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Abstract

This dissertation work is motivated by two time-to-event data examples, where cur-

rent statistical methods are inadequate in addressing the nuances of data and the corre-

sponding scientific question(s) of interest.

In Chapter 1, we address a current issue regarding the analysis of time-varying biomark-

ers of Alzheimer’s disease. Relating time-varying biomarkers of Alzheimer’s disease

(AD) to time-to-event using a Cox model is complicated by the fact that AD biomark-

ers are sparsely collected, typically only at study entry; this is problematic since Cox re-

gression with time-varying covariates requires observation of the covariate process at all

failure times. The analysis might be simplified by using study entry as the time origin and

treating the time-varying covariate measured at study entry as a fixed baseline covariate.

We first derive conditions under which using an incorrect time origin of study entry re-

sults in consistent estimation of regression parameters when the time-varying covariate is

continuous and fully observed. We then derive conditions under which treating the time-

varying covariate as fixed at study entry results in consistent estimation. We provide

methods for estimating the regression parameter when a functional form can be assumed

for the time-varying biomarker, which is measured only at study entry. We demonstrate

our analytical results in a simulation study and apply our methods to data from the Rush

Religious Orders Study and Memory and Aging Project, and data from the Alzheimer’s

Disease Neuroimaging Initiative.

In Chapter 2, we focus our attention on graft-versus-host disease (GVHD), a debil-

itating condition associated with significant morbidity, compromised quality of life and
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mortality, that is a frequent complication of hematopoietic cell transplantation (HCT).

For the most part, researchers investigating risk factors for acute GVHD, a sub-category

that is diagnosed within 100 days of transplantation, have used standard survival anal-

ysis methods or logistic regression. Doing so, however, ignores two important clinical

issues. First, patients who undergo HCT are at significant risk of death in the short-term;

in our motivating data, from the Center for International Blood and Bone Marrow Trans-

plant Research (CIBMTR), 100-day mortality among 9,651 patients who underwent HCT

between 1999-2011 was 15%. Naı̈ve treatment of death as a censoring mechanism (in

either survival or logistic regression analyses), however, is problematic and can lead to

erroneous conclusions. Second, acute GVHD is only diagnosed within 100 days of the

transplant; beyond 100 days, a patient may be diagnosed with chronic GVHD for which

treatment options/strategies generally differ. As such, in contrast to the typical assump-

tion that the support for the event of interest is the positive part of the real line, patients

who have undergone HCT are only eligible to experience the event of interest within a

finite time interval. In this paper, building on the cure fraction and semi-competing risks

literature, we propose a novel multi-state model that simultaneously: (i) accounts for

mortality through joint modeling of acute GVHD and death, and (ii) explicitly acknowl-

edges the finite time scale in which the event of interest can take place. The joint observed

data likelihood is derived, with estimation and inference performed via maximum likeli-

hood. The proposed framework is compared via comprehensive simulations to a number

of alternative approaches that each acknowledge some but not all clinical aspects of acute

GVHD. Finally, the methods are illustrated with an analysis of stem cell transplantation

registry data from the CIBMTR.

In Chapter 3, we then consider risk prediction of both acute GVHD and death simul-

taneously. More generally, this work concerns joint risk prediction in the semi-competing

risks setting. We propose to consider prediction through the calculation and evaluation

of patient-specific absolute risk profiles for the acute GVHD and death. In particular, we

note that at any given point in time after transplantation, a patient will: (1) have expe-

rienced both events; (2) be alive with a diagnosis of acute GVHD; (3) have died with-

out acute GVHD; or (4) be alive without acute GVHD. Thus, in contrast to much of the
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prediction literature, we consider the task of prediction as being one where we seek to

classify patients at any given point in time into one of four categories based on a vector

of probabilities that add to 1.0. We develop this framework utilizing the proposed model

in Chapter 2. We then propose a framework for evaluation of predictive performance

for risk profiles based on the hypervolume under the manifold (HUM) statistic, an extension

of the well-known area-under-the-curve (AUC) statistic for univariate binary outcomes.

As part of this, we propose a method for estimating the HUM statistic in the presence

of potential verification bias which arises when the true outcome category is unknown.

Throughout, we illustrate the proposed methods using data from the CIBMTR.
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1.1 Introduction

Alzheimer’s disease (AD) is themost common type of dementia in older adults, character-

ized by loss of cognition and functional impairment. Its prevalence is estimated to be 5.5

million in 2017 (Alzheimer’s Association, 2017), with an estimated incidence of 476,000 in

2016 for people age 65 or older. Much of Alzheimer’s research over the past decade has

been dedicated to the identification and validation of biomarkers that reflect the under-

lying neuropathology of the disease. Biomarkers will help identify subjects early in their

disease course, when therapeutic interventions might be successful. They also will help

identify surrogate endpoints for progression, which will allow for clinical trials that do

not require long follow-up to a clinical AD diagnosis.

Several models have been proposed for time-varying AD biomarkers such as PET-

PIB, FDG-PET, and MRI measures (Jack et al., 2010; Capuano et al., 2016). Relating these

biomarker trajectories to time-to-event using a Cox regression model would allow for the

prediction of disease progression. However, such an analysis presents a challenge, as

imaging biomarkers are typically sparsely collected. This is problematic since the Cox

regression with time-varying covariates requires observation of the covariate process at

all failure times. The analysis could be simplified by treating the time-varying covariate

collected only at study entry as a fixed baseline covariate representative of a subject’s dis-

ease state at the time of measurement. However, in longitudinal AD studies, the time

at study entry tends to be arbitrary and the interpretability of such an analysis is tenu-

ous (Cnaan and Ryan, 1989; Keiding and Knuiman, 1990). In a time-to-event analysis,

a well-chosen time origin should align subjects with respect to risk, so that conditional

on baseline covariates subjects are comparable (Cox and Oakes, 1984). In addition, the

choice of time origin should address the goals of the analysis and provide meaningful es-

timates (Cnaan and Ryan, 1989; Fieberg and DelGiudice, 2009; Korn et al., 1997; Lamarca

et al., 1998; Liestol and Andersen, 2002; Pencina et al., 2007; Sperrin and Buchan, 2013).

A natural choice of time origin in Alzheimer’s disease is pathological disease onset, a

point at which individuals are comparable with respect to risk. However, disease onset

precedes clinical symptoms by decades and thus the exact time of onset is unknown. As
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an alternative, the time of first clinical diagnosis of mild cognitive impairment (MCI) is a

reasonable and measurable time origin. Birth is a plausible time origin since disease risk

increases with age, however individuals at a given age may not necessarily be compara-

ble with respect to risk, even after conditioning on fixed covariates. In summary, while

using study entry as the time origin would enable use of the time varying biomarker as a

fixed covariate in the analysis, it would jeopardize the interpretability of the analysis.

Several authors have considered the use of an incorrect time origin of study entry in

a proportional hazards model with a fixed-time covariate. Assuming the true time origin

is birth, Korn et al. (1997) showed that fitting a proportional hazards model that uses

study entry as the time origin does preserve the true regression coefficient corresponding

to a fixed baseline covariate, provided that age at entry is included as a covariate in the

model and the baseline hazard on the age scale follows an exponential form. Thiébaut

and Bénichou (2004) and Pencina et al. (2007) investigated the practical ramifications of

this result when the baseline hazard is not of exponential functional form (e.g., Weibull

or piecewise Weibull), and found that the bias in the regression coefficient was not large

for a wide range of true values.

In the case of time-varying covariates, some simulation studies have suggested an

extension of the result from Korn et al. (1997), however this has not been established

analytically. Cnaan and Ryan (1989) argued that using an incorrect time origin would

preserve the regression parameter of interest provided that survival on the age scale is

exponentially distributed. In a simulation study, Thiébaut and Bénichou (2004) found that

use of study entry as the time origin results in unbiased estimates for a Cox model with

constant baseline hazard function and a fully-observed time-varying binary covariate.

Through simulations, Thiébaut and Bénichou (2004) and Griffin et al. (2012) illustrated

that bias can result when an incorrect choice of time origin is used in a Cox model with

time-varying covariates when the true baseline hazard is Weibull. There are no papers

that consider estimation based on a time-varying covariate that is observed only at study

entry, with the time origin taken either to be onset or study entry.

There is a considerable literature on dealing with sparse observation of time-varying

covariates (Lin and Ying, 1993; Zhou and Pepe, 1995; Chen and Little, 1999; Wu et al.,
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2012; Wang and Taylor, 2001; Tsiatis et al., 1995; Wulfsohn and Tsiatis, 1997) in survival

regressionmodels; standardmethods include imputation, likelihood estimation, and joint

modeling. These methods are not applicable to many current Alzheimer’s studies due

to the their very sparse observation of the time-varying imaging biomarker. Relevant

to this setting, Sperrin and Buchan (2013) proposed a two-stage method for analyzing

survival data with time-varying covariates measured at a single, arbitrary time point.

They assume that the covariate process can be expressed as the sum of a population-level

function and individual time-independent errors. The first stage involves estimating the

population parameters of the covariate function and then calculating for each subject the

residual error relative to the observed value. In the second stage, the estimated residual

for each subject is included as a covariate in a survival model. They provided an analytical

argument for the use of birth as the time origin, rather than study entry. They showed

through simulations that their two-stage residual method has superior predictive ability,

as measured by Brier and logarithmic scores, when birth is used as the origin and the

estimated residuals and age are included in the model as covariates, compared to two

competing models that treat the time-varying covariate as fixed: one from study entry

that adjusts for age as a covariate and another from birth that does not adjust for age.

In this paper, we consider the analysis of time-to-event data in conjunction with a

time-varying covariate that is observed only at study entry. We assume the true time ori-

gin for the risk model is known and precedes study entry. We extend the results of Korn

et al. to the case of time-varying biomarkers, and derive the conditions for which treating

a time-varying biomarker as fixed at study entry results in an unbiased regression coef-

ficient estimator. We then extend the work of Sperrin and Buchan (2013), who proposed

methods for relating a time-varying covariate with fixed-time residuals to time-to-event

when the covariate is measured only at study entry, by incorporating time-varying resid-

uals. Furthermore, whereas Sperrin and Buchan focused on predictive ability, we investi-

gate bias and standard error estimation. We use the sigmoidal AD biomarker model (Jack

et al., 2013) as the basis for this approach. We support our analytical results and methods

with simulation studies. Finally, we apply our methods to data from the Rush Religious

Orders Study and Memory and Aging Project and from the Alzheimer’s Disease Neu-

4



roimaging Initiative (ADNI) and demonstrate the impact of different treatments of the

time-varying biomarker.

1.2 Notation and models

For subject i, let U
i

denote the time from disease onset to event, let C
i

denote the time

from disease onset to censoring, let E
i

denote the time from disease onset to study entry,

and let Z
i

(u) denote a time-varying covariate. Then T

i

= U

i

� E

i

represents the time

from study entry to event. The observed time from onset to event is Y
i

= min(U
i

, C

i

), and

�

i

= I (Y
i

 C

i

) is the status indicator. We assume that the time-varying covariates are

collected only at study entry. The observed data are thus (E
i

, Y

i

, Z

i

(E
i

), �
i

).

We assume that the time-varying covariate, or biomarker, Z
i

(u), after transformation

via f(·), satisfies a general additive error model, f(Z
i

(u)) = f(S(u)) + ✏

i

(u), where S(u) is

the population-level biomarker trajectory and ✏

i

(u) is an individual-level time-dependent

deviation. We assume that the individual-level deviations have mean 0 and are defined

by ✏

i

(u) = a

i

+ b

i

u, so that

f(Z
i

(u)) = f(S(u)) + a

i

+ b

i

u. (1.1)

When f is the identity function, we refer to (1.1) as the absolute error model since the

individual-level deviations are on the same scale as the population-level trajectory. When

f is the identify function and b

i

⌘ 0, the covariate model in (1.1) coincides with the co-

variate model provided by Sperrin and Buchan (2013). When f(x) = logit(x/M), for some

constantM , we refer to (1.1) as the logit error model.

In the setting of Alzheimer’s disease, many population-level biomarker trajectories

are plausibly modeled using a sigmoidal function (Jack et al., 2010)

S(u) =
M

1 + e

��(u�T0)
, (1.2)

where the upper bound M is assumed to be known, and the parameters � and T0, which

dictate the shape of the sigmoid, are not known. When T0 = 0, S(0) = M/2; the value of

T0 determines the lateral shift of this curve. The parameter � determines the rate at which
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the sigmoid accelerates to its maximum value with larger values indicating a faster rate

of increase; at u = T0 the slope of the sigmoid isM�/4.

The covariate function S(u) should be selected on the basis of prior studies and sub-

ject matter understanding. Scatter plots of the cross-sectional data may also give insight

into to the functional form of the covariate process. Choice of the error function, f(·), also

requires consideration. The absolute error model may not be appropriate for covariates

that are constrained by a maximummeasured value, such as PET amyloid, as it may lead

to individual-specific trajectories that exceed the maximum value. The logit error model

with time-varying deviations has an attractive interpretation when the population-level

function is assumed to be the sigmoid in (1.2). The individual specific deviations modify

the acceleration parameter, �, and the shift parameter, T0, so that each subject is allowed to

have an individual-specific trajectory. In particular, inserting the sigmoidal function (1.2)

into the logit error model (1.1) yields an individual specific sigmoidal covariate function,

Z

i

(u) = M/[1 + e

�e
�(u�f

T0)], where e

�

i

= �+ b

i

and f

T0,i = (�T0 � a

i

)/(�+ b

i

). The logit error

model assumes that the time-varying covariate is linear on the logit scale, which may be

appropriate only in some settings.

We assume that the true hazard function for the event of interest, with time measured

from onset, is

�

Ui(u|Zi

(·)) = �0U(u)e
�g(Zi(u))

, (1.3)

for some function g, and baseline hazard function, �0U(u). In this paper, we consider the

case g = f . In general, g should be defined to best capture the nature of the biomarker

trajectory and its relationship to the hazard of the event.

1.3 Implications of using study entry as the time origin for
Cox models with time-varying predictors

When an appropriate time origin precedes study entry and the covariate of interest is

not time-varying, Korn et al. (1997) provided sufficient conditions under which fitting a

model that uses study entry as the time origin preserves the desired estimated regres-

sion coefficient corresponding to the fixed covariate. They assumed that while the true

6



survival model is given by

�

Ui(u|xi

, E

i

) = �0U(u)e
�xi

,

where x
i

is a fixed covariate, the data are fit instead to the model,

�

Ti(t|xi

, E

i

) = �0T (t)e
⇠xi+�Ei

, (1.4)

which uses study entry as the time origin. It is clear that ⇠ = � provided that �0U(u) =

c exp{�u} and �0T (t) = c exp{�t}, for some positive constant c. Under these conditions, b⇠

based on fitting the Cox model specified in (1.4) will be a consistent estimator of �.

We now extend the results of Korn et al. to the case of a continuous time-varying

covariate, w
i

(u), and provide conditions under which using study entry as the time ori-

gin and/or treating a time-varying covariate as fixed will preserve the Cox regression

parameter of interest. Suppose that the true survival model is

�

Ui(u|wi

(·), E
i

) = �0U(u)e
�wi(u)

. (1.5)

We assume further that E and U are continuous random variables, and that the time-

varying biomarker w(u) is continuous and defined on the support of U . Without loss of

generality, we assume that the support of E is contained in the support of U . In addition,

we assume that � 6= 0, and the study entry times, E
i

, and biomarkers, w
i

(u), are not

constant across individuals.

We consider three possible models that might be fit to these data. First, we consider

the model that uses study entry as the time origin and adjusts for study entry time as a

covariate

�

Ti(t|wi

(·), E
i

) = �0T (t)e
⇠wi(t+Ei)+�Ei

. (1.6)

In Theorem 1 part (a) below, we derive conditions on the true baseline hazard function

under which the coefficient of w
i

(t+ E

i

) is equal to �. Assuming only that �0U(u) = ce

�u,

the Cox partial likelihood derived from (1.6) can be used for estimation of �. Note that

this extends the fixed covariate case (Korn et al.).

Next we consider models that treat the time-varying predictor as fixed, using either

onset or study entry as the origin, and derive conditions under which we obtain a con-

sistent estimator of �. If the value of the time-varying covariate is known only at study
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entry, it can be included in a Cox model as a fixed covariate in a second model with onset

as the time origin:

�

Ui(u|wi

(·), E
i

) = �1U(u)e
↵wi(Ei)

. (1.7)

Note that estimation of this model must adjust for delayed entry (left truncation). If time

from onset to study entry is known, we can include E

i

as a covariate in a third model

using study entry as the time origin:

�

Ti(t|wi

(·), E
i

) = �2T (t)e
⇣wi(Ei)+⌘Ei

. (1.8)

The case where there is no covariate adjustment for study entry time is included in this

model when ⌘ = 0. Alternatively, the time of study entry could be adjusted for through

stratification or through covariate adjustment by a non-linear function of E
i

, which we

do not consider here. In Theorem 1 parts (b) and (c), we derive conditions under which

the coefficients of w
i

(E
i

) in (1.7) and (1.8) are equal to �.

Theorem 1. Suppose the true hazard regression model is given by (1.5).

(a) (Korn et al. extension) Consider the model in (1.6): � = ⇠ () �0U(u) =

ce

�u and �0T (t) = ce

�t, for some positive constant c. In practice, if �0U(u) = ce

�u, (1.6) can

be used to estimate � without specifying that �0T (t) = ce

�t.

(b) Consider the model in (1.7): � = ↵ () w

i

(u) = w

i

(E
i

) + g(u), for some continuous

function g that is zero on the support of E. In practice, if w
i

(u) = w

i

(E
i

) + g(u), (1.7) can

be used to estimate � in an analysis that adjusts for left-truncation.

(c) Consider the model in (1.8): � = ⇣ () w

i

(t + E

i

) � w

i

(E
i

) = k(t), �0U(u) = ce

⌘u and

�2T (t) = ce

�k(t)+⌘t, for c > 0. In practice, under these conditions on �0U and w

i

(t + E

i

)�

w

i

(t), (1.8) can be used to estimate � even if �2T (t) 6= ce

�k(t)+⌘t.

The proof for Theorem 1 is given in the Appendix. Theorem 1 provides guidelines

for implementing Cox regression with a time-varying covariate using study entry as the

origin or when the time-varying covariate is measured only at study entry. Theorem 1

8



part (a) shows that study entry can be used as the origin if the covariate process is fully-

observed or if its functional form is known, as long as the baseline hazard is of exponential

functional form. These conditions are reasonable in some settings: in many instances, a

covariate process can be modeled using subject-level knowledge (Fisher and Lin, 1999),

and constant hazard functions have been empirically shown to model incidence in many

epidemiological studies (Ingram et al., 1997), and exponential-form (Gompertz) baseline

hazards are widely used to model mortality.

If the time-varying covariate is observed only at study entry and its functional form

is known, then the covariate process can be treated as fixed in an analysis from onset, as

long as the covariate function, w
i

(u), satisfies the condition in Theorem 1 part (b). An

example of such a function is w
i

(u) = a

i

+m · (h(u)�h(L))1{u > L}, where L is the upper

bound of the support ofE and h is continuous; this is a time-varying continuous covariate

function that is constant on the support of E but can vary for values of u outside of the

support of E. Since we are mainly concerned with w(u) on the support of E, Theorem 1

part (b) indicates that treating a time-varying (i.e., non-constant) biomarker as fixed using

onset as the origin is not valid.

Theorem 1 part (c) shows that if the time-varying covariate is observed only at study

entry, an analysis using study entry as the origin is valid only for special cases of the base-

line hazard and covariate process. As discussed above, the baseline hazard assumptions

are realistic in some settings. One example of a time-varying covariate that satisfies the

condition in Theorem 1 part(c) is w
i

(t) = a

i

+ a1t, a linear function with a subject-specific

intercept. Thus, in some instances it is reasonable to treat time-varying covariates as fixed

in an analysis from study entry.

The focus of this paper is the impact of the time-varying covariate w
i

(u) = f(S(u)) +

a

i

+ b

i

u, as defined in (1.1), on the hazard function through the Cox model defined in

(1.5). Theorem 1 part (a) allows for valid estimation of � using study entry as the time

origin provided that f , a
i

and b

i

are known, E
i

is included in the model as a covariate,

and �0U(u) = c exp{�u}. If the covariate process is known only at study entry, then it

is not valid to treat the time-varying covariate as fixed in an analysis from onset because

w

i

(u)�w

i

(E
i

) = f(S(u))�f(S(E
i

))+b

i

(u�E

i

) is a function that depends on i and violates

9



the condition of part (b) of the Theorem.

The implications of Theorem 1 part (c) differ for the two examples of f introduced in

Section 1.2. First consider the absolute error model with w

i

(u) = S(u) + a

i

+ b

i

u, where

S(u) is the sigmoid in (1.2). Theorem 1 part (c) establishes that using study entry as

the origin and treating the time-varying covariate as fixed will yield biased estimates of

�. To see this, Theorem 1 part (c) requires that w
i

(t + E

i

) � w

i

(E
i

) is independent of i,

however in this case w

i

(t + E

i

) � w

i

(E
i

) = S(t + E

i

) � S(E
i

) + b

i

t is not independent of

i. This is the case even if b
i

⌘ 0. Alternatively, for the logit error model with w

i

(u) =

logit[S(u)/M ] + a

i

+ b

i

u, if b
i

⌘ b, using study entry as the origin and treating the time-

varying biomarker as fixed is valid, provided that the baseline hazard is of an exponential

form, since w

i

(t + E

i

) � w

i

(E
i

) = (� + b)t is independent of i. If b
i

6= b, this condition is

not satisfied.

Note that the results of Theorem 1, parts (a) and (c), apply even when � = 0. In

contrast, Theorem 1 part (b) does not apply to this case. If � = 0, then the true survival

model is

�

Ui(u|wi

(·), E
i

) = �0U(u).

If we fit the model in (1.7), it is easy to see that ↵ = 0 () �0U(u) = �1U(u). In practice,

this implies that fitting (1.7) when � = 0 will yield b↵ = 0 without restrictions on w

i

(u).

1.4 Methods

Based on our analysis in Section 1.3, it is not advisable to treat time-varying biomarkers

measured only at study entry as fixed covariates for the time origin of disease onset. And

for the time origin of study entry, this can be done only under strong assumptions on

the baseline hazard function and the covariate function. Thus, lacking full observation of

the biomarkers over time, we require an approach that will allow us to estimate the full

biomarker trajectory based on cross-sectional observation of it, and importantly, does not

require restrictive assumptions on the baseline hazard function of the functional form of

the covariate process.

