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Abstract 

A curious feature of malaria epidemiology is the presence of polygenomic 

(multiple strain) infections in natural parasite populations. Polygenomic infections 

are an important aspect of malaria transmission and a necessary prerequisite for 

outcrossing. From a public health perspective, the genomic composition of 

polygenomic infections can be used to better understand malaria transmission 

and to monitor changes in transmission intensity. From an evolutionary 

perspective, polygenomic infections allow genetic exchange between coinfecting 

strains and alter parasite population genetics.   

In this thesis, I use a mix of computational biology tools, ranging from 

bioinformatics and sequencing analysis to mathematical modeling, to understand 

the genomic composition of polygenomic infections and the consequences of 

coinfection in the context of malaria population genetics and public health.  

First, I analyzed the genetic relatedness of coinfecting strains in 

polygenomic infections collected from Thiès, Senegal. I show that the 

relatedness of coinfecting strains in polygenomic infections are incompatible with 
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the expectations of pure superinfection, which suggests that cotransmission is 

common in natural populations.  

Second, I used a mathematical model to quantify the expected 

relatedness of cotransmitted strains. I demonstrate that there are only 9 different 

ways that cotransmitted parasites can be related to one another. I show that the 

relatedness of polygenomic infections depends on the conditions of the initial 

infection and that different transmission lineages have different expectations of 

polygenomic relatedness. 

Third, I analyzed the sequencing quality of lab-generated mock infections 

to determine whether selective whole genome amplification could be used to 

accurately sequence polygenomic infections. I found that selective whole 

genome amplification could be used to characterize the genomic composition of 

polygenomic infections, even when there is a significant amount of contaminating 

host DNA present. 

Finally, I interrogate how coinfection and transmission topology affects 

malaria population genetics and evolution by performing evolutionary invasion 

analyses.  This work borrows heavily from theoretical evolutionary population 

genetics and is designed to show how modeling can be used to highlight 

importance features of malaria transmission. 

The use of population genomics for understanding parasite transmission 

and evolution hinges on our ability to integrate population genetics into existing 

epidemiological frameworks. The integration of these fields will require advances 

in both data generation and theory development. This research contributes to our 
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understanding of malaria population genomics and the importance of coinfection 

and sexual recombination in the context of transmission. 
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Chapter 1: Introduction 

1.1 Malaria as a public health threat 

Despite the historic availability of cheap, effective drugs and intense public 

health interventions, malaria still remains a global public health concern. Malaria 

is a mosquito-borne disease caused by single-celled, eukaryote parasites from 

the genus Plasmodium. These parasites have a complicated life cycle that 

alternates between a human host and a mosquito vector. Of the human malaria-

causing species, Plasmodium falciparum is widely regarded as the deadliest.  

As of 2015, the WHO reported 212 million new cases of malaria world 

wide and estimated a total of 429,000 malaria deaths [1]. The African continent 

bears the brunt of the global malaria burden, accounting for 90% of the cases 

and deaths reported in 2015. Despite these grim numbers, renewed interest in 

malaria elimination and eradication has resulted in drastic decreases in 

transmission.  At the turn of the century, the Roll Back Malaria initiative was 

established with the goal of halving malaria deaths by 2010 and heralded the first 

major effort against malaria in four decades [2]. In 2007, the Bill and Melinda 

Gates Foundation challenged the malaria community to work towards complete 

malaria eradication. Today, these efforts are beginning to bear fruit as global 

malaria incidence rates decline. From 2000 to 2015, P. falciparum infection 

prevalence and incidence in Africa have fallen by 40% and have severely altered 

the transmission landscape [3,4]. In 2015, the Malaria Atlas Project estimated 

that 90% of the African population lived in either meso- or hypo-endemic regions, 

as compared to the 66% in 2000 [3]. Despite this success, maintaining the 
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effectiveness of these interventions in the face of changing transmission 

dynamics will be significant challenges moving forward. The failure of previous 

public health interventions and the emergence of drug resistance are stark 

reminders of the challenges ahead. 

 

1.2 Malaria population genetics: a look backwards 

 Malaria has had a surprisingly long and storied relationship with 

population genetics. In 1949, J. B. S. Haldane published a review where he 

summarized the (then) current knowledge regarding natural selection and 

infectious disease [5,6]. He hypothesized that pathogens were a driving force for 

diversification and that highly polymorphic traits, such as red blood cell 

polymorphisms, were an adaptive response to infectious diseases.  Haldane is 

often credited as being the first to propose a link between thalassemia 

heterozygosity and malaria resistance, but offered no definitive proof at the time.  

In 1954, A.C. Allison provided conclusive evidence supporting Haldane’s 

hypothesis when he discovered that sickle cell heterozygotes were protected 

against malaria [7].  Today, a wide variety of blood polymorphisms are known to 

confer some degree of malaria protection [8,9]. Malaria is often used as the 

textbook example of balancing selection and credited as one of the most 

significant drivers of human evolution [8].  

