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Abstract

This thesis presents two essays studying the role of banks in financial markets and one

which studies statistical inference in matching markets. The first chapter presents a new the-

ory of the role of banks, providing an explanation for the role of publicly available securities

on bank balance sheets. The model provides a unified framework for studying asset prices,

portfolio choices, capital structure, and macroeconomic policies such as quantitative easing.

Relative to existing models of banking, the paper emphasizes the demand for deposits

rather than the expertise of bankers in making loans. The second chapter expands on the

research agenda presented in the first by studying why traders might demand bank deposits.

It formalizes the idea that deposits function as a form of money, because they are safe

assets that avoid adverse selection problems in trade. The model presents a fundamental

tension between banks creating large quantities of money-like assets and being vulnerable

to financial panics. The third chapter studies identification and estimation in two sided

matching markets where the desirability of matching with an agent can be summarized by

a latent index. The paper first studies identification, showing that a many-to-one matching

market allows for the estimation of parameters that cannot be estimated in a one-to-one

matching market. It then studies the limiting distribution of a class of estimators and

develops novel methods for proving such limit theorems.
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Introduction

The first chapter develops a theory of financial intermediation in public securities

markets. Riskless securities earn a convenience yield, and all firms face agency costs

of equity financing. Intermediaries endogenously emerge to buy a low risk, diversified

portfolio of debt securities, allowing intermediaries to issue many riskless deposits and

little equity. The model explains the credit spread puzzle in bonds and low risk anomaly in

stocks, why intermediary leverage is high and corporate leverage is low, why intermediaries

own debt and households own equity, how safe asset demand fueled the subprime boom,

and how quantitative easing effects output and financial stability.

The second chapter presents a model of how banks are structured to create deposits

that function as a form of money and the resulting exposure of banks to runs. The paper

begins with a model of anonymous, bilateral transactions where agents who sell goods are

unable to verify the quality of any good provided to pay for the goods sold. As a result,

goods whose quality is most easily verified naturally circulate as a form of money. In

particular, if there is one good "gold" whose quality is commonly known and others that can

be costlessly counterfitted, all transactions use gold as a medium of exchange. The scarcity

of gold induces agents to inefficiently overproduce it relative to other goods that can be

counterfitted. By creating deposits that can be exchanged on demand for gold, which are

only partially backed by gold reserves, banks reduce the scarcity of gold. The resulting

inflation incentivizes a socially beneficial substitution towards producing non-gold goods.

Due to this fractional reserve banking, banks are endogenously exposed to the risk of runs.

The model provides a unified framework in which the demand for money naturally leads to
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a run-prone banking system.

The third chapter studes a large class of two-sided matching models that include both

transferable and non-transferable utility, resulting in positive assortative matching along a

latent index. Data from matching markets, however, may not exhibit perfect assortativity

due to the presence of unobserved characteristics. This paper studies the identification

and estimation of such models. We show that the distribution of the latent index is not

identified when data from one-to-one matches are observed. Remarkably, the model is non-

parametrically identified using data in a single large market when each agent on one side

has at least two matched partners. The additional empirical content in many-to-one matches

can be illustrated using simulations and stylized examples. We then derive asymptotic

properties of a minimum distance estimator as the size of the market increases, allowing

estimation using dependent data from a single large matching market. The nature of the

dependence requires modification of existing empirical process techniques to obtain a limit

theorem.
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Chapter 1

Safety Transformation and the

Structure of the Financial System
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An important role of financial intermediaries is to issue safe, money-like assets,

such as bank deposits and money market fund shares. As an empirical literature has

documented Krishnamurthy and Vissing-Jorgensen (2012); Nagel (2016); Sunderam (2015),

these assets have a low rate of return, strictly below the risk-free rate they would earn

without providing monetary services. Agents who can issue these assets therefore raise

financing on attractive terms, capturing the "demand for safe assets" that pushes their cost

of borrowing below that of others. As shown in Gorton and Pennacchi (1990), any firm that

can issue riskless securities meets the demand for safe, money-like assets. This raises the

question of why financial intermediaries almost uniquely can issue such assets.

The assets owned by money-creating financial institutions are primarily loans and debt

securities issued by firms, households, and governments. Of the $17.3 trillion of assets

owned by depository institutions in the USA in 2015, $4.8 trillion were mortgages, $3.9 were

debt securities including $2.1 trillion of agency and GSE backed securities, $5.0 trillion were

non-mortgage loans to firms and households, and $2.0 trillion were reserves, while only

$100 billion were equities which are held primarily by households. While money creation

4



in the "shadow banking" system is harder to measure, money market funds, securitization

vehicles, and broker dealers that play a role here also invest significantly in debt.1 The role

of publicly traded debt and readily securitized mortgages in the asset portfolios of banks

and shadow banks is not consistent with many existing models that imply intermediaries

hold special assets that are unavailable to other investors.2

This paper develops a general equilibrium model in which financial intermediaries

emerge endogenously, buying a portfolio of publicly available debt securities to most effec-

tively create safe, money-like assets. The model explains (i) why money-creating financial

intermediaries invest in debt while households invest in equity, (ii) why intermediaries

are highly levered while non-financial firms are not, and (iii) why risk is priced more

expensively in the debt market than the equity market, consistent with the "credit spread

puzzle" in bonds and "low risk anomaly" in stocks. In addition to its implications for

the structure of the financial system, the model provides a framework for understanding

the general equilibrium effect of changes in the supply and demand for safe assets. An

increased demand for safe assets replicates many features of the subprime boom, with

intermediaries expanding and taking more risk while the non-financial sector increases its

leverage. Quantitative easing policies increase the supply of safe assets, decrease the price

of risk in debt markets, reduce intermediary risk taking, and increase output at the zero

lower bound.

Two basic ingredients are at the core of the model. First, households obtain utility

directly from holding riskless assets, which captures the demand for money-like assets

without modelling the frictions that make money essential Stein (2012b). The idea that only

safe assets function as money goes back at least to Gorton and Pennacchi (1990), who show

1Another financial institution that can be said to issue long duration safe assets is a life insurance company,
since life insurance contracts promise fixed dollar values in the future. The portfolios in the general account of
life insurers which back insurance contracts are also composed almost entirely of debt.

2Household portfolio holdings are based on the assumption that their mutual funds are 70% equity and
30% debt, consistent with data from the Investment Company Institute’s Investment Company Fact Book. 37%
of households’ direct holdings of debt securities are municipal bonds where they face a tax advantage over
other investors.
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that risky assets are subject to a lemons problem when informed and uninformed agents

trade. Second, all firms face an agency problem in financing risky investment. Each firm’s

management privately observes its output and reports this output to outside investors. If

management underreports, it can divert some fraction of the difference between the true and

reported output. This costly state falsification problem is due to Lacker and Weinburg (1989)

and implies that riskier investments face more severe agency frictions. The optimal strategy

of a financial intermediary is to choose a low risk portfolio that backs as many riskless

assets as possible while minimizing the agency costs due to the risk in its asset portfolio.

High risk assets that would cause too severe of an agency problem for the intermediary are

bought by households instead.

The model provides a new theory of the connection between a bank’s assets and

liabilities that is consistent with the role of publicly available securities on bank balance

sheets. Existing theories that explain both the assets and liabilities of financial intermediaries

imply that bank assets are too illiquid to ever sell to outsiders. Diamond (1984); Diamond

and Rajan (2001) argue that banks acquire information that makes their assets illiquid,

while Dang et al. (2017) requires banks to conceal information so that their assets cannot

trade at a market price.3 In my framework, banks have the same investment opportunities

and information as households and face the same frictions in raising outside financing as

other firms. The key connection between the assets and liabilities of banks in this paper

is that a bank’s asset portfolio should be low risk in order to back many riskless deposits

with a minimum of agency costs. This explanation for the role of intermediaries in public

securities markets connects financial intermediation theory with a literature on the role of

intermediaries in the pricing of public securities Krishnamurthy and He (2013); Adrian et al.

(2014) that has had some empirical success. While banks own some assets unavailable to

households, this paper bridges the gap between financial intermediation theory and the

large holdings of publicly available securities on intermediary balance sheets by studying a

3The branch of this literature that assumes bankers monitor borrowers implies that public equities are too
informationally sensitive to be sold, while empirically non-expert households have large holdings of equity.
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framework in which all financial assets are publicly available.4

The liquidity of bank balance sheets has increased over time due to the development of

securitization and syndication, suggesting that this paper is most relevant for understanding

the modern financial system. Loutskina (2011); Loutskina and Strahan (2009) show a large

secular increase in the liquidity of bank assets as they become easier to securitize and

show that this mitigates their financial constraints. Barnish et al. (1997) argues that the

rise of syndication has made the bank loan market more liquid. In addition, the role of

securitized assets and other public securities in the shadow banking system seems to be

particularly in tension with models that emphasize illiquid relationship lending. While

existing literature DeMarzo and Duffie (1999); DeMarzo (2005) studies the degree to which

informed originators are able to sell securitizations to outsiders, these models do not explain

why the stakes sold to outsiders are bought primarily by levered financial institutions who

may not have private information.

In the model, a continuum of projects with exogenous output (Lucas trees) provide all

resources and must be managed by firms.5 Firms choose whether to buy a single tree or

act as a financial intermediary who can invest in securities. Each tree-owning non-financial

firm sells securities whose payoffs must be increasing in its own cashflows and chooses

to issue a low risk debt security and a high risk equity security.6 These securities are

exposed to both aggregate and tree-specific idiosyncratic risk, and this idiosyncratic risk

ensures that non-financial debt cannot directly meet households’ demand for riskless assets.

This provides a role for intermediaries, who buy a diversified portfolio of non-financial

debt which is safe enough to back a large quantity of riskless deposits with a small buffer

of loss-bearing capital. Intermediaries do not buy riskier equities because the agency

costs of doing so pushes their willingness to pay below that of households. As is true

4A natural extension is to study a model in which assets are publicly available but may still be illiquid.

5As noted later, the model can be interpreted to also include trees that represent houses, which households
can use as collateral to borrow from banks.

6In practice, conglomerate firms such as Berkshire-Hathaway and General Electric do exist and are sometimes
thought to play a role as financial intermediaries. A firm that could hold a diversified tree portfolio at a cost
could also create safe assets in my model and compete with other intermediaries.
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empirically, the balance sheet of an intermediary is composed of a pool of debt which it

then tranches into a riskless deposit and risky equity. The fact that non-financial debt has

low systematic risk allows the intermediary to be highly levered, consistent with Berg and

Gider (forthcoming)’s empirical finding that the low asset risk of banks explains their high

leverage.

The fact that intermediaries are willing to pay more than households for low systematic

risk assets but less for high systematic risk assets implies that asset prices are segmented.

The pricing kernel of assets owned by the intermediary features a low risk-free rate, since

riskless assets can back deposits without any loss-bearing capital, but a high price of

systematic risk, reflecting the intermediary’s agency costs of holding a risky portfolio.

As in models with leverage constraints Frazzini and Pedersen (2014); Black (1972), less

systematic assets therefore earn a higher risk-adjusted return than more systematic assets.

The intermediary’s ability to raise deposit financing gives it a low borrowing cost, so it

exploits this segmentation by holding a low risk portfolio on a highly levered balance sheet.

This endogenous market segmentation is arbitraged by non-financial firms when they

choose their capital structure, resulting in segmentation between debt and equity markets.

Each firm chooses its leverage so that its debt is sufficiently low risk to sell to intermediaries

and its equity is sufficiently high risk to sell to households. The firm’s total market value

is therefore strictly higher than any agent would be willing to pay for all of the firm’s

cashflows. When each firm chooses its capital structure optimally, all debt is low enough

risk to be priced by the intermediary’s pricing kernel and all equity is high enough risk to

be priced by the household’s pricing kernel. Thus, the segmentation between low and high

risk assets is endogenously segmentation between the debt and equity markets. This is

consistent with the "credit spread puzzle" (Huang and Huang 2012) that structural credit

models that infer credit spreads assuming the debt and equity markets are integrated tend

to imply smaller spreads than empirically observed. It also explains the "low risk anomaly"

(Black Jensen Scholes 1972, Baker Bradley Taliaferro 2014, Bansal Coleman 1996), which

finds that the price of risk in the stock market is too low for simple measures of risk to be
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consistent with the empirically observed high return on the stock index and low risk-free

rate.

Because the model endogenously determines intermediary and household balance

sheets, financial and non-financial capital structure, and segmented pricing of debt and

equity securities, it provides a rich framework for studying the financial system’s response

to changes in the supply and demand for safe assets. I use it to study the effects of a

growing demand for safe assets, which a macroeconomic literature (Bernanke et. al. 2011,

Caballero Farhi 2017) argues is a feature of the global economy in recent decades, and

to understanding the effects of the quantitative easing policies that involved purchasing

publicly available bonds. The model implies that an increased demand for safe assets

induces the financial system to expand and invest in riskier debt, decreasing the borrowing

costs of the non-financial sector, and induces the non-financial sector to increase its leverage.

This is consistent with the subprime boom of the 2000s.

The model is a natural framework for studying how quantitative easing policies impact

intermediary risk taking and non-financial leverage decisions. The fact that intermediaries

hold public securities in my model allows it to speak to the effects of government purchases

of public securities.7 By swapping intermediaries’ risky assets for riskless assets, quantitative

easing reduces intermediary risk taking, compresses risk premia in debt markets, increases

the supply of safe assets, and stimulates aggregate demand at the zero lower bound. The

model also can be used to understand the policy speech (Stein 2012b) which argues that

the reduced borrowing costs caused by quantitative easing leads firms to issue debt that

weakens its effects. Away from the zero lower bound, a rise in the natural rate due to

quantitative easing can increase borrowing costs. At the zero lower bound, borrowing

costs decrease, but the increase in consumption also boosts the price of equities owned by

households, consistent with event studies (Neely 2011, Chodorow-Reich 2014). Firms may

delever in response to quantitative easing, since the cost of equity financing decreases.

7There do exist models that simply assume assets purchased in quantitative easing can only be held by
intermediaries. My model reconciles this literature with models where intermediaries appear endogenously.
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1.1 Baseline Model

I summarize the model’s agents, timing, and frictions. Next, I solve the portfolio choice

problems of the representative household and intermediary in partial equilibrium, taking

as given a set of securities available for purchase. I use these portfolio choice results to

show that the market for low risk assets (which the intermediary buys) are segmented from

the market for high risk assets (which the household buys). I then show how non-financial

firms choose the securities they issue to take advantage of this segmented capital market.

After characterizing the model’s unique equilibrium, I use the model as a framework for

showing how the financial system responds to changes in the supply and demand for safe

assets and to quantitative easing policies.

Setup The model has two periods (t = 1, 2). Goods C1 are available at time 1 which

cannot be stored. Output at time 2 is produced by a continuum of trees indexed by i ∈ [0, 1] ,

where tree i produces fi. At time 2, a binary aggregate shock is realized to be "good" or

"bad" with probability 1
2 , and the output of the trees are conditionally independent given

this aggregate shock. These aggregate and idiosyncratic shocks to each tree’s output are

the only sources of risk.

There are two classes of agents: households and firms. Households are endowed with

wealth WH which they invest in order to consume. The household maximizes its expected

utility

u (c1) + E [u (c2)] + v (d) . (1.1)

which depends on its consumption (c1, c2) at times 1 and directly on its holding d of

riskless assets that pay out at time 2. Households can invest in securities issued by firms,

but trees must be held by firms.8

Firms can choose either to be an "intermediary" or a "non-financial firm." Each non-

8Allowing some trees to be held by households (representing houses rather than corporate assets) would
allow the model to have homeowners getting mortgages from banks with little added complexity as explained
later on.
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financial firm can invest in one tree i and sell securities backed by the tree. Firms are

not able to invest in diversified pools, motivated by the idea that conglomerate firms can

be difficult to manage. Intermediaries cannot invest in trees but can invest in the same

financial securities available to households and can issue securities backed by their portfolio.

Unlike non-financial firms, intermediaries can hold a diversified portfolio. An intermediary

can invest in a diversified portfolio like a household and issue securities like a firm, allowing

it to issue riskless assets backed by a pool of securities, which other agents cannot do.

The output of firms is not verifiable and must be reported by its management to outside

investors. Management can underreport output to divert resources. If a firm has payoffs

δ f irm at period 2 and its management reports δ′f irm < δ f irm in the support of the firm’s output

distribution, management can divert resources C
(

δ f irm − δ′f irm

)
, where C′ (0) = 0, C′′ > 0,

and supe C′ (e) < 1. C′ (e) < 1 implies that resources are destroyed when management

diverts. The owners of the firm can provide the management with output-contingent

compensation, and it is optimal to incentivize management not to divert. This agency

problem is equivalent to the costly state falsification model of (Lacker Weinburg 1986). The

problem makes it costly for a firm to own risky assets, since more asset risk increases the

amount management can divert. This problem incentivizes the intermediary to choose a

low risk portfolio, while it is an unavoidable cost for non-financial firms since the riskiness

of each tree’s output fi is exogenous.9

Once management has reported the firm’s output, the equityholders who control the

firm can choose to either destroy output or raise additional funding.10 Equityholders

will destroy output if their residual claim is decreasing in the firms output and will raise

additional funding if their residual claim increases more than one for one in the firm’s

output. Following (Innes 1990), each firm will choose to issue securities that are increasing

in its own cashflows so equityholders will not manipulate the firm’s output. In addition,

9At the end of time 2, households can transfer utility directly to management to buy the consumption goods
paid to them, preserving the tractability of an endowment economy.

10If the firm’s owners raise hidden funding, they do so at time 2 and also pay back the loan at time 2 so that
the market interest rate is 0 consistent with (Innes 1990).
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firms cannot issue securities whose payoffs depend on the uncontractible aggregate state or

the output of other firms. Given these constraints, all firms optimally issue only debt and

equity, so for simplicity the paper can be understood taking these securities as given and

ignoring this second agency problem.

Financial securities are indexed by s ∈ [0, 1] . Each security s has payoff δs at time 2 and

is sold for a price ps at time 1. These securities s ∈ [0, 1] are issued by the firms owning

trees i ∈ [0, 1]. To relate the indexing of trees and securities, let s = i
2 refer to the debt of

the firm owning tree i ∈ [0, 1] and s = 1
2 +

i
2 refer to that firm’s equity. All assets can be

purchased by either the household or the intermediary.11

In this model, securities cannot be broken into Arrow-Debreu claims or be sold short.

The expected payment of each security is positive in both states of the world. The ratio
Egoodδs
Ebadδs

determines the exposure of security s to systematic risk, and agents can buy high

or low systematic risk securities. However, it is impossible for an agent who wants only

bad state payoffs to avoid buying good state claims as well. If agents were able to form

long/short portfolios, they could go long assets for which Egoodδs
Ebadδs

is low and short assets for

which Egoodδs
Ebadδs

is high to isolate bad state payoffs, so this is forbidden.

Household’s problem The household faces a standard intertemporal consumption

problem, except that it obtains utility directly from holding riskless assets. The household

may either consume or invest in securities. Risky securities owned by the household are

priced by the marginal utility of consumption they provide. The risk-free rate lies strictly

below the rate implied by the household’s consumption preferences, reflecting the extra

utility benefit of holding riskless assets. An arbitrage trade which exploits this low risk-free

rate is to buy a portfolio of assets and sell a riskless senior tranche and risky junior tranche

backed by the portfolio, which is precisely the role played by intermediaries.

11The continuum law of large numbers is assumed to hold. A portfolio of m (s) units of asset s pays∫ 1
0 [Ebadδs]m (s) ds in the bad state and

∫ 1
0

[
Egoodδs

]
m (s) ds in the good state. A sufficient condition if

‖m‖∞ < ∞ as required by the resource constraint is sups max
(

Vargoodδs, Varbadδs

)
< ∞ which follows from

supi max
(

Ebad f 2
i , Egood f 2

i

)
< ∞.
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The household maximizes expected utility in expression 1.1 over period 1 consumption

c1, period 2 consumption c2, and “deposits” d, which are riskless securities owned by the

household. u and v are strictly increasing, strictly concave, twice continuously differentiable,

and satisfy Inada conditions. The household’s only choice is how to invest or consume its

initial wealth WH . It may purchase either riskless assets, which yield the direct benefit v (d)

as well as a riskless cashflow at period 2, or other securities issued by the intermediary or

non-financial firms. It cannot sell short or borrow to invest.

The household’s problem is to maximize its expected utility given a deposit rate id and

prices ps of securities s which pay stochastic cashflows δs in period 2. Given the rate id,

the price of one deposit at time 1 is 1
1+id

. Consumption at period 2 is the sum of payoffs

from deposits and securities c2 =
∫

δsqH (s) ds + d, where qH (s) is the quantity of security s

purchased by the household. qH (s) cannot be negative, since short selling is not allowed.

The household’s problem can be written as

max
d,qH(.),c1

u (c1) + E
[

u
(∫ 1

0
δsqH (s) ds + d

)]
+ v (d) (1.2)

subject to c1 +
d

1 + id
+
∫ 1

0
psqH (s) ds = WH (budget constraint),

qH (.) ≥ 0 (short sale constraint)

The first order conditions for deposits d (which has an interior solution since v′ (0) = ∞)

and for the quantity qH (s) to purchase of security s are

u′ (c1) = (1 + id)
(
E
[
u′ (c2)

]
+ v′ (d)

)
(1.3)

ps ≥ E
[

u′ (c2)

u′ (c1)
δs

]
(1.4)

where inequality 1.4 must be an equality if qH (s) > 0.

Two features of the household’s optimal investments are notable. First, inequality 1.4
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Asset Pricing Implications of Household’s Preferences

systematic risk (beta of payoff with aggregate state)
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Figure 1.2: Safety demand and a low risk-free rate.

implies that only securities owned by the household must satisfy the consumption Euler

equation. If other agents (such as an intermediary) are willing to pay more for an asset than

the household, the price will not reflect the household’s preferences. This is because the

household is constrained from shorting assets it considers overvalued. Second, the extra

marginal utility v′ (d) , reflecting the "safe asset premium" households are willing to pay for

riskless securities, depresses the risk-free rate. The interest rate id = u′(c1)
(v′(d)+Eu′(c2))

− 1 for

safe assets would equal the strictly higher rate u′(c1)
Eu′(c2)

− 1 if v′ (d) = 0. Safe asset demand

leads to a low risk-free rate relative to the pricing of other assets owned by the household,

as (Krishnamurthy Vissing-Jorgensen 2012) shows empirically in the pricing of treasury

securities. This is illustrated below.

If all asset prices reflected the household’s willingness to pay, the gap between the risk-

free rate and the pricing of risky assets could be exploited by an arbitrage trade. Suppose

that a financial intermediary buys a diversified portfolio qI (.) of risky assets that pays∫
δsqI (s) ds = δp equal to δp,good in the good state and δp,bad < δp,good in the bad state. The

price of this portfolio is E
[

u′(c2)
u′(c1)

δp

]
. If the intermediary sells a riskless security backed by

its portfolio paying δp,bad and a residual claim paying δp,good − δp,bad in the good state, the

14



household would be willing to pay E
[

u′(c2)
u′(c1)

δp

]
+ v′(d)

u′(c1)
δp,bad to buy both securities issued

by the intermediary. This yields an arbitrage profit of v′(d)
u′(c1)

δp,bad, equal to the quantity

δp,bad of riskless assets produced by the arbitrage trade times the "safety premium" v′(d)
u′(c1)

that households will pay for a riskless asset. This arbitrage trade, selling safe and risky

tranches backed by a diversified portfolio of risky assets, is precisely what I refer to as

safety transformation. The next section develops a model of how intermediaries exploit

this arbitrage opportunity and the frictions they face when doing so.

Intermediary’s problem The intermediary is a publicly traded firm that maximizes

the value of its equity subject to an agency problem faced by its management. Unlike the

household, the intermediary is able to issue securities backed by its asset portfolio, allowing

it to increase the supply of riskless assets. It can raise funds either by issuing equity or other

possible securities, and in equilibrium all securities it issues must be sold to the household.

Riskless securities issued by the intermediary trade at the risk-free rate (reflecting the

household’s safety demand), while risky securities are priced by the consumption Euler

equation. The cashflows (δI,1, δI,2) paid by the intermediary at t = 1, 2 in risky securities

are valued as

E
[

u′ (c2)

u′ (c1)
δI,2

]
+ δI,1. (1.5)

Because this value does not depend on how the intermediary divides its risky cashflows

(i.e. into a risky debt security as well as equity), the intermediary can be assumed to issue

only equity and riskless debt without loss of generality.

The management of the intermediary faces an agency problem because the assets on

its balance sheet have payoffs that are observable only to its management.12 As a result,

the intermediary’s management is able to misreport the payoff of its asset portfolio and

12As noted above, the intermediary (and non-financial firms) also faces a second agency problem between
its owners and other investors, where owners can instruct management to divert resources or raise additional
funding to manipulate security payoffs. Because this agency problem has no effect when a firm issues only
debt and equity, the analysis in this section ignores it since these are the only securities the intermediary issues.
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divert part of the difference between the true and reported payoff. If the true portfolio

payoff is δP,true and the intermediary reports δP,reported < δP,true, the management can divert

C
(
δP,true − δP,reported

)
< δP,true − δP,reported. Management must therefore be given some profit

sharing to incentivize for truthful reporting. Because the intermediary’s portfolio is not

exposed to idiosyncratic risk, its payoff at time 2 depends only on the binary aggregate state.

Management’s payment cannot explicitly depend on the uncontractible aggregate state or

the output of other firms but only on the intermediary’s cashflows that management reports.

The intermediary’s management therefore needs only a payment C
(
δP,good − δP,bad

)
in the

good state to ensure the truthful reporting of its asset payoff, where δP,s is the payoff of its

portfolio in state s. Because management diverts less than the total amount of output it

destroys, it is optimal to induce management not to divert funds. Since this risky payoff

cannot be used to back deposits and therefore must be sold as part of the intermediary’s

equity, the agency problem faced by the intermediary can be interpreted as a cost of raising

equity capital. The cost C
(
δP,good − δP,bad

)
can also be interpreted as a reduced form cost of

paying dividends to the intermediary’s equityholders, since δP,bad is the amount of riskless

deposits it can issue.

At time 1, the equity e1 raised by the intermediary is a negative payout δI,1 = −e1.

At time 2, the intermediary’s payout is the total cashflows from its security portfolio

minus the promised payments to depositors and management δI,2 =
∫ 1

0 δsqI (s) ds− d−

C
(∫ 1

0 (δs − Ebadδs) qI (s) ds
)

, where qI (s) is the quantity of security s purchased by the

intermediary. The intermediary’s problem can be written as
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max
e1,d,qI(.)

E

u′ (c2)

u′ (c1)


cashflows︷ ︸︸ ︷∫ 1

0
δsqI (s) ds−

payments to depositors and management︷ ︸︸ ︷
d− C

(∫ 1

0
(δs − Ebadδs) qI (s) ds

)
−

equity issued︷︸︸︷
e1 (1.6)

subject to: e1 +
d

1 + id
=
∫ 1

0
psqI (s) ds (budget constraint)(∫ 1

0
δsqI (s) ds− d

)
≥ 0 in all states of the world (solvency constraint)

qI (.) ≥ 0 (short sale constraint).

To simplify this problem, note that the budget constraint implies e1 =
∫ 1

0 psqI (s) ds− d
1+id

.

In addition, because of the safety premium, deposits are a cheaper source of funding for the

intermediary than equity. The intermediary should therefore enough deposits to make its

solvency constraint bind. This implies d =
∫
(Ebadδs) qI (s) ds, since Ebadδs ≤ Egoodδs so the

solvency constraint binds in the bad state.

The intermediary’s problem reduces to

max
qI(.)≥0

E

 u′(c2)
u′(c1)

(
∫ 1

0 δsqI (s) ds− C
(∫ 1

0 (δs − Ebadδs) qI (s) ds
)
)

−
∫ 1

0 psqI (s) ds + v′(d)
u′(c1)

∫ 1
0 (Ebadδs) qI (s) ds

 (1.7)

which has the first order condition for each qI (s)

ps ≥

household’s willingness to pay︷ ︸︸ ︷
E

u′ (c2)

u′ (c1)
δs +

safety premium︷ ︸︸ ︷
v′
(∫

(Ebadδs) qI (s) ds
)

u′ (c1)

deposits backed by asset︷ ︸︸ ︷
Ebadδs − (1.8)

agency cost of equity︷ ︸︸ ︷
C′
(∫ 1

0

(
Egoodδs − Ebadδs

)
qI (s) ds

) equity required to buy asset︷ ︸︸ ︷
1
2

u′
(

cgood
2

)
u′ (c1)

(
Egoodδs − Ebadδs

)

with equality whenever qI (s) > 0. This expression uses the fact that C′ (.) 6= 0 only in

the good state, since management must be paid only then.
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The intermediary’s willingness to pay for asset s depends only on Egoodδs andEbadδs,

since the intermediary’s portfolio is diversified. The distribution each asset’s idiosyncratic

returns given the aggregate state is irrelevant. By pooling and then tranching a portfolio of

assets, the intermediary diversifies away its exposure to idiosyncratic risk. The intermediary

can therefore back more riskless assets than would be possible by selling junior and senior

tranches backed by individual assets. This is related to "risk diversification effect" of

(DeMarzo 2005), who finds that pooling and tranching is an optimal strategy for issuing

safe, informationally insensitive assets in the presence of asymmetric information.

The intermediary’s required return for exposure to aggregate risk reflects its cost of

equity financing and cheapness of deposit financing. As part of a diversified portfolio, a

quantity Ebadδs of riskless securities can be backed by asset s, while the remaining good state

payoff Egoodδs − Ebadδs increases the agency costs of equity. Because deposits earn the safety

premium reflected in a low risk-free rate, the intermediary is willing to pay more than the

household for assets that back large quantities of deposits. However, any systematic risk

in an asset owned by the intermediary increases the intermediary’s agency cost of equity

financing. This makes the intermediary effectively more risk averse than the household.

Asset prices and portfolio choices The investment decisions of the household and

intermediary described above can be used to solve for asset prices and determine which

assets are owned by which investor. Assets owned by the intermediary imply a strictly

lower risk-free rate and higher price of systematic risk than assets owned by the household.

This segmentation in asset prices reflects the intermediary’s ability to back riskless deposits

with its asset portfolio and its agency cost of bearing risk. Low systematic risk assets are

held by the intermediary and high systematic risk assets are held by the household, allowing

the intermediary to issue many deposits while minimizing the agency costs it faces.

An expression for asset prices follows directly from the consumer’s and intermediary’s

optimal investment decisions 1.4 and 1.8. Since every asset must be owned by some agent,

at least one of these inequalities must hold with equality. If the household and intermediary

are willing to pay different amounts for an asset, the agent willing to pay the most buys its
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entire supply. This yields the following result.

Proposition 1.1 (segmented asset prices) For any asset s in positive supply with payoffs δs at time

2, its price at time 1 is the maximum of the willingness to pay of the two agents

ps =

household’s willingness to pay for asset︷ ︸︸ ︷
E
[

u′ (c2)

u′ (c1)
δs

]
+

safe debt backed by asset

max[0,
︷ ︸︸ ︷
Ebadδs

safety premium︷ ︸︸ ︷
v′
(∫ 1

0 (Ebadδs) qI (s) ds
)

u′ (c1)

−

equity required to purchase asset︷ ︸︸ ︷
u′
(

cgood
2

) [(
Egoodδs − Ebadδs

)]
2u′ (c1)

agency cost of equity︷ ︸︸ ︷
C′
(∫ 1

0

(
Egoodδs − Ebadδs

)
qI (s) ds

)
]. (1.9)

If the household and intermediary are willing to pay different prices for asset s, the entire supply

of the asset is bought by the agent willing to pay more.

The pricing kernel of assets owned by the intermediary implies a risk-free rateE
u′ (c2) + v′

(∫ 1
0 (Ebadδs) qI (s) ds

)
u′ (c1)

−1

− 1 (1.10)

strictly below the risk-free rate
(

E u′(c2)
u′(c1)

)−1
− 1 implied by the pricing kernel of risky assets

owned by the household. This is because the intermediary can use riskless payoffs to back

deposits and meet the household’s safety demand, while the household is unable to pool

and tranche to create riskless assets.

Assets owned by the intermediary reflect a strictly higher price of systematic risk

than assets owned by the household. A unit of consumption in the good state is worth

1
2

u′
(

cgood
2

)
u′(c1)

to the household but only 1
2

u′
(

cgood
2

)
u′(c1)

(
1− C′

(∫ 1
0

(
Egoodδs − Ebadδs

)
qI (s) ds

))
to the

intermediary. The multiplicative factor 1− C′ (.) reflects the fact that good state payoffs

increase the intermediary’s agency costs, making these payoffs less valuable. This agency

cost implies that the intermediary requires greater compensation for being exposed to

systematic risk than the household.

This asset pricing result also characterizes the portfolios of the household and interme-
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Figure 1.3: Segmentation of low and high risk asset markets

diary. The difference between these two agents’ willingness to pay for asset s is

v′
(∫ 1

0 (Ebadδs) qI (s) ds
)

u′ (c1)
Ebadδs − (1.11)

C′
(∫ 1

0

([
Egood − Ebad

]
δs
)

qI (s) ds
) u′

(
cgood

2

)
2u′ (c1)

([
Egood − Ebad

]
δs
)

.

The intermediary buys assets for which expression 1.11 is positive, while the household

buys assets for which it is negative. The sign of the expression is determined by the ratio
Egoodδs
Ebadδs

, yielding the following corollary.

Corollary 1.1 (intermediary owns low systematic risk assets)

Let k∗ = 1 +
2v′(

∫
(Ebadδs)qI(s)ds)

u′
(

cgood
2

)
C′
(∫ 1

0 (Egoodδs−Ebadδs)qI(s)ds
) . The intermediary buys all assets who cashflows

δs satisfy Egoodδs
Ebadδs

< k∗, and the household buys all assets with Egoodδs
Ebadδs

> k∗. The pricing kernel for

riskier assets owned by the household implies a strictly higher risk-free rate and strictly lower price of

systematic risk than the pricing kernel for less risky assets owned by the intermediary.

These asset pricing and portfolio choice results can be summarized by the "kinked"
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securities market line above. Low risk assets owned by the intermediary earn a higher

risk-adjusted return that high risk assets owned by the household. This segmentation

occurs because intermediaries obtain cheap financing by meeting the household’s demand

for safe assets. In models with leverage constraints (e.g. Frazzini Pedersen 2014, Black

1972) agents who are more easily able to borrow can take risk by holding levered portfolios

of low risk assets. Risk tolerant agents who are borrowing constrained must hold unlevered

portfolios of high risk assets, bidding up the prices of these assets. The intermediary’s

ability to hold a diversified pool of assets that backs a large riskless tranche of debt is the

advantage it has in borrowing.

Non-financial firm’s problem This section shows how non-financial firms issue se-

curities to exploit asset market segmentation. The intermediary is willing to pay more

than the household for securities with low systematic risk but less for securities with high

systematic risk. Non-financial firms therefore find it optimal to sell a low risk security to the

intermediary and a high risk security to the household, obtaining a strictly higher valuation

than either investor would pay for the entire firm. Under the restrictions imposed below, the

firm optimally chooses to issue debt bought by the intermediary and equity bought by the

household. Its optimal leverage is determined by the risk preferences of the household and

intermediary, illustrating how market segmentation violates the Modigliani-Miller theorem.

Each non-financial firm i ∈ [0, 1] has exogenous cashflows fi at time 2, subject to

aggregate and idiosyncratic shocks. fi is respectively distributed according to F ( fi|good)

and F ( fi|bad) in the good and bad aggregate states. The cashflows of non-financial firms

are conditionally independent given the aggregate state. I impose the following condition

on fi. It implies that more senior claims on the firm’s cashflows have lower systematic risk,

so a more levered firm has debt with higher systematic risk.13

13Condition 3 (i) is equivalent to the monotone hazard ordering
f fi (D|good)

Pr( fi>D|good) <
f fi (D|bad)

Pr( fi>D|bad) where f fi (.|H)

is the conditional density of fi given state H.
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Condition 1.1 (i) ∂
∂D

Pr( fi>D|good)
Pr( fi>D|bad) > 0 for all D > 0.

(ii)Pr ( fi > 0|good) = Pr ( fi > 0|bad) = 1

(iii) limD→∞
Pr( fi>D|good)
Pr( fi>D|bad) = ∞

Non-financial firms are subject to the same agency problems as the intermediary between

its owners and management and also between owners and other investors. If the true

cashflow is fi and the firm’s management gives f ′i < fi to outside investors, it can divert

C ( fi − f ′i ) . The firm faces a second agency problem between its owners and other outside

investors, that after management has diverted funds, the owners can either destroy resources

or covertly raise additional financing at the market rate (both raised and paid back in period

2). As in (Innes 1990), this agency problem between owners and other investors forces

owners to issue securities whose payoffs are increasing in the firm’s cashflows. The firm

also cannot issue securities whose payoffs explicitly depend on the uncontractible aggregate

good or bad state.

The appendix shows that the firm optimally issues debt and equity securities and

provides its management with the incentive to never divert resources. The remainder of

this section takes this result as given and analyzes the firm’s optimal capital structure. In

the previous section, it was shown without loss of generality that the intermediary would

choose to issue equity and riskless debt, so the optimal behavior of the intermediary is not

constrained by this additional agency problem.

Proposition 1.2 Each non-financial firm i with cashflows fi chooses to pay its management C ( fi) ,

which makes it incentive compatible for management to truthfully report the firm’s earnings. The

remaining cashflows xi = fi − C ( fi) are optimally divided into a debt security of face value Di

which pays xD
i = min (xi, Di) and an equity security which pays xE

i = max (xi − Di, 0) . Once

fi is reported to the firm’s owners, it is optimal for the owners to neither raise additional hidden

financing or to destroy resources.

Firm i′s cashflows xi = fi − C ( fi) available to outside investors and its choice to issue

debt and equity are now taken as given. Since fi − C ( fi) is strictly increasing in fi, the
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condition imposed on fi also applies to xi. The non-financial firm maximizes its total market

value by choosing its face value of debt Di. The firm takes as given asset prices implied by

the behavior of the household and intermediary. Proposition 2 implies that the sum of the

firm’s debt and equity prices can be written as

pi
E + pi

D = E
u′ (c2)

u′ (c1)
xi + max

(
0, K1EbadxD

i − K2
(
Egood − Ebad

)
xD

i

)
(1.12)

+max
(

0, K1EbadxE
i − K2

(
Egood − Ebad

)
xE

i

)
where K1 =

v′
(∫ 1

0 (Ebadδs)qI(s)ds
)

u′(c1)
> 0 and K2 =

u′
(

cgood
2

)
2u′(c1)

C′
(∫ 1

0

(
Egoodδs − Ebadδs

)
qI (s) ds

)
> 0.

The signs of these two constants reflect the fact that the intermediary is willing to pay more

than the household for riskless payoffs but less for payoffs in the good state. If K1 = K2 = 0,

which would hold if household and intermediary were willing to pay the same for all

securities, firm i’s market value would be independent of it’s capital structure. The fact that

pi
E + pi

D depends on the face value of debt Di illustrates how asset market segmentation

violates Modigliani-Miller. This is related to (Baker Hoeyer Wurgler 2016), who argues

empirically that market segmentation influences capital structure decisions.14

The firm chooses the face value of debt Di to maximize its market value pi
D + pi

E. If there

is a Di at which the intermediary buys one security issued by the firm and the household

buys the other, pi
E + pi

D must be strictly greater than either investor’s willingness to pay for

the firm’s total cashflows xi. If such a Di is optimal, it must satisfy the first order condition

K1 Pr (xi > Di|bad)− K2 (Pr (xi > Di|good)− Pr (xi > Di|bad)) = 0 (1.13)

since ∂EH xD
i

∂Di
= ∂EH min(xi ,Di)

∂Di
= Pr (xi > Di|H) = − ∂EH xE

i
∂Di

for H = bad and H = good. This

condition implies that a security which pays 1 when xi > Di and 0 otherwise is of equal

14The analysis in this section provides a somewhat novel framework for analyzing corporate capital structure.
The idea that risk aversion heterogeneity can influence corporate capital structure is presented in (Allen Gale
1988) but only in the case where debt is riskless, and the idea does not seem to appear in later literature. The
analysis here is mathematically similar to (Simsek 2013)’s study of collateralized margin lending under belief
disagreement.
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value to the household and the intermediary. Because an increase in Di increases the payout

of debt only in states of the world where xi > Di, this marginal transfer of resources from

equity to debt has no effect on firm i’s total market value pi
E + pi

D.

The first order condition 1.13 uniquely determines the ratio Pr(xi>Di |good)
Pr(xi>Di |bad) . For this ratio

to determine firm i’s capital structure, there must be precisely one Di for which 1.13 holds,

which follows from the assumption that Pr(xi>Di |good)
Pr(xi>Di |bad) is strictly increasing in Di and has

range [1, ∞).

As well as providing a unique solution to equation 1.13 for any K1, K2 > 0, this condition

also implies that

Egood (min (xi, Di))

Ebad (min (xi, Di))
<

Pr (xi > Di|good)
Pr (xi > Di|bad)

<
Egood (max (xi − Di, 0))
Ebad (max (xi − Di, 0))

. (1.14)

When Di satisfies 1.13, firm i’s debt has low enough systematic risk to be bought by

the intermediary, while firm i’s equity is bought by the household. This verifies that 1.13

determines firm i’s unique optimal capital structure. Plugging in the definitions of K1 and

K2 yields the following proposition.

Proposition 1.3 (optimal non-financial capital structure) If condition 3 is satisfied, the optimal face

value of debt Di for firm i is the unique Di which solves

v′
(∫ 1

0
[Ebadδs] qI (s) ds

)
− (1.15)

1
2

u′
(

cgood
2

)
C′
(∫ 1

0

[(
Egood − Ebad

)
δs
]

qI (s) ds
)(

Pr (xi > Di|good)
Pr (xi > Di|bad)

− 1
)
= 0.

When Di is chosen optimally, firm i’s debt and equity are respectively bought by the intermediary

and the household.

The intermediary’s ability to issue cheap riskless debt implies that non-financial firms are

also able to issue cheap debt as long as its systematic risk is low enough. As shown above,

the intermediary’s cost of capital is reflected in segmented asset prices. This proposition

builds on this result by showing how the non-financial sector responds to market segmen-

tation. The household’s demand for safe assets (measured by v′
(∫ 1

0 [Ebadδs] qI (s) ds
)

) and
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Non−financial Firm Liabilities Intermediary  Assets Intermediary Liabilities Household Assets

Composition of Balance Sheets in Equilibrium

Non−financial Debt

Non−financial Equity Non−financial Equity

Financial EquityFinancial Equity

Safe Assets
Non−financial Debt

Safe Assets

Figure 1.4: Balance sheets in the model.

the intermediary’s agency cost of equity (measured by C′
(∫ 1

0

[(
Egood − Ebad

)
δs
]

qI (s) ds
)

)

jointly determine the non-financial sector’s optimal capital structure.

The proposition provides a cross-sectional prediction for capital structure. Firms for

whom Pr(xi>Di |good)
Pr(xi>Di |bad) is greater at each Di choose to issue less debt. This is consistent with

(Schwert and Strebulaev 2015)’s finding that firms with more cyclical cashflows are less

levered.

The results derived above can be thought of as applying to household borrowing. If the

household could buy a durable consumption good providing consumption services xi and

get a collateralized loan of face value Di backed only by this consumption good (such as a

mortgage backed by a house), the optimal amount to borrow would also be described by

condition 1.15.

This proposition also determines the composition of household, intermediary, and non-

financial firm balance sheets. Households invest in the equity of both the financial and

non-financial sectors and also hold safe assets. Intermediaries, who supply the safe assets,

invest in the debt of the non-financial sector and must issue a buffer of equity to bear the
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risk in their portfolio of debt securities. Non-financial firms sell their debt to intermediaries

and equity to households, arbitraging the differing prices of risk for low and high risk

securities. The fact that equities are held by households while debt securities are held by

the intermediary is endogenous and not assumed. Any agent is able to buy any security,

but intermediaries are willing to pay more for debt securities but less for equities than

households.15

One final implication of this proposition is that it explains the "credit spread puzzle"

in debt securities and "low risk anomaly" in equities. The capital structure choices of the

non-financial sector ensure debt and equity securities live on opposite sides of the kink

in the securities market line. As a result, the debt and equity markets are endogenously

segmented, with a greater price of risk in the debt market. As shown in (Huang and Huang

2012), many structural credit risk models underestimate the spreads on corporate bonds

when calibrated to data from equity markets, a finding referred to as the credit spread

puzzle. Such a result can either be interpreted as a failure of many structural models (and

some recent ones do match it in a no arbitrage framework) or taken as evidence that risk

is priced more expensively in debt markets than in equity markets, as naturally occurs in

my model. The high price of risk in debt markets occurs jointly with a low price of risk

in equity markets. This rationalizes the "low risk anomaly" (e.g. Black, Jensen, Scholes

1972, Baker, Bradley, Taliaferro 2014), which finds that for simple measures of risk (such as

covariance with returns on an equity market index), the price of systematic risk in equity

markets is too small to jointly explain a low risk-free rate and high expected return on

equities. This naturally occurs in my model, since the zero beta rate implied by the pricing

of equities is strictly above the true risk-free rate, with the spread reflecting the demand for

safe assets.

15If the non-financial firms were able to issue some riskless debt (ruled out by ∂
∂Di

Pr( fi>Di |good)
Pr( fi>Di |bad) > 0), an

equilibrium in which households held both financial debt and a riskless senior tranche of non-financial debt
could also occur.
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Equilibrium This section characterizes the model’s equilibrium, endogenously deter-

mining the intermediary’s cost of capital, which has been taken as given in the results

above.

Definition 1.1 An equilibrium is a set of consumption allocations (c1, c2) , intermediary and

household portfolios (qI (s) , qH (s))s∈[0,1] , asset prices (ps)s∈[0,1] , deposits d, intermediary equity

and non-financial firm debt issuance (Di)i∈[0,1] such that

(i) The household, intermediary, and non-financial firms behave optimally as described above.

(ii) Household and intermediary budget constraints are satisfied.

(iii) Consumption at time 2 equals the total output of the non-financial sector, c2 =
∫ 1

0 fidi, and

consumption at time 1 equals output at time 1, c1 = C1.

Because the intermediary’s portfolio is composed entirely of the debt of the non-financial

sector as shown in proposition 4, the quantity d of riskless assets the intermediary can issue

and residual payoff e to equityholders in good states are simply

d =
∫ 1

0
Ebad min (xi, Di) di. (1.16)

e =
∫ 1

0

(
Egood − Ebad

)
min (xi, Di) di. (1.17)

Plugging these expressions into each firm i’s optimal capital structure decision yields

v′
(∫ 1

0
Ebad min (xi, Di) di

)
− (1.18)

u′
(

cgood
2

)
2

C′
(∫ 1

0

(
Egood − Ebad

)
min (xi, Di) di

)(
Pr (xi > Di|good)
Pr (xi > Di|bad)

− 1
)
= 0.

which depends only on exogenous variables and the face value of debt Di each non-

financial firm issues.

Proposition 1.4 (equilibrium) The model’s unique equilibrium is characterized by a face value of

debt Di for each non-financial firm i that solves equation 1.18
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Proof. Under the regularity conditions on each firm i’s cashflows, the ratio r = Pr(xi>Di |good)
Pr(xi>Di |bad)

uniquely determines the debt face value Di of each firm i, and Di is continuous and

increasing in r. The expression in equation 1.18 is a strictly decreasing function of r, M (r) ,

which equals 0 in equilibrium. M (0) > 0 and M (∞) < 0, so M crosses zero once and a

unique equilibrium exists.

This characterization of equilibrium illustrates the interaction between three forces. The

household’s demand for safe assets reflected in the function v (.) determines how great the

incentives are for the intermediary to create riskless assets. The cost of creating riskless

assets depends on the severity of the intermediary’s agency problem which is reflected in

the function C (.), which determines how costly it is for the intermediary to own risky assets.

Finally, the cost of creating riskless assets depends on how much risk the intermediary

must take in order to back a given quantity of riskless assets. This is determined by the

distribution of each firm’s marketable cashflows xi. The more systematic risk non-financial

firms are exposed to, the more costly equity financing is required for the intermediary to

back deposits.

Equation 1.18 illustrates how the intermediary’s portfolio which pays
∫ 1

0 min (xi, Di) di

determines the intermediary’s cost of capital, both in terms of the pre-

mium v′
(∫ 1

0 Ebad min (xi, Di) di
)

on riskless deposits and the cost

C′
(∫ 1

0

(
Egood − Ebad

)
min (xi, Di) di

)
of a marginal increase in the riskiness of the inter-

mediary’s portfolio. These costs, which are reflected in equilibrium asset prices then

determine the optimal capital structure of the non-financial sector. Because the debt of the

non-financial sector is the asset side of the intermediary’s balance sheet, ensuring that the

non-financial sector issues the optimal amount of debt at the intermediary’s equilibrium

cost of capital solves for the model’s unique equilibrium.

The above diagram summarizes the implications of this equilibrium. The low risk assets

owned by the intermediary are now the debt of the non-financial sector, while the high risk

assets owned by the household are now the equity of both the financial and non-financial

sectors. As a result, the market price of risk is strictly higher in the debt than the equity
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Figure 1.5: Debt and equity market segmentation

market as discussed above. The optimal capital structure of the non-financial sector is

determined by how segmented the debt and equity markets are. The optimal non-financial

capital structure arbitrages between these two markets, with the first order condition that a

small increase in leverage has no marginal effect on a non-financial firm’s value. This first

order condition is summarized by the dot in the above diagram, since the payoff 1 (xi > Di)

is the marginal transfer from equity to debt of increasing firm i′s leverage. The household

and intermediary have the same willingness to pay for 1 (xi > Di) , which implies that it

must lie at the intersection of their two security market lines. In equilibrium, the gap

between the two intercepts is determined by the premium on riskless assets, while the

higher slope of the intermediary’s security market line reflects its agency costs of owning

risky assets.

Discussion Three basic assumptions are crucial for the model’s key results. First,

there must be a demand for safe, money-like assets that pushes the risk-free rate below

the rate implied by the pricing of equities. This gives intermediaries and non-financial

firms an incentive to separate their assets into safe and risky tranches in order to borrow as

much as possible at the low risk-free rate. Second, the non-financial sector must face some
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constraints that make it difficult for them to issue safe assets directly. Because non-financial

firms are exposed to (full support) idiosyncratic risk they cannot hedge and issue debt

and equity rather than arbitrary Arrow-Debreu securities, they cannot issue riskless assets.

Finally, intermediaries must face some cost of bearing risk, so that they choose to only buy

low risk debt securities. If intermediaries had no cost of bearing risk, they would buy the

entire non-financial sector in order to use its entire output in the bad state of the world to

back the safe debt they issue. Equation 1.18 illustrates in a single expression how these

three basic assumptions interact. The benefit v′ (.) of issuing more riskless securities are

balanced against the agency cost C′ (.) of increasing the risk on the intermediary’s balance

sheet, where the amount of risk bearing required is determined by the ratio Pr(xi>Di |good)
Pr(xi>Di |bad)

that depends on the riskiness of each non-financial firm’s output.16

The assumption that households place a special value on riskless assets is common

in both recent theoretical and quantitative models, is consistent with empirical evidence

referenced in the introduction, but does not have a microfoundation in this paper or the

related literature. In my model, only riskless assets are special, whereas one may imagine

that bank deposits and money market fund shares are exposed to small risks while still being

"money-like." Gorton and Pennacchi (1990) provides a model that shows why riskless assets

are the most liquid, but the question of how risky an asset can be while still functioning as

a form of money is open. Assuming that deposits must be riskless ignores the possibility of

bank runs which could be studied in a similar framework in which depositors withdraw

only when deposits become too risky. However, if banks can tap a cheap source of funding

by issuing low risk deposits, the basic insight of this paper still holds. Banks and similar

intermediaries will choose the assets they hold to issue as many deposits and as little equity

as possible if deposits are cheap and equity is expensive.

In order for my model of intermediation to be consistent with the data, the pricing

kernels for low and high risk assets must be different. If there are no unexploited arbitrage

16The agency problem that makes risk bearing costly for the intermediary also applies to non-financial firms
so that all firms are ex ante identical. For non-financial firms whose project risk is exogenous, this agency
problem is just an unavoidable cost that has no important implications.
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opportunities, an intermediary cannot create value by buying publicly available securities

in order to sell other publicly available securities. The paper’s asset pricing implications

therefore provide a falsifiable way of evaluating the model, which sets it apart from other

models of financial intermediation that do not speak to the market for publicly available

securities. While my model only provides qualitative predictions, it is consistent with both

cross sectional and time series evidence on the credit spread puzzle and low risk anomaly.

My model implies that the expected return on the riskiest bonds are close to the securities

market line implied by equities, and (Huang and Huang 2012) show that the credit spread

puzzle is much less severe for junk than investment grade bonds. In addition, (Gilchrist

Zakrajsek 2012) show that in the time series, the severity of the credit spread puzzle comoves

strongly with measures of intermediary risk taking. (Frazzini Pedersen 2014) also shows

that the low risk (low beta) anomaly is largest when measures of distress in the intermediary

sector are high. There is a literature that attempts to rationalize the asset pricing facts I

emphasize in a no arbitrage framework, and it is an open question going forward whether a

quantitative model with constrained intermediaries best explains the data.

To interpret the model, it is useful to ask what are the financial intermediaries it describes.

Intermediaries in my model hold diversified portfolios of debt, issue a safe, senior liability

(deposits) backed by this portfolio and a junior liability (equity) that bears the risk in the

intermediary’s asset portfolio. Banks are the most straightforward fit to the model, though

certain elements of the shadow banking system such as broker dealer or investment banks fit

as well. Broker dealer and investment banks often fund themselves heavily with short term

debt (some of which is collateralized), and this short term debt is often bought by money

market funds. Integrating the broker dealer and the money market fund creates an entity

like the intermediary in my model, though broker dealers also provide unrelated services

such as market making. Life insurers also similar to my model, though their liabilities

are longer duration than banks and not money-like, so the demand for their liabilities

is conceptually distinct. Key features missing from my model are capital requirements

and deposit insurance, which may be important for ensuring that even agents who do not
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understand an intermediary’s assets can assume their liabilities are safe.17

1.2 Applications

Changes in the Supply and Demand for Safe Assets The model developed in the

previous section can be used to understand the general equilibrium effects of changes in

the supply and demand for safe assets. Because the model endogenously determines asset

prices, intermediary portfolios and leverage, and the capital structure of the non-financial

sector, all of these will adjust in order to clear the market for safe assets. This provides a

framework for understanding how the financial system responds to a safe asset shortage,

which a macroeconomic literature (e.g. Caballero Farhi 2017) argues has been a key driving

force behind the low real interest rates in recent decades. My model implies that a growing

demand for safe assets causes something akin to the subprime boom of the 2000s. In

particular, the financial sector expands and invests in riskier assets than it previously did,

which leads to an increase in the leverage of the non-financial sector due to a reduction in

its cost of borrowing.

To increase the demand for safe assets, I take the comparative static of increasing v′ (d)

for all d by one unit.18 The effect of this is characterized by implicitly differentiating the

equilibrium condition 1.18. For any x, let ∂x
∂v be the derivative of x with respect to increasing

v′ by one unit. The ratio r = Pr(xi>Di |good)
Pr(xi>Di |bad) that characterizes the intermediary’s portfolio

satisfies

change in v′(d)︷ ︸︸ ︷
v′′ (d)

∂d
∂r

∂r
∂v
−

change in C′(e)︷ ︸︸ ︷
u′
(

cgood
2

)
2

C′′ (e) (r− 1)
∂e
∂r

∂r
∂v
−

direct effect of change in r︷ ︸︸ ︷
u′
(

cgood
2

)
2

C′ (e)
∂r
∂v

+ 1 = 0 (1.19)

17Deposit insurance can be thought of as a promise by the government to pay off depositors in states of the
world where the intermediary is unable to pay. In my model, this is equivalent to providing the intermediary
with payoffs in the bad state of the world that allow them to increase the supply of safe assets.

