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Abstract

We present three topics in this thesis, G-squared statistic for independence testing as

well as additive modeling, and calibration concordance by multiplicative shrinkage.

Detecting dependence is a fundamental problem. Although the Pearson correlation

coefficient is effective for capturing linear dependence, it is powerless for nonlinear or

heteroscedastic patterns. We introduce G-squared to test whether two univariate ran-

dom variables are independent and to measure the strength of their relationship. The G-

squared statistic is almost identical R-squared, for linear relationships with constant error

variance, and has the intuitive meaning of the piecewise R-squared. We propose two esti-

mators of G-squared and show their consistency. Simulations demonstrate that G-squared

estimators are among the most powerful test statistics compared with several state-of-the-

art methods.

We consider a nonparametric additive modeling of a reference function where the num-

ber of predictor variables can be larger than the sample size, but the number of nonzero

components is comparably small. For each predictor variable, the additive component

is approximated by B-spline. The G-squared estimated between each predictor and the

response helps determine the knots of the B-spline. For variable selection, we apply the

adaptive group least absolute shrinkage and selection operator for which we treat the

spline bases of each predictor as a group; we also implement forward selection to find the

subset with the minimum Bayesian information criterion value. Empirical studies show
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that both the approaches work well compared with two other methods.

Calibration data are often obtained by observing several sources with several instru-

ments. Analyzing such data for proper concordance among the instruments is challenging

because the physical source models are not perfectly specified and data quality varies in

ways that cannot be fully quantified. We propose a log-normal hierarchical model and, for

outliers, a more general log-t model. Both permit imperfection in the multiplicative mean

modeling to be captured by the residual variance. Analytical solutions which take power

shrinkage forms are given in special cases and Markov chain Monte Carlo algorithms are

adopted for general cases. We apply our method to several data sets and demonstrate that

the proposed model provides useful guidance for astrophysicists.
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1
G-squared for detecting dependence

1.1 Introduction

The Pearson correlation coefficient is widely used to detect and measure the dependence

of two random quantities. The square of its least-squares estimate, popularly known as

the R-squared, is often used to quantify how linearly related two random variables are.

However, the shortcomings of the R-squared as a measure of the strength of dependence

are also significant, as discussed recently by Reshef et al. 40, which has inspired the devel-

opment of many new methods for detecting dependence.
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The Spearman correlation calculates the Pearson correlation coefficient between rank

statistics. Although more robust than the Pearson correlation, this method still cannot cap-

ture non-monotone relationships. The alternating conditional expectation method was

introduced by Breiman & Friedman3 to approximate the maximal correlation between

X and Y, i.e., to find the optimal transformations of the data, f(X) and g(Y), so that their

correlation is maximized. The implementation of this method has its limitations because

it is unfeasible to search through all possible transformations. Estimating mutual infor-

mation is another popular approach because the mutual information is zero if and only if

X and Y are independent. Kraskov et al. 29 proposed a method by estimating the entropy

of X, Y and (X, Y) separately. The method was claimed to be numerically exact for inde-

pendent cases, and effective for high dimensional variables. An energy distance-based

method53,54 and a kernel-based method17,16 appeared separately in Statistics and machine

learning literature to solve the two-sample test problem and have corresponding usage in

independence tests. The two methods were recently shown to be equivalent47. Methods

based on empirical cumulative distribution functions22, empirical copula15 and empirical

characteristic functions27,25 have also been proposed for detecting dependence.

Another set of approaches is based on discretizations of the random variables. Known

as grid-based methods, they are primarily designed to test independence between univari-

ate random variables. Reshef et al. 40 introduced the maximum information coefficient,

which focuses on the generality and equitability of a dependence statistic; two more pow-

erful estimators for this quantity were suggested in Reshef et al. 42. Equitability requires

that the same value of the statistic implies the same amount of dependence regardless of

the type of the underlying relationship, but it is not a well-defined mathematical concept.

We show that the equitability of our method is superior to all other independence test-

ing statistics for a wide range of functional relationships. Heller et al. 21 proposed a grid

based method, which utilizes the χ2 statistic to test independence and is a distribution-free
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test. Doksum et al. 7 and Blyth 2 discussed the correlation curve to measure the strength

of the relationship. However, a direct use of nonparametric curve estimation may rely too

heavily on the smoothness of the relationship; furthermore, it also cannot deal with het-

eroscedastic noises.

The G-squared statistic (G2) proposed in this chapter is derived from a regularized like-

lihood ratio test for piecewise linear relationships and can be viewed as an integration of

continuous and discrete methods. The G-squared statistic is a function of both the condi-

tional mean and conditional variance of one variable given the other, so it can detect gen-

eral functional relationships with heteroscedastic error variances. An estimate of G2 can

be derived via the same likelihood ratio approach as R2 when the true underlying relation-

ship is linear. Thus, it is reasonable that G2 is almost identical to R2 for linear relation-

ships. Efficient estimates of G2 can be computed quickly using a dynamic programming

method, whereas the methods of Reshef et al. 40 and Heller et al. 21 must consider grids on

two variables simultaneously and hence require longer computational time. We will also

show that, in terms of power, G2 is among the the best statistics for independence testing

in consideration of a wide range of functional relationships.

This chapter is organized as follows. In Section 1.2 we introduce the definition of G2

and present two estimators, G2
m and G2

t . Then we study the theoretical properties of them

and describe a dynamic programming algorithm. In Section 1.3 we present simulation

studies to show the consistency of the estimators, as well as the power analysis and equi-

tability study against some other popular methods. In Section 1.4 we discuss some poten-

tial future work.

3



1.2 Measuring dependence with G-squared

1.2.1 Defining G2 as a generalization of R2

The R-squared measures how well the data fit a linear regression model. Given Y = μ +

βX + e with e ∼ N (0, σ2), the standard estimate of R-squared can be derived from a

likelihood ratio test statistic for testingH0 : β = 0 againstH1 : β ̸= 0, i.e.,

R2 = 1−
{

L(θ̂)
L0(θ̂0)

}−2/n

,

and L0(θ̂0) and L(θ̂) are the maximized likelihoods underH0 andH1.

Throughout this chapter, we let X and Y be univariate continuous random variables. As

a working model, we assume that the relationship between X and Y can be characterized

as Y = f(X)+ e, e ∼ N (0, σ2X) with σX > 0. If X and Y are independent, then f(X) ≡ μ and

σ2X ≡ σ2. Now, let us look at a piecewise linear relationship

f(X) = μh + βhX, σ2X = σ2h, ch−1 < X ≤ ch,

where ch (h = 0, . . . ,K) are called the breakpoints. While this working model allows

for heteroscedasticity, it requires constant variance within each segment between two

adjacent breakpoints. Testing whether X and Y are independent is equivalent to testing

whether μh ≡ μ, βh ≡ 0, and σ2h ≡ σ2. Given ch (h = 0, . . . ,K), the likelihood ratio can

be written as

LR = exp

(
n
2
log ν̂2 −

K∑

h=1

nh
2
log σ̂2h

)
,

where ν̂2 is the overall sample variance of Y and σ̂2h is the residual variance after regress-
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ing Y on X for X ∈ (ch−1, ch]. Because R2 is a transformation of the likelihood ratio and

converges to the square of Pearson correlation coefficient, we perform the same transfor-

mation on LR. The resulting test statistic converges to a quantity related to the conditional

mean and the conditional variance of Y on X. It is easy to show that, as n → ∞,

1− (LR)−2/n → 1− exp [E{log var(Y | X)}]
var(Y)

. (1.1)

When K = 1, the relationship degenerates to a simple linear relationship and 1− (LR)−2/n

is exactly R2.

More generally, because a piecewise linear function can approximate any almost-everywhere

continuous function, we can employ the same hypothesis testing framework as above to

derive (1.1) for any such approximation. Thus, for any pair of random variables (X, Y),

the following concept is a natural generalization of the R-squared:

G2
Y|X = 1− exp [E{log var(Y | X)}]

var(Y)
, (1.2)

in which we require that var(Y) < ∞. Evidently, G2
Y|X lies between zero and one, and is

equal to zero if and only if both E(Y | X) and var(Y | X) are constant. The definition of

G2
Y|X is closely related to the R-squared defined by segmented regression

44 discussed in

Section A.2. We symmetrize G2
Y|X to arrive at the following quantity as the definition of

the G-squared:

G2 = max(G2
Y|X, G2

X|Y),

provided that var(X) + var(Y) < ∞. Thus, G2 = 0 if and only if E(X | Y), E(Y | X),

var(Y | X) and var(X | Y) are all constant, which is not equivalent to independence of X

and Y. In practice, however, dependent cases with G2 = 0 are rare.
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1.2.2 Estimation of G2

Without loss of generality, we focus on the estimation of G2
Y|X; G2

X|Y can be estimated in

the same way by flipping X and Y. When Y = f(X) + e and e ∼ N (0, σ2X) for an almost-

everywhere continuous function f(·), we can use a piecewise linear function to approxi-

mate f(X) and estimate G2. However, in practice the number and locations of the break-

points are unknown. We propose two estimators of G2
Y|X, the first aiming to find the max-

imum penalized likelihood ratio among all possible piecewise linear approximations, and

the second focusing on a Bayesian average of all approximations.

Suppose we have n sorted independent observations, (xi, yi) (i = 1, . . . , n), such that

x1 < · · · < xn. For the set of breakpoints, we only need to consider ch = xi. Each interval

sh = (ch−1, ch] is called a slice of the observations, so that ch (h = 0, . . . ,K) divide the

range of X into K non-overlapping slices. Let nh denote the number of observations in

slice h, and let S(X) denote a slicing scheme of X, that is, S(xi) = h if xi ∈ sh, which is

abbreviated as S whenever the meaning is clear. Let |S| be the number of slices in S and

let mS denote the minimum size of all the slices.

To avoid overfitting when maximizing likelihood/log-likelihood ratios over both un-

known parameters and all possible slicing schemes, we restrict the minimum size of each

slice as mS ≥ m and maximize the likelihood/log-likelihood ratio with a penalty on the

number of slices. For simplicity, let m = ⌈n1/2⌉. Thus, we focus on the following penal-

ized log-likelihood ratio

nD(Y | S, λ0) = 2 log LRS − λ0(|S|− 1) log n, λ0 > 0 (1.3)

where LRS is the likelihood ratio for S and λ0 log n is the penalty for incurring one addi-

tional slice. From a Bayesian perspective, this is equivalent to assigning the prior distri-

6



bution for the number of slices to be proportional to n−λ0(|S|−1)/2. Suppose each observa-

tion xi (i = 2, . . . , n− 1) has probability

pn =
n−λ0/2

1+ n−λ0/2

of being the breakpoint independently. Then the probability of a slicing scheme S is

p|S|−1
n (1− pn)n−|S|−1 ∝

(
pn

1− pn

)|S|−1

= n−λ0(|S|−1)/2.

When λ0 = 3, the statistic −nD(Y | S, λ0) is equivalent to the Bayesian information

criterion46 up to a constant. Treating the slicing scheme as a nuisance parameter, we can

maximize over all allowable slicing schemes to obtain that

D(Y | X, λ0) = max
S: mS≥m

D(Y | S, λ0).

Our first estimator of G2
Y|X, which we call G2

m with ‘m’ representing the maximum likeli-

hood ratio, can be defined as

G2
m(Y | X, λ0) = 1− exp{−D(Y | X, λ0)}.

Thus, the overall G-squared can be estimated as

G2
m(λ0) = max{G2

m(Y | X, λ0), G2
m(X | Y, λ0)}.

By definition, G2
m(λ0) lies between 0 and 1 and G2

m(λ0) = R2 when the optimal slicing

schemes for both directions have only one slice. Later, we will show that when X and Y

are a bivariate normal, G2
m(λ0) = R2 almost surely for large λ0.

7



Another attractive way to estimate G2 is to integrate out the nuisance slicing scheme

parameter. A full Bayesian approach would require us to compute the Bayes factor28,

which may be undesirable since we do not wish to impose too strong a modeling assump-

tion. On the other hand, however, the Bayesian formalism may guide us to a desirable

integration strategy for the slicing scheme. We thus put the problem into a Bayes frame-

work and compute the Bayes factor for comparing the null and alternative models. The

null model is only one model while the alternative is any piecewise linear model, possibly

with countably infinite pieces. Let p0(y1, . . . , yn) be the marginal probability of the data

under the null. Let ωS be the prior probability for slicing scheme S and let pS(y1, . . . , yn)

denote the marginal probability of the data under S. The Bayes factor can be written as

BF =
∑

S: ms≥m

ωS ×
pS(y1, . . . , yn)
p0(y1, . . . , yn)

. (1.4)

The marginal probabilities are not easy to compute even with proper priors. Schwarz

et al. 46 stated that if the data distribution is in the exponential family and the parameter

is of dimension k, the marginal probability of the data can be approximated as

p(y1, . . . , yn) ≈ L exp {−k(log n− log 2π)/2} , (1.5)

where L is the maximized likelihood. In our setup, the number of parameters k for the

null model is two, and for an alternative model with a slicing scheme S is 3|S|. Plugging

expression (1.5) into both the numerator and the denominator of (1.4), we obtain

BF ≈
∑

S: ms≥m

ωSLRS

( n
2π

)− 3|S|−2
2

. (1.6)

If we take ωS ∝ n−λ0(|S|−1)/2 (λ0 > 0), which corresponds to the penalty term in (1.3) and

8



is involved in defining G2
m, the approximated Bayes factor can be restated as

BF(λ0) =

{
∑

S: mS≥m

n−
λ0(|S|−1)

2

}−1 ∑

S: mS≥m

( n
2π

)− 3|S|−2
2 exp

{n
2
D(Y | S, λ0)

}
. (1.7)

As we will discuss in Section 1.2.5, BF(λ0) can serve as a marginal likelihood function

for λ0 and be used to find an optimal λ0 suitable for a particular data set. This quantity

also looks like an average version of G2
m, but with an additional penalty. Since BF(λ0) can

take values below 1, its transformation 1 − BF(λ0)−2/n, as in the case where we derived

R2 via the likelihood ratio test, can take negative values, especially when X and Y are in-

dependent. It is therefore not an ideal estimator.

By removing the model size penalty term in (1.6), we obtain a modified version, which

is simply a weighted average of the likelihood ratios and is guaranteed to be greater than

or equal to 1:

BF∗(λ0) =

{
∑

S: mS≥m

n−
λ0(|S|−1)

2

}−1 ∑

S: mS≥m

exp
{n
2
D(Y | S, λ0)

}
.

We can thus define a quantity like our likelihood formulation of R-squared,

G2
t (Y | X, λ0) = 1− BF∗(λ0)−2/n,

which we call the total G-squared, and define

G2
t (λ0) = max{G2

t (Y | X, λ0), G2
t (X | Y, λ0)}.

We show later that G2
m(λ0) and G2

t (λ0) are both consistent estimators of G2.
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1.2.3 Theoretical properties of the G2 estimators

In order to show that G2
m(λ0) and G2

t (λ0) converge to G2 as the sample size goes to in-

finity, we introduce the notations μX(y) = E(X | Y = y), μY(x) = E(Y | X = x),

ν2X(y) = var(X | Y = y), ν2Y(x) = var(Y | X = x), and the following regularity conditions:

Condition 1.1. The random variables X and Y are bounded continuously with finite vari-

ances such that ν2Y(x), ν2X(y) > b−2 almost everywhere for some constant b > 0.

Condition 1.2. The functions μY(x), μX(y), ν2Y(x) and ν2X(y) have continuous derivatives

almost everywhere.

Condition 1.3. There exists a constant C > 0 such that

max{|μ′X(y)| , |ν′X(y)|} ≤ CνX(y), max{|μ′Y(x)| , |ν′Y(x)|} ≤ CνY(x)

almost surely.

With these preparations, we can state our main results.

Theorem 1.1. Under Conditions 1.1–1.3, for all λ0 > 0,

G2
m(Y | X, λ0) → G2

Y|X, G2
t (Y | X, λ0) → G2

Y|X

almost surely as n → ∞. Thus, G2
m(λ0) and G2

t (λ0) are consistent estimators of G2.

A proof of the theorem is provided in Section A.3. It is expected that G2
m(λ0) should

converge to G2 just because of its construction. It is surprising that G2
t (λ0) also converges

to G2. The result, which links G2 estimation with the likelihood ratio and Bayesian for-

malism, suggests that most of the information up to the second moment has been fully uti-

lized in the two test statistics. The theorem thus supports the use of G2
m(λ0) and G2

t (λ0) for
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testing whether X and Y are independent. The null distributions of the two statistics de-

pend on the marginal distributions of X and Y, which can be generated empirically using

permutation. One can also do a quantile-based transformation on X and Y such that their

marginal distributions are standard normal; however, the G2 based on the transformed

data tends to lose some power.

When X and Y are bivariate normal, the G-squared statistic is almost the same as the

R-squared when λ0 is large enough.

Theorem 1.2. If X and Y follow bivariate normal distribution, then for n large enough

pr
{
G2

m(λ0) = R2} > 1− 3n−λ0/3+5.

So for λ0 > 18 and n → ∞, we have G2
m(λ0) = R2 almost surely.

The lower bound on λ0 is not tight and can be relaxed in practice. Empirically, we have

observed that λ0 = 3 is large enough for G2
m(λ0) to be very close to R2 in the bivariate

normal setting.

1.2.4 Dynamic programming algorithm for computing G2
m and G2

t

The brute force calculation of either G2
m or G2

t has a computational complexity of O(2n)

and is prohibitive in practice. Fortunately, we have found a dynamic programming scheme

for computing both quantities with a time complexity of O(n2). The algorithms for com-

puting G2
m(Y | X, λ0) and G2

t (Y | X, λ0) are roughly the same except for one operation, i.e.,

maximization versus summation, and can be summarized by the following steps:

Step 1.1 (Data preparation). Arrange the observed pairs (xi, yi) (i = 1, . . . , n) according

11



to the sorted xis from low to high. Then normalize yi such that

n∑

i=1

yi = 0,
n∑

i=1

y2i = n.

Step 1.2 (Main algorithm). Define m = ⌈n1/2⌉ as the smallest slice size, λ = −λ0 log(n)/2

and α = eλ. Initialize three sequences: (Mi, Bi, Ti) (i = 1, . . . , n) with M1 = 0 and

B1 = T1 = 1. For i = m, . . . , n, recursively fill in entries of the tables with

Mi = max
k∈Ki

(λ +Mk + lk:i) , Bi =
∑

k∈Ki

αBk, Ti =
∑

k∈Ki

αTkLk:i,

where Ki = {1} ∪ {k : k = m + 1, . . . , i − m + 1}, lk:i = −(i − k) log(σ̂2k:i)/2 and

Lk:i = exp{lk:i}, with σ̂2k:i as the residual variance of regressing y on x for observations

(xj, yj) (j = k, . . . , i).

Step 1.3. The result is

G2
m = 1− exp

{
−2
n
(Mn − λ)

}
, G2

t = 1− (Tn/Bn)
−2/n.

Here,Mi (i = m, . . . , n) stores the partial maximized likelihood ratio up to the or-

dered observation (xk, yk) (k = 1, . . . , i), Bi (i = m, . . . , n) stores the partial normalizing

constant, and Ti (i = m, . . . , n) stores the partial sum of the likelihood ratios. When n

is extremely large, we can speed up the algorithm by considering fewer slice schemes.

For example, we can divide X into chunks of size m by rank and consider only slicing

schemes between the chunks. For this method, the computational complexity is O(n). We

can compute G2
m(X | Y, λ0) and G2

t (X | Y, λ0) similarly to get G2
m(λ0) and G2

t (λ0). Empiri-

cally, the algorithm is faster than many other powerful methods, as shown in Section A.1.
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1.2.5 An empirical Bayes strategy for selecting λ0

Although the choice of the penalty parameter λ0 is not critical for the general use of G2,

we typically use λ0 = 3 for G2
m and G2

t because D(Y | X, 3) is equivalent to the Bayesian

information criterion. Fine-tuning λ0 can improve the estimation of G2. We thus propose

a data-driven strategy for choosing λ0 adaptively. BF(λ0) in (1.7) can be viewed as an

approximation to pr(y1, . . . , yn | λ0) up to a normalizing constant. We thus can use the

maximum likelihood principle to choose the λ0 that maximizes BF(λ0). We then use the

chosen λ0 (called λ∗0) to compute G2
m(λ

∗
0) and G2

t (λ
∗
0) as estimators of G2. In practice, we

evaluate BF(λ0) for a set of discrete λ0 values, e.g., {0.5l}8l=1, and pick the one that maxi-

mizes BF(λ0). BF(λ0) can be computed efficiently via a dynamic programming algorithm

similar to that described in Section 1.2.4. As an illustration, we consider the sampling dis-

tributions of G2
m(λ0) and G2

t (λ0) with λ0 = 0.5, 1.5, 2.5 and 3.5 for

Example 1.1. X ∼ N (0, 1), Y = X+ e and e ∼ N (0, σ2);

Example 1.2. X ∼ N (0, 1), Y = sin(4πx)/0.7+ e and e ∼ N (0, σ2).

We simulate n = 225 data points. For each model, we set σ = 1 so that G2
Y|X = 0.5 and

perform 1,000 replications. Figure 1.1 shows histograms of G2
m(λ0) and G2

t (λ0) with dif-

ferent λ0 values. The results demonstrate that, for relationships that can be approximated

well by a linear function, a larger λ0 is preferred because it penalizes the number of slices

more heavily and the resulting sampling distributions are less biased. On the other hand,

for complicated relationships such as the trigonometric function, a smaller λ0 is prefer-

able because it allows more slices, which can help capture fluctuations in the functional

relationship. The figure also shows that the empirical Bayes selection of λ0 works very

well, leading to a proper choice of λ0 for each simulated data set from both examples and

resulting in the most accurate estimates of G2. Now we let σ = 9.95 so that G2
Y|X = 0.01.

13



Figure 1.2 presents the same analysis as Fig. 1.1 but here X and Y are almost indepen-

dent. A larger λ0 is preferable for both models; a small λ0 tends to use more slices than

necessary and overfits the relationship. The data-driven λ0 still gives the most accurate

estimates of the G2
Y|X. Consistency of the data-driven estimators is proven in Section A.3.
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Figure 1.1: Sampling distributions of G2
m and G2

t under the two models in Section 1.2.5 with G2
Y|X = 0.5

for λ0 = 0.5 (dashes), 1.5 (dots), 2.5 (dot-dashes) and 3.5 (solid). The density function in each case is
estimated by the histogram. The sampling distributions of G2

m and G2
t with the empirical Bayes selection of

λ0 are in gray shadow and overlaid on top of other density functions.
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Figure 1.2: Sampling distributions of G2
m and G2

t under the two models in Section 1.2.5 with G2
Y|X = 0.01.

The legends are the same as in Fig. 1.1.
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1.3 Simulation studies

1.3.1 Consistency of G2
m and G2

t

For a general relationship, the true value of G2 is nontrivial to compute. However, we can

calculate G2
Y|X for some special examples and evaluate the sum of squared errors of the

estimators. Especially when σX ≡ σ,

G2
Y|X =

var{f(X)}
var{f(X)}+ σ2

.

With X ∼ U(0, 1), we consider Examples 1.3–1.10

Example 1.3. Y = X+ e and e ∼ N (0, 1);

Example 1.4. Y = X+ e and e ∼ N (0, σ2X);

Example 1.5. Y = X2/
√
2+ e and e ∼ N (0, 1);

Example 1.6. Y = X2/
√
2+ e and e ∼ N (0, σ2X);

Example 1.7. Y = X+ e and e ∼
√
3U(−1, 1);

Example 1.8. Y = X+ e and e ∼
√
3σXU(−1, 1);

Example 1.9. Y = X2/
√
2+ e and e ∼

√
3U(−1, 1);

Example 1.10. Y = X2/
√
2+ e and e ∼

√
3σXU(−1, 1).

