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Large-scale Analysis of Microtubule Pharmacology via Phosphoproteomics and High-content Imaging 
 

 
Abstract 

 
The dynamic instability of microtubules is a critical phenomenon that regulates several biological processes. 

Chemical perturbation of microtubules disrupts these processes and is known to stimulate phosphorylation 

of downstream substrates. Despite decades of research into microtubule pharmacology, unanswered 

questions remain regarding the relationship between anti-tubulin drugs and downstream signaling and 

phenotypes. The following work addresses and answers three outstanding questions regarding the biology 

of anti-tubulin drugs. It first addresses an important metric for anti-tubulin drug efficacy – site occupancy – 

and relates classic drug-induced phenotypes to drug occupancy of the taxane site on microtubules in live 

cells and tissues. The data presented suggest that, when considering site occupancy, the spindle-assembly 

checkpoint is relatively insensitive to microtubule-stabilizing drugs. Next, after probing the relationship 

between site occupancy and drug-relevant phenotypes, work is described which utilized mass 

spectrometry-based phosphoproteomics to elucidate differences in phospho-regulation induced by 

microtubule-stabilizing and destabilizing drugs. Analysis of this data revealed a large wave of rapid 

phosphorylation that was common to both classes of drug and highlighted the prominent activity of a protein 

phosphatase stimulated by microtubule destabilization. Furthermore, the data demonstrated a surprising 

increase of JNK activity without additional JNK activation in response to microtubule stabilization. Lastly, 

after comparing drug effects on phospho-signaling in an averaged cell population, work is presented which 

involved high-content analysis at the single-cell level to elicit information regarding cell heterogeneity in 

anti-tubulin drug responses. This required development of a novel approach to quantify microtubule 

dynamics, namely EB3 comet counting in segmented single cells. The data revealed drug-induced single-

cell heterogeneity with respect to microtubule dynamics upon treatment with a panel of drugs. Moreover, 

this occurred in the presence of a pan-efflux pump inhibitor, suggesting that drug-induced heterogeneity 

can occur independently of drug pump action. This biological finding, along with those mentioned above, is 

likely important for understanding the therapeutic efficacy of these drugs in cancer chemotherapy. 
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1.1 Preface 

1.1.1 Drugs before proteins 

 The beginnings of protein biochemistry date back to the 18th century in France when a French 

chemist, Comte de Antoine Fourcroy, isolated a nitrogen-containing compound from plants with similar 

properties to egg albumin1. By the early 19th century, it was appreciated that protein was a chemical 

compound, though much larger than compounds chemists were accustomed to working with. By the middle 

of the 20th century, it was understood that many proteins exist and that they contain spiral structures – 

courtesy of Linus Pauling2. Today, the concept of the protein has changed from being a single, large, 

chemical compound to being thousands of unique, globular structures, which are dynamically made, 

degraded, and modified, and which are present in every living cell on Earth. 

 In stark contrast, the first drugs that we have record of were prescribed in the Egyptian empire ca. 

1550 BC or even earlier. The autumn crocus plant, for example, is described in ancient Egyptian texts as 

being used to treat inflammation3. The active ingredient of this plant, which is relevant to this thesis, is 

colchicine. Unbeknownst to ancient Egyptians, this drug would still be used more than 3000 years later for 

the same purpose. 

 Until recent years, drugs have always been discovered before their protein targets, whether for the 

treatment of inflammation (e.g. colchicine), diabetes (e.g. metformin), or cancer (e.g. paclitaxel). Most 

commonly, these drugs have been extracted from trees, plants, marine sponges, or microbes. Only after 

decades, if not millennia, of using these drugs are we now starting to understand how they work on the 

mechanistic level, enough to finally design our own drugs. As we have continued to study drugs, they have 

begun to serve, not just as medicines necessary for human comfort and survival, but as chemical tools that 

teach us more about biology than we ever knew before – drugs that target microtubules are no exception, 

as it was through the use of colchicine that tubulin was discovered to be the subunit of microtubules4. This 

is the overarching theme of chemical biology, the lens through which I view microtubule biology, and the 

light that has guided my study of the biology surrounding microtubule pharmacology. 
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1.2 Principles of tubulin biology 

1.2.1 From protein to polymer 

 Tubulin is a 50 kDa protein that comes in several isoforms and rarely exists by itself. In the cell, 

monomeric α- and ß-tubulin are brought together by protein chaperones directly after synthesis into a stable 

heterodimeric structure5–8. Tubulin is also a GTPase protein, in that it can hydrolyze guanosine triphosphate 

(GTP) into guanosine diphosphate (GDP). Tubulin is an inefficient GTPase, however, in that the GTP 

nucleotide bound between the α-ß interface only serves a structural role and is never hydrolyzed9,10. At the 

same time, tubulin is a self-sufficient GTPase in that it activates its own GTPase activity – GTP hydrolysis 

at the end of ß-tubulin is catalyzed upon association with another tubulin heterodimer11. That being said, 

hydrolysis occurs when tubulin self-assembles into a microtubule polymer. 

 Microtubules (MTs) are tubular structures made up of hundreds of tubulin dimers. They are polar 

structures, in that the α ends of tubulin dimers reside at the so-called minus end whereas the ß ends reside 

at the plus end. MTs are made up of multiple protofilaments, each of which is a long filament of tubulin 

dimers strung together longitudinally. Typically, an MT will contain thirteen laterally-bound protofilaments12. 

In order for a tubulin dimer to be incorporated in an MT, however, it must be GTP-bound at its ß end. In 

other words, it is not energetically favorable to incorporate a GDP-bound tubulin dimer into MTs as this 

would generate an unstable structure. In line with this reasoning, when MT-incorporated ß-tubulin 

hydrolyzes its GTP, the structure surrounding the hydrolysis becomes unstable and, eventually, the lattice 

disassembles13. Note that disassembly only occurs once GTP hydrolysis in the lattice reaches the plus end. 

If GTP hydrolysis has not occurred at the plus end, then this population of tubulin dimers serves as a 

protective cap (or “GTP cap”) that keeps the MT from falling apart like a peeling banana14. 

MT nucleation is slow compared to assembly and disassembly. Nucleation of MTs occurs at a microtubule-

organizing center (MTOC), which generally resides at the centrosome15, though MTOCs can also be 

recruited to the Golgi16. At the MTOC, another tubulin isoform, γ-tubulin, forms a complex with other proteins 

to form a conical structure known as the γ-tubulin ring complex (γ-TuRC), which has 13-fold symmetry and 

thus acts as a scaffold to catalyze tubulin growth on the plus end17. The minus end of the nucleating/growing 

MT is thus protected from disassembly by the γ-TuRC. 
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1.2.2 Dynamic instability and the role of microtubule-associated proteins 

One fascinating aspect of MTs that astounded the microtubule community in 1984 is their intrinsic 

dynamic instability, or tendency to grow and shrink stochastically18. The now-conventional model of MT 

dynamics is one that is comprised of four primary parameters. Growth and shrinkage of MTs are self-

explanatory concepts, though it should be noted that these can occur with varied rates. Furthermore, 

growing MTs possess a cap of GTP-bound tubulin dimer at their plus ends whereas shrinking MTs do not. 

Catastrophe is described as the event during which a growing MT stalls growth and begins to disassemble 

whereas rescue is the term employed when a shrinking MT stalls disassembly and begins to reassemble. 

The dynamic instability of MTs is critical for several cell processes, most notably cell division and motility, 

and is largely dependent on cytosolic concentration of tubulin dimer – the greater the local concentration of 

soluble tubulin dimer, the more likely an MT is to grow. 

 The dynamics of MTs are further modulated by regulatory proteins. Proteins that have a stabilizing 

effect on MTs are called microtubule-associated proteins (MAPs). These proteins induce stability via direct 

interaction with the MT lattice19. Other proteins bind to the GTP cap at the plus end of growing MTs and are 

therefore called plus-end tracking proteins (+TIPs). These +TIPs also have a stabilizing effect on MTs20. 

Additionally, there are proteins that serve to destabilize MTs. Among these are catastrophe factors, which 

bind to MTs or soluble tubulin dimers21,22, and severing proteins, which can literally cut MTs in half and 

thereby induce disassembly23. 

 

1.2.3 The role of post-translational modifications in microtubule dynamics 

To add an extra layer of complexity, tubulin and its associated regulatory proteins are chemically 

modified in vivo by post-translational modifications (PTMs). Tubulin can be modified by a plethora of PTMs, 

most of which occur on the exposed C-terminal tails of MT-incorporated α- and ß-tubulin and some of which 

affect interactions with MT-regulatory proteins24. Detyrosination, which occurs at the C-terminal residue, 

provides stability to MTs by preventing kinesin-mediated disassembly25. Polyglutamylation, which also 

occurs at the C-terminal residue, regulates interactions with both MAPs and severing enzymes in a tunable 
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manner26–29. Acetylation also occurs on MT-incorporated tubulin, though this generally occurs on a luminal 

facing lysine – this PTM is typically associated with stable MTs24. Other tubulin PTMs exist – 

phosphorylation, glycosylation, polyamination, arginylation, methylation, palmitoylation, ubiquitylation, 

sumoylation – though the functionalities of these modifications are not fully understood24. 

MT-regulatory proteins are also post-translationally modified. Phosphorylation is arguably the most 

ubiquitous – and interpretable – PTM that modifies these proteins and, consequentially, MT dynamics. Most 

studies support the idea that phosphorylation acts to inhibit the interaction between MTs and these 

regulatory proteins. For example, phosphorylation of MAPs (e.g. MAP2, MAP4) tends to weaken the affinity 

of MAPs toward the negatively charged MT lattice, and this ultimately has a destabilizing effect on MTs – 

this is especially the case when the phosphorylation occurs within the MT-binding domain of these 

MAPs30,31. Conversely, phosphorylation of catastrophe factors such as stathmin inhibit the protein’s ability 

to sequester tubulin dimers, which has a stabilizing effect on MTs32–36. The effects of these biological 

modifications on MT dynamics, however, pale in comparison to the effects of MT-targeting small molecule 

compounds. 

 

1.3 Principles of tubulin pharmacology 

1.3.1 A myriad of tubulin drugs for a highly druggable protein target  

When tubulin was revealed to be the protein subunit of MTs in 1967, it was concomitantly 

discovered that colchicine was a tubulin-binding, or anti-tubulin, drug4,37. Now anti-tubulin drugs exist with 

a wide variety of scaffolds, several modes of binding, and different mechanisms of action. These drugs all 

have one thing in common, however – they inhibit dynamic instability, either by stabilizing or destabilizing 

MTs. At higher concentrations these drugs can fully polymerize or depolymerize MTs, while at lower 

concentrations it is conventionally accepted that these drugs can inhibit MT dynamics without affecting MT 

polymer amount. The latter claim is based on in vitro experiments performed with reconstituted bovine brain 

MTs or after lysis of cells arrested in mitosis38–40. It would be worth revisiting this claim with more robust 

modern technologies, however, as data contained in this thesis may challenge this conventionally accepted 

hypothesis, especially with regard to interphase MTs (see Chapter 2). 
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 To date, there are 6 known drug binding sites on tubulin dimers – the three latest sites were 

discovered during the tenure of this dissertation work (i.e. within the past 4 years). The first site, termed the 

colchicine site, resides at the α-ß interface of a soluble of a soluble tubulin dimer – colchicine does not bind 

directly to MTs41. This interaction serves to lower the effective concentration of GTP-bound tubulin in the 

cytosol, which inhibits MT assembly, allows GTP hydrolysis to catch up to the GTP cap, and ultimately 

results in greater MT instability. Other drugs that bind to this site include nocodazole42, a routinely-used 

synthetic drug, and combrestatin-A443, which somewhat resembles colchicine but has a faster off-rate with 

respect to tubulin binding44.  

The second site, termed the taxane site, is where paclitaxel and other taxanes bind to ß-tubulin on 

the inner lumen of MTs45. Drug binding at this site serves to stabilize GDP-bound portions in the MT lattice46, 

which prevents disassembly at lower concentrations of drug and induces MT polymerization at higher 

concentrations. The epothilone class of drugs also binds to this site, though with a slightly different different 

binding mode47. 

The third site is the vinca site, so called because it was first discovered to interact with the vinca 

alkaloid class of drugs48, which includes vinblastine and vincristine, two drugs widely used in the treatment 

of child and adult cancers. Vinca site drugs bind to the very plus-end of MTs where they serve as a 

molecular wedge to inhibit further tubulin incorporation. When GTP hydrolysis catches up to the GTP cap, 

MTs are destabilized. That being said, these drugs have also been found to sequester tubulin dimers into 

helical oligomers that are incompatible with MT incorporation49, though this may be a secondary effect50. 

Eribulin, another clinically approved therapy for breast cancer, also binds to the vinca site51. Surprisingly, 

there is one vinca site drug that is known to stabilize MTs52. 

The fourth binding site, the maytansine site, was discovered recently in 2014 and is adjacent to the 

vinca site53. In contrast to vinca site binders, structures of maytansine in complex with tubulin suggest that 

the drug may have the same affinity for the plus ends of MTs and soluble tubulin dimer53. In the latter case, 

drug binding could lower the effective concentration of GTP-bound tubulin in the cytosol and inhibit MT 

assembly like colchicine binders. Although only a few drugs are known to bind this site, one is currently in 

Phase II clinical trials for colorectal cancer (i.e. PM 060184). 
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The fifth binding site, like the taxane site, is one that stabilizes MTs at low concentrations but 

polymerizes MTs at high concentrations. It is now known as the peloruside site and, unlike the taxane site, 

the peloruside site resides on the outer lumen of MTs54. Currently, few other drugs are known to bind this 

site, which was discovered just a few months after the maytansine site. Further study of this site is partially 

inhibited by the lack of commercial availability of representative ligands. 

All binding sites mentioned thus far reside on ß-tubulin. The sixth and final known binding site is 

therefore unique in that it resides on α-tubulin. It is currently known as the pironetin site as the natural 

product pironetin is the only known scaffold to bind to this site, which destabilizes MTs55. Another unique 

aspect about the binding mode of pironetin is that it covalently binds to α-tubulin via cysteine S316. 

Currently it is proposed that pironetin either binds to soluble tubulin dimer, and thus lowers the effective 

concentration of GTP-bound tubulin, or binds to MT-incorporated tubulin that resides at minus-ends, which 

could inhibit addition of further tubulin dimers at the minus ends56. 

 

1.3.2 Anti-tubulin drug effects on mitosis and cell division 

 It has long been known that disruption of MT dynamics is toxic to mitosis. MTs are known to be 

much more dynamic in mitosis compared to interphase57, which makes mitotic MTs especially sensitive to 

pharmacological disruption. In the vast majority of cases where cultured cells have been treated with MT-

targeting drugs, the cells have died after a prolonged mitotic arrest due to activation of the spindle-assembly 

checkpoint (SAC)58. In these cases, the SAC is activated because disrupted MT dynamics inhibit the cell 

from correctly attaching all chromosomes to the mitotic spindle via kinetochores. In some cases, the mitotic 

cell is unable to even form a normal spindle39. 

 Unsurprisingly, it has been postulated for decades that MT-targeting drugs possess therapeutic 

efficacy in cancer chemotherapy because of their ability to arrest cells in mitosis59. That being said, there 

are others who argue that therapeutic efficacy of MT-stabilizing drugs is more likely due to the ability of 

these drugs to induce chromosome missegregation and subsequent G1 cell cycle arrest, which occurs at 

lower nanomolar concentrations of drug60. The presence of micronuclei in cells is the most easily visualized 
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biomarker of this phenotype39. Along this line of reasoning, it has been recently demonstrated that the 

presence of micronuclei in a cell can stimulate immune signaling61. 

 

1.3.3 Anti-tubulin drug effects on cellular signaling 

As mentioned previously, phosphorylation plays a major part in regulating MT dynamics, either by 

modifying tubulin itself or by modifying MT-regulatory proteins. For the last couple decades, however, it has 

also been known that MT-targeting drugs stimulate phosphorylation, in turn. It is known that the various 

MAPK signaling pathways are stimulated by MT-targeting drugs. For example, the c-Jun N-terminal kinase 

(JNK) has been shown to be activated in response to MT-stabilizing and destabilizing drugs in both cycling 

and non-cycling cells62,63. This suggests that MTs detect disruption of dynamic instability, not only in mitosis, 

but in interphase as well. Despite these findings, however, there seems to be little consensus on the nature 

of the stimulated MAPK signaling, which can have different kinetics and degrees of response depending 

on the cell type62,64–66. Other studies of phospho-signaling induced by these drugs have involved 

phosphorylation of a few MT-regulatory proteins, such as stathmin67. 

 

1.4 Tools for studying tubulin pharmacology 

1.4.1 In vitro reconstitution 

 Among the classic tools for studying the effects of MT drugs, in vitro reconstitution of MTs has been 

in use for the past half-century68–70. Tubulin can be procured in abundance from bovine brains through a 

few polymerization/depolymerization cycles with high molarity piperazine-N,N′-bis(2-ethanesulfonic acid) 

(PIPES) buffer70. In this way, the extracted tubulin can be isolated from MAPs and then used in biochemical 

experiments. If desired, MTs can then be assembled in vitro and crosslinked for use in drug-binding 

experiments71. Classically, the binding affinities of MT-targeting drugs have been measured in this way, 

with the additional use of radioactively-labeled or fluorescently-labeled derivatives. The only drawback to 

using this method for drug-binding measurements is the fact that MTs differ between cell types, as do their 

response to MT-targeting drugs72. Therefore, depending on the drug and binding site in question, binding 

affinity and kinetics may differ from cell to cell. 
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1.4.2 High-content microscopy 

 Microscopy, like in vitro reconstitution, has been a standard method for analyzing MT biology. Many 

major findings in MT biology (e.g. dynamic instability) have been discovered using traditional microscopy. 

In addition, the development of microscopes such as the spinning disk confocal microscope73, which uses 

pinhole technology to reject out-of-focus fluorescence, or the lattice light-sheet microscope74, which uses a 

thin laser sheet to image samples with much less light exposure, afford much greater sensitivity in signal 

detection than traditional widefield microscopy. It is now possible to image the plus-ends of MTs using 

fluorescently-labeled +TIPs (e.g. EB1/3), which enables quantitative analysis of MT dynamics and can be 

combined with MT-targeting drugs75. Nevertheless, confocal microscopy, like traditional widefield 

microscopy, is very throughput limited – generally, scientists can only image a few conditions at a time.  

In the last decade, high-content microscopy has offered a solution to improve imaging throughput. 

Now, with robust fluorescent readouts and appropriate software, one can image and quantify multiple 

phenotypes simultaneously in hundreds of conditions at once (e.g. using 384-well plates)76. High-content 

microscopes are designed to automatically shift from one well to another and can auto-focus with respect 

to a given image field and laser channel. In addition, one can use nuclear stains or other fluorescent markers 

that enable single-cell quantification, such that one can obtain information into the variability of a given 

biological phenomenon among single cells. The only potential drawback of high-content microscopy is that 

it is limited to the use of dry objective lenses, which naturally reduces signal-to-noise compared to state-of-

the-art microscopes that use oil-immersion or water-immersion objective lenses. That being said, it is trivial 

to assess signal-to-noise. With the ability to image many replicates of control wells, one can calculate a Z-

prime – also known as a Z-factor – which is a scaled value that measures the dynamic range of the assay 

signal and the data variation associated with single measurements77. The Z-prime can be measured by 

equation (1.1): 

 

(1.1) 
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Equation (1.1) makes use of the standard deviations (σ) and means (µ) of the positive and negative controls. 

Z-primes must be above 0 for high-content assay results to be useful, and Z-primes above 0.5 denote 

exceptional assays (i.e. ~12 standard deviations between positive and negative control). 

 

1.4.3 Mass spectrometry-based (phospho)proteomics 

 Mass spectrometry (MS) has revolutionized proteomics in the past two decades. Instead of 

performing hundreds of laborious Western blots, one can now quantify thousands of proteins or peptides 

across multiple samples. The basic principle behind MS-based proteomics involves (electrospray) 

ionization, mass-detection (MS1), and subsequent fragmentation (MS2) of a peptide (via collision-induced 

dissociation) to obtain a distribution of smaller peptides, each of which retains a given mass-to-charge ratio, 

which can be detected and measure by the mass spectrometer. From the measured distribution of smaller 

peptides, it is possible to reconstruct the original sequence of the original ionized peptide. Based on this 

idea, genome sequencing has enabled the production of theoretical MS spectra for a given protein or 

peptide, which can be compared with the actual measured spectra to map the sequence of the original 

peptide78–81. In this way, even if the measured spectra are noisy, it is still possible to identify the original 

peptide through the comparison and the protein from which the peptide came. The concept of identifying 

proteins from constitutive peptides has been given the term shotgun proteomics. 

 There are certain drawbacks about MS-based proteomics, however, for which some solutions have 

been offered. For one, the peptide detection performed by MS is not inherently quantitative82. This is 

primarily due to the different efficiencies of ionization between peptides and differential detection bias 

across peptides. Due these issues, it is not possible to directly compare the absolute amounts of two 

different peptides. In addition, since the MS instrument cannot measure every single ionized peptide of a 

mixture due to time constraints, a peptide that is measured in one MS scan might not be measured in a 

technical replicate scan. The simple solution to this problem is that a peptide measured across two or more 

different conditions should be measured in the same MS scan. Stable isotope incorporation into cell media, 

and thus cellular proteins, was one approach that seemed to solve this problem (also known as SILAC)82. 

A similar approach was used to directly label proteins isolated from lysates through reductive 
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demethylation83. A more recent solution to this problem is the covalent labeling of isolated peptides with 

isotope-encoded chemical compounds (i.e. tandem mass tags, or TMTs84), which, though similar to 

reductive demethylation enables a greater degree of sample multiplexing85,86 – currently, 11 samples can 

be multiplexed in a given sample set. The additional advantage of this technology is that the chemical tags 

possess identical mass until they are fragmented. Whereas additional multiplexing with the two previous 

technologies would complicate the MS1 scan, with the TMT technology, the same peptide across multiple 

conditions would be stacked as a single peak in the MS1 scan. 

 Another drawback that was not immediately solved by TMT-based multiplexing was that of signal 

distortion in the MS2 scan87. For this scan, a prominent peptide peak is isolated from the MS1 scan and 

subsequently fragmented to obtain the MS2 scan. In the MS2 scan, this peptide would be fragmented and 

sequenced, and the TMT ions would be used to quantify the relative peptide amounts between conditions. 

