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Abstract

Electronic health records (EHRs) are electronic versions of patient charts, created to

improve patient care. The adoption of EHRs in the US has increased significantly in the

last decade, making it a rich resource for conducting clinical research. The breadth of the

EHRs, with detailed longitudinal patient data and information on a wide range of disease

conditions, allows for new opportunities for different types of clinical research.

The detailed phenotypic information on individual patients allows for simultane-

ously studying multiple phenotypes. A useful tool for such simultaneous assessment

is the Phenome-wide association study (PheWAS), which relates a genomic or biological

marker of interest to a wide spectrum of disease phenotypes, typically defined by the di-

agnostic billing codes. One challenge arises when the biomarker of interest is expensive

to measure on the entire EMR cohort. Performing PheWAS based on supervised estima-

tion using only subjects who have marker measurements may yield limited power. In

chaper 1, we focus on the setting in a PheWAS where the marker is measured on a small

fraction of the patients while a few surrogate markers such as historical measurements

of the biomarker are available on a large number of patients. We propose an efficient

semi-supervised estimation procedure to estimate the covariance between the biomarker

and the billing code, leveraging the surrogate marker information. We employ surrogate

marker values to impute the missing outcome via a two-step semi-non-parametric ap-

proach and demonstrate that our proposed estimator is always more efficient than the

supervised counterpart without requiring the imputation model to be correct. We illus-

trate the proposed procedure by assessing the association between the C-reactive protein

(CRP) and some inflammatory diseases with an EMR study of inflammatory bowel dis-

ease performed with the Partners HealthCare EMR where CRP was only measured for a

small fraction of the patients due to budget constraints.
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In chapters 2 and 3, we focus on the challenges in using EHRs to build risk prediction

models. One major challenge is that the timing of disease onset is not readily available.

Extracting clinical event times for patients requires labor intensive medical chart reviews.

Additionally, since a significant proportion of clinical events may occur prior to patients’

first EHR encounter or outside of the specific hospital system, the EHR may only capture

partial information on the event time. For example, the domain expert would be able

to determine whether a patient has experienced a clinical outcome by the end of EHR

follow-up, but the exact timing may be unknown even after chart review. The time to first

ICD9 billing code for the clinical condition or the first NLP mention of the condition in

the notes can serve as a proxy for the true event time, but is subject to measurement error.

In chapter 2, we propose a robust approach to developing a risk prediction model by syn-

thesizing multiple imperfect sources of information on the event time of interest. Treating

the partially observed outcomes as survival time subject to current status censoring and

survival time measured with errors, we construct an optimally combined estimator un-

der a flexible semi-parametric transformation model for the survival time given baseline

predictors and unspecified measurement errors. Simulation studies demonstrate that the

proposed estimator performs well in finite sample. We illustrate the proposed estimator

by assessing the effects of genetic markers on coronary artery disease with an EHR study

of rheumatoid arthritis patients performed with the Partners HealthCare EMR. In chapter

3, we propose a maximum likelihood estimator to estimate the risk of developing a dis-

ease by combining only the multiple imperfect sources of information on the event time

of interest. Simulation studies demonstrate that the proposed estimator performs well

in finite sample. We illustrate the proposed estimator by predicting the risk of develop-

ing type 2 diabetes based on a obesity genetic risk score in a cohort of patients from the

Partners Biobank.
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1.1 Introduction

Electronic medical records (EMRs) are a database of clinical data from a particular med-

ical provider. They contain a range of information on patients, including demographics,

medical history, test results, and billing information. There have been high hopes that

this data-rich resource can be widely used to perform observational clinical association

studies. One popular tool for performing discovery research with EMR is the phenome-

wide association study (PheWAS) (Denny et al., 2010) where one examines the association

between a genomic or biological marker and a wide range of disease phenotypes, typi-

cally defined by the International Classification of Diseases, Ninth Revision (ICD9) billing

codes. This method has been used in several exploratory studies, for example to detect as-

sociation between autoantibody positivity and ICD9 codes related to hypertension (Liao

et al., 2010, 2013).

When the biomarker of interest is too expensive to be measured on all subjects in the

EMR cohort, performing PheWAS may be challenging. For example, in an EMR study on

how the co-morbidities of inflammatory bowl disease relate to inflammation conducted at

Partner’s Healthcare, the inflammatory marker, C-reactive Protein (CRP) was only mea-

sured on a small, randomly selected subset of the study participants. Performing Phe-

WAS only on those with CRP measurements would have limited power. In this paper,

we propose semi-supervised PheWAS methods that enable us to increase the power for

such settings by leveraging additional information on surrogate markers such as histor-

ical measurements of inflammation markers. We are interested in the semi-supervised

setting since the percent of missingness in the CRP measurement is approaching 100%.

As such, traditional missing data approaches such as multiple imputation and inverse

probability weighting do not directly apply here (Rubin, 1987; Seaman and White, 2013).

Multiple imputation relies on creating a distribution for the missing outcome data and

making M repeated draws from this distribution to create M complete datasets. The M

estimators for each dataset are averaged together to obtain a final estimator; however,

in cases where the percent of missingness is high, the required minimum M needed to

accurate inference will be rather large (Kenward and Carpenter, 2007). This makes multi-
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ple imputation a computationally difficult approach for our setting. Furthermore, simple

imputation methods may not be effective when the imputation model is mis-specified. In

this paper, we propose a semi-supervised estimator of the covariance between CRP and

the ICD9 billing codes via a two-step semi-non-parametric imputation, which is robust to

model mis-specification.

Semi-supervised methods have been applied to EMR data in the past (Rosales et al.,

2007; Kim and Shin, 2013); however, most of these methods also focus on classification

of disease status, rather than on estimation or testing (Dligach et al., 2015; Wang et al.,

2012). There are no current semi-supervised methods for estimating covariance, which

we can use to test for a potential association between the outcome variable and a partic-

ular disease, but recently, there has been some literature on semi-supervised estimation

of the mean, which could be potentially be used in the calculation of the covariance. For

example, Sokolovska et al. Sokolovska et al. (2008) proposed a method for estimating

the conditional density for classification using a weighted likelihood estimator based on

the ratio of the densities of the covariates from labeled and unlabeled data. Kawakita

and Kanamori Kawakita and Kanamori (2013) extend Sokolovska et al.’s Sokolovska et al.

(2008) method to allow for estimating the conditional mean using an estimate of the den-

sity ratio. Unfortunately, these methods require specification of the basis functions used

in the density ratio model and the choice of the basis functions remain unclear. Addi-

tionally, it is unclear how to extend their methods for the estimation of the covariance

which involves both first and second moment estimations. Our two-step approach uses

surrogate variables to aid in the imputation of the missing outcome values. We start

with a linear regression to impute the missing biomarker levels using the ICD9 codes and

the surrogate variables as predictors. In the second step, we use these imputed values

to calculate the individual contribution to the covariance, and then employ a calibration

step via kernel smoothing to increase robustness to the misspecification in the imputation

model. The remainder of the paper is organized as follows. In Section 1.2, we formu-

late a semi-supervised estimator for this covariance and devise a method to calculate its

standard error. In Section 1.3, we perform a simulation study to explore our methods

and show the results of the simulations, and in section 1.4, we apply our method to an

3



example dataset.

1.2 Methods

In this section, we detail our proposed semi-supervised estimator for the covariance be-

tween a biological marker of interest, denoted by Y , and a phenotype of interest, denoted

by G. In EMR settings, examples for Y include inflammation markers such as CRP or

autoantibodies such as anti-cyclic citrullinated peptide; while G could be the total count

of ICD9 codes for a specific disease condition. Due to cost limits, Y is only measured

for n patients randomly selected from an EMR cohort of size N , where G is available

for all patients, where we assume that n � N in that limn→∞ n/N = 0 as in a standard

semi-supervised setting. In addition, there are often auxiliary variables, denoted by S,

potentially predictive of Y stored in the EMR for all patients, that we can use as surro-

gate variables for Y . For example, if Y is current CRP level, S could be past history of

inflammation markers including CRP and erythrocyte sedimentation rate (ESR). We do

not require past history to be available on all subjects or assumptions on how S relation

to Y . For example, we may encode availability of the past measurements as one of the

surrogate variables since the availability of such measurements may be predictive of Y .

Suppose that the underlying full data data consists of N independent and identically dis-

tributed (iid) random vectors F = {(Yi, Gi,S
T
i )

T, i = 1, ..., N}, while the observable data

is D = L ∪U with

L = {(Yi, Gi,S
T

i )
T, i = 1, ..., n}, and U = {(Gi,S

T

i )
T, i = n+ 1, ..., N}

as the labeled and unlabeled data, respectively. We assume that Y is missing completely

at random as typically assumed in the semi-supervised setting.

1.2.1 Estimation

Our goal is to leverage all available data in D and provide a semi-supervised estimation

of

θ0 = cov(Yi, Gi) = E(ri), where ri = (Yi − µy)(Gi − µg), µy = E(Yi) and µg = E(Gi).
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The standard supervised estimator is:

θ̂SL =
1

n

n∑
i=1

(Yi − µ̂y,SL)(Gi − µ̂g,SSL) =
1

n

n∑
i=1

r̂i

where µ̂y,SL = n−1
∑n

i=1 Yi, r̂i = (Yi − µ̂y,SL)(Gi − µ̂g,SSL), and µ̂g,SSL = N−1
∑N

i=1 Gi. It is well

known that θ̂SL is a consistent estimator of θ0 and n
1
2 (θ̂SL − θ0) converges in distribution to

a normal with mean 0 and variance σ2
SL = E{(ri − θ0)2}.

