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Statistical Methods for Evidence Synthesis
Abstract

In many empirical disciplines, scientific discovery is modularized

into discrete papers each investigating one or more hypotheses.

Synthesizing these modules of evidence is critical to inform a balanced

and appropriately evolving view of the overall evidence on a topic as

well as to identify where substantial uncertainty remains. This

dissertation considers three realms in which such synthesis can occur:

(1) when meta-analyzing multiple studies; (2) when subjecting a

single study to independent replications; and (3) when testing related

hypotheses within a study. We consider specific methodological

challenges within each of these realms and propose statistical methods

to address each. All proposed methods are implemented in R

packages.

iii
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1
Sensitivity Analysis for Unmeasured

Confounding in Meta-Analyses

1.1 Abstract

Random-effects meta-analyses of observational studies can produce
biased estimates if the synthesized studies are subject to unmeasured
confounding. We propose sensitivity analyses quantifying the extent
to which unmeasured confounding of specified magnitude could reduce
to below a certain threshold the proportion of true effect sizes that
are scientifically meaningful. We also develop converse methods to
estimate the strength of confounding capable of reducing the
proportion of scientifically meaningful true effects to below a chosen
threshold. These methods apply when a “bias factor” is assumed to



be normally distributed across studies or is assessed across a range of
fixed values. Our estimators are derived using recently proposed sharp
bounds on confounding bias within a single study that do not make
assumptions regarding the unmeasured confounders themselves or the
functional form of their relationships to the exposure and outcome of
interest. We provide an R package, EValue, and a free website that
compute point estimates and inference and produce plots for
conducting such sensitivity analyses. These methods facilitate
principled use of random-effects meta-analyses of observational
studies to assess the strength of causal evidence for a hypothesis.

1.2 Introduction

Meta-analyses can be indispensable for assessing the overall strength
of evidence for a hypothesis and for precisely estimating effect sizes
through aggregation of multiple estimates. Meta-analysis is often used
not only for randomized trials, but also for observational studies.
When the hypothesis of interest is about causation (for example, of an
exposure on a health outcome), evidence strength depends critically
not only on the size and statistical uncertainty of the meta-analytic
point estimate, but also on the extent to which these apparent effects
are robust to unmeasured confounding [34, 92, 108]. However, when
well-designed randomized studies do not exist because the exposure
cannot be randomized, meta-analyses often comprise potentially
confounded observational studies. Therefore, in practice,
meta-analyses of observational studies are often met with concerns
about the potential for unmeasured confounding to attenuate – or
possibly even reverse the direction of – the estimated effects (e.g.,
[18], [6], and [99] with critiques on the latter by [100]). Yet such
considerations rarely proceed beyond qualitative speculation given the
limited availability of quantitative methods to assess the impact of
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unmeasured confounding in a meta-analysis.
Our focus in this paper is therefore on conducting sensitivity

analyses assessing the extent to which unmeasured confounding of
varying magnitudes could have compromised the results of the
meta-analysis. Existing sensitivity analyses for confounding bias or
other internal biases in meta-analysis estimate a bias-corrected pooled
point estimate by directly incorporating one or more bias parameters
in the likelihood and placing a Bayesian prior on the distribution of
these parameters [67, 119]. An alternative frequentist approach
models bias as additive or multiplicative within each study and then
uses subjective assessment to elicit study-specific bias parameters
[107]. Although useful, these approaches typically require strong
assumptions on the nature of unmeasured confounding (for example,
requiring a single binary confounder), rely on the arbitrary
specification of additive or multiplicative effects of bias, or require
study-level estimates rather than only meta-analytic pooled estimates.
Furthermore, the specified bias parameters do not necessarily lead to
precise practical interpretations.

An alternative approach is to analytically bound the effect of
unmeasured confounding on the results of a meta-analysis. To this
end, bounding methods are currently available for point estimates of
individual studies. We focus on sharp bounds derived by [29] because
of their generality and freedom from assumptions regarding the
nature of the unmeasured confounders or the functional forms of their
relationships with the exposure of interest and outcome. This
approach subsumes several earlier approaches [22, 37, 87] and, in
contrast to [63] and [114], does not make any no-interaction
assumptions between the exposure and the unmeasured confounder(s).

The present paper extends these analytic bounds for single studies
to the meta-analytic setting. Using standard estimates from a
random-effects meta-analysis and intuitively interpretable sensitivity
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parameters on the magnitude of confounding, these results enable
inference about the strength of causal evidence in a potentially
heterogeneous population of studies. Broadly, our approach proceeds
as follows. First, we select an effect size representing a minimum
threshold of scientific importance for the true causal effect in any
given study. Second, we use the confounded effect estimates from the
meta-analyzed studies, along with simple sensitivity parameters, to
make inference to the population distribution of true causal effects
(the quantities of ultimate scientific interest). Lastly, we use this
estimated distribution in turn to estimate the proportion of true
causal effects in the population that are of scientifically meaningful
size (that is, those stronger than the chosen threshold). As we will
discuss, the proportion of scientifically meaningful effect sizes in a
meta-analysis is a useful characterization of evidence strength when
the effects may be heterogeneous. Conversely, we also solve for the
sensitivity parameters on the bias that would be capable of
“explaining away” the results of the meta-analysis by substantially
reducing the proportion of strong causal effects. We also discuss
sensitivity analysis for the pooled estimate of the mean effect.

If sensitivity analysis for unmeasured confounding indicates that
only a small proportion of true causal effects are stronger than the
chosen threshold of scientific importance, then arguably the results of
the meta-analysis are not robust to unmeasured confounding in a
meaningful way regardless of the “statistical significance” of the
observed point estimate. To this end, we develop estimators that
answer the questions: “In the presence of unmeasured confounding of
specified strength, what proportion of studies would have true causal
effects of scientifically meaningful size?” and “How severe would
unmeasured confounding need to be ‘explain away’ the results; that
is, to imply that very few causal effects are of scientifically meaningful
size?” This approach to sensitivity analysis is essentially a
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meta-analytic extension of a recently proposed metric (the E-value)
that quantifies, for a single study, the minimum confounding bias
capable of reducing the true effect to a chosen threshold [111]. We
provide and demonstrate use of an R package (EValue) and a free
website for conducting such analyses and creating plots.

1.3 Existing bounds on confounding bias in a single study

[29] developed bounds for a single study as follows. Let X denote a
binary exposure, Y a binary outcome, Z a vector of measured
confounders, and U one or more unmeasured confounders. Let:

RRc
XY|z =

P (Y = 1 | X = 1,Z = z)
P (Y = 1 | X = 0,Z = z)

be the confounded relative risk (RR) of Y for X = 1 versus X = 0
conditional or stratified on the measured confounders Z = z.

Let its true, unconfounded counterpart standardized to the
population be:

RRt
XY|z =

∑
u P (Y = 1 | X = 1,Z = z,U = u) P (U = u | Z = z)∑
u P (Y | X = 0,Z = z,U = u) P (U = u | Z = z)

(Throughout, we use the term “true” as a synonym for
“unconfounded” or “causal” when referring to both sample and
population quantities. Also, henceforth, we condition implicitly on
Z = z, dropping the explicit notation for brevity.) Define the ratio of
the confounded to the true relative risks as B = RRc

XY/RR
t
XY.

Let RRXu = P (U = u | X = 1) /P (U = u | X = 0). Define the first
sensitivity parameter as RRXU = maxu (RRXu); that is, the maximal
relative risk of U = u for X = 1 versus X = 0 across strata of U. (If U is
binary, this is just the relative risk relating X and U.) Next, for each
stratum x of X, define a relative risk of Y on U, maximized across all
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possible contrasts of U:

RRUY|X=x =
maxu P (Y = 1|X = x,U = u)
minu P (Y = 1|X = x,U = u)

, x ∈ {0, 1}

Define the second sensitivity parameter as
RRUY = max

(
RRUY|X=0,RRUY|X=1

). That is, considering both strata of X,
it is the largest of the maximal relative risks of Y on U conditional on
X. Then, Ding and VanderWeele [29] showed that when B ≥ 1, it is
bounded above by:

B ≤ RRXU · RRUY

RRXU + RRUY − 1

and that when B ≤ 1, the same bound holds for 1/B. Thus, defining
the “worst-case” bias factor as B+ = RRXU·RRUY

RRXU+RRUY−1 , a sharp bound for the
true effect is:

RRt
XY ≥ RRc

XY

/
B+ (1.1)

This bound on the bias factor applies when examining the extent to
which unmeasured confounding might have shifted the observed
estimate RRc

XY away from the null. Thus, Equation (1.1) indicates that
RRt

XY is at least as strong as a bound constructed by attenuating RRc
XY

toward the null by a factor of B+. The factor B+ is larger, indicating
greater potential bias, when U is strongly associated with both X and
Y (i.e., RRXU and RRUY are large) and is equal to 1, indicating no
potential for bias, if U is unassociated with either X or Y (i.e., RRXU = 1
or RRUY = 1).

If the two sensitivity parameters are equal (RRXU = RRUY), then to
produce a worst-case bias factor B+, each must exceed
B+ +

√
B+ (B+ − 1) (which VanderWeele and Ding [111] call the

“E-value”). Thus, a useful transformation of B+ is the “confounding
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strength scale”, g, which is the minimum size of RRXU and RRUY under
the assumption that they are equal:

g = B+ +
√
B+ (B+ − 1) ⇔ B+ =

g2

2g − 1 (1.2)

If RRc
XY < 1 (henceforth the “apparently preventive case”), then

Equation (1.1) becomes [29]:

RRt
XY ≤ RRc

XY ·
RR∗XU · RRUY

RR∗XU + RRUY − 1

where RR∗XU = maxu
(
RR−1Xu

)
, i.e., the maximum of the inverse relative

risks, rather than the relative risks themselves. Thus, B+ remains ≥ 1,
and we have RRt

XY ≥ RRc
XY.

Although these results hold for multiple confounders, in the
development to follow, we will use a single, categorical unmeasured
confounder for clarity. However, all results can easily be interpreted
without assumptions on the type of exposure and unmeasured
confounders, for instance by interpreting the relative risks defined
above as “mean ratios” [29].

1.4 Random-effects meta-analysis setting

In this paper, we use the aforementioned analytic bounds to derive
counterparts for random-effects meta-analysis. Under standard
parametric assumptions [103], each of k studies measures a potentially
unique effect size Mi, such that Mi ∼iid N(μ,V) for a grand mean μ and
variance V. Let yi be the point estimate of the ith study and σ2i be the
within-study variance (with the latter assumed fixed and known),
such that yi | Mi ∼ N(Mi, σ2i ). Thus, marginally, yi ∼ N(Mi,V + σ2i ).

Analysis proceeds by first estimating V via one of many possible
estimators, denoted τ2. Heterogeneity estimation approaches include,
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for example, maximum likelihood and restricted maximum likelihood
as well as approaches proposed by [78], [93], [44], and [46]; see [116]
for a review. We will denote an estimator of μ by ŷR, which, for many
estimators, will also be a function of τ2. For example, a common
approach is to use the maximum likelihood solutions for the two
parameters1:

ŷR =
∑k

i=1 wi yi∑k
i=1 wi

(1.3)

τ2 = max
{
0,

∑k
i=1 w2

i [
(
yi − ŷR

)2 − σ2i ]∑k
i=1 w2

i

}
(1.4)

The weights, wi, are inversely proportional to the total variance of
each study (a sum of the between-study variance and the within-study
variance), such that wi = 1/

(
τ2 + σ2i

). Estimation can then proceed by
first initializing ŷR and τ2 to, for example, the weighted mean
assuming τ2 = 0 and the method of moments estimators, respectively,
and then by iterating between (1.3) and (1.4) to reach the maximum
likelihood solutions [116]. Other estimation procedures exist (see [116]
for a review), and our methods apply regardless of estimation
procedure as long as ŷR and τ2 are consistent and unbiased,
asymptotically normal, and asymptotically independent.

1.5 Main results

Consider k studies measuring relative risks with confounded
population effect sizes on the log-RR scale, denoted Mc, such that
Mc ∼ N(μc,Vc). (Other outcome measures are considered briefly in the

1The maximum likelihood solution for ŷR coincides with the classical moments
estimator [28], so in practice, widespread methods for random-effects meta-analysis
differ primarily in estimation of τ2.
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Discussion.) For studies in which some confounders are measured and
adjusted in analysis, we define Mc as the population effect sizes after
adjusting for these measured confounders, but without adjusting for
any unmeasured confounders. Let the corresponding true effects be Mt

with expectation μt and variance Vt. Let ŷcR be the pooled point
estimate and τ2c be a heterogeneity estimate, both computed from the
confounded point study estimates (for example, from Equations (1.3)
and (1.4)).

Consider the bias factor on the log scale, B∗ = log
(

RRXU·RRUY
RRXU+RRUY−1

)
, and

allow it to vary across studies under the assumption that
B∗ ∼ N

(
μB∗ , σ

2
B∗
)
, with B∗ independent of Mt. That is, we assume that

the bias factor is independent of the true effects but not the
confounded effects: naturally, studies with larger bias factors will tend
to obtain larger effect sizes. For studies in which analyses conditioned
on one or more measured confounders, B∗ represents additional bias
produced by unmeasured confounding, above and beyond the
measured confounders. Hence, studies with better existing control of
confounding are likely to have a smaller value of B∗ than studies with
poor confounding control. The normality assumption on the bias
factor holds approximately if, for example, its components (RRXU and
RRUY) are identically and independently normal with relatively small
variance (Appendix). We now develop three estimators enabling
sensitivity analyses.

1.5.1 Proportion of studies with large effect sizes as a function of the
bias factor

For an apparently causative relative risk (̂ycR > 0, or equivalently the
confounded pooled RR is greater than 1), define p(q) = P

(
Mt > q

) for
any threshold q, i.e., the proportion of studies with true effect sizes
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larger than q. Then a consistent estimator of p(q) is:

p̂(q) = 1 − Φ
q + μB∗ − ŷcR√

τ2c − σ2B∗

 , τ2c > σ2B∗

where Φ denotes the standard normal cumulative distribution
function. In the special case in which the bias factor is fixed to μB∗
across all studies, the same formula applies with σ2B∗ = 0.

Many common choices of heterogeneity estimators, τ2c , are
asymptotically independent of ŷcR (Appendix), an assumption used for
all standard errors in the main text. Results relaxing this assumption
appear throughout the Appendix. An application of the delta method
thus yields an approximate standard error:

ŜE (̂
p(q)

) ≈
√√√√V̂ar

(̂
ycR

)
τ2c − σ2B∗

+
V̂ar (τ2c) (q + μB∗ − ŷcR

)2
4
(
τ2c − σ2B∗

)3 · φ
q + μB∗ − ŷcR√

τ2c − σ2B∗


where φ denotes the standard normal density function. (If τ2c ≤ σ2B∗ ,
leaving one of the denominators undefined, this indicates that there is
so little observed heterogeneity in the confounded effect sizes that,
given the specified bias distribution, Vt is estimated to be less than 0.
Therefore, attention should be limited to a range of values of σ2B∗ such
that τ2c > σ2B∗ .)

For an apparently preventive relative risk (̂ycR < 0 or the confounded
pooled RR is less than 1), define instead p(q) = P

(
Mt < q

), i.e., the
proportion of studies with true effect sizes less than q. Then a
consistent estimator is:

p̂(q) = Φ

q − μB∗ − ŷcR√
τ2c − σ2B∗

 , τ2c > σ2B∗

10



with approximate standard error:

ŜE (̂
p(q)

)
=

√√√√V̂ar
(̂
ycR

)
τ2c − σ2B∗

+
V̂ar (τ2c) (q − μB∗ − ŷcR

)2
4
(
τ2c − σ2B∗

)3 · φ
q − μB∗ − ŷcR√

τ2c − σ2B∗


Because p̂(q) is monotonic in σ2B∗ , the homogeneous bias case (i.e.,

σ2B∗ = 0) provides either an upper or lower bound on p̂(q) (Table 1.6.1).
We later return to the practical utility of these results.

1.5.2 Bias factor required to reduce proportion of large effect sizes to
a threshold

Conversely, we might consider the minimum common bias factor (on
the RR scale) capable of reducing to less than r the proportion of
studies with true effect exceeding q. We accordingly define
T(r, q) = B+ : P

(
Mt > q

)
= r to be this quantity, with B+ taken to be

constant across studies. (Note that taking B+ to be constant does not
necessarily imply that the unmeasured confounders themselves are
identical across studies.) Then for an apparently causative relative
risk, a consistent estimator for the minimum common bias capable of
reducing to less than r the proportion of studies with effects
surpassing q is:

T̂(r, q) = exp
{
Φ−1(1 − r)

√
τ2c − q + ŷcR

}
with approximate standard error:

ŜE
(
T̂(r, q)

)
= exp

{√
τ2c

(
Φ−1(1 − r)) − q + ŷcR}

√
V̂ar

(̂
ycR

)
+

V̂ar (
τ2c
) (
Φ−1(1 − r))2
4τ2c

For an apparently preventive relative risk, we can instead consider
the minimum common bias factor (on the RR scale) capable of

11



reducing to less than r the proportion of studies with true effect less
than q, thus defining T(r, q) = B+ : P

(
Mt < q

)
= r. Then a consistent

estimator is:

T̂(r, q) = exp
{
q − ŷcR − Φ−1(r)

√
τ2c
}

with approximate standard error:

ŜE
(
T̂(r, q)

)
= exp

{
q − ŷcR −

√
τ2c

(
Φ−1(r)

) }√
V̂ar

(̂
ycR

)
+

V̂ar (τ2c) (Φ−1(r))2
4τ2c

1.5.3 Confounding strength required to reduce proportion of large ef-
fect sizes to a threshold

Under the assumption that the two components of the common bias
factor are equal as in Equation (1.2), such that g = RRXU = RRUY, the
bias can alternatively be parameterized on the confounding strength
scale. Consider the minimum confounding strength required to lower
to less than r the proportion of studies with true effect exceeding q
and accordingly define G(r, q) = g : P

(
Mt > q

)
= r. For both the

apparently causative and the apparently preventive cases, an
application of Equation (1.2) yields:

Ĝ(r, q) = T̂(r, q) +
√(

T̂(r, q)
)2
− T̂(r, q)

with approximate standard error:

ŜE
(
Ĝ(r, q)

)
= ŜE

(
T̂(r, q)

)
·

1 + 2T̂(r, q) − 1

2
√
T̂(r, q)2 − T̂(r, q)


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1.6 Practical use and interpretation

1.6.1 Interpreting p̂(q)

To conduct our first proposed sensitivity analysis, one first assumes a
simple distribution on the amount of confounding bias in the
meta-analyzed studies, leading to the specification of a pair of
sensitivity parameters, μB∗ and σ2B∗ . Then, one computes p̂(q) to gauge
the strength of evidence for causation if confounding bias indeed
follows the specified distribution. As mentioned in the Introduction,
we consider the proportion of true effects above a chosen threshold of
scientific importance because this metric characterizes evidence
strength while taking into account the effect heterogeneity that is
central to the random-effects meta-analysis framework. That is, a
large proportion of true effect sizes stronger than a threshold of
scientific importance in a meta-analysis (e.g., 70% of true effects
stronger than the threshold RR = 1.10, i.e. q = log 1.10) suggests that,
although the true causal effects may be heterogeneous across studies,
there is evidence that overall, many of these effects are strong enough
to merit scientific interest. If p̂(q) remains large for even large values
of μB∗ , this indicates that even if the influence of unmeasured
confounding were substantial, a large proportion of true effects in the
population distribution would remain of scientifically meaningful
magnitude. Thus, the results of the meta-analysis might be
considered relatively robust to unmeasured confounding.

1.6.2 How to choose q, μB∗ , and σ2B∗ when computing p̂(q)

The threshold q allows the investigator to flexibly define how much
attenuation in effect size due to confounding bias would render a
causal effect too weak to be considered scientifically meaningful. A
general guideline might be to use q = log 1.10 as a minimum threshold
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for an apparently causative relative risk or q = log 0.90 for an
apparently preventive relative risk. Because μB∗ and σ2B∗ are sensitivity
parameters that are not estimable from the data, we would
recommend reporting p̂(q) for a wide range of values of μB∗ (including
large values, representing substantial confounding bias) and with σ2B∗
ranging from 0 to somewhat less than τ2c .

To provide intuition for what values of μB∗ and σ2B∗ might be
plausible in a given setting, it can be useful to consider the implied
range of bias factors across studies for a given pair of sensitivity
parameters. For example, if μB∗ = log 1.20 and σ2B∗ = 0.01, so that the
standard deviation of the bias on the log scale is 0.10, these choices of
sensitivity parameters imply that 95% of the studies have B (on the
risk ratio scale) between exp

(
μB∗ − Φ−1 (0.975) × σB∗

)
= 0.98 and

exp
(
μB∗ + Φ

−1 (0.975) × σB∗
)
= 1.46. This choice of sensitivity parameters

may be reasonable, then, if one is willing to assume that studies very
rarely (with approximately 2.5% probability) obtain point estimates
that are inflated by more than 1.46-fold due to unmeasured
confounding, and furthermore that studies very rarely obtain point
estimates that are biased toward, instead of away from, the null
(which requires B < 1). If, in contrast, an assessment of study design
quality suggests that some studies in the meta-amalysis might have
more severely biased point estimates, then one might consider
increasing μB∗ or σ2B∗ . The choice of σ2B∗ can also be informed by the
extent to which the meta-analyzed studies differ with respect to
existing confounding control. When some studies have much better
confounding control than others, then B∗ may vary substantially, so a
larger σ2B∗ may be reasonable. When all studies adjust for similar sets
of confounders and use similar populations, then a small σ2B∗ may be
reasonable.