The problem is that completely different peptides with very similar mass would be co-isolated from the MS1 

scan, leading to signal distortion from the latter peptide in the quantification of the former. The first solution 

offered for this problem involved an additional tandem MS scan (MS3)87. For this, the instrument would be 

programmed to isolate the most prominent peptide fragment (which would still retain covalently-labeled 

TMT) and then further fragment this peptide fragment (via high collision dissociation) to obtain a much purer 

measurement. Although this strategy proved successful, its implementation naturally reduced signal 

intensities. The strategy was substantially improved, therefore, by selecting multiple prominent fragments 

from the MS2 for the subsequent MS3, which is termed multinotch selection88. 

 The principles of MS-based phosphoproteomics are similar to those mentioned above, though with 

additional caveats. First, phosphorylated peptides constitute 1-3 percent of peptides isolated from cell 

lysates. Therefore, to obtain useful data, it is necessary to procure a relatively large amount of lysate to 

being with. Not only that, but the isolated peptides must be enriched for phosphopeptides to bias the 

instrument into seeing mainly phosphorylated peptides89–91. Another difficulty is localizing the phosphate to 

the correct residue. This is due to the neutral loss problem, in which the phosphate falls off the peptide 

during the MS2 scan due to the phosphate bond being more labile than the peptide backbone92. With careful 
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fragmentation, it is possible to “get lucky” with most peptides and detect one fragment that still retains the 

phosphate bond, which allows localization, but this is not always possible. 

 To date, MS-based proteomics and especially MS-based phosphoproteomics have not been 

heavily used to study the pharmacology of MT drugs. That being said, one group used phosphoproteomics 

to study the response to nocodazole treatment across a panel of cancer cell lines93. This work, which 

focused on mitotic time-scales, did not use any isotopic labeling technology, however, thereby limiting its 

ability to make quantitative claims. 

 

1.5 Summary of thesis 

 The pharmacology of MT-targeting drugs has been heavily studied over the past half-century. Much 

has been done to obtain information into the binding modes and affinities of these drugs and to quantitatively 

assess their effects on cellular phenotypes, signaling and MT dynamics. Nevertheless, there are a myriad 

of questions that remain unanswered with regard to their biological effects. High-content microscopy and 

MS-based phosphoproteomics are promising tools to answer these questions, but they have yet to see 

much use by the MT community. In this thesis, I was inspired by the promise of these two technologies to 

study unanswered questions in MT pharmacology. 

 For the work presented in chapter 2, my colleagues and I used high-content imaging to ask a critical 

pharmacological question: how much MT disruption is necessary to induce cellular phenotypes? Although 

this question sounds trivial enough to answer, previously it was impossible to answer quantitatively with 

respect to live cells. We conduct binding measurements of drugs in live retinal pigmented epithelial (RPE1) 

cells and use these to compute the amount of a given phenotypic signal – MT dynamics loss, mitotic arrest, 

chromosome missegregation – as a function of drug-bound sites on MTs (i.e. site occupancy). We were 

also able to make unprecedented quantitative comparisons in efficacy between drugs and in sensitivity 

among cell lines. We conclude by relating the site occupancy of paclitaxel to tumor regression in mice. 

 Chapter 3 details the TMT-based phosphoproteomics experiments I performed to globally compare 

the signaling changes induced by MT-stabilizing and destabilizing drugs. This approach enabled the 

quantification of several thousand phosphopeptides and revealed common and unique signaling to MT 
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stabilization and destabilization. More specifically, the work revealed the prominence of phosphatase action 

in the case of MT destabilization and demonstrated, for the first time, that MT stabilization can stimulate 

JNK activity without an increase in JNK activation. 

 Finally, in Chapter 4, I returned to high-content imaging and developed tools to study MT dynamics 

loss in the context of MT-targeting drugs at the single-cell level. This approach therefore afforded high-

throughput and single-cell analysis of drug-induced effects on MT dynamics. My colleagues and I used a 

well-tolerated SiR-DNA dye in live cells to segment single cells, track cells over time, and score EB3 comets. 

Importantly, our approach made use of EB3 comet counting, as opposed to the conventional comet 

tracking, which requires higher frequency in image acquisition and limits image throughput. We 

demonstrate that MT-targeting drugs stimulate increased cellular heterogeneity with respect to MT 

dynamics and that this can occur independently of drug efflux pump action. 

 This thesis answers critical pharmacological questions regarding drugs that are thought to be well 

studied. It also reveals drug-induced phosphorylation-based signaling that may very well be relevant for the 

therapeutic efficacy of these drugs in the clinic. Lastly, this thesis show-cases newly developed approaches 

for answering throughput-demanding biological questions. 
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2.1 Attributions 

 The following chapter has been reformatted from a manuscript that I submitted to PNAS. This 

manuscript delves into the pharmacology of MT-targeting drugs that bind to the taxane site. Using a live-

cell ligand displacement assay, we were able to correlate taxane-site occupancy with MT-relevant 

phenotypes and derive new biological insights into MT pharmacology, such as the relative insensitivity of 

spindle-assembly checkpoint, or the variable biological efficacy of taxane-site drugs. 

 I designed and performed the ligand displacement assay that was pivotal for calibrating taxane-site 

occupancies with respect to the panel of drugs tested. I also designed and performed the other assays 

described below for measuring mitotic index, post-mitotic micronucleation, and EB3 comet loss in 384-well 

plate format. I also wrote all relevant Python and ImageJ coding for image processing and analysis. Dr. 

Miles Miller performed the ligand displacement assay in a HT1080 xenograft mouse model, and Dr. Yuyu 

Song performed the ligand displacement assay in a human neuronal model cell. Dr. Hallie Kuhn performed 

the paclitaxel dose escalation experiments on HT1080 xenograft mouse models. Dr. Hannes Mikula 

synthesized the SiR-tubulin probe, which was critical for the ligand displacement assay, and the SiR-eribulin 

probe, which we used to score mitotic index in HT1080 cells. Naren Tallapragada helped me formulate all 

of the statistical analysis necessary for procuring confidence intervals and I performed all of the necessary 

coding for implementing this. All experiments were performed with advice from Drs. Ralph Weissleder and 

Timothy Mitchison. I wrote the majority of the manuscript with edits from all authors. 

 

2.2 Abstract 

Drug receptor site occupancy is a central pharmacology parameter that quantitatively relates the 

biochemistry of drug binding to the biology of drug action. Taxanes and epothilones bind to overlapping 

sites in microtubules and stabilize the lattice. They are used to treat cancer and are under investigation for 

neurodegeneration. In cells they cause concentration-dependent inhibition of microtubule dynamics and 

perturbation of mitosis, but the degree of site occupancy required to trigger different effects has not been 

measured. We report the first live cell assay for taxane site occupancy, and relationships between site 

occupancy and biological effects across four drugs and two cell lines. By normalizing to site occupancy, we 



 16 

were able to quantitatively compare drug activities and cell sensitivities independent of differences in drug 

affinity and uptake/efflux kinetics. Across all drugs and cells tested we found that inhibition of microtubule 

dynamics, post-mitotic micronucleation and mitotic arrest required successively higher site occupancy. We 

also found interesting differences, for example different sensitivities of the spindle assembly checkpoint to 

site occupancy between cells. By extending our assay to a mouse xenograft tumor model we measured the 

initial site occupancy required for paclitaxel to promote tumor regression as approximately 80 percent. Our 

data suggest that the most important cellular action of taxanes for cancer treatment is formation of 

micronuclei, which occurs over a broad range of site occupancies. 

 

2.3 Introduction 

A unifying concept in the pharmacology of protein-binding drugs is site occupancy, the fraction of 

specific binding sites in a population of protein receptors that is bound by drug. The concentration of 

unbound drug at a site occupancy of 0.5 is called the Kd, which is used to compare the affinity of different 

drugs to the same site.  Site occupancy is especially important when comparing drugs with different effects 

on the receptor, e.g. full vs partial agonists. An efficacy parameter can be defined which quantifies the effect 

of a drug on receptor function at a given site occupancy, usually 0.594. The most common methods for 

measuring site occupancy are ligand displacement assays in which unlabeled test ligands compete with an 

easily-measured labeled ligand for binding to the receptor. The labeled ligand is commonly radioactivity or 

fluorescence. If the Kd of the test ligand is known, the Kd of competing ligands can be inferred using the 

Cheng-Prusoff equation95. Ligand displacement assays were invented for pure proteins and cell surface 

receptors, but they can be extended to the interior of living cells, notably using fluorescence technology96. 

This allows direct measurement of biological actions as a function of site occupancy.  

Here, we report a convenient fluorescent assay for measuring site occupancy of drugs that bind to 

the taxane and epothilone sites on microtubules (MTs) in living cells and use it to quantify biological effects 

as a function of site occupancy. The taxane site was defined using paclitaxel (Ptx), a natural product from 

the Pacific Yew tree97. Ptx and its derivative docetaxel are among the most active of solid tumor drugs and 

play a central role in combination chemotherapy98. Development of new taxanes continues, with interest in 
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derivatives with improved pharmacology and bioavailability99, including improved brain penetration100. 

There is also great interest in clinical development of alternative scaffolds which bind to the taxane site101. 

Epothilones bind to an overlapping site in MTs and are naturally resistant to drug efflux pumps. One 

epothilone, ixabepilone (Ixa), is approved for cancer treatment102.  

Cancer is the only disease known to respond to taxanes or epothilones, but there has been 

significant interest in MT stabilization as a therapeutic modality in neurodegenerative disease103. Epothilone 

D (EpoD) is particularly brain-penetrant and demonstrated promise in rodent models of 

neurodegeneration104,105. Cancer and neurodegeneration are very different diseases and it seems likely 

that optimal therapeutic index might require different effects of drugs on the MT lattice. Given the interest 

in neuronal effects of taxane-site drugs, we tested if our approach could extend to a human neuron model.   

The binding site for taxanes and epothilones on the interior of the MT has been well characterized 

at the atomic level106,107. Drug binding stabilizes the lattice, inhibits polymerization dynamics, and promotes 

ectopic MT nucleation. In dividing cells these effects cause chromosome missegregation at lower drug 

concentrations, and mitotic arrest at higher60,97,108. In non-dividing cells, they perturb organelle positioning, 

nuclear transport and stress signaling109–112. How these diverse cellular effects trigger tumor regression is 

controversial, with some authors favoring anti-mitotic mechanisms113 and others interphase cell killing112. 

No prior studies systematically measured multiple phenotypic effects in parallel as a function of drug 

concentration or quantified the degree of site occupancy required to cause each effect.     

Medicinal chemistry of taxanes and epothilones has mostly been guided by IC50 metrics for cell 

proliferation and not by biochemical Kds or efficacy parameters114,115. Another important metric has been 

sensitivity to drug efflux pumps116. The most reliable biochemical Kd values come from the work of Andreu, 

Diaz and colleagues who measured displacement of a fluorescent taxane analog from cross-linked MTs 

using fluorescence polarization117,118. These data quantified binding separately from effects on MT stability, 

and the resulting data was used to profile biochemical efficacy across panels of taxanes and 

epothilones119,120. This work significantly advanced taxane-site pharmacology but was difficult to relate to 

biological effects in living cells. Here, we report a live-cell ligand displacement assay using the docetaxel 

derivative SiR-tubulin, a low-affinity, fluorogenic taxane-site  ligand121. Using this assay, we measured, for 
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the first time, the degree of site occupancy required for perturbation of MT dynamics, chromosome 

missegregation and mitotic arrest for representative taxane-site drugs. Our work agrees with a classic 

measurement of saturable binding of 3H-Ptx in living cells, though that study used only one drug and did 

not measure biological effect122. Furthermore, our fluorescence methodology is better suited to modern 

drug discovery pipelines since it does not require radioactivity. 

 

2.4 Results 

2.4.1 SirTub can be displaced by competing drugs in live cells 

We pre-incubated RPE1 cells (Fig. 2.1A) and differentiated ReNcell VM human neurons (Fig. 2.1B) 

with 100 nM SirTub, then added 100 nM EpoB and performed live fluorescence imaging. In both cells lines, 

specific signal decayed completely within 10 minutes of adding competitor, indicating rapid and complete 

ligand displacement; Fig. 2.1C quantifies this observation for RPE1s. To minimize possible complications 

from drug efflux pumps, all experiments were performed in the presence of 10 µM verapamil, an efflux 

pump inhibitor123. Analysis of select data points without verapamil revealed lower SirTub signal, but 

competition results were not changed (data not shown).  

Binding constants are usually measured after equilibrium has been achieved for both probe and 

test ligands. To determine equilibration time, we measured the kinetics of SirTub uptake and binding in 

RPE1 (Fig. 2.1D) and HT1080 cells (Supplementary Fig. 2.1). Automated thresholding and analysis allowed 

for ease of quantification (Supplementary Fig. 2.2). Signal from non-specifically bound probe was significant 

(~40% at our standard probe concentration). In Fig. 2.1D and all subsequent experiments 10 or more wells 

on each plate were reserved to measure non-specific probe binding. Average fluorescence signal in the 

presence of equimolar EpoB competitor (whose affinity is ~1,000-fold greater than that of probe) was 

subtracted from all values on the plate. Cellular uptake of SirTub was slow, and we were unable to saturate 

specific sites within 16 hours over the dosage range tested, which was capped at 1 µM to avoid DMSO 

artifacts. Unlabeled drugs reached equilibrium binding much faster at all concentrations (Supplementary 

Fig. 2.3A, B). We chose a SirTub concentration (800 nM) and pre-incubation time (10-11 hours) for all 

subsequent experiments where the signal was strong and changed negligibly during measurement. Lack 
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of true equilibrium in probe binding, and resulting uncertainty in true probe Kd, was not a problem. The much 

weaker affinity of the probe than test drugs meant that incomplete saturation with probe, or errors in probe 

Kd, had little effect on estimated test drug Kd. We verified this computationally by substituting a range of 

probe Kd values that were consistent with our data into the calculation of test drug Kd values, and found 

little effect, provided the Kd value was much lower for the test drug than the probe. 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 2.1. SirTub can be displaced in live cells. (A) Representative images of RPE1 cells stained with 
SirTub, before and after treatment with a competing drug (EpoB). Cells were incubated with 100 nM SirTub 
for 2.5 hours, after which equimolar EpoB was added. Scale bar = 10 μm. (B) Representative images of 
ReN cells stained with SirTub, before and after treatment with EpoB. Cells were incubated with 100 nM 
SirTub for 10 hours, after which equimolar EpoB was added. Scale bar = 10 μm. (C) Quantification of SirTub 
displacement in A. SirTub signal was normalized by total cell area at every time point. FC = fold-change. 
(D) Time-course and titration of SirTub staining in RPE1 cells. Legend lists nanomolar concentrations of 
SirTub. Intensities were normalized by cell area as in C. Each data point was averaged from at least 9 
wells. 
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2.4.2 SirTub enables site occupancy calibration in multiple cell types 

To calculate apparent Kds of four drugs (Fig. 2.2A) from SirTub displacement curves we first 

evaluated a classic Cheng-Prusoff competitive displacement model with a constant number of binding sites 

(Fig. 2.2B) and found less than ideal fits to the data. We traced the discrepancy to induction of MT 

polymerization by test drugs, which caused an increase in binding sites when the test drug was titrated. 

This effect is evident from the slight upwards trend before the decrease in Fig 2C. It is characteristic of 

microtubule stabilizing drugs and was accounted for in previous models of Ptx binding in living cells121,122. 

We therefore added a simple, empirical model of drug-induced MT polymerization similar to the previous 

study121. Our final model made use of two critical equations: 

 

(2.1)  

 

(2.2) 

 

In equations (2.1) and (2.2), Sd denotes site occupancy of competing drug, [Dout] denotes external 

drug concentration, Kdd,app denotes apparent binding constant of competing drug, [MT]tot denotes total MT 

polymer, [Pout] denotes external SirTub probe concentration, [PMT] denotes concentration of probe-bound 

MT taxane sites (measured by fluorescence), and Kpd,app denotes the apparent binding constant of the 

SirTub probe. This model provided excellent fits (e.g. R2 above 0.99 for all drugs in RPE1) to the ligand 

displacement data across four drugs and two cell lines (Fig. 2.2C, D). Our binding model does not account 

for possible differences in the concentration of unbound drug outside and inside the cell. Therefore, all our 

Kd estimates are apparent Kds, not true biochemical Kds. We believe our values are close to the biochemical 

Kds because we used a drug efflux pump inhibitor to minimize concentration differences across the plasma 

membrane, and our values are very similar to measured biochemical Kds for some drugs (see below).  

We used our model to regress the data (Fig. 2.2C, D) and calculate apparent binding constants for 

four representative taxane site ligands: EpoB, EpoD, Ixa and Ptx (Fig. 2.2E, F). Fig. 2.2G and 2.2H show 
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curves for inferred binding site occupancy as a function of external drug concentration in two cell lines, 

RPE1 (untransformed, TERT-immortalized) and HT1080 (fibrosarcoma). EpoD and Ixa had almost the 

same apparent Kd values between the two cell lines according to our calculations (Fig. 2.2E and 2.2F), and 

these values were very similar to measured biochemical Kds for binding to glutaraldehyde cross-linked MTs 

in pure protein assays120. Although our Kd estimates for Ptx differed substantially from the value obtained 

in the same study, they were in excellent agreement with the Kd of Ptx in living cells (5nM) calculated from 

3H-Ptx binding in live MCF7 cells122. Given recent interest in repurposing MT drugs for neuroprotective 

therapy101,124, we verified that we could obtain binding constants in differentiated ReNcell VM human 

neurons (Supplementary Fig. 2.4). 
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Figure 2.2. SirTub can be used to determine binding constants of taxane-site drugs in live cells. (A) 
Chemical structures of EpoB, EpoD, Ixa, and Ptx. (B) Schematic of probe-displacement assay. Probe 
fluorescence (red) is enhanced upon target binding. (C) SirTub displacement assay in RPE1 cells. Each 
data point was averaged from at least 9 wells. Data was regressed using equation (2.1), which accounts 
for drug-induced MT polymerization. IC50s are denoted by solid vertical lines. (D) SirTub displacement 
assay in HT1080 cells. Each data point was averaged from at least 9 wells. Data was regressed as in C. 
(E) Kdd,app values for four drugs in RPE1 cells. Values were derived from the regressions present in C. (F) 
Kdd,app values for four drugs in HT1080 cells. Values were derived from the regressions present in D. (G) 
Site occupancy calibration curves for RPE1 cells. The Kdd,app values in E were inputted into equation (2.2) 
to compute drug site occupancies. Dotted lines represent standard error as derived from the model fit in C. 
(H) Site occupancy calibration curves for HT1080 cells. As in G, site occupancy values were derived from 
the Kdd,app values in F. Note: Ixa curve is overlaid on the EpoD curve in G and H. All error bars denote 
standard error of the mean. 
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2.4.3 Site occupancy calibration of three cellular phenotypes 

We next quantified three MT- and cancer-relevant phenotypes that we could score by high-content 

imaging in living cells: MT polymerization dynamics, mitotic arrest and mitosis-dependent micronucleation. 

MT dynamics were quantified by imaging stably transfected EB3-GFP (RPE1 only), which tacks growing 

plus ends (Fig. 2.3A and Supplementary Fig. 2.5). This provides a sensitive and specific assay of plus end 

dynamics125. Stabilizing drugs deplete soluble tubulin, and thus block plus end growth and formation of EB3 

comets.  Mitotic arrest was measured by rounded morphology of living cells using EB3-GFP signal for RPE1 

(Fig. 2.3B) or by adding a cell permeant dye, SiR-eribulin (see SI Appendix), for HT1080 (Supplementary 

Fig. 2.6). Micronucleation, which might be particularly relevant for solid tumor responses, was measured 

by imaging a cell-permeant DNA dye (Fig. 2.3C and Supplementary Fig. 2.7). Nuclear morphology was 

complex after exit from abnormal mitosis, with many clustered micronuclei that were difficult to segment 

with simple thresholding methods (Fig 3C inset). Watershed segmentation significantly improved the 

segmentation of micronuclei (Supplementary Fig. 2.7). It was not possible to segment every micronucleus 

present due to overlap in 2D images, but we segmented the majority as judged by eye. The number of 

segmentable DNA particles per unit area generated reliable dose-response curves. Fig. 2.3D shows 

phenotypes as a function of EpoD concentration, with the x-axis scaled to be linear in site occupancy, and 

the y-axis scaled to normalized fold-change of phenotype metrics. Fig. 2.3E shows mitosis and 

micronucleus phenotypes in HT1080s (here we lacked a bright EB3-GFP line). We performed quantitative 

phenotypic comparisons for all four drugs in both RPE1 (Supplementary Fig. 2.8) and HT1080 cells 

(Supplementary Fig. 2.9). 

Plus-end dynamics was the most sensitive phenotype with loss of EB3 comets first detected at a 

site occupancy ~0.1 and a steady decrease to zero comets at site occupancy ~1.0. Micronucleation was 

the second-most sensitive phenotype, first increasing at a site occupancy of ~0.1-0.2 and peaking at ~0.6. 

Micronucleation declined at higher site occupancies, presumably because mitotic arrest slowed progression 

into micronucleated G1. We scored micronucleation at 22 hours for RPE1 and 24 hours for HT1080, the 

approximate doubling times for each line. This reduced complications from apoptosis. Cells arrested in 

mitosis eventually slip out of mitosis and progress to micronucleation or/and apoptosis over 2-3 days. Mitotic 
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arrest required higher site occupancies and was maximal above 0.8 in both cell lines. Mitotic arrest 

decreased at very high external drug concentrations, where site occupancy increased above 0.95, but we 

suspect our model, which assumes uniform affinity of binding sites, is no longer accurate in this regime. A 

notable feature of our data is the presence of a regime that exhibits strong perturbation of MT dynamics 

and micronucleation, but weak induction of mitotic arrest, at site occupancies of ~0.1-0.6 in both cell lines. 

This low-dose regime, where mitotic perturbation occurs without mitotic arrest, has been noted previously 

and may be of therapeutic importance60,108.  