To derive a semi-supervised estimator leveraging U , we propose a two-step proce-

dure. In step I, we fit a working linear model

E(Yi − µy | Si, Gi) = βTWi, (1.1)

where Wi is some basis expansions of Si and Gi that include both 1 and Gi. For example,

Wi may include 1, Si, Gi, as well as the interaction between Si and Gi. Let

β̂ =

(
n∑
i=1

WiW
T

i

)−1 n∑
i=1

Wi(Yi − µ̂y,SL)

be the ordinary least square estimator of β. Regardless of the adequacy of the linear

model (1.1), β̂ is a consistent estimator of β̄, the solution to E{Wi(Yi − µy − βTWi)} = 0.

Based on this model, we predict the unobserved ri as

R̂i = β̂TX̂i, where X̂i = Wi(Gi − µ̂g,SSL), where µ̂g,SSL = N−1

N∑
i=1

Gi.

If the linear model (1.1) is correctly specified, R̂i is a consistent estimator of E(ri | Wi)

and hence

θ̂par
SSL = N−1

N∑
i=1

R̂i

consistently estimates θ0. When (1.1) is potentially mis-specified, we show in the ap-

pendix that maxi |R̂i − Ri| → 0 in probability, and therefore θ̂par
SSL remains a consistent esti-

mator of θ0 provided that Wi includes 1 and Gi, where Ri = β̄TWi(Gi − µg). In addition,

n
1
2 (θ̂par

SSL− θ0) converges in distribution to a normal random variable with mean 0 and vari-

ance (σpar
SSL)

2 = E{(ri −Ri)
2}.

Despite its robustness, θ̂par
SSL may not be very efficient under model mis-specification.

To further improve efficiency, in step II, we propose to calibrate the conditional mean

5



E(ri | Ri) via a one-dimensional smoothing and use the calibrated estimate to construct

our semi-supervised estimator. Specifically, our calibrated semi-supervised estimator of

θ0 is

θ̂SSL = N−1

N∑
i=1

m̂(β̂TX̂i, β̂) =

∫
m̂(x, β̂)dP̂(x, β̂),

where P̂(x,β) = N−1
∑N

i=1 I(βTX̂i ≤ x),

m̂(x,β) =

∑n
i=1 Kh(β

TX̂i − x)r̂i∑n
i=1 Kh(βTX̂i − x)

,

Kh(x) = h−1K(x/h), K(·) is a smooth kernel density function, h = O(n−ν) is the band-

width with ν ∈ (1/4, 1/2). Since kernel smoothing introduces some bias to the estimate

in finite samples, we add an additional bias correction term to θ̂SSL and propose our final

bias corrected semi-supervised estimator as

θ̂BC
SSL = θ̂SSL −

{
n−1

n∑
i=1

m̂(β̂TX̂i, β̂)− θ̂SL

}
.

To improve smoothing performance, we may also consider transformed scores. For exam-

ple, we may find its percentile using the unlabeled data and smooth over the percentiles.

For ease of presentation, we omit the transformation.

1.2.2 Inference

We show in the appendix that θ̂BC
SSL is consistent and n

1
2 (θ̂BC

SSL − θ0) is asymptotically normal

with mean 0 and variance

σ2
SSL = E[{ri − E(ri | Ri)}2] = E{var(ri | Ri)}.

It is straightforward to see that σ2
SSL < σ2

SL provided that Wi is predictive of Yi. Comparing

to the model based estimator θ̂par
SSL, we note that when the parametric model of E(Yi − µg |

Si, Gi) = βTWi holds, Ri = E(ri | Ri) and hence the θ̂par
SSL is asymptotically equivalent to

the calibrated estimator θ̂SSL. Under model mis-specification, we may have P{E(ri | Ri) 6=

Ri} > 0 in which case (σpar
SSL)

2 = E{(ri −Ri)
2} > σ2

SSL.

To estimate the variance for θ̂SSL, we may estimate σ2
SSL empirically as n−1

∑n
i=1{r̂i −

m̂(β̂TX̂i, β̂)}2.

6



1.3 Simulation results

We conducted a simulation study to assess the finite sample performance of our semi-

supervised estimation procedures and also compare the semi-supervised estimators to

θ̂SL. Throughout, Gi was generated from the log of 1 plus a negative binomial(3, 0.9) to

mimic the number of ICD9 codes. We then generate (Vi,U
T
i )

T
4×1 from a multivariate nor-

mal distribution with mean βGi14×1 and covariance matrix 0.7+0.3I4×4, where β is chosen

to be 0 leading to θ0 = 0 and 0.3 to reflect a modest association. We consider two scenarios

for generating Si and Yi:

Mlin : Yi = Vi, Si = Ui,

Mnlin : Yi = Vi + βG2
i − βGi, Si = Ui − βG2

i

For both settings, we let Wi = (1, Gi,S
T
i ,SiGi)

T when fitting the imputation model. We

let N = 60000 and consider labeled data sizes of n = 200, 400, and 600. The bandwidth h

was chosen as τ̂ × n−0.3, where τ̂ is the empirical standard deviation of π̃i, the percentile

of scores. For each configuration, we summarize results using 1000 datasets.

In Table 1.1, we summarize results for θ̂SL, θ̂par
SSL and θ̂BC

SSL along with their bias, mean

squared error (MSE), and relative efficiency (RE) of the semi-supervised estimators com-

pared to the supervised estimator. All estimators have negligible biases regardless of the

adequacy of the fitted parametric model although the bias of the parametric imputation

based semi-supervised estimator θ̂par
SSL has slightly larger biases. Consistent with our theo-

retical results, the semi-supervised estimators θ̂par
SSL and θ̂BC

SSL are substantially more efficient

than the supervised estimator θ̂SL, with relative efficiency ranging from about 2.1 to 5.2.

Under Mlin, θ̂
par
SSL are θ̂BC

SSL have near identical MSEs, which is expected since they are asymp-

totically equivalent. Under Mnlin, the fitted linear model is mis-specified and hence we

would expect θ̂BC
SSL to be more efficient than θ̂par

SSL. This is indeed reflected in the simulation

results - the efficiency of θ̂BC
SSL relative to θ̂par

SSL is around 1.5. We also investigated the per-

formance of our interval estimation based on the asymptotic variance. We calculated the

coverage of θ0 from the estimated 95% CIs. As shown in Figure 1.1, the empirical cover-

age probabilities are close to their nominal level. We note that the parametric imputation
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is somewhat unstable under model mis-specifications in small samples, resulting CIs that

slightly under cover when n = 200.

Table 1.1: Bias (×100), MSE (×100), and relative efficiency (RE) of of the semi-supervised
estimators compared to the supervised estimator for θ̂SL, θ̂par

SSL and θ̂BC
SSL.

Mlin: θ0 = 0 Mlin: θ0 = 0.188 Mnlin: θ0 = 0.907
n 200 400 600 200 400 600 200 400 600

θ̂SL Bias -0.075 -0.207 -0.254 -0.156 -0.315 -0.321 -0.372 -0.632 -0.562
MSE 0.299 0.157 0.102 0.348 0.180 0.118 1.032 0.540 0.356

θ̂parSSL Bias 0.020 -0.052 -0.076 0.029 -0.054 -0.074 1.198 0.608 0.330
MSE 0.128 0.065 0.043 0.128 0.065 0.043 0.327 0.154 0.104

RE 2.345 2.423 2.347 2.713 2.774 2.714 3.154 3.497 3.423
θ̂BCSSL Bias 0.012 -0.034 -0.067 -0.094 -0.097 -0.099 -0.482 -0.350 -0.266

MSE 0.140 0.072 0.047 0.149 0.076 0.049 0.223 0.104 0.069
RE 2.140 2.167 2.167 2.343 2.374 2.392 4.623 5.187 5.147

1.4 Application to an EMR Study of Inflammation for In-
flammatory Bowel Disease

We applied the proposed method to investigate potential associations between an inflam-

matory marker and co-morbidities among patients suffering from Inflammatory Bowel

Disease (IBD). The two main types of IBD are Crohn’s disease, which causes inflamma-

tion in the digestive tract, and ulcerative colitis, which causes inflammation and ulcers in

the colon and rectum (Tu et al., 2015). In response to inflammation in the body, the liver

releases C-reactive protein (CRP) into the bloodstream, so higher CRP levels are an indi-

cation of inflammation in the body (Gabay and Kushner, 1999). The goal of our analysis is

to examine whether inflammation (quantified by CRP levels) is related to comorbidities

for IBD patients using an EMR crimson cohort of 2,048 patients from Partner’s Healthcare

Systems. The IBD EMR cohort originally consists of 11,001 patients who were identified

as having IBD via a phenotyping algorithm as described in Ananthakrishnan et al. (2013).