Lastly, bounds achieved when σ2B∗ = 0 can provide useful
conservative analyses. Table 1.6.1 shows that setting σ2B∗ = 0 yields
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either an upper or lower bound on p̂(q), where the latter allows σ2B∗ > 0.
The direction of the bound depends on whether ŷcR is apparently
causative or preventive and on whether q is chosen to be on the lower
or upper tail of the bias-corrected pooled point estimate, defined as
ŷtR = ŷcR − μ∗B for the apparently causative case and ŷtR = ŷcR + μ∗B for the
apparently preventive case. For example, for ŷcR > 0 and q > ŷcR − μ∗B,
the σ2B∗ = 0 case provides an upper bound on p̂(q). When concluding
that results are not robust to unmeasured confounding, the analysis
with σ2B∗ = 0 is therefore conservative in that fewer true effect sizes
would surpass q under heterogeneous bias. For example, if we
calculated p̂

(
q = log 1.10

)
= 0.15 with μB∗ = log 1.20 and σ2B∗ = 0, then an

analysis like this would yield conclusions such as: “The results of this
meta-analysis are relatively sensitive to unmeasured confounding.
Even a bias factor as small as 1.20 in each study would reduce to only
15% the proportion of studies with true relative risks greater than
1.10, and if the bias in fact varied across studies, then even fewer
studies would surpass this effect size threshold.”

Table 1.6.1: Bounds on p̂(q) provided by homogeneous bias with an appar-
ently causative or preventive pooled effect. ŷtR estimates μt and is equal to
ŷcR − μB∗ for ŷcR > 0 or ŷcR + μB∗ for ŷcR < 0.

q > ŷtR q < ŷtR
ŷcR > 0 Upper bound Lower bound
ŷcR < 0 Lower bound Upper bound

1.6.3 Interpreting T̂(r, q) and Ĝ(r, q)

In contrast to p̂(q), the metrics T̂(r, q) and Ĝ(r, q) do not require
specification of a range of sensitivity parameters regarding the bias
distribution. Instead, they solve for the minimum amount of bias
that, if constant across all studies, would “explain away” the effect in
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a manner specified through q (the minimum threshold of scientific
importance) and r (the minimum proportion of true effects above q).
That is, we might say that unmeasured confounding has, for practical
purposes, “explained away” the results of a meta-analysis if fewer
than, for example, 10% of the true effects are stronger than a
threshold of RR = 1.10, in which case we would set r = 0.10 and
q = log 1.10.

A large value of either T̂(r, q) or Ĝ(r, q) indicates that it would take
substantial unmeasured confounding (i.e., a large bias factor as
parameterized by T̂(r, q) or a large strength of confounding as
parameterized by Ĝ(r, q)) to “explain away” the results of the
meta-analysis in this sense, and that weaker unmeasured confounding
could not do so. Thus, the results may be considered relatively robust
to unmeasured confounding. For example, by choosing q = log(1.10)
and r = 0.20 and computing T̂(r, q) = 2.50 (equivalently, Ĝ(r, q) = 4.44),
one might conclude: “The results of this meta-analysis are relatively
robust to unmeasured confounding, insofar as a bias factor of 2.50 on
the relative risk scale (e.g., a confounder associated with the exposure
and outcome by risk ratios of 4.44 each) in each study would be
capable of reducing to less than 20% the proportion of studies with
true relative risks greater than 1.10, but weaker confounding could not
do so.” On the other hand, small values of T̂(r, q) and Ĝ(r, q) indicate
that only weak unmeasured confounding would be required to reduce
the effects to a scientifically unimportant level; the meta-analysis
would therefore not warrant strong scientific conclusions regarding
causation.

1.6.4 How to choose q and r when computing T̂(r, q) and Ĝ(r, q)

When computing T̂(r, q) and Ĝ(r, q), one can use the same effect size
threshold q as discussed above for computing p̂(q). When the number
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of studies, k, is large (for example, ≥ 10), one might require at least
10% of studies (r = 0.10) to have effect sizes above q for results to be
of scientific interest. For k < 10, one might select a higher threshold,
such as r = 0.20 (thus requiring at least 20% of studies to have effects
more extreme than, for example, log 1.10). Of course, these guidelines
can and should be adapted based on the substantive application.
Furthermore, note that the amount of bias that would be considered
“implausible” must be determined with attention to the design quality
of the synthesized studies: a large bias factor may be plausible for a
set of studies with poor confounding control and with high potential
for unmeasured confounding, but not for a set of better-designed
studies in which the measured covariates already provide good control
of confounding.

1.7 Further remarks on heterogeneity

We operationalized “robustness to unmeasured confounding” as the
proportion of true effects surpassing a threshold, an approach that
focuses on the upper tail (for an apparently causative RRc

XY) of the
distribution of true effect sizes. Potentially, under substantial
heterogeneity, a high proportion of true effect sizes could satisfy, for
example, RRt

XY > 1.10 while, simultaneously, a non-negligible proportion
could be comparably strong in the opposite direction (RRt

XY < 0.90).
Such situations are intrinsic to the meta-analysis of heterogeneous
effects, and in such settings, we recommend reporting the proportion
of effect sizes below another threshold on the opposite side of the null
(e.g., log 1/1.20 ≈ log 0.80) both for the confounded distribution of
effect sizes and for the distribution adjusted based on chosen bias
parameters. For example, a meta-analysis that is potentially subject
to unmeasured confounding and that estimates ŷcR = log 1.15 and
τ2c = 0.10 would indicate that 45% of the effects RRc

XY surpass 1.20,
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while 13% are less than 0.80. For a common B∗ = log 1.10 (equivalently,
g = 1.43), we find that

(
1 − Φ

(
log 1.20−log 1.15+log 1.10√

0.10

))
· 100% = 33% of the

true effects surpass RRc
XY = 1.20, while 20% are less than RRc

XY = 0.80.
More generally, random-effects meta-analyses could report the
estimated proportion of effects above the null or above a specific
threshold (along with a confidence interval for this proportion) as a
continuous summary measure to supplement the standard pooled
estimate and inference. Together, these reporting practices could
facilitate overall assessment of evidence strength and robustness to
unmeasured confounding under effect heterogeneity.

1.8 Sensitivity analysis for the point estimate

As discussed above, the proportion of effects stronger than a threshold
can be a useful measure of evidence strength across heterogeneous
effects in addition to pooled point estimate alone, and hence our
sensitivity analysis techniques have emphasized the former. However,
it is also possible to conduct sensitivity analysis on the pooled point
estimate itself to assess the extent to which unmeasured confounding
could compromise estimation of μt. The following development
proceeds analogously to that of Section 1.5.

1.8.1 An adjusted point estimate as a function of the bias factor

For an apparently causative relative risk and a specified μB∗ , an
unbiased estimate of the true mean, μt, is simply ŷtR = ŷcR − μB∗ . For an
apparently preventive relative risk, it is ŷtR = ŷcR + μB∗ . Because these
expressions consider the average true effect only, they do not involve
bias correction of τ2c , so are independent of σ2B∗ . Since
Var

(̂
ytR

)
= Var

(̂
ycR

)
, inference on ŷtR can use without modification the

standard error estimate for ŷcR computed through standard
meta-analysis of the confounded data. For example, [45]’s estimation
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approach yields:

ŜE (̂
ytR

)
=

√√√√∑k
i=1

1
τ2c+σ2i

(
yci − ŷcR

)2
(k − 1)∑k

i=1
1

τ2c+σ2i

where yci is the confounded log-relative risk estimate in the ith study.

1.8.2 Bias factor and confounding strength required to shift the point
estimate to the null

One could instead consider the value of μB∗ that would be required to
“explain away” the point estimate. That is, to completely shift the
point estimate to the null (i.e., μt = 0, implying an average risk ratio
of 1) would require μB∗ = ŷcR. As in Section 1.5.3, the bias factor can be
converted to the more intuitive confounding strength scale via
Equation 1.2. Thus, the minimum confounding strength to completely
shift the point estimate to the null is, for the apparently causative
case:

exp
(̂
ycR

)
+

√
exp

(̂
ycR

) [
exp

(̂
ycR

)
− 1] (1.5)

Additionally, one can consider the confounding strength required to
shift the confidence interval for ŷcR to include the null; to do so, ŷcR in
the above expression would simply be replaced with the confidence
bound closer to the null. (For the apparently preventive case, whether
considering the point estimate or the confidence interval bound, each
exponentiated term in Equation 1.5 would be replaced by its inverse.)
As above, these measures do not describe heterogeneity. Thus,
Equation 1.5 is in fact equivalent to [111]’s E-value (as discussed in
Section 1.3) applied directly to ŷcR, as illustrated in the next section.
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1.9 Software and applied example

The proposed methods (as well as those discussed in Section 1.8
above) are implemented in an R package, EValue, which produces
point estimates and inference for sensitivity analyses, tables across a
user-specified grid of sensitivity parameters, and various plots.
Descriptions of each function with working examples are provided in
the Appendix and standard R documentation. A website
implementing the main functions is freely available
(https://mmathur.shinyapps.io/meta_gui_2/).

We illustrate the package’s basic capabilities using an existing
meta-analysis assessing, among several outcomes, the association of
high versus low daily intake of soy protein with breast cancer risk
among women [106]. The analysis comprised 20 observational studies
that varied in their degree of adjustment for suspected confounders,
such as age, body mass index (BMI), and other risk factors. To obtain
τ2c and V̂ar(τ2c) (which were not reported), we obtained study-level
summary measures as reported in a table from [106], approximating
odds ratios with risk ratios given the rare outcome. This process is
automated in the function EValue::scrape_meta. We estimated
ŷcR = log 0.82, ŜE

(̂
ycR

)
= 8.8 × 10−2 via the [45] adjustment (whose

advantages were demonstrated by [50]), τ2c = 0.10 via the [78] method,
and ŜE (

τ2c
)
= 5.0 × 10−2.

Figure 1.9.1 (produced by EValue::sens_plot) displays the
estimated proportion of studies with true relative risks < 0.90 as a
function of either the bias factor or the confounding strength, holding
constant σ2B∗ = 0.01. Table 1.9.1 (produced by EValue::sens_table)
displays T̂(r, q) and Ĝ(r, q) across a grid of values for r and q. For
example, only a bias factor exceeding 1.63 on the relative risk scale
(equivalently, confounding association strengths of 2.64) could reduce
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Figure 1.9.1: Impact of varying degrees of unmeasured confounding bias
on proportion of true relative risks < 0.90
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to less than 10% the proportion of studies with true relative risks
< 0.90. However, variable bias across studies would reduce this
proportion, and the confidence interval is wide.

We now briefly illustrate the sensitivity analysis techniques for ŷcR
described in Section 1.8. For example, applying Equation (1.5)
indicates that an unmeasured confounder associated with both soy
intake and breast cancer by risk ratios of at least 1.72 could be
sufficient to shift the point estimate (RRc

XY = 0.82) to 1, but weaker
confounding could not do so [111]. To reiterate the remarks made in
Section 1.7 regarding heterogeneity, note that our proposed sensitivity
analyses found Ĝ(r = 0.10, q = log 0.90) = 2.64. This is considerably
larger than the E-value of 1.72 for the point estimate, demonstrating
that even in the presence of unmeasured confounding strong enough
to shift the point estimate to the null, more than 10% of the true
relative risks would nevertheless remain stronger than 0.90.

Other methods developed for a single study could similarly be
applied to the meta-analytic point estimate, but they require
specification of many more sensitivity parameters or make more
assumptions about the underlying unmeasured confounder (e.g., [87];
[49]; [63, 114]). To apply these methods directly, we use a simplified
form assuming that U is binary, that the prevalences
P (U = 1 | X = 1,Z) = 0.65 and P (U = 1 | X = 0,Z) = 0.35 are in fact
known, and that the relationship between U and Y is identical for X = 1
and X = 0. Under this more restrictive specification on unmeasured
confounding, an application of [87]’s method (or an application of a
special case of Theorem 2 by [114]) finds that such a confounder
would exactly shift the point estimate to the null if were associated
with both soy intake and breast cancer by risk ratios of 1.94.
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Table 1.9.1: T̂(r, q) and Ĝ(r, q) (in parentheses) for varying r and q. Blank
cells indicate combinations for which no bias would be required.

r
q

0.70 0.80 0.90
0.1 1.27 (1.85) 1.45 (2.25) 1.63 (2.64)
0.2 1.10 (1.44) 1.26 (1.84) 1.42 (2.19)
0.3 1.14 (1.55) 1.29 (1.89)
0.4 1.05 (1.28) 1.18 (1.64)
0.5 1.09 (1.41)

1.10 Simulation study

We assessed finite-sample performance of inference on p̂(q) in a simple
simulation study. While fixing the mean and variance of the true
effects to μt = log 1.4 and Vt = 0.15 and the bias parameters to
μB∗ = log 1.6 and σ2B∗ = 0.01, we varied the number of studies
(k ∈ {15, 25, 50, 200}) and the average sample size N within each study
(E[N] ∈ {300, 500, 1000}). The fixed parameters were chosen to
minimize artifacts from discarding pathological samples with τ2c < σ2B∗
or with truncated outcome probabilities due to extreme values of
RRc

XY; theoretically, p̂(q) is unbiased regardless of these parameters.
We set the threshold of scientific significance at q = log 1.4 to match μt,
such that, theoretically, 50% of true effects exceed q. We ran 1000
simulations for each possible combination of k and E[N], primarily
assessing coverage of nominal 95% confidence intervals and
secondarily assessing their precision (total width) and bias in
p̂(q = log 1.4) versus the theoretically expected 50%. Additionally, we
assessed agreement between p̂(q) and results obtained from an
unconfounded meta-analysis (one in which all meta-analyzed studies
adjust fully for confounding through stratification).

For each study, we drew N ∼ Unif (150, 2E[N] − 150), using 150 as a
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minimum sample size to prevent model convergence failures, and drew
the study’s true effect size as Mt ∼ N(μt,Vt). We simulated data for
each subject under a model with a binary exposure (X ∼ Bern(0.5)), a
single binary unmeasured confounder, and a binary outcome. We set
the two bias components equal to one another (g = RRXU = RRUY) and
fixed P(U = 1|X = 1) = 1, allowing closed-form computation of:

P(U = 1|X = 0) =
exp(Mt)[1 +

(
g − 1)] − exp(Mc)

(g − 1) exp(Mc)

as in [29]. Within each stratum X = x, we simulated
U ∼ Bern (P(U = 1|X = x)). We simulated outcomes as
Y ∼ Bern (

exp{log 0.05 + log(g)U +MtX}). Finally, we computed effect
sizes and fit the random-effects model using the metafor package in R
[117], estimating τ2c per [78] and V̂ar

(̂
ycR

)
with the [45] adjustment.

To compare results of our estimators to estimates from
unconfounded meta-analyses, we also computed unconfounded effect
sizes for each study using the Mantel-Haenszel risk ratio stratifying on
U [86]. (This approach is used only for theoretical comparison, since
in practice we are concerned with confounders that are unmeasured
and therefore cannot be incorporated in analysis.) We then
meta-analyzed these unconfounded point estimates and estimated,
with no adjustment for bias, the proportion of effects in the
population stronger than q.

Results (Table 1.10.1) indicated approximately nominal
performance for all combinations of k and E[N], with precision
appearing to depend more strongly on k than E[N]. As expected
theoretically, p̂(q) was approximately unbiased. Compared to
theoretical expectation, the proposed estimators appeared to perform
slightly better than meta-analyses of unconfounded point estimates
obtained through stratification on U. The latter method may have
been compromised under strong confounding, which often induced
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Table 1.10.1: For varying numbers of studies (k) and mean sample sizes
within each study (Mean N), displays the estimated proportion (̂p(q)) of
true effects above RR = 1.4 with its bias vs. theoretically expected 50%
(̂p(q) bias), coverage of 95% confidence intervals for p̂(q) (CI coverage), and
mean width of 95% confidence intervals (CI width). p̂MH is the estimated
proportion of effects above RR = 1.4 in unconfounded analyses stratifying
on U.

k Mean N p̂(q) p̂(q) bias CI coverage CI width p̂MH

15 300 0.530 0.030 0.970 0.575 0.585
25 300 0.533 0.033 0.965 0.459 0.582
50 300 0.527 0.027 0.975 0.316 0.572

200 300 0.528 0.028 0.917 0.154 0.568
15 500 0.523 0.023 0.981 0.522 0.558
25 500 0.527 0.027 0.982 0.409 0.561
50 500 0.522 0.022 0.973 0.283 0.554

200 500 0.523 0.023 0.945 0.140 0.553
15 1000 0.518 0.018 0.976 0.475 0.540
25 1000 0.516 0.016 0.983 0.370 0.537
50 1000 0.521 0.021 0.983 0.259 0.541

200 1000 0.515 0.015 0.971 0.129 0.536

zero cells in confounder-stratified analyses due to near collinearity of
U with X and Y.

1.11 Discussion

This paper has developed sensitivity analyses for unmeasured
confounding in a random-effects meta-analysis of a relative risk
outcome measure. Specifically, we have presented estimators for the
proportion, p̂(q), of studies with true effect sizes surpassing a threshold
and for the minimum bias, T̂(r, q), or confounding association
strength, Ĝ(r, q), in all studies that would be required to reduce to a
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threshold the proportion of studies with effect sizes less than q. Such
analyses quantify the amount of confounding bias in terms of
intuitively tractable sensitivity parameters. Computation of p̂(q) uses
two sensitivity parameters, namely the mean and variance across
studies of a joint bias factor on the log-relative risk scale. Estimators
T̂(r, q) and Ĝ(r, q) make reference to, and provide conclusions for, a
single sensitivity parameter, chosen as either the common joint bias
factor across studies or the strength of confounding associations on
the relative risk scale. These methods assume that the bias factor is
normally distributed or fixed across studies, but do not make further
assumptions regarding the nature of unmeasured confounding.

Assessing sensitivity to unmeasured confounding is particularly
important in meta-analyses of observational studies, where a central
goal is to assess the current quality of evidence and to inform future
research directions. If a well-designed meta-analysis yields a low value
of T̂(r, q) or Ĝ(r, q) and thus is relatively sensitive to unmeasured
confounding, this indicates that future research on the topic should
prioritize randomized trials or designs and data collection that reduce
unmeasured confounding. On the other hand, individual studies
measuring moderate effect sizes with relatively wide confidence
intervals may not, when considered individually, appear highly robust
to unmeasured confounding; however, a meta-analysis aggregating
their results may nevertheless suggest that a substantial proportion of
the true effects are above a threshold of scientific importance even in
the presence of some unmeasured confounding. Thus, conclusions of
the meta-analysis may in fact be robust to moderate degrees of
unmeasured confounding.

We focused on relative risk outcomes because of their frequency in
biomedical meta-analyses and their mathematical tractability, which
allows closed-form solutions with the introduction of only one
assumption (on the distribution of the bias factor). To allow
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application of the present methods, an odds ratio outcome can be
approximated as a relative risk if the outcome is rare. If the outcome
is not rare, the odds ratio can be approximately converted to a
relative risk by taking its square root; provided that the outcome
probabilities are between 0.2 and 0.8, this transformation is always
within 25% of the true relative risk [112]. Comparable sensitivity
analyses for other types of outcomes, such as mean differences for
continuous outcome variables, would require study-level summary
measures (for example, of within-group means and variances) and in
some cases would yield closed-form solutions only at the price of more
stringent assumptions. Under the assumption of an underlying binary
outcome with high prevalence, such measures could be converted to
log-odds ratios [10] and then to relative risks [112] as described above
(see [111]). It is important to note that, in circumstances discussed
elsewhere [104, 105], relative risk outcomes can produce biased
meta-analytic estimates. When such biases in pooled point estimates
or heterogeneity estimators are likely, sensitivity analyses will also be
biased.

For existing meta-analyses that report estimates of the pooled
effect, the heterogeneity, and their standard errors or confidence
intervals, one could conduct the proposed sensitivity analyses using
only these four summary measures (that is, simply using existing
summary statistics and without re-analyzing study-level point
estimates). However, in practice, we find that reporting of τ2c and
V̂ar (τ2c) is sporadic in the biomedical literature. Besides their utility
for conducting sensitivity analyses, we consider τ2c and V̂ar (τ2c) to be
inherently valuable to the scientific interpretation of heterogeneous
effects. We therefore recommend that they be reported routinely for
random-effects meta-analyses, even when related measures, such as
the proportion of total variance attributable to effect heterogeneity
(I2), are also reported. To enable sensitivity analyses of existing
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meta-analyses that do not report the needed summary measures, the
package EValue helps automate the process of obtaining and drawing
inferences from study-level data from a published forest plot or table.
The user can then simply fit a random-effects model of choice to
obtain the required summary measures.

Our framework assumes that the bias factor is normally distributed
or taken to be fixed across studies. Normality is approximately
justified if, for example, logRRXU and logRRUY are approximately
identically and independently normal with relatively small variance.
Since RRUY is in fact a maximum over strata of X and the range of U,
future work could potentially consider an extreme-value distribution
for this component, but such a specification would appear to require a
computational, rather than closed-form, approach. Perhaps a more
useful, conservative approach to assessing sensitivity to bias that may
be highly skewed is to report T̂(r, q) and Ĝ(r, q) for a wide range of
fixed values B∗, including those much larger than a plausible mean.

An alternative sensitivity analysis approach would be to directly
apply existing analytic bounds [29] to each individual study in order
to compute the proportion of studies with effect sizes more extreme
than q given a particular bias factor. This has the downside of
requiring access to study-level summary measures (rather than pooled
estimates). Moreover, the confidence interval of each study may be
relatively wide, such that no individual study appears robust to
unmeasured confounding, while nevertheless a meta-analytic estimate
that takes into account the distribution of effects may in fact indicate
that some of these effects are likely robust. One could also
alternatively conduct sensitivity analyses on the pooled point estimate
itself, but such an approach is naïve to heterogeneity: when the true
effects are highly variable, a non-negligible proportion of large true
effects may remain even with the introduction of enough bias to
attenuate the pooled estimate to a scientifically unimportant level.
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In summary, our results have shown that sensitivity analyses for
unmeasured confounding in meta-analyses can be conducted easily by
extending results for individual studies. These methods are
straightforward to implement through either our R package EValue or
website and ultimately help inform principled causal conclusions from
meta-analyses.