 

Figure 2.3. Phenotypic comparisons on the site occupancy axis. (A) EB3 comets in RPE1 cells before and 
after treatment with 100 nM EpoB. Scale bar = 10 μm. (B) RPE1 cells arrested in mitosis 22 hours after 
treatment with 30 nM EpoB. EB3-GFP channel is shown. Scale bar = 10 μm in B and C. (C) Micronucleated 
RPE1 cells 22 hours after treatment with 1 nM EpoB. Image inset has been magnified 2.5x. Hoechst 
channel is shown. (D) Phenotypic comparison of EB3 comet loss, micronucleation, and mitotic arrest in 
RPE1 cells treated with EpoD. Phenotypic measurements are scaled to facilitate comparison and are shown 
with their corresponding standard errors (indicated by line thickness). Drug dose calibration is shown. 
Vertical gray bars denote standard error of site occupancy. (E) Phenotypic comparison of micronucleation 
and mitotic arrest in HT1080 cells treated with EpoD. Phenotypic measurements have been scaled as in 
D. Each value shown in D-E was averaged from 9 replicate wells. 
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2.4.4 Taxane-site drugs and sensitivity differ across phenotypes and cell lines 

Fig. 2.4 presents all our data for micronucleation and mitotic arrest in plots chosen to facilitate 

comparison between drugs (2.4A, B) or between cells (2.4C, D). In each case the phenotypic data are 

plotted as a function of site occupancy, so we can directly compare drugs, or cells. Broadly speaking, the 

four drugs were similar in their ability to promote micronucleation at lower site occupancies, and mitotic 

arrest at higher. That said, we also observed differences. Ptx is less efficient at promoting mitotic arrest 

than the epothilones in RPE1 but is one of the most efficient arresters in HT1080s at intermediate site 

occupancies (Fig. 2.4A, B). We did not observe any significant differences in mitotic maxima in HT1080s 

(Supplementary Fig. 2.10). Also, although there is no difference in micronucleation among the drugs in 

RPE1, these values differed significantly in HT1080, with Ixa significantly less efficient than the other drugs 

(Fig. 2.4A, 2.4B, S2.11). 

Comparing between cell lines, and plotting the y-axis normalized to maximal fold change to facilitate 

comparison, we noted one major difference across all 4 drugs. HT1080s exhibited mitotic arrest at lower 

site occupancy than RPE1s (Fig. 2.4C). The onset of micronucleation was similar in the two cell lines but 

the post-peak decrease shifted to lower values in HT1080 because increased mitotic arrest, which 

decreased micronucleation at 24 hours, initiates at lower site occupancy (Fig. 2.4D). We especially 

observed this leftward shift in HT1080 with Ixa and Ptx. This result suggests that the spindle assembly 

checkpoint (SAC) is more sensitive to MT stabilization in HT1080s. 
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Figure 2.4. Drug and cell-type comparisons on the site occupancy axis. (A) Drug-drug comparisons by 
mitotic arrest and micronucleation in RPE1 cells. All y-axis values are scaled to the maximum and minimum 
observed in the cell line. Dose calibration axes are included for each drug tested. (B) Drug-drug 
comparisons by mitotic arrest and micronucleation in HT1080 cells. All y-axis values are scaled as in A. (C) 
Cell-type comparison between RPE1 (solid lines) and HT1080 cells (dotted lines) by mitotic arrest. Mitotic 
scores have been scaled to the maximum and minimum observed for each drug. (D) Cell-type comparison 
between RPE1 (solid lines) and HT1080 cells (dotted lines) by micronucleation. Micronucleation values 
have been scaled to the maximum and minimum observed for each drug. Each value shown in A-D was 
averaged from 9 replicate wells. All error bars denote standard error of the mean. 
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2.4.5 High initial site occupancy is needed to treat tumors 

A critical question from a clinical perspective is the minimal site occupancy required in vivo for 

therapeutic efficacy. In mice, the dose of Ptx required to promote tumor regression is 10-40 mg/kg, 

depending on the tumor, schedule and vehicle126–128. We adapted our fluorescence assay to a highly 

responsive HT1080 xenograft tumor model that we used previously to probe cellular actions of Ptx129,130. 

Nu/nu mice with HT1080 tumors were dosed i.v. with Ptx or cremophor vehicle, followed 1 hour later by 

SirTub. Tumors were excised 24 hours after Ptx treatment and immediately imaged ex vivo by confocal 

microscopy. Fig. 2.5A shows SirTub images. Mitotic spindles were clearly visualized (Fig. 2.5A, inset). We 

were unable to resolve single MTs in interphase cells, but they exhibited specific (i.e. Ptx-competable) 

cytoplasmic signal that we could quantify by microscopy. Fig. 2.5B shows quantification of probe 

displacement in single cells from multiple fields and tumors in three mice at two doses of competing drug. 

Competition was dose-dependent. 30 mg/kg Ptx reduced SirTub signal by ~50% on average, with 

considerable heterogeneity among single cells. To confirm that our HT1080 xenografts respond in the 

typical range, we performed a small single-dose study, and found that 6 and 20 mg/kg Ptx i.v. reduced 

HT1080 tumor growth to a variable extent, and 30 mg/kg blocked growth completely (Fig. 2.5C). We applied 

the site occupancy calibration data that we previously obtained for HT1080s (Fig. 2.2H) to convert every 

SirTub measurement from Fig. 2.5B into a site occupancy estimate (Fig. 2.5D). Since we did not know the 

concentration of SirTub in the tumor, we considered a range for possible extracellular in vivo SirTub 

concentrations (i.e. 10 – 800 nM) and accounted for a 1-2-fold increase in MT polymer in vivo after addition 

of Ptx (Supplementary Fig. 2.12). By this analysis, we estimate the in vivo site occupancy for the curative 

30 mg/kg dose of Ptx as being ~0.8 at 24 hours (Fig. 2.5D). We previously measured peak mitotic arrest 

values of ~5-10% of cells ~24 hours after a 30 mg/kg Ptx dose in HT1080 xenografts, and peak 

micronucleation values of ~25-30% of cells at ~72 hours130. We conclude that the minimal curative dose of 

Ptx in the HT1080 model corresponds to an initial site occupancy of ~0.8 in the tumor, which triggers mitotic 

arrest at peak drug concentration, followed by micronucleation as site occupancy declines through 

dissociation from binding sites and clearance from circulation (Fig. 2.5E). 
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Figure 2.5. Taxane site occupancy in vivo. (A) Ex vivo images of SirTub in HT1080 xenograft tumor 24 
hours after infusion of vehicle control (left), 6 mg/kg Ptx (middle), and 30 mg/kg Ptx (right). Inset shows a 
mitotic cell labeled with SirTub. Scale bar = 100 μm. (B) SirTub displacement in HT1080 xenograft tumors 
24 hours after Ptx treatment. Each data point denotes a single cell. FC = fold-change (i.e. all values are 
normalized by the average SirTub signal in the vehicle control). (C) Response of HT1080 xenograft tumors 
to single treatments with Ptx. Once palpable tumors were established, mice were treated on day 0 with a 
single i.v. dose of Ptx in cremophor EL as indicated. Each square denotes a single measurement of a 
mouse tumor. Solid lines track average tumor volume. (D) All data points in B have been converted to site 
occupancy measurements using the data in 2.2C and 2.2G. At the indicated doses, drug-induced 
microtubule polymerization was assumed to be 1-2-fold compared to basal. Standard error bars are shown 
in lighter blue at each data point. (E) Phenotypic comparison of micronucleation and mitotic arrest in 
HT1080 cells treated with Ptx. Dotted line represents the predicted intratumoral site occupancy. Phenotypic 
measurements are scaled to facilitate comparison and are shown with their corresponding standard errors 
(indicated by line thickness). Drug dose calibration is shown. Vertical gray bars denote standard error of 
site occupancy. Each value shown in E was averaged from 9 replicate wells.  
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2.5 Discussion 

A novel ligand displacement assay in live cells allowed us to calculate taxane site occupancy as a 

function of extracellular concentration for four drugs in two cell lines. Our inferred Kd values were similar to 

published Kds measured using conceptually similar fluorescent ligand displacement assays on pure MTs119 

and live cell binding of 3H-Ptx122. Previous work mostly measured phenotypic effects of taxane-site drugs 

as a function of external drug concentration, or specific phenotypes at saturating drug concentration114,131. 

Our work allows more precise comparisons of biological effects across external concentrations, drug 

analogs and cell types. 

A possible point of confusion in taxane site pharmacology is the relationship between the 

concentration of free and total drug inside cells. Taxanes accumulate in cells and tumors, so their total 

concentration inside cells far exceeds the concentration in medium or plasma122,132. Total drug is the sum 

of free, specifically-bound, and non-specifically-bound drug. We could not quantify non-specific binding of 

non-fluorescent drugs, but we corrected all our data for non-specific binding of probe. Specifically-bound 

drug can be calculated from our data by multiplying our site occupancy values by binding site concentration. 

Tubulin constitutes ~4% of total protein in HeLa cells133, corresponding to approximately 20 µM, and most 

of it polymerizes when taxanes or epothilones are added. Given the apparent Kds of the drugs we tested, 

the concentration of specifically-bound, unlabeled drug is thus 3-4 orders of magnitude higher than unbound 

drug, consistent with previous data using 3H-Ptx binding122.  

Our data revealed a clear rank order in sensitivity of phenotypic effects to site occupancy. Loss of 

MT dynamics was the most sensitive, with detectable perturbation starting at a site occupancy of ~0.1, 

followed by micronucleation starting at ~0.2 and mitotic arrest requiring 0.6-1.0. This rank order was similar 

for all four drugs in both cell lines. Sub-stoichiometric binding of Ptx was previously shown to inhibit 

polymerization dynamics40, consistent with our findings. Previous work also showed that chromosome 

segregation defects and micronucleation occur at lower concentrations of Ptx than mitotic arrest60,108. The 

mechanism of micronucleation is unclear, and probably involves a combination of ectopic spindle pole 

formation60 and ectopic cleavage furrow assembly134. Mitotic arrest decreased at the highest external drug 
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concentrations we tested, and the highest inferred site occupancies (>0.95). Caution is required in 

interpreting these high site occupancy values, since our model assumes homogeneous binding sites, and 

very high drug concentration might access additional, lower-affinity sites, e.g. on exposed plus ends. 

Decreased duration of mitotic arrest at paclitaxel concentrations above 1 mM was noted previously and 

attributed to stabilization of syntelic kinetochore attachments135. This bell-shaped dose-response is 

interesting but unlikely to be relevant to chemotherapy, since mitotic arrest only decreased at paclitaxel 

concentrations that exceed safe plasma concentrations60,132.     

We asked if taxane site drugs differ in their phenotypic actions once normalized by site occupancy, 

which compares efficacy independent of Kd. Comparing across drugs in RPE1 (Fig. 2.4A) and HT1080 cells 

(Fig. 2.4B) we noted overall similar efficacies, but some interesting differences, e.g. more efficient mitotic 

arrest by Ptx and Ixa in HT1080. While EpoD and Ixa had identical apparent Kd values in HT1080s, their 

phenotypic effects differed noticeably, suggesting different efficacies. However, these differences were not 

seen in RPE1 cells. Future analysis across more diverse SAR series might reveal larger efficacy 

differences.    

A central question in taxane-site pharmacology is which phenotypic effects are responsible for 

tumor regression. This is a complex issue, with different authors favoring chromosome loss via aberrant 

mitosis113, bystander killing136, and direct cytotoxic actions on non-dividing cells112. Our work does not 

address this question directly, but it provides new information. In particular, we confirm that micronucleation 

occurs at lower concentrations than mitotic arrest for all drugs and therefore might predominate in tumors. 

Standard paclitaxel doses are sufficient to cause mitotic arrest in tumors 24 hours after drug infusion137, but 

plasma drug concentrations decrease rapidly due to drug clearance between doses. Micronuclei trigger 

post-mitotic inflammatory signaling61,138. This may allow a subset of tumor cells that pass through mitosis 

in drug to cause regression of the whole tumor in sensitive patients via recruitment of cytotoxic leukocytes, 

and/or inflammatory damage to the neovasculature139.   

To connect our work to in vivo pharmacology we measured the Ptx dose required to cure a sensitive 

xenograft tumor model, and then estimated site occupancy in tumor cells 24 hours after this dose (Fig. 2.5). 

We observed a 50% decrease in SirTub signal at the curative 30 mg/kg dose. Our calculations suggest that 
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the in vivo site occupancy of SirTub was below 0.2 in the absence of drug, so in the presence of 30 mg/kg 

Ptx, SirTub occupancy would decrease to below 0.1, leaving up to 90% of taxane sites for Ptx to bind. This 

is mathematically consistent with our data and suggests that a relatively high initial Ptx site occupancy, 

~0.8, was required for cure following a single dose in this model. How does this relate to human patients? 

A recent study assessed the intratumoral and plasma concentration of Ptx in breast cancer patients as 1.1-

9 µM and 80-280 nM, respectively, 20 hours after infusion of Ptx60. Intratumoral concentrations measure 

the sum of free, specifically- and non-specifically bound drug, and their interpretation is difficult.  If we 

assume the plasma concentration is close to the extracellular concentration, and drug efflux pumping is not 

a major issue, then we can estimate site occupancy using our data. 80-280 nM extracellular Ptx should 

generate a site occupancy greater than 0.8 (Fig. 2.2G, H). This is in the concentration regime that promotes 

mitotic arrest (Fig. 2.5E), consistent with elevated mitotic index at 24 hours post-Ptx in human tumors137. 

However, micronucleation will likely predominate at later time points as initially arrested cells slip into 

micronucleated interphase, and cells that newly enter mitosis do so at drug concentrations that are lower 

due to clearance. Even at 30mg/kg Ptx in HT10180 xenograft tumors, micronucleation strongly 

predominated over mitotic arrest at 72 hours post-drug130.   

Our work sheds new light on taxane pharmacology and demonstrates the potential of site 

occupancy measurements to guide future medicinal chemistry, whether for treatment of cancer or 

neurological diseases. It informs, but does not answer, the longstanding question of how taxanes promote 

regression of solid tumors. Based on the predominance of micronucleation over a broad range of site 

occupancies we currently favor an inflammatory micronucleation model of taxane action139. 

 

2.6 Methods 

2.6.1 Reagents and cell lines 

Epothilone B (EpoB) and ixabepilone (Ixa) were purchased from Selleckchem, Epothilone D (EpoD) 

was purchased from MedChemExpress, whereas paclitaxel (Ptx) and verapamil hydrochloride were 

purchased from Sigma Aldrich. Docetaxel, which was used in the synthesis of SiR-tubulin (SirTub), was 

purchased from LC Labs. Eribulin mesylate, which was used in the synthesis of SiR-eribulin (SirErib), was 
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obtained by lyophilization of HALAVEN® formulations (1 mg/2 mL; purchased from the MGH pharmacy). 

RPE1 cells expressing EB3-GFP were a generous gift from David Pellman at Harvard Medical School. 

 

2.6.2 Cell culture 

RPE1 cells expressing EB3-GFP were maintained in DMEM/F12 (Life Technologies) and 

supplemented with 10% FBS (GIBCO) (v/v) and 1% penicillin-streptomycin (Cellgro). HT1080 cells 

expressing EB3-mApple were grown in DMEM (Cellgro) supplemented with 10% FBS and 1% penicillin-

streptomycin. ReNcell VM human neural progenitor cells (Millipore) were grown in ReNcell NSC 

maintenance medium supplemented with EGF and bFGF and differentiated into dopaminergic neurons in 

growth factor free medium for 14 days. 

  

2.6.3 Live-cell microscopy 

For spinning-disk SirTub imaging, RPE1 cells were imaged on 35-mm plates at 20-30% confluency. 

For high-content imaging, RPE1 and HT1080 cells were seeded 5000 cells per well in 20 µL serum-free 

media on 384-well optical bottom Cell Carrier plates (Perkin Elmer) coated with Cell-Tak (Corning). After 

45 minutes, 20 µL media with 20% FBS was added to each well. After 4 hours, 40 µL of media containing 

10% FBS, 20µM verapamil, and 2x SirTub (for SirTub plates only) was added to each well. Competing 

drugs were dispensed immediately after verapamil addition using the D300 Digital Dispenser (Hewlett-

Packard). SirTub was found to be aggregate-prone which would result in inconsistent probe distribution by 

the D300. For this reason, SirTub was thawed, vortexed vigorously, centrifuged at 20,000 x g for 10 minutes, 

and carefully transferred to media, which was then manually pipetted on the imaging plates before drug 

treatments. Final DMSO concentrations were kept below 0.02%. Image acquisition was started immediately 

after drug treatments, except for the EB3 comet experiments; for these experiments, one time-point was 

acquired prior to drug addition. 
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2.6.4 Image acquisition 

For the initial proof of principle SirTub competition experiment (Fig. 2.1A), we used a spinning-disk 

confocal microscope (Nikon) equipped with a 60x/1.42 NA Plan Apochromat objective, heated chamber, 

and MetaMorph acquisition software. For Fig. 2.1C, the final time-point was used to determine the non-

specific signal of SiR-tubulin, after which the non-specific signal value was subtracted from all preceding 

time-points. For all other SirTub experiments, we imaged cells using the InCELL Analyzer 6000 high content 

microscope (GE Healthcare Life Sciences), equipped with 40x/0.95 NA (for EB3 comet imaging) and 

20x/0.75 NA (for all other imaging) Plan Apochromat objectives, heated stage and heated lid, as well as 

constant CO2 flow. For SirTub, Hoechst, and EB3 imaging, optimal focal planes were determined using the 

auto-offset function in the InCELL software. For imaging of mitotic cells, the auto-offset parameter was 

raised by 10 µm to blur out non-mitotic cells and put mitotic cells in focus. Rounded geometry was then 

used to segment the mitotic cells. Confocality was used for all imaging except nuclear area quantification. 

2x2 binning was used for all imaging except EB3 imaging. 

 

2.6.5 In vivo SirTub competition and microscopy 

All animal research was performed in accordance with the guidelines from the Institutional 

Subcommittee on Research Animal Care. 2 million HT1080-H2B-mApple cells were implanted 

subcutaneously into female nu/nu mice at 4-6 weeks of age. Roughly two weeks later, the indicated dose 

of Ptx or vehicle was administered intravenously (i.v.) in DMAC:solutol and PBS from a DMSO stock 

solution; 1 hour later, 300 nmol of SirTub was administered using the same i.v. formulation. 24 hours 

following taxane treatment, tumors were excised and immediately imaged.  Prior to harvesting, 10 kDa 

dextran-pacificBlue and 2 MDa FITC-dextran were co-administered i.v. to confirm vascular perfusion to the 

tumor as an inclusion criterion. Data for each condition was obtained from at least 250 cells across at least 

3 tumors. Tumor microscopy was performed on an Olympus FV1000 confocal-multiphoton imaging system, 

with a XLUMPLFLN 20x water immersion objective (NA 1.0; Olympus America); 2x digital zoom; sequential 

scanning using 405-nm, 473-nm, 559-nm, and 635-nm diode lasers and a DM405/473/559/635-nm dichroic 
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beam splitter; and collection of emitted light using beam splitters (SDM473, SDM560, and/or SDM 640) and 

emission filters BA430-455, BA490-540, BA575-620, and BA655-755 (all Olympus America). 

 

2.6.6 Image analysis 

Images were analyzed using custom-built software in Python. Every SirTub image obtained from 

the InCELL was split into 16 equally sized smaller images, each of which was thresholded using a Gaussian 

mixture model. After thresholding, background was defined and subtracted, and total resultant signal 

intensity was calculated. All integrated signal intensities in a given well were summed together for each 

time point. The final aggregate signal intensity was then normalized by total intracellular SirTub pixel area 

present in the well at each time point. 800nM EpoB was used as a positive control and the final value 

obtained for SirTub signal intensity in this condition was defined as the signal for non-specific binding; we 

subtracted this value from all other drug conditions to avoid quantification artifacts due to non-specific 

binding.  

For EB3 comet quantification, control images were thresholded manually, after which the resultant 

threshold was implemented across all images from a given plate. Comets were then scored using custom-

built particle detection software. Comets from all quantified fields in a given well were summed together for 

each time point. The final number of detected comets was then normalized by the total cell area (as defined 

by cytosolic EB3-GFP) present in the well at each time point. Background signal was defined as the comet 

value obtained at 10 hours in the presence of 1µM EpoB. This value was subtracted from all other acquired 

values. 

For mitotic scoring, control images were thresholded manually, after which the resultant threshold 

was implemented across all images from a given plate. For micronucleation scoring, Otsu thresholding was 

implemented on every image. Mitosis and micronucleation were scored using custom-built particle 

detection software which implemented watershed segmentation on every image. All quantified fields from 

a given well were summed together. The final number of detected particles was then normalized by total 

nuclear area (as defined by Hoechst stain) across all images for a given well. 
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2.6.7 Scoring of mitotic cells and micronuclei 

For mitotic and micronucleation scoring in RPE1s, drug-treated cells were incubated for one 

doubling time (22 hours in RPE1 and 24 hours in HT1080) and then stained with 1ug/ml Hoechst for 10 

minutes, after which the media was replaced. The EB3-GFP marker was imaged to define mitotic cells for 

later quantification, whereas Hoechst was used to define nuclear area and micronucleation. For mitotic 

scoring in HT1080s, cells were treated with 1 µg/ml Hoechst and 10 µM EpoB for 10 minutes to stain nuclei 

and fully polymerize MTs, after which this media was replaced with media containing 100 nM SirErib. After 

30 minutes of staining, HT1080 cells were imaged and the SirErib channel (i.e. far red) was used to define 

mitotic cells for later quantification. Note that very little difference was observed when using SirErib instead 

of EB3-GFP to score mitotic RPE1 cells (Supplementary Fig. 2.16). Micronucleation for HT1080s was 

scored on separate drug-treated plates stained with 1 µg/ml Hoechst. For all imaging experiments, RPE1 

and HT1080 cells were imaged in DMEM/F12 and DMEM (respectively) without phenol red (Corning), each 

supplemented with 10% FBS and 1% penicillin-streptomycin. 

 

2.6.8 Determination of the minimal tumor regressing dose of paclitaxel 

Mice xenografts were established with HT1080 fibrosarcoma cells. Approximately 100,000 cells 

were injected subcutaneously into the flank of 7 – 8-week-old female nu/nu nude mice (Crl:NU-Foxn1nu). 