Assuming that the time-varying biomarker follows the general error model in (1.1)

10



and the true hazard can be modeled as in (1.3) for g = f , we provide methods for es-

timating the regression parameter � when the fully-observed time-varying biomarker is

measured only at study entry. We note that the components of the error, a
i

and b

i

, cannot

be simultaneously estimated when only a single biomarker measurement is available for

each subject. We thus consider the cases a
i

⌘ 0 and b

i

⌘ 0 separately.

1.4.1 Case: bi ⌘ 0

The covariate process in this case is defined as f(Z
i

(u)) = f(S(u;�, T0)) + a

i

, with

individual-level deviations that are fixed over time. We assume that E(a
i

) = 0. We as-

sume that the value of M , which represents the maximum value of the sigmoidal predic-

tor in (1.2), is known. In order to estimate the regression parameter �, we first estimate

the parameters � and T0 of the population-level sigmoid S(u;�, T0) using least squares to

minimize
X

i

[f(Z
i

(E
i

))� f(S(E
i

;�, T0))]
2

with respect to � and T0. We then estimate the a
i

as ba
i

= f(Z
i

(E
i

))�f(S(E
i

; b�, bT0)), and the

time-varying covariate process as \
f(Z

i

(u)) = f(S(u; b�, bT0)) + ba

i

. The true hazard function

�

Ui(u|f(Zi

(·))) can then be approximated as

�

Ui(u| \
f(Z

i

(·))) = �0U(u) exp{�· \
f(Z

i

(u))} = �0U(u) exp{�·
h

f(S(u; b�, bT0)) + ba

i

i

} = g

�0U(u) exp{�·bai}.

(1.9)

The model in (1.9) shows that the desired regression parameter � can be estimated by

fitting a Cox model with ba
i

included as a fixed-covariate.

Note that if f(Z
i

(u)) is linear in u, as is the case with the sigmoid-based logit error

model, where

f(Z
i

(u)) = logit[Z
i

(u)/M ] = �(u� T0) + a

i

,

then the model based on \
f(Z

i

(t+ E

i

))) is equal to that based on f(Z
i

(E
i

)). In this case,

\
f(Z

i

(t+ E

i

)) = b

�(t+ E

i

� b

T0) + ba

i

= b

�t+ \
f(Z

i

(E
i

)) = b

�t+ f(Z
i

(E
i

)),

by the definition of ba
i

. Thus, fitting a Cox model from study entry with \
f(Z

i

(t+ E

i

))

as a time-varying covariate is equivalent to fitting the model from entry with the fixed

11



covariate f(Z
i

(E
i

)), since the population-level b�t term will be absorbed into the baseline

hazard function and will not affect estimation.

1.4.2 Case: ai ⌘ 0

The covariate process in this case is defined as f(Z
i

(u)) = f(S(u);�, T0) + b

i

u, with time-

varying individual-level deviations. At each E

i

it follows that

f(Z
i

(E
i

))

E

i

=
f(S(E

i

;�, T0))

E

i

+ b

i

, (1.10)

and thus � and T0 can be estimated via least squares by minimizing

X

i



f(Z
i

(E
i

))

E

i

� f(S(E
i

;�, T0))

E

i

�2

with respect to � and T0. We then estimate b
i

as

b

b

i

=
f(Z

i

(E
i

))

E

i

� f(S(E
i

; b�, bT0))

E

i

.

Note that estimation of b
i

uses only those entry times E

i

that are nonzero; in some set-

tings it is possible that a time origin, such as disease onset, may coincide with study

entry for some subjects. We estimate the time-varying covariate process as \
f(Z

i

(u)) =

f(S(u; b�, bT0)) + b

b

i

u. The true hazard function �

Ui(u|f(Zi

(·))) is approximated as

�

Ui(u| \
f(Z

i

(·))) = �0U(u) exp{� · \
f(Z

i

(u))}

= �0U(u) exp
n

� ·
h

f(S(u; b�, bT0)) + b

b

i

u

io

= g

�0U(u) exp{� ·bb
i

u}.

(1.11)

The regression parameter � can be estimated using Cox regression with the time-varying

covariate bb
i

u.

1.4.3 Adjusting sigmoid for disease severity

In the AD setting, individual sigmoidal trajectories might be explained by individual-

level covariates (e.g., APOE4 allele status, gender) and not just simply by unexplained in-

dividual deviations. We propose to incorporate this into the sigmoidal model by allowing

12



the lateral shift of the population-level sigmoid, given by T0, to be a function of covari-

ates. Let w
i

denote a vector of individual-specific covariates reflecting disease severity.

We model the individual-specific lateral shifts as T0,i = �

0w
i

, for a vector of coefficients �.

Then the sigmoid is redefined as

S(u,w
i

;�, �) =
M

1 + e

��(u��

0wi)
,

additional individual deviations are modeled as f(Z
i

(u,w
i

)) = f(S(u,w
i

;�, �))+a

i

+ b

i

u,

and the true hazard model is assumed to be

�

Ui(u|f(Zi

(·))) = �0U(u) exp{�f(Zi

(u,w
i

;�, �))}. (1.12)

This can be implemented for any f . In the case of the logit error model (1.1),

logit


Z

i

(u,w
i

)

M

�

= logit


S(u,w
i

);�, �

M

�

+ a

i

+ b

i

u

= �(u� �

0w
i

) + a

i

+ b

i

u,

so that the individual-specific lateral shifts are given by �

0w
i

. The model in (1.12) then

simplifies as:

�

Ui(u|logit(Zi

(·)/M)) = �0U(u) exp{� [logit(Z
i

(u,w
i

;�, �)/M)]}

= �0U(u) exp{� [�(u� �

0w
i

) + a

i

+ b

i

u]}

= g

�0U(u) exp{�[ai + b

i

u� ��

0w
i

]}.

As discussed above, both error components a
i

and b

i

, cannot be estimated simultane-

ously. The estimation procedure is analogous to that described in Sections 1.4.1 and 1.4.2,

and differs only with regard to the parameters of disease severity adjusted population-

level sigmoid; least squares is used to estimate � and �. For example, for the case b

i

⌘ 0,

we use least squares to minimize

X

i

[f(Z
i

(E
i

))� f(S(E
i

;�, �))]2

with respect to � and �.
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1.5 Simulations

We simulated left-truncated time-to-event data such that the time from onset to event, U
i

,

satisfies the hazard model in (1.3) and the transformed time-varying predictor, f(Z
i

(u)),

follows the logit error model in (1.1) with sigmoidal S in (1.2), upper bound M , and

f(x) = logit(x/M). Study entry times, E
i

, were generated independently of the survival

times, U
i

. The time-varying covariates were available only from the times of study entry.

The data, (E
i

, U

i

, f(Z
i

(E
i

))), were generated to achieve specified truncation probabilities,

denoted ⇡trunc = P (U
i

< E

i

). Parameters of the covariate process were chosen to reflect

PIB PET measurements of the AD biomarker, A�; hazard regression parameters were

chosen so that time-to-AD diagnosis values align with those observed in AD studies. The

data were generated in the following steps:

1. Select � 2 {0, 0.25, 0.5, 1, 1.5}, n 2 {100, 250}, M = 3, � 2 {0.1, 0.25, 0.4}, T0 = 40,

�

a

2 {0.5, 1}, �
b

2 {0.01, 0.05}.

2. Generate error components, a
i

⇠ N(0, �2
a

) and set b
i

= 0 or generate b

i

⇠ N(0, �2
b

)

and set a
i

= 0.

3. Generate V
i

⇠ Unif(0, 1) and solve for U
i

in

V

i

= exp

⇢

�
Z

Ui

0

�

Ui(w) dw

�

= exp

⇢

�
Z

Ui

0

�0U(w) exp{� · [f(S(w)) + a

i

+ b

i

w]} dw
�

.

(1.13)

This can be easily done when the integral in (1.13) can be calculated in closed form,

as discussed in Bender et al. (2005). This is the case under the logit error model (1.1)

where f(S(u)) = �(u� T0) + a

i

+ b

i

u. We considered three separate baseline hazard

functions, �0U(u), defined below: constant, exponential-form, normal density

kernel. The constant and exponential-form baseline hazard functions appear in

Theorem 1 and were chosen to confirm our theoretical results. The normal density

kernel baseline hazard function was chosen because it permits a closed form
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solution for U
i

and violates the requirements of the theorem, and thus also confirms

our theoretical results.

Baseline hazard functions:

i. (Constant baseline hazard) �0U(u) = c, where c = 0.0154, 0.01, 0.004, 0.001, 0.001

corresponding to � = 0, 0.25, 0.5, 1, 1.5,

ii. (Exponential-form baseline hazard) �0U(u) = ce

 u, where c > 0 and  6= 0with

c = 7⇥ 10�8 and  = 0.2,

iii. (Normal density kernel baseline hazard) �0U(u) = m exp {�c(u� a)2}, where

(c, a,m) = (0.001, 60, 1) for the fixed-deviations case (b
i

⌘ 0) and (c, a,m) =

(0.1, 70, 100) for the time-varying deviations case (a
i

⌘ 0). The hazard function

can be expressed as follows,

�

Ui(u) = m exp
�

�c(u� a)2 + �[�(u� T0) + a

i

+ b

i

u]
 

= �(u;µ
i

, �

2) ·K
i

,

where �(u;µ
i

, �

2) is the normal density with mean µ

i

= a + �(�+ b

i

)/(2c) and

variance �2 = 1/(2c), and

K

i

= m exp

⇢

�



a(�+ b

i

) + a

i

+
�(�+ b

i

)2

4c
� �T0

��p
2⇡�2

.

4. Generate study entry timesE
i

⇠ Uniform(0, Rtrunc), whereRtrunc is chosen to achieve

P (U
i

< E

i

) = ⇡trunc = 0.2, 0.4, and is a function of the parameters of the distribution

of U . A table of Rtrunc used can be found in Table 4.1 of the Supplemental Material

section.

5. Retain the first n observations that satisfy E

i

< U

i

, i.e. incorporate delayed entry to

this study (left-truncation).

6. Calculate f(Z
i

(E
i

)) = f(S(E
i

)) + a

i

+ b

i

E

i

= �(E
i

� T0) + a

i

+ b

i

E

i

, where either a
i

or b
i

is zero.

7. Estimate � and T0 using least squares as in Sections 1.4.1 and 1.4.2.
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8. Estimate a
i

or b
i

using b� and b

T0 as in Sections 1.4.1 and 1.4.2.

9. Define \
f(Z

i

(u)) = b

�(u� b

T0) + ba

i

or \
f(Z

i

(u)) = b

�(u� b

T0) + b

b

i

u, as appropriate.

10. Fit the following models, adjusting for left truncation when the origin is onset:

�

Ui(u|f(Zi

(·)), E
i

) = �0U(u)e
�1f(Zi(u)) (A)

�

Ui(u|f(Zi

(·)), E
i

) = �0U(u)e
�2

\
f(Zi(u)) (A0)

�

Ui(u|f(Zi

(E
i

)), E
i

) = �1U(u)e
↵f(Zi(Ei)) (B)

�

Ti(t|f(Zi

(E
i

)), E
i

) = �1T (t)e
⇣1f(Zi(Ei)) (C)

�

Ti(t|f(Zi

(E
i

)), E
i

) = �2T (t)e
⇣2f(Zi(Ei))+⌘Ei (D)

�

Ti(t|f(Zi

(·)), E
i

) = �3T (t)e
⇠1f(cZi(t+Ei)) (E)

�

Ti(t|f(Zi

(·)), E
i

) = �4T (t)e
⇠2f(cZi(t+Ei))+�Ei (F)

Model (A) is the true survival model, where f(Z
i

(u)) = �(u�T0)+a

i

+b

i

u. Model (A0)

corresponds to the proposed method in Section 3.3 where \
f(Z

i

(u)) is defined in Step

9. Model (B) corresponds to Theorem 1 part (b), and models (C) and (D) correspond

to Theorem 1 part (c), where f(Z
i

(E
i

)) is from Step 3. Models (E) and (F) correspond

to Theorem 1 part (a), where \
f(Z

i

(t+ E

i

)) = b

�(t + E

i

� b

T0) + ba

i

+ b

b

i

(t + E

i

). Given

the linear form of f(Z
i

(u)) with b

i

⌘ 0, estimation via Models E and F is equivalent

to that via Models C and D, respectively.

11. Repeat 5000 times.

The statistical package R (R Core Team, 2014) version 3.1.2 was used for all data anal-

yses. Nonlinear least squares minimization was executed using the nls function in the

stats package (Brazzale, 2005) with convergence parameters set to maxiter=1e4 and

minFactor=1e-10 andwith the default tolerance tol = 1e-5. Hazard regression was

implemented using the function coxph in the survival package (Therneau, 2015). Cox

models with time-varying predictors were fit using the time-transform option of coxph

or with the use of counting process style input. R code is available in the Supporting

Information.
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The simulation results are given in Table 1.1 for varying values of �, � = 0.25, �
a

= 0.5

and �

b

= 0.05, and ⇡trunc = 0.2 for the fixed (a
i

) and time-varying (b
i

) individual-level de-

viations models, respectively. Means and standard deviations of simulated estimates are

presented. Type I error and power were taken to be the proportion of simulations which

rejected the test statistic with probability less than 0.05 for � = 0 and � > 0, respectively.

Type I error and power corresponding to � = 0.5 are given in Tables 4.2 and 4.3 in the

Supplemental Material section, respectively, for the parameter values used in Table 1.1.

For the case of fixed deviations (a
i

) and a normal density kernel baseline hazard, the pa-

rameters originally chosen for the baseline hazard function to align with the AD setting

result in a baseline hazard function that closely resembles an exponential, and thus do

not serve the purpose of illustrating results under deviations from the exponential. Thus,

the parameters of the normal density kernel baseline hazard were then chosen to illus-

trate this contrast, (c, a,m) = (0.05, 30, 1), and the results for this parameterization of the

normal kernel density baseline hazard function in the fixed deviations case are given in

Table 1.1.

The simulation results in column one of Table 1.1 confirm that fitting the true survival

model, in (A), gives consistent estimates of �. The second column demonstrates that the

proposed method described in Section 3.3, which corresponds to model (A0), performs

nearly as well as fitting the true model in column one for all baseline hazard distributions

considered (constant, exponential-form, normal density kernel), with slightly higher stan-

dard errors, due to estimation of the covariate process.

When the covariate process follows the general error model in (1.1), Theorem 1 part

(b) guarantees that treating a time-varying biomarker as fixed at its value at study entry

will always produce biased estimates of � if the true origin is used, for nonzero values

of �. This analysis corresponds to fitting model (B) and the results are listed in column

three of Table 1.1 for � 6= 0 for both fixed and time-varying deviations and for all three

baseline hazards considered, and are as expected. When � = 0, we expect the estimated

regression coefficient to be zero (see discussion following Theorem 1); this is seen in the

table, as well.

Theorem 1 part (c) provides conditions for when using an incorrect origin of study
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entry and treating the time-varying predictors as fixed results in consistent estimates of �.

For the fixed deviation models (i.e., a
i

), the discussion following Theorem 1 ensures that

inference is valid if study entry is used as the time origin and the time-varying biomarker

is treated as fixed (with or without covariate adjustment for study entry time), as in mod-

els (C) and (D), provided that the baseline hazard is constant. Similarly, if the baseline

hazard follows an exponential form and both the value of the time-varying biomarker

at study entry and study entry time are included in the model as covariates, as in (D),

estimates of � are unbiased. For the time-varying deviations models (b
i

), Theorem 1 (c)

guarantees that estimates of � will be biased if study entry is used as the time origin and

the time-varying biomarker is treated as a fixed covariate (with or without covariate ad-

justment for study entry time), as in (C) and (D). These theoretical findings are illustrated

through our simulation results in columns four and five.
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Theorem 1 part (a) corresponds to models (E) and (F). It asserts that for a constant

baseline hazard, the model that uses study entry as the origin and includes f(Z
i

(t+ E

i

))

as a time-varying covariate, with or without covariate adjustment for study entry time,

will give consistent estimates of � for fixed or time-varying deviations. For a baseline

hazard that is of an exponential form, fitting the model that uses study entry as the ori-

gin, including both f(Z
i

(t+ E

i

)) and study entry time as covariates, will give consistent

estimates of �. These results are supported through our simulations when \
f(Z

i

(t+ E

i

))

is used to approximate f(Z
i

(t+ E

i

)). When the baseline hazard does not follow an expo-

nential form, Theorem 1 part (a) guarantees that estimates of � will be biased if a model

is fit using study entry as the origin, including both f(Z
i

(t+ E

i

)) and study entry time as

covariates. For the case of the normal density kernel baseline hazard and fixed deviations,

this is confirmed through our simulation results, when \
f(Z

i

(t+ E

i

)) is used to approxi-

mate f(Z
i

(t+ E

i

)), with greater bias corresponding to larger values of �. For the case of

the normal density kernel baseline hazard and time-varying deviations, our simulation

results indicate that the bias increases with �.

For the models with fixed-deviations (a
i

), notice that fitting models (C) and (E) give

identical results. The same is true for models (D) and (F). As noted at the end of Section

1.4.1, this is expected when the form of the covariate model is linear in u, as is the case

with the sigmoid-based logit error model.

Table 4.2 shows that the type I error is within 0.06 for all analyses that use onset as

the time origin. For the analyses that use study entry as the origin, the type I error is

less than 0.06 for baseline hazard functions that are constant, or follow an exponential

form, provided that study entry time is included as a covariate (models D, E); the type

I error is inflated for all other analyses from study entry. This follows from Theorem 1

parts (a) and (c), which hold for � = 0; specifically, when � = 0 and the conditions of

Theorem 1 parts (a) and (c) are not met, then the estimated regression coefficients are

expected to be nonzero. Table 4.3 shows that the null hypothesis test is well powered,

under the simulation parameters specified in Table 1.1, for all analyses except for when

onset is used as the time origin and the time-varying covariate is treated as fixed (model

B). In this case, the population-level covariate function is absorbed by the baseline hazard
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function and the impact of the covariate is due to the individual-specific deviations, as in

(1.9); it is likely that � · a
i

is close to zero for all subjects so that the likelihood of rejecting

the null is also small.

In additional simulations (not shown), variations in the truncation probability, ⇡trunc,

had little effect on bias, type I error and power. Larger values of �
a

and �

b

, the stan-

dard deviations of a
i

and b

i

, were associated with smaller standard errors and greater

power, but had little effect on type I error. Varying �, the acceleration parameter of the

sigmoid S(u), gave comparable results with respect to bias, type I error and power, how-

ever greater values of � were required to see bias in the case of a normal density based

baseline hazard and a covariate process with time-varying deviations (b
i

). Reducing the

sample size to n = 100 resulted in larger standard errors and less power, but had little ef-

fect on type I error and bias, except for the case of a normal density based baseline hazard

and time-varying deviations (b
i

) where greater values of � were needed to see bias.

The analytical standard errors from the Cox model do not account for the variability

from estimating the sigmoidal parameters and may therefore be underestimated. Boot-

strapped standard errors would account for the two sources of variation, however boot-

strapping within this simulation study is not computationally feasible. Because of this,

we present the analytical standard errors. In Section 1.6, where we apply our methods to

Alzheimer’s data, we compare the analytical and bootstrapped standard errors.

1.6 Application to Alzheimer’s data

We applied our methodology to two Alzheimer’s studies: one from the Rush Alzheimer’s

Disease Center (RADC) and the other from the Alzheimer’s Disease Neuroimaging Initia-

tive (ADNI). We chose to study the impact of a single biomarker on disease progression.

Recently, Capuano et al. (2016) at Rush University provided convincing evidence for a

sigmoidal trajectory for a measure of global cognition in the RADC dataset. This com-

plements the existing literature on sigmoidal biomarker models for AD proposed by Jack

et al. (2010). Based on this theoretical framework for Alzheimer’s biomarkers and empir-

ical evidence, we assumed a sigmoidal trajectory (1.2) for the time-varying biomarker in
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both analyses.

We fit models (A0), (B), (C), (D), (E), and (F). We also fit the model that adjusts the lat-

eral shift based on an individual’s disease severity in Section 1.4.3. In order to account for

estimation of the covariate process in variance estimation, we employed a simple boot-

strap with 5000 resamples. For each study, we describe below the analyses, study popu-

lation, biomarker, error model, origin, endpoint and study entry definitions.

1.6.1 Global cognition

We obtained a limited data set from from the RADC that combines data from the Reli-

gious Orders Study and the Memory and Aging Project (ROS/MAP) (A Bennett et al.,

2012a,b). The biomarker was an average of a battery of 19 cognitive test z-scores (Wil-

son et al., 2015), which was taken to be a measure of global cognitive function. The ori-

gin was defined as birth, study entry was defined as the time of baseline visit, and the

endpoint was defined to be time of death or time at last cognitive testing based on the

Mini-Mental State Examination (MMSE) (Folstein et al., 1975). Only subjects with at least

one biomarker measurement and who carried a diagnosis of mild cognitive impairment

(MCI) at the time of biomarker measurement were included in the study. The global mea-

sure of cognition was translated by two units to achieve positive values. Gender and

body mass index (BMI) (Buchman et al., 2005) were included as covariates in the model

that adjusts the lateral shift based on an individual’s disease severity.

In choosing an error model, we used graphical diagnostics to determine goodness-

of-fit of the absolute error and logit error models based on the sigmoid, S(u), in (1.2). The

absolute error model assumes that Z(u) = S(u;�, T0) + a

i

+ b

i

u. We used least squares to

estimate � and T0 based on data (E
i

, Z(E
i

)) and plotted the residuals, Z(E
i

)�S(E
i

; b�, bT0),

against study entry time, E
i

. We saw that the residuals were centered around zero

with nearly constant variance, indicating that the sigmoid-based absolute error model

with fixed deviations aligned well with the observed biomarker data. We also consid-

ered the sigmoid-based logit error model which assumes that the transformed biomarker,

logit(Z
i

(u)/M), is linear in u. We plotted the transformed observed biomarker values col-

lected at study entry, logit(Z
i

(E
i

)/M), against time at study entry,E
i

and saw a non-linear,
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decreasing trend that accelerates with time. Based on these diagnostics, we assumed the

global measure of cognition followed a sigmoid-based absolute error model with fixed

deviations. As a sensitivity analysis, we also fit the sigmoid-based absolute error model

with time-varying deviations, the sigmoid-based logit error model with both fixed and

time-varying deviations, and the following linear absolute error model,

Z

i

(u) = �(u� T0) + a

i

+ b

i

u, (1.14)

where � and T0 play similar roles as they do in the sigmoidal function. The corresponding

severity adjusted model is given by

Z

i

(u) = �(u� �

0
w

i

) + a

i

+ b

i

u, (1.15)

where w

i

is a vector of individual-specific covariates reflecting disease severity, which

alter the lateral shift of the linear function.

