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Abstract

Robust statistics have emerged as a family of theories and techniques for estimating
parameters of a model while dealing with deviations from idealized assumptions. Examples
of deviations include misspecification of parametric assumptions or missing data; while
there are others, these two deviations are the focus of this work. When unaccounted for,
naive analysis with existing techniques may lead to biased estimators and/or undercovered
confidence intervals.

At the same time, research poured into clustered/correlated data is extensive and a
large body of methods have been developed. Many works have already connected topics
within robust statistics and correlated data, but a plethora of open problems remain. This
dissertation investigates a few of these open problems.

Chapter 1 combines second-order generalized estimating equations (GEE2), inverse
probability weighting (IPW), and semiparametric theory in order to estimate the intra-
class correlation coefficient (ICC) in the presence of informative missing data.

Chapter 2 approaches linear models with correlated outcomes from the mixed models
(MM) perspective instead of GEE. In addition to the estimation of 2nd moments, this
framework also allows estimation of the skewness and kurtosis of the distributions of the
random effects/subject-specific error terms and tests for normality in both the random
effects and the error terms.

Chapter 3 addresses analytical challenges in the unique structure of “evolving clus-
tered randomized trials” in HIV prevention trials. In evolving CRTSs, subjects are so-
cially /sexually linked to an index partner, provided intervention based on the randomized

arm this index partner is assigned to, and followed until HIV infection occurs or the end of

iii



study. We view phylogenetically-linked partners over time as recurrent events to the index
and assess the intervention effect through the use of recurrent event analysis. However,
subjects may refuse to participate or drop-out, leading to a statistical problem of poten-
tially informative missing and /or censored events in a recurrent event process. We address

this issue with embedding IPW within the recurrent event estimating equations.
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Chapter 1

A stochastic second-order generalized
estimating equations approach for
estimating association parameters in
the presence of informative
missingness

Cluster randomized trials (CRTSs), in which individuals are randomly assigned to interven-
tion in groups, have been increasingly implemented to evaluate efficacy and effectiveness
of various intervention programs. The intraclass correlation coefficient (ICC) characterizes
the degree of similarity of individuals within a community and is crucial in accurately com-
puting sample sizes needed to achieve a certain power level in a CRT. The statistical power
and required sample size for a CRT can change substantially depending on the ICC. For
example, in a matched-pair CRT with 15 pairs and a sample size of 300 within each clus-
ter as in the Botswana Combination Prevention Project (BCPP) [Gaolathe et al., 2016;
Wang et al., 2014], the power to detect a 40% reduction in 3-year cumulative incidence
from 2.5% to 1.5% decreases from 80% to 52% as the ICC increases from 0.001 to 0.005.
To achieve 80% power with an ICC of 0.005, assuming all else being fixed, the number of
clusters required almost doubles (15 pairs to 27 pairs). When analyzing data from CRTS,
a commonly used and robust approach is based on comparisons of a community-level mea-

sure of the end of interest. Tests constructed by giving equal weight to each cluster may



not be fully efficient, especially when the sizes of clusters vary substantially. The opti-
mal weights depend crucially on the ICC for both parametric test (e.g., t-test) [Hayes and
Moulton, 2009] and nonparametric permutation tests [Braun and Feng, 2001; Wang and
DeGruttola, 2017]. Despite its importance, obtaining reliable estimates of ICC remains a
major problem in designing CRTs [Donner and Klar, 2000; Hayes and Bennett, 1999; Klar
and Donner, 2001]. Furthermore, ICC can vary considerably by intervention group and
community characteristics (e.g. community size) [Crespi et al., 2009; Wu et al., 2012].

In CRTs, interest often lies in estimating the causal effect of intervention on the cluster
— the difference between outcomes for the treated cluster vs the untreated cluster [Carnegie
et al., 2016]. Mixed models and their extensions [Anderson and Aitkin, 1988; Laird and
Ware, 1982b; Stiratelli et al., 1984] are a popular choice in estimating the causal effect
accounting for the clustering effect. Variance modeling for continuous outcomes have also
been proposed [Leckie et al., 2014; Paik, 1992; West et al., 2018]. These methods require
parametric assumptions and provide a conditional interpretation of causal effects. Here we
focus on the generalized estimating equations (GEE) [Liang and Zeger, 1986] approach.
This estimation procedure is semiparametric in that it assumes correct specification of a
marginal mean model, instead of a full likelihood, in order to yield a consistent and asymp-
totically normal (CAN) estimator of the treatment effect; while the correct specification of
the correlation structure may improve efficiency, its misspecification does not affect valid
inference [Zeger et al., 1988]. As a result of this flexible feature, one typically uses a rough
approximation of the ICC through a method of moments approach. When ICC itself is
of primary interest, the method of moments approach is inefficient and inaccurate. This
gives rise to second-order generalized estimating equations (GEE2) [Liang and Zeger, 1992;
Zhao and Prentice, 1990], which includes an extra stack of estimating equations specifically
directed at estimating the ICC.

Several authors [Carey et al., 1993; Ziegler et al., 1998] have noted of convergence prob-
lems regarding GEE2s, and we later demonstrate similar problems as well. GEE2 are
notoriously hard to solve due to the far larger stack of estimating equations for the asso-

ciation parameters, leading to excessive computing time for obtaining solutions to these



equations. Carey et al. [1993] championed the use of odds ratios in measuring association,
for which they propose fitting with alternating logistic regression, which is computation-
ally efficient but very specific to just the odds ratio setting. In our context, the ICC is a
means to an end (i.e. sample size calculations), which the odds ratio is unsuited for. We
develop stochastic methods to alleviate the computational challenges associated with solv-
ing GEE2. These stochastic algorithms involve running Fisher scoring / Newton-Raphson
on a different subset (minibatch) of the data at each iteration, in the spirit of minibatch
stochastic gradient descent (mbSGD) and the more general class of Robbins-Monro (RM)
algorithms. Under mild regularity conditions [Blum, 1954], the algorithm almost surely
converges to the same solution as if we performed standard Fisher scoring on GEE2.

It is common to encounter missing outcomes in practice. A second purpose of this
paper is to investigate methods in accounting for missing outcome data. When outcomes
are assumed missing completely at random [Rubin, 1976] (MCAR; the outcomes are miss-
ing independently of both observed and unobserved data), GEE2 analysis performed on
complete-case CRT data provides CAN estimators for the treatment and ICC parame-
ters. In the case of missing at random (MAR; outcome missingness is independent of the
unobserved variables conditional on the observed variables), GEE2 produces inconsistent
estimates unless all factors contributing to the propensity of being missing are included in
a correctly-specified outcome model.

Currently, methods are available to account for a restricted missing at random mecha-
nism (rMAR; outcome missingness depends only on observed covariates but not on observed
outcomes) in the GEE1 case for the estimation of marginal treatment effects [Prague et al.,
2016]. The strategy is based on the standard inverse-probability weighting (IPW) and
outcome model (OM) augmentation which has been made popular by the semiparametric
methods field [Robins et al., 1994; Tsiatis, 2007b; Van der Laan and Robins, 2003]. The
resulting estimators are doubly-robust (DR) in the sense that they only require either the
IPW model or OM to be correctly specified in order to produce consistent treatment ef-
fect estimates. However, properly incorporating this framework for association parameters

requires modeling the correlation among missingness indicators for correlated units within



a cluster, a potential complication which to the best of our knowledge has previously not
been addressed in the literature on semiparametric methods for missing clustered data. In
the context of CRTSs, there is no natural ordering of the outcomes within a community
and the missingness pattern is non-monotone, making the problem much more intractable
[Tsiatis, 2007Db].

Section 1.1 gives background on the standard GEE2 (non-stochastic and no missing
data). In Section 1.2, we introduce the RM algorithm and expand on the stochastic
paradigm to model fitting, and adapt this approach to fitting GEE2, which we coin as
stochastic GEE2 (S-GEE2). Issues such as computational complexity, efficient implemen-
tation, and parallelization as a further mechanism in reducing computing time and numer-
ical errors are explored here. In Section 1.3, we draw from the semiparametric methods
discipline to construct IPW and DR variants of GEE2, which we call IPW-GEE2 and
DR-GEE2, and explain how to further adapt these procedures with stochastic GEE2. We
evaluate the performance of the proposed estimators and the proposed computational al-
gorithms with simulations in Section 1.4 and apply the new estimators and algorithms to
analyze Bangladeshi sanitation data [Guiteras et al., 2015] in Section 1.5. We end with a

discussion in Section 1.6. Proofs are relegated to Appendix.

1.1 Notation and standard GEE2

Henceforth, we work with binary outcomes Y;; € {0,1} for subject j = 1,--- ,n; in cluster
i =1,---,I; the framework is readily generalizable to continuous outcomes. Let A; € {0, 1}
denote the treatment randomized at the cluster level with P(A; = 1) = pa, Z; € R? as
baseline cluster-level covariates, X;; € R™ as baseline subject-level covariates, and X; =
{Xij}jL;. We denote P(-) as the probability measure associated with the argument i.e.

P(a), P(z,x). Let m;; = E[Y;;]Ai, Z;, X;] denote the conditional mean outcome and

pisy < Cov(Yyy, Yigr|As, Zi, X) / VVar(Vy|Ai, 2, Xo) Var (Vg | Ay, Zi, X)



denote the conditional ICC. The quantities of interest are n} = E[Y;;|4;] and pf =

Corr(Y;;, Yijr|A;), which are the treatment-specific mean outcome and ICC. It is clear that

7 is a marginalization of 7;; in the sense that n} = E[m;;|A;)] = [ 7;dP(z;,x;). But,

pi # E[p;ji7|A;] in general. Indeed, it is easy to confirm that pf = E[p:.rjj,|Ai], where

podet (Yi; — 7)Y — 7o) ‘Ai, Z. le _ (i — m7)(mie — m7) + pigs'/ Vgt (1.1)

P = (=) w1 =)
where V= m;;(1 — ) mij (1 — m50).

Let 7;; be an estimator of 7;;, converging to the limit 7;;, which may or may not equal
the true m;;. Likewise, define pj;» and p,;;,. Standard models for 7;; include logistic or
probit regression, while a model for p;;; could be a generalized linear model with link
function g(x) = atanh(z), the Fisher z-transform. The Fisher z-transform is commonly
used as a variance-stabilizing transformation for the sample correlation coefficient, but we
apply it here to map the [—1, 1] support of p! onto R.

Similarly, let 7} and p; be estimators for 7} and p} with limits 7} and p}, respectively.

For example, inference for the causal effect of A; can be estimated under the model

logit(m; (By; Ai)) = Boy + BayAi,  atanh(pi(ay; 4;)) = agy + alay A, (12)

to produce estimators (,/3\;,64;) Eq 1.2 will be referred to as the canonical treatment
model (TM). In the absence of missing data, and since A; is binary, the canonical TM is
guaranteed to yield consistent 7; = 7} and p; = p;. In the standard GEE2 framework, we

would estimate (E*Y, ay ) as the solution to the equations

T T

0= DIVi'E: =Y SV (4 8y, ) (1.3)
=1 i=1
where
p, = Ami B A riads A) o . w1(BY)
NBy, e )1 E(Ys) E(Y;) —rj(ay)
E(Y;) = (Y _:Tz')<yij'*_ ;)
T (]' - ﬂ-i) j<j’



Note that the working covariance matrix V; need not be correctly specified to produce
consistent estimates, but doing so may lead to improved efficiency. The expression £(Y;)
involves standardized residuals and is one particular parametrization of GEE2 [Ziegler
et al., 2000], but we note there are others [Liang and Zeger, 1992; Zhao and Prentice,
1990]. We pick the above parametrization because it specifically targets estimating the
treatment-specific ICC p} instead of, say, the cross moments or covariances, but our pro-

posed framework is just as applicable to these other parametrizations.

1.2 Proposal I: Stochastic GEE2

1.2.1 Background: Robbins-Monro Algorithm

GEE2 is ordinarily solved using Newton-Raphson, which has iterations 6y, 6y, -- of the

form
Opi1 =06, + H(:})G(w) (1.4)
where , ,
H) = Zl DiViwPiw Gy = Zl Dj)Viw i) (1.5)
Here, a subscript (w) indicates evaluation at parameter values 6, = (8,, @), and we

are using letters H and G to invoke the “Hessian” and “gradient” terminologies prevalent
in the stochastic approximation literature. In GEE1, computation is dominated by the
inversion of Vi(j), which has computational order of O(maxn?). With GEE2, this increases
to O(maxnf). To reduce this computational burden, we propose a Robbins-Monro (RM)
[Robbins and Monro, 1951] variant to fitting GEE2.

In general, the RM algorithm states that, in solving for 6y in the equation G(0) = 0, if
we instead possess a random variable G/(#) such that E[G/(0)] = G(6) and iterate 0, =
0., — 7,G(6,,), where learning rates v, > 0 satisfy . v, = oo and 342 < oo, then
6., — 0y in L>-mean [Robbins and Monro, 1951] and almost surely [Blum, 1954], subject to

a few additional regularity conditions. The RM algorithm is useful whenever we can find



a G which is significantly faster to compute than G. For example, consider the general M-
estimation problem (for which GEE is a special case) and suppose our estimating equation
takes the form G(A) = Y1, Gi(A). Tt is easy to confirm that G(#) = Y ics Gi(0) /i
satisfies E[G(#)] = G(6), where s is a randomly chosen subset of U = {1,--- , I} according
to some sampling design D with p; = P(i € s). Here, instead of performing I function
evaluations, we only need to perform |s| evaluations at each iteration. If we take D to
be a simple random sample without replacement (SRSWOR) of size v, this reduces to
minibatch stochastic gradient descent (mbSGD) [Clémengon et al., 2015]. Our focus is
slightly different, because what plagues computation is not many summands corresponding
to many clusters, but rather the computation of each summand corresponding to large
clusters, which is commonplace in large-scale CRTs [Gaolathe et al., 2016]. The design
of the proposed class of stochastic GEE2 (S-GEE2) algorithm differs from the standard
mbSGD in that we are improving iteration speed not through evaluating fewer of the
functional summands {G;}._, (i.e. evaluating fewer clusters), but rather evaluating an
unbiased and computationally-easier estimate of each summand G; (done through sampling
a subset of individuals per cluster). Also, we shall incorporate stochastic Hessians 6,1 =
0.+ v H 1 (0,,)G(8.,), which Byrd et al. [2016] proves to convergence almost surely as well.
Unlike the stochastic gradient G, the accuracy for a stochastic Hessian H is more forgiving,
hence cruder approximations are often used to improve speed and memory allocation. In
the context of GEE2, the Hessians have a palatable closed-form, so we need not resort to

this tactic.

1.2.2 Subsampling

For what we define as the standard S-GEE2, let U = (Uy, - - - , Ur), where each U; correspond
to the indices of the outcomes in cluster i, with |U;| = n;. At each iteration w, sample
s; ~ SRSWOR(U;, v;), and concatenate s = (sy1,---,s7). That is, each cluster sample s;
is a simple random sample without replacement of v; indices of the ith cluster. Then,

perform the Newton-Raphson iteration with just the subsampled units, also known as the



mini-batch in the SGD literature. Notationally, this just replaces H(,), G(,) in Eq 1.4 with

I I
] . —1 S A . —1 S
Hy =Y DLy Vi Wit Dicys Gy = >, DYy Vi Wity Bicw) (1.6)
=1 =1

where Wi*?w) is a 0-1 weighted diagonal matrix indicating whether an observation is included
in s;, including pairwise indicators for the GEE2 portion. It is easy to verify that H, (@) é(w)
are unbiased estimators for H .y, G (., respectively. Hence, by the RM conditions, we have
that S-GEE2 produces estimates (8, &,,) — (,@, a) almost surely. Because Hessians are
embedded within our procedure, we should selected a sizeable subsample / mini-batch to
ensure a reliable estimate of the Hessian; we recommend v; > 5. We present the full details

in pseudocode of S-GEE2 in Algorithm 1 in Appendix A.1.

1.2.3 Exploiting sparsity

Currently, the general structure of S-GEE2 solves two issues: instability and memory
demands. Even for simple functions, Newton-Raphson is known for divergence issues due
to evaluations near stationary points, where the Hessian is nearly non-invertible. S-GEE2
naturally solves this issue because stochasticity makes it very likely to “jump” off the path
of divergence. Secondly, programming the expressions in Eq 1.6 need only store a subset
of the rows in Dy, or Ej,,) and columns of Vi(_wl), hence greatly freeing up RAM on a
computer.

One issue that can be improved, depending on the structure of the working covariance
matrix V;, is computational speed. For example, if we were to assume the off-diagonals
Cov(Y;,E(Y;)) = 0, then iterations for B and a can be separated, with the GEE2 portion
Newton-Raphson iterations taking the form a1 = o, + H;(lw)Ga(w). Then, if we take
the GEE2 portion working covariance V,; = Var(€(Y;)) to be diagonal, we can show (see
Appendix A.2) that each iteration has complexity O(1) (constant time!), given subset sizes
v; are not growing with respect to n;.

We summarize the scenarios and resulting computational complexities in the theorem

below:



Theorem: Let Cov(Y;,E(Y;)) = 0 and v; = O(1) (with respect to cluster sizes n;).
In the presence of standard Newton-Raphson, an iteration of the GEE1 portion with (i)
arbitrary covariance, (ii) compound symmetry covariance (equicorrelation), and (iii) inde-

pendence matrices are of complexities (i) O(max; n?), (i) O(max; n;), and (iii) O(max; n;).