1.12 Reproducibility

All code required to reproduce the applied example and simulation
study is publicly available (https://osf.io/2r3gm/).
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2
New Statistical Metrics for

Multisite Replication Projects

2.1 Abstract

Increasing interest in replicability in the social sciences has
engendered novel designs for replication projects in which multiple
sites replicate an original study. At least 134 such “many-to-one”
replications have been completed since 2014 or are currently ongoing.
These designs have unique potential to help estimate whether the
original study is statistically consistent with the replications and to
re-assess the strength of evidence for the scientific effect of interest.
However, existing statistical analyses generally focus on single
replications; when applied to many-to-one designs, they provide an



incomplete view of aggregate evidence and can lead to unduly
pessimistic conclusions about replication success. We therefore
propose new statistical metrics representing: (1) the probability that
the original study’s estimated effect size would be as extreme or more
extreme than it actually was, if in fact the original study is
statistically consistent with the replications; (2) the proportion of true
effects agreeing in direction with the original study. Generalized
versions of the second metric allow consideration only of true effects
of non-negligible size; they estimate the proportion of true effects of
scientifically meaningful size in the same direction as the estimate of
the original study and, secondly, the proportion of effects of
meaningful size in the direction opposite the original study’s estimate.
We provide an R package (“Replicate”).

2.2 Introduction

Several social science disciplines have recently moved to empirically
assess replicability of the published literature through systematic,
third-party replications. Investigators conducting replications often
seek to assess, firstly, how similar the results of the replication studies
are to those of the original studies, that is, the extent to which the
original studies are statistically consistent or inconsistent with their
replications [3]. Second, investigators often aim to use replications to
re-assess evidence strength for the scientific effect under investigation
[3], ideally while minimizing bias (e.g., through protocol and analysis
preregistration and a priori editorial approval [97]) and while ensuring
high statistical power.

Novel designs for reproducibility research now exist to address these
objectives with more sophistication than simple designs involving a
single replication of an original study. Some high-impact experimental
psychology journals now encourage projects in which multiple
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independent sites attempt to replicate a single, published original
study using a standardized experimental protocol closely
approximating the original and developed with input from the original
authors [97]. Extensions (sometimes called “Many Labs” projects)
select multiple original studies and subject each to a multisite
replication [31, 57], and others have applied a similar approach to
replicate new original research prior to its publication [89]. We use
the term “many-to-one design” to refer generically to any design in
which an original study is replicated in multiple sites. Many-to-one
replication research is a nascent, but rapidly expanding, field: we are
aware of at least 79 completed and 55 ongoing many-to-one
replication studies to date, all completed or initiated since 2014 and
in experimental psychology and experimental philosophy alone
(completed: [2, 11, 16, 23, 31, 33, 42, 57, 89, 118]; ongoing:
[5, 32, 58, 88]).

However, the adoption of many-to-one designs in the social sciences
has outpaced development of corresponding statistical analyses.
Existing work [4, 36, 77, 98, 115] has proposed analytic approaches for
a single replication of a single study or designs in which numerous
original studies across a discipline or domain are each replicated once
(here termed “one-to-one designs”), as in [76] and in [14]. However,
many-to-one designs pose unique statistical challenges and
opportunities. Results of many-to-one replications often suggest effect
heterogeneity across sites despite use of standardized protocols (for
example, 8 of 16 replications in [57] suggested “statistically
significant” evidence of heterogeneity), yet current analysis
approaches do not adequately account for heterogeneity. As we will
discuss, this can lead to unduly pessimistic assessments of consistency
between the original study and the replications and to misleading
re-assessments of the strength of evidence for the effect under
investigation. Additionally, results of many-to-one designs often lead
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to unresolved debates regarding the extent to which the original study
“replicated” or “did not replicate”, but these debates remain highly
speculative, perhaps partly because few directly relevant quantitative
metrics are currently available.

We therefore propose new statistical metrics specifically designed
for many-to-one designs. To assess statistical consistency, we provide
a metric (Porig) representing the probability that the effect estimate
from the original study would be as extreme or more extreme than it
actually was if, in fact, the original study and the replications were
statistically consistent in the sense of being drawn from the same
distribution. To assess evidence strength, we provide a metric
estimating the proportion of true effects agreeing in direction with the
original effect estimate (P>0). Because replication effects that agree in
direction with the original, but are very weak, may in fact be
considered insufficient evidence to support the original effect, we also
demonstrate how to generalize this metric to consider the proportion
of true effects that not only agree in direction with the original, but
are also stronger than a user-chosen threshold of scientifically
meaningful size (P>q). Lastly, we also provide a counterpart metric
estimating the proportion of true effects in the opposite direction of
the original (P<q∗). In contrast to existing metrics, the proposed
metrics account for all relevant sources of statistical uncertainty in
many-to-one replication designs, including heterogeneity [53], and
they harness the specific strengths of many-to-one designs. These
metrics are mathematically very straightforward, but to the best of
our knowledge, have not yet been reported in any published
many-to-one replication. We provide an R package, “Replicate”, to
conduct all proposed analyses.
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2.3 Applied example

As a running example, we will consider one of several many-to-one
replication attempts conducted by [31]. Specifically, each of 21
independent labs used a common protocol to replicate a classic
psychology experiment (Experiment 1 of [69]) on “moral
credentialing” theory, which proposes that people given an initial
opportunity to demonstrate that they are not prejudiced (and thus
establish “moral credentials”) are more likely to display apparently
prejudiced attitudes in subsequent tasks (having licensed themselves
to do so because of their previously established credentials). In the
replicated experiment, the initial task required subjects to agree or
disagree with potentially sexist statements. In the initial task,
subjects were randomized to a credentialing condition in which the
statements described “most women” (e.g., “Most women need a man
to protect them”) or to a control condition, in which the same
statements described only “some women”. Thus, credentialing
statements were designed to induce higher disagreement than control
statements, allowing subjects in the former condition to more clearly
establish themselves as non-sexists. The dependent variable was
subjects’ degree of preference for male candidates in an imagined
hiring scenario. As predicted, subjects in the credentialing condition
more strongly preferred to hire male candidates than did control
subjects (corresponding to an effect size of r = 0.21 on Pearson’s
correlation scale, p = 7×10−4, 95% CI: 0.09, 0.32). [69] also reported an
unexpected interaction of credentialing condition with the subject’s
sex, and [31] (2016) attempted to replicate both the main effect and
the interaction. For brevity, we focus only on the main effect.
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Figure 2.3.1: Estimated correlation in [69]’s original study, in each of [31]’s
replications, and in a meta-analytic pooled estimate across the replica-
tions.
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2.4 Existing metrics

We first review metrics commonly reported in many-to-one designs as
well as those developed for other designs, but that are frequently
reported in many-to-one designs. First, nearly all many-to-one designs
report a pooled estimate of the effect size in the replications. The
pooled estimate is usually estimated by meta-analyzing effect sizes
from the replications or by fitting a mixed model to individual subject
data. For example, fitting a random-effects meta-analysis model to
[31]’s replication studies on moral credentialing estimates an average
effect size of 0.07 (95% CI: 0.03, 0.11) on the Pearson’s correlation
scale; both the replicators and the lead author of the original study
[68] interpreted this finding as a successful replication supporting
moral credentialing. Regardless of modeling approach, this metric
estimates the average true effect size across the replications. This is
adequate if replications exhibit little heterogeneity but provides an
incomplete picture in the presence of heterogeneity across replication
studies. Such heterogeneity may occur, for example, if replication
studies differ with respect to subjects’ demographic characteristics
(e.g., age, sex, race, or geographic region) or the setting in which the
study is conducted (e.g., time of day, physical setting, etc.). As the
proposed metrics will formalize, Figure 2.3.1 suggests heuristically
that although a group of replication point estimates were clustered
around the pooled point estimate, several point estimates were in fact
in the direction opposite the original, and several were even larger
than the original.

As discussed elsewhere in the context of meta-analyses rather than
replications [65], under moderate or substantial heterogeneity, a
pooled estimate near the null can belie the existence of strong effects
in some replication settings. Thus, due to heterogeneity, a
many-to-one replication design whose pooled estimate appears not to
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support the hypothesized effect may nevertheless provide evidence of
meaningfully large effects in favor of the original hypothesis in some
contexts (for example, locations, subject demographics, variations in
protocol administration, etc.). Conversely, if the pooled estimate is in
the same direction as the original estimate, but is smaller, we cannot
directly discern whether the true effect is never as large as originally
reported (and perhaps is too small to warrant scientific interest) or
whether it may, in fact, be as large as or larger than the original
estimate in some settings. For these reasons, we will recommend
supplementing the pooled point estimate with new metrics that
additionally characterize heterogeneity.

A widespread metric of statistical consistency assesses whether the
replication study obtains a “statistically significant” p-value and an
effect estimate in the same direction as in the original study
(assuming that the original study itself obtained a “significant”
p-value). This “significance agreement” metric is widely reported in
single replications [3], in one-to-one designs [14, 76], and in
many-to-one designs. However, as others have noted [77, 98],
“significance agreement” is challenging to interpret because it is a
function not only of the nominal α-level (e.g., 0.05), but also of power
in both the original and the replication study. Thus, the expected
probability of “significance agreement” may be quite low [4, 77],
though it can be simulated [77] or derived (Appendix) for a given
original and replication study and then compared to the observed
probability. In our running example regarding moral credentialing,
24% of replications (5 of 21) obtained results agreeing in “statistical
significance” and effect direction with the original, which appears
much lower than the 62% that we would expect theoretically (based
on the original effect size and its standard error, as well as the
standard error of each replication).

A variety of more interpretable metrics have been developed for
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one-to-one replications, and some have also been reported in
many-to-one designs. [77] proposed using the original study to
construct a prediction interval representing a plausible range for the
effect estimate in the replication study, assuming that the replication
and the original study are generated from the same distribution (i.e.,
they are statistically “consistent”). If indeed the two studies are
generated from the same distribution, then regardless of power in
either study, there is, by construction, a 95% probability that the
replication effect estimate will fall inside the prediction interval. [98]
proposed a hypothesis test of the replication estimate versus a
nonzero null value chosen as the smallest effect size that the original
study would have had an estimated 33% power to detect. [4]
developed a sophisticated, general statistical model for
median-unbiased effect size estimation in one-to-one replication
designs such as [76]. Several authors (e.g., [36, 115]) recommend using
Bayes factors to quantify evidence for and against the null hypothesis.

In a many-to-one design, some of these metrics can be applied
individually to each replication study or to the pooled estimate. The
former analysis can be informative, but does not aggregate evidence
and statistical power across all replications. The latter analysis is
subject to the same limitations as the pooled estimate itself, namely
that it summarizes a potentially heterogeneous distribution of
replication effects by only its mean. In fact, as we illustrate below,
analyses that fail to account for heterogeneity can underestimate
consistency when there is in fact heterogeneity, leading to conclusions
that are unduly unfavorable to the original study (see Appendix for
proof).
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2.5 Proposed new analyses

As discussed above, few statistical methods have been developed
specifically for many-to-one designs, and those that were developed
for other replication designs have limitations when applied to
many-to-one designs, particularly in the presence of heterogeneous
effects. We therefore propose new metrics to address central objectives
of replication research while accounting for all relevant sources of
statistical uncertainty, namely statistical error in the original,
statistical error in the replication, and heterogeneity. All proposed
analyses are easy to compute manually or using the R package
Replicate, whose capabilities are summarized in the Appendix [66].

Consistency of original with replications (Porig)

Our first proposed metric assesses statistical consistency. Rather than
assuming that the replications and the original measure exactly the
same underlying effect size – an assumption implicit to most metrics
for single replications – we instead assume that they measure
potentially heterogeneous, normally distributed effects. We will then
say that the original study is “consistent” with the replications if it is
generated from the same underlying distribution as the replications;
that is, its true effect size comes from the same distribution as those
of the replications. Then, we define the first proposed metric, called
Porig, as the probability that, if indeed the original is consistent with
the replications in this sense, its estimate would be as extreme or
more extreme than it actually was. A small value of Porig would
indicate strong evidence that the original study is inconsistent with
the replications, whereas a large value would suggest relatively good
consistency. In practice, if the original study is highly inconsistent
with the replications, even accounting for heterogeneity, then we
might consider it an anomaly. Future meta-analyses of the published

39



literature might then present analyses both including and excluding
such potentially anomalous studies. Additionally, others describe
meta-analytically pooling results of an original study with those of a
replication [3, 76]; high inconsistency would suggest interpreting such
analyses with greater caution.

To estimate Porig, we first define (as before) θ̂orig and ŜEorig as the
original effect estimate and its standard error, μ̂ and ŜE

(̂
μ
) as an

estimate of the average true effect size in the replications and its
standard error, and V̂ as an estimate of the variance of the true effect
sizes across replications. The effect sizes should be estimated on a
scale for which the normality assumption is plausible. In practice, μ̂
and V̂ are most commonly estimated using the pooled estimate and
heterogeneity estimate, often denoted τ2, from a random-effects
meta-analysis of the replication sites’ estimates. Alternatively, they
could be estimated by fitting a mixed model to the individual
observations themselves (also known as an “individual patient data
meta-analysis” [101]); both approaches are further discussed in the
Appendix. In the main text, for simplicity, we illustrate the common
meta-analytic approach, but all analyses can be conducted using any
unbiased estimates μ̂ and V̂ arising from a model with the given
distributional assumptions (Appendix).

Then, if the original study is in fact consistent with the
replications, the probability that its estimate would be as extreme as
we observe it to be is approximately:

Porig = 2 ×

1 − Φ
 |̂θorig − μ̂|√

V̂ + ŜE
2
orig + ŜE

2 (̂
μ
)

 (2.1)

For example, we fit a random-effects meta-analysis to [31]’s
site-level data to estimate (on the Fisher’s z scale) μ̂ = 0.07, ŜE (̂

μ
) =

40



0.02, and V̂ = 2.7 ×10−3. We computed θ̂orig = 0.21 and ŜEorig = 0.06
for the original study by converting the reported η2 scale to Fisher’s z
[60]. Then, we applied Equation 2.1 to compute that if the true effect
in the original study indeed arose from the same estimated
distribution as those in the replications, there would be a 10% chance
that the original effect estimate would be as extreme or more extreme
than the observed 0.21. We can interpret this fairly low, but
nonnegligible, probability as being only weakly suggestive of
inconsistency.

In contrast, previously discussed metrics indicating a low
proportion of replications agreeing in “statistical significance” (24%
versus 62% expected) and falling within the original prediction
interval (76% versus 95% expected) might appear to more strongly
suggest inconsistency. These relatively more pessimistic conclusions
(compared to the conclusions we might draw from Porig) reflects their
failure to account for heterogeneity in the effects across replications.
To illustrate quantitatively, we can re-compute Porig, but this time
setting V̂ = 0 to assume no heterogeneity in the effects across
replications. We then obtain a probability of only 3%. This is
considerably lower than the 10% obtained by properly accounting for
heterogeneity: a heterogeneous distribution of effects in the
replications allows a higher chance that any given study would
measure a very large or very small effect size (as shown
mathematically in the Appendix).

Proportion of true effects agreeing in direction with the original (P>0)

To address a second central objective of replication – re-assessing
evidence strength for the scientific effect of interest – we propose a
metric (P>0) to supplement the usual pooled effect estimate and its
confidence interval. Unlike these existing metrics, which characterize
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only the mean of the distribution of true effects in the replications,
P>0 characterizes both the mean and the heterogeneity of this
distribution, and it addresses effect size rather than “statistical
significance”. Specifically, P>0 represents the proportion of true effects,
among the potentially heterogeneous population from which the
replications are a sample, that agree in direction with the original.
That is, any nonzero true effect agreeing in direction can be
interpreted as a “real” effect supporting the original study’s theory
(albeit potentially of a smaller effect size).

To estimate P>0, it is not sufficient to simply compute the observed
proportion of replication estimates agreeing in direction with the
original; such an approach would fail to account for statistical error in
the replication estimates. That is, the challenge is to use the
distribution of the replication estimates (which has variability due to
both heterogeneity and statistical error) to estimate the distribution
of true effects (which has variability due only to heterogeneity). Thus,
we can estimate the proportion of true effects above 0 as:

P>0 = Φ

 μ̂√
V̂

 (2.2)

where Φ denotes the standard normal cumulative distribution
function.

(We assume for simplicity that the original effect estimate is
positive, such that Equation 2.2 represents effect sizes in the same
direction as the original study. If instead the original effect estimate is
negative, simply use the subsequent Equation 2.4 with q∗ = 0 to assess
effect sizes agreeing in direction with the original estimate.
Additionally, we assume the null hypothesis μ = 0; for other null
hypotheses, use Equation 2.3 with q set to the null value.) When
there are approximately 10 or more replications, P>0 is approximately
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normal with estimated standard error:

ŜE =

√√
ŜE

2 (̂
μ
)

V̂
+
ŜE

2 (
V̂
)
μ̂2

4V̂3
· φ

 μ̂√
V̂


where φ denotes the standard normal density function and ŜE

(
V̂
)

the estimated standard error of the heterogeneity estimate. Thus, an
approximate 95% CI is P>0 ± 1.96 × ŜE. (This expression applies for
estimators V̂ that are asymptotically normal and independent of μ̂,
which holds for many common choices (Mathur and VanderWeele,
2017b, Appendix).)

Proportion of true effects of scientifically meaningful size (P>q and P<q∗)

The aforementioned P>0 treats all effects that agree in direction with
the original estimate, even those that are very close to the null, as
evidence in favor of the scientific effect under investigation. This is
generous toward the original study, and therefore might serve as a
useful default analysis. Alternatively, as a more stringent measure of
evidence strength, it can also be useful to consider a generalized
metric (P>q) representing the proportion of effects stronger than a
non-null threshold, q. This approach is similar to equivalence testing
and minimal effects testing, which compare a point estimate to null
values other than 0 [61]. An extensive interdisciplinary literature has
provided recommendations on how to choose thresholds for
scientifically meaningful effect sizes, which we summarize briefly in
the Appendix. For example, suppose that through comparison to
well-established effects on similar dependent variables (Appendix)},
one selects a threshold at a effect size of Cohen’s d = 0.20, or
equivalently, an approximate correlation of r = 0.10 [20]. If P>q is large
(e.g., 85%), this suggests that, when drawing from the population

43



distribution of effect sizes underlying the replications, a high
proportion of true effects are large enough to warrant scientific interest
(e.g., larger than Cohen’s d = 0.20). We might therefore conclude that
the replications provide strong evidence that the scientific effect of
interest is meaningfully strong in many settings. In contrast, if P>q is
small, we might instead conclude that the replications fail to support
scientifically meaningful effects in most contexts.

Conversely, it can also be useful to consider effects in the direction
opposite the original estimate using a second threshold-based metric,
P<q∗ . That is, one could select a second threshold representing a
scientifically meaningful effect size in the opposite direction (e.g.,
Cohen’s d = −0.20) and estimating the proportion of true effects below
this threshold. If the pooled estimate is fairly close to the null or if
heterogeneity is substantial, this probability may be nonneglible,
suggesting that the experimental manipulation may (perhaps
unexpectedly) induce meaningful effects in the opposite direction in
some replication settings. Such a finding may help stimulate
hypotheses regarding important moderators or boundary conditions
on the effect of interest. Additionally, effects in the opposite direction
from theoretical predictions may actively support competing theories.
Indeed, when evaluating competing theories, researchers sometimes
deliberately design experimental manipulations that are expected to
induce opposing effects under each candidate theory. Returning to
moral credentialing, the theory under investigation predicts that
credentialing opportunities would increase subsequent attitudes
consistent with prejudice; however, other theories suggest that
credentialing opportunities might sometimes decrease such attitudes
by prompting self-consistency or by priming personal values that
discourage prejudice [72]. Using P<q∗ to explicitly characterize effects
in the opposite direction (rather than simply allowing them to dilute
the pooled estimate without additional consideration) may help
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identify situations, possibly supported by alternative theories, in
which such competing effects occur.

These threshold-based metrics are particularly informative when
the pooled estimate in the replications is smaller than that of the
original study, as is often the case (e.g., [31]). The proportion of true
effects above a threshold (P>q) may then help identify whether: (1)
the true effects are closely clustered around a small average effect size,
providing little evidence for effects of scientifically meaningful
magnitude; versus (2) the true effects are quite variable around a
small average effect size, such that there is in fact compelling evidence
that effects of scientifically meaningful magnitude occur in some
settings (and thus suggesting the importance of examining possible
moderators). For example, suppose the original study estimates an
effect size of d = 0.85, but the replications estimate a much smaller
pooled effect size of d = 0.40. Exclusive focus on the existing metrics
may then mislead us into considering the replication effort to have
succeeded completely (if the pooled point estimate is also
“statistically significant”) or to have failed completely (if the pooled
point estimate is not “statistically significant”). However, if we
additionally choose a threshold of scientific importance at, for
example, d = 0.20 and estimate a reasonably high percent (e.g., 25%)
of true effects exceeding this threshold, then we might instead
consider the replications to provide moderately strong evidence for
meaningful effect sizes in some replication settings, warranting an
assessment of possible moderators. In contrast, if we instead find that
only, for example, 8% of true effects exceed d = 0.20, then we might
instead conclude that the replications provide little evidence to
support scientifically meaningful effect sizes (even if the pooled point
estimate is “statistically significant”).

To estimate P>q and P<q∗ , first let q be a chosen effect size threshold
of scientific importance. Then we can estimate the proportion of true
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effects above q as:

P>q = 1 − Φ
q − μ̂√

V̂

 (2.3)

For the second metric, we can estimate the proportion of true
effects below a second threshold, q∗, (e.g., Cohen’s d = −0.20) as:

P<q∗ = Φ

q∗ − μ̂√
V̂

 (2.4)

(Again, we assume that the original effect estimate is above the
null; if instead the original effect estimate is below the null, simply
reverse the two equations, using Equation 2.4 to assess effect sizes
supporting the original theory and Equation 2.3 to represent those in
the opposite direction.) Both P>q and P<q∗ have approximate standard
error:

ŜE =

√√
ŜE

2 (̂
μ
)

V̂
+
ŜE

2 (
V̂
) (
q − μ̂

)2
4V̂3

· φ
q − μ̂√

V̂


where q∗ can simply be substituted for q when considering P<q∗ .