Descriptive statistics are given in Table 1.2. A total of 737 subjects were included

in the analysis, of whom 473 experienced the event. A plot of the cross-sectional global

cognition score at time of baseline visit with a fitted loess curve is displayed in Figure

1.1, which highlights levels of (gender, overweight), where overweight corresponds to

subjects with BMI greater than or equal to 25. Although based on cross-sectional, and

not longitudinal data, a sigmoidal functional form is discernible, and a clear downward

trend is present indicating a decline in global cognition with increasing age. There is no

indication that gender and overweight status in tandem are associated with the global

cognitive score from Figure 1.1.

The results of the analysis are displayed in Table 1.3. Note that models (B), (C) and

(D), which include the time-varying biomarker value at study entry as a fixed covariate,

do not involve estimation of the covariate function, and are thus listed with the same

results for fixed (a
i

) or time-varying deviations (b
i

). Assuming the sigmoid-based absolute

error model with fixed deviations, a
i

, the hazard ratio comparing the biomarker level over

a one unit time interval is 0.60 (exp(�0.51)) based on our proposed method (A0). It is 0.49

(exp(�.72)) based on (E) that assumes the origin is study entry and treats the biomarker

as a fixed covariate, adjusting for time between the origin and study entry. This difference

23



Table 1.2: Descriptive statistics of subjects included in the RADC analyses
n (%)

Number of subjects 737
Male 218 29.6
Education

12 years 149 20.2
13-16 years 296 40.2
17+ years 292 39.6

Converted to AD 473 64.2

Mean SD

Age at baseline visit 80.9 7.5
Global cognition score 0.42 0.46
Time from birth to last observation 87.8 7.2
Time from study entry to last visit 6.9 4.8

60 70 80 90 100

−2
.0

−1
.5

−1
.0
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0
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0
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Figure 1.1: Plot of global cognition at study entry versus age at study entry for levels of
(BMI, Gender) with fitted loess curve, where BMI�25 is defined as overweight.

24



highlights the importance of selection of the analytic approach for answering the clinical

question. Given that there is support for the sigmoid-based absolute error model with

fixed deviations based on our diagnostics, and it does not require any assumptions on the

baseline hazard, we would report the hazard ratio of 0.60.

For the birth origin analyses, the estimates from themodel that treats the biomarker as

fixed (B) are smaller in magnitude by approximately 30% than those from the model that

estimates the full covariate trajectory (A0), with the exception of the absolute error model

with time-varying deviations (second row) where the effect is increased in magnitude by

30%. The estimates from the severity adjusted analyses using birth as the origin (column

three) are also moderately different from the estimated time-varying model (A0), with

more of a difference seen with the linear trend biomarker models, in which the change

in magnitude of the regression estimates is more than 65%. This suggests that subject

specific adjustments to the sigmoidal model are potentially important. This is seen as

well with respect to the covariate function parameter estimates given in Table 4.5, which

is given in the Supplemental Material section. When study entry is taken to be the origin,

there are moderate differences across the four models that we fit (columns four through

seven), and these estimates can vary dramatically from the estimates that are obtained

when using birth as the origin (columns one through three).

In summary, for this data example the choice of time origin and treatment of time

varying covariates do impact inference and thought must be given to the implications of

these choices. Although the magnitude of the estimates for the models differ slightly, the

direction of the effect among all models using both origins agree.

As mentioned in the Section 1.5, the analytical standard errors from the Coxmodel do

not account for the variability in estimating the sigmoidal parameters and are likely to be

underestimated. Table 4.4 compares the analytical standard errors with the bootstrapped

standard errors. For the logit error models, the analytical standard errors are comparable

to those that are obtained via bootstrapping. For the biomarker models based on the sig-

moid with an absolute error model and based on the linear model, the analytical standard

errors are greatly underestimated, suggesting that bootstrapped standard errors should

be used.
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1.6.2 Hippocampal volume

We also analyzed data from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)

database (adni.loni.usc.edu). Launched in 2003, the ADNI is a longitudinal study aimed

at using biomarkers of AD, and clinical and neuropsychiatric assessments to measure the

progression of MCI and AD (Mueller et al., 2005).

The origin was defined as birth, study entry was defined as the first biomarker mea-

surement, and the endpoint was defined to be the time of the first diagnosis of AD in the

ADNI study. Only subjects with at least one biomarker measurement and who carried

a diagnosis of mild cognitive impairment (MCI) at the time of biomarker measurement

were included in the study. Gender and APOE-4 allele status were included as covari-

ates in the model that adjusts the lateral shift based on an individual’s disease severity.

After considering several potential markers in a preliminary analysis, we chose to focus

on hippocampal volume, where a clear downward trend was seen in the cross-sectional

plot. We standardized and shifted the values by three units so that all resulting biomark-

ers quantities were positive. Descriptive statistics for the study population are given in

Table 4.6.

We used graphical diagnostics, as described for the Rush data, to chose an error

model for these data. A plot of logit(Z(E
i

)/M) against E
i

resulted in a clear linear trend

with constant variability. In considering an absolute error model based on the sigmoid in

(1.2) and linear trends in (1.14), neither of the residual plots had mean zero. Therefore,

we assumed a sigmoid-based logit error model for this analysis. We fit the sigmoid- and

linear trend-based absolute error models as sensitivity analyses.

The results of the analysis are reported in Table 4.7 in the Supplemental Material sec-

tion. There were only small differences seen across the three birth origin models and

the four study entry origin models that were fit, regardless of the biomarker model cho-

sen. This was likely due to short follow-up and only small variations in the measured

biomarker levels, but potentially a non-exponential functional form for the baseline haz-

ard function.
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1.7 Discussion

In settings such as Alzheimer’s disease, using study entry as the time origin in a time-to-

event analysis is convenient because time-varying biomarkers are often measured only

at study entry and thus can be used as fixed baseline covariates. If study entry is not an

appropriate time origin, the question of interest is “under what conditions is it valid to

use an incorrect time origin of study entry in a Cox model with time-varying covariates?”

The answer to this question for the case of fixed covariates was established by Korn et al.

(1997). We have extended the work of Korn et al. to the case of a time-varying covariate;

we have shown that using an incorrect origin of study entry is valid only for special

cases of the baseline hazard function provided that the functional form of the covariate

process is fully-observed. We further examined the implications of treating a continuous,

time-varying covariate as fixed at its value at study entry for both the onset and study

entry origins; we showed that this is only valid in certain cases of the baseline hazard

and time-varying covariate. These theoretical findings underscore the necessity for full

observation of time-varying covariates or good modeling of them. This is challenging

unless good prior data is available.

For situations in which the full covariate function is not available, we developed

methods for estimating regression coefficients when the time-varying covariate follows

the general error model f(Z
i

(u)) = f(S(u)) + a

i

+ b

i

u, when only f(Z
i

(E
i

)) is observed;

this is a generalization of the covariate model with fixed residuals given by Sperrin and

Buchan (Sperrin and Buchan, 2013). While Sperrin and Buchan focused on predictive

ability, we have examined the bias and standard errors of hazard model estimates.

A main limitation of our results in Theorem 1 parts (a) and (c) is that the time of onset

must be known. In diseases with a long prodromal phase such as Alzheimer’s disease,

the time of onset is not easily determined; as a result, time from onset to study entry is not

known and the analysis in Theorem 1 part (a) cannot be implemented only approximately.

However, Theorem 1 part (c) can be applied if the baseline hazard function is constant;

namely, it is only valid to use study entry as the origin and treat time-varying covariates

as fixed when the baseline hazard measured from onset of disease is constant and the
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continuous, time-varying covariate process satisfies the condition in Theorem 1 (c). In

Alzheimer’s disease, it is hard to imagine that the risk of the disease is constant over

time, thus regression estimates are likely to be biased unless the biomarker does not vary

over time.

Our analysis of the RADC data provides an example of where the choice of time ori-

gin and biomarker model can dramatically affect estimation in the presence of a time-

varying covariate. Estimates from an analysis from study entry that treats the time-

varying biomarker as fixed are quite different from the estimates of our proposed model,

even when time between onset and study entry is adjusted for as a continuous covariate.

On the other hand, our analysis of ADNI data provides an example of when incorrectly

viewing a time-varying covariate as fixed had little effect on estimation which was likely

due to covariate measurements that are nearly constant over a short follow-up period.

However, the choice of time origin did have a noticeable effect, suggesting that the base-

line hazard was not of the requisite exponential functional form to permit the use of study

entry as the origin.

The strength of this work is that our analytical results and methods can be applied

to any setting in which time-varying covariates follow continuous trajectories. It is im-

portant to note that our results are particular to the Cox model in which time-dependent

population-level expressions are absorbed into the baseline hazard function, as in (1.9).

For example, the methods we proposed cannot be directly applied to AFT regression, as

the AFT model with time-varying covariates cannot be simplified in this way. However,

Sperrin and Buchan (Sperrin and Buchan, 2013) showed through simulations that includ-

ing individual-specific deviations in an AFT regression model is superior in its predictive

ability to the model that includes the time-varying covariate treated as fixed.

As serial biomarker measurements are collected through studies such as the RADC

studies andADNI, the observation of the biomarker process at multiple timepoints would

be useful for better parametric modeling and for identification of both components of in-

dividual level deviation, a
i

and b

i

. With two or more biomarker measurements per indi-

vidual, our methods would allow for the estimation of the desired regression parameter

whereas methods for Cox regression with missing data and joint modeling of survival
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and longitudinal data are not likely to be robust with so few covariate measurements.

1.8 Appendix

Proof of Theorem 1 part (a) (Korn et al. extension)

Substituting the definition of time from study entry, T
i

= U

i

� E

i

, into the definition of

the hazard function

�

Ti(t|wi

(·), E
i

) = lim
�!0

P (t < T

i

 t+ �|T
i

� t, w

i

(·), E
i

)/�.

gives

�

Ti(t|wi

(·), E
i

) = lim
�!0

P (t+ E

i

< T

i

+ E

i

 t+ � + E

i

|T
i

+ E

i

� t+ E

i

, w

i

(·), E
i

)/�

= lim
�!0

P (t+ E

i

< U

i

 t+ � + E

i

|U
i

� t+ E

i

, w

i

(·), E
i

)/�,

= �

Ui(t+ E

i

|w
i

(·), E
i

)

(1.5)
= �0U(t+ E

i

)e�wi(t+Ei)
. (1.16)

If �0U(u) = ce

�u for some c > 0, then (1.16) yields

�

Ti(t|wi

(·), E
i

) = ce

�t

e

�wi(t+Ei)+�Ei
.

Thus in comparison to model (1.6), it is clear that � = ⇠ provided �0T (t) = ce

�t.

If � = ⇠, it follows that

�0T (t) = �0U(t+ E

i

)e��Ei
,

because �
Ti(t) = �0T (t)e

⇠wi(t+Ei)+�Ei by (1.6) and �

Ti(t) = �0U(t+ E

i

)e�wi(t+Ei) by (1.16). In

order for �0T (t) to be independent of i, it must be that �0U(u) = ce

�u.

Proof of Theorem 1 part (b)

First observe that the true survival model in (1.5) can be rewritten as

�

Ui(u|wi

(·), E
i

) = �0U(u)e
�wi(Ei)

e

�[wi(u)�wi(Ei)]
. (1.17)

If � in (1.17) is equal to ↵ in (1.7), then

�1Ui(u) = �0U(u)e
�[wi(u)�wi(Ei)] (1.18)
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This implies that w
i

(u) � w

i

(E
i

) = g(u) for some function g that is independent of i;

otherwise �1U(u)would depend on iwhich is not the case. The condition w

i

(u)�w

i

(E
i

) =

g(u) requires that the function g is zero on the support ofE since it is zero at all study entry

times, E
i

. Note that g(u) may be nonzero outside of the support of E.

If w
i

(u) = w

i

(E
i

) + g(u), then the true model given by (1.5) and fitted model given by

(1.7) are equivalent and � = ↵.

Proof of Theorem 1 part (c)

Note that the true survival model in (1.16) can be rewritten as

�

Ti(t|wi

(·), E
i

) = �0U(t+ E

i

)e�[wi(t+Ei)�wi(Ei)]
e

�wi(Ei)
. (1.19)

If � in (1.19) is equal to ⇣ in (1.8), then

�2T (t) = �0U(t+ E

i

)e�[wi(t+Ei)�wi(Ei)]�⌘Ei
. (1.20)

It must be that �0U(t + E

i

)e�⌘Ei = h(t) and w

i

(t + E

i

) � w

i

(E
i

) = k(t) for some functions

h and k independent of i; otherwise the right-hand side of (1.20) would depend on i and

cannot be equal to �2T (t), an expression independent of i. Since we are assuming that all

hazard functions are continuous, �0U(t + E

i

)e�⌘Ei = h(t) implies �0U(u) = ce

⌘u, for some

c > 0.

If w
i

(t+ E

i

)� w

i

(E
i

) = k(t) and �0U(u) = ce

⌘u for c > 0, then the true model in (1.19)

is

�

Ti(t|wi

(·), E
i

) = ce

⌘t+�k(t)
e

�wi(Ei)+⌘Ei
.

Comparing this to (1.8), it must be that � = ⇣ and �2T (t) = ce

⌘t+�k(t).
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2.1 Introduction

Allogeneic hematopoietic stem cell transplantation (HCT) is the gold standard treatment

for hematopoietic malignancies such as leukemia or multiple myeloma (Passweg et al.,

2016). The procedure, however, carries a high risk of graft-versus-host disease (GVHD),

a syndrome in which the donor cells attack those of the recipient and that is associated

with increased morbidity and mortality (Choi et al., 2010). Clinically, current consen-

sus diagnosis and staging criteria distinguish between acute GVHD and chronic GVHD

on the basis of the clinical signs and symptoms that manifest post-transplant (Filipovich

et al., 2005). For the latter they further distinguished between two sub-categories: classic

acute GVHD, for which the clinical signs manifest within 100 days of the transplant, and

persistent, recurrent, or late-onset acute GVHD, for which the signs manifest after 100 days.

For the most part clinical studies of classic acute GVHD (henceforth acute GVHD)

have employed standard survival analysis techniques, such as the Kaplan-Meier estimate

of the survivor function and the Cox model for the hazard function, or logistic regres-

sion (Remberger et al., 2002; Urbano-Ispizua et al., 2002; Weissinger et al., 2007; Paczesny

et al., 2009; Levine et al., 2012; MacMillan et al., 2012; Holtan et al., 2015b). As applied

to acute GVHD, however, these techniques fail to accommodate two important clinical

issues. First, patients who undergo HCT are also at high risk for death in the short-term.

In our motivating data from the Center for International Blood and Bone Marrow Trans-

plant Research (CIBMTR), for example, 100-day mortality among 9,651 patients who un-

derwent HCT between 1999-2011 was 15.4%. Performing statistical analyses that naı̈vely

treat patients who die as censored (either in a standard survival analysis or in logistic

regression analyses), however, is well-known to be problematic and may lead to erro-

neous conclusions. Towards resolving this, one could construct and model a composite

endpoint of acute GVHD and death (Holtan et al., 2015a), although doing so changes the

scientific question that is being addressed (Jazić et al., 2016). Another option is to perform

a competing risks analysis (Pintilie, 2006), an approach adopted by a number of clinical

papers (Baron et al., 2005; Kim et al., 2008; Levine et al., 2010; Sorror et al., 2014). One

drawback of the competing risks framework, however, is that information on time from
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acute GVHD to death is discarded; this is a loss of information that may affect estimation

and inference and also limits the scope of scientific inquiry (Haneuse and Lee, 2016a).

To make use of this information, a third option is to embed the study of acute GVHD

within the semi-competing risks framework (Fine et al., 2001). Briefly, semi-competing

risks refers to the setting where interest lies in a so-called non-terminal event (in our set-

ting, acute GVHD) the occurrence of which is subject to a terminal event (in our setting,

death). Broadly, methods for the analysis of semi-competing risks data can classified

into three groups: those based on copulas (Fine et al., 2001; Peng and Fine, 2007; Hsieh

et al., 2008; Lakhal et al., 2008); those grounded in causal inference (Egleston et al., 2007;

Tchetgen Tchetgen, 2014); and those based on multi-state models, particularly the frailty

illness-death model (Putter et al., 2007; Xu et al., 2010; Lee et al., 2015).

A second issue associated with standard survival analysis techniques for acute

GVHD is that the support of the response variable (i.e. the time-to-event outcome of inter-

est) is taken to be the positive part of the real line. Moreover, in the absence of censoring

and competing risks, standard survival methods assume that all patients will experience

the event of interest provided sufficient time has elapsed. This, however, is not the case

for a diagnosis of classic acute GVHD since the support of the outcome is restricted to the

finite interval (0, 100]. Survival models that ignore this defining feature therefore suffer

from a form of misspecification which may also lead to erroneous conclusions. Towards

accommodating the finite support of the non-terminal event, it is first important to ac-

knowledge that only a subset of patients are expected to be diagnosed with acute GVHD.

In a sense, as in cancer prognosis studies where there are often long-term survivors, the

population of patients who undergo HCT can be viewed as a mixture of patients who

are susceptible to acute GVHD and those who are not susceptible. In the statistical litera-

ture, cure models are often used to represent this phenomenon (Berkson and Gage, 1952;

Farewell, 1982; Kuk and Chen, 1992; Sy and Taylor, 2000; Peng and Dear, 2000).

Towards simultaneously accommodating both of the aforementioned clinical issues,

in this paper we propose a novel multi-state model formulation for the study of time-to-

event outcomes defined on a finite interval. As we elaborate upon, the proposed model

builds on recent work by Conlon et al. (2014) by combining a logistic regression-based
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cure model with an illness-death model. Crucially, the methods we develop extend the

work of Conlon et al. (2014) in two important ways. First, the hazard function that dic-

tates the rate at which patients transition experience the non-terminal event is specified

so as to explicitly respect the finite time interval over which events can occur. Second,

a subject-specific frailty term is introduced into the specification of each hazard function

in the model specification. In doing so the proposed model is better-equipped to handle

heterogeneity across and dependence within patients that is not captured by the (remain-

ing) systematic components of the model (Wienke, 2010). The remainder of this paper is

structured as follows. In Section 2.2 we provide a brief introduction to the CIBMTR data.

Sections 2.3 and 2.4 presents the proposed multi-state model for survival analyses on a fi-

nite time interval and the framework for estimation/inference. Section 2.5 then provides

a detailed simulation study aimed at evaluating small-sample operating characteristics

of the proposed methods as well as investigating instances where competitor methods

perform either poorly or well. In Section 3.6 we present an illustrative analysis of the

CIBMTR data the goal of which is to investigate the impact of disease type, stage and

HLA matching on the joint risk of acute GVHD and death. Finally, Section 2.7 concludes

with a discussion and avenues for future work.

2.2 Data

The methods proposed in this paper are motivated by an on-going collaboration inves-

tigating risk factors for acute GVHD among patients who undergo HCT. The data were

obtained from CIBMTR, a collaboration between the National Marrow Donor Program

and the Medical College of Wisconsin representing a worldwide network of transplant

centers that contribute detailed data on HCT. For the purposes of this paper we restrict

attention to a sample of n=9,651 patients who underwent first HCT between 1999-2011 for

treatment of acute myelogenous leukemia (AML), acute lymphoblastic leukemia (ALL),

myelodysplastic syndrome (MDS) or chronic myelogenous leukemia (CML).

Of primary scientific interest is the time from transplantation to a diagnosis of grade

III or IV acute GVHD, defined within 100 days post-transplant. We present Kaplan-
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Meier estimated survivor functions for acute GVHD and death in Figure 2.1. Figure

2.1 illustrates two challenging features of acute GVHD: (1) the finite interval over which

the outcome is defined and (2) the fraction of patients who are never diagnosed with

acute GVHD. The estimated survivor function for acute GVHD is plotted for the first 100

days post-transplantation, the interval over which the outcome is defined, where deaths

without acute GVHD within the first 100 days are treated as censored. At day 100 post-

transplant, there were 1,701 patients diagnosed with acute GVHD grades III-IV with an

estimated survival of 0.824 (s.e. 0.004). From the estimated survivor function for acute

GVHD, we see that survival levels out long before 100 days post-transplant. At 30 and 60

days post-transplant, the survival estimates for acute GVHD grades III-IV are 0.883 (s.e.

0.003) and 0.839 (s.e. 0.004), respectively, indicating that grade III or IV acute GVHD is

typically diagnosed within the first two months of transplantation. Since a diagnosis of

acute GVHD is only given within the 100 day window post-transplant, the rate of acute

GVHD after 100 days remains at 17.6%.
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Figure 2.1: Kaplan-Meier estimates of the survivor functions corresponding to time to
acute GVHD grades III-IV and death.

We administratively censor death at 365 days post-transplantation; as such, the esti-

mated survivor function for death is displayed only until 365 days post-transplantation

Figure 2.1.There were 5,822 observed deaths (40% censoring) with estimated one and five
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year survival rates of 0.60 (s.e. 0.005) and 0.41 (s.e. 0.005), respectively.

2.3 The proposed model

Figure 2.2 provides a schematic of the proposed model for acute GVHD and death. Cen-

tral to the model are four ingredients: (i) a generalized linear model for the latent binary

susceptibility status, (ii) a hazard regression model for the terminal event among patients

whose latent state is ‘not susceptible’, (iii) a finite-interval illness-deathmodel for the non-

terminal and terminal events, and (iv) a multiplicative subject-specific frailty that is taken

to influence all time-to-event transitions.

Transplantation

State 2 - Susceptible

State 1 - Not Susceptible State 4 - Dead

State 3 - Acute GVHD

�

1 � �

�14

�24

�23

�34

Figure 2.2: Schematic of proposed multi-state model for acute GVHD and death, incor-
porating a cure fraction for acute GVHD susceptibility.

2.3.1 Latent susceptibility state

Following convention in the cure fraction literature, we introduce a binary variable L

to represent a latent cured state, such that L = 1 corresponds to a subject that will not

experience acute GVHD and L = 0 corresponds to a subject that is susceptible to acute

GVHD. Note that the cure indicator is partially observed; if a patient is alive at any time

after day 100 post-transplant, it must be that L = 1. Let ⇡
i

= P (L
i

= 1|X
s,i

), which is the

probability that a patient will not develop acute GVHD within ⌧ days of transplant. We

model the cure fraction, ⇡, via a generalized linear model

⇡

i

= P (L
i

= 1|X
s,i

) = g

�1(�
s

X

s,i

), (2.1)

38



where X
s

denotes a vector of covariates that may impact acute GVHD susceptibility.

2.3.2 Semi-competing risks with non-susceptibility fraction

Let T1 and T2 denote the nonterminal and terminal event times, respectively. For the stem

cell transplant setting we consider, we assume that T1 is defined on (0, ⌧), where ⌧ = 101.