Out of the 11,001 patients, 2,048 contributed blood for research and we only consider

the crimson cohort as the full cohort due to the discrepancy between patients who con-

tributed blood versus those who did not.
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Figure 1.1: Coverage probabilities of the 95% CIs for θ̂BC
SSL under various simulation settings
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To quantify the current level of inflammation, 97 patients were randomly selected

from the IBD crimson cohort to have their CRP measured. The co-morbidities are quan-

tified by the number of PheWAS codes associated with each disease condition of interest,

which is available for all subjects. In addition, 1,686 patients have previously measured

CRP and/or ESR levels recorded, which we use to construct S. Note that in addition to

the previous levels of CRP and ESR, the fact that no such measurements exist for certain

patients is potentially predictive of the current CRP level. We thus create S to include

the average levels of CRP and ESR for those who have such information, the missing

indicators, as well as other predictors including age, gender and race. For our analysis,

we let Y be the current log CRP level and G be the x → log(x + 1) transformed Phe-

WAS code for each disease of interest. We considered several disease conditions that are

previously reported as being associated with inflammation or being a comorbiditiy of

IBD including atherosclerosis, celiac disease, disorders of the biliary tract (not including

cholelithiasis)1, heart disease, hypertention, irritable bowel syndrome, mycardial infarc-

tion, pulmonary embolism and rheumatoid arthritis. The point estimators and 95% CIs

for θ̂SL and θ̂BC
SSL are shown in Figure 1.2. The results suggest that the supervised and semi-

supervised estimates are reasonably consistent with each other in value, while the 95%

CIs for the semi-supervised method is always smaller than the supervised method, as we

expect. For example, for heart disease, the covariance is estimated as 0.158 with 95% CI

[0.003,0.313] based on θ̂SL; as 0.168 with 95% CI [0.033, 0.303] based on θ̂BC
SSL. In the cases of

myocardial infarction and disorders of the biliary tract, a Z-test based on θ̂BC
SSL would reject

the null hypothesis, whereas a Z-test based on θ̂SL would not.

1.5 Discussion

Our semi-supervised estimate of the covariance is able to improve the supervised estima-

tor by incorporating information from the large number of unlabeled patients with avail-

able ICD9 codes as well as surrogate variables including past measurements of biomark-

ers. Simulation results show that our proposed estimator is consistent and more efficient

1This corresponds to PheWAS code 576, as described in Denny et al.Denny et al. (2010)
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WAS codes, along with the 95% CIs
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than the supervised estimate, which is confirmed by the results from an EMR study. Ad-

ditionally, the results indicate that our estimator is consistent regardless of the adequacy

of the working model.

Our proposed covariance estimator, along with its standard error estimate, can be

used to perform tests of association between the ICD9 codes and outcome of interest,

for example, a Z-test. The gain in efficiency of our method over the supervised method

would increase the power of association tests. Further increases in power to detect as-

sociation could be achieved by selecting a portion of the labeled data to be patients with

extreme values of surrogate variables. Our method can also be easily extended to ac-

count for such extreme phenotype sampling for the labeled data, by adding weights to

the estimator that are inversely proportional to the probability of being selected.

1.6 Appendix

In this appendix, we will establish properties of our estimator θ̂SSL. Throughout, we as-

sume that W, which includes G as an element, is bounded with CWW = E(WWT) posi-

tive definite and the joint density of Y and W is twice continuously differentiable. Fur-

thermore, we assume that β̄ in an interior point of a compact set Ω. Let Xi = Wi(Gi−µg),

Ri = β̄TXi, P(x,β) = P (βTX ≤ x), Ṗ(x,β) = ∂P(x,β)/∂x, and m(x,β) = E(ri | βTXi =

x). Since P̂(x,β) is estimated using the entire dataset, it follows from standard empirical

processes theory (Pollard, 1990) that

sup
x,β∈Ω

∣∣∣Ĝ(x,β)
∣∣∣ = Op(N

− 1
2 ), where Ĝ(x,β) = N

1
2{P̂(x,β)− P(x,β)} (1.2)

1.6.1 Consistency of our estimators

To establish the consistency of θ̂par
SSL and θ̂SSL, we first note that ‖β̂ − β̄‖ = Op(n

− 1
2 ),

max
1≤i≤N

‖X̂i −Xi‖ = Op(N
− 1

2 ), and max ‖R̂i −Ri‖ = Op(n
− 1

2 ).

Furthermore, since W includes 1 and G,

0 = E(Yi − µy) = E(β̄TWi), and E((Yi − µy)Gi) = E(β̄TWiGi).
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It follows that

E(Ri) = E(β̄TWiGi) = E((Yi − µy)Gi) = E(ri)

and hence |θ̂par
SSL−θ0| ≤ max1≤i≤N |R̂i−Ri|+ |N−1

∑N
i=1 Ri−θ0| → 0 in probability. It follows

from a Taylor series expansion that

n
1
2 (θ̂par

SSL − θ0) = n−
1
2

n∑
i=1

(C−1
WWCWG)T

{
(Wi − µW )(Yi − µy)−Wiβ̄

TWi

}
+ op(1)

where CWG = E{Wi(Gi−µg)} and µW = E(Wi). Since W includes 1 andG, it is straight-

forward to see that Gi − µg = (C−1
WWCWG)TWi and (C−1

WWCWG)TµW = 0. It follows that

n
1
2 (θ̂par

SSL − θ0) = n−
1
2

n∑
i=1

(ri −Ri) + op(1),

which converges in distribution to a normal with mean zero and variance (σpar
SSL)

2 = E{(ri−

Ri)
2}.

1.6.2 Asymptotic properties of our estimators

To derive asymptotic properties for θ̂SSL, we first write θ̂SSL − θ0 = ŴSSL(β̂), with ŴSSL(β) =

θ̂SSL(β)− θ0(β) and our next goal is to show that

ŴSSL(β̂)− ŴSSL(β̄) ≡ Ê1 + Ê2 + Ê3 + Ê4 = op(n
− 1

2 ).

where θ0(β) =
∫
m(x,β)dP(x,β) = E{E(ri | βTXi)} = E(ri) = θ0,

Ê1 =

∫
{Ŵm(x, β̂)− Ŵm(x, β̄)}dP̂(x, β̂), Ŵm(x,β) = m̂(x,β)−m(x,β)

Ê2 = N−
1
2

∫
{m(x, β̂)−m(x, β̄)}dG(x, β̂), Ê3 = N−

1
2

∫
m̂(x, β̄)d{Ĝ(x, β̂)− Ĝ(x, β̄)}

Ê4 =

∫
Ŵm(x, β̄)d{P(x, β̂)− P(x, β̄)}.

To bound Ê1, we note that

sup
x,β
|m̂(x,β) + b̂(x,β)− m̃(x,β)| = op(n

− 1
2 ),

where b̂(x,β) = (µ̂y − µy)µg(x,β), µg(x,β) = E(Gi | βTXi = x)− µg, and

m̃(x,β) =

∑n
i=1 Kh(β

TXi − x)ri∑n
i=1 Kh(βTXi − x)

.
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Let W̃m(x,β) = m̃(x,β) − m(x,β). It then follows from the convergence of (1.2), the

smoothness of µg(x,β) and the root-n convergence of β̂ that

Ê1 ≤ op(n
− 1

2 ) +

∣∣∣∣∫ {W̃m(x, β̂)− W̃m(x, β̄)}dP̂(x, β̂)

∣∣∣∣+ |µ̂y − µy|
∣∣∣∣∫ {µg(x, β̂)− µg(x, β̄)}dP̂(x, β̂)

∣∣∣∣
≤ op(n

− 1
2 ) +

∣∣∣∣∫ {W̃m(x, β̂)− W̃m(x, β̄)}dP(x, β̂)

∣∣∣∣
To bound the last term above, we next aim to show that

sup
x,β

∣∣∣∣∂m̃(x,β)

∂β
− ∂m(x,β)

∂β

∣∣∣∣ = op(1). (1.3)

To this end, we first note that for q = 0, 1,

êq(x) = n−1

n∑
i=1

Kh(β
TXi−x)rqi −E{Kh(β

TXi−x)rqi } =

∫
rqKh(s−x)d{P̂β(s, r)−Pβ(s, r)}

where P̂β(s, r) = n−1
∑n

i=1 I(βTXi ≤ s, ri ≤ r) and Pβ(s, r) = P (βTXi ≤ s, ri ≤ r).

From the strong approximation result of Tusnády Tusnády (1977), there exists a Gaussian

process GPn(s, r;β) such that

sup
s,β

∥∥∥n 1
2{P̂β(s, r)− Pβ(s, r)} −GPn(s, r;β)

∥∥∥ = O{n−
1
2 log(n)2}, almost surely.