Proportion of replication effects supporting moral credentialing

In the moral credentialing example, the original study estimated an
effect size of 0.21 (95% CI: 0.09, 0.32) on the Pearson’s correlation
scale, whereas our meta-analysis of [31]’s replications estimates a
pooled effect size of 0.07 (95% CI: 0.03, 0.11) with estimated
heterogeneity V̂ = 2.7 ×10−3. As discussed previously, the “statistically
significant” result in the replications might appear to suggest that the
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replication effort was successful. But does the small pooled estimate
in the replications, despite its “statistical significance”, correspond to
a high proportion of replication effects supporting credentialing
theory? First, we can use P>0 to estimate the proportion of true effects
above 0 (91% with 95% CI: 64%, 100%). Alternatively, suppose we
select a threshold of r = 0.20 as a minimum effect size of scientific
importance, which is similar to the original estimate and is more
conservative than well-established effects of experimentally-induced
intergroup contact on prejudice (see Appendix). Then we can
estimate via P>q that almost no effects (1% with 95% CI: 0%, 5%)
surpass r = 0.20. If we select a less stringent effect size threshold of
r = 0.10 (approximately equal to Cohen’s d = 0.20), we would estimate
that approximately 28% (95% CI: 0%, 63%) of true effects surpass
r = 0.10. We can then also estimate P<q∗ , that is, the proportion of true
effects of scientifically meaningful magnitude in the direction opposite
[69]’s original findings. We might, for example, choose a conservative
second threshold at, for example, r = −0.10 and use Equation 2.4 to
estimate that almost no inverse effects (0% with 95% CI: 0%, 1%) are
more negative than this threshold.

Ultimately, although these replications produce a “statistically
significant” point estimate in the same direction as the original
study’s estimate, we might nevertheless caution that they provide
little evidence for effect sizes of comparable strength to the original
estimate across replication settings. In the distribution of true effects,
there is a high proportion of a nonzero effects in the direction of the
original estimate, but most of these effects are considerably smaller
than the original estimate. Considering these results along with the
previously discussed consistency metric (Porig = 10%), we might say,
overall, that the moral credentialing main effect “replicated” in the
sense that there is not compelling evidence for inconsistency between
the original study and replications (once we account for
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heterogeneity), yet evidence strength for scientifically meaningful
effect sizes of moral credentialing is considerably weaker than
suggested by the original study. These complementary findings further
illustrate the conceptual distinction between statistical consistency
and evidence strength for scientifically meaningful effects of interest.

2.6 Statistical assumptions

Our proposed metrics assume that the true effect sizes in the
replication studies are normally distributed. In most many-to-one
designs, which use mixed modelling or parametric random effects
meta-analysis to estimate the pooled effect, this assumption is already
implicit. Nevertheless, investigators should assess whether the
normality assumption is plausible by checking for approximate
normality of the replication estimates. (Although the replication
estimates are not themselves true effects, normal true effects would
typically produce approximately normal replication estimates, and
nonnormal true effects would produce nonnormal replication
estimates.) To allow assessment of normality and accurate
heterogeneity estimation, these metrics should generally be applied
only when there are at least 10 replication studies (which, to the best
of our knowledge, was true in each of the 79 completed many-to-one
designs discussed in the Introduction). An exception to this rule of
thumb is when there is no heterogeneity, as discussed below.

2.7 Applications to other replication designs

We have primarily discussed our metrics in the context of many-to-one
designs conducted under a shared replication protocol and in which
true effects are heterogeneous. Here, we discuss other designs and
settings to which the proposed metrics apply without modification.
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2.7.1 Replications without heterogeneity

In many-to-one designs yielding a negligible statistical estimate of
heterogeneity, in one-to-one replication designs, or in a single
replication of a single original study, Porig can still be informative to
assess consistency. Without heterogeneity, Porig does not require a
normality assumption and can be reported with as few as one
replication study, and it becomes a continuous counterpart to a
prediction interval in which all replication data are analyzed in
aggregate, without regard to site (Appendix). When there is no
heterogeneity or when it is not estimable (in single replications or
one-to-one replications), P>0, P>q, and P<q∗ are no longer relevant
because all true effects are taken to be identical.

2.7.2 “Many Labs” designs

In designs in which multiple original studies are each replicated in
many sites (e.g., [31, 57, 89]), the proposed metrics permit direct
comparison or aggregation of results across many-to-one replications
of multiple original studies. For example, one could estimate the
proposed metrics for each original study and report the average
consistency (Porig) as a global summary measure of replication success.
The average P>0 could also be reported as a global summary of
replication evidence strength across numerous scientific effects.

2.7.3 Conceptual replications

We have so far considered contexts in which all replications share a
single protocol closely approximating that of the original study
(sometimes called “direct replications”). However, some researchers
question using only direct replications in many-to-one designs,
arguing that these designs assess replicability of a specific
operationalization of a theory, rather than of the theory itself [7].
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Others advocate supplementing direct replications with “conceptual
replications” that assess the same theory as the original study, but
using a different operationalization ([24, 64, 70]; see also dissent by
[96] and [74]). For example, replication sites in a conceptual
many-to-one design could implement different experimental protocols,
each approved by the original authors. Conceptual replications create
heterogeneity by design, which exacerbates problems with the metrics
proposed prior to this paper (e.g., leading to particularly unfavorable
assessments of consistency and inadequately characterizing evidence
strength). In contrast, our proposed metrics could simply be applied
without modification as they take into account heterogeneity across
replications. They would retain their original interpretations, but P>0
could then additionally be interpreted as the probability that a new
operationalization of the theory at stake would yield a true effect size
either in the same direction as the theoretical prediction. Such an
interpretation holds only when the new operationalization under
consideration can be treated as comparable to the range of protocols
considered in the conceptual replications.

2.8 Conclusion

We have proposed intuitively tractable metrics (implemented in the R
package “Replicate”) for statistical consistency between the original
study and replications and for evidence strength in many-to-one
replication designs with potential heterogeneity. Such replication
projects could report the new metric Porig to convey consistency and
could report the usual pooled estimate (̂μ), heterogeneity estimate (V̂),
plus P>0 (and possibly also P>q and P<q∗) to re-assess evidence strength
for the scientific effect of interest. The proposed metrics account for
all relevant sources of statistical uncertainty and can therefore yield
different conclusions from existing metrics when the replications are
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heterogeneous. These metrics can also help identify situations in
which there is good statistical consistency, but weak evidence strength
for scientifically meaningful effects (and vice versa). For example, a
set of replications estimating a small average effect size might be
statistically consistent with a low-powered original study that
estimated a large effect size, yet may provide little evidence that the
effects of interest are of scientifically meaningful size. In this case, Porig
would be fairly large, indicating good consistency, but P>q would be
small, indicating a low proportion of scientifically meaningful effect
sizes. Conversely, a set of replications estimating a moderate effect
size may appear statistically inconsistent with an original study
estimating a large effect size, but may nevertheless provide strong
evidence for scientifically meaningful effect sizes.

The proposed analyses have limitations. As discussed, they assume
the true effects are normally distributed; this assumption is already
often used in pooled effect estimation and is often testable in practice.
The metrics also rely on accurate statistical estimation of both the
pooled effect size and its variance. When estimating these parameters
via random-effects meta-analysis, there are many possible choices of
heterogeneity estimator, and it is important to choose one that is
known to perform well for the effect measure of choice, particularly
when the number of replication studies is relatively small [116].
Additionally, we do not recommend using Porig to conduct a
dichotomous “hypothesis test” of consistency (by assessing whether
Porig < 0.05) between the original study and the replications; rather,
Porig is a continuous measure and is more informative when reported as
such. Finally, we have assumed that the replications unbiasedly
estimate true effects, which is often reasonable when the replications
are preregistered and conducted by third-party investigators. In
contrast, other forms of replications, such as multiple experiments
reported in a published, non-registered paper may be subject to the
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same biases seen in published original research [38]. These metrics are
mathematically very simple but are nevertheless, we believe, a useful
supplement to current reporting practices to help quantitatively
ground speculation about “replication success”.

In summary, the newly proposed metrics assess consistency of the
original and replication studies and also assess evidence for effects of
scientifically meaningful size while accounting for heterogeneity across
the true effects. Such heterogeneity is fairly common in practice and
can arise due to differing subject demographics or protocol variations.
If reported in many-to-one replication projects, the proposed metrics
could help directly and intuitively address the central objectives of
replication research.

2.9 Reproducibility

All code required to reproduce the applied examples is publicly
available in an RMarkdown preparation of this manuscript
(https://osf.io/apnjk/).
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3
New Metrics for Multiple Testing

with Correlated Outcomes

3.1 Abstract

We propose new metrics comparing the observed number of
hypothesis test rejections (̂θ) at an unpenalized α-level to the
distribution of rejections that would be expected if all tested null
hypotheses held (the “global null”). Specifically, we propose reporting
a “null interval” for the number of α-level rejections expected to occur
in 95% of samples under the global null, the difference between θ̂ and
the upper limit of the null interval (the “excess hits”), and a one-sided
joint test based on θ̂ of the global null. For estimation, we describe
resampling algorithms that asymptotically recover the sampling



distribution under the global null. These methods accommodate
arbitrarily correlated test statistics and do not require
high-dimensional analyses. In a simulation study, we assess properties
of the proposed metrics under varying correlation structures as well as
the relative power of global tests constructed using existing FWER
methods. We provide an R package, NRejections. Ultimately, existing
procedures for multiple hypothesis testing typically penalize inference
in each test, which is useful to temper interpretation of individual
findings; yet on their own, these procedures do not fully characterize
global evidence strength across the multiple tests. Our new metrics
help remedy this limitation.

3.2 Introduction

In studies testing multiple hypotheses, the problem of inflated Type I
error rates is usually handled, if at all, through procedures that
preserve familywise error rate (FWER) or false discovery rate (FDR)
by penalizing individual p-values or critical values. These procedures
can be valuable for individually correcting inference for each
hypothesis test. However, as standalone reporting methods, they may
provide incomplete insight into the overall strength of evidence across
tests. For example, if individual hypothesis tests of the associations
between a single exposure of interest and 40 outcome measures result
in a total of 10 rejections at an uncorrected α = 0.05 and result in 1
rejection at a Bonferroni-corrected α ≈ 0.001, how strong is the overall
evidence supporting associations between the exposure and the
outcomes, considered jointly? Given only the information typically
reported in corrected or uncorrected multiple tests, such questions can
be hard to answer.

Intuitive speculation about overall evidence strength becomes
especially challenging when the hypothesis tests are correlated, which
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is typically the case when related research questions are considered [9]
or in “outcome-wide” analyses that assess associations between a
single exposure and a number of outcomes [113]. Indeed, as we will
illustrate, the results of a given set of individual tests (whether
multiplicity-corrected or not) may be strongly suggestive of at least
some genuine effects if the tests are independent, but may be entirely
consistent with chance (in a manner we will formalize) if the tests are
correlated. In practice, the correlation structure of the tests is usually
unknown, further impeding intuitive assessment.

We therefore aim to supplement existing multiple-testing
procedures (e.g., [30, 48, 83, 85, 121]) with simple metrics that
directly characterize overall evidence strength while accommodating
arbitrarily correlated test statistics. These metrics focus on the total
number of hypothesis test rejections at an arbitrary α level (such as
the usual, uncorrected α = 0.05). First, we propose reporting a null
interval representing a plausible range for the total number of
rejections in 95% of samples that would occur if all null hypotheses
were true (a scenario we call the “global null”), along with the
difference between the number of observed rejections and the upper
interval limit (the excess hits). For example, if we reject 10 of 40
hypotheses at α = 0.05, we might be tempted to conclude intuitively
that this is “more” than the expected 0.05 × 40 = 2 rejections.
However, if the null interval is [0, 11], accounting for correlation
between the tests, this would suggest little evidence overall for
genuine associations across the 40 tests. In contrast, if we instead
reject 14 tests under the same correlation structure, the null interval
indicates that we have observed 3 excess hits beyond the number that
would be expected in 95% of samples generated under the global null,
which is suggestive of strong overall evidence that at least some of the
tested associations are present. Additionally, we propose using the
number of rejections to conduct a one-sided global test of the global
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null, whose p-value represents the probability, in samples generated
under the global null, of observing at least as many α-level rejections
as were actually observed.

Although standard methods for FWER control are not explicitly
designed to characterize overall evidence strength, they could in
principle be repurposed into a global test. That is, rejection of at
least one test with inference corrected to preserve a familywise
α = 0.05 implies rejection of the global null at α = 0.05. Several
existing methods strongly control FWER in hypothesis tests with
unknown correlation structure and could therefore be suitable for a
global test. The most widespread approaches are the classical
one-step Bonferroni correction [30] and its uniformly more powerful
successor, the step-down Holm method [48], both of which can be
computed in closed form. By avoiding specifying or estimating the
correlation structure, these naïve methods accommodate even
worst-case correlation structures but can yield conservative inference.
Other closed-form methods achieve better power by assuming
independence (e.g., various procedures based on [94]’s inequality) or
known logical dependencies between tests (e.g., [90]) but can produce
anticonservative inference if these assumptions are violated [91]. We
focus here on modern methods, detailed in Section 3.3, that avoid
such assumptions by empirically estimating the correlation structure
via resampling [83, 85, 121]. Related methods control FDR rather
than FWER (e.g., [85, 109, 110]), but because FDR control does not
appear to have a direct relationship with the types of global test or
null interval discussed in the present paper, we do not further consider
these methods. Alternative approaches are designed for a large
number of hypothesis tests, as in high-dimensional genetic studies
(e.g., [40, 62, 102]); however, because correlated hypothesis tests can
be particularly problematic in traditional low-dimensional settings
[19], we aim to provide methods that apply regardless of the number
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of tests.
In this paper, we first derive assumptions for the asymptotic

validity of a resampling-based null interval, the corresponding excess
hits, and a global test of the number of rejections, and we describe
specific resampling algorithms fulfilling these assumptions. Second, we
conduct a simulation study in which we (1) compare the null interval
to the observed number of rejections for varying effect sizes; and (2)
assess the relative power of global tests conducted using the number
of rejections or derived from existing FWER-control methods, as
discussed above. To our knowledge, prior simulation studies of
existing FWER methods have not reported on their performance as
global tests [85]. We illustrate application of our proposed metrics
through an applied example.

3.3 Existing resampling-based multiplicity corrections

Table 3.3.1 summarizes existing methods that strongly control FWER
for arbitrarily correlated tests. [121] proposes resampling algorithms
that resemble the standard bootstrap, but that modify the data in
order to enforce the global null (an approach similar to what we will
adopt). For example, suppose we conduct one-sample t-tests on the
potentially correlated variables (Y1, · · · , YW) with the global null
stating that E[Yw] = 0 ∀ w ∈ {1, · · · ,W}. To resample under the global
null, the observed data could first be centered by their respective
sample means, then resampled with replacement [121]. Thus, in the
resampled datasets, the global null holds regardless of the true
parameters (E[Y1], · · · , E[YW]) underlying the original sample. Then,
[121]’s one-step “minP” method and uniformly more powerful
step-down variant (here termed “Wstep”) adjust the observed p-values
using quantiles of the distribution of p-values calculated in the
resamples.
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Other FWER methods use parametric resampling approaches that
do not enforce the global null in the resampled data, but rather that
generate datasets resembling the original data [83, 85]. Essentially
invoking the duality of hypothesis tests and confidence intervals, the
resampled test statistics are then centered by their estimated values in
the observed data in order to recover the null distribution; other
related methods showed less favorable performance in prior
simulations, so we do not further consider them here [85, 109].

The latter class of resampling approaches obviates a key
assumption used by both minP and Wstep in order to simplify
computation. This disputed “subset pivotality” assumption that has
been discussed at length elsewhere (e.g., [83, 120–122]). To
summarize, strong FWER-control methods that empirically estimate
the correlation structure must control FWER not only when the
global null holds, but also for any configuration of true and false null
hypotheses. Although it might appear that resamples would therefore
need to be generated under every such configuration, [121]’s methods
circumvent this problem, requiring only one set of resamples under
the global null, by invoking subset pivotality. This assumption states
that for any subset K of hypotheses being tested, if all null hypotheses
in K hold, then the distribution of the maximum test statistic in K is
the same regardless of the truth or falsehood of all hypotheses not in
K. (See [120] for a rigorous definition.)

Subset pivotality can fail, for example, when testing pairwise
correlations ([83]’s Example 4.1) of three variables, X, Y, and Z. In
this setting, the joint distribution of the statistics ρ̂XY and ρ̂XZ when a
particular subset K of the null hypotheses hold, namely ρXY = ρXZ = 0,
depends on ρYZ and hence on the truth or falsehood of a hypothesis
not in K [83]. Thus, under [121]’s resampling approach, ρ̂(j)XY and ρ̂(j)XZ
would be correctly centered at 0, but they would be independent
because the global null is enforced. In contrast, under [85]’s
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resampling approach, ρ̂(j)XY and ρ̂(j)XZ would likewise be centered at 0
because they would have been centered by the sample estimates ρ̂XY
and ρ̂XZ, but they would also be correlated to an extent determined by
ρYZ. In turn, the distribution of the maximum test statistic depends
on the joint distribution of

(̂
ρXY, ρ̂XZ

)
. Importantly, subset pivotality

will not be required for our proposed methods: unlike FWER-control
methods, our proposed methods concern only the global null, and
thus even when subset pivotality does not hold, it is sufficient to
estimate via resampling the single sampling distribution of the test
statistics under the global null. To build upon these existing methods
by directly characterizing global evidence strength, we now develop
theory underlying our proposed metrics.

Table 3.3.1: Selected existing methods for strong FWER control with cor-
related hypothesis tests

Method Type Means of handling correlation
Bonferroni 1-step Conservatively making no assumptions

Holm Step-down Conservatively making no assumptions

minP 1-step Resampling under global null to
estimate correlation structure

Wstep Step-down

Romano Step-down Resampling without restrictions to
estimate correlation structure

3.4 Setting and notation

Suppose that K random variables are measured on N subjects, with
the resulting matrix denoted Z ∈ RN×K. Let Znk denote, for the nth
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subject, the kth random variable. Consider a resampling algorithm
that generates, for iterate j, a dataset Z(j) ∈ RN×K containing the
random vector

(
Z(j)
n1 , · · · ,Z(j)

nK

)
for each subject n. There are a total of B

resampled datasets. We use the superscript “(j)” to denote random
variables, distributions, and statistics in resampled dataset j. Further
suppose that we conduct W tests of point null hypotheses, each at
level α. Denote the wth null hypothesis as H0w. Let cw,α be the critical
value for the test statistic, Tw, of the wth test. The W-vector of test
statistics is T = (T1, · · · ,Tw). We define the “global null” as the case in
which all W null hypotheses hold and use the superscript “0” generally
to denote distributions, data, or statistics generated under the global
null.

Define the statistic corresponding to the observed number of α-level
rejections as θ̂ =

∑W
w=1 1

{
Tw > cw,α

}. Its counterpart in a sample
generated under the global null is θ̂

0
and in resample j is θ̂

(j)
. Using F

to denote cumulative distribution functions (CDFs), respectively
define the true CDF of the number of rejections under the global null,
its counterpart in the resamples, and its empirical estimator in the
resamples as:

F̂θ0(r) = P
(̂
θ
0
≤ r

)
F̂
θ
(j)(r) = P

(̂
θ
(j)
≤ r

)
F̂̂
θ
(j) (r) =

1
B

B∑
j∗=1

1
{̂
θ
(j∗)
≤ r

}
We denote almost sure convergence, convergence in probability,

convergence in distribution, and ordinary limits respectively as
“ A.S.−−−−→
N→∞

”, “ P−−−−→
N→∞

”, “ D−−−−→
N→∞

”, and “−−−−→
N→∞

”.
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3.5 Main results

We now develop theory allowing us to approximate the sampling
distribution of F̂θ0 through resampling. Specifically, we show that
under a certain class of resampling algorithms defined below, the
empirical sampling distribution of the number of rejections in the
resamples converges to the true distribution of the number of
rejections in samples generated under the global null. We chose to
characterize the sampling distribution empirically rather than
theoretically because it does not appear to have a tractable closed
form without imposing assumptions on the correlation structure of
the tests and potentially requiring asymptotics on the number of
hypothesis tests. (Despite the intractable sampling distribution, it is
straightforward to derive at least the exact variance of θ̂

0
if the

pairwise correlations between the p-values are known (Appendix
Section C.1).) Because simulation error associated with using a finite
number of resamples to approximate the CDF of the resampled data
can be made arbitrarily small by taking B→ ∞, we follow convention
(e.g., [39]) in ignoring this source of error and considering only
asymptotics on N.

3.5.1 An assumption on the resampling algorithm

To establish the main convergence result, we will use the following key
assumption stating that, regardless of whether the observed sample
was generated under the global null or under an alternative, the
resampling algorithm must generate a sampling distribution for T(j)

that converges to the sampling distribution of T0 (that is, in samples
generated under the global null). We will later discuss resampling
algorithms that satisfy this assumption.

Assumption 3.5.3. The resampling algorithm used to generate Z(j)
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must ensure that T(j) D−−−−→
N→∞

T0, or equivalently FT(j) −−−−→
N→∞

FT0 .

Typically, resampling algorithms fulfilling this assumption will need
to preserve the correlation structure of all variables in the dataset,
except where the global null dictates otherwise. If not, the
distribution of the test statistics will usually not be preserved.
Additionally, just as the original data are assumed to respect the
parametric assumptions of all W hypothesis tests, the resampled data
must be generated in a manner that also respects this parametric
structure. Otherwise, hypothesis tests conducted on the resampled
data may not preserve their nominal α-levels, which again affects the
distribution of the test statistics.

Remark 3.5.1. For Assumption 3.5.3 to hold, it is sufficient for T to be
a continuous function of Z and for Z(j) D−−−−→

N→∞
Z0. Note that this

condition is not necessary; for example, [121] proposes several
algorithms that induce the global null by centering the data
themselves by sample estimates, rather than by centering the test
statistics as in Algorithm 3.5.1 below. In such cases, Assumption 3.5.3
may hold without Z(j) D−−−−→

N→∞
Z0.