18Formally, if vλ (d) = v (d) + λd is a family of functions indexed by λ, I am taking the (Gateaux) derivative
with respect to λ d

dλ vλ (d) = limλ′→λ
(v(d)+λ′d)−(v(d)+λd)

λ′−λ .
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where

∂d
∂r

=
∫ 1

0
Pr (xi > Di|bad)

∂Di

∂r
di (1.20)

∂e
∂r

=
∫ 1

0
([Pr (xi > Di|good)− Pr (xi > Di|bad)])

∂Di

∂r
di (1.21)

∂Di

∂r
=

Pr (xi > Di|bad)2

Pr (xi > Di|bad) fi,good (Di)− Pr (xi > Di|good) fi,bad (Di)
. (1.22)

The expression for ∂Di
∂r comes from implicitly differentiating Pr(xi>Di |good)

Pr(xi>Di |bad) = r, and

∂Di
∂r > 0 is implied by the assumption ∂

∂Di

Pr(xi>Di |good)
Pr(xi>Di |bad) > 0. ∂d

∂r and ∂e
∂r are therefore strictly

positive. The change in the ratio r = Pr(xi>Di |good)
Pr(xi>Di |bad) that parametrizes each firm’s optimal

leverage changes as

∂r
∂v

=
1

u′
(

cgood
2

)
2

(
C′′ (e) (r− 1) ∂e

∂r + C′ (e)
)
− v′′ (d) ∂d

∂r

> 0. (1.23)

The quantity of debt issued by firm i, deposits d issued by the intermediary, and good

state equity payout e from the intermediary change as

∂Di

∂v
=

∂Di

∂r
∂r
∂v

> 0,
∂d
∂v

=
∂d
∂r

∂r
∂v

> 0,
∂e
∂v

=
∂e
∂r

∂r
∂v

> 0. (1.24)

The change in the safety premium v′ (d) equals 1− v′′ (d) ∂d
∂r

∂r
∂v which satisfies

1 > 1− v′′ (d)
∂d
∂r

∂r
∂v

=

(
C′′ (e) (r− 1)

∂e
∂r

+ C′ (e)
)

∂r
∂v

> 0 (1.25)

while the intermediary’s willingness to pay for good state payoffs changes as

−1
2

u′
(

cgood
2

)
u′ (c1)

C′′ (e)
∂e
∂v

< 0 (1.26)

The increased safety premium and decreased value of good state payoffs to the interme-
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diary implies that it is willing to pay more for sufficiently low (systematic) risk securities

but less for sufficiently high risk securities. While some securities are so risky that the

intermediary’s willingness to pay for them decreases, the borrowing costs of all non-financial

firms decrease. This can be seen from the fact that ∂r
∂v > 0, implying that the intermediary

is now willing to pay the same as the household for an asset of greater systematic risk r.

Because Egood min(xi ,Di)

Ebad min(xi ,Di)
< r for all firms i, the intermediary is also willing to pay strictly more

for each firm’s debt, reducing each firm’s cost of borrowing. This completes the proof of

the following result. As noted on the section on non-financial firms, non-financial firm debt

can be relabeled to represent mortgage debt, so this result also implies household mortgage

borrowing would increase.

Proposition 1.5 (safe asset demand) An increase in the demand for riskless securities, modeled as

an increase in the function v′ (d) causes:

1. An increase in the quantity d of riskless securities and intermediary equity issuance e.

2. A reduction in the risk-free interest rate and increase in credit spreads, with an overall

reduction in borrowing costs for all firms.

3. An increase in the leverage of the non-financial sector

The second comparative static, creating a supply µ of riskless securities backed by lump

sum taxes on the household, simply increases the supply of safe assets from the liability d

issued by the intermediary to the sum d + µ. This crowds out the intermediary’s incentive

to perform safety transformation by providing a supply of safe assets that do not lie on the

intermediary’s balance sheet. For any given quantity d of deposits, the safety premium

v′ (d + µ) is decreasing in µ. The effect of this decrease is therefore precisely the opposite

of the increase in v′ (d) considered in the first comparative static. While the model in

the previous section does not explicitly have government debt, riskless government debt

can be mapped into the framework above by simply replacing v′ (d) with v′ (d + µ) . The

calculations for the effect of an increase in the demand for safe assets therefore also imply

the following. Closed form derivatives for how variables adjust are simply −v′′ (d) times

the results derived above for the increase in safe asset demand.
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Proposition 1.6 (government debt supply) An increase in the supply µ of riskless securities issued

by the government causes

1. An increase in the quantity d + µ of total riskless securities, a decrease in riskless securities d

issued by the intermediary, and decrease in intermediary equity issuance e.

2. An increase in the risk-free interest rate and compression of credit spreads, with an overall

increase in borrowing costs for all firms.

3. A decrease in non-financial leverage.

Quantitative Easing A third possible policy experiment is to consider the effects of

quantitative easing policies, in which the government issues safe debt in order to purchase

risky securities. If the government buys equities, which are held by households, the effect

on asset prices, leverage, and intermediary portfolios is identical to simply increasing the

supply of government debt backed by more taxes. However, the effects are more subtle

when the government buys debt securities which are owned by intermediaries. Such a

transaction replaces risky assets owned by the intermediary with riskless government debt

and therefore can be seen as a combination of adding riskless assets to the intermediary’s

portfolio and removing good state payoffs. This has the effect of both increasing the supply

of safe assets and decreasing the amount of risk the intermediary needs to bear.

To derive the effects of such asset purchases, I first compute the effect of removing good

state payoffs from the intermediaries balance sheet. For any variable m I denote ∂m
∂good the

change in m that occurs when good state payoffs are removed from the intermediary’s

portfolio.

v′′ (d)
∂d
∂r
−

u′
(

cgood
2

)
2

[
C′′ (e)

∂e
∂r

(r− 1) + C′ (e)
] ∂r

∂good
= −

u′
(

cgood
2

)
2

C′′ (e) (r− 1)

(1.27)
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∂r
∂good

= −
u′
(

cgood
2

)
2 C′′ (e) (r− 1)

v′′ (d) ∂d
∂r −

u′
(

cgood
2

)
2

[
C′′ (e) ∂e

∂r (r− 1) + C′ (e)
] > 0 (1.28)

∂d
∂good

=
∂d
∂r

∂r
∂good

> 0 ,
∂e

∂good
=

∂e
∂r

∂r
∂good

> 0 (1.29)

The change in the safety premium v′ (d) is

v′′ (d)
∂d
∂r

∂r
∂good

< 0 (1.30)

.

The change in the cost of equity
u′
(

cgood
2

)
2 C′ (e) is equal tov′′ (d)

∂d
∂r
−

u′
(

cgood
2

)
2

[
C′′ (e)

∂e
∂r

(r− 1) + C′ (e)
] ∂r

∂good
< 0. (1.31)

As noted above, a purchase of risky assets owned by the intermediary financed by the

issuance of riskless government debt increases the supply of riskless assets and removes

good state payoffs from the intermediary’s balance sheet. To compute the effects of asset

purchases, I must figure out what weights to place on the effects of adding riskless assets

and removing good state payoffs from the intermediary’s balance sheet. An asset purchase

occurs at market prices, so the assets bought and sold must have the same price. If the

government issues d units of debt to buy an asset that has an (expected) payoff of δgood in

the good state and δbad in the bad state, this can be seen as increasing the supply of riskless

assets held by the intermediary by µ = d− δbad units while reducing the amount of good

state payoffs on its balance sheet by rgood = δgood − d. A transaction at market prices must

satisfy

[
Eu′ (c2) + v′ (d)

]
µ =

1
2

u′
(

cgood
2

) (
1− C′ (e)

) (
−rgood

)
(1.32)
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An asset purchase removes [Eu′(c2)+v′(d)]
1
2 u′
(

cgood
2

)
(1−C′(e))

units of good state payoff from the interme-

diary’s portfolio per unit of riskless payoff added, regardless of which asset is purchased.

This adds µ units of bad state payoff to the intermediary’s portfolio while removing rgood− µ

good state payoffs. µ is a sufficient statistic for the effect of the asset purchase. For any

variable v, let ∂v
∂QE be the change in v from purchases that increase the bad state payoff of the

intermediary’s portfolio by 1 unit, so ∂v
∂QE = ∂v

∂µ −
[Eu′(c2)+v′(d)]

1
2 u′
(

cgood
2

)
(1−C′(e))

∂v
∂good . These comparative

statics have the same signs for the following variables, proving the following result.

Proposition 1.7 (asset purchases 1) Purchasing risky assets owned by the intermediary financed by

the issuance of riskless government debt causes

1. An increase in the quantity d + µ of total riskless securities, a decrease in riskless securities d

issued by the intermediary, and decrease in intermediary equity e.

2. An increase in the risk-free interest rate and compression of credit spreads.

The effect on corporate leverage, however, is ambiguous.

v′′ (d)
∂d
∂r
−

u′
(

cgood
2

)
2

[
C′′ (e)

∂e
∂r

(r− 1) + C′ (e)
] ∂r

∂QE
= (1.33)

−v′′ (d)− [Eu′ (c2) + v′ (d)]
1
2 u′
(

cgood
2

)
(1− C′ (e))

u′
(

cgood
2

)
2

C′′ (e) (r− 1)


and has the opposite sign as the right hand side of equation 1.33. If ∂r

∂QE < 0, then

arguments made above imply that all firms have an increase in their borrowing costs.

However, if ∂r
∂QE > 0, then firms for whom Egood min(xi,Di)

Ebad min(xi,Di)
is sufficiently close to r will have

a decrease in borrowing costs, while firms for which this ratio is small enough face an

increase in borrowing costs.

Proposition 1.8 (asset purchases 2) If

−v′′ (d)− [Eu′ (c2) + v′ (d)]
1
2 u′
(

cgood
2

)
(1− C′ (e))

u′
(

cgood
2

)
2

C′′ (e) (r− 1)

 > 0 (1.34)
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Purchasing assets owned by the intermediary financed by issuing riskless debt causes a decrease

in corporate leverage and an increase in borrowing costs for all firms.

If this expression is negative, asset purchases cause an increase in leverage for all firms, an increase

in borrowing costs for firms with Egood min(xi,Di)

Ebad min(xi,Di)
sufficiently small, and a decrease in borrowing costs

for firms with Egood min(xi,Di)

Ebad min(xi,Di)
sufficiently large.

Nominal Rigidities and The Zero Lower Bound This section adds a binding zero

lower bound on monetary policy to the model developed above into a simple framework

with nominal rigidities, which is the context under which the Federal Reserve’s quantitative

easing policies were performed. To maintain tractability, I make the extreme assumption that

goods prices are perfectly rigid, following the original liquidity trap analysis of (Krugman

1998). Given this price rigidity, I assume that the central bank sets the interest rate id

subject to the zero lower bound constraint id ≥ 0 which is motivated by the possibility that

households will swap riskless bonds for cash when interest rates are negative.

Under flexible prices, the household’s optimality condition for investing in riskless

securities

u′ (c1) = (1 + id)
[
E
(
u′ (c2) + v′ (d)

)]
(1.35)

determines the risk-free rate taking as given consumption (c1, c2) and the supply of

riskless assets d. With sticky prices in the goods market at time 1, the variables at time 2

(c2, d) and the risk-free rate id set by the central bank determine the amount of consumption

c1 that occurs at time 1, so long as c1 is not greater than the supply C1 of resources available

to consume. When c1 < C1, a shortage of aggregate demand depresses output in a recession.

When interest rates are fixed at the zero lower bound c1 < C1, this first order condition

implies that reducing the demand shortage at time 1 requires either Eu′ (c2) or v′ (d) to

decrease. To reduce Eu′ (c2) , a policy in the original zero lower bound analysis of (Krugman

1998) is to commit at time 1 to stimulating future demand by keeping interest rates below

their natural level, which is called forward guidance. This is not considered in my model
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since we are in an endowment economy where c2 is held fixed for simplicity. A second

policy considered here is to reduce v′ (d) by either increasing the supply of safe assets. A

shortage of aggregate demand due to a scarcity of safe assets is termed a "safety trap" by

(Caballero Farhi 2017), and the stimulating effects of reducing the scarcity of safe assets in

my analysis is similar to what they show. The three comparative statics considered above

all change the safety premium v′ (d) and therefore influence aggregate demand when the

zero lower bound constrains conventional interest rate policy.

The novelty of my analysis is that it considers how changing the scarcity of safe assets

leads to changes in the portfolio choices of financial intermediaries and the leverage of the

financial and non-financial sectors. This allows me to understand the effects of quantitative

easing on financial stability, which has worried some policymakers. Relatedly, (Stein

2012b) is a policy speech arguing that debt issuance by the non-financial sector in order to

repurchase stock could possibly weaken the effects of quantitative easing, and my model’s

determination of non-financial capital structure allows me to speak to this concern.

The fact that the equilibrium of my model is characterized by equation 1.18 makes

it quite tractable to analyze the effects of nominal rigidities, since c1 does not appear in

this expression at all. This single equation can be used to solve for all corporate capital

structure decisions and the assets and liabilities of the financial intermediary and yields the

same answer with and without nominal rigidities. Changes in the supply and demand for

safe assets and central bank asset purchases have exactly the same effect on intermediary

portfolio choices and corporate capital structure decisions whether or not nominal rigidities

cause a shortage of aggregate demand at time 1. This is summarized in the following

proposition. One particularly important implication is that asset purchases reduce risk

taking by financial intermediaries, since the policy discussion about asset purchases has

considered their financial stability implications.

Proposition 1.9 (irrelevance of nominal rigidities for portfolios and capital structure) The leverage

decisions of the intermediary and non-financial sector, the portfolio choice of the intermediary, the

intermediary’s marginal cost of equity C′ (e), and the safety premium v′ (d) have the same response
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to asset purchases or changes in the supply and demand for safe assets with our without nominal

rigidities. The results proved above for changes in these variables continue to hold at the zero lower

bound.

Because the changes in v′ (d) computed without nominal rigidities continue to hold,

it is immediate to determine the effect of the comparative statics considered above on

consumption at time 1. This is true because when id = 0 it must be the case that for any

perturbation µ

∂c1

∂µ
u′′ (c1) =

∂u′ (c1)

∂µ
=

∂v′ (d)
∂µ

(1.36)

to ensure the risk-free rate remains at 0. Since u′′ < 0, it follows that any decrease in

the safety premium v′ (d) must also increase time 1 consumption.

Proposition 1.10 (the safe asset premium and aggregate demand) While at the zero lower bound,

increasing the demand for safe assets reduces consumption at time 1 while increases in the supply of

safe assets or risky asset purchases financed by the issuance of government debt increase consumption

at time 1.

The response of asset prices to asset purchases or safe asset supply and demand changes

does depend on whether there are nominal rigidities. The risk-free rate is held fixed at the

zero lower bound while previously it was free to adjust and ensure the goods market at time

1 is able to clear. In addition, increasing aggregate demand at time 1 reduces the marginal

utility of consuming c1, providing an additional mechanism that boosts asset prices only in

a shortage of aggregate demand. The price of an equity security paying δe at time 2 now

changes as

d
dµ

E
u′ (c2)

u′ (c1)
δe =

(
Eu′ (c2) δe

) −1

(u′ (c1))
2

∂u′ (c1)

∂µ
=
(
Eu′ (c2) δe

) −1

(u′ (c1))
2

∂v′ (d)
∂µ

(1.37)

while the price of a debt security paying δdebt now changes as
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∂

∂µ

Ebad (δdebt) (1 + id) +
1
2

u′
(

cgood
2

)
u′ (c1)

(
1− C′ (e)

) (
Egood − Ebad

)
δdebt

 = (1.38)

1
2

u′
(

cgood
2

)
u′ (c1)

2

(
−∂v′ (d)

∂µ

) (
1− C′ (e)

)
+

u′
(

cgood
2

)
u′ (c1)

(
−C′′ (e)

∂e
∂µ

) (Egood − Ebad
)

δdebt.

Relative to the equity market, the debt market has no change in risk-free rate but a

greater proportional change in the price of systematic risk due to the additional effect

of changing C′ (e) . This is because asset purchases only effect the pricing of risk in the

equity market through the indirect effect on consumption, while the pricing of risk in the

bond market depends explicitly on the intermediary’s cost of equity capital as well as on

consumption. These calculations prove the following proposition.

Proposition 1.11 (asset price responses at the zero lower bound) At the zero lower bound,

(i) An increase in the demand for safe assets reduces the prices of debt and equity securities.

(ii) An increase in the supply of safe assets increases the prices of debt and equity securities.

(iii) Purchasing risky assets financed by the issuance of riskless government debt increases the

prices of debt and equity securities. The risk-free rate implied by equity prices decreases while the

risk-free rate implied by bond prices remains at zero. The price of risk in both markets decreases, with

a greater proportional decrease in the debt market.

Of particular interest, asset purchases now lower the cost of borrowing for the non-

financial sector, since the risk-free rate stays fixed and the price of systematic risk decreases

with asset purchases. This is related to the verbal argument (Stein 2012b) gives in a policy

speech that asset purchases may induce firms to borrow in order to repurchase stock as

a result of their decreased borrowing cost. My model provides a particularly relevant

framework for evaluating this reasoning, since unlike in existing models it is the relative

cost of debt and equity financing that determines the leverage of the non-financial sector in

my framework. Consistent with event study evidence (Neely 2011, Chodorow-Reich 2014),

at the zero lower bound asset purchases boost both debt and equity prices, and it is the
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relative cost of debt and equity financing that determines optimal capital structure. As a

result, the non-financial sector may decrease its leverage despite the reduced borrowing cost,

as characterized in the section without nominal rigidities. One limitation of my analysis

is that it only formalizes a broad "portfolio balance" channel in which all debt securities

are priced by preferences of the same intermediary, while there is some empirical evidence

(Krishnamurthy Vissing-Jorgensen 2011) that segmentation between markets for individual

assets plays an important role in the transmission mechanism of quantitative easing.

Conclusion This paper develops a general equilibrium model of how the financial system

is organized to meet a demand for safe assets. In the model, financial intermediaries face

the same financing frictions as other firms and have the same information and investment

opportunities as households. The role played by intermediaries is to pool the debt of

non-financial firms, who cannot issue riskless assets because of idiosyncratic risk, and

issue riskless securities and a risky equity tranche backed by this debt portfolio. The debt

and equity markets are endogenously segmented, and the non-financial sector’s optimal

capital structure arbitrages these segmented markets. While previous models of financial

intermediation emphasize the illiquidity of intermediary balance sheets, this model provides

a framework that can explain intermediaries’ large holdings of liquid, publicly available

securities. In addition, the model shows how a growing demand for safe assets causes a

subprime boom and provides a framework for understanding the transmission mechanism

of quantitative easing policies and their implications for financial stability.

Several features of the model suggest a future research agenda. First, the model takes as

given the demand for safe, money-like assets. A more fundamental framework where the

demand for money and the role of intermediaries as creators of money are both endogenous

may provide additional insights. Second, existing safe assets are typically denominated

in a currency. A framework with safe assets in multiple currencies may be useful for

understanding the international spillovers of quantitative easing and the role of the dollar in

the international financial system. The perspective taken in this model, where the demand

for liabilities issued by intermediaries determines their asset portfolio, may be a useful and

42



tractable framework for many questions about the role of intermediaries in macroeconomics

and finance.
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Chapter 2

Money, Prices, and Financial Fragility



Bank deposits are sometimes referred to as a form of privately created money. In

order to pay for goods, it is common to make a withdrawal from a bank account in order

to pay a price denominated in a form of currency. To facilitate these transactions, bank

deposits themselves are also denominated in currency, so that deposits and currency can be

easily exchanged for each other without fluctuations in the exchange rate. For a bank to

issue deposits that can readily be exchanged for currency, it must hold enough currency and

other assets to be able to meet any withdrawals it is likely to face. If depositors are wary of

a bank’s ability to meet withdrawals, deposits may no longer function as a money-like asset,

and a run on the bank may occur.

While historically money and banking were considered a unified topic, the literatures

that study the two topics have grown separately and do not speak to their interaction. While

the need for money whose value is easily verified to perform transactions has been studied

(Wright Williamson 1994, Banerjee Maskin 1996), and a separate literature emphasizes the

demand for informationally insensitive bank deposits (Gorton Pennachi 1993, Dang Gorton

Holmstrom Ordonez 2017), the ideas in these literatures have had essentially no interaction.

As a result, no existing framework is able to pose the question of how the health of the

banking system is related to the supply of money, and how this resulting supply of money

determines the price level. Given that this story is at the heart of the monetarist explanation

of the great depression (Friedman and Schwartz 1963), such a framework may be a useful

tool for understanding how the price stability and financial stability mandates of central

banks relate to each other. In addition, reserve requirements are often used as a tool to

implement monetary policy (historically in many countries, and currently in China), and the

current cashless New Keynesian framework (Woodford 2003) cannot be used to understand

this.

This paper makes several contributions. First, it provides a simplification of existing

models of asymmetric information in monetary transactions, in which the role of matching,

bargaining, and heterogenous preferences are abstracted away. As a result, it can isolate

the effects of asymmetric information about the quality of goods in transactions, replicating
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findings in the existing literature more transparently. In particular, the insight of (Banerjee

and Maskin 1996) that goods of most easily verifiable quality are overproduced are replicated

in a more tractable framework. This simplification is particularly useful for this paper’s main

goal of building a model of banking on top of existing models of money and may provide

a use intermediate input for other papers that want to integrate models of money into

other literatures. A particularly tractable special case occurs using the technique of (Lester

Postlewaite Wright 2012) where all but one good "gold" can be costlessly counterfeited.

Because the model features competitive markets with identical consumers rather than search

and matching, the model provides a transparent way of showing how the price level of

goods is determined by the money supply and how this leads to a pecuniary externality

where money is overproduced.

Second, the papers shows how the price level and money supply are determined when

agents are unsure of when they need to consume and hold a precautionary liquidity buffer.

Similar to (Diamond Dybvig 1983), I assume that there are "early" and "late" periods in the

model, and consumers obtain uncontractible private information about when they want to

consume. In this setting, consumers who want to consume in the late period of the model

must hold idle balances of gold in the early period that could otherwise have been spent

on consumption. In addition, consumers who turn out to want to consume in the early

period of the model end up consuming their gold at the end of the early period since they

have no incentive to save. Both of these channels reduce the quantity of gold available for

performing transactions. As a result, a lower price level is required to clear the market

with only a fraction of existing gold being used to finance all goods market transactions.

This deflation in turn increases the private incentive to inefficiently overproduce gold. This

draws a connection between frictions commonly studied in the banking literature following

(Diamond Dybvig 1983) and the connection between the money supply and inflation studied

in the literature following (Lagos Wright 2005).

Third, the model shows how a bank that issues deposits that can be exchanged for gold

on demand is able to ensure that gold is held precisely by those agents who need it to
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consume. The bank is able to do this by holding a portfolio composed both of liquid gold

and other illiquid goods, ensuring that its gold reserves are large enough to finance all

transactions in the goods market. In this sense, the bank is performing fractional reserve

banking, so that the "inside money" supply created by the bank is strictly larger than the

base "outside money" supply in which goods transactions are performed. However, because

the bank does not have 100% reserves, if all agents choose to withdraw from the bank at

the same time, it will be forced into a costly liquidation. In this sense, the bank is able to

increase the effective money supply if and only if it chooses to expose itself to costly runs.

Similar to (Calvo 1988), the bank’s expectations of the probability of a run determines how

much it chooses to expand the money supply.

While the model is primarily about an older banking system where transactions were

settled in gold, it also has some implications for a more modern setting. Just as it is costly

to physically mine gold, and the private benefits of producing gold is influenced by its

role in the monetary system, backing riskless assets such as treasury bills which function

as money requires government fiscal capacity. Because the price level is a function of the

supply of money-like assets, private money creating agents do not internalize the effects of

their money production on the aggregate economy. Just as banks used to hold fractional

reserves of gold to back the deposits they issue, in the modern world only a fraction of

bank assets are reserves, treasuries, or other highly liquid assets. As a result, the liquidity

creation by modern banks is conceptually akin to this model.

2.1 A model of information frictions and media of exchange

This section presents a model of a goods market where trade is composed of anonymous,

bilateral transactions in a competitive market. These transactions are composed of a "buyer"

and a "seller", where the quality of goods sold by the seller are public information while the

goods used as payment by the buyer are private information. As a result, goods traded by

buyers are subject to a lemons problem, in which only the lowest quality goods are used by

buyers to trade. There are many varieties of goods with differing distributions of quality,
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and sellers will accept each variety only at an exchange rate that is consistent with the

lemons problem they face. As a result, there is a "scarcity" of goods that can be used by

buyers, in the sense that one unit of quality offered by a buyer purchases strictly more than

one unit of quality sold by a seller. Across all transactions, the amount of quality offered

by the seller per unit of quality provided by a buyer must be the same, and this "terms of

trade" parameter characterizes the severity of the price distortion induced by asymmetric

information.

The model has two periods t = 0, 1. There is a continuum of identical consumers indexed

by i ∈ [0, 1] . At time 0, goods are produced and exchanged which are then consumed at

time 1. A set of possible varieties of goods indexed by v ∈ [0, 1] may be produced, and each

good has a "quality level" q ∈ [0, ∞). For each good variety v, the distribution of quality

levels of goods of varity g is mv (q) , which has density fv (q). A consumer who consumes

c (v, q) of quality v goods of variety v at time 1 obtains utility

∫ 1

0

∫ ∞

0
qc (v, q) dqdv.

where the integral sums across the quality levels q of each variety v that is consumed

and the different varieties v ∈ [0, 1] . The amount of utility derived from consuming a good

is proportional to its quality q. However, consumers are unable to consume goods which

they produce themselves, providing a reason for them to exchange their output for the

output of others.

The goods produced by each consumer may either be "sold at a shop" or taken as a

"means of payment" to purchase items at the shops of other consumers. The quality of

goods sold in shops are observable, while the quality of goods used as means of payment

are privately known by the consumer making the purchase. This assumption captures the

idea that when consumers are shopping for something they want, they understand their

own preferences, but that shops who sell goods know nothing about what consumers will

offer them to pay for their purchases. This stark assumption provides a clean way to ensure
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that media of exchange are subject to an asymmetric information problem, and the most

"money-like" goods are those for which this problem are the least severe. Such a problem

could perhaps be microfounded with endogenous information aquisition, where consumers

are willing to learn the quality of goods they will themselves consume, but producers will

not be willing to learn about their many different customers.

Each consumer faces market prices pvpayment (vsold, qsold)determining how many goods of

variety vpayment can be obtained by one selling unit of good (vsold, qsold) . The consumer also

chooses which of its goods it will use to buy goods in the shops of other consumers. The

prices pvpayment (vsold, qsold) cannot depend directly on the quality qpayment of a good offered

as payment, since the quality of goods used as means of payment is private information. If

sellers refuse goods of variety v payment, this can be thought of as a price ∞.

Given the market prices pvpayment (vsold, qsold), the consumer’s shopping problem is to

choose which goods (vsold, qsold) to buy with any variety vpayment it uses as a means of

payment. It obtains qsold
pvpayment (vsold,qsold)

of utility by buying pvpayment (vsold, qsold) with one unit

of a good of variety vpayment, so it only buys goods for which qsold
pvpayment (vsold,qsold)

attains its

maximum. Call this expression qexchange
(
vpayment

)
, which is the maximum number of units

of quality that can be obtained by shopping with one unit of a good of variety vpayment. The

consumer’s optimal shopping problem is solved if and only if it buys goods with means of

payment gpayment such that

qsold

pvpayment (vsold, qsold)
= qexchange

(
vpayment

)
. (2.1)

In addition to its shopping problem, the consumer has to decide which goods it produces

will be used to buy other goods and which will be sold. If a consumer chooses to use a

good (v, q) to buy other goods, it obtains utility qexchange (v) for doing so when it shops

optimally. It will therefore choose to sell goods (v, q) for which it can obtain weakly more

utility than qexchange (v) in the sale. If the good is sold for a means of payment of variety v,
q

qexchange(vpayment)
units of good vpayment will be obtained from the sale. The utility obtained
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from this sale is therefore equal to

qsold

qexchange
(
vpayment

) ∫ qpaymentdµvpayment

(
qpayment

)∫
dµvpayment

(
qpayment

) ,

where µvpayment (.) is the quality distribution of goods of variety vpayment used as a means of

payment. This expression is the product of the quantity of goods of variety vpayment paid in

the transaction, qsold

qexchange(vpayment)
, times the average quality

∫
qpaymentdµvpayment(qpayment)∫

dµvpayment(qpayment)
of goods of

variety vpayment used as a medium of exchange. Note that this expression depends only on

the good (vsold, qsold) through its quality level q. The maximum of this expression over all

varieties gpayment defines a linear function

qsales (q) = q max
vpayment

∫
qpaymentdµvpayment

(
qpayment

)
qexchange

(
vpayment

) ∫
dµvpayment

(
qpayment

) = Tq, (2.2)

which is the highest amount of utility that can be obtained by choosing to sell a good of

quality q. The constant T is the "terms of trade" between units of quality on the buy and

sell sides of the market. Sellers are only willing to accept goods for which they obtain T

units of quality in means of payment per unit of quality sold. The constant P = 1
T can be

interpeted as a "price level", so that one unit of quality on the buyer’s side purchases P units

of quality on the seller’s side.

Since the returns to selling a good is strictly increasing in its quality, while the returns to

buying a good with it does not depend on its quality, it follows that every consumer sells

its highest quality goods of each variety and uses its lowest quality goods to buy goods in

the shops of other consumers. For each variety g, the consumer’s problem of determining

what to buy in sell is determined by a cutoff quality q∗ (v) for which

qsales (q∗ (v)) = qexchange (v) . (2.3)

All goods (v, q) with q > q∗ (v) are optimally sold, while those with q < q∗ (v) are optimally

used as a means of payment. This formalizes the idea that "bad money drives out good", in

that among a set of indistinguishable goods, the least valuable are the ones that circulate as

a medium of exchange.
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Given these properties of the consumer’s optimal sales and shopping decisions, it is

now straightforward to characterize the models equilibrium. First, the set of goods sold

can be characterized by a cutoff q∗ (v) such that for each v, a good (v, q) is sold only if

q ≤ q∗ (v) . Second, the price pvpayment (vsold, qsold) of every good sold must satisfy

pvpayment (vsold, qsold) = qsoldT

∫ q∗(v)
0 qdmvpayment (q)∫ q∗(v)
0 dmvpayment (q)

, (2.4)

so that the sale yields T units of expected quality per unit of quality sold. Recall that

mv (.) is the unconditional quality distribution of goods of variety v, regardless of whether

these goods are bought or sold. Third, the cutoff q∗ (v) must be chosen optimally, so that

qsales (q∗ (g)) = qexchange (g) , which can be written as

Tq∗ (v) =
1
T

∫ q∗(v)
0 qdmv (q)∫ q∗(v)
0 dmv (q)

. (2.5)

Finally, for the goods market to clear, the value of goods sold must equal the value of

goods used as a medium of exchange

∫ 1

0

[∫ q∗(v)

0
qdmv (q)

]
dv =

1
T

∫ 1

0

(∫ ∞

q∗(v)
qdmv (q)

)
dv. (2.6)

If the distribution of quality of goods of variety g µg is nonatomic for all g, it immediately

follows that there is a unique equilibrium. For each g, the q∗ (v) which solves 2.5 is

monotone and continuous. Plugging this value of q∗ (v) into equation 2.6 yields a monotone,

continuous function which crosses zero once. Moreover, this point of crossing must be

at some point T < 1 if each µg is nonatomic. The following proposition summarizes the

results shown so far.

Proposition 2.1 A unique equilibrium of the model exists. In this equilibrium

(i) For each variety of goods g there is a quality cutoff q∗ (v) such that high quality goods with

q > q∗ (v) are sold while low quality goods with q < q∗ (g) are used as a means of payment.
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(ii) The price at which every good is sold is determined by 2.4, so that the average quality of

goods
∫ q∗(v)

0 qdmv(q)∫ q∗(v)
0 dmv(q)

of variety v used as a means of payment determines the quality q of goods that can be purchased

with variety v.

(iii) Every good variety v can be used to purchase goods of quality 1
T

∫ q∗(v)
0 qdmv(q)∫ q∗(v)
0 dmv(q)

, where the

average quality of v goods used as a means of payment is multiplied by a terms of trade parameter

T < 1 that is common across all transactions.

(iv) The equilibrum is charecterized by the unique solution for T and q∗ (g) for each g to 2.5

and 2.6

A key property of the equilibrium is that is characterized entirely by the terms of trade

T or equivalently price level P = 1
T . A value of T < 1 (or P > 1) implies that there is a

"liquidity premium", in the sense that assets which are easily verifiable media of exchange

buy goods which are strictly more desirable to consume than they themselves are. This

premium is large when the supply of "money-like" goods is scarce. If a premium of T = 1

occurred in equilibrium (which can happen when there is a sufficient supply of goods which

are not subject to a lemons problem when used as a means of payment), the equilibrium is

equivalent to one in which there is no information friction in bilateral transactions. T < 1

can never happen, since once T = 1 is attained, money-like goods will optimally be sold as

well as used as a means of payment to ensure the market still clears.

With endogenous production, the liquidity premium T < 1 distorts production decisions

away from the social optimum. Suppose it requires l (v, q, C) units of disutility to create

C units of good (v, q) . Since all goods produced are eventually consumed, and utility is

determined by total consumption, the social value of a good produced is precisely its value

to consume. It follows that the optimal production decision must satisfy ∂
∂C l (v, q, C) = q,

since q units of labor disutility are spent to produce q units of consumption utility. However,

the privately optimal production decisions satisfy

∂
∂C l (v, q, C) = Tq for goods with q ≥ q∗ (v) and ∂

∂C l (v, q, C) = 1
T

∫ q∗(v)
0 qdmv(q)∫ q∗(v)

0 dm(q)
for goods

with q ≤ q∗ (v) . The market underproduces goods high quality goods which must be sold
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to an informed buyer and overproduces low quality goods that can be used as a means of

payment. This can be viewed as a pecuniary externality where agents take the price level

P as given when choosing how much "money" to produce, while the supply of "money"

relative to the quantity of goods sold determines the overall price level. The private benefits

of money production are (in part) dissipated socially because they cause inflation.

2.2 A special case with a unique medium of exchange

The above equilibrium, in general, has the low quality goods of many different varieties

being used as media of exchange. To build a framework which is sufficiently tractable

to add a financial sector, it is desirable for there to be a single good that circulates as a

means of payment. In order for this to be the case, I will assume that there is a single good

"gold" indexed by ggold which can only be produced at a quality level q = 1 (and therefore is

mechanically not subject to any asymmetric information problem about its quality). For all

other goods g, I will assume that zero quality goods of variety g can be costlessly produced.

As a result if any non-gold good is accepted as a means of payment, infinite quantities of

worthless zero quality goods will be produced to exploit the good’s purchasing power. It

therefore follows that gold is the only asset which can be accepted as a means of payment

in a transaction. This special case, adapted from (Lester Postlewaite Wright 2012), can be

viewed as a microfoundation for a cash in advance constraint, where only a good whose

quality is verifiable functions as cash.

In this special case, equilibrium is particularly tractable. Given a supply G of quality

units of gold, and a total quality Q of non-gold goods produced, the price level P must

satisfy the following expression reminiscient of the quantity theory of money

PQ = G. (2.7)

in order for the goods market to clear.

This expression implies that the model behaves quite similarly to cash-in-advance models,
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except for the fact that the "money supply" G is privately produced. Holding fixed Q, a

doubling in the quantity of gold G leads to a double in the price level. However, as the

price level adjusts, the private incentives to produce gold relative to other goods that cannot

be used in transactions adjusts. If there is a disutility cost cg (G) of producing gold and

cQ (Q) of producing other non-gold goods, then in equilibrium the supply of gold and other

goods satisfies

c′g (G) = P (2.8)

c′Q (Q) =
1
P

.

This yields a unique equilibrium with P > 1 if cg (G) and cQ (Q) are increasing, strictly

convex, c′g > c′Q pointwise, and both c′g c′Q have full support on the positive real numbers.

However, since the utility attained from consumption is simply Q + G, optimal produc-

tion decisions must satisfy

c′g (G) = c′Q (Q) = 1. (2.9)

The market equilibrium therefore can only implement the socially optimal production

decisions only at P = 1. With P > 1, gold is overproduced while other goods are underpro-

duced. To implement the efficient allocation, a social planner can levy a proportional tax of

rate 1− P on gold and provide a subsidy of rate 1
P − 1 on the production of other goods.

This tax overcomes the private incentives to overproduce money, whose price is distorted by

its liquidity value in exchange. These results are summarized in the following proposition:

Proposition 2.2 Under the above regularity conditions on the production cost functions cg and cQ,

(i) There exists a unique equilibrium under which 2.7 and 2.8 are satisfied.

(ii) In this equilibrium, a price level P > 1 is obtained, so one quality unit of gold buys strictly
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more than one unit of other goods. In this sense, gold is "scarce" and earns a "liquidity premium."

(iii) Whenever there is a liquidity premium P > 1, the privately optimal production decisions

lead to too much gold and too few non-gold goods being produced relative to the social optimum.

(iv) A social planner who can levy proportional taxes on gold production and proportional

subsidies for non-gold production can implement the social optimum.

2.3 Uncertain liquidity needs, and inefficient consumption of

money-like goods

The analysis so far has demonstrated how information frictions determines what properties

goods have to endogenously circulate as a form of money. However, there has been no role

for financial intermediaries to create money-like assets. In order to introduce banks, I first

add frictions similar to (Diamond Dybvig 1983), in which consumers are uncertain of their

future consumption needs. As a result, they want to hold a precautionary buffer of money

in case they want to consume. In the absence of intermediaries, this leads to an inefficient

hoarding of money like assets, which are then overproduced in equilibrium. Intermediaries,

who offer gold on demand, improve the allocation by allowing consumers to withdraw gold

precisely when they need to consume, reducing the incentives to produce more gold than is

socially efficient.

The model now has three time periods t = 0, 1, 2. At time 1, a fraction µ of consumers

realize that they only demand consumption at time 1, while a fraction (1− µ) realize they

only demand consumption at time 2. The market for goods at t = 1 and t = 2 is precisely

the economy with private information in exchange that is analyzed above. In addition,

trees which produce goods at time 2 may also be sold at time 1, and are subject to the

same information frictions that require using gold as a means of payment. At time 2, a

supply G2 of gold and non-gold goods Q2 are available. At time 1, there is additionally

a supply Q1 of goods available to consume at time 1 and a total supply G1 of gold. At

time 0, a supply (Q1, Q2, G) of gold and non-gold goods are produced, required disutility
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l1 (Q1) + l2 (Q2) + lG (G) to produce.

The analysis of the equilibrium at t = 2 is straightforward. Given the supply (Q2, G2) ,

the price level at time 2 P2 satisfies

G2 = P2Q2 (2.10)

As a result, each late consumer who prefers t = 2 consumption gets P unit of utility from

owning goods and 1
P units of utility from owning gold.

Given the equilibrium at t = 2, the equilibrium at time t = 1 is similar to that above.

Because early and late consumers did not know their identities when choosing a portfolio at

t = 0, they enter period 1 with the same portfolios (Q1, Q2, G) . Given this portfolio, early

consumers will spend all of their gold on buying goods Q1, while late consumers will invest

their gold in buying goods Q2. In addition, early consumers will sell their supply of period

2 output µQ2. Market clearing therefore requires

µG = P1Q1 (2.11)

(1− µ) G = PaµQ2

where P1 is the price of goods at time 1 and Pa is the price of assets that yield 1 unit of

goods at time 2. After this asset market exchange, early consumers will have no desire to

save for the future and will therefore consume their gold holdings. They will have owned a

proportional share µQ1 of the period 1 goods sold plus µQ2 of the period 2 goods, for which

. They therefore consume
(
µ2 + (1− µ)

)
G of gold at the end of the period. It follows that

G2 =
(
µ− µ2)G.

To complete the analysis at t = 0, it is necessary to determine the utility a consume gets

from owning a portfolio, which can then be used to compute optimal production decisions.

A portfolio (Q1, Q2, G) provides utility PQ1 +
G
P + PaQ2 to an early consumer, since it can

trade its early goods for PQ1 units of gold, its late goods for PaQ2 units of gold, and its
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gold for G
P units of early goods. This same portfolio provides utility P2G

Pa
+ Pa

P2
Q2 +

P
P2

Q1

to the late consumer. The expected utility to the consumer of this portfolio at t = 0

is therefore µ
(

PQ1 +
G
P + PaQ2

)
+ (1− µ)

(
P2G
Pa

+ 1
P2

Q2 +
P
P2

Q1

)
. The optimal portfolio

choices therefore satisfy

µP1 + (1− µ)
P2

Pa
= l′1 (Q1) (2.12)

µPa + (1− µ)
1
P2

Q2 = l′2 (Q2)

µ

P1
+

P2 (1− µ)

Pa
= l′G (G) .

A unique equilibrium exists if each production technology has decreasing returns to

scale and satisfies Inada conditions (follows from the Gale-Nikaido global inverse function

theorem).

One important aspect of this equilibrium is that at after transactions are performed in

period 1, early consumers own a quantity of gold. These early consumers then consume

the gold since they get no utility from consuming in period 2, leading to a decrease in the

total gold supply from G to G2 < G. This reduction in the gold supply in turn reduces

the price level in period 2. This reduced price level implies that gold buys an increased

quantity of consumption goods, thereby increasing the incentives to produce gold. As

analyzed above, the equilibrium in inefficient because gold is over produced, while other

goods are underproduced. If there were a way to more efficiently allocate resources, so

that only consumption goods Q1 would be consumed by early consumers, the incentives to

overproduce gold would be mitigated.

In addition, while the gold supply G produced at t = 0 is entirely available at t = 1, only

a fraction µG of it ends up in the hands of early consumers who want to consume. If the

fraction of gold used to buy goods could be increased, the resulting inflation would mitigate

the incentive to produce more gold than is socially desirable. The following proposition

summarizes the results in this section.

Proposition 2.3 When consumers are unsure at t = 0 whether they will want to consume early at
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t = 1 or late at t = 2 (where µ consume early and 1− µ consume late)

(i) Late consumers end up holding gold at t = 1, so the price of goods P1 is determined by 2.11

and is strictly lower than it would be if consumers knew when they would want to consume.

(ii) Early consumers have no desire to save from t = 1 to t = 2 and end up consuming gold

instead. This reduces the gold supply at time 2 to a fraction
(
µ− µ2) of the initial gold supply G.

The P2 at time 2 given by 2.10 is therefore also a fraction µ− µ2 of what it would be with no gold

consumption at t = 1.

(iii) As a result of the deflation of goods prices at t = 1 and t = 2, at t = 0 producers produce

more gold and less non-gold goods than they would have in an alternative setting where consumers

knew in which period they would consume. This reduces social welfare, since gold is overproduced

and other goods underproduced in equilibrium.

2.4 Financial intermediaries as creators of money like assets

This section shows how introducing a bank, that purchases assets and issues demandable

claims to provide gold, is welfare enhancing. In addition to the real assets that exist in

the economy, a "bank" is able to buy portfolios of assets and issue liabilities backed by the

portfolio. In the best possible equilibrium, adding a bank to the framework in section 3 is

able to replicate the allocation that would occur where consumers knew at t = 0 whether

they would want to consume at t = 1 or t = 2. The bank effectively increases the money

supply by issuing claims demandable for gold which are only backed by a fraction of gold

reserves. This exposes the bank to runs, since only gold is liquid, and the bank is able to

increase the money supply if and only if a bad equilibrium with a run exists.

As in section 3, the model now runs from t = 0, 1, 2 and is identical to the section above

except for the role of banks. At time 0, banks now can be created which purchase assets

and issue liabilities in a competitive market. These liabilities of intermediaries are allowed

to be demandable, in the sense that at time 1, investors may choose between a payoff at

time 1 or a promise of a different payoff at time 2. Because investors learn at time 1 when

they want to consume, this allows them to consume precisely in states of the world when
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they desire it. These payoffs must be denominated in gold, since for the reasons presented

in section 2 promises of any other good will be met by creating a worthless counterfeit.

However, demandable claims can only be met by the assets an intermediary owns. If the

intermediary is unable to meet a payment, a fraction 0 ≤ l ≤ 1 of its assets are destroyed in

"bankruptcy". Once investors choose at time 1 whether to exercise their demandable claims,

the economy at times 1 and 2 is identical to that in section 3.

The model is most tractably solved backwards. At t = 2, all demandable claims have

been exercised, so the analysis is identical to that in section 3. The price level is mechanically

Q2P2 = G2

since consumers will own all gold to perform transactions.

At t = 1, the intermediary owns
(

QI
1,2, QI

1,1, GI
1

)
. It has issued D demandable claims

which provide 1 unit of gold at time 1 or 1 + R units of gold at time 2.

It is only able to meet withdrawals W ≤ GI
1 without going bankrupt, in which case a

fraction l = 1 of any tree it owns is lost. Because deposits cannot be consumed, every

early consumer withdraws. For a late consumer, its marginal utility from successfully

withdrawing gold is 1. It therefore does not withdraw whenever it gets a greater return

than 1 from keeping money in the bank. The bank never sells its long dated goods (if Pa is

not 1). It uses its remaining gold to buy long dated goods. It therefore has assets worth

QI
1,2 + PQI

1,1 + Pa
(
GI

1 −W
)

. If this is weakly greater than (1− µ) D, then there is an

equilibrium where late consumers do not withdraw.

The equilibrium is most straightforwardly analyzed backwards, first deriving what

happens after consumers have chosen whether or not to withdraw from the bank. In

this case, early consumers have a portfolio
(

Qearly
1 , Qearly

2 , Gearly
)

while late consumers

(plus banks, who act to maximize the value of their payoff at time 2) have a portfolio(
Qlate

1 , Qlate
2 , Glate) . The price of goods at time 1 must satisfy

Gearly = P1

(
Qearly

1 + Qlate
1

)
.
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while if the return on holding long dated goods dominates gold we have a price Pa for

long dated assets

Glate = PaQearly
2

. In this setting, the marginal return to gold for an early consumer is P, while for a late

consumer it is Pa
P2

.

Given this, I now determine at time 1 which consumers will choose to withdraw from

the bank. Suppose consumers enter time 1 with a portfolio (Q1, Q2, G, D)

where D is a quantity of deposits redeemable for gold. All early consumers will

always withdraw, since long dated consumption has no value. If the bank has a port-

folio
(
Qbank

1 , Qbank
2 , Gbank) , it follows that

(
Qbank

1 , Qbank
2 , Gbank − µD

)
remains if only early

consumers withdraw. This yields a payoff of PQbank
1 + Qbank

2 + Pa
(
Gbank − µD

)
. If

PQbank
1 +Qbank

2 +Pa(Gbank−µD)
(1−µ)D > PaQearly

2 , then there is an equilibrium where only early con-

sumers withdraw. If however, all bank assets are destroyed in the case of a run, then running

is an equilibrium as long as 1 > Gbank
D ≥ 0, since this implies a nonnegative return to running

and zero return to not running.

Under the no run equilibrium, a deposit is worth P to an early consumer and
PQbank

1 +Qbank
2 +Pa(Gbank−µD)
(1−µ)D to a late consumer. Under the run equilibrium, a deposit is worth

P Gbank
D to an early consumer and Pa

Gbank
D to a late consumer. As a result, if a bank expects a

run, it should choose a portfolio with large gold reserves and no illiquid assets. Conversely,

if the bank does not expect a run, it need only hold enough gold to meet the withdrawals of

the early consumer.

At t = 0, intermediaries choose their assets based on their expectations about what

equilibrium will occur in periods 1 and 2. Because their are multiple equilibria, the

intermediary’s portfolio choice is a function of whether or not it believes there will be a run,

and these expectations will in equilibrium be consistent with future outcomes.

Assuming the no run equilibrium is played, the constrained best allocation can be
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implemented. If a bank buys all of the gold and all goods (which by market competition

requires precisely all of the resources it raises by issuing deposits), then all gold can be

withdrawn by the early consumer at time 1. Since the early consumer owns only gold now

and no long dated goods, no long dated goods need to be sold to clear the market. The

bank will then earn all the gold from selling early goods to the consumer (because this must

be true to clear the market), which can then be withdrawn by the late consumer at time 2.

To see this formally, suppose the bank’s portfolio is (Q1, Q2, G) , and consumers invest

only in deposits, which are sold in quantity D = G
µ . If only early consumers withdraw at

time 1, then precisely G is withdrawn, so the price of goods satisfies G = PQ1. After period

1, the bank has (Q2, G) on its balance sheet.

Since no gold is used to buy long dated assets, we must have Pa = 1. It follows that no

run is an equilibrium at t=1 if
PQbank

1 +Qbank
2 +Pa(Gbank−µD)
(1−µ)D = G+Q2

(1−µ) G
µ

> 1.

To show that (Q1, Q2, G) is the optimal bank portfolio, note that any other portfolio that

could be bought either implements the same allocation or requires gold to be hoarded or

consumed inefficiently, and therefore will provide less utility at the same market prices.

Under this equilibrium, gold buys strictly fewer real goods than in a setting where early

consumers have less gold at time 1. The production of real resources now satisfies

P1 = l′1 (Q1)

P2 = l′2 (Q2)

1
P1

= l′G (G)

which yields strictly more welfare than the case with no intermediaries. In effect, the

money creation performed by intermediaries reduces the distortions of the role gold plays

as money in production decisions.

Assuming the run equilibrium is played, an outcome with no intermediation is the

unique equilibrium. Because everyone will withdraw at time 1, (which is always an

equilibrium as shown above), the bank must invest all deposits in gold. This is formally
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identical to people holding gold directly instead of deposits. The following proposition

summarizies the results in this section.

Proposition 2.4 Introducing a bank to the framework in section 3 leads to 2 equilibria

(i) One good equilibrium where all gold is held by early consumers at t = 1 and by late consumers

at t = 2 and no gold is consumed at t = 1. This implements the same allocation as if consumers knew

their type at t = 0. Goods prices are strictly higher than in section 3, so there is less overproduction

of gold.

(ii) A run equilibrium, where both early and late consumers withdraw gold at t = 1 and force

the bank to inefficiently liquidate.

(iii) The best allocation is only implemented when the good equilibrium is expected at t = 0, and

if the bad equilibrium is expected banks will create no money at all.

An interesting path going forward in this model is to study fundamental driven runs as

in (Goldstein Pauzner 2005) to figure out the optimal reserve holdings of a bank that creates

money.

Conclusion

This paper presents a model where money-like informationally insensitive goods are re-

quired to make anonymous bilateral transactions and shows how fractional reserve banking

increases the effective supply of money. By integrating the financial intermediation litera-

ture that studies the connections between bank’s assets and liabilities with the monetary

economics literature studying the connection between the money supply and prices, the

model draws novel connections between the health of the financial sector and the price level

in the economy. Only a bank that exposes itself to the risk of a run is able to create money.

In future work, tieing the risks of bank runs to the fundamentals of the financial system

will provide a framework for understanding the connections between the price stability and

financial stability mandates of central banks.
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Chapter 3

Latent Indices in Assortative

Matching Models 1

1Co-authored with Nikhil Agarwal



Assortative matching along a variety of dimensions has been well documented in

many matching markets. There has been growing interest in estimating the underlying

preferences that generate these patterns.2 This is an important step for quantitatively

evaluating economic questions such as equilibrium effects of policy interventions or changes

in market structure. However, a researcher often has access only to data on matches instead

of direct information on preferences and only on a limited set of characteristics. Unobserved

characteristics result in deviations from the central assortative tendency observed in the

data, and they can be important in understanding the distribution of preferences.

We study the identification and estimation of preferences in a large matching market in

which the attractiveness of agents to the other side of the market can be summarized using a

single dimensional index that aggregates an unobserved characteristic and multidimensional

observed characteristics. We assume that the matching is positive assortative along this

latent index. The positive assortative match is the unique pairwise stable match if utility

is non-transferable, but also if utility is transferable and the total surplus is supermodular.

While the single index model is canonical in the theoretical literature (see Becker, 1973), it is

clearly restrictive as it rules out heterogeneity in preferences. At the cost of this restriction,

compared to the large body of empirical work following Choo and Siow (2006), we present

a non-parametric approach to identification that not only allows for unobserved agent

characteristics that are valued by the other side,3 but that is also agnostic about whether

utility is transferable. This single-index assumption has been useful in empirical analyses of

the marriage market (see Chiappori et al., 2009, 2012, for example). The model may also

provide an approximation in labor or education markets in which workers or students

are primarily differentiated by skill and firms or colleges are primarily differentiated by

quality. Further, the insights and results from our analysis have proven useful to empirical

approaches in related models (see Agarwal, 2015; Vissing, 2016; Jiang, 2016; Agarwal, 2017).

2See Fox (2009) and Chiappori and Salanié (2015) for surveys.

3Choo and Siow (2006) assume that the (pre-transfer) utility of agent i for partner j is given by uij =

φ
(

xi, zj

)
+ εi

(
zj

)
, where xi and zj are observed. Therefore, characteristics of agent j that are not observed in

the data do not directly affect the utility of agent i.
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Estimates of the distribution of the latent index as a function of observables are useful for

the analysis of many economic questions. For instance, quantitatively evaluating the trade-

off for firms between workers’ experience or education and unobserved productivity, or the

trade-off for workers between wages and the value of amenities such as on-the-job training

may require estimates that account for unobserved characteristics. Similarly, evaluating the

consequences of a market reform (such as policies that place limits on college tuition) can

require estimating the distribution of latent indices on both sides of the market. Identifying

and estimating preferences of agents on both sides of the market may be a challenging

exercise because equilibrium matches are jointly determined by both sets of preferences:

when we see a student enrolling at a particular college, it need not be the case that the

college is her most preferred option because she may have not been accepted at a more

preferred institution.

We study these problems assuming that the available data are from a large market. This

approach is motivated by the fact that data from several matching markets with the same

underlying structure are rare compared to data from a few markets with many agents. For

example, public high school markets, colleges, the medical residency market, and marriage

markets have at least several thousand participating agents. For similar reasons, recent

papers in the theoretical matching literature have utilized large market approximations for

analyzing strategic behavior and the structure of equilibria.4 In our analysis, large market

approximations highlight and account for important interdependence between matches

within a market in the asymptotic analysis of our estimator.

Even with the stark restriction that preferences are homogeneous, our first result on

identification is negative. We show that the distribution of the latent index is not identified

from data from a single large market with one-to-one matches. Indeed, we construct

an example parametric family of models of one-to-one matching that are observationally

equivalent. This example illustrates that our non-identification result is not pathological.

Intuitively, the observed joint distribution of agents and their match partners, which we

4See Immorlica and Mahdian (2005); Kojima and Pathak (2009); Azevedo and Budish (2017), for example.
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refer to as sorting patterns, does not allow us to condition on unobservables. The non-

identification arises because unobservable characteristics of either side of the market could

be driving these sorting patterns. These results imply limitations on what can be learned

using data on one-to-one matches and guide the use of empirical techniques. For instance,

they weigh against estimating the distribution of the latent index in marriage markets using

data from a single market. Nonetheless, data from one-to-one matches may still be useful

for certain questions. We show that the relative value of various observed characteristics are

identified with one-to-one matches. However, this limits the scope of questions that may be

answered with such data.

In contrast to the non-identification result with one-to-one matches, we show that the

distribution of latent indices on both sides of the market is non-parametrically identified from

data on many-to-one matches. The key insight is that the same value of the unobservable

characteristic of an agent determines multiple matches for that agent. The formal result

requires that each agent on one side of the market is matched to at least two agents on the

other side, a requirement that is likely satisfied in many education and labor markets. To the

best of our knowledge, this difference between the empirical content of one-to-one matching

and many-to-one matching has not been previously exploited to obtain non-parametric

identification results of a model with unobserved characteristics. Our proof is based on

interpreting the matching model with two-to-one matches in terms of a measurement error

model (Hu and Schennach, 2008). This reinterpretation makes the additional empirical

content of many-to-one matches ex-post intuitive: the observable components of a worker’s

quality provide a noisy measure of the overall quality of her colleagues. As in measurement

error models, we use the repeated measurements made available when many workers match

with the same firm to identify the model.