It follows that

êq(x) = n−
1
2

∫
rqKh(s− x)dGPn(s, r;β) +O{(nh)−1 log(n)2} = o[{n−

1
2 + (nh)−1}nε]

In the last step above, we used the fact that supx,β ‖
∫
rqKh(s−x)dGPn(s, r;β)‖ = o(nε) for

any ε > 0 (Bickel and Rosenblatt, 1973). Therefore, we have

sup
β,x

∣∣∣∣∣n−1

n∑
i=1

Kh(β
TXi − x)rqi − E(rqi | βTXi = x)Ṗ(x,β)

∣∣∣∣∣ = o[{n−
1
2 + (nh)−1}nε + h2]

for any ε > 0. Similarly, for any ε > 0 and l = 1, ..., p,

n−1

n∑
i=1

K̇h(β
TXi − x)rqiXli − E{K̇h(β

TXi − x)rqiXli}

= n−1/2

∫
zKh(s− x)dG

H
(q)
ln

(s, z;β) +O{h−1n−2/3 log(n)d̃} = o(nε−1/2h−1)
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where H(q)
l (s, z;β) = P (βTXi ≤ s, rqiXli ≤ z), Ĥ(q)

l (s, z;β) = n−1
∑n

i=1 I(βTXi ≤ s, rqiXli ≤

z), and GHn(s, z;β) is a Gaussian process such that

sup
s,z,β

∥∥∥n 1
2{Ĥ(q)

l (s, z;β)−H(q)
l (s, z;β)} −G

H
(q)
ln

(s, z;β)
∥∥∥ = O(n−1/6 log(n)d̃) almost surely.

The existence of the Gaussian process is ensured by the results of Massart Massart (1989).

Furthermore, by the standard Taylor series expansion for the bias term, we have

sup
β,x

∥∥∥∥∥n−1

n∑
i=1

K̇h(β
TXi − x)rqiXi −

∂E(rqiXi | βTXi = x)

∂β
Ṗ(x,β)

∥∥∥∥∥ = o(nε−1/2h−1 + h)

for any ε > 0. It follows that

sup
x,β

∣∣∣∣∂m̃(x,β)

∂β
− ∂m(x,β)

∂β

∣∣∣∣ = O(nε−1/2h−1 + h) = op(1)

for any ε > 0 provided that h = O(n−ν) for ν ∈ [1/5, 1/2). This, together with the root-n

convergence of β̂ and (1.3) implies that Ê1 = op(n
− 1

2 ). Since n/N → 0, it is straightforward

to see that |Ê2|+|Ê3| = op(n
− 1

2 ). From the uniform convergence of m̃(x,β) and (1.3) and the

root-n convergence of β̂, we have Ê4 = op(n
− 1

2 ). It follows that ŴSSL(β̂)−ŴSSL(β̄) = op(n
− 1

2 )

and therefore

n
1
2 (θ̂SSL − θ0) = n

1
2ŴSSL(β̄) + op(1) = n

1
2{θ̂SSL(β̄)− θ0}+ op(1).

Next, the consistency of θ̂SSL(β̄) =
∫
m̂(x, β̄)dP̂(x, β̄) follows directly from the uniform

consistency of m̂(x, β̄) and P̂(x, β̄). To derive the asymptotic distribution of n
1
2ŴSSL(β̄),

we write n
1
2ŴSSL(β̄) = I1 + I2 + I3, where I1 = (n/N)1/2

∫
m(x, β̄)dĜ(x, β̄),

I2 = (n/N)
1
2

∫
{m̂(x, β̄)−m(x, β̄)}dĜ(x, β̄), and I3 = n

1
2

∫
{m̂(x, β̄)−m(x, β̄)}dP(x, β̄).

Since Ĝ(x, β̄) converges weakly to a zero-mean Gaussian process and n/N → 0, we have

I1 = op(1). The term I2 can be shown as op(1) following Lemma A.1 of Chakrabortty

and Cai Chakrabortty and Cai (2017). We then write

I3 = n
1
2

∫
{m̃(x, β̄)−m(x, β̄)}dP(x, β̄)− n

1
2 (µ̂y − µy)

∫
µg(x, β̄)dP(x, β̄)

= n−
1
2

n∑
i=1

∫
Kh(β̄

TXi − x){ri −m(x, β̄)}dx+ op(1)
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= n−
1
2

n∑
i=1

{ri −m(β̄TXi, β̄)}+ op(1) = n−
1
2

n∑
i=1

{ri − E(ri | Ri)}+ op(1)

It then follows that n
1
2 (θ̂SSL − θ0) converges in distribution to a normal with mean 0 and

variance σ2
SSL = E{var(ri | β̄TXi)}.

For the bias corrected estimator, following similar arguments as given above, we have

θ̂SSL − θ̂BC
SSL =

∫
{m̂(x, β̄)−m(x, β̄)}dP(x, β̄) + n−1

n∑
i=1

{
m(β̄TXi, β̄)− ri)

}
+ op(n

− 1
2 ) = op(n

− 1
2 ),

where P̃(x,β) = n−1
∑n

i=1 I(βTXi). Thus, θ̂BC
SSL is asymptotically equivalent to θ̂SSL and thus

n
1
2 (θ̂BC

SSL − θ0) also converges in distribution to a normal with mean 0 and variance σ2
SSL.
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2.1 Introduction

One major problem in using EMRs to build risk prediction models is that event times are

difficult to determine from the data. Labor-intensive manual chart reviews are required

to extract event times; however, if the clinical event occurs before the patient enters the

specific EMR system, even chart reviews will not be able to recover the event time. Pheno-

typing chart reviews, on the other hand, are quick and can give us partial information on

the survival times through obtaining disease status. Performing these phenotyping chart

reviews gives rise to current status data, a type of survival data where the occurrence of a

clinical condition is only determined at a single time of examination (in our case, the last

doctor’s visit before the chart review is performed). The exact time to disease is still un-

known; however, we know whether or not the disease occurred prior to the examination

time. In addition to disease status, the wide breadth of EMR data provides us with other

related information on event times. For example, the first occurrence of a International

Classification of Diseases, Ninth Revision (ICD9) diagnosis code related to the disease for

a patient can give us an estimate of the time to occurrence of the disease. Alternatively,

we can use the first natural language processing (NLP) mention of a term related to the

disease in the doctor’s notes as the estimate of the survival time. These mismeasured

estimates can be used in conjunction with the current status data setup to obtain more

efficient estimates of the effect of baseline covariates on survival.

Several regression models have been developed to analyze current status data, or

the more general interval censored data. For example, under the proportional hazards

(PH) model, Huang et al. (1996) proposed a nonparametric maximum likelihood estima-

tor (NPMLE) approach to estimate the regression parameters, and Pan (1999) extended

the iterative convex minorant (ICM) algorithm for interval-censored data. Under the

proportional odds (PO) model, Rossini and Tsiatis (1996) used a maximum likelihood

approach, and Huang and Rossini (1997) used sieve estimation procedures. Other regres-

sion methods under the additive hazard model and accelerated failure time (AFT) models

have also been proposed (Lin et al., 1998; Chen and Sun, 2010; Betensky et al., 2001; Tian

and Cai, 2006). More general models, such as the semiparametric linear transformation
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model proposed by Sun and Sun (2005), have also been studied. However, most of these

methods require some assumptions about the censoring distribution.

In this paper, we first propose a simple robust estimator for current status data de-

fined by a set of kernel-weighted estimating equations that does not depend on the cen-

soring distribution, under a nonparametric transformation (NPT) model, which includes

PH, PO, AFT, and additive hazards models as special cases. We then propose an esti-

mator that incorporates the information from the mismeasured estimates of the survival

time, using the derivative of a rank estimator and combining it with our current status

estimator.

The rest of the paper is formatted as follows. In section 2.2, we introduce our esti-

mators for the regression coefficients. In section 2.3, we perform a simulation study to

explore our methods and present the results of our simulations, and in section 2.4, we

apply our methods to an example dataset using EMR data from the Partners HeathCare

System. Concluding remarks are giving in section 2.5.

2.2 Methods

In this section, we detail our proposed estimator for estimating the effect of baseline co-

variates, denoted by Z, on t−year survival. Suppose the full cohort consists ofN subjects.

The true time to disease, denoted by T , is unobserved, but through chart reviews,

we can obtain information about disease status for a small subset of patients n << N ,

denoted by δ, at the time that the chart review was performed, denoted by C. We note

that δ = I(T ≤ C). EMRs can also provide us with surrogates for T , such as the time of the

first ICD9 code related to the disease or the time of the first NLP mention of the disease in

the doctor’s notes, denoted by TTT = (T1, ...,TK)T. Thus, the full underlying data is F =

{(δi, Ti, Ci,Zi,TTT i)
T, i = 1, . . . , n}, the labeled data is L = {(δi, Ci,ZT

i ,TTT
T
i )

T, i = 1, . . . , n},

the unlabeled data is U = {(Ci,ZT
i ,TTT

T
i )

T, i = n + 1, . . . , N}, and the observable data is

D = L ∪U . The censoring time C is assumed to be independent of T , Z and TTT .

We assume the following semi-parametric transformation (ST) failure time model:

P (Ti ≤ t | Zi) = g(h0(t) + βT

0Zi)
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where g(·) is a known smooth probability distribution function, h0(t) is an unspecified

smooth increasing function. For each of the mis-measured survival outcome Tk, we as-

sume that

log(Tki) = log Ti + εki, for k = 1, ...,K,

where εki is independent of both Ti and Zi with a completely unspecified distribution

function and we also leave the correlation structure among ε = (ε1, ..., εK)T unspecified.

