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Abstract	

	

Single-cell	sequencing	methods	have	allowed	for	a	closer	view	into	the	

heterogeneity	of	cell	populations,	down	to	the	level	of	the	individual	cell.		In	

particular,	single-cell	transcriptomic	data	provides	a	detailed	map	of	the	diverse	

gene	expression	profiles	present	throughout	a	sample.		These	new	methods	have	

shown	promise	in	many	fields,	especially	the	field	of	cancer	genomics.		However,	

despite	the	technological	advances,	many	computational	challenges	remain.	

In	Chapter	1,	we	provide	an	overview	of	single-cell	technological	and	

computational	methods	through	the	perspective	of	cancer	genomics.		Cancer	is	a	

notoriously	heterogeneous	disease	whose	characteristics	can	differ	greatly	from	

person	to	person	and	cell	to	cell,	making	treatment	a	very	challenging	proposition.		

Single-cell	methods	allow	us	to	dissect	within-tumor	heterogeneity,	opening	up	the	

possibility	of	developing	individualized	therapies	that	target	specific	cancer	cell	

subpopulations	within	a	patient.	

We	next	address	two	current	challenges	associated	with	the	analysis	of	

single-cell	transcriptomic	data.		The	first	challenge	is	the	difficulty	of	detecting	rare	

cell	populations.		Current	clustering	methods	either	only	detect	prevalent	cell	types,	
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or	specifically	target	only	the	detection	of	rare	cell	types.		In	Chapter	2,	we	develop	a	

clustering	method,	GiniClust2,	that	can	accurately	identify	both	rare	and	common	

cell	types	using	a	novel,	cluster-aware	ensemble	method	that	combines	clustering	

results	from	rare	and	common	cell-type-specific	clustering	methods.	

The	second	challenge	we	address	is	the	inference	of	cell-type	composition	

from	bulk	gene	expression	data	when	single-cell	data	is	unavailable.		In	Chapter	3,	

we	propose	a	gene	expression	deconvolution	method	that	estimates	cell-type	

composition	using	a	gene	signature	derived	from	single-cell	data.		We	also	introduce	

a	novel	dampened	weighted	least	squares	algorithm	(DWLS)	for	estimation	that	

adjusts	for	biases	present	in	existing	estimation	methods,	to	create	a	method	that	

can	more	accurately	detect	diverse	cell	types.	

Finally,	in	Chapter	4,	we	conclude	with	two	applications	of	single-cell	RNA-

sequencing	data	analysis	to	the	discovery	of	immune	response	mechanisms	in	

cancer.		This	highlights	the	impact	such	methods	can	have	on	helping	cancer	

immunologists	identify	drug	targets	and	assess	their	effects.	
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1.1 Abstract	

	

The	advent	of	single-cell	sequencing	has	been	revolutionary	to	the	field	of	

cancer	genomics.		Perfectly	suited	to	capture	cancer’s	heterogeneous	nature,	single-

cell	analyses	provide	information	bulk	sequencing	could	never	hope	to	uncover.	

Many	mechanisms	of	cancer	have	yet	to	be	fully	understood,	and	single-cell	

approaches	are	showing	promise	in	their	abilities	to	uncover	these	mysteries.		Here	

we	focus	on	the	most	recent	single-cell	methods	for	cancer	genomics,	and	how	they	

are	not	only	providing	insights	into	the	inner	workings	of	cancer,	but	are	also	

transforming	individualized	therapy	and	non-invasive	monitoring	and	diagnosis.		

	

1.2 Introduction	

	

Genomic	analysis	has	been	widely	applied	in	cancer	studies.		The	

identification	of	genomic,	epigenomic,	and	transcriptomic	changes	in	cancer	has	led	

to	precise	classification,	biomarker	discovery,	and	mechanical	understanding	of	

cancer,	and	has	played	an	essential	part	in	cancer	diagnosis,	monitoring,	and	

treatment	[1].		However,	until	recently,	bulk	sequencing	has	been	the	only	viable	

option	for	cancer	genomic	analysis.		One	major	limitation	is	that	bulk	sequencing	

cannot	detect	the	heterogeneity	within	a	tumor.	This	limitation	has	important	
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clinical	consequences.	For	example,	cancer	is	often	composed	of	multiple	clones,	and	

the	most	aggressive	clone	is	difficult	to	identify	and	target	since	it	may	not	be	the	

one	that	metastasizes.		

	 Throughout	every	stage	of	cancer,	cells	accumulate	distinct	mutations,	which	

define	the	further	evolution	and	progression	of	the	disease.		It	is	commonly	viewed	

that	cancer	originates	from	an	accumulation	of	mutations	in	oncogenes	and	tumor	

suppressors	such	that	cell	growth	becomes	unregulated	and	invasive	[2].		The	

progeny	of	these	cells	in	turn	accumulate	further	mutations	and	selective	pressures	

drive	clonal	evolution.		The	cancer	will	eventually	metastasize,	spreading	to	other	

parts	of	the	body	through	the	circulatory	or	lymphatic	systems	to	form	further	

distinct	subpopulations.		In	addition,	targeted	cancer	therapy	may	drive	further	

evolution	and	eventually	lead	to	drug	resistance.	

	 The	recent	advent	of	single-cell	sequencing	has	revolutionized	the	field	of	

cancer	genomics,	opening	the	door	to	a	vast	number	of	possibilities.		From	the	

ability	to	resolve	intra-tumoral	heterogeneity	[3-6],	map	clonal	evolution	[7,8],	and	

track	the	development	of	therapy	resistance	[3,9],	to	the	capacity	to	analyze	rare	

tumor	cell	populations	such	as	tumor	stem	cells	and	circulating	tumor	cells	[10-12],	

single-cell	techniques	have	opened	new	avenues	for	cancer	research.		A	better	

understanding	of	the	mechanisms	of	cancer	can	in	turn	inform	more	effective	and	

personalized	treatments.	

In	this	chapter,	we	review	recent	progress	in	single-cell	analysis	techniques	

and	their	applications	in	cancer	genomics	(Fig.	1.1),	focusing	on	topics	that	have	not	

been	covered	by	previous	reviews	[13-16].	
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Figure	1.1.	Single-cell	methods	provide	novel	insights	into	every	stage	of	cancer	
progression,	from	primary	tumor	development	to	metastasis,	to	the	development	of	
drug	resistance.	
	

1.3 Intra-tumor	genome	sequence	heterogeneity	

	

Understanding	the	genomic	heterogeneity	of	cancer	cells	first	and	foremost	

necessitates	methods	for	single-cell	DNA	sequencing.		The	earliest	developments	for	

single-cell	genomics	involve	whole	genome	amplification,	providing	ample	amounts	

of	DNA	for	subsequent	sequencing.		Degenerate	oligonucleotide	primed	PCR	(DOP-

PCR)	is	appropriate	for	CNV	detection,	with	low	coverage	but	uniform	amplification	

[17].		Multiple	displacement	amplification	(MDA)	is	a	linear	amplification	method	

capable	of	higher	coverage	through	the	use	of	Phi-29	polymerase,	making	it	suitable	
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for	SNP	detection	[18].		MALBAC	(multiple	annealing	and	looping-based	

amplification	cycles)	combines	MDA	and	PCR	for	a	high	coverage,	uniform	

amplification	method	suitable	for	either	CNV	or	SNP	detection	[19].		These	methods	

have	been	extensively	applied	to	the	characterization	of	intra-tumor	CNVs	and	SNPs	

in	various	cancer	types.	

		However,	one	major	limitation	of	the	aforementioned	methods	is	that	

spatial	information	is	lost	as	soon	as	single	cells	are	isolated.			Such	information	is	

integral	to	understanding	the	interaction	of	the	cell	with	its	micro-environment	and	

may	prove	valuable	for	evaluating	drug	responsiveness.			Recently,	a	new	

technology,	STAR-FISH	(specific-to-allele	PCR-FISH)	[3],	has	been	developed	which	

can	detect	the	spatial	distribution	of	both	SNVs	and	CNVs	using	a	combination	of	in	

situ	PCR	and	FISH.		PCR	primers	are	built	to	target	mutant	and	wild	type	mRNAs,	

one	gene	at	a	time.		Amplification	is	followed	by	hybridization	of	fluorophores	to	a	5’	

overhang	built	into	each	probe.	Janiszewska	et	al.	use	their	method	to	study	the	

commonly	reported	His1047Arg	mutation	in	PIK3CA	and	ERBB2	(also	commonly	

known	as	HER2)	amplification	in	HER2+	breast	cancer,	before	and	after	

chemotherapy.		They	were	able	to	identify	changes	in	mutational	frequency	of	

mutated	cells,	which	help	gain	an	understanding	of	the	development	of	drug	

resistance	in	HER2+	breast	cancer	[3].	When	combined	with	longitudinal	analysis,	

this	method	was	used	to	pinpoint	migratory	cells	[3].		Currently,	the	technology	can	

only	be	used	to	detect	the	location	of	known	mutations.			

The	introduction	of	spatial	methods	to	single-cell	cancer	genomics	allows	

genomic	heterogeneity	to	be	mapped	in	space.		This	presents	new	opportunities	in	
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studying	cell-to-cell	interactions,	and	in	identifying	migratory	cancer	cells	and	their	

roles	in	metastasis.	

	

1.4 Intra-tumor	transcriptomic	heterogeneity	

	

Like	single-cell	genome	analysis,	the	first	efforts	in	single-cell	

transcriptomics	were	in	the	amplification	of	the	transcriptome	to	allow	for	

quantification	and	sequencing	of	the	transcriptome.		Whole	transcriptome	

amplification	methods	include	poly-A	tailing	methods	[20]	and	template-switching	

methods	like	Smart-seq	[21].		Targeted	gene	expression	profiles	can	also	be	

quantified	by	multiplexing	qPCR	with	high	sensitivity	[22].	

In	conjunction	with	single-cell	RNA	sequencing	and	qPCR,	these	methods	

have	been	used	in	various	cancer	studies.		Cancer-specific	gene	expression	

signatures	and	alternative-splicing	events	have	been	identified	for	melanoma	[21].	

Gene	expression	signatures	have	led	to	the	identification	of	cancer	cell	types,	such	as	

cancer	stem	cells	[23].		The	relative	contributions	of	clonal	evolution	and	multi-

lineage	differentiation	in	transcriptomic	heterogeneity	have	been	studied	in	the	

context	of	colon	cancer	[24].	

Recent	technologies	have	been	developed	to	quantify	gene	expression	levels	

in	situ,	thereby	preserving	spatial	information.		Here	we	review	recent	single-cell	

spatial	transcriptomic	methods	and	their	potential	for	future	use	in	cancer	studies.		

These	methods	share	the	same	fundamental	principle	as	single-molecule	

fluorescence	in	situ	hybridization	(smFISH),	whereby	fluorescently-labeled	DNA	
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oligonucleotide	probes	are	hybridized	to	their	complementary	target	mRNA,	and	are	

then	identified	via	fluorescence	microscopy	[25,4].		The	newer	techniques	described	

below	have	greatly	enhanced	detection	efficiency	and	throughput.	

SeqFISH	(sequential	FISH)	is	an	adaptation	of	smFISH	that	uses	sequential	

hybridization	to	allow	for	multiplexing	[26].		Each	mRNA	is	assigned	a	unique	

sequence	of	fluorophores	that	create	a	barcode	through	which	each	mRNA	can	be	

decoded.		In	the	first	round	of	this	process,	probes	that	target	the	same	mRNA	are	

labeled	with	the	same	fluorophore.		These	probes	are	hybridized,	imaged,	and	then	

purged.		In	the	next	round,	the	same	probes	are	labeled	with	a	different	fluorophore,	

and	the	same	sequence	of	steps	is	followed.		Several	rounds	of	this	create	a	unique	

barcode	of	colors	for	the	particular	mRNA.		Each	probe	set	targeting	a	particular	

mRNA	is	labeled	with	a	unique	barcode	in	this	way.		For	F	fluorophores	and	N	

hybridization	rounds,	this	means	FN	mRNAs	can	be	visualized.		As	this	number	

scales	up	rapidly	with	an	increasing	number	of	fluorophores	and	hybridization	

rounds,	this	technique	can	potentially	be	used	to	sequence	all	known	genes	with	

limited	numbers	of	fluorophores	and	hybridization	cycles.		The	authors	initially	

applied	this	method	to	immobilized	yeast	cells	and	mouse	embryonic	stem	cells	

[26],	but	have	since	extended	the	method	so	that	it	is	now	applicable	to	deep	tissues	

such	as	the	brain	[27].	

	 MERFISH	(multiplexed	error-robust	FISH)	is	a	similar	approach	that	also	

allows	for	error	correction	by	using	a	smart	choice	of	barcodes	[28].	Specifically,	

barcode	sequences	are	chosen	to	include	only	those	that	are	separated	by	a	certain	

Hamming	distance	(Hamming	distance=number	of	changes	in	a	barcode	sequence	
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required	to	transform	one	sequence	into	another).			Since	not	all	possible	barcodes	

encode	a	particular	mRNA,	this	encoding	scheme	provides	a	means	to	error	

detection	and	correction.	The	authors	use	this	approach	to	simultaneously	measure	

1001	genes	in	human	fibroblast	cells.		Two	fluorophores	and	14	hybridization	

rounds	allow	all	encoding	sequences	to	be	separated	by	a	Hamming	distance	of	2	

[28].	Of	note,	these	authors	show	that	their	barcode	design	helps	reduce	the	error	

rate	significantly.	

FISSEQ	is	another	in	situ	technique	which	is	based	on	sequencing.		RNA	is	

first	reverse-transcribed	and	amplified	[29].		The	amplicons	are	crosslinked	to	the	

cellular	matrix	and	sequenced	by	using	the	SOLiD	SBL	(sequencing-by-ligation)	

technique.		The	method	has	been	applied	to	a	simulation	of	the	wound	healing	

response	in	primary	fibroblasts	where	the	authors	found	differentially	expressed	

genes	between	migrating	cells	and	contact-inhibited	cells	[29].		Such	a	method	could	

similarly	be	applied	to	find	differentially	expressed	genes	in	migratory	vs.	non-

migratory	tumor	cells.	

In	addition,	transcriptomic	profiles	can	also	be	measured	in	vivo	by	using	a	

technology	called	TIVA	(transcriptome	in	vivo	analysis).	In	this	approach,	a	

photoactivatable	biotin-labeled	TIVA-tag	is	inserted	into	live	cells,	attached	to	

mRNA	upon	selective	photoactivation,	and	recaptured	via	streptadavin	beads.		The	

captured	mRNA	is	subsequently	sequenced	[30].		TIVA	was	used	on	live	mouse	and	

human	brain	tissue,	as	well	as	mouse	brain	cells	in	culture.			A	comparison	of	live	

and	culture	mouse	brain	cells	shows	significant	differences	in	gene	expression	

levels,	emphasizing	that	cells	removed	from	their	natural	environment	may	not	be	
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representative	of	the	same	cells	in	vivo	[30].		

The	aforementioned	methods	give	increasingly	multiplexed	ways	of	spatially	

resolving	gene	expression	patterns.		While	most	of	the	applications	to	date	have	

been	limited	to	cell	culture,	we	expect	that	soon	they	will	be	applicable	to	tissue	

samples.	If	they	can	be	adapted	to	tumor	cross-sections,	these	methods	will	have	

great	impact	on	investigating	the	cancer	progression	path.				For	example,	the	

location	of	tumor-like	stem	cells	could	be	mapped	within	the	tumor.		If	longitudinal	

measurements	are	taken,	cell	migratory	paths	may	be	traced.	

	

1.5 Intra-tumor	epigenetic	heterogeneity	

	

Epigenetics	plays	an	important	role	in	regulating	gene	expression	in	cancer,	

and	exploring	the	heterogeneity	of	epigenetic	patterns	may	aid	in	understanding	

underlying	transcriptomic	heterogeneity.		As	a	dynamic	process,	epigenetics	may	

contribute	to	the	phenotypic	plasticity	of	cancer	cells,	for	example	aiding	in	the	

differentiation	of	cancer	stem	cells	[31].		Studies	have	shown	abnormally	low	levels	

of	global	DNA	methylation	along	with	hyper-methylation	in	specific	regions,	such	as	

tumor	suppressor	gene	promoter	regions,	giving	strong	evidence	for	the	role	of	

epigenetic	aberrations	in	cancer	proliferation	[32].	

The	characterization	of	intra-tumor	epigenetic	heterogeneity	has	been	less	

extensively	studied	due	to	its	technical	difficulty.	Nonetheless,	multiple	epigenetic	

methods	have	recently	been	adapted	for	single-cell	purposes.	Determining	DNA	

methylation	patterns	has	traditionally	been	performed	by	bisulfite	sequencing	
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methods,	but	bulk	techniques	have	performed	poorly	in	the	single-cell	setting	due	to	

DNA	degradation	during	bisulfite	conversion.		Methods	have	adapted	bisulfite	

sequencing	for	single-cell,	including	scRRBS	(reduced	representation	bisulfite	

sequencing)	[33]	and	PBAT	(post-bisulfite	adapter-tagging)	[34].		In	each,	a	

modified	version	of	bisulfite	sequencing	is	applied	to	each	cell	individually.		ScRRBS	

mitigates	the	issue	of	high	DNA	loss	by	replacing	the	multiple	purification	steps	

prior	to	bisulfite	sequencing	with	a	single-tube	reaction.		A	restriction	enzyme	that	

recognizes	CpG	islands	is	used	to	cut	the	genome,	selecting	CpG	island	regions	for	

subsequent	conversion	and	sequencing.		By	sequencing	only	these	regions,	this	

method	provides	low-cost	but	low-coverage	sequencing	[33].		ScRRBS	has	been	

applied	to	human	hepatocellular	carcinoma	tissue	in	conjunction	with	simultaneous	

transcriptome	sequencing	(discussed	in	greater	detail	in	the	next	section)	[5].		

Methylation	levels	at	all	CpG	sites	were	measured	and	subsequently	used	to	cluster	

the	tissue	into	two	subpopulations	via	unsupervised	hierarchical	clustering.		A	large	

amount	of	heterogeneity	was	found	between	and	within	these	subpopulations.		

Interestingly,	when	the	same	clustering	method	was	applied	using	CNV	patterns,	an	

identical	clustering	was	found	[5].	

PBAT	is	a	more	unbiased	whole-genome	approach	that	addresses	the	issue	of	

bisulfite-conversion-induced	DNA	degradation	by	performing	suitable	library	

preparation	after	bisulfite	sequencing.		Traditionally,	adapter-tagging	is	performed	

before	bisulfite	conversion	and	sequencing	templates	become	degraded,	but	

switching	the	order	of	these	events	alleviates	this	problem	[34,35].		In	an	

application	of	PBAT,	differential	methylation	of	distal	regulatory	elements	was	
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discovered	in	mouse	embryonic	stem	cells	[35].		These	elements	cannot	commonly	

be	captured	by	scRRBS,	making	it	promising	for	higher-coverage	cancer	methylation	

studies.	

Chromatin	structure	also	plays	an	important	role	in	gene	regulation.		Most	

transcription	factors	can	only	bind	to	open	chromatin	regions,	whereas	a	small	

number	of	pioneer	factors	may	bind	to	closed	chromatin,	opening	it	up	so	that	other	

factors	can	bind.		The	genome-wide	landscape	of	chromatin	accessibility	can	be	

measured	by	using	either	ATAC-seq	(assay	for	transposase-accessible	chromatin)	

[36,37]	or	DNase-seq	[38].		The	difference	between	these	two	methods	is	the	DNA-

cutting	enzymes,	corresponding	to	Tn5	and	DNase	I,	respectively.		Both	methods	

have	been	adapted	to	single-cell	analysis.			Two	single-cell	methods	have	modified	

ATAC-seq.		A	combinatorial	indexing	approach	[36]	tags	nuclei	with	unique	

barcodes	so	they	can	then	be	grouped	and	processed	together.		Groups	of	nuclei	are	

placed	in	wells,	barcoded,	and	then	passed	through	a	second	set	of	wells	and	

barcoded	again.		Given	that	each	nuclei	is	highly	likely	to	pass	through	a	unique	

combination	of	wells,	the	barcoding	is	overwhelmingly	cell-specific	[36].		In	a	

microfluidic	approach	[37],	cells	are	captured	and	assayed	separately.		The	

microfluidic	technique	has	been	used	to	find	a	high	variability	of	transcription	factor	

motif	accessibility	in	cancer	cell	lines	[37].	For	DNase-seq,	a	single-cell	method	

called	Pico-Seq	[38]	sorts	cells	using	FACS	before	DNaseI	treatment.		To	prevent	a	

large	loss	of	digested	DNA	during	subsequent	library	preparation,	circular	carrier	

DNA	is	added	after	digestion.		This	DNA	will	not	be	amplified	in	the	PCR	that	follows	

due	to	its	incompatibility	with	the	adaptor	ligation	process.		Of	note,	the	authors	
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applied	their	method	to	formalin-fixed	paraffin-embedded	follicular	thyroid	cancer	

patient	tissue	and,	in	one	patient,	found	a	SNV	that	prevents	the	binding	of	tumor	

suppressor	protein	p53	[38].	

The	aforementioned	methods	have	started	to	provide	new	mechanistic	

insights	into	cancer	heterogeneity.	In	addition,	two	additional	single-cell	methods,	

Hi-C	and	ChIP-seq,	have	been	recently	developed	and	show	potential	for	use	in	

future	cancer	epigenetic	studies.		A	type	of	chromosome	conformation	capture	that	

quantifies	interactions	between	genomic	loci,	Hi-C	can	be	used	to	find	trans-

regulatory	elements	and	their	targets	[39].		ChIP-seq,	which	characterizes	

interactions	between	DNA	and	DNA-binding	proteins,	can	determine	transcription	

factor-regulatory	element	interactions	[40].	

	

1.6 Simultaneous	multiple	omic	analysis	

	

Ideally,	the	different	omic	approaches	should	be	applied	to	study	a	particular	

tumor	so	that	the	information	can	be	integrated.		However,	this	multiple-omic	

approach	is	much	more	technologically	challenging.	We	review	some	recent	studies	

in	this	direction.		

Simultaneous	transcriptomic	and	genomic	sequencing	for	single	cells	has	

recently	been	achieved	by	the	G&T-seq	method	[6].	Cells	are	first	isolated	and	lysed	

to	release	mRNA	and	genomic	DNA.		Poly-A	mRNA	is	then	separated	from	genomic	

DNA	through	the	use	of	biotinylated	oligo-dT	primers	coupled	with	streptavidin-

coated	magnetic	beads.		The	primers	are	hybridized	directly	to	the	poly-A	tail,	and	
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subsequently	recruited	by	streptavidin-coated	magnetic	beads	through	a	strong	

biotin-streptavidin	interaction.		Standard	single-cell	techniques	can	then	be	used	to	

separately	sequence	the	isolated	mRNA	and	genomic	DNA	[6].		