We also use simulations from a parametrized family of models to illustrate the additional

identifying information available in many-to-one matches. Our simulations suggest that

moments that only use information available in sorting patterns are not able to distinguish

between a large set of parameter values. In the context of one-to-one matching, this is
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the only information observed in a dataset from a single large market. In contrast, our

simulations also suggest that additional moments constructed from many-to-one matching

can be used to distinguish parameter values that yield indistinguishable sorting patterns.

An objective function constructed from both sets of moments has a global minimum near

the true parameter. These simulations suggest that using such information is important in

empirical applications. For example, they suggest that moments such as the within-firm

variance in worker observables contain information about primitives beyond what can be

learned from the covariance between worker and firm observables. We therefore recommend

empirical strategies that use information from many-to-one matching, when available.5

We then study the asymptotic properties of a minimum distance estimator for a para-

metric model based on a criterion function that uses moments from many-to-one matching

as well as sorting patterns. As in the identification analysis, we develop an asymptotic

theory based on data from a single market with the number of agents growing large. This

approach requires us to deal with technical challenges that arise from the dependence of

each match on the characteristics of all agents in the market. We prove both consistency and
√

N−asymptotic normality of the estimator. For simplicity, we restrict attention to the case

with two-to-one matching. To our knowledge, ours is the first result on asymptotic theory

for an estimator in a single large matching market.

Our asymptotic theory requires us to confront the fact that the observed matches, as well

as the model predictions, are a non-linear function of the observables and unobservables

in the entire market. We separately analyze the sampling distribution of the moments in

the data and the map from the structural parameters to these moments. To prove a limit

theorem for the sampling distribution of the moments in the data, we use the fact that the

distribution of the observed characteristics of matched pairs depends only on the latent

index. Hence, the conditional distribution of the observables given the latent indices are

5If data from many-to-one matches is not available, it may be possible to use variation in market composition
to identify the distribution of latent indices. We are not aware of any formal results that show that such variation
is sufficient for identification. This approach may require assuming that the parameters governing the primitives
are constant across the markets.
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independent on the two sides of the market. This insight allows us to derive the asymptotic

distribution of the moments of the data.

Then, we study the model’s prediction for the moments as a function of the structural

parameters and the observables in the data. Analyzing this map is challenging because

the matches depend on the characteristics of all agents in the market. This generates

dependency that cannot be analyzed using standard empirical process techniques for i.i.d.

data (e.g. van der Vaart and Wellner, 2000). In particular, deriving the sensitivity of the

matches between extremely desirable or extremely undesirable agents to the parameter

requires controlling the tail behavior of the latent index. We make progress by first showing

that this map, ignoring the tails of the latent utilities, is smooth – specifically, Hadamard

differentiable – in the sampled observed characteristics. This allows us to use continuous

mapping theorems and the functional delta method to show convergence properties, except

at the tails. When the tails are negligible, the limit as the size of the tails we ignore goes to

zero yields large sample properties of the moment function.

The dependence inherent in the model also complicates the analysis of these tails. We

show that the tails are negligible by adapting a chaining argument from the empirical

process literature (Pollard, 2002), replacing a tail bound for i.i.d. data used in the existing

proof with a concentration of measure inequality (Boucheron et al., 2003) suitable to the

dependent data in our problem. This method allows us to prove the equicontinuity results

necessary for the limit theorem. For simplicity of exposition in the main text, the technical

regularity conditions on the primitives that justify this approximation are detailed in the

appendix. Finally, we use Monte Carlo simulations to study the property of a simulated

minimum distance estimator.

The paper starts with a brief discussion of the related literature, after which we present

the model (Section 3.1). Section 3.2 discusses identification with one-to-one and many-to-

one matching, Section 3.3 presents our asymptotic analysis of the estimator, and Section ??

presents Monte Carlo results. All proofs are in the Appendix.
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Related Literature: Most of the recent literature on identification and estimation of

matching games studies the transferable utility (TU) model, in which the equilibrium

governs the matches as well as the surplus split between the agents with quasi-linear

preferences for money (Choo and Siow, 2006; Sorensen, 2007; Fox, forthcoming; ?; Galichon

and Salanie, 2012; Chiappori et al., 2015, among others). The equilibrium transfers are such

that no two unmatched agents can find a profitable transfer in which they would like to

match with each other. The typical goal in these studies is to recover a single aggregate

surplus that determines the equilibrium matches. A branch of this literature, following

the work of Choo and Siow (2006), proposes identification and estimation of a transferable

utility model based on the assumption that each agent’s utility depends only on observed

characteristics and an unobserved taste shock drawn from a specified distribution. Using

this assumption, the papers propose estimation and identification of group-specific surplus

functions (Choo and Siow, 2006; Galichon and Salanie, 2012; Chiappori et al., 2015). A

different approach to identification in transferable utility models, due to Fox (forthcoming),

is based on assuming that the structural unobservables are such that the probability of

observing a particular match is higher if the total systematic, observable component of utility

is larger than an alternative match. Compared to these approaches, our study is restricted

to a single index model but incorporates both TU and NTU matching in a non-parametric

framework. We also allow for unobserved characteristics of the partner to affect agent

preferences and are interested in identifying the distribution of unobservable characteristics,

which are not considered in the maximum score approach by Fox (forthcoming).

In many applications, inflexible monetary transfers or counterfactual analyses that

require estimates of preferences for agents on both sides of the market motivate the use of a

non-transferable utility model (c.f. Roth and Sotomayor, 1992). Previous analysis of NTU

models have resulted in only partial identification. Hsieh (2011) follows Choo and Siow

(2006) in assuming that agents belong to finitely many observed groups and that agents

have idiosyncratic tastes for these groups. The main identification result in Hsieh (2011)

shows that the model can rationalize any distribution of matchings in this setting, implying
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that the identified set is non-empty. Menzel (2015) studies identification and estimation in a

non-transferable utility model in a large market where agent preferences are heterogeneous

due to idiosyncratic match-specific tastes with a distribution in the domain of attraction

of the Generalized Extreme Value (GEV) family and in which observable characteristics

have bounded support. Menzel (2015) finds that only the sum of the surplus of both sides

obtained from matching is identified from data on one-to-one matching. The result that

identification is incomplete with one-to-one matching is similar in spirit to our negative

result on identification. While these papers focus on the one-to-one matching case, our

results exploit data on many-to-one matches to non-parametrically identify preferences of

both sides of the market, although our results come at the cost of assuming homogeneous

preferences.

With the exception of Chiappori et al. (2012) and Galichon et al. (2014), previous models

are typically restricted to either non-transferable or transferable utility. The objective in

Galichon et al. (2014) is to generalize the Choo and Siow (2006) framework to models of

imperfectly transferable utility. Our framework is closer to that of Chiappori et al. (2012),

which studies a marriage market with positive assortative matching. They also assume a

single index model and allow for both transferable and non-transferable utility matching.

They show that the marginal rates of substitution between two observable characteristics is

identified using data on one-to-one matching. Our identification results with data on one-

to-one matching are consistent with their results, but may also explain why Chiappori et al.

(2012) may not have estimated the distribution of the latent index with their data. Specifically,

we show that a many-to-one matching market is needed for such identification. Agarwal

(2015) and Vissing (2016) use our insight on the information in many-to-one matching to

respectively estimate preferences in the market for medical residents and the market for oil

drilling contracts using simulated minimum distance estimators. This approach is different

from work by Logan et al. (2008) and Boyd et al. (2013), who propose techniques that use only

the sorting of observed characteristics of agents as given by the matches (sorting patterns) to

recover primitives. Our result on non-identification of a single-index model with data only
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on sorting patterns implies that a more general model with heterogenous preferences will

also not be identified. Therefore, our results suggest that point estimates obtained using

only information in sorting patterns may be sensitive to parametric assumptions.

A few empirical papers estimate sets of preference parameters that are consistent with

pairwise stability (Menzel, 2011; Uetake and Watanabe, 2013). The concern that preferences

need not be point identified with one-to-one matches does not necessarily apply to these

approaches. For example, Menzel (2011) uses two-sided matching to illustrate a Bayesian

approach for estimating a set of parameters consistent with an incomplete structural model.

Our results on non-identification and subsequent simulations that use information on

sorting patterns suggest that a rather large set of parameters are observationally equivalent.

While these results imply that the identified set may be large, these approaches may still be

informative for certain questions of interest.

Our finding that data from many-to-one matching is important in identification is

related to work by Fox (forthcoming, 2010) on many-to-many matching. In these papers,

many-to-many matching games allow identification of certain features of the observable

component of the surplus function when agents share some but not all partners. This allows

differencing the surplus generated from common match partners to learn valuations. In our

setting, many-to-one matching plays a different role in that it allows us to learn the extent to

which unobservable characteristics of each side of the market drive the observed patterns.

The results on identification with many-to-one matching are based on techniques for

identifying non-linear measurement error models developed in Hu and Schennach (2008).

These techniques have been applied to identify auction models with unobserved hetero-

geneity (Hu et al., 2013), and dynamic models with unobserved states (Hu and Shum, 2012).

To our knowledge, these techniques have not been previously used to identify matching

models.

Finally, we use a novel approach for dependent data to prove our limit theorems because

standard empirical process theories for i.i.d. data are not applicable in our context. This

feature of our model may be shared with other contexts, such as network formation models
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(c.f. Graham, 2017; Boucher and Mourifie, 2012; Chandrasekhar and Jackson, 2015; Leung,

2015). A common technique in the asymptotic analysis of network models is based on

assuming that dependence across links decays with a notion of distance between two nodes.

Our application of concentration of measure inequalities removes the need for an analogous

assumption in our model.

3.1 Model

We consider a two-sided matching market with one side labelled as workers and the other

labeled firms. Although these labels are suggestive of a labor market, the model may be

applied to other two-sided matching markets, including matching of students to schools,

and the marriage market. Our model does not presume a monetary transfer between the

two sides of the market, and will include both non-transferable and transferable utility cases.

We first describes the latent indices that will be the object of interest in our identification

and estimation analysis before discussing their interpretation in transferable and non-

transferable utility models. Finally, we discuss questions of interest that may be answered

in this framework.

3.1.1 Latent Indices

Most datasets have information on a limited number of characteristics on each side of the

market. Let the observable characteristics of worker i be xi and the observable characteristics

of firm j be zj. Given our focus on positive assortative matching, we posit two latent quality

indices, vi and uj, one for each side of the market. These indices simply order workers

and firms by quality and do not impose cardinal restrictions. For instance, firms may have

heterogeneous production functions that take human capital (vi) as an input. The latent

indices can depend on both observable characteristics as well as unobserved characteristics.

Specifically, we assume that worker i’s human capital index is given by the additively
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separable form

vi = h (xi) + ε i, (3.1)

where we set the location normalizations h (x̄) = 0 for some x̄, assume that ε is median zero,

and set the scale normalization |∇h (x̄)| = 1. Because an additively separable representation

of preferences is unique up to a positive affine transformation, the scale and location

normalizations are without loss of generality. These normalizations ensure that the latent

indices in our model are well defined.

The scalar unobservable ε i aggregates the effect of all relevant determinants worker

quality that are not observed in the dataset. Additive separability in ε i implies that the

marginal value of observable traits does not depend on the unobservable.

As for the model for the human capital index, we assume that quality of firm j is given

by

uj = g
(
zj
)
+ ηj, (3.2)

with the normalizations g (z̄) = 0, η is median zero and |∇g (z̄)| = 1. The quality of the

firm may reflect productivity differences or on-the-job amenities for workers. For instance,

one may also include wages in this model through one of the characteristics zj if they are

not negotiated during the matching process. This approach may be used to model medical

residency markets or colleges/schools in countries with non-negotiable tuition rates.

We make the following assumptions on the model:

Axiom 3.1 (i) ε and η are independent of X and Z respectively

(ii) ε and η have bounded, differentiable densities, fε and fη , with full support on R, and

non-vanishing characteristic functions

(iii) h (·) and g (·) are differentiable and have full support over R

(iv) The random variables h(X) and g(Z) admit bounded continuous densities fh and fg

Assumption 3.1 (i) assumes independence of the unobservables. On its own, inde-
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pendence is not particularly strong, but the restriction of additive separability makes this

restrictive. Additive separability with independence is commonly used in discrete choice

literature as it significantly eases the analysis. Assumption 3.1 (ii) requires that ε and η

have large support and imposes technical regularity conditions on their distributions that

will be useful in our identification analysis. The support conditions in Assumption 3.1 (iii)

ensures that the observables can trace out the distribution of ε and η in the tails as well, and

Assumption 3.1 (iv) requires at least one covariate to be sufficiently smooth while others

may be discrete.

3.1.2 Positive Assortative Matching

The composition of the market is described by a pair of probability measures, µX,ε and

µZ,η . Here, µX,ε is the joint distribution of workers’ observable traits x ∈ χ ⊆ Rkx and

unobservable traits ε ∈ R. Likewise, µZ,η is the joint distribution of firms’ observable traits

z ∈ ζ ⊆ Rkz and unobservable traits η ∈ R. This formulation allows us to consider large

but finite economies, as well as a continuum limit in a unified notational framework. For

instance, an economy with N agents on each side can be represented with the measures

µ(X,ε)N
= 1

N ∑n
i=1 δ(Xi ,εi) and µ(Z,η)N

= 1
N ∑n

j=1 δ(Zj,ηj), where δY is the dirac delta measure at

Y.

A one-to-one match is a probability measure µ on (χ×R)× (ζ ×R) with marginals

µX,ε and µZ,η respectively. The measure µ could be used to represent a continuum limit as

well as a finite-economy match. The traditional definition of a finite-market match used in

Roth and Sotomayor (1992) is based on a matching function µ∗ (i) 7→ J ∪ {i} , where J is

the set of firms. For an economy of size N, with probability 1, such a function defines a

unique counting measure of the form µN = 1
N ∑N

i,j=1 δ(Xi ,εi ,Zj,ηj), where δ(Xi ,εi ,Zj,ηj) > 0 only

if i is matched to j in a finite sample. When η and ε admit a density, in a finite economy,

(z, η) (respectively (x, ε)) identifies a unique firm (respectively worker) with probability 1.6

6In addition to a traditional matching function, in a finite sample our definition also allows for fractional
matchings. However, such realizations are not observed in typical datasets on matches.
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A many-to-one match with M partners on one side is defined analogously as a measure µ

on (χ×R)M × (ζ ×R).

The match µ is positive assortative if there do not exist two (measurable) sets SI ⊆ χ×R

and SJ ⊆ ζ×R in the supports of µX,ε and µZ,η respectively, such that
∫

SI
(h (X) + ε) dµX,ε >∫

SI
(h (X) + ε) dµ (·, SJ) and

∫
SJ
(g (Z) + η) dµZ,η >

∫
SJ
(g (Z) + η) dµ (SI , ·). This def-

inition considers two potential sets of agents SI and SJ . If
∫

SI
(h (X) + ε) dµX,ε >∫

SI
(h (X) + ε) dµ (·, SJ), then the expected value of the latent indices of agents in SI are

larger than those matched with SJ . The analogous inequality for agents in SJ yields the

second condition. Hence, there are no such sets if these inequalities are not simultaneously

satisfied for any pair SI and SJ , and the matching is assortative.7

This formulation presents a unified definition for assortativity in continuum markets as

well as markets with a finite number of agents. In the finite market case, consider a match

in which an agent with characteristics (x, ε) (respectively (x′, ε′)) is matched with an agent

with characteristics (z, η) (respectively (z′, η′)). Now, consider singleton sets SI = {(x, ε)}

and SJ = {(z′, η′)}. The inequalities above imply that either h (x) + ε ≤ h (x′) + ε′ or that

g (z′) + η′ ≤ g (z) + η. Therefore, there are no such pairs of sets in the finite markets if the

conditions of our definition are satisfied. In what follows, we simply assume that the market

is characterized by positive assortative matching. As we discuss in the next few sections,

this assumption encompasses both transferable and non-transferable utility models.

Further, our model requires that the matching only depends on the latent index. This

assumption is vacuous in finite samples because ties are zero-probability events. Shi and

Shum (2014) formalize this as "random matching" in a continuum version of the Beckerian

marriage model. They note that without this assumption, the distribution of observed

characteristics of matched partners is indeterminate. Our consistency results imply that

7We do not consider unmatched agents for two reasons. First, different equilibrium notions matching (TU
or NTU) impose different restrictions on preferences for unmatched agents. Using the implications of positive
assortative matching alone allows us to be agnostic about the nature of transfers. Second, many datasets do
not have information on unmatched agents. For example, typical employer-employee matched datasets do not
contain the number of job openings, and Agarwal (2015) does not have information on medical residents that
were not placed at residency programs.
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the moments of the finite sample data naturally converge to a population analog with this

property. Therefore, the data generating process we consider has the following property in

a positive assortative match:

Remark 3.1 A positive assortative match µ has support on (x, ε, z, η) only if FU (u (z, η)) =

FV (v (x, ε)) , where FU and FV are the cumulative distributions of u and v respectively. Further, the

latent index is a sufficient statistic for the distribution of match partners.

Hence, the firm with the q-th quantile position of value to the worker is matched with

the worker with the q-th quantile of desirability to the firm. The dependence only on the

latent index, in the one-to-one case, implies that µX,ε|Z,η = µX,ε|Z′,η′ if g (Z) + η = g (Z′) + η′

and µZ,η|X,ε = µZ,η|X′,ε′ if h (X) + ε = h (X′) + ε′. Our paper studies identification and

estimation of the latent utility indices using data from a matching market with this property.

As described below, it turns out that positive assortative matching on v and u can result

from both non-transferable and transferable utility models.

Non-transferable Utility (NTU) Matching

Models of matching markets in which transfers between the parties are prohibited or

restricted are commonly used in the theoretical literature (c.f. Roth and Sotomayor, 1992).

Motivating examples include marriage markets, public schooling, and colleges. In such a

model, the latent indices vi and uj are interpreted as representing the ordinal preference

relation for their match partners. Because these indices are ordinal, the framework allows for

each firm j to have a separate production function Φj (v) as long as Φj is strictly increasing

in v. In the many-to-one matching case, a focus of this paper, we will assume that Φj is

increasing in each of its components. Specifically, Φj (v1, v2) is increasing in both v1 and v2

when a firm is matched with two workers.

The typical equilibrium assumption is that of pairwise stability, which makes two

restrictions. First, there is no worker-firm pair such that both agents prefer matching with

each other to their current match (where the firm can fire a currently matched worker, if

76



necessary). Second, no worker or firm is matched with an unacceptable partner. Existence

of a pairwise stable match follows in a finite market because preferences are responsive (Roth

and Sotomayor, 1992) and uniqueness follows from alignment of preferences as discussed in

Clark (2006) and Niederle and Yariv (2009). It is easy to see that the unique pairwise stable

match is positive assortative on the latent indices vi and uj. Given our focus on positive

assortative matching, we assume that all workers and firms are acceptable to the other side.

Although the models are referred to as non-transferable utility models, the model can

incorporate transfers that are not simultaneously determined with the matching. In this

case, one of the observables includes the salary offered by program j. Estimating the latent

index allows one to measure the willingness to pay for various on-the-job amenities by

assuming a functional form, say

uj = zjβ + wj + ηj. (3.3)

For instance, Agarwal (2015) uses a similar model to quantify the value for various attributes

of medical residency programs such as size, prestige, and patient mix.

An important restriction in the latent index framework is that agents have homogeneous

ordinal preferences over their match partners. While the theoretical literature assumes very

general preferences when studying the existence of stable matchings, formal identification

and estimation analysis is yet to incorporate significant heterogeneity in preferences.

Transferable Utility (TU) Matching

Our latent index framework fits well into the classical Beckerian model of the marriage

market. This matching model posits men and women differentiated by a one-dimensional

characteristics that split a surplus from marriage given by Φ
(
uj, vi

)
. A matching is pairwise

stable if there are transfers tij (possibly negative), such that no man-woman pair find it

mutually beneficial to agree to a transfer and match with each other. As is well known, the

unique pairwise stable match is positive assortative on u and v if Φ
(
uj, vi

)
is supermodular.

This elegant model has received a considerable amount of attention, and patterns of positive
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assortative matching observed along age, income, and education in various marriage markets

have been well documented.

A thrust of our paper is the consideration of many-to-one matching. In this case, we

assume separability of the surplus function across matches in order to maintain positive

assortative matching on the latent indices. Specifically, we assume that the surplus generated

by firm with index uj that is matched with workers vi and vk is given by

Φ
(
vi, vk, uj

)
= Φ̃

(
vi, uj

)
+ Φ̃

(
vk, uj

)
, (3.4)

where Φ̃· is supermodular. The assumption rules out complementarities across matches but

retains positive assortativity in a pairwise stable match. It also assumes that the multiple

matches for an agent are symmetric. For example, in the worker-firm context, the model

is best suited for a market in which firms are hiring multiple workers with the same job

description.

3.1.3 Unobserved Characteristics

The lack of perfect positive assortative matching on observable characteristics may be

attributable to unaccounted preference heterogeneity or unobserved characteristics. These

unobserved characteristics are important for rationalizing the data. Previous approaches

have typically focussed on the identification of observable components of utility, often under

parametric assumptions on the distribution of unobserved characteristics.8 For instance,

Chiappori et al. (2012) study a single index model like ours and obtain identification of the

8For instance, Galichon and Salanie (2012) generalize the model by Choo and Siow (2006) and show that

Φ̄xizj is identified for a separable surplus function of the form Φij = Φ̄xizj + εi

(
zj

)
+ ηj (xi) with known

distributions of εi

(
zj

)
and ηj (xi). These models therefore allow for unobserved preferences for observed

characteristics, but do not allow for unobserved characteristics. Menzel (2015) studies an NTU model with a
light restriction on tail behavior of the unobservables to identify the sum of the match surpluses accruing to
each side due to observables.
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marginal rates of substitution

∂h (x) /∂x1

∂h (x) /∂x2
and

∂g (z) /∂z1

∂g (z) /∂z2
.

These quantities can be used to determine the trade-offs between observables, such as the

trade-off between a worker’s education and experience. Some economic questions, however,

may require an analysis of unobservables. For example, one may be interested in knowing

how much of a worker’s human capital is explained by experience and/or education.

This exercise may require decomposing the variance of human capital into observable and

unobservable components. Similarly, questions about compensating differentials in labor

markets require valuing on-the-job amenities or training, some components of which may

not be observed.

While several objects of interest can be measured through these marginal rates of

substitution between observed characteristics, many economic questions require a deeper

understanding of how agents’ preferences respond to interventions in matching markets. For

example, one may be interested in the effect of a subsidy on college tuition on matches that

occur in equilibrium. To predict the counterfactual matches, one needs to measure the effect

of this subsidy on the relative desirability of various colleges to students. Changes in the

relative desirability of colleges depend on the monetary value students place on unobserved

college characteristics. Therefore, an important objective in this paper is to understand

when the distributions of ε and η are identified, which in turn implies identification of the

probabilities

P (h (x1) + ε1 > h (x2) + ε2|x1, x2) and P (g (z1) + η1 > g (z2) + η2|z1, z2) . (3.5)

These choice probabilities are also fundamental in the analysis of counterfactual changes in

market structure, market composition, and other policy-relevant counterfactuals.

It is important to note that the latent indices we analyze, u and v, are ordinal measures

of the desirability of agents in the market. Identification of the total surplus function in the

transferable utility case, Φ (u, v), or a cardinal measure of utilities in the non-transferable
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utility case will require additional assumptions. For example, one may simply interpret

the latent index as a utility measure in the NTU case or assume a particular structure for

the surplus function in the TU case if this is desirable for the empirical application being

considered. We avoid these assumptions for simplicity and to retain generality with respect

to these choices. In applications where one of the observed traits presents a natural measure

of value, our indices can be interpreted in units of this metric for value.

3.2 Identification

This section starts by showing that data from a single matching market are sufficient for

identifying certain features of preferences. Specifically, one can identify the indices h (x) and

g (z). We then show that data from one-to-one matches is unable to identify the distribution

of the latent indices if there are unobserved characteristics on both sides of the market. Next,

we show that data from many-to-one matching restores full identification of the distribution

of preferences. Finally, we illustrate these results using simulations.

3.2.1 Sorting Patterns, Indifference Curves and a Sign-restriction

We now study what can be learned from the joint distribution µXZ of observed firm and

worker traits. This is the marginal of µ on the observables, and it summarizes all information

available in data from one-to-one matching. It allows the assessment of the sorting of worker

observable traits to firm observables. We therefore refer to features of this distribution as

"sorting patterns." As our first result shows, these features of the data allow us to identify

the indices h (x) and g (z) up to monotonic transformations.

Lemma 3.1 Under Assumption 3.1, the level sets of the functions h (·) and g (·) are identified from

data on a one-to-one match, i.e. µXZ is observed.

Proof. See Appendix B.1.1.

The result states that we can determine whether or not two worker types x and x′ are

equally desirable from the sorting patterns observed in a one-to-one matching market (hence,
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also if many-to-one matches are observed). Intuitively, if two worker types have equal values

of h (·), then the distributions of their desirability to firms are identical. Consequently, the

distribution of firms they match with are also identical. In a positive assortative match,

under the additive structure of equations (3.1) and (3.2) and the independence of unobserved

traits, the distribution of firm observable types these workers are matched with turns out to

be identical. Conversely, if two worker types are matched with different distributions of firm

observables, they cannot be identical in observable quality. This result is similar to those in

Chiappori et al. (2012) that show that differentiability of h (·) and g (·) implies identification

of marginal rates of substitution, which are pinned down by indifference curves.

While the level sets of h (·) and g (·) are known, we cannot yet determine h (·) and

g (·) even up to positive monotone transformations. In particular, we cannot tell whether a

given worker trait is desirable or not. Intuitively, assortative matching between, say, firm

size and worker age, may result from either both traits being desirable or both traits being

undesirable. The next result shows that a sign restriction is sufficient for identifying h (·)

and g (·) up to positive monotone transformations.

Axiom 3.2 (i) The functions h (x) and g (z) are strictly increasing in their first arguments

(ii) Further, for each x−1 = (x2, . . . , xkx) and z−1 = (z2, . . . , zkz), h (x1, x−1) and g (z1, z−1)

have full support on R

Part (i) imposes a sign restriction that requires that the latent index is strictly increasing

in at least one observable characteristic. It is often natural to impose this restriction in

matching markets. For example, it is reasonable to argue that the desirability of workers is

increasing in education, holding all else fixed. Given such an assumption, our next result

shows that h (·) and g (·) can be determined up to positive monotone transformations. Part

(ii) makes a large support assumption that allows ordering all the level sets of h (x).

Proposition 3.1 If Assumptions 3.1 - 3.2 are satisfied then, h (·) and g (·) are identified up to

positive monotone transformations.
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Proof. Identification of h and g up to a positive monotone transformation follows immedi-

ately from Lemma 3.1 and Assumption 3.2.

The sign restriction allows us to order the level sets of h and g.

3.2.2 Limitations of Sorting Patterns

As mentioned earlier, typical datasets do not contain all relevant characteristics of agents

on both sides of the market. The dispersion around a central positive assortative trend is a

manifestation of these unobservables. Remark 3.1 reflects the importance of unobservables

as workers with characteristic (x, ε) are matched with firms with characteristics (z, η) if

h (x) = F−1
V ◦ FU (g (z) + η)− ε. (3.6)

This expression indicates that there are two sources of unobservables that result in imperfect

assortativity, namely η and ε. Without these unobservables, a researcher would observe

perfect positive assortativity along the estimated indices h (x) and g (z).

A question remains about whether we can learn about the distribution of both these

unobservables with data on one-to-one matches, which only contains information in FXZ.

The following stylized example shows that the answer is negative. A wide range of

parameters could be consistent with the data, even a highly parametric case.

Example 3.1 Let h (x) = x and g (z) = z. Assume that X, Z are distributed as N (0, 1) and

ε, η are distributed as N
(
0, σ2

ε

)
and N

(
0, σ2

η

)
respectively. The distributions of U and V are

therefore N
(

0, 1 + σ2
η

)
and N

(
0, 1 + σ2

ε

)
respectively. It is straightforward to show that X|V =

v ∼ N
(

1
1+σ2

ε
v, σ2

ε

1+σ2
ε

)
, that U|Z ∼ N

(
Z, σ2

η

)
, and that F−1

V ◦ FU =
[

1+σ2
ε

1+σ2
η

]1/2
. Therefore, the

distribution of X|Z = z is given by the distribution of

1
1 + σ2

ε

F−1
V ◦ FU (z + η) + ε1,

where ε1 ∼ N
(

0, σ2
ε

1+σ2
ε

)
and η ∼ N

(
0, σ2

η

)
, independently of X and Z. Hence, X|Z = z is
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distributed as

N
(

z
κ1/2 , 1− 1

κ

)
, (3.7)

where κ =
(
1 + σ2

ε

) (
1 + σ2

η

)
.

The distribution in equation (3.7) is identical for all pairs
(
σε, ση

)
with

(
1 + σ2

η

) (
1 + σ2

ε

)
= κ.

Thus, the family of matching models with
(

1 + σ2
η

) (
1 + σ2

ε

)
= κ are observationally equivalent

when only data from one-to-one matches is available.

The example above shows that data on one-to-one matches cannot be used to identify

the distribution of the two latent indices in the presence of unobservables on both sides

of the market. This highlights a central limitation of data from a market with one-to-one

matching such as the marriage market.9 Section 3.2.4 illustrates this limitation using a

simulated objective function.

The failure of identification can be understood by considering the case in which ε ≡ 0.

Equation (3.6) reduces to

h (x) = F−1
V ◦ FU (g (z) + η) .

This expression shows that when ε ≡ 0, the model is mathematically identical to the

well-studied transformation model (Ekeland et al., 2004; Chiappori and Komunjer, 2008). Ap-

pendix C.1.1 uses results from Chiappori and Komunjer (2008) to formally derive conditions

under which any distribution FXZ can be rationalized.

These results imply that a model with unobservables on both sides is under-identified.

This non-identification is despite imposing additional regularity conditions. Hence, em-

pirical strategies to estimate the distribution of latent preferences using information in

sorting patterns may be suspect. Logan et al. (2008) and Boyd et al. (2013) employ empirical

strategies that only use sorting patterns to estimate preferences for models that include

preference heterogeneity. Our non-identification result suggests that point estimates from

9This observation suggests one reason why Chiappori et al. (2012) do not estimate the distribution of the
latent index in their paper on the marriage market.
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this approach, including for models more general than the single index model, may be sen-

sitive to parametric assumptions. Such non-identification is problematic for counterfactuals

relying on the probability of choices. For instance, the result implies that the data can be

rationalized in a model in which any worker with trait x is preferred to any worker with

trait x′ if h (x) > h (x′) , even if this is not the case.

3.2.3 Identification from Many-to-One Matches

We now show that data from many-to-one matching markets can be used to identify the

model. Consider a dataset in which there are a large number of firms, and each firm has two

workers hired at the same position. Therefore, we may arbitrarily label the slots occupied

by each worker as slots 1 and 2, independently of the firm and worker characteristics. The

data are summarized by the joint distribution FX1,X2,Z, where X1 and X2 are the observed

characteristics of the two workers employed at a firm with observable characteristic Z.

To see why multiple matches per partner can be useful for identification, note that

the observed worker/firm characteristics present noisy measures of the true quality of the

partners matched with each other. Remark 3.1 implies that the following two equalities when

workers with characteristics (x1, ε1) and (x2, ε2) are matched with a firm with characteristics

(z, η):

h (x1) = F−1
V ◦ FU (g (z) + η)− ε1

h (x2) = F−1
V ◦ FU (g (z) + η)− ε2.

Agarwal (2015) uses this insight and discusses it in the context of the medical residency

market. The argument is that if the medical school quality of a resident is highly predictive

of human capital, then the variation within programs in human capital should be low.

If unobservables such as test scores and recommendations are important, then residency

programs should be matched with medical residents from medical schools of varying quality.

Our result below formally shows the usefulness of data from many-to-one matching. We

therefore recommend the use of this information when available.
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Theorem 3.1 Under Assumptions 3.1 - 3.2, the functions h (·), g (·) and the densities fη and fε

are identified when data from two-to-one matching is observed, i.e. FX1,X2,Z is observed.

Proof. See Appendix B.1.2.

The proof proceeds by interpreting our model in terms of a nonlinear measurement

error model and employing techniques in Hu and Schennach (2008) to prove identification.

To understand the analogy, note that the distribution observables of matched partners

depends only on the latent index. Positive assortative matching implies that all partners

have the same quantile of the latent index. Therefore, to write the joint distributions of

the observables given a quantile q, we need to consider the conditional densities of the

observables X1, X2 and Z given q. For expositional simplicity, assume that these densities

exist. Therefore, the joint distribution fX1,X2,Z,q can be factored as follows:

fX1,X2,Z,q (x1, x2, z, q) = fX1|q (x1|q) fX2|q (x2|q) fZ|q (z|q) fq (q) ,

where fq (q) = 1 for q ∈ [0, 1] and 0 otherwise because quantiles are uniformly distributed,

fX1|q (x1|q) is the conditional density at x1 given that h (x1) + ε = F−1
V (q), and fX2|q (x2|q)

and fZ|q (z|q) are defined analogously. Integrating this quantity with respect to q yields the

observable quantity

fX1,X2,Z (x1, x2, z) =
∫ 1

0
fX1|q (x1|q) fX2|q (x2|q) fZ|q (z|q) dq.

Intuitively, this simplification arises from the latent index assumption and positive

assortative matching on v and u. Mathematically, this equation is identical to the nonlinear

measurement error model of Hu and Schennach (2008), with the latent variable q governing

the distribution of the observables.10 This formulation clarifies the intuition that the

observable characteristics of matched partners are noisy signals of the underlying latent

index, and it allows us to identify the distributions of X and Z conditional on the quantile q.

We then identify the model using the scale and location normalizations on h, g, fε, fη , and

10A technical difference with Hu and Schennach (2008) is that we replace Assumptions 1 and 5 in their paper
with implications of Assumptions 3.1. See appendix for details.
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Assumption 3.1.

While these results are derived in the specific context of a latent index model with

no preference heterogeneity, they highlight the fact that data from many-to-one matches

has additional empirical information that cannot be obtained from one-to-one matches.

This insight has enabled and guided the empirical analyses of more flexible models of the

medical match (Agarwal, 2015) and the market for oil drilling rights (Vissing, 2016). An

extension of our analogy of a matching model to a measurement error model has also been

used to prove identification results for and study a labor market model with data on worker

productivity (Jiang, 2016).

3.2.4 Importance of Many-to-one Match Data: Simulation Evidence

The identification results presented in the previous section relied on observing data from

many-to-one matching, and they show that the model is not identified using data from

one-to-one matches. In this section, we present simulation evidence from a parametric

version of the model to elaborate on the nature of non-identification and to illustrate the

importance of using information from many-to-one matching in estimation. To mimic

realistic empirical applications, our simulations have firms with varying capacity instead of

the fixed number of workers per firm.

We simulate a dataset using known parameters and then compare objective functions of

various minimum distance estimators. Specifically, we compare an objective function that

exclusively uses moments based on sorting patterns to another that also uses information

from many-to-one matching. We model the latent indices as

vi = xiα + ε i

uj = zjβ + ηj,

where xi, zj, ε i, ηj are distributed as standard normal random variables. These parametric

assumptions are identical to those used in Example 3.1. We generate a sample using J = 500

firms. Each firm j has capacity qj drawn uniformly at random from {1, . . . , 10}. The

86



number of workers in the simulation is N = ∑ cj. A pairwise stable match µ : {1, . . . , N} →

{1, . . . , J} is computed for α = 1 and β = 1. Using the same dataset of observables and firm

capacities, the variables ε i and ηj are simulated S = 1000 times, and a pairwise stable match

µθ
s can be computed for each s ∈ {1, . . . , S} as a function of θ = (α, β). We then compute

two sets of moments

ψ̂ov =
1
N ∑

i
xizµ(i) (3.8)

ψ̂S
ov (θ) =

1
S ∑

s

1
N ∑

i
xizµθ

s (i) (3.9)

and

ψ̂w =
1
N ∑

i

xi −
1

|µ−1 (µ (i))| ∑
i′∈µ−1(µ(i))

xi′

2

(3.10)

ψ̂S
w (θ) =

1
S ∑

s

1
N ∑

i

xi −
1∣∣∣(µθ

s )
−1

(µθ
s (i))

∣∣∣ ∑
i′∈(µθ

s )
−1

(µθ
s (i))

xi′

2

. (3.11)

The first set, ψ̂ov and ψ̂S
ov (θ), captures the degree of assortativity between the characteristics

x and z in the pairwise stable matches in the generated data and as a function of θ. For a

given α > 0 (likewise β > 0), this covariance should be increasing in β (likewise α). The

second set, ψ̂w and ψ̂S
w (θ) captures the within-firm variation in the characteristic x. If the

value of α is large, we can expect that workers with very different values of x are unlikely

to be of the same quantile. Hence, the within-firm variation in x will be small. Using

both sets of moments, we construct an objective function Q̂S (θ) =
∥∥ψ̂− ψ̂S (θ)

∥∥
W , where

ψ̂ =
(
ψ̂ov, ψ̂w

)′, ψ̂S (θ) =
(
ψ̂S

ov (θ) , ψ̂S
w (θ)

)′ and W indexes the norm.

Figure ??(a) presents a contour plot of an objective function that only penalizes deviations

of ψ̂ov from ψ̂S
ov (θ). This objective function only uses information on the sorting between x

and z to differentiate values of θ. We see that pairs of parameters, α and β, with large values

of α and small values of β yield identical values of the objective function. These contour

sets result from identical values of ψ̂S
ov (θ), illustrating that this moment cannot distinguish

between values along this set. In particular, the figure shows that the objective function has
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a trough containing the true parameter vector with many values of θ yielding similar values

of the objective function.

In Figure ??(b), we consider an objective function that only penalizes deviations of ψ̂w

from ψ̂S
w (θ). The vertical contours indicate that the moment is able to clearly distinguish

values of α because the moment ψ̂S
w (θ) is strictly decreasing in α. However, the shape of the

objective function indicates that this moment cannot distinguish different values of β.

Finally, the plot of an objective function that penalizes deviations from both ψ̂w and ψ̂ov

(Figure ??(c)) shows that we can combine information from both sets of moments to identify

the true parameter. Unlike the other two figures, this objective function displays a unique

minimum close to the true parameter. Together, Figures ??(a)-(c) illustrate the importance of

using both these types of moments in estimating our model.

3.3 Estimation

This section develops an estimator for the latent index model considered above. We

then study the limit properties of this estimator and derive conditions under which the

estimator is consistent and asymptotically normal. As in the identification analysis, we

consider a dataset from a single large matching market. This choice is motivated by the

fact that researchers typically have data on a single (or few) matching markets with many

participants.11 This includes applications in labor markets, marriage markets, and education

markets. The analysis of asymptotic properties in a single large market is technically

challenging because the characteristics of any individual’s match partner depends on the

composition of the entire market. To our knowledge, consistency or asymptotic theory has

not been previously established for parametric models, even with a single latent index.12

There are several technical insights that allow us to solve this problem. First, we use the

11In cases where many matching markets are observed, it may not always be appropriate to assume that the
underlying preference parameters are the same across all markets.

12Even proving consistency is non-trivial. For example, ? show that the canonical correlation estimator
suggested by Becker (1973) is inconsistent. A previously circulated version of this paper (Agarwal and Diamond,
2014) shows consistency of the estimator studied here under weaker conditions on the primitives.
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property that we observe a positive assortative match along a single latent index. This allows

us to re-write the dependence of the matches in terms of the latent indices. While restrictive

on the nature of primitives, our model allows for a large parametric class of models and

both transferable and non-transferable utility. Second, the problem can be decomposed into

separately analyzing two distinct pieces. The first problem is to show limit theorems for the

observed moments of the data as the market size increases. Separately, we must show a

uniform limit theorem for the map from structural parameters to these moments. Third, we

find that analyzing this map by first ignoring the behavior in the tails of the latent indices

and then showing that the tails are negligible is the most tractable approach. Finally, to

ensure that tails are negligible, we adapt a chaining argument from the empirical process

literature, using a concentration of measure inequality to replace tail bounds for i.i.d. data

that do not apply in our setting.

In this section, we assume that the latent indices of workers for firms and vice versa are

known up to a finite dimensional parameter θ ∈ Θ ⊆ RKθ . The latent indices are generated

by

u (z, η; θ) = g (z; θ) + η

v (x, ε; θ) = h (x; θ) + ε,

where g : ζ ×Θ→ R and h : χ×Θ→ R are known functions that are Lipschitz continuous

in θ for each x and z with constants gLC (z) and hLC (x) respectively. We assume that the

densities fε and fη are known, and ε and η are independent of x and z respectively.

We adopt a parametric approach for several reasons. First, our identification argument

does not directly suggest a non-parametric estimator. Second, our focus is on solving issues

that arise from the dependent data nature of the problem. Relaxing the parametric assump-

tion would further complicate the analysis. Finally, computational burden in empirical

applications have often prevented extremely flexible functional forms from being imple-

mented. Similar parametric assumptions are common in the discrete choice literature where

one typically assumes a normal or an extreme value type I distribution for the unobservable
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ε.

We assume that the data contains a sample of J firms, each with c̄ slots, and consider the

properties of an estimator as J → ∞. The number of workers is N = c̄ J. The characteristics

of each worker are sampled i.i.d. from the measure µX,ε and the characteristics of the firm

are sampled i.i.d. from µZ,η . For simplicity of analysis and notation, we set c̄ = 2.

3.3.1 A Minimum Distance Estimator

We propose an estimator based on a minimum distance criterion function. Specifically, let

Ψ (x1, x2, z) ∈ RKΨ be a bounded vector-valued moment function, i.e. ‖Ψ‖∞ < ∞, where x1

and x2 are the observed characteristics of two workers and z is the observed characteristics

of the firm. We assume that Ψ is symmetric in x1 and x2 because the data do not make a

distinction between two workers hired at the same firm (for the same position). The data

consist of matches between N = 2J workers and J firms. Therefore, we observe N/2 triples{(
x2j−1, x2j, zj

)}N/2
j=1 , which can be used to construct empirical moments of the form

ψN =
1

N/2

N/2

∑
j=1

Ψ
(
x2j−1, x2j, zj

)
. (3.12)

The moments discussed in equations (3.8) and (3.10) are given by particular choices for Ψ.

We now describe the value of the moment as a function of θ. Instead of writing the

sampling process as drawing pairs of (xi, ε i) and
(
zj, ηj

)
, it will be convenient to rewrite

the sampling distribution via Bayes’ rule as sampling N and J draws from the population

distributions of vi and ui respectively, and then sampling xi|vi and zj|uj from their respective

conditional distributions. This sampling process has an identical distribution for (xi, ε i)

and
(
zj, ηj

)
as sampling directly from their respective distributions. This rewriting uses the

feature that the final matches depend on the latent indices rather than directly on observable

and unobservable traits. Further, conditional on the latent indices, the observable traits of

two workers matched to the same firm or different firms are independent. Therefore, given

the utilities v1, v2, and u, at parameter vector θ and any two measures mX and mZ for the
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observable traits, the value of the moment is:

ψ̃ [mX, mZ] (v1, v2, u; θ) =
∫

Ψ (X1, X2, Z) fX|v1;θ (X1) fX|v2;θ (X2) fZ|u;θ (Z) dX1dX2dZ,

where fX|v1;θ (X) and fZ|u;θ (Z) are the conditional densities (w.r.t. mX and mZ respectively)

of the observable traits at θ given latent indices v and u, and mX and mZ. These distributions

govern the observed traits of the workers and firms at any given quality.

In the limiting large market match, firms with the q-th quantile of firm quality are

matched with workers on the q-th quantile of the worker quality distribution. Hence, the

expected value of the moment of the q-th quantile match is given by ψ̃ evaluated at

(v1, v2, u) =
(

F−1
V;θ,mX

(q) , F−1
V;θ,mX

(q) , F−1
U;θ,mZ

(q)
)

,

where FV;θ,mX (v) and FU;θ,mZ (u) are respectively the cumulative distributions of the worker

and firm qualities (given θ, mX and mZ). This quantity must be integrated to obtain the

moment as a function of the parameter θ:

ψ [mX, mZ] (θ) =
∫ 1

0
ψ̃ [mX, mZ]

(
F−1

V;θ,mX
(q) , F−1

V;θ,mX
(q) , F−1

U;θ,mZ
(q) ; θ

)
dq, (3.13)

where FV;θ,mX (v) =
∫ v
−∞ Fε (v− h (X; θ)) dmX, FU;θ,mZ (u) =

∫ u
−∞ Fη (u− g (Z; θ)) dmZ. This

expression can be evaluated at any pair of measures mX and mZ governing the distribution

of observed traits. Of particular interest are the quantities ψ [µX, µZ] (θ) and ψ [µXN , µZN ] (θ),

which correspond to the values at the population and empirical measures of observables

traits respectively. In this notation, the population analog of ψN in equation (3.12) is

therefore ψ [µX, µZ] (θ) evaluated at θ0. For simplicity of notation, when referencing the

moment function at populations measures µX and µZ, we will write ψ (θ) = ψ [µX, µZ] (θ).

Similarly, when referencing their empirical analog µXN and µZN , we will write ψN (θ) =

ψ [µXN , µZN ] (θ).
13

13ψN (θ) can be approximated by first drawing ε and η to simulate FN,V;θ = FV;θ,mXN
and FN,U;θ = FU;θ,mZN

,
and then using the expression in equation (3.13). One can also create a simulation analog of ψN (θ) that uses a
second simulation step to approximate the integral. More specifically, we may independently sample from the
conditional distributions of X and Z given the measures µXN and µZN and simulated values of vi and uj.
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We now define our minimum distance estimator:

θ̂N = arg min
θ∈Θ
‖ψN − ψN (θ)‖W , (3.14)

where ψN are the moments computed from the sample as given in equation (3.12),

ψN (θ) are computed from the observed sample of firms and workers as a function of

θ, ‖ψN − ψN (θ)‖W =
[
(ψN − ψN (θ))′W (ψN − ψN (θ))

]1/2
and W is a positive definite

symmetric weight matrix. This minimum distance estimator finds the value of θ that best

predicts the features of the data summarized by the moment function. For example, one can

specify Ψ to summarize the overall sorting patterns and the many-to-one match moments

used previously to illustrate the importance of using this information.

The next section presents conditions under which the estimator above is consistent and

asymptotically normal.

3.3.2 Limit Properties

In this section, we outline a fairly standard set of convergence conditions on ψN − ψN (θ)

and show that they imply limit properties for the estimator in equation (3.14). We will

verify these conditions under large market asymptotics. These results are presented in the

subsequent sections. We follow this organization to highlight the main ideas in the proof

and clarify the contribution. We separate the conditions needed for consistency, which are

weaker than those necessary for asymptotic normality of our estimator.

We require the following properties for the moment function at the population distribu-

tion of observable and unobservable traits.

Axiom 3.3 (i) For any ε > 0, there exists a δ > 0 such that ‖ψ (θ)− ψ (θ0)‖W < δ⇒ ‖θ − θ0‖ <

ε.

(ii) ψ (θ) is continuously differentiable at θ0 with an invertible Jacobian, ψ′ (θ0) .

Part (i) assumes that the distance in the population ‖ψ (θ)− ψ (θ0)‖W is zero only if

θ = θ0. It implies that ψ (θ) identifies the parameter θ0. Further, it requires that parameter
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values outside a neighborhood of the true value cannot yield a distance arbitrarily close

to 0.14 This assumption, along with the convergence condition below, will guarantee

consistency of our estimator. Part (ii) is used to prove that the estimator is asymptotically

normal. The commonly made assumption that the Jacobian at the limit is invertible allows

us to use Taylor approximations.

We will derive limiting properties of the estimator by showing conditions under which

the following properties are satisfied:

Condition 1 (i) (ψN − ψ (θ0))− (ψN (θ)− ψ (θ)) converges in probability to 0, uniformly in θ.

(ii) a.
√

N (ψN − ψN (θ0)) converges in distribution to N (0, Σ)

b. for every sequence {bN} of positive numbers that converges to 0,

√
N sup
‖θ−θ0‖≤bN

‖(ψN (θ)− ψ (θ))− (ψN (θ0)− ψ (θ0))‖∞ = op (1) .

The first conditions would follow from a uniform law of large numbers. The second

condition would follow from a central limit theorem and stochastic equicontinuity. These

results are not obvious a priori because the matches depend on the composition of the entire

market. The following sections prove these results under large market asymptotics. Along

with Assumption 3.3, these conditions imply consistency and asymptotic normality of our

estimator:

Theorem 3.2 Suppose that the parameter space Θ is compact θ0 lies in the interior of Θ.

(i) If Assumption 3.3(i) and Condition 1(i) are satisfied, then θ̂N converges in probability to θ0.

(ii) If Assumption 3.3 and Condition 1 are satisfied, then

√
N
(

θ̂N − θ0

)
→ N (0, Ω) ,

Ω =
(
ψ′ (θ0)

′ C′Cψ′ (θ0)
)−1

ψ′ (θ0)CΣC′ψ′ (θ0)
′ (ψ′ (θ0)

′ C′Cψ′ (θ0)
)−1

and W = C′C.

14A sufficient condition for this requirement is that θ ∈ Θ is compact, ψ (θ) is continuous and ψ (θ) =
ψ (θ0)⇒ θ = θ0.
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Proof. Part (i) follows from the arguments in Newey and McFadden (1994), Theorem 2.1.

We use Theorem 3.3 in Pakes and Pollard (1989) to show part (ii). Let GN (θ) (in the notation

of Pakes and Pollard (1989)) by given by (ψN − ψN (θ))′ C′. Assumption 3.3(ii) and the

definition of the estimator imply requirements (i), (ii) and (v) of Theorem 3.3 in Pakes and

Pollard (1989). Requirement (iii) of Theorem 3.3 in Pakes and Pollard (1989) follows from

Condition 1(ii)b. Requirements (iv) in Theorem 3.3 of Pakes and Pollard (1989) follow from

Condition 1(ii)a.

This theorem shows that Assumption 3.3 and Condition 1 imply consistency and asymp-

totic normality in our setting. Therefore, the main difficulty in obtaining limit properties of

our estimator is verifying Condition 1. This is not straightforward for two reasons. First, the

triples
(

x2j−1, x2j, zj
)

in the expression for our sample moments ψN in equation (3.12) are not

sampled independently. This dependence occurs because their distribution is determined

by the observed and unobserved characteristics of the entire sample. Second, equation (3.13)

shows that ψN (θ) = ψ [µXN , µZN ] (θ) is also a function of the entire sample of observed

characteristics.

To prove the required properties, we split the argument into two conceptually separate

pieces. The first piece studies the distribution of sample moments ψN , and the second

studies properties of the sample moment function ψN (θ). There are two reasons why this

distinction helps analyze their limit distributions. First, the observed moments, ψN , are a

function of both the sampled observed and unobserved characteristics because the realized

assortative match depends on the latent indices of all agents in the market. On the other

hand, ψN (θ), is a function only of observed traits because equation (3.13) shows that it is an

integral with respect to the (known) distribution of unobservables. Second, ψN depends

only on θ0, while ψN (θ) is a stochastic process that must be studied uniformly in θ. The

first reason complicates the analysis of the distribution of ψN , while the second reason

complicates the analysis of ψN (θ).15

15An additional complication for analyzing the limit distribution of
√

N (ψN − ψN (θ)) is that our conver-
gence results must be joint with the empirical processes on X and Z.
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Before proceeding, we formally show that is it sufficient to treat ψN and ψ [mX, mZ] (θ)

as scalars.

Proposition 3.2 (i) Suppose that for each k ∈ {1, . . . , KΨ}, the k-th component of (ψN − ψ (θ0))−

(ψN (θ)− ψ (θ)) converges in probability to 0, uniformly in θ, then (ψN − ψ (θ0)) −

(ψN (θ)− ψ (θ)) converges in probability to 0, uniformly in θ.

(ii) Suppose that for any a ∈ RKΨ ,
√

N (ψN − ψN (θ0)) · a converges in distribution to

N (0, a′Σa), and for every sequence {bN} of positive numbers that converges to 0,

√
N sup
‖θ−θ0‖≤bN

|[(ψN (θ)− ψ (θ))− (ψN (θ0)− ψ (θ0))] · a| = op (1) ,

then, Condition 1(ii) is satisfied.

Proof. Part (i) follows from the definition of convergence in probability. To verify part

(ii), note that Condition 1(ii) a. follows from the Cramer-Wold theorem. Condition 1(ii) b.

follows from the fact that

√
N sup
‖θ−θ0‖≤bN

‖(ψN (θ)− ψ (θ))− (ψN (θ0)− ψ (θ0))‖∞

= max
a∈{e1,... ,eKΨ}

√
N sup
‖θ−θ0‖≤bN

|[(ψN (θ)− ψ (θ))− (ψN (θ0)− ψ (θ0))] · a| ,

where {e1, . . . , eKΨ} are the standard basis vectors of RKΨ .

The following subsections derive regularity properties under which condition Condition

1 is satisfied, assuming that Ψ is a scalar-valued function. We first analyze the limiting

properties of ψN , and then we analyze the properties of the function ψN (θ).

3.3.3 Convergence of the Data Generating Process

The first challenge is to study the large sample properties of the sample moments, ψN in

equation (3.12). The primary technical difficulty arises from the dependence of the observed

matches (X1, X2, Z) on the observable (and unobservable) characteristics of all agents in the

market. We make progress by re-writing the sampling process as one in which the utilities

u and v are drawn first. This allows us to condition on the matches on latent indices in the
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data. The observed characteristics of the matched agents are then sampled conditional on

these draws of the latent indices. This sampling process, although identical to drawing the

characteristics directly from µX,ε and µZ,η , allows for a more tractable approach to proving

limit properties of the moments. The proof technique is based on using the triangular array

structure implied by this process: the individual components of the triple (X1, X2, Z) are

independent conditional on the indices drawn.

Specifically, our approach for obtaining large sample properties of ψN is based on the

following observations. The observed characteristics X1, X2, and Z are a sample from

µX|v1
, µX|v2

, and µZ|u, where v1, v2,and u are the latent indices for these agents. The

expected value of Ψ (X1, X2, Z) given the latent indices is therefore ψ̃ [µX, µZ] (v1, v2, u; θ0).

Equation (3.13) shows that ψ [µX, µZ] (θ0) is the integral of ψ̃ [µX, µZ] (v1, v2, u; θ0) over the

population values of matched latent indices. This allows us to show that, ψN , which is the

sample average of Ψ (X1, X2, Z) over the matches in the data, approaches the population

quantity ψ [µX, µZ] (θ0).

Below, we present assumptions under which we will prove our result.

Axiom 3.4 (i) a. ψ̃ [µX, µZ] (v1, v2, u; θ0) is Lipschitz continuous in v1, v2 and u

b. The random variables ε and η have continuous density with full support

(ii) a. The derivative of ψ̃ [µX, µZ]
(

F−1
V;θ (q1) , F−1

V;θ (q2) , F−1
U;θ (q3) ; θ

)
with respect to q =

(q1, q2, q3) is bounded uniformly in q, θ

b. The random variables ε and η have continuous density with full support on R

c. The conditional distributions of X (respectively Z) given any v (respectively u) are not

degenerate

Part (i) presents conditions under which we will show that ψN converges to ψ [µX, µZ] (θ0)

in probability. Part (i) a. requires Lipschitz continuity of ψ̃ [µX, µZ]. This regularity condition

implies that the conditional expectation of Ψ is smooth with respect to the latent indices. A

more primitive condition is presented in Appendix C.3.1, which shows that the condition
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follows from bounds on the densities of X, ε and Z, η and their first derivative.16 This

regularity condition on the expectation of Ψ given the latent indices allows us to approximate

the value of ψ̃ at the sampled latent indices for each of the matches. Part (ii) b. is a weak

regularity condition on the distribution of the unobservables.

Part (ii) presents stronger assumptions, which we will use to derive the asymptotic

distribution of
√

N (ψN − ψ [µX, µZ] (θ0)). Part (ii) a. is analogous to (i) a., but places

stronger restrictions on the sensitivity of ψ̃ with respect to the quality of the match. The

stronger assumption ensures that ψ̃ is not extremely sensitive to tail behavior. Parts (ii) b.

and c. are weak regularity conditions.

Our first result shows that the empirical analog in equation (3.12) converges at the true

parameter θ0 to ψ.