For Examples 1.3, 1.5, 1.7 and 1.9, G2
Y|X = 0.5; for Examples 1.4, 1.6, 1.8 and 1.10,

σX = exp{−|X|/2} and G2
Y|X = 0.7. We simulate 1, 000 replications for each model

and sample size combination, and use λ0 = 3 for G2
m and G2

t . Table 1.1 shows the sum

of squared errors of G2
m(Y | X, λ0) and G2

t (Y | X, λ0) for the different models as n varies.
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We find that the sum of squared errors decrease roughly in the order of n−1 for both esti-

mators and that G2
t appears slightly more accurate. The sum of squared errors are similar

when the function relationships are the same, regardless of the error type. This confirms

that the estimation accuracies of G2
m and G2

t are not sensitive to the Gaussian assumption.

Table 1.1: Sum of squared errors for G2
m and G2

t with increasing n

G2
m G2

t
n 100 225 400 100 225 400

Example 1.3 5.11 2.37 1.35 4.99 2.39 1.35
Example 1.4 4.56 2.56 1.42 3.56 1.88 1.05
Example 1.5 19.27 9.30 5.17 13.15 6.41 3.67
Example 1.6 16.45 7.55 4.16 11.53 5.37 3.04
Example 1.7 4.87 2.29 1.49 5.56 2.76 1.93
Example 1.8 4.10 2.43 1.49 3.12 1.77 1.08
Example 1.9 20.29 9.05 5.38 13.45 6.13 3.78
Example 1.10 17.29 8.98 4.82 11.73 6.42 3.46

1.3.2 Power analysis

Now we compare the powers of different independence testing methods for various re-

lationships. Here, we again fix λ0 = 3 for both G2
m and G2

t . Other methods we test in-

clude the alternating conditional expectation3(ACE), Genest’s test15, Pearson correlation

(COR), distance correlation53(DCOR), the method of Heller et al. 21(DDP), the charac-

teristic function method27, Hoeffding’s test22, the mutual information method29 and two

methods, MICe and TICe, based on the maximum information criterion40. We follow the

procedure for computing the powers of different methods as described in previous studies

of Reshef et al. 41 and a 2012 online note by N. Simon and R. Tibshirani.

For different relationships f(X) and different values of noise levels σ2, we simulate

(X, Y) with the following model:

X ∼ U(0, 1), Y = f(X) + e, e ∼ N (0, σ2),
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where var{f(X)} = 1. Thus G2
Y|X = (1 + σ2)−1 is a monotone function of the signal-to-

noise ratio and it is of interest for us to observe how the performances of different meth-

ods deteriorate as the signal strength weakens for various relationships. We use permuta-

tions to generate the null distribution and to set the rejection region for all testing methods

in all examples.

Figure 1.3 shows the power comparisons for eight relationships. We set the sample

size n = 225 and perform 1,000 replications for each relationship and G2
Y|X value. For

a clear presentation, we only plot COR, DCOR, DDP, TICe, G2
m and G2

t , and put results

for other methods in Section A.4. For any method with tuning parameters, we choose the

one that results in the highest average power over all the examples. Due to computational

concerns, we choose K = 3 for DDP. It is seen that G2
m and G2

t perform robustly, and

are always among the most powerful methods, with G2
t performing slightly more power-

ful than G2
m in almost all examples. They outperform other methods in cases such as the

high frequency sine, triangle and piecewise constant functions, where piecewise linear ap-

proximation is more appropriate than other approaches. For monotonic examples such as

linear and radical relationships, G2
m and G2

t have slightly lower power than COR, DCOR

and DDP, but are still highly competitive.

We also study the performances of these methods for n = 50, 100 and 400, and find

that G2
m and G2

t still show high power regardless of n although their advantages are much

less obvious when n is small. More details are in Section A.4.

1.3.3 Equitability

Intuitively, equitability40 reflects the ‘robustness’ of a statistic that describes the depen-

dence between two random variables, to the underlying relationship. For example, Pear-

son correlation is not an equitable statistic because it is zero for (X, Y) in Example 1.2, no

matter how small σ is. An ideal equitable statistic can imply the same amount of depen-
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Figure 1.3: The powers of G2
m (black solid), G2

t (grey solid), COR (grey markers), DCOR (black dashes),
DDP (black dots) and TICe (black markers) for testing independence between X and Y when the underlying
true relationships are linear, quadratic, cubic, radical, low freq sine, triangle, high freq sine and piecewise
constant, respectively. The x-axis is G2

Y|X, a monotone function of the signal-to-noise ratio, and the y-axis is
the power. We choose n = 225 and perform 1,000 replications for each relationship and G2

Y|X.
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dence, regardless of the type of relationship. In other words, equitable statistics can be

used to gauge the degree of dependence. Reshef et al. 43 gave two equivalent definitions

for the equitability of a statistic that measures dependence. They used Ψ = cor2{Y, f(X)}

to define the degree of dependence when the dependence of Y on X can be described by a

function. When var(Y | X) is a constant, Ψ ≡ G2
Y|X. For a perfectly equitable statistic, its

sampling distribution should be almost identical for different relationships with the same

Ψ. But the existence of such a statistic for any well-defined large class of relationships

remains unclear.

We repeat the equitability study in Reshef et al. 40. Figure 1.4 shows the 95% con-

fidence bands for G2
m and G2

t , compared with ACE, COR, DCOR and MICe for X ∼

N (0, 1) and the relationships in Example 1.3–1.6. We choose different values of Ψ with

n = 225 and conduct 1,000 replications for each case. The plots show that G2
m and G2

t

increase along with Ψ for all relationships, as expected, and that the confidence bands

obtained under different relationships have a similar size and location for the same Ψ.

The confidence bands are also comparably narrow. The MICe displays good equitability,

though slightly worse than G2
m and G2

t , while the other three statistics do poorly for non-

monotone relationships. ACE tends to have wider confidence bands for Examples 1.5

and 1.6 than the other methods, while COR and DCOR have non-overlapping confidence

bands for different relationships when Ψ is moderately large. In other words, COR and

DCOR can yield drastically different values for two relationships with the same Ψ. This

phenomenon is as expected, since it is known that these two statistics do not perform well

for non-monotone relationships.

An alternative strategy to study equitability of a statistic is to testH0 : Ψ = x0 against

H1 : Ψ = x1 (x0 < x1) for a broad set of relationships using the statistic. The more

powerful a test statistic for all types of relationships, the better its equitability. For each

aforementioned method, we perform right-tailed tests with the type-I error fixed at α =
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Figure 1.4: The plots from the top left to the bottom right are the 95% confidence bands of Ψ for the 6 in-
dicated methods. We choose n = 225 and perform 1,000 replications for each relationship and each value
of Ψ for Examples 1.3–1.6. The shadow is the lightest for Example 1.3 and darkest for Example 1.6. Ψ is
a monotone function of the signal-to-noise ratio when the error variance is constant. The y-axis shows the
values of the corresponding statistic.

0.05 and different combinations of (x0, x1) (0 < x0 < x1 < 1). Given a fixed sample size,

a perfectly equitable statistic should yield the same power for all kinds of relationships

so that it is able to reflect the degree of dependence by a single value. Most statistics can

perform well only for a small class of relationships. We use a heat map to demonstrate the

average power of a test statistic with different pairs of (x0, x1) in Fig. 1.5. Each dot in the

plot represents the average power of a test statistic over a class of relationships; the darker

the color, the higher the power. We simulate (X, Y) with the following model

X ∼ U(0, 1), Y = f(X) + e, e ∼ N (0, σ2).

The twenty chosen relationships, which are inspired by Reshef et al. 41 are in Section A.4.

We carry out the testing for (x0, x1) = (i/50, j/50) (i < j = 1, . . . , 49) with n = 225
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and conduct 1,000 replications. For any method with a tuning parameter, we choose the

parameter that results in the greatest average power. We observe that G2
m, G2

t and MICe

have the best equitability, followed by ACE and TICe. The average powers for G2
m, G2

t

and MICe over the entire range of (x0, x1) are all 0.6, although G2
m and G2

t are slightly bet-

ter for larger x0’s. Besides, using our empirical Bayes method to select λ0, the equitability

of G2
m and G2

t can be further improved. In comparison, all the remaining methods are not

as equitable.

1.4 Discussions and future works

G-squared can be viewed as a direct generalization of R-squared. While maintaining the

same interpretability as R-squared, G-squared is also a powerful measure of dependence

for general relationships. Instead of resorting to curve-fitting methods to estimate the

underlying relationship, we employ piecewise linear approximations with penalties and

dynamic programming algorithms. Furthermore, one can approximate a relationship be-

tween two variables with piecewise polynomials or other flexible basis functions, with

perhaps additional penalty terms to control the complexity. In the next chapter, we gener-

alize this idea and use the G2
m estimator to select knots in spline curve fitting.

Right now, the distributions of G2
m and G2

t for two independent random variables are

still unknown. Simulations show when (X, Y) follow independent normal, the distribu-

tion of G2
m is close to the distribution of R2 {Beta(12 ,

n−2
2 )}, but with a heavier right tail.

We can transform X and Y to normal distributions and use Beta(12 ,
n−2
2 ) as a reference for

computing the p-value. This approach can save computation time compared with the per-

mutation test but the power is much lower when the signal is weak. It’s worthwhile study-

ing the distributions of G2
m or G2

t for independent relationship. Another potential work is

21



0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x
0

G
2

m

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x
0

G
2

t

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x
0

ACE

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x
0

Genest’s test

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x
0

COR

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x
0

DCOR

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x
0

DDP

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x
0

characteristic function

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x
0

Hoeffding’s test

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x
0

mutual information

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x
0

MICe

0.0 0.2 0.4 0.6 0.8 1.0

x1

0.0

0.2

0.4

0.6

0.8

1.0

x
0

TICe

Figure 1.5: Heat maps for the equitability of different methods. Each red dot corresponding to (x1, x0) rep-
resents the power of the method for testingH0 : Ψ = x0 againstH1 : Ψ = x1, averaging over a class of
relationships. The darker a dot, the higher the average power. We choose sample size n = 225 and perform
1,000 replications for each relationship and pair of (x1, x0).
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that we can generalize the definition of G-squared in (1.2) as

1− g−1(E[g{var(Y | X)}])
var(Y)

,

where g is an increasing concave function. For G-squared, we choose g = log and we can

study the statistic with other possible functions in the future.

Remark This chapter is based on a published paper by Wang et al. 56

23



2
G-squared for additive modeling

2.1 Introduction

The problem of estimating the relationship between a response variable and multiple pre-

dictor variables emerged long time ago from many practical problems. Let Y be the re-

sponse variable of which the distribution depends on the predictor variables X1, . . . ,Xp,

such that

Y = f(X1, . . . ,Xp) + e, e ∼ [0, σ2].
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The function f is called the reference function. The classic linear regression is a special

case which assumes that f is a linear combination of the predictors. When the reference

function is complex, even if there is only one predictor, the problem becomes challenging.

Another special case of the problem is the additive model introduced by Hastie & Tib-

shirani 19, Stone 51 and Stone 52. In additive model, the function f is the summation of p

univariate functions, each of which is a function of a distinct predictor variable. To be

precise, the dependence of Y on X1, . . . ,Xp is

Y =
p∑

j=1

fj(Xj) + e, e ∼ [0, σ2].

First, let us discuss the problem when there is only one predictor, denoted as X.

In Statistics and machine learning literature, two main approaches are used for univari-

ate curve fitting: kernel regression and spline method. The kernel regression, proposed

by Nadaraya 36 and Watson 57, assumed that the realization of f(x) is a weighted aver-

age of f in a neighborhood of x. Silverman48 showed that spline smoothing corresponds

approximately to smoothing by a kernel method with bandwidth depending on the lo-

cal density of design points. Spline method approximates f with a continuous piecewise

polynomial function. The places where the pieces connect are called knots. Friedman &

Silverman12 and Friedman11 utilized truncated linear functions for curve fitting. Other

commonly used spline is the basis spline (B-spline) function5,6, which has the minimal

support with respect to a given degree and partition. For example, twice continuous dif-

ferentiable cubic splines with equidistant knots are commonly used. The number and lo-

cations of the knots are key to the curve fitting and pre-determined knots can always be

questioned with counter examples. Many data-driven methods were proposed to tackle

this problem. Smoothing spline10 took every observation of X as the knots and penal-

ized the squared L2 norm of the secondary derivative of the fitted curve. Eilers & Marx9
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and Wand & Ormerod 55 came up with P-spline and O-spline respectively, both of which

had very similar penalty as smoothing splines and gave approximations of the squared

L2 norm of the secondary derivatives. These methods can even take more knots than the

number of observations.

In this chapter, we propose a partition scheme based on the dependence between X and

Y. In Chapter 1 we introduce the G-squared statistic to evaluate the dependence between

two univariate random variables and provide two estimators. The G2
m(Y | X, λ0) estimator

gives a piecewise linear, though sometimes discontinuous, estimation of the underlying

relationship. We will use the knots from this partition and perform spline fitting.

For additive modeling, we will first find the knots for each predictor variable, create

the spline bases and regress the response on all the bases. Unfortunately, additive mod-

eling has good performance when the number of variables (p), is much smaller than the

sample size (n). In recent years, practical problems inspired the study of large-p-small-n

cases, where the response depends only on a small proportion of the predictors, but the

number of predictors are much larger than the sample size. Lin et al. 30 penalized the sum

of the reproducing kernel Hilbert space norms of each component, to select variables and

fit a nonparametric estimation of each component. This method can also consider interac-

tions between variables. Ravikumar et al. 39 chose the L2 norm of each component as the

penalty, which can be treated as a function version of the group least absolute shrinkage

and selection operator60 (LASSO). Huang et al. 24 utilized adaptive group LASSO, as a

generalization of the adaptive LASSO61, to select nonzero components. In this chapter,

we propose two approaches for components selection: the adaptive group LASSO penalty

and Bayesian information criterion (BIC). When p is comparably small, we suggest the

BIC approach because it has smaller integrated squared error; when p is comparably

large, we suggest the adaptive group LASSO approach because it has a more consistent

variable selection result.
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The rest of this chapter is organized as follows. In Section 2.2 we propose the spline

curve fitting with the knots by the G2
m estimator. In Section 2.3 we discuss two marginal

curve fitting methods and the two approaches for additive modeling. In Section 2.4 we

present some simulation studies, both for curve fitting and additive modeling, and apply

the methods to the Boston housing data. Section 3.4.2 concludes this chapter and pro-

poses future research works.

2.2 G-squared for curve fitting

2.2.1 G2
m estimator for curve fitting

Suppose we have two random variables X and Y such that Y = f(X) + e where e ∼ [0, σ2].

When estimating G2
Y|X with G2

m(Y | X, λ0), we obtain a piecewise linear estimator of f(X).

If the optimal slicing has more than one slice, the estimator is discontinuous at the break-

points. Let f̂ be the piecewise linear function fitted by G2
m(Y | X, λ0). To show that f̂ con-

verges to f, we need the following conditions:

Condition 2.1. The random variables X and Y are bounded continuously with finite non-

zero variances.

Condition 2.2. f(X) has continuous and bounded derivatives almost everywhere.

With these preparations, we can state that

Theorem 2.1. Under Conditions 2.1 and 2.2, for all λ0 > 0,

1
n

n∑

i=1

{Yi − f̂(Xi)}2 → σ2 and
1
n

n∑

i=1

{f(Xi)− f̂(Xi)}2 → 0 as n → ∞.

The theorem, proved in Section B.1, shows that the mean squared error (MSE) will

converge to zero as the sample size increases. Another interesting quantity to describe
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consistency besides MSE is the integrated squared error (ISE), defined as

ISE = E{f(X)− f̂(X)}2.

This quantity can be viewed as the expectation of the out-of-sample MSE. It is also of

interest to see whether the integrated squared error will converge to zero as the sample

size increases. We will compare ISE in the simulation studies. After estimating G2
Y|X by

the G2
m estimator, if there are more than one slice, we can use the breakpoints as knots

to perform spline fitting. In this chapter, we use cubic spline throughout the examples.

Simulation studies show that this method is more robust to different f compared with the

plain spline fitting with equidistant knots.

2.2.2 Choice of λ0

As discussed in Section 1.2.5, the choice of λ0 can determine the estimation of G2
Y|X. We

suggest λ0 = 3 because the corresponding penalized log-likelihood resembles BIC. We

also propose a data-drive strategy, which can help improve the accuracy of estimating

G2. This strategy tries to balance the signal strength and curve complexity. Suppose there

is one oracle λ0 that yields the minimum ISE, called the oracle ISE. Simulation studies

in Section 2.4.2 shows that the ISE by λ∗0 (defined in Section 1.2.5) is close to the oracle

ISE. In the rest of this chapter, if not stated explicitly, we use λ∗0 for curve fitting and ad-

ditive modeling.
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2.3 G-squared for additive modeling

Suppose the reference function between Y and X1, . . . ,Xp is

Y = μ +
p∑

j=1

fj(Xj) + e, Efj(Xj) = 0, var(e) = σ2.

We assume that only a small subset of fjs are nonzero. For additive modeling, we need

to select the nonzero components and fit the corresponding curves. In this section, we

present the two approaches for variable selection in additive modeling. Before any se-

lection step, we first estimate G2
m between each predictor and the response, and then cre-

ate spline bases of each predictor according to the knots by G2
m. If no need for variable

selection, we regress the response on the bases. Otherwise, we propose 1) the adaptive

group LASSO to select variables, in which each group consists of the spline bases of each

variable; 2) BIC to select variables, in which we choose or drop an entire group together.

Simulation studies in Section 2.4.4 show that the first approach has better consistency

with respect to variable selection and the second approach has smaller prediction error.

2.3.1 Marginal curve fitting

In additive modeling, we calculate G2
m between each predictor and the response marginally,

and take the knots under each optimal slicing scheme. The B-spline is well defined for

bounded variables, so for simplicity we assume that each predictor is between 0 and 1.

Now let us have a look at the spline bases used for additive modeling. For each variable

Xj, if the optimal slicing scheme is only one slice, the spline base is ψj,1(x) ∝ x such that

E{ψj1(Xj)} = 0, var{ψj1(Xj)} = 1.
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If the optimal slicing scheme has more than one slice, suppose the knots are cjt (t =

1, . . . ,Kj−m) where m is the degree of the spline, the spline bases are denoted as ψm
jk(x) (k =

1, . . .Kj) such that

E{ψm
jk(Xj)} = 0, var{ψm

jk(Xj)} = 1, cov{ψm
jk1ψ

m
jk2(Xj)} = 0 (k1 ̸= k2).

We treat the bases of each predictor variables as a group and use these groups for the

adaptive group LASSO or the BIC model selection.

When some of the marginal G2
ms are too small, the marginal curve fitting can select

only one slice and fail to fit the relationship properly. We introduce an adaptive way for

the marginal fitting. Before describing the procedure, let us look at a simple and intuitive

example. Suppose there are only two independent predictor variables, X1 and X2, then

G2
Y|Xj

=
var{fj(Xj)}

var{f1(X1)}+ var{f2(X2)}+ σ2
(j = 1, 2).

If we can estimate f1(X1) precisely, then let R = Y− f1(X) and

G2
R|X2 =

var{f2(X2)}
var{f2(X2)}+ σ2

.

It is obvious G2
R|X2 ≥ G2

Y|X2 and there is no doubt the estimation of f2(X2) is easier by G2
R|X2

than G2
Y|X2 . This inspires us to explore knots for each predictor adaptively: we can fit G

2
m

on the residual variable instead of on the original response variable. The advantage is ob-

vious: the G2 between the predictor and the residual variable should be larger than that

between the predictor and the response, so the relationship is easier to capture. In other

words, in each step, we calculate the G2
m between the residual variable and the remain-

ing predictors, pick the largest one and subtract the piecewise linear fitted values from

the residual variable. Algorithms 1 and 2 present the steps for the simple and adaptive
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marginal curve fitting. The shortcoming of the adaptive method is that the procedure can

introduce new noises, and the computation time is O(p2). Simulation studies show that

when the number of predictors is comparably small and when the predictors are indepen-

dent, the adaptive marginal fitting can reduce ISE. When the number of predictors is large

or when the predictors are dependent, we prefer the simple marginal fitting.

Algorithm 1: Simple marginal curve fitting
for j = 1, . . . , p do

Compute spline bases with G2
m(Y | Xj, λ∗0);

end

Algorithm 2: Adaptive marginal curve fitting
Initialize R = Y, I = {1, . . . , p};

for j = 1, . . . , p do

for k ∈ I do
Let kj = argmaxk∈SG2

m(R | Xk, λ∗0) and f̂kj be the corresponding piecewise

linear fitted values;

Compute spline bases with G2
m(Y | Xkj , λ

∗
0);

Let R = R− f̂kj and I = I \ {kj};

end

end

2.3.2 Adaptive group LASSO for additive modeling

First, we describe the group LASSO. For linear regression, variable selection with re-

sponse Y and predictors Xj’s, if we have the prior knowledge that some of the predic-

tors should be selected or dropped together, we can perform group LASSO60 instead of

plain LASSO. Suppose that X can be grouped by the non-overlapping groups g ∈ G. Let
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Ig = {j : j ∈ g} be the indices of the predictors belonging to group g. Suppose the pre-

dictors inside each group are standard and orthogonal, that is XT
IgXIg = I|Ig|. The group

LASSO minimizes the following penalty function:

∥Y− μ −
∑

g∈G

XIg βIg∥
2
2 + λ

∑

g∈G

√
|Ig|∥βIg∥2. (2.1)

Here, the L2 norm of a random variable Z is defined as ∥Z∥22 = E(Z2). Under this set-

ting, ∥βIg∥2 = ∥XIg βIg∥2, which is the L2 norm of the fitted values of each group.
√

|Ig|

penalizes the group size. The group LASSO guarantees that the predictors inside each

group are selected or dropped together. In the additive modeling, we can treat each spline

base ψm
j,k(Xj) as a new variable and the spline bases for a same predictor belong to a same

group. The penalty function is as follows

∥Y− μ −
p∑

j=1

Kj∑

k=1

ψm
jk(Xj)βjk∥2 + λ

p∑

j=1

√√√√
Kj∑

k=1

β2jk. (2.2)

Let f̃j =
∑Kj

k=1 ψm
jk(Xj)βjk, (2.2) is equivalent to

∥Y− μ −
p∑

j=1

f̃j(Xj)∥2 + λ
p∑

j=1

∥̃fj(Xj)∥2.

The difference between (2.1) and (2.2) is that we do not penalize the size of each group.

This is because when calculating G2
m, we have already considered the number of slices.

For real observations, suppose the realization of (Y,X1, . . . ,Xp) are (yi, x1i, . . . , xpi) (i =

1, . . . , n). After we find the knots of each variable and calculate the spline bases, we lin-
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early transform the splines bases, ψm
jk(xji) to φm

jk(xji), such that

1
n

n∑

i=1

φm
jk(xji) = 0,

1
n

n∑

i=1

φm
jk1(xji)φ

m
jk2(xji) = I{k1=k2} (k1, k2 = 1, . . . , p).

Then we minimize

1
n

n∑

i=1

{
yi − ȳ−

p∑

j=1

Kj∑

k=1

φm
j,k(xj,i)βj,k

}2

+ λ
p∑

j=1

√√√√
Kj∑

k=1

β2j,k. (2.3)

Adaptive LASSO is introduced by Zou61 for a more consistent variable selection. For

our adaptive group LASSO step, we first perform group LASSO and get the estimated

β̂jk’s. Then we perform a second step group LASSO to minimize

1
n

n∑

i=1

{
yi −

p∑

j=1

Kj∑

k=1

φm
jk(xji)βjk

}2

+ λ
p∑

j=1

ωj

√√√√
Kj∑

k=1

β2jk, ω−1
j =

√√√√
Kj∑

k=1

β̂
2
jk.