If a patient experiences the terminal event without experiencing the nonterminal event,

we set T1 = ⌧ . We define T2 on the positive real line. We view patients as transitioning

through a series of states post-transplantation (1. not susceptible to acute GVHD at trans-

plantation; 2. susceptible to acute GVHD at transplantation; 3. acute GVHD; 4. death)

in the following way: (1 ! 4) transplantation (not susceptible to acute GVHD) to death;

(2 ! 4) transplantation (susceptible to acute GVHD) to death; (2 ! 3) transplantation

to acute GVHD; and (3 ! 4) acute GVHD to death. This multi-state model combines a

cure model and an illness-death model where a diagnosis of acute GVHD can only occur

within finite window post-transplant, and is defined through the specification of a latent

variable representing acute GVHD non-susceptibility status and the transition intensities

or hazard functions defined by

�14(t2|L = 1) = lim
�!0

P (T2 2 [t2, t2 +�)|T2 � t2)/�, for t2 > 0

�24(t2|L = 0) = lim
�!0

P (T2 2 [t2, t2 +�)|T1 � t1, T2 � t2)/�, for 0 < t2 < ⌧

�23(t1|L = 0) = lim
�!0

P (T1 2 [t1, t1 +�)|T1 � t1, T2 � t2)/�, for 0 < t1 < ⌧

�34(t2|t1, L = 0) = lim
�!0

P (T2 2 [t2, t2 +�)|T1 = t1, T2 � t2)/�, for 0 < t1 < t2,

where the �

kj

denotes the hazard corresponding to the transition from state k to state j.

Note that the 24-transition is also defined on (0, ⌧) since patients who have survived past

⌧ days without a diagnosis of acute GVHD are necessarily cured, forcing deaths without

acute GVHD among uncured patients to occur within ⌧ days of transplantation.

For patients who are non-susceptible to acute GVHD at the time of transplantation,

we model the hazard function corresponding to the time from transplantation to death

by

�14(t2i|X14,i, Li

= 1) = �

i

· �0,14(t2i) exp{�14X14,i}, for t2i > 0, (2.2)
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where � is a subject-specific frailty that we choose from a Gamma distribution with mean

1 and variance ✓, �0,14 is a baseline hazard function conditional on � = 1, and X14 are

covariates that may impact the hazard function that corresponds to time to death among

patients who are non-susceptible. The shared frailty can be viewed as a patient-specific

random effect that is multiplicative on each of the hazards in the same way, therefore

inducing dependence between T1 and T2.

Patients who are susceptible to acute GVHD at the time of transplantation can sub-

sequently be diagnosed with acute GVHD and/or can die. If a patient is diagnosed with

acute GVHD, he or she could die thereafter. We define the hazard functions correspond-

ing to the remaining three transitions by:

�24(t2i|X24,i, Li

= 0) = �

i

· �0,24(t2i) exp{�24X24,i}, for 0 < t2i < ⌧ (2.3)

�23(t1i|X23,i, Li

= 0) = �

i

· �0,23(t1i) exp{�23X23,i}, for 0 < t1i < ⌧ (2.4)

�34(t2i|t1i, X34,i, Li

= 0) = �

i

�0,34(t2i|t1i) exp{�34X34,i}, for 0 < t1i < t2i, (2.5)

where � is the same subject-specific frailty that appears in (3.6) and X24, X23 and X34 are

covariates that are possibly associated with the hazard functions of the corresponding

transitions. The hazard model that corresponds to the transition from state 2 (susceptible

to acute GVHD at transplantation) to state 3 (acute GVHD) reflects the fact that T1 is de-

fined on (0, ⌧). In general, �0,34(t2|t1) can be any function of t1 and t2. In a Markov model,

�0,34(t2|t1) = �0,34(t2). We assume �0,34(t2|t1) = �0,34(t2� t1), a function of the sojourn time

between states 3 and 4; this is referred to as the semi-Markov property. These three tran-

sition hazard models correspond to the standard illness-death with shared frailty model

(Xu et al., 2010; Lee et al., 2015), without a cure fraction. Note that models (3.6)-(3.9) rep-

resent a modification of the multi-state model that is presented in Conlon et al. (2014).

We define the 23- and 24-transitions over a finite time window to better reflect the struc-

ture of the data, and we include a patient-specific shared frailty � to the transition hazard

regression models to better handle heterogeneity that is not captured by covariates; addi-

tionally, the shared frailty induces additional dependence between the two outcomes.

The baseline hazard functions in (3.6), (3.7) and (3.9) can be defined using any sur-

vival distribution that is defined on the positive real line; similarly, the baseline hazard
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function corresponding to the nonterminal event in (3.8) can be defined by any survival

distribution defined on (0, ⌧). For example, the hazard corresponding to a truncated den-

sity f defined on (0, ⌧) is given by

�(t) =
f(t)

F (⌧)� F (0)
,

where F is the cumulative distribution that corresponds to f . We assume that the baseline

hazard functions in (3.6)-(3.9) correspond to Weibull distributions (Lai, 2014):

�0,!(t) =

8

<

:

↵

!



!

t

↵!�1
, if ! 2 {14, 34}, for t > 0

↵

!



!

t

↵!�1
e

�!t
↵!

e

�!t
↵! � e

�!⌧
↵!

, if ! 2 {24, 23}, for t 2 (0, ⌧).

2.4 Estimation and inference

2.4.1 The observed data likelihood

Let C
i

denote the censoring time; we assume the pair, (T
i1, Ti2), is independent of C

i

conditional on X

i

, where X

i

is a matrix of covariates. For patient i, the observed

data are D

i

= {Y
i1, �i1, Yi2, �i2, Xi

}, where Y

i1 = min (T
i1, Ti2, Ci

, ⌧) with censoring in-

dicator �

i1 = {T
i1  min (T

i2, Ci

, ⌧)}, and Y

i2 = min (T
i2, Ci

) with censoring indicator

�

i2 = {T
i2  C

i

}. Note that if Y
i1 = ⌧ , then it is necessarily the case that �

i1 = 0.

Towards developing the form of the likelihood, we consider the eight distinct post-

transplant trajectories presented in Table 2.1. These trajectories vary across combinations

of �
i1, �i2 and (Y

i1 < ⌧) and correspond to distinct likelihood contributions. When death

without acute GVHD is observed within ⌧ days of transplantation, we are unable to dis-

tinguish between patients that are susceptible to acute GVHD at time of transplantation

and those who are not based on the observed data; in both cases (�
i1, �i2, (Y

i1 < ⌧)) =

(0, 1, 1). Consequently, the likelihood contribution of these subjects is the sum of the two

likelihood contributions. Similarly, when neither acute GVHD nor death are not observed

within ⌧ days post-transplant, (�
i1, �i2, (Y

i1 < ⌧)) = (0, 0, 1), the likelihood contribution

of patients who pass through either the susceptible or non-susceptible state is the sum

of the two respective likelihood contributions. Let � denote the collection of unknown

parameters, (↵14,14, �14,↵24,24, �24,↵23,23, �23,↵34,34, �34, ✓). The marginal likelihood
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with respect to the distribution of � of the proposed model is given by

L(�)

=
n

Y

i=1

f1(Yi1, Yi2)
�i1�i2 · f2(Yi1, Yi2)

�i1(1��i2) · f3(Yi1, Yi2)
(1��i1)�i2 (Yi1=⌧)·

f4(Yi1, Yi2)
(1��i1)�i2 (Yi1<⌧) · f5(Yi1, Yi2)

(1��i1)(1��i2) (Yi1=⌧)·

f6(Yi1, Yi2)
(1��i1)(1��i2) (Yi1<⌧)

(2.6)

where

f

k

(Y
i1, Yi2) =

Z

f

k

(Y
i1, Yi2|�i)f(�i) d�i,

for k = 1, . . . , 6, and

f1(Yi1, Yi2|�i) = (1� ⇡

i

) · �23(Yi1|�i) · S2(Yi1|�i)�34(Yi2 � Y

i1|�i) · S3(Yi2|Yi1, �i)

f2(Yi1, Yi2|�i) = (1� ⇡

i

) · �23(Yi1|�i) · S2(Yi1|�i) · S3(Yi2|Yi1, �i)

f3(Yi1, Yi2|�i) = ⇡

i

· �14(Yi2|�i) · S1(Yi2|�i)

f4(Yi1, Yi2|�i) = ⇡

i

· �14(Yi2|�i) · S1(Yi2|�i) + (1� ⇡

i

) · �24(Yi2|�i) · S2(Yi2|�i)

f5(Yi1, Yi2|�i) = ⇡

i

· S1(Yi2|�i)

f6(Yi1, Yi2|�i) = ⇡

i

· S1(Yi2|�i) + (1� ⇡

i

) · S2(Yi2|�i).

These likelihood expressions depend on the transition survival functions for remaining

in states 1, 2 and 3 which are defined as follows:

S1(t|�) = exp

✓

�
Z

t

0

�14(u|�) du
◆

S2(t|�) = exp

✓

�
Z

t

0

�23(u|�) du�
Z

t

0

�24(u|�) du
◆

S3(t2|t1, �) = exp

✓

�
Z

t2�t1

0

�34(u|�) du
◆

, for t2 > t1.

The expressions for f

k

(Y
i1, Yi2) based on Weibull distributions, for k = 1, . . . , 6 are in-

cluded in the Supplementary Materials section.

2.4.2 Maximum likelihood estimation and inference

We use maximum likelihood estimation to obtain the parameter estimates of the model.

Under certain regularity conditions and a correctly specified model, the maximum likeli-

hood estimator

�̂ = argmax
�

logL(�)
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Table 2.1: Likelihood contributions of eight possible post-transplant trajectories.
Observed data Likelihood

Trajectory (�
i1, �i2, yi1 < ⌧) Expression

Acute GVHD, death (1, 1,�) f1

Acute GVHD, cens. before death (1, 0,�) f2

Death � ⌧ days without acute GVHD (0, 1, 0) f3

Not susceptible, death < ⌧ days without acute GVHD (0, 1, 1) f4

Susceptible, death < ⌧ days without acute GVHD (0, 1, 1) f4

Alive without acute GVHD at � ⌧ days (0, 0, 0) f5

Not susceptible, alive without acute GVHD at < ⌧ days (0, 0, 1) f6

Susceptible, alive without acute GVHD at < ⌧ days (0, 0, 1) f6

is consistent for the truth �0 and

p
n(�̂� �0)

L! MVN (0,⌃) ,

where

⌃ = I(�0)
�1
,

the inverse of the expected information matrix (Ferguson, 1996),

I(�) = �E



@

2

@�

2
0

logL(�0)

�

.

We use a pre-existing non-linear optimization function to estimate the maximum likeli-

hood estimator (described below). We use the inverse of the observed information (in-

verse Hessian matrix) to estimate the variance of the maximum likelihood estimator as

the observed information is a consistent estimator for the expected information. This ma-

trix is included as output by the numerical optimizers used in the estimation process.

We use the results regarding the asymptotic distribution of �̂ to construct 95% confidence

intervals for our estimates.

2.4.3 Practical considerations

Wemaximize the log-likelihood using a quasi-Newton non-linear numerical optimization

algorithm (Wright and Nocedal, 1999). Initial attempts at estimation revealed that esti-

mates were sensitive to the starting values used in the numerical optimization algorithm;

this is likely due to the complex nature of the log-likelihood function. To boost the efficacy
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of the numerical optimization at finding the maximum of the log-likelihood function, we

perform five separate attempts at maximum likelihood estimation, retaining the estimates

that maximize the log-likelihood function among the five attempts. If more than one set

of estimates correspond to the same maximum log-likelihood value, we retain the set of

estimates that are closest, with respect to the L2-norm, to the mean of the set of estimates.

Starting values must be provided for the numerical optimization procedure; we generate

a set of base starting values for the five maximum likelihood estimation attempts as fol-

lows. We first create an indicator variable representing cured status, where subjects who

have died without acute GVHD or are censored after 100 days are considered cured, and

subjects who have a diagnosis of acute GVHD (alive or censored for death) are not cured;

the remaining subjects (who are censored before 100 days), are randomly assigned cured

status. We then fit an illness-death model with shared frailty among the subjects who are

not cured to obtain parameter estimates for the 24-, 23-, and 34-transitions and ✓, the vari-

ance of the frailty term; we fit a univariate Weibull regression model on the 14-transition

time to obtain parameter estimates for the 14-transition; and we fit a logistic regression

model to the cure variable to obtain the non-susceptibility regression coefficients. For

each maximum likelihood estimation attempt, we perturb the base starting values with

randomly chosen additive or multiplicative noise generated from a Uniform(�0.1i,0.1i)

or Uniform(1� 0.1i,1+ 0.1i) distribution, respectively, where i = 1, . . . , 5 is the maximum

likelihood attempt.

2.5 Simulation study

We conducted a series of simulation studies with the overarching goal being to evaluate

the performance of the proposed model and framework of Section 2.3, and to better un-

derstand the performance of comparable methods that fail to take the finite nature of the

nonterminal event into consideration.
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2.5.1 Data generation

We based our simulated data on a data analysis using a subset of the population consist-

ing of patients 50 years or older with intermediate or advanced stage disease. We use the

estimates from this analysis to initially set the parameters of our simulation study. In or-

der to highlight the effect of defining acute GVHD using a truncatedWeibull distribution,

we update the truncated Weibull parameters of the 23-transition so that the distributions

between the truncated and standard Weibull distributions are very distinct. We refer to

data generated with these parameters as the base scenario.

We generated a total of 1, 000 simulated data sets of size 5, 000 under our proposed

model defined by by (3.6)-(3.9) with ⌧ = 101 days using the following procedure. For

each patient i, we first generate a binary covariate X

i

from a Bernoulli distribution with

mean 0.5. We then generate an individual-specific frailty �

i

using a Gamma distribution

with mean 1 and variance ✓, where ✓ = 0.18. We generate a nonsusceptibility (or cured)

indicator, L
i

, using a Bernoulli distribution with nonsusceptibility rate ⇡

i

= expit(�0s +

�1sXi

), where �0s = �0.41 and �1s = 0.50, so that the cure rate is 46%. If L
i

= 1 (cured of

acute GVHD), we set ↵14 = 1.4, 14 = 0.0002 and �14 = 0.25, and generate time to death

T2i using the model in (3.6) which corresponds to a standard Weibull distribution. We

then define T1i to be the minimum of ⌧ and T2i. If Li

= 0 (susceptible to acute GVHD),

time from transplantation to a diagnosis of acute GVHD is generated using the model in

(3.8) via the inverse cumulative distribution transform method (Bender et al., 2005) with

↵23 = 0.5, 23 = 0.1 and �23 = 0.25. We set ↵24 = 1.4, 24 = 0.005, and �24 = 0.5 and

generate time from transplantation to death using the model in (3.7), which corresponds

to a truncated Weibull distribution. If T1i � T2i, we re-define T1i to be the minimum of

⌧ and T2i. If T1i < T2i, we re-define T2i to be the sum of T1i and time from a diagnosis

of acute GVHD to death generated using model (3.9), with ↵34 = 1.3, 34 = 0.002, and

�34 = 0.15. We do not introduce censoring in our base simulations and set C
i

= 1. We

determine the observed data (Y1i, �1i, Y2i, �2i) based on C

i

, T1i, T2i and ⌧ .
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2.5.2 Additional data scenarios

We also examine the effect of varying each of the following separately on estimation and

inference: (i) the rate of censoring within the 100 day window by introducing a censoring

variable drawn from an exponential distribution with mean 100; (ii) administrative cen-

soring of death at 365 days; (iii) increasing the the non-susceptibility fraction from 46% to

76%; and (iv) varying the Weibull parameters of the 23�transition so that the truncated

Weibull and standard Weibull distributions are comparable on the interval (0, ⌧).

2.5.3 Analyses

We compare our proposed model defined by (3.6)-(3.9), which accommodates the finite

window over which acute GVHD is defined, to the following models: (1) our proposed

model without a shared frailty; (2) the model presented in Conlon et al. combining a

cure fraction and illness-death model (Conlon et al., 2014) with an added shared frailty;

(3) the model presented in Conlon et al.; (4) illness-death model with shared frailty (Xu

et al., 2010; Lee et al., 2015); (5) semiparametric cure model for a univariate outcome (Sy

and Taylor, 2000; Peng and Dear, 2000; Cai et al., 2012); and (6) univariate Cox regression.

Note that in our proposed model as well as models (1)-(4), we assume the baseline hazard

functions correspond to Weibull distributions.

Analyses (2), (3) and (4) ignore the finite window over which acute GVHD is de-

fined. Fitting these models will allow us to better understand the effect of mis-specifying

time-to-acute GVHD. Analyses (5) and (6) leave the baseline hazard function unspeci-

fied, however, fail to account for death as a competing risk. Examining the estimates

from these models will allow us to asses the impact of failing to account for death on the

estimated regression coefficients corresponding to acute GVHD.

We estimate parameters and corresponding standard errors using the mean and stan-

dard deviation of the sampling distribution of each parameter, respectively. We estimate

the coverage probability by the average number of times the true parameter value falls

into a Wald-based 95% confidence interval based on the estimated parameters and stan-

dard errors.
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All statistical analyses were conducted in the R environment for statistical computing,

version 3.2.2 (R Core Team, 2014). In our implementation of our proposed method and

models (1) and (2), we use: the optim function in the stats package for quasi-Newton

non-linear optimization, respectively; and the weibreg function in the eha package for

univariate Weibull regression (Brostrm, 2016). We use the FreqID_HReg function in the

SemiCompRisks package (Lee and Haneuse, 2016) to fit an illness-death model with

shared frailities in model (3). We use the smcure function in the smcure package (Cai

et al., 2012) for semiparametric cure model estimation. Note that the latent susceptibility

indicator in smcure assigns value one to patients that are susceptible. Recall that we

define the susceptibility status with L = 0, so that estimates from the logistic regression

model for susceptibility from smcure are negated as to be comparable to the estimates

from our proposed model.

2.5.4 Results

We present the parameter estimates from the simulations corresponding to the base sce-

nario in Table 2.2. The estimates from fitting our proposed model show negligible bias.

Failing to account for the shared frailty in the model fitting (see ‘Proposed, no frailty’)

resulted in bias across half of the parameters estimates, notably the intercept of the cure

model and the regression parameters corresponding to the 14- and 24-transitions with

approximately 20% bias. Not accounting for the finite support of acute GVHD (see ‘Con-

lon, frailty’) resulted in biased estimation for many of the parameters, with over 20% bias

in the regression estimates corresponding to the intercept of the cure model, and the 14-

and 23-transitions. Fitting the model proposed by Conlon et al., which fails to account

for the finite interval and omits the frailty term, results in bias across most of the Weibull

parameters, however, several of the regression parameter estimates are close to the truth.

Fitting a standard illness-death model to the data resulted in bias across all parameter

values with regression coefficients corresponding to the 23- and 24-transitions that are in

the opposite direction of the true values. Ignoring the competing risk death via a uni-

variate analysis (standard cure and Cox models) resulted in biased estimation, with the

regression coefficient in the Cox model in the opposite direction as the truth.
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Table 2.2: Simulation results corresponding to the ‘base scenario’, with 1000 replicates of
size 5000. Parameter estimates calculated as mean of sampling distributions.

Proposed Proposed, Conlon, Conlon, Illness- Univ. Univ.
Truth model no frailty frailty no frailty death Cure Cox

Intercept -0.41 -0.41 -0.31 -0.55 -0.40 0.25
X

s

0.50 0.50 0.51 0.53 0.54 0.42
X14 0.25 0.25 0.20 0.33 0.23
X24 0.50 0.50 0.41 0.52 0.45 -0.08
X23 0.25 0.25 0.25 0.30 0.25 -0.31 0.32 -0.26
X34 0.15 0.15 0.14 0.16 0.14 0.11
log(14) -8.52 -8.51 -7.06 -9.06 -7.41
log(↵14) 0.34 0.33 0.14 0.38 0.18
log(24) -5.30 -5.30 -5.17 -5.27 -5.09 -5.35
log(↵24) 0.34 0.34 0.23 0.30 0.25 0.08
log(23) -2.16 -2.17 -2.31 -1.81 -1.77 -1.98
log(↵23) -0.69 -0.69 -0.75 -0.63 -0.64 -1.10
log(34) -6.21 -6.22 -5.66 -6.20 -5.66 -7.01
log(↵34) 0.26 0.26 0.15 0.26 0.15 0.37
log(✓) -1.71 -1.73 -2.00 -0.49

Estimates of the standard errors (empirical and analytical) and coverage probabilities

for the base scenario simulations are included in the Supplementary Material. For our

proposedmethod and all other analyses with one exception, the empirical standard errors

align with the means of the analytical standard errors. However, for Analysis (2), the

model proposed by Conlon and colleagues with an added shared frailty, the empirical

standard errors are generally much larger than the mean of the analytical standard errors;

this is due to the existence of a small number of outliers that skew the estimates of the

standard deviations of the sampling distributions. When the empirical standard errors

are calculated using the median absolute deviation, the empirical standard deviations

align with the medians of the sampling distributions of the parameter estimates. For our

proposed method, all parameters achieve nearly 95% coverage. For the other analyses

considered, coverage is generally poor due to biased estimates discussed earlier.

The results from the four other simulation scenarios described in Section 2.5.2 are

included in the Supplementary Materials. The results from these simulations generally

align with the finding from the base scenario setting, with respect to bias and coverage.

However, when censoring is added (either via an exponentially distributed variable with

mean 100 or administratively at 365 days), the standard errors of the parameter estimates

are generally larger than those corresponding to the base scenario for all analyses, which
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is to be expected. Increasing the cure fraction from 46% in the base scenario to 75% re-

distributed the data from the 24-, 23- and 34-transitions to the 14-transition, thereby de-

creasing the efficiency of the 24-, 23- and 34-transitions parameters while increasing the

precision of 14-transition parameter estimates. Because the main difference between our

proposedmodel and themodel proposed by Conlon and colleagues with an added frailty,

Analysis (2), is the finite interval over which the 23-transition is defined, for the last sim-

ulation scenario, we chose Weibull parameters for the 23-transition so that the truncated

Weibull and standard Weibull distributions are similar. The regression estimates corre-

sponding to Analysis (2) have negligible bias, however, the estimates for the intercept in

the cure model, ↵14 and the gamma frailty parameter, ✓, all have more than 10% bias, with

corresponding coverage probabilities that are below the nominal level.

Overall, our simulations illustrate that for data generated under our proposedmodel,

failing to account for the finite time interval over which acute GVHD is defined, include a

shared frailty term, and/or incorporate death can lead to bias estimation and suboptimal

coverage probabilities. The main distinction between our model and the model proposed

by Conlon et al. with the added frailty is that the baseline hazard function for the 24- and

23-transitions are defined on (0, ⌧). Thus, differences in estimation and inference between

the two models are due to the differences in baseline hazard specification.