Proposition 3.3 (i) If Assumption 3.4(i) is satisfied, then ψN − ψ (θ0) converges in probability to

0.

(ii) If Assumption 3.4(ii) is satisfied, then for any µX− and µZ− Donsker classes ΓX and ΓZ of

bounded functions on X and Z respectively,
√

N (ψN − ψ (θ0))
√

N (µXN − µX)
√

N/2 (µZN − µZ)

 ,

where
√

N (µXN − µX) and
√

N/2 (µZN − µZ) are respectively empirical processes indexed by ΓX

and ΓZ, converges to a mean zero Gaussian process (GΨ, GX, GZ) with covariance kernel V (given

in Appendix B.2.1).

Proof. See Appendix B.2.1.

The result derives the large sample properties of ψN − ψ [µX, µZ] (θ0) based on

the Assumption 3.4. The proof is based on studying the large sample properties of

E [ψN |v1, . . . , vN , u1, . . . , uN/2], the expectation of ψN given the sample of latent utilities

16See Assumption C.2 and Lemma C.12.
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v1, . . . , vN and u1, . . . , uN/2. Because the observed characteristics are drawn indepen-

dently given these latent indices, we are able to characterize the large sample properties of

ψN − E [ψN |v1, . . . , vN , u1, . . . , uN/2]. Next, we show that E [ψN |v1, . . . , vN , u1, . . . , uN/2] ap-

proximates ψ (θ0) by appealing to the regularity and smoothness conditions in Assumption

3.4. We do this by relying on smoothness of ψ̃ and noting that the empirical quantiles of the

latent indices approximate the limit quantiles. Therefore, the key to the result is that the

dependence across the observed matches is only through the latent indices, and that the

matching is assortative on these indices.

3.3.4 Differentiability of the Moment Function

The large sample results on ψN require evaluating the moment function only at θ0. To study

the limit properties of the estimator defined in equation (3.14), we need to understand the

properties of the sample moment function. In this section, we derive conditions under

which this map is smooth. This will allow us to use a continuous mapping theorem and the

functional delta method for our results.

The approach is based on separately analyzing the behavior of ψN (θ) away from the tails

of the latent index distribution, then showing that the tails are negligible. This approach is

convenient because deriving the asymptotic distribution of the tails is technically challenging.

Specifically, we will show that the functional

ψδ [µX, µZ] (θ) =
∫ 1−δ

δ
ψ̃ [µX, µZ]

(
F−1

V;θ (q) , F−1
V;θ (q) , F−1

U;θ (q)
)
(θ) dq

is smooth in µX, µZ for all δ ∈ (0, 1/2). The integral above, when evaluated at δ = 0, is equal

to ψ [µX, µZ] (θ) in equation. We require the following weak assumption on the distribution

of unobservable traits:

Axiom 3.5 (i) fε and fη are bounded and have continuous, bounded first derivatives. Further, fε

and fη are bounded away from zero on any compact interval of R.

(ii) h (X; θ) and g (Z; θ) are uniformly µX− and µZ− integrable over all θ ∈ Θ
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Part (i) imposes a weak regularity condition that allows us to show that the conditional

distributions of X and Z given the latent indices v and u vary smoothly with θ, except at

extreme quantiles of the latent index distribution. This assumption is satisfied for the most

commonly used parametric forms in applied analysis. Part (ii) places a weak restriction on

the tail behavior of h (X; θ) and g (Z; θ) by assuming that, uniformly across θ, with high

probability, these random variables belong to a compact set.

To formally state our result on smoothness of ψδ, we need to define a metric in which to

measure distances in the domain and range of ψδ. We use the Banach space of vector-valued

functions of θ ∈ Θ endowed with the sup-norm, denoted by LΘ
∞, as the range. We use LΓ

∞

for the domain, which is the space of measures (mX, mZ) endowed with the sup-norm over

the class of sets Γ. We let Γ = ΓX ∪ ΓZ, where ΓX is a class of sets that includes

1. Ψ (x1, x2, z) fε

(
F−1

V;θ (q)− h (x1; θ)
)

fε

(
F−1

V;θ (q)− h (x2; θ)
)

fη

(
F−1

U;θ (q)− g (z; θ)
)

and

Ψ (x1, x2, z) f ′ε
(

F−1
V;θ (q)− h (x1; θ)

)
fε

(
F−1

V;θ (q)− h (x2; θ)
)

fη

(
F−1

U;θ (q)− g (z; θ)
)

indexed by (x1, z, q , θ)17

2. Fε (v− h (x; θ)), fε (v− h (x; θ)) and f ′ε (v− h (x; θ)) indexed by (v, θ)

3. 1 {c1 ≤ x ≤ c2} indexed by c1 and c2
18

and ΓZ is a class of sets that includes

1. Ψ (x1, x2, z) fε

(
F−1

V;θ (q)− h (x1; θ)
)

fε

(
F−1

V;θ (q)− h (x2; θ)
)

fη

(
F−1

U;θ (q)− g (z; θ)
)

and

Ψ (x1, x2, z) fε

(
F−1

V;θ (q)− h (x1; θ)
)

fε

(
F−1

V;θ (q)− h (x2; θ)
)

f ′η
(

F−1
U;θ (q)− g (z; θ)

)
indexed by (x1, x2, q, θ)

2. Fη (u− g (z; θ)) , fη (u− g (z; θ)) and f ′η (u− g (z; θ)) indexed by (u, θ)

3. 1 {c1 ≤ z ≤ c2} indexed by c1 and c2

17Since the functions considered are symmetric in x1 and x2, we have implicitly also included the analogous
class of functions, indexed by (x2, z, q, θ).

18If a and b are vectors, we say that a ≤ b if each element of a is weakly less than each element of b.
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Therefore, we will consider smoothness of the map ψδ : LΓ
∞ → LΘ

∞. The class Γ defines a

norm in which we measure distances between two pairs (mX, mZ) and (m′X, m′Z). The first

two groups of sets in ΓX and ΓZ arise from Taylor expansions of terms in the expression

for ψδ. The last two sets are intersections of half-spaces. To use the continuous mapping

theorem and the functional delta method, we will need to ensure that the empirical measures

µXN and µZN converge to the population measures with distance measured in this norm.

The required properties on the primitives to ensure that ΓX and ΓZ are respectively µX−

and µZ− Donsker classes are stated formally in the Online Appendix (Proposition C.2).

We are now ready to state the main results in this section.

Proposition 3.4 If Assumption 3.5 is satisfied, then for each δ ∈
(
0, 1

2

)
, ψδ : LΓ

∞ → LΘ
∞ is

Hadamard differentiable tangentially to the space of bounded uniformly continuous functions at

(µX, µZ). The Hadamard derivative at (µX, µZ) in the direction (GX, GZ) is ∇(GX ,GZ)ψ
δ [µX, µZ]

(given in Appendix C.2.2).

Proof. See Appendix B.2.2 for a sketch of the proof and Appendix C.2.2 for details.

This result formalizes the idea that the small perturbations of the measures µX, µZ result

in small deviations in the value of the moments (outside the tails) as a function of θ. This is

useful because we expect the empirical distributions of X and Z to be close to µX and µZ

in a large sample. Assuming that tails are negligible, the result implies that the moment

function in a large sample approximates the population moment function. The next section

uses this result and Proposition 3.3 to verify Condition 1.

3.3.5 Verifying Condition 1

We now put together the results in the previous sections to show that Condition 1 is satisfied.

First we show part (i), which implies consistency of the estimator by Theorem 3.2(i). We

will use a continuous mapping theorem and the following assumption for this result:

Axiom 3.6 (i) ΓX and ΓZ are respectively µX- and µZ- Glivenko Cantelli.
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This assumption implies that the expectations of functions in ΓX and ΓZ evaluated at the

empirical measures µXN and µZN respectively converge (in probability) to the population

values. Further, the Glivenko-Cantelli theorem implies that the convergence is uniform

over all functions in these classes. The assumption is satisfied under weak conditions on

the elements of ΓX and ΓZ.19 We now formally state that Condition 1(i) is satisfied for our

model and sketch the proof.

Proposition 3.5 (i) If Assumptions 3.4(i), 3.5 and 3.6(i) are satisfied, then ψN − ψN (θ) converges

in probability to ψ− ψ (θ), uniformly in θ.

Proof. See Online Appendix C.2.3, part (i).

The result shows that the difference between the empirical distance function ψN − ψN (θ)

and the population analog ψ − ψ (θ) converges to zero (in probability) as the sample

increases in size. The proof is proceeds by using the triangle inequality to observe that this

difference is at most |ψN − ψ|+ |ψN (θ)− ψ (θ)|. Proposition 3.3 implies that the first term,

which measures the distance between the empirical and population values of the moments,

converges in probability to zero. The second term, which measures the distance of the

sample moment function to the population function at θ, is ψ0 [µXN , µZN ] (θ)−ψ0 [µX, µZ] (θ)

by definition. To show that this term also converges in probability to zero (uniformly in

θ), we approximate ψ0 with ψδ. Specifically, ψN (θ) and ψ (θ) can be approximated by

ψδ [µXN , µZN ] (θ) and ψδ [µX, µZ] (θ), where the error is of the order of δ because Ψ is

bounded. Proposition 3.4 and Assumption 3.6 imply, by the continuous mapping theorem,

that ψδ [µXN , µZN ] (θ) converges in probability to ψδ [µX, µZ] (θ) uniformly in θ. Together,

these observations imply the result.

The approach to a limit theorem that verifies Condition 1(ii) is similar in spirit,

but technically more demanding. Proposition 3.3 provides a result for the term
√

N (ψN − ψ). Our next challenge is to prove a limit theorem for
√

N
(
ψN
(
θ̂
)
− ψ

(
θ̂
))

,

where θ̂ is our estimator. We do this by approximating
√

N
(
ψN
(
θ̂
)
− ψ

(
θ̂
))

with

19Proposition C.2 formally states conditions on primitives under which ΓX and ΓZ are Donsker classes.
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√
N
(
ψδ

N (θ0)− ψδ (θ0)
)
. The functional delta method and Proposition 3.4 imply that asymp-

totic distribution of
√

N
(
ψδ (θ0)− ψδ

N (θ0)
)

is given by ∇Gψδ (θ0) =
(
∇ψδ ◦ G

)
(θ0), where

G is a mean zero Gaussian process on LΓ
∞. The remaining term is the approximation

error
(
∇Gψδ −∇Gψ0) (θ0). Therefore, we need to ensure that the errors in approximating

∇Gψ0 (θ0) with ∇Gψδ (θ0) and approximating
√

N (ψN (θ)− ψ (θ)) in a neighborhood of θ0

with
√

N
(
ψδ

N (θ0)− ψδ (θ0)
)

are negligible. Ensuring that these errors do not affect the limit

distribution of
√

N ((ψN − ψ)− (ψN (θ)− ψ (θ))) requires tighter controls of the tails than

our consistency result. Specifically, the limit theorem requires us to replace Assumption

3.6(i) with the following stronger requirement:

Axiom 3.7 (ii) a. ΓX and ΓZ are respectively µX- and µZ- Donsker.

b. for every sequence {bN} of positive numbers that converges to 0,

√
NE sup

‖θ−θ0‖≤bN

∣∣∣(ψN (θ)− ψ (θ))−
(

ψδ
N (θ)− ψδ (θ)

)∣∣∣
converges to zero as δ→ 0 and N → ∞

c. for fixed δ ∈
(
0, 1

2

)
and every sequence {bN} of positive numbers that converges to 0,

sup
‖θ−θ0‖≤bN

∣∣∣∇Gψδ (θ)−∇Gψδ (θ0)
∣∣∣

converges in probability to zero as N → ∞

d.
(
∇Gψδ −∇Gψ0) (θ0) converges in probability to zero as δ→ 0.

Part a. strengthens Assumption 3.6(i) to allow a functional central limit theorem over

the classes ΓX and ΓZ. Parts b. and d. are technical assumptions that ensure that tails

are negligible. Part b. controls the rate at which the dependence of the moment function

on the tails vanishes with the sample size. Part d. assumes that tails have a negligible

contribution to the dependence of the moment function on perturbations of the data.

Part c. assumes that the process ∇Gψδ (θ) is well-behaved in a neighborhood of θ0. For

completeness, the Online Appendix derives primitive conditions under which each of these

requirements are satisfied. Specifically, Theorem C.2.2 shows that smoothness conditions

and bounds on the tail behavior of the primitives imply these requirements. Assumption
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c. is relatively straightforward to verify and is based on showing that ∇Gψδ (θ) have

sample paths continuous in θ by bounding the L2 covering numbers of the related Gaussian

process. Assumption d. follows from showing that an upper bound on the variance of(
∇Gψδ −∇Gψ0) (θ0) converges to 0 as δ→ 0. Verifying assumption b. is the most difficult

technical aspect of proving our limit theorem and requires relatively novel proof techniques.

The difficulty in verifying assumption b follows from the fact that
√

N (ψN (θ)− ψ (θ))

is a nonlinear function of the empirical measures (µXN , µZN ). While the functional

delta method is a conceptually straightforward approach to proving a limit theorem for
√

N
(
ψδ

N (θ)− ψδ (θ)
)

with δ ∈ (0, 1) , showing that the tails are negligible requires a proof

by first principles. Although direct computations play a large part in this proof, the concep-

tual core is a modification of the method of chaining with adaptive truncation exposited by

Pollard (2002), where it is used to prove Ossiander’s bracketing limit theorem for empirical

processes. Our proof technique follows a similar approach as Pollard (2002) by similarly

approximating Θ using finite subsets of increasing size and similar truncation techniques.

After a suitable truncation, the moment generating function of the increments of an empiri-

cal process can be bounded using techniques that apply to sums of independent random

variables. Because the increments of (ψN (θ)− ψ (θ)) have no simple expression, we use

the concentration of measure inequality of Boucheron et al. (2003) in order to get the needed

bound on the moment generating function. This application of an abstract concentration

of measure inequalities within the broader context of a chaining argument may be a more

generally useful technique for proving functional limit theorems. This approach is necessary

due to the dependent data nature of our problem, which makes standard empirical process

techniques for i.i.d. data inapplicable. This feature of our model may be shared with other

contexts such as network formation models.

The control of tail behavior implied by these results allow us to verify Condition 1(ii).

Formally, we have:

Proposition 3.6 (ii) If Assumptions 3.4(ii), 3.5 and 3.6(ii) are satisfied, then Condition 1(ii) is

satisfied.

103



Proof. See Appendix C.2.3, part (ii).

As discussed earlier, the basic ideas are similar to the consistency result proved earlier,

with a more technically demanding method for handling the approximation in the tails.

Proposition 3.5 shows Condition 1 for our model. Therefore, we can use Theorem 3.2 to

assure consistency and asymptotic normality of the minimum distance estimator.

3.4 Conclusion

This paper provides results on the identification and estimation of preferences from data

from a matching market with positive assortative matching on a latent index when data

only on matches are observed. Our results apply to both transferable and non-transferable

utility models of matching. We show that using information available in many-to-one

matching is necessary and sufficient for non-parametric identification if data on a single

large market is observed. These identification results use insights from the analysis of

non-linear measurement error models. Intuitively, the observable characteristics of the

multiple agents with the same match partner can be seen as noisy measures of the quality

of the agents in the match.

We then prove consistency and
√

N−asymptotic normality of an estimator for a para-

metric class of models. Our limit theorems are based on several insights in this model.

First, we use the fact that the matches are determined by the latent indices and that the

observables are conditionally independent given these indices. Second, we show that the

moment function is smooth in the distribution of observables, except at the extreme quan-

tiles of the latent index. Third, we show that approximating this function by ignoring the

tails has a negligible effect on the asymptotic distribution of the estimator using a general

concentration of measure inequality for dependent data. Finally, we present Monte Carlo

evidence on a simulation-based estimator.

There are several avenues for future research on both identification and estimation for

similar models. While we show that it is necessary to use information from many-to-one

matching for identification with data on a single large market, it may also be possible to
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use variation in the characteristics of participants across markets for identification. This can

be particularly important for the empirical study of marriage markets. Our results are also

restricted to a single latent index model on each side of the market. Extending this domain

of preferences is particularly important. A treatment of heterogeneous preferences on both

sides of the market may be of particular interest, but it is likely technically challenging. It

may be particularly difficult to analyze both transferable and non-transferable utility models

in a single framework. Finally, we have also left the exploration of computationally more

tractable estimators for future research.

105



References

Adrian, T., Etula, E. and Muir, T. (2014). Financial intermediaries and the cross-section of
asset returns. Journal of Finance, 69 (6), 2557– 2596.

Agarwal, N. (2015). An empirical model of the medical match. American Economic Review,
105 (7), 1939–1978.

— (2017). Policy analysis in matching markets. American Economic Review, Papers and Proceed-
ings, 107 (5), 246–250.

— and Diamond, W. (2014). Identification and estimation in two-sided matching markets.
Cowles Foundation Discussion Paper No. 1905.

Allen, F. and Gale, D. (1988). Optimal security design. Review of Financial Studies, 1 (3),
229–263.

Anderson, G. F. (1996). What Does Not Explain the Variation in the Direct Costs of Graduate
Medical Education. Academic Medicine, 71 (2), 164–9.

Azevedo, E. M. and Budish, E. (2017). Strategyproofness in the Large. Chicago Booth, mimeo.

Bailey, J. M. (2010). Health Care Reform, What’s in it? Rural Communities and Medical Care.
Tech. rep., Center for Rural Affairs.

Bajari, P., Fox, J. T., Kim, K. I. and Ryan, S. P. (2009). The Random Coefficients Logit Model
Is Identified.

Baker, M., Bradley, B. and Taliaferro, R. (2014). The low-risk anomaly: A decomposition
into micro and macro effects. Financial Analysts Journal, 70 (2), 43–58.

—, Hoeyer, M. F. and Wurgler, J. (2016). The risk anomaly tradeoff of leverage. working
paper.

Banerjee, A. and Maskin, E. (1996). A walrasian theory of money and barter. Quarterly
Journal of Economics, 111 (4), 955–1005.

Bansal, R. and Coleman, W. J. (1996). A monetary explanation of the equity premium,
term premium, and risk-free rate puzzles. Journal of Political Economy, 104 (6), 1135–1171.

Barnish, K., Miller, S. and Rushmore, M. (1997). The new leveraged loan syndication
market. Journal of Applied Corporate Finance, 10 (1), 79–88.

106



Becker, G. S. (1973). A Theory of Marriage: Part I. Journal of Political Economy, 81 (4), 813 –
46.

— (1975). Human Capital: A Theoretical and Empirical Analysis, with Special Reference to
Education, 2nd ed. New York: National Bureau of Economic Research, Inc.

Berentsena, A., Camera, G. and Waller, C. (2007). Money, credit, and banking. Journal of
Economic Theory, 135 (1), 171–95.

Berg, T. and Gider, J. (forthcoming). What explains the difference in leverage between
banks and non-banks? Journal of Financial and Quantitative Analysis.

Bernanke, B., Bertaut, C. C., Demarco, L. P. and Kamin, S. B. (2011). International capital
flows and the return to safe assets in the united states, 2003-2007. Financial Stability Review,
15, 13–26.

Berry, S. T., Levinsohn, J. and Pakes, A. (1995). Automobile Prices in Market Equilibrium.
Econometrica, 63 (4), 841 – 890.

— and Pakes, A. (2007). The Pure Characteristics Demand Model. International Economic
Review, 48 (4), 1193–1225.

Black, F. (1972). Capital market equilibrium with restricted borrowing. Journal of Business,
45 (3), 444–455.

Blundell, R. and Powell, J. (2003). Endogeneity in Nonparametric and Semiparametric
Regression Models. In M. Dewatripont, L. Hansen and S. Turnovky (eds.), Advances in
Economics and Econometrics, 8, pp. 312–357.

Boucher, V. and Mourifie, I. (2012). My Friend Far Far Away: Asymptotic Properties of
Pairwise Stable Networks. SSRN Electronic Journal.

Boucheron, S., Lugosi, G. and Massart, P. (2003). Concentration inequalities using the
entropy method. The Annals of Probability, 31 (3), 1583–1614.

Boyd, D., Lankford, H., Loeb, S. and Wyckoff, J. (2013). Analyzing the Determinants of
the Matching Public School Teachers to Jobs: Estimating Compensating Differentials in
Imperfect Labor Markets. Journal of Labor Economics, 31 (1), 83–117.

Breusch, T. S. and Pagan, A. R. (1979). A Simple Test for Heteroscedasticity and Random
Coefficient Variation. Econometrica, 47 (5), 1287 – 94.

Bulow, J. and Levin, J. (2006). Matching and Price Competition. The American Economic
Review, 96 (3), 652 – 668.

Caballero, R. J. and Farhi, E. (forthcoming). The safety trap. Review of Economic Studies.

Calvo, G. (1988). Servicing the public debt: The role of expectations. American Economic
Review, 78 (4), 647–61.

Chandrasekhar, A. G. and Jackson, M. O. (2015). A Network Formation Model Based on
Subgraphs.

107



Chiappori, P.-A., Iyigun, M. and Weiss, Y. (2009). Investment in Schooling and the Marriage
Market. American Economic Review, 99 (5), 1689–1713.

— and Komunjer, I. (2008). Correct Specification and Identification of Nonparametric
Transformation Models. Columbia University, mimeo.

—, Oreffice, S. and Quintana-Domeque, C. (2012). Fatter Attraction: Anthropometric and
Socioeconomic Matching on the Marriage Market. Journal of Political Economy, 120 (4),
659–695.

— and Salanié, B. (2015). The Econometrics of Matching Models. Journal of Economic
Literature, 54 (3), 832–861.

—, Salanié, B. and Weiss, Y. (2015). Partner Choice and the Marital College Premium. CEPR
Discussion Paper No. DP10403.

Chodorow-Reich, G. (2014). Effects of unconventional monetary policy on financial institu-
tions. Brookings Papers on Economic Activity, pp. 155–204.

Choo, E. and Siow, A. (2006). Who Marries Whom and Why. Journal of Political Economy,
114 (1), 175–201.

Christakis, N. A., Fowler, J. H., Imbens, G. W. and Kalyanaraman, K. (2010). An
Empirical Model for Strategic Network Formation.

Clark, S. (2006). The Uniqueness of Stable Matchings. Contributions in Theoretical Economics,
6 (1), 1–28.

Csorgo, M. and Revesz, P. (1978). Strong Approximations of the Quantile Process. The
Annals of Statistics, 6 (4), 882–894.

Dang, T. V., Gorton, G. and Holmstrom, B. (2013). Ignorance, debt and financial crises.
working paper.

—, —, — and Ordonez, G. (2017). Banks as secret keepers. American Economic Review,
107 (4), 1005–1029.

DeAngelo, H. and Stulz, R. M. (2015). Liquid-claim production, risk management, and
bank capital structure: Why high leverage is optimal for banks. Journal of Financial
Economics, 116 (2), 219–236.

DeMarzo, P. (2005). The pooling and tranching of securities: A model of informed interme-
diation. Review of Financial Studies, 18 (1), 1– 35.

— and Duffie, D. (1999). A liquidity-based model of security design. Econometrica, 67 (1),
65–99.

Diamond, D. (1984). Financial intermediation and delegated monitoring. Review of Econom,
51 (3), 393–414.

— and Dybvig, P. (1983). Bank runs, deposit insurance, and liquidity. Journal of Political
Economy, 91 (3), 401–19.

108



— and Rajan, R. (2001). Liquidity risk, liquidity creation, and financial fragility: A theory
of banking. Journal of Political Economy, 109 (2), 287–327.

Dudley, R. M. (2014). Uniform Central Limit Theorems. Cambridge University Press.

Dunford, N. and Schwartz, J. T. (1971). Linear Operators. New York: Wiley.

Ekeland, I., Heckman, J. J. and Nesheim, L. (2004). Identification and Estimation of Hedonic
Models. Journal of Political Economy, 112 (S1).

Fox, J. T. (2009). Structural Empirical Work Using Matching Models. In S. N. Durlauf and
L. E. Blume (eds.), New Palgrave Dictionary of Economics, online edn.

— (2010). Identification in matching games. Quantitative Economics, 1 (2), 203–254.

— (forthcoming). Estimating Matching Games with Transfers. Quantitative Economics.

Frazzini, A. and Pedersen, L. (2014). Betting against beta. Journal of Financial Economics,
111 (1), 1–25.

Friedman, M. and Schwartz, A. (1963). A Monetary History of the United States. Princeton
University Press.

Gale, D. and Shapley, L. S. (1962). College admissions and the stability of marriage. The
American Mathematical Monthly, 69 (1), 9–15.

Galichon, A., Kominers, S. D. and Weber, S. (2014). Costly Concessions: An Empirical
Framework for Matching with Imperfectly Transferable Utility.

— and Salanie, B. (2012). Cupid’s Invisible Hand: Social Surplus and Identification in
Matching Models. Columbia University, mimeo.

Gilchrist, S. and Zakrajsek, E. (2012). Credit spreads and business cycle fluctuations.
American Economic Review, 102 (4), 1692–1270.

Goldstein, I. and Pauzner, A. (2005). Demand-deposit contracts and the probability of
bank runs. Journal of Finance, 60 (3), 1293–1327.

Gorton, G. and Pennacchi, G. (1990). Financial intermediaries and liquidity creation.
Journal of Finance, 45 (1), 49–71.

Graham, B. S. (2017). An Econometric Model of Link Formation with Degree Heterogeneity.
Econometrica, 85 (4), 1033–1063.

Hanson, S. G., Shleifer, A., Stein, J. and Vishny, R. W. (2015). Banks as patient fixed-
income investors. Journal of Financial, 117 (3), 449–469.

Hsieh, Y.-W. (2011). Understanding Mate Preferences from Two-Sided Matching Markets:
Identification, Estimation and Policy Analysis. University of Southern California, mimeo.

Hu, Y., McAdams, D. and Shum, M. (2013). Identification of first-price auctions with
non-separable unobserved heterogeneity. Journal of Econometrics, 174 (2), 186–193.

109



— and Schennach, S. M. (2008). Instrumental Variable Treatment of Nonclassical Measure-
ment Error Models. Econometrica, 76 (1), 195–216.

— and Shum, M. (2012). Nonparametric identification of dynamic models with unobserved
state variables. Journal of Econometrics, 171 (1), 32–44.

Huang, J.-Z. and Huang, M. (2012). How much of the corporate-treasury yield spread is
due to credit risk? Review of Asset Pricing Studies, 2 (2), 153–202.

Imbens, G. W. (2007). Nonadditive Models with Endogenous Regressors. In R. Blundell,
W. Newey and T. Persson (eds.), Advances in Economics and Econometrics, Vol III, 2, pp. 17 –
46.

— and Newey, W. K. (2009). Identification and Estimation of Triangular Simultaneous
Equations Models Without Additivity. Econometrica, 77 (5), 1481 – 1512.

Immorlica, N. and Mahdian, M. (2005). Marriage, honesty, and stability. In Proceedings of
the Sixteenth Annual ACM-SIAM Symposium on Discrete Algorithms, Society for Industrial
and Applied Mathematics, pp. 53–62.

Innes, R. (1990). Limited liability and incentive contracting with ex-ante action choices.
Journal of Economic Theory, 52 (1), 45–67.

Jiang, Y. (2016). Matching Games with Unobserved Heterogeneity: A Structural Analysis of
Online Labor Markets.

Johnson, S. G. (2011). The NLopt nonlinear-optimization package.

Jung et.al. v AAMC et.al. (2002). Class Action Complaint, No. 02-CV-00873, D.D.C. May 5,
2002.

Kahn, M. J., Markert, R. J., Lopez, F. A., Specter, S., Randall, H. and Krane, N. K. (2006).
Is medical student choice of a primary care residency influenced by debt? MedGenMed :
Medscape general medicine, 8 (4), 18.

Kamada, Y. and Kojima, F. (2010). Improving Efficiency in Matching Markets with Regional
Caps: The Case of the Japan Residency Matching Program.

Kashyap, A., Rajan, R. and Stein, J. C. (2002). Banks as liquidity providers: An explanation
for the coexistence of lending and deposit-taking. Journal of Finance, 57 (1), 33–73.

Kelso, A. S. J. and Crawford, V. P. (1982). Job Matching, Coalition Formation, and Gross
Substitutes. Econometrica, 50 (6), 1483 – 1504.

Kojima, F. (2007). Matching and Price Competition: Comment. American Economic Review,
97 (3), 1027 – 1031.

—, Pathak, P. and Roth, A. E. (2013). Matching with Couples: Stability and Incentives in
Large Markets. Quarterly Journal of Economics, 128 (4), 1585–1632.

— and Pathak, P. A. (2009). Incentives and Stability in Large Two-Sided Matching Markets.
American Economic Review, 99 (3), 608 – 27.

110



Kolaczyk, E. D. (2009). Statistical Analysis of Network Data: Methods and Models. Springer.

Krasnokutskaya, E. (2011). Identification and Estimation of Auction Models with Unob-
served Heterogeneity. Review of Economic Studies, 78 (1), 293–327.

Krishnamurthy, A. and He, Z. (2013). Intermediary asset pricing. American Economic Review,
103 (2), 732–70.

— and Vissing-Jorgensen, A. (2011). The effects of quantitative easing on interest rates:
Channels and implications for policy. Brookings Papers on Economic Activity, pp. 215–287.

— and — (2012). The aggregate demand for treasury debt. Journal of Political Economy,
120 (2), 233–267.

Krugman, P. (1998). It’s baaack: Japan’s slump and the return of the liquidity trap. Brookings
Papers on Economic Activity, 29 (1998-2), 137–206.

Lacker, J. M. and Weinburg, J. A. (1989). Optimal contracts under costly state falsification.
Journal of Political Economy, 97 (6), 1345–1363.

Lagos, R. and Wright, R. (2005). A unified framework for monetary theory and policy
analysis. Journal of Political Economy, 113 (3), 463–484.

Lester, B., Postlewaite, A. and Wright, R. (2012). Information, liquidity, asset prices, and
monetary policy. Review of Economic Studies, 79 (3), 1209–38.

Leung, M. P. (2015). Two-step estimation of network-formation models with incomplete
information. Journal of Econometrics, 188 (1), 182–195.

Logan, J. A., Hoff, P. D. and Newton, M. A. (2008). Two-Sided Estimation of Mate
Preferences for Similarities in Age, Education, and Religion. Journal of the American
Statistical Association, pp. 559 – 569.

Loutskina, E. (2011). The role of securitization in bank liquidity and funding management.
Journal of Financial Economics, 100 (3), 663–684.

— and Strahan, P. E. (2009). Securitization and the declining impact of bank finance on
loan supply: Evidence from mortgage originations. Journal of Finance, 64 (2), 861–889.

Manski, C. F. (2007). Identification for Prediction and Decision. Cambridge, USA: Harvard
University Press.

— and Pepper, J. V. (1998). Monotone Instrumental Variables with an Application to the
Returns to Schooling.

Mattner, L. (1993). Some Incomplete But Boundedly Complete Location Families. The
Annals of Statistics, 21 (4), 2158–2162.

McFadden, D. (1989). A Method of Simulated Moments for Estimation of Discrete Response
Models without Numerical Integration. Econometrica, 57 (5), 995 – 1026.

111



Menzel, K. (2011). Robust Decisions For Incomplete Structural Models Of Social Interactions.
New York University, mimeo.

— (2012). Inference for large games with exchangeable players.

— (2015). Large Matching Markets As Two-Sided Demand Systems. Econometrica, 83 (3),
897–941.

Mincer, J. (1974). Schooling, Experience, and Earnings. New York: National Bureau of Eco-
nomic Research, Inc.

Mortensen, D. T. and Pissarides, C. A. (1994). Job Creation and Job Destruction in the
Theory of Unemployment. Review of Economic Studies, 61 (3), 397 – 415.

Nagel, S. (2016). The liquidity premium of near-money assets. Quarterly Journal of Economics,
131 (4), 1927–1971.

Neely, C. (2011). The large-scale asset purchases had large international effects. working
paper.

Newey, W. K. and McFadden, D. (1994). Large sample estimation and hypothesis testing.
Handbook of Econometrics, 4, 2111–2245.

Newhouse, J. P. and Wilensky, G. R. (2001). Paying For Graduate Medical Education: The
Debate Goes On. Health Affairs, 20 (2), 136–147.

Niederle, M. (2007). Competitive Wages in a Match with Ordered Contracts. American
Economic Review, 97 (5), 1957–1969.

— and Roth, A. E. (2003). Relationship Between Wages and Presence of a Match in Medical
Fellowships. JAMA, Journal of the American Medical Association, 290 (9).

— and — (2009). The Effects of a Centralized Clearinghouse on Job Placement, Wages, and
Hiring Practices. In David Autor (ed.), NBER Chapters, pp. 235 – 271.

— and Yariv, L. (2009). Decentralized Matching with Aligned Preferences. Stanford University,
mimeo.

Pakes, A. and Pollard, D. (1989). Simulation and the Asymptotics of Optimization Estima-
tors. Econometrica, 57 (5), 1027 – 57.

Pencavel, J. (1998). Assortative Mating by Schooling and the Work Behavior of Wives and
Husbands. American Economic Review, 88 (2), 326–29.

Petrin, A. K. and Train, K. E. (2010). A control function approach to endogeneity in
consumer choice models. Journal of Marketing Research, 47 (1), 3–13.

Polachek, S. W. (2008). Earnings Over the Life Cycle: The Mincer Earnings Function and
its Applications. Foundation and Trends in Microeconomics, 4 (3), 165–272.

Pollard, D. (2002). Maximal inequalities via bracketing with adaptive truncation. Annales
de l’Institut Henri Poincare (B) Probability and Statistics, 38 (6), 1039–1052.

112



Postel-Vinay, F. and Robin, J.-M. (2002). Equilibrium Wage Dispersion with Worker and
Employer Heterogeneity. Econometrica, 70 (6), 2295 – 2350.

Rabinowitz, H. K., Diamond, J. J., Markham, F. W. and Wortman, J. R. (2008). Medical
school programs to increase the rural physician supply: a systematic review and projected
impact of widespread replication. Academic Medicine, 83 (3), 235–43.

Rao, P. B. L. S. (1992). Identifiability in Stochastic Models: Characterization of Probability Distri-
butions. New Delhi, India: Academic Press, Inc.

Reschovsky, J. D. and Staiti, A. B. (2005). Physician Incomes in Rural and Urban America.
Issue brief (Center for Studying Health System Change), (92), 1–4.

Rosen, S. (1972). Learning and experience in the labor market. Journal of Human Resources,
7 (3), 326–342.

— (1983). Specialization and Human Capital. Journal of Labor Economics, 1 (1), 43 – 49.

— (1987). The theory of equalizing differences. In O. Ashenfelter and R. Layard (eds.),
Handbook of Labor Economics, Handbook of Labor Economics, vol. 1, 12, Elsevier, pp. 641–692.

Rosenblatt, R. A. and Hart, L. G. (2000). Physicians and Rural America. The Western journal
of medicine, 173 (5), 348–51.

Rosenthal, M. B., Zaslavsky, A. and Newhouse, J. P. (2005). The geographic distribution
of physicians revisited. Health services research, 40 (6 Pt 1), 1931–52.

Roth, A. E. (1984a). Stability and Polarization of Interests in Job Matching. Econometrica,
52 (1), 47 – 57.

— (1984b). The Evolution of the Labor Market for Medical Interns and Residents: A Case
Study in Game Theory. Journal of Political Economy, 92 (6), 991–1016.

— (1986). On the Allocation of Residents to Rural Hospitals: A General Property of Two-
Sided Matching Markets. Econometrica, 54 (2), 425 – 27.

— and Peranson, E. (1999). The Redesign of the Matching Market for American Physicians:
Some Engineering Aspects of Economic Design. American Economic Review, 89 (4), 748–780.

— and Sotomayor, M. A. O. (1992). Two-Sided Matching. Cambridge University Press.

— and Vande Vate, J. H. (1990). Random Paths to Stability in Two-Sided Matching. Econo-
metrica, 58 (6), 1475 – 80.

— and Xing, X. (1994). Jumping the Gun: Imperfections and Institutions Related to the
Timing of Market Transactions. American Economic Review, 84 (4), 992–1044.

Rowan, T. H. (1990). Functional Stability Analysis Of Numerical Algorithms. Ph.D. thesis.

Schennach, S. M. (2004). Estimation of Nonlinear Models with Measurement Error. Econo-
metrica, 72 (1), 33–75.

113



Shapley, L. S. and Shubik, M. (1971). The assignment game I: The core. International Journal
of Game Theory, 1 (1), 111–130.

Shi, X. and Shum, M. (2014). On the Empirical Content of the Beckerian Marriage Model.
Caltech, mimeo.

Shimer, R. and Smith, L. (2000). Assortative Matching and Search. Econometrica, 68 (2), 343 –
370.

Shiu, J.-L. and Hu, Y. (2013). Identification and estimation of nonlinear dynamic panel data
models with unobserved covariates. Journal of Econometrics, 175 (2), 116–131.

Signer, M. M. (2012). 2012 Main Residency Match and SOAP. Tech. rep., National Resident
Matching Program.

Simsek, A. (2013). Belief disagreements and collateral constraints. Econometrica, 81 (1), 1–53.

Sorensen, M. (2007). How Smart Is Smart Money? A Two-Sided Matching Model of Venture
Capital. Journal of Finance, 62 (6), 2725 – 2762.

Sotomayor, M. (1999). The Lattice Structure of the Set of Stable Outcomes of the Multiple
Partners Assignment Game. International Journal of Game Theory, 28 (4), 567 – 583.

Staiger, D. and Stock, J. H. (1997). Instrumental Variables Regression with Weak Instru-
ments. Econometrica, 65 (3), 557 – 586.

Stein, J. C. (2012a). Evaluating large scale asset purchases. Speech delivered at the Brookings
Institution, Washington, October 11.

— (2012b). Monetary policy as financial-stability regulation. Quarterly Journal of Economics,
127 (1), 57–95.

Stern, S. (2004). Do Scientists Pay to Be Scientists? Management Science, 50 (6), 835–853.

Stock, J. H., Wright, J. H. and Yogo, M. (2002). A Survey of Weak Instruments and Weak
Identification in Generalized Method of Moments. Journal of Business & Economic Statistics,
20 (4), 518–29.

Sunderam, A. (2015). Money creation and the shadow banking system. Reveiw of Financial
Studies, 28 (4), 939–977.

Talley, R. C. (1990). Graduate medical education and rural health care. Academic medicine,
65 (12 Suppl), S22–5.

Teulings, C. N. (1995). The Wage Distribution in a Model of the Assignment of Skills to
Jobs. Journal of Political Economy, 103 (2), 280 – 315.

Thomas Lemieux (2006). The Mincer Equation Thirty Years After Schooling, Experience,
and Earnings. In Jacob Mincer: A Pioneer of Modern Labor Economics.

Uetake, K. and Watanabe, Y. (2013). Entry by Merger: Estimates from a Two-Sided Matching
Model with Externalities. Yale University, mimeo.

114



van der Vaart, A. and Wellner, J. (2000). Weak Convergence and Empirical Processes: With
Applications to Statistics (Springer Series in Statistics). Springer, corr. 2. p edn.

van der Vaart, A. W. (2000). Asymptotic Statistics. Cambridge University Press.

Vissing, A. (2016). One-to-Many Matching with Complementary Preferences: An Empirical Study
of Natural Gas Lease Quality and Market Power. Tech. rep., Duke University, Durham.

Weeks, W. B. and Wallace, A. E. (2008). Rural-urban differences in primary care physicians’
practice patterns, characteristics, and incomes. The Journal of rural health : official journal of
the American Rural Health Association and the National Rural Health Care Association, 24 (2),
161–70.

Weitzman, M. L. (1974). Prices vs. Quantities. Review of Economic Studies, 41 (4), 477 – 91.

Wetz, R. V., Seelig, C. B., Khoueiry, G. and Weiserbs, K. F. (2010). Out-of-Match Resi-
dency Offers: The Possible Extent and Implications of Prematching in Graduate Medical
Education. Journal of Graduate Medical Education, 2 (3), 327–33.

White, H. (1980). A Heteroskedasticity-Consistent Covariance Matrix Estimator and a Direct
Test for Heteroskedasticity. Econometrica, 48 (4), 817 – 38.

Williamson, S. and Wright, R. (1994). Barter and monetary exchange under private
information. American Economic Review, 84 (1), 104–23.

Woodford, M. (2003). Interest and Prices: Foundations of a Theory of Monetary Policy. Princeton
University Press.

Wooldridge, J. (2002). Econometric analysis of cross section and panel data. Cambridge, MA:
The MIT Press.

Yang, S., Chen, Y. and Allenby, G. M. (2003). Bayesian Analysis of Simultaneous Demand
and Supply. Quantitative Marketing and Economics, 1 (3), 251–275.

Youngclaus, J. and Fresne, J. (2012). Trends in Cost and Debt at U.S. Medical Schools Using
a New Measure of Medical School Cost of Attendance. Tech. rep., Association of Americal
Medical Colleges, Washington.

115



Appendix A

Appendix to Chapter 1

A.1 Proof of Proposition 1.2

This appendix proves that firms optimally issue debt and equity securities and provide

enough compensation to management that they do not divert resources. The firm sells

securities before its cashflows fi are privately observed by its management. Because there

are only two types of investors, without loss of generality the firm only issues one non-equity

security. These securities can have payoffs that depend on the residual cashflows xi that

remain after management has been compensated but not directly on the uncontractible

aggregate good or bad state. I first take as given the securities the firm issues and study its

optimal compensation of management and then solve for its optimal security issuance.

Suppose the firm has issued a security paying s (xi), depending only on the residual

cashflows xi, leaving the residual claim xi− s (xi) for the firm’s equityholders. Equityholders

provide compensation to management in order to maximize the value of their residual

claim. In general, such a compensation contract can be represented by a mechanism with

message space M, so the payment to management is a function R : M× X → R+ where

x ∈ X is the cashflows remaining after management diverts resources. When fi is realized

and management chooses (mi, xi) ∈ M× X, management’s payoff is

R (mi, xi) + C ( fi − xi) (A.1)
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. which is maximized by management’s strategy [mi ( fi) , xi ( fi)] .

If xi ( fi) = xi ( f ′i ) , then

R (mi ( fi) , xi ( fi)) + C ( fi − xi ( fi)) ≥ R
(
m′i ( fi) , xi ( fi)

)
+ C ( fi − xi ( fi)) (A.2)

R
(
m′i ( fi) , xi ( fi)

)
+ C

(
f ′i − xi ( fi)

)
≥ R (mi ( fi) , xi ( fi)) + C

(
f ′i − xi ( fi)

)
(A.3)

so R (mi ( fi) , xi ( fi)) = R (m′i ( fi) , xi ( fi)) . It follows that the message space M can be

ignored and all allocations depend only on xi, with management receiving compensation

R (xi) .

After xi is revealed to equityholders, they are able to covertly destroy resources or raise

funds and pay them back at the market rate. If xi is revealed and equityholders destroy

resources, they can reduce xi and receive the payoff x− s (x) for x ≤ xi. If equityholders

raise hidden funding, they can increase xi to any x > xi but must pay back (x− xi) to the

outside source of funding, receiving (x− s (x))− (x− xi). Equityholders therefore choose

x to maximize

Gxi (x) =
(
{x− s (x)}x≤xi

{x− s (x)− (x− xi)}x>xi

)
. (A.4)

This menu is pointwise increasing in xi, so equityholders find it optimal to induce man-

agement to turn over the largest feasible xi given fi. Because C′ < 1, this occurs when

management receives the smallest payment to induce no diversion, which pays C ( fi) when

fi is realized1. Equity then maximizes

(
{x− s (x)}x≤ fi−C( fi)

{x− s (x)− (x− xi)}xi> fi−C( fi)

)
(A.5)

.

1That is, R (xi) + xi = fi and R (xi) = C ( fi) . This system of equations has a unique solution.
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The optimal x ( fi) implies the payment to equity is increasing because G fi−C( fi) (x) is

pointwise monotone increasing in x, which is preserved under taking a supremum.

Note that∣∣∣∣sup
x

G fi−C( fi) (x)− sup
x

G f ′i−C( f ′i )
(x)
∣∣∣∣ ≤ ∣∣ fi − C ( fi)− f ′i − C

(
f ′i
)∣∣ (A.6)

so fi − C ( fi)− e (x ( fi − C ( fi)))is increasing as well.

Note also that if s (x) and x − s (x) are increasing, it is optimal for equity to neither

destroy resources nor raise hidden funding.

It follows that the realized payoffs of securities satisfy s (x) + e (x) ≤ x, and both e (x)

and x− e (x) are nonnegative monotone increasing.

As a result, equityholders can increase the market value of s (.) without reducing the

payoff to equity by replacing s (x) by x− e (x) .

The optimal security issuance therefore satisfies s (x) + e (x) = x, with s and e increasing.

Since s and e are therefore Lipschitz and thus absolutely continuous and s (0) = e (0) = 0,

there exist functions e′ and s′ such that

s ( fi − C ( fi)) =
∫ fi−C( fi)

0
s′
(
u′
)

du =
∫ ∞

0
s′ (u) { fi − C ( fi) > u} du (A.7)

e ( fi − C ( fi)) =
∫ ∞

0
e′ (u) { fi − C ( fi) > u} du (A.8)

where s′ and e′ are nonnegative and sum to 1.

Each security can therefore be written as a portfolio of assets of the form

{ fi − C ( fi) > u} . Since Pr{ fi−C( fi)>u|good}
Pr{ fi−C( fi)>u|bad} is strictly increasing in u, there exists a cut-

off u∗ such that { fi − C ( fi) > u} is more valuable to the intermediary for u < u∗ and

to the household for u > u∗ since the intermediary is willing to pay more than the
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household only for assets with low enough systematic risk. The optimal security design

therefore sells the claim
∫ u∗

0 { fi − C ( fi) > u} du = min ( fi − C ( fi) , u∗) to the intermediary

and
∫ ∞

u∗ { fi − C ( fi) > u} du = max ( fi − C ( fi)− u∗, 0) to the household. These are the

payoffs of a debt security and an equity security, and because they are both monotone

increasing, equityholders will not destroy cashflows or raise hidden funding.
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Appendix B

First Appendix to Chapter 3

B.1 Proofs: Identification

B.1.1 Proof of Lemma 3.1

We present the argument for the identification of the level sets of h (·) since the proof for

g (·) is identical. The cdf of v conditional on h (x) is given by FV|h(x) (v) = Fε (v− h (x)) .

Note that FV|h(x) (v) is increasing in v and decreasing in h (x). Let Fq|h(x) (q|h (x)) =

FV|h(x)

(
F−1

V (q)− h (x)
)

be the cdf of the quantile of v given h (x). Since F−1
V is an increasing

function of q, Fq|h(x) (q|h (x)) is increasing in q and decreasing in h (x). As noted in Remark

3.1, the q-th quantile of each side matches with the q-th quantile of the other. Therefore, the

density of g (Z) that h (x) is matched with is given by

fg(Z)|h(x) (g|h) =
∫ 1

0
fg(Z)|q (g|q) fq|h(x) (q|h) dq

=
∫ 1

0
fq|g (q|g) fg (g) fq|h(x) (q|h) dq

=
∫

fη (u− g) fg (g) fq|h(x) (FU (u) |h) du,

where fg (·) is the density of g (Z). The second equality uses Bayes’ rule. The last equality

follows from a change of variables q = FU (u) and the fact that fq|g (FU (u) |g) = fη(u−g) fg(g)
fU(u)

.

Since fg (g) > 0 for all g, and fη has a non-vanishing characteristic function, fg(Z)|h(x) (·|h)
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is injective in h. Since Fq|h(x) (q|h) is decreasing in h, if h (x′) > h (x), then fq|h(x) (q|h (x′)) 6=

fq|h(x) (q|h (x)) for some q. Hence, we have that fg(Z)|h(x) (g|h (x′)) 6= fg(Z)|h(x) (g|h (x))

if h (x′) 6= h (x). If Z|x ∼ Z|x′ then g (Z) |x ∼ g (Z) |x′. Therefore, it must be that the

distribution of Z given x differs from the distribution of Z given x′. Therefore, the level sets

of h (·) are identified.

B.1.2 Proof of Theorem 3.1

In what follows we treat x and z as single dimensional variable that are uniformly dis-

tributed on [0, 1], and h (·) and g (·) are increasing. This simplification is without loss of

generality given identification of g (x) and h (z) up to a positive monotone transformation

by Proposition 3.1.

The proof follows from recasting the matching model in terms of the non-classical

measurement error model similar to Hu and Schennach (2008), (henceforth HS) to identify

fx|q (x|q) and fz|q (z|q), which are the conditional densities of x and z respectively given

h (x) + ε = F−1
U (q) and g (z) + η = F−1

V (q), where q is the quantile of the latent index.1

Lemma C.1 implies that the primitives h (·), g (·), fη and fε, are identified from f (x|q) and

f (z|q).

We begin by verifying Assumptions HS.2-HS.4. Assumption HS.2 requires

fz|x1,x2,q (z|x1, x2, q) = fz|q (z|q), and fx1|z,x2,q (x1|z, x2, q) = fx1|q (x1|q). This is satisfied since

the quantile of the latent index q is a sufficient statistic for the distribution of observable

characteristics in any match.

Assumption HS.3 requires that Lx|q and Lx1|x2
are injective, where Lx|q (m) =∫ 1

0 fx|q (x|q)m (q) dq and Lx1|x2
(m) =

∫ 1
0 fx1|x2

(x1|x2)m (x2) dx2. Lemmas C.3 and C.4 imply

that under Assumption 3.1, Lx|q and Lx1|x2
are injective.

Assumption HS.4 requires that for all q1 and q2 in [0, 1], the set{
z : fz|q (z|q1) 6= fz|q (z|q2)

}
has positive probability (under the marginal distribution of z)

1The latent variable x∗ in HS will be labelled q, the outcome y in HS is instead z, x in HS is x1 and z in HS
is x2.
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if q1 6= q2. This assumption is satisfied since

fz|q (z|q) =
fq|z (q|z) fz (z)

fq (q)

= fq|z (q|z)

=
1

fU

(
F−1

U (q)
) fη

(
F−1

U (q)− g (z)
)

is complete (Lemma C.2). The first equality follows from Bayes’ rule, the second equality

uses the fact that z and q are uniformly distributed, and the third equality transforms

u = F−1
U (q), using the fact that fu|z (u|z) = fη (u− g (z)).

For a function m (·), and any z and q, define the operator ∆z;qm (q) = fz|q (z|q)m (q) as

in HS. Since f (z, x1|x2) is observed, for any real valued function m and z, we can compute

Lz;x1|x2
(m) =

∫ 1

0
f (z, x1|x2)m (x2) dx2 = Lx1|q ◦ ∆z;q ◦ Lq|x2

(m) (B.1)

as shown in HS. They then use Assumption HS.1 to show that (i) L−1
x1|x2

exists and is densely

defined, and (ii) T = Lz,x1|x2
L−1

x1|x2
has a unique spectral decomposition. Lemmas C.4 and C.5

respectively show that these results follow under our assumptions (the conditions needed

for Lemma C.5 are verified in Lemmas C.4 and C.3). Hence, the conditional densities

fz|q (z|q) and fx|q (x|q) are identified up to a reindexing via a bijection Q (·) where q̃ = Q (q).

That is, for every pair f̃x|q and f̃z|q satisfying our regularity conditions that can rationalize

f (z, x1|x2), the proof of Theorem 1 in HS shows that there exist bijections Qx : [0, 1]→ [0, 1]

and Qz : [0, 1]→ [0, 1] such that fx|Qx(q) = f̃x|q and fz|Qz(q) = f̃z|q.

This remaining under-identification issue is referred to as the ordering/indexing ambi-

guity issue in HS. They solve this ambiguity by using Assumption HS.5, which assumes that

there is a known functional M such that M
[

fx|q (·|q)
]
= q for all q. Since our model does

not deliver such a functional, we instead solve the ordering/indexing ambiguity by using

the fact that in our model, the q indexes the quantiles of the latent index and fx|q and fq must

therefore satisfy certain known properties. Specifically, we use Lemma C.6 to show directly,

that Qx and Qz must be the identity function under the assumptions of our model. To apply

Lemma C.6, we need to show that fx|q (x|q) = fε(F−1
V (q)−h(x))

fV(F−1
V (q))

and fz|q (z|q) =
fη(F−1

U (q)−g(z))
fU(F−1

U (q))
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where q are quantiles satisfies Condition C.1. Since the proof is symmetric, we show this

only for fx|q (x|q). Condition C.1(i) is satisfied since fx|q (x|q) is complete (Lemma C.2).

To verify condition C.1(ii), we compute
∂ fx|q(x|q)

∂q . Note that fx|q(x|q) =

fq|x(q|x) fx(x)/ fq(q) = fq|x(q|x) by Bayes’ rule and the (normalized) marginal distribu-

tions of x and q. Therefore,

∂ fx|q (x|q)
∂q

=
∂ fq|x (q|x)

∂q
=

∂

∂q

fε

(
F−1

V (q)− h (x)
)

fV

(
F−1

V (q)
)

=
fV(F−1

V (q)) f ′ε(F−1
V (q)− h(x))− fε(F−1

V (q)− h(x)) f ′V(F−1
V (q))

fV(F−1
V (q))3

.

Therefore, Condition C.1(ii) follows from Assumption 3.1 since each of the terms is finite

and fV (v) > 0 since ε and h (X) have full support on R.

We can verify Condition C.1(iii) by showing that for each q ∈ (0, 1), there exists x

such that d
dq fq|x(q|x) 6= 0. Towards a contradiction, for a given q ∈ (0, 1), assume that

d
dq fq|x(q|x) = 0 for all x. As shown above, d

dq fq|x(q|x) = d
dq

fε(F−1
V (q)− h(x))
fV(F−1

V (q))
. Since

fV(v) > 0, d
dq fq|x(q|x) = 0 for all x if and only if

d
dv

fε(v− h(x))
fV(v)

evaluated at v = F−1
V (q) if

zero for all x, It must therefore be that

d
dv

fε(v− h(x))
fV(v)

=
fV(v) f ′ε(v− h(x))− fε(v− h(x)) f ′V(v)

fV(v)2

is zero for all x for each v ∈ (−∞, ∞). Since fV(v) > 0, it must be that fV(v) f ′ε(v− h(x)) =

fε(v− h(x)) f ′V(v) for all x. Since h(x) has full support on R, this implies that f ′ε(ε) = K1 fε(ε)

for all ε ∈ (∞, ∞). Hence, fε(ε) = K2 exp(K1ε) for a constants K1 and K2. Note that fε is a

density with full support, which is a contradiction with this functional form.

Condition C.1(iv) is definitional for the particular model considered since q indexes

quantiles. Condition C.1(v) follows from Lemma C.3 under Assumption 3.1. Conditions

C.1(vi) is also definitional in our case since fx|q are conditional densities and q indexes

quantiles. We have thus verified Condition C.1 for fx|q. An identical argument follows

for fz|q. Therefore, by Lemma C.6, Qx and Qz are the identity function. Hence, we have

identified fx|q and fz|q.
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B.2 Proofs: Estimation

B.2.1 Proof of Proposition 3.3

We first rewrite

ψN − ψ = (ψN − E (ψN |µVN , µUN )) + (E (ψN |µVN , µUN )− ψ) .

Proof of Part (i): Lemma C.8(i) shows that if Assumption 3.4(i) is satisfied,

E (ψN |µVN , µUN ) − ψ converges in probability to 0 as N → ∞. This result is proved by

rewriting

E (ψN |µVN , µUN ) =
1

N/2

N/2

∑
k=1

ψ̃

(
F−1

VN

(
2k− 1

N

)
, F−1

VN

(
2k
N

)
, F−1

UN

(
k

N/2

))
=

1
N

N

∑
i=1

ψ̃

(
F−1

VN

(
i
N

)
, F−1

VN

(
i
N

)
, F−1

UN

(
i
N

))
+ R, (B.2)

where FVN and FUN are the cdfs representing the empirical measures µVN and µUN respec-

tively, and R is a remainder term. We then show that R and

1
N

N

∑
i=1

ψ̃

(
F−1

VN

(
i
N

)
, F−1

VN

(
i
N

)
, F−1

UN

(
i
N

))
− ψ

converge in probability to zero. Lemma C.9(i) shows that ψN − E (ψN |µVN , µUN ) con-

verges in probability to zero by bounding its variance by 1
J 4 ‖Ψ‖2

∞. Since ψN − ψ =

(ψN − E (ψN |µVN , µUN )) + (E (ψN |µVN , µUN )− ψ) is the sum of two terms that converge

in probability to 0, the result follows directly from Slutsky’s theorem.