Since the 1950s, malaria population genetics has accelerated with the 

availability of genetic data. Thousands of parasite genomes have been 

sequenced since the original P. falciparum reference genome assembly in 2002 
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[10]. Population genomic studies have revealed much about the demographic 

histories of natural parasite populations [11–13]. African parasite populations are 

highly admixed and have the highest levels of genetic diversity while Southeast 

Asia and South America are more structured and have lower levels of genetic 

diversity [12,13]. Haplotype analyses of the PfCRT mutations, which confers 

chloroquine resistance, show that resistance first arose independently in 

Southeast Asia and South America, after which it invaded the African continent 

[14]. This pattern of emergence and invasion has been repeated with many other 

drug resistance mutations [15–17], including the recently discovered kelch13 

artmimisinin resistance mutations [18]. The increasingly large collections of 

parasite genomes spanning multiple populations and years are a goldmine for 

future population genomic studies. These sequences provide us with historical 

records of how parasite populations evolve over time. At the time of this writing, 

2,512 whole genome sequences of field isolates collected from global parasite 

populations are publicly available through the Pf3k Project, an international 

collaboration whose goal is to provide a high-resolution view of natural variation 

in P. falciparum (https://www.malariagen.net/projects/pf3k).  

At a more practical level, population genomic analyses are also beginning 

to be used to monitor transmission and evaluate public health interventions. 

Genomics has the potential to establish directionality in parasite movement, 

identify source-sink populations, and identify drug resistance mutations before 

they threaten the efficacy of current malaria therapies [18–22]. As transmission 

intensities decline and traditional metrics of transmission intensity become more 
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difficult to collect [20,23], genetic metrics could provide an easier method of 

monitoring transmission intensity [24–26].  These metrics include  (COI, number 

of strains per infection), the frequency of polygenomic infections, and the 

incidence of parasite clonality. Whether genomics will be useful for future public 

health interventions will depend on how easily genomic data can be integrated 

into existing epidemiological techniques and frameworks.  

Today, the challenge lies in interpretation and it is here where 

mathematical models can be useful. However, neither traditional population 

genetic models nor epidemiology models are sufficient for modeling malaria 

transmission dynamics in relation to population genetics. In fact, it is with great 

irony that fields historically awash in theory are now insufficient to explain all the 

patterns observed in genomic data. Epidemiology models excel in simulating 

complex transmission structures, but are generally strain agnostic and do not 

incorporate differences in strain biology. Conversely, traditional population 

genetic models fail to account for the complexities of the malaria life cycle. Future 

models will need to incorporate techniques from both fields to accurately predict 

changes in malaria population genetics and characterize its relationship with 

changing transmission conditions.  

 

1.3 The problem of the sexual recombination and coinfection 

 Unlike most pathogens, malaria must sexually reproduce in a mosquito 

vector during each transmission event. When a mosquito feeds on an infected 

human host, she ingests haploid gametocytes which differentiate into male and 
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female gametes. Male and female gametes fuse in the mosquito midgut to create 

a diploid zygote that develops into a motile ookinete that traverses the midgut 

wall and creates a sack-like structure known as the oocyst. Within the oocyst, the 

parasite undergoes meiotic division and mitotic amplification, resulting in the 

generation of thousands of haploid sporozoites. These sporozoites travel to the 

mosquito salivary glands and are deposited in a new human host during the next 

mosquito blood meal (Figure 1.1).  

 

 

Figure 1.1 Sexual Phase of the malaria life cycle 
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The sexual phase of the malaria life cycle has surprisingly deep 

consequences for parasite genetics. Transmission provides the parasite an 

opportunity for genetic exchange through sexual recombination, which occurs 

during meiosis and facilitates chromosomal crossover. This process allows 

genomic regions to be swapped and increases genetic variation in the population 

(Figure 1.2). Recombination breaks existing genetic associations and reduces 

linkage disequilibrium, the non-random association of alleles at different sites in 

the population. For a purely outcrossing population (mating between unrelated 

individuals), the rate with which recombination reduces linkage disequilibrium 

depends on the genetic distance between sites. Although recombination occurs 

during every transmission event, not all events will result in observable genetic 

exchange. Effective recombination only occurs between two genetically distinct 

genomic sequences; selfing (mating between genetically identical individuals) 

does not reduce linkage disequilibrium because the exchanged genetic 

sequences are identical. Recombination is a powerful force for diversification and 

theorized to help diploid organisms purge deleterious mutations. For malaria, 

recombination and sexual reproduction allows cotransmitted parasite (those from 

the same mosquito vector) to be genetic siblings and share genetic relatedness. 
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Figure 1.2 Thomas Hunt Morgan’s 1916 illustration of crossing over  

 

Why is recombination so problematic? From a population genetic 

standpoint, recombination allows different regions of the genome to have 

different evolutionary histories. This limits the usefulness of coalescent-based 

phylodynamic analyses of transmission and population history reconstruction 

[27]. Phylodynamics methods use genomic sequences to reconstruct 

transmission trees and are particularly popular for tracing the origin and evolution 

of viral outbreaks [28–31]. However, these methods struggle with incorporating 

recombination, choosing either to ignore it or to partition the genome into blocks 

that allow recombination between but not within blocks [32,33]. Advances in 

coalescent methods have improved our ability to accommodate recombination 

and identify recombination hotspots, but recombination remains a significant 
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computational and theoretical challenge [34]. Coalescent or phylogenetic 

approaches for interrogating malaria population genetics are not widely used.  