2.6 Analysis of data from CIBMTR

We illustrate our proposed methodology through an analysis of stem cell transplant data

presented in Section 2.2. We fit the data to our proposed model, including dummy vari-

ables indicating disease type, disease stage, and HLA compatibility group as covariates

in all transitions. We compare the results of our proposed model to the following compet-

ing models: the model proposed by Conlon et al. with an added frailty; an illness-death

model with shared gamma frailty; a semiparametric cure model for acute GVHD; and

a Cox proportional hazards model. The first two are multi-state models with a shared

gamma frailty, both of which fail to account for the finite interval over which acute GVHD

is defined and the latter of which also fails to model the fraction of subjects who are
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never diagnosed with acute GVHD. The latter two models are semiparametric univariate

models; the cure model accounts for the subset of patients that are diagnosed with the

condition, whereas the Cox model does not.

We present the results from our analyses in Table 2.3. For our proposed model, the

estimates for Advanced stage are associated with greater risk for both outcomes than

the estimates for intermediate stage, for all transitions. Specifically, for the 14-transition,

the estimated regression coefficients corresponding to Intermediate and Advanced stage

disease are 0.30 and 1.13, respectively. In examining the effects of HLA compatibility, the

regression estimates corresponding to a 7/8 donor match are generally associated with

higher risk than an 8/8 match. Of note, for the 34-transition, the estimated regression

coefficients corresponding to the HLA 7/8 and 8/8 match indicator variables are 0.29

and 0.08, respectively. The parameter estimates and standard errors corresponding to

our proposed model are comparable to the results from assuming the model proposed by

Conlon et al. with added frailty for the cure fraction, 14- , 23- and 34-transitions. However,

for the 24-transition, the effects are several folds smaller for our proposed model with

the regression parameter corresponding to the dummy variable Intermediate Stage in the

opposite direction as in the Conlonmodel with frailty. There are also sizable differences in

Weibull parameter estimates between the two models, with a 43% decrease in magnitude

of the estimate of ✓ comparing our proposedmodel with the one proposed by Conlon et al.

The standard errors for the Conlon model are much larger than our proposed model for

the 24-transition. The comparison of log-likelihood values between our proposed model

and the model proposed by Conlon et al. with a shared frailty shows that our model has

a better fit to the data, with a log-likelihood value of -39542.03 compared to -39611.93 for

the Conlon model with frailty.

The standard illness-death model with shared frailty fails to account for the cure frac-

tion in the joint analysis of acute GVHD and death. In doing so, the model assumes that

all subjects will receive a diagnosis of acute GVHD over time, which does not align with

the real data. The corresponding estimates are dramatically different from those of our

proposed model for nearly all parameters. The estimate for ✓ is 75% smaller in magnitude

for the illness-death model than our proposed model. Using a univariate approach to
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modeling acute GVHD (cure and Cox models) results in estimates that also differ greatly

from the estimates from fitting the proposed model.

Overall, this analysis illustrates that estimation can vary widely across the models

considered. As a specific example, consider the regression parameter corresponding to

CML used in the modeling of the 23-transition. The estimated value for the five models

considered (our proposed model, Conlon with frailty, illness-death, cure, Cox) are 0.12,

0.09, 0.63, -0.54, 0.35. We advocate for the use of our proposed model in for this data set

as it specifically addresses both the finite interval over which acute GVHD is defined and

the fraction of subjects who never receive a diagnosis of acute GVHD.

2.7 Discussion

We proposed a novel multi-state model that accounts for mortality through joint model-

ing of acute GVHD and death, and explicitly acknowledges the finite time scale in which

acute GVHD occurs. Our simulations show that fitting competing models that do not

account for these two factors can lead to bias and compromised inference. This is sup-

ported by our data example where wildly different parameter estimates were observed

across the different models considered.

Although the focus of this paper is acute GVHD, we emphasize that the key phe-

nomenon that the event of interest is only well-defined on a finite interval is more general.

For example, brief psychotic disorder (APA et al., 2013) is defined within four weeks after

exposure to a traumatic event, and acute respiratory distress syndrome is characterized

by lung injury within one week of lung injury (Ferguson et al., 2012). A key component

of hospital quality of care assessments are rates of hospital readmission within 30 days of

discharge (Kim et al., 2012).

Note that an attractive application of our fully-parametric proposed model is that the

joint density can be determined on the full support of (T1, T2), so that likelihood based

inference can be performed. Moreover, the joint density can be used to calculate patient-

specific absolute risk profiles for acute GVHD and death simultaneously. Specifically,

note that at any time t following transplantation, a patient falls into one of the following
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Table 2.3: Parameter estimates and standard errors from analysis of stem cell transplan-
tation data fitting our proposed model and four other competing models.

Proposed Conlon, Illness- Cure Cox
with frailty death

Est SE Est SE Est SE Est SE Est SE

⇡: Cure fraction
Intercept 1.94 0.06 2.07 0.06 -4.68 20.13
Intermediate stage -0.14 0.07 -0.15 0.07 0.59 15.48
Advanced stage -0.33 0.09 -0.35 0.08 1.05 9.57
HLA: 7/8 -0.75 0.08 -0.77 0.09 1.15 17.77
HLA: 8/8 -0.42 0.07 -0.47 0.07 1.15 14.28
Disease type: ALL -0.17 0.08 -0.20 0.08 0.59 13.81
Disease type: CML -0.44 0.08 -0.49 0.08 -15.31 11.41
Disease type: MDS -0.25 0.10 -0.29 0.10 0.85 13.03

14: Cured, HCT � Death
Intermediate stage 0.30 0.06 0.27 0.06
Advanced stage 1.13 0.06 1.05 0.06
HLA: 7/8 0.32 0.07 0.31 0.07
HLA: 8/8 0.14 0.05 0.11 0.05
Disease type: ALL -0.08 0.06 -0.09 0.06
Disease type: CML -0.53 0.09 -0.52 0.08
Disease type: MDS -0.52 0.08 -0.50 0.08

14: Not cured, HCT � Death
Intermediate stage -0.04 0.20 0.68 0.36 0.43 0.13
Advanced stage 0.19 0.23 1.24 0.37 1.63 0.13
HLA: 7/8 0.68 0.22 1.28 0.49 1.55 0.15
HLA: 8/8 0.37 0.19 1.19 0.46 1.02 0.12
Disease type: ALL 0.63 0.20 1.37 0.43 0.49 0.14
Disease type: CML 0.07 0.23 1.09 0.48 0.08 0.16
Disease type: MDS 0.11 0.28 0.75 0.47 -0.03 0.17

23: Not cured, HCT � Acute GVHD
Intermediate stage -0.30 0.09 -0.30 0.08 0.01 0.11 0.34 0.31 0.05 0.06
Advanced stage -0.24 0.10 -0.22 0.08 0.51 0.11 -0.13 0.25 0.21 0.06
HLA: 7/8 0.44 0.11 0.42 0.10 1.24 0.13 0.24 0.33 0.66 0.07
HLA: 8/8 0.44 0.09 0.37 0.08 0.87 0.10 -0.15 0.24 0.40 0.06
Disease type: ALL 0.13 0.10 0.09 0.09 0.33 0.12 0.24 0.24 0.07 0.07
Disease type: CML 0.12 0.10 0.09 0.09 0.63 0.13 -0.54 0.38 0.35 0.07
Disease type: MDS 0.04 0.12 0.02 0.10 0.33 0.14 -0.19 0.67 0.19 0.08

34: Not cured, Acute GVHD � Death
Intermediate stage 0.15 0.09 0.15 0.09 0.33 0.13
Advanced stage 0.59 0.09 0.58 0.08 1.22 0.13
HLA: 8/8 0.29 0.10 0.29 0.09 0.85 0.14
HLA: 8/8 0.08 0.08 0.09 0.08 0.37 0.12
Disease type: ALL 0.01 0.10 0.01 0.09 0.12 0.14
Disease type: CML 0.15 0.10 0.15 0.10 0.42 0.14
Disease type: MDS 0.11 0.11 0.09 0.10 0.30 0.16

Weibull baseline hazard parameters
log(14) -7.98 0.19 -7.56 0.17
log(↵14) 0.14 0.03 0.08 0.03
log(24) -13.52 0.11 -11.77 0.95 -7.43 0.17
log(↵24) 0.80 0.05 0.73 0.08 0.32 0.03
log(23) -6.83 0.18 -6.58 0.18 -14.14 0.27
log(↵23) 0.66 0.02 0.62 0.03 1.05 0.02
log(34) -5.43 0.16 -5.33 0.15 -7.91 0.19
log(↵34) -0.10 0.03 -0.13 0.03 0.07 0.03
log(✓) -0.90 0.08 -1.47 0.15 2.31 0.04

Log-likelihood -39542.03 -39611.93
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four disjoint categories: (1) alive with a diagnosis of acute GVHD; (2) dead, carrying a di-

agnosis of acute GVHD; (3) dead without acute GVHD; or (4) alive without acute GVHD.

The probability of each of the four categories can be estimated through integration of the

joint density. Paired with a decision rule, the set of joint absolute risks could be used to

classify patients into one of the four joint outcome categories.

If the main estimates of interest are those corresponding to the 23-transition

(HCT�acute GVHD), our simulation and data example results provide examples where

the regression estimates from fitting themodel proposed by Conlonwith an added shared

frailty align with those of our proposed model. As our results illustrate, the model that

does not acknowledge the finite time interval in which acute GVHD occurs may in some

cases be adequate for estimation, however, correctly defining the nonterminal event on

(0, ⌧) is crucial for risk prediction. If the nonterminal event is instead defined on the en-

tire real line, then the joint density would contain mass over the entire upper wedge

(0 < T1 < T2). It is not immediately clear how the probability mass in the region

(T1 > ⌧) \ (T2 > ⌧) should be assigned when calculating four absolute risks described

in the previous paragraph. A model that fails to define the nonterminal event on (0,⌧ ) is

clearly mis-specified in the setting of risk prediction.

53



Joint risk prediction in the semicompeting risks setting

Catherine Lee

Department of Biostatistics

Harvard T.H. Chan School of Public Health

Sebastien Haneuse

Department of Biostatistics

Harvard T.H. Chan School of Public Health

54



3.1 Introduction

Semi-competing risks refers to the setting where interest lies the the time-to-event for

some so-called non-terminal event, the observation of which is subject to some terminal

event (Fine et al., 2001). In contrast to standard competing risks, where each of the out-

comes under consideration is typically terminal (e.g. death due to some cause or another),

in the semi-competing risks setting it is possible to observe both events on the same study

unit, so that there is at least partial information on their joint distribution (Fine et al.,

2001; Xu et al., 2010). As an example, patients who have undergone hematopoetic stem

cell transplantation (HCT) for the treatment of leukemia may experience graft-versus-

host disease (GVHD), a debilitating condition associated with significant morbidity and

compromised quality of life (Lee et al., 2006; Shlomchik, 2007; Joseph et al., 2008; Ferrara

et al., 2009). Unfortunately, mortality is also high among patients undergoing HCT. As

such, studies seeking to investigate risk factors for GVHD must contend with death as

a competing risk. Other examples are the study of readmission following a diagnosis of

heart failure (Haneuse and Lee, 2016b) and the study of Alzheimer’s disease among the

elderly (Jacqmin-Gadda et al., 2014).

Towards the analysis of semi-competing risks data, the statistical literature has fo-

cused on three broad frameworks that seek to exploit the joint information T1, the time

to the non-terminal event, and T2, the time to the terminal event (Varadhan et al., 2014).

First, building on the original paper by Fine et al. (2001), a number of authors have pur-

suedmodeling the joint distribution of (T1, T2) by first developingmodels for themarginal

distributions of T1 and T2 and then inducing dependence via a copula (Wang, 2003; Lakhal

et al., 2008; Peng and Fine, 2007; Hsieh et al., 2008). Recent developments include the in-

corporation of covariates (Peng and Fine, 2007; Hsieh et al., 2008) and methodology to

account for left truncation (Peng and Fine, 2006). The philosophy underpinning this ap-

proach is that patients begin in some initial state at time zero and may transition into the

‘non-terminal’ and/or ‘terminal’ state. Analyses typically proceed through the develop-

ment of models for transition-specific hazard functions (which dictate the rate at which

patients experience the events), often with the use of subject-specific frailties as a means
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to capture heterogeneity across subjects (and thus within-subject dependence between T1

and T2). Recent work in this area has sought to generalize illness-death model specifi-

cations to accommodate a broad range of dependence structures, including clustering of

study participants (Han et al., 2014; Lee et al., 2016). Finally, a more limited literature

has sought to embed the analysis of semi-competing risks data within the causal infer-

ence paradigm (Egleston et al., 2007; Tchetgen Tchetgen, 2014). Sometimes referred to as

accounting for truncation by death, the approach proceeds by first defining counterfactual

outcomes for both the non-terminal and terminal events, the defining an causal contrast

of interest (e.g. the so-called survivor adjusted causal effect) together with identifying

conditions, and then developing infrastructure for valid estimation and inference.

While the analysis of semi-competing risks data has received considerable recent at-

tention, the vast majority of this work has focused on estimation and inference for risk

factor associations and in dealing within non-standard data settings (e.g. left truncation

and/or interval censoring). Moreover, very little attention has been paid to risk prediction

in the semi-competing risks context. Jacqmin-Gadda et al. (2014) used an illness-death

model to develop a prognostic score for predicting risk of dementia while accounting for

the competing risk of death, while Han et al. (2014) used an illness-death model with

random effects to calculate the marginal survival probability of the terminal event at any

given time. Common to both of these papers is that, while the underlyingmodeling struc-

ture considered both events, the output (in terms of a numerical prediction) focused on

just one of the events. That is, neither paper sought to calculate risk for the two events si-

multaneously. Thus information on the joint risk of the two events that could, in principle,

be useful in clinical contexts is not reported or even calculated. As an example, consider

again patients who undergo HCT for the treatment of leukemia. The quantification of the

joint risk of GVHD and death could have a number of potentially important uses, partic-

ularly towards enabling individualized patient-centered decisions. First, estimating the

absolute risk of the two events as a function of the interplay between the characteristics

of the patient and potential unrelated donors could help inform decisions about whether

to pursue transplantation, and which donor to select. Second, this information could be

useful making decisions regarding post-transplant immunosuppressive strategies, partic-
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ularly for patients at low risk of GVHD for whom aggressive immunosuppression may

not be necessary. Finally, from a research perspective, the quantification of joint risk could

also be helpful in identifying patients for recruitment in clinical trials.

Moving forward, we propose to consider prediction in the semi-competing risks set-

ting through the calculation and evaluation of patient-specific absolute risk profiles for the

non-terminal and terminal events simultaneously. In particular, we note that at any given

point in time after the initiating event/state, a patient will have: (1) experienced both

events; (2) experienced the non-terminal event but not the terminal event; (3) experienced

the terminal event without having experienced the non-terminal event; or (4) experienced

neither event. Thus, in contrast to much of the prediction literature, we consider the task

of prediction as being one where we seek to classify patients at any given point in time

into one of four categories based on a vector of probabilities that add to 1.0. To the best of

our knowledge, only one paper by Putter et al. (2007) has sought to calculate and report

such a profile. We build on that work in two important ways. First, while the illness-

death model considered by Putter and colleagues permitted the inclusion of covariates

into each of the transition-specific hazard functions, it did not permit the inclusion of a

subject-specific frailty. Not including a frailty simplifies estimation of the model compo-

nents, since each transition is treated independently, and thus also risk prediction. While,

as mentioned, the inclusion of frailties can be useful in explaining residual heterogeneity,

the calculation of risk prediction is more complex because of the dependence that is in-

duced. Our first contribution, therefore, is to develop a framework for calculation of risk

profiles based on an illness-death model that incorporates a subject-specific frailty. Sec-

ond, although Putter and colleagues report estimated risk profiles, they do not consider

the evaluation of the predictive performance of the profiles. While the evaluation of risk

prediction tools is well-established when the outcome is binary (Steyerberg et al., 2010),

less work has been published on methods for multi-category outcomes (Scurfield, 1996;

Mossman, 1999; Dreiseitl et al., 2000; Nakas and Yiannoutsos, 2004; Li and Fine, 2008)

and none specifically in the semi-competing risk setting. The second contribution of this

paper, therefore, is to propose a framework for evaluation of predictive performance for

risk profiles based on the hypervolume under the manifold (HUM) statistic, an extension

57



of the well-known area-under-the-curve (AUC) statistic for univariate binary outcomes.

As part of this, we propose a method for estimating the HUM statistic in the presence

of potential verification bias which arises when the true outcome category is unknown

(Alonzo and Pepe, 2005; Chi and Zhou, 2008; Duc et al., 2016; He et al., 2009; Rotnitzky

et al., 2006; Zhang and Alonzo, 2016). Throughout, we illustrate the proposed methods

using a motivating dataset of N=1,416 patients who underwent HCT between 1999 and

2011.

3.2 Acute GVHD following HCT

Data were abstracted from databases maintained by the Center for International Blood

and Marrow Transplant Research, an international network of stem cell transplant reg-

istries on 1,416 patients who underwent first HCT between the ages of 20 and 59, with

tissue from a donor that is an identical sibling or an 8/8 HLA match for treatment of

intermediate or advanced stage acute myelogenous leukemia (AML) between 1999 and

2011. Across these patients, after administrative censoring at 365 days, the median (mini-

mum, maximum) observed follow-up was 332 (2, 365) days. Although patients undergo-

ing HCT may be diagnosed with either acute or chronic GVHD (Filipovich et al., 2005),

for the purposes of this paper we focus on the former. From Table 3.1 we see that ap-

proximately 17.9% of the 1,416 patients experienced an acute GVHD event during the

observed follow-up period. We also see that mortality is very high among these patients,

with 62.3% being observed to die during the observed follow-up.

In practice, a patient may be diagnosed with either classic acute GVHD or persistent,

recurrent, or late-onset acute GVHD, depending on the specific symptoms that manifest as

well as the timing of the diagnosis (Filipovich et al., 2005). When interest lies in classic

acute GVHD, an interesting feature is such a diagnosis is only given within 100 days of

transplantation. That is, according to current consensus criteria, a patient should not be

diagnosed with classic acute GVHD beyond 100 days post-transplantation. As such, in

contrast to standard survival models where it is assumed that the time-to-event is defined

on the entire real line, time to classic acute GVHD is only well-defined (at least clinically)
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Table 3.1: Description of patients with AML between the ages of 20 and 60 years of age
who underwent stem cell transplantation with an HLA identical sibling or 8/8 donor.

Observed outcome category, %
Both Acute GVHD Death Censored

acute GVHD & censored without for both
N % & death for death acute GVHD

Total 1,416 14.0 3.9 48.3 33.8
Gender
Male 757 53.5 14.8 4.1 47.8 33.3
Female 659 46.5 13.1 3.6 48.9 34.4

Age, years
20-29 266 18.8 15.0 3.8 44.8 36.5
30-39 280 19.8 16.5 4.3 38.9 40.4
40-49 423 29.9 10.9 3.5 47.8 37.8
50-59 447 31.6 14.8 4.0 46.9 24.4

Disease status
Intermediate 603 42.6 9.9 4.6 36.7 48.8
Advanced 813 57.4 17.0 3.3 46.9 22.8

Karnofsky score
90-100 804 56.8 11.8 5.1 44.1 38.9
<90 612 43.2 16.8 2.3 53.8 27.1

HLA compatibility
Identical sibling 598 42.2 11.5 4.3 49.8 34.3
8/8 818 57.8 15.8 3.5 47.2 33.5

Conditioning intensity
Myeloblative 1,091 77.0 14.1 4.3 47.1 34.5
Reduced/non-myeloblative 325 23.0 13.5 2.5 52.3 31.7

In vivo T-cell depletion
No 1,133 80.0 14.9 4.1 46.7 34.2
Yes 283 20.0 10.2 2.8 54.8 32.2

on the finite interval of (0, 100] days.

In Chapter 2, we proposed a novel multi-state model that simultaneously: (i) ac-

counts for mortality through joint modeling of acute GVHD and death, and (ii) explicitly

acknowledges the finite time scale in which the event of interest can take place. We pro-

vided methodology for estimation and inference via maximum likelihood estimation, for

which employ in the development of joint risk prediction of acute GVHD and deaths

simultaneously.

3.3 Joint risk prediction

We present novel methodology for joint risk prediction in the semicompeting risk

framework for the shared frailty illness-death model proposed by Xu et al. (2010). We

focus on predictions of both events simultaneously at time T1 = T2 = t, where predictions
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are generated at the time of the initiating event/origin. In the stem cell transplant

example, this corresponds to predicting the joint absolute risk of acute GVHD and death

at t-days post-transplantation, with predictions made at the time of transplantation. We

provide parallel developments for both the shared frailty illness-death model and the

finite interval cure model.

3.3.1 Standard shared frailty illness-death model

Model

The illness-death model with shared gamma frailty is a multi-state model where subjects

are viewed as making one or more of the following transitions: (1) initiating event to

nonterminal event; (2) initiating event to terminal event; (3) nonterminal event to terminal

event. A schematic of the model is presented in Figure 3.1. Let T1 and T2 denote the time

between the initiating event and the nonterminal and terminal event times, respectively.

The hazard functions corresponding to the three transitions are defined by

�1(t1) = lim
�!0

P (T1 2 [t1, t1 +�)|T1 � t1, T2 � t2)/�, for t1 > 0,

�2(t2) = lim
�!0

P (T2 2 [t2, t2 +�)|T1 � t1, T2 � t2)/�, for t2 > 0,

�3(t2|t1) = lim
�!0

P (T2 2 [t2, t2 +�)|T1 = t1, T2 � t2)/�, for 0 < t1 < t2.

One way in which the transition hazards can be modeled is through a function of subject-

specific covariates and a shared-frailty

�1(t1i;X1,i, �i) = �

i

· �0,1(t1i) exp{�1X1,i}, for t1i > 0 (3.1)

�2(t2i;X2,i, �i) = �

i

· �0,2(t2i) exp{�2X2,i}, for t2i > 0 (3.2)

�3(t2i; t1i, X2,i, �i) = �

i

· �0,3(t2i|t1i) exp{�3X3,i}, for 0 < t1i < t2i, (3.3)

where X
g,i

are sets of covariates that may impact the transition hazards �
g

, for g = 1, 2, 3,

and �

i

is a shared Gamma frailty with mean 1 and variance ✓. The role of the shared

frailty term is two-fold; it induces an additional level of dependence between T1 and

T2, and accounts for additional heterogeneity across subjects analogous to random ef-

fects in a mixed model. In general, �0,3(t2|t1) can be defined as any function of t1 and
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t2. A Markov model assumes that �0,3(t2|t1) = �0,3(t2). In this paper, we assume that

�0,3(t2|t1) = �0,3(t2 � t1), a function of the sojourn time, which is referred to as the semi-

Markov property.