Proof of Part (ii): Lemma C.8(ii) shows if Assumption 3.4(ii) is satisfied, then for any

bounded µX-Donsker class ΓX and for any bounded µZ-Donsker class ΓZ,

[√
N (E (ψN |µVN , µUN )− ψ) ,

√
N (µXN − µX) (γX) ,

√
N/2 (µZN − µZ) (γZ)

]
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indexed by γX ∈ ΓX and γZ ∈ ΓZ is asymptotically equivalent to

√
N
∫ 1

0 ∇ψ̃q (q, q, q) ·


(

µ(X,ε)N
− µX,ε

) (
1
{

h (x; θ0) + ε ≤ F−1
V (qX)

})
(

µ(X,ε)N
− µX,ε

) (
1
{

h (x; θ0) + ε ≤ F−1
V (qX)

})
(

µ(Z,η)N
− µZ,η

) (
1
{

g (z; θ0) + η ≤ F−1
U (qZ)

})
 dq

√
N (µXN − µX) (γX)

√
N/2 (µZN − µZ) (γZ)


, (B.3)

which converges weakly to a mean-zero Gaussian process with a covariance kernel V ′.

This covariance kernel is derived by using equation (B.2) to show that
√

NR converges in

probability to zero, and then analyzing

√
N

(
1
N

N

∑
i=1

ψ̃

(
F−1

VN

(
i
N

)
, F−1

VN

(
i
N

)
, F−1

UN

(
i
N

))
− ψ

)

using Taylor approximations. Since
∥∥∇ψ̃q

∥∥
∞ < ∞, the expression in (B.3) is a sum of µX,ε-

and µZ,η- Donsker classes because we have added a finite number of sums of i.i.d. random

variables to ΓX and ΓZ. Let ΓX,ε and ΓZ,η be the index sets for this empirical process. Lemma

C.10 shows that if Assumption 3.4(ii) is satisfied, then for any bounded µX,ε-Donsker class

ΓX,ε and for any bounded µZ,η-Donsker class ΓZ,η ,

[√
N (ψN − E (ψN |µVN , µUN )) ,

√
N
(

µ(X,ε)N
− µX,ε

)
(γX,ε) ,

√
N/2

(
µ(Z,η)N

− µZ,η

) (
γZ,η

)]

indexed by γX,ε ∈ ΓX,ε and γZ,η ∈ ΓZ,η converges weakly to a mean-zero Gaussian process

with a covariance kernel V ′′. To prove this result, we first compute the joint moment

generating function for particular elements, γX,ε and γZ,η , to show that it approaches

the moment generating function of a mean-zero normal random variable, and derive the

covariance V ′′ (γX,ε, γZ,ε). We then verify equicontinuity of the process to show weak

convergence.

Therefore, applying this result to the process indexed by ΓX,ε and ΓZ,η , we have that the
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process 
√

N (E (ψN |µVN , µUN )− ψ) +
√

N (ψN − E (ψN |µVN , µUN ))
√

N (µXN − µX) (γX)
√

N/2 (µZN − µZ) (γZ)


indexed by γX ∈ ΓX and γZ ∈ ΓZ converges weakly to a mean zero Gaussian process with

covariance kernel V.

We now compute V. Note that V (γΨ, γZ) = V ′ (γΨ, γZ) +
√

2V ′′ (γΨ, γZ) and

V (γΨ, γX) = V ′ (γΨ, γX) + 2V ′′ (γΨ, γX) since covariance is bilinear. V (γΨ, γΨ) =

V ′ (γΨ, γΨ) + 2V ′′ (γΨ, γΨ) since Cov (X− E [X|I ] , E [X|I ]− E [X]) = 0 for any sigma-

field I by the law of iterated expectations. Finally, by definition, V (γX, γZ) = 0,

V (γX, γ′X) = V ′ (γX, γ′X) and V (γZ, γ′Z) = V ′ (γZ, γ′Z) . The remaining elements are

V (γΨ, γX) = V ′ (γΨ, γX) + 2V ′′ (γΨ, γX), V (γΨ, γΨ) = V ′ (γΨ, γΨ) + 2V ′′ (γΨ, γΨ) and

V (γΨ, γZ) = V ′ (γΨ, γZ) +
√

2V ′′ (γΨ, γZ), where V ′ and V ′′ are as defined in Lemmata C.8

and C.9 respectively.

B.2.2 Proof Sketch for Proposition 3.4

Consider a sequence of measures (µXN , µZN ) and scalars hN → 0 such that

1
hN

(µXN − µX, µZN − µZ) converges to G = (GX, GZ) uniformly in LΓ
∞, where G is bounded

and uniformly continuous. The Hadamard derivative is the limit of

1
hN

[
ψ̃δ [µX, µZ] (θ)− ψ̃δ [µXN , µZN ] (θ)

]
(B.4)

=
1

hN

[∫ 1−δ

δ

∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ
dq (B.5)

−
∫ 1−δ

δ

∫
Ψ (x1, x2, z) φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµXN,1 dµXN,2 dµZN∫

φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµXN,1 dµXN,2 dµZN

dq

]

where
φη (q, z; θ) = fη

(
F−1

u;θ,µZ
(q)− g (z; θ)

)
φη,N (q, z; θ) = fη

(
F−1

N,U;θ,µZN
(q)− g (z; θ)

)
φε (q, x; θ) = fε

(
F−1

v;θ,µX
(q)− h (x; θ)

)
φε,N (q, x; θ) = fε

(
F−1

N,V;θ,µXN
(q)− h (x; θ)

)
.

in terms of GX and GZ. The detailed calculations are presented in Appendix C.2.2.
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Here, we illustrate the basic ideas of the argument and the components of the derivative by

computing the limit of the following simplified expression:

1
hN

[∫ 1−δ

δ

∫
Ψ (x) φε (q, x; θ) dµX∫

φε (q, x; θ) dµX
dq−

∫ 1−δ

δ

∫
Ψ (x) φε,N (q, x; θ) dµXN∫

φε,N (q, x; θ) dµXN

dq
]

.

We first rewrite the difference

∫ 1−δ

δ

∫
Ψ (x) φε (q, x; θ) dµX∫

φε (q, x; θ) dµX
dq−

∫ 1−δ

δ

∫
Ψ (x) φε,N (q, x; θ) dµXN∫

φε,N (q, x; θ) dµXN

dq

=
∫ 1−δ

δ

∫
Ψ (x) φε (q, x; θ) (dµX − dµXN )∫

φε (q, x; θ) dµX
dq +

∫ 1−δ

δ

∫
Ψ (x) φε (q, x; θ) dµXN∫

φε (q, x; θ) dµX
dq

−
∫ 1−δ

δ

∫
Ψ (x) φε,N (q, x; θ) dµXN∫

φε (q, x; θ) dµX

∫
φε (q, x; θ) dµX∫

φε,N (q, x; θ) dµXN

dq

=
∫ 1−δ

δ

∫
Ψ (x) φε (q, x; θ) (dµX − dµXN )∫

φε (q, x; θ) dµX
dq +

∫ 1−δ

δ

∫
Ψ (x) (φε (q, x; θ)− φε,N (q, x; θ)) dµXN∫

φε (q, x; θ) dµX
dq

+
∫ 1−δ

δ

∫
Ψ (x) φε,N (q, x; θ) dµXN∫

φε (q, x; θ) dµX
×
(

1−
∫

φε (q, x; θ) dµX∫
φε,N (q, x; θ) dµXN

)
dq

=
∫ 1−δ

δ
T1 (q) + T2 (q) + T3 (q) dq

To obtain the limit of 1
hN

∫ 1−δ
δ T1 (q) dq, note that 1

hN
(µXN − µX) converges uniformly to

GX ∈ LΓX
∞ . Therefore,

1
hN

∫ 1−δ

δ
T1 (q) dq =

1
hN

∫ 1−δ

δ

∫
Ψ (x) φε (q, x; θ) (dµX − dµXN )∫

φε (q, x; θ) dµX
dq

→
∫ 1−δ

δ

∫
Ψ (x) φε (q, x; θ) dGX∫

φε (q, x; θ) dµX
dq.

To obtain the limit of 1
hN

T2 (q), note that

1
hN

T2 (q) =

∫
Ψ (x) 1

hN
(φε (q, x; θ)− φε,N (q, x; θ)) dµXN∫

φε (q, x; θ) dµX

=
1

hN

(
F−1

V;θ (q)− F−1
N,V;θ (q)

) ∫ Ψ (x) f ′ε
(

F−1
V;θ (q)− h (x; θ)

)
dµXN∫

φε (q, x; θ) dµX
+ o (1)

=
1

hN

(
F−1

V;θ (q)− F−1
N,V;θ (q)

) ∫ Ψ (x) f ′ε
(

F−1
V;θ (q)− h (x; θ)

)
dµX∫

φε (q, x; θ) dµX
+ o (1)
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where the second equality follows from a Taylor expansion and the dominated convergence

theorem (since f ′ε is bounded), and the last equality follows from the fact that dµXN − dµX →

0 and uniform bounds over q ∈ (δ, 1− δ) on the remaining terms. We then show that

1
hN

(
F−1

V;θ (q)− F−1
N,V;θ (q)

)
→

1

fV;θ

(
F−1

V;θ (q)
) ∫ GX

(
1
{

h (x; θ) + ε ≤ F−1
V;θ (q)

})
dFε = Gq

V (θ)

uniformly in q ∈ (δ, 1− δ) to obtain the limit

1
hN

∫ 1−δ

δ
T2 (q) dq→

∫ 1−δ

δ
Gq

V (θ)

∫
Ψ (x) f ′ε

(
F−1

V;θ (q)− h (x; θ)
)

dµX∫
φε (q, x; θ) dµX

dq.

Finally, we rewrite

T3 (q) =

∫
Ψ (x) φε,N (q, x; θ) dµXN∫

φε (q, x; θ) dµX
×
(

1−
∫

φε (q, x; θ) dµX∫
φε,N (q, x; θ) dµXN

)
=

∫
Ψ (x) φε,N (q, x; θ) dµXN∫

φε,N (q, x; θ) dµX
×
(∫

φε,N (q, x; θ) dµX −
∫

φε (q, x; θ) dµX∫
φε (q, x; θ) dµXN

)
=

∫
Ψ (x) φε,N (q, x; θ) dµXN∫

φε,N (q, x; θ) dµX
×
(
−T̃1 (q)− T̃2 (q)

)
=

∫
Ψ (x) φε (q, x; θ) dµX∫

φε (q, x; θ) dµX
×
(
−T̃1 (q)− T̃2 (q)

)
+

(∫
Ψ (x) φε,N (q, x; θ) dµXN∫

φε,N (q, x; θ) dµX
−
∫

Ψ (x) φε (q, x; θ) dµX∫
φε (q, x; θ) dµX

)
×
(
−T̃1 (q)− T̃2 (q)

)
where T̃1 (q) = T1 (q) and T̃2 (q) = T2 (q) evaluated at Ψ (x) = 1. Since 1

hN

(
−T̃1 (q)− T̃2 (q)

)
is finite, the second term is negligible. Hence,

1
hN

T3 (q)→ −∫
Ψ (x) φε (q, x; θ) dµX∫

φε (q, x; θ) dµX

∫ φε (q, x; θ) dGX∫
φε (q, x; θ) dµX

+ Gq
V (θ)

∫
f ′ε
(

F−1
V;θ (q)− h (x; θ)

)
dµX∫

φε (q, x; θ) dµX

 .

The limit of 1
hN

∫ 1−δ
δ T1 (q) + T2 (q) + T3 (q) dq given by the expressions above yields the

Hadamard derivative of interest. Online Appendix C.2.2 uses a dominated convergence

argument to ensure that T1 (q) + T2 (q) + T3 (q) converges uniformly in q.
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Appendix C

Second Appendix to Chapter 3: Proof

Details

C.1 Proofs: Identification

C.1.1 Non Identification in Data from One-to-One Matches

In this section, we show that a model with unobservables on one side of the market can

rationalize any data from a large one-to-one matching market under the following condition:

Axiom C.1 The primitives h, g, FX,ε, FZ,η are such that

(i) Fh(X)|V(h̄, v) = P
(
h (X) ≤ h̄|h (X) + ε = v

)
= γ(κh̄− v) for some function γ and con-

stant κ, (ii) F−1
V ◦ FU is a linear function, (iii) The functions h, g and fh(X)|V are twice continuously

differentiable, and (iv) ε and η are independent of X and Z respectively.

As is evident, these conditions are satisfied in Example 3.1. The joint distribution

FXZ produced by the model in the example is identical to one produced by the following

transformation model, X = 1
κ1/2 Z + η1, where η1 ∼ N

(
0, 1− 1

κ

)
.

Proposition C.1 Under Assumptions C.1 and 3.2, any joint distribution FXZ can be rationalized

in a matching model with ε ≡ 0.
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Proof. The proof proceeds by rewriting the matching model with ε ≡ 0 in terms of the

transformation model of Chiappori and Komunjer (2008). We will then use Chiappori and

Komunjer (2008) Proposition 2, which states that the transformation model is correctly

specified.

In the matching model, quantiles of h (X) + ε are matched with quantiles of g (Z) + η.

We will use Proposition 2 of Chiappori and Komunjer (2008) to show that there exist

increasing functions Γ̄, ḡ, Fη̄ such that the the transformation model

h (X) = Γ̄ (ḡ (Z) + η̄)

rationalizes any joint distribution FXZ from a matching model satisfying Assumptions 3.1 -

3.2 and Condition C.1. This is model is equivalent to a matching model with h̄ = Γ̄−1 ◦ h,

ε ≡ 0, and Fη̄ , ḡ. In what follows, we will treat X and Z as known scalars with h (·) and g (·)

as increasing functions of them respectively. This simplification is without loss of generality

since our we show that a positive monotone transformation h (·) and g (·) exists that yields

an identical joint distribution FXZ.

Since X and Z are unidimensional, Assumption A3 of Chiappori and Komunjer (2008) is

then equivalent to independence of ε and η from X and Z respectively, as maintained under

the hypotheses of Proposition C.1.

Let the probability that a firm with observable trait z is matched with workers with

h (X) at most h̄ be denoted Φ
(
h̄, z
)
= Fh(X)|Z

(
h̄, z
)
. Note that

Φ
(
h̄, z
)

=
∫

Fh(X)|V

(
h̄, F−1

V FU (g (z) + η)
)

dFη

=
∫

γ
(
κh̄− A (g (z) + η)

)
dFη ,

for some constant A. The first equality is derived from the quantile-quantile matching of

workers and firms and the second equality follows from Conditions C.1 (i) and C.1 (ii).

First, we ensure that Φ has continuous third order partial derivatives ∂3Φ(h̄, z)/∂h̄∂2z

and ∂3Φ(h̄, z)/∂2h̄∂z, and that ∂Φ(h̄, z)/∂h̄ > 0. Conditions C.1 (iii) guarantees the existence

of the required partial derivatives. Further, since Fh(X)|V
(
h̄, v
)

is strictly increasing in h̄, we
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have that ∂Φ(h̄, z)/∂h̄ > 0.

We now verify that Φ
(
h̄, z
)

satisfies Condition C in Chiappori and Komunjer (2008), i.e.

∂2

∂h̄∂zk

(
log

∣∣∣∣∣ ∂Φ
(
h̄, z
)

/∂h̄
∂Φ
(
h̄, z
)

/∂z1

∣∣∣∣∣
)

= 0.

The partial derivatives of Φ
(
h̄, z
)

with respect to h̄ and z1 are given by:

∂Φ
(
h̄, z
)

∂h̄
= κ

∫
γ′
(
κh̄− A (g (z) + η)

)
dFη

∂Φ
(
h̄, z
)

∂z1
= −A

∂g (z)
∂z1

∫
γ′
(
h̄− A (g (z) + η)

)
dFη .

Note that γ′ exists since the existence of densities fX, fε and differentiability of h (·) implies

that the derivatives of Fh(X)|V
(
h̄, v
)

exist.

Using the expressions above, rewrite

∂2

∂h̄∂zk

(
log

∣∣∣∣∣ ∂Φ
(
h̄, z
)

/∂h̄
∂Φ
(
h̄, z
)

/∂z1

∣∣∣∣∣
)

=
∂2

∂h̄∂zk

(
log |κ| − log

∣∣∣∣A ∂g (z)
∂z1

∣∣∣∣) = 0.

The last equality follows since log
∣∣∣ ∂g(z)

∂z1

∣∣∣ and log |κ| do not depend on h̄.

We now show that equations (4) and (5) in Chiappori and Komunjer (2008) are satisfied.

Since Fh(X)|V
(
h̄, A (g (z) + η)

)
is a cdf, it is bounded, limh̄→−∞ FX|V

(
h̄, A (g (z) + η)

)
= 0

and limh̄→∞ Fh(X)|V
(
h̄, A (g (z) + η)

)
= 1 for each z and η. Hence, limh̄→−∞ Φ

(
h̄, z
)
= 0

and limh̄→∞ Φ
(
h̄, z
)
= 1.

To verify (5), note that

∫ h̄

0

∂Φ (a, z) /∂x
∂Φ (a, z) /∂z1

∂Φ (0, z) /∂z1

∂Φ (0, z) /∂x
da

=
∫ h̄

0

κ

−A∂g (z) /∂z1

−A∂g (z) /∂z1

κ
da

=
∫ h̄

0
1da = h̄.

Equation (5) of Chiappori and Komunjer (2008) follows since h (X) has full support on R.

By Proposition 2 of Chiappori and Komunjer (2008), there exist Γ̄, ḡ, Fη̄ that rationalize

Φ.
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C.1.2 Preliminaries

Since h (X) and g (Z) admit bounded continuous densities and are identified up to positive

monotone transformation, it is without loss to treat x and z as single dimensional variable

that are uniformly distributed on [0, 1]. Proposition 3.1 implies that this simplification is

without loss of generality.

Let v = h (x) + ε, where h (x) is strictly increasing with h (x̄) = 0, h′ (x̄) = 1 and let ε be

median zero with density fε. For quantile τ ∈ [0, 1], let fτ|X (τ, x) =
fε(F−1

V (τ)−h(x))
fV(F−1

V (τ))
be the

density on v = F−1
V (τ) given x, where FV (v) =

∫
Fε (v− h (x)) dFX.

Lemma C.1 The function h (x) and the density fε are identified from fτ|x (τ) if h (x) is differentiable

and ε has full support on R.

Proof. Let φ (x, x′) be the probability that h (x) + ε > h (x′) + ε′ given x and x′. φ (x, x′) is

identified from fτ|x (τ) since it can be written as

φ
(
x, x′

)
=
∫ 1

0

∫
τ>τ′

fτ|X (τ, x) fτ|X
(
τ′, x′

)
dτdτ′.

However, φ (x, x′) can also be written in terms of the primitives h (·) and fε as

φ
(

x, x′
)
=
∫

Fε

(
h (x) + ε− h

(
x′
))

fε (ε) dε.

Taking the derivative with respect to x and x′, we get

∂φ (x, x′)
∂x

= h′ (x)
∫

fε

(
h (x) + ε− h

(
x′
))

fε (ε) dε

∂φ (x, x′)
∂x′

= −h′
(
x′
) ∫

fε

(
h (x) + ε− h

(
x′
))

fε (ε) dε.

The ratio ∂φ(x,x′)
∂x / ∂φ(x,x′)

∂x′ is identified and is equal to − h′(x)
h′(x′) .Since h′ (x̄) = 1, h′ (x) can be

determined everywhere. The boundary condition h (x̄) = 0 provides the unique solution to

the resulting differential equation determining h (·).

We now need to show that Fε is identified. Let Rx (t) = P
(

h (x) + ε ≤ F−1
V (t) |x

)
. Rx (t)

is known since it is equal to
∫ t

0 fτ|x (τ) dτ. Since F−1
V is continuous and ε admits a full

support density, Rx (t) is continuous and strictly increasing in t. Let τ∗ be the median rank
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of x̄, i.e. Rx̄ (t∗) = 1
2 . Since ε is median-zero, h (x̄) = 0 and P

(
h (x̄) + ε ≤ F−1

V (t∗) |x̄
)
= 1

2 ,

we have that F−1
V (t∗) = 0. For any x, Rx (t∗) ∈ (0, 1) is therefore the probability that

h (x) + ε ≤ 0 given x, i.e. Rx (t∗) = Fε (−h (x)). Since h (x) and Rx (t∗) are known and have

full support on R, Fε is identified.

Lemma C.2 Suppose fε has a non-vanishing characteristic function and h (X) has full support

on R. For any function m (v), we have that
∫

fε (v− h (x))m (v) dv = 0 for all x implies that

m (v) = 0 a.e. Further, if h (·) is differentiable and strictly increasing, then for any function m (x),∫
fε (v− h (x))m (x) dx = 0 for all v implies that m (x) = 0 a.e.

Proof. Note that

∫
fε (v− h (x))m (v) dv =

∫
fε (ε)m (h (x) + ε) dε

is a convolution of m (·) with −ε. Since fε has a non-vanishing characteristic, so does f−ε.

Therefore, completeness follows from Mattner (1993), Theorem 2.1. Similarly, by a change of

variables, h (x) = h, we have that

∫
fε (v− h (x))m (x) dx =

∫
fε (v− h) M (h) dh,

where M (h) =
m(h−1(h))
h′(h−1(h)) . Since fε has a non-vanishing characteristic,

∫
fε (v− h) M (h) dh =

0 implies that M (h) = 0 for all h. Since h is strictly increasing, this implies that m (x) = 0

for all x.

For a function m, define the operator Lx|q1 : L1 ([0, 1]) → L1 ([0, 1]) as Lx|q (m) =∫
f (x|q)m (q) dq where f (x|q) is the conditional density of X given Q = q.

Lemma C.3 Lx1|q is injective if (i) fε has a non-vanishing characteristic function (ii) FV is continu-

ous and strictly increasing and (iii) h (X) has full support on R. Further, Lx|q is bounded, and L−1
x|q

is exists and is densely defined.
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Proof. We first rewrite the operator Lx|q as a convolution:

∫ 1

0
f (x|q)m (q) dq =

∫
f (x|v)m (FV (v)) fV (v) dv

=
∫

f (v|x)m (FV (v)) dv

=
∫

fε (v− h (x)) M (v) dv

where the first equality follows from a change of variables, the second equality uses

Bayes’ rule fx|v (x|v) = fv|x(v|x) fx(x)
fV(v)

and the fact that the distribution of x is normalized to

uniform [0, 1], and the third equality uses the fact that fv|x (v|x) = fε (v− h (x)) and sets

M (v) = m (FV (v)). By Lemma C.2, M (v) = 0 for almost all v. Since FV is bijective, we

have that m (q) = 0 for almost all q. Therefore, f (x|q) is complete, and as noted in Hu and

Schennach (2008), hence that Lx|q is injective.

Note that the (operator) norm of Lx|q is at most

sup
m∈L1([0,1])

1
‖m‖1

∫ 1

0

∫ fε (v− h (x))
fV (v)

|m (FV (v))| fV (v) dvdx

= sup
m∈L1([0,1])

1
‖m‖1

∫ (∫ 1

0

fε (v− h (x))
fV (v)

dx
)
|m (FV (v))| fV (v) dv

=
1
‖m‖1

∫ 1

0
|m (q)| dq = 1

where we use a change in the order of integration by Fubini’s theorem, the identity fV (v) =∫ 1
0 fε (v− h (x)) dx, and a change in variables q = FV (v).

As argued in the proof of HS, Lemma 1, to show that L−1
x|q is densely defined, it is

sufficient to show that the adjoint L†
x|q is injective. Note that for any y in the space of

bounded functions (dual of the domain of Lx|q), it must be that

〈
m, L†

x|qy
〉
=
〈

Lx|qm, y
〉

=
∫ 1

0

∫ 1

0
fx|q (x|q)m (q) dqy (x) dx

=
∫ 1

0

∫ 1

0
fx|q (x|q) y (x) dxm (q) dq,

where we changed the order of integration using Fubini’s theorem. Therefore, L†
x|qy (q) =∫ 1

0 fx|q (x|q) y (x) dx. Since fx|q (x|q) = 1
fV(F−1

V (q))
fε

(
F−1

V (q)− h (x)
)

and fV (v) > 0,
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L†
x|qy (q) = 0 for all q ∈ [0, 1], implies that

∫ 1
0 fε (v− h (x)) y (x) dx = 0 for all v ∈ R.

By Lemma C.2, y (x) = 0 for almost all x.

Define the operator Lx1|x2
: L1 ([0, 1]) → L1 ([0, 1]) as Lx1|x2

m (x1) =∫
fx1|x2

(x1|x2)m (x2) dx2 for any function m ∈ L1 ([0, 1]).

Lemma C.4 Lx1|x2
is injective if (i) fε has a non-vanishing characteristic function (ii) FV is contin-

uous and strictly increasing and (iii) h (x) has full support on R. Further, Lx1|x2
is bounded, and

L−1
x1|x2

exists and is densely defined.

Proof. Note that

∫ 1

0
fx1|x2

(x1|x2)m (x2) dx2 =
∫ 1

0

(∫ 1

0
f (x1, q|x2) dq

)
m (x2) dx2

=
∫ 1

0

(∫ 1

0
fx1|q (x1|q) fq|x2

(q|x2) dq
)

m (x2) dx2

=
∫ 1

0

(∫
fx1|v (x1|v) fv|x2

(v|x2) dv
)

m (x2) dx2

=
∫ ∫ 1

0

fε (v− h (x1))

fV (v)
fv|x2

(v|x2)m (x2) dx2dv

=
∫ fε (v− h (x1))

fV (v)

(∫ 1

0
fε (v− h (x2))m (x2) dx2

)
dv

where we use (i) f (x1, q|x2) = f (x1|q, x2) fq|x2
(q|x2) = fx1|q (x1|q) fq|x2

(q|x2), (ii) a change

of variables FV (v) = q, (iii) fx1|v (x1|v) = fε(v−h(x1))
fV(v)

, fq|x2
(FV (v) |x2) =

1
fV(v)

fv|x2
(v|x2) and

(iv) a change in the order of integration by Fubini’s theorem.

By Lemma C.2, fε (v− h (x1)) is complete, and consequently,∫ 1
0 fx1|x2

(x1|x2)m (x2) dx2 = 0 implies 1
fV(v)

∫ 1
0 fε (v− h (x2))m (x2) dx2 = 0 for al-

most all v. Since fV (v) > 0, we have that
∫ 1

0 fε (v− h (x2))m (x2) dx2 = 0 for almost all v.

A second application of Lemma C.2 implies that m (x) = 0 for all x (Lemma C.2). Hence,

fx1|x2
(x1|x2) is complete, and as noted in Hu and Schennach (2008), completeness implies

injectivity.
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Note that the (operator) norm of Lx1|x2
is not greater than

sup
m∈L1([0,1])

1
‖m‖1

∫ 1

0

∫
fε (v− h (x1))

1
fV (v)

(∫ 1

0
fε (v− h (x2)) |m (x2)| dx2

)
dvdx1

= sup
m∈L1([0,1])

1
‖m‖1

∫ 1

0

∫ ( 1
fV (v)

∫ 1

0
fε (v− h (x1)) dx1

)
fε (v− h (x2)) dv |m (x2)| dx2

= sup
m∈L1([0,1])

1
‖m‖1

∫ 1

0

∫
fε (v− h (x2)) dv |m (x2)| dx2 = 1,

where we use (i) change in the order of integration by Fubini’s theorem, and (ii) the identity

fV (v) =
∫ 1

0 fε (v− h (x1)) dx1.

As argued in the proof of HS, Lemma 1, to show that L−1
x1|x2

is densely defined, it is

sufficient to show that the adjoint L†
x1|x2

is injective. Note that for any y in the space of

bounded functions (dual of the domain of Lx|q), it must be that

〈
m, L†

x1|x2
y
〉
=
〈

Lx1|x2
m, y

〉
=∫ 1

0

(∫ 1

0

(∫ 1

0
fx1|q (x1|q) fq|x2

(q|x2) dq
)

m (x2) dx2

)
y (x1) dx1

=
∫ 1

0

(∫ 1

0

(∫ 1

0
fx1|q (x1|q) fq|x2

(q|x2) dq
)

y (x1) dx1

)
m (x2) dx2

where we changed the order of integration using Fubini’s theorem. Hence,

L†
x1|x2

y (x2) =
∫ 1

0

(∫ 1

0
fx1|q (x1|q) fq|x2

(q|x2) dq
)

y (x1) dx1.

The arguments made above for Lx1|x2
also imply that L†

x1|x2
is injective.

For a function m, define the operator Lz;x1|x2
as

Lz;x1|x2
m (x1) =

∫ 1

0

∫ 1

0
fz|q (z|q) fx1|q (x1|q) fq|x2

(q|x2)m (x2) dqdx2

where fz|q (z|q), fx1|q (x1|q), and fq|x2
(q|x2) are the conditional densities of the respective

random variables

Lemma C.5 For any Borel set Λ ⊆ R, let P (Λ) = Lx1|q IΛL−1
x1|q and IΛm (q) =

1
(

fz|q (z|q) ∈ Λ
)

m (q). If (i) Lx1|q is a bounded invertible operator (ii) L−1
x1|q is densely defined and

(iii) L−1
x1|x2

exists and is densely defined, then P is the unique projection-valued measure for which
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T = Lz;x1|x2
L−1

x1|x2
=
∫

λP (dλ).

Proof. Hu and Schennach (2008) (henceforth HS) show that Lz;x1|x2
= Lx1|q∆z;qL−1

x1|qLx1|x2
, and

therefore T = Lz;x1|x2
L−1

x1|x2
= Lx1|q∆z;qL−1

x1|q where ∆z;qm (q) = fz|q (z|q)m (q). This allows

them to re-write T =
∫

λP (dλ).

HS show that T = Lz;x1|x2
L−1

x1|x2
has a unique resolution of the identity by appealing to

Theorem XV.4.5 in Dunford and Schwartz (1971) since, under Assumption HS.1 fz|q (z|q), is

bounded, and therefore T is a bounded operator. However, fz|q (z|q) may not be bounded in

our case. We therefore appeal to Corollary XVIII.14 in Dunford and Schwartz (1971), which

shows an analogous result for unbounded scalar type operators. The result applies to our

model if the projection-valued measure P is strongly countably additive, thereby satisfying

Definition XVIII.10 in Dunford and Schwartz (1971)

To complete the proof, we need to show that if Λi is a countable sequence of disjoint

Borel sets, then

P (∪n
i=1Λi) = Lx1|q I∪n

i=1Λi L
−1
x1|q = Lx1|q

(
n

∑
i=1

IΛi

)
L−1

x1|q

converges to P (∪∞
i=1Λi) = Lx1|q I∪∞

i=1Λi L
−1
x1|q in the strong operator topology. Equivalently, we

need to show that for any integrable function m,
∥∥∥Lx1|q I∪n

i=1Λi L
−1
x1|qm− Lx1|q I∪∞

i=1Λi L
−1
x1|qm

∥∥∥→
0. Since L−1

x1|q is densely defined, it is enough to show this for any m in the domain of L−1
x1|q.

Let m̃ = L−1
x1|qm, and note that

(
I∪n

i=1Λi − I∪∞
i=1Λi

)
m̃ (q) =

∞

∑
i=n+1

1
(

fz|q (z|q) ∈ Λi

)
m̃ (q)

converges pointwise to zero since fz|q (z|q) can live in only one set Λi. Since m̃ is in

the domain of Lx|q, m̃ is integrable. By the Dominated Convergence Theorem, we have

that
∥∥∥(I∪n

i=1Λi − I∪∞
i=1Λi

)
m̃
∥∥∥→ 0. Now, note that∥∥∥Lx1|q I∪n

i=1Λi L
−1
x1|qm− Lx1|q I∪∞

i=1Λi L
−1
x1|qm

∥∥∥ =
∥∥∥Lx1|q

(
I∪n

i=1Λi − I∪∞
i=1Λi

)
L−1

x1|qm
∥∥∥

≤
∥∥∥Lx1|q

∥∥∥ ∥∥∥(I∪n
i=1Λi − I∪∞

i=1Λi

)
L−1

x1|qm
∥∥∥
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where
∥∥∥Lx1|q

∥∥∥ is finite since Lx1|q is bounded. Further, since m̃ = L−1
x1|qm, the right-hand side

converges to zero.

Our final preliminary result will use the following condition on fx|q (x|q):

Condition C.1 (i) For all q∗1 6= q∗2 ∈ [0, 1], the set
{

x : fx|q (x|q∗1) 6= fx|q (x|q∗2)
}

has positive

probability under fx. (ii) fx|q (x|q) continuously differentiable in q. (iii) for all q ∈ (0, 1), there

exists an x, such that
∂ fx|q(x|q)

∂q 6= 0. (iv) fq (q) = 1 {q ∈ [0, 1]}. (v)
∫ 1

0 fx|q (x|q)m (q) dq = 0 for

all x, implies that m (q) = 0. (vi) f (x) =
∫ 1

0 fx|q (x|q) dq.

Lemma C.6 Consider two conditional densities f̃q̃ (x|q̃) and fq (x|q) satisfying Condition C.1. If

there exists a bijection Q : [0, 1]→ [0, 1] such that f̃q̃ (x|Q (q)) = fq (x|q) then Q is the identity.

Proof. We will show that if there exists a reindexing f̃x|q̃ (x|q̃) of q via a bijection Q :

[0, 1]→ [0, 1] such that f̃x|q̃ (x|Q (q)) = fx|q (x|q) (Assumption 4 in Hu and Schennach (2008)

requires Q (q) to be injective on [0, 1] and the support assumption in the hypothesis implies

surjectivity). If fq (q) = 1 and fq̃ (q̃) = 1, then Q (·) is the identity.

By the assumptions of the theorem,

f (x) =
∫ 1

0
fx|q (x|q) dq =

∫ 1

0
f̃x|q̃ (x|q) dq =

∫ 1

0
fx|q (x|Q (q)) dq.

A change of variables, q′ = Q (q) yields that

∫ 1

0
fx|q (x|Q (q)) dq =

∫ 1

0
fx|q
(

x|q′
)

dQ−1 (q′) = ∫ 1

0
fx|q
(
x|q′

) 1
Q′ (Q−1 (q′))

dq′.

The second inequality follows from the inverse function theorem. Differentiability of Q

follows from the implicit function theorem: Q (q) is defined implicitly from f̃x|q̃ (x|Q (q))−

fx|q (x|q) = 0, where for every Q there exists an x such that f̃x|q̃ (x|Q (q)) has a non-zero

derivative under the hypotheses of the theorem. Hence,

∫ 1

0
fx|q (x|q) dq−

∫ 1

0
fx|q (x|Q (q)) dq = 0⇒

∫ 1

0
fx|q (x|q)

(
1− 1

Q′ (Q−1 (q))

)
dq = 0.
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By Lemma C.3, for all q ∈ [0, 1],
(

1− 1
Q′(Q−1(q))

)
= 0. Therefore Q (·) is the identity

since Q′ (q) = 1.

C.2 Detailed Proofs: Estimation

C.2.1 Lemmata Used in Proposition 3.3

We will use the following lemmata for the result, which are stated, for each dimension of ψ.

We omit the dimension index for notational simplicity. Define qN,V (q) = FV

(
F−1

VN
(q)
)

and

qN,U (q) = FU

(
F−1

UN
(q)
)

.

Lemma C.7 Suppose that fV and fU are continuous, and ΓX and ΓZ are respectively µX and µZ

Donsker. The stochastic process defined by

√
N (qN,V (qX)− qX)

√
N/2 (qN,U (qZ)− qZ)
√

N (µXN − µX) (γX)
√

N/2 (µZN − µZ) (γZ)


indexed by qX, qZ ∈ [0, 1], γX ∈ ΓX and γZ ∈ ΓZ is asymptotically equivalent to the empirical

process 

√
N
(

µ(X,ε)N
− µX,ε

) (
1
{

h (x; θ0) + ε ≤ F−1
V (qX)

})
√

N/2
(

µ(Z,η)N
− µZ,η

) (
1
{

g (z; θ0) + η ≤ F−1
U (qZ)

})
√

N (µXN − µX) (γX)
√

N/2 (µZN − µZ) (γZ)


,
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which converges weakly to the mean-zero Gaussian process with covariance kernel given by

Ω (qX, qZ) = Ω (qZ, γX) = Ω (qX, γZ) = Ω (γX, γZ) = 0

Ω (qZ, γZ) = µZ,η

(
γZ1

{
g (z; θ0) + η ≤ F−1

U (qZ)
})
−

µZ (γZ) µZ,η

(
1
{

g (z; θ0) + η ≤ F−1
U (qZ)

})
Ω (qX, γX) = µX,ε

(
γX1

{
h (x; θ0) + ε ≤ F−1

V (qX)
})
−

µX (γX) µX,ε

(
1
{

h (x; θ0) + ε ≤ F−1
V (qX)

})
Ω
(
γX, γ′X

)
= µX

(
γXγ′X

)
− µX (γX) µX

(
γ′X
)

Ω
(
γZ, γ′Z

)
= µZ

(
γZγ′Z

)
− µZ (γZ) µZ

(
γ′Z
)

Ω
(
qX, q′X

)
= µX,ε

(
1
{

h (x; θ0) + ε ≤ F−1
V (qX)

}
1
{

h (x; θ0) + ε ≤ F−1
V
(
q′X
)})

−µX,ε

(
1
{

h (x; θ0) + ε ≤ F−1
V (qX)

})
µX,ε

(
1
{

h (x; θ0) + ε ≤ F−1
V
(
q′X
)})

Ω
(
qZ, q′Z

)
= µZ,η

(
1
{

g (z; θ0) + η ≤ F−1
U (qZ)

}
1
{

g (z; θ0) + η ≤ F−1
U
(
q′Z
)})

−µZ,η

(
1
{

g (z; θ0) + η ≤ F−1
U (qZ)

})
µZ,η

(
1
{

g (z; θ0) + η ≤ F−1
U
(
q′Z
)})

,

where qX, q′X ∈ [0, 1] , qZ, q′Z ∈ [0, 1], γX, γ′X ∈ ΓX and γZ, γ′Z ∈ ΓZ.

Proof. Note that FVN

(
F−1

V (.)
)

is the empirical cumulative distribution function of a uni-

formly distributed random variable, and qN,V : [0, 1] → [0, 1] is its associated quantile

function. Therefore, FVN

(
F−1

V (.)
)

satisfied the assumptions for theorem 4 of Csorgo and

Revesz (1978). This theorem implies that

√
N sup

q∈[0,1]

∣∣∣[FVN

(
F−1

V (q)
)
− FV

(
F−1

V (q)
)]
−
[

FV

(
F−1

VN
(q)
)
− FV

(
F−1

V (q)
)]∣∣∣ = op (1) .

Since qN,V (q) = FV

(
F−1

VN
(q)
)

and FV

(
F−1

V (q)
)
= q, we therefore have that

√
N sup

qε[0,1]

∣∣∣[FVN

(
F−1

V (q)
)
− FV

(
F−1

V (q)
)]
− [qN,V (q)− q]

∣∣∣ = op (1) .
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By an identical argument,√
N
2

sup
qε[0,1]

∣∣∣[FUN

(
F−1

U (q)
)
− FU

(
F−1

U (q)
)]
− [qN,U (q)− q]

∣∣∣ = op (1) .

Note that

FVN

(
F−1

V (q)
)
− FV

(
F−1

V (q)
)
=
(

µ(X,ε)N
− µX,ε

) (
1
{

h (x; θ0) + ε ≤ F−1
V (q)

})
and

FUN

(
F−1

U (q)
)
− FU

(
F−1

U (q)
)
=
(

µ(Z,η)N
− µZ,η

) (
1
{

g (z; θ0) + η ≤ F−1
U (q)

})
.

The result therefore follows from the functional central limit theorem, since the first and last

two components of

√
N
(

µ(X,ε)N
− µX,ε

) (
1
{

h (x; θ0) + ε ≤ F−1
V (qX)

})
√

N (µXN − µX) (γX)
√

N/2
(

µ(Z,η)N
− µZ,η

) (
1
{

g (z; θ0) + η ≤ F−1
U (qZ)

})
√

N/2 (µZN − µZ) (γZ)


are two independent empirical processes index by µX,ε and µZ,η Donsker classes.

Lemma C.8 (i) If Assumption 3.4(i) is satisfied, E (ψN |µVN , µUN )− ψ converges in probability to

0 as N → ∞.

(ii) If Assumption 3.4(ii) is satisfied, then for any bounded µX-Donsker class ΓX and bounded

µZ-Donsker class ΓZ, 
√

N (E (ψN |µVN , µUN )− ψ)
√

N (µXN − µX) (γX)
√

N/2 (µZN − µZ) (γZ)


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is asymptotically equivalent to the process

√
N
∫ 1

0 ∇ψ̃q (q, q, q) ·


(

µ(X,ε)N
− µX,ε

) (
1
{

h (x; θ0) + ε ≤ F−1
V (qX)

})
(

µ(X,ε)N
− µX,ε

) (
1
{

h (x; θ0) + ε ≤ F−1
V (qX)

})
(

µ(Z,η)N
− µZ,η

) (
1
{

g (z; θ0) + η ≤ F−1
U (qZ)

})
 dq

√
N (µXN − µX) (γX)

√
N/2 (µZN − µZ) (γZ)


,

which converges weakly to a mean-zero Gaussian process with covariance kernel given by

V ′ (γX, γZ) = 0

V ′ (γΨ, γZ) =
√

2
∫ 1

0
ψ̃q,3 (qZ, qZ, qZ)Ω (qZ, γZ) dqZ

V ′ (γΨ, γX) =
∫ 1

0

(
ψ̃q,1 (qX, qX, qX) + ψ̃q,2 (qX, qX, qX)

)
Ω (qX, γX) dqX

V ′ (γΨ, γΨ) =
∫ 1

0

∫ 1

0

(
ψ̃q,1 (qX, qX, qX) + ψ̃q,2 (qX, qX, qX)

)
(
ψ̃q,1

(
q′X, q′X, q′X

)
+ ψ̃q,2

(
q′X, q′X, q′X

))
Ω
(
qX, q′X

)
dqXdq′X

+2
∫ 1

0

∫ 1

0
ψ̃q,3 (qZ, qZ, qZ) ψ̃q,3

(
q′Z, q′Z, q′Z

)
Ω
(
qZ, q′Z

)
dqZdq′Z

V ′
(
γX, γ′X

)
= Ω

(
γX, γ′X

)
V ′
(
γZ, γ′Z

)
= Ω

(
γZ, γ′Z

)
,

where γX, γ′X ∈ ΓX, γZ, γ′Z ∈ ΓZ and γΨ indexes
√

N (E (ψN |µVN , µUN )− ψ).

Proof. The quantity E (ψN |µVN , µUN ) can be computed by using the fact that for all 1 ≤ k ≤ J,

the k’th most desirable firm is occupied by the 2k-th and the (2k− 1)-th most desirable

workers. By definition, the conditional expectation of Ψ (x1, x2, z) given µVN , µUN for the

k’th desirable job is ψ̃
(

F−1
VN

(
2k−1

N

)
, F−1

VN

(
2k
N

)
, F−1

UN

(
k

N/2

))
where FVN and FUN are the cdfs

representing the empirical measures µVN and µUN respectively. Therefore,

E (ψN |µVN , µUN ) =
1

N/2

N/2

∑
k=1

ψ̃

(
F−1

VN

(
2k− 1

N

)
, F−1

VN

(
2k
N

)
, F−1

UN

(
k

N/2

))
=

1
N

N

∑
i=1

ψ̃

(
F−1

VN

(
i
N

)
, F−1

VN

(
i
N

)
, F−1

UN

(
i
N

))
+ R. (C.1)
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where

R =
1

N/2

N/2

∑
k=1

[
ψ̃

(
F−1

VN

(
2k− 1

N

)
, F−1

VN

(
2k
N

)
, F−1

UN

(
k

N/2

))
−1

2
ψ̃

(
F−1

VN

(
2k− 1

N

)
, F−1

VN

(
2k− 1

N

)
, F−1

UN

(
2k− 1

N

))
−1

2
ψ̃

(
F−1

VN

(
2k
N

)
, F−1

VN

(
2k
N

)
, F−1

UN

(
2k
N

))]
. (C.2)

Our proof of part (i) proceeds by showing that R→ 0 and that

1
N

N

∑
i=1

ψ̃

(
F−1

VN

(
i
N

)
, F−1

VN

(
i
N

)
, F−1

UN

(
i
N

))
− ψ→ 0. (C.3)

The proof of part (ii) is analogous. It characterizes the limit distribution of

√
N

(
1
N

N

∑
i=1

ψ̃

(
F−1

VN

(
i
N

)
, F−1

VN

(
i
N

)
, F−1

UN

(
i
N

))
− ψ

)

under stronger assumptions.

Proof of Part (i): We begin by bounding the absolute value of R in equation (C.2) using

the triangle inequality as:

|R| ≤ 1
N

N/2

∑
k=1

∣∣∣∣ψ̃(F−1
VN

(
2k− 1

N

)
, F−1

VN

(
2k
N

)
, F−1

UN

(
2k
N

))
−ψ̃

(
F−1

VN

(
2k
N

)
, F−1

VN

(
2k
N

)
, F−1

UN

(
2k
N

))∣∣∣∣
+

1
N

N/2

∑
k=1

∣∣∣∣ψ̃(F−1
VN

(
2k− 1

N

)
, F−1

VN

(
2k
N

)
, F−1

UN

(
2k
N

))
−ψ̃

(
F−1

VN

(
2k− 1

N

)
, F−1

VN

(
2k− 1

N

)
, F−1

UN

(
2k
N

))∣∣∣∣ .
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For any δ ∈
(
0, 1

2

)
, we have that:

|R| ≤ 1
N ∑
dδN/2e<k<b(1−δ)N/2c

∣∣∣∣ψ̃(F−1
VN

(
2k− 1

N

)
, F−1

VN

(
2k
N

)
, F−1

UN

(
2k
N

))
−ψ̃

(
F−1

VN

(
2k
N

)
, F−1

VN

(
2k
N

)
, F−1

UN

(
2k
N

))∣∣∣∣
+

1
N ∑
dδN/2e<k<b(1−δ)N/2c

∣∣∣∣ψ̃(F−1
VN

(
2k− 1

N

)
, F−1

VN

(
2k
N

)
, F−1

UN

(
2k
N

))
−ψ̃

(
F−1

VN

(
2k− 1

N

)
, F−1

VN

(
2k− 1

N

)
, F−1

UN

(
2k
N

))∣∣∣∣
+4δ ‖Ψ‖∞

= R̃ + 4δ ‖Ψ‖∞ . (C.4)

Since ψ̃ is Lipschitz continuous

R̃ ≤ sup
dJδe<k<bJ(1−δ)c

|ψ̃|LC

[
2
∣∣∣∣F−1

VN

(
2k− 1

N

)
− F−1

VN

(
2k
N

)∣∣∣∣] , (C.5)

where |ψ̃|LC denotes the Lipschitz constant. By Example 3.9.21 in van der Vaart and

Wellner (2000), for all dδN/2e < k < b(1− δ) N/2c
∣∣∣F−1

VN

(
2k−1

N

)
− F−1

VN

(
2k
N

)∣∣∣ converges in

probability to 0 uniformly in k (Assumption 3.4(i)b. implies that fV is continuous with full

support). Therefore, since R̃ ≥ 0, it converges in probability to 0.

Now, we show that the difference in equation (C.3) converges in probability to 0. Note

that FUN is constant on each interval [ k−1
N/2 , k

N/2 ) and FVN is constant on [ i−1
N , i

N ). Hence,

1
N

N

∑
i=1

ψ̃

(
F−1

VN

(
i
N

)
, F−1

VN

(
i
N

)
, F−1

UN

(
i
N

))
− ψ

=
∫ 1

0
ψ̃
(

F−1
VN

(q) , F−1
VN

(q) , F−1
UN

(q)
)

dq−
∫ 1

0
ψ̃
(

F−1
V (q) , F−1

V (q) , F−1
U (q)

)
dq

=
∫ 1−δ

δ

[
ψ̃
(

F−1
VN

(q) , F−1
VN

(q) , F−1
UN

(q)
)
− ψ̃

(
F−1

V (q) , F−1
V (q) , F−1

U (q)
)]

dq

+

(∫ δ

0
+
∫ 1

1−δ

) [
ψ̃
(

F−1
VN

(q) , F−1
VN

(q) , F−1
UN

(q)
)
− ψ̃

(
F−1

V (q) , F−1
V (q) , F−1

U (q)
)]

dq

= T1 + T2 (C.6)

where δ ∈
(
0, 1

2

)
.
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We now bound T1 and T2 in terms of δ. Since ‖Ψ‖∞ < ∞, |T2| ≤ 4δ ‖Ψ‖∞. To bound T1,

note that

|T1| =
∣∣∣∣∫ 1−δ

δ

[
ψ̃
(

F−1
VN

(q) , F−1
VN

(q) , F−1
UN

(q)
)
− ψ̃

(
F−1

V (q) , F−1
V (q) , F−1

U (q)
)]

dq
∣∣∣∣

≤
∫ 1−δ

δ

∣∣∣ψ̃ (F−1
VN

(q) , F−1
VN

(q) , F−1
UN

(q)
)
− ψ̃

(
F−1

V (q) , F−1
V (q) , F−1

U (q)
)∣∣∣ dq

≤ sup
q∈[δ,1−δ]

∣∣∣ψ̃ (F−1
VN

(q) , F−1
VN

(q) , F−1
UN

(q)
)
− ψ̃

(
F−1

V (q) , F−1
V (q) , F−1

U (q)
)∣∣∣

≤ |ψ̃|LC sup
q∈[δ,1−δ]

∣∣∣(F−1
VN

(q) , F−1
VN

(q) , F−1
UN

(q)
)
−
(

F−1
V (q) , F−1

V (q) , F−1
U (q)

)∣∣∣ . (C.7)

Combining equations (C.1) - (C.7) and the bound on T2, we have that

|E (ψN |µVN , µUN )− ψ|

≤
∣∣∣∣∣ 1

N

N

∑
i=1

ψ̃

(
F−1

VN

(
i
N

)
, F−1

VN

(
i
N

)
, F−1

UN

(
i
N

))
− ψ

∣∣∣∣∣+ |R|
≤ |T1|+ |T2|+

∣∣R̃∣∣+ 4δ ‖Ψ‖∞

≤ |ψ̃|LC sup
q∈[δ,1−δ]

∣∣∣(F−1
VN

(q) , F−1
VN

(q) , F−1
UN

(q)
)
−
(

F−1
V (q) , F−1

V (q) , F−1
U (q)

)∣∣∣+
8δ ‖Ψ‖∞ + op (1)

since |T2| ≤ 4δ ‖Ψ‖∞ and
∣∣R̃∣∣ = op (1).

We now show that |E (ψN |µVN , µUN )− ψ| → 0 in probability as N → ∞. Fix ε > 0 and

choose δ = ε
16‖Ψ‖∞

. By Example 3.9.21 in van der Vaart and Wellner (2000),

sup
q∈[δ,1−δ]

∣∣∣(F−1
VN

(q) , F−1
VN

(q) , F−1
UN

(q)
)
−
(

F−1
V (q) , F−1

V (q) , F−1
U (q)

)∣∣∣
converges in probability to 0 (Assumption 3.4(i)b. implies that fV and fU are continuous

with full support). Hence, for sufficiently large N we have

P

(
|ψ̃|LC sup

q∈[δ,1−δ]

∣∣∣(F−1
VN

(q) , F−1
VN

(q) , F−1
UN

(q)
)
−
(

F−1
V (q) , F−1

V (q) , F−1
U (q)

)∣∣∣ > ε

2

)
< ε.
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This implies P (|E (ψN |µVN , µUN )− ψ| > ε) < ε, proving the desired convergence in proba-

bility to 0.

Proof of Part (ii): Let qN,V (q) = FV

(
F−1

VN
(q)
)

, qN,U (q) = FU

(
F−1

UN
(q)
)

, and

ψ̃q (q1, q2, q3) = ψ̃
(

F−1
V (q1) , F−1

V (q2) , F−1
U (q3)

)
.

Equation (C.2) can be rewritten by using this notation as

R =
1

N/2

N/2

∑
k=1

[
ψ̃q

(
qN,V

(
2k− 1

N

)
, qN,V

(
2k
N

)
, qN,U

(
k

N/2

))
−1

2
ψ̃q

(
qN,V

(
2k− 1

N

)
, qN,V

(
2k− 1

N

)
, qN,U

(
k

N/2

))
−1

2
ψ̃q

(
qN,V

(
2k
N

)
, qN,V

(
2k
N

)
, qN,U

(
k

N/2

))]
.

By the triangle inequality and the assumption that ψ̃q has a bounded derivative,

|R| ≤ 1
N

N/2

∑
k=1

∥∥∇ψ̃q
∥∥

∞ 2
∣∣∣∣qN,V

(
2k− 1

N

)
− qN,V

(
2k
N

)∣∣∣∣ .

Since qN,V (q) is monotonic in q and has range [0, 1], we have that

N/2

∑
k=1

∣∣∣∣qN,V

(
2k− 1

N

)
− qN,V

(
2k
N

)∣∣∣∣
=

∣∣∣∣∣N/2

∑
k=1

qN,V

(
2k− 1

N

)
− qN,V

(
2k
N

)∣∣∣∣∣
≤ 1.

Therefore, since
∥∥∇ψ̃q

∥∥
∞ < ∞,

√
N |R| ≤ 1√

N

∥∥∇ψ̃q
∥∥

∞ → 0. (C.8)

Now, we compute the limit distribution of

1
N

N

∑
i=1

ψ̃

(
F−1

VN

(
i
N

)
, F−1

VN

(
i
N

)
, F−1

UN

(
i
N

))
− ψ

=
1
N

N

∑
i=1

ψ̃q

(
qN,V

(
i
N

)
, qN,V

(
i
N

)
, qN,U

(
i
N

))
− ψ

=
∫ 1

0
ψ̃q (qN,V (q) , qN,V (q) , qN,U (q)) dq−

∫ 1

0
ψ̃q (q, q, q) dq.
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By Taylor’s theorem,

ψ̃q (qN,V (q) , qN,V (q) , qN,U (q))− ψ̃q (q, q, q)

= ψ̃q,1 (q, q, q) (qN,V (q)− q) + ψ̃q,2 (q, q, q) (qN,V (q)− q) + ψ̃q,3 (q, q, q) (qN,U (q)− q) + Rq.

Since,

sup
q

∣∣Rq
∣∣ = o

(
sup

q
‖qN,V (q)− q‖+ sup

q
‖qN,V (q)− q‖+ sup

q
‖qN,U (q)− q‖

)
,

we have that
√

N supq

∣∣Rq
∣∣→p 0. Therefore,

√
N (E (ψN |µVN , µUN )− ψ)

=
√

N

(
1
N

N

∑
i=1

ψ̃

(
F−1

VN

(
i
N

)
, F−1

VN

(
i
N

)
, F−1

UN

(
i
N

))
− ψ

)
+ op (1)

=
√

N
∫ 1

0
∇ψ̃q (q, q, q) ·


qN,V (q)− q

qN,V (q)− q

qN,U (q)− q

 dq + op (1) ,

showing the required asymptotic equivalence. Lemma C.7 characterizes the limit distribution

of 

√
N (qN,V (qX)− qX)

√
N/2 (qN,U (qZ)− qZ)
√

N (µXN − µX) (γX)
√

N/2 (µZN − µZ) (γZ)


indexed by qX, qZ ∈ [0, 1], γX ∈ ΓX and γZ ∈ ΓZ. Therefore,

√
N (E (ψN |µVN , µUN )− ψ)
√

N (µXN − µX) (γX)
√

N/2 (µZN − µZ) (γZ)


converges to a mean-zero Gaussian process with covariance kernel V ′.

Lemma C.9 (i) ψN − E (ψN |µVN , µUN ) converges in probability to 0 if ‖Ψ‖∞ < ∞.