Two tumors were established per mouse. Once palpable tumors reached approximately 1 cm in diameter, 

mice were administered a single i.v. dose of paclitaxel in cremophor EL, as indicated, through tail vein 

injections. Tumor volume was determined by external caliper measurements and carried out by 

independent researchers at the Dana Farber Cancer Institute Lurie Family Imaging Center. To calculate 

tumor volume, the greatest longitudinal diameter (length) and the greatest transverse diameter (width) were 

measured and volume was calculated by the modified ellipsoidal formula:  

 

(2.3)     

  

Mice were sacrificed if the tumor exceeded the IACUC-specified maximum. 
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2.6.9 Regression and confidence interval determination for binding constants 

For each drug, average values from each condition were used to regress our SirTub competition 

data to our ligand-displacement model. The residual sum of squares (RSS) was used as an objective 

function to find the minimum of the corresponding log-likelihood function. To determine confidence intervals, 

data values from every well were used to define the log-likelihood function at this minimum (assuming 

Gaussian error), after which the relevant confidence intervals were extracted from the diagonal values of 

the corresponding hessian matrix. 

 

2.6.10 Statistical test for drug-drug comparisons 

Unpaired t-tests were used to assess the statistical significance of differences between drug-

induced phenotypic maxima. For each of these comparisons, we assumed 16 degrees of freedom and used 

1.746, 2.583, and 3.686 as the corresponding t-values for p-values of 0.05, 0.01, and 0.001, respectively. 

 

2.6.11 Determination of in vivo site occupancy at 30 mg/kg Ptx 

Since SirTub signal fold-change (i.e. [PMT]FC) was measured in the xenograft tumors, equation 

(S23) was used to calculate site occupancy (Sd). The site occupancy calibrations obtained for Ptx in cultured 

HT1080 cells (Fig. 2.2G) were used to determine the relationship between [PMT]FC and [MT]FC (i.e. fold-

change of MT polymer). With this information, it was possible to calculate Sd for any measured value of 

[PMT]FC. The value of [PMT]FC was found to be 46% at 30 mg/kg Ptx. 

 

2.6.12 Synthesis of SirTub and SirErib 

Reactions were carried out under an atmosphere of argon in air-dried glassware with magnetic 

stirring. Air- and/or moisture-sensitive liquids were transferred via syringe. All reagents were obtained from 

commercial sources and used without further purification. Column chromatography was carried out using 

C18 flash cartridges (Biotage). NMR spectra were recorded on a Bruker Avance UltraShield 400 MHz 

spectrometer. Chemical shifts are reported in parts per million (δ) and calibrated using residual 

undeuterated solvent. Data is represented as follows: chemical shift, multiplicity, coupling constant (J, Hz) 
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and integration. LCMS and UV-spectrum analysis were performed on a Waters instrument equipped with a 

Waters 2424 ELS Detector, Waters 2998 UV-Vis Diode array Detector, Waters 2475 Multi-wavelength 

Fluorescence Detector, and a Waters 3100 Mass Detector using a Waters XTerra® C18 (5 μm) column. 

SiR-C8-CO2H and SirTub were prepared as previously described (Supplementary Fig. 2.13) and 

the purity of SirTub was confirmed by LCMS and NMR (matching data previously reported)121,140,141. 

SirErib was synthesized analogous to SirTub by conjugation of SiR to eribulin using 8-

aminooctanoic acid as linker (Supplementary Fig. 2.14). To a solution of eribulin mesylate (10 mM in DMSO, 

300 µL, 3 µmol) was added SiR-C8-CO2H (60 µL of 50 mM solution in DMSO, 3 µmol), HBTU (1.14 mg, 3 

µmol) and diisopropylethylamine (DIPEA, 5.2 µL, 30 µmol). The mixture was stirred at room temperature 

for 3 hours and then loaded directly onto a Biotage SNAP Ultra C18 column. The product was obtained 

after reversed phase chromatography (H2O/MeCN gradient elution, 0.1% formic acid) as a blue solid (2.7 

mg, 68%). Supplementary Fig. 2.15 shows the 1H NMR, chromatogram, and UV spectra for SirErib. 1H 

NMR (400 MHz, DMSO-d6) δ 8.74-8.68 (m, 1H), 8.07 (d, J = 8.0 Hz, 1H), 8.02 (d, J = 8.0 Hz, 1H), 7.72-

7.66 (m, 1H), 7.65 (s, 1H), 7.04-7-00 (m, 2H), 6.68-6.60 (m, 4H), 5.07-5.03 (m, 1H), 5.01-4.97 (m, 1H), 

4.85-4.81 (m, 1H), 4.76-4.72 (m, 1H), 4.66-4.61 (m, 1H), 4.59-4.54 (m, 2H), 4.29-4.22 (m, 1H), 4.21-4.13 

(m, 1H), 4.10 (s, 3H), 4.06-3.98 (m, 1H), 3.83-3.72 (m, 2H), 3.72-3.64 (m, 1H), 3.57-3.46 (m, 3H), 3.28-

3.22 (m, 4H), 3.22-3.16 (m, 2H), 3.06-2.99 (m, 2H), 2.91 (s, 12H), 2.86-2.69 (m, 3H), 2.33-2.12 (m, 6H), 

2.08-1.85 (m, 8H), 1.75-1.59 (m, 5H), 1.58-1.41 (m, 7H), 1.39-1.17 (m, 11H), 1.03 (d, J = 5.7 Hz, 3H), 0.64 

(s, 3H), 0.53 (s, 3H); MS [M+H]+ calculated 1325.70 for C75H101N4O15Si+, found 1325.83. 

 

2.7 Derivation of taxane-site occupancy model 

We can state the following biochemical relationships: 

 

(S2.1) 

(S2.2)  
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Extracellular drug (Dout) defuses into the cell (Din) and binds to unbound taxane sites (MT). This generates 

a drug-bound taxane site (DMT). This is similar in the case of the probe (Pout and Pin) which produces probe-

bound taxane sites (PMT; measureable by fluorescence). We can then derive equations for binding 

constants for the competing drug (Kdd) and probe (Kpd): 

 

(S2.3) 

(S2.4) 

 

(S2.5) 

(S2.6) 

 

Where: 

 

(S2.8) 

(S2.9) 

 

 

Resolving equation (S2.6) and (S2.7) for [DMT] and [MT], respectively, we get: 

 

(S2.10) 

 

(S2.11) 

 

Furthermore, equation (S2.10) can be furthered solved as a function of [PMT]: 

 

(S2.12) 
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Also, the total amount of taxane sites is equal to the amount of MT tubulin that is bound to drug, probe, or 

nothing. Therefore: 

 

(S2.13) 

 

Substituting equations leads to: 

 

(S2.14) 

 

Solving for [PMT] gives: 

 

(S2.15) 

 

Now solving for the apparent drug dissociation constant (Kdd,app ) gives: 

 

(S2.16) 

 

Ultimately, we desire drug site occupancy in the absence of probe. By definition, this is represented by: 

 

(S2.17) 

 

 

Which when rearranged gives: 

 

(S2.18) 

 

Likewise, for the probe site occupancy in the absence of drug: 
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(S2.19) 

 

Note that the basal amount of total MT polymer can be derived: 

 

(S2.20) 

 

We can also determine drug site occupancy as a function of [PMT] fold-change ([PMT]FC). This is useful for 

the case in which we might know [PMT]FC but not Sd. In order to do this, we need to derive drug 

concentration as a function of site occupancy: 

 

(S2.21) 

 

If we rewrite equation (S15) in terms of [PMT]FC (i.e. divide each side by [PMT]o) and then use the 

relationship between site occupancy and drug concentration, we can get: 

 

(S2.22) 

 

 

Then after substituting this expression into the equation for [PMT] and solving for drug site occupancy, we 

get: 

 

(S2.23) 

 

 

For simulating the amount of total MT polymer, we have used an exponential relaxation equation: 
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(S2.24) 

 

Where [MT]tot is the amount of total MT polymer at a given drug concentration. [MT]o is the amount of total 

MT polymer in the absence of drug and [MT]max is the amount of total MT polymer when it has been 

maximally polymerized by drug (i.e. this is the same as the total concentration of tubulin dimer in the cell). 

Note that [MT]o is known, as is [MT]max (from known MT fold-change). The k constant is the only 

independent variable that must be determined. As we have it, [MT]tot is ultimately a function 

of [PMT] and Kpd,app. If [Pout] is not known (e.g. in vivo), we assume that [Pout] is a uniformly distributed 

variable from 10nM to 800nM and by doing so we put generous error bounds on [Pout]. Note: an exponential 

relaxation equation has previously been used by Lukinavičius, G. et al to model MT growth121. 
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3.1 Attributions 

  The following chapter describes a phosphoproteomics approach that I undertook to elucidate the 

immediate cellular signaling involved in microtubule drug perturbations. I was aided in this project by a 

number of exceptional scientists. First, Dr. Marc Presler taught me how to conduct enrichment of 

phosphopeptides using titanium dioxide microspheres. Dr. Robert Everley and Matthew Berberich helped 

me with later-stage mass spectrometry sample preparation and taught me how to fully process raw data 

produced from a mass spectrometer. Dr. Marian Kalocsay was the last mass spectrometry expert who 

helped me with phosphoproteomics sample preparation. We improved the phosphoenrichment protocol for 

my samples and are in the midst of procuring more phosphoenriched sample sets. As this data is not yet 

complete, it is not contained within this thesis, but it will be included in the manuscript that we will produce 

from this chapter. Finally, Dr. Jui-Hsia Weng conducted phospho-Western blot analyses that were critical 

for the claims made in this chapter. I designed and performed all of the imaging and phosphoproteomic 

experiments contained herein and wrote all relevant coding in Python to analyze the data. 

 

3.2 Abstract 

Microtubules are dynamic polymers with critical roles in cell division, motility, and vesicle trafficking. 

Many microtubule-targeting drugs exist, several of which exert antitumor effects in cancer chemotherapy, 

yet little is known about the biological activities of these drugs beyond perturbation of mitosis. We used 

phosphoproteomics to identify more than 23,000 phosphopeptides in quiescent cells, and to classify more 

than 2000 which change in response to microtubule perturbation. We found that chemical perturbation of 

microtubules stimulates extensive phospho-signaling within minutes. We classified responses as specific 

for stabilizing or destabilizing drugs, or common to both. Motif analysis, clustering algorithms, and 

bioinformatics revealed differential involvement of MAPK pathways in these responses. Using combinatorial 

drug treatments, we confirmed the involvement of JNK in response to microtubule stabilization. 

Remarkably, almost all of the 100s of phosphopeptides induced by stabilizing drugs such as epothilone-B, 

many of which were nuclear, were due to JNK activity. Furthermore, our data suggest that increased 

phosphorylation of these sites was caused by inhibition of opposing phosphatases rather than activation of 
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JNK itself. Our results implicate phosphatase regulation as a central response to perturbation and provide 

novel insights into the pharmacology of microtubule-targeting drugs used in cancer chemotherapy. 

 

3.3 Introduction 

 Microtubules (MTs) and their intrinsic dynamic instability18 are vital for many eukaryotic cell 

processes. Their dynamic nature is tuned by regulatory proteins, which are capable of providing increased 

stability or instability depending on the phase of the cell cycle or cell type142, and prolonged chemical 

disruption of MT dynamics typically leads to cell death143. There are many classes of natural products and 

synthetic drugs that disrupt MTs, either by binding the polymers or by binding dimeric tubulin in the cytosol. 

These drugs can be summed up most simply as compounds that either stabilize or destabilize MTs. Among 

the most clinically relevant of these drugs are those that bind the taxane and vinca sites on ß-tubulin. 

Taxane-site drugs, such as paclitaxel (Ptx), and vinca-site drugs, such as eribulin (Erb), are used widely in 

the clinic for cancer chemotherapy. Other drugs, such as epothilone-B (EpoB), which binds the taxane site, 

and combretastatin-A4 (Ca4), which binds the colchicine site, have shown promise in clinical trials, but 

clinical use of these agents has been limited by toxicity issues. The therapeutic efficacy of MT-targeting 

drugs has conventionally been attributed to mitotic arrest, which is a prominent biomarker of response to 

these drugs in cells59, though recent studies have suggested that interphase effects may also be 

therapeutically relevant144. The mechanisms responsible for this have not been extensively studied, 

although interphase death by MT perturbation is a known biological phenomenon. Vinca alkaloids, for 

example, have been found to induce acute apoptosis in leukemia cells before the onset of mitosis145,146. 

 Post-translational modifications play a critical role in the dynamic MT life cycle, either by modifying 

tubulin itself147 or by modifying MT-associated proteins (MAPs)31,148. In particular, phosphorylation is known 

to affect the MT-binding affinities of several MAPs, plus-end binding proteins (+TIPs) and catastrophe 

factors. MT-affinity regulating kinases (MARKs) can directly phosphorylate the MT-binding domains of 

classical MAPs (i.e. MAP2, MAP4, and Tau)31, whereas protein kinase A (PKA) phosphorylates CLIP1148 – 

in either case, the phosphorylation destabilizes MTs. Disruption of MTs can also induce phospho-signaling, 

in turn. Previous work confirmed that prolonged treatment with MT-targeting drugs stimulates mitogen-
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activated protein kinase (MAPK) signaling in cycling and non-cycling cells62,63. The c-Jun N-terminal kinase 

(JNK), p38, and extracellular-signal-regulated kinase (ERK) pathways have all been implicated in the 

response to these drugs, though there has been little consensus on the extent and nature of the signaling, 

which appears to be cell-type dependent, dose-responsive, and can differ between MT-stabilizing and 

destabilizing drugs62,64–66. Other than MT-mediated MAPK regulation, little work has been done to elucidate 

other phospho-signaling induced by these drugs.  

A mass spectrometry (MS)-based approach would offer a highly quantitative and more global 

assessment of MT-proximal protein phosphorylation. Recent advances in MS phosphoproteomics have 

made it possible to quantify the phosphorylation states of thousands of phosphorylation sites in a single 

experiment87,149. Multiplexing can be accomplished through the use of isobaric affinity tags, such as tandem 

mass tags (TMTs)85, which enable simultaneous measurement of a given peptide across 11 sample 

conditions in a single MS2 scan. Previous work used phosphoproteomics to compare nocodazole-induced 

phosphorylation across a panel of cancer cell lines93. This work, however, focused on long incubation times 

and mainly commented on mitosis-related phosphorylation, which is currently well studied.  

We present the first global comparison of phospho-signaling induced by MT-stabilizing and 

destabilizing drugs in interphase retinal pigmented epithelial (RPE)-1 cells. For this, we employed TMT-

based phosphoproteomics and quantified over 20,000 phosphopeptides. Our analysis reveals common and 

unique signaling to both classes of drug, sheds light on MAPK activity, and uncovers the prominence of 

phosphatase action in response to MT destabilization. Furthermore, we demonstrate a rapid increase in 

JNK activity without additional JNK activation in the case of MT stabilization in RPE1 cells, which we 

hypothesize is due to drug-induced inhibition of the opposing phosphatase(s). 

 

3.4 Results 

3.4.1 MT drug action can be kinetically aligned using EB3 comet analysis 

 To determine ideal drug concentrations to test for phosphoproteomic analysis, we decided to 

measure the response of MT dynamics to a panel of stabilizing and destabilizing drugs. Since MT stabilizing 

and destabilizing drugs have opposite effects on MT polymer in cells, we sought to determine 
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concentrations that would achieve similar rates of EB3 comet loss in live cells. We tested a small, but 

diverse, panel of drugs including paclitaxel (Ptx), epothilone-B (EpoB), combretastatin-A4 (Ca4), and 

eribulin (Erb). We show the binding modes of these drugs in an overlay of four published crystal and cryo-

EM structures47,51,150,151 (Fig. 3.1A). Since we could not find published structures for EpoB in complex with 

tubulin, we used a structure of epothilone-A instead, which differs by one methyl group. We conducted time-

lapse imaging of EB3 comets in RPE1 cells expressing an EB3-GFP reporter (Fig. 3.1B, Supplementary 

Fig. 3.1). We tested a four-fold dilution series of these drugs and after quantifying the images, we concluded 

that the highest concentrations tested should be used for phosphoproteomic analysis. Note that for the 

stabilizing drugs, the data suggest that MTs are fully polymerized within 3-5 minutes (Fig. 3.1B), since the 

number of EB3 comets directly correlates with the number of growing MTs152. The kinetics of MT 

depolymerization after treatment with Erb or Ca4 is less obvious from the data, but we observed cell 

rounding for even the lowest doses tested (i.e. 50 and 25 nM, respectively) within 15 minutes 

(Supplementary Fig. 3.1), suggesting that at least some proportion of MTs had depolymerized within that 

time. MT depolymerization has previously been found to induce GEF-H1-mediated actin stress fiber 

formation and cell contractility153,154. 
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Figure 3.1. Comparison of MT drug kinetics via EB3 comet imaging. (A) Overlay of published crystal and 
cryo-EM structures of Ptx (blue), Ca4 (green), Erb (purple), and epothilone-A (orange) in complex with 
dimeric tubulin (gray). PDBs: 1JFF, 1TVK, 5JH7, 5LYJ. (B) EB3 comet scoring for Ptx, CA4, Erb, and EpoB 
(same colors as in A). A four-fold dilution series is depicted for each drug. Darker hues denote lower doses 
(black for 0.1% DMSO control) whereas brighter hues denote higher doses. The boxed number in each plot 
denotes the highest dose tested (nM). Error bars denote standard error of the mean (N > 100 cells).  
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3.4.2 Erb and EpoB stimulate time-dependent high-fold changes in the phosphoproteome 

 We proceeded by treating serum-deprived, contact-inhibited RPE1 cells with 800 nM Erb, 800 nM 

EpoB, or DMSO control over a 2-fold time series (Fig. 3.2A). We treated cells for as long as 2 hours and as 

short as 4 minutes in order to observe slower and quicker signaling that is stimulated by the drugs. 

Importantly, we normalized the serum-deprivation time for all conditions. After drug treatment, we aspirated 

the media and lysed quickly with a guanidine thiocyanate (GuSCN) buffer. In this way, protein was 

immediately denatured, making the use of phosphatase and protease inhibitors unnecessary. We 

proceeded with a typical protein-MS sample work-up utilizing isobaric TMTs to multiplex 10 conditions in a 

single MS run85,155 (Fig. 3.2A, middle column). We then used MS/MS/MS to quantify the TMT reporter ions. 

 After searching the data to map the phosphopeptides on the proteome, we performed principal 

component analysis (PCA) for the Erb and EpoB datasets to reduce dimensionality and determine the 

principal cause of variance in the data. Looking at the first principal component (PC1), it was apparent that 

time accounted for the maximum variance observed for both Erb- and EpoB-induced phosphopeptides (Fig. 

3.2B). We then assessed the magnitude of fold-changes observed in the data and determined that 8 and 6 

percent of phosphopeptides changed more than 2-fold within 2 hours for Erb and EpoB, respectively. We 

also conducted null hypothesis testing to compute confidence scores with respect to duplicate reliability. 

For subsequent analysis, we used phosphopeptide measurements that were assigned confidence scores 

above 90 percent (Supplementary Fig. 3.2). 

 

 

 

 
 
 
 
 
 
 
 
 
 
 



 49 

 
 
 
 

 
Figure 3.2. Phosphoproteomics sample preparation and dimensionality reduction. (A) Workflow for 
treatment, lysis, and sample preparation to obtain TMT-labeled phosphopeptides and subsequent data 
analysis. (B) Principal component analysis (PCA) of phosphopeptide data obtained for Erb and EpoB. The 
variance accounted by the first principal component (PC1) is indicated in parentheses. (C) Cumulative 
distributions of log2(FC) data for Erb and EpoB. Shaded region denotes phosphopeptides with greater than 
2-fold change. 
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3.4.3 Several pathways are stimulated by Erb and EpoB 

 To broadly assess which signaling pathways are stimulated by Erb or EpoB treatment, we used 

KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway analysis. In Fig. 3.3A, we annotate a subset 

of pathways enriched for both Erb and EpoB (p < 0.05). This analysis revealed that several pathways, such 

as MAPK signaling and focal adhesion functionality, were over-represented by Erb phosphopeptides but 

under-represented by EpoB phosphopeptides. Exceptions to this observation included protein processing 

in the endoplasmic reticulum (ER) and phagosome regulation, which were over-represented for EpoB 

phosphopeptides. It was also obvious from this analysis that Erb stimulated many more pathways than 

EpoB, including regulation of the actin cytoskeleton, calcium signaling, and apoptosis (Supplementary Fig. 

3.3). Intriguingly, Erb phosphopeptides also seemed to be enriched for immune-related signaling. On this 

note, previous work has suggested that GEF-H1 released from depolymerized MTs controls sensing of 

nucleic acids for antiviral host defenses156. 

 To identify groups of correlated phosphopeptides, we utilized a custom-built factor analysis 

algorithm (Fig. 3.3B, Supplementary Fig. 3.4).  Intriguingly, the top factor loadings for Erb were enriched for 

+TIPs and MAPs (e.g. CLIP1, MAP4) and proteins associated with the actin cytoskeleton (e.g. FMN2, 

ANLN, DBNL). The top factor loadings for EpoB were also enriched for +TIPs and MAPs, though these 

proteins (and phosphopeptides) were different than those enriched for Erb (Fig. 3.3B). In Fig. 3.3C, we 

show the representative phosphopeptides for MAP4 and CLIP1 identified by factor analysis for Erb. All of 

these peptides are being dephosphorylated and reside in vital regions of these proteins. The phosphosites 

for MAP4 occur in the MT-binding region of the protein. Dephosphorylation of these sites increases MAP4 

affinity for MTs and may act to counter to drug response. The phosphosites for CLIP1 occur in a serine-rich 

region between the two CAP-Gly domains of the protein. Although the exact functionality of each of these 

CLIP1 sites is unknown, studies have shown that, similar to MAP4, dephosphorylation in this region can 

increase CLIP1 affinity for MTs157. Many other phosphopeptides were detected that hint at regulation of 

MTs and actin in response to Erb (Supplementary Fig. 3.5). 

We then performed motif analysis using Motif-x158,159 to determine enriched motifs among high-fold 

changing phosphopeptides. This approach only returned proline-directed motifs (i.e. S*P and T*P) for Erb 
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and EpoB phosphosites. These motifs, however, were present in a higher proportion of phosphopeptides 

for EpoB as compared to Erb (Fig. 3.3D), indicating that EpoB-stimulated signaling relies much more on 

proline-directed kinase activity. 