The	ability	to	measure	transcriptomic	and	genomic	landscapes	in	the	same	

cells	opens	a	window	into	understanding	the	direct	effect	of	genomic	variation	on	

transcriptomic	variation.		Macaulay et	al.	use	their	method	on	HCC38	breast	cancer	

cells	to	discover	the	chromosomal	rearrangement	responsible	for	the	fusion	

transcript	MTAP-PCDH7,	found	in	a	majority	of	HCC38	cells	[6].		They	also	conclude	

that	a	trisomy	found	in	a	subset	of	HCC38_BL	(B	lymphoblastoid)	cells	results	in	

proportionally	increased	mRNA	expression	in	these	cells	[6].	To	date,	the	

application	of	G&T	has	been	limited	to	cell	lines;	however,	it	provides	hope	to	

analyze	the	direct	effect	of	copy	number	variants	on	transcript	levels	in	tumor	

samples	in	the	near	future.	

An	extension	of	this	idea	of	concurrent	sequencing	has	been	implemented	via	

the	scTrio-seq	method	[5].		This	technique	simultaneously	sequences	not	only	the	

genome	and	transcriptome,	but	the	DNA	methylome	as	well.		In	this	method,	

separation	of	genomic	DNA	and	mRNA	is	performed	through	centrifugation	of	lysed	

single	cells,	where	a	special	centrifugation	technique	allows	for	the	separation	of	

cytoplasm	from	intact	nuclei.		The	mRNA	found	in	the	cytoplasm	is	sequenced	

separately	from	the	genomic	DNA,	which	is	subjected	to	scRRBS,	providing	

methylomic	and	genomic	data.	The	ability	to	simultaneously	quantify	genomic,	

transcriptomic,	and	epigenomic	changes	in	the	same	cells	has	provided	new	insights	

into	the	gene	expression	regulatory	mechanisms.	The	authors	use	their	method	in	
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the	analysis	of	the	heterogeneity	of	human	hepatocellular	carcinoma.		Their	results	

corroborate	those	of	Macaulay	et	al.	in	that	CNV	gene	dosage	is	found	to	have	a	

proportional	effect	on	transcript	levels.		DNA	methylome	results,	however,	show	

that	CNVs	have	no	similar	effect	on	methylation	levels	[5].	

	 The	transcriptome	is	often	used	as	a	proxy	for	protein	levels,	as	single-cell	

proteomic	analyses	have	not	reached	the	degree	of	multiplexing	that	single-cell	

transcriptomic	analyses	have.		However,	mRNA	molecules	have	shorter	half-lives	

than	proteins,	and	previous	studies	have	shown	that	the	mRNA	and	protein	levels	

may	not	correspond	well	[41].	However,	their	relationship	remains	unclear	at	the	

single-cell	level.	Recently,	Darmanis	et	al.	have	developed	a	new	technique	to	

simultaneously	measure	the	transcriptomes	and	proteomes	of	single	cells	[42].			

This	is	achieved	by	the	splitting	of	cell	lysate	and	independent	processing	of	each	

fraction,	much	like	the	methods	above.		The	mRNA	fraction	is	subjected	to	qPCR,	and	

the	protein	fraction	to	proximity	extension	assay	(PEA).		During	PEA,	pairs	of	oligo-

labeled	antibodies	bind	to	target	proteins,	where	each	pair’s	oligos	are	

complementary	to	one	another	and	bind	upon	being	brought	in	proximity,	creating	a	

PCR	amplicon,	which	is	then	quantified	with	PCR.		The	authors	apply	this	technique	

to	quantify	cancer	pathway	proteins	that	were	determined	a	priori	to	be	of	

relevance	in	BMP4-treated	glioblastoma	cells,	and	find	poor	correlation	between	

mRNA	and	protein	levels	in	these	cells.		They	conclude	that	protein	levels	are	better	

predictors	of	treatment	response,	leading	to	the	conclusion	that	perhaps	single-cell	

transcriptomic	methods	are	not	sufficient	in	determining	treatment	response	[42].	
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1.7 Computational	methods	for	analyzing	single-cell	genomic	and	

transcriptomic	data	

	

With	the	advent	of	single-cell	technologies	comes	the	necessity	for	new	

computational	methods	to	process	the	data	collected.		These	methods	fall	into	two	

categories.		First	are	methods	that	modify	bulk	sequencing	methods	to	adjust	for	

nuances	unique	to	single-cell	data:	sparse,	noisy	data	that	lacks	technical	replicates.		

The	second	set	of	methods	implement	new	applications	possible	only	with	single	

cell	data.		Here	we	mention	methods	of	the	second	variety	that	are	of	special	

relevance	to	cancer	genomics.		Other	methods	are	extensively	covered	in	previous	

reviews	[5,6].	

	

1.7.1 Inference	of	spatial	patterns	

	

As	described	above,	exciting	technologies	have	been	developed	to	profile	

single-cell	gene	expression	patterns	in	situ.	Computational	methods	are	still	lacking	

to	systematically	detect	the	spatial	patterns	and	classify	samples	using	such	

patterns.		

In	some	cases,	spatial	patterns	can	be	inferred	by	integrating	single-cell	RNA-

seq	data	collected	from	isolated	cells	with	in	situ	expression	patterns	of	a	small	

number	of	landmark	genes	[43,44].		Location	of	the	cells	is	inferred	through	

correlation	between	their	expression	levels	and	those	of	the	in	situ	data	landmark	

genes.		This	approach	has	been	used	in	developmental	biology	for	the	analysis	of	
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embryos,	where	cells	are	predictably	distributed	across	the	dorsal-ventral	and	

animal-vegetal	axes	[43].		An	analogous	method	has	been	used	to	map	cells	back	to	

annelid	brain	regions	[44].		However,	there	is	a	possibility	for	difficulties	in	

measuring	spatial	heterogeneity	in	tumors	due	to	their	typical	lack	of	spatial	

patterning	[43].	

	

1.7.2 Pseudo-time	ordering	with	bifurcation	

	

Single-cell	RNA-seq	data	is	only	capable	of	producing	a	static	view	of	gene	

expression	levels	within	cells.		Pseudo-time	ordering	computational	methods	now	

allow	for	a	window	into	continuous	changes	in	gene	expression	levels,	which	have	

thus	far	given	insights	into	the	transcriptional	kinetics	of	cell	differentiation.		

Making	the	assumption	that	cells	at	various	stages	of	differentiation	can	be	found	in	

one	scRNA-seq	dataset,	a	time	series	of	transcriptional	changes	is	produced,	onto	

which	each	cell	is	mapped.		Applying	these	methods	to	cancer	data	can	be	used	to	

track	genes	activated	at	various	stages	of	differentiation	from	cancer	stem	cell	to	

matured	cancer	cell.	

	 Monocle	was	the	first	of	a	series	of	pseudo-time-ordering	algorithms,	and	

uses	a	combination	of	dimensionality	reduction	and	a	minimal	spanning	tree	(MST)	

algorithm	to	build	a	differentiation	trajectory	[45].	Monocle2	has	since	been	

released,	which	uses	reverse	graph	embedding	and	is	capable	of	handling	data	from	

much	larger	scRNA-seq	experiments	than	before	[46].		TSCAN	(pseudo-Time	

reconstruction	in	Single-Cell	RNA-seq	Analysis)	was	built	as	an	improvement	upon	



	

	 17	 	 	

the	original	Monocle	method,	reporting	more	robust	results.		Instead	of	creating	an	

MST	on	all	cells,	cells	are	first	clustered	via	hierarchical	clustering,	and	these	

clusters	are	used	as	the	MST	inputs	[47].		A	reduced	space	from	which	to	build	a	

trajectory	allows	for	more	stable	inference,	hence	more	robust	final	results.		

Waterfall	is	a	similar	method	that	also	conducts	clustering	before	MST	creation	[48].		

An	alternative	approach	to	reconstruct	pseudo-time	is	by	fitting	the	data	by	a	

principal	curve	[49].		This	method	has	been	applied	to	analyzing	CyTOF	data.	

Cell	differentiation	often	involves	bifurcation,	where	two	or	more	distinct	

cell-types	may	emerge	from	a	common	stem/progenitor	cell	population.	If	the	

temporal	information	is	known,	SCUBA	can	be	used	to	detect	bifurcation	events	

[49].	However,	in	most	cases,	the	temporal	information	is	unavailable.	Some	

pseudo-time	methods	also	build	bifurcation	events	into	their	models.		Instead	of	

assuming	one	trajectory	for	all	cells,	these	methods	allow	for	a	branching	trajectory	

to	account	for	differentiation	into	multiple	cell	types.		One	method,	Wishbone	[50],	

is	an	updated	version	of	Wanderlust	[51]	with	the	added	ability	to	account	for	

bifurcations.	The	initial	Wanderlust	algorithm	represents	cells	as	nodes	in	a	graph,	

where	the	shortest	path	between	two	nodes	represents	their	phenotypic	distance.		

An	early	cell	is	chosen	and	distances	are	calculated	between	each	cell	and	the	early	

cell.		To	adjust	for	the	fact	that	longer	paths	are	noisier	than	shorter	paths,	random	

waypoint	cells	are	introduced,	and	each	cell’s	position	is	iteratively	refined	with	

respect	to	these	waypoint	cells.		Repeating	the	graph-building	process	several	times	

and	averaging	cell	positions	from	all	these	graphs	mitigates	“short	circuits,”	or	edges	

that	occur	erroneously	between	developmentally	distant	cells	[51].		Wishbone	
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updates	this	algorithm	by	introducing	a	step	to	identify	branch	points	through	

discrepancies	in	waypoint	distances.		Additionally,	“short	circuits”	are	avoided	via	a	

different	approach,	where	the	initial	graph	is	rebuilt	in	a	reduced	space	to	remove	

noise	[50].						

The	ability	to	order	cells	of	complex	lineage	relationship	may	have	important	

applications	in	development.		Already,	these	methods	have	been	used	to	study	the	

development	of	cells	such	as	human	B	lymphocytes	[51]	and	human	neural	cells	

[48].		In	the	future,	pseudo-time	ordering	may	be	used	in	mapping	the	altered	

mechanisms	of	cell	development	in	cancer.	

	

1.7.3 Rare	cell-type	detection	

	

The	detection	of	rare	cell	types	is	pertinent	to	cancer,	where	the	ability	to	

identify	circulating	tumor	cells	(CTCs),	cancer	stem	cells,	or	drug	resistant	cells	will	

have	important	clinical	implications.		Most	clustering	methods	to	date	are	only	able	

to	identify	major	cell	groups.	

	 RaceID	[52]	is	a	method	aimed	at	detecting	rare	cell	types	from	scRNA-seq	

data.		Cells	are	first	clustered	into	major	groups	by	k-means.		Outliers	of	each	

cluster,	which	are	determined	not	to	be	a	cause	of	technical	or	biological	noise,	are	

then	grouped	into	rare	cell	clusters	based	on	transcriptome	correlation	[52].		

RaceID	was	recently	updated	for	more	robust	clustering,	where	the	newer	RaceID2	

[10]	replaces	k-means	with	k-medoid	clustering.		Grün	et	al.	have	integrated	

RaceID2	into	a	stem-cell	detection	algorithm	named	StemID,	which	uses	the	
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identified	cell	clusters	to	guide	inference	of	a	lineage	tree.		Stem	cells	are	then	

defined	by	this	differentiation	trajectory.		In	this	manner,	the	authors	were	able	to	

classify	stem	cells	from	mouse	bone	marrow	cells,	and	predict	novel	pancreatic	

pluripotent	cells	[10].			

GiniClust	[11]	is	an	alternative	approach	for	detecting	rare	cell	types,	by	

using	an	innovative	approach	to	choose	genes	that	are	likely	to	be	associated	with	

rare	cells	types,	using	a	statistic	called	the	Gini	index.	The	high	Gini	genes	are	

identified	and	subsequently	used	as	input	into	DBSCAN	(density-based	spatial	

clustering	of	applications	with	noise)	[53].		The	authors	used	this	approach	on	both	

scRNA-seq	and	qPCR	data.		Among	other	findings,	they	were	able	to	discover	a	novel	

stem	cell	type	characterized	by	a	high	expression	of	ZSCAN4	in	mouse	embryonic	

stem	cells,	and	were	able	to	identify	rare	normal	cells	in	glioblastoma	primary	

tumor	samples	[11].		While	GiniClust	is	not	able	to	simultaneously	detect	common	

cell	types,	our	method	GiniClust2	[12],	discussed	in	Chapter	2,	uses	a	cluster-aware	

weighted	consensus	clustering	algorithm	to	combine	results	from	GiniClust	and	a	

clustering	algorithm	designed	to	detect	common	cell	types	into	a	final	clustering	

result	that	includes	both	common	and	rare	cell	types.	

	

1.7.4 Clonal	evolution	inference	

	

Cancer	undergoes	a	process	of	clonal	expansion	and	selection	that	can	be	

inferred	through	single-cell	sequencing	data	using	computational	tools.		Two	such	

methods	are	OncoNEM	(oncogenetic	nested	effects	model)	[7]	and	SCITE	(single	cell	
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inference	of	tumor	evolution)	[8],	which	create	tumor	lineage	trees	from	the	single-

cell	sequencing	data.		Building	lineage	trees	can	guide	understanding	of	the	

development	of	therapy	resistance;	if	a	sample	is	taken	post-treatment,	we	can	infer	

a	timeline	of	mutational	events	that	take	place	before,	during	and	after	treatment.		

Furthermore,	these	methods	can	identify	mutations	that	occur	early	on	in	tumor	

development	and	are	propagated	throughout	each	subsequent	clone,	and	guide	

treatment	targeted	towards	these	mutations.		These	two	methods	differ	in	their	

algorithms—SCITE	uses	Markov	chain	Monte	Carlo	and	OncoNEM	uses	a	heuristic	

search—but	importantly,	both	implement	a	probabilistic	model	instead	of	the	

traditional	maximum	parsimony	model.		Single-cell	sequencing	data	suffers	from	a	

large	amount	of	technical	error	as	compared	to	bulk	data	that	can	easily	be	

propagated	through	subsequent	tree-building	methods.		Using	maximum	likelihood	

principles,	SCITE	and	OncoNEM	build	sequencing	error	estimation	into	their	models	

to	account	for	this	[7,8].	

	

1.8 Biological	insights	obtained	through	single-cell	analyses	

	

1.8.1 Cancer	stem	cells	

	

The	cancer	stem	cell	hypothesis	postulates	that	there	exists	a	sub-population	

of	self-renewing	cells	with	differentiation	potential	that	serves	to	initiate	and	

maintain	the	larger	tumor	cell	population.		These	cells	are	estimated	to	make	up	less	

than	1%	of	the	total	tumor	cell	population	[54].		Single-cell	techniques	have	
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provided	a	powerful	tool	for	identifying	and	molecularly	characterizing	cancer	stem	

cells.		

As	a	starting	point,	Patel	et	al.	[23]	use	scRNA-seq	to	analyze	the	

transcriptomes	of	cells	from	5	human	glioblastomas	in	search	of	glioblastoma	stem-

like	cells	(GSC).		The	authors	derive	a	transcriptome	signature	that	corresponds	

with	“stemness”	by	comparing	the	transcriptomes	of	GSCs	and	DGCs	(differentiated	

glioblastoma	cells)	modeled	in	culture.		They	then	use	this	signature	to	identify	GSCs	

in	vivo,	and	find	a	continuous	gradient	of	stemness-indicating	gene	expression	[23].		

Lawson	et	al.	similarly	identifies	stem-like	cells	in	metastatic	breast	cancer	tumors	

by	a	stem-cell-like	gene	expression	signature	[55].		Early	stage	metastases	contain	

these	stem-like	cells,	while	later	stage	metastases	contain	cells	closer	to	primary	

tumor	cells	in	gene	expression,	supporting	the	theory	that	as	cancer	progresses,	

tumor	cells	with	stem-like	properties	initiate	and	propagate	metastatic	tumors	[55].	

	

1.8.2 Circulating	tumor	cells	

	

Single-cell	analysis	has	also	provided	a	powerful	tool	for	the	detection	and	

characterization	of	circulating	tumor	cells,	which	are	cells	that	are	shed	from	the	

tumor	into	the	vasculature	or	lymphatics	and	circulate	through	the	bloodstream.	

Monitoring	the	presence	of	CTCs	may	be	used	to	track	the	evolution	of	tumors	over	

time	with	a	simple	series	of	blood	tests.		However,	at	an	estimated	frequency	of	as	

little	as	1	in	109	of	all	blood	cells	[56],	it	is	extremely	challenging	to	capture	and	

analyze	these	cells.	Because	of	the	large	amount	of	heterogeneity	in	these	cells,	
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which	may	derive	from	the	original	tumor	or	any	metastases,	single	cell	methods	

are	necessary.		The	rarity	of	these	cells	requires	tools	for	isolation	from	

hematological	cells.		A	common	method	involves	identifying	circulating	tumor	cells	

(CTCs)	through	the	presence	of	EpCAM	(epithelial	cell	adhesion	molecule)—found	

in	epithelial	cells	but	not	blood	cells—on	the	surface	of	the	cell.		Separation	of	these	

cells	from	the	blood	is	then	performed	using	magnetic	beads	coated	with	anti-

EpCAM	antibody.		Other	recent	methods	have	been	developed	to	overcome	a	major	

limitation	of	this	method:		the	expression	of	EpCAM	is	variable	from	tumor	cell	to	

tumor	cell,	especially	those	in	the	epithelial-mesenchymal	transition.		These	

alternative	methods	include	isolation	of	CTCs	by	microscopic	imaging,	cell	size,	and	

passive	capture	through	removal	of	all	other	blood	cells.	

Genomic	and	transcriptomic	profiling	of	CTCs	have	been	applied	to	studying	

cancer	progression.		Ni	et	al.	elucidate	the	pathway	of	metastasis	in	lung	cancer	

through	the	whole-genome	sequencing	of	CTCs	from	lung	cancer	patients	[57].		As	

these	circulating	tumor	cells	reproducibly	share	similar	CNV	patterns	to	the	same	

patient’s	metastatic	tumors,	the	CNV	patterns	of	these	CTCs	can	be	used	as	proxies	

for	the	metastatic	tumors.		These	CNV	patterns	are	different	from	those	of	the	

primary	tumors,	suggesting	that	metastasis	may	occur	through	a	set	of	copy	number	

changes	[57].		Several	papers	point	to	the	sequencing	of	CTCs	as	a	tool	for	

noninvasively	tracking	the	development	therapy	resistance.		Miyamoto	et	al.	and	

Dago	et	al.	study	the	progression	of	prostate	cancer	over	the	course	of	androgen	

receptor	inhibitor	treatment,	discussed	in	the	next	section	[58,59].	
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1.8.3 Development	of	therapy	resistance	

	

The	ability	to	detect	mutations	at	a	single-cell	level	has	lead	to	yet	another	

possibility:	tracking	the	development	of	cancer	therapy	resistance.		The	main	

approach	towards	this	goal	is	longitudinal	single-cell	measurements	before	and	

after	various	therapies.		A	common	method	for	treating	cancer	is	chemotherapy	

before	a	round	of	targeted	therapy;	longitudinal	data	therefore	may	consist	of	

measurements	before	and	after	each	of	these	events.		Noting	differences	in	

mutational	frequencies	over	time	gives	insight	into	how	tumor	cells	respond	to	

therapy	and	the	mechanisms	by	which	they	develop	resistance.		These	studies	may	

in	addition	be	used	to	validate	two	prevalent	theories	of	therapy	resistance:	

adaptive	resistance,	in	which	a	mutation	present	at	low	frequency	in	the	original	

population	is	selected	for	during	therapy	and	rises	in	frequency,	or	acquired	

resistance,	whereby	resistance-conferring	mutations	arise	as	a	consequence	of	

therapy.	

	 One	study	evaluates	the	response	of	BRAFV600E	melanoma	to	treatment	with	

RAF	or	combined	RAF/MEK	inhibitors	in	both	cell	culture	and	tissue	[9].		A	

comparison	of	scRNA-seq	data	from	biopsies	taken	from	patients	before	and	after	

treatment	with	either	RAF	or	RAF/MEK	inhibitors	finds	that	post-treatment	tissues	

contain	a	higher	proportion	of	cells	overexpressing	AXL,	a	known	marker	of	

resistance.		A	follow-up	experiment	in	melanoma	cell	lines,	in	which	cells	are	treated	

to	increasing	doses	of	RAF/MEK	inhibitors,	also	reveals	an	increase	in	AXL-positive	

cells.		These	AXL-positive	cells	preexisted	in	the	treatment-naïve	sample	and	were	
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selected	for	by	treatment,	a	demonstration	of	the	adaptive	resistance	mechanism	

[9].		

The	Dago	et	al.	and	Miyamoto	et	al.	studies	mentioned	above	use	CTC	

tracking	to	analyze	the	development	of	resistance	to	androgen	receptor	(AR)-	

targeted	therapy	in	prostate	cancer	patients	[58,59].		Through	whole-genome	

sequencing	of	CTCs	before	and	after	treatment,	the	former	find	the	emergence	of	

two	distinct	resistant	subpopulations	with	AR	amplification.		One	of	these	

subpopulations	is	found	to	be	a	descendant	of	a	clone	found	in	the	therapy-naïve	

population,	indicating	support	for	the	adaptive	resistance	hypothesis	[58].		

Miyamoto	et	al.	use	scRNA-seq	of	CTCs	to	show	the	acquisition	of	heterogeneous	

resistance-conferring	changes	in	the	AR-independent	Wnt	signaling	pathway	[59].		

Both	studies	demonstrate	the	relevance	of	CTCs	in	the	non-invasive	monitoring	of	

therapy	resistance.	

Authors	of	the	aforementioned	Janiszewska	et	al.	paper	[3]	use	their	STAR-

FISH	technique	to	study	the	implications	of	chemotherapy	in	the	development	of	

resistance	to	subsequent	ERBB2	(HER2)-targeted	trastuzumab	therapy	in	HER2+	

breast	cancer	patients.		HER2	amplification	and	frequency	of	the	His1047Arg	

mutation	in	PIK3CA	were	observed	before	and	after	chemotherapy	in	HER2+	breast	

tumor	samples.		Chemotherapy	is	found	to	result	in	an	increased	frequency	of	

PIK3CA	mutants	(known	to	be	a	determinant	of	resistance	to	trastuzumab)	and	a	

decreased	frequency	of	HER2	amplification	(giving	trastuzumab	less	target	sites).		

These	results	suggest	that	trastuzumab	may	be	ineffective	for	patients	who	have	

already	received	chemotherapy.		The	spatial	information	provided	by	the	STAR-
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FISH	method	may	also	be	informative	in	studying	resistance,	as	the	authors	found	

that	chemotherapy	increases	the	dispersion	of	cancer	cells	with	the	PIK3CA	

mutation.		This	increased	dispersion	may	be	an	indicator	of	poor	prognosis	[3].			

A	new	study	extends	this	type	of	study	to	single-cell	proteomic	data	[60].		