147



(ii) Suppose Assumption 3.4(ii)b is satisfied. For any bounded functions γX,ε on the domain of

(X, ε) and γZ,η on the domain of (Z, η) ,

√
N/2

[
ψN − E (ψN |µVN , µUN ) ,

(
µ(X,ε)N

− µX,ε

)
(γZ) ,

(
µ(Z,η)N

− µZ,η

)
(γZ)

]
converges to a multivariate normal distribution with mean 0 and covariance kernel V ′′ (γX, γZ) =

∫ 1
0 varq,Ψ (q, q, q) dq

∫ 1
0 covq (Ψ, γX,ε|q, q, q) dq

∫ 1
0 covq

(
Ψ, γZ,η |q, q, q

)
dq∫ 1

0 covq (Ψ, γX,ε|q, q, q) dq 1
2 Var (γX,ε) 0∫ 1

0 covq
(
Ψ, γZ,η |q, q, q

)
dq 0 Var

(
γZ,η

)
 .

Proof. Let v(k) and u(k) be k’th order statistics of worker and firm desirability and let(
X(k), ε(k)

)
and

(
Z(k), η(k)

)
be the corresponding observations drawn from µX,ε|v(k) and

µZ,η|u(k) respectively. We will use J = N/2 in this proof. Rewrite:

ψN − E (ψN |µUN , µVN ) =
1
J

(
J

∑
k=1

Ψ
(

X(2k−1), X(2k), Z(i)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

))
.

Proof of Part (i): The conditional variance of ψN − E (ψN |µUN , µVN ) given (µVN , µUN ) is

1
J2 E

( J

∑
i=1

Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

))2
∣∣∣∣∣∣ µVN , µUN


=

1
J2

J

∑
i=1

E
((

Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

))2
∣∣∣∣ µVN , µUN

)
≤ 1

J
4 ‖Ψ‖2

∞ ,

where the first equality follows from conditional independence.

However, since ψN − E (ψN |µVN , µUN ) is by definition mean zero, it follows that the

unconditional variance of ψN − E (ψN |µVN , µUN ) is bounded above by 1
J 4 ‖Ψ‖2

∞ , by the law

of total variance. By Chebychev’s inequality,
√

J (ψN − E (ψN |µVN , µUN )) = Op (1) and thus

ψN − E (ψN |µVN , µUN ) = op (1) .
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Proof of Part (ii): We will show that the random variables

ψN − E (ψN |µVN , µUN ) =
1
J

(
J

∑
k=1

Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

))
,

(
µ(X,ε)N

− µX,ε

)
(γX,ε) =

1
2J

2J

∑
k=1

γX,ε

(
X(k), ε(k)

)
− E (γX,ε) , and

(
µ(Z,η)N

− µZ,η

)
(γZ, η) =

1
J

J

∑
k=1

γZ,η

(
Z(k), η(k)

)
− E (γZ, η) , (C.9)

are jointly asymptotically normal. The latter two random variables are jointly asymptotically

normal by the standard CLT. We will characterize the joint limiting distribution of these three

random variables by calculating their joint moment generating function and comparing it

with the moment generating function of a normal random variable. We do this by computing

the limiting variance-covariance matrices of the first random variable with each of the other

two (note that the second and third random variables are independent), and then using a

Taylor expansion of the moment generating function to show that the leading terms match

the moment generating function of a normal random variable and that higher order terms

are asymptotically negligible.

The sample variances of γX,ε and γZ,η and their covariance converge in probability to

Var (γX,ε) , Var
(
γZ,η

)
and 0 by the standard law of large numbers.

To show that the sample variances converge, we show that the second moment of

the sample variances (of the random variables above) converge to 0. If these variance of

the sample variances converge to 0, then the relevant sample variances will converge in

probability (by Chebychev’s inequality). To bound the variance of the first sample variance,

by the law of total variance, let rewrite

Var

(
1
J

J

∑
k=1

[
Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

)]2
)

=
1
J2 E

(
J

∑
k=1

Var
[

Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

)∣∣∣ µVN , µUN

]2
)

+Var

(
1
J

J

∑
k=1

E
[

Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

)∣∣∣ µVN , µUN

]2
)

= T1 + T2.
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To bound the variance of the sample covariance of the first and second random variables,

rewrite

Var

(
1
J

J

∑
k=1

[
Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

)]
[

1
2

γX,ε

(
X(2k−1), ε(2k−1)

)
+

1
2

γX,ε

(
X(2k), ε(2k)

)
− E (γX,ε)

])
=

1
J2 E

(
J

∑
k=1

Var
{[

Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

)]
[

1
2

γX,ε

(
X(2k−1), ε(2k−1)

)
+

1
2

γX,ε

(
X(2k), ε(2k)

)
− E (γX,ε)

]∣∣∣∣ µVN , µUN

})
+Var

(
1
J

J

∑
k=1

E
{[

Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

)]
[

1
2

γX,ε

(
X(2k−1), ε(2k−1)

)
+

1
2

γX,ε

(
X(2k), ε(2k)

)
− E (γX,ε)

]∣∣∣∣ µVN , µUN

})
= R1 + R2.

To bound the variance of the sample covariance of the first and third random variables, let

v(k) =
[
Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

)] [
γZ,η

(
Z(k), η(k)

)
− EγZ,η

]
and rewrite

Var

(
1
J

J

∑
k=1

[
Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

)] [
γZ,η

(
Z(k), η(k)

)
− EγZ,η

])

=
1
J2 E

J

∑
k=1

Var(v(k)|µVN , µUN )

+Var

(
1
J

J

∑
k=1

Ev(k)|µVN , µUN

)
= V1 + V2.

Note that T1, R1 and V1 are the sum of J bounded terms divided by J2 and hence

converge in probability to 0. To show that T2, R2 and V2 converge in probability to 0, we
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compute the relevant conditional expectations. For T2, we have that

1
J

J

∑
k=1

E
(

Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

)∣∣∣ µVN , µUN

)2
= 0

since

E
(

Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

)∣∣∣ µVN , µUN

)
= 0

since the conditional expectation ψ̃ satisfies this by definition.

For later calculations, it will be useful to compute the variance of Ψ
(

X(2k−1), X(2k), Z(k)
)

conditional on µVN , µUN .

1
J

J

∑
k=1

[
E
(

Ψ
(

X(2k−1), X(2k), Z(k)
)2
∣∣∣∣ µVN , µUN

)
− E

(
ψ̃
(

v(2k−1), v(2k), u(k)
)∣∣∣ µVN , µUN

)2
]

=
1
J

J

∑
k=1

var
(

Ψ|v(2k−1), v(2k), u(k)
)

=
1
2J

J

∑
k=1

(
var

(
Ψ|v(2k), v(2k), u(k)

)
+ var

(
Ψ|v(2k−1), v(2k−1), u(k)

))
− 1

2J

J

∑
k=1

(
var

(
Ψ|v(2k), v(2k), u(k)

)
− var

(
Ψ|v(2k−1), v(2k), u(k)

))
− 1

2J

J

∑
k=1

(
var

(
Ψ|v(2k−1), v(2k−1), u(k)

)
− var

(
Ψ|v(2k−1), v(2k), u(k)

))
(C.10)

The first term in the summation is

1
2J

(
J

∑
k=1

var
(

Ψ|v(2k), v(2k), u(k)
)
+

J

∑
k=1

var
(

Ψ|v(2k−1), v(2k−1), u(k)
))

=
∫ 1

0
varq (Ψ|qN,V (q) , qN,V (q) , qN,U (q)) dq.

Since ‖Ψ‖∞ < ∞, by the dominated convergence theorem,

1
2J

(
J

∑
k=1

var
(

Ψ|v(2k), v(2k), u(k)
)
+

J

∑
k=1

var
(

Ψ|v(2k−1), v(2k−1), u(k)
))

→
∫ 1

0
varq (Ψ|q, q, q) dq (C.11)
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almost surely. Note that∣∣∣∣∣ 1
2J

J

∑
k=1

var
(

Ψ|v(2k), v(2k), u(k)
)
− var

(
Ψ|v(2k−1), v(2k), u(k)

)∣∣∣∣∣
≤

∣∣∣∣∣ 1
2J

J

∑
k=1

E
(

Ψ2|v(2k), v(2k), u(k)
)
− E

(
Ψ2|v(2k−1), v(2k), u(k)

)∣∣∣∣∣
+

∣∣∣∣∣ 1
2J

J

∑
k=1

E
(

Ψ|v(2k), v(2k), u(k)
)2
− E

(
Ψ|v(2k−1), v(2k), u(k)

)2
∣∣∣∣∣

≤
∣∣∣∣∣ 1
2J

J

∑
k=1

∫ ‖Ψ‖2
∞

0

(
P
(

Ψ2 ≥ c|v(2k), v(2k), u(k)
)
− P

(
Ψ2 ≥ c|v(2k−1), v(2k), u(k)

))
dc

∣∣∣∣∣
+

∣∣∣∣∣‖Ψ‖∞
J

J

∑
k=1

∫ ‖Ψ‖∞

0

(
P
(

Ψ ≥ c|v(2k), v(2k), u(k)
)
− P

(
Ψ ≥ c|v(2k−1), v(2k), u(k)

))
dc

∣∣∣∣∣
→ 0 (C.12)

since

P
(
Ψ2 ≥ c|v1, v2, u

)
=

∫
1
{

Ψ (x1, x2, z)2 ≥ c
}

dµX1|vdµX2|v2
dµZ|u

is continuous in v1, v2 and u (implied by Assumption 3.4(ii)b), and ‖Ψ‖∞ < ∞.

Therefore, by equations (C.10), (C.11) and (C.12),

1
J

J

∑
k=1

E
((

Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

))2
∣∣∣∣ µVN , µUN

)
→
∫ 1

0
var (ψ|q, q, q) dq

(C.13)

almost surely.
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Similarly, for R2,

1
J

J

∑
k=1

E
{(

Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

))
[

1
2

γX,ε

(
X(2k−1), ε(2k−1)

)
+

1
2

γX,ε

(
X(2k), ε(2k)

)
− E (γX,ε)

]∣∣∣∣ µVN , µUN

}
=

1
J

J

∑
k=1

E
{(

Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

))
(

1
2

γX,ε

(
X(2k−1), ε(2k−1)

)
+

1
2

γX,ε

(
X(2k), ε(2k)

)
−1

2
E
[

γX,ε

(
X(2k−1), ε(2k−1)

)
+ γX,ε

(
X(2k), ε(2k)

)∣∣∣ µVN , µUN

])∣∣∣∣ µVN , µUN

}
+

1
J

J

∑
k=1

E
{(

Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

))∣∣∣ µVN , µUN

}
×(

1
2

E
[

γX,ε

(
X(2k−1), ε(2k−1)

)
+ γX,ε

(
X(2k), ε(2k)

)∣∣∣ µVN , µUN

]
− E (γX,ε)

)
=

1
J

J

∑
k=1

cov
(

Ψ, γX,ε|v(2k−1), v(2k), u(k)
)

+
1
J

J

∑
k=1

0×
(

1
2

E
[

γX,ε

(
X(2k−1), ε(2k−1)

)
+ γX,ε

(
X(2k), ε(2k)

)∣∣∣ µVN , µUN

]
− E (γX,ε)

)
=

∫ 1

0
covq (Ψ, γX,ε|q, q, q) dq + o (1) (C.14)

where the last equality follows from arguments identical to showing equation (C.13) and

cov (Ψ, γX,ε|v1, v2, u) =∫
Ψ (x1, x2, z)

(
1
2

γX,ε (x1, ε1) +
1
2

γX,ε (x2, ε2)

)
dµ(X1,ε1)|v1

dµ(X2,ε2)|v2
dµZ|u −

1
2

∫
Ψ (x1, x2, z) dµX1|v1

dµX2|v2
dµZ|u

∫
(γX,ε (x1, ε1) + 2γX,ε (x2, ε2)) dµ(X1,ε1)|v1

dµ(X2,ε2)|v2
.

Similarly, for V2, we have that

1
J

J

∑
k=1

E(v(k)|µVN , µUN ) (C.15)

=
∫ 1

0
covq

(
Ψ, γZ,η |q, q, q

)
dq + o (1) . (C.16)

Note that these three calculations imply T2, R2, and V2 are variances of bounded random

variables which converge in probability, and hence converge to 0. It follows that the sample
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variances converge in probability to their mean, which we now compute.

By the law of iterated expectations and arguments identical to showing equation (C.13),

E
1
J

J

∑
k=1

(
Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

))2

= E
1
J

J

∑
k=1

E
{(

Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

))2
∣∣∣∣ µVN , µUN

}
=

∫ 1

0
var (Ψ|q, q, q) dq + o (1) (C.17)

and

E
1
J

J

∑
k=1

(
Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

))
∗ (C.18)[

1
2

γX,ε

(
X(2k−1), ε(2k−1)

)
+

1
2

γX,ε

(
X(2k), ε(2k)

)
− E (γX,ε)

]
=
∫ 1

0
covq (Ψ, γX,ε| (q, q, q)) dq + o (1) (C.19)

and

E
1
J

J

∑
k=1

(
Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

)) [
γZ,η

(
Z(k), η(k)

)
− EγZ,η

]
=

∫ 1

0
covq

(
Ψ, γZ,η |q, q, q

)
dq + o (1) (C.20)

This characterizes the asymptotic variance of the random variables in equation (C.9).

We now characterize the limiting distribution by computing the limit of the moment

generating function. For arbitrary C1, C2, C3 > 0 we must compute

E
(

exp C1 [ψN − E (ψN |µVN , µUN )] + C2

(
µ(X,ε)N

− µX,ε

)
(γX,ε) + C3

(
µ(Z,η)N

− µZ,η

) (
γZ,η

))
.
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E exp〈(C1
√

J [ψN − E (ψN |µVN , µUN )] + C2
√

J
(

µ(X,ε)N
− µX,ε

)
(γX,ε) +

C3
√

J
(

µ(Z,η)N
− µZ,η

) (
γZ,η

)
)〉

= E exp
1√

J

(
J

∑
k=1

C1

(
Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

))
+

J

∑
k=1

C2

[
1
2

γX,ε

(
X(2k−1), ε(2k−1)

)
+

1
2

γX,ε

(
X(2k), ε(2k)

)
− E (γX,ε)

]

+
J

∑
k=1

C3

[
γZ,η

(
Z(k), η(k)

)
− E

(
γZ,η

)])

= EΠJ
k=1 exp

1√
J

(
C1

(
Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

))
+C2

[
1
2

γX,ε

(
X(2k−1), ε(2k−1)

)
+

1
2

γX,ε

(
X(2k), ε(2k)

)
− E (γX,ε)

]
+C3

[
γZ,η

(
Z(k), η(k)

)
− E

(
γZ,η

)])
By the Law of Iterated Expectations, this equals

E
[

E
[

ΠJ
k=1 exp

1√
J

(
C1

(
Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

))
+C2

[
1
2

γX,ε

(
X(2k−1), ε(2k−1)

)
+

1
2

γX,ε

(
X(2k), ε(2k)

)
− E (γX,ε)

]
+C3

[
γZ,η

(
Z(k), η(k)

)
− E

(
γZ,η

)])∣∣∣ µVN , µUN

]]
= EΠJ

k=1E
[

exp
1√

J

(
C1

(
Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

))
+C2

[
1
2

γX,ε

(
X(2k−1), ε(2k−1)

)
+

1
2

γX,ε

(
X(2k), ε(2k)

)
− E (γX,ε)

]
+C3

[
γZ,η

(
Z(k), η(k)

)
− E

(
γZ,η

)])∣∣∣ µVN , µUN

]
= E exp

J

∑
k=1

log E
[

exp
1√

J

(
C1

(
Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

))
+C2

[
1
2

γX,ε

(
X(2k−1), ε(2k−1)

)
+

1
2

γX,ε

(
X(2k), ε(2k)

)
− E (γX,ε)

]
+C3

[
γZ,η

(
Z(k), η(k)

)
− E

(
γZ,η

)])∣∣∣ µVN , µUN

]
where the first equality follows from conditional independence of the terms k and l 6= k.

Replacing the inner exp (x) by its Taylor expansion exp (x) = 1 + x + 1
2 x2 + R (x) yields the
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expression

E exp
([

C1
√

J [ψN − E (ψN |µVN , µUN )] + C2
√

J
(

µ(X,ε)N
− µX,ε

)
(γX,ε)

+C3
√

J
(

µ(Z,η)N
− µZ,η

) (
γZ,η

)])
= E exp

J

∑
k=1

log E
[

1 +
1√

J

(
C1

(
Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

))
+C2

[
1
2

γX,ε

(
X(2k−1), ε(2k−1)

)
+

1
2

γX,ε

(
X(2k), ε(2k)

)
− E (γX,ε)

]
+C3

[
γZ,η

(
Z(k), η(k)

)
− E

(
γZ,η

)])
+

1
2J

(
C1

(
Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

))
+C2

[
1
2

γX,ε

(
X(2k−1), ε(2k−1)

)
+

1
2

γX,ε

(
X(2k), ε(2k)

)
− E (γX,ε)

]
+C3

[
γZ,η

(
Z(k), η(k)

)
− E

(
γZ,η

)])2
+

Rk

J
3
2

∣∣∣∣∣ µVN , µUN

]

= E exp
J

∑
k=1

log E [1+

+
C2√

J

[
1
2

γX,ε

(
X(2k−1), ε(2k−1)

)
+

1
2

γX,ε

(
X(2k)

)
− E (γXε)

]
+

C3√
J

[
γZ,η

(
Z(k), η(k)

)
− E

(
γZ,η

)]
+

1
2J

(
C1

(
Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

))
+C2

[
1
2

γX,ε

(
X(2k−1), ε(2k−1)

)
+

1
2

γX,ε

(
X(2k), , ε(2k)

)
− E (γX,ε)

]
+C3

[
γZ,η

(
Z(k), η(k)

)
− E

(
γZ,η

)])2
+

Rk

J
3
2

∣∣∣∣∣ µVN , µUN

]

where the first term E
[

Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

)∣∣∣ µVN , µUN

]
= 0 by

the definition of ψ̃.

Since γX, γZ and Ψ are bounded, we approximate log (1 + x) by its Taylor expansion

log (1 + x) = x− 1
2 x2 + r (x) and keep track only of terms J−1 and lower (note that Rk is
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bounded as well). The above equation simplifies to

E exp
J

∑
k=1

E
{

1√
J
C2

[
1
2

γX,ε

(
X(2k−1), ε(2k−1)

)
+

1
2

γX,ε

(
X(2k), ε(2k)

)
− E (γX,ε)

]
+

1√
J
C3

[
γZ,η

(
Z(k), η(k)

)
− EγZ,η

]
+

1
2J

[
C1

(
Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

))
+C2

[
1
2

γX,ε

(
X(2k−1), ε(2k−1)

)
+

1
2

γX,ε

(
X(2k), ε(2k)

)
− E (γX,ε)

]
+C3

[
γZ,η

(
Z(k), η(k)

)
− EγZ,η

]]2

− 1
2J

(
C2

[
1
2

γX,ε

(
X(2k−1), ε(2k−1)

)
+

1
2

γX,ε

(
X(2k), ε(2k)

)
− E (γX,ε)

])2

− 1
2J

(
C3

[
γZ,η

(
Z(k), η(k)

)
− EγZ,η

])2

− 1
2J

2C2

[
1
2

γX,ε

(
X(2k−1), ε(2k−1)

)
+

1
2

γX,ε

(
X(2k), ε(2k)

)
− E (γX,ε)

]
∗

C3

[
γZ,η

(
Z(k), η(k)

)
− EγZ,η

]∣∣∣ µVN , µUN

}
+o
(

J−1
)

Since

1
J ∑J

k=1

[
1
2 γX,ε

(
X(2k−1), ε(2k−1)

)
+ 1

2 γX,ε

(
X(2k), ε(2k)

)
− E (γX,ε)

] [
γZ,η

(
Z(k), η(k)

)
− EγZ,η

]
converges in probability to 0, we can rewrite this as

E exp
J

∑
k=1

E
{

1√
J
C2

[
1
2

γX,ε

(
X(2k−1), ε(2k−1)

)
+

1
2

γX,ε

(
X(2k), ε(2k)

)
− E (γX,ε)

]
+

1√
J
C3

[
γZ,η

(
Z(k), η(k)

)
− EγZ,η

]
+

1
2J

[
C1

(
Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

))
+C2

[
1
2

γX,ε

(
X(2k−1), ε(2k−1)

)
+

1
2

γX,ε

(
X(2k), ε(2k)

)
− E (γX,ε)

]
+C3

[
γZ,η

(
Z(k), η(k)

)
− EγZ,η

]]2

− 1
2J

(
C2

[
1
2

γX,ε

(
X(2k−1), ε(2k−1)

)
+

1
2

γX,ε

(
X(2k), ε(2k)

)
− E (γX,ε)

])2

− 1
2J

(
C3

[
γZ,η

(
Z(k), η(k)

)
− EγZ,η

])2
∣∣∣∣ µVN , µUN

}
+ o (1)
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By the variance computations in equations (C.17), (C.19) and (C.20),

J

∑
k=1

1
2J

[
C1

(
Ψ
(

X(2k−1), X(2k), Z(k)
)
− ψ̃

(
v(2k−1), v(2k), u(k)

))
+C2

[
1
2

γX,ε

(
X(2k−1), ε(2k−1)

)
+

1
2

γX,ε

(
X(2k), ε(2k)

)
− E (γX,ε)

]
+ C3

[
γZ,η

(
Z(k), η(k)

)
− EγZ,η

]]2

converges in probability to

V1 =
C2

1
2

∫ 1

0
varq (q, q, q) dq + C1C2

∫ 1

0
covq (Ψ, f |q, q, q) dq

+C1C3

∫ 1

0
covq (Ψ, g|q, q, q) dq

+
C2

2
2

1
2

Var (γX,ε) +
C2

3
2

Var
(
γZ,η

)
.

Therefore,

E exp
([

C1
√

J [ψN − E (ψN |µVN , µUN )] + C2
√

J
(

µ(X,ε)N
− µX,ε

)
(γX,ε)

+C3
√

J
(

µ(Z,η)N
− µ(Z,η)

) (
γZ,η

)])
=

exp (V1) E exp

{
1√

J

J

∑
k=1

E
[

C2

[
1
2

γX,ε

(
X(2k−1), ε(2k−1)

)
+

1
2

γX,ε

(
X(2k), ε(2k)

)
− E (γX,ε)

]
+C3

[
γZ,η

(
Z(k), η(k)

)
− EγZ,η

]∣∣∣ µVN , µUN

]
− 1

2J

J

∑
k=1

E
[

C2

[
1
2

γX,ε

(
X(2k−1), ε(2k−1)

)
+

1
2

γX,ε

(
X(2k), ε(2k)

)
− E (γX,ε)

]

+ C3

[
γZ,η

(
Z(k), η(k)

)
− EγZ,η

]∣∣∣∣ µVN , µUN

]2
}
+ o (1) .

Since convergence in distribution implies convergence of moment generating functions

and

1
2J

J

∑
k=1

E
[

C2

[
1
2

γX,ε

(
X(2k−1), ε(2k−1)

)
+

1
2

γX,ε

(
X(2k), ε(2k)

)
− E (γX,ε)

]
+C3

[
γZ,η

(
Z(k), η(k)

)
− EγZ,η

]∣∣∣ µVN , µUN

]2
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converges in probability to

1
2

C2
2

1
2

Var (γX,ε) +
1
2

C2
3Var

(
γZ,η

)
,

we can rewrite,

E exp
([

C1
√

J [ψN − E (ψN |µVN , µUN )]

+C2
√

J
(

µ(X,ε)N
− µX,ε

)
(γX,ε) + C3

√
J
(

µ(Z,η)N
− µZ,η

) (
γZ,η

)])
= exp (V1) ∗

E exp

(
J

∑
k=1

E
[

1√
J

(
C2

[
1
2

γX,ε

(
X(2k−1), ε(2k−1)

)
+

1
2

γX,ε

(
X(2k), ε(2k)

)
− E (γX,ε)

]

+ C3

[
γZ,η

(
Z(k), η(k)

)
− EγZ,η

])∣∣∣∣ µVN , µUN

]
− C2

2
2

Var (γX,ε)−
C2

3
2

Var
(
γZ,η

))
+o (1)

= exp (V1) exp
(
−1

2
C2

2
1
2

Var (γX,ε)−
1
2

C2
3Var

(
γZ,η

))
×

E exp
J

∑
k=1

E
[

1√
J

(
C2

[
1
2

γX,ε

(
X(2k−1), ε(2k−1)

)
+

1
2

γX,ε

(
X(2k), ε(2k)

)
− E (γX,ε)

]
+ C3

[
γZ,η

(
Z(k), η(k)

)
− EγZ,η

])∣∣∣∣ µVN , µUN

]
+ o (1) .

By the Levy continuity theorem and the equality

E exp (tX) = exp
(

E [X]′ t + 1
2 t′V (X)−1 t

)
for normally distributed random variables, the

product of the second and third terms,

exp
(
−1

2
C2

2
1
2

Var (γX,ε)−
1
2

C2
3Var

(
γZ,η

))
×

E exp
J

∑
k=1

E
[

1√
J

(
C2

[
1
2

γX,ε

(
X(2k−1), ε(2k−1)

)
+

1
2

γX,ε

(
X(2k), ε(2k)

)
− E (γX,ε)

]
+C3

[
γZ,η

(
Z(k), η(k)

)
− EγZ,η

])∣∣∣∣ µVN , µUN

]
converges to 1. Hence,

E exp
([

C1
√

J [ψN − E (ψN |µVN , µUN )] + C2
√

J
(

µ(X,ε)N
− µX,ε

)
(γX,ε)

+C3
√

J
(

µ(Z,η)N
− µZ,η

) (
γZ,η

)])
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converges in probability to exp (V1). Therefore, by Levy continuity,
√

J (ψN − E (ψN |µVN , µUN ))
√

J
(

µ(X,ε)N
− µX,η

)
(γX,ε)

√
J
(

µ(Z,η)N
− µZ,η

) (
γZ,η

)


converges in distribution to a mean-zero normal with covariance

V ′′ (γX, γZ) =
∫ 1

0 σ2
q,Ψ (q, q, q) dq

∫ 1
0 covq (Ψ, γX,ε|q, q, q) dq

∫ 1
0 covq

(
Ψ, γZ,η |q, q, q

)
dq∫ 1

0 covq (Ψ, γX,ε|q, q, q) dq 1
2 Var (γX,ε) 0∫ 1

0 covq
(
Ψ, γZ,η |q, q, q

)
dq 0 Var

(
γZ,η

)
 .

Lemma C.10 Suppose Assumption 3.4(ii) is satisfied. For any µX,ε− Donsker class ΓX,ε of bounded

functions on (X, ε) and µZ,η Donsker class ΓZ,η of bounded functions on (Z, η) ,
√

N/2 (ψN − E (ψN |µUN , µVN ))
√

N/2
(

µ(X,ε)N
− µX,ε

)
(γX,ε)

√
N/2

(
µ(Z,η)N

− µZ,η

) (
γZ,η

)


indexed by γX,ε ∈ ΓX,ε and γZ,η ∈ ΓZ,η converges to a Gaussian process whose covariance kernel

characterized by V ′′.

Proof. Let γX,ε be a linear combination of a finite number of elements of ΓX,ε and γZ,η be a

linear combination of a finite number of elements of ΓZ,η . By Lemma C.9,

√
N/2

(
ψN − E (ψN |µUN , µVN ) ,

(
µ(X,ε)N

− µX,ε

)
(γX,ε) ,

(
µ(Z,η)N

− µZ,η

) (
γZ,η

))
converges in distribution to N

(
0, V ′′

(
γX,ε, γZ,η

))
. Let HN be the stochastic process

√
N/2 (ψN − E (ψN |µUN , µVN )) jointly with the empirical processes on ΓX,ε and ΓZ,η . We

index these stochastic processes with γ ∈ Γ where we endow Γ with the L2 metric. By the

Cramer-Wold device, the finite dimensional distributions of HN converge to a Gaussian

process whose covariance kernel is defined as follows:
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For two elements of ΓX,ε and ΓZ,η , the covariance kernel is that of the associated empirical

processes. The covariance of an element of ΓX,ε and an element of ΓZ,η is 0. The covariance of

γX,ε ∈ ΓX,ε with
√

N/2 (ψN − E (ψN |µUN , µVN )) is
∫ 1

0 covq (Ψ, γX,ε|q, q, q) dq. The covariance

of γZ,η ∈ ΓZ,η with the term
√

N (ψN − E (ψN |µUN , µVN )) is
∫ 1

0 covq
(
Ψ, γZ,η |q, q, q

)
dq. The

variance of
√

N/2 (ψN − E (ψN |µUN , µVN )) is
∫ 1

0 σ2
q,Ψ (q, q, q) dq.

We now verify equicontinuity to show weak convergence of HN . We prove this directly

using equicontinuity properties of the empirical processes on ΓX,ε and ΓZ,ε. Denote

VarV,Z (mV , mZ) =
∫

Var (Ψ (X1, X2, Z) |v, Z = z) dmZdmV

VarU,X (mU , mX) =
∫

Var (Ψ (X1, X2, Z) |u, X1 = x1, X2 = x2) dmXdmXdmU .

Let Var (Ψ (X1, X2, Z) |v1, v2, Z = z) = Var (v1, v2, z). Consider the quantity

1
N/2 ∑N/2

i=1 Var
(

v(2i−1), v(2i) , z(i)
)

, and note that since Var is bounded and uniformly con-

tinuous, it is equal to

1
N

N/2

∑
i=1

[
Var

(
v(2i−1), v(2i−1), z(i)

)
+ Var

(
v(2i), v(2i), z(i)

)]
+ o (1)

= VarV,Z (µVN , µZN ) + o (1)

= VarV,Z (µV , µZ) + o (1)

An identical argument implies

1
N/2

N/2

∑
i=1

Var
(

x(2i−1), x(2i), u(i)
)
= VarU,X (µU , µX) + o (1) .

Since µX|v and µZ|u are not degenerate, VarV,Z (µV , µZ) and VarU,X (µU , µX) are strictly

positive. Hence, limN supµVN ,µZN
VarV,Z (µVN , µZN ) and limN supµUN ,µXN

VarU,X (µUN , µXN )

are strictly positive. Hence, for large enough N, there is a δ > 0 such that a δ−ball around

HN (γ) =
√

N/2 (ψN − E (ψN |µVN , µUN )) contains no other element HN (γ′) for γ′ 6= γ.

Pick δ > 0 such that the δ ball around
√

N/2 (ψN − E (ψN |µVN , µUN )) is a singleton. Hence,

161



if BΓX,ε (γ, δ) = B (γ, δ) ∩ ΓX,ε, and BΓZ,η (γ, δ) = B (γ, δ) ∩ ΓZ,η ,

sup
γ∈Γ

sup
γ′∈B(γ,δ)

∣∣HN (γ)− HN
(
γ′
)∣∣

≤ sup
γX,ε∈ΓX,ε

sup
γ′X,ε∈BΓX,ε (γX,ε,δ)

∣∣HN (γX,ε)− HN
(
γ′X,ε

)∣∣+
sup

γZ,η∈ΓZ,η

sup
γ′X,ε∈BΓX,ε(γZ,η ,δ)

∣∣HN
(
γZ,η

)
− HN

(
γ′X,ε

)∣∣
+ sup

γX,ε∈ΓX,ε

sup
γ′Z,η∈BΓZ,η (γX,ε,δ)

∣∣∣HN (γX,ε)− HN

(
γ′Z,η

)∣∣∣+
sup

γZ,η∈ΓZ,η

sup
γ′Z,η∈BΓZ,η (γZ,η ,δ)

∣∣∣HN
(
γZ,η

)
− HN

(
γ′Z,η

)∣∣∣
since B (γ, δ) = {γ} if HN (γ) =

√
N/2 (ψN − E (ψN |µUN , µVN )).

For a fixed ε, η > 0, there is (by definition of stochastic equicontinuity) there exists δ > 0

such that

lim sup
N→∞

P

 sup
γX,ε∈ΓX,ε

sup
γ′X,ε∈BΓX,ε (γX,ε,δ)

∣∣HN (γX,ε)− HN
(
γ′X,ε

)∣∣ > ε

6

 <
η

6

and

lim sup
N→∞

P

 sup
γZ,η∈ΓZ,η

sup
γ′Z,η∈BΓZ,η (γZ,η ,δ)

∣∣∣HN
(
γZ,η

)
− HN

(
γ′Z,η

)∣∣∣ > ε

6

 <
η

6
.

Now we show that

lim sup
N→∞

P

 sup
γX,ε∈ΓX,ε

sup
γ′Z,η∈BΓZ,η (γX,ε,δ)

∣∣∣HN (γX,ε)− HN

(
γ′Z,η

)∣∣∣ > ε

3

 <
η

6
.

Note that independence of empirical processes on ΓX,ε and ΓZ,η implies that BΓZ,η (γX,ε, δ)

is nonempty only if γX,ε has L2 norm less than δ. If this is the case, every element of
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BΓZ,η (γX,ε, δ) also has L2 norm less than δ. Therefore,

P

 sup
γX,ε∈ΓX,ε

sup
γ′Z,η∈BΓZ,η (γX,ε,δ)

∣∣∣HN (γX,ε)− HN

(
γ′Z,η

)∣∣∣ > ε

3


≤ P

 sup
γX,ε∈ΓX,ε

sup
γ′Z,η∈BΓZ,η (γX,ε,δ)

|HN (γX,ε)|+
∣∣∣HN

(
γ′Z,η

)∣∣∣ > ε

3


≤ P

 sup
γZ,η∈ΓZ,η

sup
γ′Z,η∈BΓZ,η (γZ,η ,δ)

∣∣∣HN
(
γZ,η

)
− HN

(
γ′Z,η

)∣∣∣+
sup

γX,ε∈ΓX,ε

sup
γ′X,ε∈BΓX,ε (γX,ε,δ)

∣∣HN (γX,ε)− HN
(
γ′X,ε

)∣∣ > ε

3


≤ P

 sup
γZ,η∈ΓZ,η

sup
γ′Z,η∈BΓZ,η (γZ,η ,δ)

∣∣∣HN
(
γZ,η

)
− HN

(
γ′Z,η

)∣∣∣ > ε

6


+P

 sup
γX,ε∈ΓX,ε

sup
γ′X,ε∈BΓX,ε (γX,ε,δ)

∣∣HN (γX,ε)− HN
(
γ′X,ε

)∣∣ > ε

6


where the second inequality follows from the triangle inequality since a constant 0 function

is an element of both ΓX,ε and ΓZ,η . By the same argument

P

 sup
γZ,η∈ΓZ,η

sup
γ′X,ε∈BΓX,ε (γX,ε,δ)

∣∣HN
(
γZ,η

)
− HN

(
γ′X,ε

)∣∣ > ε

3


≤ P

 sup
γZ,η∈ΓZ,η

sup
γ′Z,η∈BΓZ,η (γZ,η ,δ)

∣∣∣HN
(
γZ,η

)
− HN

(
γ′Z,η

)∣∣∣ > ε

6


+P

 sup
γX,ε∈ΓX,ε

sup
γ′X,ε∈BΓX,ε (γX,ε,δ)

∣∣HN (γX,ε)− HN
(
γ′X,ε

)∣∣ > ε

6


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and thus

lim sup
n→∞

P

(
sup
γ∈Γ

sup
γ′∈B(γ,δ)

∣∣HN (γ)− HN
(
γ′
)∣∣ > ε

)

≤ 3 lim sup
n→∞

P

 sup
γX,ε∈ΓX,ε

sup
γ′X,ε∈BΓX,ε (γX,ε,δ)

∣∣HN (γX,ε)− HN
(
γ′X,ε

)∣∣ > ε

6


+3 lim sup

n→∞
P

 sup
γZ,η∈ΓZ,η

sup
γ′Z,η∈BΓZ,η (γZ,η ,δ)

∣∣∣HN
(
γZ,η

)
− HN

(
γ′Z,η

)∣∣∣ > ε

6


< η.

This proves stochastic equicontinuity of HN (γ) and hence weak convergence to the Gaussian

process defined above.

C.2.2 Proof of Proposition 3.4

We will show that the Hadamard derivative of ψδ : LΓ
∞ → LΘ

∞ evaluated at (µX, µZ) in the

direction (GX, GZ) is

∇(GX ,GZ)ψ̃
δ [µX, µZ] (θ) =∫ 1−δ

δ
Gq

U (θ)

∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) f ′η

(
F−1

U;θ (q)− h (z; θ)
)

dµX1 dµX2 dµZ∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

+Gq
V (θ)

∫
Ψ (x1, x2, z) φε (q, x1; θ) f ′ε

(
F−1

V;θ (q)− h (x2; θ)
)

φη (q, z; θ) dµX1 dµX2 dµZ∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

+Gq
V (θ)

∫
Ψ (x1, x2, z) f ′ε

(
F−1

V;θ (q)− h (x1; θ)
)

φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

dq

+
∫ 1−δ

δ

∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dGX1 dµX2 dµZ∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ
dq

+
∫ 1−δ

δ

∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµXdGX2 dµZ∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ
dq

+
∫ 1−δ

δ

∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dGZ∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ
dq

+
∫ 1−δ

δ

∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ
LG [µX, µZ] (θ, q) dq.
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where

Gq
V (θ) =

1

fV;θ

(
F−1

V,θ (q)
) ∫ GX

(
1
{

h (x; θ) + ε ≤ F−1
V;θ (q)

})
dFε,

Gq
U (θ) =

1

fU;θ

(
F−1

U,θ (q)
) ∫ GZ

(
1
{

g (z; θ) + η ≤ F−1
U;θ (q)

})
dFη ,

and LG [µX, µZ] (θ, q) is the negative of

Gq
U (θ)

∫
φε (q, x1; θ) φε (q, x2; θ) f ′η

(
F−1

U;θ (q)− g (z; θ)
)

dµX1 dµX2 dµZ∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

+Gq
V (θ)

∫
φε (q, x1; θ) f ′ε

(
F−1

V;θ (q)− h (x2; θ)
)

φη (q, z; θ) dµX1 dµX2 dµZ∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

+Gq
V (θ)

∫
f ′ε
(

F−1
V;θ (q)− h (x1; θ)

)
φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

+

∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dGX1 dµX2 dµZ∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

+

∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµXdGX2 dµZ∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

+

∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dGX3∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

and

φη (q, z; θ) = fη

(
F−1

u;θ,µZ
(q)− g (z; θ)

)
φε (q, x; θ) = fε

(
F−1

v;θ,µX
(q)− h (x; θ)

)
.

Proof. Let

φη,N (q, z; θ) = fη

(
F−1

N,U;θ,µZN
(q)− g (z; θ)

)
φε,N (q, x; θ) = fε

(
F−1

N,V;θ,µXN
(q)− h (x; θ)

)
where FN,U;θ (u) =

∫
Fη (u− g (Z; θ)) dµZN and FN,V;θ (v) =

∫
Fε (v− h (X; θ)) dµXN .

Consider a sequence of measures (µXN , µZN ) and a sequence of scalars hN → 0 such that

1
hN

(µXN − µX, µZN − µZ) converges to G = (GX, GZ) uniformly in LΓ
∞, where G is bounded
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and uniformly continuous. We can rewrite

∫ 1−δ

δ

∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ
dq

−
∫ 1−δ

δ

∫
Ψ (x1, x2, z) φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµXN,1 dµXN,2 dµZN∫

φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµXN,1 dµXN,2 dµZN

dq =

∫ 1−δ

δ

∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ)

(
dµX1 dµX2 dµZ − dµXN,1 dµXN,2 dµZN

)∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

dq

+
∫ 1−δ

δ

∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµXN,1 dµXN,2 dµZN∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ
dq

−
∫ 1−δ

δ

∫
Ψ (x1, x2, z) φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµXN,1 dµXN,2 dµZN∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ
×∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ∫
φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµXN,1 dµXN,2 dµZN

dq =

∫ 1−δ

δ

∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ)

(
dµX1 dµX2 dµZ − dµXN,1 dµXN,2 dµZN

)∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

dq

+

[∫ 1−δ

δ

∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµXN,1 dµXN,2 dµZN∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ
dq

−
∫ 1−δ

δ

∫
Ψ (x1, x2, z) φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµXN,1 dµXN,2 dµZN∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ
dq

]

+
∫ 1−δ

δ

∫
Ψ (x1, x2, z) φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµXN,1 dµXN,2 dµZN∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ
×(

1−
∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ∫
φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµXN,1 dµXN,2 dµZN

)
dq =

T1 + T2 + T3 =∫ 1−δ

δ
T1 (q) dq +

∫ 1−δ

δ
T2 (q) dq +

∫ 1−δ

δ
T3 (q) dq (C.21)
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To compute T1 (q) note that

dµX1 dµX2 dµZ − dµXN,1 dµXN,2 dµZN

=
(
dµX1 − dµXN,1

)
dµX2 dµZ + dµXN,1 dµX2 dµZ − dµXN,1 dµXN,2 dµZN

=
(
dµX1 − dµXN,1

)
dµX2 dµZ + dµXN,1

(
dµX2 − dµXN,2

)
dµZ

+dµXN,1 dµXN,2 dµZ − dµXN,1 dµXN,2 dµZN

=
(
dµX1 − dµXN,1

)
dµX2 dµZ + dµXN,1

(
dµX2 − dµXN,2

)
dµZ + dµXN,1 dµXN,2 (dµZ − dµZN )

=
(
dµX1 − dµXN,1

)
dµX2 dµZ + dµX

(
dµX2 − dµXN,2

)
dµZ

+
(
dµXN,1 − dµX

) (
dµX2 − dµXN,2

)
dµZ + dµX1 dµX2 (dµZ − dµZN )

+
(
dµXN,1 − dµX1

)
dµX2 (dµZ − dµZN ) + dµXN,1

(
dµXN,2 − dµX2

)
(dµZ − dµZN ) .

Hence,

T1 (q) =

∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ)

(
dµX1 − dµXN,1

)
dµX2 dµZ∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

+

∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX

(
dµX2 − dµXN,2

)
dµZ∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

+

∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 (dµZ − dµZN )∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

+
R (q)∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ
(C.22)

where R (q) is equal to

∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ)

(
dµXN,1 − dµX

) (
dµX2 − dµXN,2

)
dµZ

+
∫

Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ)
(
dµXN,1 − dµX1

)
dµX2 (dµZ − dµZN )

+
∫

Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµXN,1

(
dµXN,2 − dµX2

)
(dµZ − dµZN )

= R1 (q) + R2 (q) + R3 (q) .

Now we show that each of 1
hN

R1, 1
hN

R2 and 1
hN

R3 are negligible. To show that 1
hN

R1 (q) is
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negligible, we rewrite it as

1
hN

R1 (q)

=
∫

Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dGX1

(
dµX2 − dµXN,2

)
dµZ +∫

Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ)(
1

hN

(
dµXN,1 − dµX

)
− dGX1

) (
dµX2 − dµXN,2

)
dµZ

= S1 (q) + S2 (q)

and show that S1 and S2 are negligible. Note that

sup
q∈(δ,1−δ),θ

|S2 (q)| ≤
∫

sup
q∈(δ,1−δ),θ∣∣∣∣Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ)

(
1

hN

(
dµXN,1 − dµX

)
− dGX1

)∣∣∣∣(
dµX2 + dµXN,2

)
dµZ

≤ 2 ‖Ψ‖∞ ‖ fε‖∞

∥∥ fη

∥∥
∞ sup

q∈(δ,1−δ),θ

∣∣∣∣φε (q, x1; θ)

(
1

hN

(
dµXN,1 − dµX

)
− dGX1

)∣∣∣∣
= o (1) .

since

φε (q, x2; θ) = fε

(
F−1

V (q)− h (x; θ)
)

indexed by q, θ is a sub-class of Γ. Turning to S1, note that

S1 (q) =
∫

Ψ̃ (x1, x2, z, q, θ) dGX1

(
dµX2 − dµXN,2

)
dµZ

where Ψ̃ (x1, x2, z, q, θ) = Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) and∫
Ψ̃ (x1, x2, z, q, θ) dGX1 is a bounded uniformly continuous function of (x2, z, q, θ)

for q ∈ (δ, 1− δ). For any ε > 0, fix a compact set χ̄ = 1 {x : c1 ≤ x ≤ c2} for c1, c2 ∈ RkX ,
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such that µX (χ\χ̄) ≤ ε. By the triangle inequality,∣∣∣∣∫ ∫
Ψ̃ (x1, x2, z, q, θ) dGX1

(
dµX2 − dµXN,2

)∣∣∣∣
≤ ‖G‖∞ (µX (χ\χ̄) + µXN (χ\χ̄)) +

∣∣∣∣∫
χ̄

∫
Ψ̃ (x1, x2, z, q, θ) dGX1

(
dµX2 − dµXN,2

)∣∣∣∣ .

Since G is uniformly continuous, there exists a collection χ1, . . . , χM of subsets χi ={
x : ci

1 ≤ x ≤ ci
2
}

containing points x1, . . . , xM that cover χ̄ such that

∫
χ̄

∫
Ψ̃ (x1, x2, z, q, θ) dGX1

(
dµX2 − dµXN,2

)
−

M

∑
i=1

∫
Ψ̃
(

x1, xi, z, q, θ
)

dGX1

(
µX2 − µXN,2

)
(χi)

has absolute value strictly less than ε. Note that 1
{

x ∈ χi} ∈ ΓX. By the triangle inequality,∣∣∣∣∫
χ̄

∫
Ψ̃ (x1, x2, z, q, θ) dGX1

(
dµX2 − dµXN,2

)∣∣∣∣
< ε +

∣∣∣∣∣ M

∑
i=1

∫
Ψ̃
(

x1, xi, z, q, θ
)

dGX1

(
µX2 (χi)− µXN,2 (χi)

)∣∣∣∣∣
≤ ε + M ‖G‖∞

∥∥µX2 − µXN,2

∥∥
∞ ,

where
∥∥µX2 − µXN,2

∥∥
∞ = supγX∈ΓX

∣∣(µX2 − µXN,2

)
(γX)

∣∣. Thus,∣∣∣∣∫ ∫
Ψ̃ (x1, x2, z, q, θ) dGX1

(
dµX2 − dµXN,2

)∣∣∣∣
≤ ‖G‖∞ (µX (χ\χ̄) + µXN (χ\χ̄)) + ε + M ‖G‖∞

∥∥dµX2 − dµXN,2

∥∥
∞ .

Since lim supN→∞

∥∥dµX2 − dµXN,2

∥∥
∞ = 0, we have that

lim sup
N→∞

sup
z,q

∣∣∣∣∫ ∫
Ψ̃ (x1, x2, z, q, θ) dGX1

(
dµX2 − dµXN,2

)∣∣∣∣
≤ 2 ‖G‖∞ µX (χ\χ̄) + ε

≤ (2 ‖G‖∞ + 1) ε

Since this inequality holds for all ε > 0,

lim
N→∞

sup
z,q

∣∣∣∣∫ ∫
Ψ̃ (x1, x2, z, q, θ) dGX1

(
dµX2 − dµXN,2

)∣∣∣∣ = 0
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Thus,

sup
q∈(δ,1−δ),θ

|S1 (q, N, θ)| ≤ sup
q∈(δ,1−δ),θ

∣∣∣∣∫ Ψ̃ (x1, x2, z, q, θ) dGX1

(
dµX2 − dµXN,2

)
dµZ

∣∣∣∣
≤ sup

z,q

∣∣∣∣∫ ∫
Ψ̃ (x1, x2, z, q, θ) dGX1

(
dµX2 − dµXN,2

)∣∣∣∣→ 0.

Hence,

sup
q∈(δ,1−δ),θ

∣∣∣∣ 1
hN

R1 (q, N, θ)

∣∣∣∣ ≤ sup
q∈(δ,1−δ),θ

|S1 (q, N, θ)|+ sup
q∈(δ,1−δ),θ

|S2 (q, N, θ)|

→ 0

Identical arguments show that R2 → 0 and R3 → 0. Lemma C.11 implies that

inf
q∈(δ,1−δ),θ∈Θ

∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ > 0.

Therefore,

R (q)∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

→ 0.

It follows that equation (C.22) can be re-written as

1
hN

T1 =
∫ 1−δ

δ

1
hN

T1 (q) dq

=
∫ 1−δ

δ

∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dGX1 dµX2 dµZ∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ
dq

+
∫ 1−δ

δ

∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµXdGX2 dµZ∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ
dq

+
∫ 1−δ

δ

∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dGZ∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ
dq

+o (1) . (C.23)

To compute the limit of T2, rewrite

T2 (q) =

∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµXN,1 dµXN,2 dµZN∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

−
∫

Ψ (x1, x2, z) φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµXN,1 dµXN,2 dµZN∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ
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by observing that

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ)− φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ)

= φε (q, x1; θ) φε (q, x2; θ)
[
φη (q, z; θ)− φη,N (q, z; θ)

]
+ φε (q, x1; θ) φε (q, x2; θ) φη,N (q, z; θ)

−φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ)

= φε (q, x1; θ) φε (q, x2; θ)
[
φη (q, z; θ)− φη,N (q, z; θ)

]
+φε (q, x1; θ) [φε (q, x2; θ)− φε,N (q, x2; θ)] φη,N (q, z; θ)

+ [φε (q, x1; θ)− φε,N (q, x1; θ)] φε,N (q, x2; θ) φη,N (q, z; θ) .

Hence,

1
hN

T2 (q) =∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) 1

hN

[
φη (q, z; θ)− φη,N (q, z; θ)

]
dµXN,1 dµXN,2 dµZN∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

+

∫
Ψ (x1, x2, z) φε (q, x1; θ) 1

hN
[φε (q, x2; θ)− φε,N (q, x2; θ)] φη,N (q, z; θ) dµXN,1 dµXN,2 dµZN∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

+

∫
Ψ (x1, x2, z) 1

hN
[φε (q, x1; θ)− φε,N (q, x1; θ)] φε,N (q, x2; θ) φη,N (q, z; θ) dµXN,1 dµXN,2 dµZN∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

=
1

hN

(
F−1

U;θ (q)− F−1
N,U;θ (q)

)
x∫

Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) f ′η
(

F−1
U;θ (q)− g (z; θ)

)
dµXN,1 dµXN,2 dµZN∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

+
1

hN

(
F−1

V;θ (q)− F−1
N,V;θ (q)

)
x∫

Ψ (x1, x2, z) φε (q, x1; θ) f ′ε
(

F−1
V;θ (q)− h (x2; θ)

)
φη,N (q, z; θ) dµXN,1 dµXN,2 dµZN∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

+
1

hN

(
F−1

V;θ (q)− F−1
N,V;θ (q)

)
x∫

Ψ (x1, x2, z) f ′ε
(

F−1
V;θ (q)− h (x1; θ)

)
φε,N (q, x2; θ) φη,N (q, z; θ) dµXN,1 dµXN,2 dµZN∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

+o (1) =

(C.24)

K1 (q) + K2 (q) + K3 (q) + o (1) , (C.25)
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where the equality follows from a Taylor expansion and dominated convergence theorem

(since f ′ε and f ′η are bounded).

Rewrite K1 (q) as

1
hN

(
F−1

U;θ (q)− F−1
N,U;θ (q)

)
∫

Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) f ′η
(

F−1
U;θ (q)− g (z; θ)

)
dµX1 dµX2 dµZ∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

+
1

hN

(
F−1

U;θ (q)− F−1
N,U;θ (q)

)
∫

Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) f ′η
(

F−1
U;θ (q)− g (z; θ)

)
dµXN,1 dµXN,2 dµZN∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

− 1
hN

(
F−1

U;θ (q)− F−1
N,U;θ (q)

)
∫

Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) f ′η
(

F−1
U;θ (q)− g (z; θ)

)
dµX1 dµX2 dµZ∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

= C1 (q) + C2 (q)− C3 (q)

where C2 (q)− C3 (q) is not greater in absolute value than

supθ,q∈(δ,1−δ)

∣∣∣ 1
hN

(
F−1

U;θ (q)− F−1
N,U;θ (q)

)∣∣∣
infθ

∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

×∣∣∣∣∫ Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) f ′η
(

F−1
U;θ (q)− g (z; θ)

)
(
dµX1 dµX2 dµZ − dµXN,1 dµXN,2 dµN,Z

)∣∣
which goes to 0 uniformly in q ∈ (δ, 1− δ) by the same argument used to compute the limit

of T1 (q). To compute the limit of C1 (q), note

F−1
U;θ (q)− F−1

N,U;θ (q)

=
1

fU;θ

(
F−1

U,θ (q)
) (FU;θ

(
F−1

U;θ (q)
)
− FN,U;θ

(
F−1

U;θ (q)
))

+ o (1)

=
1

fU;θ

(
F−1

U,θ (q)
) ∫ Fη

(
F−1

U;θ (q)− g (z; θ)
)
(dµZ − dµZN ) + o (1)

=
1

fU;θ

(
F−1

U,θ (q)
) ∫ (µZ − µZN )

(
1
{

g (z; θ) + η ≤ F−1
U;θ (q)

})
dFη + o (1)
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Therefore,

1
hN

(
F−1

U;θ (q)− F−1
N,U;θ (q)

)
→ 1

fU;θ

(
F−1

U,θ (q)
) ∫ GZ

(
1
{

g (z; θ) + η ≤ F−1
U;θ (q)

})
dFη

= Gq
U (θ)

uniformly in q ∈ (δ, 1− δ). Hence, K1 (q) converges to

Gq
U (θ)

∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) f ′η

(
F−1

U;θ (q)− g (z; θ)
)

dµX1 dµX2 dµZ∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

Similar arguments show that K2 (q) and K3 (q) respectively converge to

Gq
V (θ)

∫
Ψ (x1, x2, z) φε (q, x1; θ) f ′ε

(
F−1

V;θ (q)− h (x2; θ)
)

φη (q, z; θ) dµX1 dµX2 dµZ∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

and

Gq
V (θ)

∫
Ψ (x1, x2, z) f ′ε

(
F−1

V;θ (q)− h (x1; θ)
)

φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

.

Consequently, equation (C.25) can be written as

1
hn

T2 =
∫ 1−δ

δ

1
hn

T2 (q) dq =

∫ 1−δ

δ
Gq

U (θ)

∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) f ′η

(
F−1

U;θ (q)− g (z; θ)
)

dµX1 dµX2 dµZ∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

dq

+
∫ 1−δ

δ
Gq

V (θ)

∫
Ψ (x1, x2, z) φε (q, x1; θ) f ′ε

(
F−1

V;θ (q)− h (x2; θ)
)

φη (q, z; θ) dµX1 dµX2 dµZ∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

dq

+
∫ 1−δ

δ
Gq

V (θ)

∫
Ψ (x1, x2, z) f ′ε

(
F−1

V;θ (q)− h (x1; θ)
)

φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

dq

+o (1) . (C.26)
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Finally, we rewrite

T3 (q) =

∫
Ψ (x1, x2, z) φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµXN,1 dµXN,2 dµZN∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ
×(

1−
∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ∫
φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµXN,1 dµXN,2 dµZN

)
=∫

Ψ (x1, x2, z) φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµXN,1 dµXN,2 dµZN∫
φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµXN,1 dµXN,2 dµZN

×
(
−T̃1 (q)− T̃2 (q)

)
=

∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

×
(
−T̃1 (q)− T̃2 (q)

)
+

(∫
Ψ (x1, x2, z) φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµXN,1 dµXN,2 dµZN∫

φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµXN,1 dµXN,2 dµZN

−
∫

Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

)
×
(
−T̃1 (q)− T̃2 (q)

)
(C.27)

where T̃1 (q) = T1 (q) and T̃2 (q) = T2 (q) evaluated at Ψ = 1. Since supθ,q∈(δ,1−δ),N

∣∣∣ 1
hN

T̃1 (q)
∣∣∣

and supθ,q∈(δ,1−δ),N

∣∣∣ 1
hN

T̃2 (q)
∣∣∣ are finite, and

sup
θ,q∈(δ,1−δ),N

∣∣∣∣∣
∫

Ψ (x1, x2, z) φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµXN,1 dµXN,2 dµZN∫
φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµXN,1 dµXN,2 dµZN

−
∫

Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

∣∣∣∣→ 0,

we have that

1
hN

T3 (q) =

∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ
×

1
hN

(
−T̃1 (q)− T̃2 (q)

)
+ o (1) .
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Equations (C.23) and (C.26), along with T̃1 (q) = T1 (q) and T̃2 (q) = T2 (q), imply that

1
hN

T̃1 (q) +
1

hN
T̃2 (q)→

Gq
U (θ)

∫
φε (q, x1; θ) φε (q, x2; θ) f ′η

(
F−1

U;θ (q)− g (z; θ)
)

dµX1 dµX2 dµZ∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

+Gq
V (θ)

∫
φε (q, x1; θ) f ′ε

(
F−1

V;θ (q)− h (x2; θ)
)

φη (q, z; θ) dµXN,1 dµXN,2 dµZN∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

+Gq
V (θ)

∫
f ′ε
(

F−1
V;θ (q)− h (x1; θ)

)
φε (q, x2; θ) φη (q, z; θ) dµXN,1 dµXN,2 dµZN∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

+

∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dGX1 dµX2 dµZ∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

+

∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµXdGX2 dµZ∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

+

∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dGZ∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

= −LG (θ, q) (C.28)

uniformly in θ and q ∈ (δ, 1− δ). Equations (C.27) and (C.28) imply that

1
hN

T3 =
∫ 1−δ

δ

∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ
LG (θ, q) dq + o (1)

(C.29)

uniformly in θ.