Proline-directed phosphosites implicate a small panel of possible upstream kinases. Potential 

candidates include MAPKs (e.g. JNK, p38, ERK), CDKs, and GSK3ß. We therefore looked in our data for 

phosphosites that would further implicate any of these kinases. The c-Jun transcription factor was found to 

be phosphorylated at Ser63 after treatment with Erb (Fig. 3.3E; this peptide was not detected for EpoB), 

which primarily implicates JNK, though ERK1/2 can also phosphorylate this site under certain 

circumstances160. The activation sites for ERK1 and ERK2, as well as p38, were also present in the data, 

but these sites were only phosphorylated in the case of Erb. We also discovered phosphorylation of LMNA 

at either Thr19 or Ser22 (Supplementary Fig. 3.6), both of which would normally implicate CDK1161. Note 

that since we allowed our cells to contact inhibit each other, the mitotic index was very low prior to drug 

treatments (below 1%) which makes CDK1 activity very unlikely.  

 To visualize the global kinetics and directionality of all changing phosphopeptides, we clustered the 

data using a Pearson-based hierarchical clustering algorithm (Fig. 3.3F). This visualization of the data made 

it clear that a large wave of phosphorylation is induced by both drugs as fast as 4 minutes after drug 

treatment. This wave of phosphorylation accounted for the large majority of all changing phosphopeptides 

and suggests that the two drugs induce similar kinase activity to phosphorylate these sites. There were also 

noticeable differences between the drugs, however. For example, it was clear that there is a slower wave 

of phosphorylation that is induced by Erb but not EpoB (Fig. 3.3F, top left black box). There was also a 

kinetically similar wave of dephosphorylation specific to Erb (Fig. 3.3F, lower left black box). Fewer 

phosphopeptides were unique to EpoB, but we did observe a small cluster of phosphorylated sites that 

tracked differently for Erb (Fig. 3.3F, thin black box). We also annotated phosphoproteins with Uniprot 

identifiers for protein family assignment and likely cellular localization. Using “nucleus”, “nucleus speckle,” 

and “nucleus matrix” as Uniprot identifiers for cellular localization, we annotated phosphoproteins that were 

localized in the nucleus (Fig. 3.3F, barcode on right of heatmap). Surprisingly, nuclear sites were very 

enriched among all changing phosphopeptides. 
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Figure 3.3. Pathway analysis of phosphopeptide changes induced by Erb and EpoB. (A) Scatterplot shows 
statistically enriched KEGG pathways in the phosphoproteome induced by Erb and EpoB (p < 0.05, Fisher’s 
exact test). Pathways that are over-represented have enrichment factors greater than 1, whereas under-
represented pathways have enrichment factors less than 1. (B) Factor analysis of Erb and EpoB 
phosphopeptide data. Proteins among the top factor loadings are annotated. Protein density is denoted by 
both color and size. (C) Phosphopeptide profiles for MAP4 and CLIP1 phosphosites stimulated by Erb. (D) 
Percentages of high fold-change peptides that are proline-directed. (E) Phosphopeptide profiles for MAPK 
relevant phosphosites detected for Erb (blue) or EpoB (orange). (F) Hierarchical clustering of the 
phosphopeptides induced by Erb and EpoB. Nuclear phosphopeptides are denoted by black lines. Top left 
box encloses phosphorylation specific to Erb. Lower left box encloses dephosphorylation specific to Erb. 
Right box encloses phosphorylation specific to EpoB. 
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3.4.4 JNK activity (not activation) is induced by EpoB 

 Thus far, the data implicated potential action of JNK, p38, ERK, and possibly CDKs for Erb, and 

just JNK or CDKs for EpoB. Since proline-directed directed phosphorylation constituted a larger proportion 

of EpoB phosphosites, we performed an additional phosphoproteomics experiment in RPE1 cells, this time 

with combinatorial drug treatments of EpoB and inhibitors for the 4 kinase families mentioned above (Fig. 

3.4A). Cells were again grown to contact inhibition and serum-deprived prior to the 2-hour drug treatments. 

Importantly, we also tested the effects of the kinase inhibitors alone on cells. We clustered the data using 

the Fuzzy c-means algorithm which revealed that only JNK was responsible for the phosphorylation present 

in this new dataset (Fig. 3.4B, Supplementary Fig. 3.7). When visualizing these clusters in heatmap format, 

this result became even more obvious (Fig. 3.4C). Additionally, we found that JNK was responsible for the 

CDK1-annotated sites in LMNA (Supplementary Fig. 3.8). We mapped this smaller dataset of JNK-

dependent phosphosites onto the previous Erb/EpoB time-course data and found that most all of these 

sites occurred in the cluster of sites that are highly correlated between the two drugs, with the exception of 

a few sites that occurred in phosphopeptides changing only for EpoB (Supplementary Fig. 3.10).  

Since we did not detect phosphorylation of the JNK activation sites previously, we performed 

phospho-Western blot analysis of these sites. For this, we used Ca4 instead of Erb – we used MS to verify 

similar phosphorylation dephosphorylation induced by these two drugs (Supplementary Fig. 3.9A, B). 

Western blot analysis made it clear that treatment with an MT destabilizing drug induces activation of JNK 

(Fig. 3.4D). Strikingly, JNK was not activated after treatment with EpoB. Although this may be 

counterintuitive at first, this result indicates that net JNK activity has increased in the case of EpoB treatment 

without additional activation. We interpret the data as hinting at competition between JNK and an opposing 

phosphatase(s) and present a potential model for this in Fig. 3.5. In any case, the data point toward two 

different JNK pathways that are induced by MT-stabilizing vs. MT-destabilizing drugs. 
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Figure 3.4. JNK activity, but not activation, is responsible for EpoB-induced phosphorylation. (A) 
Experimental design to probe proline-directed kinases (JNK, p38, ERK, CDKs). (B) Fuzzy c-means clusters 
demonstrating JNK-dependent signaling stimulated by EpoB. Sample numbers are the same as in A. (C) 
Heatmap representation of the phosphopeptide profiles plotted in B. (D) Phospho-Western blot of JNK 
activation sites upon treatment with Ca4 or EpoB. 
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Figure 3.5. Model of two MT-mediated pathways for stimulating JNK activity. EpoB stimulates MT 
polymerization and effectively inhibits the phosphatase whereas Erb, or Ca4, induces MT depolymerization 
into tubulin dimers, leading to JNK activation and phosphatase release from MTs.   
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3.5 Discussion 

 We have conducted a global comparison of the interphase phosphorylation induced by an MT-

stabilizing drug, EpoB, and an MT-destabilizing drug, Erb. We implemented the use of MS-based 

phosphoproteomics, which enabled us to multiplex two different time-courses and capture phospho-

changes occurring as quickly as 4 minutes in serum-deprive cells. Importantly, we found that serum-

deprivation had little effect on drug-induced changes other than partially accentuating most all of the 

phospho-changes observed (Supplementary Fig. 3.11). That being said, a small cluster of phosphopeptides 

was affected, but half of this cluster consisted of peptides from one large protein. The other affected 

peptides hinted at a difference in cell cycle regulation, suggesting that these divergent signals may be due 

to a small percentage of cells that were not fully contact-inhibited (Supplementary Fig. 3.11).  

Simple dose-response experiments of EB3-GFP comet kinetics allowed us to align Erb and EpoB 

with respect to time-dependent loss of MT dynamics (Fig. 3.1B), which facilitated comparison for our 

phosphoproteomic analysis. Although less than 10 percent of phosphorylation changed after drug 

treatment, it was obvious that several signaling pathways, in addition to MAPK signaling, were induced by 

MT stabilization or destabilization (Fig. 3.3A). We observed that significantly more signaling pathways were 

induced by the destabilizing drugs (Supplementary Fig. 3.3 shows a subset of these). Intuitively, this may 

make sense considering that many signaling proteins bind to MTs in vivo and some are known to have 

functions that are inhibited by MT binding153. 

 We were initially surprised by the enrichment of cytoskeleton-related proteins among our high-fold 

changing phosphopeptides. Factor analysis revealed that both MAPs and actin-binding proteins are 

phospho-regulated in response to MT destabilization, whereas primarily MAPs are affected by MT 

stabilization. The enrichment of actin-binding phosphoproteins is consistent with the idea that MT 

depolymerization mediates crosstalk with the actin cytoskeleton via release of the GEF-H1, which is 

required for Rho kinase activation and subsequent actin contractility162. Indeed, we observed contractile 

cell morphology induced by MT depolymerization for both Erb and Ca4 (Supplementary Fig. 3.1). Among 

the many MAP phosphosites that changed in our datasets, we noticed that several phosphosites occurred 

in regions that alter affinity for MTs. This was especially the case for MT destabilizing drugs. CLIP1 and 
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MAP4 were dephosphorylated in response to Erb (Fig. 3.3C), which would naturally increase their affinity 

for MTs. This may hint at a phospho-regulated compensatory response to MT destabilization: as MTs are 

depolymerized, a phosphatase dephosphorylates cytosolic MAPs to re-stabilize MTs. This idea may be 

further supported by the phosphorylation of stathmin at S25 in response to Erb (Supplementary Fig. 3.5), 

which inhibits stathmin-mediated sequestration of tubulin dimer and effectively stabilizes MTs163.  

 Like others, we observed induction of the JNK, p38, and ERK signaling pathways in response to 

MT destabilization, as evidenced by phosphorylation of S63 of c-Jun, T202/Y204 of ERK1, and T180/Y183 

of p38, respectively (Fig. 3.3E). ERK and p38 were not significantly activated in the case of EpoB treatment, 

though this may be due to the short duration of our treatment. We became particularly interested in the 

large cluster of phosphopeptides that were correlated between the two drugs. We performed combinatorial 

drug treatments to identify the kinase most responsible for this cluster. Phosphoproteomic analysis pointed 

exclusively at JNK as the kinase responsible (Fig. 3.4B, C). Although we did not perform combinatorial drug 

treatments for Erb, we believe that JNK is still largely responsible for the Erb side of this phosphopeptide 

cluster. This hypothesis is supported by the high correlation between the drugs in this cluster, the rapid 

nature of the phosphorylation, and the slower activation of ERK and p38 in response to Erb treatment. We 

also verified the quicker induction of JNK activation when using the same time-points and the same effective 

dose of Ca4 (Fig. 3.4D), which further supports this hypothesis. Nevertheless, it is possible that ERK and 

p38 might also phosphorylate these sites at later time-points. Strikingly, JNK was not activated in the case 

of EpoB treatment, although our phosphoproteomics data demonstrated an obvious increase in JNK-

dependent phosphorylation. Realizing that phosphatase activity was induced by the depolymerization of 

MTs (Fig. 3.3F, lower left black box), and that some proline-directed sites were phosphorylated for EpoB 

but dephosphorylated for Erb (Fig. 3.3F, middle black box), we reasoned that a phosphatase (or multiple 

phosphatases) may be competing for these MAPK substrates. 

 We present a simple literature-supported model in Fig. 3.5. In our model, a pool of phosphatase is 

sequestered by MT affinity. Upon chemical-induced MT polymerization, the phosphatase becomes further 

sequestered and, thereby, inhibited. This allows for basally activated JNK to phosphorylate without 

competition from the opposing phosphatase. Upon treatment with a MT-destabilizing drug, however, the 
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phosphatase is released, allowing for the dephosphorylation of MAPs (and potential re-stabilization of MTs). 

Although more phosphatase is present to compete with JNK, an upstream MAPK is also activated by the 

MT disruption (or is basally active), allowing for quick JNK activation. The PP2A phosphatase has 

previously been found to associate with MTs164 and bind to MAPs165. We conclude with this model of two 

different MT-mediated JNK pathways. Future work may elucidate the extent to which the EpoB-stimulated 

JNK pathway occurs in other cell types, especially those previously reported to have slow or little activation 

of JNK in response to MT stabilization. 

  

3.6 Methods 

3.6.1 Reagents and cell lines 

EpoB and Ptx were purchased from MedChemExpress whereas Ca4 was purchased from Sigma-

Aldrich. Erb was a generous gift from Ralph Weissleder at Mass General Hospital who purchased it from a 

clinic at MGH. In addition, JNK-IN-8, SCH772984, and dinaciclib were purchased from MedChemExpress, 

whereas VX-745 was obtained from Sigma-Aldrich. RPE1 cells expressing EB3-GFP were a generous gift 

from David Pellman at Harvard Medical School. 

 

3.6.2 Cell culture 

RPE1 cells expressing EB3-GFP were maintained in DMEM/F12 (Life Technologies) and 

supplemented with 10% FBS (GIBCO) (v/v) and 1% penicillin-streptomycin (Cellgro). 

 

3.6.3 Live-cell microscopy and image acquisition 

Each day prior to imaging, RPE1 cells were passaged to 25% confluency on 35-mm MatTek plates 

with glass coverslip bottoms. Media was replenished 3-4 hours before imaging. We imaged EB3 comets 

using a spinning-disk confocal microscope (Nikon) equipped with a 60x/1.42 NA Plan Apochromat 

objective, heated chamber, and MetaMorph acquisition software. 30 percent laser power was used with 

500 millisecond exposure. Four fields were imaged per plate. Images were acquired every 15 seconds. 

 



 59 

3.6.4 Image analysis 

 Images were analyzed using custom-built software in Python. Comet thresholding was performed 

separately for each imaging session (i.e. image fields that were obtained within the same imaging session 

were thresholded similarly). To do this, a Gaussian blur with 5-pixel radius was applied on a given field. 

This blurred image was then subtracted from the original image. The result of this subtraction was then 

used to threshold with respect to the first time-point, after which this threshold was applied onto all 

subsequent time-points for the same cell. The threshold was computed so to maximize the negative control-

to-positive control comet ratio; later time-points of the DMSO control and highest drug dose were used for 

this. In order to count apparent image puncta as comets, we set a 3-20 pixel size filter. The median number 

of comets from all quantified fields for a given plate was computed at each time-point. The resultant array 

of comet medians was then normalized by the median cell area (as defined by cytosolic EB3-GFP) at each 

time point. 

 

3.6.5 Mass spectrometry-based phosphoproteomics 

 For the Erb and EpoB time-course experiments, cells were grown to confluency on 15-cm plates 

until the visible mitotic index was below 1%. Cells were washed twice with PBS and then serum-deprived 

for 2.5 hours prior to drug treatments. The cells were then treated with either 800nM Erb, 800nM EpoB, or 

0.01% DMSO control. Cell lysates were obtained at 4 minutes, 8 minutes, 16 minutes, 32 minutes, 64 

minutes, or 128 minutes after drug treatment. DMSO control lysates were procured after treating for 64 or 

128 minutes. Biological duplicates were obtained for the DMSO control as well as for the 16-min and 128-

min time-points. Note: all cells were serum-deprived for 4.5 hours including treatment time. Cells were lysed 

by aspirating the serum-deprived media and immediately pipetting 2 mL of 5 M GuSCN buffered with 100 

mM HEPES, pH 7.2. For each lysate, 4mg of protein was utilized to carry forward with phosphoproteomics 

sample preparation. Cysteines were alkylated using N-ethylmaleimide (NEM). To do this, samples were 

heated to 60ºC for 20 minutes in the presence of 5 mM DTT, then cooled to room temperature (RT), after 

which 15 mM NEM was added for 20 minutes. The alkylation reaction was then quenched with 5 mM DTT. 

Proteins were then purified by methanol/chloroform precipitation in 50-mL Falcon tubes166. Protein pellets 



 60 

were resuspended (~5 mg/mL) in freshly prepared 8 M urea buffered with 10 mM 3-[4-(2-hydroxyethyl)-1-

piperazinyl]propanesulfonic acid (EPPS), pH 8.5; dissolution was aided by gentle flicking, pipetting, and 

heating at 37ºC for 15 minutes. The samples were then diluted to 4 M urea with 10 mM EPPS, pH 8.5, and 

digested with LysC (Wako Chemicals) at 10 ng/µL at RT for 14 hours. Then samples were diluted to 1.6 M 

urea with 10 mM EPPS, pH 8.5, and further digested with 10 ng/µL LysC and 5 ng/µL trypsin (Promega) at 

37ºC for 8 hours in an incubator. The samples were then acidified with phosphoric acid (final concentration: 

5%), desalted using C18 Sep-Pak cartridges (Waters), and dried down. Phosphopeptides were enriched 

using titanium dioxide microspheres as previously described89. After phosphoenrichment, samples were 

once again acidified and desalted as described above. The dried samples were then resuspended to 1 

mg/ml with 200 mM EPPS, pH 8.0. For TMT labeling, 15 µL of TMT stock solution (0.8 mg in 40 µL 

acetonitrile) was added per 100 µg of peptide. After 2 hours of incubation at RT, the TMT reaction was 

quenched with 10 mM hydroxylamine for 15 minutes. All samples for a given 10-plex sample set were then 

combined, acidified by addition of phosphoric acid to 5%, clarified via centrifugation at 20,000 RCF for 30 

minutes, and desalted as described above. To reduce sample complexity, peptides were fractionated into 

a 96-well plate by reverse-phase HLPC using an acetonitrile gradient. The resultant 96 fractions were 

pooled into 24 fractions by combining alternating wells from each column (i.e. one column produced 2 

fractions). Each fraction was dried down, resuspended in 1% formic acid and 0.1% trifluoroacetic acid, and 

desalted using the C18 StageTip procedure167. The fractionated samples were processed using an Orbitrap 

Fusion Lumos mass spectrometer (Thermo Fisher Scientific) using a multi-notch MS3 method22,23. The raw 

data were converted to mzXML and searched using Sequest79 against a concatenated Uniprot database. 

To distinguish forward and reverse hits, linear discriminate analysis was used, with reverse hits filtered to 

an FDR of 1% at the protein level. The A-score method was used to assess confidence in phosphosite 

localization149. Reporter ion intensities were quantified and normalized as previously described168. 

 For the combinatorial drug treatment experiment, cells were grown to confluency until the visible 

mitotic index was below 1%. Cells were washed twice with PBS and then serum-deprived for 1.5 hours 

prior to any drug treatments. The cells were then treated with 200 nM JNK-IN-8, 200 nM VX-745, 80 nM 

SCH772984, 80 nM dinaciclib, or 0.002% DMSO for 1 hour. Cells were then co-treated with 800 nM EPO, 
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or 0.008% DMSO, and the corresponding kinase inhibitor (same concentrations as above). After 128 

minutes of co-treatment, cells were lysed using 5 M GuSCN buffered with 100 mM HEPES, pH 7.2. Samples 

were prepared for MS phosphoproteomics as above. 

 For the serum-deprived Ca4 time-course, cells were grown to confluency until the visible mitotic 

index was below 1%. Cells were washed twice with PBS and then serum-deprived for 2.5 hours prior to 

drug treatments. The cells were then treated with either 400 nM Ca4 or 0.01% DMSO control. Cell lysates 

were obtained at 4 minutes, 8 minutes, 16 minutes, or 32 minutes after drug treatment. Cells were lysed as 

described above for the other time-courses. Samples were also prepared for MS phosphoproteomics as 

above. 

 For the serum-containing Ca4 time-course, cells were grown to confluency until the visible mitotic 

index was below 1%. Serum-containing media was replenished 2.5 hours prior to drug treatments. The 

cells were then treated with either 400 nM Ca4 or 0.01% DMSO control. Cell lysates were obtained at 4 

minutes, 8 minutes, 16 minutes, or 32 minutes after drug treatment. For lysis, cells were first washed twice 

with ice-cold PBS on a bed of wet ice and lysed with 5 M GuSCN buffered with 100 mM HEPES, pH 7.2, 

as above. Samples were prepared for MS phosphoproteomics as above. 

 

3.6.6 Principal component analysis 

 PCA was performed using custom-written code in Python. The full phosphoproteomic datasets 

were used for the computation, with Log2(FC)-transformed values. Only the first principal component (PC1) 

was retained in order to determine the source of maximum variance. 

 

3.6.7 Confidence score generation from internal duplicates 

 For every 10-plex peptide profile, we tested the null hypothesis that the duplicates match by 

chance. To do this, we computed the Euclidean distance between the two vector duplicates according to 

equation (3.1) below: 

 

(3.1) 
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For the Erb and EpoB time-courses, the DMSO control, 16-min, and 128-min time-points were defined by 

x1, x2, and x3, respectively, or by y1, y2, and y3, respectively. Then the time-points labels were randomized, 

and the Euclidean distance of the randomized values was computed. This randomized Euclidean distance 

calculation was performed 1,000 times to obtain confidence values with precision up to the second decimal 

place. 

 

3.6.8 KEGG pathway analysis 

 For pathway analysis, phosphopeptides with 90% duplicate confidence and greater than 2-fold 

change were used. Pathways were searched separately for Erb and EpoB phosphopeptides using the 

Kyoto Encyclopedia of Genes and Genomes. Statistically significant pathways (determined by Fisher’s 

exact test) were annotated as being enriched for Erb, EpoB, or both. 

 

3.6.9 Factor analysis 

 Factor analysis was performed using custom-written code in Python. The algorithm used first 

employs standard PCA analysis, after which it performs a mathematical rotation on the PCA loadings to 

satisfy the varimax criterion169 (i.e. the algorithm would maximize peptide profile variance while minimizing 

principal component/factor variance). Phosphopeptides with 90% duplicate confidence and greater than 2-

fold change were used for the analysis, which was performed separately for Erb and EpoB. 

 

3.6.10 Motif Analysis 

 Phosphosite motif analysis was performed using Motif-x158,159. The significance cutoff was set to 

10-6, peptide width was set to 13 amino acids, and the minimum number of occurrences to call a motif was 

set to 20. Motifs obtained in this manner were subsequently reassigned to the corresponding 

phosphopeptides. Only phosphopeptides with 90% duplicate confidence and greater than 2-fold change 

were used for the analysis, which was performed separately for Erb and EpoB. 
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3.6.11 Fuzzy c-means clustering 

 FCM clustering was performed using custom-written code in Python. The regularization parameter 

was set to 2.0 to deter unique peptides from driving cluster construction. The algorithm was employed on 

the Log2(FC)-transformed data obtained for the combinatorial drug treatment experiment. Phosphopeptide 

data with greater than 1.5-fold change were used for the analysis. 