Similarly, standard Newton-Raphson on the GEE2 portion yields (i) O(max;n?), (ii)

2

7

(i) O(max;n?), (ii) O(max;n;), and (iii) O(1); stochastic Newton-Raphson on the GEE2

i

portion yields (i) O(max; nf), (ii) O(max; n?), and (iii) O(1).

7

O(max; n?), and (iii) O(max; n?); stochastic Newton-Raphson on the GEE1 portion yields

See proofs in Appendix A.2. Table 1.1 expresses a clearer schematic of the theorem.

Full Stochastic
GEEL1 portion GEE2 portion GEEL1 portion GEE2 portion
Arbitrary covariance O(max; n?) O(max; n?) O(max; n?) O(max; nb)
Equicorrelation O(max; n;) O(max; n?) O(max; n;) O(max; n?)
Independence O(max; n;) O(max; n?) o) O(1)

Table 1.1: Time complexities for S-GEE2 algorithms under various working covariance

structures.

If we choose to model with equicorrelated p;;; = p;, as commonly done in CRT’s [Crespi
et al., 2009; Hayes and Moulton, 2009] and assume independence working covariance for
the GEE2 portion, then standard Newton-Raphson on GEE2 would have O(max;n;) for
the GEE1 portion and O(max;n?) for the GEE2 portion, hence the overall complexity
is O(max; n?). With S-GEE2, while the GEE1 portion remains at O(max;n;), the GEE2
portion now becomes O(1), and hence S-GEE2 has overall complexity of O(max; n;). There-
fore, S-GEE2 cuts down the computation per iteration from roughly a quadratic rate to
roughly a linear rate. If we allow the GEE1 portion to also have an independence covari-

ance structure, then the effect of S-GEE2 is even more dramatic, cutting complexity from
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O(max; n?) to O(1).

1.2.4 Par-S-GEE2

While S-GEE2 algorithms allow faster computations in its iterative fitting procedure, each
iteration is not as informative due to variation from the induced missingness. Hence,
more iterations of S-GEE2 are needed in order to solve the estimating equations, although
in practice the additional time in running more iterations is far less significant than the
computational savings per iteration. Nevertheless, in pursuit of a S-GEE2 variant requiring
fewer iterations, we propose the Parallel S-GEE2 (Par-S-GEE2) class of algorithms. The
general technique of parallelized SGD is expanded upon in Zinkevich et al. [2010]. The basic
idea is, after sufficiently enough iterations of S-GEE2, the stochastic estimates will become
unbiased and further iterations are meant to reduce variation from the stochastic nature
of the algorithm. Rather, one can run K independent chains of S-GEE2 and average the
resulting convergent estimates. Both running more iterations on a single chain or averaging
over multiple chains has the same effect in reducing the variation in estimates, but with
the former, the iterations must be done sequentially and hence the user must wait, while
with the latter, the chains can be run in parallel. Pseudocode is provided in Algorithm 2
in Appendix A.1.

S-GEE2 reduces the frequency of divergence, but generally not all of it; there remains
a non-negligible probability that the algorithm may diverge. Par-S-GEE2 inherently solves
the convergence issue because at least some of the chains would have converged. The
average of these convergent solutions is one estimator, or better yet, one can then feed this
estimator as an initial value on another run of Par-S-GEE2, since the provided estimate
would act as a better initialization and reduce the number of divergences. In a sense, Par-
S-GEE2 is very similar to multistart search [Ugray et al., 2007] because each chain initially
fluctuates around the search space, effectively acting as a scattering of starting values. At
the same time, this scattering is informative because each chain is still trying to fit on

a subset of data. Hence, Par-S-GEE2 offers an advantage in intrinsically incorporating
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information in its multistart search rather than truly random scattering.

1.3 Proposal II: IPW & DR GEE2

1.3.1 IPW-GEE2

Accounting for missing outcome data in CRTSs is challenging under the missing at random
(MAR) assumption because there is no natural ordering of the outcomes within a cluster
and the missingness can not be considered as monotone. We consider a submodel of MAR,
restricted MAR (rMAR). Let R;; € {0,1} with R;; = 0 indicating Y;; is missing. Then,
rMAR is defined as P(R;; = 1]Y;, A4, Z;,X;) = P(R;; = 1|A;,Z;,X;); that is, R;; L
YiilA:i, Z;, X;. To continue with valid inference, we assume that P(R;; = 1]|A;, Z;, X;) > 0,
commonly known as the positivity assumption (PO). We propose the inverse-probability

weighting second-order generalized estimating equations (IPW-GEE2) as

I I
0=> DIV.'WEE =Y o (A, By, o, Br. ar)
=1

i=1

I
0= Z SH(Ai, Zi, X;, Br. ar)

i=1

where we have incorporated the following inverse-probability weighting matrix:

W = diag | opra—, -, TR (ni=1) “Hing
fi1(ﬁR) Tin: (Br) Mii2(Br: r) ni(ni—l)ni(ﬁRaaR>

4 J/

Vv Vv
IPW1 IPW2

The summands involving S¥ are needed to estimate nuisance parameters (8p, ag) guiding
the missingness process R;, but the parameters themselves are of no interest for inference.

Within the ITPW matrix, 7};(8) is a model (parametrized by Bj) for 7/l = P(R; =

1|14, Z;, X;) and 7;;,/(Bg, agr) is a model (parametrized by Bz, ag) for nf;?j, = P(R;; =
R,y = 11A;,Z;,X;); we shall refer to them as the first-order and second-order propensity

scores (PS1 & PS2), respectively. Since "75']'/ is a function of 7?5-, Wg/, pfj%j/, it suffices to fit a

11



model for pf}j,. The matrix W} is the inverse-probability weighting (IPW) matrix, which
can be decomposed into IPW1 and IPW2 portions. We refer to the first equation of Eqs 1.7

as the treatment model estimating equation (TMEE) portion, while the second equation

~R
ij

of Eqs 1.7, which produce estimators (converging to 7}) and ﬁf}j, (converging to ﬁf;j,),
as the propensity score estimating equation (PSEE) portion.

The IPW2 portion is derived by considering that the (7, j')th element of £(Y;) is miss-
ing when either Y;; or Y;; is missing; this is exactly represented by the product of their
missingness indicators, I?;; R;jr, for which we would then need to model 775'3'/ (Bgr,ar). To
the best of our knowledge, this is the first instance in which a model is required for the joint
missingness indicator R;;R;;» in the context of clustered data. Not properly accounting for
the correlation among missingness indicators will in general lead to biased estimates for the
association parameters. Unlike the treatment model, the PS can possibly be misspecified;

if so, then estimators (B;, a5 ) may not be consistent.

1.3.2 DR-GEE2

The augmented GEE (AUG) methods, which adds a term to the standard GEE that
relates the outcome to covariates and treatment, have been proposed to improve estimation
efficiency by leveraging baseline covariates in the setting of CRTs [Stephens et al., 2012].
We apply this to IPW-GEE2, forming what we call DR-GEE2:

1 I
0= Z[‘DJ‘/z_IWzREZI + gz] d:ef Z éz/(zr7 Xia Ri7 /6;7 a;ﬁ /BPu QaR, ﬁY? aY)
i=1 i=1 (1.8)

I I
O:ZSﬁ(Z:>Xi7/6R7aR)7 OZZSZY(Z:szw@Y7aY)
i=1 1=1
where

B - Y; —mi(By) P ™i(By) — ™ (By) |

YY) —Tlay)) \Fl(ay) —ri(ag)



where 7;; is a model for 7;; and

(Tij — 73) @iy — 77) + g\ Vigi

T (1 =77)

ﬁj'jj' =
akin to Eq 1.1, with models replacing each population quantity. The third set of equations
in Eq 1.8, which we refer to as the outcome model estimating equations (OMEE), fits
Ty (converging to 7;;) and pyj; (converging to ), collectively known as the outcome
models. If the OMs are correctly specified, then under the rMAR assumption, (8y, ay)
can be consistently estimated based on the complete-case data. The DR estimator is doubly
robust in the sense that it is CAN under correct specification of either the OM [i.e. 7;; = m;;
and ;0 = pijyr] or PS [i.e. T

=t and pjt = pfl] (see proof in Appendix A.3).

1.3.3 Inference

Concatenate k = (85, @}, Bg, &g, By, y) as the collection of parameters from the TM,
PSM, and OM. A direct application of the theory of M-estimators [Van der Vaart, 2000]
with score equation summands ¥(k) = (®),SE SY)T yield that VI(R — k) 3 N(0,%),
where ¥ = T7!A(T1)T is the sandwich estimator with meat A(k) = E[¥(k)¥(k)T] and
breads I'(k
just (By., &
with A = 15 W(R)U(R)T and T with T = L S°1 | 9U(R) /ok.

) = E[0¥(k)/OKT], from which we can extract components corresponding to
v ), the parameters of interest. An estimator S can be obtained by replacing A

1.3.4 Embedding IPW-GEE2 and DR-GEE2 with S-GEE2

Fitting the PSM and OM requires just the standard GEE2, so therefore no adjustments
are needed from S-GEE2 defined in Section 1.2.2. We do, however, need to adjust the TM
for IPW-GEE2 and DR-GEE2.

Structurally speaking, the inclusion of subsampling matrix W in S-GEE2 is similar to
the IPW matrix W in IPW-GEE2. Indeed, in fitting IPW-GEE2 with a stochastic variant
(which we call S-IPW-GEE2), we simply adjust gradient and Hessian iterations in Eq 1.6

with W* — WZEW?S. There are two possible candidates for the new W?*. We could use
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the exact W* scheme in the original S-GEE2 defined in Section 1.2.2. But, this is likely to
sample missing outcomes, and if there is significant missingness, the iterations would fail due

to singular Hessians. A more stable procedure would be to sample s; ~ SRSWOR(U?P™, ),

where U™ = (U ... U?) and each U™ correspond to the indices of the non-missing
outcomes in cluster i. Let m; = |UP"| be the number of non-missing observations per

cluster. Then, define W[fl‘(’gj = [s;] and W(fl‘zzs) = mvgznjll)) [(si)2], a weighted indicator

matrix for a subsample of the non-missing outcomes.

Forming S-DR-GEE2 (DR-GEE2 + S-GEE2) is not so clear-cut. In Eq 1.8, the TM score
equations consist of DIV;WRE! and ¢;. For the D]V;WRE! component, we have missing
outcomes, and therefore might seem prudent to use W93 for the reasons above. But, an
analogous version for ¢; will not yield unbiased estimators (33, ), since W95 contain
conditional weights given R (i.e. being observed), yet there are no missing elements in (;.
Therefore, we propose simultaneous, independent subsampling schemes for D] V;W2E! and
(i, the latter akin to W*5°P and the former akin to W*. Details are presented in Algorithm
3 in Appendix A.1.

1.4 Simulation

We perform two sets of experiments. The first set explores the statistical properties of IPW-
GEE2 and DR-GEE2 under combinations of correctly specified / misspecified PS model and
correctly specified / misspecified OM, all of which include the ICC estimates embedded in
the working covariance structure in the GEE1 portion, and assuming Cov(Y;,£(Y;)) =0
and Var(£(Y;)) = I. We include analogous estimates from a parametric mixed effects
model and GEE1 with independence working covariance structure for comparison. In the
second set of simulations, we compare the algorithmic properties (convergence & run-time)
of S-DR-GEE2 and standard DR-GEE2 under various cluster size / number of cluster

combinations.
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We consider the following two data generation processes for binary data Y;; (or R;;):

(

logit(7;;) = (Boy + Boavy Ai) + (Bzy + Bzay Ai)Zi
+(Bxy + Bxay 4i) "X
atanh(p;) = (aoy + apay Ai) + (azy + azay Ai)TZ;
s . ‘ _(_ min(m;) 1—max(7;)
Parzen’s method ¢ (£;, 4;) = ( \/1_min(m)> \/ max(r;) )
o [ Wi —pi) —Li(—hiLi—pi)
(517 El) - ( (—=L)p: 7 (h—Li)ps )
&l Ay, Zs ~ (U; — £;)Beta(d;, ) + £
(1.9)
\Y;j|Aia Z;,X;,& ~ Bernoulli <7Tij + i/ (1 — 7Tij)>
(
logit(;;) = (Boy + PoavAi) + (Bzy + Bzay Ai)"Z
+(Bxy + Bxay4i)TX;
Random intercept § ¢;|A; ~ N(0, (% + %Az’>2)
logit(p;;) = & + logit(m;;)

L KJ |Al, Zi; Xi> 5@ ~ Bernoulli (ng)

Parzen’s method [Parzen, 2009] offers a random-effects form that attains nominal levels
of m;; and p; (i.e. P(Y};|A;,Z;,X;) = m; and Corr(Y;, Y |Ai, Z;) = p;) and specifically
generates equicorrelated data. To ensure 0 < m;; + &+/m;;(1 — m;;) < 1, one must ensure
that —L;£; — p; > 0 for all 2. The random intercept is the traditional approach in inducing
correlation among observations in a cluster. With a normal random intercept, the marginal

probability of success

ebitL(B;Ai,2:,X,)
P(Y;; = 1|1, Z;, X;) = / L1 (1.10)

where L(8; A;, Z;,X;) is the linear function, is not of the logistic form and will not have a
closed-form. Furthermore, the ICC is induced linearly on the logit scale, yet the manifested
ICC after performing the expit function and appropriate marginalization will vary within-
cluster and hence is unsuitable for simulation of equicorrelated data. We use Parzen’s

method to generate the ideal case of equicorrelated outcomes, while we use random intercept
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to induce non-equicorrelated outcomes. Furthermore, since the normal random intercept is
not of the logistic form, any OM we fit with logistic regression is necessarily a misspecified

model, yet we show that the marginalization interpretation pf = ]E[pjjj,|AZ-} holds.

1.4.1 Consistency and efficiency of IPW-GEE2 & DR-GEE2 schemes

Let U(a,b) denote the continuous uniform distribution on (a,b), and let U{a,b} denote
the discrete uniform distribution on {a,a + 1,--- ,b — 1,b}. To evaluate the asymptotic
properties of GEE2, we set the number of clusters to an unrealistic I = 2000 with cluster
sizes m; ~ U{80,140} so that we have average cluster size E[n;] = 110. The setting
with large number of clusters allows us to observe asymptotic properties more quickly
and to avoid computational issues that will be explored in Section 1.4.2. We generate
A; ~ Ber(1/2) and choose X;; € R* and Z; € R. Details regarding generation of X;;, Z;
and choice of coefficients for Y;; is presented in Table 1.2. We also generate R;; with these

same covariates and coefficients for simplicity.

Covariate Intercept ‘ Xii; ‘ Z;

Generation — U(20,60) U(1,10) U(4,25) U{80,140}
Main-effects 3. 0.11 —0.007  —0.020 —0.040 0.009
Interaction 3.,y 0.67 0.012 0.030 0.060 —0.018
Main-effects oy —0.32 — — — 0.004
Interaction a.y 0.96 - - — —0.008

Table 1.2: Information regarding the generation process

The values in Table 1.2 are carefully chosen to guarantee —;£;, — p; > 0 in Parzen’s
method. The resulting values for P(Y;; = 1|A;,Z;,X;) and Corr(Y;;, Yij|Ai, Z;, X;), after
marginalizing out &;, are in the range [0.324, 0.733] and [0.004, 0.306], respectively. For the
random-intercept method, the values of P(Y;; = 1|4;,Z;,X;) and Corr(Y;;, Y| Ai, Z;, X;)
are in the range [0.333, 0.738] and [0.022, 0.134], respectively. The true treatment coeffi-

cients (3}, @} ) in the canonical TM can be calculated by numerically integrating out all
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other covariates except for A; in m;; and p;rj %t

expit(Syy + Bay Ai) = /

WZJdP(XU)dP(ZZ)
R4

1.11

tanh(agy, + afyy Ai) = /R7 pjjj,dP(x,-j)dP(Xij/)dP(Zi) (1.11)

Under Parzen’s method, we obtain the values (37, a3 ) = (0.1413,0.1808, 0.1238, 0.0755),
and under random intercept, we obtain (3}, &) = (0.1378,0.1429, 0.0307, 0.1032).

The results in Table 1.3 display biases, replicate standard errors, and average sandwich

standard errors of estimated parameters from several models with R = 1000 replicate

generations of missingness and outcome, both using Parzen’s method. For the mixed

effects model, we fit the following on the complete-case data:
logit{P(Yy; = 1|Ai, &)} = fo + Bad; +&  with  &[A; ~ N(0,5%)) (1.12)

which takes nearly the functional form of the random intercept generation process in Eq 1.9,
less the baseline covariates. Using the marginalizations in Eqs 1.10 and 1.11, we can obtain
(Biy, By, Ay, &) from (Bo, Ba,52,62) and standard errors for Biy, 3%y from the stan-
dard errors of BU, B 4 through the delta method. Unfortunately, analytical standard errors
for afy, o’y require standard errors of 62,57, for which methods are less well-developed
[Bates, 2010; McCulloch and Searle, 2001; Wu et al., 2012]. Hence, while we report replicate
standard errors for 62,57, we omit sandwich error standard errors. Mixed effects models
naturally handle MAR if the true generation process follows the form in Eq 1.12. Certainly,
both generation processes in Eq 1.9 do not. Parzen’s method takes a functional form that
is different from the random intercept method, and the random intercept method includes
additional covariates for which Eq 1.12 omits.