If some predictor is not selected in the first step group LASSO, the weight for the second

step group LASSO equals infinity, which means this predictor will not be selected in the

second group LASSO. Intuitively, if one component is selected in the first step but its L2

norm is extremely small, this component can possibly be a false positive selection. In the

second step, its weight is very large so that this component can be easily dropped.

2.3.3 Bayesian information criterion

The Bayesian information criterion is defined as

n log

⎡

⎣1
n

n∑

i=1

{
yi −

∑

j∈J

Kj∑

k=1

φm
j,k(xj,i)βj,k

}2⎤

⎦+ log(n)dJ, (2.4)
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where J is the set of the selected predictors and dJ is the degree of freedom. Intuitively,

dJ is between |J| and
∑

j∈J Kj, so we choose
∑

j∈J Kj in this chapter. The optimal variable

selection is J∗ that minimizes (2.4). We perform forward selection to find the optimal J∗

and only use BIC when the number of predictors is small.

2.4 Empirical studies

2.4.1 G-squared for curve fitting

In this section, we compare the plain spline fitting and the spline fitting with the knots by

G2
m, which we call the G2

m estimator (denoted as f̃) in this section. We consider the follow-

ing relationships in Fig. 2.1:

Example 2.1. f1(x) = x/0.23,

Example 2.2. f2(x) = (x− 0.5)2/0.075,

Example 2.3. f3(x) = ||x− 0.5|− 0.25|/0.07,

Example 2.4. f4(x) = sin(4πx3)/0.58.

The relationships are normalized so when X ∼ U(0, 1), var{fj(x)} = 1 (j = 1, . . . , 4).

Let use consider Y = fj(X) + e with e ∼ N (0, 1) and n = 225. For the plain spline fitting,

when we choose N equidistant knots, they are j/(N + 1) (j = 1, . . . ,N). To estimate ISE,

we sample n0 = 10, 000 independent new observations, x0i (i = 1, . . . n0), from U(0, 1)

and estimate the ISE by the
1
n0

n0∑

i=1

{̃fj(x0i )− fj(x0i )}2.

Tables 2.1 shows the average ISE for the four examples by different strategies. We choose

λ0 = 3 for the G2
m estimator. For the plain spline fitting, if the locations of the knots are

exactly the change-points of the curve, like N = 1 for f2 and N = 3 for f3, the spline fitting
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yields the minimum ISEs and is slightly smaller than the G2
m estimator. However, when

the locations of the knots do not match the real change-points, like N = 2 for f3, the inte-

grated squared error increases drastically. For the real problem, it is unrealistic to assume

that the number of change-points is known or the change-points are equidistant. Besides,

when the relationship is linear (f1) or when the changes points are not equidistant (f4), ISE

by the plain spline fitting is larger than the G2
m estimator. We suggest the G2

m estimator for

curve fitting because it is robust to the underlying relationships, and can adjust the num-

ber and locations of the knots based on the data.
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Figure 2.1: The curves for fj (j = 1, . . . , 4). The dashes indicate the change-points.

Table 2.1: The average ISEs for fj(x) (j = 1, . . . , 4) with plain spline fitting and the G2
m estimator

f1 f2 f3 f4
N = 1 0.023 (0.015) 0.023 (0.015) 0.236 (0.021) 0.761 (0.031)
N = 2 0.028 (0.017) 0.027 (0.016) 0.382 (0.027) 0.629 (0.028)
N = 3 0.033 (0.019) 0.032 (0.018) 0.044 (0.017) 0.364 (0.060)
N = 4 0.038 (0.021) 0.037 (0.019) 0.085 (0.020) 0.496 (0.110)
G2

m 0.011 (0.014) 0.027 (0.017) 0.065 (0.035) 0.262 (0.150)

2.4.2 Optimal λ0 for curve fitting

Next, let us study the choice of λ0 for the following four relationships:

Example 2.5. g1(x) = x/0.23.

Example 2.6. g2(x) = sin(πx)/0.3,
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Example 2.7. g3(x) = sin(2πx)/0.7,

Example 2.8. g4(x) = sin(3πx)/0.7,

The relationships are normalized so when X ∼ U(0, 1), var{gj(x)} = 1 (j = 1, . . . 4).

Let use consider Y = gj(X) + e with e ∼ N (0, 1) and n = 225. We choose λ0 from

{0.1 × 1.1t}60t=1. For each pair of (X, Y), we fit the G2
m estimator with each λ0 and then

fit the G2
m estimator with λ∗0 chosen from the above 60 candidates, as discussed in Sec-

tion 1.2.5 and 2.2.2. In Fig. 2.2, the bold lines represent the ISEs fitted by different λ0s,

and the dashes are the integrated squared errors by the data-driven λ∗0. The ISE by λ∗0 is

quite close to the oracle ISE and the ratio between them is less than 1.13. An interesting

phenomenon is that for each gj, there is a region of λ0 that can yield almost the same min-

imum ISE. This is because for λ0’s in this region, the slicing schemes for a pair of (X, Y)

are always the same. Figure 2.3 shows the histograms of the chosen λ∗0 and most of the

values are smaller than 4. In the following sections, when we use the data-driven strategy

to choose λ0, we choose from {0.5l}8l=1.

For a better presentation of our methods, we use some abbreviations for different vari-

ations. The simple marginal fitting is denoted as MGS-; the adaptive marginal fitting is

denoted as AMGS-. The adaptive group LASSO approach is denoted as -AGL; the BIC

approach is denoted as -BIC. For example, a method with adaptive marginal fitting and

adaptive group LASSO approach is called AMGS-AGL.

2.4.3 Simple and adaptive marginal fitting

In this section, we repeat the example in Lin et al. 30 and let Xj = (Wj + tU)/(1+ t) where

U, Wj ∼ U(0, 1) (j = 1, . . . , p). Therefore corr(Xj,Xk) = t2/(1 + t2). The relationships
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Figure 2.2: The ISEs by different λ0’s and λ∗0 ’s for gj (j = 1, . . . , 4)

Figure 2.3: The histogram of λ∗0 ’s for gj (j = 1, . . . , 4)
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are

h1(x) = 5x, h2(x) = 3(2x− 1)2, h3(x) =
4 sin(2πx)

2− sin(2πx)
,

h4(x) = 6{0.1 sin(2πx) + 0.2 cos(2πx) + 0.3 sin2(2πx)

+0.4 cos3(2πx) + 0.5 sin3(2πx)}.

Let e ∼ N (0, 1) and σ = 1.32 so that the signal to noise ratio is 9. When t = 0, the

predictors are independent, and

G2
Y|X1 = 0.12, G2

Y|X2 = 0.05, G2
Y|X3 = 0.19, G2

Y|X4 = 0.54.

If we can pick X4, X3, X1, X2 and remove h4(X4), h3(X3), h1(X1) sequentially, the adjusted

G-squared will become

G2
Y|X4 = 0.54, G2

R1|X3 = 0.41, G2
R2|X1 = 0.45, G2

R3|X2 = 0.31,

where R1 = Y − h4(X4), R2 = R1 − h3(X3) and R3 = R2 − h1(X1). The original marginal

G-squared for X2 is extremely small compared with the other variables, however, the ‘ad-

justed’ G-squared of X2 increases by six times.

We choose p = 10, n = 100, 225, 400 and fit with MGS-AGL, MGS-BIC, AMGS-

AGL, AMGS-BIC for 1,000 repetitions. For the adaptive group LASSO, we pick λ by

five-fold cross validation. Besides, we compare our method with SPAM by Ravikumar

et al. 39 and the adaptive group LASSO method (AGL) by Huang et al. 24. For SPAM and

AGL, we use 5 knots and the locations are the k/6 (k = 1, . . . , 5) quantiles for each pre-

dictor. Table 2.2 presents the ISEs with t = 0. The adaptive marginal curve fitting, es-

pecially with -BIC, has smaller ISE, compared with SPAM and AGL. Table 2.3 shows
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the false negative and positive selections. We find that the adaptive marginal curve fit-

ting with -AGL reduces both selections compared with the simple marginal curve fitting.

This is because in the simple marginal curve fitting, G2
m estimator always fits one slice

for X2 and the linear correlation between h2(X2) and Y happens to be zero, so X2 is not al-

ways selected. The adaptive marginal curve fitting can fit more than one slice for X2 so

the influence of this variable on Y can be detected. When the predictors are dependent,

the marginal G2 is not easy to compute and it is not straight forward to ‘remove’ the im-

pact of one single predictor, so we suggest the adaptive marginal curve fitting when the

predictors are independent with small p.

Table 2.2: The average ISEs with t = 0 for hj (j = 1, . . . , 4)

n 100 225 400
MGS-AGL 2.46 (1.32) 1.23 (0.77) 0.63 (0.42)
MGS-BIC 2.04 (1.03) 1.00 (0.68) 0.49 (0.38)

AMGS-AGL 1.50 (1.07) 0.62 (0.25) 0.42 (0.16)
AMGS-BIC 1.26 (1.13) 0.45 (0.21) 0.29 (0.15)

SPAM 2.00 (0.77) 0.95 (0.38) 0.63 (0.20)
AGL 1.49 (0.61) 0.59 (0.17) 0.39 (0.10)

Table 2.3: The average of false negative and positive selections with t = 0 for hj (j = 1, . . . , 4)

false negative false positive
n 100 225 400 100 225 400

MGS-AGL 0.66 0.41 0.18 0.02 0 0
MGS-BIC 0.61 0.39 0.17 0.30 0.15 0.08

AMGS-AGL 0.27 0 0 0.04 0 0
AMGS-BIC 0.24 0 0 0.31 0.16 0.10

SPAM 0.01 0 0 3.64 4.05 4.29
AGL 0.24 0 0 0.09 0.01 0
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2.4.4 A variable selection example

In this section, we use the same predictors as in Section 2.4.3 and the following relation-

ships:

k1(x) = 2.25 sin(4πx2), k2(x) = 5x, k3(x) = 5(2x− 1)2,

k4(x) = −187.5(x− 0.2)(x− 0.3)(x− 0.5)(x− 0.9).

When X ∼ U(0, 1), var{kj(X)} = 1 (j = 1, . . . , 4). Let e ∼ N (0, 1) so that the signal

to noise ratio is 9. Figure 2.4 shows an example with n = 100, p = 10 and t = 0. The

dots are the observations, the bold lines are the fitted curves by AMGS-BIC and the gray

lines are the real curves. Each curve is standardized for a better illustration. It is obvious

that the fitted curves almost lie on the true curves, which means that the fitting method

can capture the relationship between the predictors and the response almost exactly.

Figure 2.4: The example in Section 2.4.4 and the fitted curves by AMGS-BIC with n = 100, p = 10 and
t = 0. The dots are the observations, the bold lines are the fitted curves and the gray lines are the real
curves.

For a better study of our method, we choose the number of sample size as n = 100, 225, 400

and the number of predictors as p = 10, 20, 50, 100, 200. For each combination of

(n, p), we perform 1,000 repetitions. In the main text, we only consider the uncorrelated

cases with t = 0. We present the results for the correlated cases in Section B.2.
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2.4.4.1 Small p

In this part, we only consider p = 10 and 20. We implement AMGS-AGL and AMGS-

BIC together with SPAM and AGL. Table 2.4 tells us that among all the methods, AMGS-

BIC has the smallest ISE. Compared with -AGL method, -BIC method has smaller bias

when the method picks the correct variables. The table shows that with larger sample

size, our methods performs better.

Table 2.4: The average ISEs (small p) with t = 0 for kj (j = 1, 2, 3, 4)

p = 10
n 100 225 400

AMGS-AGL 1.14 (2.56) 0.39 (0.22) 0.23 (0.14)
AMGS-BIC 1.10 (3.46) 0.29 (0.20) 0.16 (0.12)

SPAM 1.75 (0.41) 1.07 (0.20) 0.85 (0.12)
AGL 0.85 (0.39) 0.35 (0.11) 0.22 (0.07)

p = 20
n 100 225 400

AMGS-AGL 1.23 (1.12) 0.38 (0.22) 0.23 (0.12)
AMGS-BIC 1.31 (1.52) 0.30 (0.19) 0.16 (0.11)

SPAM 1.95 (0.47) 1.13 (0.20) 0.89 (0.12)
AGL 0.84 (0.36) 0.34 (0.11) 0.22 (0.07)

Now let us discuss the variable selection performance. We present the average number

of false negative and false positive selections of each method in Tables 2.5. The results

show that SPAM has high false positive selection and the variable selection of our meth-

ods, especially AMGS-AGL, are more consistent. We can use -BIC for smaller ISE and

-AGL for consistent variable selection result.

2.4.4.2 Large p

Now we consider p = 50, 100 and 200 and implement MGS-AGL together with SPAM

and AGL. Similarly, we compare the average ISEs as well as false negative and positive

selections of predictors. Table 2.6 tells us that the average ISEs of AMG-AGL are slightly
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Table 2.5: The average of false negative and positive selections (small p) with t = 0 for kj (j = 1, 2, 3, 4)

false negative p = 10 p = 20
n 100 225 400 100 225 400

AMGS-AGL 0.06 0 0 0.11 0 0
AMGS-BIC 0.07 0 0 0.14 0 0

SPAM 0 0 0 0 0 0
AGL 0 0 0 0 0 0

false positive p = 10 p = 20
n 100 225 400 100 225 400

AMGS-AGL 0.03 0 0 0.10 0 0
AMGS-BIC 0.32 0.17 0.11 0.77 0.47 0.27

SPAM 3.75 3.90 4.25 7.34 7.70 8.25
AGL 0.08 0.01 0 0.11 0.03 0

larger than those of AGL. As the sample size grows, the average ISEs approach those

of AGL. Tables 2.7 shows the average false negative and false positive selections of the

predictor variables and MGS-AGL has the best consistency performance.

Table 2.6: The average ISEs (large p) with t = 0 for kj (j = 1, 2, 3, 4)

p = 50
n 100 225 400

MGS-AGL 1.63 (1.25) 0.56 (0.46) 0.32 (0.21)
SPAM 2.19 (0.54) 1.21 (0.21) 0.92 (0.12)
AGL 0.87 (0.35) 0.33 (0.11) 0.21 (0.07)

p = 100
n 100 225 400

MGS-AGL 1.62 (1.43) 0.58 (0.45) 0.32 (0.22)
SPAM 2.39 (0.57) 1.27 (0.21) 0.95 (0.13)
AGL 0.88 (0.45) 0.33 (0.11) 0.22 (0.07)

p = 200
n 100 225 400

MGS-AGL 1.68 (1.35) 0.57 (0.45) 0.33 (0.22)
SPAM 2.68 (0.69) 1.34 (0.23) 0.98 (0.13)
AGL 1.01 (0.74) 0.33 (0.11) 0.21 (0.07)

To conclude, our methods perform better with larger sample size (n ≥ 225). When the

number of predictors is not large, if the variables are independent, we suggest the AMGS-
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Table 2.7: The average of false negative and positive selections (large p) with t = 0 for kj (j = 1, 2, 3, 4)

false negative p = 50 p = 100 p = 200
n 100 225 400 100 225 400 100 225 400

MGS-AGL 0.20 0 0 0.21 0 0 0.22 0 0
SPAM 0 0 0 0 0 0 0 0 0
AGL 0 0 0 0 0 0 0.04 0 0

false positive p = 50 p = 100 p = 200
n 100 225 400 100 225 400 100 225 400

MGS-AGL 0.24 0.02 0 0.40 0.07 0 0.77 0.11 0.01
SPAM 12.91 14.18 14.65 17.44 19.34 19.65 21.31 25.36 26.19
AGL 0.15 0.16 0.04 0.20 0.32 0.06 0.20 0.39 0.11

BIC for a smaller prediction error; otherwise we suggest MGS-BIC. When the number of

predictors is large, we suggest MGS-AGL for a consistent variable selection.

2.4.5 Boston housing data

We consider the Boston housing price data from Harrison & Rubinfeld 18 with n = 506

observations for the census districts of the Boston metropolitan area. The data is available

in the R-package ‘lmbench’. We choose ten continuous predictors to predict ‘medv’. We

perform AMGS-BIC and select six relevant predictors, ‘nox’, ‘rm’, ‘dis’, ‘tax’, ‘ptratio’

and ‘lstat’. The irrelevant predictors are ‘crim’, ‘indus’, ‘age’ and ‘b’. We use λ0 = 3 here

because all the predictors have very large marginal G2
m. Figure 2.5 shows the fitted curves

for the selected variables. The gray dots are the real observations and the black lines are

the fitted curves. The predictors are linearly transformed to the interval [0, 1].

2.5 Conclusions

In this chapter, we use the G2
m estimator to perform curve fitting and additive modeling.

In fact, the G2
m estimator already fits a piecewise linear curve between the two random

variables. When the true relationship is linear, the G2
m estimator can easily identify it. The

knots by the G2
m estimator can be treated as the knots for spline curve fitting. Simulation
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Figure 2.5: The fitted curves of ‘nox’, ‘rm’, ‘dis’, ‘tax’, ‘ptratio’ and ‘lstat’ for Boston housing data. The
gray dots are the real observations and the black lines are the fitted curves.

studies show that this approach is robust to the underlying function relationship compared

with plain spline fitting. We also discuss how to select λ0 and the data-driven strategy

produces ISE that is quite close to the oracle ISE.

For additive fitting, we suggest two methods to find knots for each predictor, the sim-

ple marginal curve fitting and the adaptive marginal curve fitting. When the number of

predictors is small and the predictors are independent, the adaptive method has smaller

ISE and detects predictors with extremely small marginal G2’s. When the number of

predictors is large, the adaptive method introduces error itself so we prefer the simple

marginal fitting method. For variable selection, we try the adaptive group LASSO and the

BIC approaches. When the number of predictors is small, we suggest the BIC approach;

when the number of predictors is large, we suggest the adaptive group LASSO approach.

In the future, we need more theoretical understandings of the variable selection nature

for both methods. Besides, for the adaptive group LASSO approach, we select λ with
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five-fold cross validation. Ravikumar et al. 39 utilized two heuristic estimates of the risk

to choose the regularization parameters. This can also be a future method to tune λ. Simu-

lation studies show that when the sample size is small, the variable selection performance

is not as good as other methods. Similarly, the performance of G2
m in independence test-

ing is slightly worse than DDP with n = 50, 100 (see Section A.4). This is because when

n is small, the G2
m estimator sometimes fails to find the change points. A potential solu-

tion is to change the penalty term. For example, we already use a penalty that resembles

BIC. We can try Akaike information criterion1 (AIC) as an adjustment because AIC pe-

nalizes less than BIC on the log-likelihood.
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3
Calibration concordance by multiplicative

shrinkage

3.1 Introduction

The calibration of instruments is fundamental if measurements obtained with different

instruments are to be compared or combined. In many settings, calibration is based on a

data set obtained by using several instruments to measure one or more well-understood

sources. The goal is to derive adjustments that can be applied to future observations for
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reliable absolute measurements. Direct linear adjustments, however, often result in poor

calibration of the instruments, no quantification of the calibration error, and hence they

do not permit researchers to assess the effect of calibration uncertainty on final estimates.

The main difficulty of deriving reliable adjustments for instruments springs from the vari-

ations intrinsic to the sources and instruments along with individual measurement errors.

Several complications arise when attempting to properly modeling a calibration data

set. First, the physical models, which are derived using various approximations based on

scientists’ current understandings of the instruments, are not exact. Second, known physi-

cal quantities are typically estimates themselves and even when their estimated errors are

available, standard plug-in estimators and error propagation techniques may lead to bi-

ased or overly optimistic results. Third, data quality varies in ways that cannot be fully

quantified, especially across instruments or in the presence of outliers. Finally, the num-

ber of unknown model parameters increases with both the number of instruments and the

number of sources, leading to well-known model challenges. Together these challenges

and subtleties explain that although many researchers have worked on the calibration

problem, principled statistical adjustments have yet to be developed.

In this chapter, we resolve these challenges by first introducing a multiplicative ob-

servation model and then developing an approximate log-normal approach to model the

mean signals for each source measured by each instrument while considering measure-

ment errors. Furthermore, because the number of parameters grows with both the number

of instruments and sources, the model fitting requires advanced Bayesian computational

algorithms. Lastly, we propose a more general log-t model to handle the outliers that are

often present in such data.
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3.1.1 Calibration in astronomical instruments

In astrophysics, various instruments are used by different teams of scientists to understand

intrinsic properties of astronomical objects. Although it is possible to make relative com-

parisons of different sources observed with the same instrument, unless the instruments

are properly calibrated, we cannot make reliable absolute measurements or make compar-

isons of sources observed with different instruments. Therefore, calibration of different

instruments is an important, and on-going, problem for astrophysicists.

To perform in-flight calibration, a set of well understood sources are observed with

multiple instruments to derive adjustments that can be made to future observations and

obtain reliable absolute measurements. Deriving adjustments for astronomical instru-

ments based on observing multiple sources with multiple instruments is defined as the

calibration concordance problem. This chapter is motivated by the need for a statistically

principled solution and is a joint effort between astrophysicists and statisticians, both ex-

pertise is needed to appropriately quantify the uncertainties while properly incorporating

scientific understanding. This chapter describes the general calibration problem in terms

of its manifestation with astronomical instruments.

First, two basic concepts that are essential to describe precisely the scientific question

are the flux of each astronomical source and the effective area of each instrument.

• Flux: the absolute flux is the quantity of luminous energy incident upon the aper-

ture of a telescope per unit area per unit time. The absolute flux of an astronomical

source depends on the luminosity of the object and its distance from the earth, both

of which are intrinsic to the object. For a fixed source spectrum, i.e., the distribu-

tion of photon energies, the measured flux is directly proportional to the number of

photons detected in each detector on an astronomical instrument. If the spectrum

changes, or the detector on the instrument changes, then so will the number of pho-
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tons and the measured flux.

• Effective Area: the geometric area of an instrument is an upper bound on its capac-

ity to collect photons. Many factors can reduce the efficiency of photon collection,

including mirror reflectivity, structural obscuration, filter transmission, detector

sensitivity, etc. This reduction in efficiency is also photon-energy dependent. The

effective area is the equivalent geometric size of an ideal detector that would have

the same collection capability and it is empirically measured or theoretically cal-

culated and tabulated as a function of energy. The effective area of the instrument

is used to estimate the absolute flux of an astronomical source given its measured

flux. Since the effective area varies with energy, astronomers often consider dif-

ferent energy bands for comparing observations as different instruments. We will

adopt the same convention.

Second, the calibration problem arises because the effective areas of the instruments

are not known precisely, and thus absolute measurements of the flux of an astronomical

source cannot be obtained: different instruments yield different measured fluxes for the

same source. In other words, the problem of calibration among different instruments is

equivalent to estimating the effective area of each instrument.

Astronomers may use several instruments with different and uncertain effective ar-

eas to measure the fluxes of astronomical sources. The measurements are the numbers of

photons from each object received on each detector. Since we do not know the effective

areas precisely, we aim to improve them using data for common sources. After proper

adjustments of the effective areas, instruments measuring a common source should agree

within statistical uncertainty on the absolute flux of each astronomical source.
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3.1.2 Notations and a multiplicative physical model

Suppose we observe photon counts, cij (i = 1, . . . ,N, j = 1, . . . ,M), where i indexes the

instruments and j indexes the sources. We denote the expected photon counts by Cij for

each instrument-source pair. Here and elsewhere we use lower case for observed quanti-

ties and estimators and upper case for unobserved estimands. Let Fj be the absolute flux

of source j. To estimate Fj from the observed photon counts, we need the effective area Ai

of each instrument. An estimate of each effective area ai is obtained through the knowl-

edge of the instrument designers, but we assume that we do not have information for esti-

mating each Fj other than the cij.