3.5.2 Valid residual resampling for OLS

We now consider the design of valid resampling algorithms for the
familiar setting of ordinary least squares (OLS) multiple regression.
Specializing the notation in Section 3.4, let Mij denote the (i, j)th

element of a matrix, M, and Vi denote the ith element of a vector, V.
Assume that each of W outcome variables, (Y1, · · · , YW), is regressed on
the same design matrix, X ∈ RN×p, comprising an intercept term
denoted X1 (such that the residuals have mean 0), a single exposure of
interest (taken without loss of generality to be X2), and the adjusted
covariates (

X3, · · · ,XC
). Assume all covariates besides the intercept are
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mean-centered. Thus, the dataset Z contains a random vector
(1,Xn2, · · · ,XnC, Yn1, · · · , YnW) for each subject n.

Let εw = (ε1w, · · · , εNw) denote the N-vector of true errors for the wth

regression such that εnw ∼ N(0, σ2w). Let ε̂w be its estimated counterpart
(the residuals). Let σ2w = E

[
ε2nw|X

] as usual, and assume σ2w < ∞.
Letting βw denote the coefficient of interest for X2 in the wth regression
model and αjw denote the nuisance coefficient for the jth adjusted
covariate or intercept in the wth model, the W models are:

Yn1 = α11 + β1Xn2 +

C∑
j=3

αj1Xnj + εn1

...

YnW = α1W + βWXn2 +

C∑
j=3

αjWXnj + εnW (3.1)

Using superscripts to denote lengths and subscripts to denote
indices, let βW =

(
β1, · · · , βW

)
be a vector containing, for each of W

regression models, the single coefficient of interest, and let β̂
W

and
β̂
W(j)

denote its sample estimate in the original dataset and in
resampled dataset j, respectively. Suppose without loss of generality
that the null hypotheses of interest are H0w : βw = 0.

Letting hats denote the usual OLS estimates obtained from the
original sample, the usual test statistics in the original sample are

T =
(

β̂1
σ̂1(X′X)−1/2

, · · · , β̂W
σ̂W(X′X)−1/2

)
; their unobservable counterparts

centered to reflect the global null are T0 =

(
β̂1−β1

σ̂1(X′X)−1/2
, · · · , β̂W−βW

σ̂W(X′X)−1/2

)
.

Algorithm 3.5.1 (A valid resampling algorithm for OLS). A
parametric resampling algorithm satisfying Assumption 3.5.3
(generalized from [39]) is to first fix the covariates (X1, · · · ,XC) for all
observations while setting the resampled “outcomes” equal to the
fitted values plus a vector of residuals resampled with replacement.
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That is, letting n′ denote an observation sampled with replacement,
the resampled variables for observation n are:

X(j)
n1 := Xn1

...

X(j)
nC := XnC

Y(j)n1 := Ŷn1 +
(̂
Yn′1 − Yn′1

)
...

Y(j)nW := ŶnW +
(̂
Yn′W − Yn′W

)
Then each test statistic in the resamples is computed using

H̃0w : βw = β̂w in order to recover the null sampling distribution [43].
That is:

T(j) =

 β̂
(j)
1 − β̂1

σ̂(j)1 (X′X)−1/2
, · · · ,

β̂
(j)
W − β̂W

σ̂(j)W (X′X)−1/2

 (3.2)

We show later that this resampling algorithm fulfills Assumption 3.5.3
because the distribution of each β̂w − βw = (X′X)−1X′εw (in the original
sample) depends only on the true error distribution and not on βw, so
the resampling algorithm need only recover the true error distribution
to provide valid inference under the global null.

Various other approaches that may appear valid in fact violate the
assumption. For example, we could fix the design matrix X but
resample with replacement the outcome vectors, (Yn′1, · · · , Yn′W), rather
than the residuals:

X(j)
n1 := Xn1

...

X(j)
nC := XnC

Y(j)n1 := Y(j)n′1
...

Y(j)nW := Y(j)n′W

Although this approach indeed enforces the global null and
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preserves the correlation between the outcomes, it fails to preserve the
correlations between the outcomes and the adjusted covariates and
thus does not recover the distribution of T0.

A second incorrect alternative would be to bootstrap parametrically
from Equation (3.1) while enforcing the global null by constraining
each β(j)w := 0:

X(j)
n1 := Xn1

...

X(j)
nC := XnC

Yn1 := α̂11 +
C∑
j=3

α̂j1Xnj + εn1

...

YnW := α̂1W +
C∑
j=3

α̂jWXnj + εnW

where ε(j)nw ∼i.i.d. N(0, σ̂2εnw). However, this sequential algorithm fails to
entirely preserve the correlations among the outcomes if there are
unmeasured variables, beyond the adjusted covariates, that contribute
to these correlations. In turn, the distribution of T0 is not recovered.
A final incorrect alternative would be a generic bootstrap hypothesis
test performed by resampling with replacement entire rows of data
and then centering the test statistics as in Equation (3.2). However,
this algorithm incorrectly treats the design matrix as random rather
than fixed, which would be appropriate for correlation models but not
the intended regression models [39]. Additionally, this algorithm can
produce data violating the assumptions of standard OLS inference,
even when the original data fulfill the assumptions. Suppose, for
example, that the design matrix contains only an intercept and a
binary exposure of interest, X2 ∈ {0, 1}, and that, for some outcome Yw∗ ,
we have βw∗ , 0 (i.e., the alternative hypothesis holds). Then, of
course, ε̂nw∗ may be normal, allowing valid OLS inference, despite that
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Yw∗ itself may be bimodal with peaks at E[Yw∗ | X2 = 0] and
E[Yw∗ | X2 = 1]. This generic resampling algorithm retains the
bimodality of Yw∗ while breaking the association between Yw∗ and X1;
thus, the resampled residuals ε̂(j)nw∗ will be bimodal rather than normal
[121], and standard inference may fail.

Justification of Algorithm 3.5.1

In Theorem 3.5.3 below, we show that Algorithm 3.5.1 satisfies
Assumption 3.5.3. The development of the proof is structured as
follows. We make a regularity assumption (Assumption 3.5.4) and
define how we will metrize convergence of the resampled test statistics
(Definition 3.5.1). We bound the distance metric for certain types of
random vectors (Lemma 3.5.1), in turn allowing us to bound the
distance between the estimated sampling distribution in the resamples
and the true sampling distribution to which the former should
converge (Theorem 3.5.1). Using the latter bound, a triangle
inequality argument, and convergence results regarding each term of
the triangle inequality (Lemmas 3.5.2 and 3.5.3), we show the needed
convergence result for the coefficient estimates (Theorem 3.5.2) and
finally for the test statistics (Theorem 3.5.3).

First, assume the following regularity condition on the design
matrix, which will later be relevant for the convergence of the
coefficient estimates:

Assumption 3.5.4. Suppose without loss of generality that the
regression covariate of interest is X2. Correspondingly, let B ∈ RN×1 be
the transposed second row of (X′X)−1X′, or equivalently the first
column of X(X′X)−1. (More generally, if the covariate of interest is the
ith variable in the design matrix, then B is defined as the ith row or
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column.) Assume that for some constant k > 0:

N · B′B P−−−−→
N→∞

k

⇔ N
N∑
n=1

[(X′X)−1X′]22n
P−−−−→

N→∞
k

Remark 3.5.2 (Sufficient conditions). Let Iij denote an entry of the
expected Fisher information matrix for an individual observation in
the wth regression. Then Assumption 3.5.4 holds if, for all w:

(A1) Iii > 0 ∀ i ∈ {1, · · · , p}

(A2) E[XniXnj] < ∞ ∀ i, j ∈ {1, · · · , p}

(A3) σ2w > 0

(A1) states that the true standard errors of all p regression
coefficients are finite. (A2) holds if the covariates are non-collinear
and have finite expectations. (A3) states that the model does not fit
perfectly.

Proof. Let α̂iw be the ith coefficient estimate in the wth regression, such
that α̂2w = β̂w, the estimate of interest. Thus, let
α̂w = [̂α1w, β̂w, α̂3w, · · · , α̂pw]′ be the p-vector of estimates in the wth

regression. Denote a pairwise covariance Covij = Cov
(̂
αiw, α̂jw

)
, and

similarly denote a pairwise correlation as ρij. Then the estimated
covariance of β̂w with α̂iw is:

Ĉov2i = ρ̂2i · ŜE
(̂
βw

)
· ŜE (̂

αiw
)

= ρ̂2i ·
1√
NÎ22

· 1√
NÎii

(3.3)
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With the LHS of Assumption 3.5.4 in view, we have:

(
X′X

)−1
=

1
σ̂2w


Ĉov11 · · · Ĉov1p

Ĉov21 · · · Ĉov2p
...

...

Ĉovp1 · · · Ĉovpp


[(X′X)−1X′]2n =

1
σ̂2w

[
Ĉov21 · · · Ĉov2p

][
Xn1 · · ·Xnp

]′

N
N∑
n=1

[(X′X)−1X′]22n = N
N∑
n=1

 p∑
i=1

1
σ̂2w

Ĉov2iXni

2

= N
1
σ̂4w

N∑
n=1

 p∑
i=1

p∑
j=1

Ĉov2iĈov2jXniXnj


= N

1
σ̂4w

p∑
i=1

p∑
j=1

Ĉov2iĈov2j

N∑
n=1

XniXnj

Re-expressing the estimated covariances using Equation (3.3):

=
1
σ̂4w

p∑
i=1

p∑
j=1

ρ̂2i ρ̂2j
1

Î22
√
ÎiiÎjj

1
N

N∑
n=1

XniXnj

P−−−−→
N→∞

1
σ4w

p∑
i=1

p∑
j=1

ρ2i ρ2j
1

I22
√
IiiIjj

E[XniXnj]

If (A1)–(A3) above are fulfilled, this is a finite constant, as required.
□

We will consider validity of the bootstrap in terms of convergence
on the Mallows-Wasserstein metric, a conventional choice that is
defined as follows [27, 39].
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Definition 3.5.1. Let GA and GB be arbitrary marginal distribution
functions for random vectors A ∈ RW and B ∈ RW, respectively. Then a
form of Mallows-Wasserstein distance between GA and GB is the
infimum, taken over all possible joint distributions for (A,B) such that
A ∼ GA and B ∼ GB marginally, of the expected L2 distance between A
and B:

dW2 (GA,GB) := inf
A∼GA
B∼GB

E
[||A − B||2]1/2

We proceed to prove that the residual-resampling bootstrap is
consistent with respect to the Mallows-Wasserstein metric in a
development roughly following [39] and [8], who considered the
asymptotic validity of residual resampling in recovering the sampling
distribution of a p-vector of coefficient estimates from a single
multiple linear regression model. Here, we extend this work to
consider the sampling distribution of β̂

W
. We first establish a lemma

bounding the Mallows-Wasserstein distance between the distributions
of two random vectors constructed as products of different random
matrices with a single fixed vector.

Lemma 3.5.1. Let C∗ and D∗ ∈ RW×N be random matrices from a
specific joint distribution, and let B ∈ RN×1 be a fixed vector. Let GC

and GD be the resulting marginal distribution functions of the vectors
C∗B and D∗B ∈ RW×1, respectively. Then:

dW2 (GC,GD)2 ≤ tr
{
BB′ · E[(C∗ − D∗)′(C∗ − D∗)]}
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Proof.

dW2 (GC,GD)2 ≤ E
[
||C∗B − D∗B||2

]
= E

[
tr{(C∗B − D∗B)︸         ︷︷         ︸

W×1

(C∗B − D∗B)′︸         ︷︷         ︸
1×W

}
]

= E
[
tr{(C∗ − D∗)︸     ︷︷     ︸

W×N

BB′︸︷︷︸
N×N

(C∗ − D∗)′︸      ︷︷      ︸
N×W

}
]

= E
[
tr{BB′(C∗ − D∗)′(C∗ − D∗)︸                       ︷︷                       ︸

N×N

}
]

= tr
{
E
[
BB′(C∗ − D∗)′(C∗ − D∗)]}

= tr
{
BB′ · E[(C∗ − D∗)′(C∗ − D∗)︸                   ︷︷                   ︸

N×N

]
}

The inequality arises because the left-hand side is the infimum of the
expectation over all possible joint distributions with marginals GC and
GD, whereas the right-hand side is the expectation for a particular
such joint distribution (the one giving rise to C∗ and D∗). □

The next theorem bounds the distance between the true sampling
distribution of the estimated coefficients and the estimated sampling
distribution in the resamples in terms of the distance between the
sampling distribution of the true errors and the resampled residuals.

Theorem 3.5.1. Let F denote the distribution function of the true
errors for the W regression models, (εn1, · · · , εnW), and let F̂N denote the
empirical distribution function of the residuals, which is used to
approximate F in Algorithm 3.5.1. Let Ψ(F) denote the distribution of
the standardized coefficient estimates,

√
N

(̂
β
W
− βW

)
, that are

constructed as a function of the true error distribution; Ψ(F) therefore
represents the true sampling distribution to which a valid
bootstrapped sampling distribution must converge. In contrast, let
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Ψ(̂FN) be the distribution of the standardized coefficient estimates in
the resamples,

√
N

(̂
β
W(j)
− β̂

W
)
, in which the empirical distribution of

the residuals is used to approximate the true distribution.
As in Assumption 3.5.4, let B ∈ RN×1 be the transposed second row

of (X′X)−1X′. Then:

dW2
(
Ψ(F),Ψ(̂FN)

)2
≤ N · tr{BB′} · dW2

(
F, F̂N

)2
Proof. Let U′w ∈ R1×N = [U1w, · · · ,UNw] such that (Un1, · · · ,UnW) ∼ F and:

C ∈ RW×N =


— U′1 —

...

— U′W —

 =

U11 ... UN1

U12 ... UN2
...

...

U1W ... UNW


In general for multiple regression, we have β̂ − β = (X′X)−1 X′ε. Thus,
we can express Ψ(F) as the distribution of the W-vector:

√
N

(̂
β
W
− βW

)
=
√
N


[
(X′X)−1X′U1

]
2

...[
(X′X)−1X′UW

]
2

 =
√
N


U′1B
...

U′WB

 =
√
N · CB

whose wth element pertains to the regression coefficient for X2 in the
wth regression. Let D be the counterpart of C with

(
Ûn1, · · · , ÛnW

)
∼ F̂N

in place of (Un1, · · · ,UnW).
In view of Lemma 3.5.1, note that the entries of the matrix
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(C − D)′(C − D) ∈ RN×N are:

[(C − D)′(C − D)]kj =
W∑
w=1

[(C − D)′]kw[C − D]wj

=

W∑
w=1

[C − D]wk[C − D]wj

=

W∑
w=1

(
Ukw − Ûkw

) (
Ujw − Ûjw

)
We have E

[ (
Ukw − Ûkw

) (
Ujw − Ûjw

) ]
= Cov

(
Ukw − Ûkw,Ujw − Ûjw

)
, but for

all k , j, the covariance is 0 because the observations are independent.
Thus, letting IN denote the N × N identity matrix, we have that
E[(C − D)′(C − D)] is a diagonal matrix such that

E[(C − D)′(C − D)] = IN · E
[ W∑
w=1

(
Ujw − Ûjw

)2 ]
(3.4)

In order to apply Lemma 3.5.1, we will now restrict attention to a
special choice of C and D. First note that, by definition:

dW2
(
F, F̂N

)2
= inf

(Uj1,··· ,UjW)∼F
(Ûj1,··· ,ÛjW)∼F̂N

E
[ W∑
w=1

(
Ujw − Ûjw

)2 ]
(3.5)

Now let C∗ ∈ RW×N and D∗ ∈ RW×N be a pair of random matrices
constructed using

(
Uj1, · · · ,UjW

)
and

(
Ûj1, · · · , ÛjW

)
from the

infimum-attaining joint distribution in Equation (3.5); that is, such
that E[(C∗ − D∗)′ (C∗ − D∗)] = IN · dW2

(
F, F̂N

)2
per the representations in

Equations (3.4) and (3.5). (Such a choice exists by [8]’s Lemma 8.1.)
The result then follows immediately from applying Lemma 3.5.1,
setting GC = Ψ (F), GD = Ψ

(̂
FN

)
, and B,C∗, and D∗ as defined above

and pulling the scalar
√
N outside the squared distance. □
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Next, to apply the bound in Theorem 3.5.1, we will first bound the
term on the right-hand side using a triangle inequality, which applies
because dW2 (·, ·) is a metric [8]. To this end, let FN denote the
unobserved empirical distribution function of the true error vector, εW.
Then we have the following triangle inequality:

dW2
(̂
FN, F

)
≤ dW2

(̂
FN, FN

)
+ dW2 (FN, F) (3.6)

The first term on the RHS relates the empirical distribution of the
residuals to the empirical distribution of the true errors (which are
both discrete distributions taking N values); the second term relates
the latter empirical distribution to the true error distribution (which
is continuous). The next two lemmas bound the terms on the RHS of
Equation (3.6); we will later use them to bound the LHS.

Lemma 3.5.2. For the expectation of the first term on the RHS of
Equation (3.6):

E
[
dW2

(̂
FN, FN

) ]
−−−−→
N→∞

0

Proof. As in Definition 3.5.1, let U ∼ F̂N and V ∼ FN be arbitrary
random variables in RW that follow the empirical marginal
distributions of the residuals and of the true errors. Denote their
elements (U1, · · · ,UW) and (V1, · · · ,VW). Let (U∗,V∗) be the special
choice of (U,V) that follow not only the marginal empirical
distributions F̂N and FN, but also the empirical joint distribution of
the residuals and the true errors. Then:

dW2
(̂
FN, FN

)2
:= inf

U∼F̂N
V∼FN

E
[||U − V||2]

≤ E
[
||U∗ − V∗||2

]
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because (U∗,V∗) represents a choice of a single element from the set
over which the infimum is taken. Expressing the RHS as the
expectation of the joint ECDF:

=
1
N

N∑
n=1

W∑
w=1

(̂
εnw − εnw

)2
︸            ︷︷            ︸
||·||2 of a W-vector

=
1
N

W∑
w=1

N∑
n=1

(̂
εnw − εnw

)2
︸            ︷︷            ︸
||·||2 of an N-vector

=
1
N

W∑
w=1

||̂εw − εw||2

Taking expectations and using [39]’s Eq. (2.2), this implies:

E
[
dW2

(̂
FN, FN

)2 ]
=

p
N

W∑
w=1

σ2w

−−−−→
N→∞

0

By Jensen’s inequality:

E
[
dW2

(̂
FN, FN

) ]
−−−−→
N→∞

0

The interchange of summations in lines 3-4 is used to express W
norms involving residuals from different regressions, summed over N
observations, as N norms involving residuals of observations within a
regression, summed over W regressions. The latter is more convenient
because it allows application of existing theory for a single multiple
regression model. □
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Lemma 3.5.3. For the second term on the RHS of Equation (3.6):

dW2 (FN, F)
P−−−−→

N→∞
0

Proof. Letting PN denote an empirical probability, FN can be
expressed as:

PN (εn1 ≤ c1, · · · , εnW ≤ cW) =
1
N

N∑
n=1

1
{
εn1 ≤ c1, · · · , εnW ≤ cW

}
A.S.−−−−→
N→∞

P (εn1 ≤ c1, · · · , εnW ≤ cW)

with the last line following from the SLLN. Thus, FN
A.S.−−−−→
N→∞

F. Also by

the SLLN,
∫
||x||p FN(dx)

A.S.−−−−→
N→∞

∫
||x||p F(dx) because the LHS is a sample

average whereas the RHS is its true expectation. These two results
immediately imply condition (a) of [8]’s Lemma 8.3, which yields
dW2 (FN, F)2

P−−−−→
N→∞

0 and hence the desired result. □

Theorem 3.5.2. The residual bootstrap is weakly consistent under the
Mallows-Wasserstein metric for the OLS coefficient estimates
(Definition 29.2 of [27]); that is:

dW2
(
Ψ(F),Ψ(̂FN)

) P−−−−→
N→∞

0

Proof. Combining Theorem 3.5.1 with the triangle inequality in
Equation (3.6) and observing that tr{BB′} = ∑N

n=1 B2
N ≥ 0 yields:

dW2
(
Ψ(F),Ψ(̂FN)

)
≤

√
N · tr{BB′} ·

(
dW2

(̂
FN, FN

)
+ dW2 (FN, F)

)
The term

√
N · tr{BB′} P−−−−→

N→∞
k by Assumption 3.5.4 because BB′ is

scalar. By Markov’s inequality, the convergence in mean of Lemma
3.5.2 implies that dW2

(̂
FN, FN

) P−−−−→
N→∞

0. Last, by Lemma 3.5.3,
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dW2 (FN, F)
P−−−−→

N→∞
0, so the desired result holds. □

The next theorem uses the above result regarding convergence of
the resampling-based coefficient estimates to establish convergence of
the test statistics.

Theorem 3.5.3. Algorithm 3.5.1 fulfills Assumption 3.5.3; namely:

T(j) D−−−−→
N→∞

T0

Proof. By [8]’s Lemma 8.3, Theorem 3.5.2 implies that

√
N

(̂
β
W(j)
− β̂

W
)

D−−−−→
N→∞

√
N

(̂
β
W
− βW

)
By [39]’s Theorem 2.2, each σ̂(j)w

P−−−−→
N→∞

σw. The desired result then
follows from the multivariate Slutsky’s Theorem. □

3.5.3 Valid inference on the number of rejections

We now present the main theorem establishing that resampling
algorithms fulfilling Assumption 3.5.3, such as Algorithm 3.5.1 for
OLS, also yield valid inference on the number of rejections.

Theorem 3.5.4. Under Assumption 3.5.3, θ̂
(j) D−−−−→

N→∞
θ̂
0
.