For the IPW-GEE2 fits, we distinguish G; (R) IPW and G2(R) IPW as the IPW models
with and without accounting for the correlation among the missingness indicators, respec-
tively, as discussed in Section 1.3.1. For GEE1, there is no model for correlated missingness,

and that block is omitted. The fitted OM and correctly-specified PSM are

logit(mi;) = (Boy + Boay Ai) + (Bzy + Bzay Ai)"Zi + (Bxy + Bxay Ai)Xi;

atanh(pg;;) = (qoy + aoay Ai) + (azy + azay Ai)Z;

(1.13)
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Averaged bias
(Replicate SE)
(Averaged sandwich SE)

Averaged bias
(Replicate SE)
(Averaged sandwich SE)

Boy Bay Gy Qpy Boy Bay
Complete Case Mixed Effects
0.0421  —0.0238 0.0016 —0.0009
(0.0227) (0.0364) (0.0053) (0.0088)
(0.0238) (0.0373) — —
GEE GEE?2 GEE1
Complete Case
0.0349 —0.0239 0.0113 —0.0016 0.0413  —0.0228
(0.0245) (0.0379) (0.0070) (0.0121) (0.0262) (0.0404)
(0.0238) (0.0380) (0.0069) (0.0117) (0.0260) (0.0416)
PSM Correctly Specified
—0.0006 0.0020  0.0024 —0.0008 —0.0003  0.0010
G1(R) IPW (0.0257) (0.0398) (0.0064) (0.0112) (0.0252) (0.0391)
(0.0249) (0.0400) (0.0064) (0.0111) (0.0252) (0.0405)
—0.0005 0.0019 —0.0001 0.0002
G2(R) IPW (0.0258) (0.0399) (0.0066) (0.0112)
(0.0249) (0.0401) (0.0063) (0.0109)
—0.0006 0.0018 —0.0003 0.0003 —0.0004 0.0010
Doubly-Robust (0.0262) (0.0399) (0.0061) (0.0111) (0.0251) (0.0391)
(0.0297) (0.0389) (0.0060) (0.0108) (0.0246) (0.0404)
PSM Misspecified
0.0341  —.0124 0.0112 —0.0018 0.0341 —0.0121
G (R) IPW (0.0255) (0.0414) (0.0068) (0.0116) (0.0264) (0.0401)
(0.0255) (0.0411) (0.0068) (0.0117) (0.0260) (0.0416)
0.0326  —0.0092 0.0089  0.0022
G2(R) IPW (0.0252) (0.0411) (0.0067) (0.0117)
(0.0255) (0.0411) (0.0067) (0.0117)
0.0000  0.0005 —0.0002 —0.0001 —0.0002  0.0007
Doubly-Robust (0.0251) (0.0401) (0.0061) (0.0107) (0.0252) (0.0392)
(0.0303) (0.0397) (0.0064) (0.0114) (0.0253) (0.0415)
Table 1.3: Biases & Standard Errors from 1000 replicate simulations with both Yj;, R;;

simulated with Parzen’s method.
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i.e. the exact model used to generate R;;, Y;; from Parzen’s method. The fitted misspecified

PSM is
logit(mi;) = Boy + Bav Ai + By Zi + By Xij (1.14)
atanh(pij;) = aoy + aay A; + alyZ;
i.e. the model with interaction terms of A; with Z;, X; are omitted.

We compare the performance of each estimation procedure based on the replicate Wald

statistic W = VR - Stfgrsmr and checking whether |W| > 2, where R is the number of

replicate simulations. Using this metric and the information from Table 1.3, when PSM
is correctly specified, complete-case analysis (for both mixed effects, GEE1, and GEE2)
leads to severe bias in estimating all parameters. While mixed models are expected to
account for missingness when confounding covariates are included, the focus is on marginal
effects and hence inclusion would provide entirely different interpretations. G;(R) IPW-
GEE2 and IPW-GEEL1 provide consistent estimates for the mean parameters 5, and 3%y,
although the former still fails to correctly estimate the association parameters af, and
aly. Go(R) IPW-GEE2 and doubly-robust GEE2 and GEE1 produce consistent estimates
for all parameters estimable under their respective models. When PSM is misspecified,
we note that only DR-GEE2 and DR-GEE1 produce consistent estimates. Note that the
sandwich variance estimators in general are close to the true sampling variance with the
exception of fyy under the DR-GEE2 model, for which it is somewhat conservative. We
also observe that DR-GEE1 (with independence covariance structure) standard errors of
the mean parameters Sy, 8%, are smaller than the DR-GEE2 standard errors of 5y, 84y

The results in Table 1.4 display biases, replicate standard errors, and sandwich standard
errors of estimated parameters from several models with R = 1000 replicate generations
of missingness using Parzen’s method and outcome using random intercepts. We still fit
the correct OM and PSM using Eq 1.13 and incorrect PSM using Eq 1.14. Note that the
true OM is no longer of the logistic form, and hence the fitted OM will be misspecified.
Nevertheless, we reach nearly identical conclusions regarding the validity of models as done
with Table 1.3. Especially noteworthy is that, even when the PSM is misspecified, the

DR-GEE2 produces consistent estimates of all its parameters. Consistent estimation of the
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Averaged bias
(Replicate SE)
(Averaged sandwich SE)

Averaged bias
(Replicate SE)
(Averaged sandwich SE)

Boy Bay Gy Qpy Boy Bay
Complete Case Mixed Effects
0.0343 —0.0244 —0.0005 —0.0001
(0.0144) (0.0290) (0.0020) (0.0058)
(0.0139) (0.0279) — —
GEE GEE2 GEFE1
Complete Case
0.0340 —0.0266 —0.0005 —0.0004 0.0400 —0.0239
(0.0143) (0.0291) (0.0022) (0.0071) (0.0145) (0.0303)
(0.0140) (0.0284) (0.0022) (0.0070) (0.0143) (0.0299)
PSM Correctly Specified
—0.0001 —0.0020 —0.0002 0.0003 —0.0002  0.0003
G1(R) IPW (0.0148) (0.0295) (0.0023) (0.0070) (0.0143) (0.0297)
(0.0143) (0.0297) (0.0022) (0.0071) (0.0143) (0.0299)
—0.0001 —0.0021 —0.0001 0.0002
G2(R) IPW (0.0150) (0.0296) (0.0023) (0.0070)
(0.0143) (0.0297) (0.0022) (0.0071)
—0.0001 —0.0020 —0.0001 0.0003 0.0000 0.0003
Doubly-Robust (0.0149) (0.0294) (0.0023) (0.0070) (0.0139) (0.0297)
(0.0212) (0.0248) (0.0022) (0.0071) (0.0137) (0.0299)
PSM Misspecified
0.0328 —0.0157 —0.0005 —0.0003 0.0327 —0.0134
G (R) IPW (0.0145)  0.0303  (0.0022) (0.0071) (0.0145) (0.0302)
(0.0143) (0.0297) (0.0022)  0.0070 (0.0143) (0.0299)
0.0313 —0.0128 —0.0005 —0.0005
G2(R) IPW (0.0145) (0.0304) (0.0022) (0.0071)
(0.0142) (0.0297) (0.0022) (0.0071)
—0.0006 —0.0006 —0.0001 —0.0001 —0.0008 0.0013
Doubly-Robust (0.0145) (0.0296) (0.0022) (0.0070) (0.0141) (0.0302)
(0.0211) (0.0247) (0.0022) (0.0069) (0.0137) (0.0299)

Table 1.4: Biases & Standard Errors from 1000 replicate simulations with R;; simulated

using Parzen’s method and Y;; simulated using random-intercept method.
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mean parameters may be due to the fact that random intercept generation is still “linear
enough” with respect to the covariates. Consistent estimation of the association parameters
suggested that, even when the outcome is non-equicorrelated, we may still model it with

an equicorrelated OM and still produce roughly consistent estimates of the ICC.

1.4.2 Algorithmic Characteristic of DR-GEE2 vs S-DR-GEE2

Having established the consistency of DR-GEE2, in our second set of experiments we now
compare against S-DR-GEE2. We generate both missingness and outcome using Parzen’s
method and the information from Table 1.2, and we fit with both PSM and OM cor-
rectly specified. We now vary the number of cluster I and cluster sizes n;, and consider
the following three scenarios: (I,E[n;]) = (30,30), (300, 30), (30,300). Tables 1.5 and 1.6
present the statistical and algorithmic results, respectively, of DR-GEE2 vs S-DR-GEE2.
For E[n;] = 30, we set the subsample sizes E[v;] = 9 and for E[n;] = 300, we set E[v;] = 45;
all S-DR-GEE2 scenarios used learning rates v, = (w + 1)7".

From Table 1.5, and using the Wald statistic metric to evaluate model validity, the
association parameters from the I = 30 sub-experiments all are biased. This is readily
explained by the fact that the asymptotics for the association parameters depend on [
rather than Zle n;, and hence at these small number of clusters, asymptotics haven’t fully
kicked in. Other than this, overall, the parameter estimates and standard errors are very
similar between DR-GEE2 and S-DR-GEE2, albeit the standard errors under S-DR-GEE2
are slightly higher. This slightly higher variability can be eliminated by simply asking for
a few more iterations. Even so, at a small cost of higher variability, the computational
savings of S-DR-GEE2 are apparent. From Table 1.6, even at small cluster sizes, which
S-DR-GEE2 was not designed to be optimal, we still see moderately higher convergent
solutions and somewhat less time to fit each model. We see these results further accentuated
when expected cluster size is 300. For the OM, PSM, and TM, we see that S-DR-GEE2
provides up to 80% reduction in returned errors (i.e. divergence, large condition numbers

of Hessians) and approximately 90% reduction in run-time.
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Full DR-GEE2 S-DR-GEE2

) Averaged bias Averaged bias
Scenarios
(Replicate SE) (Replicate SE)
(Averaged sandwich SE) (Averaged sandwich SE)

Boy Bay Wy Qhy Boy By gy Xay
0.0067 —0.0082 —0.0153 0.0010 0.0025  0.0071 —0.0041 —0.0095
(I,E[n;]) = (30,30)  (0.2563) (0.3973) (0.0629) (0.1140) (0.2724) (0.4084) (0.0715) (0.1203)
(0.2541) (0.3516) (0.0535) (0.0983) (0.2533) (0.3513) (0.0580) (0.1012)
—0.0004 —0.0004 —0.0021 0.0004 0.0015  0.0046 —0.0009 —0.0002
(I,E[n;]) = (300,30)  (0.0707) (0.1144) (0.0199) (0.0333) (0.0759) (0.1188) (0.0218) (0.0362)
(0.0840) (0.1106) (0.0199) (0.0339) (0.0842) (0.1109) (0.0201) (0.0339)
—0.0005 0.0034 —0.0124 —-0.0010 —0.0051 0.0067 —0.0083 —0.0029
(I,E[n;]) = (30,300)  (0.2103) (0.3364) (0.0552) (0.1033) (0.2141) (0.3486) (0.0468) (0.0872)
(0.2155) (0.2970) (0.0388) (0.0782) (0.2170) (0.2952) (0.0388) (0.0737)

Table 1.5: Comparison of statistical characteristics of full DR-GEE2 vs S-DR-GEE2. R =

2000 replicate simulations.

geese Full DR-GEE2 S-DR-GEE2
(LEmn])  (30,30) (300,30) (30,300) (30,30) (300,30) (30,300) (30,30) (300,30) (30,300)
Convergence
% PSM error only 4.22% 0.41% 7.97% 0.58% 0.10% 1.68%
% OM error only — — — 9.03% 0.86% 11.80% 9.38% 0.77% 6.30%
% PSM or OM error — — — 0.36% 0.00% 0.49% 0.12% 0.00% 0.11%
% Conditional TM error 0% 0% 26% 2.13%  0.00%  3.97% 1.23%  0.00%  0.41%
Run-time (sec)f
PSM fitting — — — 0.38 3.88 25.69 0.29 2.84 1.76
OM fitting — — — 0.20 2.05 8.01 0.25 2.33 0.81
TM fitting 0.10 0.86 1174 0.40 4.24 27.59 0.31 3.14 1.53

Table 1.6: Algorithmic analysis of standard and stochastic DR-GEE2. R = 2000 replicate
simulations. Run-time values are computed on runs which converged. The conditional TM
error is the error rate among simulations whence PSM and OM converged.

T Each replicate simulation was executed in R on a dual-core node on the Orchestra cluster

supported by the Harvard Medical School Research Information Technology Group.
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We also fit a complete-case TM in each replicate simulation using the geese command
from the geepack package. We see that geese fits faster than our algorithms in the (30,
30) and (300, 30) cases, while our code runs far faster and leads to fewer errors in the (30,
300) case. Granted, the comparisons are not the most commensurate: geese performs all
calculations in the C programming and wraps the results into R, while our implementation
is fully in R, not to mention the additional time in incorporating the IPW or DR portions.
On the other hand, our use of geese specifies a custom covariance structure for each cluster
to handle the different treatment arms, while our implementation fully exploits analytical

inverses of the equicorrelation structure.

1.5 Application to Sanitation Data

Guiteras et al. [2015] investigated the efficacy of alternative policies in encouraging use of
hygienic latrines in developing countries. A total of 380 communities in rural Bangladesh
were assigned to different marketing interventions — community motivation, subsidies,
supply-side market, a combination of the three and a control group. The dataset contains
4768 individuals across 100 clusters with ten individual-level covariates (report diarrhea
indicator X;, male indicator X,, age X3, education indicator X4, Muslim indicator Xj,
Bengali indicator Xg, agricultor indicator X7, stove indicator Xg, water pipes indicator
Xy, phone indicator Xjo) and five (excluding marketing intervention) cluster-level covari-
ates (village population Z;, # of doctors Zy, % landless Z3, % almost landless Z;, %
access electricity Zs). The overall outcome missingness is 3.4%. Results based on a mixed-
effect model suggested supply-side market alone did not increase hygienic latrine ownership
(4+0.3% points, p-value = 0.90). We reanalyzed this dataset with GEE2 approaches assum-
ing that the outcomes are rMAR, letting A; = 1 for supply-side market alone and A; = 0
for control group. Due to the low outcome missingness, and in order to fully illustrate

the strengths of our proposed methods, we induced additional missingness with Parzen’s
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method under the model
logit(m?) = Por + BXxrXij + BLrZi + Ai(Bar + Bl x pXij + Blhyri)
tanh_l(pf) = QR + CXTZRZZ —+ Ai(CXAR —+ aTAZRZi)
with

Bor = 0.7, 8% = (0,0.3,0.003,0,0.3,0.3,0.3,0.3,0,0.3),

T o = (—0.00048,-0.0014, —0.407, —0.555),  fBag = —0.7,

Blixr = (0,0,0,0,-0.6,-0.6,0,-0.6,0,0), Bl r = (0,0.022,0.904,1.11),
aor = 0.35, al,, = (0.0000645,0.000190, 0.0543,0.074),
aar = —0.10, oy, = (0,-0.00291, —0.120, —0.148)

The overall missingness is now 26%. Table 1.7 presents results upon fitting complete-case,

G, IPW-, G, IPW-, AUG-, DR~ GEE2. AUG-GEE2 is the augmentation of complete-case
GEE2 instead of IPW-GEE2, and is included to provide insight to changes in parameter
estimates.

Variables selected for the PSM and OM of the main effects were determined by backward
stepwise logistic regression based on AIC, where the full model is a linear function of all
covariates and the interactions terms between market intervention and all other covariates.
We include all selected cluster-level covariates in the PSM and OM for the ICC (see Table
1.7). We experienced convergence issues in fitting the PSM and OM to the data when
using full GEE2. To overcome this, we fitted 50 parallel stochastic GEE2 (described in
Section 1.2.4), and averaged the convergent estimates. Complete-case analysis suggests
non-significant supply-side causal effect (p-value ~ 0.34), yet significantly different ICC
between the two interventions (p-value =~ 0.046). The two IPW-GEE2 methods see an
increased magnitude in the causal effect, although still not significant (p-value = 0.13
for both), and a decreased difference in ICC between the two interventions, which now
becomes non-significant (p-value =~ 0.18 for both) compared to complete-case analysis.
AUG-GEE2 and DR-GEE2 both see another increase in the causal effect, which now results

in significance (p-value < 0.01 in both cases), and remains non-significant for difference
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Estimates Sandwich SE p-value Run-time (sec)’

Biy ooy @y Biy agy Ay Biy gy @ay PS OM TM
CC GEE2 0.154 0.082 0.093 0.163 0.017 0.046 0.344 < 0.01 0.046 — — 082
Gi(R) IPW-GEE2 0.264 0.091 0.062 0.178 0.019 0.047 0.138 < 0.01 0.185 015 — 3.19
G»(R) IPW-GEE2 0.275 0.095 0.065 0.182 0.019 0.048 0.130 < 0.01 0.170 2.75%  — 3.7
AUG-GEE2 0.466 0.091 0.022 0.073 0.014 0.017 <0.01 <0.01 0.208 —  2.52* 4.62

DR-GEE2 0.481 0.095 0.042 0.095 0.017 0.032 <0.01 <0.01 0.187 2.75% 2.52* 4.86
TM: logit(m}) = By + Bay A
atanh(p}) = afy + oy A4,
PSM: logit(nf]) = Bor + BarAi + Y reias5.67.510) BErXijn + D oke(1.23.4} BIrZir

k k
+4i Y reis.6.8) 5,(4))(RXk +Ai Y esa 522321-/@
atanh(pf') = aor + aard; + Zke{l,zu} agcl)%zik + A Zke{2,3,4} O‘E:%RZHV

A S kg By X+ ABy Zi
atanh(p;) = aoy + 0y Ai + Yieqi05as) O Zin + Aia )y Zis

Table 1.7: Effects of the supply side-market vs. control on the probability of hygienic latrine
ownership in the sanitation data analysis [Guiteras et al., 2015] using the complete-case GEE2,
IPW-GEE2 adjustment (non-adjusting and adjusting for missingness ICC), and DR-GEE2, as-
suming outcomes are TMAR.

