 | 2189092 | 49  |
| 637800579 | 'Synpcc7942_2  | 134' ' | <u>-'</u>  | Chromosome | 2214708 | 1.8  | 2214790 | 2214796 | 2214789 | 2214791 | 2214791 | 2214795 | 2214792 | 84  |
| 637800594 | 'Synpcc7942_2  | 149' ' | +'         | Chromosome | 2231897 | 1.9  | 2231918 | 2231883 | 2231840 | 2231878 | 2231878 | 2231839 | 2231873 | 24  |
| 637800605 | 'Synpcc7942_2  | 160' ' | +'         | Chromosome | 2242713 | 2.0  | 2242680 | 2242683 | 2242674 | 2242682 | 2242682 | 2242677 | 2242680 | 33  |
| 637800607 | 'Synpcc7942_2  | 162' ' | -          | Chromosome | 2244940 | 9.0  | 2244998 | 2245010 | 2245013 | 2245012 | 2245012 | 2245011 | 2245009 | 69  |
| 637800622 | 'Synpcc7942_2  | 177' ' | +'         | Chromosome | 2257143 | 2.1  | 2257129 | 2257130 | 2257131 | 2257132 | 2257132 | 2257132 | 2257131 | 12  |
| 637800623 | 'Synpcc7942_2  | 178' ' | -          | Chromosome | 2258395 | 2.7  | 2258400 | 2258417 | 2258687 | 2258419 | 2258419 | 2258416 | 2258460 | 65  |
| 637800630 | 'Synpcc7942_2  | 185' ' | +'         | Chromosome | 2263403 | 10.7 | 2263376 | 2263375 | 2263378 | 2263376 | 2263376 | 2263450 | 2263389 | 14  |
| 637800632 | 'Synpcc7942_2  | 187' ' | -          | Chromosome | 2266102 | 1.8  | 2266270 | 2266270 | 2266273 | 2266275 | 2266275 | 2266272 | 2266273 | 171 |
| 637800645 | 'Synpcc7942_22 | 200' ' | 2          | Chromosome | 2281077 | 2.6  | 2281301 | 2281299 | 2281299 | 2281299 | 2281299 | 2281301 | 2281300 | 223 |
| 637800688 | 'Synpcc7942_22 | 241' ' | +'         | Chromosome | 2306546 | 1.8  | 2306581 | 2306581 | 2306580 | 2306583 | 2306583 | 2306248 | 2306526 | 20  |
| 637800695 | 'Synpcc7942_22 | 248' ' | 2          | Chromosome | 2315727 | 2.5  | 2315754 | 2315757 | 2315755 | 2315755 | 2315755 | 2315754 | 2315755 | 28  |
| 637800700 | 'Synpcc7942_22 | 253' ' | 2          | Chromosome | 2323299 | 2.5  | 2323304 | 2323312 | 2323303 | 2323304 | 2323304 | 2323299 | 2323304 | 5   |
| 637800708 | 'Synpcc7942_22 | 261' ' | 2          | Chromosome | 2329790 | 1.9  | 2329801 | 2329881 | 2329881 | 2329880 | 2329880 | 2329881 | 2329867 | 77  |
| 637800714 | 'Synpcc7942_22 | 267' ' | +'         | Chromosome | 2335846 | 23.9 | 2335800 | 2335818 | 2335820 | 2335816 | 2335816 | 2335816 | 2335814 | 32  |
| 637800726 | 'Synpcc7942_22 | 279' ' | +'         | Chromosome | 2347614 | 7.2  | 2347495 | 2347529 | 2347530 | 2347542 | 2347542 | 2347527 | 2347528 | 86  |
| 637800727 | 'Synpcc7942_22 | 280' ' | -          | Chromosome | 2350167 | 2.0  | 2350288 | 2350294 | 2350302 | 2350291 | 2350291 | 2350318 | 2350297 | 130 |
| 637800738 | 'Synpcc7942_22 | 291' ' | -          | Chromosome | 2361251 | 2.1  | 2361237 | 2361261 | 2361264 | 2361261 | 2361261 | 2361270 | 2361259 | 8   |
| 637800745 | 'Synpcc7942_22 | 297' ' | -          | Chromosome | 2368721 | 4.7  | 2368760 | 2368757 | 2368757 | 2368757 | 2368757 | 2368757 | 2368758 | 37  |
| 637800746 | 'Synpcc7942_22 | 298' ' | +'         | Chromosome | 2368966 | 3.0  | 2368760 | 2368757 | 2368757 | 2368757 | 2368757 | 2368757 | 2368758 | 208 |
| 637800749 | 'Synpcc7942_2  | 301' ' | +'         | Chromosome | 2370542 | 2.4  | 2370453 | 2370508 | 2370517 | 2370457 | 2370457 | 2370506 | 2370483 | 59  |
| 637800754 | 'Synpcc7942 2  | 306' ' | +'         | Chromosome | 2374134 | 6.4  | 2374111 | 2374108 | 2374108 | 2374109 | 2374109 | 2374109 | 2374109 | 25  |
| 637800757 | 'Synpcc7942_2  | 309' ' | <u>.</u>   | Chromosome | 2377703 | 2.9  | 2377767 | 2377768 | 2377764 | 2377763 | 2377763 | 2377764 | 2377765 | 62  |
| 637800763 | 'Synpcc7942_2  | 315'   | +'         | Chromosome | 2383870 | 2.2  | 2383787 | 2383706 | 2383742 | 2383787 | 2383787 | 2383793 | 2383767 | 103 |
| 637800774 | 'Synpcc7942_2  | 326' ' | +'         | Chromosome | 2393509 | 49.0 | 2393489 | 2393488 | 2393488 | 2393488 | 2393488 | 2393492 | 2393489 | 20  |
| 637800783 | 'Synpcc7942_2  | 335' ' | -'         | Chromosome | 2403955 | 17.6 | 2404001 | 2403993 | 2403992 | 2403993 | 2403993 | 2403996 | 2403995 | 40  |
| 637800784 | 'Synpcc7942_2: | 336' ' | -'         | Chromosome | 2404389 | 34.5 | 2404458 | 2404456 | 2404456 | 2404456 | 2404456 | 2404458 | 2404457 | 68  |

| Supplementary Table I (Continue |
|---------------------------------|
|---------------------------------|