Transplantation Acute GVHD
�1

Dead

�3
�2

Figure 3.1: Schematic of illness-death model.

The transition hazards in (3.1), (3.2) and (3.3) determine the joint distribution of

(T1, T2). We denote the joint density on the observable region T1 < T2, termed the up-

per wedge, by f

U

(t1, t2), for t1 > t2. We use the convention introduced by Xu et al. (2010)

and assign the remaining probability mass along the line T1 = 1, with density denoted

f

T1=1,T2(t2), representing subjects who never experience the nonterminal event T1.

Several methods have been proposed for fitting the model in (3.1)-(3.3). Xu et al.

(2010) left the baseline hazard functions unspecified and obtained estimates throughmax-

imum likelihood estimation. Lee et al. (2015) and Han et al. (2014) assumed flexible,

piecewise exponential baseline hazard functions and used Bayesian methods for estima-

tion. For the purpose of risk prediction, the form of the baseline hazard must be known

on the entire domain of the transition, t1 > 0 and t2 > 0, as will be evident in Section 3.3.1.

Joint density

The joint density for the illness-death model with shared gamma frailty was derived by

Lee et al. (2015) and is presented below.

f

U

(t1, t2|�) = �1(t1|�)�3(t2|t1, �) exp
⇢

�
Z

t1

0

[�1(v|�) + �2(v|�)] dv �
Z

t2

t1

�3(v|t1, �) dv
�

f

T1=1,T2(t2|�) = �2(t2|�) exp
⇢

�
Z

t1

0

[�1(v|�) + �2(v|�)] dv
�
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Consolidating the previous two expressions, we denote the joint density by the following

expression

f(t1, t2|�) = f

U

(t1, t2|�) · (t1 < t2) + f

T1=1,T2(t2|�) · (T1 = 1). (3.4)

Patient-specific risk profiles

We present the methods for calculating the absolute risk profile for both the nonterminal

and terminal events at any time t following the initiating event. This is done via inte-

gration of the joint density in Section 3.3.1. We define the four components of the joint

absolute risk, conditional on �, as follows:

p(1)(t|�) = P (experienced nonterminal event, but not the terminal event at time t|�)

=

Z 1

t

Z

t

0

f

U

(u, v|�) du dv

p(2)(t|�) = P (experienced both events by time t|�)

=

Z

t

0

Z

t

u

f

U

(u, v|�) dv du

p(3)(t|�) = P (experienced terminal event without nonterminal event by time t|�)

=

Z

t

0

f

T1=1,T2(v|�) dv

p(4)(t|�) = P (neither events occur by time t|�)

=

Z 1

t

f

T1=1,T2(v|�) dv +
Z 1

t

Z 1

u

f

U

(u, v|�) dv du.

A plot describing the bounds of integration is included in Figure 4.1 in the Supple-

mentaryMaterials. Note that the regions of integration are disjoint and exhaustive so that

p(1)(t|�)+p(2)(t|�)+p(3)(t|�)+p(4)(t|�)=1. The vector, (p(1)(t|�), p(2)(t|�), p(3)(t|�), p(4)(t|�)),

is conditional on the patient-specific frailties and covariates, whereby we refer to as

patient-specific risk profiles.

We also consider the marginal subject-specific risk profiles defined by

p(j)(t) =

Z

�

p(j)(t|�) · f�(�) d�,

which averages the risk profiles, (p(1)(t|�), p(2)(t|�), p(3)(t|�), p(4)(t|�)), over all values of �.
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3.3.2 Finite interval shared frailty illness-death model

Model

As discussed in Section 3.2, an analysis of acute GVHD requires careful treatment of the

competing force of death and special features of the outcome. We addressed these issues

in Chapter 2. A representation of the model is presented in Figure 3.2. We briefly review

the model below.

Let a binary variable L

i

represent a latent cure state, such that L
i

= 1 indicates that

a subject that will not experience acute GVHD and L

i

= 0 indicates that a subject that

is susceptible to acute GVHD. Note that if L
i

= 0, it is assumed that the subject will

receive a diagnosis of acute GVHD, in the absence of censoring or death. The cure state

accommodates a mixture distribution of subjects who experience the event of interest and

those who never do, which is observed in acute GVHD among transplant recipients. Note

that the cure indicator is partially observed; if a patient is alive at any time after day 100

post-transplant, it must be that L
i

= 1. The cure fraction, ⇡
i

, is modeled using logistic

regression, where

⇡

i

= P (L
i

= 1|X
s,i

) = g

�1(�
s

X

s,i

), (3.5)

which is the probability that a patient will not develop acute GVHD within ⌧ days of

transplant, and X

s

denotes a vector of covariates that may impact acute GVHD suscep-

tibility. Subjects who are not cured of acute GVHD are at risk of both acute GVHD and

death, whereas, subjects who are cured of acute GVHD are only at risk for death.

As in Section 3.3.1, time to acute GVHD and death are jointlymodeled via amultistate

model depicted in Figure 3.2 with the following states: 1. not susceptible to acute GVHD

at transplantation; 2. susceptible to acute GVHD at transplantation; 3. acute GVHD; 4.

death. As before, let T1 and T2 denote the time to acute GVHD and death, respectively,

where now T1 is defined on (0, ⌧), ⌧ = 101. If a patient experiences the terminal event

without experiencing the nonterminal event, we set T1 = ⌧ . Note that in the standard

illness-death model ⌧ = 1. Let X
i

denote a vector of patient-specific baseline covariate

values. The transition hazards are defined by

�14(t2) = lim
�!0

P (T2 2 [t2, t2 +�)|T2 � t2)/�, for t2 > 0
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�24(t2) = lim
�!0

P (T2 2 [t2, t2 +�)|T1 � t1, T2 � t2)/�, for 0 < t2 < ⌧

�23(t1) = lim
�!0

P (T1 2 [t1, t1 +�)|T1 � t1, T2 � t2)/�, for 0 < t1 < ⌧

�34(t2|t1) = lim
�!0

P (T2 2 [t2, t2 +�)|T1 = t1, T2 � t2)/�, for 0 < t1 < t2,

where the �

kj

denotes the hazard corresponding to the transition from state k to state j .

Note that �23, �24, and �34 correspond to �1, �2 and �3 in Section 3.3.1.

State 2 - Susceptible State 3 - Acute GVHD
�23

State 4 - Dead

�34
�24

State 1 - Not Susceptible
�14

Transplantation

�

1 � �

Figure 3.2: Schematic of illness-death model.

For patients who are cured of (nonsusceptible) acute GVHD at the time of transplan-

tation, the hazard function corresponding to the time from transplantation to death is

modeled by

�14(t2i;X14,i, Li

= 1) = �

i

· �0,14(t2i) exp{�14X14,i}, for t2i > 0, (3.6)

where � is a subject-specific frailty following a Gamma distribution with mean 1 and

variance ✓ and X14,i are vector of covariates impacting susceptibility status.

For patients who are not cured (susceptible) of acute GVHD at the time of transplan-

tation, the hazard functions corresponding to the remaining three transitions are defined

by:

�24(t2i;X24,i, Li

= 0) = �

i

· �0,24(t2i) exp{�24X24,i}, for 0 < t2i < ⌧ (3.7)

�23(t1i;X23,i, Li

= 0) = �

i

· �0,23(t1i) exp{�23X23,i}, for 0 < t1i < ⌧ (3.8)

�34(t2i; t1i, X34,i, Li

= 0) = �

i

�0,34(t2i � t1i) exp{�34X34,i}, for 0 < t1i < t2i, (3.9)

where � is the same subject-specific frailty that appears in (3.6) and X24, X23 and X34 are

covariates that are possibly associated with the hazard functions of the corresponding
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transitions. These equations correspond to (3.2), (3.1) and (3.3), respectively, in Section

3.3.1.

The model is fit using maximum likelihood estimation, the details of which can be

found in Chapter 2, Section 2.4.2.

Joint density

We derive the joint density corresponding to the model in Section 3.3.2. First let us intro-

duce the notation ⇤
!

(t) =

Z

t

0

�

!

(s) ds. The joint density for (T1, T2) is given by:

g(t1, t2|�) = g(T1 = t1, T2 = t2|�)

= P (L = 1) · g(t1, t2|L = 1, �) + P (L = 0) · g(t1, t2|L = 0, �)

= ⇡ · g(t1, t2|L = 1, �) + (1� ⇡) · g(t1, t2|L = 0, �)

= ⇡ · �14(t2|�) · exp
⇢

�
Z

t2

0

�14(v) dv

�

· (T1 = ⌧) + (1� ⇡) · f(t1, t2|�)

= ⇡ · �14(t2|�) · exp
⇢

�
Z

t2

0

�14(v) dv

�

· (T1 = ⌧)+

(1� ⇡) · [�23(t1|�)�34(t2 � t1|t1, �)·

exp

⇢

�⇤23(t1|�)� ⇤24(t1|�)�
Z

t2�t1

0

�34(v|t1, �) dv
�

· (t1 < t2)+

�24(t2|�) exp {�⇤23(t2|�)� ⇤34(t2|�)} · (T1 = ⌧)] ,

where f(t1, t2|�) represents the joint distribution corresponding to the standard illness-

death model without the cure fraction in (3.4). We denote the joint density over the region

(0 < T1 < T2) \ (0 < T1 < ⌧) by g

U

(t1, t2|�). We assign the remaining probability mass

over the line T1 = ⌧ with probability density denoted, g
T1=⌧,T2(t2|�). The line T1 = ⌧

corresponds to patients who never receive a diagnosis of acute GVHD. Collecting like

terms in the derivation of g(t1, t2|�) above, we see that the probability density along the

line T1 = ⌧ is given by

g

T1=⌧,T2(t2|�) = ⇡ · �14(t2|�) · exp
⇢

�
Z

t2

0

�14(v) dv

�

+

(1� ⇡) · �24(t2|�) exp {�⇤23(t2|�)� ⇤34(t2|�)}

and the probability density over the region (0 < T1 < T2) \ (0 < T1 < ⌧) is given by

g

U

(t1, t2|�) = (1� ⇡) · �23(t1|�)�34(t2 � t1|t1, �)·
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exp

⇢

�⇤23(t1|�)� ⇤24(t1|�)�
Z

t2�t1

0

�34(v|t1, �) dv
�

.

Patient-specific risk profiles

As in Section 3.3.1, we define the subject-specific risk profiles as follows.

p(1)(t|�) = P (experienced nonterminal event, but not the terminal event at time t|�)

=

Z 1

t

Z

t

0

g

U

(u, v|�) du dv

p(2)(t|�) = P (experienced both events by time t|�)

=

Z

t

0

Z

t

u

g

U

(u, v|�) dv du

p(3)(t|�) = P (experienced terminal event without nonterminal event by time t|�)

=

Z

t

0

g

T1=⌧,T2(v|�) dv

p(4)(t|�) = P (neither events occur by time t|�)

=

Z 1

t

g

T1=⌧,T2(v|�) dv +
Z 1

t

Z

⌧

u

g

U

(u, v|�) dv du.

Aplot describing the bounds of integration is included in Figure 4.2 in the Supplementary

Materials. In contrast to Section 3.3.1, the component p(4)(t|�) is calculated over the finite

support of T1. As in Section 3.3.1, we define the marginal subject-specific risk profiles by

p(j)(t) =

Z

�

p(j)(t|�) · f�(�) d�.

3.4 Decision rules

Beyond quantifying joint absolute risk, the subject-specific risk profiles outlined in Sec-

tion 3.3 can be used to guide decisions if paired with a decision rule. In the setting of

this paper, a decision rule would assign each subject to one of the four joint outcome cat-

egories based on his or her estimated risk profile. We present two examples of existing

three-category decision rules, which we refer to in later sections. Note that in practice,

a decision rule should be devised incorporating subject matter understanding under the

advisement of substantive experts.
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In the first example, for subject i, a continuous marker, T
i

, is used to assign patients

to one of three ordinal disease categories, D
i

= 1, 2, 3, as follows:

if T
i

 c1, then D̂

i

= 1,

if c1 < T2 < c2, then D̂

i

= 2,

if T
i

� c2, then D̂

i

= 3,

(3.10)

where c1 < c2 are constants and D̂

i

denotes the predicted disease category. This decision

rule appeared in work by Scurfield (1996) and Nakas and Yiannoutsos (2004), which we

will revisit in Section 3.5.

In the second example, for subject i, an absolute risk profile, p(i) = (p(1i), p(2i), p(3i)), is

used to assign patients to one of three un-ordered disease categories, D
i

= 1, 2, 3, where

p(ki) = P (D
i

= k) for k = 1, 2, 3, such that the components sum to 1. Let e
j

be the vector

of length three with 1 in the j-th position and 0 elsewhere. Using the intuition that a

risk profile equal or close to e

j

places most confidence in assigning the subject to disease

category D = j, the decision rule is defined as follows: select one subject from each of

the three disease categories,D = 1, 2, 3, with corresponding risk profiles p(1), p(2) and p

(3),

and assign the three subjects to disease groups k1, k2 and k3 such that the expression,

||p(1) � e

k1 ||+ ||p(2) � e

k2 ||+ ||p(3) � e

k3 ||,

is minimized, where (e
k1 , ek2 , ek3) is a permutation of (e1, e2, e3). In essence, this minimizes

the distance between the three risk profiles, (p(1), p(2), p(3)), and (e
k1 , ek2 , ek3). This decision

rule was introduced by Mossman (1999), which he denoted R

III

, and was later extended

toM > 3 categories by Li and Fine (2008).

3.5 Evaluating predictive peformance

Having developed methodology for estimating the absolute risk for both nonterminal

and terminal events jointly at time t, we seek to assess the predictive performance of

our methodology given a decision rule. We focus on the capacity of our predictions to

discriminate among the four disease categories using an extension of the area under the

ROC curve (AUC) to more than two outcomes, for which there is extensive literature
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(Scurfield, 1996; Mossman, 1999; Dreiseitl et al., 2000; Nakas and Yiannoutsos, 2004; Li

and Fine, 2008). We consider the multicategory AUC measure in two settings: 1) all out-

come categories are known; and 2) some outcome categories are missing due to censoring

and a verification bias adjusted measure is needed.

3.5.1 Measures of discrimination for multicategory outcomes

For a dichotomous outcome, such as disease status, the area under the curve (AUC) of

the ROC curve is a global measure of discrimination of a set of predictions. The stan-

dard ROC curve plots the true positive rate for diseased subjects against the false positive

rate for non-diseased subjects based on a series of dichotomous decision rules; it can

be equivalently plotted as a correct (true) classification rate for diseased subjects against

the correct (true) classification rate for non-diseased subjects. The area under this ROC

curve is equivalent to the c-index, which represents the probability of correctly assign-

ing higher risk to patients that are diseased compared to patients who are not diseased

(Bamber, 1975). There are several extensions of the AUC to the case of a multicategory

outcome with M categories. In general, these extensions either consider the concordance

of two groups at a time or allM classes simultaneously.

The AUC of predictions corresponding to a dichotomous outcome is well understood

and is relatively intuitive since an AUC of 0.5 corresponds to random discrimination and

a value of 1 corresponds to perfect discrimination. Thus, it may be natural to reduce an

M -category classification problem to the comparison of two groups. Hand and Till (2001)

extended the definition to the case of more than two classes by considering the discrimi-

natory performance of each of M(M � 1)/2 pairs of categories separately, and averaging

over all pairs of classes. In the competing risks literature, AUC has also been re-defined

as a comparison between two groups as AUC
k

, comparing individuals with outcome k

against individuals without outcome k. For example, if there are two competing risks

(referred to as diseases 1 and 2), then AUC1 compares individuals with disease 1 versus

individuals with disease 2 or who are disease-free (Saha and Heagerty, 2010; Zheng et al.,

2012; Gerds et al., 2014). In the setting of post-transplantation trajectories of acute GVHD

and death, the focus does not lie in any one of the four categories so an approach that
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compares one disease category against the rest is not necessarily of interest. Instead, we

consider a measure of discrimination that accounts for allM outcomes simultaneously.

A direct extension of the ROC and the AUC to the case of three categories was intro-

duced independently by Scurfield (1996) andMossman (1999). Scurfield assumed ordinal

outcome categories, D = 1, 2, 3, where predictions are made using a continuous marker

T

i

and the decision rule in (3.10), as was introduced in the first example of Section 3.4. For

each pair of cutoff points, (c1, c2), the decision rule in (3.10) is used to predict disease sta-

tus, D̂
i

, and correct classification rates, P (D̂
i

= k|D
i

= k) for k = 0, 1, 2, are calculated for

each of the three disease categories. Plotting the three-tuple of correct classification rates

in three-dimensions and varying the pair of cutoff points creates a two-dimensional ROC

surface. Note that this process is exactly analogous to the construction of the ROC curve

for a dichotomous outcome, where the axes are taken to be the sensitivity and specificity.

The analogue of the AUC for a dichotomous outcome is the volume under the ROC surface

(VUS), which is interpreted as the probability that a set of markers corresponding to each

of the three categories will lead to correct classification. In this setting, the VUS is defined

as

V US = P (T1 < T2 < T3), (3.11)

where T1, T2 and T3 are marker values from subjects from disease categories 1, 2, and 3

respectively.

Mossmanworked under the assumption of three, un-ordered categories and amarker

which is an absolute risk profile, denoted p

(i) = (p(1i), p(2i), p(3i)), where p(1i)+p(2i)+p(3i) =

1. He proposed several decision rules for a subject-specific risk profile; we focus on R

III

presented in Section 3.4. In this setting, the VUS is defined by

VUS = Pr{CR(p(1), p(2), p(3)) = 1}, (3.12)

where p(k) are absolute risk profiles corresponding to subjects from disease group D = k,

for k = 1, 2, 3, and the function CR takes on value 1 if the three risk profiles are correctly

classified based on decision rule R
III

and 0 otherwise (Dreiseitl et al., 2000). Note that the

expression for the VUS in (3.11) is essentially the expression in (3.12) when the decision
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rule is taken to be (3.10). It is clear from from the definition of the VUS in (3.11) and (3.12)

that the noninformative value of the VUS corresponds to the random assignment of a set

of subjects, one from each disease group, which has probability 1/(3!) = 0.17.

Nonparametric estimators were later proposed for the VUS. For classification of or-

dinal outcome categories based on a continuous marker and the decision rule in (3.10),

Nakas and Yiannoutsos (2004) proposed an estimator for the VUS in (3.11) as follows

[
V US =

1

n1 · n2 · n3

n1
X

i1=1

n2
X

i2=1

n3
X

i3=1

I(T1i1 < T2i2 < T3i3), (3.13)

where T

k

and n

k

, for k = 1, 2, 3, are continuous marker values and sample sizes corre-

sponding to subjects from D = 1, 2, 3, respectively.

For classification of un-ordered outcome categories based on absolute risk profiles

and the decision rule, R
III

, Dreiseitl et al. (2000) proposed an estimator for the VUS in

(3.12) as follows:

[
V US =

1

n1 · n2 · n3

n1
X

i1=1

n2
X

i2=1

n3
X

i3=1

CR(p(i1), p(i2), p(i3)), (3.14)

where p

(i1), p(i2) and p

(i3) are absolute risk profiles corresponding to subjects in outcome

categories 1, 2, and 3, and n

D

are the sample sizes of categories D = 1, 2, 3. Li and

Fine (2008) extended the estimator in (3.14) to the case of M > 3 categories. The ex-

pression in (3.14) extends naturally to M > 3 dimensions as the empirical mean of

CR(p(1), p(2), . . . p(M)), where p

(1)
, p

(2)
, . . . p

(M) are absolute risk profiles corresponding to

subjects in outcome category 1 through M . For M > 3, the ROC surface has dimension

M � 1, and the corresponding volume under this (M � 1)�dimensional ROC surface was

coined the hypervolume under the manifold, abbreviated HUM (Li and Fine, 2008). In the

case ofM categories, the noninformative HUM is 1/(M !).

In predicting the nonterminal and terminal events jointly with semicompeting risks

data, absolute risk profiles of length four are used to predict the four un-ordered outcome

categories. If there were no censoring of the terminal event before time t, then the disease

outcome is known for all subjects. To assess the ability of our predictions to discriminate

among the four groups, we can directly apply the estimator of the HUM in (3.14) and

assess the variability of our estimates through bootstrapping.
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Multicategory AUC accounting for verification bias

In the setting of our problem, for subjects who are censored for the terminal event before

time t, the disease outcome cannot be determined. In this case, the estimators for the

multicategory AUC in (3.13) and (3.14) cannot be used because they require knowledge

of the disease category for every patient. A complete case analysis can be performed,

however, this is only justified when the categories are missing completely at random.

For the M = 3, Zhang and Alonzo (2016) proposed an unbiased estimator of the VUS

in (3.11), when the outcome categories are assumed to be missing at random using an

inverse probability weighting (IPW) approach. We present their proposed verification

bias adjusted multicategory AUCmeasure and provide an extension to the setting of four

un-ordered disease categories and classification based on absolute risk profiles.

Zhang and Alonzo (2016) re-expressed the non-parametric estimator of the VUS in

(3.13) by

[
V US =

P

n

i=1

P

n

j=1

P

n

k=1 I(Ti

< T

j

< T

k

)I(D
i

< D

j

< D

k

)
P

n

i=1

P

n

j=1

P

n

k=1 I(Di

< D

j

< D

k

)
.

Now suppose the true disease category is unknown for some subjects. Let V denote

a verification status indicator, where V = 1 if the true disease status is known, and 0

otherwise, and assume that the verification status, V , is independent of disease category,

D, conditional on the continuous marker, T and covariates, X (missing at random). They

proposed the following estimator of the VUS that accounts for verification bias:

[
V US

IPW

=

P

n

i=1

P

n

j=1

P

n

k=1 Vi

V

j

V

k

I(T
i

< T

j

< T

k

)I(D
i

< D

j

< D

k

)/(⇡
i

⇡

j

⇡

k

)
P

n

i=1

P

n

j=1

P

n

k=1 Vi

V

j

V

k

I(D
i

< D

j

< D

k

)/(⇡
i

⇡

j

⇡

k

)
, (3.15)

where ⇡

i

= P (V
i

|T
i

, X

i

) for covariates X
i

. Applying iterated expectations and the Weak

Law of Large Numbers shows that the estimator in (3.15) is unbiased and consistent. Fur-

thermore, the estimator in (3.15) can be re-expressed as a U-estimator for which standard

asymptotic results for U-statistics follow.