* Fitted with 50 parallel stochastic GEE2, and averaging convergent estimates. Reported are
median times among convergent estimates.

f Executed in R on a desktop with Intel(R) Core(TM) i5-4460 CPU 3.20GHz

ICCs between the two interventions. The results from AUG-GEE2 suggests that, even after
randomization, a significant imbalance of baseline covariates remains, which is addressed
by augmenting the outcome model. The resulting DR-GEE2 estimates are most affected by
augmentation of the OM rather than adjustments for missingness. The inferences reached
from DR-GEE2 on this induced dataset are the same as that of DR-GEE2 performed on

the original dataset.
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1.6 Discussion

In this paper, we proposed a stochastic algorithm to obtain the solutions to GEE2. This
new algorithm substantially increases convergence rate and reduces run-times. It is in
particular useful in settings whence either the number of clusters or the size of clusters is
large. Accurate estimation of ICCs in general requires adequate number of clusters relative
to the cluster size. When the cluster size is large relative to the number of clusters, the
standard algorithm suffers from convergence issues. The stochastic algorithm alleviates this
problem by performing the estimation on a subsample from each cluster for each iteration.

Another feature of S-GEE2 is the inclusion of the Hessian. Much of the literature
derived from the Robbins-Monro framework does not incorporate the Hessian matrix into
the iterations, instead relying on adaptive gradients and adaptive learning rates [Duchi
et al., 2011; Nesterov, 1983; Zeiler, 2012]. Traditionally, Hessians are omitted because they
are computationally intractable [Bottou, 2012]. But in the GEE2 framework, the Hessians
are readily computable, and so are its stochastic variants. Fach of these frameworks can be
built upon each other to form hybrid methods, and indeed, comparisons of these different
combinations would be interesting for future works.

We also proposed DR-GEE2 for estimating the marginal treatment effect and treatment-
specific ICCs in cluster randomized trials. Our estimators are most useful in the settings
where estimation of ICCs is the focus. If the interest is solely on the treatment effect on
the outcomes, using working independence covariance matrix is an attractive approach due
to its high efficiency in many settings and its simplicity in avoiding the need to estimate
high-order association parameters. In the absence of missing data, standard GEE2 is highly
efficient with a correctly specified working covariance structure. More concretely, the class
of estimating functions which satisfy the canonical TM in Eq 1.2 and are regular asymp-
totically linear (RAL) must be of the form 0 = S>1_ h(A;)E;. The choice of index function
h(A;) = D]V, which reduces back to GEE2, results in the efficient score for the canon-
ical TM, hence attaining the minimum asymptotic variance RAL estimator for (85, a3 )

[Chamberlain, 1986]. However, in the case of IPW-GEE2 or DR-GEE2, this choice is no
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longer optimal and the actual hqp(A;) to achieve the efficient score is far more complicated
[Stephens et al., 2014]. Stephens et al. [2014] showed in simulation studies the efficiency
gains from using hgpi(A;) are modest and very sensitive to the correct specification of all
components that comprise hqp(A4;), which in practice is nearly impossible to achieve. With
little computational support for hop(4;) and no theoretical support for h(A;) = D]V,
one might just simplify the entire process by letting V; have an independence covariance
structure altogether. Our simulation studies in Section 1.4 also provide corroborative ev-
idence supporting the use of an independence covariance structure when estimating the
first-order effects.

Although the discussion centered around cluster randomized trials, the DR-GEE2 es-
timator can be used in other settings when estimation of ICCs is of interest such as in
reliability and agreement studies. We focused our discussion on binary outcomes, but the
approach can be adapted to other types of exponential family outcomes in a straightforward
manner by modifying the link function and variance function for the likelihood in question.
When outcomes within clusters are not equicorrelated, our ICC estimators marginalize out
factors which contribute to the non-exchangeable structure and returns an estimate which
can be construed as an “average” correlation.

In the presence of informative missing data, the correlation among missingness indica-
tors needs to properly accounted for to arrive at the consistent estimators for the association
parameters. We assumed rMAR in the current work. Future research on further relaxing

this assumption would be useful.
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Chapter 2

Linear mixed effects models with
Fleishman-distributed variance
components

When concerned with estimation and inference of variance components and functions
thereof (e.g. the intraclass correlation, higher moments, etc), the standard random ef-
fects model relies heavily on the normality of the random effects and error distributions.
We relax these assumptions by endowing each variance component with a Fleishman dis-
tribution, a flexible distribution which accounts for the third and fourth cumulants of a
random variable. The simplicity and speed in simulating from the Fleishman distribution
allow us to construct confidence intervals based on a Fleishman parametric bootstrap on
the variance components. We also develop a test of normality for each of the variance com-
ponents akin to the Jarque-Bera test by comparing the third and fourth cumulants to that
of a normal distribution, which flows organically from the presented framework due to the
need in estimating the higher moments of the variance components. We compare the perfor-
mance of our methodology with existing techniques in simulation studies and illustrate our
methods to the Childhood Adenotonsillectomy Trial (CHAT) sleep electroencephalogram
(EEG) data in quantifying the agreement among different signal densities.
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2.1 Introduction

In many biomedical investigations, parameters of interest are functions of higher order mo-
ments reflecting finer distributional characteristics. For example, the intraclass correlation
coefficient (ICC), a function of between- and with- cluster variances, is an essential param-
eter in the design and analysis of cluster randomized trials and for assessing reliability of
ratings or agreement of multiple measurements. Other examples are skewness and kurtosis,
which can be used to assess departures from normality [Kim and White, 2004]. One of the
popular methods in handling correlated outcome data is linear mixed models (LMM) [Laird
and Ware, 1982a]. The one-way LMM, also known as the variance components model, takes
the form
Yij = 87Xy + Ui + €, =1L j=1---,J; (2.1)
It is commonly assumed that the random effects U; KN (0,02) and subject-specific errors
€ij NN (0,02). Inference on the fixed effect coefficients 3 have been shown to be robust
to nonnormality of U; or €; [Butler and Louis, 1992; McCulloch and Neuhas, 2011]. This,
however, is not true for higher-order quantities, such as the ICC p = ¢2/(02 + 02) or
skewness and kurtosis (third and fourth cumulants) of U; and €;;. One robust approach
in estimating higher-order quantities is to allow a flexible distribution on U; or €; in a
LMM. There is a rich literature on fitting flexible distributions for U; while letting e;;
remain normally distributed, all of which resort to fitting the REML or MLE using an EM-
type algorithm; Verbeke and Lesaffre [1996] and Ghidey et al. [2004] considered a mixture
of normals, while Zhang and Davidian [2001] and Lin and Lee [2008] considered a skew-
normal distribution. Nevertheless, these methods do not allow a flexible distribution on €;;.
Arellano-Valle et al. [2005] considered a skew-normal distribution on both random effects
and errors, but found no tractable MLE nor REML algorithm to fit both distributions,
only on one or the other.
Another robust approach in estimating ICCs (or other higher-order moments) is based
on second-order (or higher-order) generalized estimating equations (GEE2) [Liang and

Zeger, 1992; Zhao and Prentice, 1990], and in general M-estimation. GEE-type estima-

29



tors are attractive because it does not require specification of the full likelihood, and is
semiparametric efficient when the working covariance matrix is correctly specified [Newey,
1990]. However, GEE2’s may perform poorly when the number of clusters is small [Huang
et al., 2016]. Furthermore, its use has been hindered by considerable computational burden
and poor convergence rates [Evans et al., 2001; Sutradhar, 2003; Ziegler et al., 1998].

Asymptotic results for the aforementioned flexible LMM and GEE2 are available, and
thus we may construct CI’s for the ICC, or other estimators based off the second moments,
through analytical means. In practice, distributions of these flexible LMM and GEE2
estimators tend to be skewed and require either large samples or a prior: stabilizing trans-
formations to better approximate normality. One solution is bootstrap, since this captures
the inherent skewness through the empirical distribution of the data, but doing so with
GEE2 or flexible LMM MLE is far too time consuming, the former due to solving a large
stack of estimating equations, and the latter due to performing several levels of optimiza-
tion in order to fit model parameters. Our proposed method is an amalgamation of flexible
distributions and bootstrap, but instead of MLE, we use method of moments. This makes
the bootstrapping far faster, while potentially sacrificing some efficiency loss compared to
MLE. But, as we will demonstrate in extensive simulation studies, our method can lead to
significantly shorter CI’s than that produced from GEE2.

In this paper, we propose a parametric bootstrap approach based on the Fleishman dis-
tribution to make inferences about estimators derived from clustered data using methods of
moments. We choose the Fleishman distribution because it is a distribution that is flexible
to accomondate many parametric distributions and with moments readily computable and
easy to simulate from. This approach is advantageous over non-parametric bootstrap for
clustered data in the following ways: 1) Nonparametric bootstrap in general fails to capture
more extreme observations that do not appear in the observed data; this point is not as
vital for first-order estimates such as the median, but would be for the higher moments
or extreme quantiles due to their sensitivity to outliers. Because our method is inherently
parametric, these extreme values are given non-zero probability to be occur in the boot-

strap sample. 2) One commonly-used bootstrap approach for clustered data is to sample
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the clusters (and all observations within the cluster) with replacement. In the imbalanced
case where cluster sizes vary, this does not preserve the structure of the original data and
leads to induced variability from varying cluster sizes.

A second purpose of our paper proposes improved methods for assessing agreement. The
ICC, or other moment-based agreement measure such as Pearson’s correlation coefficient r,
operates on a linear scale and may provide spurious values of high agreement not necessarily
due to genuine agreement, but possibly as a result of outliers or different scales of the
metrics. For example, given y, = (-10,-9,---,9,10) and y, = (1,0,1,0,---,0,1), we
may compute the sample Pearson’s 7y ,, = 0. However, if we append y; = (y;,100)
and y5 = (y,100), then 7y, v jumps to 0.962. Various agreement indices have been
proposed to guard against such undesirable cases. For example, Cohen’s x and Scott’s 7
define agreement in terms of probabilities instead of moments, and thereby are more robust
to outliers. However, Gwet [2002] and Strijbos et al. [2006] detail how these probabilistic
indices can be misleading due to an inappropriate way these indices compute the probability
of agreement. Krippendorff’s a [Krippendorff, 2004] is a very general agreement index
which allows for missing data and includes a weighting function. Many other agreement
indices, such as Cohen’s x, Scott’s m, and the ICC, are recovered through an appropriately
defined weighting function. However, the form of Krippendorft’s « includes several layers
of nested sums, hence is computationally expensive to compute for large samples, let alone
CI’s. Our proposed index combines elements of Krippendorft’s o to the ICC in order to be
robust to outliers and flexible, but computationally simple.

Section 2.2 presents our proposed inference procedure under a linear mixed effects
model. We first provide a brief overview of our chosen flexible distribution (Fleishman
distribution) in Section 2.2.1, describe the inferential procedure in Section 2.2.2, and fi-
nally describe a normality test for U; and €;; in Section 2.2.3. In Section 2.4, we describe
our modified ICC for agreement studies. We evaluate the performance of our methods
with simulations in Section 2.3 and apply our methods to analyze Electroencephalography
(EEG) data from the Childhood Adenotonsillectomy Trial (CHAT) in Section 2.5. An EEG

records the electrical signals and is commonly to used to diagnose sleep disorders. EEG
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Signals were obtained through several electrodes on different locations (called “channels”)
on the head, which measure power density of different wave frequencies (4,6, a, o, §); the
frequencies listed are ordered from more sleepy to more alert. Our goal is to quantify agree-
ment of signals from electrodes at different locations. Power density is heavily right-skewed
and leptokurtic (i.e heavy-tailed), even on the log scale, and thus normality is unlikely
to hold and transformations are needed to properly quantify agreement. We end with a

discussion in Section 2.6.

2.2 Proposal I: REMM-F for non-normal mixed mod-

els

2.2.1 Background: Fleishman distribution

Because we use method of moments, we select a flexible distribution with moments readily
computable and easy to simulate from, rather than carefully devising a distribution with a
convenient density, as one would with MLE in mind. One candidate is the so-called Fleish-
man distribution [Fleishman, 1978]. A random variable Y is said to follow the Fleishman
distribution, Fleish(a,b,c,d), if YV 2 + bZ + c¢Z? + dZ3, where Z is standard normal
and b > 0 for identifiability. This distribution reduces back to a normal distribution upon
setting ¢ = d = 0. Fleishman’s distribution has historically been used in simulation studies
due to its flexibility in choosing random variables with desired first four moments [Head-
rick, 2009], and is perhaps the most popular due to its ease and speed to implement and
simulate, requiring just the generation of normal random variables. To the best of our
knowledge, Demirtas and Hedeker [2008] were the first to apply this distribution as an
inferential tool rather than a simulation tool, where it was used to generate the errors in
a multiple imputation procedure. Our work will utilize the Fleishman distribution in the
context of bootstrapping and extend to both random effects and errors. The flexibility
of the Fleishman distribution is illustrated in Section 2.2.2, where we observe that the

Fleishman distribution covers a large portion of the skewness-elongation plane and is able
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to approximate many common distributions.

2.2.2 Notation and Methods

We proceed in describing our proposed method, which we call restricted method of moments
with Fleishman-distributed random effects and errors (REMM-F). Let us generalize the

LMM in Eq 2.1 with the following one-way semiparametric mixed model:
Vij=9(Xij) + Uit ey, i=1-- Lj=1---,J (2.2)

where g : RP — R is an unknown, smooth mean function. The first step, like in REML,
is to subtract away the fixed effects g(X) and work with the residuals v;; = Y;; — g(X5;).
Unlike REML, which performs MLE on the calculated residuals, we carry out method of
moments instead. We call inference based on the normality assumption as REMM-N. If U;
and €;; were both normally distributed, then the REMM estimators (based on the sample
variances) are REML. If not, then we propose the use of REMM-F, delineated as follows:
(1) estimation of the fixed-effects, (2) estimation of the first four moments of U; and ¢;;,

(3) estimation of Fleishman parameters (a, b, c,d) for U; and €;;, and (4) inference.

1. Estimation of the fixed effects

Setting ¢g(X) = X[ reduces to the standard one-way LMM, from which we can use
(weighted) least-squares. We can also nonparametrically estimate g, for example, with
kernel linear regression. See Henderson and Ullah [2005]; Ke and Wang [2001]; Lin and
Carroll [2006]; Wang [2003]; Wu and Zhang [2002] for many other nonparametric estima-
tors for g. If 02, 02 are finite, then the estimators from all these works have finite standard
errors. Provided a consistent estimator ¢, we compute the residuals 7;; = Y;; — §(X;;) and

proceed.
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2. Estimation of the first four moments of U; and ¢;;

The standard ANOVA estimators for the variances 0? and o2 are

SE I—-1 /ST
2 _ 2 2 _ 22
Se= 7 su—max{ - (]_1 SE> ,O} (2.3)

respectively, where J = 25:1 Ji, Qo =J —J ! ZZ | J2, and

I J;
SE, =Y Y (o — ),  ST,=>» Ji(m.—0.)

i=1 j=1 i=1
Ji
g = J~1 D g =J! J.
v = J; Vij, v. = iVi.
j=1 '

for p = 2,3,4. Furthermore, Teuscher et al. [1994] derived the following biased-adjusted

estimators for the skewness and kurtosis:

. SE
7E_SE’Q1

1 /ST
e (D)

Q3 Q103 (2.4)
/%:max{&—%’yz—Q} |
€ Sé@zl Q47 €
. 1 Qs ) $eQsQs  stQo + s1s2Qu0 + SuQ7 Lo }

Ry = Max ST, — =—SE < — -2

{SﬁQﬁ( ! Q4 ! 53Q4Qs 53 Q6 T

where

1 2—31 1
Ql—J—3I+2§ijJi, Q2 =" +;Ji
Q :J_§ZJ.2+£ZJ3 Q4 :J—4I—&-GZL—SZi
3 J £ ) J2 : ) : Jz‘ ' Jz‘2
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The skewness and kurtosis estimators in Eq 2.4 are consistent as I — oo, but they
are not unbiased, since they are a ratio of random variables. Had we replaced s,, s, in
the denominators of Eq 2.4 with population values o,, 0., then the equations would be
unbiased. We require at least a few of the J; > 3 to obtain estimates of the skewness,
otherwise SE3 = ST3 = (); = 0. A counterintuitive, yet welcomed, property of Teuscher’s
estimators is that we do not require J; > 4, as one might expect to obtain estimates of the

kurtosis.