 

3.6.12 Western blots 

 For Western blot analysis, cell lysates were prepared in buffer containing 100 mM Tris-HCl (pH 

6.8), 20% glycerol, 4% SDS, 0.2% bromophenol blue, 200 mM DTT, and 2% ß-mercaptoethanol. 20 µg of 

cell lysate was added per gel lane. Primary rabbit antibodies for JNK and phospho-JNK (pT183/pY185) 

were purchased from Santa Cruz Biotechnology and Cell Signaling, respectively, and used at 1:1000 

dilutions. Primary mouse antibody for α-tubulin was purchased from Sigma-Aldrich and used at a 1:10,000 

dilution. Primary staining was performed overnight at 4ºC. Secondary anti-rabbit IgG (800CW) and anti-

mouse IgG (680RD) antibodies were purchased from LI-COR and were used at 1:15,000 dilutions. 
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4.1 Attributions 

 The following chapter describes an approach that I developed with help from Sergine Brutus to 

image, detect, and quantify EB3 comet counts in a multiplexed format (i.e. using 384-well plates). We used 

this framework to score EB3 comets for a diverse panel of anti-tubulin drugs and also used single-cell 

segmentation to assess the heterogeneity of cellular response to these drugs.  

 I designed the experimental set-up (with Sergine) as well as the entire single-cell EB3 image 

analysis pipeline, including all relevant coding in Python and ImageJ. Dr. Timothy Mitchison suggested that 

I construct models to fit to the acquired data. In response, I derived and implemented the models described 

below, which allowed us to further analyze and comment on these data. Finally, I developed the method 

described below for back-calculating background to obtain true comet signal in single cells.  

 

4.2 Abstract 

 The dynamic instability of microtubules is a critical phenomenon that regulates several biological 

processes in cells. Quantification of microtubule dynamics has been made possible in recent years but has 

been limited in imaging throughput and single-cell analysis. Here we describe a new experimental and 

computational approach to quantify microtubule dynamics. We conduct highly multiplexed quantification of 

EB3 comet counts in live cells and use custom-built algorithms to segment single cells, thereby affording 

large-scale single-cell analysis. Using a dry objective lens and an automated image analysis pipeline, we 

were able to obtain acceptable signal-to-noise ratios, reliably quantify comets, and subtract false positives. 

Finally, we used our method to validate EB3 comet counts as a biomarker for anti-tubulin drug action and 

to assess the heterogeneity of single cells in response to microtubule poisons. We conclude that these 

mechanistically diverse drugs stimulate an increase in single-cell heterogeneity that is independent of drug 

efflux pump action. 

 

4.3 Introduction 

 Microtubules (MTs) are dynamic polymers that stochastically grow and shrink on the order of 

seconds to minutes18. The extent of their dynamicity can be quantified by tracking fluorescently labeled 
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MTs or by tracking their growing plus-ends, for example, via fluorescently labeled plus-end tracking proteins 

(+TIPs), such as EB1 or EB375,170–172. The resultant images contain comet-like puncta that represent the 

growing ends of MTs. Using available software such as plusTipTracker171. users can obtain growth rates of 

MTs via EB comet trajectories under different conditions, for example, treatment of cells with MT poisons.  

While comet tracking software has afforded quantitative insights into MT dynamics, the 

conventional microscope set-up and analysis pipeline for obtaining this quantitative information has notable 

disadvantages. In order to obtain exceptional signal-to-noise for comet tracking, users tend toward oil-

immersion objectives which makes it impractical to scale-up this technology. Work has been published that 

highlights automated screening of biological conditions using comet tracking, but the main automation used 

was for image analysis and the size of the screens were too small to be useful for more demanding 

biological or pharmacological questions173,174. In addition, tracking EB comet velocities requires frequent 

image acquisitions to reliably track comets over subsequent frames, a requirement that can incur significant 

photobleaching and potential phototoxicity, especially when using a confocal set-up. Photobleaching can 

be mostly avoided by using the state-of-the-art lattice light sheet microscope74, but this limits the user to 

imaging one condition at a time, again severely limiting the throughput of image acquisition. This limit in 

image acquisition throughput has made a range of questions regarding MTs unfeasible to answer, such as 

the response of MT dynamics to many different cellular stresses, or the degree of heterogeneity in MT 

dynamics with respect to single cells – basally or in response to MT poisons. Some have tried to conduct 

single-cell analysis of EB comet tracking but have obtained data for far too few cells to offer any well-

supported new biological insights175. The impracticality, as mentioned above, lies in the conventional use 

of oil-immersion objectives, which limits throughput of image acquisition, and also in manual segmentation 

of single cells, which limits throughput of image analysis. 

Here we describe a new experimental and computational strategy that substantially improves the 

throughput of both EB comet image acquisition and single-cell image analysis. Our method relies on the 

use of EB3 comet counting, which allows for more infrequent image acquisitions. We have conducted 

kinetic experiments on 384-well plates and have used a DNA dye, SiR-DNA176, to conduct single-cell 

segmentation and quantify comet counts over time for single cells. We used our method to validate EB3 
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comet counting as a universal biomarker of anti-tubulin drugs and we imaged and quantified single-cell MT 

dynamics for several thousand cells in less than 24 hours. In this manner, we have discovered, for the first 

time, that MT poisons stimulate an increase in cellular heterogeneity that is independent of drug efflux pump 

action. 

 

4.4 Results 

4.4.1 EB3 comet counting can be used to score MT dynamics 

 To score MT dynamics, we imaged an EB3-GFP reporter in RPE1 cells before treatment with anti-

tubulin drugs in the presence of 10 µM verapamil, a pan-inhibitor of efflux drug pumps123. We then drugged 

the cells and immediately resumed image acquisition every 60 (for higher drug doses) or 90 seconds (for 

lower drug doses). Depending on the drug dose used (e.g. 10nM combretastin-A4, or Ca4), we could 

observe complete loss of comets with 20 minutes (Fig. 4.1A). In order to scale the amount of data acquired 

with this method, we decided to carry all subsequent experiments in 384-well imaging plates and stain cells 

with SiR-DNA (SirD), a nuclear dye for live cells176. This dye, which has advantageous fluorogenic 

properties for nuclear segmentation, has previously been found to affect cell cycle progression in RPE1 

cells at concentrations at or above 250nM177. For this reason, we maintained SirD at 100nM in our 

experiments. This SirD concentration still allowed us to utilize watershed and voronoi algorithms to segment 

single cells (Fig. 4.1B). For segmenting EB3 comets, we realized that it was simple to manually choose a 

threshold so to avoid background pixels to be falsely counted as comets. We also realized, however, that 

in the case of many cells, it was difficult – if not impossible – to not pick up background as comets (i.e. false 

positives) at the later time-points of our drug-treated time-courses (Fig. 4.1C, solid green line). The increase 

in background intensities toward the end of these time-courses is due to increased EB3-GFP in the cytosol 

and is to be expected. Although true comet loss was obvious at high doses of anti-tubulin drugs, we were 

less confident in quantifying EB3 comets at intermediate doses without knowing the amount of cytosolic 

background for each cell. We realized, however, that we could add saturating drug (i.e. 4 µM Ca4) to force 

eliminate all comets at the end of any given time-course, which allowed us to determine the background 

cytosolic EB3 intensity for each single cell. We used this to write a background correction algorithm that 
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could back-calculate true signal at each point in the time-course (Fig. 4.1C, dotted green line). In some 

cases, cells did not have noticeable background, so our background correction algorithm did not really alter 

these trends (Fig. 4.1C, solid and dotted black lines). The use of our background correction algorithm also 

allowed us to automate thresholding for every single cell on our 384-well plates (Supplementary Fig. 4.1). 

Importantly, our DMSO control wells showed little to no photo-bleaching during our time-courses. 

 

 

 

 

 

 

 

 

 

 

 

 
 
Figure 4.1. Single cells can be segmented and scored for EB3 comets. (A) Representative single-cell time-
lapse. The cell was imaged once, then treated with 10nM Ca4, then imaged over the course of 20 minutes. 
Scale bar: 10µm. (B) Example of single-cell segmentation using watershed and voronoi algorithms. Nuclei 
were stained with 100nM SiR-DNA (blue). The nuclear stain was used to define voronoi regions (red) and 
segment single cells (green). Scale bar: 10µm. (C) Raw and corrected comet count profiles are plotted for 
two individual cells. The solid curves denote the raw profiles for each cell. 4µM Ca4 was used to induce 
complete comet loss and define cytosolic background after each time-course (shaded pink region). The 
cytosolic background was then used to correct the cell comet profiles (dotted curves). 
 

 

4.4.2 EB3 comet counts measure endogenous single-cell heterogeneity 

 After we determined how to reliably quantify EB3 comets, we proceeded to characterize drug 

responses at the single-cell level. We used four drugs: epothilone-B (EpoB) and paclitaxel (Ptx) to represent 

the taxane site97,178, Ca4 to represent the colchicine site43, and vinblastine (Vnb) to represent the vinca 
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site50. Fig. 4.2 shows data for each of the drugs at 3 different doses. We observed noticeable single-cell 

heterogeneity in the presence of DMSO and lower doses of drugs whereas this heterogeneity appeared to 

reduce at high doses of drug. We also were able to capture a transient increase in EB3 comets induced by 

the stabilizing drugs EpoB and Ptx (Fig. 4.2B, magnified peaks, top right). These peaks are likely due to 

ectopic nucleation of MTs being stimulated immediately after drug uptake. 

 

 

 

Figure 4.2. Single-cell EB3 data for four microtubule drugs. (A) Chemical structures are shown for EpoB, 
Ptx, Ca4, and Vnb. (B) Single-cell EB3 comet counts are shown for three doses of each drug in A. Cells 
with at least 50 comets before drug treatment and less than 10 percent background were included in the 
analysis. The number of cell profiles in each plot is denoted in parentheses. The black boxes magnify the 
transient comet increases observed for EpoB and Ptx. 



 70 

 

4.4.3 EB3 comet counts can be modeled with simple biochemical models 

 To model the single-cell data, we derived simple biochemical equations with respect to the taxane 

site, colchicine site, and vinca site, i.e. equations (4.1-4.3). For convenience, we assumed passive diffusion 

in equation (4.4) for each of the drugs: 

 

(4.1) 

 

(4.2) 

 

(4.3) 

 

(4.4) 

 

In our model, there are four necessary parameters, namely the binding constant of the drug (or Kd), the 

drug diffusion constant (or kdiff), the dose-dependent polymerization/depolymerization constant (or kpol), and 

the ratio of total tubulin divided by initial polymerized tubulin (or [MT]FC, max). We validated out model on the 

averaged single-cell data using drug binding constants from the literature43,50,122,179 (Fig. 4.3A-D). We 

determined that [MT]FC, max was approximately 2.0, which is consistent with previous modeling we have 

conducted for MTs in RPE1 cells, whereas diffusion constants and polymerization constants were drug 

dependent. Our model provided exceptional fits for Ca4 and Vnb (Fig. 4.3C, D), and also for EpoB and Ptx 

at higher drug doses (Fig. 4.3A, B). Our model did not fit as well at lower doses of stabilizers, but we suspect 

that model fitting would be improved with a greater number of cells. 
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Figure 4.3. Modeling of averaged comet data. (A) Single-cell comet profiles were averaged for 6 doses of 
EpoB. Equation (4.1) and (4.4) was used to obtain best-fit lines for these data. (B) Single-cell comet profiles 
were averaged for 6 doses of Ptx. Equation (4.1) and (4.4) was used to obtain best-fit lines for these data. 
(C) Single-cell comet profiles were averaged for 6 doses of Ca4. Equations (4.2) and (4.4) were used to 
obtain best-fit lines for these data. (D) Single-cell comet profiles were averaged for 6 doses of Vnb. 
Equations (4.3) and (4.4) were used to obtain best-fit lines for these data. Single-cell comet profiles 
containing at least 35 comets before drug treatment and less than 20 percent cytosolic background were 
used to obtain the averaged values in A-D. Error bars denote standard error. N = 95 cells for 30 nM Ca4. 
N > 100 cells for all other data points. 
 

 

 

 

 After validating our models on our averaged data, we then sought to model our single-cell data. In 

Fig. 4.4A, we have replotted the corrected data for cell 2 from Fig. 4.1C. We also show the modeled curve 

for this data. Hereafter, we assess model fit by using a negative log10-transformation of residual mean-

squared-error (NLM). In the case of Fig. 4.4A, goodness of fit was acceptable with an NLM of 2. We 

proceeded to model the data from all of the 4700 imaged cells and kept all modeled data that had an NLM 
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of at least 1.3. More than 97 percent of our single-cell data passed this cut-off (Fig. 4.4B). Fig. 4.4C shows 

modeled data for three doses of EpoB and Vnb. DMSO control indicated basal heterogeneity, though it 

should be noted that many more cells were imaged for this condition. We found that 75 percent of DMSO 

cells resided between 0.5 – 1.25 comet fold-change (Supplementary Fig. 4.2; Fig. 4.4C, red box).  

 

 
Figure 4.4. Modeling of single-cell comet data. (A) The comet profile for cell 2 from Fig. 4.1C has been 
replotted. The solid line represents the best fit curve using equations (2) and (4). NLM denotes the negative 
log10 transformation of the curves mean-squared-error. (B) The cumulative distribution function shows the 
distribution of NLMs across all of the modelled single-cell comet data. The green dotted lines denote the 
NLM cut-off for well-modeled data and the proportion of modeled data that was retained after imposing this 
cut-off. (C) Modeled single-cell curves are shown for one dose of each drug tested. The number of modeled 
single-cell profiles depicted on each plot is indicated in parentheses. Curves have been color-coded with 
respect to the negative log10 transformation of respective mean-squared-error. Red box in DMSO plot 
encloses 75 percent of DMSO single cells with respect to the final time-point. 
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4.4.4 EB3 comet counts reveal single-cell heterogeneity in response to MT drugs 

After validating that our models faithfully recapitulated our single-cell data, we sought to 

quantitatively assess whether heterogeneity was exhibited by these curves, and whether MT poisons 

stimulated any additional heterogeneity in cells compared to DMSO alone. To do this, we computed the 

area-under-the-curve (AUC) for all of the modeled single-cell curves (Fig. 4.5A-D). To facilitate comparison 

between drug conditions, we normalized the interquartile ranges (IQRs) of the AUCs by their respective 

medians. We then renormalized these values with respect to DMSO control to obtain fold-change. When 

plotting all of the normalized IQRs with respect to drug concentration, it became obvious that some of the 

drugs have a higher-dose regime where additional single-cell heterogeneity is stimulated (Fig. 4.5E-H). 

This regime was noticeably broader for the MT destabilizing drugs Ca4 and Vnb. We also noticed a 

statistically significant degree of heterogeneity measured for Ptx at 300 nM. A similar peak was observed 

for EpoB at 30 nM, but this peak was not scored as being statistically significant, perhaps due to a need for 

a greater number of cells. 
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Figure 4.5. Microtubule poisons stimulate cellular heterogeneity. (A-D) AUCs have been computed for 
every single-cell curve for EpoB, Ptx, Ca4, and Vnb, respectively. N = 95 cells for 30 nM Ca4. N > 100 cells 
for all other conditions shown. (E-H) The normalized interquartile ranges of the AUCs in A-D are shown. 
The IQR of each dose in A-D was normalized by the respective median and subsequently normalized by 
DMSO control to obtain fold-change. Statistical significance was determined by computing Brown-Forsythe 
Tests on the sample distributions in A-D. Asterisks denote *p < 0.05 or ***p < 0.001. 
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4.5 Discussion 

 We have demonstrated a novel method for imaging and quantifying EB3 comets in live cells. We 

implemented the use of EB3 comet counting, which is a simplified, and arguably more interpretable, version 

of EB3 comet tracking as it directly reports on the number of growing microtubules as opposed to a 

distribution of comet velocities, which may be less necessary for pharmacological questions. Importantly, 

the simplicity of our method not only offers a computational advantage to conventional comet tracking, but 

it also offers a new experimental set-up that is much more amenable to answer questions that demand 

large-scale experiments. Our experimental method makes use of lower magnification air objective lens, 

which is compatible with highly multiplexed experiments on 384-well plates. Although this method obtains 

slightly lower signal-to-noise compared to conventional set-ups on state-of-the-art spinning disk confocal 

or lattice light sheet microscopes, we were able to develop a background correction algorithm that 

compensates for the loss in signal-to-noise (Fig. 4.1C).  

 Our analysis of EB3 comets in response to multiple anti-tubulin drug classes validates EB3 comet 

counting as a biomarker of microtubule poisons. It also reveals additional insights into dynamic instability. 

For example, the data shown here suggest that the number of comets over time has basal fluctuations in 

single cells. Therefore, aside from variability in comet velocities, which is to be expected in any cell type, 

the number of growing microtubules over time is not necessarily constant in a single cell (Fig. 4.2B, bottom 

left). It is important to note that our method uses the fold-change of EB3 comet count with respect to a pre-

treatment time-point. The advantage of this implementation is that it is less sensitive toward false negatives. 

Whether 50 comets or 100 comets are counted, at the end of a drugged time-course, the fold-change will 

be similar. Since all dynamic MTs are affected by anti-tubulin drugs, both quicker-moving and slower-

moving comets will be affected. In this way, comet counts give a robust readout of cellular sensitivities with 

respect to the MT cytoskeleton.  

 We were able to model both the averaged and single-cell EB3 count data with simple biochemical 

models. Note that more sophisticated models of dynamic instability have factored in several parameters for 

single MTs, such as catastrophes, rescues, shrinkage, as well as growth180, whereas our models only take 

into account overall MT polymer growth. Nevertheless, our simplified model fits the data well, presumably 



 76 

because our counting metric measures the average MT response within a single cell which makes it less 

necessary to know the specific kinetic parameters for each single MT. Although our multiplexed imaging 

approach limited the temporal resolution of image acquisition, which would normally make it difficult to 

compare single cells across different wells, our modeling compensated for this by allowing us to compute 

and compare the cellular trends in comet count fold-change. We then used a classic pharmacology 

parameter to assess single-cell heterogeneity, i.e. area-under-the-curve. This approach, combined with the 

ample amount of cellular data collected after drug treatment in the presence of verapamil, allowed us to 

conclude that anti-tubulin drugs, and MT-destabilizing drugs in particular, stimulate an increase in cellular 

heterogeneity with respect to MT dynamics, and this drug-induced heterogeneity is independent of efflux 

drug pump action. Future work may use our framework to probe at MT-proximal biology in a high-throughput 

format, for example, to assess the response of the MT cytoskeleton to many different cellular stresses, 

perhaps at the single-cell level. For the first time, these kinds of biological questions can now be tackled 

with the development of our highly multiplexed set-up and single-cell analysis pipeline. 

 

4.6 Methods 

4.6.1 Reagents and cell lines 

EpoB, Ptx, and Vnb were purchased from MedChemExpress, whereas Ca4 and verapamil 

hydrochloride was purchased from Sigma Aldrich. RPE1 cells expressing EB3-GFP were a generous gift 

from David Pellman at Harvard Medical School. 

 

4.6.2 Cell culture 

RPE1 cells expressing EB3-GFP were maintained in DMEM/F12 (Life Technologies) and 

supplemented with 10% FBS (GIBCO) (v/v) and 1% penicillin-streptomycin (Cellgro). 

 

4.6.3 Image acquisition 

We imaged cells using the InCELL Analyzer 6000 high content microscope (GE Healthcare Life 

Sciences), equipped with 40x/0.95 NA Plan Apochromat objective, heated stage and heated lid, as well as 
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constant CO2 flow. For EB3-GFP imaging, the confocality setting was used and the optimal focal plane was 

determined using the auto-offset function in the InCELL software. For imaging nuclei in the SiR-DNA far 

red channel, the wide-field setting was used and the focal plane was set to be the same as the EB3-GFP 

channel. 100 percent laser power was used for both channels, but 200 millisecond and 60 millisecond 

exposure was used for the EB3-GFP and SiR-DNA channel, respectively. Two fields were imaged per well. 

To maintain consistency and preserve all image information, binning was not used. 

 

4.6.4 Live-cell microscopy 

Each day prior to imaging, RPE1 cells were passaged to 25 percent confluency to discourage 

contact-dependent inhibition of the cell cycle. The following day, the cells (now at 50 percent confluency) 

were trypsinized and seeded at 4000 cells per well in 20 µL serum-free media on a 384-well optical bottom 

Cell Carrier plates (Perkin Elmer) coated with Cell-Tak (Corning). After 30 minutes, 20 µL media with 20% 

FBS and containing 200nM SiR-DNA (and 20µM verapamil for select plates) was added to each well. Cells 

were then allowed to incubate for 4-5 hours before imaging. 

A separate 96-well plate was filled 150µL per well with media containing 10% FBS (and 10µM 

verapamil for select plates). Drugs were dispensed onto this 96-well plate using the D300 Digital Dispenser 

(Hewlett-Packard). Rows B and C were used to dispense the two highest doses of each drug or DMSO 

control whereas rows D-G were used to dispense the lower doses of each drug or DMSO control. All inner 

wells were used to dispense drugs at 2x concentration. All border wells were used to dispense saturating 

Ca4 at 5x concentration (i.e. 20µM to be later diluted to 4µM for the positive control time-point of each time-

course). DMSO was kept at 0.03% for all wells. 

For high-dose wells on the 384-well plate (i.e. rows B-D or E-G), 15 wells were imaged 

simultaneously during each time-course. To achieve this, 3 adjacent rows were used whereas 5 non-

adjacent columns were used (i.e. every other column). This set up not only allowed us to use an electronic 

multichannel pipette for drug dispensing, but it also substantially reduced the amount of time between drug 

addition and the first image acquisition (i.e. ~24-26 seconds) and allowed for a 60-second time interval 

between each time-point. One image was acquired for every field prior to adding drug. After this pre-
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treatment image acquisition, the 384-well imaging plate was ejected from the microscope. The lid heater 

was moved aside and 40µL of 2x drug was quickly transferred (i.e. using the multistep dispense function 

on the multichannel pipette) from the 96-well plate to the corresponding wells in the 384-well plate, after 

which the lid heater was returned, and the plate was immediately reloaded into the microscope to avoid 

temperature fluctuations. The time-course was then restarted immediately. After completion of the time-

course, 20µL of saturating Ca4 was transferred from the 96-well plate onto the same wells of the 384-well 

plate. After 2 minutes, these wells were re-imaged once more to obtain the cytosolic EB3-GFP background 

signal for each cell. Low-dose wells on the 384-well plate (i.e. rows H-J or K-M) were imaged and treated 

similarly, but 27 wells were imaged simultaneously (i.e. 3 adjacent rows and 9 non-adjacent columns) and 

a 90-second time interval was used. 