Wei	et	al.	collect	proteomic	data	on	12	proteins	and	phosphoproteins	in	cells	of	a	

patient-derived	in	vivo	brain	cancer	glioblastoma	model	before	and	after	treatment	

with	an	mTOR	kinase	inhibitor.		Correlations	between	protein	expression	levels	are	

then	used	to	build	signaling	networks,	and	these	networks	are	compared	pre-	and	

post-	targeted	therapy.		The	drug	decreases	mTORC1/C2	signaling	(the	intended	

target),	but	upon	reaching	a	state	of	resistance,	the	signaling	is	reactivated,	once	

again	an	example	of	adaptive	resistance.		In	addition,	upon	reaching	a	state	of	

resistance,	new	correlations	can	be	seen	in	the	ERK/Src	pathways.		This	is	an	

indication	that	increased	signaling	in	these	pathways	may	promote	downstream	

mTOR	signaling,	and	consequently	that	an	effective	targeted	therapy	must	

simultaneously	target	both	mTOR	and	ERK/Src	[60].	

	

1.9 Conclusion	

	

Single-cell	biology	is	a	fast-evolving	field.	As	discussed	in	the	paper,	a	lot	of	

the	technical	and	computational	development	has	been	made	in	just	a	few	years.	

These	methods	have	greatly	empowered	researchers	to	systematically	interrogate	

the	cellular	heterogeneity	within	a	tumor	especially	in	terms	of	spatial	

heterogeneity	and	multi-omics	integration.		All	the	methods	reviewed	here	share	a	
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common	goal:	improving	our	understanding	of	tumor	cell	heterogeneity	for	the	

purpose	of	informing	personalized	cancer	treatment.			

Studying	intra-tumoral	heterogeneity	and	the	spatial	orientation	of	

subclones	in	the	primary	tumor	via	new	spatial	transcriptome	methods	and	

simultaneous	multiple	omic	sequencing	will	allow	for	the	proper	drug	targeting	of	

the	subclones.		Examining	the	nature	of	stem-like	tumor	cells	and	the	transcriptomic	

mechanisms	required	to	give	rise	to	new	tumor	populations	will	give	clarity	to	the	

origination	of	metastases.		Targeting	these	stem-like	cells	could	hamper	the	spread	

of	cancer	throughout	the	body.		Being	able	to	isolate	and	longitudinally	sample	CTCs	

will	permit	non-invasive	diagnosis	and	monitoring	over	the	course	of	treatment.		

Treatment	approaches	can	be	constantly	updated	upon	tracking	the	response	and	

evolution	of	CTCs	throughout	treatment.		Finally,	treatment	resistance	can	be	

prevented	with	a	more	accurate	modeling	of	the	development	of	resistance	to	

current	drugs.	

	 Much	work	remains	to	make	these	possibilities	realities.		But	as	single-cell	

sequencing	methods	continue	to	become	cheaper,	capable	of	higher	coverage,	and	

able	to	process	a	greater	number	of	cells	faster,	no	doubt	these	goals	will	become	

more	and	more	attainable.	
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Table	1.1.	A	summary	of	relevant	single-cell	methods	and	their	applications	to	
cancer	genomics.
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A	modified	version	of	this	text	is	published	in	Genome	Biology,	Volume	19,	May	

2018,	Page	58.	

	

2.1 Abstract	

	

Single-cell	analysis	is	a	powerful	tool	for	dissecting	the	cellular	composition	

within	a	tissue	or	organ.	However,	it	remains	difficult	to	detect	rare	and	common	

cell	types	at	the	same	time.	Here,	we	present	a	new	computational	method,	

GiniClust2,	to	overcome	this	challenge.	GiniClust2	combines	the	strengths	of	two	

complementary	approaches,	using	the	Gini	index	and	Fano	factor,	respectively,	

through	a	cluster-aware,	weighted	ensemble	clustering	technique.	GiniClust2	

successfully	identifies	both	common	and	rare	cell	types	in	diverse	datasets,	

outperforming	existing	methods.	GiniClust2	is	scalable	to	large	datasets.		

	

2.2 Introduction	

	

Genome-wide	 transcriptomic	 profiling	 has	 served	 as	 a	 paradigm	 for	 the	

systematic	 characterization	 of	 molecular	 signatures	 associated	 with	 biological	

functions	and	disease-related	alterations,	but	 traditionally	 this	 could	only	be	done	

using	bulk	samples	that	often	contain	significant	cellular	heterogeneity.		The	recent	

development	 of	 single-cell	 technologies	 has	 enabled	 biologists	 to	 dissect	 cellular	

heterogeneity	 within	 a	 cell	 population.	 	 Such	 efforts	 have	 led	 to	 an	 increased	
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understanding	 of	 cell-type	 composition,	 lineage	 relationships,	 and	 mechanisms	

underlying	 cell-fate	 transitions.	 	 As	 the	 throughput	 of	 single-cell	 technology	

increases	 dramatically,	 it	 has	 become	 feasible	 not	 only	 to	 characterize	major	 cell	

types,	 but	 also	 to	 detect	 cells	 that	 are	 present	 at	 low	 frequencies,	 including	 those	

that	are	known	to	play	an	important	role	in	development	and	disease,	such	as	stem	

and	progenitor	cells,	cancer-initiating	cells,	and	drug-resistant	cells	[61,	62].		

On	the	other	hand,	 it	remains	a	computational	challenge	to	 fully	dissect	 the	

cellular	heterogeneity	within	a	large	cell	population.		Despite	the	intensive	effort	in	

method	 development	 [63-68],	 significant	 limitations	 remain.	 	 Most	 methods	 are	

effective	only	for	detecting	common	cell	populations,	but	are	not	sensitive	enough	to	

detect	rare	cells.	 	A	number	of	methods	have	been	developed	to	specifically	detect	

rare	 cells	 [69-72],	 but	 the	 features	 used	 in	 these	methods	 are	 distinct	 from	 those	

distinguishing	 major	 populations.	 	 Existing	 methods	 cannot	 satisfactorily	 detect	

both	large	and	rare	cell	populations.		A	naïve	approach	combining	features	that	are	

either	associated	with	common	or	rare	cell	populations	 fails	 to	characterize	either	

type	correctly,	as	a	mixed	feature	space	will	dilute	both	common	and	rare	cell-type-

specific	biological	signals,	an	unsatisfactory	compromise.	

To	overcome	this	challenge,	we	have	developed	a	new	method,	GiniClust2,	to	

integrate	information	from	complementary	clustering	methods	using	a	novel	

ensemble	approach.		Instead	of	averaging	results	from	individual	clustering	

methods,	as	is	traditionally	done,	GiniClust2	selectively	weighs	the	outcomes	of	each	

model	to	maximize	the	methods’	respective	strengths.	We	show	that	this	cluster-
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aware	weighted	ensemble	approach	can	accurately	identify	both	common	and	rare	

cell	types	and	is	scalable	to	large	datasets.	

	

2.3 Results	

	

2.3.1 Overview	of	the	GiniClust2	method	

	

An	 overview	 of	 the	 GiniClust2	 pipeline	 is	 shown	 in	 Fig.	 2.1.	 	 We	 begin	 by	

independently	running	both	a	rare	cell-type	detection	method	and	a	common	cell-

type	detection	method	on	the	same	data	set	(Fig.	2.1a).		In	a	previous	study	[71],	we	

showed	 that	 different	 strategies	 are	 optimal	 for	 identifying	 genes	 associated	with	

rare	cell	types	than	for	common	ones.		Whereas	the	Fano	factor	is	a	valuable	metric	

for	capturing	differentially	expressed	genes	specific	to	common	cell	types,	the	Gini	

index	is	much	more	effective	for	identifying	genes	that	are	associated	with	rare	cells	

[71].	 	 Therefore,	we	were	motivated	 to	 develop	 a	 new	method	 that	 combines	 the	

strengths	 of	 these	 two	 approaches.	 To	 facilitate	 a	 concrete	 discussion,	 here	 we	

choose	 GiniClust	 as	 the	 Gini-index	 based	method	 and	 k-means	 as	 the	 Fano-factor	

based	 method.	 	 However,	 the	 same	 approach	 can	 be	 used	 to	 combine	 any	 other	

clustering	methods	with	similar	properties.		We	call	this	new	method	GiniClust2.	
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Figure	 2.1.	 An	 overview	 of	 the	 GiniClust2	 pipeline.	 	 (a)	 The	 Gini	 index	 and	 Fano	
factor	 are	 used	 (left),	 respectively,	 to	 select	 genes	 for	 GiniClust	 and	 Fano-based	
clustering	(middle	 left).	 	A	cluster-aware,	weighted	ensemble	method	 is	applied	to	
each	of	 these,	where	cell-specific	cluster-aware	weights	𝑤"#	and	𝑤"$are	represented	
by	the	shading	of	the	cells	(middle	right),	to	reach	a	consensus	clustering	(right).		(b)	
A	 schematic	 of	 the	 weighted	 consensus	 association	 calculation,	 with	 association	
matrices	in	black	and	white,	weighting	schemes	in	red	and	blue,	and	final	GiniClust2	
clusters	highlighted	in	white.		(c)	Cell-specific	GiniClust	and	Fano-based	weights	are	
defined	as	a	function	of	cell	type	proportion,	where	parameters	𝜇,	𝑠,	and	𝑓	define	the	
shapes	of	the	weighting	curves.	
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Our	 goal	 is	 to	 consolidate	 these	 two	 differing	 clustering	 results	 into	 one	

consensus	 grouping.	 	 The	 output	 from	 each	 initial	 clustering	 method	 can	 be	

represented	 as	 a	 binary-valued	 connectivity	 matrix,	 Mij,	 where	 a	 value	 of	 one	

indicates	 cells	 i	 and	 j	belong	 to	 the	 same	cluster	 (Fig.	2.1b).	 	Given	each	method’s	

distinct	feature	space,	we	find	that	GiniClust	and	Fano-factor-based	k-means	tend	to	

emphasize	 the	 accurate	 clustering	of	 rare	 and	 common	 cell	 types,	 respectively,	 at	

the	 expense	 of	 their	 complements.	 	 To	 optimally	 combine	 these	 methods,	 a	

consensus	matrix	is	calculated	as	a	cluster-aware,	weighted	sum	of	the	connectivity	

matrices,	using	a	variant	of	the	weighted	consensus	clustering	algorithm	developed	

by	Li	 and	Ding	[73]	(Fig.	2.1b).	Since	GiniClust	 is	more	accurate	 for	detecting	rare	

clusters,	 its	 outcome	 is	more	 highly	weighted	 for	 rare	 cluster	 assignments,	 while	

Fano-factor-based	 k-means	 is	 more	 accurate	 for	 detecting	 common	 clusters	 and	

therefore	 its	 outcome	 is	 more	 highly	 weighted	 for	 common	 cluster	 assignments.		

Accordingly,	weights	are	assigned	to	each	cell	as	a	function	of	the	size	of	the	cluster	

to	 which	 the	 cell	 belongs	 (Fig.	 2.1c).	 	 For	 simplicity,	 the	 weighting	 functions	 are	

modeled	as	logistic	functions	which	can	be	specified	by	three	tunable	parameters:	𝜇	

is	the	cluster	size	at	which	GiniClust	and	Fano-factor-based	clustering	methods	have	

the	same	detection	precision,	𝑠	represents	how	quickly	GiniClust	loses	its	ability	to	

detect	 rare	 cell	 types ,	 and	 𝑓 	represents	 the	 importance	 of	 the	 Fano	 cluster	

membership	in	determining	the	larger	context	of	the	membership	of	each	cell.		The	

values	of	parameters	𝜇	and	𝑠	are	specified	as	a	 function	of	 the	smallest	cluster	size	

detectable	 by	 GiniClust	 and	 the	 parameter	𝑓	is	 set	 to	 a	 constant	 (Materials	 and	

Methods,	 Supplemental	 Information).	 	 The	 resulting	 cell-specific	 weights	 are	
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transformed	into	cell-pair-specific	weights	𝑤"*$ 	and	𝑤"*# 	(Materials	and	Methods),	and	

multiplied	by	their	respective	connectivity	matrices	to	form	the	resulting	consensus	

matrix	(Fig.	2.1b).		An	additional	round	of	clustering	is	then	applied	to	the	consensus	

matrix	to	identify	both	common	and	rare	cell	clusters.		The	mathematical	details	are	

described	in	the	Materials	and	Methods	section.		

	

2.3.2 Accurate	detection	of	both	common	and	rare	cell	types	in	a	simulated	

dataset	

	

We	 started	 by	 evaluating	 the	 performance	 of	 GiniClust2	 using	 a	 simulated	

scRNA-seq	dataset,	which	 contains	 two	common	clusters	 (of	2000	and	1000	cells,	

respectively)	and	four	rare	clusters	(of	10,	6,	4,	and	3	cells,	respectively)	(Materials	

and	Methods,	Fig.	2.2a).	 	We	first	applied	GiniClust	and	Fano-factor-based	k-means	

independently	 to	 cluster	 the	 cells.	 As	 expected,	 GiniClust	 correctly	 identifies	 all	 4	

rare	 cell	 clusters,	 but	merges	 the	 two	 common	 clusters	 into	 a	 single	 large	 cluster	

(Fig.	 2.2b,	 Supplemental	 Information,	 Supplemental	 Fig.	 S2.1).	 	 In	 contrast,	 Fano-

factor-based	 k-means	 (with	 k=2)	 accurately	 separates	 the	 two	 common	 clusters,	

while	 lumping	 together	all	 four	rare	 cell	 clusters	 into	 the	 largest	group	 (Fig.	2.2b,	

Supplemental	Information,	Supplemental	Fig.	S2.1).		Increasing	k	past	k=3	results	in	

dividing	 each	 common	 cluster	 into	 smaller	 clusters,	 without	 resolving	 all	 rare	

clusters,	indicating	an	intrinsic	limitation	of	selecting	gene	features	using	the	Fano	

factor	 (Supplemental	Fig.	 S2.2a).	 	We	 find	 this	 limitation	 to	be	 independent	of	 the	

clustering	method	used,	as	applying	alternative	clustering	methods	to	the	Fano-	
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Figure	 2.2.	 	 The	 application	 of	 GiniClust2	 and	 comparable	 methods	 to	 simulated	
data.	 	 (a)	A	heatmap	representation	of	 the	 simulated	data	with	6	distinct	 clusters,	
showing	 the	genes	permuted	 to	define	each	cluster.	A	 zoomed-in	view	of	 the	 rare	
clusters	 is	 shown	 in	 the	 smaller	 heatmap.	 	 (b)	 A	 comparison	 between	 the	 true	
clusters	(x-axis)	and	clustering	results	from	GiniClust2	and	comparable	methods	(y-
axis).	Each	cluster	is	represented	by	a	distinct	color	bar.		Multiple	bars	are	shown	if	
a	 true	 cluster	 is	 split	 into	 multiple	 clusters	 by	 a	 clustering	 method.	 (c)	 A	 three-
dimensional	 visualization	 of	 the	 GiniClust2	 clustering	 results	 using	 a	 composite	
tSNE	 plot,	 combining	 two	 Fano-based	 tSNE	 dimensions	 and	 one	 Gini-based	 tSNE	
dimension.	The	inset	shows	a	zoomed-in	view	of	the	corresponding	region.	
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factor	based	feature	space,	such	as	hierarchical	clustering	and	community-detection	

on	 a	 kNN	 graph,	 also	 results	 in	 the	 inability	 to	 resolve	 rare	 clusters	 (Fig.	 2.2b,	

Supplemental	Information,	Supplemental	Fig.	S2.1).	Furthermore,	simply	combining	

the	 Gini	 and	 Fano	 feature	 space	 fails	 to	 provide	 a	 more	 satisfactory	 solution	

(Supplemental	 Information,	 Supplemental	 Fig.	 S2.3).	 These	 analyses	 signify	 the	

importance	of	feature	selection	in	a	context-specific	manner.	

We	next	used	the	GiniClust2	weighted	ensemble	step	to	combine	the	results	

from	 GiniClust	 and	 Fano-factor-based	 k-means.	 	 Of	 note,	 all	 six	 cell	 clusters	 are	

perfectly	 recapitulated	 by	 GiniClust2	 (Fig.	 2.2b,	 Supplemental	 Information,	

Supplemental	Fig.	S2.1),	suggesting	that	GiniClust2	is	indeed	effective	for	detecting	

both	 common	and	 rare	 cell	 clusters.	 	To	aid	visualization,	we	created	a	 composite	

tSNE	 plot,	 projecting	 the	 cells	 into	 a	 three-dimensional	 space	 based	 on	 a	

combination	 of	 a	 two-dimensional	 Fano-based	 tSNE	 map	 and	 a	 one-dimensional	

Gini-based	 tSNE	map	 (Fig.	 2.2c).	 	 A	 three-dimensional	 space	 is	 required	 because,	

although	the	Fano-based	dimensions	are	able	 to	clearly	separate	the	two	common	

clusters,	the	rare	clusters	are	overlapping	and	cannot	be	fully	discerned.		The	third	

(Gini)	 dimension	 results	 in	 complete	 separation	 of	 the	 rare	 clusters.	 	 Unlike	 a	

traditional	tSNE	plot,	this	composite	view	does	not	correspond	to	a	single	projection	

of	 a	 high-dimensional	 dataset	 into	 a	 three-dimensional	 space	 but	 integrates	 two	

orthogonal	views	obtained	from	different	high-dimensional	features.	 	Although	the	

distance	 does	 not	 have	 a	 simple	 interpretation,	 it	 provides	 a	 convenient	 way	 to	

visualize	data	from	complementary	views.		
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Since	the	number	of	common	clusters	is	unknown	in	advance,	we	also	tested	

the	 robustness	 of	 GiniClust2	 with	 respect	 to	 other	 choices	 of	 k.	 We	 found	 that	

setting	 k=3	 provides	 the	 same	 final	 clustering,	 while	 further	 increase	 results	 in	

poorer	performance	by	splitting	of	the	larger	clusters	(Supplemental	Fig.	S2.2b).	By	

default,	the	value	of	k	was	chosen	using	the	gap	statistic,	which	coincided	with	the	

number	of	common	clusters	(k=2)	[74].	However,	this	metric	may	not	be	optimal	in	

various	 cases	 when	 the	 underlying	 distribution	 is	 more	 complex	 [75],	 therefore	

additional	 exploration	 is	often	needed	 to	select	 the	optimal	value	 for	k.	 	 Since	 the	

clustering	outcome	 is	 sensitive	 to	 the	 choice	of	 k	 (Supplemental	 Information),	we	

recommend	 using	 the	 gap	 statistic	 as	 a	 starting	 point	 for	 choosing	 k,	 and	 then	

evaluating	this	choice	of	k	by	checking	the	resulting	clusters	for	adequate	separation	

in	 the	 Fano-factor-based	 tSNE	 plot	 and	 expression	 of	 distinct	 and	 biologically	

relevant	genes.	

For	comparison,	we	evaluated	the	performance	of	two	unweighted	ensemble	

clustering	 methods.	 	 First,	 we	 used	 the	 cluster-based	 similarity	 partitioning	

algorithm	 (CSPA)	 [76]	 to	 combine	 the	 GiniClust	 and	 Fano-factor-based	 k-means	

(k=2)	clustering	results.	 	The	consensus	clustering	splits	 the	common	clusters	 into	

six	 subgroups,	 whereas	 cells	 in	 the	 four	 rare	 clusters	 are	 assigned	 to	 one	 of	 two	

clusters	 shared	 with	 the	 largest	 common	 cell	 group	 (Fig.	 2.2b,	 Supplemental	

Information,	 Supplemental	 Fig.	 S2.1).	 	Without	 guidance,	 the	 consensus	 clustering	

treats	 all	 clustering	 results	 equally	 and	 attempts	 to	 resolve	 any	 inconsistency	 via	

suboptimal	compromise.			The	second	method	we	considered,	known	as	SC3	[64],	is	

specifically	designed	for	single-cell	analysis.	 	This	method	performs	an	unweighted	
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ensemble	of	k-means	clusterings	for	various	parameter	choices	without	specifically	

targeting	rare	cell	detection.		Regardless	of	the	specific	parameter	choices,	k-means	

cannot	 resolve	 the	 rarest	 clusters,	 and	 the	 final	 ensemble	 clustering	 splits	 the	

largest	 group	 into	 three	 and	 differentiates	 only	 one	 of	 the	 four	 rare	 clusters	 (Fig.	

2.2b,	 Supplemental	 Information,	 Supplemental	 Fig.	 S2.1).	 	 These	 analyses	 suggest	

that	 our	 cluster-aware,	 weighted	 ensemble	 approach	 is	 important	 for	 optimally	

combining	the	strengths	of	different	methods.		

We	 also	 compared	 the	 performance	 of	 GiniClust2	with	 other	 rare	 cell	 type	

detection	 methods.	 In	 particular,	 we	 compared	 with	 RaceID2	 [70],	 which	 is	 an	

improved	version	of	RaceID	[69]	developed	by	the	same	group.	For	fair	comparison,	

we	 considered	 k=2,	 the	 exact	 number	 of	 common	 cell	 clusters,	 and	 k=12,	 the	

parameter	value	 recommended	by	 authors	Grün	et	 al.	 as	determined	by	 a	within-

cluster	dispersion	saturation	metric	[70].	In	both	cases,	RaceID2	over-estimated	the	

number	 of	 clusters,	 and	 split	 both	 common	 and	 rare	 cell	 clusters	 into	 smaller	

subclusters	 (Fig.	 2.2b,	 Supplemental	 Information,	 Supplemental	 Fig.	 S2.1).	 	 This	

tendency	of	over-clustering	is	consistent	with	our	previous	observations	[71].	

	

2.3.3 Robust	identification	of	rare	cell	types	over	a	wide	range	of	proportions	

	

In	order	to	evaluate	the	performance	of	GiniClust2	on	analyzing	real	scRNA-

seq	datasets,	we	focused	on	one	of	the	largest	public	scRNA-seq	datasets	generated	

by	 10X	 Genomics	 [77].	 The	 dataset	 consists	 of	 transcriptomic	 profiles	 of	 about	

68,000	peripheral	blood	mononuclear	cells	(PBMCs)	[77],	which	were	classified	into	
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11	subpopulations	based	on	transcriptomic	similarity	with	purified	cell-types	(Fig.	

2.3a).	 It	 was	 noted	 that	 the	 transcriptomic	 profiles	 of	 several	 subpopulations	 are	

nearly	indistinguishable	[77].		

To	 reduce	 the	 effects	 of	 stochastic	 variation	 and	 technical	 artifacts,	 we	

started	by	considering	only	a	subset	of	cell	types	whose	transcriptomic	profiles	are	

distinct	from	one	another.	In	particular,	we	focused	on	three	large	subpopulations:	

CD56+	natural	killer	(NK)	cells,	CD14+	Monocytes,	and	CD19+	B	cells.		To	ensure	our	

analysis	 is	 not	 affected	 by	 within-cell-type	 heterogeneity,	 additional	 known	 gene	

markers	were	used	to	further	remove	heterogeneity	within	each	subpopulation	(see	

Materials	and	Methods	for	cell	type	definition	details).	In	the	end,	three	populations	

were	 selected,	 corresponding	 to	 NK,	 macrophage,	 and	 B	 cells,	 respectively	 (Fig.	

2.3a).			To	systematically	compare	the	ability	of	different	methods	in	detecting	both	

common	and	rare	cell	types,	we	created	a	total	of	140	random	subsamples	that	mix	

different	cell	types	at	various	proportions	(Supplemental	Table	S2.1),	with	the	rare	

cell	type	(macrophage)	proportions	ranging	from	0.2%	to	11.6%	(see	Materials	and	

Methods	for	details).	