The observed photon counts depend on two factors: the absolute flux of the source and

the effective area of the instrument. Because source fluxes have units of photons per sec-

ond and per square centimeter, they are multiplied by instrument effective areas and ex-

posure times Tij to obtain expected photon counts. Thus, the multiplicative model is

Cij = TijAiFj (i = 1, . . . ,N, j = 1, . . . ,M). (3.1)

Although we omit details here, the multiplicative constant Tij contains not only the expo-

sure time, but also other factors that can be calculated approximately by astrophysicists;

see Marshall et al. 32 for details. We regard Tij as a fixed constant for now and the uncer-

tainties related to Tij will be considered and discussed for further improvements.

Generally, astronomical effective areas come with estimated systematic uncertainties

given by the calibration scientists based on their empirical knowledge about each instru-

ment as well as statistical uncertainties based on the assumed Poisson nature of the de-

tected light. With a typical dataset, astronomers provide their estimated uncertainties for

each of the cij and for the ai. How to utilize both uncertainties in statistical models and
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whether these estimated uncertainties suffice to explain the variance in the data are in-

triguing statistical questions that we also seek to tackle in this chapter.

The remainder of this chapter is organized as follows. In Section 3.2, we introduce our

statistical model for calibration concordance, a log-normal hierarchical model, followed

by its properties and extensions to a more general log-t model, which handles outliers. In

Section 3.3, we illustrate model fitting results with both simulated and real data. We con-

clude in Section 3.4 with a brief discussion on the frequentist equivalence of the model, a

summary, and areas of future works.

3.2 Building and fitting calibration models

3.2.1 Modeling multiplicative means

We can rewrite (3.1) as

logCij − logTij = logAi + logFj = Bi + Gj, (3.2)

where Bi = logAi and Gj = logFj. Although (3.2) holds at the estimand level, the cor-

responding estimator/observation equation does not. Specifically, if we let yij = log cij −

logTij, bi = log ai and gj = log fj, we cannot expect that yij = bi + gj + eij and that

eij is independent of (bi, gj) with mean zero. This is because this observation equation

incorrectly assumes that the expectation of yij is determined by bi and gj, while they are

estimators of Bi and Gj.

Instead, we assume that the measurement error in cij for Cij is multiplicative and postu-

late the regression model,

yij = αij + Bi + Gj + eij, eij ∼ N (0, σ2i ); (3.3)
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where yij is obtained from quantities that are either observed (cij) or supplied (Tij). Nev-

ertheless, when cij = 0 occurs (as in out simulation study), we will use the conventional

0.5. We call this the zero-modified count and denote as c̃. The measurement error eij is

independent Gaussian with mean 0 and variance σ2i . Thus, the observed counts cij follows

a log-normal distribution. We define αij = −0.5σ2i as the half-variance correction for the

multiplicative mean modeling in (3.1) on the log scale to ensure that Ecij = Cij, because

Ecij = TijEeyij = Tijeαij+0.5σ2i eBieGj = TijAiFj = Cij.

For convenience, when the σ2i are known, we define y′ij = yij + αij and use this notation

throughout the chapter.

Recall that bi = log ai is estimated with uncertainty based on expert empirical knowl-

edge of instrument i, thus we can view bi as a noisy observation of Bi with noise level τi,

i.e.

bi ∼ N (Bi, τ2i ). (3.4)

Together with (3.3), this gives a frequentist random-effect regression model, which is dis-

cussed in Section 3.4.1. We assume the τi are known from expert knowledge as they are

in our applied examples.

We adopt a Bayesian perspective, i.e. we reverse the roles of bi and Bi in (3.4) and

assume

Bi ∼ N (bi, τ2i ). (3.5)

This reversal can be justified more formally by using (3.4) along with a flat prior on the

Bi, which implies (3.5). There are three advantages of a Bayesian perspective in this set-

ting: 1) by characterizing empirical knowledge in a prior distribution, we can update the

prior information with the observed data and give a full posterior distribution of the quan-
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tities of interest, which yields automatic uncertainty quantification for the estimators; 2)

the maximum-a-posteriori (MAP) estimators obtained from the hierarchical model are

shrinkage estimators, which intuitively summarize how information from various instru-

ments and sources are best combined; 3) since the dimension of the parameter space is

large and the parameters of interest are highly correlated, Bayesian computational meth-

ods, such as the Markov chain Monte Carlo (MCMC) algorithms, are better suited for

exploring the parameter space than optimization algorithms.

In setting up our models, we have made several approximations and simplifications.

First, the observations collected by astronomical instruments are in fact photon counts,

which are usually modeled with a Poisson distribution. Since the observed photon counts

in our real examples are typically large, the Gaussian model is a good approximation.

Furthermore, we prefer the Gaussian model because both its mean and variance are free

parameters which permits the variance term to accommodate imperfections in the mean

model. We will provide a detailed discussion of the Gaussian approximation to a Poisson

model in our numerical experiments in Section 3.3.1.2.

In (3.3), we assume that the variance for the measurement error depends on the instru-

ment but not on the source. This assumption works reasonably well in our applied exam-

ples, but generally, each eij can have its own variance, σ2ij, i.e. eij ∼ N (0, σ2ij). If the σ2ij

are unknown, it is generally necessary to constrain them to ensure identifiability. For ex-

ample, we can assume either that 1) the variance is only object-dependent, i.e. σ2ij = σ2j or

2) the variance is additive, i.e. σ2ij = ω2
i + λ2j . If the σ2ij are known, inference is much eas-

ier since the Bi’s and the Gj’s are the only unknown quantities. Hereafter, we refer to the

case when the σ2ij’s are known as the known variance model and the case when the σ2i ’s

are unknown as in (3.3) as the unknown variance model.

We consider the known variance model because, as noted in the introduction, astronomers

provided their estimate of the uncertainties of measurements, i.e., the σ2ij’s. However, as
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illustrated in subsequent sections through both simulated and real data, the unknown vari-

ance model, which is the primary model in this chapter, is more flexible, robust, and is

recommended in practice. This is because the inferred adjustment of effective areas could

be either overly-optimistic or overly-conservative if the specified σ2ij’s are inaccurate,

which is often the case in practice due to an incomplete understanding of the uncertain-

ties in measurements and data processing.

Finally, because not all sources may be observed with all instruments, we define Ji to

be the set of indexes of the objects observed by detector i and Ij the set of indexes of the

instruments that observe object j. If the set of objects observed with each instrument re-

flect a biased selection mechanism, our model may produce misleading results. As a first

approximation, we assume there is no selection bias or that the selection mechanism is

ignorable45.

3.2.2 Log-normal hierarchical model

In this section, we embed the log-normal regression model given in (3.3) into a Bayesian

hierarchical model. To do this, we need prior distributions for Bi’s, Gj’s, and σ2i ’s when

they are unknown. Since we have no prior information for Gj’s, we use independent flat

priors on the real line whereas we assume (3.5) for Bi’s. When σ2i ’s are unknown, we as-

sume independent Inverse-Gamma distributions with degree of freedom dfg and scale βg.

In summary, the log-normal hierarchical model is written as

yij | Bi, Gj, σ2i ∼ N
(
−σ2i

2
+ Bi + Gj, σ2i

)
, (3.6)

σ2i ∼ Inv-Gamma(dfg, βg),

Bi ∼ N(bi, τ2i ), Gj ∼ flat prior.
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Let B = (B1, . . . ,BN)t, G = (G1, . . . ,GM)t, σ2 = (σ21, . . . , σ2N)t, and τ2 = (τ21, . . . , τ2N)t,

where xt denotes the transpose of a vector x. Let D = {yij, bi} represent the data and ψ =

{σ2, τ2} be the variance parameters.

Under the prior specifications for {Bi,Gj, σ2i | i = 1, . . . ,N, j = 1, . . . ,M} given in

(3.6), we can show that: the posterior is proper when all instruments measure all sources,

i.e., |Ji| = M (i = 1, . . . ,N), and the MAP estimator of each σ2i is bounded away from

zero by a finite constant which only depends on the hyper-parameters. Furthermore, this

prior specification avoids the problem of unbounded posterior distribution, that would

arise with flat priors on the σ2i . The proofs of these claims are in Section C.2.

3.2.3 Posterior distributions and their sampling

A special case of (3.6) occurs when the variances σ2i and τ2i are known. The logarithm of

the joint posterior distribution of B and G conditioning on ψ is

L (B,G | ψ) = −
∑

1≤i≤N,j∈Ji

(y′ij − Bi − Gj)2

2σ2i
−

N∑

i=1

(bi − Bi)2

2τ2i
. (3.7)

This is a quadratic function of the Bi and Gj, thus the joint posterior of B and G is mul-

tivariate Gaussian. More precisely, the posterior distribution of (B,G) is a multivariate

Gaussian with mean μ = Ω−1γ and variance-covariance matrix Ω−1, where Ω is an

(N+M)× (N+M) matrix with

Ωi,i = Miσ−2
i + τ−2

i , Ωj+N,j+N =
∑

i∈Ij

σ−2
i , Ωi,j+N = σ−2

i Ij∈Ji ;

and γ is a column vector of length (N+M) with

γi =

(
∑

j∈Ji

y′ij

)
σ−2
i + biτ−2

i , γj+N =
∑

i∈Ij

y′ijσ−2
i ;
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Mi = |Ji| is the number of elements in Ji (1 ≤ i ≤ N, 1 ≤ j ≤ M).

When the variances are unknown, numerical techniques are required to explore the

joint posterior distribution. Since the dimension of the parameter space, (2N +M), is typ-

ically large and the parameters are highly correlated, we use a Hamiltonian Monte Carlo

(HMC) algorithm37, which delivers a less correlated sample than more traditional MCMC

techniques34,20,14,31. We implement HMC using the STAN package23,49 in Python50.

We have also implemented a blocked Gibbs sampler, which gives satisfactory perfor-

mance and enables us to crosscheck the results from STAN. In the blocked Gibbs sam-

pler, we sample the Bi and Gj jointly to improve mixing: since as we just noted in Sec-

tion 3.2.3, they jointly follow a multivariate Gaussian distribution conditioning on ψ.

This is much more efficient than one-parameter-at-a-time Gibbs sampling in both our

simulated and real data examples. Section C.1 gives details of the computational algo-

rithms we adopted.

We now derive the MAP estimators, which are shrinkage estimators8,35 of the Bi and

the Gj, and thus correspond to power shrinkage on the original scale, i.e., Ai and Fj. The

shrinkage estimators enjoy the intuitive interpretation of combining information among

all the instruments and sources, which well serves the purpose of calibration concordance

across instruments and sources.

To derive the MAP estimators conditioning on ψ, we set the derivative of the log-

posterior in (3.7) to be zero. The conditional MAP estimators, denoted by B̂i(ψ) and

Ĝj(ψ), satisfy

B̂i(ψ) = Wibi + (1−Wi)(ȳ′i· − Ḡi), Ĝj(ψ) = ȳ′·j − B̄i, (3.8)

where Ḡi is the precision weighted average of the Ĝj(ψ) over j ∈ Ji and B̄j is the precision
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weighted average of the B̂i(ψ) over j ∈ Ji, i.e.

Ḡi =

∑
j∈Ji Ĝj(ψ)σ−2

i∑
j∈Ji σ

−2
i

, B̄j =

∑
i∈Ij B̂i(ψ)σ−2

i∑
i∈Ij σ

−2
i

,

ȳ′i· is the precision weighted average of the y′ij over j ∈ Ji, and ȳ′·j is the precision weighted

average of the y′ij over i ∈ Ij, i.e.

ȳ′i· =
∑

j∈Ji y
′
ijσ−2

i∑
j∈Ji σ

−2
i

, ȳ′·j =
∑

i∈Ij y
′
ijσ−2

i∑
i∈Ij σ

−2
i

,

and the weights,

Wi =
τ−2
i

τ−2
i +Miσ−2

i
,

are the precisions of the direct information in the bi relative to the indirect information

for estimating the Bi. Thus Wi can be regarded as the proportion of information from the

prior. From studying this, we can make more informative choices for the prior variances

τ2i when we do not have precise values of τ2i from experts. In our real applications, we can

choose reasonable values of the τ2i by examining this quantity, to ensure our results are

largely data-driven rather than prior-driven. We elaborate on this in the data analysis in

Section 3.3.2.1, with detailed results given in Section C.5.

When the σ2i are unknown, we use independent conjugate priors for the σ2i as in Sec-

tion 3.2.2. In this case, the MAP estimators satisfy both (3.8) and

σ̂2i = 2
(√

1+ S2y,i − 1
)
, S2y,i =

1
Mi + dfg

(
∑

j∈Ji

(yij − B̂i − Ĝj)
2 + βg

)
. (3.9)

We simultaneously solve (3.8) and (3.9) numerically and denote the MAP estimators that

solve these equations by {B̂i, σ̂2i , Ĝj}. Because of the log transformation in the regres-

sion in (3.3), the estimate for the variance in (3.9) is on the same scale as the data and the
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mean. This seeming contradiction can be explained by observing that the data are already

on the log-scale.

Intriguingly, we notice that the MAP estimator for the variance is also of a shrinkage

form. This is most clearly seen by re-expressing (3.9) as

σ̂2i = 2
(√

1+ S2y,i − 1
)
=

2

1+
√
1+ S2y,i

S2y,i ≡ RiS2y,i, (3.10)

where S2y,i as defined in (3.9) is similar to the natural residual variance estimator for σ2i ,

except for the prior distribution. The half-variance correction leads to a shrinkage of S2y,i

because Ri is bounded above by 1. The degree of shrinkage depends on S2y,i itself. The

larger S2y,i is, the smaller Ri is, and the more shrinkage there is in the estimator of σ2i .

3.2.4 Extensions to handle outliers: log-t model

The framework of Section 3.2.2 assumes Gaussian noise on the log scale and the half-

variance correction depends on this Gaussian assumption. However, taking logs is not

enough to get rid of some extreme outliers, which are not rare in astronomical observa-

tions since some sources can be quite dim, causing the photon collection highly impre-

cise. Therefore, the log-normal hierarchical model may not be robust to outliers. Here we

propose a generalization of the log-normal model by introducing a unique variance σ2ij for

each observation yij. In this way, we can down weight outliers for more robust inference.

For any observation yij, we assume

yij | Bi, Gj, σ2ij = −0.5σ2ij + Bi + Gj + eij, eij ∼ N (0, σ2ij). (3.11)

Under (3.11), E(eyij | Bi, Gj) = E {E(eyij | Bi, Gj, σij)|Bi,Gj} = AiFj, so the multiplicative

model (3.1) still holds. Depending on the assumptions we place on σij’s, (3.11) includes
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the following cases:

Case 1: log-normal model with known variances. If the σij are known constants,

the noise terms are independent Gaussians with mean 0 and variance σ2ij. Thus the

model in (3.11) is equivalent to (3.6) with known variances.

Case 2: log-normal model with unknown variances. If σ2ij = σ2i ∼ Inv-Gamma(dfg, βg)

for all j, the model in (3.11) is equivalent to (3.6) when the variances ψ are un-

known.

Case 3: log-t model. If σ2ij ∼ Inv-Gamma(dfg, βg), i.e. independent Inv-Gamma

distribution for all i, j. The error term eij follows independent student-t distributions,

with degree of freedom 2dfg and scale
√

βg/dfg.

The fitting of the log-t model in Case 3 is also achieved with the HMC algorithm using

the STAN package.

It is worth emphasizing that besides down weighting outliers, Case 3 also permits a

unique variance for each instrument-source combination, which is impossible for the

log-normal regression model (3.6) where the observational noise is only instrument de-

pendent. Therefore, the log-t model is more flexible than the log-normal model, but with

a price of more computational cost: the dimension of the parameter space for the log-t

model is higher than for the log-normal hierarchical model. Thus, the convergence of the

HMC algorithm is harder to achieve and the sampling takes longer. A potential limitation

of the log-t model is when σij is large, it is very likely that the half variance correction

0.5σ2ij gives a larger value than the absolute value of the error eij, considering the relative

order in terms of σ2ij. This results in yij being very small, i.e., the model is more likely to

generate small outliers as opposed to large outliers. We verify this numerically by simu-

lating data from the model and examining the left and right tails of the observations.
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We demonstrate the effectiveness of the log-t model compared with the log-normal hi-

erarchical model for simulated and real data in Sections 3.3.1.3 and 3.3.2.4. In general,

the log-normal model is robust enough for real applications. Thus, we recommend users

to fit the log-normal model before resorting to the more complicated log-t model. How-

ever, the log-t model can provide more precise results in the presence of outliers, espe-

cially when computational cost is not a concern.

3.3 Examples: simulated and applied results

In Section 3.3.1, we validate the methodology proposed in Section 3.2 through a series of

simulation studies. We show that 1) the log-normal hierarchical model works well when

the model is correctly specified; 2) under realistic model misspecification, the log-normal

hierarchical model can still give valid results; 3) plugging-in known variances given by

astronomers can give overly optimistic results which leads to misleading adjustments,

especially when there exist unknown uncertainties; 4) the log-t model performs better

than the log-normal model in fitting data with outliers. We illustrate model fitting using

real data compiled by IACHEC researchers in Section 3.3.2.

3.3.1 Numerical simulations

3.3.1.1 Simulations with correctly specified model

In Simulation I, we simulate from the log-normal model with N = 10 instruments and

M = 40 sources. We set each Bi = 5 and each Gj = 3, and independently sample

bi = log ai from N (Bi, 0.052). The variances are specified as σ2i = 0.12 and τ2i = 0.052

for each i. When the σ2i are assumed known, Section 3.2.3 gives the posterior distribu-

tions of the Bi and Gj. If, on the other hand, the σ2i are unknown, we specify the priors

with dfg = 2, βg = 0.12 and use the HMC algorithm to obtain a Monte Carlo sample
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from the joint posterior distribution. The results of Simulation I in Fig. 3.1 show that the

posterior distributions of the effective areas and variances match the true values and that

the posterior distributions of the Bi’s are similar regardless of whether the variances are

known.

Figure 3.1: Simulation I. Posterior distributions of the Bi (row 1) and the σi (row 2) under known and un-
known variance scenarios. The gray histograms represent the posterior samples of the Bi and the σi with
unknown variances. The solid vertical lines are the true values. The solid black density curves on top of
the histograms in the first row denote the closed-form posterior densities of the Bi when the σ2i are known
(0.12).

We also find through simulations in Section C.4.1 that for the same number of instru-

ments, the larger the number of sources, the better the estimated effective areas are but the

estimated fluxes may not be better. Whereas for the same number of sources, the larger

the number of instruments, the better the estimated fluxes are but the estimated effective

areas may not be better.

3.3.1.2 Simulations with misspecified model

There are several approximations we make in the log-normal hierarchical model. Specifi-

cally, we model Poisson photon counts using a log-normal distribution and we assume the

Tij are known in (3.1). These approximations are justifiable theoretically. Here we study
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the influences of the former approximation with simulation studies and leave more results

of the latter approximation and a combination of both in Section C.4.2.

Suppose more appropriately that cij ∼ Poisson(Cij) with Cij = AiFj. As mentioned in

Section 3.2, the Gaussian assumption is a good approximation to the Poisson model when

the counts are large. We can directly verify this using numerical experiments.

In Simulation II and III, we set N = 10, M = 40, and choose each τi = 0.05. We

generate the prior mean bi from N (Bi, 0.052). We use independent inverse gamma priors

with shape dfg = 2 and rate βg = 0.12. Besides, in Simulation II, each Bi = 1 and Gj = 1

while in Simulation III, each Bi = 5 and Gj = 3. Thus Simulation II represents a low

count scenario where the normal approximation may not be appropriate. Applying the

delta method to the zero-modified Poisson model c̃ij gives that σ2i1 ≈ 0.3672 and σ2ij ≈

0.0182 (i = 1, . . . ,N, j = 2, . . . ,M). As expected, the fitted values of the Bi and Gj

are much better in Simulation III; Figures 3.2 and 3.3 give detailed comparisons under

Simulations II and III.

Figure 3.2: Simulations II. The legend is the same as in Fig. 3.1.

Suppose a user plugged in σ2i = 0.12, a hypothetical value of the σ2i , as the known

variances. Comparing the histograms and the overlying curves from Fig.s 3.2 and 3.3, we

see that our model fitting with known variances: 1) is overly optimistic if the specified

variances are smaller than the variances estimated under the unknown variance model; 2)

is conservative if the specified variances are larger than the variances estimated under the
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Figure 3.3: Simulations III. The legend is the same as in Fig. 3.1.

unknown variance model.

In summary, when the data is generated from a Poisson model, assuming a hypothet-

ical known variance can possibly be detrimental. If the assumed known variances are

not large enough to account for the model misspecification, the estimated effective areas

and fluxes can be biased and the posterior coverage can be bad; furthermore, the model

gives overly optimistic results – possibly false positive signals. On the contrary, assum-

ing large hypothetical known variances is a much safer choice since the inflated variances

consider of the model misspecification. However, larger variances mean less precision,

which leads to less informative results.

3.3.1.3 Simulation studies with outliers

We demonstrate the effectiveness of the log-t model in dealing with outliers through Sim-

ulation IV. We simulate from a Poisson model with N = 10 and M = 40. We set each

Bi = 5 and G1 = −2, Gj = 3 (j = 2, . . . ,M). The bi are independently sampled from

N (Bi, 0.052). The prior for σ2i /σ2ij is Inv-Gamma with dfg = 4 and βg = 0.12. Apply-

ing the delta method to the zero-modified Poisson model c̃ij gives that σ2i1 ≈ 0.2322 and

σ2ij ≈ 0.0182 (i = 1, . . . ,N, j = 2, . . . ,M). As discussed in Section 3.2.4, when the true

σ2ij for some sources are much larger than the others, the corresponding observations are

likely, but not necessarily, to be outliers. Thus, in this example, the observations from the
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first source are likely to be outliers.

Figure 3.4 compares the fitted results of the log-normal model and the log-t model

through the standardized residuals,

R̂ij =
yij − B̂i − Ĝj + 0.5σ̂2ij

σ̂ij
=

yij − B̂i − Ĝj

σ̂ij
+ 0.5σ̂ij, (3.12)

for the observations from the first three sources. Some observations from the first source

(blue circles) appear to be outliers, with standardized residuals lying outside the [−2, 2]

interval, in the log-normal model but not in the log-t model. In the log-normal model,

setting σ2ij = σ2i causes failure due to some source-dependent large variances: σ2i1 >>

σ2ij (j = 2, . . . ,M). Because we model σ2ij separately for the log-t model, the log-t model is

more capable of handling outliers than the log-normal model. Figure 3.5 shows the poste-

rior distributions of Bi by the log-normal and log-t model and both the models capture the

true value. It is reasonable that the results by the log-t model have slightly larger variance

since the log-t model is more flexible.

Figure 3.4: Simulation IV. Standardized residuals of the log-normal hierarchical model (row 1) and the log-
t model (row 2). The blue circles, yellow squares and black rhombuses represent the first three sources
respectively. The instruments are plotted on the x-axes. The dashed horizontal lines denote the [−2, 2] in-
tervals.
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Figure 3.5: Simulation IX. Posterior distributions (gray histograms) of {Bi}5i=1 of the log-normal hierarchi-
cal model (upper panel) and the log-t model (lower panel).

3.3.2 Data analysis

In this section, we fit the log-normal hierarchical model to three data sets compiled by

IACHEC26 researchers, with the aim of understanding calibration properties of vari-

ous X-ray telescopes (instruments) such as Chandra, XMM-Newton, Suzaku, Swift, etc.

See Marshall et al. 32 for detailed descriptions of the data collection and preprocessing.

3.3.2.1 E0102 data

E0102 is the remnant of a supernova that exploded in a neighboring galaxy known as

the Small Magellanic Cloud4 and is a calibration target for a variety of X-ray missions.