The problem of recombination is even more complicated in malaria 

because its effective recombination rate depends on epidemiological conditions 

such as transmission intensity. In malaria, outcrossing and effective 

recombination can only occur when a mosquito feeds on a polygenomic 

(multiple-strain) infection. Mosquitoes feeding on monogenomic (single-strain) 

infections force the parasite to self, resulting in no changes in linkage 

disequilibrium. Parasite populations in high transmission settings have higher 

outcrossing rates and less linkage disequilibrium than those in low transmission 

settings [12,35]. This is because individuals in high transmission areas are more 

likely to be coinfected with multiple strains introduced by superinfection, the 

repeated infection of the individuals from independent transmission events [26]. 

Superinfection in high transmission areas forms the rationale for using complexity 

of infection as a genetic proxy for transmission intensity. Coinfection and sexual 

reproduction are major aspects of malaria biology and important for our 

understanding of malaria transmission and population genetics.  

Coinfection is also a major problem and can have one of two evolutionary 

relevant consequences. As described above, coinfection allows genetic 

exchange between coinfecting pathogens. It also introduces a new level of 

competition at the intra-host level, and accurately modeling these dynamics in 

the context of host immunity remains a significant challenge. Coinfection has 

been extensively modeled in virulence evolution studies, but the problems 
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associated with it are reflected in the dizzying array of frameworks used to 

accommodate (or fail to accommodate) it [36,37] (Figure 1.3). Polygenomic 

infections are generally assumed to be comprised of unrelated strains that are 

randomly sampled from the greater population. Whether such an assumption is 

applicable to malaria, which undergoes sexual reproduction during every 

transmission event, is a major focus of this thesis. 

 

Figure 1.3 Epidemiological models with coinfection 

Each model starts off with a susceptible individual (S) that transitions to an 

infection class with a single parasite type (I). These infections can be 

superinfected and transition to an infection class with multiple parasite types (D). 

Numbered subscripts are used to differentiate parasite species. “m” is used to 
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(Figure 1.3, continued) denote mutant strains of the same parasite species. a) A 

superinfection model that does not allow coinfection. Superinfection immediately 

supplants the resident strain. b) A coinfection model that does not allow repeat 

infection of concurrent strains. c) A coinfection model that allows repeat infection 

of concurrent strains. d) A coinfection model with different species e) a 

coinfection model with parasites from the same species in a dimorphic 

population. For d), numbered subscripts differentiate strains from the same 

species but different populations. Figure taken from [37]. 

 

1.4 Thesis structure 

In this thesis, I focus on the nature of coinfection and polygenomic 

infections in P. falciparum malaria. Throughout this thesis, I use “coinfection” to 

refer to the simultaneous infection of two or more P. falciparum strains, not the 

simultaneous infection of two or more species. To emphasize this distinction, I 

use the term “polygenomic infection” to refer to multiple strain infections. In 

malaria, coinfection alters pathogen dynamics and has one of two evolutionary 

relevant consequences: 1) it provides an opportunity for effective recombination 

and 2) introduces a new level of competition at the within-host level. This thesis 

focuses on the first consequence and its implications for population genomics 

and future genetic epidemiology models.  

The chapters in this thesis are self-sufficient and presented in the order 

with which they were performed. In chapter 2, I quantified the genetic relatedness 

of coinfecting strains in polygenomic infections collected from Thiès, Senegal. I 
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showed that the coinfecting strains in polygenomic infections are highly related 

and incompatible with the expectations of pure superinfection. These results 

suggest that cotransmission is common in natural populations.  

In chapter 3, I used a mathematical model to quantify the expected 

relatedness of cotransmitted strains. I demonstrate that there are only 9 different 

ways that cotransmitted parasites can be related to one another. I show that the 

relatedness of polygenomic infections depends on the conditions of the initial 

infection and that different transmission lineages have different expectations of 

polygenomic relatedness. 

In chapter 4, I analyzed the sequencing quality of lab-generated mock 

infections to determine whether selective whole genome amplification could be 

used to accurately sequence polygenomic infections. I found that selective whole 

genome amplification could be used to characterize the genomic composition of 

polygenomic infections, even when there is a significant amount of contaminating 

host DNA present.  

In chapter 5, I interrogate how coinfection and transmission topology 

affects malaria population genetics and evolution by performing evolutionary 

invasion analyses.  This work borrows heavily from theoretical evolutionary 

population genetics and is designed to show how modeling can be used to 

highlight importance features of malaria transmission. 