We	applied	GiniClust2	and	comparable	methods	to	the	down-sampled	

datasets	generated	above.		Each	method	was	evaluated	based	on	its	ability	to	detect	

each	cell	type	using	three	Matthews	correlation	coefficients	(MCC)	[78]	(Fig.	2.3b).		

The	MCC	is	a	metric	that	quantifies	the	overall	agreement	between	two	binary	

classifications,	taking	into	account	both	true	and	false	positives	and	negatives.		The		
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Figure	2.3.		Analysis	of	the	68k	PBMC	dataset	[77].	(a)	A	visualization	of	reference	
labels	for	the	full	data	set	(left),	along	with	the	3	cell	subtypes	selected	for	detailed	
analysis	(right).	(b)	Comparison	of	the	performance	of	different	clustering	methods,	
quantified	by	a	Matthews	correlation	coefficient	(MCC)	[78]	for	each	of	the	three	cell	
subtypes.	
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MCC	value	ranges	from	-1	to	1,	where	1	means	a	perfect	agreement	between	a	

clustering	and	the	reference,	0	means	the	clustering	is	as	good	as	a	random	guess,	

and	-1	means	a	total	disagreement	between	a	clustering	and	the	reference.		In	

addition,	we	also	evaluated	the	performance	of	each	method	using	several	

additional	metrics	(Supplemental	Information).		While	each	metric	typically		

generates	 a	 different	 value,	 the	 relative	 performance	 across	 different	 clustering	

methods	is	highly	conserved	(Supplemental	Fig.	S2.4).	

RaceID2	is	the	best	method	for	detecting	the	rare	macrophage	cell	type	at	a	

frequency	of	1.6%	or	 lower,	 and	GiniClust2	 is	 the	next	best	method.	 	As	expected,	

the	 performance	 of	 GiniClust	 degrades	 as	 the	 “rare”	 cell	 type	 becomes	 more	

abundant,	 whereas	 Fano-factor-based	 k-means	 becomes	 more	 powerful	 in	 such	

cases.		Combining	these	two	methods	enables	GiniClust2	to	perform	among	the	top	

over	a	wide	range	of	rare-cell	proportions.	 	The	remaining	methods	cannot	detect	

rare	cell	clusters	well.		For	the	common	groups,	Fano-factor-based	k-means	tends	to	

perform	better,	 but	 only	 if	 the	 parameter	 is	 chosen	 correctly.	 For	 example,	 Fano-

factor-based	k-means	with	k=4	systematically	splits	 the	 largest	NK	cell	 group	and	

leads	to	a	relatively	low	MCC	value.		Other	clustering	methods	that	use	Fano-factor-

based	 feature	 selection	 (such	as	hierarchical	 clustering	and	community	detection)	

also	adequately	pick	up	common	clusters.	This	strong	performance	is	preserved	by	

the	GiniClust2	method.	In	comparison,	RaceID2	does	not	perform	as	well	here,	since	

some	of	 the	cells	 in	 the	common	groups	are	 falsely	 identified	as	rare	cells.	 	Taken	

together,	these	comparative	results	suggest	that	GiniClust2	reaches	a	good	balance	
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for	detecting	both	 common	and	 rare	 clusters.	The	 same	conclusion	can	be	arrived	

using	alternative	evaluation	metrics	(Supplemental	Fig.	S2.4).		

	

2.3.4 Detection	of	rare	cell	types	in	differentiating	mouse	embryonic	stem	

cells	

	

To	test	if	GiniClust2	is	useful	for	detecting	previously	unknown,	biologically	

relevant	 cell	 types,	 we	 analyzed	 a	 published	 dataset	 associated	 with	 leukemia	

inhibitory	 factor	 (LIF)	 withdrawal	 induced	 mouse	 embryonic	 stem	 cell	 (mESC)	

differentiation	[79].	Previously,	we	applied	GiniClust	to	analyze	a	subset	containing	

undifferentiated	mESCs,	and	identified	a	rare	group	of	Zscan4-enriched	cells	[71].	As	

expected,	these	rare	cells	were	rediscovered	using	GiniClust2.		

In	this	study,	we	focused	on	the	cells	assayed	on	Day	4	post	LIF	withdrawal,	

and	 tested	 if	 GiniClust2	 might	 uncover	 greater	 cellular	 heterogeneity	 than	

previously	recognized.	GiniClust2	identified	two	rare	clusters	consisting	of	5	and	4	

cells	respectively,	corresponding	to	1.80%	and	1.44%	of	the	entire	cell	population.		

The	 first	 group	 contains	 25	 differentially	 expressed	 genes	when	 compared	 to	 the	

rest	of	the	cell	population	(MAST	likelihood	ratio	test	p-value<1e-5,	fold	change>2),	

including	 known	 primitive	 endoderm	 (PrEn)	 markers	 such	 as	 Col4a1,	 Col4a2,	

Lama1,	 Lama2,	 and	 Ctsl.	 	 	 These	 genes	 are	 also	 associated	 with	 high	 Gini	 index	

values.		Overall	there	is	a	highly	significant	overlap	between	differentially	expressed	

and	high	Gini	genes	(Fisher	exact	 test	p-value<1e-18).	 	The	second	group	contains	

10	 differentially	 expressed	 genes	 (MAST	 likelihood	 ratio	 test	 p-value<1e-5,	 fold	
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change>2),	including	maternally	imprinted	genes	Rhox6,	Rhox9,	and	Sct,	all	of	which	

are	 also	 high	 Gini	 genes.	 	 Once	 again	 there	 is	 a	 significant	 overlap	 between	

differentially	 expressed	 and	 high	 Gini	 genes	 (Fisher	 exact	 test	 p-value<1e-12).	

Although	 these	 clusters	 were	 detected	 in	 the	 original	 publication	 [79],	 this	 was	

achieved	 based	 on	 a	 priori	 knowledge	 of	 relevant	 markers.	 Here,	 the	 strength	 of	

GiniClust2	is	that	it	can	identify	these	clusters	without	previous	knowledge.	

In	 addition,	 GiniClust2	 identified	 2	 common	 clusters.	 The	 first	 group	

specifically	 expresses	 a	 number	 of	 genes	 related	 to	 cell	 growth	 and	 embryonic	

development,	 including	 Pim2,	 Tdgf1,	 and	 Tcf15	 (MAST	 likelihood	 ratio	 test	 p-

value<1e-5,	fold	change>2),	indicating	it	corresponds	to	undifferentiated	stem	cells.	

The	second	group	is	strongly	associated	with	a	number	of	genes	related	to	epiblast	

cells,	 including	Krt8,	Krt18,	S100a6,	Tagln,	Actg1,	Anxa2,	and	Flnc	(MAST	likelihood	

ratio	 test	 p-value<1e-5,	 fold	 change>2),	 suggesting	 this	 group	 corresponds	 to	 an	

epiblast-like	state.	 	Of	note,	114	of	the	128	genes	(Fisher	exact	test	p-value<1e-88)	

specifically	 expressed	 in	 this	 group	 were	 selected	 as	 high	 Fano-factor	 genes,	

confirming	 the	 utility	 of	 Fano	 factor	 in	 detecting	 common	 cell-types.	 	 Both	

populations	 were	 discovered	 in	 the	 original	 publication	 [79].	 The	 dissimilarity	

between	these	cell	 types	 is	evident	 in	 the	heatmap	(Fig.	2.4a)	and	composite	 tSNE	

plot	(Supplemental	Fig.	S2.5).	

For	 comparison,	 we	 applied	 RaceID2	 to	 analyze	 the	 same	 dataset.	 Unlike	

GiniClust2,	 RaceID2	 broke	 each	 cluster	 into	 multiple	 subclusters,	 and	 failed	 to	

identify	 the	 rare	 cell	 clusters	 (Fig.	 2.4b).	 	 With	 k=2,	 RaceID2	 found	 a	 total	 of	 11	

clusters.		Clusters	1,	2,	4,	and	9	display	an	epiblast-like	signature,	clusters	7	and	10	
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overexpress	 genes	 relating	 to	 maternal	 imprinting,	 and	 clusters	 8	 and	 11	

correspond	to	PrEn	cells.	 	From	these	results	it	appears	that	RaceID2	has	difficulty	

in	differentiating	rare,	biologically	meaningful	cell	types	from	outliers.	

	

Figure	2.4.	Analysis	of	the	inDrop	dataset	for	day	4	post-LIF	mESC	differentiation	
[19].		(a)	A	heatmap	of	top	differentially	expressed	genes	for	each	GiniClust2	cluster.	
The	colorbar	above	the	heatmap	indicates	the	cluster	assignments.	(b)	A	
comparison	of	GiniClust2	and	RaceID2	clustering	results,	for	common	(above)	and	
rare	(below)	cell	types.	The	same	color-coding	scheme	is	used	in	all	panels.	
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2.3.5 Scalability	to	large	data	sets	

	

With	 the	 rapid	 development	 of	 single-cell	 technologies,	 it	 has	 become	

feasible	 to	 profile	 thousands	 or	 even	 millions	 of	 transcriptomes	 at	 single-cell	

resolution.	 Thus,	 it	 is	 desirable	 to	 develop	 scalable	 computational	 methods	 for	

single-cell	 data	 analysis.	 As	 a	 benchmark,	 we	 applied	 GiniClust2	 to	 analyze	 the	

entire	 68k	 PBMC	data	 set	 [77]	 described	 above	 to	 uncover	 hidden	 cell	 types.	 The	

complete	analysis	took	2.3	hours	on	one	core	of	a	2	GHz	Intel	Xeon	CPU	and	utilized	

237	GB	of	memory	 (not	optimized	 for	 speed	or	memory	usage).	 	 For	 comparison,	

RaceID2	 analysis	 could	 not	 be	 completed	 for	 this	 large	 dataset.	 One	 possible	

explanation	 is	 this	 method	 may	 be	 limited	 to	 handling	 data	 sets	 with	 less	 than	

65,536	 data	 points	 due	 to	 an	 intrinsic	 vector	 size	 restriction	 in	 R.	 	 Our	

implementation	 of	 GiniClust2	 circumvents	 this	 restriction	 by	 splitting	 up	 larger	

vectors	 into	several	smaller	ones,	with	no	changes	to	 the	 functionality	of	the	code.		

In	 principle,	 the	 same	 strategy	 can	 be	 implemented	 in	 RaceID2	 to	 overcome	 this	

limitation.	 Comparisons	 of	 computational	 run-times	 between	 RaceID2	 and	

GiniClust2	 on	 smaller	 data	 sets	 show	 that	 the	 runtime	 of	 GiniClust2	 scales	 better	

with	 the	number	of	 cells	 in	 the	data	 set	 (Supplemental	 Information,	 Supplemental	

Fig.	S2.6).	 	For	example,	 for	a	data	set	of	80	cells	GiniClust2	and	RaceID2	take	the	

same	amount	of	 time,	whereas	 for	 the	 simulated	data	 set	of	3023	cells	GiniClust2	

takes	just	under	10	minutes	while	RaceID2	takes	1	hour	and	13	mins.	 	Despite	the	

advantages	 of	 GiniClust2,	 it	 should	 be	 noted	 that	 GiniClust2	 still	 requires	 a	
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considerable	 amount	 of	 memory	 to	 run	 on	 very	 large	 data	 sets,	 presenting	 a	

limitation	to	the	application	of	this	method	to	even	larger	data.	

Our	analysis	 identified	9	common	clusters	and	two	rare	clusters	(Fig.	2.5a).		

In	general,	the	results	of	GiniClust2	and	Fano-factor-based	k-means	are	similar;	both	

agree	well	with	the	reference	cell	types	(Fig.	2.5b).		To	quantify	this	agreement,	we	

use	 normalized	 mutual	 information	 (NMI),	 which	 is	 an	 entropy-based	 method	

normalized	by	cluster	size	that	can	be	applied	to	multi-class	classification	problems	

[80].	 	 A	 value	 of	 1	 indicates	 perfect	 agreement,	 whereas	 a	 value	 of	 0	 means	 the	

performance	is	as	good	as	random	guess.		Here,	values	are	0.540	for	GiniClust2	and	

0.553	 for	 Fano-factor-based	 k-means.	 	 Most	 of	 the	 discrepancy	 between	 the	

clustering	results	and	reference	labels	are	associated	with	T-cell	subtypes.	As	noted	

by	 the	 original	 authors	 [77],	 these	 subtypes	 are	 difficult	 to	 separate	 because	 they	

share	 similar	 gene	 expression	 patterns	 and	 biological	 functions.	 The	 common	

clusters	 detected	 by	 GiniClust2	 and	 Fano-factor-based	 k-means	 express	 marker	

genes	known	to	be	specific	to	the	cell	types	represented	in	the	reference	[81]	(Fig.	

2.5c).			

With	respect	to	rare	cell	types,	our	first	group	contains	a	homogeneous	and	

visually	distinct	subset	of	171	of	262	total	CD34+	cells	(Cluster	2,	Fig.	2.5a).	This	

cluster	was	partially	detectable	using	Fano-factor-based	k-means,	although	it	was	

partially	mixed	with	major	clusters.	The	second	rare	cell	cluster	is	previously	

unrecognized	(Cluster	3,	Fig.	2.5a).		This	cluster	contains	118	cells	(0.17%)	within	a	

large	set	of	5433	immune	cells	with	similar	gene	expression	patterns.		Among	these	

118	cells,	101	cells	are	classified	as	monocytes,	whereas	16	are	classified	as		
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Figure	2.5.	Results	from	the	full	68k	PBMC	data	analysis.		(a)	A	composite	tSNE	plot	
of	the	GiniClust2	results;	rare	cell	types	are	circled.		(b)	A	confusion	map	showing	
similarities	between	GiniClust2	clusters	and	reference	labels.	Values	represent	the	
proportion	of	cells	per	reference	label	that	are	in	each	cluster.	(c)	A	bubble	plot	
showing	expression	of	cluster-specific	genes.	Size	represents	the	percentage	of	cells	
within	each	cluster	with	non-zero	expression	of	each	gene,	while	color	represents	
the	average	normalized	UMI	counts	for	each	cluster	and	gene.	
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dendritic	cells,	and	1	is	classified	as	a	CD34+	cell.		Differential	expression	analysis	

(MAST	likelihood	ratio	test	p-value<1e-5,	fold	change>2)	identified	187	genes	that		

are	specifically	expressed	in	this	cell	cluster,	including	a	number	of	genes	associated	

with	tolerogenic	properties,	such	as	Ftl,	Fth1,	and	Cst3	[82],	suggesting	these	cells	

may	be	associated	with	elevated	immune	response	and	metabolism.		Additional	

validation	would	be	necessary	to	determine	whether	this	cluster	is	functionally	

distinct.		Taken	together,	these	results	strongly	indicate	the	utility	of	GiniClust2	in	

analyzing	large	single-cell	datasets.	

	

2.4 Discussion	and	Conclusions	

	

According	to	the	“no	 free	 lunch”	theorems	[83],	an	algorithm	that	performs	

well	 on	 a	 certain	 class	 of	 optimization	 problems	 is	 typically	 associated	 with	

degraded	performance	 for	other	problems.	Therefore	 it	 is	expected	that	clustering	

algorithms	optimized	 for	detecting	 common	cell	 clusters	are	unable	 to	detect	 rare	

cell	 clusters,	 and	vice	versa.	 	While	ensemble	clustering	 is	 a	promising	strategy	 to	

combine	the	strengths	of	multiple	methods	[76,	64,	65],	our	analysis	shows	that	the	

traditional,	unweighted	approach	does	not	perform	well.	

To	optimally	combine	the	strengths	of	different	clustering	methods,	we	have	

developed	 GiniClust2,	 which	 is	 a	 cluster-aware,	 weighted	 ensemble	 clustering	

method.	 GiniClust2	 effectively	 combines	 the	 strengths	 of	 Gini-index-	 and	 Fano-

factor-based	 clustering	 methods	 for	 detecting	 rare	 and	 common	 cell	 clusters,	

respectively,	 by	 assigning	 higher	 weights	 to	 the	 more	 reliable	 clusters	 for	 each	
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method.	By	analyzing	a	number	of	simulated	and	real	scRNA-seq	datasets,	we	 find	

that	GiniClust2	consistently	performs	better	than	other	methods	in	maintaining	the	

overall	 balance	 of	 detecting	 both	 rare	 and	 common	 cell	 types.	 This	 weighted	

approach	is	generally	applicable	to	a	wide	range	of	problems.		

GiniClust2	is	currently	the	only	rare-cell-specific	detection	method	equipped	

to	 handle	 such	 large	 data	 sets,	 as	 demonstrated	 by	 our	 analysis	 of	 the	 68k	PBMC	

dataset	 from	10X	Genomics.	 	 This	 property	 is	 important	 for	 detecting	 hidden	 cell	

types	in	large	datasets,	and	may	be	particularly	useful	for	annotating	the	Human	Cell	

Atlas	[84].	

	

2.5 Materials	and	Methods	

	

2.5.1 Data	preprocessing	

	

The	 processed	 mouse	 ESC	 scRNA-seq	 data	 is	 represented	 as	 UMI	 filtered-

mapped	 counts.	 Removing	 genes	 expressed	 in	 fewer	 than	 3	 cells,	 and	 cells	

expressing	fewer	than	2000	genes,	we	were	left	with	a	total	of	8055	genes	and	278	

cells.	

The	processed	68k	PBMC	dataset,	represented	as	UMI	counts,	was	filtered	

and	normalized	using	the	code	provided	by	10X	Genomics	

(https://github.com/10XGenomics/single-cell-3prime-paper).		The	resulting	data	

consists	of	a	total	of	20387	genes	and	68579	cells.		Cell-type	labels	were	assigned	



	

	 	 	 	 	 	50	

based	on	the	maximum	correlation	between	the	gene	expression	profile	of	each	

single	cell	to	11	purified	cell	populations,	using	the	code	provided	by	10X	Genomics.	

	

2.5.2 GiniClust2	method	details	

	

The	GiniClust2	pipeline	contains	the	following	steps.	

	

Step	1:	Clustering	cells	using	Gini-index	based	features			

	

The	Gini	index	for	each	gene	is	calculated	and	normalized	as	described	before	

[71].		Briefly,	the	raw	Gini	index	is	calculated	as	twice	the	area	between	the	diagonal	

and	 the	 Lorenz	 curve,	 taking	 a	 range	 of	 values	 between	 0	 and	 1.	 Raw	 Gini	 index	

values	are	normalized	by	removing	the	trend	with	maximum	expression	levels	using	

a	 two-step	 LOESS	 regression	 procedure	 as	 described	 in	 [71].	 Genes	 whose	

normalized	 Gini	 index	 is	 significantly	 above	 zero	 (p-value	 <	 0.0001	 under	 the	

normal	distribution	assumption)	are	labeled	high	Gini	genes	and	selected	for	further	

analysis.		

A	 high-Gini-gene-based	 distance	 is	 calculated	 between	 each	 pair	 of	 cells	

using	the	Jaccard	distance	metric.		This	is	used	as	input	into	DBSCAN	[85],	which	is	

implemented	using	the	dbscan	function	 in	the	fpc	R	package,	with	method=	“dist”.		

Parameter	 choices	 for	 eps	 and	 MinPts	 are	 discussed	 in	 the	 Supplemental	

Information.		
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Step	2:	Clustering	cells	using	Fano-factor	based	features			

	

The	 Fano	 factor	 is	 defined	 as	 the	 variance	 over	mean	 expression	 value	 for	

each	gene.		The	top	1000	genes	are	chosen	for	further	analysis.	Principal	component	

analysis	 (PCA)	 is	 applied	 to	 the	 gene	 expression	 matrix	 for	 dimensionality	

reduction,	 using	 the	 svd	 function	 in	 R.	 The	 first	 50	 principal	 components	 are	

reserved	 for	 clustering	analysis.	Cell	 clusters	are	 identified	by	k-means	 clustering,	

using	 the	 kmeans	 function	 in	 R	 with	 default	 parameters.	 	 Optimal	 choice	 of	 k	 is	

discussed	 in	 the	 Supplemental	 Information.	 	 To	 improve	 robustness,	 20	

independent	 runs	 of	 k-means	 clustering	 with	 different	 random	 initializations	 are	

applied	to	each	dataset,	and	the	optimal	clustering	result	is	selected.	

	

Step	 3.	 Combining	 the	 results	 from	 Steps	 1	 and	 2	 via	 a	 cluster-aware,	 weighted	

ensemble	approach.	

	

We	 adapted	 the	 weighted	 consensus	 clustering	 algorithm	 developed	 by	 Li	

and	 Ding	 [73]	 by	 further	 considering	 cluster-specific	 weighting.	 For	 GiniClust,	

higher	weights	are	assigned	to	the	rare	cell	clusters	and	lower	weights	to	common	

clusters,	whereas	 the	 opposite	 scheme	 is	used	 to	weight	 the	 outcome	 from	Fano-

factor-based	 k-means	 clustering.	 This	 allows	 us	 to	 combine	 the	 strengths	 of	 each	

clustering	 method.	 The	 mathematical	 details	 are	 described	 as	 follows,	 and	

visualized	in	Fig.	2.1b.	
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Let	𝑃$ 	be	 the	 partitioning	 provided	 by	 GiniClust,	 and	𝑃# 	the	 partitioning	

provided	 by	 Fano-factor-based	 clustering.	 	 Each	 partition	 consists	 of	 a	 set	 of	

clusters:	𝐶$ = 	𝐶.$, 𝐶/$,… , 𝐶12
$ ,	 and	 	𝐶# = 	𝐶.#, 𝐶/#,… , 𝐶13

# . 		 Define	 the	 connectivity	

matrices	as:	

	

	 	𝑀"*(𝑃$) = 81, (𝑖, 𝑗) ∈ 𝐶1(𝑃
$)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
,		and	𝑀"*(𝑃#) = 81, (𝑖, 𝑗) ∈ 𝐶1(𝑃

#)
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

	

	

If	two	cells	are	clustered	together	in	the	same	group,	their	connectivity	is	1,	while	if	

they	are	clustered	separately,	their	connectivity	is	0.		Define	the	weighted	consensus	

association	as:	

	 	

	 𝑀"* = 	𝑤"*$𝑀"*(𝑃$) +	𝑤"*#𝑀"*(𝑃#)	

	

where	𝑤"*$ + 𝑤"*# = 1, 𝑤"*$, 𝑤"*# ≥ 0	∀	𝑖, 𝑗	 ∈ [1,𝑛],	 n	 represents	 the	 number	 of	 cells.		

Weights	𝑤"*$ 	and	𝑤"*# 	are	specific	 to	each	pair	of	cells,	and	are	determined	based	on	

𝑤I"$ 	and	𝑤I"#,	weights	that	are	specific	to	each	cell.			