2.2.1 Estimation

We can use the following estimating equations derived from Van Der Laan and Robins

(1998) to obtain estimates for h0(t) and β:

n∑
i=1

Kh(Ci − tj)(δi − g(h0(tj) + β′Zi)) = 0 for all j = 1 . . . k

k∑
j=1

n∑
i=1

Kh(Ci − tj)Zi(δi − g(h0(tj) + β′Zi) = 0

We can solve this system of equations iteratively by first fixing β in the first equation

and obtaining an estimate for h0(tj) for all values of tj , call them ĥ0(tj). We can then plug

in ĥ0(Ci) for h0(Ci) into the simplified second equation below to get an estimate for β.

n∑
i=1

Zi(δi − g(h0(Ci) + β′Zi) = 0

We will call this estimator β̂δ. To derive an estimator leveraging TTT , we first consider

the MRC estimator, proposed by Cai and Cheng (2007), as the maximizer of

Qk(β) =
∑
i 6=j

I(β′Zi > β′Zj)
I(X∗ki < X∗kj)δ

∗
ki

Ĝ(X∗ki)
2

where X∗ki = min(Ci,Tki), Ĝ(t) = 1
n

∑N
i=1 I(X∗ki ≤ Ci), and δ∗ki = I(Tki ≤ Ci). We note

that this estimator can only estimate β up to a scalar. Modifying this objective function

by using a kernel to approximate the indicator function, and taking the derivative of this

function with respect to β, we get the following score function:
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Sk(β) =

∑
i 6=j(Zi − Zj)Kh(β

′Zi − β′Zj)
I(X∗ki<X

∗
kj)δ∗ki

Ĝ(X∗ki)
2∑

i 6=j
I(X∗ki<X

∗
kj)δ∗ki

Ĝ(X∗ki)
2

Although TTT does not follow a NPT model, we show in the Appendix that it does

follow a single index model, so E[Sk(B̂δ)] = 0 still holds, where B̂δ = β̂δ/||β̂δ||2.

We define our combined estimator as β̂SSL = β̂δ + w′S(B̂δ), where S(B̂δ) =

(S1(B̂δ), . . . , SK(B̂δ))T . We choose w = −Σ−1
SSΣSβ so that the variance of β̂SSL is minimized,

where ΣSS is the variance-covariance matrix for S(B̂δ), and ΣSβ is the covariance matrix

between S(B̂δ) and β̂δ. To estimate Σ−1
SSΣSβ , we use perturbation resampling to obtain P

perturbed estimates of β̂∗δ and S∗(B̂∗δ) and then perform a ridge regression of β̂∗δ on S∗(B̂∗δ)

to account for potential overfitting from using multiple surrogates. We use the solution

of the following objective function as our estimate for Σ−1
SSΣSβ :

min
α

1

P

P∑
p=1

1

2

(
β̂∗δp − αTS∗p(B̂∗δp)

)2

+
1

2
λ||α||22

where λ is chosen to have the minimum testing error via cross-validation.

2.3 Simulations

We conducted a simulation study to assess the performance of our estimator in finite

sample settings. Throughout, we let h0(t) = 3 log(t/4). Zi = (Zi,1, Zi,2, Zi,3) was generated

from a multivariate normal distribution with mean 0 and covariance matrix Σ = 0.2+0.8I ,

and Ti was generated from Zi and β0 using a inverse CDF transform. We consider the

following two possible values for β0:

β0A = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)

β0B = (1, 1, 1,−0.5,−0.5,−0.5, 1.2, 1.2, 1.2, 0)

We then generate Ci from a Uniform(0, a) distribution, independent of Ti, where a

is chosen such that P (δi = 1) ≈ 0.5. We generate K = 2 surrogates, T1 and T2. εk is

generated from a mixture of normal distributions. We consider the following two sets of

distributions of εk in our simulations:
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ε1,A ∼ D1iN(0, 0.1) + (1−D1i)N(0.1, 0.03) ε2,A ∼ D2iN(−0.05, 0.05) + (1−D2i)N(0, 0.07)

ε1,B ∼ D1iN(0.2, 0.3) + (1−D1i)N(−0.1, 0.1) ε2,B ∼ D2iN(0, 0.2) + (1−D2i)N(0.3, 0.1)

where Dki follows a Bernoulli(0.5) distribution. The bandwidth h for the kernel is

chosen to be τ̂ × n−0.3, where τ̂ is the empirical standard error of β̂Tδ Z. We summarize

results using 500 datasets. For the standard error estimates, we use 200 perturbations.

In Table 2.1, we show results for the bias×100, mean square error (MSE), and relative

efficiency (RE) of our point estimators. Both estimators have negligible biases, regard-

less of the choice for β0 and εk. The relative efficiency of the semi-supervised estimator,

compared to the βδ estimator, ranges from 1.31 to 1.99.

We also investigated the performance of our standard error estimates. In Table 2.2,

we show how the estimated standard error compares with the empirical standard error of

the point estimates across the 500 datasets, as well as the coverage of β0 from the 95% con-

fidence interval constructed using our standard error estimate. We note that the empirical

coverage probabilities range from 0.930 to 0.964, close to the nominal level.

2.4 Application to EMR study

We applied our proposed method to investigate the risk prediction potential of 21 genes

associated with low density lipoprotein (LDL) cholesterol levels on developing coronary

artery disease (CAD), in a cohort of rheumatoid arthritis (RA) patients. Coronary artery

disease (CAD) is the global leading cause of death, killing 7.4 million people around the

world annually. Unfortunately, genome-wide association studies have not found many

reproducible genetic risk factors for CAD. However, one of the major risk factors for CAD,

high LDL cholesterol levels, has been reproducibly shown to be associated with approxi-

mately 20 genetic loci.

The goal of our analysis is to examine the association between CAD and 21 genetic

loci associated with LDL among RA patients, using an EMR cohort from the Partners
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Table 2.1: Bias (×100) of the proposed estimators as well as the efficiency of the score
estimator relative to the βδ estimator (RE) under various choices for β0, σ1, and σ2.

(I) β0A = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
εk,A εk,B

Biasδ Biasscore RE Biasscore RE
Z1 0.2327 -0.6468 1.5077 -0.4327 1.4618
Z2 0.8381 0.3501 1.6551 0.4035 1.6048
Z3 -0.4285 -1.0838 1.8785 -0.7074 1.7393
Z4 -0.1550 -0.7623 1.8916 -0.1732 1.8104
Z5 0.7304 -0.1255 1.7124 0.0729 1.5454
Z6 -0.2772 -0.7956 1.6077 -0.4364 1.5104
Z7 -0.0913 -0.3493 1.6987 -0.1909 1.5904
Z8 1.3498 -0.3360 1.8290 -0.2807 1.6497
Z9 -0.1146 -1.0931 1.9423 -0.6579 1.8230

Z10 0.1858 0.1851 1.6611 0.4462 1.5783

(II) β0B = (1, 1, 1,−0.5,−0.5,−0.5, 1.2, 1.2, 1.2, 0)
εk,A εk,B

Biasδ Biasscore RE Biasscore RE
Z1 0.0421 -0.7663 1.4408 -0.5378 1.3571
Z2 0.0551 -0.0533 1.4544 -0.1404 1.4168
Z3 0.0884 -0.5620 1.4902 -0.0675 1.4150
Z4 -0.8258 0.8385 1.7733 0.6370 1.6743
Z5 0.6851 1.3377 1.5489 1.3396 1.4494
Z6 0.4795 1.2640 1.6818 0.9752 1.4756
Z7 -0.0820 -0.4629 1.4342 -0.0722 1.3411
Z8 0.1643 -0.2784 1.3727 0.0118 1.3190
Z9 0.0811 -0.6045 1.4489 -0.3663 1.3315

Z10 0.9032 1.4520 1.9967 1.4286 1.8970

HealthCare System (Liao et al., 2010). The RA EMR cohort originally consists of 4,453

patients. Of these patients, 1,311 had available genetic data on the 21 single nucleotide

polymorphisms (SNPs) previously identified to be associated with LDL levels. Gold-

standard labels for CAD status were provided by a rheumatologist using manual chart

reviews (Liao et al., 2015). A total of 1,307 patients had definitive CAD status labels,

which we use as our final dataset. For this analysis, we let δi be the CAD status and Ci

be the patient’s age at the time of the chart review. We use 5 surrogates for event time:

the ICD9 billing codes for CAD and ischemic heart disease, as well as NLP mentions of

arteriosclerotic heart disease, coronary disease, and myocardial infarction in the doctors’

23



Table 2.2: Empirical SE (ESE), average of the estimated SEs (ASE), and empirical coverage
levels of the quantile based 95% CIs (CovP) for our estimators under various choices for
β0, σ1, and σ2

(I) β0A = (1, 1, 1, 1, 1, 1, 1, 1, 1, 1)
εk,A εk,B

ESE ASE CovP ESE ASE CovP
Z1 0.1294 0.1244 0.9420 0.1315 0.1254 0.9300
Z2 0.1302 0.1260 0.9440 0.1322 0.1272 0.9420
Z3 0.1172 0.1247 0.9560 0.1221 0.1260 0.9600
Z4 0.1204 0.1242 0.9520 0.1233 0.1251 0.9480
Z5 0.1211 0.1247 0.9480 0.1275 0.1260 0.9500
Z6 0.1164 0.1248 0.9520 0.1203 0.1257 0.9460
Z7 0.1165 0.1240 0.9620 0.1204 0.1258 0.9560
Z8 0.1221 0.1253 0.9520 0.1286 0.1263 0.9500
Z9 0.1163 0.1244 0.9560 0.1204 0.1259 0.9520

Z10 0.1244 0.1241 0.9460 0.1275 0.1257 0.9460

(II) β0B = (1, 1, 1,−0.5,−0.5,−0.5, 1.2, 1.2, 1.2, 0)
εk,A εk,B

ESE ASE CovP ESE ASE CovP
Z1 0.1104 0.1101 0.9520 0.1139 0.1112 0.9460
Z2 0.1176 0.1105 0.9360 0.1192 0.1117 0.9220
Z3 0.1125 0.1105 0.9540 0.1155 0.1117 0.9440
Z4 0.0945 0.0931 0.9360 0.0975 0.0944 0.9440
Z5 0.0942 0.0931 0.9440 0.0974 0.0945 0.9520
Z6 0.0890 0.0931 0.9640 0.0954 0.0946 0.9460
Z7 0.1136 0.1190 0.9540 0.1176 0.1200 0.9460
Z8 0.1215 0.1191 0.9420 0.1240 0.1205 0.9300
Z9 0.1179 0.1188 0.9380 0.1231 0.1201 0.9320

Z10 0.0862 0.0869 0.9540 0.0886 0.0885 0.9480

notes. Our time invariant covariates Z are the 21 LDL SNPs, race, and sex.