Proof. Define the r-family of “rejection sets” as all possible
configurations of the W test statistics that lead to r rejections:

Ar =
{
(A1, · · · ,AW) ∈ RW : (T1 ∈ A1, · · · ,TW ∈ AW) ⇒ θ̂ = r

}
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Consider the limiting distribution of θ̂
(j)

:

lim
N→∞

P
(̂
θ
(j)
= r

)
= lim

N→∞
P

 W∑
w=1

1
{
T(j)
w > cw,α

}
= r


= lim

N→∞

∑
(A1,··· ,AW)∈A

P
(
T(j)
1 ∈ A1, · · · ,T(j)

W ∈ AW

)
=

∑
(A1,··· ,AW)∈A

P
(
T0
1 ∈ A1, · · · ,T0

W ∈ AW
)

= P
(̂
θ
0
= r

)
where the second equality follows from Assumption 3.5.3. □

To summarize, Theorem 3.5.4 implies that valid inference, including
the null interval and global test, can be conducted using the
distribution of the number of rejections in resamples generated using
an algorithm fulfilling Assumption 3.5.3.

3.6 Practical use and interpretation

In practice, to estimate the proposed metrics, one would first use a
resampling algorithm fulfilling Assumption 3.5.3 to generate a large
number of resamples under the global null (e.g., B = 1, 000). Then, the
lower and upper bounds of a 95% null interval can be defined as the
2.5th and 97.5th percentiles of

(̂
θ
(1)
, · · · , θ̂

(j)
)
, and the p-value for the

global test is the empirical tail probability

PN
(̂
θ
(j)
≥ θ̂

)
=

B∑
j∗=1

1
{̂
θ
(j∗)
≥ θ̂

}
We provide an R package, NRejections, to automate the resampling

and estimation process for OLS models (see Appendix Section C.4).
The null interval can be interpreted as the plausible range of θ̂ in

samples generated under the global null. The excess hits, computed as
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the difference between θ̂ and the upper limit of the null interval, can
be interpreted as the number of rejections exceeding what would be
expected in 95% of samples under the global null. Note, of course,
that the excess hits is not equivalent to the number of “true” effects, a
point we will reiterate in the Discussion. The p-value for the global
test can be interpreted as the probability of observing at least θ̂
rejections in samples generated under the global null. We further
illustrate these interpretations in the following applied example.

3.7 Applied example

Existing epidemiologic analyses have investigated the extent to which
an individual’s experience of parental warmth during childhood is
associated with the individual’s later “flourishing” in mid-life [15].
Flourishing has been broadly conceived as a state of positive mental
health comprising high emotional, psychological, and social well-being
[54], and reductive analyses that individually assess its theorized
components, such as perceived purpose in life and positive affect, may
not fully capture potential impacts of the overall experience of
flourishing [56, 113].

3.7.1 Methods

Closely reproducing [15]’s methods, we conducted longitudinal
analyses of a subset of N = 2, 697 subjects from the “Mid-life in the
United States” (MIDUS) cohort study [13] of 7, 108 adults, recruited
to include siblings and twin pairs, and for simplicity in these analyses,
we randomly selected only one sibling from within each sibship. In an
initial wave of data collection (1995-1996), subjects recalled the
parental warmth that they experienced during childhood as an average
of separate scales of maternal and paternal warmth. In a second wave
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(2004-2006), the same subjects reported 13 continuous subscales of
flourishing in emotional, psychological, and social domains [54].

We first reproduced [15]’s main analysis by assessing the association
between a one-unit increase in standardized parental warmth (i.e., an
increase of one standard deviation on the raw scale) with a
standardized, continuous composite measure of flourishing (“overall
flourishing”), which aggregated the 13 subscales per [54, 55]. We
conducted similar analyses for the remaining 16 continuous outcome
variables in [15]’s analyses, namely the 3 standardized composite
scores for each domain (emotional, psychological, and social) treated
separately and the 13 individual subscales. All of our analyses
controlled for age, sex, race, nativity status, parents’ nativity status,
number of siblings, and other childhood family factors. We expected
correlation among the resulting 17 test statistics both because of
conceptual similarities between the subscale variables (e.g., social
acceptance and social integration) and because of the composite and
domain measures’ direct arithmetic relationships with the subscales.
Last, to characterize overall evidence strength across the 17 outcomes,
we resampled per Algorithm 3.5.1 with B = 5, 000 to estimate the
proposed null interval and excess hits (with each test conducted at
either α = 0.05 or α = 0.01) and to conduct the global test using the
number of rejections in individual tests conducted at α = 0.05. All
data and code required to reproduce these analyses is publicly
available and documented (https://osf.io/qj9wa/).

3.7.2 Results

Appendix Table C.2.1 displays demographics and childhood family
characteristics in our sample, comprising all covariates adjusted in
analysis. The 17 outcome measures had a median correlation
magnitude of |r| = 0.39 (minimum = 0.12; maximum = 0.89; 25th
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percentile = 0.28; 75th percentile = 0.55). The composite analysis
estimated that, controlling for demographics and childhood family
factors, individuals reporting an additional standard deviation (SD) of
parental warmth in childhood experienced greater mid-life flourishing
by, on average, b = 0.22 (95% CI: [0.18, 0.26]) SDs.

Of the 17 outcomes considered individually, all were “significantly”
associated with parental warmth at α = 0.05 (i.e., θ̂ = 17), and 15 were
“significantly” associated at α = 0.01 with a mean standardized effect
size of b = 0.14. The directions of all effects suggested that increased
parental warmth was associated with improved flourishing outcomes
(Table 3.7.1). In contrast, if parental warmth were in fact
unassociated with any of the outcomes, we would expect
17 × 0.05 = 0.85 rejections with a null interval of [0, 5] at α = 0.05
(Figure 3.7.1). At α = 0.01, we would expect 0.17 rejections with null
interval [0, 2] at α = 0.01. Thus, at α = 0.05 and α = 0.01 respectively,
we observed 17 − 5 = 12 and 15 − 2 = 13 excess hits above what would be
expected in 95% of samples under the global null. Indeed, a global
test based on the number of rejections at α = 0.05 suggested very
strong evidence against the global null (p = 0 because every resampled
dataset had < 17 rejections; Figure 3.7.1). (By comparison, simple
inference based on the exact binomial distribution, assuming
anticonservatively that the outcomes are independent, yields a
too-narrow null interval at α = 0.05 of [0, 3] and a global p-value of
0.0517 = 7 × 10−23.) Overall, our composite analyses strongly support
small effects of parental warmth on composite flourishing, as reported
by [15] (Table 3.7.1, first row); our novel analyses of θ̂ additionally
provide compelling global evidence for associations of parental
warmth with flourishing across the 17 outcomes, accounting for their
correlation structure.
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Table 3.7.1: OLS estimate (̂β) characterizing association of a 1-SD in-
crease in parental warmth with each of 17 standardized flourishing out-
comes, adjusting for all covariates in Appendix Table C.2.1. Inference is
not multiplicity-corrected.

Outcome β̂ [95% CI] p-value
Overall and domain composites

Overall flourishing 0.22 [0.18, 0.26] < 2 × 10−16

Emotional well-being 0.21 [0.17, 0.25] < 2 × 10−16

Social well-being 0.13 [0.08, 0.17] 2 × 10−9

Psychological well-being 0.20 [0.16, 0.24] < 2 × 10−16

Emotional well-being subscales
Positive affect 0.19 [0.15, 0.23] < 2 × 10−16

Life satisfaction 0.19 [0.15, 0.23] < 2 × 10−16

Social well-being subscales
Meaningfulness of society 0.04 [0, 0.08] 0.048
Social integration 0.15 [0.11, 0.19] 5 × 10−13

Social acceptance 0.09 [0.05, 0.13] 3 × 10−5

Social contribution 0.09 [0.05, 0.13] 1 × 10−5

Social actualization 0.06 [0.02, 0.11] 0.002
Psychological well-being subscales

Autonomy 0.08 [0.04, 0.12] 3 × 10−4

Environmental mastery 0.14 [0.09, 0.18] 6 × 10−11

Personal growth 0.11 [0.07, 0.15] 4 × 10−7

Positive relations 0.25 [0.21, 0.29] < 2 × 10−16

Purpose in life 0.05 [0.01, 0.09] 0.018
Self-acceptance 0.22 [0.18, 0.26] < 2 × 10−16
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Figure 3.7.1: Number of rejections (̂θ(j)) for each of 5, 000 resamples. Solid
lines: E[̂θ

0
] = α × 17. Dashed lines: upper limit of 95% null interval.
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3.8 Simulation study

We conducted a simulation study with two objectives. First, we aimed
to visualize the null interval versus θ̂ for varying effect sizes in an
outcome-wide study and to characterize how its precision depends on
the strength of correlation between the hypothesis tests and on the α
level used for each test. Second, we aimed to assess the relative power
of global tests conducted using the number of rejections with α = 0.05
or α = 0.01 for each individual test or derived from the five existing
FWER-control methods listed in Table 3.3.1. All code required to
reproduce the simulation study is publicly available
(https://osf.io/qj9wa/).

3.8.1 Methods

We generated multivariate standard normal data, comprising 1
covariate (X) and 40 outcomes (Y1, · · · , Y40) for a fixed N = 1, 000
subjects. The correlation between each pair of outcomes was ρYY. The
correlation between X and a proportion, q, of outcomes was ρXY (with
remaining pairs having correlation 0). We manipulated scenario
parameters in a full-factorial design (Table 3.8.1). Each of 500
simulations per scenario proceeded as follows:

1. We generated an observed dataset according to the scenario.

2. We regressed each outcome Yw on X and conducted a t-test at
level α on the coefficient for X. We computed θ̂.

3. For each resampling iterate j (with B = 1, 000), we resampled
based on the algorithm in Algorithm 3.5.1. We conducted a
t-test at level α on the coefficient for X and computed θ̂

(j)
.

4. We used the quantiles of
(̂
θ
(1)
, · · · , θ̂

(B)
)

to construct the null

83

https://osf.io/qj9wa/


Table 3.8.1: Possible values of simulation parameters.

ρXY ρYY q α

0.03 0 0 0.01
0.05 0.10 0.20 0.05
0.10 0.30 0.50
0.15 0.60 1

interval, compute the excess hits, and conduct our proposed
joint test.

5. We used the t-statistics or p-values from the resamples to
conduct joint tests based on the existing methods.

(We resampled per Algorithm 3.5.1 for all resampling-based
methods. However, Section 4.2.2 of [121] suggests a different
residual-resampling algorithm for OLS in which the resampled
residuals alone are used as the resampled outcomes, such that
Y(j)nw := Ŷn′w − Yn′w, where n′ is a resampled observation. Thus, the global
null is already enforced in the resampled data, and the test statistics
do not require centering. Because the truth or falsehood of each null
hypothesis changes the sampling distribution of the OLS coefficient
estimates only by a location shift and the subset pivotality assumption
described in Section 3.3 holds for OLS [121, Section 4.2.2], the
difference between this algorithm and the one we used is immaterial,
as confirmed by additional simulations that are not shown.)

3.8.2 Results

Figure 3.8.1 displays θ̂ in samples generated under the global null (row
4, panel 1) or under varying alternatives, as well as mean limits of 95%
null intervals. (For simplicity, Figure 3.8.1 does not show all scenarios,
but rather excludes some smaller effect sizes. For comprehensive
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results, see Appendix Section C.3.1.) As expected for a resampling
algorithm fulfilling Assumption 3.5.3, the null intervals appeared
identical regardless of whether the data were generated under the
global null. As the pairwise correlation strength between outcomes
increased, the null intervals became substantially less precise. For
example, with tests conducted at α = 0.05, the mean upper limit of the
null interval was more than twice as high for ρYY = 0.60 versus ρYY = 0
(i.e., 14.8 versus 5.0 rejections; see the leftmost and rightmost null
intervals within each panel). Thus, with a true effect size of ρXY = 0.05
for all pairs (Figure 3.8.1, row 1, panel 3), the mean number of
observed rejections at α = 0.05 (i.e., 14.0) would be within the 95%
null interval if the outcomes had correlation strength of ρYY = 0.60
(excess hits = 14.0 − 14.8 = −0.8), but would be well outside the null
interval, and thus provide stronger evidence for global association, if
the outcomes were independent (excess hits = 14.0 − 5.0 = 9.0).

Figure 3.8.2 shows the power of each global test. (Again, we show a
subset of scenarios, excluding those in which all methods had nearly
100% power and excluding some intermediate correlation strengths.
These scenarios differ from those in Figure 3.8.1. Comprehensive
results appear in Appendix Section C.3.1.) As expected, when data
were generated under the global null, all methods had approximately
nominal or conservative false positive rates (Figure 3.8.2, row 3, panel
1). Our proposed global test achieved its best performance with
weakly correlated or independent statistics (Figure 3.8.2, left sides of
each panel) and when a moderate to high proportion of alternative
hypotheses were true (q > 0.20). In contrast, its power suffered when
few alternative hypotheses were true (e.g., q = 0.20; Figure 3.8.2, rows
1-2, panels 1), likely because in these scenarios, θ̂ would often have
been near its expectation under the global null. Simultaneously, the
small number of p-values corresponding to the true alternative
hypotheses may often have been quite small, improving the power of
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tests derived from FWER methods. Interestingly, in all scenarios we
considered, [85]’s method uniformly outperformed methods other than
the one we propose; it also outperformed ours with highly correlated
test statistics, but not always with weakly correlated or independent
statistics.

Beyond [85]’s method, the other existing methods, even the
conservative naïve methods, performed comparably (within
approximately 10 percentage points of power of one another for nearly
all scenarios). Based on simple additional simulations (Appendix
Figure C.3.2), we speculate that this somewhat counterintuitive
finding arises because the methods appear to differ primarily in their
degree of adjustment for those p-values that are >> 0.05, with the
resampling-based methods typically yielding substantially smaller, but
still “nonsignificant”, adjusted values for these large p-values. In
contrast, p-values near the 0.05 threshold – those that could
potentially affect results of the global test – appear to receive only
small and comparable adjustments across all methods. Thus, we
speculate that it is rather unlikely that a sample would have all
adjusted p-values above 0.05 under a naïve approach, but would have
at least one p-value adjusted to below 0.05 under a resampling
approach.

3.9 Discussion

This paper has characterized global evidence strength across
arbitrarily correlated hypothesis tests without being restricted to the
setting of high-dimensional analyses. Specifically, we proposed metrics
that compare the observed number of test rejections, θ̂, to its
expected sampling distribution under the global null. θ̂ is a simple
summary measure that seems of natural interest; the proposed
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Figure 3.8.1: 95% null intervals versus mean rejections in observed
datasets (×). Panels: Null and alternative data-generating mechanisms
of original samples. Points and error bars: Mean θ̂

(j) and mean limits of
null intervals with tests at α = 0.01 (yellow) or at α = 0.05 (red).
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Figure 3.8.2: Power of global tests based on existing FWER-control
procedures and on the number of rejections. B=Bonferroni, H=Holm,
MP=minP, WS=Wstep, R=Romano, G1=number of rejections at α = 0.01,
G5=number of rejections at α = 0.05.
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metrics help to rigorously ground intuition regarding its behavior
when tests are correlated. First, we proposed reporting a null interval
for the number of α-level rejections expected in 95% of samples
generated under the global null along with the number of excess hits
observed above the upper interval limit. Second, we proposed
reporting a one-sided test of the global null whose p-value represents
the probability of observing at least θ̂ rejections in samples generated
under the global null. For OLS models, these metrics can be easily
estimated via resampling using our R package, NRejections.

Existing methods that control FWER for arbitrarily correlated
tests can also be used to conduct such a global test, so we conducted
a simulation study assessing their relative power. To our knowledge,
this is the first direct comparison of these methods as global tests,
rather than as FWER-control procedures. All methods showed
nominal or conservative false positive rates, as expected theoretically.
Our method performed well when tests were independent or weakly
correlated and when a moderate to high proportion of alternative
hypotheses were true; therefore, it may be most suitable for studies in
which the uncorrected p-values are relatively similar to one another,
rather than for studies in which a small number of uncorrected
p-values are much smaller than the others. The global test based on
[85]’s method performed very well overall and, in the OLS scenarios
we considered, appeared to uniformly outperform existing methods
other than sometimes our own, concerning which [85]’s method was
often more powerful, though ours sometimes performed better with
weakly correlated or independent tests.

We speculate that the often superior power of [85]’s method as a
global test, despite its additional need to strongly control FWER,
reflects the loss of information inherent in dichotomizing p-values at α
to compute the number of rejections. A more powerful global test
might be based, for example, on departures of the observed joint
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ECDF of the p-values, treated as continuous, from their CDF under
the global null, as estimated via resampling methods such as those
outlined in this paper and in [121]. However, even in contexts in
which a global test derived from [85]’s method provides better power,
the null interval and excess hits may still be of interest. More broadly,
we view θ̂ and the proposed metrics as useful summaries of global
evidence strength that do lose some information in the process of
summarization. As such, they supplement, rather than replace,
reporting individual, continuous p-values with and without standard
multiplicity corrections.

Our consideration of existing methods has focused on repurposing
those that adjust individual p-values or critical values. Other existing
methods, like our proposed metrics, do directly characterize overall
evidence strength and merit some discussion. For example, global
inference on regression coefficients for different outcomes can be
conducted using multivariate regression [52] or [123]’s “seemingly
unrelated regressions” generalization. However, these approaches only
modestly improve efficiency compared to that achieved in W separate
OLS models, and when the design matrix is shared across models,
coefficient estimates are identical to those in OLS models [75].
Another approach to global inference is to meta-analyze the effect
sizes from each analysis [26, 41, 91]. Compared to direct analysis of
the raw data, meta-analysis is likely to be inefficient. Last, one could
conduct global inference on a reduced number of outcomes by
constructing composite measures (as in the applied example) or
applying statistical dimension reduction, such as principal
components analysis, though some information is lost.

When interpreting our proposed metrics, it is important to note
that they characterize the sampling distribution under, specifically,
the global null. Thus, rejecting the global test at α = 0.05 indicates
that there is no more than a 5% probability of observing at least θ̂
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rejections in samples generated under the global null. The excess hits
must therefore not be misinterpreted as the number of true
associations (that is, the number of null hypotheses that are false). In
practice, statements to this effect can be made using procedures that
strongly control FWER. By construction, these procedures ensure
that for a familywise α = 0.05, in 95% of samples generated under any
configuration of null and alternative hypotheses, each rejected test will
represent a true positive. Therefore, the number of rejections based on
inference adjusted to strongly control FWER can be interpreted as the
number of true associations, such that this statement will be incorrect
in ≤ 5% of samples regardless of their underlying distribution.

An additional contribution of this paper is the theoretical
justification of residual resampling for OLS models in the context of
multiple testing, informed by [39]’s work for a single regression model
and [121]’s related algorithms. Indeed, a central challenge for
resampling-based methods for multiple testing in general is the design
of valid resampling procedures. The present theory supports using
residual resampling under the global null for OLS in the context of
our methods, of FWER control [83, 85, 121], of FDP control [122],
and of corrections for “data snooping” [84]. We focused on OLS-based
hypothesis tests because of their generality and ability to subsume
many common tests. However, for certain other tests, such as those
based on GLMs with non-identity link functions, validly resampling
under the global null appears to be an open problem, although
algorithms have been developed outside the multiple testing context
for confidence intervals (e.g., [71]) and, under additional assumptions,
for permutation hypothesis tests [81]. Other estimators, such as those
using propensity score matching, pose challenges for resampling
because the estimators lack certain smoothness properties; these
challenges arise even without the need to enforce the global null [1].
Algorithms fulfilling Assumption 3.5.3 for such estimators could
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potentially use subsampling to relax some of the smoothness
assumptions of with-replacement resampling [80].

Correlated test statistics can naturally arise not only when testing
multiple associations between exposures and outcomes, but also when
multiple hypothesis tests are used to investigate the same question, as
in “data snooping” [84]. For example, investigators often fit several
regression models to investigate the same association of interest,
adjusting for different sets of covariates or using different subsets of
the data. Situating these “researcher degrees of freedom” [95] within a
formal multiple testing context [84], rather than merely reporting a
single result chosen post hoc, could help reduce unnecessary false
positives in the literature and may additionally foster a more balanced
overall view of the evidence. Our proposed metrics provide one
approach to summarizing evidence in such settings; for example, the
p-value from the global test could help characterize evidence
supporting a true effect in at least one of the multiple model
specifications.

In summary, the number of rejections across correlated hypothesis
tests can be a useful summary measure of overall evidence strength
when reported with metrics such as a null interval, the number of
excess hits, and a test of the global null. Reporting these metrics
alongside p-values with and without standard multiplicity corrections
may provide a richer view of global evidence strength than corrected
inference alone.

3.10 Reproducibility

All code required to reproduce the applied example and simulation
study is publicly available (https://osf.io/qj9wa/).
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A
Sensitivity Analysis for Unmeasured

Confounding in Meta-Analyses



A.1 Derivation of main results

A.1.1 p̂(q)f

Causative case

Under the model described in the main text, we have [29]:

Mt + B∗ = Mc

μt = E
[
Mc − B∗] = μc − μB∗

Var (Mt + B∗
)
= Var (Mc)

Vt + σ2B∗ = Vc (independence)
Vt = Vc − σ2B∗

Then, Mt = Mc − B∗ is the difference of correlated normal random
variables, so is itself normal. By Slutsky’s Theorem, replace
parameters with consistent estimators:

P
(
Mt > q

) ≈ 1 − Φ
q + μB∗ − ŷcR√

τ2c − σ2B∗

 , τ2c > σ2B∗

Preventive case

The apparently preventive case is nearly identical.

A.1.2 Standard error for p̂(q)

We first establish a general result (Theorem A.1.1) regarding the
independence of ŷR and τ2 for many choices of estimators τ2. Lemmas
A.1.1 and A.1.2 help establish the theorem, and we provide proofs of
these lemmas for completeness.

Lemma A.1.1. Let ŷR be the Dersimonian-Laird estimator of the
pooled effect, where within-study variances σ2i are considered fixed
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and known:

ŷR =
∑

i wiyi∑
i wi
=

∑
i

1
V+σ2i

yi∑
i

1
V+σ2i

Then ŷR is a complete and sufficient statistic for μ.