 

4.6.5 Single cell segmentation 

 Images were first aligned using custom-build code in Python. This was necessary because starting 

and stopping the InCELL Analyzer 6000 for image acquisitions induces slight but noticeable camera shifts 

in the acquired fields that could complicate single cell tracking over the time-courses. To perform the 

alignment, we applied a Gaussian blur with 10-pixel radius on all nuclear images, binarized these images 

all with the same visually-determined threshold, and then determined the optimal row and column shift to 

align each consecutive time-point for a given field. These optimal row and column shifts were also applied 

on all channel images for the given field and time-point. At this time, images were also binned 4x4 – 

surprisingly, we found this had a positive impact on signal-to-noise later in the automated image analysis 

pipeline. 

 After image alignment we applied watershed and voronoi algorithms on the nuclear channel to 

delineate cells. To do this, we first applied a Gaussian blur with 10-pixel radius on all nuclear images and 

binarized these images all with the same visually-determined threshold. We then took the intersection of 

every two, consecutive time-point images in order to incur more consistent watershed segmentation across 

the time-course for a given field. 
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 We imported the aforementioned intersected nuclear images into ImageJ, performed watershed 

segmentation and used this segmentation to delineate voronoi boundaries as a proxy for cell boundaries; 

voronoi delineation was an especially convenient algorithm to use for RPE1 cells as these cells tend to 

cluster together, which complicates the possibility of true delineation of cell boundaries. Considering the 

possibility of faulty watershed segmentation of some nuclei, we set a minimum and maximum size threshold 

for counting nuclei. In the case of faulty segmentations as defined by our size thresholds, we preserved the 

delineated voronoi boundaries but removed the nuclei so that our later algorithms would know to ignore 

these faulty regions. To be thorough, we also imported the raw EB3-GFP channel images into ImageJ and 

thresholded these images such that most all of the cellular interiors were accounted for. We then binarized 

these images and applied the voronoi algorithm on them to further delineate boundaries between cells. We 

took the resultant cellular voronoi region images and merged them with the corresponding nuclear voronoi 

region images. 

 After completing the watershed and voronoi segmentation, we imported the segmented and raw 

images into Python to count comets, and measure cell areas and nuclear intensities for each time-point. 

 

4.6.6 Single cell tracking 

 After segmenting single cells, we sought to track each given cell through the various frames of the 

time-course. To match a given cell between two time-points, we used Euclidean distances between time-

adjacent nuclear centroid coordinates, time-adjacent voronoi centroid coordinates, time-adjacent nuclear 

major axis lengths, and time-adjacent nuclear minor axis lengths.  

To be thorough, however, we also set a hard criterion to define a cell match: two cells in time-

adjacent images that were matched as identical by the above criteria also needed to have spatial overlap 

between their nuclei. To implement this criterion, we used the pixel area of each nucleus and, assuming a 

near-circular geometry, we computed the nuclear radii of these time-adjacent cells and checked whether 

the distance between the two nuclei was shorter than the sum of the nuclear radii. If this was the case, the 

two time-adjacent cells were considered to be the same cell. If, however, a cell never achieved a match 

with any other cells in adjacent time-points, this cell was discarded from all subsequent analysis. 
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4.6.7 Cell thresholding 

 In order to reliably count most all cellular EB3-GFP pixels (i.e. in order to obtain cell area 

measurements), we implemented a Gaussian filter with 2.5-pixel radius each voronoi region containing a 

single cell. We then implemented a 2-component Gaussian mixture model in order to model both 

background and cell pixel intensities. The relative minimum between the two Gaussians was set to be the 

intensity threshold. 

 

4.6.8 EB3 comet thresholding, segmentation, and counting 

 Comet thresholding was performed separately for every single cell that was faithfully segmented 

and tracked over time. To do this, a Gaussian blur with 1.25-pixel radius was applied on a given cell voronoi 

region. This blurred cell region was then subtracted from the original image. The result of this subtraction 

was then used to threshold with respect to the first time-point, after which this threshold was applied onto 

all subsequent time-points for the same cell. The threshold was computed in the following way using the 

first (i.e. untreated negative control) and last (i.e. 4 µM Ca4-treated positive control) time-point: the threshold 

was chosen that minimized background in the last time-point but also maximized signal in the first time-

point. In order to count apparent image puncta as comets, we set a 1-10 pixel size filter. 

 

4.6.9 Modeling averaged single cell data 

 Equations (4.1), (4.2), and (4.3) were used to model the averaged data acquired for EpoB and Ptx, 

Ca4, and Vnb, respectively. To do this, the Kd of each drug was set to its literature value (i.e. 1.2, 5, 140, 

and 2000 nM, respectively). However, the drug diffusion constant, polymerization constant, and maximal 

possible fold-change increase in MTs were considered unknown and so were subjected to modeling. 

 

 

 

 



 81 

4.7 Derivation of EB3 comet models 

4.7.1 Modeling variables 

Ncomets: number of EB3 comets (i.e. synonymous with number of growing microtubules). NFCcomets: 

fold-change of comet count. [D]in: unbound, intracellular drug concentration. [Tb]: unbound, tubulin 

concentration. [MT]: unbound, microtubule-incorporated tubulin concentration. [D-Tb]: drug-bound, tubulin 

concentration. [D-MT]: drug-bound, microtubule-incorporated tubulin concentration. kTbon: on-rate with 

respect to tubulin incorporation. kTboff: off-rate with respect to tubulin incorporation. kDon: drug on-rate. kDoff: 

drug off-rate. kdiff: drug diffusion constant. kpol: drug-induced microtubule (de)polymerization constant. 

 

4.7.2 Modeling EB3 comet counts with respect to the colchicine site 

We can state the following biochemical relationships: 

 

(S4.1) 

(S4.2) 

 

Extracellular drug (Dout) defuses into the cell (Din) and binds to unbound colchicine sites on tubulin (Tb). 

This generates a drug-bound colchicine site (D-Tb). Here, we will assume that in a given cell, "bulk" tubulin 

and microtubules are at equilibrium inside the cell; we still assert that dynamic instability is present at the 

single microtubule level. From this assumption, it follows that overall production (or growth rate) of bulk 

microtubule is constant. In other words:  

(S4.3) 

 

For drug-binding, however, we will assume non-equilibrium. Therefore:  

 

(S4.4) 
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Note that colchicine-site binding drugs bind to soluble tubulin. Also, for the sake of convenience and 

consistency, we will default to write all equations in terms of total microtubule polymer amount, instead of 

tubulin. We know that the total amount of soluble tubulin is equal to drug-bound and unbound tubulin. We 

also know that the total amount of tubulin in the cytoplasm (i.e. the maximum amount of microtubule polymer 

possible) is equal to the total soluble tubulin plus total polymerized tubulin. Note: here total polymerized 

tubulin is represented by [MT] or [MT]tot, since the only species of microtubule-incorporated tubulin is that 

which is not bound to a drug. We can therefore define these relationships as follows:  

(S4.5) 

(S4.6) 

 

Since we are assuming bulk microtubule production is at equilibrium, we can rewrite [Tb} in terms of [MT]. 

(S4.7) 

We can further write [D-Tb] in terms of [MT]max and [MT]tot:  

(S4.8) 

We now refer to [MT] as [MT]tot. We will now re-write the rate equation for d[D-Tb]/dt in terms of [MT]tot and 

[MT]max:  

 

(S4.9) 
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For modeling the number of EB3 comets per cell, we will make a few assumptions. First, as stated above, 

the number of comets is synonymous with the number of growing microtubules. On a related note, if the 

addition of a drug stimulates an increase in the overall microtubule growth rate, the number of comets will 

increase. Conversely, if the addition of a drug stimulates a decrease in the overall microtubule growth rate, 

the number of comets will decrease. Additionally, if the amount of drug-tubulin binding becomes constant 

(i.e. d[D-Tb]/dt = 0), the number of comets will be constant. Similarly, if there is no drug present, the number 

of comets should be roughly constant. We will also start with the assumption that the number of comets is 

linearly proportional to the overall growth rate of microtubules, and also linearly proportional to the overall 

production drug-bound tubulin. From these assumptions, we derive the following equation with respect to 

the colchicine site:  

(S4.10) 

Where k1 and k2 are constants. To determine these constants, we set the known bounds of the system. 

First, at saturating drug, we know that there will be no EB3 comets and no microtubule polymer present 

(i.e. Ncomets = 0 and [MT]tot = 0). Applying this bound to the Ncomets equation above and substituting the above 

representation for d[D-Tb]/dt, we determine that:  

(S4.11) 

Additionally, when there is no drug present in the cell (i.e. [D]in = 0), Ncomets = Nocomets and [MT]tot = [MT]o  . 

Applying this bound, we find that:  

(S4.12) 

 

Here we want to point out that fold-change of EB3 comet count is a more reliable metric, considering the 

fact that in a given field of view, different cells may appear to have different number of comets. If all cells 

behave the same with respect to a given drug, however, their fold- change in EB3 comet count should be 

the same at any given time. Taking this into account, we can get the following expression: 
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(S4.13) 

 

After dividing both numerator and denominator by kDoff and recognizing that [MT]tot/[MT]o = [MT]FC, we can 

rewrite the above expression as: 

 

 

(S4.14) 

 

Note that the drug dissociation constant, KDd = kDoff/kDon. As mentioned above, because we are assuming 

bulk microtubule production is at equilibrium,  

 

(S4.15) 

 

Where [MT]FC, max is the maximal possible fold-change increase in microtubule polymer. For example, if 

there are equal amounts of soluble and polymerized tubulin, [MT]FC, max would equal 2. We have decided to 

model microtubule depolymerization with a decaying exponential relaxation. We achieve this with the 

following expression: 

 

(S4.16) 

 

Assuming passive drug diffusion, we can model drug diffusion across the plasma membrane as: 

 

(S4.17) 
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Or, 

 

(S4.18) 

 

Where [D]out is assumed to be constant. Taking all of these relationships into account, we can arrive at our 

final equation for EB3 comet fold-change with respect to the colchicine site: 

 

(S4.19) 

 

Note that KDd can be obtained from the literature for a given drug. However, the diffusion constant, kdiff, the 

(de)polymerization constant, kpol, and the maximal possible microtubule fold-change increase, [MT]FC, max, 

are unknowns that need to be determined by modeling. 

 

4.7.3 Modeling EB3 comet counts with respect to the vinca site 

Similarly, as with the colchicine site (though different since vinca-site binding drugs tend to bind to 

the plus ends of microtubules), we can state the following biochemical relationships: 

 

(S4.20) 

(S4.21) 

 

Just as before, we will assume that "bulk" tubulin and microtubules are at equilibrium inside the cell, so: 

 

(S4.22) 

 

For drug-binding, we will once again assume non-equilibrium. Therefore: 

 

(S4.23) 
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Similarly, as with the colchicine site, we will default to write all equations in terms of total microtubule 

polymer amount, instead of tubulin. We know that the total amount of polymerized tubulin is equal to drug-

bound and unbound microtubule-incorporated tubulin. We also know that the total amount of tubulin in the 

cytoplasm (i.e. the maximum amount of microtubule polymer possible) is equal to the total soluble tubulin 

plus total polymerized tubulin. We can therefore define these relationships as follows: 

 

(S4.24) 

 

(S4.25) 

 

Recalling the equilibrium relationship between [MT] and [Tb] and that [Tb] = [MT]max – [MT]tot, we can write: 

  

(S4.26) 

 

Additionally, [D-MT] = [MT]tot – [MT] or: 

 

(S4.27) 

 

We will now rewrite the rate equation for d[D-MT]/dt in terms of [MT]tot and [MT]max: 

 

(S4.28) 

 

As with the colchicine site, we will make a few additional assumptions for modeling the number of EB3 

comets per cell. First, as stated above, the number of comets is synonymous with the number of growing 

microtubules. On a related note, if the addition of a drug stimulates an increase in the overall microtubule 

growth rate, the number of comets will increase. Conversely, if the addition of a drug stimulates a decrease 
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in the overall microtubule growth rate, the number of comets will decrease. Additionally, if the amount of 

drug- microtubule binding becomes constant (i.e. d[D-MT]/dt = 0), the number of comets will be constant. 

Similarly, if there is no drug present, the number of comets should be roughly constant. We will also start 

with the assumption that the number of comets is linearly proportional to the overall growth rate of 

microtubules. From these assumptions, we derive the following equation with respect to the vinca site: 

 

(S4.29) 

 

We pause here to note that the entire vinca site model derivation up to this point can also be used to model 

the taxane site. It changes, however, when we apply bounds to the system to determine k1 and k2. First, at 

saturating drug, we know that there will be no EB3 comets and no microtubule polymer present (i.e. Ncomets 

= 0 and [MT]tot = 0). Applying this bound to the Ncomets equation above and substituting the above 

representation for d[D-MT]/dt, we determine that: 

 

(S4.30) 

 

Therefore, we can rewrite Ncomets as: 

 

(S4.31) 

 

 

 

Additionally, when there is no drug present in the cell (i.e. [D]in = 0), Ncomets = Nocomets and [MT]tot = [MT]o. 

Applying this bound, we find that: 

 

(S4.32) 
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We can now write things in terms of fold-change, and divide both Ncomets and Nocomets by –k1kDoff: 

 

 

(S4.33) 

 

 

Recall that kTboff/kTbon = [MT]FC, max – 1, where [MT]FC, max is the maximal possible fold-change increase in 

microtubule polymer. Also, as with the colchicine site, we model microtubule depolymerization here with a 

decaying exponential relaxation, i.e. [MT]FC = exp(kpol [D]in). Putting all of this together, we can arrive at our 

final equation for EB3 comet fold-change with respect to the vinca site: 

 

(S4.34) 

 

 

4.7.4 Modeling EB3 comet counts with respect to the taxane site 

For the taxane site, we use the derivations for the vinca site up to before the application of the 

system bounds. At saturating drug, we know that there will be no EB3 comets and all tubulin will be 

incorporated into microtubules (i.e. Ncomets = 0 and [MT]tot = [MT]max). Applying this bound to the unbound 

vinca site Ncomets equation above and substituting the unbound representation for d[D-MT]/dt in the vinca 

site derivation, we determine that: 

 

(S4.35) 

Therefore, we can rewrite Ncomets as: 

 

 

(S4.36) 
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Additionally, when there is no drug present in the cell (i.e. [D]in = 0), Ncomets = Nocomets and [MT]tot = [MT]o. 

Applying this bound, we find that: 

 

(S4.37) 

 

By factoring the Ncomets and Nocomets equations, and dividing both by k1kDoff, we can arrive at the following 

expression: 

 

(S4.38) 

 

 

Recall that kTboff/kTbon = [MT]FC, max – 1, where [MT]FC, max is the maximal possible fold-change increase in 

microtubule polymer. Also, we will model microtubule polymerization here with an exponential relaxation 

with respect to time: 

 

(S4.39) 

 

Putting all of this together, we can arrive at our final equation for EB3 comet fold-change with respect to the 

taxane site: 

 

(S4.40) 
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4.8 Derivation of algorithm for EB3 comet background subtraction 

To image fluorescent EB3 comets in cells, we use a 40x/0.95 NA air objective lens on an automated 

high-content microscope (InCELL Analyzer 6000 from GE Healthcare). Traditionally, EB3 comets are 

imaged using oil-immersion lens at higher magnification (e.g. 60x) to afford greater separation between 

comet signal and background. In the case of EB3 comets, background is mainly fluorescent cytosolic EB3 

marker. This kind of set-up, however, makes higher throughput imaging impractical. 

In the case of both oil immersion objective lenses and air lenses, we assume that before any 

treatment of drug, signal-to-noise is high enough such that we can avoid picking up background in untreated 

cells. After adding a microtubule drug, comets then come off of microtubules and go into the cytosol, thereby 

increasing the overall intensity of background (i.e. the background distribution shifts to the right while the 

comet signal distribution shifts to the left and diminishes in magnitude). In the case of an air lens, however, 

background and true signal start to overlap after drug treatment (e.g. saturating drug treatment) which 

makes it difficult to avoid counting background as true signal. For example, when treating cells with 

saturating microtubule drug, although all comets are quickly eliminated in this case, due to the use of an air 

lens, cytosolic EB3 will be counted as “comets” and thus the value for comets will be erroneously quantified 

as being non-zero. If we, however, know the relationship between the comet distribution shift and the 

background distribution shift, we would be able to back calculate the background and then subtract it out. 

After adding a microtubule drug EB3 comets start disappearing over time, and the cytosolic EB3 

(i.e background) increases at the same time. Both the raw quantified comet signal and cytosolic background 

have an exponential relationship with respect to time. We wish to point out the obvious here: every time we 

lose an EB3 protein from microtubule plus-ends, we gain another EB3 protein in the cytosol. In other words, 

the loss of comets is linearly proportional to the concentration of EB3 in the cytosol, as is the background. 

If we can determine where the background and raw signal intersect on the [EB3]cytosol axis, we will be able 

to back-calculate the amount of EB3 background at any given raw quantified comet value, yoraw. 

Let us suppose that we pick a threshold that allows us to avoid background before drug treatment 

(i.e.  yobkg = 0, where y represents measured signal), but after we have eliminated all EB3 comets, our final 
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– and maximum – background becomes yfbkg. Note that since we have eliminated all comets, the raw comet 

signal will be equal to the final background by definition, i.e. yfraw = yfbkg.  

Let us then define a decreasing linear raw signal curve as yraw = −ax + yoraw and also define an 

increasing linear background curve as ybkg = bx, where x represents additional cytosolic EB3 and −a and b 

are the respective slopes of the two curves. If we solve each equation for x and set them equal to each 

other, we obtain the following relationships: 

 

(S4.41) 

 

We can obtain true comet signal by subtracting the corresponding cytosolic background from the raw comet 

signal. In other words: 

 

(S4.42) 

 

Also, at the intersection of the curves: 

 

(S4.43) 

 

But since yfbkg = yfraw: 

 

(S4.44)  

 

Now that we have a relationship for the ratio of the slopes, we can complete the expression for true comet 

signal ytrue: 

 

(S4.45)  
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The only unknown term that must be determined at this point is the final (i.e. maximum possible) background 

signal at the given intensity threshold. In order to obtain this value for each single cell, we have decided to 

add saturating destabilizing drug (i.e. 4µM combretastatin-A4) after all of our time-courses to induce 

complete comet loss and maximal background. Then we take that value and correct the comet time-course 

by subtracting the respective background from each raw EB3 comet value. The amount of background 

subtracted is naturally the least at the beginning of the time-course and greater at the end of the time-

course. 
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5.1 Main findings and advancements 

 Every class of MT-targeting drugs inhibits the dynamic instability of MTs. This basic similarity 

among these compounds, in addition to the observation that these drugs all induce mitotic arrest, has 

heavily influenced the study of these drugs in the context of mitosis, during which MTs are most dynamic 

and therefore most sensitive to chemical perturbation. The work contained in this thesis does not disprove 

the importance of mitosis for the pharmacology of these drugs, but it does present findings that argue for 

the importance of further study into their interphase effects. 

 We performed high-content imaging in RPE1 and HT1080 cells and compared the degree of 

taxane-site occupancy required for MT dynamics loss, mitotic arrest, or induction of post-mitotic 

micronucleation. We found that MT dynamics was the most sensitive phenotype, which became perturbed 

at very low site occupancies. We also determined that post-mitotic micronucleation occurred over a broad 

range of taxane-site occupancies for all drugs and cell lines tested and we confirmed that this phenotype 

could occur independent of mitotic arrest at lower concentrations of drug. Our work in cells and in an 

HT1080 xenograft model supports – but does not prove – the idea that chromosome missegregation and 

subsequent G1 arrest in a micronucleated state is the most important cellular action of taxanes in cancer 

chemotherapy. 

 After observing biological effects many hours after drug treatment in the second chapter of this 

thesis, we decided to focus on rapid biology induced by these drugs in the third chapter. For this, we utilized 

MS-based phosphoproteomics and quantified relative phosphopeptide changes over several time-points 

and multiple drugs. Our analysis revealed the phosphorylation of hundreds of downstream substrates in 

response to MT stabilization and MT destabilization. For the first time, we were able to make a global 

comparison between these two main classes of drug: MT stabilizers versus MT destabilizers. Our work 

confirmed the activation of MAPK pathways in response to MT destabilization but more importantly revealed 

the induction of phosphatase activity. Our work in this chapter also suggested a striking reality about JNK 

regulation – that induction of JNK activity in interphase can occur without additional JNK activation – thereby 

confirming the importance of further study into the interphase effects of anti-tubulin drugs. 
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 Upon discovering the large amount of phospho-signaling that these drugs induce in cells at such 

quick time-scales, we decided to look into possible heterogeneity among single cells in their response to a 

panel of MT-targeting drugs. To do this, we developed a novel high-content approach for quantifying MT 

dynamics in single cells, namely EB3 comet counting. Using this method, we discovered that, over the quick 

time-course tested, most drugs in our panel induced a substantial degree of heterogeneity with respect to 

interphase MT dynamics. Furthermore, we observed this result in the presence of a pan-efflux drug pump 

inhibitor, which suggests that the heterogeneity may originate from something other than efflux pump action.  

 These results present previously unknown biology concerning these drugs in interphase and 

highlight the importance of further study. 

 

5.2 Comparing phenotypes, drug efficacy and cellular sensitivity on the site occupancy axis 

 We used a previously published fluorogenic compound to develop a high-throughput ligand 

displacement assay121. This assay allowed us to compute taxane-site occupancy as a function of drug 

concentration in live cells, after which we were able to make quantitative comparisons between three 

phenotypes, four drugs, and two cell lines. This work primarily addressed the question of how much MT 

disruption is necessary to elicit cellular phenotypes for the taxane drug class, but it simultaneously raised 

new questions. 

 Regarding our initial site occupancy measurements (Fig. 2.2C-H), it is interesting to note the 

surprising agreement between our apparent binding constants and those present in the literature. The high 

degree of agreement, which affirms the reliability of our method, was unexpected given that we made 

binding measurements in live cells with respect to extracellular drug concentration. In contrast, previous 

measurements produced bona fide binding constants in vitro using purified and cross-linked MTs118. One 

would imagine that the presence of MAPs in the live-cell case would affect drug binding affinity, but our 

results suggest that this is not the case. Instead, MAPs do not seem to have a large effect on the binding 

affinity of taxane-site drugs, which we hypothesize may be due to the presence of the taxane-site on the 

inner lumen of MTs, which might experience far less steric disruption by MAPs. It would be interesting to 



 96 

conduct live-cell binding constant measurements for the peloruside site, which resides on the outside of the 

MT lattice and may directly interact with MAPs. 