We consider four photon sources associated with E0102. Each of the sources is a local

peak or line that appears in the E0102 spectrum. (A spectrum can be thought of as a high-

resolution histogram of the energies of photons originating from E0102. We consider the

photon counts in four bins of this histogram.) Two of the lines are associated with highly

ionized Oxygen (Hydrogen Lyman-α like OVIII at 18.969Å and the resonance line of

OVII from the He-like triplet at 21.805Å) and the other two are associated with Neon (H-

like NeX at 12.135Å and He-like resonance line Ne IX at 13.447Å). We consider repli-

cate data obtained with 13 different detectors configurations respectively over 4 separate

telescopes, Chandra (HETG and ACIS-S), XMM-Newton (RGS, EPIC-MOS, EPIC-pn),
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Suzaku (XIS), and Swift (XRT). Details of how the spectra are preprocessed to obtain rel-

evant line counts can be found in Plucinsky et al. 38. Because the energies of the two O

lines are similar, it is reasonable to assume that the associate effective areas are also sim-

ilar, likewise for the Neon lines are their effective areas. Therefore, we consider two sep-

arate data sets, one with OVII and OVIII treated as its two sources, and the other with

Ne IX and NeX treated as its two sources. The measured fluxes (counts) have been nor-

malized relative to those measured in one of the detectors (RGS1). This is an arbitrary

choice: we do not expect that RGS1 represents the ground truth, see Plucinsky et al. 38.

We apply the log-normal hierarchical model in Section 3.2.2 to the two data sets. The

hyper-parameters are dfg = 1.5, βg = 0.0142 for OVII, OVIII and dfg = 1.5, βg =

0.0092 for Ne IX, NeX. These values are chosen based on empirical knowledge about

the measurement uncertainties. We set each bi = 0, i.e., with an expectation that no

adjustment is needed across detectors, with confidence τi. We use two possible values

τi = 0.025 and τ = 0.05 according to the empirical knowledge of astronomers to study

the influence of the τi on the analysis.

Figure 3.6 shows the adjustments of the log-scale effective area for O (row 1) and Ne

(row 2) in the E0102 data sets. We can find that the estimated values of the Bi are not sen-

sitive to the choices of the τi except for detector XRT-PC. We compute the estimated prior

influence as defined in Section 3.2.3, i.e., Ŵi =
τ−2
i

τ−2
i +|Ji|σ̂−2

i
, for XRT-PC in the Ne data; the

value is 0.91 when τi = 0.025 and 0.02 when τi = 0.05. When the prior variance of Bi is

too small (τi = 0.025), the model treats the observations as being less accurate (by fitting

a large σi) instead of adjusting the effective area of the corresponding instrument more (a

larger deviation from bi). Figure 3.6 suggests that the effective areas of MOS1, MOS2,

XIS1, XIS2, XIS3 needs to be adjusted downward and those of pn, XRT-WT, XRT-PC

needs to be adjusted upward.

66



Figure 3.6: Adjustments of the log-scale of detector effective area for O (row 1) and Ne (row 2) in E0102
data set. The x-axis labels the detectors and the y-axis is Bi. The horizontal dashed lines represent zero,
which is the baseline. The vertical bars denote 95% posterior interval for each Bi, whereas the dots denote
the posterior means. The blue bars correspond to τi = 0.025 and the black bars correspond to τi = 0.05.
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3.3.2.2 2XMM data

The 2XMM catalogue can be used to generate large, well-defined samples of various

types of astrophysical objects, notably active galaxies (AGN), clusters of galaxies, in-

teracting compact binaries, and active stellar coronae, using the power of X-ray selec-

tion59. The 2XMM data are from the XMM-Newton European Photon Imaging Cameras

(EPIC). Briefly, there are three EPIC instruments: the EPIC-pn (pn) and the two EPIC-

MOS detectors (MOS1 and MOS2). These detectors have separate X-ray focusing optics

but are co-aligned so that the sources in our samples are observed simultaneously in the

pn, MOS1, and MOS2 detectors.

The 2XMM data contains three data sets, corresponding to the hard (2.5 - 10.0 keV),

medium (1.5 - 2.5 keV) and soft (0.5 - 1.5 keV) energy bands. The three detectors (pn,

MOS1 and MOS2) are used to measure 41 sources in the hard band, 41 in the medium

band, and 42 in the soft band. The sources are from the 2XMM EPIC Serendipitous Source

Catalog58, selected to be sufficiently faint that pileup, which occurs when several pho-

tons hit the detector at the same time and causes extra uncertainty in observations, is not

a problem. With sufficient exposure, on average 1,500 counts are collected from the faint

sources in each band for each detector.

We fit the log-normal hierarchical model in Section 3.2.2 to the three data sets indi-

vidually. We set dfg = 1.5 for all energy bands and set βg = 0.1162 for hard band,

βg = 0.2882 for medium band, and βg = 0.1482 for soft band. We again use bi = 0

and try τi = 0.025 and τi = 0.05. Figure 3.7 shows the adjustments of the log-scale ef-

fective area for hard band (left), medium band (middle) and soft band (right) for 2XMM

data, with both values of the τi. The results confirm the astronomers’ intuition that no

adjustment of the effective areas of the different detectors are needed for 2XMM data, re-

gardless of the choice of the τi. We tabulate the proportion of prior information for each
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detector-source pair in Section C.5.

Figure 3.7: Adjustments of the log-scale effective areas for hard band (left), medium band (middle) and soft
band (right) of the 2XMM data set. The legend is the same as in Figure 3.6.

3.3.2.3 XCAL data

Another XMM data consists of bright active galactic nuclei from the XMM-Newton

cross-calibration sample, denoted as the XCAL data set. The pileup is very important

for XCAL data, so the image data are clipped to eliminate the regions affected by pileup

and the estimated effective area is adjusted according to lookup tables (from other in-

flight data) that account for the unused regions. The region that is clipped out is deter-

mined using a standard XMM software task (called epatplot) and depends on the observed

source intensity: unused regions are larger for brighter sources. This process is described

in more detail in our companion paper32.

Like the 2XMM data, XCAL data are composed of three data sets: the hard, medium,

and soft energy bands. For each energy band, three detectors, MOS1, MOS2 and pn, are

used to measure 94 (hard band), 103 (medium band), and 108 (soft band) sources. The

model fitting follows the same procedure as detailed in Section 3.3.2.2. We again use

bi = 0 and try τi = 0.025 and τi = 0.05. For the prior on each σ2i , we set dfg = 1.5

for all three energy bands and βg = 0.0282 for the hard band, βg = 0.0932 for the medium

band, and βg = 0.0262 for the soft band.
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Figure 3.8 demonstrates that adjustment of the effective areas is needed to make the

measured fluxes consistent across different detectors. We take four sources from the

medium band data and use black vertical bars to denote the 95% interval (mean ± 2 given

standard deviations) for the log-fluxes obtained with a standard astronomical method for

each of the three detectors. The intervals match in some cases but are quite distinct in oth-

ers. For each source, we also plot the 95% posterior intervals of the estimated log-fluxes

after adjustment using the log-normal hierarchical model. The fitting results with differ-

ent τi are consistent, regardless of the length of the posterior interval. This simple visu-

alization gives us evidence that calibration of the effective areas is necessary to obtain

consistent flux estimates.

Figure 3.8: Comparison of estimated 95% intervals for log-fluxes using standard astronomical method (left
three bars) and those by fitting the log-normal hierarchical model (right two bars) for four representative
sources from medium band measurements. The titles of each panel give the names of the sources.

Finally, we show how to adjust the effective areas of each instrument to obtain the re-

sults illustrated in the rightmost interval in each panel of Fig. 3.8. Figure 3.9 shows the

necessary adjustment of the Bi for hard band (left), medium band (middle) and soft band

(right). For all these bands, we must adjust pn upward and MOS2 downward.
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Figure 3.9: Adjustments of the log-scale effective areas for hard band (left), medium band (middle) and soft
band (right) for XCAL data. The legend is the same as in Figure 3.6.

3.3.2.4 Model checking

In this section, we study how well the log-normal hierarchical model captures the ob-

served variability in the data. We visualize the residuals of the fitted log-normal hierar-

chical model and deploy a posterior predictive check.

We propose using residual plots to visualize the goodness-of-fit. Specifically, Fig-

ure 3.10 plots the standardized residuals, as shown in (3.12), for data analyzed in Sec-

tion 3.3.2.3 with τi = 0.05, with the left panel denoting the results from the log-normal

hierarchical model and the right panel denoting the results from the log-t model. Nearly

all of the standardized residuals fall in the interval [−3, 3] for the log-normal hierarchi-

cal model and [−2, 2] for the log-t model. The observations of 3C111 in all three energy

bands are the only outliers (with large standardized residuals) in the log-normal hierar-

chical model, but not for the log-t model which down weights the outliers. The adjusted

effective areas and the estimated fluxes are not too sensitive to whether or not we include

the outliers in the analysis. Thus the log-normal hierarchical model is good enough for

the data in Section 3.3.2.3.

We use a posterior predictive check33,13 to detect if there is any serious error with the

log-normal hierarchical model. In a posterior predictive check, one chooses a test statistic

and computes the corresponding posterior predictive p-value. The test statistic we choose
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Figure 3.10: Standardized residuals of hard (row 1), medium (row 2) and soft (row 3) band data in Sec-
tion 3.3.2.3 with τi = 0.05, the log-normal hierarchical model on the left panel and log-t model on the right
panel. The blue circles, yellow squares and black rhombuses denote the instruments pn, MOS1 and MOS2
respectively. The dashed horizontal lines denote the [−3, 3] intervals and the horizontal dots denote [−2, 2]
intervals.
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is {
Ti = yi· − y =

∑M
j=1 yij
M

−
∑N

i=1
∑M

j=1 yij
NM

}N

i=1

,

which reflects the relative magnitudes of the log scale effective areas. None of the pos-

terior predictive p-values for any of our datasets is significant, i.e., we never fail the pos-

terior predictive check. Therefore, regarding potential serious defects of our model, the

results are encouraging so far because the tests do not show any serious discrepancy.

3.4 Discussions and conclusions

3.4.1 Discussion of frequentist method

In Section 3.2, we adopt a Bayesian perspective, which leads to the log-normal hierarchi-

cal model elaborated in Sections 3.2 and 3.3. Here we discuss the alternative frequentist

method of tackling the calibration concordance problem.

3.4.1.1 MLEs and asymptotic properties

The regression model in (3.3) together with (3.4) yields a special case of a multivariate

linear regression and can be fitted as such. Nonetheless, it is more straightforward and

instructive to fit the model via maximum likelihood.

When the variances ψ are known, the regression model we consider is in fact a Gaus-

sian model. Thus, the variances of the MLEs can be obtained through inverting the Fisher

information matrix. Theorem C.2 in Section C.3.1 gives the MLEs of the Bi and the Gj.

Proposition C.1 in Section C.3.1 gives the closed-form solution of the variance-covariance

matrix for the MLEs of the Bi and the Gj when all the instruments measure all sources.

Furthermore, the standardized residual sum of squares follow a chi-squared distribution,

which enables easy testing of the goodness-of-fit; see Section C.3.2 for details.
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When the variances ψ are unknown, in principle, we can also obtain the (asymptotic)

variance of the MLEs by calculating the observed/expected Fisher information. However,

the number of unknown parameters (2N + M), grows infinitely as the number of obser-

vations (NM + N) goes to infinity. Whether the classical MLE asymptotic theory can be

easily adapted to this situation is a problem for future study.

These estimators are approximately valid even if the Gaussian assumptions made in

(3.3) and for the bi are not valid. In this case, the variance of the estimator requires a

more complicated sandwich formula, which involves both the Fisher information and the

variance of the score function. Here we say approximately valid because the half-variance

correction of Section 3.2 would still depend on the normal assumption. Consequently,

when the variance is large, our bias correction may be off if the normal assumption is

severely violated.

3.4.1.2 Comparison to Bayesian method

It is easy to check that when the variances ψ are known, the MLEs of the Bi and the Gj

corresponds to the MAP estimation defined in (3.8), which also have the intuitive inter-

pretation as shrinkage estimators. When the variances are unknown, the likelihood func-

tion is unbounded on the boundary (σ2i = 0) and the maximization algorithm converges

to the boundary of the parameter space. The conjugate priors for the variance parameters

in the Bayesian model regularizes the likelihood and gives a proper posterior distribu-

tion. This is another reason why we adopt the Bayesian model when the variances are

unknown.

3.4.2 Conclusions and future work

In this chapter, we propose a log-normal approach to tackle the calibration concordance

problem which consists of measurements of intrinsic properties of multiple astronomical
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objects with multiple instruments. This approach well represents the physical multiplica-

tive model on the mean captured by the residuals on the log scale and is shown reason-

ably robust to misspecification of the physical model, which is typically the case in prac-

tice. In addition, we generalize the log-normal hierarchical model to a more flexible log-t

model which is more robust to outliers, which are prevalent in astrophysical observations.

We resolve the identifiability problem of the measurement model by incorporating the im-

precise, empirical knowledge of scientists accordingly. Intuitively, the different pieces of

information coming from experts’ knowledge, as vague or as precise as it is, and the ob-

servations are combined using the shrinkage estimators. We adopt the Hamiltonian Monte

Carlo algorithm to obtain the posterior distribution, which resides in a high-dimensional

space with highly correlated parameters. We give detailed descriptions of the model fit-

ting and illustrate our method via a variety of simulation studies and real data results.

The log-normal hierarchical model proposed in this chapter works well for real data

and yields important astronomical findings – concrete guidance about systematic adjust-

ments of the effective areas for each instrument are given thus concordance of an intrinsic

property for each astronomical object across different instruments is achieved. Calibra-

tion scientists are thus able to make absolute measurements of properties of astronomical

objects using different instruments. Furthermore, we detect the danger of wrongly fix-

ing the observation noise, which scientists are tempted to do, through various simulation

experiments that mimic possible realistic uncertainties.

There are several future works that can improve the current model. First, we assume

that the effective areas are independent as a priori, which is not always true in practice.

Sometimes the effective areas across different energy bands are correlated. We plan to

take this correlation structure into account in future modeling. Second, the log-normal

hierarchical model gives conservative results under realistic model misspecification ac-

cording to our simulation studies. Theoretical properties of the log-normal approach un-

75



der model misspecification need to be further investigated. Third, the statistical properties

of the log-t model need more study. Last, the asymptotic properties of the models pro-

posed in this chapter are intriguing issues to be addressed, under the bigger umbrella of

the asymptotic behaviors of models with both the number of parameters and the number

of observations approaching infinity.
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A
Supplementary materials for Chapter 1

A.1 Computation time

We study the computing time for different methods with sample sizes n = 50, 100, 225

and 500. For each n we simulate 1,000 observations and record the computing time for

every method; the average time is shown in Fig A.1. The computing time for G2
t is twice

as much as the computing time for G2
m due to the normalizing constant. This time can be

further reduced by tabulating the normalizing constant for pairs of (n, λ0). G2
m and G2

t are

more time efficient compared with DCOR, DDP and MICe.
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Figure A.1: The left figure shows the average computing time of G2
m (black solid), G2

t (grey solid), COR
(grey markers), DCOR (black dashes) and DDP (black dots) for 1,000 simulations with sample sizes n =
50, 100, 225 and 500; the right figure shows the average computing time of mutual information (black
solid), MICe (grey solid), ACE (grey markers), characteristic function (black dashes), Genest’s test (black
dots) and Hoeffding’s test (black markers). The x-axis is the logarithm of n with base e and the y-axis is the
logarithm of the computing time in seconds with base 10.

A.2 Segmented regression

The R-squared for segmented regression with predictor X and response Y is

R2 = 1−
∑K

h=1 nhσ̂
2
h

nν̂2
,

where ν̂2 is the sample variance of Y, nh and σ̂2h are sample size and residual variance of Y

after regressing on X in segment h (h = 1, . . . ,K). R2 can be viewed as an estimator of

R2
Y|X = 1− E{var(Y | X)}

var(Y)
;

it is zero if and only if E(Y | X) is a constant. G2
Y|X is zero if and only if both E(Y | X) and

var(Y | X) are constant. G2
Y|X equals R2

Y|X when var(Y | X) is a constant, but G2
Y|X is more

general than R2
Y|X since it can capture heteroscedastic effects.

Given a fixed number of segments K, computing R2
Y|X with the optimal segmentation is
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more computationally intensive than computing G2
m and G2

t , especially when K is large.

When K is unknown, we can apply the same dynamic programming algorithm for G2
m

or G2
t and fit a penalized version of the segmented regression to avoid over-fitting. If

we also require that the fitted curve be continuous, no exact numerical solution is avail-

able; we can potentially design a Markov chain Monte Carlo algorithm under a Bayesian

framework.

A.3 Proofs of consistency and relationship with R-squared

A.3.1 Proof of Theorem 1.1 - consistency

The following lemma is needed for the main theorem.

Lemma A.1. Suppose X and Y are univariate continuous random variables with |X|, |Y| <

B and var(Y) > b−2. Given n observations (xi, yi) (i = 1, . . . , n) and let σ̂2 be the residual

variance after regressing Y on X. Then,

pr
[∣∣∣∣σ̂

2 −
{
var(Y)− cov2(X, Y)

var(X)

}∣∣∣∣ > ε
]

≤ 10e−C1(B,b)nε2

with C1(B, b) = (288b2B4)−1 min{1, (4b2B2)−1} and ε > 0 small enough.

Proof of Lemma A.1. Without loss of generality, we assume E(X) = E(Y) = 0, var(X) =

var(Y) = 1 and E(XY) = ρ. By definition

σ̂2 =
1
n

n∑

i=1

y2i −
(
1
n

n∑

i=1

yi

)2

−
{ 1

n
∑n

i=1 xiyi − ( 1n
∑n

i=1 xi)(
1
n
∑n

i=1 yi)
}2

1
n
∑n

i=1 x2i − ( 1n
∑n

i=1 xi)2
.
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Then x2i , y2i ∈ [0, B2], xiyi ∈ [−B2, B2]. According to Hoeffding’s inequality,

pr

(∣∣∣∣∣
1
n

n∑

i=1

xi

∣∣∣∣∣ > ε/6

)
, pr

(∣∣∣∣∣
1
n

n∑

i=1

yi

∣∣∣∣∣ > ε/6

)
, pr

(∣∣∣∣∣
1
n

n∑

i=1

x2i − 1

∣∣∣∣∣ > ε/6

)
,

pr

(∣∣∣∣∣
1
n

n∑

i=1

y2i − 1

∣∣∣∣∣ > ε/6

)
, pr

(∣∣∣∣∣
1
n

n∑

i=1

xiyi − ρ

∣∣∣∣∣ > ε/6

)
≤ 2 exp{−c(B)nε2}

with c(B) = (72B2)−1 min(1, B−2). If ε < 1 and

∣∣∣∣∣
1
n

n∑

i=1

xi

∣∣∣∣∣ ,

∣∣∣∣∣
1
n

n∑

i=1

yi

∣∣∣∣∣ ,

∣∣∣∣∣
1
n

n∑

i=1

x2i − 1

∣∣∣∣∣ ,

∣∣∣∣∣
1
n

n∑

i=1

y2i − 1

∣∣∣∣∣ ,

∣∣∣∣∣
1
n

n∑

i=1

xiyi − ρ

∣∣∣∣∣ ≤ ε/6,

we have

∣∣σ̂2 − 1+ ρ2
∣∣ ≤

∣∣∣∣∣1−
1
n

n∑

i=1

y2i

∣∣∣∣∣+

∣∣∣∣∣
1
n

n∑

i=1

yi

∣∣∣∣∣

2

+
| 1n
∑n

i=1 x2i − ( 1n
∑n

i=1 xi)2 − 1|ρ2

| 1n
∑n

i=1 x2i − ( 1n
∑n

i=1 xi)2|

|
{ 1

n
∑n

i=1 xiyi − ( 1n
∑n

i=1 xi)(
1
n
∑n

i=1 yi)
}2 − ρ2|

| 1n
∑n

i=1 x2i − ( 1n
∑n

i=1 xi)2|

≤ 4(ε/6+ ε2/36)
1− ε/6− ε2/36

< ε.

So pr
(∣∣σ̂2 − 1− ρ2

∣∣ > ε
)
≤ 10 exp{−c(B)nε2}. For general cases, define

X′ =
X− E(X)
sd(X)

, Y′ =
Y− E(Y)
sd(Y)

.

Then E(X′) = E(Y′) = 0, var(X′) = var(Y′) = 1 and |X′|, |Y′| < 2bB. Thus,

pr
[∣∣∣∣σ̂

2 −
{
var(Y)− cov2(X, Y)

var(X)

}∣∣∣∣ > ε
]

= pr
[∣∣σ̂′2 − {1− cov2(X′, Y′)}

∣∣ > ε
var(Y)

]

≤ 10 exp{− c(2bB)
var(Y)2

nε2} = 10 exp{−C1(B, b)nε2}
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with C1(B, b) = (288b2B4)−1 min{1, (4b2B2)−1}.

Proof of Theorem 1.1. We only need to prove that G2
m(Y | X, λ0) and G2

t (Y | X, λ0) are

consistent estimators of G2
Y|X. If so, by switching X and Y, we must have that G2

m(X |

Y, λ0) and G2
t (X | Y, λ0) are consistent estimators of G2

X|Y which guarantees the consis-

tency of G2
m(λ0) and G2

t (λ0).

We first introduce some notations that will appear later. Suppose |X|, |Y| < B. Con-

dition 1 shows that νX(y) > b−2 almost surely. Let m = ⌈n1/2⌉ be the minimum size of

slices, and let s ∈ S denote a slice and ps be the probability that an observation falls in

s. Let Es, vars, and covs denote the mean, variance and covariance conditional on slice s.

Finally, define

σ2s = vars(Y)−
cov2s (X, Y)
vars(X)

.

Then by definition

σ2s ≥ vars(Y)− vars{E(Y | X)} = Es{var(Y | X)} ≥ exp[Es{log var(Y | X)}] ≥ b−2.

For observations (xi, yi) (i = 1, . . . , n), let ν̂2 be the estimated variance of Y and σ̂2s be the

residual variance after regressing Y on X in slice s. Besides, we use the following inequal-

ity

1− x−1 < log x < x− 1, x > 0

throughout the proof.

Now we prove that G2
m(Y | X, λ0) is a consistent estimator for G2

Y|X. Define

dY|X = log var(Y)− E {log var(Y | X)} ,
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so G2
Y|X = 1− exp(−dY|X). Because

G2
m(Y | X) = 1− exp{− max

S: mS≥m
D(Y | S, λ0)},

we only need to show the consistency of maxS: mS≥m D(Y | S, λ0), denoted as D(Y | X, λ0).

We prove this in two steps:

Step 1: We show that there exists η1(n) > 0 and η1(n) → 0 as n → ∞, such that

pr
{
lim sup
n→∞

D(Y | X, λ0) < dY|X + η1(n)
}

= 1,

which means that D(Y | X, λ0) is almost surely smaller than dY|X. Because for any slicing

scheme S, log var(Y)−
∑

s∈S ps log σ2s ≤ dY|X, it is enough to show that there is η1(n) such

that

pr

{
lim sup
n→∞

D(Y | S, λ0)− log var(Y) +
∑

s∈S

ps log(σ2s ) < η1(n)

}
= 1.

Let δ(n) = log(n)n−1/4. By definition of D(Y | S, λ0), we have

D(Y | S, λ0)− log var(Y) +
∑

s∈S

ps log(σ2s )

≤
{
log ν̂2 − log var(Y)

}
+
∑

s∈S

(
ps −

ns
n

)
log σ2s +

∑

s∈S

ns
n
(
log σ2s − log σ̂2s

)
.

First, we consider log ν̂2 − log var(Y). By Hoeffding’s inequality, for 0 < ε < 2,

pr
{
|ν̂2 − var(Y)| > ε

}

≤ pr

[∣∣∣∣∣
1
n

n∑

i=1

{yi − E(Y)}2 − var(Y)

∣∣∣∣∣ > ε/2

]
+ pr

{∣∣∣∣∣
1
n

n∑

i=1

yi − E(Y)

∣∣∣∣∣ > ε/2

}

≤ 4 exp
[
−nε2 min{1, (4B2)−1}(8B2)−1] ,
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we have

pr
{
log ν̂2 − log var(Y) > δ(n)

}

≤ pr
{
ν̂2 − var(Y) > var(Y)δ(n)

}
≤ 4n−c1n1/2 log n (A.1)

with c1 = min{1, (4B2)−1}(8b4B2)−1.