| 637800788 | 'Synpcc7942_234 | )' '+'         | Chromosome | 2407881 | 2.1   | 2407859 | 2407859 | 2407860 | 2407858 | 2407858 | 2407861 | 2407859 | 22  |
|-----------|-----------------|----------------|------------|---------|-------|---------|---------|---------|---------|---------|---------|---------|-----|
| 637800794 | 'Synpcc7942_234 | 5' '+'         | Chromosome | 2413356 | 2.6   | 2413268 | 2413266 | 2413263 | 2413265 | 2413265 | 2413263 | 2413265 | 91  |
| 637800800 | 'Synpcc7942_235 | 2' '-'         | Chromosome | 2420198 | 2.5   | 2420286 | 2420287 | 2420289 | 2420294 | 2420294 | 2420287 | 2420290 | 92  |
| 637800832 | 'Synpcc7942_238 | <b>1' '</b> +' | Chromosome | 2451384 | 14.1  | 2451358 | 2451356 | 2451356 | 2451356 | 2451356 | 2451356 | 2451356 | 28  |
| 637800834 | 'Synpcc7942_238 | 5' '+'         | Chromosome | 2455998 | 7.1   | 2455853 | 2455832 | 2455815 | 2455828 | 2455828 | 2455830 | 2455831 | 167 |
| 637800836 | 'Synpcc7942_238 | 3' '-'         | Chromosome | 2460331 | 19.5  | 2460395 | 2460395 | 2460392 | 2460395 | 2460395 | 2460390 | 2460394 | 63  |
| 637800839 | 'Synpcc7942_239 | l' '+'         | Chromosome | 2465228 | 3.6   | 2465146 | 2465175 | 2465224 | 2465164 | 2465164 | 2465162 | 2465173 | 55  |
| 637800852 | 'Synpcc7942_240 | 4' '+'         | Chromosome | 2477807 | 2.4   | 2477508 | 2477766 | 2477771 | 2477765 | 2477765 | 2477737 | 2477719 | 88  |
| 637800860 | 'Synpcc7942 241 | 2' '-'         | Chromosome | 2485251 | 2.2   | 2485243 | 2485211 | 2485211 | 2485336 | 2485336 | 2485332 | 2485278 | 27  |
| 637800874 | 'Synpcc7942_242 | 5' '-'         | Chromosome | 2498893 | 1.8   | 2498993 | 2498976 | 2498990 | 2498984 | 2498984 | 2498972 | 2498983 | 90  |
| 637800880 | 'Synpcc7942_243 | 2' '+'         | Chromosome | 2506121 | 4.0   | 2506084 | 2506062 | 2506123 | 2505822 | 2505822 | 2505822 | 2505956 | 165 |
| 637800895 | 'Synpcc7942_244 | 7' '+'         | Chromosome | 2524094 | 2.5   | 2523943 | 2523946 | 2523947 | 2523948 | 2523948 | 2523946 | 2523946 | 148 |
| 637800897 | 'Synpcc7942_244 | )' '+'         | Chromosome | 2526169 | 2.5   | 2526128 | 2526127 | 2526130 | 2526130 | 2526130 | 2526130 | 2526129 | 40  |
| 637800902 | 'Synpcc7942_245 | ¥ 🖓            | Chromosome | 2533374 | 2.0   | 2533494 | 2533493 | 2533496 | 2533495 | 2533495 | 2533455 | 2533488 | 114 |
| 637800907 | 'Synpcc7942_245 | 3' '+'         | Chromosome | 2536184 | 2.5   | 2536104 | 2536154 | 2536158 | 2536159 | 2536159 | 2536151 | 2536148 | 36  |
| 637800910 | 'Synpcc7942_246 | יי יו          | Chromosome | 2542737 | 30.6  | 2542827 | 2542789 | 2542790 | 2542791 | 2542791 | 2542759 | 2542791 | 54  |
| 637800935 | 'Synpcc7942_248 | 5' '-'         | Chromosome | 2568305 | 3.0   | 2568336 | 2568338 | 2568338 | 2568337 | 2568337 | 2568339 | 2568338 | 33  |
| 637800948 | 'Synpcc7942_249 | י-י יק         | Chromosome | 2581055 | 2.9   | 2581344 | 2581026 | 2581040 | 2581047 | 2581047 | 2581237 | 2581124 | 69  |
| 637800949 | 'Synpcc7942_250 | י-י יכ         | Chromosome | 2581716 | 3.1   | 2581889 | 2581867 | 2581868 | 2581890 | 2581890 | 2581894 | 2581883 | 167 |
| 637800953 | 'Synpcc7942_250 | ¥' '-'         | Chromosome | 2586072 | 1.9   | 2586105 | 2586100 | 2586103 | 2586103 | 2586103 | 2586104 | 2586103 | 31  |
| 637800956 | 'Synpcc7942_250 | 7' '-'         | Chromosome | 2587797 | 3.0   | 2587794 | 2587825 | 2587824 | 2587797 | 2587797 | 2587824 | 2587810 | 13  |
| 637800965 | 'Synpcc7942_251 | 5' '-'         | Chromosome | 2596958 | 2.6   | 2596909 | 2596930 | 2596986 | 2596925 | 2596925 | 2596977 | 2596942 | -16 |
| 637800971 | 'Synpcc7942_252 | 2' '-'         | Chromosome | 2605010 | 3.0   | 2605142 | 2605143 | 2605139 | 2605135 | 2605135 | 2605134 | 2605138 | 128 |
| 637800976 | 'Synpcc7942_252 | 7' '+'         | Chromosome | 2608875 | 2.2   | 2608796 | 2608823 | 2608769 | 2608811 | 2608811 | 2608809 | 2608803 | 72  |
| 637800985 | 'Synpcc7942_253 | 5' '+'         | Chromosome | 2615811 | 2.8   | 2615666 | 2615860 | 2615859 | 2615569 | 2615569 | 2615567 | 2615682 | 129 |
| 637800996 | 'Synpcc7942_254 | 5' '+'         | Chromosome | 2626237 | 1.9   | 2626213 | 2626223 | 2626220 | 2626222 | 2626222 | 2626214 | 2626219 | 18  |
| 637801004 | 'Synpcc7942_255 | ¥ 🖓            | Chromosome | 2633647 | 4.1   | 2633682 | 2633681 | 2633680 | 2633681 | 2633681 | 2633681 | 2633681 | 34  |
| 637801005 | 'Synpcc7942_255 | 5' '-'         | Chromosome | 2635086 | 10.3  | 2635152 | 2635105 | 2635101 | 2635091 | 2635091 | 2635099 | 2635107 | 21  |
| 637801007 | 'Synpcc7942_255 | 7' '-'         | Chromosome | 2636354 | 16.7  | 2636404 | 2636406 | 2636404 | 2636406 | 2636406 | 2636415 | 2636407 | 53  |
| 637801016 | 'Synpcc7942_256 | 5' '+'         | Chromosome | 2645522 | 1.9   | 2645447 | 2645436 | 2645442 | 2645442 | 2645442 | 2645439 | 2645441 | 81  |
| 637801020 | 'Synpcc7942_257 | )' '-'         | Chromosome | 2650032 | 2.2   | 2650029 | 2650060 | 2650050 | 2650058 | 2650058 | 2650052 | 2650051 | 19  |
| 637801029 | 'Synpcc7942_257 | 5' '-'         | Chromosome | 2662110 | 1.8   | 2662157 | 2662177 | 2662167 | 2662177 | 2662177 | 2662165 | 2662170 | 60  |
| 637801044 | 'Synpcc7942 259 | )' '+'         | Chromosome | 2674093 | 184.0 | 2674063 | 2674066 | 2674066 | 2674067 | 2674067 | 2674062 | 2674065 | 28  |
| 637801056 | 'Synpcc7942_260 | 2' '+'         | Chromosome | 2684044 | 3.8   | 2683933 | 2683956 | 2683933 | 2684013 | 2684013 | 2683919 | 2683961 | 83  |
| 637801063 | 'Synpcc7942_260 | )' '+'         | Chromosome | 2691626 | 2.3   | 2691599 | 2691600 | 2691604 | 2691606 | 2691606 | 2691602 | 2691603 | 23  |
| 637801067 | 'Synpcc7942_261 | 3' '-'         | Chromosome | 2695870 | 3.5   | 2695903 | 2695903 | 2695903 | 2695903 | 2695903 | 2695903 | 2695903 | 33  |
| 637800185 | 'Synpcc7942_174 | 5' '-'         | Chromosome | 1817562 | 1.5   | 1817716 | 1817681 | 1817658 | 1817691 | 1817691 | 1817699 | 1817689 | 127 |

**Supplementary Table 2.** RpoD6 genomic binding sites determined by analysis of time-course ChIP-seq datasets that are proximal to transcription start sites of high confidence circadian genes.