The point estimators, as well as their 95% confidence intervals are shown in Table 2.3.

The results show that the point estimators for the β coefficients are reasonably consistent

between the two methods; however, the 95% CIs from the semi-supervised method are

always smaller than the current status method. The semi-supervised method identifies

rs2902940 and rs11065987 as being significantly associated with CAD (p < 0.05), whereas

the current status method does not identify any of the LDL SNPs as being associated with

CAD.
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Table 2.3: Point estimates and 95% CIs of the risk prediction potential of sex, race, and
SNPs associated with LDL on CAD, along with p-values from a Z-test

βδ pδ βscore pscore
sex -0.8505 (-1.3332, -0.3678) 0.0006 -0.7180 (-1.1313, -0.3046) 0.0007

race 0.0562 (-0.5754, 0.6879) 0.8615 0.2434 (-0.1843, 0.6711) 0.2647
rs2479409 -0.1315 (-0.4934, 0.2305) 0.4765 -0.1648 (-0.4767, 0.1472) 0.3006
rs2131925 0.1352 (-0.1803, 0.4508) 0.4009 0.1228 (-0.1419, 0.3874) 0.3632
rs2642442 0.0335 (-0.3145, 0.3815) 0.8503 0.0211 (-0.2577, 0.2998) 0.8823
rs1367117 0.0387 (-0.3376, 0.4150) 0.8402 -0.0078 (-0.3114, 0.2958) 0.9598
rs4299376 0.0653 (-0.2592, 0.3899) 0.6932 0.0744 (-0.2335, 0.3822) 0.6360
rs6882076 -0.1204 (-0.4574, 0.2167) 0.4840 -0.1358 (-0.4589, 0.1873) 0.4101

rs12670798 -0.0316 (-0.4350, 0.3717) 0.8778 -0.2091 (-0.5040, 0.0858) 0.1646
rs2072183 0.1750 (-0.2210, 0.5711) 0.3864 0.1603 (-0.2015, 0.5221) 0.3853
rs2081687 -0.0256 (-0.3505, 0.2992) 0.8770 -0.0473 (-0.3561, 0.2614) 0.7638
rs2255141 -0.0903 (-0.4430, 0.2624) 0.6158 0.0090 (-0.2784, 0.2963) 0.9512
rs174546 0.0258 (-0.3501, 0.4017) 0.8932 0.0011 (-0.2802, 0.2823) 0.9941
rs964184 0.0726 (-0.3815, 0.5267) 0.7539 0.0493 (-0.3662, 0.4648) 0.8161

rs11220462 -0.2930 (-0.8839, 0.2980) 0.3312 -0.2354 (-0.6884, 0.2175) 0.3083
rs11065987 -0.2510 (-0.5469, 0.0449) 0.0964 -0.2846 (-0.5088, -0.0604) 0.0128

rs1169288 -0.0206 (-0.3613, 0.3201) 0.9057 -0.0050 (-0.2876, 0.2777) 0.9725
rs8017377 -0.1515 (-0.5096, 0.2066) 0.4069 -0.0379 (-0.3469, 0.2711) 0.8100
rs3764261 -0.0275 (-0.3729, 0.3179) 0.8760 -0.0554 (-0.3205, 0.2097) 0.6822
rs2000999 0.3437 (-0.0768, 0.7642) 0.1091 0.3457 (-0.0079, 0.6992) 0.0554
rs7206971 0.1983 (-0.1294, 0.5260) 0.2357 0.2619 (-0.0073, 0.5311) 0.0566
rs4420638 0.1729 (-0.2373, 0.5830) 0.4087 0.0456 (-0.2868, 0.3780) 0.7880
rs2902940 0.3091 (-0.0198, 0.6381) 0.0655 0.3392 (0.0761, 0.6023) 0.0115

2.5 Discussion

We proposed two robust estimators to analyze current status data in the EMR setting. Our

proposed SSL estimator is able to incorporate the imperfect estimates of survival time

available in the EMR databases to improve on the current status βδ estimator. Simulation

results show that our estimators are consistent and that the SSL estimator is more efficient,

compared to the βδ estimator, which is confirmed by applying our method to a EMR

cohort of RA patients.

In practice, we note that the baseline covariates for the model may need to be time-

invariant covariates, such as sex or genetics, since it may be difficult to determine baseline

covariates measured prior to developing the disease. If we can determine disease status
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at baseline (ex. the disease of interest has a very specific ICD9 code), then we can also use

time-dependent variables measured prior to baseline.

Our proposed combined estimator, along with its standard error estimate, can be

used to test the risk prediction potential of baseline covariates on developing a disease

or clinical event of interest, for example, using a Z-test. The improved efficiency of our

estimator would lead to increased power in such tests. Further research could be done to

use our combined estimator to estimate the risk of developing a disease.

2.6 Appendix

To show thatE[Sk(B̂δ)] = 0, we first show that each of the Tk follows a single index model.

By direct calculation, we find that conditional distribution function of Tki is

P (Tki ≤ t|Zi) = P (log Tki ≤ log t|Zi) = P (log Ti + εki ≤ log t|Zi)

= P (log T ≤ log t− εki|Zi) = P (T ≤ te−εki |Zi)

=

∫
g(h0(te−u) + β′0Zi)fεki(u)du,

which is still a increasing function of β′0Zi. Thus, by Han (1987) and Sherman (1993),

the maximizer of Qk(β) is consistent and asymptotically normal.

Let

S̃k(β) =
1

n(n− 1)

∑
i 6=j

(Zi − Zj)Kh(β
′Zi − β′Zj)I(Tki ≤ Tkj)

and

τ(β) = E [(Zi − Zj)Kh(β
′Zi − β′Zj)I(Tki ≤ Tkj)

+(Zj − Zi)Kh(β
′Zi − β′Zj)I(Tkj ≤ Tki)]

= 2E
[
S̃k(β)

]
In the following, we prove that E

[
S̃k(β0)

]
= 0 by showing that E [τ(β0)] = 0. The

results will also hold for Sk(β0) since C is independent of T , Z, and TTT .

Kh(·) is symmetric, so we note that

τ(β0) = E [(Zi − Zj)Kh(β
′
0Zi − β′0Zj)I(Tki ≤ Tkj)
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+(Zj − Zi)Kh(β
′
0Zj − β′0Zi)I(Tkj ≤ Tki)]

= E {E [(Zi − Zj)Kh(β
′
0Zi − β′0Zj)(I(Tki ≤ Tkj)− I(Tki ≥ Tkj))|Zj = z]}

= E {(Zi − z)Kh(β
′
0Zi − β′0z)E [I(Tki ≤ Tkj)− I(Tki ≥ Tkj)|Zj = z]}

= E {(Zi − z)Kh(β
′
0Zi − β′0z)E [I(Tki ≤ Tkj)− I(Tki ≥ Tkj)|β′0Zj = β′0z]}

as Tki follows a single index model. Let the first p − 1 components of z be r and the pth

component of z be zp. We also let D(u) = E [I(Tki ≤ Tkj)− I(Tki ≥ Tkj)|β′0Zj = u] Then,

τ(β0) =

∫
(Zi − z)Kh(β

′
0Zi − β′0z)D(β′0z)fZ(z)dz

=

∫
(Zi − z)Kh(β

′
0Zi − β′0z)D(β′0z)fr(r)fzp|r(zp|r)drdzp

=

∫
(Zi − z)Kh(β

′
0Zi − β′0z)D(β′0z)fr(r)fβ′0z|r(β

′
0z|r)d(β′0z)dr

=

∫
(Zi − z)D(β′0Zi)fr,β′0Zi

(r,β′0Zi)dr + o(h)

=

∫
(Zi − z)D(β′0Zi)fr|β′0Zi

(r|β′0Z)fβ′0Zi
(β′0Zi)dr + o(h)

= (Zi − E [Zi|β′0Zi])D(β′0Zi)fβ′0Z(β′0Zi) + o(h)

Thus,

E [τ(β0)] = E
[
(Zi − E [Zi|β′0Zi])D(β′0Zi)fβ′0Z(β′0Zi)

]
= E

{
E
[
(Zi − E [Zi|β′0Zi])D(β′0Zi)fβ′0Z(β′0Zi)|Zi = z

]}
= E

{
(z− E [Zi|β′0Zi = β′0z])fβ′0Z(β′0zi)E [D(β′0Zi)|Zi = z]

}
= E

{
(z− E [Zi|β′0Zi = β′0z])fβ′0Z(β′0zi)E [D(β′0Zi)|β′0Zi = β′0z]

}

since Tki follows a single index model. We note that

E [D(β′0Zi)|Zi = z]

= E [I(Tki ≤ Tkj)− I(Tki ≥ Tkj)|β′0Zj = β′0z,β
′
0Zi = β′0z]

= 0

so E [τ(β0)] = 2E
[
S̃k(β)

]
= 0.
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3.1 Introduction

In the previous chapter, we focused on estimating the effects of covariates on the risk of

developing a disease in our risk prediction model; however, in this chapter, we will focus

on predicting the actual risk of developing the disease using EHR data, which will be

useful in aiding clinicians in their decision making. As mentioned previously, exact event

times are difficult to obtain in an EHR setting; however, EHRs can still provide us with

mismeasured estimates of event time, such as the time to the first ICD9 diagnosis code for

a patient or the first NLP mention of a term related to the disease in the clinicians’ notes.