The use of population genomics for understanding parasite transmission 

and evolution hinges on our ability to integrate population genetics into existing 

epidemiological frameworks. The integration of these fields will require advances 
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in data analysis, sequencing generation, and theory development. This thesis 

touches on all three aspects in order to understand the genetic consequences of 

coinfection and cotransmission. 
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2.1 Abstract 

As public health interventions drive parasite populations to elimination, genetic 

epidemiology models that incorporate population genomics can be powerful tools 

for evaluating the effectiveness of continued intervention. However, current 

genetic epidemiology models may not accurately simulate the population genetic 

profile of parasite populations, particularly with regard to polygenomic (multi-

strain) infections. Current epidemiology models simulate polygenomic infections 

via superinfection (multiple mosquito bites) despite growing evidence that 

cotransmission (single mosquito bite) may contribute to polygenomic infections. 

Here, we quantified the relatedness of strains within 31 polygenomic infections 

collected from patients in Thiès, Senegal using a Hidden Markov model to 

measure the proportion of the genome that is inferred to be identical by descent. 

We found that polygenomic infections can be composed of highly related 

parasites and that superinfection models drastically underestimate the 

relatedness of strains within polygenomic infections. Our findings suggest that 

cotransmission is a major contributor to polygenomic infections in Thiès, 

Senegal. The incorporation of cotransmission into existing genetic epidemiology 

models may enhance our ability to characterize and predict changes in 

population structure associated with reduced transmission intensities and the 

emergence of important phenotypes like drug resistance that threaten to 

undermine malaria elimination activities.   
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2.2 Background 

The recent push for malaria eradication highlights a growing need to 

accurately monitor changes in malaria transmission and assess the impact of 

interventions. Population genomic analyses and genetic epidemiology models 

can be powerful tools for monitoring declining transmission rates and evaluating 

the efficacy of public health interventions. Metrics of population genetic structure 

have been used to characterize parasite populations in low transmission regions 

[24,25,38,39] and, in combination with epidemiological modeling, to monitor 

changes in transmission rate [40].  

Previous studies have largely relied on the sequences obtained from 

monogenomic (single-strain) infections, which may not provide an accurate 

representation of the genetic structure within the population. Polygenomic 

(multiple-genome) infections exhibit reduced genetic diversity relative to the total 

genetic diversity of all strains in the local population [13] and are known to be 

composed of genetically similar parasite strains [41–44], regardless of the 

genetic markers used. Understanding how polygenomic infections are formed, 

and incorporating the consequences of these infections on transmission patterns 

into genetic epidemiology models would help improve monitoring and evaluating 

systems within malaria elimination programs. 

Historically, the formation of polygenomic infections has been assumed to 

be a function of the entomological inoculation rate (EIR), or the number of 

infectious bites per human per day [45] because multiple mosquito bites greatly 

enhance the probability of independent infections within a single human host 
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from multiple mosquitoes (superinfection). Current epidemiology models largely 

operate under the assumptions of superinfection [36,46,47], which has been 

supported by the increased incidence of polygenomic infections in high 

transmission areas [48]. In high transmission areas, patients are exposed to 

numerous infectious bites, thus raising the chance of superinfection and the 

creation of new polygenomic infections. Under superinfection, strains within 

polygenomic infections are randomly and independently sampled from the local 

population.  

 The assumption of superinfection in epidemiology models is at odds with 

the observed similarity of strains within polygenomic infections [41–44] because 

superinfection cannot easily account for the high degree of similarity between 

strains within polygenomic infections. Relatedness among genomes in 

polygenomic infections is commonly attributed to cotransmission, or the 

simultaneous transfer of multiple, distinct parasite genomes from a single 

mosquito bite. Because the parasite undergoes sexual reproduction within the 

mosquito vector, cotransmitted parasites are expected to be genetically related to 

one another [42]. After a single cotransmission event, cotransmitted infections 

may be composed of F1 hybrids as well as unrecombined parental genomes. 

Subsequent cotransmission events (serial cotransmission) may result in high 

degrees of relatedness within polygenomic infections. Serial cotransmission 

chains constrain parasites to mating with their relatives, resulting in a steady 

increase in the average relatedness between cotransmitted strains. Extremely 

high degrees of genetic relatedness have been proposed to be signatures of 
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serial cotransmission events that could be used to identify infections due to serial 

cotransmission [42] .  

Determining whether current epidemiological models can realistically 

simulate the relatedness within polygenomic infections is of key public health 

interest when these models use population genomics to monitor declining 

transmission rates. Here, we quantified the genetic relatedness of genomes 

within individual polygenomic infections using a Hidden Markov Model (HMM) to 

measure the proportion of the genome that is inferred to be identical by descent 

(IBD). Our HMM allows us to distinguish regions of the genome that are more 

likely to be identical due to random chance and population structure from regions 

of the genome that are more likely to be identical due to shared inheritance. 

These IBD estimates were compared to the relatedness expected with 

superinfection, which was simulated as the random sampling of parasites from 

Thiès, Senegal, which was represented by 146 monogenomic infections 

previously collected from the region. 

Our polygenomic infections comprised of 31 infections collected from 

patients in Thiès, Senegal in the years 2011–2013. Thiès lies 70km away from 

the capital city of Dakar, a hypoendemic region with an EIR < 5 [49]. In 2005, 

Senegal implemented a redesigned National Malaria Control Programme 

(NMCP) aimed at improving insecticide-treated mosquito net coverage, indoor 

residual spraying coverage, preventative treatment coverage for pregnant 

women and children under five, and antimalarial treatment coverage. Since then, 

there has been a significant decrease in the number of confirmed cases, going 
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from 1,555,000 cases in 2006 to 174,000 cases in 2009 [50]. As of 2009, the 

prevalence in Thiès was ~3%[50] and has since fallen further. 