| Information for  | high-confidence       | Genomic      |       |          |          |        |         |           |            |         |           |          |        |       |
|------------------|-----------------------|--------------|-------|----------|----------|--------|---------|-----------|------------|---------|-----------|----------|--------|-------|
| circadian trans  | cript whose 5'TSS is  | location of  | Dete  | rminatio | on of ma | aximum | enrichn | nent rela | ative to 1 | mock wi | ithin int | erval of | each R | poD6  |
| located in proxi | mity to RpoD6 binding | RpoD6        |       | -        |          | -      |         | bindi     | ng site    |         |           |          |        |       |
| JGI ID           | Synpcc_7942 number    | binding site | T=24h | T=28h    | T=32h    | T=36h  | T=40h   | T=44h     | T=48h      | T=52h   | T=56h     | T=60h    | T=64h  | T=68h |
| 637798428        | 'Synpcc7942_0023'     | 24563        | 3.8   | 6.7      | 1.5      | 1.6    | 1.5     | 1.1       | 1.9        | 8.3     | 3.3       | 1.9      | 1.9    | 3.2   |
| 637798444        | 'Synpcc7942_0039'     | 36828        | 2.3   | 4.4      | 1.1      | 1.3    | 1.4     | 1.0       | 1.8        | 5.6     | 4.2       | 1.6      | 1.0    | 2.4   |
| 637798496        | 'Synpcc7942_0090'     | 88149        | 20.6  | 27.6     | 6.7      | 9.9    | 6.8     | 8.6       | 14.2       | 27.8    | 25.5      | 8.8      | 4.4    | 13.8  |
| 637798506        | 'Synpcc7942_0100'     | 101173       | 1.7   | 2.5      | 1.9      | 1.4    | 1.2     | 0.6       | 1.1        | 6.0     | 2.0       | 0.8      | 0.8    | 2.1   |
| 637798650        | 'Synpcc7942_0244'     | 241546       | 8.5   | 10.7     | 1.1      | 2.2    | 1.4     | 1.9       | 7.8        | 12.4    | 14.6      | 3.1      | 1.4    | 4.9   |
| 637798658        | 'Synpcc7942_0252'     | 248415       | 2.1   | 3.5      | 0.7      | 0.9    | 0.9     | 0.7       | 1.2        | 3.2     | 2.9       | 1.3      | 0.7    | 1.6   |
| 637798684        | 'Synpcc7942_0278'     | 273533       | 4.7   | 5.2      | 1.0      | 1.8    | 2.0     | 0.9       | 2.6        | 7.0     | 5.8       | 1.4      | 1.8    | 3.0   |
| 637798685        | 'Synpcc7942_0279'     | 273533       | 3.5   | 4.5      | 1.2      | 1.2    | 1.5     | 0.9       | 2.0        | 5.2     | 4.3       | 1.7      | 1.3    | 2.4   |
| 637798697        | 'Synpcc7942_0291'     | 288270       | 4.2   | 6.5      | 2.5      | 2.6    | 2.4     | 1.1       | 2.0        | 10.8    | 4.6       | 2.4      | 1.6    | 3.2   |
| 637798711        | 'Synpcc7942_0305'     | 303818       | 1.2   | 2.1      | 3.5      | 3.0    | 2.7     | 1.0       | 0.6        | 9.6     | 1.3       | 1.1      | 1.1    | 2.0   |
| 637798737        | 'Synpcc7942_0331'     | 327422       | 7.0   | 8.4      | 3.0      | 3.3    | 3.8     | 2.9       | 2.0        | 11.3    | 2.2       | 4.0      | 3.2    | 5.4   |
| 637798742        | 'Synpcc7942_0336'     | 330785       | 3.9   | 5.6      | 1.3      | 1.5    | 1.5     | 1.4       | 1.5        | 3.7     | 3.0       | 1.2      | 2.1    | 3.3   |
| 637798744        | 'Synpcc7942_0338'     | 333254       | 6.1   | 6.3      | 1.1      | 1.7    | 1.1     | 1.6       | 3.1        | 6.6     | 6.7       | 2.6      | 1.1    | 2.6   |
| 637798757        | 'Synpcc7942_0351'     | 343565       | 7.0   | 10.4     | 2.9      | 3.3    | 2.5     | 1.9       | 4.3        | 13.1    | 9.0       | 2.6      | 2.1    | 4.7   |
| 637798784        | 'Synpcc7942_0378'     | 372160       | 2.1   | 2.2      | 1.1      | 1.1    | 0.8     | 0.7       | 1.0        | 4.2     | 1.2       | 0.9      | 0.8    | 1.8   |
| 637798794        | 'Synpcc7942_0388'     | 382450       | 2.7   | 3.9      | 0.9      | 0.9    | 1.0     | 0.8       | 1.7        | 4.4     | 3.5       | 1.1      | 0.7    | 2.3   |
| 637798889        | 'Synpcc7942_0482'     | 469218       | 5.0   | 6.0      | 2.6      | 1.7    | 2.0     | 1.2       | 3.7        | 8.8     | 4.9       | 1.8      | 1.5    | 3.9   |
| 637798892        | 'Synpcc7942_0485'     | 470982       | 8.5   | 10.4     | 2.3      | 3.5    | 3.1     | 2.5       | 6.5        | 13.5    | 10.6      | 3.7      | 2.3    | 6.2   |
| 637798906        | 'Synpcc7942_0499'     | 488719       | 3.5   | 5.8      | 0.9      | 1.0    | 1.3     | 1.0       | 2.5        | 6.0     | 6.2       | 1.4      | 0.8    | 2.4   |
| 637798912        | 'Synpcc7942_0505'     | 493166       | 8.9   | 14.1     | 3.1      | 3.9    | 3.6     | 3.1       | 7.8        | 14.4    | 13.1      | 4.4      | 3.2    | 6.9   |
| 637798964        | 'Synpcc7942_0556'     | 539384       | 2.4   | 4.1      | 3.0      | 2.8    | 1.9     | 0.8       | 2.0        | 10.6    | 3.6       | 2.0      | 1.3    | 2.2   |
| 637798977        | 'Synpcc7942_0569'     | 551819       | 3.1   | 3.5      | 7.0      | 4.3    | 4.4     | 1.6       | 2.7        | 15.8    | 3.4       | 1.8      | 3.5    | 3.7   |
| 637799006        | 'Synpcc7942_0595'     | 583412       | 7.5   | 11.2     | 2.8      | 2.3    | 2.0     | 2.2       | 5.5        | 13.0    | 12.9      | 3.0      | 2.2    | 4.7   |
| 637799020        | 'Synpcc7942_0609'     | 596408       | 12.4  | 16.3     | 4.2      | 5.7    | 4.1     | 2.7       | 9.2        | 17.9    | 13.7      | 4.1      | 4.3    | 9.4   |
| 637799051        | 'Synpcc7942_0639'     | 630568       | 9.2   | 16.3     | 7.2      | 7.4    | 6.3     | 3.3       | 3.7        | 32.1    | 7.8       | 7.2      | 4.3    | 8.6   |
| 637799059        | 'Synpcc7942_0647'     | 640780       | 3.3   | 3.7      | 0.7      | 1.3    | 1.3     | 1.2       | 1.5        | 4.2     | 2.5       | 1.6      | 0.9    | 2.5   |
| 637799061        | 'Synpcc7942_0649'     | 644127       | 2.2   | 2.4      | 2.0      | 1.9    | 1.5     | 0.7       | 0.7        | 8.3     | 0.8       | 1.7      | 1.3    | 1.9   |
| 637799391        | 'Synpcc7942_0972'     | 978893       | 1.7   | 4.0      | 0.6      | 0.2    | 0.7     | 1.0       | 2.6        | 3.5     | 5.2       | 0.9      | 0.8    | 2.8   |
| 637799464        | 'Synpcc7942_1042'     | 1055621      | 6.0   | 4.8      | 8.2      | 5.5    | 3.0     | 1.5       | 2.2        | 18.0    | 4.0       | 2.1      | 3.1    | 4.0   |
| 637799479        | 'Synpcc7942_1057'     | 1067467      | 5.5   | 7.3      | 2.1      | 2.6    | 1.9     | 1.3       | 3.0        | 9.4     | 5.8       | 2.9      | 1.7    | 3.6   |
| 637799497        | 'Synpcc7942 1072'     | 1084625      | 6.8   | 8.4      | 2.0      | 1.4    | 1.7     | 2.0       | 8.0        | 11.6    | 16.1      | 1.8      | 2.5    | 4.4   |
| 637799499        | 'Synpcc7942_1074'     | 1085895      | 6.1   | 9.3      | 1.9      | 2.4    | 1.5     | 1.3       | 5.3        | 8.5     | 11.0      | 1.8      | 1.3    | 3.4   |
| 637799522        | 'Synpcc7942_1096'     | 1114841      | 2.2   | 3.0      | 0.4      | 1.5    | 1.0     | 0.7       | 1.4        | 3.9     | 3.2       | 1.2      | 0.5    | 1.2   |
| 637799534        | 'Synpcc7942 1108'     | 1124939      | 1.8   | 2.0      | 0.6      | 0.8    | 0.8     | 0.3       | 2.0        | 3.3     | 3.4       | 0.3      | 0.4    | 1.0   |