For	 simplicity,	 we	 set	 the	 cell-specific	 weights	 for	 the	 Fano-factor-based	

clusters	 as	 a	 constant:	𝑤I"# = 𝑓 ’.	 The	 cell-specific	 GiniClust	 (𝑤I"$) 	weights	 are	

determined	as	a	function	of	the	size	of	the	cluster	containing	the	particular	cell.		Our	

choices	for	these	weights	derive	from	the	observation	that	as	the	proportion	of	the	

rare	cell	type	increases,	the	utility	of	GiniClust	begins	to	decline.	For	simplicity,	we	
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model	 the	 cell-specific	 GiniClust	 weights	 using	 a	 logistic	 curve,	 specified	 by	 the	

following	function:	

	

𝑤I"$(𝑥") = 1 −	
1

1 + 𝑒L(MNLOP)/RP		
	

	

where	𝑥"	is	 the	proportion	of	 the	GiniClust	 cluster	 to	which	 cell	 i	 belongs,	𝜇’	 is	 the	

rare	 cell	 type	 proportion	 at	 which	 GiniClust	 and	 Fano-factor-based	 clustering	

methods	 have	 approximately	 the	 same	 ability	 to	 detect	 rare	 cell	 types,	 and	

𝑠′	represents	how	quickly	GiniClust	loses	its	ability	to	detect	rare	cell	types	above	𝜇′.	

The	parameters	𝑠’,	𝜇’,	and	𝑓’	can	be	viewed	as	intermediate	variables	that	are	closely	

associated	 with	 the	 parameters	𝑠 ,	𝜇 ,	 and	𝑓 ,	 schematically	 shown	 in	 Fig.	 2.1c.	

Specifically,	𝑓 = TP
.UTP

,	𝑠 = 𝑠′ ,	 and	𝜇 	is	 obtained	 relative	 to	 the	 other	 parameters	

through	 the	 following	 relationship:	𝑓′ = 1 −	 .
.UV(WXWY)/ZY	

.	 	 The	 selection	 of	 the	

parameter	values	for	𝑠’,	𝜇’,	and	𝑓’,	as	well	as	a	sensitivity	analysis,	are	described	in	

the	Supplemental	Information.		

	 To	set	the	cell-pair-specific	weights,	we	first	define	

	

	 𝑤I"*$ = 	max	(𝑤I"$	, 𝑤I*$	)	and	𝑤I"*# = 𝑤I"#		

	

Then,	weights	are	normalized	to	1:	
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	 𝑤"*$ 	=	
ÎN_
2

ÎN_
2U	 ÎN_

3	and	𝑤"*# 	=	
ÎN_
3

ÎN_
2U	 ÎN_

3	

	

Each	cell-cell	pair	will	thus	be	assigned	a	weighted	consensus	association	between	0	

and	 1,	 which	 is	 a	 weighted	 average	 of	 both	 GiniClust	 and	 Fano-factor-based	

clustering	 associations,	 where	 the	 weights	 are	 functions	 of	 the	 size	 of	 the	 cell	

clusters.	

At	 this	 point,	 the	 weighted	 consensus	 association	 matrix	 provides	 a	

probabilistic	 clustering	 for	 each	 cell,	where	 each	 entry	 represents	 the	 probability	

that	 cell	 i	 and	 cell	 j	 reside	 in	 the	 same	 cluster.	 	 To	 transform	 this	 into	 a	 final	

deterministic	clustering	assignment,	we	optimize	the	following:	

	

	 𝑚𝑖𝑛a|c𝑀 − 𝑈c|/,	

	

where	𝑈	is	any	possible	connectivity	matrix.	 	In	Li	and	Ding	[73],	this	optimization	

problem	is	solved	via	symmetric	non-negative	matrix	factorization	(NMF)	to	yield	a	

soft	 clustering.	 	 To	 obtain	 a	 hard	 clustering	 we	 add	 an	 orthogonality	 constraint,	

leading	 to	 k-means	 clustering	 [86],	 implemented	 once	 again	 using	 the	 kmeans	 R	

function.	

	

2.5.3 tSNE	visualization	
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Dimension	reduction	by	tSNE	[87]	 is	performed	using	the	Rtsne	R	package.		

The	 tSNE	 algorithm	 is	 first	 run	 using	 the	 Gini-based	 distance	 to	 obtain	 a	 one-

dimensional	projection	of	each	cell.	 	For	large	data	sets,	tSNE	is	run	on	the	first	50	

principal	 components	 of	 the	 Gini-based	 distance	 to	 prevent	 tSNE	 from	 becoming	

prohibitively	 slow.	 	 Then,	 the	 tSNE	 algorithm	 is	 run	 using	 the	 first	 50	 principal	

components	 of	 our	 Fano-based	 Euclidean	 distance	 to	 obtain	 a	 separate	 two-

dimensional	 projection.	 	 The	 three	 resulting	 dimensions	 (one	 for	 Gini-based	

distance	 and	 two	 for	 Fano-based	 distance)	 are	 plotted	 to	 visualize	 cluster	

separation.	

	

2.5.4 Differential	expression	analysis	on	resulting	clusters	

	

Differentially	expressed	genes	for	each	cluster	are	determined	by	comparing	

their	gene	expression	levels	to	all	other	clusters.		This	is	performed	using	the	

zlm.SingleCellAssay	function	in	the	R	MAST	package	[88],	with	method=	“glm”.		P-

values	for	differentially	expressed	genes	are	calculated	using	the	lrTest	function,	

with	a	hurdle	model.	

	

2.5.5 SC3	analysis	

	

SC3	[64]	was	accessed	through	the	SC3	Bioconductor	R	package.		SC3	was	

applied	to	the	simulated	data	set	post-filtering	using	default	parameters,	with	k=6	to	
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match	the	true	number	of	clusters.		The	author-recommended	choice	of	k	using	the	

Tracy-Widom	test	yielded	a	k	of	55,	and	was	deemed	inappropriate	for	this	analysis.	

	

2.5.6 CSPA	analysis	

	

Matlab	code	for	the	CSPA	[76]	was	accessed	through	

http://strehl.com/soft.html,	under	“ClusterPack_V2.0.”		CSPA	was	applied	to	the	Gini	

and	Fano-based	clustering	results	for	the	simulated	data	set,	using	the	

clusterensemble	function,	specifying	the	CSPA	option.		Results	are	shown	for	k=5,	

the	default	parameter,	and	k=6,	the	true	number	of	clusters.	

	

2.5.7 RaceID2	analysis	

	

RaceID2	 [70]	 R	 scripts	 were	 accessed	 through	

https://github.com/dgrun/StemID.	 	 RaceID2	 was	 applied	 to	 already-filtered	 data	

sets	 as	 above	 to	 make	 results	 directly	 comparable	 to	 GiniClust2,	 with	 default	

parameters.		Results	are	shown	for	k	set	to	the	default	parameter	as	determined	by	

a	within-cluster	dispersion	saturation	metric	[70],	and	k	to	match	the	corresponding	

GiniClust2	k	parameter	specification.	

	

2.5.8 Hierarchical	clustering	analysis	
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Hierarchical	clustering	was	performed	on	a	Fano-based	Euclidean	distance	

using	the	hclust	function	in	R.		For	the	simulated	data	analysis,	results	are	shown	for	

choices	k=6,	to	match	the	true	number	of	clusters,	and	k=2,	the	parameter	value	as	

determined	by	the	gap	statistic	through	the	clusGap	function	in	R.		For	the	

subsampled	PBMC	analysis,	results	are	shown	for	k=3,	to	match	the	true	number	of	

clusters.	

	

2.5.9 Community	detection	analysis	

	

Community	detection	was	performed	on	a	k-nearest	neighbor	(kNN)	graph,	

using	a	high	Fano	feature	space,	for	simulated	and	subsampled	data	sets.		Function	

nn2	in	the	RANN	R	package	was	used	to	compute	a	kNN	distance	with	default	

parameters.		The	igraph	R	package	was	used	to	perform	community	detection,	using	

the	cluster_edge_betweenness	function	with	default	parameters.	

	

2.5.10 Simulation	details	

	

We	created	 synthetic	data	 following	 the	 same	approach	as	 Jiang	et	 al.	 [71],	

specifying	 one	 large	 2000	 cell	 cluster,	 one	 large	 1000	 cell	 cluster,	 and	 four	 rare	

clusters	 of	 10,	 6,	 4	 and	 3	 cells,	 respectively.	 	 Gene	 expression	 levels	 are	modeled	

using	 a	 negative	 binomial	 distribution,	 and	 distribution	 parameters	 are	 estimated	

using	an	intestinal	scRNA-seq	data	set	using	a	background	noise	model	as	in	Grün	et	

al.	[69].		To	create	clusters	with	distinct	gene	expression	patterns,	we	permute	100	
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lowly	 (mean<10	 counts)	 and	 100	highly	 (mean>10	 counts)	 expressed	 gene	 labels	

for	each	cluster	(see	Jiang	et	al.	[71]	for	more	details).		This	results	in	a	23,538	gene	

by	 3023	 cell	 data	 set.	 	 After	 filtering	 (as	 above)	we	 are	 left	with	 3708	 genes	 and	

3023	cells.	

	

2.5.11 10X	Genomics	data	subsampling	

	

The	full	68k	10X	Genomics	PBMC	dataset	is	down-sampled	for	model	

evaluation.		We	consider	only	3	cell	types	here.		CD19+	B	cells	are	defined	by	their	

correlation	to	reference	transcriptomes	as	in	Zheng	et	al.	[77].		CD14+	monocytes	

and	CD56+	NK	cells	are	defined	in	the	same	way,	but	here	we	recognize	that	these	

broadly	defined	cell	types	actually	consist	of	two	subtypes	each.		We	therefore	use	

additional	known	markers	to	refine	each	cell	type	definition.		With	regard	to	CD14+	

monocytes,	we	use	macrophage	markers	Cd68	and	Cd37	[81]	to	separate	

macrophages	and	monocytes,	and	we	define	macrophage	cells	as	those	with	positive	

expression	of	both	markers.		These	cells	are	selected	for	subsampling.		The	CD56+	

NK	cells	are	composed	of	NK	and	NKT	cells,	so	we	use	T-cell	markers	Cd3d,	Cd3e,	

and	Cd3g	[81]	to	separate	the	groups,	and	define	the	NK	cells	as	those	with	zero	

expression	of	these	three	markers.		There	is	some	additional	heterogeneity	in	this	

NK	group,	so	we	choose	to	include	only	those	NK	cells	that	were	most	highly	

correlated	(top	50%)	to	the	reference	transcriptomes.		Given	these	cell	type	

definitions,	we	created	7	sets	of	20	subsampled	data	sets	each	for	a	total	of	140	data	

sets	in	the	following	manner:	five	cells	were	randomly	sampled	from	the	
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macrophage	cell	population	to	form	a	“rare”	cell	group	for	all	120	datasets.		Then,	

for	each	set	of	20	data	sets,	cells	were	randomly	sampled	from	the	NK	and	B	cells	in	

specified	numbers	to	form	“common”	cell	clusters,	the	details	of	which	are	listed	in	

Supplemental	Table	S1.	

	

2.5.12	Availability	of	data	and	materials	

	

GiniClust2	 is	 implemented	 in	R	 and	 the	 source	 code	 has	 been	 deposited	 at		

https://github.com/dtsoucas/GiniClust2.	 	 This	 open-source	 software	 is	 released	

under	 the	 MIT	 license,	 and	 accessible	 under	 the	 DOI:	

https://doi.org/10.5281/zenodo.1211359	[89].			

The	intestinal	scRNA-seq	data	used	in	the	creation	of	the	simulated	data	set	

is	available	through	the	Gene	Expression	Omnibus	(GEO)	under	the	accession	

number	GSE62270	[90].		The	mouse	ESC	scRNA-seq	data	is	available	through	GEO	

under	the	accession	number	GSE65525	[91].		The	10X	PBMC	data	is	available	

through	NCBI	Sequence	Read	Archive	(SRA)	under	the	accession	number	

SRP073767	[92].
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3.1	 Abstract	

	

	 The	rapid	development	of	single-cell	transcriptomic	technologies	has	helped	

uncover	the	cellular	heterogeneity	within	cell	populations	and	tissue	samples.		

However,	bulk	RNA-seq	continues	to	be	the	main	workhorse	for	quantifying	gene	

expression	levels	due	to	technical	simplicity	and	low	cost.		In	order	to	most	

effectively	extract	information	from	bulk	data	given	the	new	knowledge	gained	from	

single-cell	methods,	we	have	developed	a	novel	algorithm	to	estimate	the	cell-type	

composition	of	bulk	data	from	a	single-cell	RNA-seq-derived	cell-type	signature.		By	

thorough	comparison	with	a	number	of	existing	methods	using	various	real	RNA-

seq	datasets,	we	find	that	our	new	approach	is	more	accurate	and	comprehensive	

than	previous	methods,	especially	for	the	estimation	of	rare	cell	types.		More	

importantly,	our	method	is	able	to	detect	cell-type	composition	changes	in	response	

to	external	perturbations,	thereby	providing	a	valuable,	cost-effective	method	for	

dissecting	the	cell-type-specific	effects	of	drug	treatments	or	condition	changes.		As	

such,	our	method	is	applicable	to	a	wide	range	of	biological	and	clinical	

investigations.	

	

3.2	 Introduction	

	

Gene	expression	profiling	is	widely	used	in	biology	and	medicine	for	the	

systematic	characterization	of	cellular	or	disease	states.		Identifying	gene	expression	

changes	across	conditions	can	help	generate	hypotheses	as	to	underlying	biological	
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mechanisms.		However,	one	common	problem	is	that	each	sample	has	considerable	

cellular	heterogeneity	that	bulk	RNA-seq	methods	are	not	able	to	capture.		As	the	

overall	signature	generated	from	these	methods	only	measures	the	average	

behavior,	it	is	often	the	case	that	changes	in	gene	expression	only	reflect	changes	in	

cell-type	composition,	rather	than	fundamental	changes	in	cell	states	[93].		To	

alleviate	such	problems,	a	series	of	computational	methods	have	been	developed	

with	the	common	goal	of	estimating	the	cell-type	composition	within	a	tissue	

sample	from	bulk	RNA-seq	data	[94,95].		These	methods,	often	referred	to	as	

deconvolution	methods,	provide	an	important	means	to	distinguishing	between	

changes	in	cell-type	composition	and	changes	in	cell-state.		Various	estimation	

approaches	have	been	used,	including	least	squares	regression	[96],	constrained	

least	squares	regression	[97],	quadratic	programming	[98-100],	and	𝜈-support	

vector	regression	[101].			

However,	existing	methods	have	a	number	of	important	limitations.		Most	

importantly,	the	underlying	cell-type	signatures	must	be	known	in	advance.		Most	

studies	assume	that	such	signatures	can	be	identified	from	the	bulk	transcriptomic	

profiling	of	purified	cell	types.		The	success	of	cell-type	purification	relies	heavily	on	

the	knowledge	of	specific	markers	as	well	as	the	ability	to	isolate	cells	from	

surrounding	tissues.		Moreover,	it	is	now	known	that	even	the	‘purified’	cells	may	

still	contain	significant	cellular	heterogeneity	[102].		

Recent	single-cell	transcriptomic	methods	[103,104]	have	provided	a	very	

powerful	approach	to	systematically	characterizing	cellular	heterogeneity,	thereby	

enabling	the	identification	of	new	cell	types/states	and	the	reconstruction	of	
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developmental	trajectories.		Applications	of	single-cell	methods	in	medicine	have	

led	to	novel	insights	into	disease	progression	and	drug	response	[105-107].		Single-

cell	data	provides	an	alternative	approach	to	deriving	cell-type	signatures.		In	fact,	a	

few	recent	studies	[108,109]	have	extended	deconvolution	methods	by	estimating	

cell-type	signatures	from	single-cell	data,	where	cell	types	are	inferred	by	clustering.		

While	these	methods	are	useful,	a	number	of	significant	challenges	remain.		In	

particular,	their	estimates	tend	to	be	biased	against	cells	types	that	either:	1)	make	

up	a	small	proportion	of	the	total	bulk	cell	population,	or	2)	are	characterized	by	

lowly	expressed	genes.		To	remove	these	biases,	we	develop	a	cell-type-sensitive	

method	for	the	estimation	of	the	underlying	cell	fractions,	using	a	novel	weighted	

least	squares	approach.	

	

3.3	 Results	

	

3.3.1	 A	weighted	least	squares	approach	to	deconvolution	

	

	 We	aimed	to	build	a	method	that	can	accurately	and	comprehensively	

estimate	the	relative	abundance	of	both	common	and	rare	cell	types	within	a	bulk	

sample.			Much	like	recent	studies	[108,109],	we	use	single-cell	RNA-seq	data	to	

extract	cell-type-specific	gene	expression	signatures.		Simply,	the	cell	types	are	

identified	by	clustering	analysis.	For	each	cell	type,	marker	genes	are	identified	by	

differential	expression	analysis,	after	which	gene	expression	levels	for	each	of	these	
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genes	are	averaged	across	all	cells	associated	with	the	cell	type.	This	results	in	a	

gene	by	cell	type	signature	matrix,	which	is	denoted	by	S	(see	Methods	for	details).	

	 In	order	to	accurately	and	comprehensively	estimate	the	cell-type	

composition,	we	made	a	number	of	significant	modifications	to	the	standard	

ordinary	least	squares	(OLS)	approach,	which	underlies	most	existing	methods	[96-

100].		In	this	approach,	the	deconvolution	problem	is	represented	as	a	system	of	

linear	equations:	Sx	=	t,	where	S	is	an	nxk	gene	signature	matrix	(n=number	of	

genes,	k=number	of	cell	types),	t	is	an	nx1	vector	representing	the	bulk	RNA-seq	

data,	and	x	is	a	kx1	vector	containing	the	cell	type	numbers.		Since	typically	n	>>	k,	

this	is	an	over-determined	equation	with	no	exact	solution.		In	the	OLS	approach,	the	

solution	x	minimizes	the	total	squared	absolute	error.			This	leads	to	two	

undesirable	consequences.	Firstly,	the	estimation	error	for	rare	cell	types	is	

typically	large	since	such	a	term	has	little	impact	on	the	total	estimation	error.	

Secondly,	not	all	informative	genes	are	effectively	taken	into	account.		The	

contribution	of	a	gene	can	be	minimal	if	its	mean	expression	level	is	low,	even	if	it	is	

highly	differentially	expressed	between	different	cell	types.			

	 To	illustrate	these	effects,	we	carried	out	a	highly	idealized	simulation.		We	

generated	a	single-cell	data	set	consisting	of	three	cell	types,	each	characterized	by	

two	differentially	expressed	marker	genes.		A	portion	of	the	data	was	used	to	create	

the	signature	matrix,	while	a	non-overlapping	portion	was	used	to	create	the	bulk	

data	by	averaging	gene	expression	values	across	the	cells.		First,	to	see	how	the	OLS	

formulation	affects	rare	cell	type	estimation,	we	varied	the	abundance	of	one	cell	

type	from	0.02%	to	33.3%	(see	Methods	for	details).		When	the	abundance	is	very	



	

	 	 	65	

low,	the	relative	percent	error	(RPE)	of	estimation,	defined	as	𝑅𝑃𝐸 =
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∗ 100,	is	very	high	(Fig.	3.1a),	supporting	our	intuition	that	the	OLS	

framework	is	not	appropriate	for	estimating	the	prevalence	of	rare	cell	types.		In	

addition,	we	varied	the	mean	gene	expression	level	of	the	two	highly	differentially	

expressed	genes	(fold	change	=	10)	pertaining	to	one	cell	type	such	that	the	ratio	of	

mean	expression	level	between	genes	in	this	cell	type	vs.	the	other	two	cell	types	

ranges	from	0.001	to	0.2.		As	expected,	the	deconvolution	accuracy	is	significantly	

affected	by	the	mean	expression	level	of	these	genes	(Fig.	3.1b).	

To	mitigate	these	issues,	we	designed	a	weighted	least	squares	approach	to	

properly	adjust	the	contribution	of	each	gene.		Accordingly,	the	weighted	error	term	

becomes:	𝐸𝑟𝑟 = ∑ 𝑤"(𝑡" − (𝑆𝑥)")/r
"s. .		Our	mathematical	derivation	indicates	that	

setting	𝑤" =
.

(tM)N
u	optimally	reduces	the	biases	(see	Methods	for	details).		To	test	this	

idea	empirically,	we	applied	this	weighted	approach	to	analyze	the	aforementioned	

simulated	data.		It	is	clear	that	both	biases	are	significantly	reduced	(Fig.	3.1).	

When	applying	our	weighted	least	squares	method	in	all	real	applications,	we	

make	a	few	adjustments	required	to	make	the	weighting	formulation	tractable	in	all	

situations.		Given	that	the	weights	are	a	function	of	the	solution,	we	use	an	iterative	

method	in	which	weights	are	initialized	according	to	the	solution	from	the	

unweighted	method,	and	then	subsequently	updated	by	the	weighted	least	squares	

solution	until	convergence	(see	Methods	for	details).		Next,	given	that	cell	type	

proportions	must	be	non-negative,	the	weighted	least	squares	solution	is	
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constrained	such	that	x	>=0.		Finally,	a	dampening	constant	is	introduced	to	prevent	

infinite	weights	resulting	from	low	cell	type	proportions	and/or	low	marker	gene	

expression,	which	will	lead	to	unstable	solutions	driven	by	only	one	or	a	few	genes	

(see	Methods	for	details).		Because	of	this	last	step,	we	subsequently	refer	to	our	

method	as	Dampened	Weighted	Least	Squares	(DWLS).	
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Figure	3.1.		A	simple	simulation	shows	the	advantages	of	a	weighted	least	squares	
method.	(a)	A	plot	of	relative	percent	error	in	estimation	using	both	unweighted	and	
weighted	least	squares	approaches,	for	each	of	three	cell	types	across	various	
proportions	of	cell	type	1,	the	rare	cell	type.		Because	of	the	increased	influence	of	
rare-cell-type-specific	marker	genes	in	the	weighted	sum	of	squares	error,	the	
weighted	least	squares	method	performs	better	in	the	estimation	of	rare	cell	types	
than	the	unweighted	method.	(b)	A	plot	of	relative	percent	error	in	estimation	using	
both	unweighted	and	weighted	least	squares	approaches,	for	each	of	three	cell	types	
across	various	ratios	of	mean	gene	expression	level	between	marker	genes	of	cell	
type	1	and	marker	genes	of	cell	types	2	and	3.		Because	of	the	increased	influence	of	
lowly	expressed	marker	genes	in	the	weighted	sum	of	squares	error,	the	weighted	
least	squares	method	performs	better	in	the	estimation	of	all	cell	types	than	the	
unweighted	method.	
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3.3.2	 Benchmarking	of	weighted	least	squares	on	simulated	PBMC	data	

	

To	evaluate	the	performance	of	our	DWLS	method,	we	first	consider	a	

benchmark	data	set	introduced	by	Schelker	et	al.	[109],	who	were	among	the	first	to	

consider	the	application	of	a	single-cell	derived	gene	expression	signature	to	the	

problem	of	deconvolution.		This	data	set	is	a	compilation	of	27	single-cell	data	sets	

from	immune	and	cancer	cell	populations,	derived	from	human	donor	peripheral	

blood	mononuclear	cells	(PBMCs),	tumor-derived	melanoma	patient	samples,	and	

ovarian	cancer	ascites	samples.			Since	no	bulk	data	was	provided,	we	created	27	

simulated	bulk	data	sets	by	averaging	expression	values	for	each	gene	across	all	

cells	obtained	from	each	donor,	assuming	that	the	bulk	data	is	equivalent	to	the	

pooled	data	from	individual	cells.		A	similar	assumption	was	made	previously	[109].		