3. Estimation of Fleishman parameters (a,b,c,d) for U; and ¢;;

Let W ~ Fleish(a, b, ¢, d). Without loss of generality, assume E[W] = 0, Var(W) = 1. Then

the moment conditions [Fleishman, 1978] are

fi(a,b,c,d) = a-+ec —0
fa(a,b,c,d) = b% + 6bd + 2¢2 + 15d% — 1 =0 25)
f3(a,b,c,d) = 2¢(b? + 24bd + 105d* + 2) — v =0
fa(a,b,c,d) = 24[bd + c*(1 + b* + 28bd) + d*(12 + 48bd + 141¢? 4 225d°)] — k =0

where v = E[(W — E[W])?]/0® and k = E[(W — E[W])*]/o* — 3 are the skewness and
kurtosis of W, respectively. These equations do not have a solution for all values of (v, );
indeed, the region for which a solution exists is called the skewness-elongation region, which

in the case of the Fleishman distribution, is approximately

Kk > 0.042717)y|* — 0.129624|7|* + 1.661833||* — 1.147301, —3<~y<3  (26)

This approximation is the degree four polynomial least-squares fit on the values enumer-
ated in Headrick and Sawilowsky [2000]. In judging the flexibility of a distribution, one
visual metric is to compare its skewness-elongation bound against that of the theoretical
lower bound for all probability distributions: x > v* — 2 (in fact, equality is impossible for
continuous distributions). Refer to Figure 2.1 for a plot of the theoretical bound, the Fleish-

man bound, and locations of selected distributions in the skewness-elongation plane; the
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Fleishman distribution covers a large portion of the plane and can be used to approximate

many common distributions.

Skewness—elongation plane

T --- A probability distributions x?
— Fleishman distribution
o Expern' L

Figure 2.1: Skewness-elongation bounds and locations of select distributions within the
skewness-elongation plane. Severe platykurtic distributions, such as the uniform distribu-
tion, fall under the Fleishman bound.

Let U; ~ Fleish(f,), where 6, = (ay,by,cy,dy), and similarly €; ~ Fleish(d.). If a
solution to Eq 2.5 exists, parameter estimation from the moments is straightforward. If
not, we could simply increase the kurtosis x — £’ until (v, ') lies on the Fleishman bound,
as in Headrick [2009]. Luo [2011] generalizes the calculation to an optimization problem

argmin { f3(a,b, c,d) + f2(a,b,c,d) + f3(a.b,c,d)} (2.7)
b,c,d
where fo, f3, f4 are defined in Eq 2.5, and a = ¢ per the restriction given by f;. Leapfrogging

from Luo’s idea, a more equitable method to “share the bias” is akin to a generalized method
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of moments procedure:

argmin {ws f3 (a, b, ¢, d) + w3 f5(a, b, c,d) + wafi(a,b,c,d)} (2.8)

b,c,d

Here, the weights ws, w3, ws determine the importance one puts on each equation within
the system; a higher weight for f; reduces the bias for the ith cumulant. Luo’s method
is recovered by setting (wq, ws,wy) = (1,1, 1), while Headrick’s method is recovered with
(wa, w3, wy) = (00,00, 1), where we define co x 0 = 0. Since estimators become increasingly
less reliable for higher moments, we recommend selecting wo, > w3 > wy. For the examples
to follow, we set w; = 3max(1,0.5|9,],0.25|Ay]), we = 0.5 and w3 = 0.25 so that at least
3/(340.540.25) = 80% of the weighting is towards the variance, and twice the weighting

on the skewness over the kurtosis.

4. Inference

After performing moment matching, we are equipped with estimators g, 0, = (G Z;u, Cu, du),
and 0, = (Ge, l;e, Ce, cze) We proceed with a parametric bootstrap. For the bth replicate,
b=1,---,B:

1. Sample g® ~ F,, U ~ Fleish(6,), eg) ~ Fleish(f,), where the indices i, range

according to the sizes of the original data.
2. Construct pseudo-data Yz‘§‘b) = g®(Xy;) + Ui(b) + eg’).
3. Compute statistic of interest T(®) = T(Y(b), X).

From {TW, ... T®} we can calculate bootstrapped variance estimates and construct
CI's. Standard choices for interested statistics 1" are the main-effect estimator g, the
variance / skewness / kurtosis estimators in Eqs 2.3 and 2.4, or functions of higher moments,
such as the ICC.

We provide heuristics on situations where REMM-F would be preferred over REMM-N.
For simplicity, assume the balanced case J; = J. As discussed in the Introduction, the

main effects are robust to misspecification of the distributions for U; and ¢;;; specifically,
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B fitted using REML in the one-way LMM in Eq 2.1 has the asymptotic distribution
VIB—B) B N, (B[X;]TSE[X;])!), where © = 021+ 02117, T is the identity matrix,
and 1 is a vector of ones. Hence, the asymptotic distribution of B depends on U, €;;
only through 02,02 and not any other finer distributional characteristics of U, €;;. In the
general case, Li and Xue [2015] show that kernel regression for g also depends on U, €;;
only through o2, o2. We conclude that the choice of distribution for U;, €;; needs to account
only up to the second moments in order to provide asymptotically correct inference for f3,
which normal LMM does account for.

So, what quantities would REMM-F be adequate in estimating that REMM-N would

not? For 02 and o2, it has been shown [Jiang, 2005; Li and Xue, 2015] that
40202(J — 1) + 202
JT =1

2 4
VIJ(s? —o?) 2N (O,Var(e?j) 4 e >

VI(s2 —o2) 2N (O,Var(Uf) +

J—1

as I — oo with J fixed. Since Var(U?) and Var(e};) depend on quantities up to the fourth
moments, valid inferences for 02, 02 (and therefore, the ICC p = 02 /(02 + 0?)) require ac-
curate information up to the fourth moments, which REMM-F does. Our approach strikes
a natural balance between validity and efficiency, accounting for just enough additional pa-
rameters for valid inference on second-order parameters, which would presumably provide
shorter CI lengths while remaining at nominal coverage levels, even in non-normal situa-
tions. Since the Fleishman distribution incorporates the normal distribution as a special
case, we anticipate that CI’s for p would not be substantially longer when U; and ¢;; are
truly normal.

Based on the moments paradigm, we should not expect valid CI's for higher moment
quantities, such as 7, Ve, ku, and k., since the variances of their respective estimators
Yus Ve, i, and k. are a function of moments up to the 6th or 8th order, for which the
Fleishman distribution does not account for, so coverage levels depend heavily on how well
the Fleishman distribution approximates the underlying generating distribution. Never-

theless, the relative performance is superior to that of REMM-N, since estimators for the

skewness and kurtosis are not even consistent in non-normal situations, let alone possessing
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asymptotically correct coverages. Little literature exists on the topic in constructing CI’s

for the skewness and kurtosis for U; and ¢;;, thus REMM-F provides a good starting point.

2.2.3 Testing normality of U; and ¢;;

While the literature on normality tests is plentiful for cross-sectional or time series models,
results for mixed models are quite scarce. A natural complication is that, unlike their cross-
section or time-series counterparts with just errors ¢;;, lack of normality in mixed models
may arise from ¢;; or the unobserved Uj;, or both. Previous works include that of Meintanis
[2011] and Galvao et al. [2013], but each of these methods only handle balanced data. One
workaround for imbalanced designs is to obtain within-subject residuals €;; and conditional
modes U; from maximum-likelihood estimation, and then conduct a Shapiro-Wilk (SW)
or Anderson-Darling (AD) test. While this method works well when both U; and ¢;; are
normal, inflated Type I error rates arise when at least one is non-normal. This is due to,
when one of U; or ¢; is non-normal, fitting with a normal induces a “spill-over” of the
non-normality onto the other.

Our solution to both imbalance and “spill-over” makes use of estimators ,, Ky, Ve, Re-
That is, we test if random effects or subject-specific errors share the same skewness and
kurtosis as that of a normal random variable: Hy: 7y =0& k=0vs H; : v # 0 or k # 0.
This hypothesis is the same one considered by Galvao et al. [2013], where they derived the
asymptotic distributions for estimators similar 4, Ky, e, ke, but only for balanced data.
Our strategy will instead bootstrap p-values, which have the benefit in also accounting
for unbalanced data. To generate the distribution of (%, 4) under Hy, we first compute s>
and s? and perform a normal distribution parametric bootstrap for B replicates to obtain
boostrapped skewness and kurtosis values for U; and ¢;; under Hy, say {(3%,,#%,)}2., and
{(7%, &%)}, We estimate the joint density under Ho, say f2 . and f9 _ with a kernel-
density estimator (KDE) based off the bootstrapped samples, say fgum and fi’ﬁe; see Scott
[1995] and Wand and Jones [1992] for information on KDE’s. Henceforth, we will fit our

KDE’s with a Gaussian kernel with bandwidth matrix computed with plug-in selectors.
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Finally, we compute p-values

e o ()i
(VR): 9 e (VoR) <O, e (Fresfie)

and similarly for p,,. Note that this method is generalizable to any parameter 6 with statistic
6 and boostrapped statistics under the null {é?}le. We term our specific procedure as

KDE-boot.

-~

e  Test statistic (7,R)

W (R Ba(r) < .5.7)

‘\ Y
\ A ’55(
““"O'I"II'

,u c,ly,
0
“ L0

Figure 2.2: Visualization of KDE-boot in action. The shaded dark gray area represents
regions of more extreme values than our test statistic under Hy, which be the integration
region in calculating the p-value.
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2.3 Simulation

We conduct simulation studies to investigate the performance of our proposed methods.
We report here results for the model Y;; = By + 51.X;; + U; + €5, with (8o, 1) = (1,2)
and cluster scenarios (I, J;) = (50, Unif{350,450}), (500, Unif{3,4}), (1000, Unif{3,4}),
where Unif{a, b} denotes the discrete uniform distribution over {a,a + 1,--- ,b}. Within
each cluster scenario, we generate U; and ¢;; to produce ICC levels p = (0.01,0.05,0.10),
(0.25,0.50,0.75), (0.75,0.85,0.95), respectively, with mean-zero centered combinations (Uj, €;5)
of

1. (Normal, Normal), corresponding to (7, ) = (0,0) and (7, ) = (0,0)
2. (Normal, Exponential), corresponding to (7., k) = (0,0) and (7., ke) = (2,6)
3. (Exponential, Normal), corresponding to (7., k) = (2,6) and (7., k) = (0,0)

4. (Beta(5,2), Exponential), corresponding to (7, £y) = (—0.60,—0.12) and (7., k) =
(2,6)

5. (t7, Uniform), corresponding to (v, £y) = (0,2) and (7., k) = (0, —1.2)

There are a total of 3 x 3 x 5 = 45 scenarios. The three cluster scenarios represent roughly
a large-scale cluster randomized trial (CRT), a medium-scale reliability /agreement study
(MRS), and a large-scale reliability /agreement study (LRS).

Figure 2.3 displays the average lengths and empirical coverages of ICC CI’s of our pro-
posed REMM-F, bootstrap REMM-N, Smith’s method [Smith, 1956], and GEE2. Smith’s
method assumes normality of observations and constructs CI's based on the asymptotic
distribution of p = s2/(s* + s?); it was demonstrated to provide the best overall coverage
and interval lengths under normality in simulation studies performed in Donner [1986].
Across a wide range of settings considered in Figure 2.3, REMM-F exhibits good perfor-
mance in terms of actual coverage and lengths of the CI's. For example, in the MRS and
LRS settings (Figures 2.3(b) and (c)), REMM-F coverages and lengths are nearly equal to
that of the bootstrap REMM-N and Smith’s in the normal-normal settings, despite fitting
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Figure 2.3: ’+ REMM-F x Bootstrap REMM-N ¢ Smith VGEEQ‘ Empirical coverage levels
and lengths for each of the ICC confidence interval methods under several scenarios, averaged
over 1500 replicate simulations.
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additional parameters, yet REMM-F achieves nominal coverage in the non-normal settings
whence bootstrap REMM-N and Smith’s fall short. GEE2, while achieving nominal cov-
erage, consistently produces CI's longer than that of REMM-F (up to 70% longer in some
settings). In the CRT settings (Figure 2.3(a)) where the number of clusters is not too
large, REMM-F displays more stable behavior than the other three methods in non-normal
settings, and still has competitive CI coverage and lengths in the normal-normal settings
against bootstrap REMM-N and Smith’s; the coverage of the GEE2 approach is lower than
the nominal level in all settings.

Figure 2.4 displays the test of normality p-values for the random effects and errors with
our proposed KDE-boot method against those of SW and AD on the conditional modes
and fitted residuals. Note that the SW test can handle up to sample sizes of 5000 [Rahman
and Govindarajulu, 1997], as implemented in the shapiro.test function in R, hence the
SW test was omitted for ¢; within the CRT scenarios, where we had more than 5000
residuals. Throughout all scenarios, the proposed KDE-boot test controls for the nominal
type I error rates better than SW or AD. The MRS scenario in Figure 2.4 (b) best exhibits
the “spill-over” phenomenon mentioned in Section 2.2.3. In the normal-exponential case,
the Type I error rates of the SW and AD tests on U; are severally inflated (nearly 80% for
ICC = 0.25), only settling down to nominal levels when ICC = 0.75. The KDE-boot test is
much closer to nominal rejection rate in all MRS cases. A similar phenomenon is observed
for the Type I error rates on ¢;; in the exponential-normal case. For the LRS scenario in
Figure 2.4 (c), we continue to observe inflated Type I error rates for the SW and AD tests
for U; when the distribution of €;; is non-normal and similarly for ¢;; when the distribution
of U; is non-normal. KDE-boot demonstrates more power than both SW and AD in the
MRS (Beta(5,2), Exponential) scenarios and MRS/LRS (¢7, Uniform) scenario.

Figure 2.5 displays the actual coverage and length of CI’s for the skewness and kurtosis
of U; and ¢;; using the proposed REMM-F method. The CI coverage for the skewness and
kurtosis of €; is near nominal level in all scenarios. Among the non-normal scenarios chosen
for €;;, it appears the Fleishman distribution provides a good approximation to the expo-

nential distribution, and an over-estimation of higher moments for the uniform distribution.
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Indeed, denoting fi, = E[(X — p)"]/o™ as the nth standardized central moments, the 5th
to 8th fi, of an exponential distribution are (44, 265, 1854, 14833), respectively, while the
5th to 8th 1, of a Fleishman distribution with first four moments equal to an exponential
are approximately (44.5, 272, 1957, 16231), respectively. By previous heuristics, we require
our 6th and 8th moments to be approximately matched in order to establish reliable CI’s
for the skewness and kurtosis, which is satisfied in this case. For the uniform distribution,
the 5th to 8th f, are (0,3.86,0,9), while the 5th to 8th f, of a Fleishman distribution
with first four moments equal to a uniform are (0,8,0,774). Here, estimates for the 6th
and 8th moments based on the Fleishman distribution substantially overestimates those
from a uniform, leading to conservative confidence intervals for the skewness and kurtosis.

Inference for the skewness (7.) and kurtosis (k) of the error distribution is effectively
based on ). J; residuals, while inference for the skewness (v,) and kurtosis (k,) of the
random effects distribution is effectively based on I cluster-level summaries. Therefore,
inference based on %, and k, depends more heavily on their small-sample performance.
Simulation studies by Lehmann et al. [2013] showed that at least 1000 data points are
needed to reliably diminish bias in the sample skewness for mildly skewed distributions.
We observe here REMM-F yields adequate coverage for the skewness of the random effects
distribution and mixed results for the kurtosis.

Overall, these simulations suggest that REMM-F CI’s for the skewness and kurtosis of
€;; are quite good, but we should remain vigilant when constructing CI's for the skewness
and kurtosis of U;, only seriously considering them when ~,, x, are close to 0 or I is large,

say I > 1000.

2.4 Proposal 1I: QN-ICC for agreement studies

The ICC is commonly used to quantify agreements among different measurements. As men-
tioned in the Introduction, it operates on a linear scale and is sensitive to outlines and un-
derlying distributions. In this section, we propose a modified ICC, the quantile-normalized

ICC (QN-ICC) with respect to a reference distribution, to overcome these limitations. Let
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1500 replicate simulations.
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Yi; be a measurement on the i¢th subject with metric j. If no measurement is recorded
for the (7, 7)th element, either due to missing data or structural reasons of the design,
encode with NA. We assume the missingness process is independent of the measurements
and other baseline covariates, i.e. the missing completely at random (MCAR) assumption
[Rubin, 1976]. Let J be the number of metrics, J; the number of valid measurements for
subject ¢, I as the total number of subjects, and /; as the number of subjects with a valid

measurement for metric j. The procedure for QN-ICC is as follows:

1. Compute the standardized ranks R;;, where R;; = NA if V;; = NA, otherwise R;; =
]j—il Zéjzl I(Y;; > Yi,Yi; # NA)Y,, # NA), where I is the indicator function. In
other words, if we lay Y;; in an I x J table, we rank the observations in each column,

leaving the NA’s alone, and then divide each column by I; + 1 to ensure R;; € (0, 1).

2. Compute the quantile-normalized observations Y;;, where Y;; = NA if R;; = NA,
otherwise Y;; = G(R;;), where G is the distribution function of the reference dis-

tribution.

3. Ignore the NA’s, since we are assuming MCAR, and compute point estimates and

CTI’s of the ICC for the quantile-normalized observations with REMM-F.