We extend the verification-bias corrected VUS in (3.15) to our setting as follows. Let

D

i

= d denote the true disease category, for d = 1, 2, 3, 4, let V
i

denote a verification

indicator that takes on value 1 if the true disease status is observed and 0 otherwise, and

let X
i

represent a vector of covariates related to V

i

and D

i

. We assume V

i

and D

i

are
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independent conditional on X

i

(missing at random). We first re-express the estimator in

(3.12) by the following expression:
P

n

i=1

P

n

j=1

P

n

k=1

P

n

l=1 I(Di

< D

j

< D

k

< D

l

) · CR(p(i), p(j), p(k), p(l))
P

n

i=1

P

n

j=1

P

n

k=1

P

n

l=1 I(Di

< D

j

< D

k

< D

l

)
. (3.16)

Note that the product of the indicator functions in the numerator corresponds to correct

classification of individuals from each of the four possible categories and the denominator

is equivalent to n1 · n2 · n3 · n4. We define the verification-bias corrected HUM using a

parallel argument as in (3.15) by the following:
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In the numerator:
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= 4). Using the Weak Law of Large Numbers

and Slutky’s Theorem (Ferguson, 1996), it follows that the estimator in (3.17) is consistent

for the true HUM.

3.6 Data application

3.6.1 Data

We analyze the stem cell transplant data presented in Section 3.2. Towards building a risk

prediction instrument, we consider two nested models that include the following indica-

tor variables corresponding to: HLA 8/8 status (poor donor-patient matching compared
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to a match from an identical sibling), advanced stage disease, use of reduced myleoabla-

tive conditioning, use of in vivo T-cell depletion, Karnofsky score < 90 (indicating a loss

of function).

3.6.2 Models and estimating subject-specific risk profiles

We fit the data to the model presented in Section 3.3.2 that accommodates the finite sup-

port of acute GVHD using the methods developed in Chapter 2, where the baseline haz-

ard functions in (3.6)-(3.9) are assumed to follow truncated Weibull distributions:
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, if ! 2 {24, 23}, where t 2 (0, ⌧),

with ⌧ = 101. We generate predicted subject-specific risk profiles presented in Sec-

tion 3.3.2 at day t = 5, 10, . . . , 150 post-transplantation. To assess the impact of the

shared frailty on joint risk prediction, we also calculate predicted subject-specific risk

profiles at day 100 post-transplantation for the following values of the shared frailty,

� = 0.5, 0.6, . . . , 1.5. We compare these estimated absolute risk profiles to the estimated

marginal subjected-specific risk profile that averages over the distribution of the shared

frailty, defined in Section 3.3.2.

3.6.3 Measures of discrimination

We then assess predictive performance using the four category HUM based on predicted

absolute risk profiles presented in Section 3.5. There is no censoring of death within 100

days of transplantation, so that four possible categories of acute GVHD and death status

is known. This allows us to calculate the HUM with the full dataset using the estimator

in (3.14). We use a simple bootstrap with 1000 resamples to estimate the standard errors

of our HUM estimates.

To test the efficacy of our verification bias adjusted HUM estimator in (3.17), we arti-

ficially create missingness following a missing at random scheme, as was done by Zhang

and Alonzo (2016) in their analysis of an Alzheimer’s data set. Specifically, we use a logis-

tic regression model to model the non-missingness indicator, V , as a function of covari-

ates. The logistic regression model is used to calculate the probability of nonmissingness,
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P (V
i

= 1), for all subjects, which are then used to generate Bernoulli random variables

with probability of success of P (V
i

= 1). We then calculate the verification bias adjusted

HUM in Section 3.5.1 and compare the estimated value to the true HUM for the full data

set and to the HUM calculated for the complete cases.

In our calculation of the HUM, we divide the dataset into training and test sets of

equal size. We fit the training data to the semicompeting risks model. Based on the

estimated parameters from the trained model, we calculate predictions based on both the

training and test data. We expect the measure of predictive performance (HUM) on the

training set to be biased upward; we refer to the HUM in this setting as optimistic. We

expect the HUM calculated on the independent test set to be a more accurate measure of

predictive performance, and refer to this measure as realistic.

Note that our data set includes only categorial covariates. This results in predicted

risk profiles that may be the same across several subjects. Again following the method-

ology introduced by Zhang and Alonzo (2016) to account for ties in marker values, we

add a small amount of noise to each of the covariate values to ensure that the subject-

specific risk profiles do not coincide among subjects. Specifically, we generate noise from

a Uniform(�✏, ✏), where ✏ = 0.00001.

Finally, we estimate the optimistic and realistic HUM values at times t = 5, 10, . . . , 150

to investigate possible temporal trends in the HUM.

3.6.4 Results

From Table 3.1, we see that approximately 57% of the population have Advanced stage

disease, 43% have a Karnofsky score less than 90, and 58% received transplanted cells

from HLA 8/8 donor. These patients are more likely to die with or without acute GVHD,

compared to patients in the corresponding reference group. Twenty-three percent of pa-

tients received a reduced myeloablative conditioning regimen and 20% received in vivo

T-cell depletion; these patients appeared to have a lowered risk of acute GVHD.

The estimated model parameters and the log-likeihood value (given the data) for the

two models are presented in Table 3.2. For Model 1, the effect of lower functionality

(Karnofsky score less than 90) is associated with an increased risk of death in the 14�,
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24� and 34�transitions, and a decrease in risk of being cured of acute GVHD. For the

23-transition, the results suggest that being female, reduced conditioning, and in vivo T-

cell depletion are protective for acute GVHD. An HLA: 8/8 match is associated with an

increased risk for acute GVHD, and a decrease in risk of being cured of acute GVHD. The

effects of these variables are comparable in Model 2. In addition, the effect of advanced

stage disease is associatedwith an increased risk of death in the 14-, 24- and 34-transitions,

and a decrease in risk of being cured of acute GVHD. Note that Model 1 is nested within

Model 2; Model 2 differs from Model 1 by the addition of an Advance disease status

indicator to the 14-, 24- and 34- transitions. A likelihood ratio test comparing the two

nested models indicates that Model 2 is a better fit to the data (p < 0.001).

We plotted the stacked estimated risk profiles at t = 1, 2, . . . , 150 for three patients

(labeled A, B, and C) under both Models 1 and 2 in Figure 3.3 so that at any time t the

vertical distance between the: solid and dashed line is p(2) (the probability of dying carry-

ing a diagnosis of acute GVHD by time t); dashed and dotted line is p(3) (the probability

of death without acute GVHD); and dotted line and the value 1 is p(4) (the probability of

being alive without acute GVHD). At any time t, Patient A has the lowest risk of death,

and Patient B has the highest risk of acute GVHD. Both Patients B and C have a large

risk of death, however, the rate of increase differs between the two patients. For Patients

A and B, we see that the risk of acute GVHD (with and without death) increases until

around day 60 post-transplantation at which point it stabilizes; for Patient C, we see that

the risk of acute GVHD increases through day 80 post-transplantation. The risk of death

steadily increases through the 150 days post-transplantation for all three patients.

We present a graph of the stacked estimated risk profile (conditional on the shared

frailty term, �) of Patient C at t = 100 for � = 0.5, 0.6, . . . , 1.5 in Figure 3.3. The marginal

stacked risk profile for Patient C at t = 100 is plotted to the right. We see a dramatic in-

crease in the absolute risk of death for increasing values of the shared frailty term, partic-

ularly for death without acute GVHD, thereby providing evidence that the shared frailty

term accounts for heterogeneity in the data set that is not accounted for by covariates.

Comparing the conditional and marginal stacked risk profiles, we see that the marginal

risk profile components align with values of � between 0.8 and 1.25.
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Table 3.2: Estimated parameters for our proposed multi-state model for acute GVHD and
death considering two sets of covariates.

Model 1 Model 2
Est SE Est SE

Cure model
Intercept 1.65 0.14 1.85 0.16
HLA donor match: 8/8 -0.30 0.15 -0.32 0.15
Disease status: Advance -0.41 0.16
Karnofsky score < 90 -0.21 0.17 -0.15 0.16

Cured: HCT to Death
Disease status: Advance 0.89 0.11
Karnofsky score < 90 0.54 0.10 0.38 0.11

Not cured: HCT to Death
Disease status: Advance 0.05 0.44
Karnofsky score < 90 0.14 0.55 0.28 0.43

Not cured: HCT to Acute GVHD
Female -0.33 0.18
HLA donor match: 8/8 0.13 0.19 0.23 0.19
Conditioning: Red. intensity/Non-myel. -0.91 0.23 -0.88 0.23
In vivo T-cell depletion -0.63 0.28

Not cured: Acute GVHD to Death
Disease status: Advance 0.33 0.18
Karnofsky score < 90 0.51 0.17 0.48 0.17

Weibull baseline hazard
log(kappa14) -6.95 0.42 -7.68 0.37
log(alpha14) 0.07 0.06 0.11 0.05
log(kappa24) -14.73 0.69 -17.65 0.08
log(alpha24) 0.86 0.35 0.84 0.07
log(kappa23) -6.19 0.42 -6.08 0.36
log(alpha23) 0.59 0.07 0.59 0.06
log(kappa34) -5.17 0.34 -5.41 0.37
log(alpha34) -0.10 0.07 -0.09 0.07
log(theta) -1.32 0.26 -1.28 0.27

Log-likelihood -6838.97 -6790.66
Num. of parameters 17 23

The estimated values of the HUM are presented Table 3.3. Observe that all HUM val-

ues for Model 2 and larger than the corresponding values for Model 1. The optimistic and

realistic HUM for Model 2 using the full data set are 0.102 and 0.087, respectively. Recall

that the noninformative HUM for M = 4 categories is 1/(M !) = 0.04; the HUM values

observed in this analysis are many times larger than this noninformative value. When we

76



Model 1 − Patient A

Days since transplantation

St
ac

ke
d 

pr
ed

ic
te

d 
pr

ob
ab

ilit
ie

s

0 30 60 90 120 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Model 1 − Patient B

Days since transplantation

St
ac

ke
d 

pr
ed

ic
te

d 
pr

ob
ab

ilit
ie

s

0 30 60 90 120 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Model 1 − Patient C

Days since transplantation

St
ac

ke
d 

pr
ed

ic
te

d 
pr

ob
ab

ilit
ie

s

0 30 60 90 120 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Model 2 − Patient A

Days since transplantation

St
ac

ke
d 

pr
ed

ic
te

d 
pr

ob
ab

ilit
ie

s

0 30 60 90 120 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Model 2 − Patient B

Days since transplantation

St
ac

ke
d 

pr
ed

ic
te

d 
pr

ob
ab

ilit
ie

s

0 30 60 90 120 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Model 2 − Patient C

Days since transplantation

St
ac

ke
d 

pr
ed

ic
te

d 
pr

ob
ab

ilit
ie

s

0 30 60 90 120 150

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

p(1) p(1) + p(2) p(1) + p(2) + p(3)

Figure 3.3: Estimated absolute risk profiles calculated for the first 150 post-transplantation
corresponding to three patients (A, B, C).

artificially added missingness to the outcome categories directly, the IPW estimator of the

HUM is comparable to the HUM of the full data. For both models the estimated HUM

corresponding to a complete case analysis are smaller than the verification bias adjusted

HUM values. The distribution of outcomes for each analysis are summarized in Table

4.24
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Subject−specific Gamma frailty, γ
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Figure 3.4: Left panel: Estimated absolute risk profiles (conditional on frailty, �) for
Patient C at 100 days post-transplantation for varying values of the gamma frailty, �.
Right panel: Estimated marginal absolute risk profiles for Patient C at 100 days post-
transplantation.

We present a plot of the HUM values (optimistic and realistic) for both Models 1 and

2 corresponding to time t = 5, 10, . . . , 150 in Figure 3.5. At each time point considered, the

HUM value (optimistic or realistic) for Model 2 is greater than the corresponding HUM

value for Model 1.The realistic HUM values appear to increase over time for both models,

with a faster rate of increase corresponding to Model 2.

In summary, we have illustrated our methods for risk prediction using semicompet-

ing risks data outlined in this paper. For the two nested models considered, we see that
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Table 3.3: HUM estimates for the two models considered. HUM IPW denotes the verifi-
cation bias adjusted HUM presented in Section 3.5.1.

Noninformative HUM: 0.042
Model 1 Model 2
Est SEb Est SEb

Full data set (no censoring)
Optimistic 0.074 0.015 0.102 0.018
Realistic 0.069 0.014 0.087 0.017

Added missingness to disease status
HUM IPW

Optimistic 0.078 0.017 0.100 0.020
Realistic 0.069 0.017 0.086 0.019

HUM CC
Optimistic 0.074 0.016 0.094 0.020
Realistic 0.063 0.015 0.078 0.018

an improvement in the fit between Model 1 and 2 corresponds to an improvement in the

HUM of the predictions. When we artificially generate missingness in our outcome cat-

egories in our data set, our extension of the verification bias adjusted HUM estimator,

defined by (3.17), shows little bias when compared with the HUM that is calculated from

the full data set.

3.7 Discussion

We have presented novel methodology for calculating the joint absolute risk of the non-

terminal and terminal events at time t in semicompeting risks data via integration over

the joint density. In essence, we have turned a survival problem into a multicategory out-

come problem. A natural question is: “Why not just use standardmulticategorymodeling

methods, such as multinomial logistic regression, to estimate the absolute risk profiles?”

When there is no censoring of the terminal event before time t, the four outcome cate-

gories can be determined for all subjects. Then a standard multicategory regression or

classification model can be applied to the data. However, when there is censoring of the

terminal event before time t for some subjects, the outcome categories cannot be deter-

mined for those subjects. As a result, those observations with missing outcome categories
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Figure 3.5: HUMover time forModels 1 and 2. Non-informative HUM is plotted in green.

cannot be used in a standardmulticategory regressionmodel. This is not a problem in our

proposed methodology since the semicompeting risks model accommodates censoring.

We used the multicategory extension of the AUC for a dichotomous outcome, the

HUM, to assess capacity of our predictions to discriminate among the four groups si-

multaneously. Although the interpretation of the measure is appealing and intuitive,

the actual HUM value for M categories is non-intuitive since the noninformative HUM

corresponding to random classification has value 1/(M !). For four categories, the nonin-

formative HUM is 0.042. As with the AUC for a dichotomous outcome, the HUM can be

used to compare the predictive performance of competing models. In our data example,
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we used the HUM to compare two models with respect to discrimination. However, in

isolation, the optimistic HUM value of 0.102 for Model 2 is hard to make sense of; it is

several folds larger than the non-informative HUM but seems very far from the HUM for

perfect discrimination which is a value of one.

As discussed above, the outcome category cannot be determined when there is cen-

soring of death before time t. When the censoring mechanism does not depend on the

true outcome category and covariates, the missing outcome categories are missing com-

pletely at random and a complete case estimate of the HUM is expected to be unbiased

for the true HUM. However, unbiased estimates of the HUM are not guaranteed for other

missing data mechanisms. Zhang and Alonzo (2016) addressed the problem of the HUM

for ordinal disease outcomes that are missing at random through an IPW estimator of the

multicategory AUC for three dimensions. We translated and extended their measure to

the setting of our problem (four, non-ordered outcome categories). Although the dataset

that we considered did not have any subjects who were censored before time t = 100

days, our methods can be applied when such censoring arises.

In this paper, we chose to assess predictive performance of our predicted risk profiles

using a measure of discrimination, the multicategory AUC, however, other measures that

target calibration and risk stratification capacity may be informative and complementary.

We assumed fully-parametric baseline hazard functions in order to integrate the joint den-

sity at any time t following transplantation, however, more flexible parametric baseline

hazards using splines may be more appealing and are the focus of future work.

81



Supplementary Materials

82



4.1 Time-to-event data with time-varying biomarkers mea-
sured only at study entry, with applications to
Alzheimer’s disease

Table 4.1: Values of Rtrunc used in data generating procedure.
Rtrunc

n = 250 n = 250 n = 100 n = 250 n = 250 n = 250
� = 0.25 � = 0.25 � = 0.25 � = 0.1 � = 0.4 � = 0.25

� ⇡trunc = 0.2 ⇡trunc = 0.4 ⇡trunc = 0.2 ⇡trunc = 0.2 ⇡trunc = 0.2 ⇡trunc = 0.2
�

a

= 0.5 �

a

= 0.5 �

a

= 0.5 �

a

= 0.5 �

a

= 0.5 �

a

= 1
�

b

= 0.05 �

b

= 0.05 �

b

= 0.05 �

b

= 0.05 �

b

= 0.05 �

b

= 0.01

Fixed deviations, a
i

Normal density kernel based hazard 0 32 40 32 32 32 32
0.25 32 44 33 32 34 32
0.5 33 44 34 32 34 33
1 32 46 35 32 36 32
1.5 32 48 35 32 38 32

Constant hazard 0 31 50 31 30 30 31
0.25 74 102 74 72 72 74
0.5 79 104 79 98 72 79
1 75 100 75 85 68 75
1.5 67 92 67 75 62 67

Exponential-form hazard 0 89 118 89 88 90 89
0.25 81 108 81 86 77 81
0.5 76 100 76 82 72 76
1 70 92 70 78 66 70
1.5 66 90 66 76 69 66

Time-varying deviations, b
i

Normal density kernel based hazard 0 79 106 79 78 78 79
0.25 78 104 78 80 78 78
0.5 76 102 75 78 74 76
1 76 102 75 78 72 76
1.5 74 100 75 76 72 74

Constant hazard 0 79 74 31 30 90 79
0.25 78 102 78 70 77 78
0.5 78 108 78 70 72 78
1 76 104 76 78 66 76
1.5 75 100 75 80 69 75

Exponential-form hazard 0 90 118 90 90 90 90
0.25 82 108 82 88 78 82
0.5 75 102 75 84 73 75
1 70 93 70 80 67 70
1.5 66 90 66 76 63 66
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4.2 Time-to-event analysis when the event is defined on a
finite time interval

Table 4.8: Description of study population
Observed outcome category, %

Both Acute GVHD Death Censored
acute GVHD & censored without for both

N % & death for death acute GVHD

Total subjects 9651 11.0 6.7 28.7 53.7
Gender
Male 5366 55.6 11.7 6.9 28.3 53.1
Female 4285 44.4 10.1 6.4 29.2 54.4

Age, years
<10 653 6.8 5.7 7.0 21.6 65.7
10-19 1162 12.0 8.5 8.3 21.8 61.4
20-29 1572 16.3 11.3 8.1 25.9 54.7
30-39 1581 16.4 11.6 6.3 26.5 55.6
40-49 2095 21.7 11.4 6.8 29.6 52.2
50-59 2008 20.8 12.6 5.6 35.2 46.5
60+ 580 6.0 11.9 3.1 38.1 46.9

Disease type
AML 4919 51.0 10.1 6.1 31.8 52.0
ALL 2071 21.5 10.4 6.6 29.3 53.7
CML 1525 15.8 12.9 8.3 18.0 60.9
MDS 1136 11.8 13.1 7.1 28.5 51.2

Disease status
Early 4873 50.5 9.0 7.3 21.1 62.5
Intermediate 2316 24.0 11.2 7.0 28.4 53.5
Advanced 2462 25.5 14.6 5.1 43.9 36.4

HLA compatibility
Identical sibling 3941 40.8 7.9 5.7 26.0 60.4
8/8 4100 42.5 11.8 7.3 29.7 51.1
7/8 1610 16.7 16.3 7.5 32.7 43.5

Table 4.9: Observed outcomes corresponding to 100 simulated data sets each of size 5000
for each of the five simulations considered in Section 5.