In	addition,	the	cell-type-specific	gene	expression	matrix	was	estimated	by	

clustering	the	combined	27	single-cell	data	sets.		Marker	genes	were	then	chosen	to	

match	the	genes	used	in	the	immune-cell-specific	signature	from	CIBERSORT	[101],	

and	expression	values	for	each	marker	gene	were	averaged	within	each	cell	type.	

We	applied	𝜈-support	vector	regression	(ν-SVR),	quadratic	programming	

(QP)	and	DWLS	to	the	deconvolution	of	these	27	simulated	bulk	data	sets.		To	

quantify	the	overall	performance	of	each	method,	we	use	two	metrics.		The	first	is	a	

modified	relative	percent	error	metric,	which	quantifies	the	difference	in	true	and	

estimated	cell	type	proportions,	normalized	by	the	mean	of	true	and	estimated	cell	

type	proportions	(see	Methods	for	details).		Averaged	across	all	cell	types,	the	

modified	relative	percent	error	is	lowest	for	DWLS,	at	53.3%,	second	lowest	for	ν-
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SVR,	at	57.0%,	and	highest	for	QP,	at	62.9%.		The	second	is	a	more	standard	metric	

of	absolute	error	between	estimated	and	true	cell	type	proportions,	in	which	we	can	

see	that	absolute	errors	across	cell	types	are	again	on	average	lowest	for	DWLS	

(Table	S3.1).	

	 We	further	compared	the	accuracy	of	different	methods	on	a	per-cell-type	

basis	(Fig.	3.2a).	While	ν-SVR	performs	well	for	the	largest	cell	subpopulation,	DWLS	

performs	better	over	a	wide	range	of	cell	types,	especially	the	rarest	cell	groups.	In	

particular,	DWLS	preserves	a	good	balance	between	rare	and	common	cell-type	

estimation.		A	similar	trend	can	be	seen	from	the	standpoint	of	absolute	error		

(Table	S3.1).	

We	took	a	closer	look	at	the	two	rarest	cell	types	across	the	27	samples:	

dendritic	and	endothelial	cells.		Dendritic	cells	contribute	to	a	maximum	of	4.89%	of	

the	total	cells	in	any	given	sample,	with	an	average	0.999%	prevalence	across	

samples.		Endothelial	cells	contribute	to	a	maximum	of	6.99%	of	the	total	cells	in	

any	given	sample,	with	an	average	0.831%	prevalence	across	samples.		For	both	cell	

types,	DWLS	is	able	to	maintain	high	estimation	accuracy	(𝜌wVrwx"y"z,{|}t =

0.93, 𝜌VrwÄyÅVÇ"ÉÇ,{|}t = 0.81),	outperforming	ν-SVR	Ö𝜌wVrwx"y"z,tÜá =

0.91, 𝜌VrwÄyÅVÇ"ÉÇ,tÜá = 0.54ä	and	QP	(𝜌wVrwx"y"z,ãå = 0.66, 𝜌VrwÄyÅVÇ"ÉÇ,ãå = 0.44).		

Overall,	these	analyses	indicate	that	DWLS	exhibits	greater	accuracy	in	estimating	

rare	cell	types	than	existing	methods.		
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Figure	3.2.		Results	from	the	deconvolution	of	27	simulated	bulk	data	sets	from	
donor,	melanoma,	and	ovarian	cancer	patient	immune	and	tumor	cells,	using	
dampened	weighted	least	squares	(DWLS),	quadratic	programming	(QP),	and	ν-
support	vector	regression	(ν-SVR)	estimation	methods.		(a)	The	mean	relative	
percent	error	in	estimation	for	each	cell	type	across	the	27	data	sets,	plotted	against	
the	average	true	proportion	of	the	cell	type,	for	each	method.		The	fitted	lines	
represent	the	trend	in	estimation	accuracy	as	a	function	of	cell	type	proportion.		(b)	
A	subset	of	the	deconvolution	cell	type	proportion	estimates,	plotted	against	the	
true	cell	type	proportions.		Here,	only	the	rarest	cell	types,	dendritic	and	endothelial	
cells,	are	shown.		Correlation	values	between	true	and	estimated	proportions	are	
used	to	quantify	estimation	accuracy.		The	45-degree	line	in	each	plot	represents	the	
optimal	estimate.	
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3.3.3	 DWLS	extends	to	real	bulk	data	characterized	by	the	Mouse	Cell	Atlas	

	

Recently,	Han	et	al.	have	characterized	forty-three	healthy	mouse	tissues	at	

single-cell	resolution	to	create	the	Mouse	Cell	Atlas	[110].		Based	on	a	combined	

single-cell	data	set	of	61k	cells,	they	have	identified	52	distinct	cell	types	spread	

across	all	tissues.		Here	we	selected	four	represented	tissues—kidney,	lung,	liver	

and	small	intestine—and	generated	two	bulk	RNA-seq	data	sets	per	tissue.		

Obtaining	both	bulk	and	single-cell	data	from	the	same	tissue	provides	an	

opportunity	to	rigorously	evaluate	the	accuracy	of	our	deconvolution	method,	

where	we	assume	cell-type	composition	in	bulk	and	single-cell	data	sets	to	be	

approximately	equal.		We	use	the	entire	single-cell	data	set	to	provide	a	

comprehensive	gene	expression	signature.	

We	calculate	estimates	using	various	deconvolution	methods:	DWLS,	ν-SVR	

and	QP.		Overall,	we	find	a	high	replicability	of	our	results	within	each	pair	of	

tissues,	each	of	which	come	from	separate	mice.		DWLS	estimates	for	each	pair	have	

correlations	between	0.84	and	0.99,	showing	that	cell	type	composition	differences	

between	mice	are	small.	

Here,	DWLS	again	performs	favorably	over	other	methods,	which	we	

demonstrate	in	two	ways.		We	first	look	at	a	representative	example,	the	

deconvolution	of	bulk	kidney	data	(Fig.	3.3a,b).		We	plot	deconvolution	estimates	

against	the	predicted	true	cell	type	composition,	and	find	that	DWLS	estimates	are	

most	highly	correlated	to	the	predicted	true	proportion	(𝜌1"wrVé,{|}t = 0.89),	with	

ν-SVR	and	QP	performing	less	favorably	(𝜌1"wrVé,tÜá = 0.87, 𝜌1"wrVé,ãå = 0.092)	(Fig.	
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3.3a).		DWLS	is	the	only	method	able	to	correctly	predict	the	presence	of	all	four	

kidney	cell	types.		QP	misses	three	out	of	these	four	groups	entirely,	while	ν-SVR	

misses	one	(Fig.	3.3b).		ν-SVR	also	significantly	overestimates	the	presence	of	other	

rarer	cell	types	(Fig.	3.3b),	which	should	make	up	around	6%	of	the	total	kidney	cell	

population,	but	are	estimated	by	ν-SVR	to	make	up	43%	instead.			

Second,	we	look	more	generally	at	the	estimates	of	all	eight	tissue	samples	analyzed.		

DWLS	remains	the	most	accurate	method,	with	an	average	correlation	of	0.78	for	

DWLS,	compared	to	average	correlations	of	0.21	and	0.59	for	QP	and	ν-SVR,	

respectively	(Fig.	3.3c).		QP	once	again	fails	to	detect	biologically	relevant	cell	types	

across	the	eight	bulk	samples.		This	can	be	quantified	by	a	sensitivity	metric,	defined	

as	the	fraction	of	all	true	cell	types	that	are	detected	by	the	deconvolution	method.		

Across	the	eight	bulk	samples,	QP	deconvolution	results	are	characterized	by	a	low	

sensitivity	(Fig.	3.3c).		ν-SVR	once	again	erroneously	predicts	the	presence	of	cell	

types	that	are	known	to	be	biologically	irrelevant	to	the	given	tissue.		This	is	

measured	using	a	specificity	metric,	defined	as	the	fraction	of	all	false	cell	types	that	

are	correctly	undetected	by	the	deconvolution	method.		Across	the	eight	bulk	

samples,	ν-SVR	deconvolution	results	are	characterized	by	a	low	specificity	(Fig.	

3.3c).		Overall,	DWLS	strikes	the	best	balance	between	these	two	metrics	by	being	

able	to	both	detect	correct	cell	types	and	ignore	false	cell	types	(Fig.	3.3c).  
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Figure	3.3.		The	deconvolution	of	eight	normal	mouse	bulk	data	sets	using	a	
signature	constructed	from	the	mouse	cell	atlas	(MCA),	using	three	deconvolution	
methods:	dampened	weighted	least	squares	(DWLS),	quadratic	programming	(QP),	
and	ν-support	vector	regression	(ν-SVR).	(a)	Estimates	for	all	cell	types	
characterized	by	the	MCA	for	a	bulk	mouse	kidney	data	set,	plotted	against	an	
approximate	true	cell	type	proportion	as	defined	by	the	MCA	data.		Correlation	
values	between	true	and	estimated	proportions	are	used	to	quantify	estimation	
accuracy	for	each	method.		The	45-degree	line	in	each	plot	represents	the	optimal	
estimate.	(b)	Another	view	of	the	kidney	deconvolution	estimates	under	each	
deconvolution	method	via	a	heatmap,	where	each	box	corresponds	to	a	cell	type	
proportion	estimate,	and	a	darker	color	corresponds	a	higher	estimated	proportion.		
(c)	A	summary	of	deconvolution	results	across	all	eight	bulk	samples,	quantified	by:	
1.	correlation	between	true	and	estimated	cell	type	proportions	for	each	tissue	(left	
panel),	2.	sensitivity	of	each	deconvolution	method	(middle	panel),	and	3.	specificity	
of	each	deconvolution	method	(right	panel).	
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3.3.4	 The	deconvolution	of	bulk	intestinal	stem	cell	data	by	DWLS	across	

various	conditions	accurately	captures	associated	changes	in	cell	type	

composition	

	

One	of	the	most	important	applications	of	deconvolution	methods	is	in	the	

identification	of	cell-type	composition	variations	across	conditions.		To	test	the	

utility	of	our	deconvolution	method,	we	turned	to	a	public	dataset	where	mouse	

intestinal	stem	cell	(ISC)	compartments	are	perturbed	by	drug	treatments.		In	

particular,	Yan	et	al.	[111]	explore	the	effects	of	R-spondin	ligand	(RSPO1-4)	

inhibition	and	gain-of-function	on	intestinal	stem	cell	regeneration	and	

differentiation	through	bulk	gene	expression	profiling.		Since	bulk	RNA-seq	analysis	

alone	does	not	provide	information	regarding	cell-type	composition,	they	followed	

up	with	single-cell	RNA-seq	analysis,	and	observed	dramatic	changes	of	cell-type	

composition	in	four	distinct	cell-type	compartments:	non-cycling	ISC,	cycling	ISC,	

transit	amplifying	(TA),	and	differentiated	cells.	Here	we	use	this	dataset	to	test	

whether	our	deconvolution	method	can	reveal	such	changes	based	on	bulk	RNA-seq	

data	alone.		

We	applied	DWLS	to	estimate	the	cell-type	composition	changes	due	to	these	

drug	treatments,	using	the	single-cell	data	only	to	estimate	the	cell-type-specific	

gene	expression	signature	matrix		(Fig.	3.4).		We	found	that	treatment	with	Ad-

LGR5-ECD	almost	entirely	removed	the	intestinal	stem	cell	population	(on	average,	

from	53.3%	to	1.76%),	while	increasing	the	proportion	of	transit	amplifying	cells	by	

2.07-fold	(25.5%	to	52.8%)	on	average	and	differentiated	cell	types	by	2.15-fold	
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(21.1%	to	45.4%)	on	average.		On	the	other	hand,	treatment	with	Ad-RSPO1	

completely	removed	the	transit	amplifying	cell	population,	while	increasing	the	size	

of	the	intestinal	stem	cell	population	by	an	average	1.50-fold	(53.3%	to	79.8%).		

These	observations	are	highly	consistent	with	the	single-cell	RNA-seq	data,	which	

were	used	to	deduce	the	biological	functions	of	these	treatments.		That	is,	Ad-LGR5-

ECD	treatment	drives	differentiation,	while	Ad-RSPO1-treatment	promotes	stem-

cell	renewal.		Here,	we	were	able	to	draw	the	same	conclusions	without	the	need	to	

generate	single-cell	RNA-seq	data	from	every	condition.		

In	comparison,	inconsistencies	arose	when	estimation	was	performed	using	

QP	and	ν-SVR	approaches.		Specifically,	neither	method	was	consistently	able	to	

detect	any	cycling	intestinal	stem	cells,	whose	proportion	was	estimated	to	be	29%	

in	the	control	condition	and	44%	in	the	Ad-RSPO1	condition	based	on	the	single-cell	

RNA-seq	data,	and	on	average	31.8%	and	31.4%	according	to	the	DWLS	estimates.		

ν-SVR	also	predicted	an	increase	in	differentiated	cell	types	due	to	Ad-RSPO1	

treatment	(7.64%	to	45.2%),	which	is	inconsistent	with	the	results	of	the	other	

estimation	methods,	the	single-cell	RNA-seq	data,	and	the	underlying	biological	

mechanisms	[111].	
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Figure	3.4.		Deconvolution	estimates	of	bulk	mouse	intestinal	stem	cell	data	for	
dampened	weighted	least	squares	(DWLS),	quadratic	programming	(QP),	and	ν-
support	vector	regression	(ν-SVR)	deconvolution	methods,	across	various	
conditions.		The	Control	condition	corresponds	to	Lgr5-	eGFP+	intestine	cells	1.5	
days	post	treatment	with	Ad-Fc,	the	loss	of	function	(LOF)	condition	corresponds	to	
Lgr5-	eGFP+	intestine	cells	1.5	days	post	treatment	with	Ad-LGR5-ECD,	and	the	gain	
of	function	(GOF)	condition	corresponds	to	Lgr5-	eGFP+	intestine	cells	1.5	days	post	
treatment	with	Ad-RSPO1.		Each	point	corresponds	to	the	deconvolution	estimate	of	
a	cell	type	for	a	single	bulk	data	set.		Cell	types	include	cycling	and	non-cycling	
intestinal	stem	cells	(ISCs),	transit	amplifying	(TA)	cells,	and	various	differentiated	
cell	types.	
	
	
3.4	 Conclusion	
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Cellular	heterogeneity	must	be	taken	into	account	when	comparing	gene	

expression	data	from	bulk	samples.		As	large	efforts	are	under	way	to	thoroughly	

characterize	cell	types	of	different	organisms	through	single-cell	analyses	[112],	we	

are	facing	a	new	opportunity	to	systematically	quantify	cell-type	composition	using	

the	detected	cell-type	signatures.		We	envision	that	such	deconvolution	methods	

will	be	routinely	used	to	precisely	determine	gene	expression	pattern	changes	in	

development	and	disease.	Towards	this	goal,	we	have	developed	a	new	and	more	

accurate	computational	method	for	deconvolution.					

Using	the	mouse	cell	atlas	dataset	as	an	example,	we	have	demonstrated	that	

the	tissue	of	origin	of	a	bulk	sample	can	be	accurately	predicted	from	deconvolution	

given	a	comprehensive	signature	of	all	cell	types	in	an	organism.		In	the	meantime,	

we	also	recognize	the	danger	of	detecting	irrelevant	cell	types,	which	is	especially	

acute	when	many	irrelevant	cell	types	are	included	in	the	signature.		Cell	types	from	

different	tissues	may	share	similar	functions	and	therefore	may	be	difficult	to	

differentiate	due	to	high	collinearity.		To	minimize	this	risk,	we	advise	that	after	a	

general	deconvolution	with	a	broad	signature,	irrelevant	cell	types	be	removed	from	

the	signature	matrix	to	build	a	more	specific	signature	matrix	from	only	the	most	

appropriate	single-cell	data	sets.		Such	a	multi-step	approach	may	result	in	both	

more	specific	cell-type	designations	and	more	accurate	estimates,	although	further	

investigation	is	needed	to	validate	this	approach.			

At	the	other	end	of	the	spectrum,	deconvolution	accuracy	is	always	

dependent	on	the	completeness	of	the	cell-type	signature,	and	incomplete	cell-type	

information	will	compromise	estimates	of	all	cell	types	in	the	signature.		Care	must	
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always	be	taken	to	create	the	most	appropriate	signature	matrix	given	the	extent	of	

information	known	about	the	sample.		Overall,	the	flexibility	of	signature	matrix	

definitions	made	possible	by	large	quantities	of	single-cell	data	has	promising	

implications.	

Another	challenge	in	deconvolution	is	the	accurate	estimation	of	rare	cell	

types.		In	part,	this	is	because	detecting	rare	cell	types	from	a	large	population	in	

single-cell	data	is	a	challenging	task,	and	precise	signatures	are	difficult	to	build	

[113-116].	Additionally,	the	estimation	of	rare	cell	proportions	by	deconvolution	is	

notoriously	difficult	due	to	the	increased	stochasticity	of	small	sample	sizes	[94].		

While	our	method	presents	an	improvement	over	previous	methods	in	rare	cell-

type	detection,	we	hope	to	further	improve	rare	cell-type	detection	accuracy	in	

future	work.	

	

3.5	 Methods	

	

The	DWLS	method	is	implemented	in	R	and	is	available	at:	

https://github.com/dtsoucas/DWLS.	

	

3.5.1	 Creation	of	the	signature	matrix	

	

The	cell-type	signature	matrix	is	constructed	using	a	representative	single-

cell	data	set,	such	that	all	cell	types	expected	in	the	bulk	data	are	also	represented	in	

the	single-cell	data	(the	converse	need	not	be	true).		The	single-cell	data	is	first	
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clustered	to	reveal	its	constituent	cell	types.		The	optimal	clustering	method	is	

dependent	on	the	data	set,	but	generally,	a	rare-cell-type-sensitive	clustering	

method	is	preferred	[113-116].		Further	inspection	of	differentially	expressed	genes	

between	each	of	these	clusters	is	important,	as	this	will	confirm	whether	the	

detected	clusters	consist	of	biologically	relevant	cell	types.		Upon	characterization	of	

the	cell	types,	differential	expression	analysis	is	performed	to	identify	marker	genes	

for	each	cell	type.		We	define	marker	genes	as	genes	with	an	FDR	adjusted	p-value	of	

less	than	0.01	(defined	using	the	hurdle	model	in	the	MAST	R	package),	and	a	log2	

mean	fold	change	greater	than	0.5.		For	very	large	single-cell	data	sets	like	the	

Mouse	Cell	Atlas,	p-values	are	instead	determined	using	the	Seurat	R	package	under	

the	“bimod”	likelihood	ratio	test	for	single-cell	gene	expression	[117],	due	to	the	

faster	runtime.		To	create	the	final	signature	matrix	S,	we	create	many	candidate	

matrices	(151	in	total),	which	include	between	50	and	200	marker	genes	from	each	

cell	type.		The	expression	values	of	these	chosen	genes	are	averaged	across	each	cell	

type,	so	that	each	resulting	candidate	matrix	is	an	n	by	k	matrix,	where	n	is	the	

number	of	genes	and	k	is	the	number	of	cell	types.		The	final	signature	matrix	S	is	

chosen	as	the	candidate	matrix	with	the	lowest	condition	number,	in	a	manner	

similar	to	CIBERSORT	[101].	

	

3.5.2	 Derivation	of	weighted	least	squares	

	

To	be	more	precise,	we	rewrite	the	deconvolution	problem	as	𝑆ë𝑥í = 𝑡,	where	

𝑆ë	is	the	signature	matrix	derived	above,	𝑥í	is	the	estimated	cell	type	number,	and	t	is	
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the	bulk	data.		Most	notably,	𝑆ë	is	used	to	denote	that	the	single-cell-derived	

signature	is	only	an	estimate	of	the	true	cell	type	signature,	S,	which	is	unknown.		

Similarly,	𝑥í	is	the	solution	to	𝑆ë𝑥í = 𝑡,	which	will	almost	always	differ	from	the	true	

cell	type	number,	x,	which	is	only	known	in	the	case	of	simulated	bulk	data.		Suppose	

we	have	k	cell	types	and	n	signature	genes.		Let	𝑡 = (𝑡.𝑡/ … 𝑡r)′,	𝑥í = (𝑥í.𝑥í/ …𝑥í1)′,	

and	𝑆ë = 	 ì
𝑆ë.. … 𝑆ë.1
⋮ ⋱ ⋮
𝑆ër. … 𝑆ër1

ñ.		This	system	of	equations	can	be	solved	in	various	ways.		

In	the	traditional	setting,	we	obtain	an	estimate,	𝑥í,	of	the	true	cell	type	x	by	

minimizing	the	squared	error:	

xí = argmin
Mõ

𝐸𝑟𝑟 Ö𝑡, 𝑆ë, 𝑥õä = argmin
Mõ

ú(𝑡" −ú𝑆ë"*𝑥õ*
1

*s.

)/
r

"s.

	

Assume	𝑥õ* =
M_
Mn
𝑥õ.,	for	𝑗 = 2,… , 𝑘.	Then,	

𝐸𝑟𝑟 = 	ú(𝑡" − 𝑆ë".𝑥õ. −ú𝑆ë"*
𝑥*
𝑥.
𝑥õ.

1

*s/

)/
r

"s.

	

=ú(𝑡" − 𝑆ë".𝑥õ.𝑘û")/, 𝑤ℎ𝑒𝑟𝑒
r

"s.

𝑘û" = (1 +ú
𝑥*
𝑥.

1

*s/

𝑆ë"*
𝑆ë".
)	

=	ú(𝑆".𝑥.𝑘" − 𝑆ë".𝑥õ.𝑘û")/
r

"s.

,𝑤ℎ𝑒𝑟𝑒	𝑘" = (1 +ú
𝑥*
𝑥.

1

*s/

𝑆"*
𝑆".
)	

=	ú(𝑆".𝑥.𝑘" − 𝑆ë".𝑥.𝑘û" + 𝑆ë".𝑥.𝑘û" − 𝑆ë".𝑥õ.𝑘û")/
r

"s.

	

=	ú(𝑆".𝑥.𝑘" − 𝑆ë".𝑥.𝑘û")/ + (𝑆ë".𝑥.𝑘û" − 𝑆ë".𝑥õ.𝑘û")/
r

"s.

	

(assuming	orthogonality	of	the	cross	terms)	
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=ú(𝑥.(𝑆".𝑘" − 𝑆ë".𝑘û"))/ + (𝑆ë".𝑘û"(𝑥. − 𝑥õ.))/
r

"s.

	

The	first	term	is	driven	by	a	difference	between	the	true	and	estimated	signatures,	

and	this	error	cannot	be	controlled	for.		We	concern	ourselves	with	the	second	term:	

𝐸𝑟𝑟 ≈ú†𝑆ë".𝑘û"(𝑥. − 𝑥õ.)°
/

r

"s.