Our findings indicate that cotransmission is common in Thiès, Senegal, 

and that genetic epidemiology models can be made to more accurately reflect 

relatedness within polygenomic infections by incorporating cotransmission.  

These findings have important implications for the application and use of genetic 

tools to understand malaria transmission dynamics, to assess the impact of 

malaria elimination interventions, and to study the consequences of these 

interventions on potentially undermining traits such as drug resistance 

emergence. 

 

2.3 Methods 

2.3.1 Sample and Sequence Collection 

All patient samples were collected at clinics located in three different areas 

of Senegal: Thiès, Pikine, and Velingara. These samples were collected between 

approximately September and December each year, which roughly corresponds 

to the period just following the rainy season in Senegal. Participants reporting 

acute fevers and suspected of being infected with malaria (e.g., mild 

uncomplicated malaria infection) with no reported history of antimalarial therapy 

were considered for inclusion in our study. Participants were diagnosed for 

malaria based on microscopy and rapid diagnostic tests. Samples were 

anonymous and coded as to Country (Senegal or Sen); collection village (T = 
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Thies, P= Pikine, V = Velingara); sample number collected from the clinic (001 to 

999); and identified by year (e.g., 2011 or 11) to create a sample number of 

‘SenT009.11’, which was collected from Thies, Senegal in the year 2011 and 

represents the ninth sample (009) collected that year. 

We sequenced 190 P. falciparum genomes from patient-derived material 

collected from Senegal, of which 176 were collected from Thiès, 4 from 

Velingara, and 10 from Pikine. These samples were initially identified as 

monogenomic using a 24-SNP molecular barcode [51]. Barcodes were 

genotyped using an high-resolution melting (HRM)-based assay [39,51]. The 

parasite strains were culture adapted at the Harvard T.H. Chan School of Public 

Health and sequenced at the Broad Institute using Illumina Hi-Seq (Illumina, Inc., 

San Diego, CA) machines.  

We also sequenced a set of 111 samples collected exclusively from Thiès, 

Senegal during the years 2011-2013. Unlike our previously mentioned samples, 

genomic DNA was extracted directly from patient samples to avoid strain 

ascertainment bias and the potential loss of low frequency strains. Genomic DNA 

was extracted using a QiAmp DNA Blood Mini kit (Qiagen, Valencia, CA) 

according to manufacturer’s specifications. These samples were sequenced at 

the Broad institute using Illumina Hi-Seq machines. 

Sequencing reads were aligned using the Burrows-Wheeler Aligner 

(version 0.5.9-r16) [52] against the 3D7 reference assembly (PlasmoDBv7.1)[53] 

to create BAM files. Variant calls and consensus sequences for each sample was 

determined using GATK Unified Genotyper [54]. A full list of the individual 
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parameter and quality-score thresholds can be found in the supplementary 

information of [40].  

2.3.2 Defining our monogenomic infection dataset 

To determine the expected relatedness of superinfection, we needed to 

identify a set of monogenomic infections to represent the parasites present in 

Thiès, Senegal. To do this, we relied on a set of 190 samples that were 

previously sequenced and identified as monogenomic using a 24-SNP barcode. 

For this study, we decided to use stricter criteria to identify monogenomic 

samples. Within each of the 190 sequences classified as monogenomic by 

barcode, all sites with a non-unanimous read pileup were first identified, resulting 

in 1.1 million variant positions. These positions were then filtered to have a read 

depth of at least 10 across 90% of the samples, to be strictly biallelic, and to be 

found in at least 2 of the 190 samples. A preliminary set of 440,000 SNPs passed 

these criteria, which were then used to reclassify each of the 190 putatively 

monogenomic samples. Monogenomic samples were reclassified by calculating 

the proportion of the 440,000 sites with a unanimous read support within each of 

the 190 samples. Those samples where the proportion was 80% or higher were 

considered monogenomic, which identifed 146 monogenomic samples, all of 

which originated from Thiès. The read pileups of these samples over the 

preliminary set of 440,000 SNPs have less than 0.0005% non-unanimous reads 

(Supplemental Figure S2.1).   
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Because our set of 440,000 SNPs was derived using information from all 

190 samples, which could represent a mix of monogenomic and potentially 

cryptic polygenomic samples, we chose a more stringent set of SNPs based 

solely on the information drawn from monogenomic samples. 56 of the 146 

monogenomic samples were randomly chosen to further filter our set of 440,000 

preliminary SNPs. Sites where the read-pileup across all 56 samples was less 

than or equal to 0.01%, or that lacked reads in more than 1 of the 56 samples, 

were also removed. After applying these filters, we identified a set of 3132 SNP 

positions that were used to analyze the genetic relatedness within polygenomic 

infections.  