Base Censoring Administrative Increased Conlon
Scenario via exponential censoring cure fraction with frailty

at 365 days sufficient
n % n % n % n % n %

Acute GVHD and death within 100 days 933 18.7 563 11.3 491 9.8 439 8.8 491 9.8
Acute GVHD and death after 100 days 875 17.5 161 3.2 633 12.7 417 8.3 695 13.9
Acute GVHD and censored before 100 days 0 0.0 747 14.9 0 0.0 0 0.0 0 0.0
Acute GVHD and censored after 100 days 0 0.0 162 3.2 62 1.2 0 0.0 0 0.0
Death within 100 days without acute GVHD 1202 24.0 895 17.9 1823 36.5 924 18.5 1823 36.5
Death after 100 days without acute GVHD 1991 39.8 139 2.8 983 19.7 3220 64.4 1991 39.8
Censored after 100 days without either 0 0.0 581 11.6 1008 20.2 0 0.0 0 0.0
Censored within 100 days without either 0 0.0 1751 35.0 0 0.0 0 0.0 0 0.0
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Table 4.10: Simulation results corresponding to the ‘base scenario’, with 1000 replicates of
size 5000. Empirical and analytical standard errors calculated using the standard devia-
tions of the sampling distributions and means of the estimated analytical standard errors

Proposed Proposed, Conlon, Conlon Illness- Univ. Univ.
model no frailty frailty no frailty death cure Cox
SD cSE SD cSE SD cSE SD cSE SD cSE SD cSE SD cSE

Intercept 0.05 0.05 0.05 0.05 0.75 0.05 0.05 0.05 0.04 0.03
X.Cure 0.06 0.06 0.06 0.06 0.56 0.06 0.06 0.07 0.06 0.06
X14 0.05 0.05 0.05 0.04 1.32 0.06 0.05 0.05
X24 0.08 0.08 0.09 0.08 0.60 0.08 0.08 0.08 0.06 0.05
X23 0.06 0.06 0.06 0.06 2.90 0.06 0.06 0.06 0.06 0.05 0.05 0.05 0.05 0.05
X34 0.06 0.05 0.05 0.05 1.23 0.05 0.05 0.05 0.06 0.06
log(kappa14) 0.29 0.27 0.20 0.18 1.56 0.37 0.22 0.20
log(alpha14) 0.03 0.03 0.03 0.02 0.13 0.04 0.03 0.02
log(kappa24) 0.15 0.14 0.14 0.14 0.74 0.13 0.13 0.14 0.10 0.10
log(alpha24) 0.03 0.03 0.03 0.03 0.43 0.03 0.03 0.03 0.04 0.03
log(kappa23) 0.12 0.11 0.15 0.14 0.76 0.05 0.05 0.05 0.04 0.04
log(alpha23) 0.03 0.03 0.03 0.03 0.64 0.02 0.02 0.02 0.04 0.03
log(kappa34) 0.14 0.14 0.12 0.11 0.78 0.15 0.12 0.11 0.18 0.17
log(alpha34) 0.02 0.02 0.02 0.02 0.24 0.02 0.02 0.02 0.03 0.02
log(theta) 0.12 0.12 4.35 0.17 0.16 0.12

Table 4.11: Base scenario. Coverage probabilities. 95% confidence intervals via estimates
and standard errors obtained using the means of the sampling distributions and standard
deviations of the estimated analytical standard errors

Proposed Proposed, Conlon, Conlon
model no frailty frailty no frailty

Intercept 0.94 0.44 0.46 0.95
X.Cure 0.95 0.95 0.91 0.90
X14 0.95 0.75 0.87 0.92
X24 0.94 0.74 0.95 0.90
X23 0.95 0.94 0.95 0.96
X34 0.94 0.92 0.94 0.92
log(kappa14) 0.95 0.00 0.72 0.00
log(alpha14) 0.94 0.00 0.76 0.00
log(kappa24) 0.94 0.85 0.93 0.67
log(alpha24) 0.95 0.09 0.86 0.08
log(kappa23) 0.95 0.92 0.00 0.00
log(alpha23) 0.95 0.54 0.03 0.30
log(kappa34) 0.95 0.00 0.95 0.00
log(alpha34) 0.95 0.00 0.96 0.00
log(theta) 0.95 0.96
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Table 4.12: Simulation results for the case of ‘moderate censoring’, with 1000 replicates of
size 5000. Parameter estimates calculated as mean of sampling distribution

Proposed Proposed, Conlon, Conlon, Illness- Univ. Univ.
Truth model no frailty frailty no frailty death Cure Cox

Intercept -0.41 -0.40 -0.31 -0.60 -0.52 0.25
X.Cure 0.50 0.50 0.48 0.57 0.56 0.42
X14 0.25 0.26 0.17 0.47 0.40
X24 0.50 0.50 0.43 0.52 0.49 -0.05
X23 0.25 0.25 0.23 0.24 0.24 -0.18 0.32 -0.21
X34 0.15 0.15 0.14 0.15 0.14 0.03
log(kappa14) -8.52 -8.52 -7.26 -10.46 -9.33
log(alpha14) 0.34 0.33 0.17 0.52 0.40
log(kappa24) -5.30 -5.32 -5.25 -5.23 -5.14 -5.20
log(alpha24) 0.34 0.34 0.26 0.29 0.25 0.26
log(kappa23) -2.16 -2.17 -2.27 -1.83 -1.81 -2.08
log(alpha23) -0.69 -0.69 -0.74 -0.64 -0.67 -0.64
log(kappa34) -6.21 -6.21 -5.95 -6.19 -5.95 -7.38
log(alpha34) 0.26 0.26 0.21 0.25 0.21 0.40
log(theta) -1.71 -1.75 -2.02 0.81

Table 4.13: Simulation results for the case of ‘moderate censoring’, with 1000 replicates of
size 5000. Empirical and analytical standard errors calculated using the standard devia-
tions of the sampling distributions and means of the estimated analytical standard errors

Proposed Proposed, Conlon, Conlon Illness- Univ. Univ.
model no frailty frailty no frailty death cure Cox
SD cSE SD cSE SD cSE SD cSE SD cSE SD cSE SD cSE

Intercept 0.07 0.06 0.06 0.06 0.15 0.08 0.07 0.07 0.05 0.04
X.Cure 0.08 0.08 0.08 0.08 0.12 0.08 0.08 0.08 0.07 0.07
X14 0.16 0.16 0.14 0.14 0.53 0.21 0.18 0.18
X24 0.10 0.09 0.10 0.09 0.10 0.10 0.09 0.09 0.09 0.09
X23 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.07 0.06 0.06 0.05 0.05
X34 0.08 0.08 0.08 0.07 0.08 0.08 0.08 0.07 0.10 0.10
log(kappa14) 0.91 0.87 0.67 0.69 1.17 1.22 0.98 0.99
log(alpha14) 0.11 0.11 0.10 0.10 0.12 0.12 0.11 0.11
log(kappa24) 0.15 0.15 0.15 0.16 0.14 0.14 0.14 0.14 0.11 0.12
log(alpha24) 0.04 0.03 0.04 0.04 0.03 0.03 0.03 0.03 0.03 0.03
log(kappa23) 0.14 0.13 0.18 0.17 0.06 0.05 0.05 0.05 0.05 0.05
log(alpha23) 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.03 0.03
log(kappa34) 0.18 0.18 0.16 0.17 0.19 0.19 0.16 0.17 0.21 0.20
log(alpha34) 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
log(theta) 0.23 0.23 0.67 0.67 0.07 0.07
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Table 4.14: Coverage probabilities for the case of ‘moderate censoring’, with 1000 repli-
cates of size 5000. 95% confidence intervals via estimates and standard errors obtained
using the means of the sampling distributions and standard deviations of the estimated
analytical standard errors

Proposed Proposed, Conlon, Conlon
model no frailty frailty no frailty

Intercept 0.95 0.63 0.34 0.66
X.Cure 0.95 0.94 0.86 0.89
X14 0.95 0.90 0.82 0.89
X24 0.95 0.87 0.94 0.95
X23 0.94 0.93 0.95 0.94
X34 0.95 0.94 0.95 0.94
log(kappa14) 0.93 0.54 0.67 0.89
log(alpha14) 0.94 0.62 0.66 0.89
log(kappa24) 0.95 0.92 0.92 0.78
log(alpha24) 0.95 0.45 0.72 0.17
log(kappa23) 0.95 0.97 0.00 0.00
log(alpha23) 0.95 0.71 0.50 0.83
log(kappa34) 0.96 0.63 0.95 0.63
log(alpha34) 0.96 0.56 0.95 0.56
log(theta) 0.97 0.99

Table 4.15: Simulation results for the case of ‘administrative censoring at 365 days’, with
1000 replicates of size 5000. Parameter estimates calculated as mean of sampling distri-
bution

Proposed Proposed, Conlon, Conlon, Illness- Univ. Univ.
Truth model no frailty frailty no frailty death Cure Cox

Intercept -0.41 -0.41 -0.34 -0.54 -0.48 0.25
X.Cure 0.50 0.50 0.50 0.54 0.53 0.42
X14 0.25 0.25 0.21 0.33 0.29
X24 0.50 0.50 0.41 0.49 0.46 -0.03
X23 0.25 0.25 0.23 0.22 0.22 -0.23 0.32 -0.26
X34 0.15 0.15 0.14 0.15 0.14 0.01
log(kappa14) -8.52 -8.51 -7.53 -9.66 -8.78
log(alpha14) 0.34 0.33 0.21 0.45 0.35
log(kappa24) -5.30 -5.30 -5.16 -5.24 -5.10 -5.50
log(alpha24) 0.34 0.34 0.23 0.31 0.25 0.32
log(kappa23) -2.16 -2.17 -2.38 -1.80 -1.79 -2.02
log(alpha23) -0.69 -0.69 -0.76 -0.62 -0.66 -0.71
log(kappa34) -6.21 -6.22 -5.79 -6.18 -5.79 -7.87
log(alpha34) 0.26 0.26 0.18 0.25 0.18 0.48
log(theta) -1.71 -1.73 -1.89 0.80
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Table 4.16: Simulation results for the case of ‘administrative censoring at 365 days’, with
1000 replicates of size 5000. Empirical and analytical standard errors calculated using the
standard deviations of the sampling distributions and means of the estimated analytical
standard errors

Proposed Proposed, Conlon, Conlon Illness- Univ. Univ.
model no frailty frailty no frailty death cure Cox
SD cSE SD cSE SD cSE SD cSE SD cSE SD cSE SD cSE

Intercept 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.04 0.03
X.Cure 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06
X14 0.07 0.07 0.06 0.06 0.07 0.07 0.07 0.07
X24 0.08 0.08 0.09 0.08 0.08 0.08 0.08 0.08 0.08 0.08
X23 0.06 0.06 0.06 0.06 0.06 0.06 0.05 0.06 0.07 0.07 0.05 0.05 0.05 0.05
X34 0.06 0.05 0.05 0.05 0.06 0.05 0.05 0.05 0.08 0.08
log(kappa14) 0.43 0.42 0.37 0.37 0.52 0.55 0.44 0.47
log(alpha14) 0.05 0.05 0.05 0.05 0.05 0.06 0.05 0.05
log(kappa24) 0.15 0.14 0.13 0.13 0.13 0.13 0.13 0.13 0.11 0.11
log(alpha24) 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.03 0.02 0.02
log(kappa23) 0.12 0.11 0.17 0.16 0.05 0.05 0.05 0.05 0.05 0.05
log(alpha23) 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.03 0.03
log(kappa34) 0.14 0.14 0.12 0.12 0.14 0.15 0.12 0.12 0.17 0.16
log(alpha34) 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02
log(theta) 0.14 0.14 0.23 0.24 0.05 0.05

Table 4.17: Coverage probabilities for the case of ‘administrative censoring at 365 days’,
with 1000 replicates of size 5000. 95% confidence intervals via estimates and standard
errors obtained using the means of the sampling distributions and standard deviations of
the estimated analytical standard errors

Proposed Proposed, Conlon, Conlon
model no frailty frailty no frailty

Intercept 0.95 0.69 0.32 0.74
X.Cure 0.95 0.95 0.91 0.91
X14 0.95 0.87 0.80 0.92
X24 0.95 0.76 0.94 0.91
X23 0.95 0.93 0.93 0.91
X34 0.94 0.93 0.94 0.93
log(kappa14) 0.95 0.24 0.46 0.93
log(alpha14) 0.94 0.23 0.49 0.95
log(kappa24) 0.94 0.81 0.92 0.63
log(alpha24) 0.95 0.08 0.82 0.06
log(kappa23) 0.95 0.88 0.00 0.00
log(alpha23) 0.95 0.46 0.12 0.62
log(kappa34) 0.95 0.07 0.95 0.07
log(alpha34) 0.95 0.01 0.94 0.01
log(theta) 0.96 0.96
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Table 4.18: Simulation results for the case of ‘increased cure fraction’, with 1000 replicates
of size 5000. Parameter estimates calculated as mean of sampling distribution

Proposed Proposed, Conlon, Conlon, Illness- Univ. Univ.
Truth model no frailty frailty no frailty death Cure Cox

Intercept 0.84 0.84 0.96 0.74 0.91 1.32
X.Cure 0.50 0.50 0.54 0.53 0.56 0.47
X14 0.25 0.25 0.21 0.28 0.22
X24 0.50 0.50 0.33 0.52 0.41 0.14
X23 0.25 0.25 0.30 0.23 0.30 -0.39 0.30 -0.40
X34 0.15 0.15 0.14 0.15 0.14 0.14
log(kappa14) -8.52 -8.50 -7.23 -8.86 -7.34
log(alpha14) 0.34 0.33 0.16 0.37 0.18
log(kappa24) -5.30 -5.31 -5.31 -5.33 -5.19 -6.44
log(alpha24) 0.34 0.34 0.21 0.32 0.25 0.08
log(kappa23) -2.16 -2.18 -2.09 -1.83 -1.73 -2.76
log(alpha23) -0.69 -0.69 -0.72 -0.62 -0.63 -1.45
log(kappa34) -6.21 -6.22 -5.67 -6.26 -5.67 -5.91
log(alpha34) 0.26 0.26 0.15 0.27 0.15 0.20
log(theta) -1.71 -1.74 -1.68 -2.97

Table 4.19: Simulation results for the case of ‘increased cure fraction’, with 1000 repli-
cates of size 5000. Empirical and analytical standard errors calculated using the standard
deviations of the sampling distributions and means of the estimated analytical standard
errors

Proposed Proposed, Conlon, Conlon Illness- Univ. Univ.
model no frailty frailty no frailty death cure Cox
SD cSE SD cSE SD cSE SD cSE SD cSE SD cSE SD cSE

Intercept 0.05 0.05 0.05 0.05 0.06 0.06 0.06 0.06 0.05 0.03
X.Cure 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08 0.08
X14 0.04 0.04 0.04 0.03 0.04 0.27 0.04 0.03
X24 0.12 0.12 0.19 0.16 0.14 0.31 0.15 0.15 0.03 0.03
X23 0.10 0.10 0.10 0.10 0.10 0.75 0.10 0.10 0.07 0.07 0.07 0.07 0.07 0.07
X34 0.08 0.08 0.08 0.07 0.09 0.88 0.08 0.07 0.08 0.07
log(kappa14) 0.24 0.24 0.16 0.14 0.33 0.33 0.17 0.15
log(alpha14) 0.03 0.03 0.02 0.02 0.04 0.04 0.02 0.02
log(kappa24) 0.22 0.22 0.25 0.26 0.26 0.80 0.24 0.24 0.11 0.10
log(alpha24) 0.05 0.05 0.06 0.06 0.13 0.63 0.04 0.05 0.02 0.02
log(kappa23) 0.18 0.17 0.18 0.17 0.08 0.73 0.08 0.07 0.05 0.06
log(alpha23) 0.04 0.05 0.04 0.05 0.04 0.03 0.03 0.03 0.02 0.03
log(kappa34) 0.19 0.19 0.17 0.17 0.20 0.86 0.17 0.17 0.19 0.19
log(alpha34) 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03 0.03
log(theta) 0.16 0.16 0.92 0.19 1.02 0.54

92



Table 4.20: Coverage probabilities for the case of ‘increased cure fraction’, with 1000 repli-
cates of size 5000. 95% confidence intervals via estimates and standard errors obtained
using the means of the sampling distributions and standard deviations of the estimated
analytical standard errors

Proposed Proposed, Conlon, Conlon
model no frailty frailty no frailty

Intercept 0.95 0.37 0.63 0.81
X.Cure 0.95 0.93 0.93 0.90
X14 0.95 0.76 0.92 0.83
X24 0.95 0.79 0.95 0.90
X23 0.95 0.91 0.95 0.94
X34 0.95 0.93 0.95 0.93
log(kappa14) 0.95 0.00 0.85 0.00
log(alpha14) 0.95 0.00 0.85 0.00
log(kappa24) 0.94 0.96 0.95 0.92
log(alpha24) 0.95 0.47 0.95 0.54
log(kappa23) 0.95 0.87 0.01 0.00
log(alpha23) 0.95 0.93 0.43 0.49
log(kappa34) 0.95 0.12 0.94 0.12
log(alpha34) 0.95 0.02 0.94 0.02
log(theta) 0.96 0.91

Table 4.21: Simulation results for the case where ‘Conlon with frailty is adequate’, with
1000 replicates of size 5000. Parameter estimates calculated as mean of sampling distri-
bution

Proposed Proposed, Conlon, Conlon, Illness- Univ. Univ.
Truth model no frailty frailty no frailty death Cure Cox

Intercept -0.41 -0.41 -0.35 -0.38 -0.34 0.52
X.Cure 0.50 0.50 0.51 0.50 0.51 0.65
X14 0.25 0.25 0.21 0.24 0.20
X24 0.50 0.50 0.45 0.49 0.46 0.02
X23 0.25 0.25 0.22 0.25 0.23 -0.45 0.36 -0.46
X34 0.15 0.15 0.13 0.15 0.13 -0.01
log(kappa14) -8.52 -8.51 -7.28 -8.22 -7.21
log(alpha14) 0.34 0.34 0.17 0.30 0.16
log(kappa24) -5.30 -5.30 -5.08 -5.29 -5.04 -6.05
log(alpha24) 0.34 0.34 0.24 0.35 0.27 0.40
log(kappa23) -7.13 -7.14 -6.70 -7.17 -6.78 -4.49
log(alpha23) 0.64 0.64 0.55 0.65 0.57 -0.05
log(kappa34) -6.21 -6.23 -5.70 -6.16 -5.70 -7.73
log(alpha34) 0.26 0.26 0.15 0.25 0.15 0.48
log(theta) -1.71 -1.73 -1.90 0.58
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Table 4.22: Simulation results for the case where ‘Conlon with frailty is adequate’, with
1000 replicates of size 5000. Empirical and analytical standard errors calculated using the
standard deviations of the sampling distributions and means of the estimated analytical
standard errors

Proposed Proposed, Conlon, Conlon Illness- Univ. Univ.
model no frailty frailty no frailty death cure Cox
SD cSE SD cSE SD cSE SD cSE SD cSE SD cSE SD cSE

Intercept 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.03
X.Cure 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.07 0.07
X14 0.05 0.05 0.05 0.04 0.05 0.05 0.05 0.04
X24 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.06 0.08 0.07
X23 0.07 0.08 0.07 0.07 0.07 0.07 0.07 0.07 0.08 0.08 0.07 0.07 0.06 0.06
X34 0.07 0.07 0.07 0.06 0.07 0.07 0.07 0.06 0.10 0.09
log(kappa14) 0.27 0.27 0.20 0.19 0.26 0.26 0.20 0.19
log(alpha14) 0.03 0.03 0.03 0.02 0.03 0.03 0.03 0.02
log(kappa24) 0.13 0.12 0.10 0.11 0.12 0.12 0.11 0.11 0.25 0.16
log(alpha24) 0.03 0.03 0.03 0.03 0.02 0.02 0.02 0.02 0.06 0.04
log(kappa23) 0.18 0.17 0.15 0.16 0.17 0.17 0.15 0.15 0.17 0.13
log(alpha23) 0.03 0.03 0.03 0.03 0.03 0.03 0.02 0.02 0.07 0.04
log(kappa34) 0.16 0.16 0.14 0.14 0.16 0.16 0.14 0.14 0.21 0.19
log(alpha34) 0.02 0.02 0.02 0.02 0.02 0.03 0.02 0.02 0.03 0.02
log(theta) 0.13 0.13 0.15 0.16 0.11 0.07

Table 4.23: Coverage probabilities for the case where ‘Conlon with frailty is adequate’,
with 1000 replicates of size 5000. 95% confidence intervals via estimates and standard
errors obtained using the means of the sampling distributions and standard deviations of
the estimated analytical standard errors

Proposed Proposed, Conlon, Conlon
model no frailty frailty no frailty

Intercept 0.95 0.78 0.91 0.70
X.Cure 0.95 0.95 0.95 0.95
X14 0.95 0.82 0.94 0.80
X24 0.95 0.81 0.95 0.88
X23 0.96 0.92 0.96 0.94
X34 0.95 0.91 0.95 0.91
log(kappa14) 0.95 0.00 0.79 0.00
log(alpha14) 0.95 0.00 0.79 0.00
log(kappa24) 0.94 0.46 0.95 0.35
log(alpha24) 0.94 0.02 0.92 0.12
log(kappa23) 0.95 0.22 0.94 0.37
log(alpha23) 0.95 0.04 0.94 0.15
log(kappa34) 0.95 0.06 0.94 0.06
log(alpha34) 0.95 0.00 0.93 0.00
log(theta) 0.95 0.84
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4.3 Joint risk prediction in the semicompeting risks setting

Table 4.24: Distribution of outcomes
Acute GVHD, Death with Death without Alive without
without death acute GVHD acute GVHD acute GVHD Missing

Full data 174 79 202 961 0
(%) (12.3) (5.6) (14.3) (67.9) �

Adding missing category 123 61 164 686 382
(%) (8.7) (4.3) (11.6) (48.4) (27.0)

Equivalence of absolute risk profiles in Section 3.3 and the transition
probabilities in Putter et al. (2007)

We show the equivalence of the transition probabilities discussed in Putter et al. and

the absolute risk profiles corresponding to the standard illness-death model using joint
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Figure 4.1: Diagram indicating the bounds of integration for calculating subject-specific
risk profiles for the standard shared frailty illness-death model.
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Figure 4.2: Diagram indicating the bounds of integration for calculating subject-specific
risk profiles for the finite interval shared frailty illness-death model.
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JAZIĆ, I., SCHRAG, D., SARGENT, D. J. and HANEUSE, S. (2016). Beyond composite

endpoints analysis: semi-competing risks as an underutilized framework for cancer

research. Journal of the National Cancer Institute 108 djw154.

JOSEPH, R. W., COURIEL, D. R. and KOMANDURI, K. V. (2008). Chronic graft-versus-host

disease after allogeneic stem cell transplantation: challenges in prevention, science, and

supportive care. J Support Oncol 6 361–372.

KEIDING, N. and KNUIMAN, M. (1990). Comments on ‘Survival analysis in natural his-

tory studies of disease’ by Cnaan and Ryan Stat Med. 1989 Oct;8(10):1255-68. Statistics

in Medicine 9 1221–2.

KIM, D. H., LEE, N. Y., LEE, M.-H. and SOHN, S. K. (2008). Vascular endothelial growth

factor gene polymorphisms may predict the risk of acute graft-versus-host disease fol-

lowing allogeneic transplantation: preventive effect of vascular endothelial growth fac-

tor gene on acute graft-versus-host disease. Biology of Blood and Marrow Transplantation

14 1408–1416.

KIM, N., OTT, L. S., SPIVACK, S., XU, X., LIU, A., BHAT, K. R. and OLADELE, C. (2012).

Hospital-level, risk-standardized payment associated with a 30-day episode of care for

AMI (Version 1.0) .

KORN, E. L., GRAUBARD, B. I. and MIDTHUNE, D. (1997). Time-to-event analysis of

longitudinal follow-up of a survey: choice of the time-scale. American Journal of Epi-

demiology 145 72–80.

KUK, A. Y. and CHEN, C.-H. (1992). A mixture model combining logistic regression with

proportional hazards regression. Biometrika 531–541.

LAI, C.-D. (2014). Generalized weibull distributions. In Generalized Weibull Distributions.

Springer, 23–75.

LAKHAL, L., RIVEST, L.-P. and ABDOUS, B. (2008). Estimating survival and association

in a semicompeting risks model. Biometrics 64 180–188.

105



LAMARCA, R., ALONSO, J., GOMEZ, G. and MUNOZ, A. (1998). Left-truncated data with

age as time scale: an alternative for survival analysis in the elderly population. Journals

of Gerontology Series A: Biological Sciences and Medical Sciences 53M337–43.

LEE, K. H., DOMINICI, F., SCHRAG, D. and HANEUSE, S. (2016). Hierarchical models for

semicompeting risks data with application to quality of end-of-life care for pancreatic

cancer. Journal of the American Statistical Association 111 1075–1095.

LEE, K. H. and HANEUSE, S. (2016). SemiCompRisks: Hierarchical Models for Parametric and

Semi-Parametric Analyses of Semi-Competing Risks Data. R package version 2.3.2.

LEE, K. H., HANEUSE, S., SCHRAG, D. and DOMINICI, F. (2015). Bayesian semipara-

metric analysis of semicompeting risks data: investigating hospital readmission after

a pancreatic cancer diagnosis. Journal of the Royal Statistical Society: Series C (Applied

Statistics) 64 253–273.

LEE, S., KIM, H., HO, V., CUTLER, C., ALYEA, E., SOIFFER, R. and ANTIN, J. (2006).

Quality of life associated with acute and chronic graft-versus-host disease. BoneMarrow

Transplantation 38 305–310.

LEVINE, J. E., LOGAN, B., WU, J., ALOUSI, A. M., HO, V., BOLAÑOS-MEADE, J., WEIS-
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