# Supplementary Table 2 (Continued).

| Supp | lementary | <sup>7</sup> Table 2 ( | (Continued) | ).  |
|------|-----------|------------------------|-------------|-----|
|      |           |                        |             | , - |

| 637799582 | 'Synpcc7942_1156' | 1183345 | 2.4  | 3.5  | 3.7  | 7.7  | 6.4  | 0.7 | 1.3 | 14.7 | 3.2  | 4.6  | 1.6 | 1.2  |
|-----------|-------------------|---------|------|------|------|------|------|-----|-----|------|------|------|-----|------|
| 637799655 | 'Synpcc7942_1226' | 1247018 | 3.6  | 6.3  | 2.7  | 2.8  | 2.3  | 1.2 | 1.9 | 10.1 | 2.9  | 2.7  | 1.6 | 3.1  |
| 637799659 | 'Synpcc7942_1230' | 1252161 | 1.9  | 3.5  | 0.5  | 0.5  | 0.5  | 0.5 | 2.1 | 1.9  | 4.1  | 0.5  | 0.4 | 1.1  |
| 637799701 | 'Synpcc7942_1271' | 1296322 | 1.3  | 3.1  | 1.3  | 0.7  | 0.1  | 0.6 | 1.2 | 3.1  | 2.5  | 0.9  | 0.2 | 1.4  |
| 637799715 | 'Synpcc7942_1285' | 1307513 | 2.4  | 4.4  | 0.4  | 1.0  | 0.9  | 0.4 | 3.2 | 3.9  | 6.0  | 0.9  | 0.8 | 1.8  |
| 637799723 | 'Synpcc7942_1293' | 1318738 | 2.0  | 3.3  | 1.0  | 1.1  | 1.0  | 0.5 | 1.3 | 4.3  | 2.9  | 1.2  | 0.8 | 1.8  |
| 637799828 | 'Synpcc7942_1396' | 1446146 | 6.1  | 11.6 | 10.4 | 8.9  | 7.9  | 2.5 | 3.8 | 34.0 | 2.9  | 6.7  | 4.4 | 7.9  |
| 637799829 | 'Synpcc7942_1397' | 1446146 | 6.0  | 11.3 | 10.1 | 8.7  | 7.7  | 2.4 | 3.7 | 33.0 | 2.8  | 6.5  | 4.3 | 7.7  |
| 637799918 | 'Synpcc7942_1486' | 1536952 | 6.3  | 12.0 | 7.6  | 9.5  | 6.6  | 2.2 | 2.6 | 39.2 | 5.4  | 6.9  | 3.2 | 6.9  |
| 637799930 | 'Synpcc7942_1497' | 1548053 | 3.6  | 4.5  | 0.8  | 1.8  | 1.3  | 0.8 | 2.0 | 5.7  | 3.8  | 1.7  | 0.8 | 1.8  |
| 637799950 | 'Synpcc7942_1517' | 1568868 | 3.8  | 4.3  | 0.7  | 0.9  | 0.7  | 0.7 | 3.1 | 5.0  | 7.3  | 1.5  | 1.0 | 2.8  |
| 637799989 | 'Synpcc7942_1556' | 1612856 | 1.8  | 2.5  | 0.8  | 2.0  | 1.8  | 0.3 | 1.0 | 6.8  | 2.0  | 2.1  | 0.7 | 1.1  |
| 637799990 | 'Synpcc7942_1557' | 1614443 | 4.1  | 4.0  | 11.1 | 8.4  | 8.6  | 3.4 | 3.6 | 22.1 | 4.2  | 3.5  | 4.1 | 4.2  |
| 637800052 | 'Synpcc7942_1616' | 1682635 | 10.0 | 18.5 | 11.8 | 14.6 | 9.7  | 4.6 | 5.5 | 48.2 | 9.7  | 9.7  | 6.6 | 12.6 |
| 637800197 | 'Synpcc7942_1756' | 1824737 | 1.1  | 1.4  | 2.5  | 3.2  | 1.9  | 0.5 | 1.0 | 5.7  | 1.8  | 0.9  | 0.4 | 0.8  |
| 637800245 | 'Synpcc7942_1804' | 1874364 | 2.4  | 4.0  | 8.3  | 4.5  | 3.7  | 1.3 | 2.3 | 13.4 | 2.6  | 2.0  | 2.9 | 1.9  |
| 637800271 | 'Synpcc7942_1830' | 1899585 | 2.2  | 2.0  | 6.3  | 6.6  | 5.8  | 1.3 | 1.7 | 18.3 | 2.7  | 3.4  | 2.6 | 2.9  |
| 637800272 | 'Synpcc7942_1831' | 1901046 | 8.1  | 16.3 | 9.6  | 9.9  | 6.8  | 3.5 | 4.4 | 42.0 | 7.7  | 8.1  | 5.4 | 11.8 |
| 637800273 | 'Synpcc7942_1832' | 1901749 | 3.4  | 4.5  | 5.4  | 4.2  | 3.6  | 1.4 | 2.0 | 16.5 | 2.4  | 2.5  | 2.2 | 3.8  |
| 637800279 | 'Synpcc7942_1838' | 1906006 | 1.1  | 2.6  | 0.6  | 1.7  | 1.6  | 0.4 | 1.1 | 3.5  | 2.9  | 1.5  | 0.8 | 0.8  |
| 637800290 | 'Synpcc7942_1849' | 1916081 | 3.1  | 4.1  | 2.6  | 3.1  | 2.9  | 1.2 | 1.0 | 12.0 | 1.3  | 2.8  | 2.0 | 3.1  |
| 637800363 | 'Synpcc7942_1921' | 1998207 | 16.7 | 31.0 | 10.4 | 13.7 | 8.2  | 4.4 | 8.8 | 53.8 | 18.4 | 11.6 | 8.3 | 18.4 |
| 637800432 | 'Synpcc7942_1987' | 2057816 | 4.1  | 3.4  | 6.9  | 6.1  | 5.3  | 1.7 | 2.6 | 22.4 | 2.0  | 3.7  | 2.9 | 3.9  |
| 637800457 | 'Synpcc7942_2012' | 2081435 | 7.8  | 12.6 | 5.9  | 4.0  | 3.5  | 1.8 | 4.0 | 22.8 | 6.8  | 3.9  | 3.4 | 6.9  |
| 637800495 | 'Synpcc7942_2050' | 2126191 | 3.9  | 4.8  | 2.5  | 2.4  | 2.2  | 1.5 | 1.6 | 10.9 | 1.5  | 2.7  | 2.0 | 4.1  |
| 637800504 | 'Synpcc7942_2059' | 2137361 | 1.6  | 2.2  | 3.5  | 2.0  | 1.7  | 0.8 | 1.2 | 10.6 | 2.1  | 1.2  | 1.2 | 2.3  |
| 637800645 | 'Synpcc7942_2200' | 2281300 | 6.3  | 10.4 | 5.9  | 7.6  | 5.8  | 2.2 | 2.3 | 24.7 | 3.3  | 6.1  | 3.9 | 6.0  |
| 637800714 | 'Synpcc7942_2267' | 2335826 | 6.0  | 8.8  | 7.3  | 12.8 | 9.5  | 1.3 | 5.6 | 30.6 | 9.4  | 9.4  | 2.2 | 3.5  |
| 637800763 | 'Synpcc7942_2315' | 2383681 | 6.4  | 11.1 | 6.6  | 8.8  | 2.7  | 2.3 | 1.7 | 29.2 | 5.8  | 5.5  | 2.5 | 7.8  |
| 637800788 | 'Synpcc7942_2340' | 2407858 | 2.5  | 4.2  | 1.9  | 2.2  | 1.5  | 1.0 | 1.5 | 8.0  | 2.3  | 1.9  | 1.3 | 2.6  |
| 637800794 | 'Synpcc7942_2346' | 2413262 | 12.5 | 22.8 | 13.7 | 16.0 | 13.0 | 5.3 | 5.3 | 55.9 | 7.0  | 13.9 | 8.4 | 13.3 |
| 637800800 | 'Synpcc7942_2352' | 2420361 | 2.7  | 3.3  | 3.9  | 3.2  | 3.3  | 1.1 | 2.2 | 11.6 | 1.8  | 1.6  | 1.9 | 2.8  |
| 637800902 | 'Synpcc7942 2454' | 2533456 | 7.7  | 12.3 | 6.1  | 5.8  | 4.6  | 2.3 | 4.4 | 26.0 | 7.8  | 5.7  | 3.8 | 6.7  |
| 637800971 | 'Synpcc7942_2522' | 2605142 | 2.1  | 4.8  | 5.0  | 8.0  | 6.3  | 1.1 | 1.1 | 20.5 | 3.4  | 5.9  | 2.3 | 3.3  |
| 637801016 | 'Synpcc7942_2566' | 2645497 | 4.5  | 6.3  | 2.0  | 2.3  | 1.9  | 1.0 | 2.3 | 8.7  | 4.2  | 2.7  | 1.7 | 3.7  |