Together, equations (C.23), (C.26), (C.28) and (C.29) imply that

1
hN

∫ 1−δ

δ

∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ
dq

− 1
hN

∫ 1−δ

δ

∫
Ψ (x1, x2, z) φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµXN,1 dµXN,2 dµZN∫

φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµXN,1 dµXN,2 dµZN

dq
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converges to LimG;δ (θ) , which equals

∫ 1−δ

δ
Gq

U (θ)

∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) f ′η

(
F−1

U;θ (q)− g (z; θ)
)

dµX1 dµX2 dµZ∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

+Gq
V (θ)

∫
Ψ (x1, x2, z) φε (q, x1; θ) f ′ε

(
F−1

V;θ (q)− h (x2; θ)
)

φη (q, z; θ) dµX1 dµX2 dµZ∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

+Gq
V (θ)

∫
Ψ (x1, x2, z) f ′ε

(
F−1

V;θ (q)− h (x1; θ)
)

φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

+

∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dGX1 dµX2 dµZ∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

+

∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµXdGX2 dµZ∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

+

∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dGZ∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

+

∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ
LG (θ, q) dq, (C.30)

where LG (θ, q) is defined in equation (C.28). This expression is therefore the Hadamard

derivative of interest.

Lemma C.11 Suppose that fε is bounded away from zero on every compact interval,

and h (x; θ) is uniformly µX−integrable over θ ∈ Θ, then for every q ∈ (0, 1),

infθ∈Θ
∫

fε

(
F−1

V;θ (q)− h (x; θ)
)

dµX > 0.

Proof. First, we show that there exists M < ∞, such that infθ∈Θ F−1
V;θ (q) > −M and

supθ∈Θ F−1
V;θ (q) < M. To do so, it is enough to show that for any δ > 0, there ex-

ists M such that supθ P (|h (x; θ) + ε| > M) < δ. The triangle inequality implies that

supθ P (|h (x; θ) + ε| > M) ≤ supθ∈Θ P
(
|h (x; θ)| > M

2

)
+ P

(
|ε| > M

2

)
. For large enough

M, the second term is less than δ
2 by definition and the first term is less than δ

2 since h (x; θ)

is uniformly integrable.

Since for each q the map from θ to F−1
V;θ (q) lives in a compact interval, F−1

V;θ (q)− h (x; θ)

is a uniformly integrable family. Therefore, infθ∈Θ
∫

fε

(
F−1

V;θ (q)− h (x; θ)
)

dµX > 0 since fε

is bounded away from zero on any compact interval.
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C.2.3 Proof of Proposition 3.5

Proof of Part (i): We need to show that supθ |(ψN − ψN (θ))− (ψ− ψ (θ))| converges in

probability to zero. By the triangle inequality,

sup
θ

|(ψN − ψN (θ))− (ψ− ψ (θ))| ≤ |ψN − ψ|+ sup
θ

|ψN (θ)− ψ (θ)| .

Proposition 3.3(i) shows that |ψN − ψ| converges in probability to 0. We now show that the

second term also converges in probability to zero.

By definition of ψδ [mX, mZ],

ψN (θ)− ψ (θ) = ψ0 [µXN , µZN ] (θ)− ψ0 [µX, µZ] (θ) .

Further, for any δ ∈
(
0, 1

2

)
, we have that

∣∣ψ0 [µXN , µZN ] (θ)− ψ0 [µX, µZ] (θ)
∣∣ ≤ ∣∣∣ψδ [µXN , µZN ] (θ)− ψδ [µX, µZ] (θ)

∣∣∣+ 2 ‖Ψ‖∞ δ.

Proposition 3.4 implies that ψδ [µX, µZ] : LΓ
∞ → LΘ

∞ is uniformly continuous

in µX, µZ. Since ΓX is µX-Glivenko Cantelli, and ΓZ is µZ-Glivenko Cantelli,

supθ

∣∣ψδ [µXN , µZN ] (θ)− ψδ [µX, µZ] (θ)
∣∣ converges in probability to zero for any δ ∈

(
0, 1

2

)
by the continuous mapping theorem. Hence, supθ |ψN (θ)− ψ (θ)| converges in probability

to 0.

Proof of Part (ii): Consider the process
√

N (ψN − ψ (θ0))
√

N (µXN − µX)
√

N/2 (µZN − µZ)

 ,

where
√

N (µXN − µX) is the empirical process indexed by ΓX and
√

N/2 (µZN − µZ) is the

empirical process indexed by ΓZ. Proposition 3.3(ii) shows that this process converges

weakly to the Gaussian process, G̃ = (GΨ, GX, GZ), which a mean zero Gaussian process

with covariance kernel V.
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By the functional delta method and the Hadamard derivative derived in Proposition 3.4,

we have that

mδ
N (θ) =

√
N (ψN − ψ (θ0))−

√
N
(

ψδ
N (θ)− ψδ (θ)

)
converges weakly to a mean zero Gaussian process

GΨ −∇(GX ,GZ)ψ
δ [µX, µZ] (θ) .

Therefore, there exists a sequence δN of positive numbers decreasing to 0 such that

d
(

mδN
N (·) , GΨ −∇(GX ,GZ)ψ

δN [µX, µZ] (·)
)
→ 0,

where d is a metric for weak convergence, and (by Assumption 3.6(ii)c.)

sup
‖θ−θ0‖≤bN

∣∣∣∇(GX ,GZ)ψ
δN [µX, µZ] (θ)−∇(GX ,GZ)ψ

δN [µX, µZ] (θ0)
∣∣∣ = op (1) .

In what follows, we fix such a sequence of δN .

We derive the limit distribution of m0
N (θ0) =

√
N (ψN − ψN (θ0)) to show Condition 1(ii)

a. By the triangle inequality,

d
(

m0
N (θ0) , GΨ −∇(GX ,GZ)ψ

0 [µX, µZ] (θ0)
)

≤ d
(

m0
N (θ0) , mδN

N (θ0)
)
+ d

(
mδN

N (θ0) , GΨ −∇(GX ,GZ)ψ
δN [µX, µZ] (θ0)

)
+d
(

GΨ −∇(GX ,GZ)ψ
δN [µX, µZ] (θ0) , GΨ −∇(GX ,GZ)ψ

0 [µX, µZ] (θ0)
)

The first term converges to zero as N → ∞ by Assumption 3.6(ii)b. The second term

converges to zero by the choice of δN . The third term goes to zero since

(
GΨ −∇(GX ,GZ)ψ

δN [µX, µZ] (θ0)
)
−
(

GΨ −∇(GX ,GZ)ψ
0 [µX, µZ] (θ0)

)
converges in probability and therefore in distribution to 0 (by Assumption 3.6(ii)d).

Hence, m0
N (θ0) converges in distribution to GΨ − ∇(GX ,GZ)ψ

0 [µX, µZ] (θ0). Note that

this limiting random variable is distributed N
(
0, limδ→0 Vδ

)
where Vδ is the variance
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of GΨ −∇(GX ,GZ)ψ
δ [µX, µZ] (θ0).

Now, we verify Condition 1(ii) b. By the triangle inequality, for any sequence {bN} of

positive numbers converging to zero,

sup
‖θ−θ0‖≤bN

∣∣m0
N (θ0)−m0

N (θ)
∣∣ ≤ sup

‖θ−θ0‖≤bN

∣∣∣mδN
N (θ0)−mδN

N (θ)
∣∣∣+ 2 sup

‖θ−θ0‖≤bN

∣∣∣m0
N (θ)−mδN

N (θ)
∣∣∣ .

Note that, by the triangle inequality,

d
(

mδN
N (θ0) , mδN

N (θ)
)
≤ 2d

(
mδN

N (·) , GΨ −∇(GX ,GZ)ψ
δN [µX, µZ] (·)

)
+d
(

GΨ −∇(GX ,GZ)ψ
δN [µX, µZ] (θ) , GΨ −∇(GX ,GZ)ψ

δN [µX, µZ] (θ0)
)

converges to 0 since sup‖θ−θ0‖≤bN

∣∣∣∇(GX ,GZ)ψ
δN [µX, µZ] (θ)−∇(GX ,GZ)ψ

δN [µX, µZ] (θ0)
∣∣∣ =

op (1). Assumption 3.6(ii)b. implies that 2E sup‖θ−θ0‖≤bN

∣∣∣m0
N (θ)−mδN

N (θ)
∣∣∣ converges to

zero as N → ∞. Therefore,

2 sup
‖θ−θ0‖≤bN

∣∣∣m0
N (θ)−mδN

N (θ)
∣∣∣

converges in probability to zero. Hence,

√
N ((ψ (θ0)− ψN (θ0))− (ψ (θ)− ψN (θ))) = m0

N (θ0)−m0
N (θ)

⇒ sup
‖θ−θ0‖≤bN

∣∣∣√N ((ψ (θ0)− ψN (θ0))− (ψ (θ)− ψN (θ)))
∣∣∣ = sup

‖θ−θ0‖≤bN

∣∣m0
N (θ0)−m0

N (θ)
∣∣

= op (1) .

C.3 Auxiliary Results on Estimation

C.3.1 Primitive conditions for Assumption 3.4(i)

Axiom C.2 (i) Ψ (x1, x2, z) is bounded and symmetric in x1 and x2

(ii) The quantities
∫ | f ′ε (v−h(x;θ0))|∫

fε(v−h(X;θ0))dµX
dµX and

∫ | f ′η(u−g(z;θ0))|∫
fη(u−g(Z;θ0))dµZ

dµZ are uniformly bounded in

v and u respectively
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Lemma C.12 If Assumption C.2 is satisfied, then ‖∇ψ̃‖∞ < ∞. Hence, ψ̃ (v1, v2, u; θ0) is Lipschitz

continuous in v1, v2 and u.

Proof. Note that

ψ̃ (v1, v2, u)

=
∫

Ψ (X1, X2, Z) dµX|v1
dµX|v2

dµZ|u

=
∫

Ψ (X1, X2, Z) f̃v,x (v1, X1) f̃v,x (v2, X2) f̃u,z (u, Z) dµX1 dµX2 dµZ

where f̃v,x (v, x) =
fε (v− h (x; θ0))∫

fε (v− h (X; θ0)) dµX
and f̃u,z (u, z) =

fη (u− g (z, θ0))∫
fη (u− g (Z, θ0)) dµZ

We will only show ψ̃ (v1, v2, u) has a bounded derivative with respect to v1 as the proof for

the other two arguments are identical. Note that

∂

∂v
fε (v− h (x; θ0))∫

fε (v− h (X; θ0)) dµX

=
f ′ε (v− h (x; θ0))∫

fε (v− h (X; θ0)) dµX
−

f ′ε (v−h(x;θ0))∫
fε(v−h(X;θ0))dµX

∫
f ′ε (v− h (X; θ0)) dµX(∫

fε (u− h (X; θ0)) dµX
)2 (C.31)

If the expression in equation (C.31) is µX integrable in X, then the Dominated Convergence

Theorem implies that the derivative ∂
∂v1

ψ̃ (v1, v2, u) exists and is given by

∫
Ψ (X1, X2, Z)

∂

∂v1
f̃v,x (v1, X1) f̃v,x (v2, X2) f̃u,z (u, Z) dµX1 dµX2 dµZ.

To proceed, we will show that

sup
v

∣∣∣∣∣
∫ ( f ′ε (v− h (x; θ0))∫

fε (v− h (X; θ0)) dµX
−

fε (v− h (x; θ0))
∫

f ′ε (v− h (X; θ0)) dµX(∫
fε (v− h (X; θ0)) dµX

)2

)
dµX

∣∣∣∣∣ < ∞

sup
u

∣∣∣∣∣
∫ ( f ′η (u− g (z; θ0))∫

fη (u− g (Z, θ0)) dµZ
−

fη (u− g (z, θ0))
∫

f ′η (u− g (Z, θ0)) dµZ(∫
fη (u− g (Z, θ0)) dµZ

)2

)
dµZ

∣∣∣∣∣ < ∞
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for the first expression since the proof of the other expression is identical. Note that

sup
v

∣∣∣∣∣
∫ ( f ′ε (v− h (x; θ0))∫

fε (v− h (X; θ0)) dµX
−

fε (v− h (x; θ0))
∫

f ′ε (v− h (X; θ0)) dµX(∫
fε (v− h (X; θ0)) dµX

)2

)
dµX

∣∣∣∣∣
≤ sup

v

∫ ∣∣∣∣∣ f ′ε (v− h (x; θ0))∫
fε (v− h (X; θ0)) dµX

−
fε (v− h (x; θ0))

∫
f ′ε (v− h (X; θ0)) dµX(∫

fε (v− h (X; θ0)) dµX
)2

∣∣∣∣∣ dµX

≤ sup
v

∫ ∣∣∣∣ f ′ε (v− h (x; θ0))∫
fε (v− h (X; θ0)) dµX

∣∣∣∣+
∣∣∣∣∣ fε (v− h (x; θ0))

∫
f ′ε (v− h (X; θ0)) dµX(∫

fε (v− h (X; θ0)) dµX
)2

∣∣∣∣∣ dµX

≤ sup
v

∫ | f ′ε (v− h (x; θ0))|∫
fε (v− h (X; θ0)) dµX

dµX +

sup
v

∫ fε (v− h (x; θ0)) supv

∫
| f ′ε (v− h (X; θ0))| dµX(∫

fε (v− h (X; θ0)) dµX
)2 dµX

≤ sup
v

∫ | f ′ε (v− h (x; θ0))|∫
fε (v− h (X; θ0)) dµX

dµX

+ sup
v

∫ fε (v− h (x; θ0))∫
fε (v− h (X; θ0)) dµX

dµX sup
v

∫ | f ′ε (v− h (X; θ0))|∫
fε (v− h (X; θ0)) dµX

dµX

≤ sup
v

∫ | f ′ε (v− h (x; θ0))|∫
fε (v− h (X; θ0)) dµX

dµX

(
1 + sup

v

∫ fε (v− h (X; θ0))∫
fε (v− h (X; θ0)) dµX

dµX

)
< ∞

by Assumption C.2 (ii).

Since ‖Ψ‖∞ < ∞ (Assumption C.2 (i)) and

∫
f̃v,x (v2, X2) f̃u,z (u, Z) dµX1 dµZ

=
∫ fε (v1 − h (X1; θ0))∫

fε (v1 − h (X1; θ0)) dµX1

dµX1

∫ fη (u− g (z, θ0))∫
fη (u− g (Z, θ0)) dµZ

dµZ ≤ 1,

we have that

∂

∂v1
ψ̃ (v1, v2, u)

≤
∣∣∣∣∣
∫ ( f ′ε (v1 − h (x; θ0))∫

fε (v1 − h (X; θ0)) dµX
−

fε (v1 − h (x; θ0))
∫

f ′ε (v1 − h (X; θ0)) dµX(∫
fε (v1 − h (X; θ0)) dµX

)2

)
dµX

∣∣∣∣∣×
‖Ψ‖∞

∫ fε (v1 − h (X1; θ0))∫
fε (v1 − h (X1; θ0)) dµX1

dµX1

∫ fη (u− g (z, θ0))∫
fη (u− g (Z, θ0)) dµZ

dµZ

< ∞.
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C.3.2 Primitive conditions for Assumption 3.6(ii)

For each x and z, define the Lipschitz constants hLC (x) = supθ∈Θ
|h(x;θ)−h(x;θ′)|
‖θ−θ′‖ , and

gLC (z) = supθ∈Θ
|g(z;θ)−g(z;θ′)|
‖θ−θ′‖ .

Axiom C.3 (i) Ψ (x1, x2, z) indexed by x2 and z is µX-Donsker and Ψ (x1, x2, z) indexed by x1 and

x2 is µZ-Donsker

(ii) fε and fη are bounded away from zero on any compact interval of R, and have continuous

first derivatives

(iii) there exist constants C1, C2 > 0 such that

max

{
fε (v) , fη (v) ,

∣∣ f ′ε (v)∣∣ ,
∣∣∣ f ′η (v)∣∣∣ , sup

θ∈Θ
P (|h (x; θ)| > v) , sup

θ∈Θ
P (|g (z; θ)| > v)

}
≤ C1 exp (−C2 |v|)

(iv)
∫

hLC (X)4 dµX,
∫

gLC (Z)4 dµZ, and
∥∥∇ψ̃q

∥∥
∞ are finite

(v) Ψ (x1, x2, z) = ∑K
k=1 akΨk

1 (x1)Ψk
2 (x2)Ψz (z) with

∥∥Ψk
·
∥∥

∞ < ∞ for some constants

a1, . . . , aK

(vi) ‖ f ′′ε ‖∞,
∫ ∞
−∞ | f

′′
ε (v)| dv,

∥∥∥ f ′′η
∥∥∥

∞
, and

∫ ∞
−∞

∣∣∣ f ′′η (v)
∣∣∣ dv are finite

(vii) ε and η have full support on R

Theorem C.2.2 If Assumption C.3 is satisfied, then Assumption 3.6(ii) is satisfied.

Proof. Assumption 3.6(ii) a. is verified by Proposition C.2.

Assumption 3.6(ii) b. is verified by Proposition C.3.

Assumption 3.6(ii) c. is verified by Proposition C.4.

Assumption 3.6(ii) d. is verified by Proposition C.5.

C.3.3 Donsker Properties for ΓX and ΓZ

For each x, define the Lipschitz constant hLC (x) = supθ∈Θ
|h(x;θ)−h(x;θ′)|
‖θ−θ′‖ .

Claim C.3.3 Suppose
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1.
(∫

hLC (x)2 dµX

)1/2
, ‖ fε‖∞ and ‖Ψ‖∞ are finite

2. Ψ (x1, x2, z) indexed by x2 and z is µX-Donsker

Then, we have that

1. Fε (c− h (x; θ)) indexed by c and θ is a µX-Donsker class.

2. If
∫ ∞
−∞ | f

′
ε (v)| dv < ∞, then fε (c− h (x; θ)) indexed by c and θ is a µX-Donsker class

3. If
∫ ∞
−∞ | f

′′
ε (v)| dv < ∞, then f ′ε (c− h (x; θ)) indexed by c and θ is a µX-Donsker class.

Proof. We only spell out the argument for the second statement since the other two are

analogous, as
∫ ∞
−∞ | fε (v)| dv = 1 by definition. Consider the class

fε (c− h (x; θ))

indexed by c ∈ R and θ ∈ Θ. We will show that this class is Donsker by bounding its

L2-bracketing number.

Fix a partition −∞ = c0 < c1 < c2 < . . . < cN = ∞. Lets compute

sup
θ∈Θ

∫
[ fε (cn − h (x; θ))− fε (cn+1 − h (x; θ))]2 dµX

≤ 2 ‖ fε‖∞ sup
θ∈Θ

∫
| fε (cn − h (x; θ))− fε (cn+1 − h (x; θ))| dµX

≤ 2 ‖ fε‖∞ sup
θ∈Θ

∫ ∫ cn+1

cn

∣∣ f ′ε (c− h (x; θ))
∣∣ dcdµX

Therefore,

∑
n

sup
θ∈Θ

∫
[ fε (cn − h (x; θ))− fε (cn+1 − h (x; θ))]2 dµX

≤ 2 ‖ fε‖∞ sup
θ∈Θ

∫
∑
n

∫ cn+1

cn

∣∣ f ′ε (c− h (x; θ))
∣∣ dcdµX

= 2 ‖ fε‖∞ sup
θ∈Θ

∫ ∫ ∞

−∞

∣∣ f ′ε (c− h (x; θ))
∣∣ dcdµX

= 2 ‖ fε‖∞

∫ ∞

−∞

∣∣ f ′ε (c)∣∣ dc

= K̃ < ∞ (C.32)
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where K̃ does not depend on the choice of c0 < c1 < c2 < . . . < cN . Now, consider the

function

f̃ (a) = 2 ‖ fε‖∞

∫ a

−∞

∣∣ f ′ε (c)∣∣ dc.

Note that f̃ (a) is continuous, non-decreasing and has image
[
0, f̃ (∞)

]
. For any N and

n ∈ {0, . . . , N} define

ci = f̃−1
( n

N

)
.

Then, for each n inequality in equation (C.32),

sup
θ∈Θ

∫
[ fε (cn − h (x; θ))− fε (cn+1 − h (x; θ))]2 dµX ≤

K̃
N

.

Consider an 1/
√

N-net Θ ⊆ Rd, Θi for i ∈ {1, . . . , D}. Note that D =
(√

Ndiam (Θ)
)d

.

For each Θi and each n, define the bracket[
inf

θ∈Θi
inf

c∈[cn,cn+1]
fε (c− h (x; θ)) , sup

θ∈Θi

sup
c∈[cn,cn+1]

fε (c− h (x; θ))

]
.

The volume of these brackets are∫ [sup
θ∈Θi

sup
c∈[cn,cn+1]

fε (c− h (x; θ))− inf
θ∈Θi

inf
c∈[cn,cn+1]

fε (c− h (x; θ))

]2

dµX

1/2

=

(∫ [
fε

(
c+ − h

(
x; θ+

))
− fε

(
c− − h

(
x; θ−

))]2 dµX

)1/2

≤
(∫ [

fε

(
c+ − h

(
x; θ+

))
− fε

(
c− − h

(
x; θ+

))]2 dµX

)1/2

+

(∫ [
fε

(
c− − h

(
x; θ+

))
− fε

(
c− − h

(
x; θ−

))]2 dµX

)1/2

≤
(

K̃
N

)1/2

+
∥∥ f ′ε
∥∥

∞

(∫
hLC (x)2 dµX

)1/2

sup
θ,θ′∈Θi

∥∥θ − θ′
∥∥

=

(
K̃
N

)1/2

+
‖ f ′ε‖∞√

N

(∫
hLC (x)2 dµX

)1/2

= KN−1/2.

Therefore, the ε-bracketing number is bounded by a polynomial in 1/ε. Therefore,∫ ∞
0

√
logN (ε)dε is finite, where N (ε) be the ε bracketing number of this class. By van der
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Vaart (2000) Theorem 2.5.6, it follows that fε (c− h (x; θ)) indexed by c ∈ R and θ ∈ Θ is a

µX-Donsker class.

Proposition C.2 Suppose that the conditions for Claim C.3.3 hold and
∥∥ fη

∥∥
∞, then ΓX is a

µX−Donsker class. Analogous conditions imply that ΓZ is a µZ−Donsker class.

Proof. We only need to show that the terms

Ψ (x1, x2, z) fε

(
F−1

V;θ (q)− h (x1; θ)
)

fε

(
F−1

V;θ (q)− h (x2; θ)
)

fη

(
F−1

U;θ (q)− g (z; θ)
)

and

Ψ (x1, x2, z) f ′ε
(

F−1
V;θ (q)− h (x1; θ)

)
fε

(
F−1

V;θ (q)− h (x2; θ)
)

fη

(
F−1

U;θ (q)− g (z; θ)
)

indexed by (x1, z, q , θ) are µX-Donsker classes. This is because the terms 1 {c1 ≤ x ≤ c2} are

µX-Donsker since they are intersections of half-spaces, and therefore suitably measurable

VC-classes. The remaining terms are µX-Donsker by Claim C.3.3.

Note that fε

(
F−1

V;θ (q)− h (x2; θ)
)

indexed by (q , θ) is a sub-class of the µX-Donsker class

fε (c− h (x2; θ)) indexed by (c , θ), and is therefore µX-Donsker. Further, the quantities

Ψ (x1, x2, z) fε

(
F−1

V;θ (q)− h (x1; θ)
)

fη

(
F−1

U;θ (q)− g (z; θ)
)

are uniformly bounded and measurable since ‖Ψ‖∞, ‖ fε‖∞ and
∥∥ fη

∥∥
∞ are finite. Since the

product of two bounded Donsker classes is Donsker (van der Vaart (2000), example 2.10.8),

we have that

Ψ (x1, x2, z) fε

(
F−1

V;θ (q)− h (x1; θ)
)

fε

(
F−1

V;θ (q)− h (x2; θ)
)

fη

(
F−1

U;θ (q)− g (z; θ)
)

and

Ψ (x1, x2, z) f ′ε
(

F−1
V;θ (q)− h (x1; θ)

)
fε

(
F−1

V;θ (q)− h (x2; θ)
)

fη

(
F−1

U;θ (q)− g (z; θ)
)

indexed by (x2, z, q , θ) are µX-Donsker classes.
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C.3.4 Primitive Conditions for Assumption 3.6(ii) b.

Our result verifying Assumption 3.6(ii) b. is stated in Proposition C.3 below. The main

technical difficulty is solved in the following lemma. This result requires preliminaries

proved below in Appendix C.3.4.

For each x and z, define the Lipschitz constants hLC (x) = supθ∈Θ
|h(x;θ)−h(x;θ′)|
‖θ−θ′‖ , and

gLC (z) = supθ∈Θ
|g(z;θ)−g(z;θ′)|
‖θ−θ′‖ .

Lemma C.13 Suppose that
∫

hLC (X)4 dµX is finite, and there exist constants C1, C2 > 0 such that

max

{∣∣ f ′ε (v)∣∣ , sup
θ∈Θ

P (|h (x; θ)| > v)

}
≤ C1 exp (−C2 |v|) .

Then, for any function Ψ (x) with ‖Ψ‖∞ < ∞, we have that (i)

E sup
θ

∫ ∣∣∣√N (µXN − µX) (Ψ (X) fε (v− h (X; θ)))
∣∣∣ dv

is bounded and

(ii) for any sequence of positive numbers {rN} which decrease to 0 as N → ∞,

E sup
‖θ1−θ2‖≤rN

∫ ∣∣∣√N (µXN − µX) (Ψ (X) [ fε (v− h (X; θ1))− fε (v− h (X; θ2))])
∣∣∣ dv→ 0.

Proof. The argument combines ideas from Pollard (2002) recursive proof of Ossiander’s

bracketing functional central limit theorem and an application of Boucheron et al. (2003)

(Theorem 2) concentration inequality.

Let D be the diameter of the parameter space Θ and for nonnegative integer i, let

δi = D2−i. Fix a natural number i∗. Fix a δi∗ net of Θ of size N (δi∗) and for each θ ∈ Θ

let B (θ; i∗) be the center of a ball in this δi∗ net which contains θ. For any nonnegative

integer i < i∗, fix a δi net of Θ of size N (δi) and recursively define B (θ; i) to be the

center of a ball in this δi net which contains B (θ; i + 1) . Note that this definition implies

d (θ; B (θ; i∗)) ≤ δi∗ , d (B (θ, i) , B (θ; i + 1)) ≤ δi, and that B (θ; i) takes on at most N (δi)

distinct values. By repeated application of the triangle inequality, d (B (θ; i) , θ) ≤ 2δi for all

θ. Let Cε =
∫ ∞
−∞ | f

′
ε (v)| dv. Note that Cε < ∞ by our exponential tail bound on f ′ε .
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For each i ≤ i∗, let Vi =
√

N δi√
log N(δi)

, let

Ri (θ, v) =
√

N (µXN − µX)Ψ (X) [ fε (v− h (X; θ))− fε (v− h (X; B (θ; i)))]

and Ti (θ) =
{

x : hLC (x) ≤ Vi
2δi

}
.

To prove part (i), we separately bound E supθ

∫
|R0 (θ, v) T0 (θ)| dv and

E supθ

∫
|R0 (θ, v) Tc

0 (θ)| dv. To prove part (ii), we must similarly show that

E supθ

∫
|Ri (θ, v) Ti (θ)| dv and E supθ

∫ ∣∣Ri (θ, v) Tc
i (θ)

∣∣ dv go to 0 as i→ ∞.

As noted by Pollard (2002),

RiTi = Ri+1Ti+1 − Ri+1Tc
i Ti+1 + (Ri − Ri+1) TiTi+1 + RiTiTc

i+1.

It follows that

E sup
θ

∫
|Ri (θ, v) Ti (θ)| dv

≤ E sup
θ

∫
|Ri+1 (θ, v)| Ti+1 (θ) dv + E sup

θ

∫
|Ri+1 (θ, v)| Tc

i (θ) Ti+1 (θ) dv

+E sup
θ

∫
|(Ri (θ, v)− Ri+1 (θ, v))| Ti (θ) Ti+1 (θ) dv

+E sup
θ

∫
|(Ri (θ, v))| Ti (θ) Tc

i+1 (θ) dv

⇒ E sup
θ

∫
|R0 (θ, v) T0 (θ)| dv

≤ E sup
θ

∫
|Ri∗ (θ, v) Ti∗ (θ)| dv

+
i∗−1

∑
i=0

{
E sup

θ

∫
|Ri+1 (θ, v)| Tc

i (θ) Ti+1 (θ) dv

+E sup
θ

∫
|Ri (θ, v)| Ti (θ) Tc

i+1 (θ) dv

+E sup
θ

∫
|(Ri (θ, v)− Ri+1 (θ, v))| Ti (θ) Ti+1 (θ) dv

}
. (C.33)

We need to show that each of the terms above is bounded. First, we show that summation

is bounded. Lemmas C.14 and C.15 (below) imply that there exists a constant K such that

each of the terms in the summation is no greater than K
√

log N (δi)δi. Therefore, equation
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(C.33) implies

E sup
θ

∫
|Ri (θ, v) Ti (θ)| dv ≤ E sup

θ

∫
|Ri∗ (θ, v) Ti∗ (θ)| dv + K

i∗−1

∑
j=i

√
log N

(
δj
)
δj. (C.34)

We now show that as i∗ → ∞,

E sup
θ

∫
|Ri∗ (θ, v) Ti∗ (θ)| dv→ 0.

For any i, we have that,

E sup
θ

∫
|Ri (θ, v) Ti (θ)| dv

= E sup
θ

∫ ∣∣∣√N (µXN − µX)Ψ (X) [ fε (v− h (X; θ))− fε (v− h (X; B (θ; i)))]
∣∣∣ dv

≤
√

NE sup
θ

∫
(µXN ‖Ψ‖∞ | fε (v− h (X; θ))− fε (v− h (X; B (θ; i)))|

+µX ‖Ψ‖∞ | fε (v− h (X; θ))− fε (v− h (X; B (θ; i)))|) dv

≤
√

N ‖Ψ‖∞ E sup
θ

1
N

N

∑
j=1

∫ (∣∣ fε

(
v− h

(
Xj; θ

))
− fε

(
v− h

(
Xj; B (θ; i)

))∣∣
+µX ‖Ψ‖∞ | fε (v− h (X; θ))− fε (v− h (X; B (θ; i)))|) dv

≤
√

N ‖Ψ‖∞ E sup
θ

1
N

N

∑
j=1

Cε

(∣∣h (Xj; θ
)
− h

(
Xj; B (θ; i)

)∣∣+ µX |h (X; θ)− h (X; B (θ; i))|
)

≤
√

N ‖Ψ‖∞ E

(
1
N

N

∑
j=1

Cε

(
2δi
∣∣hLC

(
Xj
)∣∣+ µX2δi |hLC (X)|

))
= 4δi ‖Ψ‖∞ Cε

√
NµXhLC (X) . (C.35)

Hence, equation (C.34) implies that for any i∗ > i,

E sup
θ

∫
|Ri (θ, v) Ti (θ)| dv ≤ 4δi∗ ‖Ψ‖∞ Cε

√
NµXhLC (X) + K

∞

∑
j=i

δj

√
log N

(
δj
)
.

Therefore, for a universal constant K′,

E sup
θ

∫
|Ri (θ, v) Ti (θ)| dv ≤ K′

∫ δi

0

√
log N (δ)dδ

and E sup
θ

∫
|R0 (θ, v) T0 (θ)| dv ≤ K′

∫ ∞

0

√
log N (δ)dδ < ∞.
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Note that

E sup
θ

∫
|Ri (θ, v) Tc

i (θ)| dv

= E sup
θ

∫ ∞

−∞

∣∣∣√N (µXN − µX) [ fε (v− h (X; θ))− fε (v− h (X; B (θ; i)))]
∣∣∣{

X : hLC (X) >
Vi

2δi

}
dv

≤ 2δiE sup
θ

√
N (µXN + µX) hLC (X)

{
X : hLC (X) >

√
N

2
√

log N (δi)

} ∫ ∞

−∞

∣∣ f ′ε (v)∣∣ dv

≤ 4δi
√

N
∫ ∞

−∞

∣∣ f ′ε (v)∣∣ dvµXhLC (X)4

[
2
√

log N (δi)√
N

]3

= 32
1
N

∫ ∞

−∞

∣∣ f ′ε (v)∣∣ dvµXhLC (X)4 δi (log N (δi))
3
2

Since N (δi) is not greater than some polynomial in 1
δi

, supi δi (log N (δi))
3
2 < ∞, we have

that

sup
N

E sup
θ

∫
|R0 (θ, v)| dv

≤ sup
N

E sup
θ

∫
|R0 (θ, v) T0 (θ)| dv + sup

N
E sup

θ

∫
|R0 (θ, v) Tc

0 (θ)| dv

≤ K′
∫ ∞

0

√
log N (δ)dδ + 32

1
N

∫ ∞

−∞

∣∣ f ′ε (v)∣∣ dvµXhLC (X)4 δ0 (log N (δ0))
3
2

< ∞.

This completes the proof for Part (i). Similarly, for any sequence of iN → ∞, as N → ∞,

E sup
θ

∫
|RiN (θ, v)| dv

≤ E sup
θ

∫
|RiN (θ, v) TiN (θ)| dv + E sup

θ

∫ ∣∣RiN (θ, v) Tc
iN
(θ)
∣∣ dv→ 0

We are now ready to show the main result:

Proposition C.3 If the following assumptions are satisfied

(i) ΓX and ΓZ are respectively µX- and µZ- Donsker

(ii) fε and fη are bounded away from zero on any compact interval of R, and have continuous
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first derivatives

(iii) there exist constants C1, C2 > 0 such that

max

{
fε (v) , fη (v) ,

∣∣ f ′ε (v)∣∣ ,
∣∣∣ f ′η (v)∣∣∣ , sup

θ∈Θ
P (|h (x; θ)| > v) , sup

θ∈Θ
P (|g (z; θ)| > v)

}
≤ C1 exp (−C2 |v|)

(iv)
∫

hLC (X)4 dµX,
∫

gLC (Z)4 dµZ, and
∥∥∇ψ̃q

∥∥
∞ are finite

(v) Ψ (x1, x2, z) = ∑K
k=1 akΨk

1 (x1)Ψk
2 (x2)Ψz (z) with

∥∥Ψk
·
∥∥

∞ < ∞ for some constants

a1, . . . , aK

then for any sequence of positive δN and rN decreasing to 0

√
NE sup

‖θ−θ0‖≤rN

∣∣∣(ψ [µX, µZ] (θ)− ψ [µXN , µZN ] (θ))−
(

ψδN [µX, µZ] (θ)− ψδN [µXN , µZN ] (θ)
)∣∣∣

converges to 0 as N → ∞.

Proof. The proof proceeds by first manipulating this expression into a sum of similar terms

which can all be handed by Lemma C.13. To ease notation, define

φη (q, z; θ) = fη

(
F−1

U;θ (q)− g (z; θ)
)

φη,N (q, z; θ) = fη

(
F−1

N,U;θ (q)− g (z; θ)
)

φε (q, x; θ) = fε

(
F−1

V;θ (q)− h (x; θ)
)

φε,N (q, x; θ) = fε

(
F−1

N,V;θ (q)− h (x; θ)
)

.
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First, note that

(ψ [µX, µZ] (θ)− ψ [µXN , µZN ] (θ))−
(

ψδ [µX, µZ] (θ)− ψδ [µXN , µZN ] (θ)
)

=

[∫ 1

0
−
∫ 1−δ

δ

] ∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

−
∫

Ψ (x1, x2, z) φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµXN,1 dµXN,2 dµZN∫
φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµXN,1 dµXN,2 dµZN

dq

=

([∫ 1

0
−
∫ 1−δ

δ

] ∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

−
∫

Ψ (x1, x2, z) φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµX1 dµX2 dµZ∫
φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµX1 dµX2 dµZ

dq

)

+

([∫ 1

0
−
∫ 1−δ

δ

] ∫
Ψ (x1, x2, z) φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµX1 dµX2 dµZ∫

φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµX1 dµX2 dµZ

−
∫

Ψ (x1, x2, z) φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµXN,1 dµXN,2 dµZN∫
φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµXN,1 dµXN,2 dµZN

dq

)
= A1 + A2

First, we bound the absolute value of A1. Since qN,V;θ (q) = FV;θ

(
F−1

N,V;θ (q)
)

and

φε (qN,V;θ (q) , x; θ) = φε,N (q, x; θ) , we have that

A1 =

[∫ 1

0
−
∫ 1−δ

δ

] ∫
Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ∫

φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ
dq

−
[∫ 1

0
−
∫ 1−δ

δ

] ∫
Ψ (x1, x2, z) φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµX1 dµX2 dµZ∫

φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµX1 dµX2 dµZ
dq

By a first order Taylor expansion,

√
NE sup

θ

|A1| ≤
√

N
[∫ 1

0
−
∫ 1−δ

δ

] ∥∥∇ψ̃q
∥∥

∞

(
2E sup

θ

|qN,V;θ (q)− q|+ E sup
θ

|qN,U;θ (q)− q|
)

dq

≤ 4δ
∥∥∇ψ̃q

∥∥
∞

(
E sup

θ

|qN,V;θ (q)− q|+ E sup
θ

|qN,U;θ (q)− q|
)

.

Since
∥∥∇ψ̃q

∥∥
∞ < ∞, we only need to show that

√
NE supq,θ |qN,V;θ (q)− q| and
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√
NE supq,θ |qN,U;θ (q)− q| are finite. Note that

qN,V;θ (q)− q = FV;θ

(
F−1

N,V;θ (q)
)
− FN,V;θ

(
F−1

N,V;θ (q)
)

= (µX − µXN )
(

Fε

(
F−1

N,V;θ (q)− h (X; θ)
))

⇒
√

NE sup
q,θ
|qN,V;θ (q)− q| ≤

√
NE sup

v,θ
|(µX − µXN ) (Fε (v− h (X; θ)))|

< ∞

since Fε (v− h (X; θ)) indexed by v and θ is µX-Donsker. An identical argument implies that
√

NE supq,θ |qN,U;θ (q)− q| is finite.

To bound the absolute value of A2, let

ρη,N;θ (v, z) = fη

(
F−1

N,U;θ (FN,V;θ (v))− g (z; θ)
)

A2 =([∫ 1

0
−
∫ 1−δ

δ

] ∫
Ψ (x1, x2, z) φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµX1 dµX2 dµZ∫

φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµX1 dµX2 dµZ

−
∫

Ψ (x1, x2, z) φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµXN,1 dµXN,2 dµZN∫
φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµXN,1 dµXN,2 dµZN

dq

)
=(∫ ∞

−∞
−
∫ F−1

N,V;θ(1−δ)

F−1
N,V;θ(δ)

) ∫
fε (v− h (x1; θ)) (dµXN − dµX) x∫

Ψ (x1, x2, z) fε (v− h (x1; θ)) fε (v− h (x2; θ)) ρη,N;θ (v, z) dµX1 dµX2 dµZ∫
fε (v− h (x1; θ)) fε (v− h (x2; θ)) ρη,N;θ (v, z) dµX1 dµX2 dµZ

dv

+

(∫ ∞

−∞
−
∫ F−1

N,V;θ(1−δ)

F−1
N,V;θ(δ)

) ∫
fε (v− h (x1; θ)) dµX∫
fε (v− h (x1; θ)) dµX

x∫
Ψ (x1, x2, z) fε (v− h (x1; θ)) fε (v− h (x2; θ)) ρη,N;θ (v, z) dµX1 dµX2 dµZ∫

fε (v− h (x1; θ)) ρη,N;θ (v, z) dµX1 dµZ
dv

−
∫

Ψ (x1, x2, z) fε (v− uθ (x1)) fε (v− h (x2; θ)) ρη,N;θ (v, z) dµXN,1 dµXN,2 dµZN∫
fε (v− h (x1; θ)) ρη,N;θ (v, z) dµXN,1 dµZN

dv =

T1 + T2 − T3
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where the equality follows from the change of variable v = F−1
N,V;θ (q).

Note that

√
N |T1| ≤

√
N ‖Ψ‖∞

(∫ ∞

−∞
−
∫ F−1

N,V;θ(1−δ)

F−1
N,V;θ(δ)

) ∣∣∣∣∫ fε (v− h (x1; θ)) (dµXN − dµX)

∣∣∣∣ dv

≤
√

N ‖Ψ‖∞

(∫ ∞

−∞
−
∫ F−1

N,V;θ(1−δ)

F−1
N,V;θ(δ)

) ∣∣∣∣∫ fε (v− h (x1; θ0)) (dµXN − dµX)

∣∣∣∣ dv

+
√

N ‖Ψ‖∞

∫ ∞

−∞

∣∣∣∣∫ [ fε (v− h (x1; θ))− fε (v− h (x1; θ0))] (dµXN − dµX)

∣∣∣∣ dv.

Hence, E
√

N sup‖θ−θ0‖≤rN
(|T1|) |δ=δN → 0 for any sequence of positive δN and rN decreasing

to 0 by Lemmas C.13 and C.18.

Now we bound T2 − T3 by splitting it into three terms, and bounding them,

T2 − T3 =

(∫ ∞

−∞
−
∫ F−1

N,V;θ(1−δ)

F−1
N,V;θ(δ)

)
∫

Ψ (x1, x2, z) fε (v− h (x1; θ)) fε (v− h (x2; θ)) ρη,N;θ (v, z) dµX1 dµX2 dµZ∫
fε (v− h (x1; θ)) ρη,N;θ (v, z) dµX1 dµZ

−
∫

Ψ (x1, x2, z) fε (v− h (x1; θ)) fε (v− h (x2; θ)) ρη,N;θ (v, z) dµXN,1 dµX2 dµZN∫
fε (v− h (x1; θ)) ρη,N;θ (v, z) dµXN,1 dµZN

−
∫

Ψ (x1, x2, z) fε (v− h (x1; θ)) fε (v− h (x2; θ)) ρη,N;θ (v, z) dµXN,1 d
(
µXN,2 − µX2

)
dµZN∫

fε (v− h (x1; θ)) ρη,N;θ (v, z) dµXN,1 dµZN

= R1 + R2 − R3,

where

R3 =

∑ ak

(∫ ∞

−∞
−
∫ F−1

N,V;θ(1−δ)

F−1
N,V;θ(δ)

) ∫
Ψk

1 (x1)Ψk
z (z) fε (v− h (x1; θ)) ρη,N;θ (v, z) dµXN,1 dµZN∫

fε (v− h (x1; θ)) ρη,N;θ (v, z) dµXN,1 dµZN

×∫
Ψk

2 (x2) fε (v− h (x2; θ)) d
(
µXN,2 − µX2

)
dµX2 dv

⇒
√

N |R3| ≤
K

∑
k=1

ak

∥∥∥Ψk
1

∥∥∥
∞

∥∥∥Ψk
z

∥∥∥
∞

√
N

(∫ ∞
−∞−

∫ F−1
N,V;θ(1−δ)

F−1
N,V;θ(δ)

) ∣∣∫ Ψk
2 (x) fε (v− h (x; θ0))

(
dµXN,2 − dµX2

)∣∣ dv

+
∫ ∞
−∞

∣∣∫ Ψk
2 (x) [ fε (v− h (x; θ))− fε (v− h (x; θ0))]

(
dµXN,2 − dµX2

)∣∣ dv

 .

Hence, E
√

N sup‖θ−θ0‖≤rN
(|R3|) |δ=δN → 0 for any sequence of positive δN and rN decreasing
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to 0 by Lemmas C.13 and C.18.

We will now break R1 + R2 into three terms(∫ ∞

−∞
−
∫ F−1

N,V;θ(1−δ)

F−1
N,V;θ(δ)

)
∫

Ψ (x1, x2, z) fε (v− h (x1; θ)) fε (v− h (x2; θ)) ρη,N;θ (v, z) dµX1 dµX2 dµZ∫
fε (v− h (x1; θ)) ρη,N;θ (v, z) dµX1 dµZ

−
∫

Ψ (x1, x2, z) fε (v− h (x1; θ)) fε (v− h (x2; θ)) ρη,N;θ (v, z) dµXN,1 dµX2 dµZN∫
fε (v− h (x1; θ)) ρη,N;θ (v, z) dµXN,1 dµZN

dv

=

(∫ ∞

−∞
−
∫ F−1

N,V;θ(1−δ)

F−1
N,V;θ(δ)

) ∫
fε (v− h (x; θ)) dµX∫

Ψ (x1, x2, z) fε (v− h (x1; θ)) fε (v− h (x2; θ)) ρη,N;θ (v, z) dµX1 dµX2 dµZ∫
fε (v− h (x1; θ)) fε (v− h (x2; θ)) ρη,N;θ (v, z) dµX1 dµX2 dµZ

dv

−
(∫ ∞

−∞
−
∫ F−1

N,V;θ(1−δ)

F−1
N,V;θ(δ)

) ∫
fε (v− h (x; θ)) dµX∫

Ψ (x1, x2, z) fε (v− h (x1; θ)) fε (v− h (x2; θ)) ρη,N;θ (v, z) dµXN,1 dµX2 dµZN∫
fε (v− h (x1; θ)) fε (v− h (x2; θ)) ρη,N;θ (v, z) dµXN,1 dµX2 dµZN

dv

=

(∫ ∞

−∞
−
∫ F−1

N,V;θ(1−δ)

F−1
N,V;θ(δ)

) ∫
fε (v− h (x; θ)) dµX∫

Ψ (x1, x2, z) fε (v− h (x1; θ)) fε (v− h (x2; θ)) ρη,N;θ (v, z) dµX1 dµX2 dµZ∫
fε (v− h (x1; θ)) fε (v− h (x2; θ)) ρη,N;θ (v, z) dµX1 dµX2 dµZ

dv

−
(∫ ∞

−∞
−
∫ F−1

N,V;θ(1−δ)

F−1
N,V;θ(δ)

) ∫
fε (v− h (x; θ)) dµXN∫

Ψ (x1, x2, z) fε (v− h (x1; θ)) fε (v− h (x2; θ)) ρη,N;θ (v, z) dµXN,1 dµX2 dµZN∫
fε (v− h (x1; θ)) fε (v− h (x2; θ)) ρη,N;θ (v, z) dµXN,1 dµX2 dµZN

dv

+

(∫ ∞

−∞
−
∫ F−1

N,V;θ(1−δ)

F−1
N,V;θ(δ)

) ∫
fε (v− h (x; θ)) (dµXN − dµX)∫

Ψ (x1, x2, z) fε (u− uθ (x1)) fε (u− uθ (x2)) ρη,N;θ (v, z) dµXN,1 dµX2 dµZN∫
fε (v− h (x1; θ)) fε (v− h (x2; θ)) ρη,N;θ (v, z) dµXN,1 dµX2 dµZN

dv

= M1 −M2 + M3,

where

√
N |M3| ≤

√
N ‖Ψ‖∞

(∫ ∞

−∞
−
∫ F−1

N,V;θ(1−δ)

F−1
N,V;θ(δ)

) ∣∣∣∣∫ fε (v− h (x; θ0)) (dµXN − dµX)

∣∣∣∣ dv

+
√

N ‖Ψ‖∞

∫ ∞

−∞

∣∣∣∣∫ [ fε (v− h (x; θ))− fε (v− h (x; θ0))] (dµXN − dµX)

∣∣∣∣ dv,
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so E sup‖θ−θ0‖≤rN

√
N (|M3|) |δ=δN → 0 for our sequences rN , δN by the same argument

applied to T1.

We rewrite M1 −M2 as

=

(∫ ∞

−∞
−
∫ F−1

N,V;θ(1−δ)

F−1
N,V;θ(δ)

) ∫
fε (v− h (x; θ)) dµX(∫

Ψ (x1, x2, z) fε (v− h (x1; θ)) fε (v− h (x2; θ)) ρη,N;θ (v, z) dµX1 dµX2 dµZ∫
fε (v− h (x1; θ)) fε (v− uθ (x2)) ρη,N;θ (v, z) dµX1 dµX2 dµZ

−
∫

Ψ (x1, x2, z) fε (v− h (x1; θ)) fε (v− h (x2; θ)) ρη,N;θ (v, z) dµXN,1 dµX2 dµZN∫
fε (v− h (x1; θ)) fε (v− h (x2; θ)) ρη,N;θ (v, z) dµX1 dµX2 dµZN

)
dv

=

(∫ ∞

−∞
−
∫ F−1

N,V;θ(1−δ)

F−1
N,V;θ(δ)

)
(∫

Ψ (x1, x2, z) fε (v− h (x1; θ)) fε (v− h (x2; θ)) ρη,N;θ (v, z) dµX1 dµX2 dµZ∫
fε (v− h (x2; θ)) ρη,N;θ (v, z) dµX2 dµZ

−
∫

Ψ (x1, x2, z) fε (u− uθ (x1)) fε (u− uθ (x2)) ρη,N;θ (v, z) dµX1 dµX2 dµZN∫
fε (u− uθ (x2)) ρη,N;θ (v, z) dµX2 dµZN

)
dv

+
∫ ∞

−∞
−
∫ F−1

N,V;θ(1−δ)

F−1
N,V;θ(δ)∫

Ψ (x1, x2, z) fε (v− h (x1; θ)) fε (v− h (x2; θ)) ρη,N;θ (v, z)
(
dµXN,1 − dµX1

)
dµX2 dµZN∫

fε (v− h (x2; θ)) ρη,N;θ (v, z) dµX2 dµZN

dv

= N1 + N2,

where

√
N |N2| ≤

√
N

K

∑
k=1

ak

∥∥∥Ψk
2

∥∥∥
∞

∥∥∥Ψk
z

∥∥∥
∞

(∫ ∞
−∞−

∫ F−1
N,V;θ(1−δ)

F−1
N,V;θ(δ)

) ∣∣∫ Ψk
1 (x) fε (v− h (x; θ0))

(
dµXN,1 − dµX1

)∣∣ dv∫ ∞
−∞

∣∣∫ Ψk
1 (x) [ fε (v− h (x; θ))− fε (v− h (x; θ0))]

(
dµXN,1 − dµX1

)∣∣ dv


so E sup‖θ−θ0‖≤rN

√
N (|N2|) |δ=δN → 0 by the same argument bounding T1. We now split

N1 into three pieces
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N1 =

(∫ ∞

−∞
−
∫ F−1

N,V;θ(1−δ)

F−1
N,V;θ(δ)

) ∫
fε (v− h (x; θ)) dµX∫

Ψ (x1, x2, z) fε (v− h (x1; θ)) fε (v− h (x2; θ)) ρη,N;θ (v, z) dµX1 dµX2 dµZ∫
fε (v− h (x1; θ)) fε (v− h (x2; θ)) ρη,N;θ (v, z) dµX1 dµX2 dµZ

dv

−
(∫ ∞

−∞
−
∫ F−1

N,V;θ(1−δ)

F−1
N,V;θ(δ)

) ∫
fε (v− h (x; θ)) dµX∫

Ψ (x1, x2, z) fε (v− h (x1; θ)) fε (v− h (x2; θ)) ρη,N;θ (v, z) dµX1 dµX2 dµZN∫
fε (v− h (x1; θ)) fε (v− h (x2; θ)) ρη,N;θ (v, z) dµX1 dµX2 dµZN

dv

+

(∫ ∞

−∞
−
∫ F−1

N,V;θ(1−δ)

F−1
N,V;θ(δ)

)
∫

Ψ (x1, x2, z) fε (v− h (x1; θ)) fε (v− h (x2; θ)) ρη,N;θ (v, z)
(
dµX1 − dµXN,1

)
dµX2 dµZN∫

fε (v− h (x2; θ)) ρη,N;θ (v, z) dµX2 dµZN

dv

= O1 + O2 + O3

where

√
N |O3| ≤

√
N

K

∑
k=1

ak

∥∥∥Ψk
2

∥∥∥
∞

∥∥∥Ψk
z

∥∥∥
∞

(∫ ∞
−∞−

∫ F−1
N,V;θ(1−δ)

F−1
N,V;θ(δ)

) ∣∣∫ Ψ1 (x) fε (v− h (x; θ0))
(
dµX1 − dµXN,1

)∣∣ dv

+
∫ ∞
−∞

∣∣∫ Ψ1 (x) ( fε (v− h (x; θ))− fε (v− h (x; θ0)))
(
dµX1 − dµXN,1

)∣∣ dv

 ,

E sup‖θ−θ0‖≤rN

√
N (|O3|) |δ=δN → 0 by the same argument bounding T1.

Now we rewrite O1 + O2 by substituting ρη,N;θ (v, z) =

fη

(
F−1

N,U;θ

(
F−1

N,V;θ (v)
)
− g (z; θ)

)
.Let

m(v, z) =
∫

Ψ (x1, x2, z) fε (v− h (x1; θ)) fε (v− h (x2; θ)) dµX1 dµX2 ,

and

n(v) = n(v, z) =
∫

fε (v− h (x1; θ)) fε (v− h (x2; θ)) dµX1 dµX2 .
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O1 + O2 =(∫ ∞

−∞
−
∫ F−1

N,V;θ(1−δ)

F−1
N,V;θ(δ)

)
∫ m(v, z) fη

(
F−1

N,U;θ

(
F−1

N,V;θ (v)
)
− g (z; θ)

)
dµZ∫

n(v, z) fη

(
F−1

N,U;θ

(
F−1

N,V;θ (v)
)
− g (z; θ)

)
dµZ

−

∫
m(v, z) fη

(
F−1

N,U;θ

(
F−1

N,V;θ (v)
)
− g (z; θ)

)
dµZN∫

n(v, z) fη

(
F−1

N,U;θ

(
F−1

N,V;θ (v)
)
− g (z; θ)

)
dµZN

 ∫ fε (v− h (x; θ)) dµXN dv

+

(∫ ∞

−∞
−
∫ F−1

N,V;θ(1−δ)

F−1
N,V;θ(δ)

)∫ m(v, z) fη

(
F−1

N,U;θ

(
F−1

N,V;θ (v)
)
− g (z; θ)

)
dµZ∫

n(v, z) fη

(
F−1

N,U;θ

(
F−1

N,V;θ (v)
)
− g (z; θ)

)
dµZ

−

∫
m(v, z) fη

(
F−1

N,U;θ

(
F−1

N,V;θ (v)
)
− g (z; θ)

)
dµZN∫

n(v, z) fη

(
F−1

N,U;θ

(
F−1

N,V;θ (v)
)
− g (z; θ)

)
dµZN

 ∫ fε (v− h (x; θ)) (dµX − dµXN ) dv

= P1 + P2,

where

√
N |P2| ≤

√
N2 ‖Ψ‖∞


(∫ ∞
−∞−

∫ F−1
N,V;θ(1−δ)

F−1
N,V;θ(δ)

) ∣∣∫ fε (v− h (x; θ0)) (dµX − dµXN )
∣∣ dv

+
∫ ∞
−∞

∣∣∫ [ fε (v− h (x; θ))− fε (v− h (x; θ0))] (dµX − dµXN )
∣∣ dv

 ,

so E sup‖θ−θ0‖≤rN

√
N (|P2|) |δ=δN → 0 by the same argument bounding T1.