Second, we consider
∑

s∈S(ps − ns/n) log σ2s . Let us define a new random variable Z

and Z = log σ2s if X is in slice s. Let zi (i = 1, . . . n) be n independent observations of Z,

then,

E(Z) =
∑

s∈S

ps log σ2s ,
1
n

n∑

i=1

zi =
∑

s∈S

ns
n
log σ2s .

By Hoeffding’s inequality and the fact that σ2s ∈ [b−2, B2],

pr

{∣∣∣∣∣
∑

s∈S

(ps −
ns
n
) log σ2s

∣∣∣∣∣ > δ(n)

}
≤ 2n−c2n1/2 log n (A.2)

with c2 = min(1/| logB|2, 1/| log b|2)/2.

Third, we focus on the difference between log σ̂2s and log σ2s . Consider a slicing scheme

Qn of n4 slices such that an observation falls in each slice equally. Given n observations,

the probability for any of the n4 slices containing more than one observations is smaller

than

n4
{
1−

(
1+ n−3) (1− n−4)n} ≤ n−2.

Then event

E1,n = {each slice of Qn has at most one observation}

satisfies pr (lim infn→∞ E1,n) = 1. Thus, we only need to consider slicing schemes that are
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more refined than Qn, denoted as S ≼ Qn. Define the set of slices as

Ξ = {s | there exists S ≼ Qn such that s ∈ S}.

The set Ξ contains at most n4(n4 + 1)/2 = O(n8) slices. Each slice s ∈ Ξ contains at least

m observations. By Lemma A.1, if δ(n) < 0.5b−2,

pr
{
log σ2s − log σ̂2s > δ(n)

}
(A.3)

≤ P{σ2s/σ̂
2
s − 1 > δ(n)}

≤ pr
{
|σ̂2s − σ2s | > δ(n)

}
+ P

{
|σ̂2s − σ2s | > δ(n)σ̂2s , |σ̂

2
s − σ2s | ≤ δ(n)

}

≤ 20n−c3 log(n).

with c3 = C1(B, b)min{1, (4b4)−1}. Let η1(n) = 3δ(n) and event

E2,n = {max
S≼Qn

D(Y | S, λ0) < dY|X + η1(n)}.

Combine the results of (A.1)–(A.3), we have pr (lim infn→∞ E1,n ∩ E2,n) = 1, which

means that G2
m(Y | X, λ0) is almost surely smaller than G2

Y|X.

Step 2: Next, we show that there exists η2(n) > 0 and η2(n) → 0 as n → ∞, such that

pr
{
lim inf
n→∞

D(Y | X, λ0) > dY|X − η2(n)
}
= 1,

which means that D(Y | X, λ0) is almost surely larger than dY|X. We just need to prove that

for any sample size n, there exists a slicing scheme Tn such that

pr
(
lim inf
n→∞

E3,n ∩ E4,n

)
= 1,
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where

E3,n = {each slice of Tn contains at least m samples}

and

E4,n = {D(Y | Tn, λ0) > dY|X − η2(n)}.

Consider a slicing scheme Tn of ⌊n1/4⌋ slices such that an observation falls in one slice

equally. Then, we further divide each slice into ⌊n1/2⌋ bins such that an observation falls

in each bin equally. Given n observations, the probability that each bin contains at least

one observation is greater than

1− ⌊n1/4⌋⌊n1/2⌋(1− n−3/4)n > 1− ⌊n1/4⌋⌊n1/2⌋e−n1/4 ,

so each slice of Tn contains at least m observations. Then, pr (lim infn→∞ E3,n) = 1. De-

fine

Δn(Tn) = log var(Y)−
∑

s∈Tn

ps log vars(Y).

We first consider the difference between D(Y | Tn, λ0)− Δn(Tn):

D(Y | Tn, λ0)− Δn(Tn)

≥
{
log ν̂2 − log var(Y)

}
+
∑

s∈Tn

(
ps −

ns
n

)
log vars(Y) +

∑

s∈Tn

ns
n
{log vars(Y)− log σ̂2s}

−λ0n−3/4 log n.
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Similar as (A.1), if δ(n) < 0.5b−2,

pr
{
log ν̂2 − log var(Y) < −δ(n)

}
(A.4)

≤ pr
{
1− var(Y)/ν̂2 < −δ(n)

}

≤ pr
{
|ν̂2 − var(Y)| > δ(n)

}
+ P

{
|ν̂2 − var(Y)| > δ(n)ν̂2, |ν̂2 − var(Y)| ≤ δ(n)

}

≤ 4n−c4n1/2 log n

with c4 = (8B2)−1 min{1, (4B2)−1}min{1, (4b4)−1}. Similar as (A.2), we have

pr

{∣∣∣∣∣
∑

s∈S

(ps −
ns
n
) log vars(Y)

∣∣∣∣∣ > δ(n)

}
≤ 2n−c2n1/2 log n. (A.5)

Besides, vars(Y) ≥ σ2s and

pr
{
log vars(Y)− log σ̂2s < −δ(n)

}
(A.6)

≤ pr
{
log σ2s − log σ̂2s < −δ(n)

}

≤ pr
{
1− σ̂2s/σ2s < −δ(n)

}

≤ pr
{
|σ̂2s − σ2s | ≥ b−2δ(n)

}
≤ 10n−C(B,b)b−4 log(n).

Now, define δ1(n) = 3δ(n) + λ0 log(n)n−3/4 and event

E5,n = {D(Y | Tn, λ0) > Δn(Tn)− δ1(n)}.

By (A.4)–(A.6), pr (lim infn→∞ E3,n ∩ E5,n) = 1.

The only problem left is how to control the difference between Δn(Tn) and dY|X, which
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is

Δn(Tn)− dY|X =
∑

s∈Tn

ps
{
1
ps

∫

s
log ν2Y(x)fX(x)dx− log vars(Y)

}
.

Denote the probability density function of X as fX(x). For one slice s, because X is a con-

tinuous random variable, set

1
ps

∫

s
μY(x)fX(x)dx = μY(x

′
s),

1
ps

∫

s
log ν2Y(x)fX(x)dx = log ν2Y(x′′s ),

where x′s and x′′s lie in the slice almost surely. Then

log ν2Y(x′′s )− log vars(Y)

= log ν2Y(x′′s )− log
[
1
ps

∫

s
ν2Y(x)fX(x)dx+

1
ps

∫

s
{μY(x)− μY(x

′
s)}

2 fX(x)dx
]

= log ν2Y(x′′s )− log
[
ν2Y(x′′s ) +

1
ps

∫

s

∫ x

x′′s
2νY(z)ν′Y(z)dzfX(x)dx

+
1
ps

∫

s

{∫ x

x′s
μ′Y(z)dz

}2

fX(x)dx

]

≥ log ν2Y(x′′s )− log

[
ν2Y(x′′s ) +

∫

s
2νY(x)|ν′Y(x)|dx+

{∫

s
|μ′Y(x)|dx

}2
]
.

According to Condition 3, we have

log ν2Y(x′′s )− log vars(Y)

≥ log ν2Y(x′′)− log
{
ν2Y(x′′) + 2C

∫

s
ν2Y(x)dx+ C2

∫

s
1dx

∫

s
ν2Y(x)dx

}

≥ −
∫
s ν

2
Y(x)dx

(
2C+ C2

∫
s 1dx

)

ν2Y(x′′)

≥ −2b2B2C(1+ BC)
∫

s
1dx.

87



Then, we can conclude

Δn(Tn)− dY|X ≥ −2psb2B2C(1+ BC)
∑

s∈Tn

∫

s
1dx

≥ −4⌊n1/4⌋−1(1+ BC)Cb2B3 = −δ2(n).

Therefore, let η2(n) = δ1(n) + δ2(n), we have pr (lim infn→∞ E3,n ∩ E4,n) = 1, which

means G2
m(Y | X, λ0) is almost surely larger than G2

Y|X. By Steps 1 and 2, we can conclude

that G2
m(Y | X, λ0) is a consistent estimator of G2

Y|X.

To prove the consistency of G2
t (Y | X, λ), we introduce a new quantity

Z(λ0) =
∑

ms≥m

n−λ0(|S|−1)/2;

Z(λ0) is bounded by 1 and (1 + n−λ0/2)n. By definition of G2
m(Y | X, λ0) and G2

t (Y | X, λ0),

we have

{
1− G2

t (Y | X, λ0)
}−n/2

= Z(λ0)−1
∑

S: mS≥m

exp{n
2
D(Y | S, λ0)}

≥ Z(λ0)−1 exp{n
2
D(Y | X, λ0)},

{
1− G2

t (Y | X, λ0)
}−n/2 ≤ Z(λ0)−1

∑

S: mS≥m

exp{n
2
D(Y | S, λ0

2
)− λ0

4
(|S|− 1) log(n)}

≤ Z(λ0)−1Z(
λ0
2
) exp{n

2
D(Y | X, λ0

2
)}.

By the consistency of D(Y | X, λ0) and D(Y | X, λ0/2), we prove that G2
t (Y | X, λ0) is an

consistent estimator of G2
Y|X.
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A.3.2 Consistency of G2
m and G2

t with empirical Bayes selection of λ0

Suppose λ∗0 is the optimal λ0 that maximizes bf(λ0) from a range [λ1, λ2] with λ1 > 0.

Then Z(λ2) ≤ Z(λ∗0) ≤ Z(λ1) and

G2
m(Y | X, λ∗0) ≤ G2

m(Y | X, λ1),
{
1− G2

m(Y | X, λ∗0)
}−n/2

= exp{n
2
D(Y | X, λ∗0)}

≥ Z(λ2)−1
∑

S: mS≥m

exp{n
2
D(Y | S, λ∗0 + λ2)}

≥ Z(λ2)−1 {1− G2
m(Y | X, 2λ2)

}−n/2
,

{
1− G2

t (Y | X, λ∗0)
}−n/2

= Z(λ∗0)−1
∑

S: mS≥m

exp{n
2
D(Y | S, λ∗0)}

≥ Z(λ1)−1 {1− G2
m(Y | X, λ2)

}−n/2
,

{
1− G2

t (Y | X, λ∗0)
}−n/2 ≤ Z(λ∗0)−1

∑

S: mS≥m

exp{n
2
D(Y | S, λ1)}

≤ Z(λ2)−1Z(λ1)
{
1− G2

t (Y | X, λ1)
}−n/2

.

By the consistency of G2
m(Y | X, λ1), G2

m(Y | X, 2λ2), G2
m(Y | X, λ2) and G2

t (Y | X, λ1),

we conclude that G2
m(Y | X, λ∗0) and G2

t (Y | X, λ∗0) are consistent estimators. Then the

estimators with data-driven λ0 are consistent.

A.3.3 Proof of Theorem 1.2 - Equivalence between G2
m and R2

The following lemma is needed for the main theorem.

Lemma A.2. Let (p1, p2, p3) ∼ Dir(k1, k2, 2) and

Λ(q, p) = (k1 − 1) log
q1
p1

+ (k2 − 1) log
q2
p2
.
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Then for any k1, k2 ≥ 3, q1, q2 > 0, q1 + q2 = 1 and function δ(p) > 0,

pr {Λ(q, p) ≥ δ(p)} ≤ (k1 + k2)3
∫ 1

0
e−δ(p)dp.

Proof of Lemma A.2. By definition, we have

pk1−1
1 pk2−1

2 (1− p1 − p2) ≤ qk1−1
1 qk2−1

2 e−Λ(q,p),

so that

pr {Λ(q, p) ≥ δ(p)}

=
(k1 + k2 + 1)!

(k1 − 1)!(k2 − 1)!

∫

Λ(q,p)≥δ(p)
pk1−1
1 pk2−1

2 (1− p1 − p2)dp1dp2

≤ (k1 + k2 + 1)!
(k1 − 1)!(k2 − 1)!

qk1−1
1 qk2−1

2

∫

Λ(q,p)≥δ(p)
e−Λ(q,p)dp1dp2

≤ (k1 + k2)3
(k1 + k2 − 2)!

(k1 − 1)!(k2 − 1)!
qk1−1
1 qk2−1

2

∫

Λ(q,p)≥δ(p)
e−Λ(q,p)dp1dp2

≤ (k1 + k2)3
∫ 1

0
e−δ(p)dp.

Proof of Theorem 1.2. If the slice scheme on X has only one slice, we have

D(Y | S, λ0) = log ν̂2 − log σ̂2 = − log(1− R2),

where σ̂2 is the residual variance after regressing Y on X. Intuitively, if Y and X follow a

bivariate normal, the optimal slice scheme is only one slice in each direction. Now, we

show that

pr
{
D(Y | X, λ0) + log(1− R2) > 0

}
< 1.5n−λ0/3+5.
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For any slice scheme S,

D(Y | S, λ0) + log(1− R2) = log σ̂2 −
∑

s∈S

ns
n
log(σ̂2s )−

λ0
n
(|S|− 1) log n.

Without loss of generality, we assume that var(Y) = 1 and x1 < . . . < xn. Suppose the

connected slices each has ni (i = 1, . . . |S|) observations. For 1 ≤ j < k ≤ n, define

Δ(j, k, λ0) =
k
n
log{σ̂(k)}2 − j

n
log{σ̂(j)}2 − k− j

n
log{σ̂(k,j)}2 − λ0

n
log n.

Here, {σ̂(j)}2 is the residual variance of regressing yi on xi (i = 1, . . . , j), {σ̂(k)}2 is the

residual variance of regressing yi on xi (i = 1, . . . , k) and {σ̂(k,j)}2 is the residual variance

of regressing yi on xi (i = j+ 1, . . . , k). For given j, k, let

p1 =
j{σ̂(j)}2

k{σ̂(k)}2
, p2 =

(k− j){σ̂(k,j)}2

k{σ̂(k)}2
, q1 =

j
k
, q2 = 1− q1.

Then according to Cochran’s theorem, we have

(p1, p2, 1− p1 − p2) ∼ Dir(j− 2, k− j− 2, 2),

nΔ(j, k, λ0) = Λ(q, p)− λ0 log(n) + 3 log (q1/p1) + 3 log (q2/p2) .

By Lemma A.2 we have

pr {Λ(q, p) > λ0 log(n)/3} ≤ k3n−λ0/3 ≤ n−λ0/3+3.
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At the same time,

pr {3 log (q1/p1) > λ0 log(n)/3}

=
(k− 3)!

(j− 3)!(k− j− 1)!

∫ q1n−λ0/9

0
pj−3(1− p)k−j−1dp

≤ (k− 3)!
(j− 3)!(k− j− 1)!

1
j− 2

(q1n−λ0/9)j−2

= (j/k)j−2 (k− 3)!
(j− 2)!(k− j− 1)!

1
nλ0(j−2)/9 ≤ 1

n(j−2)(λ0/9−1)

If n ≥ 25, we have pr {Δ(j, k, λ0) > 0} ≤ 3n−λ0/3+3. On the other hand, for any slicing

scheme with |S| ≥ 2, D(Y | S, λ0) + log(1− R2) equals

|S|−1∑

h=1

Δ(
h∑

l=1

nl,
h+1∑

l=1

nl, λ0)

So

pr
{
D(Y | X, λ0) + log(1− R2) > 0

}

≤ pr
{

max
m≤j<k≤n−m

Δ(j, k, λ0) > 0
}

≤
∑

m≤j<k≤n−m

pr {Δ(j, k, λ0) > 0} < 1.5n−λ0/3+5.

Since X and Y are symmetric, the result tells us that P
{
G2

m(λ0) = R2
}
> 1 − 3n−λ0/3+5.

When λ0 > 18, we have G2
m(λ0) = R2 almost surely.

A.4 More simulations

A.4.1 Power analysis

Table A.1 lists twenty relationships for power analysis. For all relationships, we normal-

ize them so that var{f(X)} = 1 with X ∼ U(0, 1). As an intuitive presentation, Figure A.2
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shows the twenty simulated relationships with G2
Y|X = 0.8. The power analysis results

with six methods for the first eight relationships are in Chapter 1. Figure A.3 presents the

power for the eight relationships with the remaining six methods. The power analysis of

the remaining twelve relationships with the entire twelve methods are in Fig.s A.4–A.6.

Figures A.5 and A.6 have the same legend as Fig. A.4. We find G2
m and G2

t are among the

most powerful test statistics and G2
t shows a higher power than G2

m in most examples.

Table A.1: Relationships for power analysis.

relationship name function
linear x
quadratic (x− 1/2)2
cubic 32(x− 1/3)3 − 12(x− 1/3)2 − 3(x− 1/3)
radical x0.25
low freq sine sin(2πx)
triangle (1− x)Ix<0.5 + xIx≥0.5
high freq sine sin(8πx)
piecewise constant 0.287Ix≤0.2 + 0.796I0.2<x≤0.4 + 0.290I0.4<x≤0.6

+0.924I0.6<x≤0.8 + 0.717Ix>0.8
unimodal cubic 32(x− 2/3)3 − 12(x− 2/3)2 − 3(x− 2/3)
low order polynomial x4(1− x)
high order polynomial x(1− x)9
reciprocal 1/(x+ 0.5)
L-shaped (x/90)Ix≤0.9 + (90x− 81)Ix>0.9
lopsided L-shaped 200xIx≤0.005 + (−198x+ 19.9)I0.005<x≤0.01 + (−x/99+ 1/99)Ix>0.1
spike 20xIx≤0.05 + (−18x+ 1.9)I0.05<x≤0.1 + (−x/9+ 1/9)Ix>0.1
sigmoid {50(x− 0.5) + 0.5}I0.4<x≤0.6 + Ix>0.6
medium freq sine sin(4πx)
very high freq sine sin(16πx)
sine with drift sin{2π(2x− 1)}+ (2x− 1)/2
vary freq sine sin{4πx(1+ x)}

A.4.2 Influence of sample size

We run simulations with the same setup with n = 50, 100, 225 and 500. Figure A.7

shows the average power of G2
m, G2

t , COR, DCOR, DDP and TICe against different sam-

ple sizes. We find that G2
m and G2

t are among the most powerful methods when n is larger
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Figure A.2: Scatter plots for the twenty relationships in Table A.1 with n = 225. We choose σ = 0.5 for each
relationship so G2

Y|X = 0.8.
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Figure A.3: The powers of mutual information (black solid), MICe (grey solid), ACE (grey markers), char-
acteristic function (black dashes), Genest’s test (black dots) and Hoeffding’s test (black markers) for inde-
pendence test between X and Y when the relationships are linear, quadratic, cubic, radical, low freq sine,
triangle, high freq sine and piecewise constant. The x-axis is G2

Y|X and the y-axis is the power.
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Figure A.4: The left column presents the powers of G2
m (black solid), G2

t (grey solid), COR (grey markers),
DCOR (black dashes), DDP (black dots) and TICe (black markers) for independence test between X and
Y when the relationships are power functions; the right column presents the powers of mutual information
(black solid), MICe (grey solid), ACE (grey markers), characteristic function (black dashes), Genest’s test
(black dots) and Hoeffding’s test (black markers). The x-axis is G2

Y|X and the y-axis is the power.
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Figure A.5: The powers for independence test between X and Y when the relationships are piecewise linear
functions. The legends is the same as in Fig. A.4.
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Figure A.6: The powers for independence test between X and Y when the relationships are trigonometric
functions. The legends is the same as in Fig. A.4.
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than 100. When the sample size is small, the powers of G2
m and G2

t are slightly lower than

DDP in some cases but are still among the most powerful methods. Power analysis for

more relationships are in Fig.s A.8–A.10.
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Figure A.7: The average powers of G2
m (black solid), G2

t (grey solid), COR (grey markers), DCOR (black
dashes), DDP and TICe (black markers) for testing independence between X and Y with n = 50, 100, 225
and 500. The underlying true relationships are linear, quadratic, cubic, radical, low freq sine, triangle, high
freq sine and piecewise constant. The x-axis is logarithm of n with base 10 and the y-axis is the average
power.

A.5 Relationships for equitability study

The relationships for equitability study are in Table A.2.
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Figure A.8: The average powers for independence test between X and Y when the relationships are power
functions. The legends is the same as in Fig. A.7.
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Figure A.9: The average powers for independence test between X and Y when the relationships are piecewise
linear functions. The legends is the same as in Fig. A.7.
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Figure A.10: The average powers for independence test between X and Y when the relationships are trigono-
metric functions. The legends is the same as in Fig. A.7.

Table A.2: Relationships for equitability study.

relationship name function
line x
quadratic (x− 1/2)2
cubic 4(2.4x− 1.3)3 + (2.4x− 1.3)2 − 4(2.4x− 1.3)
exponential (10x) 1010x
exponential (2x) 22x
L-shaped (x/99)Ix≤0/99 + 1Ix>0.99
lopsided L-shaped 200xIx≤0.005 + (−198x+ 19.9)I0.005<x≤0.01 + (−x/99+ 1/99)Ix>0.1
spike 20Ix≤0.05 + (−18x+ 1.9)I0.05<x≤0.1 + (−x/9+ 1/9)Ix>0.1
sigmoid {50(x− 0.5) + 0.5}I0.49<x≤0.51 + 1Ix>0.51
linear + high freq periodic 0.1 sin{10.6(2x− 1)}+ 1.1(2x− 1)
linear + high freq periodic 2 0.2 sin{10.6(2x− 1)}+ 1.1(2x− 1)
linear + low freq periodic 0.2 sin{4(2x− 1)}+ 1.1(2x− 1)
linear + medium freq periodic sin(10πx) + x
high freq sine sin(8πx)
non-Fourier freq sine sin(9πx)
very high freq sine sin(16πx)
varying freq sine sin{6πx(1+ x)}
high freq cosine cos(14πx)
non-Fourier freq cosine cos(7πx)
varying freq cosine sin{5πx(1+ x)}
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B
Supplementary materials for Chapter 2

B.1 Proof of consistency

Lemma B.1. Suppose X and Y are univariate continuous random variables with |X|, |Y| <

B and var(X), var(Y) > b−2. Given n observations as (xi, yi) (i = 1, . . . , n), let β̂ be the

slope coefficient after regressing Y on X. Then

pr
{∣∣∣∣β̂ − cov(X, Y)

var(X)

∣∣∣∣ > ε
}

≤ 8 exp{−C2(B, b)nε2},

with C2(B, b) = (72b4B4)−1 min{1, (4b2B2)−1}.
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Proof of Lemma B.1. Without loss of generality, we assume EX = EY = 0, var(X) =

var(Y) = 1 and E(XY) = ρ. By definition, we have

β̂ =
1
n
∑n

i=1 xiyi − ( 1n
∑n

i=1 xi)(
1
n
∑n

i=1 yi)
1
n
∑n

i=1 x2i − ( 1n
∑n

i=1 xi)2

Then x2i , y2i ∈ [0,B2], xiyi ∈ [−B2,B2]. According to Hoeffding’s inequality, we have

pr

(∣∣∣∣∣
1
n

n∑

i=1

xi

∣∣∣∣∣ > ε/6

)
, pr

(∣∣∣∣∣
1
n

n∑

i=1

yi

∣∣∣∣∣ > ε/6

)
, pr

(∣∣∣∣∣
1
n

n∑

i=1

x2i − 1

∣∣∣∣∣ > ε/6

)
,

pr

(∣∣∣∣∣
1
n

n∑

i=1

xiyi − ρ

∣∣∣∣∣ > ε/6

)
≤ 2 exp{−c(B)nε2}

with c(B) = (72B2)−1 min{1,B−2}. If ε < 1/2 and

∣∣∣∣∣
1
n

n∑

i=1

xi

∣∣∣∣∣ ,

∣∣∣∣∣
1
n

n∑

i=1

yi

∣∣∣∣∣ ,

∣∣∣∣∣
1
n

n∑

i=1

x2i − 1

∣∣∣∣∣ ,

∣∣∣∣∣
1
n

n∑

i=1

xiyi − ρ

∣∣∣∣∣ ≤ ε/6,

we can derive that

∣∣∣β̂ − ρ
∣∣∣ ≤

| 1n
∑n

i=1 x2i − ( 1n
∑n

i=1 xi)2 − 1||ρ|
| 1n
∑n

i=1 x2i − ( 1n
∑n

i=1 xi)2|
+| 1n

∑n
i=1 xi|| 1n

∑n
i=1 yi|+ | 1n

∑n
i=1 xiyi − ρ|

| 1n
∑n

i=1 x2i − ( 1n
∑n

i=1 xi)2|

≤ 2(ε/6+ ε2/36)
1− ε/6− ε2/36

< ε.