Proof. Fix V and consider the marginal individual and joint
distributions of the yi under the random-effects model:

fYi
(
yi
)
= N

(
yi | μ,V + σ2i

) (independence)

fY (y) =
(

1
√
2π

)k k∏
i=1

1√
V + σ2i

exp
{
− 1
2

(
yi − μ

)2
V + σ2i

}

=

(
1
√
2π

)k k∏
i=1

1√
V + σ2i

exp
{
− 1
2

(
y2i

V + σ2i
− 2 yiμ

V + σ2i
+

μ2

V + σ2i

) }

=

(
1
√
2π

)k 1∏
i
√
V + σ2i

exp
{
− 1
2

 k∑
i=1

y2i
V + σ2i

− 2
k∑
i=1

yiμ
V + σ2i

+

k∑
i=1

μ2

V + σ2i

 }

=

(
1
√
2π

)k 1∏
i
√
V + σ2i

exp
{
− 1
2

k∑
i=1

y2i
V + σ2i

}
︸                                                   ︷︷                                                   ︸

h(y)

· exp
{ k∑

i=1

μ2

V + σ2i

}
︸                ︷︷                ︸

c(μ)

· exp
{
−2μ︸︷︷︸
w(μ)

k∑
i=1

yi
V + σ2i︸      ︷︷      ︸
t(y)

}

This is a 1-parameter exponential family with support y ∈ Rk, and
canonical parameter w(μ) = −2μ, μ ∈ R forms an open set on the real
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line. Thus, a complete and sufficient statistic for μ is:

t(y) =
k∑
i=1

yi
V + σ2i

= ŷR
k∑
i=1

1
V + σ2i

Since ŷR is a function only of t(y) and fixed quantities, it too is
complete and sufficient. Since the proof holds for a fixed, arbitrary V,
it must hold for all V. □

Lemma A.1.2. Let {ai : i = 1, · · · , k} be an arbitrary set of positive
weights that are independent of μ, and let μ̂a =

(∑
i aiyi

)
/
∑

i ai be a
general weighted estimator of μ. Then, asymptotically,

(
yi − μ̂a

)2
is

ancillary for μ.

Proof. Since yi ∼ N
(
μ,V + σ2i

):(
yi − μ

)2
V + σ2i

∼ χ21(
yi − μ

)2 ∼ Gamma
(
1
2
,

2
V + σ2i

)
(
yi − μ̂a

)2
≈ Gamma

(
1
2
,

2
V + σ2i

)
where the last line follows asymptotically because μ̂a is consistent for
μ. Thus, the asymptotic distribution of

(
yi − μ̂a

)2
is independent of μ,

as required. □

Fact A.1.1. Let ai = wi,FE = 1/σ2i be the standard weights for a
fixed-effects model (i.e., assuming no heterogeneity), such that
μ̂a = μ̂FE is the fixed-effects pooled estimate. Define τ2DL per
DerSimonian and Laird [28]:

τ2DL = max

0 , Q − (k − 1)∑
i wi,FE −

∑
i w2

i,FE∑
i wi,FE


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where Q =
∑

i wi,FE

(
yi − μ̂FE

)2
. Then τ2DL is asymptotically independent

of ŷR.

Proof. τ2DL is a function only of Q (which is asymptotically ancillary
for μ by Lemma A.1.2) and quantities that do not depend on μ.
Therefore, τ2DL is also ancillary for μ. On the other hand, ŷR is
complete and sufficient for μ. The result then follows directly from
Basu’s Theorem. □

Many other common τ2 estimators (including, not exhaustively, the
maximum likelihood and restricted maximum likelihood estimators
and those proposed by Paule and Mandel [78], Sidik and Jonkman
[93], Hartung and Makambi [44], and Hedges and Olkin [46]) retain
this property with similar proofs.

Causative case

We now derive an asymptotic confidence interval for p̂(q) for an
apparently causative relative risk via the delta method. We assume
use of the standard Dersimonian-Laird estimator, ŷcR, and an arbitrary
estimator τ2c such that, asymptotically:

̂ycR −Mc

τ2c − Vc

 ≈ N


00

 ,  Var
(̂
ycR

)
Cov

(̂
ycR, τ

2
c

)
Cov

(̂
ycR, τ

2
c

)
Var (

τ2c
) ︸                             ︷︷                             ︸

Σ/k


(Asymptotic normality is theoretically justified for the maximum
likelihood and restricted maximum likelihood estimators τ2c and, in
simulations, also appears to hold for those proposed by DerSimonian
and Laird [28], Paule and Mandel [78], Sidik and Jonkman [93], and
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Hedges and Olkin [46].) Apply the delta method:

h (x1, x2) = p̂(q) = 1 − Φ
q + μB∗ − x1√

x2 − σ2B∗


▽ =

 ∂h∂x1∂h
∂x2

 =


1√
x2−σ2B∗

· φ
(
q+μB∗−x1√

x2−σ2B∗

)
1
2

(
x2 − σ2B∗

)−3/2
·
(
q + μB∗ − x1

)
· φ

(
q+μB∗−x1√

x2−σ2B∗

)


=


1√

x2−σ2B∗
· φ

(
q+μB∗−x1√

x2−σ2B∗

)
q+μB∗−x1

2(x2−σ2B∗)
3/2 · φ

(
q+μB∗−x1√

x2−σ2B∗

)


√
k
[
h
(̂
ycR, τ

2) − h (Mc,V)
]→ N

(
0,▽′Σ▽|Mc,V

)
▽′Σ▽ = ▽1 (▽1Σ11 + ▽2Σ21) + ▽2 (▽1Σ12 + ▽2Σ22)

=
∂h
∂x1

(
∂h
∂x1

Var (̂ycR) + ∂h∂x2Cov (̂
ycR, τ

2
c
))

+
∂h
∂x2

(
∂h
∂x1

Cov (̂
ycR, τ

2
c
)
+
∂h
∂x2

Var (
τ2c
))

Denote consistent estimators with hats and apply Slutsky’s
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Theorem:

V̂ar (̂p(q)) = ▽′Σ▽|Mc,Vc

≈
V̂ar

(̂
ycR

)
τ2c − σ2B∗

·
[
φ

q + μB∗ − ŷcR√
τ2c − σ2B∗

 ]2+ 1√
τ2c − σ2B∗

 q + μB∗ − ŷcR
2
(
τ2c − σ2B∗

)3/2 · Ĉov (̂
ycR, τ

2
c
) · [φ q + μB∗ − ŷcR√

τ2 − σ2B∗

 ]2+
V̂ar (τ2c) (q + μB∗ − ŷcR

)2
4
(
τ2c − σ2B∗

)3 ·
[
φ

q + μB∗ − ŷcR√
τ2c − σ2B∗

 ]2

=

[V̂ar
(̂
ycR

)
τ2c − σ2B∗

+

(
q + μB∗ − ŷcR

)
Ĉov

(̂
ycR, τ

2
c

)
(
τ2c − σ2B∗

)2 +
V̂ar (τ2c) (q + μB∗ − ŷcR

)2
4
(
τ2c − σ2B∗

)3 ]

·
[
φ

q + μB∗ − ŷcR√
τ2c − σ2B∗

 ]2

ŜE (̂
p(q)

) ≈
√√√√V̂ar

(̂
ycR

)
τ2c − σ2B∗

+

(
q + μB∗ − ŷcR

)
Ĉov

(̂
ycR, τ2c

)
(
τ2c − σ2B∗

)2 +
V̂ar (

τ2c
) (
q + μB∗ − ŷcR

)2
4
(
τ2c − σ2B∗

)3
· φ

q + μB∗ − ŷcR√
τ2c − σ2B∗


For choices of estimators τ2c that are asymptotically independent of

ŷcR, this reduces to:

ŜE (̂
p(q)

) ≈
√√√√ V̂ar

(̂
ycR

)
τ2c − σ2B∗

+
V̂ar

(
τ2c
) (
q + μB∗ − ŷcR

)2
4
(
τ2c − σ2B∗

)3 · φ
q + μB∗ − ŷcR√

τ2c − σ2B∗


Preventive case
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For an apparently preventive relative risk, there is simply a sign
change in the numerators:

ŜE (̂
p(q)

) ≈
√√√√V̂ar

(̂
ycR

)
τ2c − σ2B∗

+
V̂ar (τ2c) (q − μB∗ − ŷcR

)2
4
(
τ2c − σ2B∗

)3 · φ
q − μB∗ − ŷcR√

τ2c − σ2B∗


A.1.3 T̂(r, q)

Causative case

Simply solve p̂(q) for μB∗ , setting the latter equal to log T̂(r, q) and
setting σ2B∗ = 0:

r = 1 − Φ
q + log T̂(r, q) − ŷcR√

τ2c


Φ−1(1 − r) =

q + log T̂(r, q) − ŷcR√
τ2c

T̂(r, q) = exp
{
Φ−1(1 − r)

√
τ2c − q + ŷcR

}
Preventive case

r = Φ

q − log T̂(r, q) − ŷcR√
τ2c


Φ−1(r) =

q − log T̂(r, q) − ŷcR√
τ2c

T̂(r, q) = exp
{
q − ŷcR − Φ−1(r)

√
τ2c
}
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A.1.4 Standard error for T̂(r, q)

Causative case

Apply the delta method:

h (x1, x2) = T̂(r, q) = exp
{
x1/22

(
Φ−1(1 − r)) − q + x1}

▽ =

 ∂h∂x1∂h
∂x2

 =  exp
{
x1/22

(
Φ−1(1 − r)) − q + x1}

exp
{
x1/22

(
Φ−1(1 − r)) − q + x1} · Φ−1(1 − r) · 12x−1/22


V̂ar

(
T̂(r, q)

)
= ▽′Σ▽|Mc,Vc

≈
(
exp

{√(
τ2c
) (
Φ−1(1 − r)) − q + ŷcR})2V̂ar (̂

ycR
)
+

(
2Ĉov

(̂
ycR, τ

2
c

)
+ V̂ar (τ2c)) (Φ−1(1 − r))2

4τ2c


ŜE

(
T̂(r, q)

)
= exp

{√
τ2c

(
Φ−1(1 − r)) − q + ŷcR}√√

V̂ar
(̂
ycR

)
+

(
2Ĉov

(̂
ycR, τ2c

)
+ V̂ar (

τ2c
)) (

Φ−1(1 − r))2
4τ2c

For estimators such that ŷcR is asymptotically independent of τ2c :

ŜE
(
T̂(r, q)

)
= exp

{√
τ2c

(
Φ−1(1 − r)) − q + ŷcR}

√
V̂ar

(̂
ycR

)
+

V̂ar (
τ2c
) (
Φ−1(1 − r))2
4τ2c

(A.1)

Preventive case

For the apparently preventive case under asymptotic independence,
there is a sign change, and the cumulative distribution function is
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evaluated at r instead of 1 − r:

ŜE
(
T̂(r, q)

)
= exp

{
q − ŷcR −

√
τ2c

(
Φ−1(r)

) }√
V̂ar

(̂
ycR

)
+

V̂ar (τ2c) (Φ−1(r))2
4τ2c

(A.2)

A.1.5 Ĝ(r, q)

Set B∗ = logB+ and Ĝ(r, q) = RRXU = RRUY:

B∗ = log
 Ĝ(r, q)2

2Ĝ(r, q) − 1


0 = Ĝ(r, q)2 − 2 exp (B∗) Ĝ(r, q) + exp (B∗)

Apply the quadratic formula:

Ĝ(r, q) = exp (B∗) +
√(

exp (B∗)
)2 − exp (B∗)

A.1.6 Standard error for Ĝ(r, q)

Apply the delta method to transform T̂(r, q) into Ĝ(r, q):

h(x) = x +
√
x2 − x

dh
dx
= 1 +

2x − 1
2
√
x2 − x

V̂ar
(
Ĝ(r, q)

)
=

(
dh
dx

)2
Var(x)

∣∣∣∣∣
T̂(r,q)

=

1 + 2T̂(r, q) − 1

2
√
T̂(r, q)2 − T̂(r, q)


2

Var
(
T̂(r, q)

)
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Causative case

Plug in variance estimator (A.1):

ŜE
(
Ĝ(r, q)

)
=

1 + 2T̂(r, q) − 1

2
√
T̂(r, q)2 − T̂(r, q)

 · exp { √
τ2c

(
Φ−1(1 − r)) − q + ŷcR}

·

√
V̂ar

(̂
ycR

)
+

V̂ar (
τ2c
) (
Φ−1(1 − r))2
4τ2c

Preventive case

Plug in variance estimator (A.2):

ŜE
(
Ĝ(r, q)

)
=

1 + 2T̂(r, q) − 1

2
√
T̂(r, q)2 − T̂(r, q)

 · exp { √
τ2c

(
Φ−1(r)

) − q − ŷcR}

·

√
V̂ar

(̂
ycR

)
+

V̂ar (τ2c) (Φ−1(r))2
4τ2c

A.2 Fidelity of homogeneous-bias approximation

Table 1 in the main text provides upper or lower bounds on p̂(q)
that arise from assuming homogeneous bias (i.e., σ2B∗ = 0). Here, we
consider how closely these bounds approximate p̂(q). Define
δ = q+μB∗ −̂ycR

τc
for the apparently causative case and δ = q−μB∗ −̂ycR

τc
for the

apparently preventive case. This quantity represents the difference
between the threshold q and the bias-corrected mean estimate ŷtR (i.e.,
ŷcR − μB∗ for the causative case and ŷcR + μB∗ for the preventive case),
standardized by τc, the standard deviation of the confounded effect
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distribution. Let w = τ2c/σ2B∗ > 1, so that 1/w represents the proportion
of variance in the confounded effects that is due to variability across
studies in unmeasured confounding bias rather than to genuine effect
heterogeneity. Let p̃(q) be the estimator p̂(q) computed with σ2B∗ = 0.
Then, for the apparently causative case, the ratio relating the
homogeneous-bias approximation to the unbiased estimate is:

p̃(q)
p̂(q)
=

1 − Φ (δ)

1 − Φ
(
δ 1√

1− 1
w

)
=

Φ (−δ)

Φ
(
−δ 1√

1− 1
w

)
The absolute difference is:

|̃p(q) − p̂(q)| =
∣∣∣∣∣∣∣Φ (−δ) − Φ

−δ 1√
1 − 1

w


∣∣∣∣∣∣∣

The apparently preventive case is symmetrical because, whereas
δ > 0 for an upper bound in the causative case, δ < 0 for an upper
bound in the preventive case (see Table 1 in the main text), and in
the above expression, −δ is also replaced with δ for the apparently
preventive case (see Section 4.1 in the main text). A comparable
symmetry argument holds for lower bounds. Table S1 displays p̃(q)

p̂(q) as
a function of |δ| and w and illustrates that, on the ratio scale, the
homogeneous-bias approximation holds most closely for small |δ| and
large w; that is, when q is chosen to be relatively close to the
bias-corrected mean estimate and when σ2B∗ is small compared to τ2c .
Table S2 displays |̃p(q) − p̂(q)| and illustrates that the large ratios in
the lower left of Table S1 correspond to cases in which p̂(q) and p̃(q)
are both very small, such that a large ratio corresponds to a small
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Table A.2.1: Ratio of homogeneous-bias approximation with σ2B∗ = 0 to the
unbiased estimate, p̂(q).

w = 1.5 2 4 6 8 10
|δ| = 0.25 1.21 1.11 1.04 1.02 1.02 1.01

0.5 1.60 1.29 1.09 1.06 1.04 1.03
1 3.81 2.02 1.28 1.16 1.11 1.09

1.5 14.25 3.94 1.60 1.33 1.23 1.17
2 85.53 9.73 2.17 1.60 1.40 1.30

2.5 833.38 30.52 3.19 2.01 1.65 1.48

Table A.2.2: Absolute difference of homogeneous-bias approximation with
σ2B∗ = 0 and the unbiased estimate, p̂(q).

w = 1.5 2 4 6 8 10
|δ| = 0.25 0.07 0.04 0.01 0.01 0.01 0.01

0.5 0.12 0.07 0.03 0.02 0.01 0.01
1 0.12 0.08 0.03 0.02 0.02 0.01

1.5 0.06 0.05 0.03 0.02 0.01 0.01
2 0.02 0.02 0.01 0.01 0.01 0.01

2.5 0.01 0.01 0.00 0.00 0.00 0.00

absolute difference.

A.3 Sufficient conditions for approximate normality of bias
factor

Lemma A.3.1. Let X and Y be iid N
(
μ, σ2

) with μ > 0 and σ2 << μ.
Then:

log
(
eX + eY − 1

)
≈ N

(
log (2eμ − 1) , 2e2μ

(2eμ − 1)2 σ
2
)

Proof. Let h(X, Y) = log
(
eX + eY − 1). Then, apply a first-order Taylor
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expansion around μ, dropping higher-order terms because σ2 << μ:

∂h
∂X
=

eX

(eX + eY − 1)
∂h
∂Y
=

eY

(eX + eY − 1)

h(X, Y) ≈ log(2eμ − 1) + eμ

2eμ − 1
(
X − μ

)
+

eμ

2eμ − 1
(
Y − μ

)
=

[
log(2eμ − 1) − 2μeμ

2eμ − 1

]
+

eμ

2eμ − 1X +
eμ

2eμ − 1Y

E
[
h(X, Y)

]
≈

[
log(2eμ − 1) − 2μeμ

2eμ − 1

]
+

eμ

2eμ − 1E[X] +
eμ

2eμ − 1E[Y]

= log(2eμ − 1)

Var (h(X, Y)) ≈ 2e2μ

(2eμ − 1)2 σ
2

The result then follows from the fact that h(X, Y) is approximately a
linear combination of Normal random variables. □

Fact A.3.1. Suppose logRRXU and logRRUY are iid N
(
μU, σ

2
U

)
. Then

logB+ is approximately normal.

Proof. We have logB+ = log (RRXU) + log (RRUY) − log (RRXU + RRUY − 1);
the result follows immediately from invoking Lemma A.3.1 for the last
term. □

A.4 Introduction to the package EValue

Here we briefly summarize the functions contained in the package
EValue; details and examples are available in the standard R
documentation.

The function confounded_meta computes point estimates, standard
errors, and confidence interval bounds for (1) the proportion of studies
with true effect sizes above q (or below q for an apparently preventive
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ŷcR) as a function of the bias parameters; (2) the minimum bias factor
on the relative risk scale (T̂(r, q)) required to reduce to less than r the
proportion of studies with true effect sizes more extreme than q; and
(3) the counterpart to (2) in which bias is parameterized as the
minimum relative risk for both confounding associations (Ĝ(r, q)).

The function sens_table produces several types of tables (returned
as dataframes) at the user’s specification. The prop option yields a
table showing the proportion of true effect sizes more extreme than q
across a grid of bias parameters μB∗ and σB∗ . Alternatively, the Tmin
and Gmin options yield tables showing the minimum bias factor (as in
Table 2) or confounding strength required to reduce to less than r the
proportion of true effects more extreme than q (across a grid of r and
q).

The function sens_plot produces two types of plots. With the line
option, the plot shows the bias factor on the relative risk scale (with
pointwise 95% confidence band) versus the proportion of studies with
true relative risks more extreme than q (as in Figure 1). The plot
includes a secondary, rescaled X-axis showing the minimum strength
of confounding to produce the given bias factor. With the dist option,
the plot overlays the estimated densities of the confounded effects and
of the true effects for a user-provided range of μB∗ and scalar σB∗ .

The function scrape_meta is designed to facilitate sensitivity
analyses of existing meta-analyses. Given relative risks and upper
bounds of 95% confidence intervals from a forest plot or summary
table, the function returns a dataframe ready for meta-analysis (e.g.,
via the metafor package) with the log-RRs and their variances.
Optionally, the user may indicate studies for which the point
estimates represent odds ratios of a common outcome rather than
relative risks; for such studies, the function first applies a square-root
transformation to convert the odds ratio to an approximate risk ratio
[112].
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A.5 Code to reproduce applied example

The below code reproduces the applied example in Section 8.
Extended code is also maintained at https://osf.io/2r3gm/.