By change of variables,

q = F−1
N,V;θ (v)

⇒ dq =
∫

fε (v− h (x; θ)) dµXN dv and F−1
N,V;θ (q) = v

followed by a change of variables

q =
∫

Fη (u− g (z; θ)) dµZN

we rewrite P1 as
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(∫ ∞

−∞
−
∫ F−1

N,V;θ(1−δ)

F−1
N,V;θ(δ)

)∫ m(v, z) fη

(
F−1

N,U;θ

(
F−1

N,V;θ (v)
)
− g (z; θ)

)
dµZ∫

n(v, z) fη

(
F−1

N,U;θ

(
F−1

N,V;θ (v)
)
− g (z; θ)

)
dµZ

−

∫
m(v, z) fη

(
F−1

N,U;θ

(
F−1

N,V;θ (v)
)
− g (z; θ)

)
dµZN∫

n(v, z) fη

(
F−1

N,U;θ

(
F−1

N,V;θ (v)
)
− g (z; θ)

)
dµZN

 ∫ fε (v− h (x; θ)) dµXN dv

=

(∫ 1

0
−
∫ 1−δ

δ

)(∫
Ψ (x1, x2, z) φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, x1; θ) dµX1 dµX2 dµZ∫

φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, x1; θ) dµX1 dµX2 dµZ

−
∫

Ψ (x1, x2, z) φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, x1; θ) dµX1 dµX2 dµZN∫
φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, x1; θ) dµX1 dµX2 dµZN

)
dq

=

(∫ ∞

−∞
−
∫ F−1

N,U;θ(1−δ)

F−1
N,U;θ(δ)

)∫ m(F−1
N,V;θ

(
F−1

N,U;θ (u)
)

, z) fη (u− g (z; θ)) dµZ∫
n(F−1

N,V;θ

(
F−1

N,U;θ (u)
)

, z) fη (u− g (z; θ)) dµZ

−

∫
m(F−1

N,V;θ

(
F−1

N,U;θ (u)
)

, z) fη (u− g (z; θ)) dµZN∫
n(F−1

N,V;θ

(
F−1

N,U;θ (u)
)

, z) fη (u− g (z; θ)) dµZN


∫

fη (u− g (z; θ)) dµZN du

=

(∫ ∞

−∞
−
∫ F−1

N,U;θ(1−δ)

F−1
N,U;θ(δ)

) ∫
m(F−1

N,V;θ

(
F−1

N,U;θ (u)
)

, z) fη (u− g (z; θ)) dµX1 dµX2 dµZ

n(v)
du

+

(∫ ∞

−∞
−
∫ F−1

N,U;θ(1−δ)

F−1
N,U;θ(δ)

) ∫
m(F−1

N,V;θ

(
F−1

N,U;θ (u)
)

, z) fη (u− g (z; θ)) dµZ∫
n(F−1

N,V;θ

(
F−1

N,U;θ (u)
)

, z) fη (u− g (z; θ)) dµZ

×
∫

fη (u− g (z; θ)) (dµZN − dµZ) du

−
(∫ ∞

−∞
−
∫ F−1

N,U;θ(1−δ)

F−1
N,U;θ(δ)

) ∫
m(F−1

N,V;θ

(
F−1

N,U;θ (u)
)

, z) fη (u− g (z; θ)) dµZN

n(v)
du

= Q1 + Q2 + Q3

where
√

N |Q2| is not greater than

√
N ‖Ψ‖∞


(∫ ∞
−∞−

∫ F−1
N,U;θ(1−δ)

F−1
N,U;θ(δ)

) ∣∣∫ fη (u− g (z; θ0)) (dµZN − dµZ)
∣∣ du∫ ∞

−∞

∣∣∫ [ fη (u− g (z; θ))− fη (u− g (z; θ0))
]
(dµZN − dµZ)

∣∣ du

 , and so

E sup
‖θ−θ0‖≤rN

√
N (|Q2|) |δ=δN → 0

by the same argument bounding T1.. Finally, to bound Q1 + Q3, note that
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√
N |Q1 + Q3|

≤
√

N ∑ ak ‖Ψ1‖∞ ‖Ψ2‖∞
(∫ ∞
−∞−

∫ F−1
N,U;θ(1−δ)

F−1
N,U;θ(δ)

) ∫ ∞
−∞

∣∣∫ Ψz (z) fη (u− g (z; θ0)) (dµZ − dµZN )
∣∣ du

+
∫ ∞
−∞

∣∣∫ Ψz (z)
[

fη (u− g (z; θ))− fη (u− g (z; θ0))
]
(dµZ − dµZN )

∣∣ du

 ,

and so E sup‖θ−θ0‖≤rN

√
N (|Q1 + Q3|) |δ=δN → 0 by the same argument bounding T1.By

the triangle inequality, the expression

√
N
(∫ 1

0
−
∫ 1−δ

δ

)
∫

Ψ (x1, x2, z) φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ∫
φε (q, x1; θ) φε (q, x2; θ) φη (q, z; θ) dµX1 dµX2 dµZ

−
∫

Ψ (x1, x2, z) φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµXN,1 dµXN,2 dµZN∫
φε,N (q, x1; θ) φε,N (q, x2; θ) φη,N (q, z; θ) dµXN,1 dµXN,2 dµZN

dq

has abolute value not greater than

√
N |A1|+

√
N |T1|+

√
N |R3|+

√
N |M3|

+
√

N |N2|+
√

N |O3|+
√

N |P2|+
√

N |Q1 + Q3|+
√

N |Q2|

so
√

NE sup‖θ−θ0‖≤rN∣∣(ψ [µX, µZ] (θ)− ψ [µXN , µZN ] (θ))−
(
ψδN [µX, µZ] (θ)− ψδN [µXN , µZN ] (θ)

)∣∣ = o (1)

as desired.

Preliminaries for Proposition C.3

Lemma C.14 If Cε =
∫ ∞
−∞ | f

′
ε (v)| dv, µXhLC (X)2 and Ψ (X) are bounded, then

E sup
θ

∫
|Ri+1 (θ, v)| Tc

i (θ) Ti+1 (θ) dv ≤
√

N ‖Ψ‖∞ 6δi+1
δi

Vi
CεdvµXhLC (X)2

and

E sup
θ

∫ ∣∣(Ri (θ, v)) Ti (θ) Tc
i+1 (θ)

∣∣ dv ≤ 6 ‖Ψ‖∞ δi
δi+1

Vi+1
CεµXhLC (X)2 .
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Proof. We first show that

E sup
θ

∫
|Ri+1 (θ, v)| Tc

i (θ) Ti+1 (θ) dv ≤
√

N6 ‖Ψ‖∞ δi+1
δi

Vi
CεdvµXhLC (X)2 .

Note that

E sup
θ

∫
|Ri+1 (θ, v)| Tc

i (θ) Ti+1 (θ) dv

≤ E sup
θ

∫
|Ri+1 (θ, v)| Tc

i (θ) dv

≤ E sup
θ

1√
N

∫ n

∑
i=1∣∣Ψ (X)

{
fε

(
v− h

(
Xj; θ

))
− fε

(
v− h

(
Xj; B (θ; i + 1)

))}∣∣ {hLC
(
Xj
)
>

Vi

2δi

}
dv

+
√

NµX

∫
(∣∣Ψ (X) fε

(
v− h

(
Xj; θ

))
− fε

(
v− h

(
Xj; B (θ; i + 1)

))∣∣ {hLC (X) >
Vi

2δi

})
dv

where the last inequality is a consequence of the triangle inequality. The second term is not

greater than

√
N ‖Ψ‖∞ δi+1

∫ ∞

−∞

∣∣ f ′ε (v)∣∣ dvµXhLC (X)

{
hLC (X) >

Vi

2δi

}
≤ 2 ‖Ψ‖∞

√
N

δiδi+1

Vi
CεµXhLC (X)2

and the first term is not greater than

E sup
θ

1√
N

n

∑
i=1

{
hLC

(
Xj
)
>

Vi

2δi

}
∫
‖Ψ‖∞

∣∣{ fε

(
v− h

(
Xj; θ

))
− fε

(
v− h

(
Xj; B (θ; i + 1)

))}∣∣ dv

≤ ‖Ψ‖∞ E sup
θ

1√
N

Cε

n

∑
i=1

{
hLC

(
Xj
)
>

Vi

2δi

} ∣∣h (Xj; θ
)
− h

(
Xj; B (θ; i + 1)

)∣∣
≤ ‖Ψ‖∞ E sup

θ

2δi+1
√

NCεµXN

∣∣∣∣hLC (X)

{
hLC (X) >

Vi

2δi

}∣∣∣∣
≤ 4 ‖Ψ‖∞ δi

δi+1

Vi

√
NCεµX

∣∣∣hLC (X)2
∣∣∣ .
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By an identical argument,

E sup
θ

∫ ∣∣(Ri (θ, v)) Ti (θ) Tc
i+1 (θ)

∣∣ dv

≤ 6 ‖Ψ‖∞ δi
δi+1

Vi+1
CεµXhLC (X)2 .

Lemma C.15 Let E (x) = 2 exp(x)−1−x
x2 , and let N (δi+1) be the δi+1 covering number of Θ in the

Euclidean metric. If Assumption C.3 is satisfied, then

E sup
θ

∫
|Ri (θ, v)− Ri+1 (θ, v)| Ti (θ) Ti+1 (θ) dv

≤ δi

√
log (2N (δi+1))

(
1 + 12C2

ε ‖Ψ‖
2
∞ µX

(
hLC (X)2

)
+18C4

ε ‖Ψ‖
4
∞ µX

(
hLC (X)2

)
E (6)

)
+ 2 ‖Ψ‖∞ Kδi.

for some constant K. Hence, if N (δi+1) is finite, there is a K1 < ∞ such that

E sup
θ

∫
|Ri (θ, v)− Ri+1 (θ, v)| Ti (θ) Ti+1 (θ) dv < K1δi

√
log (N (δi)).

Proof. To simplify notation, let ∆ f
i (X; θ, v) = fε (v− h (X; B (θ; i + 1))) −

fε (v− h (X; B (θ; i))) and ∆h
i (X; θ) = h (X; B (θ; i + 1))− h (X; B (θ; i)) . By the triangle in-

equality,

E sup
θ

∫
|(Ri (θ, v)− Ri+1 (θ, v))| Ti (θ) Ti+1 (θ) dv

≤ E sup
θ

∫ ∣∣∣√N
(
(µX − µXN )Ψ (X)∆ f

i (X; θ, v)
)∣∣∣ {hLC (X) ≤ Vi

2δi

}
dv

≤ E sup
θ

∫ ∣∣∣√N
(
(µX − µXN )Ψ (X)∆ f

i (X; θ, v)
)∣∣∣ {∣∣∣∆h

i (X; θ)
∣∣∣ ≤ Vi

}
dv

≤ E sup
θ

[∫ ∣∣∣√N
(
(µX − µXN )Ψ (X)∆ f

i (X; θ, v)
)∣∣∣ {∣∣∣∆h

i (X; θ)
∣∣∣ ≤ Vi

}
dv

−E
∫ ∣∣∣√N

(
(µX − µXN )Ψ (X)∆ f

i (X; θ, v)
)∣∣∣ {∣∣∣∆h

i (X; θ)
∣∣∣ ≤ Vi

}
dv
]

+ sup
θ

E
∫ ∣∣∣√N

(
(µX − µXN )Ψ (X)∆ f

i (X; θ, v)
)∣∣∣ {∣∣∣∆h

i (X; θ)
∣∣∣ ≤ Vi

}
dv (C.36)

We now bound the two terms individually.
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The first term in equation (C.36) is bounded by using the bound on its moment generating

function for a fixed θ (derived in Lemma C.16) and the concentration inequality of Theorem

2 in Boucheron et al. (2003).

By Jensen’s inequality, note that for any λi,

exp
(

λi

(
E sup

θ

∫ ∣∣∣√N
(
(µX − µXN )Ψ (X)∆ f

i (X; θ, v)
)∣∣∣ {∣∣∣∆h

i (X; θ)
∣∣∣ ≤ Vi

}
dv

−E
∫ ∣∣∣√N

(
(µX − µXN )Ψ (X)∆ f

i (X; θ, v)
)∣∣∣ {∣∣∣∆h

i (X; θ)
∣∣∣ ≤ Vi

}
dv
))

≤ E exp
(

λi

(
sup

θ

∫ ∣∣∣√N
(
(µX − µXN )Ψ (X)∆ f

i (X; θ, v)
)∣∣∣ {∣∣∣∆h

i (X; θ)
∣∣∣ ≤ Vi

}
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−E
∫ ∣∣∣√N

(
(µX − µXN )Ψ (X)∆ f

i (X; θ, v)
)∣∣∣ {∣∣∣∆h

i (X; θ)
∣∣∣ ≤ Vi

}
dv
))

.

Note that B (θ; i + 1) takes on at most N (δi+1). Since the expectation of a maximum of

finitely many nonnegative random variables is less than the sum of their expectations, the

expression above is no greater than

∑
θ∈ImB(θ;i+1)

E exp
(

λi

∣∣∣∣∫ √N
(
(µX − µXN )Ψ (X)∆ f

i (X; θ, v)
) {∣∣∣∆h

i (X; θ)
∣∣∣ ≤ Vi

}
dv

−E
∫ ∣∣∣√N

(
(µX − µXN )Ψ (X)∆ f

i (X; θ, v)
)∣∣∣ {∣∣∣∆h

i (X; θ)
∣∣∣ ≤ Vi

}
dv
∣∣∣∣)

≤ ∑
θ∈ImB(θ;i+1)

E exp
(

λi

(∫ ∣∣∣√N
(
(µX − µXN )Ψ (X)∆ f

i (X; θ, v)
)∣∣∣ {∣∣∣∆h

i (X; θ)
∣∣∣ ≤ Vi

}
dv

−E
∫ ∣∣∣√N

(
(µX − µXN )Ψ (X)∆ f

i (X; θ, v)
)∣∣∣ {∣∣∣∆h

i (X; θ)
∣∣∣ ≤ Vi

}
dv
))

+E exp
(
−λi

(∫ ∣∣∣√N
(
(µX − µXN )Ψ (X)∆ f

i (X; θ, v)
)∣∣∣ {∣∣∣∆h

i (X; θ)
∣∣∣ ≤ Vi

}
dv

−E
∫ ∣∣∣√N

(
(µX − µXN )Ψ (X)∆ f

i (X; θ, v)
)∣∣∣ {∣∣∣∆h

i (X; θ)
∣∣∣ ≤ Vi

}
dv
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Lemma C.16 implies this is not greater than

2N (δi+1)max
θ∈Θ

exp(
C2

ε ‖Ψ‖
2
∞ λ2

i 12µX

(
∆h

i (X; θ)
)2

+
18
n

C4
ε ‖Ψ‖

4
∞ λ4

i V2
i E
(∣∣∣∆h

i
(
Xj; θ

)∣∣∣2) E (6λ2
i

n
V2

i

))
≤ 2N (δi+1)max

θ∈Θ
exp(

C2
ε ‖Ψ‖

2
∞ λ2

i δ2
i 12µX

(
hLC (X)2

)
+

18
n

C4
ε ‖Ψ‖

4
∞ λ4

i δ2
i V2

i µX

(
hLC (X)2

)
E
(

6λ2
i

n
V2

i

))
It follows that

E sup
θ

∫ ∣∣∣√N
(
(µX − µXN )Ψ (X)∆ f

i (X; θ, v)
)∣∣∣ {∣∣∣∆h

i (X; θ)
∣∣∣ ≤ Vi

}
dv

−E
∫ ∣∣∣√N

(
(µX − µXN )Ψ (X)∆ f

i (X; θ, v)
)∣∣∣ {∣∣∣∆h

i (X; θ)
∣∣∣ ≤ Vi

}
dv

≤ log (2N (δi+1))

λi
+

1
λi
∗(

C2
ε ‖Ψ‖

2
∞ δ2

i λ2
i 12µX (hLC (X))2 +

18
n

C4
ε ‖Ψ‖

4
∞ λ4

i δ2
i V2

i µX

(
hLC (X)2

)
E
(

6λ2
i

n
V2

i

))

Recall that Vi =
√

N
λi

and choose λi =
√

N
Vi

=

√
log(2N(δi+1))

δi
which yields the upper bound

δi

√
log (2N (δi+1))

(
1 + 12C2

ε ‖Ψ‖
2
∞ µX

(
hLC (X)2

)
+ 18C4

ε ‖Ψ‖
4
∞ µX

(
hLC (X)2

)
E (6)

)

for the first term in equation (C.36).

We bound the second term in equation (C.36) using Lemma C.17. Note that

sup
θ

E
∫ ∣∣∣√N

(
(µX − µXN )Ψ (X)∆ f

i (X; θ, v)
)∣∣∣ {∣∣∣∆h

i (X; θ)
∣∣∣ ≤ Vi

}
dv

≤ sup
θ

∫
E
∣∣∣√N

(
(µX − µXN )Ψ (X)∆ f

i (X; θ, v)
)∣∣∣ dv
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By Jensen’s inequality this is not greater than

sup
θ

∫ √
E
(√

N
(
(µX − µXN )Ψ (X)∆ f

i (X; θ, v)
))2

dv

= sup
θ

∫ √
µXΨ (X)∆ f

i (X; θ, v)2dv

≤ ‖Ψ‖∞ sup
θ

∫ √
µX ( fε (v− h (X; B (θ; i + 1)))− fε (v− h (X; B (θ; i))))2dv

≤ ‖Ψ‖∞ K sup
θi∈B(θ;i)

‖θi+1 − θi‖

≤ 2 ‖Ψ‖∞ δiK

for some constant K ∈ (0, ∞). The second to last inequality follows from Lemma C.17, and

the last inequality follows from the definitions of B (θ, i) and δi.

Lemma C.16 For each θ ∈ Θ, and any λi > 0,

E exp
(
±λi

(∫ ∣∣∣√N
(
(µX − µXN )Ψ (X)∆ f

i (X; θ, v)
)∣∣∣ {∣∣∣∆h

i (X; θ)
∣∣∣ ≤ Vi

}
dv

−E
∫ ∣∣∣√N ((µX − µXN )Ψ (X) {h (X; B (θ; i)) ≤ v} − {h (X; B (θ; i + 1)) ≤ v})

∣∣∣{∣∣∣∆h
i (X; θ)
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}
dv
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≤ exp
(

λ2
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2
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i (X; θ)2 +
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n

C4
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4
∞ λ4

i V2
i E
(∣∣∣∆h

i (X; θ)
∣∣∣2) E (6λ2

i
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i

))
where ∆ f

i (X; θ, v) = fε (v− h (X; B (θ; i + 1))) − fε (v− h (X; B (θ; i))) and ∆h
i (X; θ) =

h (X; B (θ; i + 1))− h (X; B (θ; i)) .

Proof. Let
(

X(1), X(2), ..., X(n)

)
be an independently drawn copy of (X1, X2, ...Xn) , and let

µ
n,(j)
X be the empirical measure induced by replacing Xj by X(j). Let

Z =
∫ ∣∣∣√N

(
(µX − µXN )∆ f

i (X; θ, v)
)∣∣∣ {∣∣∣∆h

i (X; θ)
∣∣∣ ≤ Vi

}
dv

and

Z(j) =
∫ ∣∣∣√N
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µX − µ

n,(j)
X

)
∆ f

i (X; θ, v)
)∣∣∣ {∣∣∣∆h

i (X; θ)
∣∣∣ ≤ Vi

}
dv.

By Theorem 2 in Boucheron et al. (2003), for any 0 < θ < 1
|λi |
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log E exp (±λi (Z− E [Z])) ≤ λiθ

1− λiθ
log E exp

(
λi

θ
E

[
n

∑
j=1

(
Z− Z(j)

)2
|µXN

])

so it is enough to bound the moment generating function of E

(
n

∑
j=1

(
Z− Z(j)

)2
|µXN

)
to

prove the lemma. Note that∣∣∣∣∫ ∣∣∣√N
(
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Since (a + b)2 ≤ 3a2 + 3b2, it follows that

n
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(
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n
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2
∞
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,

and this upper bound has conditional expectation given µXN of
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2
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Hence, the moment generating function of this conditional expectation is not greater than

exp
(
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ε ‖Ψ‖

2
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Since µXN is a sum of i.i.d. random variables,

E exp
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λiC2
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2
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To bound this note that
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1
2
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where E (x) = 2 exp(x)−1−x
x2 is strictly increasing. This implies that if V is a mean zero random
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which implies that
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By Theorem 2 of Boucheron et al. (2003), this implies for all γi > 0 and λi ∈

(
0, 1

γi

)
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If we pick γi so that λiγi =

1
2 we get the upper bound

λ2
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as desired.

Lemma C.17 Suppose that

(i) for some constants C1, C2 > 0, we have that max
{
| f ′ε (v)| , supθ∈Θ P (|h (x; θ)| > v)

}
≤

C1 exp (−C2 |v|)

(ii)
∫

hLC (X)4 dµX is finite

then there exists a constant such that∣∣∣∣∫ √µX ( fε (v− h (X; θ1))− fε (v− h (X; θ2)))
2dv
∣∣∣∣ ≤ K ‖θ1 − θ2‖ .

Proof. It is enough to show that the following term

sup
θ∈Θ

∫ √
µX (∇θ fε (v− h (X; θ)))2dv ≤ sup

θ∈Θ

∫ ∞

−∞

(∫
f ′ε (v− h (x; θ))2 h2

LC (x) dµX

) 1
2

dv
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is finite. By the Cauchy-Schwarz inequality,

∫ (∫
f ′ε (v− h (x; θ))2 h2

LC (x) dµX

) 1
2

dv

≤
∫ (∫

f ′ε (v− h (x; θ))4 dµX

∫
h4
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) 1
4

dv

=

(∫
h4

LC (x) dµX

) 1
4 ∫ (∫

f ′ε (v− h (x; θ))4 dµX

) 1
4

dv.

The first term is bounded by assumption. The second term is finite if, for all θ ∈ Θ, the

integrand

∫
f ′ε (v− h (x; θ))4 dµX ≤ K1 exp (−K2 |v|)

for some constants K1 and K2. Note that

∫
f ′ε (v− h (x; θ))4 dµX

=
∫ {
|h (x; θ)| ≥ v

2

}
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2

}
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∥∥4
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2
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2
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2
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2
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since ‖ f ′ε‖∞ < C1 by our bound.

Lemma C.18 If the Assumptions in Proposition C.3 are satisfied, then for any sequence of positive

numbers δN and rN decreasing to 0, as N → ∞,

√
NE sup
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F−1
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) ∣∣∣∣∫ Ψ (x) fε (v− h (x; θ0)) (dµXN − dµX)

∣∣∣∣ dv→ 0.
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Proof. We bound this term as follows:
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We now show that E sup‖θ−θ0‖≤rN

[{
F−1

N,V;θ (δN) ≥ V1

}]
converges to zero. Note that for

any ε > 0

E sup
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We first bound these terms for a fixed δ. The first term equals 0 for δ < FV;θ0 (V1 − 2ε). By
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definition,

δ = µX
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Fε
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(
Fε

(
F−1

N,V;θ (δ)− h (x; θ)
))∣∣∣ = O

(
1/
√

N
)

.

Lemma C.11 implies that d
dv µX (Fε (v− h (x; θ))) =

∫
fε (v− h (x; θ)) dµX is bounded

away from 0 over all θ and all v in a compact intervals. Therefore, we have that

E supθ

∣∣∣F−1
V;θ (δ)− F−1

N,V;θ (δ)
∣∣∣→ 0. Finally, for any δ > 0 and q ∈ (δ, 1− δ)

∇θ F−1
V;θ (q) =

∫
∇θh (X; θ) fε

(
F−1

V;θ (q)− h (X; θ)
)

dµX∫
fε

(
F−1

V;θ (q)− h (X; θ)
)

dµX

is bounded over all θ ∈ Θ since ∇θh (X; θ) ≤ hLC (X) and
∫

hLC (X)2 dµX < ∞ and∫
fε

(
F−1

V;θ (q)− h (X; θ)
)

dµX is bounded away from zero. Hence, for rN sufficiently small,

the third term is

sup
‖θ−θ0‖≤rN

{∣∣∣F−1
V;θ0

(δ)− F−1
V;θ (δ)

∣∣∣ ≥ ε
}
= 0.

Therefore, there exists a sequence of δ̃N decreasing to 0, such that the following expression

converges to 0

sup
δ∈(δ̃N ,1−δ̃N)

[
E sup
‖θ−θ0‖≤rN

{∣∣∣F−1
V;θ (δ)− F−1

N,V;θ (δ)
∣∣∣ ≥ ε

}
+
{∣∣∣F−1

V;θ0
(δ)− F−1

V;θ (δ)
∣∣∣ ≥ ε

}]
.
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Since
{

F−1
V;θ0

(
δ̃N
)
≥ V1 − 2ε

}
→ 0, we have that

E sup
‖θ−θ0‖≤rN

{
F−1

N,V;θ (δN) ≥ V1

}
≤ E sup

‖θ−θ0‖≤rN

{
F−1

N,V;θ

(
max

(
δN , δ̃N

))
≥ V1

}
→ 0.

Similar arguments show that E sup‖θ−θ0‖≤rN

{
F−1

N,V;θ (1− δN) ≤ V2

}
→ 0. It follows that

there exist a sequence of V1,N → −∞, V2,N → ∞ such that[
E sup
‖θ−θ0‖≤rN

[{
F−1

N,V;θ (δN) ≥ V1,N

}
+
{

F−1
N,V;θ (1− δN) ≤ V2,N

}]] 1
2

→ 0.

Therefore,

√
NE sup

‖θ−θ0‖≤rN

(∫ ∞

−∞
−
∫ F−1

N,V;θ(1−δN)

F−1
N,V;θ(δN)

) ∣∣∣∣∫ Ψ (x) fε (v− h (x; θ0)) (dµXN − dµX)

∣∣∣∣ dv→ 0.

C.3.5 Primitives for Assumption 3.6(ii) c.

Proposition C.4 If Assumption C.3 is satisfied,then, for any sequence of positive numbers bN

decreasing to 0, and for any δ > 0,

sup
‖θ−θ0‖≤bN

∣∣∣∇(GX ,GZ)ψ
δ (θ)−∇(GX ,GZ)ψ

δ (θ0)
∣∣∣ = op (1) .

Proof. For a fixed δ > 0, consider the Gaussian process ∇(GX ,GZ)ψ
δ (θ), indexed by Θ. The

expression for this term (given in Appendix C.2.2) is a sum and product of finitely many

terms of the form of the following two expressions

∫ 1−δ

δ

∫
Ψ (x1, x2, z) φε (q, x1, θ1) φε (q, x2, θ1) φη (q, z, θ1) dGX1 dµX2 dµZ∫

φε (q, x1, θ1) φε (q, x2, θ1) φη (q, z, θ1) dµX1 dµX2 dµZ
dq,∫ 1−δ

δ
Gq

V (θ1)∫
Ψ (x1, x2, z) f ′ε

(
F−1

V;θ1
(q)− h (x1; θ1)

)
φε (q, x2; θ1) φη (q, z; θ1) dµX1 dµX2 dµZ∫

φε (q, x1; θ1) φε (q, x2; θ1) φη (q, z; θ1) dµX1 dµX2 dµZ
dq

and analogous terms with GZ and Gq
U instead of GX1 and Gq

V . We will show that for any
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sequence of positive numbers bN decreasing to 0,

sup
‖θ−θ0‖≤bN

∣∣∣∇(GX ,GZ)ψ
δ (θ)−∇(GX ,GZ)ψ

δ (θ0)
∣∣∣ = op (1)

by individually analyzing these terms.

First consider the Gaussian process G̃ (θ) indexed by Θ, given by

G̃ (θ) =
∫ 1−δ

δ

∫
Ψ (x1, x2, z) φε (q, x1, θ1) φε (q, x2, θ1) φη (q, z, θ1) dGX1 dµX2 dµZ∫

φε (q, x1, θ1) φε (q, x2, θ1) φη (q, z, θ1) dµX1 dµX2 dµZ
dq.

We show that for any sequence of positive numbers bN decreasing to 0, we have that

sup
‖θ−θ0‖≤bN

∣∣G̃ (θ)− G̃ (θ0)
∣∣ = op (1) .

To do so, it is enough to show that G̃ has almost surely uniformly continuous sample paths

in θ. By Dudley’s Theorem (e.g. Theorem 2.6.1 of Dudley (2014)), G̃ (θ) has almost surely

uniformly continuous sample paths if
∫ ∞

0

√
log NG̃ (ε)dε is finite, where NG̃ (ε) is the ε− L2

covering number for G̃. Note that if NG̃ (ε) ≤ C0εd for some constant C0 and natural number

d, this integral is finite. A sufficient condition is that
(

E
(
G̃ (θ1)− G̃ (θ2)

)2
) 1

2
< K ‖θ1 − θ2‖

since Θ is finite dimensional.
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Hence, we must boundE


∫ 1−δ

δ

∫
Ψ(x1,x2,z)φε(q,x1,θ1)φε(q,x2,θ1)φη(q,z,θ1)dµX2 dµZ∫

φε(q,x1,θ1)φε(q,x2,θ1)φη(q,z,θ1)dµX1 dµX2 dµZ
dqdGX1

−
∫ 1−δ

δ

∫
Ψ(x1,x2,z)φε(q,x1,θ2)φε(q,x2,θ2)φη(q,z,θ2)dµX2 dµZ∫

φε(q,x1,θ2)φε(q,x2,θ2)φη(q,z,θ2)dµX1 dµX2 dµZ
dqdGX1


2


1
2

= Var


∫ 1−δ

δ

∫
Ψ(X1,x2,z)φε(q,X1,θ1)φε(q,x2,θ1)φη(q,z,θ1)dµX2 dµZ∫

φε(q,x1,θ1)φε(q,x2,θ1)φη(q,z,θ1)dµX1 dµX2 dµZ
dq

−
∫ 1−δ

δ

∫
Ψ(X1,x2,z)φε(q,X1,θ2)φε(q,x2,θ2)φη(q,z,θ2)dµX2 dµZ∫

φε(q,x1,θ2)φε(q,x2,θ2)φη(q,z,θ2)dµX1 dµX2 dµZ
dq


1
2

≤

E

∫ 1−δ1

δ1


∫

Ψ(X1,x2,z)φε(q,X1,θ1)φε(q,x2,θ1)φη(q,z,θ1)∫
φε(q,x1,θ1)φε(q,x2,θ1)φη(q,z,θ1)dµX1 dµX2 dµZ

−
∫

Ψ(X1,x2,z)φε(q,X1,θ2)φε(q,x2,θ2)φη(q,z,θ2)dµX2 dµZ∫
φε(q,x1,θ2)φε(q,x2,θ2)φη(q,z,θ2)dµX1 dµX2 dµZ

 dqdµX2 dµZ


2


1
2

≤

E

∫ 1

0


∫

Ψ(X1,x2,z)φε(q,X1,θ1)φε(q,x2,θ1)φη(q,z,θ1)∫
φε(q,x1,θ1)φε(q,x2,θ1)φη(q,z,θ1)dµX1 dµX2 dµZ

−
∫

Ψ(X1,x2,z)φε(q,X1,θ2)φε(q,x2,θ1)φη(q,z,θ1)dµX2 dµZ∫
φε(q,x1,θ2)φε(q,x2,θ1)φη(q,z,θ1)dµX1 dµX2 dµZ

 dqdµX2 dµZ


2


1
2

+

E

∫ 1

0


∫

Ψ(X1,x2,z)φε(q,X1,θ2)φε(q,x2,θ1)φη(q,z,θ1)dµX2 dµZ∫
φε(q,x1,θ2)φε(q,x2,θ1)φη(q,z,θ1)dµX1 dµX2 dµZ

−
∫

Ψ(X1,x2,z)φε(q,X1,θ2)φε(q,x2,θ2)φη(q,z,θ1)dµX2 dµZ∫
φε(q,x1,θ2)φε(q,x2,θ2)φη(q,z,θ1)dµX1 dµX2 dµZ

 dqdµX2 dµZ


2


1
2

+

E

∫ 1

0


∫

Ψ(X1,x2,z)φε(q,X1,θ2)φε(q,x2,θ2)φη(q,z,θ1)dµX2 dµZ∫
φε(q,x1,θ2)φε(q,x2,θ2)φη(q,z,θ1)dµX1 dµX2 dµZ

−
∫

Ψ(X1,x2,z)φε(q,X1,θ2)φε(q,x2,θ2)φη(q,z,θ2)dµX2 dµZ∫
φε(q,x1,θ2)φε(q,x2,θ2)φη(q,z,θ2)dµX1 dµX2 dµZ

 dqdµX2 dµZ


2


1
2

.

By a change of variables, v = F−1
V;θ1

(q), the first of these 3 terms is not greater than

≤ ‖Ψ‖∞

(
E
(∫ ∞

−∞
|( fε (v− h (X1; θ1))− fε (v− h (X1; θ2)))| dv

)2
) 1

2

= ‖Ψ‖∞

(
E (h (X1; θ1)− h (X1; θ2))

2
) 1

2
∫ ∞

−∞

∣∣ f ′ε (v)∣∣ dv

≤ ‖θ1 − θ2‖
(∫

hLC (X)2 dµX

) 1
2

‖Ψ‖∞

∫ ∞

−∞

∣∣ f ′ε (v)∣∣ dv < K ‖θ1 − θ2‖

for a finite constant K. The next two terms are handled similarly. Hence, G̃ (θ) has almost

surely uniformly continuous sample paths.
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By a similar argument, a bound on

E


∫ 1−δ

δ Gq
V (θ1)

∫
Ψ(x1,x2,z) f ′ε

(
F−1

V;θ1
(q)−h(x1;θ1)

)
φε(q,x2;θ1)φη(q,z;θ1)dµX1 dµX2 dµZ∫

φε(q,x1;θ1)φε(q,x2;θ1)φη(q,z;θ1)dµX1 dµX2 dµZ
dq

−
∫ 1−δ

δ Gq
V (θ2)

∫
Ψ(x1,x2,z) f ′ε

(
F−1

V;θ2
(q)−h(x1;θ2)

)
φε(q,x2;θ2)φη(q,z;θ2)dµX1 dµX2 dµZ∫

φε(q,x1;θ2)φε(q,x2;θ2)φη(q,z;θ2)dµX1 dµX2 dµZ
dq


2

1
2

implies that

∫ 1−δ

δ
Gq

V (θ1)∫
Ψ (x1, x2, z) f ′ε

(
F−1

V;θ1
(q)− h (x1; θ1)

)
φε (q, x2; θ1) φη (q, z; θ1) dµX1 dµX2 dµZ∫

φε (q, x1; θ1) φε (q, x2; θ1) φη (q, z; θ1) dµX1 dµX2 dµZ
dq

has almost surely uniformly continuous sample paths. Note that
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E


∫ 1−δ

δ Gq
V (θ1)

∫
Ψ(x1,x2,z) f ′ε

(
F−1

V;θ1
(q)−h(x1;θ1)

)
φε(q,x2;θ1)φη(q,z;θ1)dµX1 dµX2 dµZ∫

φε(q,x1;θ1)φε(q,x2;θ1)φη(q,z;θ1)dµX1 dµX2 dµZ
dq

−
∫ 1−δ

δ Gq
V (θ2)

∫
Ψ(x1,x2,z) f ′ε

(
F−1

V;θ2
(q)−h(x1;θ2)

)
φε(q,x2;θ2)φη(q,z;θ2)dµX1 dµX2 dµZ∫

φε(q,x1;θ2)φε(q,x2;θ2)φη(q,z;θ2)dµX1 dµX2 dµZ
dq


2

1
2

=


E



∫ 1−δ
δ

1
fV;θ1

(
F−1

V;θ1
(q)
) ∫ GX

(
1
{

h (x; θ1) + ε ≤ F−1
V;θ1

(q)
})

dFε∗∫
Ψ(x1,x2,z) f ′ε

(
F−1

V;θ1
(q)−h(x1;θ1)

)
φε(q,x2;θ1)φη(q,z;θ1)dµX1 dµX2 dµZ∫

φε(q,x1;θ1)φε(q,x2;θ1)φη(q,z;θ1)dµX1 dµX2 dµZ
dq

−
∫ 1−δ

δ
1

fV;θ2

(
F−1

V;θ2
(q)
) ∫ GX

(
1
{

h (x; θ2) + ε ≤ F−1
V;θ2

(q)
})

dFε∗∫
Ψ(x1,x2,z) f ′ε

(
F−1

V;θ2
(q)−h(x1;θ2)

)
φε(q,x2;θ2)φη(q,z;θ2)dµX1 dµX2 dµZ∫

φε(q,x1;θ2)φε(q,x2;θ2)φη(q,z;θ2)dµX1 dµX2 dµZ
dq



2

1
2

≤


E



∫ 1−δ
δ ( 1

fV;θ1

(
F−1

V;θ1
(q)
) ∫ GX

(
1
{

h (x; θ1) + ε ≤ F−1
V;θ1

(q)
})

dFε−

1
fV;θ2

(
F−1

V;θ2
(q)
) ∫ GX

(
1
{

h (x; θ2) + ε ≤ F−1
V;θ2

(q)
})

dFε)×∫
Ψ(x1,x2,z) f ′ε

(
F−1

V;θ1
(q)−h(x1;θ1)

)
φε(q,x2;θ1)φη(q,z;θ1)dµX1 dµX2 dµZ∫

φε(q,x1;θ1)φε(q,x2;θ1)φη(q,z;θ1)dµX1 dµX2 dµZ
dq



2

1
2

+


E



∫ 1−δ
δ

1
fV;θ2

(
F−1

V;θ2
(q)
) ∫ GX

(
1
{

h (x; θ2) + ε ≤ F−1
V;θ2

(q)
})

dFε×
∫

Ψ(x1,x2,z) f ′ε
(

F−1
V;θ2

(q)−h(x1;θ2)
)

φε(q,x2;θ2)φη(q,z;θ2)dµX1 dµX2 dµZ∫
φε(q,x1;θ2)φε(q,x2;θ2)φη(q,z;θ2)dµX1 dµX2 dµZ

−
∫

Ψ(x1,x2,z) f ′ε
(

F−1
V;θ1

(q)−h(x1;θ1)
)

φε(q,x2;θ1)φη(q,z;θ1)dµX1 dµX2 dµZ∫
φε(q,x1;θ1)φε(q,x2;θ1)φη(q,z;θ1)dµX1 dµX2 dµZ

 dq



2


1
2

=


E



∫ 1−δ
δ ( 1

fV;θ1

(
F−1

V;θ1
(q)
) ∫ 1

{
h (X; θ1) + ε ≤ F−1

V;θ1
(q)
}

dFε−

1
fV;θ2

(
F−1

V;θ2
(q)
) ∫ 1

{
h (X; θ2) + ε ≤ F−1

V;θ2
(q)
}

dFε)×∫
Ψ(x1,x2,z) f ′ε

(
F−1

V;θ1
(q)−h(x1;θ1)

)
φε(q,x2;θ1)φη(q,z;θ1)dµX1 dµX2 dµZ∫

φε(q,x1;θ1)φε(q,x2;θ1)φη(q,z;θ1)dµX1 dµX2 dµZ
dq



2

1
2

+


E



∫ 1−δ
δ

1
fV;θ2

(
F−1

V;θ2
(q)
) ∫ 1

{
h (X; θ2) + ε ≤ F−1

V;θ2
(q)
}

dFε×
∫

Ψ(x1,x2,z) f ′ε
(

F−1
V;θ2

(q)−h(x1;θ2)
)

φε(q,x2;θ2)φη(q,z;θ2)dµX1 dµX2 dµZ∫
φε(q,x1;θ2)φε(q,x2;θ2)φη(q,z;θ2)dµX1 dµX2 dµZ

−
∫

Ψ(x1,x2,z) f ′ε
(

F−1
V;θ1

(q)−h(x1;θ1)
)

φε(q,x2;θ1)φη(q,z;θ1)dµX1 dµX2 dµZ∫
φε(q,x1;θ1)φε(q,x2;θ1)φη(q,z;θ1)dµX1 dµX2 dµZ

 dq



2


1
2

= T1 + T2
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where the last equality follows from the definition of GX’s covariance kernel. To bound

T1, note that for any δ > 0 and all q ∈ (δ, 1− δ), we have that∣∣∣∣∣∣
∫

Ψ (x1, x2, z) f ′ε
(

F−1
V;θ1

(q)− h (x1; θ1)
)

φε (q, x2; θ1) φη (q, z; θ1) dµX1 dµX2 dµZ∫
φε (q, x1; θ1) φε (q, x2; θ1) φη (q, z; θ1) dµX1 dµX2 dµZ

∣∣∣∣∣∣ < M < ∞

since infθ,q∈(δ,1−δ)

∫
φε (q, x1; θ1) φε (q, x2; θ1) φη (q, z; θ1) dµX1 dµX2 dµZ > 0 (Lemma C.11) and

the numerator is uniformly bounded. Hence, the T1 no greater than

M

E

∫ 1−δ

δ

∣∣∣∣∣∣∣∣
1

fV;θ1

(
F−1

V;θ1
(q)
) ∫ 1

{
h (X; θ1) + ε ≤ F−1

V;θ1
(q)
}

dFε

− 1
fV;θ2

(
F−1

V;θ2
(q)
) ∫ 1

{
h (X; θ2) + ε ≤ F−1

V;θ2
(q)
}

dFε

∣∣∣∣∣∣∣∣ dq


2

1
2

≤ M

E

∫ 1−δ

δ

∣∣∣∣∣∣∣∣
1

fV;θ1

(
F−1

V;θ1
(q)
) ∫ 1

{
h (X; θ1) + ε ≤ F−1

V;θ1
(q)
}

dFε

− 1
fV;θ1

(
F−1

V;θ1
(q)
) ∫ 1

{
h (X; θ2) + ε ≤ F−1

V;θ2
(q)
}

dFε

∣∣∣∣∣∣∣∣ dq


2

1
2

+M

E

∫ 1−δ

δ

∣∣∣∣∣∣∣∣
1

fV;θ1

(
F−1

V;θ1
(q)
) ∫ 1

{
h (X; θ2) + ε ≤ F−1

V;θ2
(q)
}

dFε

− 1
fV;θ2

(
F−1

V;θ2
(q)
) ∫ 1

{
h (X; θ2) + ε ≤ F−1

V;θ2
(q)
}

dFε

∣∣∣∣∣∣∣∣ dq


2

1
2

≤ M

E

∫ 1−δ

δ

∣∣∣∣∣∣∣
1

fV;θ1

(
F−1

V;θ1
(q)
)
 Fε

(
F−1

V;θ1
(q)− h (X; θ1)

)
−Fε

(
F−1

V;θ2
(q) + h (X; θ2)

)

∣∣∣∣∣∣∣ dq


2

1
2

+M

E

∫ 1−δ

δ

∣∣∣∣∣∣∣∣
1

fV;θ1

(
F−1

V;θ1
(q)
) ∫ 1

{
h (X; θ2) + ε ≤ F−1

V;θ2
(q)
}

dFε

− 1
fV;θ2

(
F−1

V;θ2
(q)
) ∫ 1

{
h (X; θ2) + ε ≤ F−1

V;θ2
(q)
}

dFε

∣∣∣∣∣∣∣∣ dq


2

1
2

= R1 + R2

Note that

∇θ F−1
V;θ (q) =

∫
fε

(
F−1

V;θ (q)− h (x; θ)
)
∇θh (x; θ) dµX

fV;θ

(
F−1

V;θ (q)
) .
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and infθ,q∈(δ,1−δ) fV;θ

(
F−1

V;θ (q)
)
> 0 (Lemma C.11). Hence, R1 is no greater than

M

 1

infθ,q∈(δ,1−δ) fV;θ

(
F−1

V;θ (q)
)
×

E

∫ 1−δ

δ
‖ fε‖∞

∣∣∣∣∣∣
∫

fε

(
F−1

V;θ (q)− h (x; θ)
)
∇θh (x; θ) dµX

fV;θ

(
F−1

V;θ (q)
) −∇θh (X; θ)

∣∣∣∣∣∣
‖θ1 − θ2‖ dq]2

] 1
2

≤ M
‖ fε‖∞ ‖θ1 − θ2‖

infθ,q∈(δ,1−δ) fV;θ

(
F−1

V;θ (q)
) ∗

∣∣∣∣∣∣ ‖ fε‖∞

infθ,q∈(δ,1−δ) fV;θ

(
F−1

V;θ (q)
) ∫ hLC (x) dµX

∣∣∣∣∣∣+
(∫

hLC (x)2 dµX

) 1
2


< K1M ‖θ1 − θ2‖

since 1
infθ,q∈(δ,1−δ) fV;θ(F−1

V;θ(q))
, ‖ fε‖∞ and

(∫
hLC (x)2 dµX

) 1
2

are finite.

Similarly, to bound R2, note that ∇θ

(
1

fV;θ(F−1
V;θ(q))

)
is given by

−

∫ (
∇θ F−1

V;θ (q)−∇θh (x; θ)
)

f ′ε
(

F−1
V;θ (q)− h (x; θ)

)
dµX(

fV;θ

(
F−1

V;θ (q)
))2

= − 1(
fV;θ

(
F−1

V;θ (q)
))2

∫ ∫ fε

(
F−1

V;θ (q)− h (x; θ)
)
∇θh (x; θ) dµX

fV;θ

(
F−1

V;θ (q)
) −∇θh (x; θ)


f ′ε
(

F−1
V;θ (q)− h (x; θ)

)
dµX.

Hence, supθ,q∈(δ,1−δ)

∣∣∣∣∇θ

(
1

fV;θ(F−1
V;θ(q))

)∣∣∣∣ is at most

 1

infθ,q∈(δ,1−δ) fV;θ

(
F−1

V;θ (q)
)
2 ∥∥ f ′ε

∥∥
∞ ∗ 1

infθ,q∈(δ,1−δ) fV;θ

(
F−1

V;θ (q)
) ‖ fε‖∞ + 1

 ∫ |hLC (x)| dµX < K2 < ∞

for each q ∈ (δ, 1− δ). Therefore, the R2 is at most MK2 ‖θ1 − θ2‖. Similarly, since
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∣∣∣∣∣ 1
fV;θ2

(
F−1

V;θ2
(q)
) ∫ 1

{
h (X; θ2) + ε ≤ F−1

V;θ2
(q)
}

dFε

∣∣∣∣∣ is bounded, a uniform bound on the deriva-

tive of∫
Ψ (x1, x2, z) f ′ε

(
F−1

V;θ1
(q)− h (x1; θ1)

)
φε (q, x2; θ1) φη (q, z; θ1) dµX1 dµX2 dµZ∫

φε (q, x1; θ1) φε (q, x2; θ1) φη (q, z; θ1) dµX1 dµX2 dµZ

with respect to θ1 implies that T2 ≤ K3 ‖θ1 − θ2‖ for some constant K3. This follows from

identical arguments as the ones above.

Hence,

E


∫ 1−δ

δ Gq
V (θ1)

∫
Ψ(x1,x2,z) f ′ε

(
F−1

V;θ1
(q)−h(x1;θ1)

)
φε(q,x2;θ1)φη(q,z;θ1)dµX1 dµX2 dµZ∫

φε(q,x1;θ1)φε(q,x2;θ1)φη(q,z;θ1)dµX1 dµX2 dµZ
dq

−
∫ 1−δ

δ Gq
V (θ2)

∫
Ψ(x1,x2,z) f ′ε

(
F−1

V;θ2
(q)−h(x1;θ2)

)
φε(q,x2;θ2)φη(q,z;θ2)dµX1 dµX2 dµZ∫

φε(q,x1;θ2)φε(q,x2;θ2)φη(q,z;θ2)dµX1 dµX2 dµZ
dq


2

1
2

≤ T1 + T2 ≤ K ‖θ1 − θ2‖

for some constant K ∈ (0, ∞).

The proof for the remaining terms in ∇(GX ,GZ)ψ
δ (θ) is analogous. Therefore,

(
E
(
∇(GX ,GZ)ψ

δ (θ1)−∇(GX ,GZ)ψ
δ (θ2)

)2
) 1

2

< K̃ ‖θ1 − θ2‖

for some constant K̃, implying that the ε− L2 covering numbers are bounded above by a

polynomial in 1
ε , completing the proof.

C.3.6 Primitives for Assumption 3.6(ii) d.

Proposition C.5 If ‖Ψ‖∞ < ∞,
∥∥∇ψ̃q

∥∥2
∞ < ∞, FU;θ0 and FV;θ0 have full support on R, and and

g (Z; θ0) and h (X; θ0) have finite second moments, then∣∣∣∇G̃ψδ [µX, µZ] (θ0)−∇G̃ψ0 [µX, µZ] (θ0)
∣∣∣

converges in probability to 0 as δ→ 0.

Proof. The expression for ∇G̃ψδ [µX, µZ] is given in equation (C.30). We show convergence
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of each of the terms in LimG;δ (θ0) as δ→ 0. First, we show that(∫ 1

0
−
∫ 1−δ

δ

) ∫
Ψ (x1, x2, z) φε (q, x1; θ0) φε (q, x2; θ0) φη (q, z; θ0) dGX1 dµX2 dµZ∫

φε (q, x1; θ0) φε (q, x2; θ0) φη (q, z; θ0) dµX1 dµX2 dµZ
dq

converges weakly as δ→ 0.

This term has mean zero and variance not greater than

‖Ψ‖2
∞

∫ [(∫ 1

0
−
∫ 1−δ

δ

) ∫
φε (q, X1; θ0) φε (q, x2; θ0) φη (q, z; θ0) dµX2 dµZ∫

φε (q, x1; θ0) φε (q, x2; θ0) φη (q, z; θ0) dµX1 dµX2 dµZ
dq
]2

dµX1

= ‖Ψ‖2
∞

∫ (∫ 1

0
−
∫ 1−δ

δ

) fε

(
F−1

V;θ0
(q)− h (X1; θ0)

)
∫

fε

(
F−1

V;θ0
(q)− h (X1; θ0)

)
dµX1

dq

2

dµX1

= ‖Ψ‖2
∞

∫ [(∫ ∞

−∞
−
∫ F−1

V;θ0
(1−δ)

F−1
V;θ0

(δ)

)
fε (v− h (X1; θ0)) dv

]2

dµX1 .

where the last equality follows from a change of variables, v = F−1
V;θ0

(q). Since∫ ∞
−∞ fε (v− h (X1; θ0)) dv = 1 for all X1, and F−1

V;θ0
(δ) → −∞ and F−1

V;θ0
(1− δ) → ∞ as

δ → 0, the bound above converges to 0 as δ → 0 by the dominated convergence theorem.

This proves that the term(∫ 1

0
−
∫ 1−δ

δ

) ∫
Ψ (x1, x2, z) φε (q, x1; θ0) φε (q, x2; θ0) φη (q, z; θ0) dGX1 dµX2 dµZ∫

φε (q, x1; θ0) φε (q, x2; θ0) φη (q, z; θ0) dµX1 dµX2 dµZ
dq

converges to 0 in probability as δ→ 0.

Next, recall that

1

fU;θ

(
F−1

U,θ (q)
) ∫ GZ

(
1
{

g (z; θ) + η ≤ F−1
U;θ (q)

})
dFη = Gq

U (θ) .

Consider the terms that include Gq
U (θ0) in the expression for ∇(GX ,GZ)ψ

δ [µX, µZ] (θ0). The
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sum of these are given by

∫ 1−δ

δ
Gq

U (θ0) ∗∫
Ψ (x1, x2, z) φε (q, x1; θ0) φε (q, x2; θ0) f ′η

(
F−1

U;θ (q)− g (z; θ0)
)

dµX1 dµX2 dµZ∫
φε (q, x1; θ0) φε (q, x2; θ0) φη (q, z; θ0) dµX1 dµX2 dµZ

dq

−
∫ 1−δ

δ

∫
Ψ (x1, x2, z) φε (q, x1; θ0) φε (q, x2; θ0) φη (q, z; θ0) dµX1 dµX2 dµZ∫

φε (q, x1; θ0) φε (q, x2; θ0) φη (q, z; θ0) dµX1 dµX2 dµZ
×

Gq
U (θ)

∫
φε (q, x1; θ0) φε (q, x2; θ0) f ′η

(
F−1

U;θ (q)− g (z; θ0)
)

dµX1 dµX2 dµZ∫
φε (q, x1; θ0) φε (q, x2; θ0) φη (q, z; θ0) dµX1 dµX2 dµZ

dq.

Note that this term is equal to

∫ 1−δ

δ
Gq

U (θ)
∂

∂q3
ψ̃qdq

=
∫ 1−δ

δ

1

fU;θ

(
F−1

U,θ (q)
) ∫ GZ

(
1
{

g (z; θ) + η ≤ F−1
U;θ (q)

})
dFη

∂

∂q3
ψ̃qdq.

Therefore,

∇(GX ,GZ)ψ
δ [µX, µZ] (θ0)−∇(GX ,GZ)ψ

0 [µX, µZ] (θ0)

=

(∫ 1

0
−
∫ 1−δ

δ

)
1

fU;θ

(
F−1

U,θ (q)
) ∫ GZ

(
1
{

g (z; θ) + η ≤ F−1
U;θ (q)

})
dFη

∂

∂q3
ψ̃qdq

=

(∫ ∞

−∞
−
∫ F−1

U;θ0
(1−δ)

F−1
U;θ0

(δ)

) ∫
GZ (1 {g (z; θ) + η ≤ u}) dFη

∂

∂q3
ψ̃q

∣∣∣∣
q3=FU;θ(u)

du

has mean zero and variance not greater than

∥∥∇ψ̃q
∥∥2

∞

∫ [(∫ ∞

−∞
−
∫ F−1

U;θ0
(1−δ)

F−1
U;θ0

(δ)

) [
Fη (u− g (Z; θ0))− EFη (u− g (Z; θ0))

]
du

]2

dµZ.

220



By the Efron-Stein inequality, let Z(i) have the same distribution as Z, and note that

∫ [∫ ∞

−∞

[
Fη (u− g (Z; θ0))− EFη (u− g (Z; θ0))

]
du
]2

dµZ

≤ 1
2

∫ ∫ [∫ ∞

−∞

[
Fη (u− g (Z; θ0))− Fη

(
u− g

(
Z(i); θ0

))]
du
]2

dµZdµZ(i)

=
1
2

∫ ∫ [∫ ∞

−∞

[∫ g(Z(i);θ0)

g(Z;θ0)
fη (u− g) dg

]
du

]2

dµZdµZ(i)

=
1
2

∫ ∫ [∫ g(Z(i);θ0)

g(Z;θ0)

∫ ∞

−∞
fη (u− g) dudg

]2

dµZdµZ(i)

=
1
2

∫ ∫ [
g (Z; θ0)− g

(
Z(i); θ0

)]2
dµZdµZ(i)

= Var (g (Z; θ0)) < ∞

where the second-last equality follows from the fact that
∫ ∞
−∞ fη (u− g) du = 1. Since

F−1
V;θ0

(δ)→ −∞ and F−1
V;θ0

(1− δ)→ ∞ as δ→ 0,

∫ [∫ ∞

−∞

[
Fη (u− g (Z; θ0))− EFη (u− g (Z; θ0))

]
du
]2

dµZ

converges to 0 as δ→ 0 by the dominated convergence theorem.

The other terms in the expression for LimG;δ (θ0) converge to 0 in probability by analo-

gous arguments.

C.4 Parametric Bootstrap

Let
{

zj
}J

j=1 be a sample of firm characteristics and {xi}N
i=1 denote a sample of worker char-

acteristics. The parametric bootstrap for the estimate θ̂ = arg minθ∈Θ Q̂N (θ) is constructed

by the following procedure for b = {1, . . . , 500}

1. Sample J firms with replacement from the empirical sample
{

zj
}J

j=1. Denote this

sample with
{

zb
j

}J

j=1
.

2. Draw Nb workers with replacement from the empirical sample {xi}N
i=1, where Nb =

∑ cb
j and cb

j is capacity of the j-th sampled firm in the bootstrap sample.
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3. Simulate the unobservables εb
j and ηb

i .

4. Compute the quantities vb
i and ub

j at θ̂ from equations (??) and (??).

5. Compute a pairwise stable match for the bootstrap sample.

6. Compute θ̂b = arg minθ∈Θ Q̂b
N (θ) using the bootstrap pairwise stable match and an

independent set of simulations for Q̂b
N (θ).
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