2.3.3 Defining our final polygenomic infection dataset 

These 3132 SNPs were then used to identify polygenomic infections from 

the set of 111 samples collected from Senegal during the years 2011-2013. 

Samples where less than 30% of the 3132 SNPs had at least one read were 

excluded from our analysis, leaving us with 31 polygenomic infections. For each 

of the remaining samples, we removed sites that were supported by a single 

read.  All samples in which at least 95% of the remaining sites were completely 

unanimous were classified as monogenomic, while any sample with a proportion 

less than 95% was classified as polygenomic.  

 

2.3.4 Estimating relatedness using a Hidden Markov Model 
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 For each sample, we calculated relatedness between sample pairs by first 

identifying regions of the genome that are inferred to be IBD based on the 

likelihood of observing identity due to random chance using a Hidden Markov 

Model [40]. The model has two hidden states: IBD, inherited from the same 

ancestor, or Different-By-Descent (DBD), inherited from different ancestors. 

Sequence pairs are reduced to a series of discordant and concordant calls, 

depending on the observations made at each SNP site. Sites where both 

sequences have the same allele are considered concordant while sites where 

each sequence has a different allele are considered discordant. It then calculates 

the probability of observing concordant or discordant genotypes under the 

assumption of IBD or DBD by using the population allele frequencies at that site, 

the error rate, and the probability of transitioning from one hidden state to the 

other. The probability of transitioning from IBD to DBD between two SNPs is 

proportional to the physical distance between them and influenced by the overall 

recombination rate. The HMM then uses a Viterbi algorithm to identify the most 

probable path of hidden states. An overall estimate of relatedness for each 

comparison was obtained by summing the total proportion of the optimum path 

that is in IBD.  

Delete-a-group jackknife analysis was performed to obtain jackknife 

estimates of the mean and jackknife estimates of the standard error of the mean. 

Groups were defined by dividing the genome into 10 mutually exclusive groups 

by scanning across the genome and placing the ith SNP into the ith group. After 

all 10 groups have at least one SNP, the process is repeated, placing the i+10th 
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SNP into the ith group, and continuing until the end of the genome. This 

effectively randomizes the SNPs in each group and ensures that the number of 

SNPs and distribution of SNP locations within each group is evenly distributed. 

 

2.3.5 Generating artificial mixed genome samples 

Genomic DNA mixtures were generated by mixing DNA obtained from five 

distinct culture-adapted parasite strains (SenT148.09, SenT111.09, SenT165.09, 

SenT033.09, and SenT015.09) in proportions described in Supplemental Table 

S2.1. Genomic DNA was extracted from adapted parasite cultures using a 

QiAmp DNA Blood Mini kit (Qiagen, Valencia, CA) according to manufacturer 

specifications. DNA concentrations were determined by a NanoDrop 

Spectrophotometer (Thermo Fisher Scientific) and a barcode-based 

quantification assay[51]. Each mixture had a total DNA concentration of 5ng/ul. 

2.3.6 Constructing pseudohaplotypes 

 Pseudohaplotypes were constructed by examining the read-pileups at 

each of the available 3132 SNPs for each polygenomic infection. Sites were 

categorized into heterozygous sites, a site where at least one read had an 

alternate allele, and homozygous sites, a site where all the reads had the same 

allele. Pseudohaplotypes were constructed by randomly assigning the allelic 

states of each site to one of two constructed haplotypes. For homozygous sites, 

both haplotypes received the same allelic state. For heterozygous sites, one 
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haplotype received the major allelic state (the allele with the greater read 

support) while the other haplotype received the minor allelic state (the allele with 

the lower read support). These pseudohaplotypes preserve the physical order 

and distance between each of the available 3132 trusted SNPs and the order of 

concordant and discordant calls, but do not establish true linkage-phase. 

 

2.3.7 Generating subsets to test the limitations of the HMM 

 Subsets were generated by randomly choosing without replacement from 

the 3132 SNPs. The largest of these subsets contained 90% of the 3132 SNPs 

while the smallest contained 10% of them. Each subset was repeated 40 times to 

obtain estimates of the mean and standard deviation.  

2.3.8 Calculating concordance  

 For each pairwise comparison, concordance was calculated as the 

number of sites with the same allelic identity divided by the number of sites 

examined. Due to the presence of missing data, the number of sites examined 

fluctuated. If a site was missing in one or both of the strains being compared, 

then the site was excluded from the analysis. In addition, sites where only the 

major allele was present were also excluded. 

2.3.9 Simulating expected relatedness under superinfection 
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  Superinfection was simulated as a random sampling of parasites 

collected throughout Thiès, Senegal. We assumed that the parasite population in 

this region was completely mixed, with no heterogeneity in population structure 

or transmission intensity. The expected relatedness under the superinfection 

hypothesis was calculated by quantifying the relatedness between our set of 146 

monogenomic infections.  