# was run on R 3.3.3
# get data from Trock et al.’s Table 1
RRs = c(0.4, 1.8, 0.78, 0.96, 0.9, 1.4, 0.66, 0.76, 0.47,

0.5, 2.0, 1.07, 0.66, 1.00, 0.83, 0.61, 1.0, 0.46,
0.47, 1.16 )

UBs = c(0.8, 3.6, 1.0, 1.31, 1.3, 3.0, 0.88, 1.18, 1.33,
1.1, 4.3, 1.47, 1.02, 1.30, 1.51, 0.97, 1.3, 0.84,
0.74, 1.39 )

# compute point estimates and within-study variances
library(EValue) # version 1.1.0
d = scrape_meta( type = ”RR”, est = RRs, hi = UBs )

# meta-analyze
library(metafor) # version 2.0-0
m = rma.uni(yi=d$yi, vi=d$vyi, method=”PM”, measure=”RR”, test=”knha”)
yr = as.numeric(m$b) # returned estimate is on log scale
vyr = as.numeric(m$vb) # this is the KNHA-adjusted SE^2
t2 = m$tau2
vt2 = m$se.tau2^2

# reproduce Figure 1
library(ggplot2)
sens_plot( type=”line”,

q=log(0.9),
Bmin=log(1),
Bmax=log(2),
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sigB=0.1,
yr=yr,
vyr=vyr,
t2=t2,
vt2=vt2,
breaks.x1=seq(1, 2, .25) )

# now for just one choice of sensitivity parameters
# represents a single cross-section of the plot (at muB = log(1.25))
confounded_meta( q = log(.90),

muB = log(1.25),
sigB = 0.10,
yr=yr,
vyr = vyr,
t2 = t2,
vt2 = vt2,
CI.level = 0.95)

# reproduce Tmin in Table 2
sens_table( meas=”Tmin”,

q=c( log(0.70), log(0.80), log(0.90) ),
r=seq(0.1, 0.5, 0.1),
yr=yr,
t2=t2 )

# reproduce Gmin in Table 2
sens_table( meas=”Gmin”,

q=c( log(0.70), log(0.80), log(0.90) ),
r=seq(0.1, 0.5, 0.1),
yr=yr,
t2=t2 )
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B
New Statistical Metrics for

Multisite Replication Projects

B.1 Agreement in “statistical significance”

Suppose the original study tested the null hypothesis H0 : θ = θN,
where θ is an unknown population parameter. Consider for now a
single replication study, and let θ̂orig and θ̂rep be estimates of θ from the
original and replication study, respectively. Assume that under both
the null and alternative hypotheses, θ̂orig and θ̂rep are approximately
and independently normal with a common mean but potentially
different standard errors:
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θ̂orig ∼ N
(
θ, SE2

orig

)
⨿ θ̂rep ∼ N

(
θ, SE2

rep

)
⇒ θ̂rep − θ̂orig ∼ N

(
0, SE2

rep + SE
2
orig

)
(B.1)

where ⨿ denotes statistical independence. (Critically, this setup
does not allow for heterogeneity in that it assumes that the replication
and original studies measure the same true effect, θ. A later section in
the Appendix demonstrates the impact of this stringent assumption.)
Considering first the case in which the original estimate is above the
null (i.e., θ̂orig − θN > 0), we can derive the probability of a “significant”
replication estimate that is also above the null (̂θrep − θN > 0) given the
original estimate and standard error (̂θrep and SErep). Let
cα = Φ−1 (1 − α) be the critical value of the normalized test statistic
(e.g., 1.96 for α = 0.05). Standardize θ̂rep to construct the usual
standard-normal test statistic and express the desired probability as:
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P

 θ̂rep − θNŜErep
> cα

∣∣∣∣ θ̂orig, SEorig

 = P
(̂
θrep > cαŜErep + θN

∣∣∣ θ̂orig, SEorig

)

= P


θ̂rep − θ̂orig√
SE2

orig + SE2
rep︸             ︷︷             ︸

N(0,1)

>
cαŜErep + θN − θ̂orig√

SE2
orig + SE2

rep


(re-standardize using Eq. B.1)

= 1 − Φ

cαŜErep + θN − θ̂orig√
SE2

orig + SE2
rep


≈ 1 − Φ

cαŜErep + θN − θ̂orig√
ŜE

2
orig + ŜE

2
rep

 (B.2)

where the last expression follows approximately by substituting
estimated standard errors for their true counterparts. Similarly,
considering the case in which the original estimate is below the null
(̂θorig − θN < 0), the probability of a “significant” replication estimate
that is also below the null is:

113



P

 θ̂rep − θNŜErep
< −cα

∣∣∣∣∣∣ θ̂orig, SEorig

 = P
(̂
θrep < −cαŜErep + θN

∣∣∣ θ̂orig, SEorig

)

= P


θ̂rep − θ̂orig√
SE2

orig + SE2
rep︸             ︷︷             ︸

N(0,1)

<
−cαŜErep + θN − θ̂orig√

SE2
orig + SE2

rep


(re-standardize using Eq. B.1)

≈ Φ

−cαŜErep + θN − θ̂orig√
ŜE

2
orig + ŜE

2
rep

 (B.3)

When there are multiple replications (in either a many-to-one or
one-to-one design), one can simply apply either Equation B.2 or B.3
to each replication study depending on the sign of the relevant
original estimate.

B.2 Estimating the true effect distribution

We assume that the replication studies estimate (with statistical error)
potentially different true effect sizes that follow a normal distribution.
The distribution of true effects is distinct from the observed
distribution of replication estimates; the latter is more variable due to
uncertainty reflecting finite sample sizes in the replication studies.
The proposed analyses therefore begin by using the replication studies
to estimating the mean and variance of the distribution of true effects
using one of two straightforward modeling approaches (though these
are not exhaustive possibilities). Both approaches begin with shared
assumptions. Let θ̂i denote the effect estimate in the ith replication
such that θ̂i = μ + γ i + εi, where γ i ∼ N (0,V) denotes deviations of
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site-specific true effects from the grand mean (μ) and εi ∼ N
(
0, SE2

i
)

denotes statistical error due to finite sample sizes in the replication
studies. Assume that γ i and εi are independent. In other words, the
true effect in replication site i is μ + γ i, which is normal with mean μ
and variance V. Its estimate, incorporating additional error due to εi,
is θ̂i and is marginally normal with mean μ and variance V + SE2

i .
To estimate μ and V, one option is compute an effect estimate

within each site (for example, using the same model as in the original
study) and then to conduct a random-effects meta-analysis on these
site-level summary measures. Such analyses are already commonplace
in many-to-one designs. One can then use the meta-analytic pooled
estimate as μ̂ and the heterogeneity estimate (usually denoted τ2) as
V̂. A second option, which avoids aggregating data by site prior to
analysis, is to fit a mixed model to the observation-level data with
independent, identically normal random intercepts and slopes by site;
this is a form of “individual participant data meta-analysis” (G. B.
Stewart et al., 2012). For example, suppose the original study used
ordinary least squares regression to estimate the effect (β1) of a binary
experimental manipulation X on a continuous dependent variable Y
with the usual specification Yj = β0 + β1Xj + εj for subjects j = 1, · · · , n
and with the error terms εj assumed independent and identically
(“iid”) normal. Then, for the replications, one possible mixed model
specification is:

Yij = α0 + ζ0i + α1Xij + ζ1iXij + ε∗ij
ζ0i ∼iid N

(
0, σ2ζ0

)
⨿ ζ1i ∼iid N

(
0, σ2ζ1

)
⨿ ε∗ij ∼iid N

(
0, σ2ε∗

)
where i indexes sites. Then, we can estimate μ (the average true

effect size across all sites) using the usual maximum likelihood or
restricted maximum likelihood estimate, α̂1. We can estimate V (the
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variance of the true effect sizes across all sites) with σ̂2ζ0 . Depending on
the experimental design, of course, a different mixed model
specification may be warranted (for example, with additional random
terms by subject) as long as it retains the normal assumption on the
effect sizes across sites and yields unbiased, approximately normally
distributed, and approximately independent estimates of μ and V.
Specifications that do not pre-aggregate data within sites may often
be more statistically efficient that the meta-analytic approach, but
the meta-analysis method may sometimes provide more flexibility
because it models the effect sizes rather than the dependent variable
itself. Lastly, a third possible modeling approach could simply ignore
site and fit the same analysis model as was used in the original study,
but we do not recommend this approach because clustering within
sites will likely violate statistical assumptions regarding conditionally
independent residuals, such specifications preclude estimation of V,
and they can lead to bias due to Simpson’s Paradox (RÃŒcker &
Schumacher, 2008).

B.3 Derivation of Porig

Given the estimates μ̂ and V̂ from the above development, we can
derive the probability that, if the original study and replications come
from the same, potentially heterogeneous distribution of true effects,
the original study would estimate an effect size as extreme or more
extreme than its actual estimate. As above, let θ̂orig be the effect
estimate in the original study and SEorig its standard error. Letting θ̂

∗

be a random variable denoting the effect estimate in an arbitrary
study with the same standard error as the original, we first consider
the distribution of θ̂

∗
− μ̂. Assume that μ̂ ∼ N

(
μ, SE2 (̂μ)); that is, the

estimate is approximately unbiased and normal. (This holds for both
the meta-analysis and the mixed model approaches above under
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standard assumptions). Since θ̂
∗
∼ N

(
μ,V + SE2

orig

)
independently of μ̂,

we can derive the first proposed metric as follows:

θ̂
∗
− μ̂ ∼ N

(
0,V + SE2

orig + SE
2 (̂μ))

θ̂
∗
∼ N

(̂
μ,V + SE2

orig + SE
2 (̂μ))

(B.4)
P
(
|̂θ
∗
− μ̂| ≥ |̂θorig − μ̂|

)
= P

(̂
θ
∗
− μ̂ ≥ |̂θorig − μ̂|

)
+ P

(̂
θ
∗
− μ̂ ≤ −|̂θorig − μ̂|

)
(B.5)

= P


θ̂
∗
− μ̂√

V + SE2
orig + SE2 (̂μ)︸                     ︷︷                     ︸
∼N(0,1)

≥
|̂θorig − μ̂|√

V + SE2
orig + SE2 (̂μ)


+

P


θ̂
∗
− μ̂√

V + SE2
orig + SE2 (̂μ)︸                     ︷︷                     ︸
∼N(0,1)

≤
−|̂θorig − μ̂|√

V + SE2
orig + SE2 (̂μ)


(standardize)

= 1 − Φ

 |̂θorig − μ̂|√
V + SE2

orig + SE2 (̂μ)
 + Φ

 −|̂θorig − μ̂|√
V + SE2

orig + SE2 (̂μ)


= 2 ×

1 − Φ
 |̂θorig − μ̂|√

V + SE2
orig + SE2 (̂μ)


 (B.6)

We arrive at the approximation in the main text (i.e., Porig) by
substituting estimates of SE2

orig and SE
(̂
μ
) for the true parameters.

We now show that Porig subsumes Patil et al. (2016)’s prediction
interval in the sense that if we assume a single replication study and
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no heterogeneity, and if we dichotomize Porig at α = 0.05, we
mathematically recover the prediction interval. In Equation B.6, set
the left-hand side equal to 0.05 (for a 95% prediction interval) and
V = 0 (for no heterogeneity). Let θ∗0.05 be a value for the replication
effect estimate that marks the lower or upper boundary of the 95%
prediction interval. Since the prediction interval concerns a single
replication study, set μ̂ = θ∗0.05 and SE2 (̂μ) = SE2

rep. Thus, we can solve
for the boundary values of the prediction interval, i.e., the pair of
replication estimates that are sufficiently extreme to make the
probability on the left-hand side equal to 0.05:

0.05 = 2 ×

1 − Φ
 |̂θorig − θ

∗
0.05|√

SE2
orig + SE2

rep




|̂θorig − θ∗0.05| = Φ−1 (0.975)
√
SE2

orig + SE2
rep (solve algebraically)

θ̂orig − θ∗0.05 = ±Φ−1 (0.975)
√
SE2

orig + SE2
rep

θ∗0.05 = θ̂orig ± Φ−1 (0.975)
√
SE2

orig + SE2
rep

which is exactly Patil et al. (2016)’s prediction interval.

B.4 Derivation of P>0, P>q, and P<q∗

Since we consider drawing a true effect size (θ) from the distribution
generating the replications, we have θ ∼ N

(
μ,V

) by assumption. The
expressions in the main text then follow immediately from properties
of the normal distribution; the standard error can be derived using
the delta method and is a special case of work in Mathur &
VanderWeele (2017b), which focused instead on meta-analyses of
observational data.
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B.4.1 Impact of ignoring heterogeneity in existing metrics

We now show that ignoring heterogeneity when estimating the
expected “significance agreement” always underestimates consistency
when there truly is heterogeneity. We begin by generalizing Equation
B.1 (which ignores heterogeneity) to accommodate heterogeneity via
the same framework developed in the section “Estimating the true
effect distribution”:

θ̂orig ∼ N
(
θ,V + SE2

orig

)
⨿ θ̂rep ∼ N

(
θ,V + SE2

rep

)
⇒ θ̂rep − θ̂orig ∼ N

(
0, 2V + SE2

rep + SE
2
orig

)
For an original estimate above the null, we can compute the

probability of “significance agreement” allowing for heterogeneity as:

P

 θ̂rep − θNŜErep
> cα

∣∣∣∣∣∣ θ̂orig, SEorig

 = P
(̂
θrep > cαŜErep + θN

∣∣∣ θ̂orig, SEorig

)

= P


θ̂rep − θ̂orig√

2V + SE2
orig + SE2

rep︸                    ︷︷                    ︸
N(0,1)

>
cαŜErep + θN − θ̂orig√
2V + SE2

orig + SE2
rep


≈ 1 − Φ

 cαŜErep + θN − θ̂orig√
2V + ŜE

2
orig + ŜE

2
rep


The only difference between this expression and Equation B.2

(which had assumed no heterogeneity) is the 2V term in the
denominator. Since the presence of heterogeneity implies that 2V > 0,
this probability is always larger than the probability in Equation B.2,
proving our claim. The case in which the original estimate is below
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the null is nearly identical, so is omitted.
Similarly, when there is heterogeneity, the prediction interval is too

narrow (and thus, it is less likely that the replication will fall inside
the prediction interval). Using the previous result showing equivalence
of Porig with the prediction interval when there is no heterogeneity, we
can set V = 0 in Equation B.6 to yield the p-value counterpart to the
prediction interval. Since Equation B.6 is strictly increasing in V,
constraining V = 0 in this expression yields a lower p-value than
allowing V > 0. Thus, if there is heterogeneity, the p-value counterpart
to the prediction interval is an underestimate. By the duality of
p-values and intervals, the prediction interval is therefore too narrow
when V > 0.

B.5 Methods for choosing an effect size threshold

Much existing work, spanning a variety of disciplinary perspectives,
has discussed how to choose thresholds for scientifically meaningful
effect sizes. [25] provides an excellent review and examples of
numerous methods in the context of health outcomes. In particular,
they discuss a variety of “anchoring-based” methods in which an effect
size threshold is chosen by relating the outcome measure to external
benchmarks bearing immediate scientific or policy relevance. Within
psychology, this approach may be particularly relevant for applied or
interventional studies; for example, when investigating effects of
educational interventions, a minimum effect size threshold could be
determined in relation to differences in the outcome (academic
achievement) between naturally-occurring subject groups (such as
children attending low- versus high-performing schools or children of
different ages) [47]. Numerous other types of external “anchoring”
criteria have also been used in the health outcomes literature [25].

When the aggregate public impact of an outcome (such as juvenile
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delinquency) is the primary concern, investigators could draw upon
the extensive literature on cost-effectiveness decision rules in selecting
an effect size threshold. For example, much existing work has
discussed or empirically quantified the cost threshold at which
societies or individuals are willing to pay for a specific improvement in
physical or mental health, such as an addition of one quality-adjusted
life-year (e.g., [12, 35]). Such findings could be used to “convert”
hypothetical statistical effect sizes for a given outcome to a concrete
financial scale, such as dollars. A minimum effect size threshold could
then be defined in relation to the utility, expressed in dollars, of the
intervention or exposure of interest.

In contrast, in disciplines such as clinical psychology, the original
study may investigate an effect in which individuals’ subjective
experience of distress or pain is the primary concern (instead of, or in
addition to, aggregate public impact). In this case, it may be useful to
set the threshold as the minimum effect size that is subjectively
perceptible [51, 59, 73, 82]. A systematic review considered 62 studies
that attempted to estimate such thresholds for a wide variety of
health outcomes, for example by relating patients’ subjective
self-assessments to objective measurements of health condition
severity [73]. This review found that d = 0.50 was a surprisingly
consistent minimally detectable effect size for health outcomes,
perhaps reflecting fundamental mechanisms of human sensory
discrimination or constraints on categorical discrimination due to
working memory capacity. For ease of comparison to other statistical
measures of effect size, the threshold d = 0.50 is approximately
equivalent (under some distributional assumptions) to an odds ratio
of 2.5 or to a risk ratio of 1.6 [17, 112]. However, it is important to
note that an intervention that has only small effects on the individual
level, even ones that are not subjectively perceptible, may still have
very substantial impacts on a population level; thus, as described
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above, much lower thresholds might often be considered.
While the above considerations may work well for applied or

interventional psychology, many replication efforts to date have
focused on classic experimental psychology, conducted using stylized
tasks (such as a Stroop task or [69]’s hypothetical hiring task) in order
to examine basic mechanisms of, for example, cognition or perception.
Although some of the above considerations are harder to apply in
these classic experimental contexts, external benchmarks could still be
determined using effect sizes on similar experimental tasks, preferably
those estimated by meta-analyses of existing literature. For example,
a meta-analysis of the enormous literature on intergroup contact and
prejudice estimated a pooled effect size of r = −0.21 among all study
designs and r = −0.33 among experimental studies [79]. We might
treat experimental intergroup-contact interventions as a “gold
standard” representing the effect sizes on prejudice that are achievable
through purposefully designed interventions. In contrast, the
proposed moral credentialing effect is not a designed intervention on
prejudice but rather a specific, potentially more subtle, cognitive
mechanism of prejudice. Thus, to select an effect size threshold for
moral credentialing, we might somewhat reduce the magnitude of the
gold-standard interventions to, for example, |r| = 0.20 or |r| = 0.10.
(Additionally, the latter threshold is often considered a standard
benchmark for a “small” effect size [21].)

B.6 Software

The R package “Replicate” contains the following functions; details
are available in the standard R documentation.

• prob_signif_agree computes the theoretical probability that a
given replication study would agree in ”statistical significance”
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and effect direction with the original study, if the true effect is
indeed the same in the two studies.

• pred_int computes prediction interval limits and indicators for
whether each replication estimate is within its corresponding
prediction interval.

• p_orig computes Porig, i.e., the probability of observing an
original estimate as extreme as that actually observed
(compared to the replication studies) if the original is indeed
consistent with the estimated distribution of the replication
studies.

• stronger_than estimates P>q or P<q∗ , i.e., the probability of a
true effect above or below a user-specified threshold of scientific
importance using estimates of the true effect distribution (based
on the replications).
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New Metrics for Multiple Testing
with Correlated Outcomes

C.1 Exact variance under global null

Let p0w be the p-value in the wth test under the global null, treated as a
random variable. Then we have:

Var
(̂
θ
0)
= Var

 W∑
w=1

1
{
p0w < α

}
=

W∑
w=1

Var (1{p0w < α
})
+ 2

∑
1≤i<j≤W

Cov
(
1
{
p0i < α

}
, 1
{
p0j < α

})
= Wα (1 − α) + 2

∑
1≤i<j≤W

E
[
1
{
p0i < α, p0j < α

}] − E[1{p0i < α
}]
E
[
1
{
p0j < α

}]
= Wα (1 − α) + 2

∑
1≤i<j≤W

[
P
(
p0i < α, p0j < α

)︸               ︷︷               ︸
=α2 under independence

−α2
]

C.2 Applied example
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Table C.2.1: Demographic and childhood family characteristics of 2, 697
analyzed subjects. a: By subject’s adolescence, subject’s family had ever
been on welfare. b: Ranged from 1 (“a lot better off” than others) to 7 (“a
lot worse off” than others). c: By age 16, subject had ever lived with an
alcoholic.

Characteristic Mean (SD) or %
Age 46.89 (12.35)
Female 53.7%
Race

White 93.3%
Black 3.6%
Other 3.2%

Born in US 95.8%
Mother born in US 90.5%
Father born in US 90.2%
Lived with biological parents 81.1%
Number of siblings 2.92 (1.57)
Highest parental education

Less than high school 25.8%
High school 36.0%
Some college 15.8%
College degree or more 22.5%

Childhood welfarea 5.6%
Subjective SESb 4.07 (1.29)
Residential area

Rural 23.1%
Small town 25.6%
Medium town 12.1%
Suburbs 16.8%

Continued on next page
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Table C.2.1 (Continued)
Characteristic Mean (SD) or %

City 18.3%
Moved around 4.1%

Residentially stable 74.1%
Mother smoked 32.6%
Father smoked 62.0%
Lived with alcoholicsc 20.9%
Importance of religion

Very important 43.5%
Somewhat important 35.7%
Not very important 16.0%
Not at all important 4.7%

C.3 Extended simulation results

C.3.1 Applied example

The following figures show all results presented in the main text as
well as additional scenarios.

C.3.2 Comparison of p-values adjusted by existing methods

We performed a rudimentary visual comparison of p-value
adjustments produced by one naïve method (Holm) and one
resampling-based method (Wstep). We generated a single dataset as
in the simulation study with 1 covariate, 100 outcomes, N = 1, 000,
ρXY = 0.08 for all outcomes, and ρYY = 0.25. We chose these parameters
to yield a large number of adjusted p-values < 0.05 for illustrative
purposes. Figure C.3.3 plots the 100 p-values adjusted using the Holm
and Wstep methods (obtained by resampling as in the applied
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Figure C.3.1: 95% null intervals versus mean rejections in observed
datasets (×). Panels: Null and alternative data-generating mechanisms
of original samples. Points and error bars: Mean θ̂

(j) and mean limits of
null intervals with tests at α = 0.01 (yellow) or at α = 0.05 (red).
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Figure C.3.2: Power of global tests based on existing FWER-control
procedures and on the number of rejections. B=Bonferroni, H=Holm,
MP=minP, WS=Wstep, R=Romano, G1=number of rejections at α = 0.01,
G5=number of rejections at α = 0.05.
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Figure C.3.3: p-values in a single simulated dataset adjusted by the Holm
method versus the Wstep method. Red dashed lines: α = 0.05 threshold.

example with B = 500 resamples) and suggests that in this simple
simulation, the methods differ little in their adjustments to p-values
near α = 0.05; rather, the differences appear to emerge primarily for
p >> 0.05. We obtained qualitatively similar results when comparing
other pairs of existing methods (not shown).
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C.4 Introduction to the package NRejections

Here we briefly describe the R package NRejections; note that
additional functions, details, and additional examples are available in
the standard R documentation. For OLS models as described in
Section 3.5.2, the null interval, excess hits, and global test can be
conducted by calling a single wrapper function, corr_tests. This
function first fits the W models in the original dataset, adjusting for
any user-specified covariates. Then, resamples are generated via
Algorithm 3.5.1 and used to estimate and return our proposed
metrics, along with estimates and inference from the original sample.
Optionally, the global test can additionally be conducted using any
combination of methods in Table 3.3.1. Below is a minimal example.

# this was run on R version 3.3.3
# and NRejections version 1.0.0

library(NRejections)

# simulate data with 40 outcomes and 1 covariate of interest,
# similarly to simulation study
# 80% of the 40 associations are non-null (correlation strength of 0.08);
# and the others are null
cor = make_corr_mat( nX = 1,

nY = 40,
rho.XX = 0,
rho.YY = 0.15,
rho.XY = 0.08,
prop.corr = .8 )

d = sim_data( n = 1000, cor = cor )
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# may take 5-10 min to run on 8-core personal computer
res = corr_tests( d,

X = ”X1”,
Ys = names(d)[ grep( ”Y”, names(d) ) ],
B = 1000,
method = ”nreject” )

# main results
res$null.int
res$excess.hits
res$global.test

As described in the Discussion, Algorithm 3.5.1 is more broadly
applicable to multiple-testing procedures outside the scope of this
paper. For these general applications, the user could first obtain
residuals and point estimates from the original dataset using the
function dataset_result and pass these to resid_resample, which
returns matrices of p-values and test statistics from the resamples.
See ?resid_resample for examples.
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