So we can conclude that

pr
(∣∣∣β̂ − ρ

∣∣∣ > ε
)

≤ 8 exp{−c(B)nε2}.

For general cases, define X′ = (X−EX)/sd(X), Y′ = (Y−EY)/sd(Y). Then EX′ = EY′ = 0,
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var(X′) = var(Y′) = 1 and |X′|, |Y′| < 2bB. Thus,

pr
{∣∣∣∣β̂ − cov(X, Y)

var(X)

∣∣∣∣ > ε
}

= pr
{∣∣∣β̂

′
− cov(X′, Y′)

∣∣∣ >
εsd(X)
sd(Y)

}

≤ 8 exp
{
−c(2bB)var(X)

var(Y)
nε2

}
= 8 exp{−C2(B, b)nε2},

with C2(B, b) = (288b4B4)−1 min{1, (4b2B2)−1}.

Proof of Theorem 2.1. First, we prove the first part of the theorem. Let λ(n) = λ0 log(n)/n.

By definition, we know that

Sn = argminmS≥m

∑

s∈S

ns
n
log σ̂2s + (|S|− 1)λ(n)

For each slice s, define σ2s = vars(Y)− cov2s (X, Y)/vars(X) and ps = P(X ∈ s). Then

σ2s ≥ vars(Y)− vars{E(Y | X)} = σ2.

Step 1: We show that there is η3(n) > 0, and η3(n) → 0 as n → ∞ such that

pr

[
lim inf
n→∞

∑

s∈Sn

ns
n
σ̂2s > σ2 − η3(n)

]
= 1.

Because for any slicing scheme S,
∑

s∈S psσ2s ≥ σ2, it is enough to show that there is η3(n)

such that

pr

{
lim inf
n→∞

∑

s∈Sn

ns
n
σ̂2s >

∑

s∈Sn

psσ2s − η3(n)

}
= 1.

104



Let δ(n) = log(n)n−1/4. We have

∑

s∈Sn

ns
n
σ̂2s −

∑

s∈Sn

psσ2s

=
∑

s∈Sn

(
ns
n
− ps)σ2s +

∑

s∈Sn

ns
n
(
σ̂2s − σ2s

)
.

First, we consider
∑

s∈Sn(
ns
n − ps)σ2s . Let us define a new random variable: Z, and Z =

σ2s if X is in slice s, and let zi (i = 1, . . . n) be n independent observations of Z. Then,

E(Z) =
∑

s∈Sn

psσ2s ,
1
n

n∑

i=1

zi =
∑

s∈Sn

ns
n
σ2s .

By Hoeffding’s inequality and the fact that σ2s ∈ [b−2,B2],

pr

{
∑

s∈Sn

(
ns
n
− ps)σ2s < −δ(n)

}
≤ exp{−2nδ(n)2/B4}. (B.1)

Second, we focus on the difference between σ̂2s and σ2s . Consider a slicing scheme Qn

of n4 slices such that an observation falls in each slice equally. Given n observations, the

probability for any of the n4 slices containing more than one observations is smaller than

n4
{
1−

(
1+ n−3

) (
1− n−4

)n} ≤ n−2. Then event

E1,n = {each slice of Qn has at most one observation}

satisfies pr (lim infn→∞ E1,n) = 1. Thus, we only need to consider slicing schemes that are

more refined than Qn, denoted as S ≼ Qn. Define the set of slices

Ξ = {s|there exists S ≼ Qn such that s ∈ S}.
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The set Ξ contains at most n4(n4 + 1)/2 = O(n8) slices. Each slice s ∈ Ξ contains at least

m observations.

By Lemma A.1, if δ(n) < 0.5b−2,

pr
{
σ̂2s − σ2s < −δ(n)

}
≤ 10e−C1(B,2σ−1)δ(n)2m ≤ 10n−C1(B,2σ−1) log(n). (B.2)

Let η3(n) = 2δ(n) and event

E2,n =

{
min
S≼Qn

∑

s∈S

ns
n
σ̂2s > σ2 − η3(n)

}
.

Combine the result of (B.1) and (B.2), we have pr (lim infn→∞ E1,n ∩ E2,n) = 1, which

means that n−1∑
s∈Sn nsσ̂

2
s is almost surely larger than σ2.

Step 2: Next, we show that there exists η4(n) > 0, and η4(n) → 0 as n → ∞ such that

pr

[
lim sup
n→∞

∑

s∈Sn

ns
n
σ̂2s < σ2 + η4(n)

]
= 1.

We already know that there η2(n) > 0 and η2(n) → ∞ as n → ∞, such that

pr

[
lim sup
n→∞

∑

s∈Sn

ns
n
log σ̂2s < log σ2 + η2(n)

]
= 1.
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We know

∑

s∈Sn

ns
n
log σ̂2s − log σ2

=
∑

s∈Sn

ns
n
(log σ̂2s − log σ2s )−

∑

s∈Sn

ns
n
(log σ2 − log σ2s )

≥
∑

s∈Sn

ns
n
{ σ̂

2
s

σ2s
− 1− δ(n)2B−4}−

∑

s∈Sn

ns
n
(
σ2

σ2s
− 1)

≥
∑

s∈Sn

nsσ̂2s
nσ2s

−
∑

s∈Sn

nsσ2

nσ2s
− δ(n)2B−4,

if
σ̂2s
σ2s

∈ [1− δ(n)B−2, 1+ δ(n)B−2]

and if δ(n)B−2 < 0.5. Besides,

pr

{
| σ̂

2
s

σ2s
− 1| > δ(n)B−2

}
≤ pr

{
|σ̂2s − σ2s | > δ(n)B−2σ2

}
≤ 10e−C1(B,2σ−1)

√
nδ(n)2B−4σ4 .

Because σ2s ≥ σ2, under (B.1), we have

∑

s∈Sn

ns
n
(σ̂2s − σ2) =

∑

s∈Sn

ns
n
(σ̂2s − σ2s ) +

∑

s∈Sn

ns(σ2s − σ2)
nσ2s

σ2s

≤ δ(n) + B2
∑

s∈Sn

ns(σ2s − σ2)
nσ2s

≤ δ(n) + B2
∑

s∈Sn

ns(σ2s − σ̂2s )
nσ2s

+ B2
∑

s∈Sn

ns(σ̂s − σ2)
nσ2s

≤ 2δ(n) + B2{η2(n) + δ(n)2B−4}

Let η4(n) = 2δ(n) + δ(n)2B−2 + B2η2(n), by (B.2) and (B.2), we have

pr

{
lim sup
n→∞

∑

s∈Sn

ns
n
σ̂2s < σ2 + η4(n)

}
= 1.
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For the second part of the theorem, denote that fi = f(Xi), f̂i = f̂(Xi), then

1
n

n∑

i=1

(yi − f̂i)2 =
1
n

n∑

i=1

(fi + ei − f̂i)2

=
1
n

n∑

i=1

(fi − f̂i)2 +
1
n
∑

i=1

e2i +
2
n

n∑

i=1

ei(fi − f̂i)

where ei = yi − fi and 1
n
∑n

i=1 e2i → σ2. We show that there is η5(n) > 0 axnd η5(n) → 0

as n → ∞ such that

pr

{
lim sup
n→∞

1
n
|

n∑

i=1

ei(̂fi − fi)| < η5(n)

}
= 1.

Similar as before, we only need to consider slicing schemes that are more refined than Qn.

For slice s ∈ Ξ, we have

∑

i∈s
ei(̂fi − fi) =

∑

i∈s
ei
[
f̄s − fi + ēs + β̂s(xi − x̄s)

]

= ns
(
ē2s + ēs̄fs − β̂sēsx̄s

)
−

∑

i∈s
eifi + β̂s

∑

i∈s

eixi

Because fi ∈ [−B,B], ei ∈ [−2B, 2B], eifi ∈ [−2B2, 2B2] and eixi ∈ [−2B2, 2B2]. By

Hoeffding’s inequality,

pr {|ēs| > δ(n)} , pr

{
1
ns
|
∑

i∈s
eifi| > δ(n)

}
, pr

{
1
ns
|
∑

i∈s
eixi| > δ(n)

}

≤ 2 exp{−C3(B)nsδ(n)2} ≤ 2n−C3(B) log(n)

with C3(B) = (2B2)−1 min{1, B−2}. Then if

|ēs| ≤ δ(n),
1
ns
|
∑

i∈s
eifi| ≤ δ(n),

1
ns
|
∑

i∈s
eixi| ≤ δ(n),
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we have

1
ns
|
∑

i∈s
ei(̂fi − fi)| ≤ |ēs|(4B+ B|β̂s|) +

1
ns
|
∑

i∈s
eifi|+

1
ns
|β̂s||

∑

i∈S

eixi|.

By Lemma B.1, if δ(n) < B2σ−2,

pr
(
|β̂| > 2B2σ−2

)
≤ 8 exp

{
−C2(B, 2σ−1)δ(n)2

√
n
}
.

Let η5(n) = (1+ 4B+ 4B2b2 + 4B3b2)δ(n), then

pr

{
lim sup
n→∞

1
n
|

n∑

i=1

ei(̂fi − fi)| < η5(n)

}
= 1,

which means 1
n
∑n

i=1(fi − f̂i)2 → 0.

B.2 More simulations

We present the average ISEs for t = 1 and 2 in Tables B.1–B.5. As the sample size in-

creases, our method can outperform the other methods. We also present the false nega-

tive and false positive selections in Tables B.6–B.10. Our methods perform better with

larger sample size (n ≥ 225). When the number of predictors is not large, we suggest the

AMGS-BIC for a smaller prediction error. When the number of predictors is large, we

suggest MGS-AGL for a more consistent variable selection result.
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Table B.1: The average ISEs with p = 10 for kj (j = 1, 2, 3, 4)

t = 1
n 100 225 400

MGS-AGL 1.50 ( 1.55) 0.60 ( 0.34) 0.32 ( 0.21)
MGS-BIC 1.48 (2.98) 0.45 (0.30) 0.24 (0.18)
SPAM 1.05 (0.30) 0.50 (0.12) 0.34 (0.07)
AGL 1.65 (1.25) 0.56 (0.24) 0.33 (0.12)

t = 2
n 100 225 400

MGS-AGL 1.93 (12.68) 0.39 ( 0.31) 0.21 ( 0.11)
MGS-BIC 1.89 (8.84) 0.26 (0.23) 0.13 (0.08)
SPAM 1.10 (0.33) 0.49 (0.14) 0.31 (0.08)
AGL 1.66 (1.52) 0.54 (0.24) 0.30 (0.10)

Table B.2: The average ISEs with p = 20 for kj (j = 1, 2, 3, 4)

t = 1
n 100 225 400

MGS-AGL 1.61 (1.64) 0.59 (0.31) 0.33 (0.21)
MGS-BIC 1.74 (3.81) 0.46 (0.28) 0.25 (0.18)
SPAM 1.21 (0.34) 0.56 (0.13) 0.37 (0.08)
AGL 1.72 (1.30) 0.56 (0.26) 0.33 (0.12)

t = 2
n 100 225 400

MGS-AGL 1.63 (2.09) 0.41 (0.31) 0.20 (0.11)
MGS-BIC 1.82 (5.08) 0.28 (0.34) 0.13 (0.08)
SPAM 1.24 (0.35) 0.57 (0.15) 0.35 (0.08)
AGL 1.78 (2.55) 0.56 (0.32) 0.29 (0.10)

Table B.3: The average ISEs with p = 50 for kj (j = 1, 2, 3, 4)

t = 1
n 100 225 400

MGS-AGL 1.51 (1.56) 0.58 (0.35) 0.33 (0.21)
SPAM 1.45 (0.38) 0.63 (0.15) 0.40 (0.07)
AGL 1.79 (1.21) 0.54 (0.26) 0.32 (0.12)

t = 2
n 100 225 400

MGS-AGL 1.96 (3.93) 0.42 (0.28) 0.20 (0.12)
SPAM 1.42 (0.37) 0.67 (0.16) 0.41 (0.08)
AGL 1.98 (2.18) 0.56 (0.29) 0.29 (0.11)
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Table B.4: The average ISEs with p = 100 for kj (j = 1, 2, 3, 4)

t = 1
n 100 225 400

MGS-AGL 1.70 (2.51) 0.59 (0.42) 0.32 (0.21)
SPAM 1.61 (0.41) 0.70 (0.16) 0.43 (0.08)
AGL 1.99 (1.41) 0.57 (0.30) 0.32 (0.11)

t = 2
n 100 225 400

MGS-AGL 2.00 (4.15) 0.43 (0.31) 0.20 (0.11)
SPAM 1.55 (0.37) 0.73 (0.16) 0.45 (0.09)
AGL 1.98 (1.32) 0.57 (0.28) 0.28 (0.10)

Table B.5: The average ISEs with p = 200 for kj (j = 1, 2, 3, 4)

t = 1
n 100 225 400

MGS-AGL 1.97 (4.67) 0.58 (0.50) 0.30 (0.20)
SPAM 1.77 (0.44) 0.75 (0.16) 0.46 (0.08)
AGL 2.31 (1.64) 0.55 (0.27) 0.32 (0.12)

t = 2
n 100 225 400

MGS-AGL 2.52 (7.95) 0.44 (0.29) 0.19 (0.13)
SPAM 1.67 (0.40) 0.81 (0.18) 0.48 (0.09)
AGL 2.04 (1.17) 0.59 (0.31) 0.28 (0.11)

Table B.6: The average of false negative and positive selections with p = 10 for kj (j = 1, 2, 3, 4)

FN t = 1 t = 2
n 100 225 400 100 225 400

MGS-AGL 0.49 0.12 0.01 0.77 0.05 0
MGS-BIC 0.17 0 0 0.61 0.01 0
SPAM 0 0 0 0.06 0 0
AGL 0.30 0.02 0 1.00 0.13 0
FP t = 1 t = 2
n 100 225 400 100 225 400

MGS-AGL 0.04 0 0 0.18 0.04 0.01
MGS-BIC 0.31 0.15 0.10 0.16 0.01 0
SPAM 4.01 4.59 4.88 3.61 4.86 5.28
AGL 0.12 0.01 0 0.16 0.05 0
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Table B.7: The average of false negative and positive selections with p = 20 for kj (j = 1, 2, 3, 4)

FN t = 1 t = 2
n 100 225 400 100 225 400

MGS-AGL 0.50 0.15 0.02 0.98 0.07 0
MGS-BIC 0.19 0 0 0.64 0.02 0
SPAM 0 0 0 0.10 0 0
AGL 0.37 0.02 0 1.19 0.18 0
FP t = 1 t = 2
n 100 225 400 100 225 400

MGS-AGL 0.11 0.01 0 0.33 0.10 0
MGS-BIC 0.82 0.41 0.24 0.39 0.02 0
SPAM 7.81 9.21 9.73 6.77 9.77 11.19
AGL 0.21 0.03 0.01 0.30 0.13 0.02

Table B.8: The average of false negative and positive selections with p = 50 for kj (j = 1, 2, 3, 4)

FN t = 1 t = 2
n 100 225 400 100 225 400

MGS-AGL 0.51 0.12 0.01 1.22 0.10 0
SPAM 0.01 0 0 0.25 0 0
AGL 0.59 0.01 0 1.46 0.23 0.02
FP t = 1 t = 2
n 100 225 400 100 225 400

MGS-AGL 0.29 0.03 0 0.64 0.26 0.06
SPAM 13.47 16.35 17.43 11.52 16.95 20.56
AGL 0.44 0.12 0.04 0.58 0.31 0.10

Table B.9: The average of false negative and positive selections with p = 100 for kj (j = 1, 2, 3, 4)

FN t = 1 t = 2
n 100 225 400 100 225 400

MGS-AGL 0.56 0.14 0.01 1.42 0.11 0
SPAM 0.05 0 0 0.47 0 0
AGL 0.73 0.02 0 1.62 0.25 0.01
FP t = 1 t = 2
n 100 225 400 100 225 400

MGS-AGL 0.59 0.09 0.01 0.97 0.46 0.16
SPAM 18.20 22.78 23.68 15.18 22.13 27.22
AGL 0.55 0.20 0.07 0.76 0.56 0.21
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Table B.10: The average of false negative and positive selections with p = 200 for kj (j = 1, 2, 3, 4)

FN t = 1 t = 2
n 100 225 400 100 225 400

MGS-AGL 0.70 0.12 0.02 1.65 0.17 0
SPAM 0.11 0 0 0.66 0.02 0
AGL 1.04 0.01 0 1.81 0.35 0.02
FP t = 1 t = 2
n 100 225 400 100 225 400

MGS-AGL 1.00 0.19 0.04 1.13 0.87 0.29
SPAM 21.85 28.14 31.88 18.62 27.45 34.84
AGL 0.71 0.27 0.17 0.99 0.81 0.37
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C
Supplementary materials for Chapter 3

C.1 Details of fitting the log-normal hierarchical model

We fit the hierarchical regression model by sampling from its posterior distributions using

Markov chain Monte Carlo. We introduce three different algorithms: the Gibbs sampling

algorithm which updates parameters one at a time sequentially, the block Gibbs sampling

algorithm which jointly updates vectors of correlated parameters, and the Hamiltonian

Monte Carlo algorithm which uses the Hamiltonian dynamics to propose efficient moves

around the parameter space.
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1. Gibbs Sampling Algorithm.

The Gibbs sampler iterates the following steps until convergence.

(a) For i = 1, . . . ,N, sample Bi from

N
{bi/τ2i +

∑
j∈Ji(y

′
ij − Gj)/σ2i

1/τ2i +
∑

j∈Ji 1/σ
2
i

,
1

1/τ2i +
∑

j∈Ji 1/σ
2
i

}
.

(b) For j = 1, . . . ,M, sample Gj from

N
{∑

i∈Ij(y
′
ij − Bi)/σ2i∑

i∈Ij 1/σ
2
i

,
1∑

i∈Ij 1/σ
2
i

}
.

(c) Update each σ2i one-at-a-time using Metropolis-Hastings.

2. Block Gibbs Sampling Algorithm.

The block Gibbs sampler iterates the following step and step (1c) until conver-

gence.

(a) Sample the vector (Bt,Gt)t using Section 3.2.3, i.e., sample (Bt,Gt)t from a

multivariate Gaussian distribution with mean Ω−1γ and variance Ω−1.

3. Hamiltonian Monte Carlo Algorithm.

In the Hamiltonian Monte Carlo algorithm, we sample the whole vector of un-

known parameters, i.e., {Bi,Gj, σ2i } through the non-U-turn HMC sampler23. The

algorithm is implemented with the STAN package.

We compare the performance of the afore mentioned algorithms using auto-correlation

plots of the posterior samples and the effective sample size, in both the simulated and real

data examples. We find that the Gibbs sampler converges very slowly relative to the other

two algorithms. We can cross check our results by comparing the samples obtained with

the block Gibbs sampler and HMC – they give the same posterior distributions.
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C.2 Proprieties of the posterior distribution

Theorem C.1. Under the prior specifications for {Bi,Gj, σ2i : i = 1, . . . ,N, j = 1, . . . ,M}

given in (3.6), we have (i) the posterior is proper if all instruments measure all sources,

i.e. |Ji| = M for all 1 ≤ i ≤ N, (ii) the MAP estimator of each σ2i is bounded away from

zero by a finite constant which only depends on the hyper-parameters. Furthermore, flat

priors on the σ2i would result in an unbounded posterior distribution.

Proof. Part 1. Under the prior specifications in (3.6), the joint posterior distribution is

p(B,G, σ2 | D, τ2) ∝
N∏

i=1

σ−M−2−2dfg
i exp

{
−

N∑

i=1

∑M
j=1(y′ij − Bi − Gj)2 + 2βg

2σ2i
−

N∑

i=1

(bi − Bi)2

2τ2i

}
.

Integrating out (B,G) gives

p(σ2|D, τ2) ∝
N∏

i=1

σ−M−2−2dfg
i | det(Ω)|−1/2 exp

{
1
2
μtΩμ −

N∑

i=1

{
βg +

∑

j∈Ji

(y′ij)2

2

}
σ−2
i

}
,

where μ and Ω, both of which depends on the σ2i , are defined in Section 3.2.3.

Claim 1: μtΩμ <
∑N

i=1
∑M

j=1(y′ij)2σ
−2
i .

Claim 2: | det(Ω)|−1/2 ≤ D
∏N

i=1 σi for some constant D.

From Claims 1 and 2, whose proofs are given after the current proof, we conclude that

p(σ2 | D, τ) is integrable on the positive real line when all |Ji| = M, thus the posterior is

proper.

Part 2. For fixed B and G, the σ2i which maximizes the posterior probability satisfies

σ2i = 2
√
u2 + 2βg/M+ vi − 2u (i = 1, . . . ,N),
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where u = 1+ (2dfg + 2)/M, vi =
∑M

j=1(yij − Bi − Gj)2/M. Then,

σ2i ≥
2βg/M√

u2 + 2βg/M+ u
,

thus the MAP estimator of σ2i is bounded away from 0 by a finite constant independent of

B and G.

Part 3. If we assign flat priors on σ2i , the posterior distribution may be unbounded near

the boundary. For example, if Ji ̸= ∅, let Bi = 0 and Gj = yij, j ∈ Ji, then
∑

j∈Ji
(y′ij−Bi−Gj)2

2σ2i
=

σ2i /8. Then p(B,G, σ2 | D, τ2) → ∞ as σi → 0.

First, let us study the properties of the Ω matrix. We use pi = σ−2
i for simplicity of

notations and assume bi = 0 without loss of generality. Let A be an (N + M) × (N + M)

diagonal matrix and the diagonal values are the same as Ω. Let U be an (N+M)×2 matrix

such that

Ui,1 = pi, Ui,2 = 0 (i = 1, . . . ,N), Uj+N,1 = 0, Uj+N,2 = 1 (j = 1, . . . ,M).

Let C be a 2 × 2 matrix such that Ci,j = Ii̸=j (i, j = 1, 2). Then Ω = A + UCUt. By the

Woodbury matrix identity, we have

Ω−1 = A−1 − A−1U
(
C+ UtA−1U

)−1UtA−1. (C.1)

For simplicity, let αi = Mpi + τ−2, β =
∑N

i=1 pi and ωi = τ−2
i α−1

i . Then Mpiα−1
i = 1− ωi.
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Let

δ =
1

1−M(
∑N

i=1 α
−1
i p2i )β

−1

=

∑N
i=1 pi∑N

i=1 ωipi
.

Then we have

(A)−1
i,i = α−1

i (i = 1, . . . ,N), (A)−1
j+N,j+N = β−1 (j = 1, . . . ,M);

(
A−1U

)
i,1 = (1− ωi)/M (i = 1, . . . ,N),

(
A−1U

)
j+N,2 = β−1 (j = 1, . . . ,M);

(
C+ UtA−1U

)−1
1,1 = −δMβ−1,

(
C+ UtA−1U

)−1
1,2 = δ

(
C+ UtA−1U

)−1
2,1 = δ,

(
C+ UtA−1U

)−1
2,2 = −δ(

N∑

i=1

(1− ωi)pi/M).