In lieu of the exact event times, we can use these mismeasured estimates to build our risk

prediction model.

Several methods have been developed to account for measurement errors in the co-

variates; however, there is much less literature on methods to handle measurement error

in survival outcomes. Under parametric models such as proportional hazards (PH) and

accelerated failure time (AFT), Skinner and Humphreys (1999) use a bias-corrected maxi-

mum likelihood estimator to handle multiplicative for survival time, and Oh et al. (2018)

extend the SIMEX method developed by Cook and Stefanski (1994) to handle measure-

ment error in survival outcomes. Comte et al. (2017) uses a nonparametric quotient esti-

mator to obtain estimates of the hazard function, survival function, and density function.

However, none of these methods are able to handle multiple mismeasured estimates of

survival time, which can be combined to obtain a more precise estimate for risk predic-

tion.

In this paper, we propose a simple maximum likelihood estimator for t−year survival

using multiple mismeasured estimates of survival time under a semiparametric transfor-

mation (ST) model, which includes proportion hazards and proportional odds models as

special cases. The rest of the paper is formatted as follows. In section 3.2, we introduce our

estimators for the regression coefficients. In section 3.3, we perform a simulation study

to explore our methods and present the results of our simulations, and in section 3.4, we

apply our methods to an example dataset using EMR data from the Partners Biobank.

Concluding remarks are giving in section 3.5.
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3.2 Methods

In this section, we detail our proposed estimator for estimating the effect of baseline co-

variates, denoted by Z, on t−year survival. Suppose the full cohort consists of n subjects.

Let T denote the unobservable true time to disease and C denote the follow up time.

EMRs can provide us with imprecise proxies for T , such as the time of the first ICD9

code related to the disease or the time of the first NLP mention of the disease in the

doctor’s notes. We denote these proxies by TTT ∗ = (T ∗
1 , ...,T

∗
K)T. TTT ∗ is observable through

X∗ = (X∗1 , ..., X
∗
K) and ∆∗ = (∆∗1, ...,∆

∗
K), where X∗k = min(T ∗

k , C) and ∆∗k = I(T ∗
k ≤

C). The full underlying data is F = {(∆i, Ti, Ci,Z
T
i ,TTT

∗T
i ,X

∗T
i ,∆

∗T
i )T, i = 1, . . . , n}, and

the observable data is D = {(Ci,ZT
i ,X

∗T
i ,∆

∗T
i )T, i = 1, . . . , n} where n is the number of

patients. The censoring time C is assumed to be independent of T , TTT ∗, and Z.

We assume the following semi-parametric transformation (ST) failure time model for

log T :

P (log Ti ≤ t | Zi) = g(h0(t) + βT

0Zi) = G
(
H(t)eβ

T
0Zi

)
where g(·) is a known smooth probability distribution function, h0(t) is an unspecified

smooth increasing function, H(t) = eh0(t), and G(x) = g(log x). For each of the mis-

measured survival outcome T ∗
k , we assume that

log(T ∗
ki) = log Ti + εki, for k = 1, ...,K,

where εki is independent of Ti, C, and Zi and has a distribution function fk known up to

a parameter vector αk. Thus, T ∗
ki can be modeled as:

P (log T ∗
ki ≤ t | Zi) =

∫
G
(
H(t− ε)eβT

0Zi

)
fk(ε,αk)dε

3.2.1 Estimation

We are interested in estimating β0 and h0(t) together with the nuisance parameters

α0 = (α1, ..., αK). We approximate h0(t) using a regression spline such that H(t) =∫ t
−∞ e

γT
0B(s)ds, where B(s) is composed of κ linear basis functions. Thus, for k = 1, ..., K,

we can approximate P (log T ∗
ki ≤ t | Zi) as π∗k(t;αk,γ,β,Zi):
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π∗k(t;αk,γ,β,Zi) =

∫
G
(∫ t−ε

−∞
eγ

TB(s)+βTZids

)
fk(ε,αk)dε

We estimate θ = (γ,β,α) as the maximum composite likelihood estimator θ̂ =

argmaxθ ̂̀∗(θ), where ̂̀∗(θ) is the log-likelihood

̂̀∗(θ) =
K∑
k=1

n∑
i=1

∆∗ki log π̇∗k(X
∗
ki;αk,γ,β,Zi) + (1−∆∗ki) log(1− π∗k(X∗ki;αk,γ,β,Zi))

,

and π̇∗k(t;αk,γ,β,Zi) = ∂π∗k(t;αk,γ,β,Zi)/∂t. The resulting estimator for h0(t) is

ĥ(t) = log Ĥ(t) = log
(∫ t
−∞ e

γ̂TB(s)ds
)

. Thus, our estimate for the risk is:

P̂ (log Ti ≤ t | Zi) = g(ĥ(t) + β̂TZi)

3.3 Simulations

We conducted a simulation study to assess the performance of our estimator in finite

sample settings. Throughout, we let n = 5000. Zi = (Zi,1, Zi,2, Zi,3) was generated from a

multivariate normal distribution with mean 0 and covariance matrix Σ = 0.2 + 0.8I , and

log Ti was generated from Zi, h0(t) and β0 using a inverse CDF transform. We consider

the following three possible forms for h0(t):

h0,linear(t) = −15 + 5t

h0,cubic(t) = t3

h0,probit(t) = t+ 100Φ

(
t

10
− 0.2

)
− 55

We then generate Ci from a Uniform(a, b) distribution, independent of Ti, where a

and b are chosen such that P (Ti ≤ Ci) ≈ 0.5. To estimate h0(t), we use κ = 6 knots for our

basis spline B(s) defined at the 10th, 20th, 40th, 60th, 80th, and 90th percentiles of C. We

generate K = 2 surrogates, T ∗
1 and T ∗

2 . The distribution of the errors for our surrogates

follows a normal distribution with ε1 ∼ N(0, 0.3) and ε2 ∼ N(0, 0.1).
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To calculate the likelihood, we use Gaussian-Hermite quadrature to estimate integrals

over ε in both π∗k(t;αk,γ,β,Zi) and π̇∗k(t;αk,γ,β,Zi). The Broyden–Fletcher–Goldfarb–

Shanno (BFGS) algorithm is used to maximize the likelihood, with initial values for γ and

β estimated using logistic regression.

In the following tables, we show results for the mean and standard error of the esti-

mates using our method, compared to a naive method, where the TTT ∗ are assumed to be

the true T, for different forms of h0(t)

The mean of our estimates using the h0,linear(t) are close to the true values, and using

multiple surrogates definitely improves the efficiency of our estimates. The mean of the

estimates using our method with h0,cubic(t) show bias, especially in the estimates of α.

The efficiency of the results is also increased when using multiple surrogates, except for

α. The bias in the results using h0,probit(t) is small; however, the efficiency of the estimates

for α and h(t) are larger when using multiple surrogates. For all settings, our method

shows significantly less bias than the naive method.

3.4 Application to EMR study

We applied our proposed method to build a risk prediction model for developing type 2

diabetes from genetic markers associated with obesity. In 2011, diabetes was estimated to

be the 7th leading cause of death in the US (Heron, 2015), and type 2 diabetes accounts

for 90% of all diabetes cases. Type 2 diabetes is characterized by insulin resistance, a

condition where cells do not respond properly to insulin, which leads to high glucose

levels in the blood. A well known risk factor for type 2 diabetes is obesity; however, the

exact mechanism that links obesity and type 2 diabetes is unknown (Eckel et al., 2011).

The increase in the prevalence of obesity has led to an increase in diabetes cases.