**Supplementary Table 3.** RpoD5 genomic binding sites determined by analysis of time-course ChIP-seq datasets that are proximal to transcription start sites of high confidence circadian genes.
| Information for  | Genomic              |              |                                                                                    |       |       |       |       |         |       |       |       |       |       |       |
|------------------|----------------------|--------------|------------------------------------------------------------------------------------|-------|-------|-------|-------|---------|-------|-------|-------|-------|-------|-------|
| circadian trans  | cript whose 5'TSS is | location of  | Determination of maximum enrichment relative to mock within interval of each RpoD5 |       |       |       |       |         |       |       |       |       |       |       |
| located in proxi | RpoD5                |              |                                                                                    |       |       |       | bindi | ng site |       |       |       |       |       |       |
| JGI ID           | Synpcc_7942 number   | binding site | T=24h                                                                              | T=28h | T=32h | T=36h | T=40h | T=44h   | T=48h | T=52h | T=56h | T=60h | T=64h | T=68h |
| 637798409        | 'Synpcc7942_0004'    | 4192         | 2.1                                                                                | 2.5   | 1.6   | 10.5  | 4.5   | 2.1     | 0.9   | 4.3   | 3.2   | 13.8  | 1.9   | 2.3   |
| 637798425        | 'Synpcc7942_0020'    | 20469        | 2.3                                                                                | 2.1   | 2.2   | 15.8  | 4.2   | 2.0     | 1.1   | 5.0   | 3.4   | 14.9  | 1.8   | 1.4   |
| 637798431        | 'Synpcc7942_0026'    | 28386        | 1.6                                                                                | 2.4   | 1.9   | 10.3  | 4.4   | 1.8     | 0.9   | 4.0   | 2.5   | 11.3  | 1.9   | 1.9   |
| 637798444        | 'Synpcc7942_0039'    | 36836        | 2.0                                                                                | 1.7   | 1.2   | 3.3   | 3.5   | 1.4     | 1.1   | 3.1   | 1.8   | 6.7   | 1.4   | 1.5   |
| 637798492        | 'Synpcc7942_0086'    | 85313        | 0.7                                                                                | 1.4   | 0.9   | 3.4   | 2.8   | 1.3     | 0.4   | 2.2   | 1.8   | 5.6   | 0.9   | 1.0   |
| 637798496        | 'Synpcc7942_0090'    | 88272        | 7.4                                                                                | 10.7  | 7.1   | 30.1  | 23.1  | 7.8     | 2.7   | 16.0  | 9.8   | 56.0  | 8.5   | 6.8   |
| 637798579        | 'Synpcc7942_0173'    | 173308       | 0.7                                                                                | 0.8   | 0.8   | 6.6   | 1.9   | 0.7     | 0.4   | 2.0   | 1.0   | 6.3   | 1.0   | 1.0   |
| 637798650        | 'Synpcc7942_0244'    | 241614       | 2.3                                                                                | 3.3   | 3.4   | 23.6  | 6.3   | 2.2     | 0.9   | 5.9   | 4.5   | 24.3  | 3.8   | 2.4   |
| 637798651        | 'Synpcc7942_0245'    | 242764       | 1.5                                                                                | 1.7   | 1.6   | 1.4   | 3.7   | 1.2     | 1.5   | 1.9   | 1.5   | 3.5   | 1.5   | 1.4   |
| 637798658        | 'Synpcc7942_0252'    | 248402       | 1.2                                                                                | 1.0   | 1.2   | 2.8   | 2.2   | 0.9     | 0.5   | 2.1   | 1.6   | 5.3   | 1.5   | 1.2   |
| 637798697        | 'Synpcc7942_0291'    | 287846       | 1.5                                                                                | 1.7   | 2.9   | 4.1   | 3.6   | 2.5     | 0.7   | 3.3   | 5.1   | 9.9   | 1.7   | 2.0   |
| 637798722        | 'Synpcc7942_0316'    | 315008       | 1.0                                                                                | 1.3   | 1.8   | 4.5   | 2.4   | 1.2     | 0.7   | 2.3   | 2.1   | 6.9   | 1.4   | 0.7   |
| 637798744        | 'Synpcc7942_0338'    | 333266       | 2.2                                                                                | 3.0   | 1.5   | 6.3   | 5.5   | 2.0     | 1.1   | 4.0   | 3.4   | 12.7  | 2.5   | 4.0   |
| 637798757        | 'Synpcc7942_0351'    | 343566       | 2.4                                                                                | 2.1   | 2.8   | 9.4   | 5.6   | 2.5     | 0.9   | 5.6   | 3.7   | 16.1  | 2.3   | 2.6   |