QN-ICC possesses several desirable properties, including transformation invariance, ac-
counting for missing data, and choice of reference distribution to target agreement in the
most relevant range. Steps 1 and 2 comprise the quantile normalization step, which is one of
the most frequently used techniques of data preprocessing in microarray analysis [Bolstad
et al., 2003]. These steps standardize each of the metrics to a common reference distri-
bution G, at which point it makes sense to compute agreement in the form of, say, ICC.
The canonical reference is the uniform distribution G(r) = r, resulting in equal weights
for all observations. Other scenarios might warrant a different reference distribution. For
example, it may be of interest to quantify the agreement among various air quality metrics
such as PM, 5 concentration, PMy concentration, SO, concentration and NO, concentra-

tion. These metrics are often modeled by a lognormal distribution; the lognormal nature

47



would naturally lead to high values of ICC due to its heavy-tailness and right-skewness.
In assessing agreement among these metrics, it may be desired to weight higher concen-
trations more, since (1) air quality monitors are less accurate at lower concentrations and
(2) higher concentrations are more likely to elicit immune response and hence they are the
quantities of interest. At the same time, weighing according to a lognormal distribution
may be too extreme, and one may prefer a reference distribution with mitigated right-skew
and leptokurtic properties. Therefore, a reference distribution such as Gamma(4,6) may

be advantageous.

2.5 Application to CHAT Signal Data

The Childhood Adenotonsillectomy Trial (CHAT) [Marcus et al., 2013] is a multi-center,
single-blind, randomized, controlled trial designed to test whether after a 7-month obser-
vation period, children, ages 5 to 9.9 years, with mild to moderate obstructive sleep apnea
randomized to early adenotonsillectomy (eAT) will show greater levels of neurocognitive
functioning, specifically in the attention-executive functioning domain, than children ran-
domized to watchful waiting plus supportive care (WWSC). Physiological measures of sleep
were assessed at baseline and at 7-months with standardized full polysomnography with
central scoring at the Brigham and Women’s Sleep Reading Center. In total, 1,447 children
had screening polysomnographs and 464 were randomized to treatment. Data from EEG
spectral analysis were available on a subset of subjects (I = 409) at baseline. The data
include log power spectral density Y;; for the ith subject at the jth channel (C3, C4, F3,
F4, O1, O2) for each wave (6,0, a, 0, 3).

We would like to characterize the agreement within each wave across various channels.
Figure 2.6 displays the two-way scatter plots for the 15 unique pairs of the six channels
within the 0 wave. We see that the log power spectral density remains right-skewed, hence
the agreement will be large due to a few influential points. On the ranked scale, agreement
is more ambiguous (i.e. f3 vs 02). We fit the models 5}1"7‘ = i+ U; + €, where ffij are

the Studentized (i.e. linearly transformed log power densities within each channel to have
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Scatterplot matrix for signals within delta frequency, unnormalized
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Figure 2.6: Scatterplot matrix displaying pairwise scatterplots of log spectral wave density
among the six available channels on the off-diagonals and kernel density plots of log spectral
density for each channel on the diagonal. Note the unnormalized density plots exhibit right-
skewness for each channel, even so after a log transform. The normalized density plots are
uniformly distributed and should resemble a rectangle, but the nature of Gaussian kernels
always give density to points outside a finite support.
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mean 0 & standard deviation 1), Uniform QN, and Normal QN versions of Y;;. Tables 2.1,
2.2, and 2.3 display the p-values of the normality tests and estimates (CI's) for the ICC /
skewness / kurtosis from these three models, respectively. ICC was estimated using REMM-
F, bootstrap REMM-N, Smith’s method, and GEE2. Normality tests were conducted with
KDE-boot, SW, and AD. Skewness and kurtosis was estimated based on REMM-F. We
use B = 10000 bootstrap samples for REMM-F and bootstrap REMM-N.

) 0 o o B
ICC
REMM.F 0.921 0.923 0.913 0.907 0.937
[0.875,0.949]  [0.884,0.949]  [0.869,0.943]  [0.857,0.939]  [0.898,0.961]
REMM-N 0.921 0.923 0.913 0.907 0.937
(Bootstrap) [0.909,0.931]  [0.911,0.933]  [0.899,0.924]  [0.892,0.919]  [0.927,0.945]
REMM-N 0.921 0.923 0.913 0.907 0.937
(Smith) [0.91,0.932] [0.912,0.934]  [0.901,0.925]  [0.894,0.92]  [0.928,0.946]
GEE2 0.936 0.934 0.924 0.918 0.947
(0.89,0.982] [0.889,0.979]  [0.876,0.972]  [0.866,0.971]  [0.901,0.993]
CICEEZ _ G[REMM-F
% 0.252 0.383 0.306 0.279 0.473
length
Normality
U, KDE-boot 0 0 0 0 0
U; SW 0 0 0 0 0
U; AD 0 0 0 0 0
€;; KDE-boot 0 0 0 0 0
€ij SW 0 0 0 0 0
U. Skewness 3.886 3.318 3.468 3.811 4.269
‘ [2.457, 5.863]  [1.988, 5.316]  [2.184, 5.281]  [2.446, 5.708]  [2.617, 6.058]
U. Kurtosis 24.22 19.32 19.971 22.514 26.976
: [6.555, 52.898]  [5.049, 46.963]  [5.343, 44.461]  [6.569, 50.406] [7.523, 55.655]
¢ Skewness 0.079 0.077 0.087 0.093 0.063
gl [0.072, 0.087]  [0.071, 0.084]  [0.08, 0.094]  [0.086, 0.101]  [0.057, 0.07]
-0.618 -0.414 -0.071 -0.069 0.163

€y Kurtosis 1 999 0.281]  [-0.768, -0.094]  [-0.297, 0.153]  [-0.321, 0.174]  [-0.288, 0.617]

Table 2.1: Analysis results of CHAT EEG log spectral density with Studentized values
within columns. Top panel presents point and 95% CI’s for the ICC; middle panel presents
p-values from normality tests on U; and €;;; bottom panel presents point and 95% CI’s for
the skewness and kurtosis of U; and ¢;;. Each column represents a specific EEG wave.
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5 0 a o 3

ICC
0.795 0.826 0.793 0.756 0.778
REMM-F [0.772, 0.815] [0.807, 0.844] [0.77, 0.813] [0.73, 0.78] [0.753, 0.8]
REMM-N 0.795 0.826 0.793 0.756 0.778
(Bootstrap) [0.767, 0.819) [0.802, 0.847] [0.765, 0.817] [0.724, 0.784]  [0.748, 0.803]
REMM-N 0.795 0.826 0.793 0.756 0.778
(Smith) [0.769, 0.821] [0.803, 0.849] [0.767, 0.819] [0.727,0.786]  [0.750, 0.805]
GEE2 0.799 0.83 0.793 0.755 0.78
[0.767, 0.831] [0.802, 0.858] [0.76, 0.825] [0.718,0.791]  [0.746, 0.814]
CIGEEZ _CIREMM»F
e — 0.464 0.521 0.506 0.488 0.415
length
Normality
U; KDE-boot 0 0 0 0 0
U; SW 7.0 x 1077 0 4.3 x 1077 1.7 x 1076 1.8 x 1076
U; AD 9.6 x 1076 0 4.0 x 1076 2.3 x107° 1.9 x 107°
€i; KDE-boot 0 0
€ij SW 0 0
Eij AD 0 0
U, Skewness 0.041 0.044 0.053 0.043 -0.009
i DEEW [-0.111, 0.196]  [-0.114, 0.198] [-0.1, 0.206] [-0.111, 0.201]  [-0.161, 0.148]
U, Kurtosis -1.095 -1.158 -1.104 -1.08 -1.077
: [-1.243,-0.932]  [-1.319, -0.993] [-1.253,-0.939]  [-1.237, -0.905]  [-1.23, -0.905)
c.. Skewness 0.017 0.014 0.017 0.02 0.018
& [0.016, 0.019] [0.013, 0.016] [0.016, 0.019] [0.019, 0.022] [0.017, 0.02]
-0.294 -0.069 -0.021 -0.086 0.047

€ij Rurtosis -1 503 0.023]  [-0.345, 0.203]  [0.264, 0.222]  [-0.386, 0.195]  [-0.265, 0.363]

Table 2.2: Analysis results of CHAT EEG log spectral density with uniform QN. Top panel
presents point and 95% CI’s for the ICC; middle panel presents p-values from normality
tests on U; and €;;; bottom panel presents point and 95% CI’s for the skewness and kurtosis
of U; and ¢;;. Each column represents a specific EEG wave.

From Table 2.1, we see that, even after the log transform, the skewness and kurtosis
of U; are quite high for each wave (4, € [3.3,4.3] and &, € [19,27]). Therefore, the ICC
estimates are likely to be greatly affected by a few, large influential points. Based on the
naive estimates, the wave-specific log power density ICC > 0.90 for each method. In any
case, GEE2 provides CI lengths which are 25% to 47% longer REMM-F CI lengths for

each wave. We see that the wave-specific skewness and kurtosis estimates of U; and ¢;;
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5 0 a o 8

ICC
REMML-F 0.823 0.846 0.821 0.791 0.816
[0.796, 0.846]  [0.822, 0.866]  [0.794, 0.844]  [0.76, 0.817]  [0.788, 0.841]
REMM-N 0.823 0.846 0.821 0.791 0.816
(Bootstrap) [0.798, 0.845]  [0.823, 0.864]  [0.796, 0.843]  [0.763, 0.815]  [0.792, 0.838]
REMM-N 0.823 0.846 0.821 0.791 0.816
(Smith) 0.8, 0.846] [0.825, 0.866]  [0.798, 0.844]  [0.764, 0.817]  [0.793, 0.84]
GEE2 0.829 0.851 0.822 0.791 0.819
[0.797, 0.861]  [0.821, 0.88]  [0.789, 0.854]  [0.754, 0.829]  [0.785, 0.854]
CICEE2 _[REMM-F
% 0.291 0.350 0.301 0.319 0.301
length
Normality
U; KDE-boot 0.509 0.662 0.510 0.357 0.307
U; SW 0.568 0.676 0.757 0.713 0.530
U; AD 0.766 0.426 0.619 0.660 0.376
€;; KDE-boot 0 0 0 0 0
€i; SW 0 0 0 0 0
U. Skewness 0.096 0.097 0.094 0.097 -0.003
B IR [-0.178, 0.372]  [-0.158, 0.36]  [-0.184, 0.373]  [-0.188, 0.402]  [-0.315, 0.296]
U Kurtosis 0.135 0.051 0.136 0.245 0.298
: [-0.386, 0.841]  [-0.415, 0.686]  [-0.379, 0.84]  [-0.342, 1.062]  [-0.296, 1.158]
¢ Skewness 0.173 0.15 0.175 0.204 0.179
g [0.158, 0.188]  [0.138, 0.164]  [0.162, 0.188]  [0.188, 0.221]  [0.164, 0.196]
-0.382 -0.295 -0.116 -0.151 -0.026

€ Kurtosls g 679 0.114]  [0.612, 0.013] [-0.342, 0.105]  [-0.42, 0.103]  [-0.36, 0.305]

Table 2.3: Analysis results of CHAT EEG log spectral density with normal QN. Top panel
presents point and 95% CI’s for the ICC; middle panel presents p-values from normality
tests on U; and ¢;;; bottom panel presents point and 95% CI’s for the skewness and kurtosis
of U; and ¢;;. Each column represents a specific EEG wave.
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are quite similar among each other, so quantile normalization is not required if one were
concerned with matching the distributions as closely to each other as possible. But if one
were concerned with the inequitable weighting from this Studentized distribution, since it
gives far more weights to agreement of larger log power densities than smaller, then QN-
ICC may be preferred. If we favor equal weighting, than we shall refer to the Uniform
QN-ICC results in Table 2.2. Here, we see that the agreement is less (p € [0.75,0.83] per
wave class). Also, REMM-F CI's for the ICC are shorter than intervals produced from
bootstrap REMM-N or Smith’s method; this is due to REMM-F leveraging the fact that
Ry < 0. The relative lengths of GEE2 CI’s of ICC over that of REMM-F is even more
pronounced with this normalization, ranging around 40% - 50% longer.

Finally, we use a normal reference distribution in QN-ICC in Table 2.3, which gives
more weight to agreement among larger and smaller values than a uniform reference. We
see now see these calculated ICC’s for the various waves are between that of the Studentized
and uniform QN-ICC, indicating that there isn’t as much agreement among lower values
of log power density, but not enough to overpower the agreement among higher values. As
before, GEE2 provides significantly longer CI's than REMM-F for the ICC, ranging from
25% to 30% longer.

2.6 Discussion

In this paper, we propose REMM-F for estimating the distributions of the random effects
U; and errors ¢€;; in a one-way LMM. Our methods are especially useful for inference on
second-order quantities, such as the ICC, allowing flexible distributional assumptions on U;
and ;. If interest is solely on the main effect terms, then the estimators obtained through
fitting with a normal LMM are robust to misspecification of the distributions of U; and
€;;. Methods in characterizing finer distributional characteristics, such as skewness and
kurtosis, are lacking, and REMM-F provides a starting point in producing reasonable CI’s
for these quantities in certain situations.

Unlike the analytical methods of Smith and GEE2 in constructing ICC CI’s, our pro-
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posed REMM-F method is generative in nature. An early motivation of our work is the
construction of ICC CI’s under a missing data framework using multiple imputation, for
which a generative method is required. We aspire to demonstrate in future works the valid-
ity and effectiveness of our proposed methods under the various missingness mechanisms.

We propose a test of normality, called the KDE-boot, for the distribution of the random
effects and that of the subject-specific errors. The idea behind this test is to construct a
kernel-density estimator for the joint distribution of a multivariate test statistic, i.e. the
skewness and kurtosis. This test can help guide the choice between the use of normal LMM
and REMM-F. We also propose QN-ICC, a modified ICC estimator to measure agreement
among different metrics. QN-ICC enjoys the advantages of transformation invariance and
flexibility in reference distribution to target specific regions that of particular interests.

Our proposed framework is customizable. For example, the Fleishman distribution
can be replaced with any other flexible distribution, preferably one which is easy to sim-
ulate from. We could replace the moment equations in Eq 2.4 with ones that are less
biased or more efficient when such equations become available. Although we focused on
ICC on the linear scale, estimation and inference can be extended to some cases within
generalized linear mixed models (GLMM). For example, in time-to-event data, we model
Yi; = exp(9(Xi;) + 1 + U; + €;;) and perform our procedure on the observations logY;;,
which is then backtracked to the manifested scale as follows:

Vo x B EeQUi (Ee€ii)2 o (EeUi>2(Ee€ij)2
ij/‘ ij ij’) - EeQUiE(EQE“ _ (EeUi>2(EeEij>2

p = Corr(Y;

B

Adapting this to the binary case is more challenging, and more investigation is needed
and would be useful, as inference even on the main effects can be severely affected by the
misspecification in the distributions of the random effect and error distributions in such

cases [Litiere et al., 2007].
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Chapter 3

Robust Estimation of Recurrent
Event Mean Functions in the
Presence of Informative Event
Censoring

Motivated by a novel “evolving cluster randomized trial” for HIV prevention, where trans-
mission clusters centered on newly HIV diagnosed individuals are established over time
through phylogenetic analyses, we develop an estimating procedure for the intervention ef-
fect on patterns of HIV transmission in terms of the cluster sizes over time of the “evolving
rings”. We view each contact linked to the index case as a recurrent event to the index
case and estimate treatment effects based on marginal rate and mean functions. A diffi-
culty that arises is informative censoring of these contacts, which equates to missing events
within the recurrent event process. We account for this dependent censoring through the

use of inverse probability censoring weights.

3.1 Introduction

HIV transmission network analysis has been used to describe viral transmission dynamics,
emerging epidemics, cross-national transmission and cluster growth dynamics. Identifying

transmission clusters with higher growth rates is crucial from a public health perspective,
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where public health interventions could improve care outcomes and prevent new infections.
Several molecular HIV surveillance techniques have been introduced in order to identify
HIV transmission networks, including phylogenetic [Dennis et al., 2012; Grabowski and
Redd, 2014], genetic distance [Campbell et al., 2017; Wertheim et al., 2017], and combi-
nation methods. The RIING study is one such study which employs phylogenetic linkage
and a novel “evolving cluster randomized trial” design to evaluate interventions aimed at
reducing HIV incidence in the study population. This design administers immediate an-
tiretroviral therapy (I-ART) to all infected index cases (i.e. participants identified and not
phylogenetically linked to any previous cases). Uninfected participants who are sexually
or socially in contact, either directly or through intermediary contacts, to existing indexes
are referred to as contacts of index (COI). They are discovered through, for example, dis-
ease intervention specialists, health care providers, health department staff, community
members, or from the indexes themselves. COls receive intervention based off their shared
indexes; that is, the social or sexual contact clusters induced from each index are the unit of
randomization. In the Intervention arm, these uninfected contacts will receive immediate
pre-exposure prophylaxis (I-PrEP). In the Standard of Care (SOC) arm, the uninfected
contacts of the index will receive SOC linkage to available testing and prevention services.
This study aims to characterize transmission networks of the trial participants and assess
the effect of the treatment on patterns of HIV transmission to inform the design of the
future efficacy studies.