The goal of our analysis is to predict the risk of developing type 2 diabetes given

their obesity risk score and other demographic information, using an EMR cohort from

the Partners Biobank. The Partners Biobank consists of 38,345 patients. 20,091 patients

have available genetic data from which we can obtain a genetic risk score for obesity. Of

these patients, 17,220 did not have any ICD9 codes or NLP mentions of diabetes within
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Table 3.1: Mean and standard error of estimates, comparing our method to a naive
method for one surrogate and two surrogates, using h0,linear(t)

(I) Using one surrogate, T ∗
1 where ε1 ∼ Normal(0, 0.3)

real naive
truth mean sd mean sd

α 0.3000 0.2620 0.0727 - -
h(−1) -20.0000 -19.0086 1.5311 -15.1606 0.2692
h(0) -15.0000 -14.2550 1.1459 -11.3623 0.1967
h(1) -10.0000 -9.5014 0.7613 -7.5641 0.1250
h(2) -5.0000 -4.7477 0.3791 -3.7658 0.0575
h(3) 0.0000 0.0027 0.0478 0.0182 0.0316
β1 2.0000 1.8964 0.1569 1.4961 0.0361
β2 -1.0000 -0.9520 0.0866 -0.7511 0.0306
β3 0.0000 0.0013 0.0351 0.0008 0.0276

(II) Using one surrogate, T ∗
2 where ε2 ∼ Normal(0, 0.1)

real naive
truth mean sd mean sd

α 0.1000 0.0937 0.0520 - -
h(−1) -20.0000 -20.1979 0.9396 -19.2326 0.3479
h(0) -15.0000 -15.1486 0.7039 -14.4226 0.2556
h(1) -10.0000 -10.0994 0.4686 -9.6126 0.1640
h(2) -5.0000 -5.0501 0.2350 -4.8027 0.0754
h(3) 0.0000 -0.0004 0.0355 0.0042 0.0323
β1 2.0000 2.0203 0.1002 1.9188 0.0395
β2 -1.0000 -1.0119 0.0545 -0.9612 0.0326
β3 0.0000 -0.0003 0.0309 -0.0002 0.0294

(III) Combining both T ∗
1 and T ∗

2

real naive
truth mean sd mean sd

α 0.3000 0.2918 0.0150 - -
0.1000 0.0603 0.0512 - -

h(−1) -20.0000 -19.7093 0.7370 -16.8907 0.2623
h(0) -15.0000 -14.7815 0.5501 -12.6648 0.1926
h(1) -10.0000 -9.8537 0.3638 -8.4389 0.1236
h(2) -5.0000 -4.9259 0.1794 -4.2130 0.0575
h(3) 0.0000 0.0009 0.0338 0.0072 0.0279
β1 2.0000 1.9693 0.0760 1.6808 0.0334
β2 -1.0000 -0.9873 0.0453 -0.8428 0.0281
β3 0.0000 0.0004 0.0295 0.0004 0.0255
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the first year of entering and can be assumed to not have diabetes at the time they entered

the EMR system, which we use as our final dataset. We use 2 surrogates for event time:

the ICD9 billing codes for type 2 diabetes, and NLP mentions of non-insulin dependent

diabetes. Our covariates include the obesity risk score, age, race, and sex. The predicted

risks and bootstrap confidence intervals for a higher risk group and a lower risk group

are shown in Table 3.4.

As we expect, the patients in the higher risk group (high obesity GRS, non-white,

male) have a higher risk of developing diabetes than the lower risk group (low obesity

GRS, white, female).

3.5 Discussion

We propose an estimator for the risk of developing a disease using a maximum likelihood

estimator under the semiparametric transformation model. Our proposed estimator is

able to incorporate multiple estimates of survival time, subject to measurement error,

available in EMR databases. Simulation results show that our estimators are consistent.

This is confirmed by applying our method to an EMR dataset. Our proposed estimator

can be used to aid clinicians in patient care.

In practice, we note that we need to ensure that our baseline covariates are measured

prior to developing the disease. Since it may be difficult to determine exactly when a

patient developed a disease from EMR data, especially if they already have the disease

prior to entering the EMR system, our baseline covariates may need to be time-invariant

covariates, such as sex, race, or genetics. If we can determine disease status at our chosen

baseline, for example, in cases where the disease has a very specific ICD9 code associated

with it, then we can additionally use time-dependent covariates that are measured prior

to the baseline.
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Table 3.2: Mean and standard error of estimates, comparing our method to a naive
method for one surrogate and two surrogates, using h0,cubic(t)

(I) Using one surrogate, T ∗
1 where ε1 ∼ Normal(0, 0.3)

real naive
truth mean sd mean sd

α 0.3000 0.2798 0.0123 - -
h(−1) -1.0000 -0.9307 0.0503 -1.0569 0.0388
h(0) 0.0000 0.0296 0.0431 0.0258 0.0398
h(1) 1.0000 0.9348 0.0705 1.0438 0.0497
h(2) 8.0000 7.3098 1.8909 5.2352 0.5497
h(3) 27.0000 17.0197 8.0744 11.1284 2.9227
β1 2.0000 1.9509 0.0535 1.6644 0.0385
β2 -1.0000 -0.9790 0.0390 -0.8354 0.0314
β3 0.0000 0.0002 0.0347 0.0009 0.0293

(II) Using one surrogate, T ∗
2 where ε2 ∼ Normal(0, 0.1)

real naive
truth mean sd mean sd

α 0.1000 0.1706 0.0128 - -
h(−1) -1.0000 -0.8660 0.0462 -0.9660 0.0399
h(0) 0.0000 0.0241 0.0455 0.0294 0.0443
h(1) 1.0000 0.9061 0.0609 0.9573 0.0517
h(2) 8.0000 10.0040 2.7613 7.4866 0.9582
h(3) 27.0000 26.3851 11.0993 17.6178 4.2130
β1 2.0000 2.1249 0.0544 1.9294 0.0407
β2 -1.0000 -1.0647 0.0408 -0.9668 0.0338
β3 0.0000 -0.0006 0.0346 -0.0006 0.0314

(III) Combining both T ∗
1 and T ∗

2

real naive
truth mean sd mean sd

α 0.3000 0.2960 0.0085 - -
0.1000 0.1455 0.0142 - -

h(−1) -1.0000 -0.9005 0.0439 -1.0086 0.0362
h(0) 0.0000 0.0270 0.0434 0.0268 0.0408
h(1) 1.0000 0.9159 0.0553 0.9985 0.0453
h(2) 8.0000 8.5285 1.6834 5.9829 0.4851
h(3) 27.0000 21.1134 6.9960 12.9105 2.3768
β1 2.0000 2.0304 0.0477 1.7716 0.0360
β2 -1.0000 -1.0181 0.0364 -0.8885 0.0302
β3 0.0000 -0.0003 0.0332 0.0002 0.0285
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Table 3.3: Mean and standard error of estimates, comparing our method to a naive
method for one surrogate and two surrogates, using h0,probit(t)

(I) Using one surrogate, T ∗
1 where ε1 ∼ Normal(0, 0.3)

real naive
truth mean sd mean sd

α 0.3000 0.2711 0.0476 0.0000 0.0000
h(−1) -17.7911 -18.5730 9.0644 -15.0358 0.9420
h(0) -12.9259 -13.2049 5.1288 -10.6599 0.5482
h(1) -7.9827 -7.8368 1.2610 -6.2839 0.1696
h(2) -3.0000 -2.8555 0.2296 -2.2235 0.0441
h(3) 1.9827 1.8956 0.1723 1.4697 0.0454
β1 2.0000 1.9133 0.1573 1.4969 0.0371
β2 -1.0000 -0.9601 0.0854 -0.7517 0.0320
β3 0.0000 0.0020 0.0365 0.0012 0.0288

(II) Using one surrogate, T ∗
2 where ε2 ∼ Normal(0, 0.1)

real naive
truth mean sd mean sd

α 0.1000 0.1123 0.0589 0.0000 0.0000
h(−1) -17.7911 -18.5127 2.1319 -18.6906 11.3449
h(0) -12.9259 -13.3725 1.2968 -13.2870 6.3834
h(1) -7.9827 -8.2323 0.5367 -7.8834 1.4357
h(2) -3.0000 -3.1022 0.2199 -2.8737 0.0541
h(3) 1.9827 2.0433 0.1336 1.9017 0.0602
β1 2.0000 2.0704 0.1404 1.9197 0.0441
β2 -1.0000 -1.0342 0.0729 -0.9622 0.0370
β3 0.0000 -0.0009 0.0329 0.0004 0.0308

(III) Combining both T ∗
1 and T ∗

2

real naive
truth mean sd mean sd

α 0.3000 0.3493 1.2935 0.0000 0.0000
0.1000 0.1251 1.3026 0.0000 0.0000

h(−1) -17.7911 -19.3502 16.9511 -16.3144 5.4570
h(0) -12.9259 -13.8913 12.8506 -11.6198 3.0888
h(1) -7.9827 -8.4324 9.6413 -6.9251 0.7292
h(2) -3.0000 -3.2151 5.5881 -2.5139 0.0480
h(3) 1.9827 1.7406 3.3052 1.6618 0.0404
β1 2.0000 1.9571 0.0973 1.6824 0.0383
β2 -1.0000 -0.9809 0.0564 -0.8439 0.0312
β3 0.0000 0.0008 0.0310 0.0005 0.0275
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Group 10-Year Risk 20-Year Risk
high obesity GRS

17.8% (15.6%, 27.8%) 48.0% (35.3%, 66.7%)non-white
male

low obesity GRS
8.4% (7.5%, 13.3%) 28.1% (19.1%, 44.0%)white

female
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