| 637798775        | 'Synpcc7942_0369'    | 361740       | 1.7                                                                                | 1.9   | 1.6   | 13.3  | 4.2   | 2.1     | 1.1   | 3.4   | 2.1   | 12.2  | 2.3   | 2.0   |
| 637798776        | 'Synpcc7942_0370'    | 363612       | 9.1                                                                                | 7.5   | 6.5   | 28.6  | 18.6  | 9.7     | 5.6   | 17.3  | 11.1  | 49.1  | 9.4   | 7.9   |
| 637798797        | 'Synpcc7942_0391'    | 385526       | 1.0                                                                                | 1.5   | 1.1   | 13.0  | 3.9   | 0.9     | 0.8   | 3.5   | 2.0   | 11.3  | 1.9   | 1.3   |
| 637798817        | 'Synpcc7942_0411'    | 403262       | 2.7                                                                                | 5.1   | 4.0   | 9.4   | 11.1  | 5.0     | 3.5   | 8.5   | 6.0   | 20.1  | 4.8   | 5.0   |
| 637798889        | 'Synpcc7942_0482'    | 469166       | 1.7                                                                                | 2.0   | 1.8   | 7.5   | 4.5   | 1.9     | 1.7   | 3.4   | 3.1   | 9.3   | 2.1   | 2.0   |
| 637798890        | 'Synpcc7942_0483'    | 469771       | 2.0                                                                                | 2.4   | 1.8   | 15.8  | 6.0   | 2.5     | 1.8   | 4.5   | 3.0   | 14.7  | 2.2   | 2.2   |
| 637798912        | 'Synpcc7942_0505'    | 493204       | 3.7                                                                                | 5.2   | 2.7   | 20.8  | 8.6   | 3.4     | 2.4   | 7.7   | 4.6   | 23.8  | 4.4   | 2.7   |
| 637798952        | 'Synpcc7942_0544'    | 526627       | 1.6                                                                                | 1.5   | 1.0   | 8.3   | 4.4   | 1.7     | 0.7   | 3.8   | 2.2   | 10.2  | 1.8   | 1.9   |
| 637798964        | 'Synpcc7942_0556'    | 539560       | 0.9                                                                                | 1.1   | 1.3   | 4.5   | 2.3   | 0.7     | 0.5   | 1.9   | 1.4   | 5.3   | 1.2   | 0.8   |
| 637798977        | 'Synpcc7942_0569'    | 552043       | 0.8                                                                                | 1.2   | 0.7   | 2.8   | 2.5   | 1.2     | 0.9   | 2.0   | 1.1   | 5.6   | 1.2   | 0.9   |
| 637798981        | 'Synpcc7942_0573'    | 555961       | 1.6                                                                                | 2.1   | 1.6   | 4.5   | 4.1   | 1.8     | 1.4   | 3.1   | 3.1   | 9.5   | 1.8   | 1.3   |
| 637799006        | 'Synpcc7942_0595'    | 583784       | 2.7                                                                                | 3.6   | 1.5   | 16.6  | 6.6   | 3.0     | 1.6   | 8.5   | 4.7   | 20.7  | 3.0   | 1.9   |
| 637799080        | 'Synpcc7942_0668'    | 664625       | 0.5                                                                                | 0.9   | 0.5   | 3.8   | 1.7   | 0.6     | 0.8   | 1.3   | 0.9   | 4.0   | 1.0   | 0.6   |
| 637799082        | 'Synpcc7942_0670'    | 664625       | 1.4                                                                                | 1.7   | 1.1   | 10.9  | 4.8   | 1.0     | 1.0   | 3.7   | 2.4   | 11.4  | 1.5   | 1.8   |
| 637799084        | 'Synpcc7942_0672'    | 666482       | 0.5                                                                                | 0.4   | 0.5   | 4.7   | 1.2   | 0.5     | 0.3   | 1.6   | 0.9   | 4.2   | 0.7   | 0.7   |
| 637799115        | 'Synpcc7942_0703'    | 694030       | 8.3                                                                                | 11.0  | 5.8   | 35.0  | 27.9  | 11.5    | 6.0   | 23.8  | 18.7  | 65.8  | 12.8  | 9.2   |
| 637799171        | 'Synpcc7942_0756'    | 749937       | 1.8                                                                                | 3.5   | 0.9   | 23.1  | 6.4   | 1.6     | 0.7   | 6.2   | 1.8   | 21.3  | 1.9   | 1.3   |
| 637799196        | 'Synpcc7942_0780'    | 774560       | 1.6                                                                                | 2.3   | 1.7   | 11.7  | 6.2   | 2.0     | 1.1   | 5.5   | 2.8   | 17.3  | 1.8   | 1.7   |
| 637799205        | 'Synpcc7942_0789'    | 785538       | 2.8                                                                                | 2.3   | 2.0   | 12.3  | 2.8   | 2.3     | 1.5   | 3.0   | 3.3   | 12.1  | 3.2   | 2.0   |
| 637799212        | 'Synpcc7942 0796'    | 790702       | 1.6                                                                                | 2.6   | 2.4   | 12.3  | 5.8   | 2.7     | 2.5   | 6.6   | 3.9   | 16.9  | 2.5   | 2.8   |