=ú¢ú𝑆ë"*𝑥*
1

*s.

£

/

§
(𝑥. − 𝑥õ.)

𝑥.
•
/r

"s.

	

We	can	see	that	this	error	term	corresponds	to	the	relative	error	of	estimation	for	

cell	type	1,	multiplied	by	a	function	of	S	and	x	such	that	genes	with	high	expression	

and	genes	pertaining	to	prevalent	cell	types	will	have	a	larger	impact	on	the	error	

term.		Because	we	would	like	all	cell	types	to	be	estimated	with	equal	accuracy,	we	

would	like	the	error	term	to	be	a	function	of	the	relative	error	of	estimation	only.		To	

mitigate	this	problem,	we	use	a	weighted	least	squares	approach	to	solve	the	

equation,	which	is	represented	as	the	following	optimization:	

min
Mõ
ú𝑤" ¢𝑡" −ú𝑆ë"*𝑥õ*

1

*s.

£

/r

"s.

	

The	weights	are	chosen	as	to	remove	the	extra	term	in	the	error	function	above.		If	

we	let:	

𝑤" =
1

(∑ 𝑆ë"*𝑥*1
*s. )/

= 	
1

(𝑆ë".𝑥)/
	

we	are	now	minimizing:	

𝐸𝑟𝑟 =ú𝑤"
r

"s.

(𝑡" −ú𝑆ë"*𝑥õ*
1

*s.

)/	
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≈ú
1

(𝑆ë".𝑥)/
Ö𝑆ë".𝑥ä

/

§
(𝑥. − 𝑥õ.)

𝑥.
•
/

=
r

"s.

ú§
(𝑥. − 𝑥õ.)

𝑥.
•
/

= 𝑛 §
(𝑥. − 𝑥õ.)

𝑥.
•
/

,
r

"s.

	

such	that	the	total	error	is	now	a	function	of	the	relative	error	in	cell	type	number	

for	cell	type	1.		Without	loss	of	generality,	we	can	similarly	show	this	relationship	

for	any	cell	type	j	∈ {1,… , 𝑘},	such	that	

𝐸𝑟𝑟 ≈ 	𝑛 §
Ö𝑥* − 𝑥õ*ä

𝑥*
•
/

∀	j	 ∈ {1,… , 𝑘}	

Compared	to	the	ordinary	least	squares	approach,	the	relative	error	is	reduced.	

	

3.5.3	 Additional	adjustments	to	improve	performance	

	

Using	the	framework	derived	above,	we	would	like	to	formulate	the	

estimation	of	cell	type	proportion	as	a	weighted	least	squares	problem	with	weights	

𝑤" =
.

(tëN.M)u
.		Several	modifications	are	required	to	make	this	a	viable	approach:	

1. The	weights	are	a	function	of	x,	the	true	cell	type	number,	which	is	unknown.		

We	can	approximate	this	with	our	estimated	cell	type	number,	𝑥í,	but	since	

this	also	the	variable	being	solved	for,	iteration	is	required	to	reach	a	

solution.		Let:	

𝑥í(©) = argmin
Mõ

ú(𝑡" −ú𝑆ë"*𝑥õ*
1

*s.

)/
r

"s.

	

𝑥í(.) = argmin
Mõ

ú𝑤"
(.)(𝑡" −ú𝑆ë"*𝑥õ*

1

*s.

)/
r

"s.

,𝑤ℎ𝑒𝑟𝑒	𝑤"
(.) =

1
(𝑆ë".𝑥í(©))/

	

…	
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𝑥í(Ç) = argmin
Mõ

ú𝑤"
(Ç)(𝑡" −ú𝑆ë"*𝑥õ*

1

*s.

)/
r

"s.

,𝑤ℎ𝑒𝑟𝑒	𝑤"
(Ç) =

1
(𝑆ë".𝑥í(ÇL.))/

	

Convergence	is	reached	when	™c𝑥í(Ç) − 𝑥í(ÇL.)c™ ≤ .01.	

2. The	weights	are	unbounded	from	above	and	may	approach	infinity	in	the	

case	of	very	rare	cell	types	(𝑥í ≈ 0)	and/or	lowly	expressing	genes	(𝑆ë"* ≈ 0	

for	all	cell	types).		This	will	lead	to	a	solution	driven	by	only	a	few	genes.		To	

rectify	this,	a	dampening	constant	𝑑	is	introduced,	which	defines	the	

maximum	value	any	weight	can	take	on.		For	ease	of	use,	we	first	linearly	

scale	the	weights	such	that	the	minimum	weight	takes	on	a	value	of	1:	𝑤"≠ =

^N
ÆØ∞	(^_)

, 𝑗 ∈ {1, …𝑛}.		The	resulting	optimization	is	equivalent.		The	dampened	

weights	𝑤I" 	are	then	defined	as:	

𝑤I" = 8𝑤"
t, 𝑖𝑓𝑤"t < 𝑑

𝑑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
≤		

Cross-validation	is	used	to	select	𝑑,	as	follows.		The	possible	values	for	𝑑	are	

defined	as	𝑑 = 2≥,𝑤ℎ𝑒𝑟𝑒	𝑞 ∈ {0,1,2,…maxÖnoninfinite	log2(wØ
ª)ä}.		Then,	

100	subsets	of	signature	genes	of	half	the	size	of	the	full	signature	gene	set	

are	randomly	selected.		For	each	subset,	the	cell	type	proportion	is	estimated	

using	weighted	least	squares	on	the	dampened	weights,	for	each	possible	

value	of	𝑑.		The	variance	of	the	estimates	over	the	100	subsets	for	each	

choice	of	𝑑	is	calculated,	and	the	d	that	leads	to	the	lowest	variance	is	

selected.	

3. As	specified	above,	𝑥í	need	not	be	positive.		However,	cell	type	numbers	are	

inherently	nonnegative.		To	set	a	constraint	on	𝑥í,	such	that	𝑥í* ≥ 0	∀𝑗,	we	
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solve	the	constrained	dampened	weighted	least	squares	problem	via	

quadratic	programming,	using	the	function	“solve.QP”	in	the	R	package	

“quadprog”.		The	new	minimization	problem	is	then:	

min
Mõ,Mõº©

ú𝑤I"(𝑡" −ú𝑆ë"*𝑥õ*
1

*s.

)/
r

"s.

	

	

Jointly	implementing	all	of	these	alterations,	we	reach	the	final	deconvolution	

process:	

𝑥í(©) = argmin
Mõ

ú(𝑡" −ú𝑆ë"*𝑥õ*
1

*s.

)/
r

"s.

	

𝑥í(.) = argmin
Mõ,Mõº©	

∑ 𝑤I"
(.)(𝑡" − ∑ 𝑆ë"*𝑥õ*1

*s. )/r
"s. , where	𝑤I"

(.) =

𝑑𝑎𝑚𝑝 ¿ .

ÖtëN.Mí(¡)ä
u¬ , and	𝑑𝑎𝑚𝑝(𝑤") =	ƒ

^N
ÆØ∞	(^_)

, 𝑖𝑓 ^N
ÆØ∞	(^_)

< 𝑑

𝑑, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
≈	

…	

𝑥í(Ç) = argmin
Mõ,Mõº©

ú𝑤"
(Ç)(𝑡" −ú𝑆ë"*𝑥õ*

1

*s.

)/
r

"s.

, where	𝑤I"
(Ç) = 𝑑𝑎𝑚𝑝∆

1

Ö𝑆ë".𝑥í(ÇL.)ä
/«	

Convergence	is	reached	when	™c𝑥í(Ç) − 𝑥í(ÇL.)c™ ≤ .01.	

	

	
3.5.4	 Simulation	details	
	
	

Counts	for	the	simulated	single-cell	data	set	are	generated	using	a	Poisson	

distribution,	for	a	total	of	six	genes	and	three	cell	types.		In	the	first	simulation,	two	
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genes	are	upregulated	in	each	cell	type,	where	𝜆 = 50	for	an	upregulated	gene	and	

𝜆 = 5	otherwise.	Fifty	cells	from	each	cell	type	are	used	to	create	a	signature	matrix,	

where	the	six	genes	are	averaged	over	each	cell	type	to	create	a	reference	gene	

expression	profile.		Between	10001	and	15000	cells	are	used	to	simulate	bulk	data,	

by	summing	up	gene	expression	values	across	cell	types.		Specifically,	5000	bulk	

data	sets	are	created	by	combining	5000	cells	from	cell	types	two	and	three,	and	

between	1	and	5000	cells	from	cell	type	one.			Overall,	this	creates	bulk	data	sets	

with	a	rare	cell	type	proportion	spanning	between	0.1%	and	33.3%.		Bulk	data	

simulation	is	repeated	10	times	for	each	rare	cell	type	proportion,	and	all	metrics	

reported	are	based	on	an	average	of	these	10	samples.	

In	the	second	simulation,	two	genes	are	again	upregulated	in	each	cell	type,	

but	the	mean	expression	level	of	the	marker	genes	corresponding	to	the	first	cell	

type	is	lower,	such	that	𝜆	ranges	from	0.05	to	10	for	an	upregulated	gene	and	from	

.005	to	1	otherwise.		Fifty	cells	from	each	cell	type	are	again	used	to	create	a	

signature	matrix,	where	gene	expression	levels	are	scaled	for	each	choice	of	𝜆,	for	a	

total	of	200	signature	matrices.		To	simulate	the	bulk	data,	5000	cells	from	each	cell	

type	are	aggregated	so	that	each	cell	type	is	present	in	equal	proportion.		Bulk	data	

simulation	is	repeated	10	times	for	each	choice	of	𝜆,	and	all	metrics	reported	are	

based	on	an	average	of	these	10	samples.	

	

3.5.5	 Estimation	using	other	deconvolution	methods	
	
	
	
Nu-SVR	
	



	

	 	 	86	

Nu-support	vector	regression	was	performed	using	the	“svm”	function	in	the	

“e1071”	package	in	R.	Parameters	were	set	to	nu=0.5,	type=	“nu-regression”,	

kernel=	“linear”,	cost=1,	and	all	others	to	the	default	values.		Bulk	data	and	signature	

matrices	were	scaled	to	[-1,	1].		These	parameter	and	scaling	choices	match	those	

specified	in	Schelker	et	al.	[109]	in	their	matlab	code,	accessed	through:	

https://figshare.com/s/865e694ad06d5857db4b.		As	in	Newman	et	al.	[101],	model	

coefficients	are	extracted	from	the	svm	model	using	t(model$coefs)	%*%	model$SV,	

and	any	negative	coefficients	are	set	to	zero.		The	coefficients	are	then	scaled	by	the	

sum	of	the	coefficients,	such	that	the	scaled	coefficients	will	sum	to	one.	

	

Quadratic	programming	
	
	
	
	 Quadratic	programming	is	implemented	using	the	“solve.QP”	function	in	the	

“quadprog”	package	in	R.		Default	parameters	are	used,	and	the	constraints	are	

specified	such	that	all	coefficients	must	be	greater	than	or	equal	to	zero.	

	

3.5.6	 Data	sources	and	processing	

	

MCA	Bulk	RNA-seq	library	construction,	sequencing,	and	processing	

	
    6-10	week-old	male	C57BL/6J	mice	were	purchased	from	the	Shanghai	

Laboratory	Animal	Center	(SLAC).	From	each	mouse,	4	non-sexual	tissues	(liver,	

small	intestine,	lung,	kidney)	were	excised.	The	excised	tissues	were	immediately	

washed	in	PBS.	After	washing,	each	tissue	was	ground	into	powder	with	liquid	N2.	
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RNA	extraction	was	performed	using	Trizol.	We	used	mRNA	Capture	Beads	(VAHTS	

mRNA-seq	v2	Library	Prep	Kit	for	Illumina,	Vazyme)	to	extract	mRNA	from	total	

RNA.	A	PrimeScript	Double	Strand	cDNA	Synthesis	Kit	(TaKaRa)	was	used	to	

synthesize	double-stranded	cDNA	from	purified	polyadenylated	mRNA	templates	

according	to	the	manufacturer’s	protocol.	We	used	TruePrep	DNA	Library	Prep	Kit	

V2	for	Illumina	(Vazyme)	to	prepare	cDNA	libraries	for	Illumina	sequencing	

(VeritasGenetics).	

Bulk	sequencing	reads	containing	multiplexed	data	were	filtered	using	the	

bbduk	function	of	the	bbmap	tool	to	select	reads	containing	the	appropriate	sample	

index.		STAR	2.5.3a	[118]	with	default	parameters	was	used	to	map	filtered	reads	to	

the	Ensembl	release	75	mouse	reference	genome.		Aligned	reads	were	normalized	

by	library	size	to	fragments	per	kilobase	of	transcript	per	million	mapped	reads	

(FPKM)	using	the	“fpkm”	function	in	the	“DESeq2”	package	in	R.	

	

Mouse	Cell	Atlas	single-cell	data	

	

	 The	mouse	cell	atlas	(MCA)	single-cell	data	[110]	and	annotations	were	

accessed	through:	https://figshare.com/s/865e694ad06d5857db4b.		The	single-cell	

data	is	quantified	as	UMI	counts.		The	signature	matrix	was	built	using	the	61k	cell	

subset	consisting	of	randomly	sampled	cells	from	43	tissues.		Cell	types	were	

defined	by	collapsing	the	98	clusters	identified	by	Han	et	al.	into	52	unique	cell	

types.	
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Intestinal	stem	cell	bulk	and	single-cell	data	

	

	 Intestinal	stem	cell	(ISC)	single-cell	and	bulk	RNA-seq	data	sets	from	Yan	et	

al.	[111]	were	accessed	through	the	Gene	Expression	Omnibus	(GEO)	repository	

under	accession	numbers	GSE92865	and	GSE92377,	respectively.		The	single-cell	

data	is	quantified	as	UMI	counts.		All	Lgr5-eGFP+	and	Lgr5-eGFP-	cells	were	used	in	

the	construction	of	the	signature	matrix.		The	single-cell	data	cell	type	labels	shown	

in	Yan	et	al.	Fig.	5a	[111]	were	obtained	from	the	authors	upon	request,	and	these	

were	used	to	generate	the	signature	matrix.		The	bulk	data	is	quantified	in	terms	of	

FPKM	values.  

	
3.5.7	 Schelker	et	al.	simulation	details	
	
	
	 Source	code	and	data	from	the	Schelker	et	al.	{Schelker	2017}	simulation	

analysis	was	accessed	through:	https://figshare.com/s/711d3fb2bd3288c8483a.		

The	single-cell	RNA-seq	data	used	in	Schelker	et	al.	[109]	includes	tumor	cells	from	

19	melanoma	patients,	PBMCs	from	four	healthy	subjects,	and	ascite	samples	from	

four	ovarian	cancer	patients.		A	signature	matrix	was	built	using	all	cells,	using	the	

clusters	found	by	DBSCAN	in	Schelker	et	al.	[109],	and	using	the	genes	from	the	

CIBERSORT	immune	cell	signature	[101].	27	patient-specific	simulated	bulk	data	

sets	were	built	by	summing	up	gene	expression	values	of	signature	genes	across	all	

cell	types,	for	each	patient.	

	

3.5.8	 Modified	relative	percent	error	calculation	
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Modified	relative	percent	error	measures	the	absolute	difference	between	

estimated	and	true	cell	type	proportions,	normalized	by	the	mean	of	the	estimated	

and	true	cell	type	proportions.		A	pseudo	count	of	0.005	is	added	so	that	for	very	

small	cell	type	proportions,	relative	error	does	not	become	unreasonably	high.		It	is	

defined	as:	

𝑀𝑅𝑃𝐸 =

⎩
⎪⎪
⎨

⎪⎪
⎧

0, 𝑖𝑓	𝑥Ç = 0	𝑎𝑛𝑑	𝑥íÇ = 0

Õ 𝑥Ç
∑ 𝑥*1
*s.

− 𝑥íÇ
∑ 𝑥í*1
*s.

Õ

𝑥Ç
∑ 𝑥*1
*s.

+ 𝑥íÇ
∑ 𝑥í*1
*s.

2 + 0.005

∗ 100, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

⎭
⎪⎪
⎬

⎪⎪
⎫

,	

where	𝑥Ç	and	𝑥íÇ	are	the	true	and	estimated	cell	type	numbers,	respectively,	for	cell	

type	l.		
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Hands-on	applications	of	single-cell	RNA-

sequencing	technologies	to	discoveries	in	cancer	

immunology	

	

4.1	Antibody-mediated	inhibition	of	MICA	and	MICB	shedding	promotes	NK	

cell-driven	tumor	immunity	

	

By	Lucas	Ferrari	de	Andrade,	Rong	En	Tay,	Deng	Pan,	Adrienne	M.	Luoma,	

Yoshinaga	Ito,	Soumya	Badrinath,	Daphne	Tsoucas,	Bettina	Franz,	 Kenneth	F.	May	

Jr.,	Christopher	J.	Harvey,	Sebastian	Kobold,	Jason	W.	Pyrdol,	Charles	Yoon,	Guo-

Cheng	Yuan,	F.	Stephen	Hodi,	Glenn	Dranoff,	Kai	W.	Wucherpfennig		

	

The	full	text	is	published	in	Science,	Vol.	359,	Issue	6383,	March	2018,	pp.	1537-

1542.	

	

	 When	cells	are	damaged,	they	normally	express	MICA	and	MICB	proteins	that	

flag	the	cells	for	removal.		These	cell	stress	markers	bind	to	the	natural	killer	group	

2D	(NKG2D)	receptor	of	cytotoxic	lymphocytes,	recruiting	these	cytotoxic	

lymphocytes	for	the	destruction	of	damaged	cells.		However,	cancer	cells	are	able	to	

cleave	MICA	and	MICB	in	order	to	escape	this	immune	response.		In	order	to	prevent	
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MICA/B	shedding,	our	collaborators	investigated	treatment	with	MICA/B	𝛼3	

domain-specific	antibody	7C6-hIgG1.		They	showed	that	MICA/B	antibody	

treatment	decreases	tumor	growth	and	metastasis	in	human	and	mouse	models	

(Fig.	4.1).	

	

Figure	4.1.	A	cartoon	depicting	the	mechanisms	behind	NK	cell	recognition	of	
damaged	cells.		On	the	left,	tumor	cells	shed	MICA/B	through	proteolytic	cleavage,	
and	escape	detection	by	NK	cells.		On	the	right,	antibody	binding	at	the	MICA/B	𝛼3	
domain	prevents	cleavage	of	MICA/B,	resulting	in	recruitment	of	NK	cells	through	
the	NKG2D	receptor.	
	

	 To	further	explore	the	effects	of	such	treatment	on	the	tumor	

microenvironment,	we	analyzed	single-cell	RNA-sequencing	data	from	sorted	group	

1	innate	lymphoid	cells	(ILCs)	from	mouse	metastatic	lung	tissue,	both	untreated	

and	treated	with	7C6-mIgG2a.		Through	clustering,	tSNE	visualization,	and	

differential	expression	analyses,	we	saw	a	striking	difference	in	cell	type	

composition	between	the	two	states	(Fig.	4.2).		The	treated	sample	was	composed	of	
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63.2%	activated,	cytotoxic	NK	cells,	characterized	by	high	expression	of	EOMES	

(eomesodermin),	GZMA	(granzyme	A),	GZMB	(granzyme	B),	and	PRF1	(perforin	1),	

up	from	6.41%	in	the	control	condition	(Isotype).		On	the	other	hand,	the	control	

sample	was	composed	of	49.4%	ILC1	cells	characterized	by	high	expression	of	

CXCR3,	CXCR6,	and	LTB	(lymphotoxin	𝛽),	associated	with	cytokine	and	chemokine	

signaling	and	inflammation,	up	from	7.69%	in	the	treated	sample.		These	differences	

support	the	finding	that	MICA/B	antibody	treatment	prevents	MICA/B	cleavage,	and	

results	in	increased	activity	of	tumor-infiltrating	NK	cells.		

Figure	4.2.	A	t-SNE	visualization	of	group	1	innate	lymphoid	cells	(ILCs)	for	control	
(Isotype,	left),	and	antibody-treated	(7C6-mIgG2a,	right)	samples.	There	is	a	striking	
increase	in	the	proportion	of	activated	NK	cells	upon	antibody	treatment.	
	
	
	

	



	

	 	 	93	

4.2	A	major	chromatin	regulator	determines	resistance	of	tumor	cells	to	T	

cell-mediated	killing	

	

By	Deng	Pan,	Aya	Kobayashi,	Peng	Jiang,	Lucas	Ferrari	de	Andrade,	Rong	En	Tay,	

Adrienne	Luoma,	Daphne	Tsoucas,	Xintao	Qiu,	Klothilda	Lim,	Prakash	Rao,	Henry	W.	

Long,	Guo-Cheng	Yuan,	John	Doench,	Myles	Brown,	Shirley	Liu,	Kai	W.	

Wucherpfennig		

	

The	full	text	is	published	in	Science,	Vol.	359,	Issue	6377,	February	2018,	pp.	770-

775.	