Proof of Claim 1. First, we define some new variables:

yi· = M−1
M∑

j=1

y′ijpi, y·j = N−1
N∑

i=1

y′ijpi, y·· = (MN)−1
N∑

i=1

M∑

j=1

y′ijpi.

then γi = Myi· (i = 1, . . . ,N) and γj+N = Ny·j (j = 1, . . . ,M). So

(
UtA−1γ

)
1 =

N∑

i=1

(1− ωi)yi· = Ny·· −
N∑

i=1

ωiyi·

(
UtA−1γ

)
2 = Nβ−1

M∑

j=1

y·j = β−1MNy··
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which will give us

μtΩμ = γtΩ−1γ = γtA−1γ − γtA−1U
(
C+ UtA−1U

)−1UtA−1γ

= M2
N∑

i=1

y2i·α
−1
i + N2β−1

M∑

j=1

y2·j + δMβ−1

(
Ny·· −

N∑

i=1

ωiyi·

)2

+MN2β−2δy2··
N∑

i=1

(1− ωi)pi − 2δ

(
Ny·· −

N∑

i=1

ωiyi·

)
β−1MNy··

= M2
N∑

i=1

y2i·α
−1
i + N2β−1

M∑

j=1

y2·j + δMβ−1

(
N∑

i=1

ωiyi·

)2

−MN2β−1y2··

= M
N∑

i=1

p−1
i y2i· + N2β−1

M∑

j=1

y2·j −MN2β−1y2··

−

⎧
⎨

⎩M
N∑

i=1

ωip−1
i y2·· −M

(
N∑

i=1

ωipi

)−1( N∑

i=1

ωiyi·

)2
⎫
⎬

⎭

Applying the the Cauchy-Schwarz inequality gives

(
N∑

i=1

ωip−1
i y2··

)(
N∑

i=1

ωipi

)
≥

(
N∑

i=1

ωiyi·

)2

. (C.2)

N∑

i=1

M∑

j=1

(y′ij)2pi −M
N∑

i=1

p−1
i y2i· (C.3)

=
M∑

j=1

N∑

i=1

p−1
i

(
y′ijpi − yi·

)2

≥
M∑

j=1

(
M∑

i=1

pi

)−1( N∑

i=1

y′ijpi − yi·

)2

= β−1N2
M∑

j=1

(
y·j − y··

)2
= β−1N2

(
M∑

j=1

y2·j −My2··

)

Combing (C.2) and (C.3), we can get μtΩμ ≤
∑N

i=1
∑M

j=1(y′ij)2pi.
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Proof of Claim 2. From the matrix determinant lemma,

det(Ω) = det
(
C−1 + UtA−1U

)
det(A) det(C)

= δ−1
M∏

i=1

αiβM

=

{
1−

N∑

i=1

pi(1− ωi)β−1

}
M∏

i=1

αiβM

=

{
N∑

i=1

piωi

}
M∏

i=1

αiβM−1

≥ βM−1
N∑

i=1

piτ−2
i α−1

i

N∏

l=1

αl

≥ βM−1
N∑

i=1

σ−2
i

N∏

l=1

τ−2
l

≥
N∏

i=1

τ−2
i

N∏

i=1

σ−2
i .

C.3 Frequentist method

C.3.1 MLEs and asymptotic variances

The MLEs of the random-effect regression model given by (3.3) and (3.4) can be ob-

tained by setting the derivative of the log-likelihood equal to zero. Let B̂1:N and Ĝ1:M be

the MLEs of B and G.

Theorem C.2. The MLEs of the Bi and the Gj can be written as

⎛

⎜⎝
B̂1:N

Ĝ1:M

⎞

⎟⎠ =

⎛

⎜⎝
B

G

⎞

⎟⎠+ Ω−1

⎛

⎜⎝
RB

RG

⎞

⎟⎠ ; (C.4)
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where

(RB)i = M−1
M∑

j=1

(y′ij − Bi − Gj)σ−2
i +M−1(bi − Bi)τ−2

i ,

(RG)j = N−1
N∑

i=1

σ−2
i (y′ij − Bi − Gj).

Assume that (i) the σ2i and the τ2i are uniformly bounded from below and from above by

finite positive constants and (ii) N−1∑N
i=1 σ

−2
i converges to a finite positive constant as

N → ∞. Then as M and N goes to infinity, B̂1:N and Ĝ1:M converge to the corresponding

true values almost surely and the asymptotic variances are O(M−1) and O(N−1) respec-

tively.

Proof. The almost sure convergence of the MLEs follows from the strong law of large

numbers. The rate of the asymptotic variances follows by lettingM,N → ∞ in the

variance-covariance matrix of the MLEs, which is the inverse of the Fisher information

matrix under this Gaussian model.

Here we give the closed-form solutions of the variances of the MLEs when ψ is known.

Proposition C.1. When all detectors measure all objects, i.e. Ji = {1, . . . ,M}, Ij =

{1, . . . ,N} and {σ2i , τ2i } are known constants; the variances of {B̂i}Ni=1, {Ĝj}Mj=1 are given

by

var(B̂j) =
(
Mσ−2

i + τ−2
i
)−1

{
1+

(1− ωi)σ−2
i∑N

i=1 ωiσ−2
i

}
,

var(Ĝi) =

(
N∑

i=1

σ−2

)−1{
1+

∑N
i=1(1− ωi)σ−2

i

M
∑N

i=1 ωiσ−2

}
.

Moreover, we have

Cov(Bi,Gj) = − 1− ωi

M
∑N

i=1 ωiσ−2
i

.
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Under the additive model, Bi and Gj are negatively correlated for all i, j. The variances

are just a direct result of (C.1).

C.3.2 Goodness-of-fit

We now give a goodness-of-fit test statistics for the random-effect regression model.

Since the errors eij are independent normal distributions with mean 0 and variances σ2i ,

and bi also follows normal distributions with variance τ2i , we define the following normal-

ized residual sum of squares:

T(B,G) :=
N∑

i=1

(bi − Bi)2

τ2i
+

N∑

i=1

M∑

j=1

(
y′ij − Bi − Gj

)2

σ2i
. (C.5)

Theorem C.3. When the variances σ2i , τ2i are known and we plug in the MLEs of Bi and

the Gj for the random-effect regression model in Equation (C.5), then statistic T follows a

Chi-squared distribution with degree of freedom MN−M, i.e.

T(B̂1:N, Ĝ1:M) ∼ χ2NM−M. (C.6)

Proof. We can write our model as a weighted linear regression model, with (NM + N)

independent Gaussian noise: {eij, εi : i = 1, . . . ,N, j = 1, . . . ,M}. Plugging in the

estimators of the Bi and the Gj, which are linear in the observed values {yij, bi}, costs N+

M degrees of freedom. Therefore, the degrees of freedom left is NM−M.

With unknown variances we do not have a closed-form distribution of T as defined in

Equation (C.5). Instead, we use the following approximation: plug in the estimated vari-

ances and adjust the degrees of freedom as (MN − M − N) to take the estimations the

variances σ2i into account. The resulting p-values of the fitted data in Sections 3.3.2.2

and 3.3.2.3 are not significant.
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C.4 More simulations

C.4.1 Simulations of correctly specified model

We consider two simulation studies that vary in terms of the relative number of instru-

ments and sources. The parameters are specified the same as Simulation I except that in

Simulation V, N = M = 10 and in Simulation VI, N = 10 andM = 100. In Simula-

tion VI, non-surprisingly, the estimates of the effective areas are more precise, whereas

the estimates of the fluxes are less precise, as compared with Simulation V. Figure C.1

contrasts the results of Simulation V and VI by comparing the posterior distributions of

B1, B2, B3, and B4 in four columns for Simulation V (row 1) and Simulation VI (row 2).

Similarly, the third and fourth rows compare the posterior distributions of G1, G2, G3, and

G4 for Simulation V (row 3) and Simulation VI (row 4).

C.4.2 Simulations of misspecified model

C.4.2.1 Noisy known constants

In Simulation VII, we generates data under

yij = −σ2i /2+ Bi + Gj + λij + eij, (C.7)

with eij ∼ N(0, σ2i ) and λij ∼ N(0, ζ2). The model in Section 3.2 assumes that ζ = 0,

or equivalently that each λij is zero. We use model (C.7) to mimic a realistic case where

the multiplicative model is not perfectly satisfied. This is equivalent to (3.3) when each

σ2i is replaced by σ2i + ζ2, since eij + λij ∼ N(0, σ2i + ζ2). This is confirmed numerically

in Simulation VII, which has the same setup as Simulation V except that σi = ζ = 0.1.

Figure C.2 compares the posterior distributions of {Bi}5i=1 and {Gj}5j=1 for model fittings

with known σ2i = 0.12 and unknown σ2i .
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Figure C.1: Simulations V (rows 1 & 3) and VI (rows 2 & 4). The gray histograms are the posterior distribu-
tions of the Bi (rows 1 & 2), and the Gj (rows 3 & 4), when the σ2i are unknown. The black vertical lines are
the true values. The solid density curves on top of the histograms denote the closed-form posterior densities
when the σ2i are known.
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Based on Simulation VII, if the true model is the log-normal regression model but there

exists uncertainties on the multiplicative constant, the estimated variances are inflated

– to account for the extra variability brought in by the uncertainties on the multiplica-

tive constant. As can be seen in Fig. C.2, the estimated σi is approximately
√

ζ2 + σ2i =
√
0.01+ 0.01 ≈ 0.14 – which means the extra uncertainty comes out as an additive error

which is not distinguishable from the measurement error. Again, if the practitioner plugs-

in known values for the σ2i which miss other possible uncertainties (represented by the λij

here), the results could be overly optimistic or even misleading in terms of the suggested

adjustments of the effective areas.

Figure C.2: Simulation VII. The legend is the same as in Fig. C.1.
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C.4.2.2 Misspecification in both ways

Next, we combine the model misspecification discussed in Sections 3.3.1.2 and C.4.2.1.

Specifically, the data generating model for Simulations VIII and IX was

cij ∼ Poisson(λijAiFj), (C.8)

where the λij were randomly generated from the uniform distribution on [0.8, 1.2]. This

resembles the case where the true model is Poisson and the estimation of Tij is volatile.

The other parameters are set to be the same as in Simulations IV and V. Figures C.3 and C.4

give the results of Simulation VIII with smaller counts (Bi = 1 and Gj = 3) and IX with

larger counts (Bi = 5 and Gj = 3) under this scenario. It shows with large Poisson counts,

controlling the uncertainty in the multiplicative constant can possibly lead to reasonably

good results. Thus even with compounded model misspecification, the log-normal hier-

archical model is able to provide reasonable, though not as precise, results, as compared

with the correctly-specified case.

Figure C.3: Simulations VIII. The legend is the same as in Fig. C.1.
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Figure C.4: Simulations IX. The legend is the same as in Fig. C.1.

C.5 Results for fractions of prior information

We display the proportion of prior information for the real data sets (Section 3.3) in Ta-

bles C.1 and C.2.

Table C.1: Proportion of prior influence for E0102 data in Section 3.3.2.1.

Instrument O Ne
τ = 0.025 τ = 0.05 τ = 0.025 τ = 0.05

RGS1 0.570 0.205 0.063 0.016
MOS1 0.279 0.077 0.075 0.019
MOS2 0.355 0.065 0.077 0.017
pn 0.250 0.041 0.620 0.218

ACIS-S3 0.218 0.040 0.270 0.088
ACIS-I3 0.906 0.640 0.099 0.026
HETG 0.648 0.341 0.129 0.034
XIS0 0.180 0.051 0.069 0.018
XIS1 0.298 0.078 0.071 0.019
XIS2 0.463 0.140 0.063 0.016
XIS3 0.772 0.364 0.062 0.018

XRT-WT 0.726 0.278 0.154 0.026
XRT-PC 0.934 0.235 0.906 0.017

Table C.2: Proportion of prior influence for data in Section 3.3.2.2 and 3.3.2.3.

Data Name τi = 0.025 τi = 0.05
pn mos1 mos2 pn mos1 mos2

hard band 2XMM 0.093 0.075 0.082 0.025 0.020 0.022
medium band 2XMM 0.250 0.216 0.222 0.076 0.065 0.067
soft band 2XMM 0.093 0.075 0.069 0.025 0.020 0.018

hard band 0.010 0.019 0.031 0.003 0.005 0.008
medium band 0.023 0.016 0.028 0.006 0.004 0.007
soft band 0.021 0.011 0.007 0.005 0.003 0.002

127



References

[1] Akaike, H. (1974). A new look at the statistical model identification. IEEE trans-
actions on automatic control, 19(6), 716–723.

[2] Blyth, S. (1994). Local divergence and association. Biometrika, (pp. 579–584).

[3] Breiman, L. & Friedman, J. H. (1985). Estimating optimal transformations for mul-
tiple regression and correlation. Journal of the American statistical Association,
80(391), 580–598.

[4] Chandra X ray observatory (2009). E0102-72.3: adding a new dimension to an old
explosion. http://chandra.harvard.edu/photo/2009/e0102/.

[5] De Boor, C., De Boor, C., Mathématicien, E.-U., De Boor, C., & De Boor, C.
(1978). A practical guide to splines, volume 27. Springer-Verlag New York.

[6] Dierckx, P. (1995). Curve and surface fitting with splines. Oxford University Press.

[7] Doksum, K., Blyth, S., Bradlow, E., Meng, X.-L., & Zhao, H. (1994). Correla-
tion curves as local measures of variance explained by regression. Journal of the
American Statistical Association, 89(426), 571–582.

[8] Efron, B. & Morris, C. N. (1975). Data analysis using Stein’s estimator and its
generalizations. Journal of the American Statistical Association, 70(350), 311–319.

[9] Eilers, P. H. & Marx, B. D. (1996). Flexible smoothing with B-splines and penal-
ties. Statistical science, (pp. 89–102).

[10] Eubank, R. L. (1999). Nonparametric regression and spline smoothing. CRC press.

[11] Friedman, J. H. (1991). Multivariate adaptive regression splines. The annals of
statistics, (pp. 1–67).

[12] Friedman, J. H. & Silverman, B. W. (1989). Flexible parsimonious smoothing and
additive modeling. Technometrics, 31(1), 3–21.

[13] Gelman, A., Meng, X.-L., & Stern, H. (1996). Posterior predictive assessment of
model fitness via realized discrepancies. Statistica Sinica, (pp. 733–760).

128

http://chandra.harvard.edu/photo/2009/e0102/


[14] Geman, S. & Geman, D. (1984). Stochastic relaxation, Gibbs distributions, and
the Bayesian restoration of images. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 6, 721–741.

[15] Genest, C. & Rémillard, B. (2004). Test of independence and randomness based on
the empirical copula process. Test, 13(2), 335–369.

[16] Gretton, A., Borgwardt, K. M., Rasch, M. J., Schölkopf, B., & Smola, A. (2012). A
kernel two-sample test. Journal of Machine Learning Research, 13(Mar), 723–773.

[17] Gretton, A., Bousquet, O., Smola, A., & Schölkopf, B. (2005). Measuring sta-
tistical dependence with Hilbert-Schmidt norms. In International conference on
algorithmic learning theory (pp. 63–77).: Springer.

[18] Harrison, D. & Rubinfeld, D. L. (1978). Hedonic housing prices and the demand
for clean air. Journal of environmental economics and management, 5(1), 81–102.

[19] Hastie, T. J. & Tibshirani, R. J. (1990). Generalized additive models, volume 43.
CRC press.

[20] Hastings, W. K. (1970). Monte Carlo sampling methods using Markov chains and
their applications. Biometrika, 57(1), 97–109.

[21] Heller, R., Heller, Y., Kaufman, S., Brill, B., & Gorfine, M. (2016). Consistent
distribution-free K-sample and independence tests for univariate random variables.
Journal of Machine Learning Research, 17(29), 1–54.

[22] Hoeffding, W. (1948). A non-parametric test of independence. The annals of math-
ematical statistics, (pp. 546–557).

[23] Hoffman, M. D. & Gelman, A. (2014). The No-U-Turn sampler: Adaptively set-
ting path lengths in Hamiltonian Monte Carlo. Journal of Machine Learning Re-
search, 15(1), 1593–1623.

[24] Huang, J., Horowitz, J. L., & Wei, F. (2010). Variable selection in nonparametric
additive models. Annals of statistics, 38(4), 2282.

[25] Hušková, M. & Meintanis, S. G. (2008). Testing procedures based on the empirical
characteristic functions i: Goodness-of-fit, testing for symmetry and independence.
Tatra Mt. Math. Publ, 39, 225–233.

[26] IACHEC (2017). International Astronomical Consortium for High Energy Calibra-
tion. http://web.mit.edu/iachec/.

[27] Kankainen, A. & Ushakov, N. G. (1998). A consistent modification of a test for
independence based on the empirical characteristic function. Journal of Mathemat-
ical Sciences, 89(5), 1486–1494.

129

http://web.mit.edu/iachec/


[28] Kass, R. E. & Raftery, A. E. (1995). Bayes factors. Journal of the american statis-
tical association, 90(430), 773–795.

[29] Kraskov, A., Stögbauer, H., & Grassberger, P. (2004). Estimating mutual informa-
tion. Physical review E, 69(6), 066138.

[30] Lin, Y., Zhang, H. H., et al. (2006). Component selection and smoothing in multi-
variate nonparametric regression. The Annals of Statistics, 34(5), 2272–2297.

[31] Liu, J. S. (2001). Monte Carlo Strategies in Scientific Computing. Springer-Verlag
New York, Inc.

[32] Marshall, H., Kashyap, V., Chen, Y., Meng, X.-L., & Wang, X. (2017). Calibration
concordance. In Preparation.

[33] Meng, X.-L. (1994). Posterior predictive p-values. The Annals of Statistics, (pp.
1142–1160).

[34] Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N., Teller, A. H., & Teller, E.
(1953). Equation of state calculations by fast computing machines. The journal of
chemical physics, 21(6), 1087–1092.

[35] Morris, C. N. (1983). Parametric empirical Bayes inference: theory and applica-
tions. Journal of the American Statistical Association, 78(381), 47–55.

[36] Nadaraya, E. A. (1964). On estimating regression. Theory of Probability & Its
Applications, 9(1), 141–142.

[37] Neal, R. M. (2011). MCMC using Hamiltonian dynamics. In S. Brooks, A. Gel-
man, G. Jones, & X.-L. Meng (Eds.), Handbook of Markov chain Monte Carlo.
CRC press.

[38] Plucinsky, P. P., Beardmore, A. P., Foster, A., Haberl, F., Miller, E. D., Pollock,
A. M. T., & Sembay, S. (2017). SNR 1E 0102.2-7219 as an X-ray calibration stan-
dard in the 0.5-1.0 keV bandpass and its application to the CCD instruments aboard
Chandra, Suzaku, Swift and XMM-Newton. Astronomy and Astrophysics, 597,
A35.

[39] Ravikumar, P., Lafferty, J., Liu, H., & Wasserman, L. (2009). Sparse additive mod-
els. Journal of the Royal Statistical Society: Series B (Statistical Methodology),
71(5), 1009–1030.

[40] Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G., Turn-
baugh, P. J., Lander, E. S., Mitzenmacher, M., & Sabeti, P. C. (2011). Detecting
novel associations in large data sets. science, 334(6062), 1518–1524.

130



[41] Reshef, D. N., Reshef, Y. A., Sabeti, P. C., & Mitzenmacher, M. M. (2015a).
An empirical study of leading measures of dependence. arXiv preprint
arXiv:1505.02214.

[42] Reshef, Y. A., Reshef, D. N., Finucane, H. K., Sabeti, P. C., & Mitzenmacher, M.
(2016). Measuring dependence powerfully and equitably. Journal of Machine
Learning Research, 17(212), 1–63.

[43] Reshef, Y. A., Reshef, D. N., Sabeti, P. C., & Mitzenmacher, M. M. (2015b).
Equitability, interval estimation, and statistical power. arXiv preprint
arXiv:1505.02212.

[44] Ritzema, H. (2006). Drainage principles and applications. Number 16. ILRI.

[45] Rubin, D. B. (1978). Bayesian inference for causal effects: The role of randomiza-
tion. The Annals of Statistics, (pp. 34–58).

[46] Schwarz, G. et al. (1978). Estimating the dimension of a model. The annals of
statistics, 6(2), 461–464.

[47] Sejdinovic, D., Sriperumbudur, B., Gretton, A., Fukumizu, K., et al. (2013). Equiv-
alence of distance-based and RKHS-based statistics in hypothesis testing. The
Annals of Statistics, 41(5), 2263–2291.

[48] Silverman, B. W. (1984). Spline smoothing: the equivalent variable kernel method.
The Annals of Statistics, (pp. 898–916).

[49] Stan Development Team (2015). Stan Modeling Language User’s Guide and Refer-
ence Manual, Version 2.10.0.

[50] Stan Development Team (2016). PyStan: the Python interface to Stan.

[51] Stone, C. J. (1985). Additive regression and other nonparametric models. The
annals of Statistics, (pp. 689–705).

[52] Stone, C. J. (1986). The dimensionality reduction principle for generalized additive
models. The Annals of Statistics, (pp. 590–606).

[53] Székely, G. J., Rizzo, M. L., Bakirov, N. K., et al. (2007). Measuring and testing
dependence by correlation of distances. The Annals of Statistics, 35(6), 2769–2794.

[54] Székely, G. J., Rizzo, M. L., et al. (2009). Brownian distance covariance. The
annals of applied statistics, 3(4), 1236–1265.

[55] Wand, M. & Ormerod, J. (2008). On semiparametric regression with O’Sullivan
penalized splines. Australian & New Zealand Journal of Statistics, 50(2), 179–198.

131



[56] Wang, X., Jiang, B., & Liu, J. (2017). Generalized R-squared for detecting depen-
dence. Biometrika, 104(1), 129–139.

[57] Watson, G. S. (1964). Smooth regression analysis. Sankhyā: The Indian Journal of
Statistics, Series A, (pp. 359–372).

[58] Watson, M. G., Schröder, A. C., Fyfe, D., Page, C. G., Lamer, G., Mateos, S., Pye,
J., Sakano, M., Rosen, S., Ballet, J., Barcons, X., Barret, D., Boller, T., Brunner,
H., Brusa, M., Caccianiga, A., Carrera, F. J., Ceballos, M., Della Ceca, R., Denby,
M., Denkinson, G., Dupuy, S., Farrell, S., Fraschetti, F., Freyberg, M. J., Guill-
out, P., Hambaryan, V., Maccacaro, T., Mathiesen, B., McMahon, R., Michel,
L., Motch, C., Osborne, J. P., Page, M., Pakull, M. W., Pietsch, W., Saxton, R.,
Schwope, A., Severgnini, P., Simpson, M., Sironi, G., Stewart, G., Stewart, I. M.,
Stobbart, A.-M., Tedds, J., Warwick, R., Webb, N., West, R., Worrall, D., & Yuan,
W. (2009). The XMM-Newton serendipitous survey. V. The Second XMM-
Newton serendipitous source catalogue. Astronomy and Astrophysics, 493, 339–
373.

[59] XMM Catalogue public pages (2008). XMM-Newton serendipitous source cata-
logue: 2XMM. http://xmmssc-www.star.le.ac.uk/Catalogue/xcat_public_2XMM.
html.

[60] Yuan, M. & Lin, Y. (2006). Model selection and estimation in regression with
grouped variables. Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 68(1), 49–67.

[61] Zou, H. (2006). The adaptive lasso and its oracle properties. Journal of the Ameri-
can statistical association, 101(476), 1418–1429.

132

http://xmmssc-www.star.le.ac.uk/Catalogue/xcat_public_2XMM.html
http://xmmssc-www.star.le.ac.uk/Catalogue/xcat_public_2XMM.html