## Supplementary Table 3. (Continued).

| Supp | olementa | rv Table | e 3. (C | Continued | ). |
|------|----------|----------|---------|-----------|----|
|      |          | •/       |         |           |    |

| 637799213 | 'Synpcc7942_0797' | 791550  | 1.4 | 1.9 | 2.5 | 14.2 | 4.0  | 1.6 | 0.9 | 4.8  | 2.5  | 13.3 | 1.8  | 1.3 |
|-----------|-------------------|---------|-----|-----|-----|------|------|-----|-----|------|------|------|------|-----|
| 637799245 | 'Synpcc7942_0828' | 823707  | 1.1 | 0.8 | 1.0 | 4.4  | 1.5  | 1.1 | 0.5 | 1.8  | 1.2  | 5.5  | 0.8  | 0.8 |
| 637799252 | 'Synpcc7942_0836' | 832617  | 0.9 | 1.2 | 0.8 | 7.5  | 2.9  | 0.7 | 0.1 | 2.8  | 1.1  | 7.8  | 1.1  | 1.5 |
| 637799277 | 'Synpcc7942_0861' | 865793  | 1.8 | 2.2 | 8.7 | 5.2  | 1.0  | 2.8 | 1.7 | 5.7  | 12.7 | 1.1  | 3.5  | 1.5 |
| 637799278 | 'Synpcc7942_0862' | 865195  | 1.7 | 1.8 | 5.0 | 4.3  | 4.2  | 1.6 | 1.2 | 3.3  | 7.4  | 5.9  | 2.0  | 1.0 |
| 637799391 | 'Synpcc7942_0972' | 978918  | 0.8 | 0.8 | 0.8 | 5.0  | 3.2  | 0.9 | 0.5 | 3.9  | 1.1  | 7.9  | 0.8  | 0.8 |
| 637799412 | 'Synpcc7942_0993' | 1003508 | 0.5 | 1.0 | 0.8 | 10.2 | 3.2  | 1.0 | 0.1 | 2.5  | 1.4  | 9.5  | 1.2  | 0.9 |
| 637799430 | 'Synpcc7942_1010' | 1022859 | 0.6 | 1.1 | 2.2 | 10.9 | 2.9  | 1.0 | 0.2 | 4.4  | 3.9  | 8.8  | 1.3  | 0.7 |
| 637799439 | 'Synpcc7942 1019' | 1032770 | 0.4 | 0.5 | 0.3 | 5.4  | 1.8  | 0.4 | 0.4 | 1.9  | 1.3  | 6.6  | 0.6  | 0.7 |
| 637799479 | 'Synpcc7942_1057' | 1067201 | 1.8 | 2.2 | 2.8 | 10.3 | 4.3  | 2.0 | 1.2 | 4.5  | 5.0  | 9.3  | 2.3  | 2.3 |
| 637799497 | 'Synpcc7942_1072' | 1084625 | 0.9 | 1.6 | 1.2 | 28.3 | 6.7  | 1.6 | 0.6 | 6.5  | 1.9  | 24.8 | 2.3  | 2.4 |
| 637799534 | 'Synpcc7942_1108' | 1124848 | 0.5 | 0.6 | 0.5 | 5.8  | 2.0  | 0.4 | 0.4 | 1.6  | 0.9  | 5.3  | 0.5  | 0.8 |
| 637799585 | 'Synpcc7942_1159' | 1193788 | 0.1 | 0.3 | 0.2 | 3.0  | 1.4  | 0.1 | 0.0 | 1.2  | 0.4  | 4.9  | -0.1 | 0.4 |
| 637799656 | 'Synpcc7942_1227' | 1249456 | 1.7 | 1.9 | 1.4 | 5.1  | 5.1  | 2.1 | 0.7 | 4.0  | 2.3  | 14.0 | 1.4  | 1.4 |
| 637799659 | 'Synpcc7942_1230' | 1252173 | 0.9 | 0.6 | 0.4 | 4.8  | 2.0  | 0.8 | 0.4 | 1.7  | 0.5  | 6.0  | 0.6  | 0.8 |
| 637799715 | 'Synpcc7942_1285' | 1307520 | 1.3 | 1.4 | 0.8 | 11.8 | 3.1  | 0.8 | 0.1 | 3.2  | 1.8  | 10.8 | 0.6  | 1.3 |
| 637799723 | 'Synpcc7942_1293' | 1318860 | 1.0 | 1.1 | 1.1 | 2.7  | 2.3  | 0.8 | 0.5 | 1.8  | 1.5  | 5.1  | 1.1  | 0.9 |
| 637799758 | 'Synpcc7942_1327' | 1360396 | 0.8 | 1.3 | 0.9 | 4.1  | 2.8  | 0.7 | 1.0 | 4.0  | 2.1  | 10.9 | 1.2  | 0.9 |
| 637799828 | 'Synpcc7942_1396' | 1446045 | 1.3 | 1.5 | 3.7 | 4.3  | 0.3  | 1.0 | 1.3 | 4.1  | 6.7  | 1.7  | 1.7  | 0.6 |
| 637799829 | 'Synpcc7942_1397' | 1445870 | 1.0 | 1.3 | 3.6 | 4.2  | 1.6  | 0.9 | 0.7 | 4.0  | 6.5  | 2.8  | 1.7  | 0.6 |
| 637799857 | 'Synpcc7942_1425' | 1478021 | 2.1 | 1.5 | 0.9 | 7.0  | 4.0  | 1.9 | 0.8 | 3.3  | 3.1  | 10.8 | 1.7  | 2.0 |
| 637799913 | 'Synpcc7942_1481' | 1532745 | 1.8 | 2.4 | 1.8 | 12.5 | 4.4  | 2.0 | 0.9 | 3.8  | 2.2  | 11.3 | 2.4  | 2.2 |
| 637799950 | 'Synpcc7942_1517' | 1568833 | 0.9 | 1.5 | 1.0 | 11.0 | 3.5  | 1.2 | 0.4 | 3.5  | 1.9  | 11.3 | 1.7  | 0.7 |
| 637799951 | 'Synpcc7942_1518' | 1568149 | 1.3 | 0.9 | 0.7 | 3.1  | 3.8  | 1.6 | 0.4 | 3.4  | 1.6  | 7.9  | 1.7  | 1.3 |
| 637800052 | 'Synpcc7942_1616' | 1682841 | 1.4 | 1.8 | 2.8 | 7.7  | 3.0  | 1.3 | 0.9 | 3.8  | 4.4  | 5.6  | 2.1  | 1.2 |
| 637800138 | 'Synpcc7942_1700' | 1768227 | 1.1 | 1.3 | 0.8 | 7.5  | 3.0  | 1.2 | 0.8 | 4.2  | 1.9  | 10.2 | 0.9  | 1.2 |
| 637800184 | 'Synpcc7942_1745' | 1816642 | 1.6 | 2.4 | 2.4 | 6.7  | 5.8  | 1.5 | 2.2 | 5.0  | 2.2  | 16.2 | 2.3  | 2.7 |
| 637800197 | 'Synpcc7942_1756' | 1825155 | 0.6 | 1.0 | 0.7 | 2.8  | 1.2  | 0.6 | 0.6 | 1.6  | 1.4  | 3.2  | 0.9  | 0.4 |
| 637800267 | 'Synpcc7942_1826' | 1897682 | 3.7 | 7.5 | 4.8 | 41.6 | 14.7 | 5.3 | 3.5 | 13.8 | 11.2 | 43.0 | 9.9  | 5.0 |
| 637800290 | 'Synpcc7942_1849' | 1916136 | 5.9 | 6.0 | 6.9 | 6.8  | 6.8  | 5.5 | 3.9 | 6.1  | 10.8 | 3.6  | 6.4  | 5.2 |
| 637800356 | 'Synpcc7942_1914' | 1990072 | 1.9 | 2.8 | 1.5 | 3.3  | 3.9  | 2.3 | 3.0 | 2.3  | 2.6  | 5.1  | 3.3  | 2.5 |
| 637800432 | 'Synpcc7942_1987' | 2057288 | 0.7 | 0.8 | 2.3 | 4.0  | 1.5  | 0.5 | 0.8 | 1.6  | 3.2  | 1.6  | 1.6  | 0.7 |
| 637800438 | 'Synpcc7942 1993' | 2063164 | 1.3 | 1.9 | 2.2 | 11.6 | 3.4  | 1.4 | 0.4 | 3.7  | 3.4  | 13.3 | 1.8  | 1.4 |
| 637800488 | 'Synpcc7942_2043' | 2113260 | 1.4 | 1.9 | 1.1 | 17.6 | 4.1  | 2.0 | 0.7 | 3.4  | 2.5  | 13.3 | 2.1  | 1.9 |
| 637800495 | 'Synpcc7942_2050' | 2126136 | 2.4 | 2.6 | 1.7 | 2.1  | 4.2  | 2.4 | 2.0 | 2.0  | 2.9  | 2.9  | 2.7  | 2.7 |
| 637800504 | 'Synpcc7942_2059' | 2137688 | 0.4 | 0.7 | 1.3 | 3.2  | 1.4  | 0.5 | 0.3 | 1.2  | 1.6  | 3.6  | 0.7  | 0.4 |
| 637800688 | 'Synpcc7942_2241' | 2306627 | 1.5 | 1.8 | 1.3 | 6.0  | 4.4  | 2.3 | 1.3 | 3.7  | 2.8  | 9.0  | 1.6  | 1.8 |
| 637800700 | 'Synpcc7942 2253' | 2323468 | 1.1 | 1.3 | 1.8 | 3.8  | 3.1  | 1.5 | 0.8 | 2.8  | 2.7  | 6.7  | 1.4  | 1.1 |