To make the data from our simulation more comparable with the data 

obtained from our polygenomic infections, we generated a series of bootstrap 

resampled distributions of the mean relatedness. Simple random sampling 

bootstrap distributions were generated by randomly sampling 40,000 sets of 31 

monogenomic pairs and calculating the average relatedness among these 

sample pairs. To create weighted bootstrap distributions, we extracted the 

barcode sequence from each of the monogenomic infection whole genome 

sequences and identified it with one of the barcode sequences within our 24-SNP 

barcode dataset. The identities of at least 22 of the 24 barcode positions needed 

to be identical to be considered the same sequence. The observed frequency of 

each 24-SNP barcode was used to infer the population frequency of the parasite 

strain within each monogenomic infection.  A weighted bootstrap distribution of 

mean relatedness was created by calculating the randomly sampling 40,000 sets 

of 31 monogenomic infection pairs, where each pair was weighted according to 

the probability of drawing that particular sample pair.  
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P-values for each bootstrap distribution was calculated by counting the 

number of times our sample mean was greater than or equal to the observed 

mean relatedness in our 31 polygenomic infections (relatedness = 0.38).  

2.3.10 Identifying monogenomic infections that were related to 

polygenomic infections 

For each polygenomic infection, we used the HMM to compare the 

observed within-polygenomic infection IBD segments with the corresponding 

genomic regions in each of the 146 monogenomic samples. Related 

monogenomic infections were identified as those that contributed a significant 

fraction of the polygenomic infection’s IBD segments.  

 

2.4 Results  

2.4.1 Relatedness within polygenomic infections 

To quantify the relatedness of strains within each infection, we identified a 

set of 3132 SNPs that had passed a set of read-mapping filters designed to 

remove variant positions liable to yield erroneous heterozygous signals due to 

read mapping and/or base calling errors.  These trusted SNPs form a sensitive 

panel for detecting heterozygous positions within polygenomic samples, and can 

be used to mark IBD segment boundaries (Figure 2.1). The majority of our SNPs 

fall within coding regions (77% coding, 23% noncoding). The proportion of reads 

supporting the major allele at each of these sites reflect the expected ratio of 
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individual strains in sets of mixtures created from genomic DNA to control for 

both genome diversity and relative proportions (Supplemental Figure S2.2). 

 

Figure 2.1. Trusted SNP set marker map.  

A representation of the P. falciparum genome and the location of each of the 

3132 trusted SNPs. Grey bars represent individual chromosomes. Blue lines 

indicate the location of coding SNPs and green lines represent the location of 

non-coding SNPs. 

 

We sequenced 111 polygenomic infections collected from patients in 

Senegal arriving at clinic for treatment for mild uncomplicated malaria infection 

during the years 2011–2013. Each sample had an average of 58 million reads, 

but because genomic DNA was extracted directly from patient material and not 

depleted of host material before sequencing, only 1% of them aligned to the P. 

falciparum genome. As a result, some of the polygenomic infections lacked 

coverage at all the trusted SNP locations. Samples where > 30% of the trusted 
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SNP sites lacked sequencing reads were excluded from our analysis, leaving us 

with a total of 31 polygenomic infections. For each of the remaining polygenomic 

infections, we excluded sites with < 1 read from our analysis. After excluding 

these sites, we found that the range of usable sites per sample spanned from 

300 to 3132 SNPs. Samples collected from 2011 had the highest mean number 

of usable sites (3113 sites) while samples collected in 2012 and 2013 had a 

lower mean number of usable sites (865 and 1172 sites, respectively) 

(Supplemental Figure S2.3). At sites where there were at least two reads, we 

found that the average read depth in our samples was 7.68; read depth in 

samples collected from 2011 was higher (12.74) and those collected from 2012 

and 2013 had a lower read depth (3.08 and 3.62, respectively). 

To quantify the relatedness, or proportion of the genome that is identical 

by descent (IBD), within each polygenomic infection, we used a Hidden Markov 

Model (HMM) that was previously used to quantify the relatedness of genomes 

present in monogenomic infections collected in Senegal [40]. Because our HMM 

examines sequence pairs as a series of discordant and concordant calls, we 

constructed two pseudohaplotypes that preserve the order and position of 

discordant and concordant calls to represent the genetic similarity of genomes 

within each infection.  We use the term pseudohaplotype because the inferred 

haplotype does not necessarily establish the true linkage-phase of haplotypes 

within polygenomic infections. These pseudohaplotypes are actually conservative 

representations of genetic similarity because they underestimate the true 

similarity between genomes when the polygenomic infection is composed of 
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more than two strains. During the sampling timeframe and setting in Thiès, 

Senegal, the average complexity of infection (COI) in polygenomic infections is 

two[55], and the pseudohaplotypes reflect the genetic similarity of the genomes.  

We first ran tests to determine if the variation in number of assayable 

SNPs would affect our estimates of relatedness. We calculated the relatedness 

between 27 monogenomic sample pairs using different numbers of SNPs taken 

from the complete set of 3132 SNPs. We found that the HMM is robust to 

differences in SNP number and that estimates of relatedness based on as few as 

313 SNPs will consistently provide the same estimate as those based either on 

3132 SNPs or an ever larger set of 14,972 SNPs with a minor allele frequency of 

≥ 0.05 among the samples from Senegal (Supplemental Figure S2.4 & S2.5). 