To facilitate the characterization of the transmission network patterns, we consider a
linked contact to the index as a recurrent event and the transmission cluster as comprised of
these linked individuals to the index, excluding the index himself. Under this framework,
the size of transmission cluster corresponds to the number of recurrent events and the
growth rate of the cluster corresponds to the rate function of the recurrent events. More
specifically, consider a single homogeneous group of subjects, and let N;(t) denote the
number of COIs linked to index i over the time period (0,¢]. Then the event mean and
rate functions are, respectively, u(t) = E[N;(t)] and p(t) = 1/(t), where we assume that

events occur in continuous time. To compare two treatment groups, say SOC group 0
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and Intervention group 1, we can conveniently consider ratios pu1(t)/po(t) or pi(t)/po(t), or
differences 1 (t) — po(t) or p1(t) — po(t). We will focus on treatment difference T'D(t) &f
1(t) — po(t) throughout this paper, for it directly characterizes the average number of HIV
infections prevented per index in using Intervention over SOC.

There have been considerable advances in the past few decades on statistical methods
for the analysis of recurrent events. Perhaps the most popular approach for analysis of
survival data is the Cox proportional hazards model [Cox, 1992]. Due to the independence
assumption, the original Cox model is only appropriate for modeling the time to the first
event, which is an inefficient use of data because data from the later events are discarded.
Extensions of the original Cox model have been proposed for analyses of recurrent event
data such as Andersen-Gill (AG) [Andersen and Gill, 1982], Prentice, Williams and Pe-
terson (PWP) [Prentice et al., 1981], Wei, Lin and Weissfeld (WLW) [Wei et al., 1989]
and frailty models [Therneau, 1997]. The analysis strategy taken in this work is through
modeling the mean number of events [Cook and Lawless, 2007; Lin et al., 2000; Pepe and
Cai, 1993].

The issue of missing data complicates effect estimates. The diagram below displays

four data patterns we may observe for each COI, henceforth referred to as Scenarios 1 — 4,

respectively.
/ S¥ Scenario 1
e -~ — 0%y Scenario 2
ndex 1
i O + Scenario 3
O — x Scenario 4

oContacted, not infected +Infected @ Contacted & infected xCensored & Contacted & refused

Figure 3.1: Four types of data scenarios in the RIING study
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Scenario 1 represents a setting where a COI had already been infected when identified.
Here, the timing of the infection is ambiguous: the COI may have been infected before
the index and the index was simply observed first in the study, or the COI was infected
afterwards. In the former, time to infection is not well-defined. To avoid this, our charac-
terization will work with time to phylogenetic linkage rather than time to infection. While
this metric is not a perfect proxy for infection time, it captures the general trends for
infection times between two treatment groups. In Scenario 2, a COI was unable to get
in touch or refused to participate. In Scenarios 3 and 4, COIs participated in the study
and were followed over time for their infection status, and they either become infected
(Scenario 3) or remain uninfected until the end of study or loss to follow-up (Scenario 4).
Contacts of contacts are treated similarly as in Figure 3.1. Transmission clusters grow as
new diagnosed individuals become linked to the index cases through phylogenetic analysis.
The goal of investigation is to characterize the growth of the transmission clusters and to
estimate treatment effect on features of transmission clusters, accounting for refusal into
the study and informative censoring. Numerous works [Cole and Hernan, 2004; Rotnitzky
and Robins, 2005; Sugihara, 2010] have discussed inverse probability weighting techniques
to accounting for informative censoring in the survival analysis context. Cook et al. [2009]
addressed a similar problem in accounting for informative censoring of an entire count-
ing process N;(t). But, this is akin to accounting for all contacts in a cluster refusing or
dropping out, while we need to address each event (individual) who refuses entry or drops
out.

In Section 3.2, we begin with a background on recurrent event analysis and the model
set-up. From there, we state the naive estimator for mean number of recurrent events
and our proposed estimator which adjusts for informative censoring of events. We prove
the consistency of our estimator here and advocate the use of bootstrap for inference. We
evaluate the performance of our methods with simulations in Section 3.3 and end with a

discussion in Section 3.4.
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3.2 Methods

3.2.1 Data Structure & Model Set-Up

For each index case i (i = 1,---,I), denote COl;, (n = 1,---,N;) as the nth contact
(direct or indirect) of index. Let Tj, denote time to phylogenetic linkage, A; € {0,1} denote
intervention, and X;,, denote other baseline covariates, which may include covariates of the
index or covariates of direct contacts to COI,, if relevant. Let C;, be the time to contact
(i.e. time to be socially/sexually linked to index) in the study, D;, € {0, 1} indicate if a
contact participates in the study, R;, as time to loss-to-follow up, and 7; as time to end of
observation. For each contact, we observe (U, Cin, 7, Dm,53;l,5ffl,Ai,Xm), where U,,, =
(Tin A Rin AT3) Dy + Cin(1 — Dy, 0F = 1(Uyy, = Ti) Din, and 6% = 1(U;, = Ryy,). Because
phylogenetic linkages can only be made after contact, we assume T;, > C;, throughout. If
context is clear, we will omit the index 7 to refer to a general index.

For a sequence of events Ty,T5,---, let N(t) = > 2 I(T,, < t). Then, N(t) is a
right continuous process for the number of events over time interval (0,¢] for a general
individual, with dN(¢) = 1 if an event occurs at time ¢ and 0 otherwise. Let Z(t) denote
a covariate process. The history process attached to each individual is denoted by H(t) =
{N(u),Z(u) : 0 < u < t}. In practice, processes are observed over a finite period of time
[0,7;), so we also let T;(t) = I(t < 7;) indicate whether the process is under observation at

time t. The intensity function and rate function of a recurrent event process are defined,

respectively, as

) = g, SEEOC T gt g, FEE 0

The rate function is conceptually and quantitatively different from the intensity function;
the rate function is defined as the occurrence rate of recurrent events unconditional on the
event history and covariates, whereas the intensity function is the occurrence rate condi-
tional on the event history. In general, the rate function gives more direct interpretations for
identifying risk factors, and the use of it is preferred over the intensity function in many ap-

plications [Cook et al., 2009; Wang et al., 2001]. Specifically, the quantity pu(t) = fot p(u)du
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is the expected number of events by time ¢, which is computed in each treatment group to

provide us the treatment difference.

3.2.2 Recurrent Events with No Missing Events

We consider nonparametric estimation of p(t), although a similar development applies to
parametric models. As do many other authors [Lin et al., 2000; Miloslavsky et al., 2004],
we write, informally, E[dN;(t)] = du(t) and, correspondingly, E[dN;(t) — du(t)] = 0. We
can then consider estimating equations of the form

I

> Ti6)(dNi(#) = dp(t)) = 0 (3.1)

i=1
Eq 3.1 is the maximum likelihood score equations derived under a Poisson model (Law-

less and Nadeau 1995), but are unbiased more generally for the mean function whenever

E[dN:(t)|T:(t) = 1,321, Ti(t)] = du(t). They produce the estimator

_ SL Tt)dN()
ST

from which we can obtain the mean function pu(t) = fg du(u). Analogously, with no missing

dp(t)

data, the estimator to characterize the rate function in each intervention arm a € {0, 1} is
given by the estimating equation

1

> I(Ai = a)Ti(t) (AN (t) — dpa(t)) = 0 (32)

=1

and treatment difference TD(t) = pq(t) — po(t).

3.2.3 Recurrent Events with Inverse-Probability Weighted Events

With missing data, the crude, complete-case estimating equation is

1

> 1A = a)Ti() (5] ()N (t) — dpg®(t)) =0

=1
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where 67 (t) = 1(t € {U;, : §;n = 1}). Under dependent censoring, this estimating equation
is no longer unbiased. We develop an inverse probability censoring weighted estimators to

account for informative missingness and censoring. We make the following assumptions:
(A1) (Conditionally uninformative refusal) T; 1L D;|C;, 4;, X

(A2) (Conditionally uninformative drop-out) T; 1L R;|C;, A;, X,

(A3) (Conditional independence between refusal and drop-out) D; 1L R;|C;, A;, X;
(A4) (Independent end-of-observation) 7;(¢) L (T;,D;,R;)|C;, 4;, X,

Al and A2 are more generally known as the restricted missing at random (rMAR) [Prague
et al., 2016] and no unmeasured confounders for censoring [Robins and Finkelstein, 2000]
assumptions. They state that whatever process that may guide each subject’s time to
phylogenetic linkage and propensity to refuse or drop-out can be explained by observable,

baseline covariates. Hence, they provide a framework that leverages baseline covariates to

correct for bias. Since N;(t) = > 7 I(T;, <t), Al and A2 imply
(ATF) N;(t) L Dy|C;, A, X

The mechanism in which each subject’s refusal D;, and drop-out R;, interacts could be

very complicated. A3 provides a convenient decoupling

(A3%) P(6] (1) = 1|Zi(t)) = 7p(Zi(1)) Sr(t|Z:(t))

where Z;(t) &of (Ci(t), Ai(t), X;(t)) & (Cin, Aiy Xin = t € {U,}) are any relevant covari-

ates of the COI who experiences censoring or an event at time ¢. The propensity scores
mp(Z(t)) = P(D = 1]|Z(t)) is the probability of accepting entry into the study, and cen-
soring distribution Sg(t|Z(t)) = P(R > t|Z(t)) is the drop-out survival function. A model
for mp(Z(t)) can be fit from the data (Dy,, Ci,, A, Xin), and a model for Sg(t|Z(t)) can be
fit from the data (Us,, 6%, Cin, Ai, Xin). A sensible model for the drop-out process should
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take the form Sg(t|Z(t)) = Sg(t — Cin|Ai, Xin), since drop-out can only accumulate risk
if a subject accepts participation into the study, and by convention of setting U, = C;,
when subject refuses, then Sg(t — C;,|A;, X;) = 1 and thus contributes no weighting from
drop-out, as expected. A4 just requires the observation period to be conditionally indepen-
dent of the time to phylogenetic linkage, refusal process, and drop-out process. In practice,
it is often the case that end-of-observation is determined administratively, and completely
independent.
The proposed IPW adjusted estimating equation takes the form
I

ZS(t‘Zz(t)) d:ef ZH(AZ = a)ﬁ(t) (WD(ZZ(t§Sé'Z)(t|Zz<t))dN( ) dIuIPW< >> =0 (33)

or equivalently,

I _ 57 (t)
IPW/,\ _ 2o (A = a) Ti(1) WD(Zi(t))SR(tlzi(t))dNi(t)
I _ 57 (t)
Zi:l I(A; = a)Ti(t) 7p(2:(1))Sr(t|Z: (1))

If models for mp(Z(t)) and Sg(t|Z(t)) are correctly specified, then the estimator dulf'V(¢) in

Eq 3.3 is consistent and asymptotically normal. Proof of consistency follows by showing the

summands in Eq 3.3 are unbiased and by applying standard results regarding M-estimators
[Van der Vaart, 2000]. Indeed,

57 (t)
™o (Zi(t ))SR(tIZ (1))

oF (t)
(Zi(t )SR(t\Z (®))

E[S(Z:(0)] = E [I(4; = a)Ti(0) ( AN (1) — duPV (¢ ))}

E}E(H(Ai o), <>( — ANE) ~ () )

)

=E _]I(Al- = - SR t|Z]( ))E[dNi(t)|Zi( )] — dptPW(t )))} (A1*, A2*, A4)
=E [I(4; = o)E] £)] (E[dN:(1)|Zi(1)] — ™ (1)) ] (A37)

=E [E[I(4; = a)Ti(t )( i(t) — IPW( £)) 1Zi()]] (A1%, A2%, A4)
=E [[(A; = a)Ti(t) (dN;(t) — dpg " (1))]

So, the expectation of the summands S(¢|Z;(t)) reduce down to the unbiased estimating
equation in the no missing data scenario in Eq 3.2, as desired.

IPW( )

It may be possible to derive variance estimates for , but the resulting form would

be very complicated and it is simpler to employ bootstrap methods. The complication lies
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in having to estimate weights 7p(Z;(t)) and Sg(t|Z;(t)). Had we known the exact weights,
then we could use the asymptotics derived in Andersen and Gill [1982] to construct con-
fidence intervals for W (¢). Since the weights need to be estimated, a direct method in
combining the variation in the estimated weights 7p(Z;(t)) and Sg(t|Z;(t)) and variation
in the other expressions in fl'W(¢) is unclear. The standard method would be to stack
estimating equations for 7p(Z;(t)) and Sg(t|Z;(t)) with that of du"WV(t) in Eq 3.3, but the
asymptotics derived in Andersen and Gill [1982] is based off martingale theory instead of
estimating equations, and it is unclear how to combine these two approaches. Numerous
empirical studies [Austin, 2016; Cook et al., 2009; Miloslavsky et al., 2004] have also ad-
vocated for use of bootstrap variance estimators, and we will proceed with its use as well.

For the bth (b= 1,---, B) bootstrap replicate, we perform the following steps:

1. Sample I index cases and their respective clusters with replacement. Alternatively,
one could sample with replacement within stratas {¢ : A; = 0} and {i¢ : A; = 1}
and combine to ensure balance between Intervention and SOC. Call the resulting

bootstrap dataset D®.
2. Fit models %g)(-) and :S‘\g)) () from DO,

3. Fit ,u(I)PW(b) (t) and Ve (t) from Eq 3.3 with /ﬁg)(-) and §I(%b) (t|-) as weights, which
then can be used to calculate TD®(t).

From here, we can calculate bootstrap standard errors and confidence intervals from the

bootstrap estimators.

3.3 Simulations

To evaluate the performance of our framework, we simulate with I = 100 indexes and
sample the number of COIs, N;, from a zero-truncated negative binomial with » = 5 and p =
0.3, resulting in a mean of approximately 12 total COls per index. Treatment is randomized

as A; ~ Ber(%) and two baseline covariates are distributed as X;, ~ N(0,371/2I,,,). End
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of observation 7; are sampled from Unif(18,25) and contact times Cj, from a truncated
exponential with rate A = 2 on the interval (0,7), where 7 = =Y 7;; this is the ensure
that all contacts happen before end of observation. Event times T}, are simulated from the

hazard
AT(t‘Aia Xim 771) = O.72t0'2efAi+X1in*X2m+m

where frailty term e follows from a positive stable distribution with parameter a = 0.9.
The term n; induces correlation among the individuals in the same cluster, which mimics
the heterogeneities of event times one might expect to see with genuine HIV transmission
clusters such as that studied in the RIING study. A subject’s willingness to participate in

the study is simulated from
DJ|A;, X, ~ Bernoulli(expit(0.5 + A; + 0.7X1;, — 0.5X5;,))

where expit(r) = (1+e7®)~'. This results in about 81% probability of participation within
the treatment arm, and 62% of participation within the control arm. Finally, the drop-out

process is simulated as
)\R(r’Aiy Xin7 Czn) — 008(T o Cin)—0.260.5A—0.5X1+0.5X2

Within those who accept participating into the study, the drop-out process retains a further
71% within the treatment arm, and 89% within the control arm. We define the true growth
curves as the mean function of the actual time to phylogenetic linkages. We perform 1000
replicate simulations and construct confidence intervals from 1000 bootstrap resamples.
Figure 3.2 displays the true growth curves among treated (solid orange) and control
(solid blue). For demonstration purposes, we plot non-solid lines to display estimates
based off a single replicate dataset from the 1000 replicate simulations. We see that the
crude estimators, for both treated and control, displays severe underestimation of the true
growth curves, with underestimation intensifying as time grows. This is behavior is to be
expected, for the crude estimators completely ignore the refused and censored individuals

in the study. The IPW estimators much better align with the true growth curves, since

64



12

10

Expected Number of Events
&
1

=T A=0Truth
A=1Truth
A=0CC
™ A=1CC
A=0IPW
A=11PW
o 4
I l l l I I
0 2 4 6 8 10

Time

Figure 3.2: Growth curves for treatment and control groups. The complete-case and IPW
fittings shown above are a single draw from the 1000 replicate simulations, shown for
demonstration purposes.

these estimators weight existing events to match the expected number of total events within
each intervention.

Table 3.1 displays summary statistics from the 1000 replicate simulations. The crude
estimators are severally biased and undercovered for each intervention group and on the
difference level. For some contexts in causal inference (i.e. matched designs), it may
be possible for biases to cancel out when considered on the difference level [DiPrete and
Engelhardt, 2004], but this is not the case here and still observe substantial bias. The IPW
estimators have negligible bias and attain nominal coverage levels for the means in both

groups and treatment difference.
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Time 1 2 3 4 ) 6 7 8 9 10

Bias
Crude mean # of linkages, A=1|-0.55 -1.15 -1.73 -221 -2.62 -2.98 -3.28 -3.53 -3.74 -3.91
Crude mean # of linkages, A =0 | -2.01 -3.15 -3.79 -4.21 -448 -4.68 -4.81 -491 -498 -5.03
Crude treatment difference 146 199 200 200 1.8 170 153 1.38 124 1.12
IPW mean # of linkages, A=1 |-0.01 -0.01 -0.02 -0.01 -0.01 -0.01 -0.01 -0.02 -0.01 -0.02
IPW mean # of linkages, A=0 | 0.01 0.01 -0.02 -0.01 -0.01 0.00 0.01 0.01 0.00 0.00
IPW difference -0.02 -0.02 0.00 0.00 0.00 -0.01 -0.02 -0.02 -0.01 -0.02

Coverage (%)
Crude mean # of linkages, A =1 0 0 0 0 0 0 0 0 0 0
Crude mean # of linkages, A =0 0 0 0 0 0 0 0 0 0 0
Crude treatment difference 0 0 0.1 0.3 1.9 6.8 16.6 271 40.0 50.2
IPW mean # of linkages, A =1 93.5 93.7 939 928 931 930 935 93.0 935 936
IPW mean # of linkages, A=0 | 934 942 933 913 926 91.2 916 91.7 922 924
IPW difference 93.0 934 940 939 934 943 945 939 937 938

Table 3.1: Bias & coverage for the crude and IPW estimators for growth curves in each
intervention arm, and their differences. Number of replicate simulations = 1000.