| 637800708 | 'Synpcc7942_2261' | 2330176 | 1.2 | 1.5 | 1.3 | 12.1 | 4.6  | 1.8 | 0.8 | 3.1 | 2.1 | 10.5 | 1.8 | 1.5 |
|-----------|-------------------|---------|-----|-----|-----|------|------|-----|-----|-----|-----|------|-----|-----|
| 637800738 | 'Synpcc7942_2291' | 2361508 | 1.0 | 1.7 | 1.0 | 4.5  | 3.0  | 1.4 | 0.4 | 2.6 | 2.3 | 7.5  | 1.6 | 1.3 |
| 637800788 | 'Synpcc7942_2340' | 2407666 | 0.9 | 1.0 | 3.3 | 4.1  | 1.5  | 1.0 | 0.4 | 3.9 | 5.7 | 4.2  | 1.4 | 0.9 |
| 637800794 | 'Synpcc7942_2346' | 2413366 | 1.4 | 1.6 | 4.8 | 5.0  | 1.4  | 1.2 | 0.8 | 5.1 | 7.8 | 2.8  | 2.3 | 1.3 |
| 637800800 | 'Synpcc7942_2352' | 2420517 | 0.7 | 1.1 | 4.5 | 7.1  | 1.2  | 0.5 | 0.5 | 4.3 | 6.1 | 2.6  | 2.2 | 0.6 |
| 637800839 | 'Synpcc7942_2391' | 2464844 | 1.2 | 1.5 | 0.8 | 7.6  | 3.4  | 0.9 | 0.4 | 3.0 | 1.7 | 8.7  | 1.4 | 1.3 |
| 637800880 | 'Synpcc7942_2432' | 2505762 | 1.3 | 1.6 | 1.0 | 5.4  | 2.7  | 1.3 | 0.9 | 3.0 | 2.2 | 6.2  | 1.5 | 1.3 |
| 637800895 | 'Synpcc7942_2447' | 2523758 | 1.6 | 2.5 | 1.4 | 9.5  | 5.0  | 2.6 | 2.0 | 4.4 | 3.4 | 14.7 | 1.7 | 2.1 |
| 637800902 | 'Synpcc7942_2454' | 2533591 | 2.0 | 3.0 | 5.1 | 12.8 | 4.7  | 2.4 | 1.5 | 7.6 | 8.2 | 9.7  | 2.9 | 2.5 |
| 637800948 | 'Synpcc7942_2499' | 2581366 | 0.7 | 1.5 | 1.1 | 5.5  | 2.6  | 0.8 | 0.8 | 2.3 | 1.8 | 6.8  | 0.9 | 1.1 |
| 637800971 | 'Synpcc7942_2522' | 2605639 | 0.6 | 0.7 | 2.2 | 2.4  | 1.2  | 0.6 | 0.7 | 2.1 | 3.7 | 2.0  | 1.1 | 0.6 |
| 637800976 | 'Synpcc7942_2527' | 2608637 | 0.8 | 1.3 | 0.7 | 2.8  | 2.5  | 1.1 | 0.5 | 2.4 | 1.7 | 5.1  | 1.1 | 0.8 |
| 637801005 | 'Synpcc7942_2555' | 2635257 | 2.4 | 3.4 | 2.0 | 23.6 | 6.5  | 2.1 | 1.3 | 7.3 | 2.8 | 20.8 | 2.6 | 2.2 |
| 637801007 | 'Synpcc7942_2557' | 2636713 | 0.9 | 1.7 | 1.6 | 7.2  | 3.4  | 1.8 | 0.5 | 4.2 | 3.4 | 9.0  | 2.3 | 1.5 |
| 637801020 | 'Synpcc7942_2570' | 2650179 | 1.3 | 2.1 | 1.8 | 5.7  | 4.0  | 1.5 | 0.9 | 4.3 | 3.3 | 9.7  | 2.0 | 1.8 |
| 637801029 | 'Synpcc7942_2576' | 2662511 | 2.8 | 3.8 | 3.9 | 24.7 | 10.3 | 4.6 | 2.4 | 8.6 | 5.1 | 25.9 | 2.9 | 2.7 |
| 637801063 | 'Synpcc7942_2609' | 2691291 | 2.1 | 2.7 | 1.6 | 2.8  | 5.6  | 2.9 | 1.8 | 3.5 | 3.7 | 5.5  | 2.7 | 2.8 |

## Supplementary Table 3. (Continued).

| Information for  | r high-confidence      | Genomic      |                                                                                    |       |       |       |       |       |       |       |       |       |       |       |
|------------------|------------------------|--------------|------------------------------------------------------------------------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| circadian trans  | cript whose 5'TSS is   | location of  | Determination of maximum enrichment relative to mock within interval of each SigF2 |       |       |       |       |       |       |       |       |       |       |       |
| located in proxi | imity to SigF2 binding | RpoD5        | binding site                                                                       |       |       |       |       |       |       |       |       |       |       |       |
| JGI ID           | Synpcc_7942 number     | binding site | T=24h                                                                              | T=28h | T=32h | T=36h | T=40h | T=44h | T=48h | T=52h | T=56h | T=60h | T=64h | T=68h |
| 637798710        | 'Synpcc7942_0304'      | 302675       | 3.2                                                                                | 2.9   | 2.9   | 3.2   | 10.8  | 4.8   | 2.5   | 5.4   | 3.9   | 3.6   | 5.4   | 4.8   |
| 637798737        | 'Synpcc7942_0331'      | 327576       | 6.2                                                                                | 4.3   | 3.6   | 4.5   | 12.9  | 5.8   | 5.8   | 5.3   | 4.5   | 4.1   | 6.9   | 5.3   |
| 637798775        | 'Synpcc7942_0369'      | 361918       | 3.1                                                                                | 2.6   | 2.3   | 2.2   | 7.6   | 2.6   | 2.4   | 3.0   | 2.2   | 2.9   | 3.5   | 3.0   |
| 637798889        | 'Synpcc7942_0482'      | 469111       | 1.9                                                                                | 2.4   | 2.0   | 2.4   | 7.0   | 3.9   | 2.3   | 2.4   | 2.6   | 3.5   | 4.2   | 2.9   |
| 637798890        | 'Synpcc7942_0483'      | 469475       | 2.7                                                                                | 3.0   | 1.9   | 2.7   | 9.7   | 4.0   | 2.4   | 3.2   | 2.8   | 3.6   | 5.3   | 3.3   |
| 637798892        | 'Synpcc7942_0485'      | 470461       | 4.2                                                                                | 5.2   | 3.8   | 4.3   | 19.4  | 6.8   | 3.6   | 6.8   | 4.5   | 5.6   | 7.5   | 6.8   |
| 637799020        | 'Synpcc7942_0609'      | 596397       | 5.2                                                                                | 5.6   | 5.1   | 5.4   | 27.7  | 11.0  | 4.2   | 8.5   | 5.5   | 8.5   | 11.8  | 8.2   |
| 637799051        | 'Synpcc7942_0639'      | 630610       | 2.4                                                                                | 2.8   | 3.8   | 2.3   | 10.6  | 5.1   | 2.8   | 3.7   | 3.2   | 4.2   | 4.7   | 4.7   |
| 637799115        | 'Synpcc7942_0703'      | 694045       | 19.1                                                                               | 20.6  | 28.7  | 16.1  | 55.9  | 37.1  | 19.2  | 25.5  | 29.8  | 25.5  | 43.6  | 19.1  |
| 637799205        | 'Synpcc7942_0789'      | 785790       | 4.8                                                                                | 4.8   | 3.8   | 4.6   | 12.1  | 5.3   | 5.1   | 4.9   | 4.9   | 4.3   | 6.4   | 5.7   |
| 637799391        | 'Synpcc7942_0972'      | 978833       | 1.6                                                                                | 1.9   | 1.8   | 2.4   | 8.6   | 4.3   | 1.0   | 2.0   | 1.8   | 3.6   | 6.0   | 2.8   |
| 637799839        | 'Synpcc7942_1407'      | 1457867      | 2.6                                                                                | 1.0   | 1.2   | 2.3   | 7.0   | 1.2   | 2.0   | 1.9   | 1.7   | 1.9   | 2.1   | 3.2   |
| 637800225        | 'Synpcc7942_1784'      | 1852485      | 8.3                                                                                | 4.7   | 8.4   | 5.1   | 11.0  | 8.9   | 7.0   | 6.7   | 8.5   | 5.5   | 11.1  | 4.3   |
| 637800630        | 'Synpcc7942_2185'      | 2263071      | 2.1                                                                                | 2.7   | 2.3   | 2.9   | 8.1   | 3.0   | 1.4   | 3.2   | 2.1   | 2.8   | 3.8   | 2.7   |
| 637800727        | 'Synpcc7942_2280'      | 2350462      | 2.2                                                                                | 1.5   | 1.3   | 2.0   | 7.6   | 3.4   | 1.9   | 2.2   | 2.0   | 3.1   | 4.3   | 2.5   |
| 637800852        | 'Synpcc7942_2404'      | 2477355      | 5.4                                                                                | 3.8   | 3.6   | 4.6   | 11.7  | 4.9   | 4.2   | 4.0   | 3.7   | 4.6   | 6.6   | 4.1   |
| 637801004        | 'Synpcc7942_2554'      | 2633681      | 3.4                                                                                | 2.3   | 4.2   | 2.5   | 3.9   | 6.5   | 2.0   | 2.4   | 4.3   | 2.6   | 8.9   | 2.1   |

**Supplementary Table 4.** SigF2 genomic binding sites determined by analysis of time-course ChIP-seq datasets that are proximal to transcription start sites of high confidence circadian genes

- -