 We used our site occupancy measurements to compare differential drug efficacy with respect to 

mitotic arrest and micronucleation (Fig. 2.4A-B). In the case of mitotic arrest, it is surprising that paclitaxel 

is inefficient compared to the epothilone drugs in RPE1 cells and yet be one of the most efficient in HT1080 

cells, while the converse is true for epothilone-D. We had already found it interesting that the different 

taxane-site drugs we tested differed in efficiency with respect to mitotic arrest on the site occupancy axis. 

This would argue for important differences in drug-induced MT conformations. Given that these drugs are 

known to bind along the MT lattice, MT conformational changes are likely dependent on site occupancy. 

The fact that the same drug can possess different relative efficiencies with regard to mitotic arrest in two 

different cell lines argues for something more than just conformational changes in MTs. One possible 

explanation is differential MAP composition between the two cell lines. This could either involve a different 

set of MAPs present between the two cell lines, different proportions of the same MAPs, a different amount 

of post-translationally modified MAPs, or all of the above. To test these possibilities, one would need to 

perform a co-sedimentation experiment with respect to MTs and then compare the relative amounts of all 

binding proteins in the two cell lines, perhaps via MS-based proteomics. The challenge here is that, in order 

to compare amounts of one protein to another in the same cell line, it is necessary to measure the original 

cellular protein concentrations, which can be done by summing up the ion current in the MS1 spectrum for 

all peptides of a given protein and normalizing this sum by the theoretical number of peptides produced by 

proteolysis181. In addition, a phosphoenrichment step would need to be performed of both the MT-enriched 

pellet as well as the supernatant, especially considering that phosphorylation can affect the binding of 

MAPs. Given the different efficacies of these drugs in cells, it would be very informative to repeat these 

assays in a whole panel of cancer- and non-cancer cell lines. Such an analysis would likely reveal that 

different MT drugs can be more efficacious depending on the cancer. 

 In terms of the most important cellular action of taxane-site drugs in cancer, our work hints toward 

chromosome missegregation and subsequent micronucleated G1 arrest. Although Fig. 2.5E may initially 

appear to argue against this hypothesis, we remind the reader that we used a single-dose regime for our 
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in vivo experiments. This is analogous to the two-week high dose regimen given to cancer patients who 

suffer from solid tumors. Considering the pharmacokinetic properties of paclitaxel in the human body, we 

know that at least half of the drug clears out of the body within 3 days182, after which it will continue to clear 

out due to clearance. As clearance occurs over the span of the two-week regimen, the intratumoral 

concentration of paclitaxel will drop and fall into the broad micronucleation regime depicted in Fig. 2.5E. In 

support of this argument, one group compared the results of breast cancer patients who were given a high-

dose biweekly regimen with those of patients who were given a low-dose weekly regimen, and found that 

the low-dose regimen was equally effective and less toxic183.  

 Other than the biological insights provided by our site occupancy-guided analysis, we highlight the 

fact that all of the cell culture assays were performed in a high-throughput (i.e. 384-well plate) format and 

can be easily scaled to evaluate other taxane-site drugs or adapted for use in other cell lines.  

 

5.3 Novel phospho-signaling induced by MT-targeting drugs 

 Using MS-based phosphoproteomics, we conducted the first global comparison of phospho-

regulation induced by MT-stabilizing and destabilizing drugs. This assay reproduced phosphorylation 

events that had been seen previously (e.g. activation sites of MAPKs) and also revealed an acute response 

to MT disruption as measured by more than one thousand phosphorylation changes. 

 Comparing phosphorylation events observed between eribulin and epothilone-B, we were 

surprised by the enrichment of MAPs among high-fold-changing phosphopeptides (Fig. 3.3B). In the case 

of eribulin, most of these MAPs were found to be dephosphorylated (e.g. Fig. 3.3C). Given that MAP 

phosphorylation is known to reduce affinity for MTs and that sites were dephosphorylated in the MT-binding 

regions of critical MAPs (e.g. S941 and S1073 on MAP4), this finding hints at a compensatory response 

induced by MT destabilization. In other words, depolymerization of MTs may likely release a sensor protein 

(e.g. a phosphatase) which induces dephosphorylation of several MAPs in an attempt to re-stabilize MTs. 

Further study is necessary to address this hypothesis. Future experiments may involve kinetic drug titration 

experiments that observe drug-induced phospho-changes and correlate these to MT polymer loss and MT 

dynamics loss. In addition, this hypothesis can be further tested with knockdowns of phosphatase subunits, 
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perhaps with special focus on those that associate with MTs, and subsequent retesting of drug-induced 

phospho-regulation in the presence of these knockdowns. 

 The most prominent cluster in our phosphoproteomics data clearly demonstrated parallel effects of 

the two drugs on phosphorylation. It is not trivial that a high-dose of two mechanistically different MT-

targeting drugs can produce a such large amount of common signaling (Fig. 3.3F, middle cluster), especially 

considering that one drug will fully polymerize MTs while the other eventually depolymerizes MTs at the 

dose tested (i.e. 800 nM). Results from our experiment combining epothilone-B and kinase inhibitors 

strongly suggested that JNK was most responsible for this common signaling (Fig. 3.4A-C), especially 

considering the rapid onset of this common signaling and that ERK and p38 were activated at later time-

points (Fig. 3.3E). Collectively, our results hint at unresolved pathways of stimulating JNK activity that differ 

between MT-stabilizing and destabilizing drugs. A small cluster of (likely) JNK-dependent phosphopeptides 

were phosphorylated in the case of epothilone-B but were found to either be dephosphorylated or remain 

relatively unchanged in the case of eribulin. This may suggest competition between JNK and the 

phosphatase implicated above. Inhibition of a phosphatase could explain the net increase of JNK activity. 

We present a potential model of this in Fig. 3.5, but we disclaim that there may be other potential models 

of phosphatase or JNK regulation that explain the data. 

Although we highlight the prevalence of proline-directed phosphorylation in the case of the two 

drugs tested, we want to highlight the fact that not all changing phosphopeptides contained proline-directed 

motifs (Fig. 3.3D). These motifs were only found in ~40 percent of the changing phosphosites for epothilone-

B. This suggests that other kinases are recruited in the JNK-dependent signaling stimulated by MT 

stabilization. These candidate kinases could be identified by conducting more combinatorial drug 

treatments with additional kinase inhibitors, similar to the one presented in Fig. 3.4. This would involve more 

phosphoproteomic experiments, but the workload could potentially be lessened if performed in combination 

with bioinformatic inference into likely kinase-substrate relationships. 

We made an additional side observation regarding these data. We detected phosphorylation of 

several sites that were annotated as CDK1 sites in the literature and as being important for mitosis. This 

was unexpected given that we grew our RPE1 cells past confluency to induce contact inhibition and 
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quiescence. For example, eribulin and epothilone-B both induced phosphorylation of lamin-A (LMNA) at 

either threonine T19 or serine S22 (Supplementary Fig. 3.6), both of which are CDK1 sites. Phosphorylation 

of serine S22 is known to be necessary for disassembly of the nuclear lamin prior to mitosis184. Our 

combinatorial drug experiment demonstrated, however, that phosphorylation of these sites and others was 

JNK-dependent and not CDK-dependent (Supplementary Fig. 3.8). 

These data raise the question of how global phospho-signaling may differ between cell types. It 

may be possible, for example, that different cell types induce similar phospho-regulation in response to 

these drugs, but the degree of phosphorylation may differ. Considering the possible compensatory 

response in the context of MT destabilization, less phosphatase activity in a given cell type could cause 

greater sensitivity to MT-destabilizing drugs. 

  

5.4 Drug-induced heterogeneity in MT dynamics 

 After having conducted analysis of phospho-signaling in an averaged population of cells, we 

desired to test effects of MT-targeting drugs on MT dynamics in single cells. An important side note here is 

how such a question has been previously infeasible to answer. Most work probing into MT dynamics have 

used conventional comet tracking, which involves imaging fluorescently-labeled +TIPs. These analyses 

have largely been performed to obtain information regarding comet trajectories and velocities and have 

reported MT growth rates instead of directly commenting on the number of growing MTs75,171. Although this 

approach procures highly quantitative data, it also inhibits imaging throughput and is unpractical for 

answering complex biological questions like the nature of heterogeneity in single cell MT dynamics.  

 We developed the first practical approach for imaging MT dynamics via comet counting, a simplified 

version of comet tracking that allows for more infrequent image acquisitions and thereby enables scale-up 

onto 384-well plates. We show-case the ability of this method to bridge the fields of high-throughput/high-

content screening and MT biology by conducting relatively short time-courses in chapter 4. It is important 

to note, however, that our pipeline can also be conducted on longer time-scales with less frequent image 

acquisition which would allow for even more experimental scale-up and user convenience. With this being 

said, it should be noted that questions involving single-cell analysis set a lower limit on the frequency of 
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image acquisition; this is because it is hard to confidently identify the same cell between two snapshots if 

too much time has passed. 

 To probe into single-cell heterogeneity in response to MT-targeting drugs, we began by acquiring 

single-cell data for an ample number of cells (greater than 100-200 on average) for each drug condition 

tested. The data we obtained indicated that a significant degree of single-cell heterogeneity can be 

measured without addition of drug (Fig. 4.2, DMSO). This was observable even with stringent comet and 

background cutoffs, suggesting that the extent of MT dynamicity truly differs from cell to cell. Given our 

limited frequency of image acquisition, however, we sought to model each single-cell EB3 profile in order 

to facilitate comparison between conditions (Fig. 4.3-4.4). This allowed us to use a classic pharmacology 

metric, area-under-the-curve, to assess the heterogeneity of drug response. Using this approach, we 

discovered an increase in single-cell heterogeneity with respect to MT dynamics stimulated by higher doses 

of drug, especially in the case of MT destabilizers (Fig. 5E-H). One possible explanation for this 

heterogeneity is that MTs are differentially regulated by these cells in response to drug treatment. This 

differential regulation could occur at the level of PTMs, for example phosphorylation. This is a reasonable 

hypothesis given the phosphoproteomics results in chapter 3. That being said, future experiments should 

test drug-induced single-cell heterogeneity with respect to MT dynamics in the presence of JNK inhibition 

given that this kinase is responsible for the phosphorylation of large number of substrates, including MAPs. 

Given the increase in heterogeneity that we observed in the presence of a pan-efflux pump inhibitor, it is 

also a question of whether removing this additional inhibitor might allow for a greater increase in 

heterogeneity due to the activity of drug pumps. 

 

5.5 Conclusion 

 In 1967, the previously elusive subunit of the microtubule was discovered to be the “colchicine-

binding protein”4. Over the past half-century, much has been discovered regarding the effects of anti-tubulin 

drugs, especially with regard to their effects on microtubule dynamics, and consequentially, their effects on 

mitosis and cell division. Comparably less extensive research has been conducted on interphase effects.  
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The data in this thesis provides novel insights into the pharmacology of these drugs. For one, it is 

now apparent that the relative efficacies of anti-tubulin drugs with respect to downstream phenotypes can 

differ significantly between cell types. Moreover, these drugs can stimulate massive phosphorylation 

changes on the order of minutes and depending on whether the drug stabilizes or destabilizes microtubules, 

a phosphatase may be inhibited or activated. Finally, this thesis demonstrates how these drugs stimulate a 

heterogeneous response in cells with respect to interphase microtubule dynamics.  

In the translational sphere of biology, interest in learning more about anti-tubulin drugs appears to 

be waning, perhaps due to contentment with decades of (partial) success in the clinic, in conjunction with 

rising interest in immuno-oncology approaches for cancer therapy. My hope is that the work presented in 

this thesis 1) offers compelling evidence that there are still many unanswered questions concerning the 

biology of these drugs, 2) offers modern approaches to biological discovery that can be used to answer 

those questions, and 3) demonstrates how there is much more to be known before we actually understand 

how these drugs work in the clinic. 
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Appendix: Supplementary Figures 

 

 

 

 

 

 

Figure S2.1. SirTub uptake kinetics in live HT1080 cells. Time-course and titration of SirTub staining in 
HT1080 cells. Legend represents nanomolar concentrations of SirTub. Intensities have been normalized 
by cell area at every time point. Each data point has been averaged from 9 replicate wells. 
 
 
 
 
 

 
Figure S2.2. Gaussian mixture models enable proper thresholding of intracellular SirTub. (A) 
Representative 20x image of RPE1 cells stained with 316nM SirTub. Scale bar = 100 μm. (B) Image in A 
has been subjected to a Gaussian blur with a 2.5-pixel radius. (C) Image histogram of pixel intensities (and 
possible thresholds) in A. Gaussian model curves are overlaid in black. Otsu threshold has been included 
for reference. (D) Image histogram of B. (E) Implementation of ”gmix threshold“ in C onto image in A. Circled 
region has been magnified in G. (F) Implementation of “gmix threshold“ in D onto image in B. Circled region 
has been magnified in G. (G) Overlay of area perimeter from F onto image in A. 
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Figure S2.3. (A) Time-course of EB3 comet loss in RPE1 cells after treatment with 1 nM of microtubule 
drugs. Cells were imaged before and after drug treatments. Comet values have been normalized to cell 
area at every time point. (B) Time-course of EB3 comet loss in RPE1 cells after treatment with 1 µM of 
microtubule drugs. Cells were imaged and quantified as in D. All error bars denote standard error of the 
mean. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S2.4. Site Occupancy of Ptx in ReN cells. (A) SirTub displacement assay in ReN cells (in the 
presence of 316nM SirTub). Each data point has been averaged from at least 9 wells. Data has been 
regressed using equation (2.1), which accounts for drug-induced microtubule polymerization. IC50 is 
denoted by a solid vertical line. (B) Site occupancy calibration curve for ReN cells. The Kdd,app value in A 
was inputted into equation (2.2) to compute drug site occupancies corresponding to 1 nM-1 µM. Dotted 
lines represent standard error as derived from the model fit in A. 
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Figure S2.5. EB3 comet segmentation. (A) Representative 40x image of EB3-GFP comets in live RPE1 
cells. Scale bar = 10 μm. (B) Image in A has been subjected to a Gaussian blur with a 5-pixel radius. (C) 
Image in B has been subtracted from image in A. Circled region has been magnified in D. (D) Comets 
defined after manual thresholding are outlined in red. 
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Figure S2.6. Segmentation of mitotic cells. (A) Representative 20x image of EB3-GFP in mitotic RPE1 
cells. Cells have been imaged 10 μm above normal autofocus z-position. Scale bar = 100 μm. (B) Image 
in A has been subjected to a Gaussian blur with 12.5-pixel radius. (C) Image in B has been subtracted from 
image in A and the resulting image has been subjected to a Gaussian blur with 2.5-pixel radius. Circled 
region has been magnified in D. (D) Manual thresholding and watershed segmentation has been 
implemented on the image in C. Mitotic cells defined after segmentation are outlined in red. 
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Figure S2.7. Segmentation of micronuclei. (A) Representative 20x image of micronuclei in RPE1 cells 
stained with 1μg/ml Hoechst dye. Scale bar = 100 μm. (B) Image in A has been subjected to a Gaussian 
blur with 1-pixel radius. (C) Otsu thresholding has been implemented on image in B. Circled region is 
magnified in D. (D) Watershed segmentation has been implemented on the image in C. Micronuclei defined 
after segmentation are outlined in red. 
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Figure S2.8. Phenotypic comparisons on the site occupancy axis (RPE1 cells). (A) Phenotypic comparison 
of microtubule dynamics (represented by EB3 comet numbers), micronucleation, and mitotic arrest in RPE1 
cells after 22 hours of treatment with EpoB, (B) EpoD, (C) Ixa, (D) and Ptx. Vertical gray bars denote 
standard error of site occupancy. Each data point shown in A-D has been averaged from 9 replicate wells, 
and then scaled by each respective phenotypic maximum. 
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Figure S2.9. Phenotypic comparisons on the site occupancy axis (HT1080 cells). (A) Phenotypic 
comparison of micronucleation and mitotic arrest in HT1080 cells after 24 hours of treatment with EpoB, 
(B) EpoD, (C) Ixa, (D) and Ptx. Vertical gray bars denote standard error of site occupancy. Each data point 
shown in A-D has been averaged from 9 replicate wells, and then scaled by each respective phenotypic 
maximum. 
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Figure S2.10. Drug-induced mitotic maxima. (A) Drug-drug comparisons with respect to mitotic scoring in 
RPE1 (B) and HT1080 cells. For each cell line, the values have been normalized to the DMSO control 
value, which we denote here as fold-change (FC). Tables with p-values are shown below each plot to 
facilitate assessment of drug-drug differences. 
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Figure S2.11. Drug-induced micronucleation maxima. (A) Drug-drug comparisons with respect to 
micronucleation in RPE1 (B) and HT1080 cells. For each cell line, the values have been normalized to the 
DMSO control value, which we denote here as fold-change (FC). Tables with p-values are shown below 
each plot to facilitate assessment of drug-drug differences. 
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Figure S2.12. Simulated drug site occupancy for HT1080s. Values and uncertainties from the ligand 
displacement assay (Fig. 2.2E, F) were used to obtain the relationship between SirTub signal fold-change 
and Ptx site occupancy. Shaded region denotes possible site occupancies given a known value for SirTub 
signal fold-change. Vertical dotted line denotes median SirTub signal fold-change in vivo after 24-hr 
treatment with 30 mg/kg Ptx. Horizontal lines denote the standard error spread of the in vivo site occupancy 
after this same dose. 
 
 
 
 
 
 
 

 
Figure S2.13. Chemical synthesis of SirTub 
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Figure S2.14. Chemical synthesis of SirErib. 
 
 
 
 
 
 
 

 
 
Figure S2.15. Chemical characterization of SiR-eribulin. (A) 1H NMR spectrum. (B) Chromatogram. ELSD 
signal, 0-2 min: 5-95% MeCN in water, 0.1% formic acid. (C) UV spectrum showing characteristic SiR 
absorption at 650 nm. 
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Figure S2.16. Validation of mitotic scoring using SiR-eribulin. A 384-well plate of RPE1 cells expressing 
EB3-GFP was treated with the indicated drugs in triplicate. After 22 hours, mitotic cells were imaged using 
the EB3-GFP channel (solid lines) as in Fig. S2.5. Immediately after imaging, the same plate of cells was 
treated with 10 μM EpoB for 10 min. The plate was then stained with 100nM SiR-eribulin (SirErib) in the 
presence of 10 μM EpoB for 30 min before re-imaging. The same instrument settings were used to image 
the plate again but using the far-red SirErib channel (dotted lines). 
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Figure S3.1. Sample EB3 comet images before and after treatment with 25 nM Ca4. Note the more rounded 
morphology in the 12-min image. Scale bar = 10 µm.   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S3.2. Cumulative distribution of confidence scores with respect to all phosphopeptides having 
greater than 2-fold change. Shaded region denotes phosphopeptides with confidence scores greater than 
90 percent. (A) Erb. (B) EpoB. 
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Figure S3.3. Subset of statistically enriched KEGG pathways in the phosphoproteome induced by Erb (p 
< 0.05, Fisher’s exact test). Pathways that are over-represented have enrichment factors greater than 1, 
whereas under-represented pathways have enrichment factors less than 1. P values are denoted by color. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S3.4. Factor analysis data projections. For each drug, the two factors with the greatest internal 
variance were selected (i.e. F1 = factor 1). 
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Figure S3.5. Phosphopeptide profiles for MT and actin-relevant phosphosites stimulated by Erb. Note the 
opposing direction of the double phosphosite (S16/S25) for STMN1, which suggests that the loss of the 
singly phosphorylated peptide (S16) is due to phosphorylation of S25.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S3.6. LMNA “CDK1” sites are phosphorylated in response to Erb (blue) and EpoB (orange) 
treatment. 
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Figure S3.7. Fuzzy c-means clusters for combinatorial drug treatment data. Only phosphopeptides with 
greater than 1.5-fold change were used for the analysis. The number of peptides per cluster are annotated 
in bold at the bottom right corner of each plot. Cluster membership score is denoted by color. 
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Figure S3.8. LMNA “CDK1” sites are phosphorylated by JNK after EpoB treatment. The plot shows 
combinatorial drug treatments containing EpoB and inhibitors of JNK, p38, ERK, or CDKs.  
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Figure S3.9: Ca4 stimulates phospho-signaling comparable to Erb. (A) Heatmap showing phosphorylation 
and dephosphorylation stimulated by 400 nM Ca4. Proline-directed phosphosites are denoted by black 
lines. (B) Phosphopeptide profiles for sites present in LMNA and MAP4 that were previously detected for 
Erb. 
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Figure S3.10: Heatmap showing JNK-dependent phosphorylation. Only proline-directed phosphosites with 
confidence scores greater than 0.7 are shown. Sites verified to be JNK dependent are indicated by a black 
line. Note that only a proportion of peptides from the Erb/EpoB mass spec runs were detected in the 
combinatorial drug treatment run. Therefore, many more JNK dependent sites are likely, as hinted by this 
heatmap. JNK-dependent sites are denoted by black lines.  
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Figure S3.11: Serum deprivation has little effect on Ca4-induced phospho-changes. Heatmap shows 
phosphorylation and dephosphorylation stimulated by 400 nM Ca4, with or without serum present. Black 
box encloses a cluster of phosphopeptides differentially regulated in the presence of serum. Note: half of 
these peptides belong to one protein (i.e. NUCKS1). 
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Figure S4.1. Automated thresholding of a single cell. A range of thresholds was tested on the first (negative 
control) and last (positive control) time-points of the time-course (i.e. before drug treatment and after 4 µM 
Ca4 treatment, respectively). The ratio of positive control comets over negative control comets was taken 
to represent the percent of false positives, or background. The threshold was set to the first local minimum 
(green line). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure S4.2. Cumulative distribution of modeled comet loss after 20 minutes of DMSO control.  Cells with 
at least 35 comets before drug treatment and less than 20 percent background were included in the 
analysis. Green shaded region corresponds to the red-boxed region in the DMSO plot in Fig. 4.4C. N = 710 
cells. 
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