3.4 Discussion

In this work, we describe the RIING study and the unique problems it poses. From a
public health perspective, the ultimate purpose is controlling the spread of an epidemic
and therefore the direct metric to characterize effectiveness is number of infected, which
we approximate with the number of phylogenetically linked. This motivates our use of a
recurrent event framework to model these counts, but we encounter missing events and
therefore devise a solution based off inverse probability weighting.

It would be useful to more accurately characterize the contact network by differenti-
ating between direct contacts and contacts of contacts. Staples et al. [2016] provides a
model-based description of evolving clusters, and while such models are computationally
demanding, they could provide efficiency gains. Comparing between methods which ignore
and methods which take into account the evolving structure would be useful.

Time to phylogenetic linkage, by definition, would always occurs after time to infection.
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But, the ultimate number of phylogenetically linked can remain a very good approximation
for number of infected. Biologically, the number socially linked to index has an upper bound
and therefore must plateau over time. If, for example, the discovery process in identifying
COls were very effective, or the study period were longer, then we would expect the number
of phylogenetically linked by the end of study would nearly equal the number of infected.
That is, the phylogenetic linkage process N (t) may underestimate the true infection process
for small ¢, but ultimately would catch up for larger values of t. Nevertheless, there are
scenarios which no amount of effort into discovery nor waiting can reveal contacts, most
notably competing risks which incapacitate a contact before identification. When improved
HIV surveillance techniques become available and time to infection can be more accurately
estimated, our method remains valid by simply replacing time to phylogenetic linkage with
time to infection.

So far, the methods discussed in this work only accounting for “known missingness”;
that is, for subjects which are known to be in contact with index, but then either refuse
to participate to drop-out. However, these methods do not account for “unknown missing-
ness”, which are subjects who are never identified before the end of the observation period.
We aspire to extend the methods in this current work to account for this second type of
missingness.

For our methods to work, we require correction specification of the refusal and drop-
out models. Another improvement is to include a doubly-robust [Robins et al., 1994;
Tsiatis, 2007a] scheme within the recurrent event framework, which includes an additional
outcome model (modeling recurrent events conditional on covariates) to guard against
the misspecification of the propensity score (refusal and drop-out) models. Normally, a
correctly-specified outcome model can be fit just on the complete case data because the
missingness portion in the likelihood factors out under MAR assumptions. In our setting,
the manifestation of the events on the count scale collapses over the individual events for
which the MAR assumptions are assumed, therefore making it difficult to include such
an outcome model. In fact, it seems more tenable to treat the recurrent events as a

measurement, error problem and form an outcome model this way. We hope to devise the
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assumptions of such a measurement error outcome model and derive the resulting doubly-
robust estimators.

While our recurrent event framework was applied to a cluster setting, it can also be
applied to longitudinal follow-up studies. In such a study, the observation of recurrent
events could be terminated at or before the end of the study. For example, the recurrent
events could be multiple occurrences of hospitalizations from a group of patients, and the
observation of the repeated hospitalization process could be terminated by the end of the
study, patient dropout, loss to follow-up, or patient death. Methods such as those developed
by Wang et al. [2001] account for informative missingness on the patient scale, but not the
event scale. That is, patients could skip intermittent hospitalizations, but reappear later.

Our methods can be applied in these cases.
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Appendix A

Appendix for Chapter 1

A.1 Pseudocode for Stochastic Algorithms

Algorithm 1 S-GEE2 algorithm

Require: Y, A;,Z;, X, W v;,g,Q
1: By, a0 < 0
2: forw=0:(2-1)do
3: U; <+ indicesof Y; fori=1:1
4: 8; ~ SRSWOR(U?™ v;) for i =1:1
5: Wé(w) sl fori=1:1

6: WC*Z.(W) — %‘_1))[(3) Jfori=1:1

7 Haiw) < Yy D Vit Wi Dsico)
S Gm o — S8 IDW Vit Wiy Esite)
9: )y SF m(w W Dm(w)
100 Gaiw) < i D ity Ve w)E iw)

11: By ¢ By + Y Ez‘%w)Gﬁi(w)
12: Qyt1) & Ow) + 'YwHojitw)Gai(w)
13: end for

14: return B q), a(q)
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Algorithm 2 Par-S-GEE2 algorithm

Require: Y, 4;,Z;, X, Wi v, g, QO K
1: fork=1: K do

2. (BW, a®) « SSGEE2(Y,Z*, X, W 7 pt v, g,Q)
3: end for
4: return B=L30 AP a=L3K a®
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Algorithm 3 S-DR-GEE2 algorithm

Require: Y, A;, Z;, X, WE 7 pt v;, 09>, g, Q
1: By, 00+ 0
2: forw=0:(2—-1)do
3: U™ « indices of observed Y; fori=1:1
4:  U; + indicesof all Y; fori=1:1
5 8% ~ SRSWOR(US, v¢?) for i =1: 1
6:  s; ~SRSWOR(U;,v;) fori=1:1
T W, e WL s for i =10 T
8 WD, T;i(uqu W (s8] for i =1:1
9: W[;(w) %[sz] fori=1:1

10: Wfi(w) "Z,EZ}_II) [(8i)2] fori=1:1

11: 5[%(@ — Zazop (1—p)t- “DT ( =a)V;! WS Elﬁ/z(w)(A =a)fori=1:1

Wi ©
120 Caiw) & Don_o D1 —p)'~ "Dl (A= W5,
13 Hpiw) < 1oy Doao P (1 — )1 “D, w)(A )
14: éb’i(W) A Zz’lzl[ Bi(w) V WRS El w1 CBifw)]
15: ﬁai(w) < Zle Za oP (1 —p)'” aDT (A = @)W ) Dai(w) (A = a)

CM%UJ

Egz(w) (A=a)fori=1:1

VB i(w) Bz(w Dﬁz(w) <A = CL)

a

16: éai (w) < Zz‘l—l[ i(w) WRS El + Cozi(w)]

ai(w)

170 By < Bu) +%J:f %)Gﬁi(w)

18: Qy41) <— (87%) + 'wa{ Gai(w)

ai(w)

19: end for

20: return B, o (q)

A.2 Time Complexity Proofs

In proving the time-complexities associated with iterations of standard Newton-Raphson

or stochastic Newton-Raphson, we make many uses of the following facts:

Fact 1: The time complexity of multiplying matrix A,,,, and B,x, is O(nmp).

33



Fact 2: The complexity of inverting an n X n matrix is O(n?).

Fact 3: O(f(n)) + O(g9(n)) = O(max(f, g)(n)).

Omit the R and Y indices, for the computational complexity results are the same in both
cases. Let dg = dim(f3),d, = dim(a)). We make the assumptions that dg,d,, I are fixed;
hence O(dg) = O(d,) = O(I) = O(1). Furthermore, we conduct the proofs as if we have
no natural missingness in data, for proofs with the latter return the same complexities. We
can decompose a covariance matrix V = UY2CUY?, where C is a correlation matrix, and
U is a diagonal matrix with variance entries.

Table 1.1 contains a total of 12 complexities. We break them down into four sub-
theorems. Additionally, we require the assumption that v; = O(1); that is, our subsample

size does not grow with respect to n;.

Sub-theorem 1

In the presence of standard Newton-Raphson, an iteration of the GEE1 portion with
(i) Arbitrary covariance matrix
(ii) Equicorrelation matrix
(iii) Independence covariance matrix

are of complexities O(max; n?), O(max; n;), O(max; n;) respectively.

Proof. (i) Let us list the steps required in the computation:
1. Computing V'

(a) Compute C’B_zi and U B_wlf ?, which are of complexities O(n3) and O(n;), since
Upsi 1s diagonal. The time complexity in computing CEz‘}w through either Gauss-

Jordan elimination or Cholesky decomposition, is O(n?) and cannot be sped up
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except through highly specialized numerically-optimized matrix algorithms (i.e.

Coppersmith-Winograd algorithm).
(b) Compute C’ﬁ’iiU ﬁ_zi/ ?. Because U 511/5 is diagonal, this becomes just multiplying

the diagonal of U /;i/ 2 against each row of C’/giij, and has complexity O(n?).

7

(¢) Left-multiply C’ﬂ_i}dU 5_1414;/ ? with U ﬂ_uld/ ?. This is also O(n2).
Hence, computing Vj;} has complexity O(n?).
2. Computing H gzi, having already computed V’iiz

(a) Compute V. Dgi,,. This has complexity O(dgn?) = O(n}).

(b) Left-multiply Vﬂ;“l)Dgiw by DJ,,; this has complexity O(dzn;) = O(n;).
(c) Invert the resulting D}, V! Dgi,. This is time complexity O(d}) = O(1).
Hence, complexity in computing Hg,, is O(n?).

3. Computing Gg,,, having already computed V,B_ui:

a) All steps are almost the same as computing H g, except for 2(a), where we have
B
Vﬁ_iiEgiw, which is still O(n?)
Overall, computing Gg;, is O(n?)
4. Computing H/giiGgiw, having already computed H[;ij and Gy, is just O(dg) = O(1).
Overall, steps 1 — 4 is of O(n?), due to computing Vﬁ_ii'
3

5. Perform steps 1 — 4 for each i. The time complexity is 3.1_, O(n?) = O(max; n?).

6. Summing up H,bjii]Gﬁiw is O(I) = O(1), and then adding this resulting quantity is
O(1).
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Overall, we have O(max; n?).

(ii) Since Clg, is equicorrelated, we have that

Ol =(1—p) (1L, - LJn.)
W ( p ) ( 2 1 + (n _ 1)pl 1
by Woodbury’s formula, where J,, is an n; X n; matrix of 1’s. Hence, in computing Hg,, =

DY Vs Dsis, we would compute

1—p) 'DY. Usl Dy — P DL U275, U Dy,
( p ) jzw Biw™B < (1 + (nz . 1)[)@)(1 o pz) Biw™ Biw i~ Piw B
Q1 5’2

Since U 5_1&; is diagonal, we can perform an element-wise product with the diagonal, and
hence computation of ()1 is O(n;). In computing )2, notice that to compute J,,,U _2.1/ QDBW

w

is to
1. Perform U _Zi/ 2D5W, which can be done through element-wise product.
2. Sum each column of the resulting U Zi/ QDBW into a row vector.
3. Repeat each row n; times into a matrix.

This has time complexity O(n;). Then, left-multiplying this quantity by U, ﬁ_li/ ® and then
is O(n;) and O(d%n;) = O(n;). Overall, computing Hp!, is now O(n;).

W

again by D]

Analogous steps can be done to calculate Gy, which is now O(n;). The rest of the proof

follows steps 4 — 6 of (i), which results in O(max; n;).

(iii) For no correlation, inverting V3, requires inverting the diagonal entries; this is still of

complexity O(n;). Rest of the proof follows as (i). 0

Sub-theorem 2

In the presence of standard Newton-Raphson, an iteration of the GEE2 portion with
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(i) Arbitrary covariance matrix
(ii) Equicorrelation matrix

(iii) Independence covariance matrix

are of complexities O(max; n%), O(max; n?), O(max; n?) respectively.

ng

Proof. All rows and columns in the proofs for GEE1 now have lengths (2

) ~ n? in place

of n;. Hence, all exponents in computational complexities in Theorem A.2 are doubled.

Now, let’s continue with stochastic Newton-Raphson. Define D31, EE;B as the resulting

Dgiy, Ei,, with only rows corresponding to subsample s;; we see that, the dimensions of

these matrices are now v; X dg and v; x 1, respectively. Let T} éf?g')’ equal Wé(w) except with

both rows and columns associated with zero diagonal elements removed; this has dimension
v; X v;. We can analogously define this for D> Esub ji/Esub where any dimension with a

atw? T oiw) aiw )
(’;) is replaced with (“2)

Sub-theorem 3

In the presence of stochastic Newton-Raphson, an iteration of the GEE1 portion with

(i) Arbitrary covariance matrix
(ii) Equicorrelation matrix

(iii) Independence covariance matrix

will be of complexities O(max; n}), O(max; n;), O(1) respectively.

Proof. (i) We cannot exploit sparsity here, for the largest complexity object, Vﬁ’i:), would
still need to be computed, which is O(n?).

(i) Let’s list again the steps in computing the quantities.
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1. Computing H B_Zi) Using Woodbury’s formula, the computation of H iw Would be

1— p)~'DL. U2 WE Dy, — i DY UM 7, USYVPWE Dy,
E :0) Bzwv Biw Y Biwt’B ’ (1 + (nz . 1)[)2)(1 . pz) Biw ™~ Biw i~ Biw Biwt’ B ’
Q1 52

Exploiting sparsity, each term is equivalent to

Q1 = (1— p;) ' DL, (Ugis) Wi Db

Oy = Pi DI

(14 (s = Dpi) (1= pi) 7

—1/2 suby)— 37 Rsu su
U iw/ Jnixvi(U u?) 1/2W61§w bDBz'B
(a) Computing Q; first performs the following steps:

77 Rsub b —-115/S —-115/8 -1 —-115/S
Wﬁifuu D%lzlw = UﬁinBiwDﬁiW = DTinBinﬁiwDﬂiw = (1 - pl) Dg’inBinBiwDﬁiw

which sequentially, conditioned on performing the previous computation, is
O(dgv;), O(dgv;), O(djv;), and O(d3). The sum of these three complexities
is O(’Uz)

(b) Computing Q) first performs the following steps:

WA D3 s (U)W it Dt
= T (U)W D
= Usie] T (U)W D5
= Dl Ui I (US) AW D5
T T Ty b Uais e (ORI D3
The time complexities of each step is O(dgv;), O(dgv;), O(dgv;), O(dsn;),
O(d3n;), and O(d3). Notice that the third step cannot be simplified due to

the J,, .y, matrix separating D} and Wisub,

(c) Inverting Hg,, is again O(d%), which is dominated by the other steps.
Hence, calculating i ,{;L(]:u is O(ny).
2. Steps in computing nglw are analogous to step 1, and also O(n;)
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Repeat steps 4 — 6 of Theorem A.2 (i), we again have O(max; n;).

Remark: For the cases of a general or equicorrelated C'g,,, the time complexities of stan-
dard and stochastic Newton-Raphson iterations are the same. Intuitively, although we want
to feed a subset of the data into the scoring equations, we cannot make full use of spar-
sity because the inverse-covariance matrix Vj;! forces a “mixing” of all the observations,
including into missing vector slots. The next two settings no longer have any correlations,

and hence we can make full use of sparsity.

(iii) We present just the proof of computing H Biw, since this and éﬁm are bottlenecks

in the computation, and both have the same complexities. We now just need to compute
DY UsiaWE, Diiy = (D) TUSIETY S et
Sequentially, the steps in computing
WA DR v USWASC DS — (DRl U A Dt

are of O(dgv;), O(dgv;), O(djv;); overall, this is of time complexity O(v;) = O(1). 0O

Sub-theorem 4
In the presence of stochastic Newton-Raphson, an iteration of the GEE2 portion with
(i) Arbitrary covariance matrix
(ii) Equicorrelation matrix
(iii) Independence covariance matrix

will be of complexities O(max; n%), O(max; n?), O(1) respectively.

Proof. Apply Sub-theorem 3 with v; replaced with (”2) ~ v?, and we are done. 0
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A.3 Proof of CAN for DR estimator

It suffices to show E[®Y(Z!,X;,R;, B, b, Br, ar, By, oy)] = 0 from Eq 1.8 whenever
the OM or PS is correctly specified.

Case 1: OM is correctly specified

Under this case, we have 7;; = m;; and p,;;; = pijj, S0 we have that E[7;;|Ai] = } and
E[ﬁjjj,\Ai] = pf. From this, it is easy to verify E[E!|R;,X;,Z;, A;] = 0 and E[¢;] = 0.

Hence,

E[®)] = E[D]V; "W E] + ¢;] = E[E[D]V; "W E[|R;, X, Z;, Al]] + E[]

= E[D]V,'WE[E]|R;, X, Z;, Ai]] + 0 = E[D]V;'W*- 0] = 0

Case 2: PS is correctly specified

Under this case, we have 77 Wﬁ and ﬁgj, = pf;j,; together, this implies that E[W%] = L.

iy o
First, using the fact that B! + E! = F;, we may express
®; = DIV, "W E; — DIV,'WE] — DIV'E{ + DIVZ'WIE! + ¢
= DIV ' WiE; + DI(Vi ' = Vi Wi B/ + G — DIV EY

-

@: Q2 @g
It now suffices to show E[Q,], E[Qy], E[Q3] = 0. We have E[Q;] = 0 by standard IPW-

GEE2. Next,

E[Q.] = E[D]V;'E[l - W*|X;, Z]] E] = E[D]V; {(I-D)E{] =0
Finally,
E[Qs] = E[G] — E[D]V; E{]
= E[E[D]V; E{|D; \ Ai]] - E[D]V; E{]
=E[D]V; E]] - E[D]V; £
=0
Under certain regularity assumption defined in Van der Vaart [2000], we can demonstrate

with the Slutsky’s theorem and the central limit theorem that any estimator solving this

Doubly Robust estimating equation is CAN.
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