	

Tumor	cells	are	often	resistant	to	killing	by	cytotoxic	T	cells,	and	the	

mechanisms	of	resistance	are	unclear.		In	order	to	find	which	genes	and	processes	

contribute	to	this	resistance,	our	collaborators	performed	a	genome-wide	

CRISPR/Cas9	screen	on	mouse	melanoma	cells.		Inactivation	of	certain	genes,	

including	Pbrm1,	Arid2,	and	Brd7	of	the	SWI/SNF	chromatin-remodeling	complex,	

results	in	greater	recruitment	of	effector	T	cells.		Specifically,	inactivation	of	these	

genes	results	in	loss	of	function	of	the	PBAF	complex,	a	part	of	the	SWI/SNF	

complex,	which	then	increases	chromatin	accessibility	to	promoters	and	enhancers	

of	interferon-𝛾	induced	genes.		This	in	turn	results	in	greater	secretion	of	

chemokines	that	recruit	effector	T	cells.	
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To	gain	a	greater	understanding	of	this	process,	we	analyze	single-cell	RNA-

seq	data	from	sorted	CD45+	immune	cells	from	both	Pbrm1-deficient	and	control	

mouse	tumors	(Fig.	4.3).		A	comparison	of	the	two	conditions	shows	an	increased	

percentage	of	dendritic	cells	and	tumor-inhibitory	M1-like	macrophages	in	the	

Pbrm1-deficient	mice,	and	an	increased	percentage	of	tumor-promoting	M2-like	

macrophages	in	the	control	mice.		Additionally,	a	gene	set	enrichment	analysis	finds	

that	the	Pbrm1-deficient	mice	express	a	high	level	of	genes	related	to	anti-tumor	

immunity	relative	to	the	control.		Our	analysis	demonstrates	that	Pbrm1	deficiency	

alters	the	tumor	microenvironment,	making	it	more	receptive	to	T	cell	therapies.	
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Figure	4.3.	Single-cell	RNA-sequencing	data	from	CD45+	immune	cells	from	Pbrm1-
deficient	and	control	mouse	tumors.		Top,	a	t-SNE	visualization	of	cells	from	pooled	
wild	type	and	knock-out	conditions.		Bottom	left,	a	gene	set	enrichment	analysis	of	
the	wild	type	condition	shows	enrichment	for	signatures	associated	with	anti-tumor	
immunity.		Bottom	right,	proportions	of	macrophage	and	dendritic	cell	populations	
in	wild	type	and	knock-out	conditions.	
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A.	Supplemental	Materials	for	Chapter	2	

	

A.1	Supplemental	Information	

Evaluation	of	clustering	performance	using	additional	metrics	

Several	 additional	metrics	 are	 used	 to	 compare	 clustering	 accuracy	 across	

various	 clustering	methods,	 for	 both	 simulated	 and	 subsampled	 data.	 	 Results	 for	

simulated	data	are	shown	in	Supplemental	Fig.	S2.1,	and	results	for	a	subset	of	the	

subsampled	 data	 sets	 (corresponding	 to	 a	 rare	 cell	 type	 of	 1.6%)	 are	 shown	 in	

Supplemental	 Fig.	 S2.4.	 	 Full	 results	 for	 the	 subsampled	 data	 are	 not	 shown	 for	

reasons	 of	 brevity,	 but	 results	 for	 this	 particular	 rare	 cell	 type	 proportion	 are	

representative	 of	 the	 overall	 results.	 	 The	 additional	 metrics	 used	 to	 evaluate	

clustering	 accuracy	 are:	 purity,	 normalized	 mutual	 information	 (NMI),	 micro-

averaged	F-measure,	adjusted	rand	index	(ARI),	and	entropy.		These	various	metrics	

are	 introduced	 to	 give	 a	 more	 complete	 view	 of	 the	 clustering	 results,	 as	 each	

method	measures	accuracy	 in	a	slightly	different	way.	 	Purity	 is	a	measure	of	how	

often	a	cluster	contains	a	single	cell	type,	where	1	indicates	that	all	clusters	contain	

a	 single	 cell	 type,	 and	a	value	of	0	 indicates	poor	 clustering	[119].	 	Unfortunately,	

this	 metric	 does	 not	 penalize	 for	 overclustering,	 and	 a	 perfect	 clustering	 can	 be	

achieved	 by	 clustering	 each	 cell	 separately.	 	 Often,	 more	 complex	 metrics	 are	

required.		NMI	is	an	entropy-based	method	normalized	by	cluster	size	[80],	where	a	

value	of	1	indicates	perfect	agreement,	whereas	a	value	of	0	means	the	performance	

is	as	good	as	random	guess.	 	The	micro-averaged	F-measure	is	the	harmonic	mean	
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of	micro-averaged	precision	and	recall	rates,	which	are	computed	by	summing	true	

positive,	 true	 negative,	 false	 positive	 and	 false	 negative	 values	 over	 all	 cell	 types.		

Values	 also	 range	 from	 0	 to	 1,	 with	 values	 close	 to	 1	 implying	 better	 clustering	

[120].	 	The	ARI	is	a	version	of	the	rand	index	that	is	corrected	for	chance,	and	also	

takes	into	account	both	false	positives	and	negatives.		A	value	of	1	indicates	a	perfect	

clustering,	a	value	of	0	is	the	expected	value	for	a	random	clustering,	and	the	metric	

takes	on	negative	values	if	the	clustering	is	worse	than	expected	[121].		Entropy	is	a	

measure	 of	 disorder	within	 the	 clustering	 results	 that	 ranges	 from	 0	 to	 1,	 where	

values	close	to	0	imply	less	disorder	and	better	clustering	[122].		As	this	is	the	only	

metric	 where	 a	 lower	 value	 means	 a	 better	 clustering,	 we	 show	 1-entropy	 for	 a	

more	intuitive	visualization.	

	

Results	for	a	naïve	combination	of	high	Fano	and	Gini	genes	in	simulated	data	

	 The	most	obvious	approach	to	combining	the	superior	performances	of	Gini	

and	 Fano-based	 feature	 spaces	 for	 detecting	 rare	 and	 common	 cell	 types,	

respectively,	may	be	to	combine	the	two	feature	spaces,	and	perform	clustering	on	

this	combined	space.	 	Supplemental	Fig.	S2.3	shows	a	two-dimensional	tSNE	of	the	

Jaccard	distance	of	this	combined	feature	space,	colored	with	the	true	cell	clusters,	

followed	 by	 clustering	 results	 on	 this	 same	 space	 using	 DBSCAN	 and	 k-means	

clustering	methods.	 	Neither	of	 these	clustering	methods	 is	able	 to	recapitulate	all	

six	 clusters,	 and	 the	 visualization	 gives	 an	 indication	 as	 to	why.	 	 The	 two	 larger	

clusters	are	visually	separable,	but	the	smaller	clusters	are	in	close	proximity	to	the	

largest	cluster,	and	are	indistinguishable	from	each	other.		This	combination	of	two	
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distinct	feature	spaces	is	undesirable	because	it	dilutes	the	signal	from	each	feature	

space,	and	further	demonstrates	the	need	for	a	consensus	clustering	approach.	

	

Parameter	choice	details	

Parameter	choice	for	DBSCAN	

DBSCAN	has	two	parameters:	MinPts	and	eps.	MinPts	is	specified	as	3	for	all	

data	sets	except	for	the	PBMC	data,	where	MinPts	is	set	to	100,	in	accordance	with	

the	 larger	 size	of	 this	data	 set.	 	This	 corresponds	 to	 the	minimum	cluster	size	 for	

which	we	would	expect	to	see	a	biologically	relevant	cluster.		In	general,	we	find	an	

appropriate	MinPts	specification	to	be	about	0.1%	of	the	total	number	of	cells.	

The	 eps	 parameter	 is	 determined	 by	 a	 k-nearest-neighbors	 (kNN)	 plot	 as	

recommended	 by	 the	 authors	 of	 DBSCAN	 [85].	 	 According	 to	 their	 approach,	

distance	 from	each	point	 to	 its	kth	nearest	neighbor	 is	plotted	 in	ascending	order,	

where	k=MinPts.		This	will	form	a	line	featuring	an	inflection	point,	at	which	lies	the	

recommended	 choice	 for	 eps	 [85].	 	 If	 multiple	 inflection	 points	 exist,	 this	 may	

suggest	that	multiple	values	of	eps	are	worth	exploring;	however,	in	our	case	as	we	

are	 concerned	 with	 rare	 clusters,	 we	 only	 consider	 the	 smallest	 choice	 of	 eps,	

corresponding	to	the	 first	 inflection	point.	 	Here,	our	Gini-based	distance	metric	 is	

particularly	low-dimensional	due	to	the	use	of	Jaccard	distance	and	a	small	number	

of	 high	 Gini	 genes.	 	 This	 causes	 cells	 with	 similar	 expression	 profiles	 to	 have	

pairwise	distances	of	zero,	which	distorts	the	traditional	kNN-distance	curve	shape	

and	makes	 the	 inflection	 point	 harder	 to	 visualize	 (Supplemental	 Fig.	 S2.7).	 	 We	

provide	an	alternate	numerical	approach	to	approximating	the	inflection	point:	after	
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removing	 all	 zero	distances,	 the	 inflection	 point	 roughly	 corresponds	 to	 the	 kNN-

distance	of	the	(0.00125*total	number	of	cells*MinPts)th		cell.		For	the	68k	data	set,	

the	computation	of	all	kNN	distances	was	prohibitive,	so	we	subsampled	2057	cells	

and	 computed	 3-NN	distances	 to	maintain	 the	 ratio	 of	MinPts	 to	 the	 total	 sample	

size.	

	

Choice	of	k	for	k-means	clustering	

We	 give	 the	 option	 of	 automatically	 determining	 k	 using	 the	 gap	 statistic.		

However,	observing	differentially	expressed	genes	and	visualizing	k-means	clusters	

gives	 the	best	 intuition	as	 to	 the	optimal	k.	 	We	also	do	not	 suggest	using	 the	gap	

statistic	 for	 large	 data	 sets	 due	 to	 its	 computational	 demands.	 For	 the	 simulated	

data,	we	chose	k=2,	 in	accordance	with	both	 the	number	of	 large	 clusters	and	 the	

gap	 statistic,	but	 show	 that	k=3	will	 also	yield	 the	 same	result	 (Supplemental	Fig.	

S2.2).	 	 For	 subsampled	PBMC	data	 sets,	 k	was	 chosen	as	2	or	3	depending	on	 the	

ability	of	k-means	to	pick	up	the	rare	NK	cell	group.		k	was	chosen	as	2	for	the	day	4	

post-LIF	mouse	 embryonic	 stem	 cell	 data	 as	we	 found	 this	 number	 to	 best	 group	

biologically	meaningful	cell	types.			

For	the	68k	PBMC	data,	we	chose	k=10	to	allow	for	direct	comparison	with	

clustering	 results	 from	 Zheng	 et	 al.	 [77].	 For	 comparison	 to	 the	 k=10	 parameter	

choice,	we	 additionally	 show	 results	 for	 both	 choices	 k=8	 and	 k=12	 for	 the	 Fano-

based	 clustering	 step	 (Supplemental	 Fig.	 S2.8).	 	 All	 parameter	 choices	 perform	

comparably,	 with	 NMI	 values	 of	 0.542,	 0.541	 and	 0.498,	 respectively,	 when	

compared	to	the	reference	labels.	 	The	k=8	clustering	results	in	two	fewer	clusters	
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within	 the	 CD56+	 NK,	 CD8+	 Cytotoxic	 T,	 CD8+/CD45RA+	 Naïve	 Cytotoxic	

continuum.	 	 The	 k=12	 clustering	 further	 splits	 clusters	 containing	 overlapping	

CD8+/CD45RA+	 Naïve	 Cytotoxic,	 CD4+/CD45RA+/CD25-	 Naïve	 T,	 CD4+/CD25	 T	

Reg,	 and	 CD4+/CD45RO+	Memory	 cells,	 as	 well	 as	 adding	 another	 cluster	 to	 the	

aforementioned	 CD56+	 NK,	 CD8+	 Cytotoxic	 T,	 CD8+/CD45RA+	 Naïve	 Cytotoxic	

continuum.	 	 These	 changes	 are	 minor	 as	 they	 occur	 predominantly	 in	 regions	 of	

unclear	identity.	

	

Parameter	choices	for	weighted	consensus	clustering	

As	 discussed	 in	 the	 Materials	 and	 Methods	 section,	 the	 parameter	 values	

for	𝜇,	𝑠,	 and	𝑓	are	 derived	 through	 intermediate	 variables	𝜇′,	𝑠′,	 and	𝑓′.	 The	 values	

for	 these	 intermediate	 variables	 are	 determined	 empirically	 using	 the	 following	

procedure.	 First,	 we	 set	𝜇′	=	 4*(MinPts/total	 number	 of	 cells),	 where	 MinPts	

represents	 the	minimum	cluster	size	allowed	by	DBSCAN.	 	We	find	that	 this	 is	 the	

approximate	cell	fraction	where	GiniClust	and	Fano-factor-based	clustering	perform	

equally.	 Next,	 using	 the	 same	 logic,	 we	 set	 the	 value	 for	𝑠′	such	 that	 the	 99th	

percentile	 of	 the	 GiniClust	 weighting	 distribution	 is	 reached	 at	 6*(MinPts/total	

number	 of	 cells).	 	 We	 find	 that	 this	 is	 the	 approximate	 cell	 fraction	 in	 which	

GiniClust	can	no	longer	detect	the	rare	cell	type.		Finally,	we	set	𝑓′	=	0.1.	While	these	

parameter	 settings	 cannot	 guarantee	 optimal	 performance,	 results	 from	 our	

sensitivity	analysis	(see	next	section)	strongly	suggest	that	the	clustering	results	are	

robust	over	a	wide	range	of	parameter	values.	
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Sensitivity	analysis	on	simulated	data	

GiniClust2	parameters	were	varied	one	at	a	time	on	simulated	data	to	test	the	

robustness	of	the	method	to	specific	parameter	choices.	 	The	following	parameters	

were	varied:	DBSCAN	parameters	MinPts	and	eps,	k-means	parameter	k,	Gini	 and	

Fano	gene	thresholds,	and	weighting	scheme	parameters	𝜇,	𝑠,	and	𝑓.		In	addition,	the	

behavior	of	GiniClust2	across	various	signal:noise	ratios	was	evaluated	by	running	

the	 method	 on	 several	 variations	 of	 the	 original	 data	 set.	 The	 noise	 level	 was	

simulated	 by	 varying	 the	 scale	 parameter	 of	 the	 generative	 negative	 binomial	

distribution	 (see	 Methods).	 Clustering	 accuracy	 was	 evaluated	 using	 several	

metrics:	NMI,	ARI,	 entropy,	purity,	 and	 the	micro-averaged	F-measure.	 	Results	of	

these	analyses	are	shown	in	Supplemental	Fig.	S2.9.	

Our	analysis	suggests	that	the	clustering	results	are	strongly	affected	by	the	

choice	of	k.		A	small	k	results	in	combining	the	large	clusters,	while	a	large	k	results	

in	splitting	the	large	clusters	into	smaller	subgroups.		This	resolution	uncertainty	is	

intrinsic	to	all	clustering	methods.		For	all	other	parameter	changes,	metrics	do	not	

dip	 below	 0.96,	 indicating	 the	 robustness	 of	 the	 clustering	 results	 to	 these	

parameter	choices.		Perhaps	more	importantly,	clustering	results	are	perfect	over	a	

wide	range	of	many	of	these	parameter	values.		

	

Analysis	of	the	10X	Genomics	data	supports	a	logistic	function	model	

We	 test	 whether	 the	 consensus	 clustering	 weighting	 function	𝑤"$(𝑥")	

accurately	represents	the	power	of	GiniClust	to	detect	rare	cell	types	over	a	range	of	

cell	 type	 proportions.	 	 In	 the	 Results	 section	 we	 discuss	 a	 subsampling	 analysis	
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performed	by	selecting	macrophage,	NK	and	B	cells	at	varying	proportions	 from	a	

10X	 Genomics	 dataset	 consisting	 of	 about	 68,000	 peripheral	 blood	 mononuclear	

cells	 (PBMCs)	 [77].	 	 Cells	 are	 classified	 based	 on	 transcriptomic	 similarity	 with	

purified	 cell-types	 and	 additional	 known	 gene	 markers	 (see	 Methods	 for	 full	

details).	 	 Cell	 types	 are	 sampled	 140	 times	 according	 to	 Supplemental	 Table	 S2.1	

such	that	 the	 rare	macrophage	group	 ranges	 in	 cell	 type	proportion	 from	0.2%	 to	

11.6%.	

To	capture	the	power	of	GiniClust	and	Fano-factor-based	k-means	to	detect	

cell	 types	 of	 varying	 rarity,	 we	 define	 “detection”	 of	 the	 rare	 cell	 type	 as	 the	

clustering	 together	 of	 at	 least	 3	 out	 of	 the	 5	 rare	 cells,	while	 including	 at	most	 2	

other	cells	in	this	rare	group.		For	the	subsampled	PBMC	data	we	calculate	the	rare	

cell	type	detection	rates	of	both	GiniClust	and	Fano-factor-based	k-means	for	each	of	

the	 rare	 cell	 type	 proportions	 (Supplemental	 Fig.	 S2.10a).	 	We	 next	 calculate	 the	

ratio	 between	 the	 GiniClust	 detection	 ability	 and	 the	 sum	 of	 both	 GiniClust	 and	

Fano-factor-based	k-means	detection	abilities	(Supplemental	Fig.	S2.10b).		This	is	a	

measure	of	the	ability	of	GiniClust	over	Fano-factor-based	k-means	in	detecting	the	

rare	cell	type,	which	we	tried	to	capture	in	our	GiniClust	weighting	function.	We	can	

see	 that	 the	shape	of	 the	 curve	 in	Supplemental	Fig.	 S2.10b	closely	mimics	 that	of	

the	logistic	GiniClust	weighting	function,	also	pictured	in	Supplemental	Fig.	S2.10b,	

and	suggests	that	such	a	logistic	function	shape	is	appropriate	for	defining	GiniClust	

weights.	

	

Comparison	of	the	computational	performance	of	GiniClust2	and	RaceID2	
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GiniClust2	 and	 RaceID2	 were	 run	 on	 all	 smaller	 data	 sets	 (<=3023	 cells)	

using	a	2.5	GHz	Intel	Core	i7	CPU	with	16	GB	memory.		Runtimes	for	these	methods	

are	 shown	 in	Supplemental	Fig.	 S2.6.	 	Both	methods	were	 run	using	default—and	

where	 applicable,	 automatic—parameter	 choices.	 	 For	 datasets	 above	 155	 cells,	

GiniClust2	is	faster	than	RaceID2,	and	scales	better	than	RaceID2	for	an	increasing	

number	of	cells.		Only	GiniClust2	can	be	run	for	very	large	data	sets	(68k	cells),	and	

therefore,	 a	 comparison	cannot	be	 shown.	 	 It	should	be	noted	 that	 for	 these	 large	

data	 sets,	 a	 few	 code	 alterations	 (see	Methods)	make	 running	GiniClust2	 a	 faster	

process	 without	 sacrificing	 accuracy,	 and	 the	 runtime	 does	 not	 scale	 with	 the	

runtimes	for	these	smaller	data	sets.	
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A.2	Supplemental	Figures

	

Figure	S2.1.	A	summary	of	the	clustering	results	of	GiniClust2,	RaceID2,	and	other	
comparable	methods	on	simulated	data.	Clustering	accuracy	is	measured	using	
several	metrics:	purity,	normalized	mutual	information	(NMI),	micro-	averaged	F-
measure,	adjusted	rand	index	(ARI),	and	entropy.		
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Figure	S2.2.	The	effect	of	various	choices	of	k	on	(a)	the	k-means	step	and	(b)	the	
overall	clustering	of	our	GiniClust2	method	for	the	simulated	data.	Each	bar	
represents	the	contribution	of	a	cluster	to	the	total	number	of	cells	in	each	reference	
type.		
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Figure	S2.3.	Two-dimensional	tSNE	representations	of	the	simulated	data,	using	a	
feature	space	based	on	a	naïve	combination	of	high	Gini	and	Fano	genes.	Colors	
represent	the	true	cell	types,	followed	by	clustering	results	using	DBSCAN	and	k-
means	clustering	methods	on	this	naïve	feature	space,	respectively.		
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Figure	S2.4.	Clustering	results	for	a	subset	of	the	subsampled	PBMC	data	sets	
containing	a	representative	rare	cell	type	proportion	of	1.6%,	for	GiniClust2,	
RaceID2,	and	other	comparable	methods.	These	were	measured	using	purity,	
normalized	mutual	information	(NMI),	micro-averaged	F-measure,	adjusted	rand	
index	(ARI),	and	entropy.	
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Figure	S2.5.	A	composite	tSNE	plot	representing	the	GiniClust2	clustering	results	for	
the	inDrop	dataset	for	day	4	post-LIF	mESC	differentiation	[79].		
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Figure	S2.6.	A	comparison	of	computational	runtimes	for	GiniClust2	and	RaceID2,	
for	data	sets	ranging	from	43	to	3023	cells.	The	methods	were	run	on	a	2.5	GHz	Intel	
Core	i7	CPU	with	16	GB	memory.	
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Figure	S2.7.	An	illustration	of	the	eps	parameter	selection	process	for	DBSCAN,	the	
clustering	method	used	in	GiniClust.	Eps	is	chosen	as	the	distance	at	the	inflection	
point	in	the	k-nearest-neighbors	distance	plot.		

	

	

	

Figure	S2.8.	The	effect	of	various	choices	of	k	on	the	Fano-factor-based	k-means	step	
of	GiniClust2	for	the	full	68k	PBMC	data.	Clustering	results	for	Fano-factor-	based	
kmeans	using	k=8,	k=10,	and	k=12,	respectively,	are	shown	using	three	two-
dimensional	tSNE	plots	colored	with	each	set	of	corresponding	cluster	labels.		
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Figure	S2.9.	A	sensitivity	analysis	for	GiniClust2	on	simulated	data.		Eight	
parameters	were	independently	varied:	k-means	parameter	k,	DBSCAN	parameters	
MinPts	and	eps,	weighting	scheme	parameters	𝜇,	𝑠,	and	𝑓,	and	Gini	and	Fano	gene	
thresholds.	Additionally,	the	variance	of	the	simulated	data	was	varied.		The	effects	
of	each	of	these	changes	on	the	final	clustering	accuracy	of	GiniClust2	were	
measured	using	several	metrics:	normalized	mutual	information	(NMI),	adjusted	
rand	index	(ARI),	entropy,	purity,	and	micro-averaged	F-measure.	
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Figure	S2.10.	An	evaluation	of	the	abilities	of	GiniClust	and	Fano-factor-based	k-
means	to	detect	rare	cells,	performed	on	the	subsampled	PBMC	data	sets.		(a)	Rare	
cell	type	detection	abilities	of	GiniClust	and	Fano-factor-based	k-means	over	a	range	
of	rare	cell	type	proportions.	(b)	A	representation	of	the	ability	of	GiniClust	to	detect	
rare	cell	types	over	Fano-factor-based	k-means,	and	its	logistic	fit.		Parameters	𝜇′	
and	𝑠′	determine	the	shape	of	the	curve.	
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A.3.	Supplemental	Table	

Simulations	 Macrophage	 NK	 B	 Rare	Cell	Type	

Proportion	

1-20.	 5	 1600	 800	 .002	

21-40.	 5	 800	 400	 .004	

41-60.	 5	 400	 200	 .008	

61-80.	 5	 200	 100	 .016	

81-100.	 5	 100	 50	 .032	

101-120.	 5	 50	 25	 .063	

121-140.	 5	 25	 13	 .116	

	

Table	S2.1.		Cell	numbers	in	three	different	cell	types	for	each	of	140	subsampled	
datasets	from	68k	PBMCs.	
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B.	Supplemental	Materials	for	Chapter	3	

	

B.1	Supplemental	Table	

	 T	cell	
(0.439)	

B	cell	
(0.098)	

Macrop
hage/M
onocyte	
(0.150)	

Den
driti
c	
cell	
(.01
0)	

NK	
cell	
(.03
2)	

End
oth
elial	
cell	
(.00
8)	

Cancer	
Associa
ted	
Fibrobl
ast	
(0.019)	

Ovaria
n	
cancer	
cell	
(.020)	

Melan
oma	
cell	
(0.191
)	

Overall	

DWLS	 .086	 .039	 .044	 .004	 .027	 .008	 .024	 .023	 .029	 .032	

QP	 .075	 .030	 .045	 .008	 .040	 .019	 .057	 .019	 .058	 .038	

ν-SVR	 .103	 .030	 .043	 .008	 .037	 .011	 .014	 .010	 .065	 .035	

	

Table	S3.1.		The	accuracy	of	deconvolution	results	for	the	simulated	bulk	data	
created	from	27	different	donor	and	patient	immune	and	tumor	cell	single-cell	data	
sets.		Estimation	accuracy	is	measured	using	absolute	error,	and	is	calculated	for	
three	different	deconvolution	methods:	DWLS,	𝜈-SVR,	and	QP.		Average	true	
proportions	for	each	cell	type	are	listed	alongside	each	cell	type	name.	
	
	
	
	
	
	