 We found that the estimated genetic relatedness within the 31 

polygenomic infections are evenly distributed, ranging from completely unrelated 

(relatedness = 0.0) to highly related (relatedness = 0.90) (Figure 2.2, 

Supplemental Figure S2.6). Across all years, we found that the average 

relatedness within a polygenomic infection was 0.38. To examine the distribution 

of IBD block sizes within each infection, we mapped each IBD block to its 

corresponding location in the P. falciparum genome (Figure 2.3).  There was a 

trend in genetic relatedness and IBD block size. Across all samples, the average 

IBD block size within the 31 polygenomic infections was 0.92 Mbp. After dividing 

infections into highly related infections, which was defined as having a 

relatedness of ≥ 0.30 (a value exceeding that expected of half- siblings, 0.25, but 

allowing for some uncertainty in the accuracy of our HMM) and less related 
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infections (relatedness < 0.30), we found that the average IBD block size among 

highly related infections was significantly longer (p-value = 2.70 x 10-8, Mann-

Whitney U). IBD blocks among highly related parasites (average IBD block size = 

1.05 Mbp) were on average 0.73 Mbp longer than the block sizes across less 

related parasites (average IBD blocksize = 0.32 Mbp) (Figure 2.4). 

 

Figure 2.2 Relatedness within polygenomic infections.  

Barplots of jackknife estimates of the mean relatedness within 31 polygenomic 

infections collected from Senegal from 2011-2013. Error bars represent one 

jackknife estimate of the standard error of the mean. Relatedness is defined as 

the proportion genome shared IBD between the strains comprising each 

polygenomic infection. While there is no clustering of relatedness by year, 

samples collected in 2011 are less related (average relatedness = 0.24) than 
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(Figure 2.2, continued) samples collected in 2012 and 2013 (average relatedness 

= 0.46 and 0.50, respectively) (p-value = 0.048, 1-way ANOVA). Samples 

collected from 2012 and (Figure 2.2, continued) 2013 had lower coverage than 

those in 2011, which may contribute to their higher relatedness values. 

 

Figure 2.3 Polygenomic infection IBD maps.  

Representative IBD maps of nine different polygenomic infections. Grey bars 

represent sections of the genome that are not IBD among the strains present 

within the polygenomic infections. Orange sections represent regions of the 

genome that are IBD.  A=SenT88.11, B=SenT37.11, C=SenT51.11, 

D=SenT248.12, E=SenT223.12, F=SenT093.11, G=SenT232.13, 

H=SenT100.11, I=SenT021.13 
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Figure 2.4 IBD block distributions within polygenomic infections 

Distribution of IBD block sizes in megabase pairs (Mbp). IBD blocks were defined 

as contiguous segments of the genome that are IBD and are longer in highly 

related polygenomic infections  (p-value = 2.70 x 10-8, Mann-Whitney U). A) 

Distribution of IBD block size in less related polygenomic infections (relatedness 

< 0.30). Average block size is 0.31 Mbp with a standard deviation of 0.21 Mbp. B) 

Distribution of IBD block sizes in highly related polygenomic infections 

(relatedness > 0.30). Average block 1.04 Mbp with a standard deviation of 0.73 

Mbp.  
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 We also found that some of these polygenomic infections were related to 

parasite strains independently sampled from within the local population. We used 

the within-polygenomic IBD segment boundaries to generate IBD maps between 

the strains within polygenomic infections to the strains from monogenomic 

infections (Figure 2.5). IBD segments create localized regions of the genome 

where the phase is known, allowing us to compare the strains from polygenomic 

infections to strains from the local population. For each of the polygenomic 

samples, we determined whether there were monogenomic samples sharing IBD 

segments with those within polygenomic infections and identified monogenomic 

samples that shared a large fraction of IBD with the within-polygenomic IBD 

segments.  

For one polygenomic infection collected in 2011, SenT009.11, we 

identified two related strains, both of which were collected in the previous year 

(2010) among monogenomic infections. In the case of SenT009.11, the 

monogenomic samples SenT076.10 and SenT104.10 collectively shared IBD 

with 71% of the within-polygenomic IBD segments, contributing 33% and 36% of 

shared IBD, respectively. In this case, SenT076.10 and SenT104.10 each 

contributed to approximately half of the identifiable within-polygenomic IBD 

segments, with little overlap in the ancestral IBD segments. We also found that 

the relatedness between SenT076.10 and SenT104.10 was negligible 

(relatedness = 0.01) (Supplemental Figure S2.7), which could suggest that 

SenT009.11 is the result of a natural genetic cross between SenT076.10 and 

SenT104.10.  
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For five other polygenomic infections, we could identify one strain that was 

highly related to an independent monogenomic infection. The proportion of 

shared IBD blocks between each polygenomic infection and related 

monogenomic infection varied but was on average 0.51.  One polygenomic 

infection shared an unusually large proportion of its IBD segments shared with its 

related monogenomic infection, where 93% of its IBD segments were with 

SenT044.11.  

 

Figure 2.5 IBD maps within polygenomic infections and between monogenomic 

infections  

Each subplot represents an individual polygenomic infection. A= SenT009.11, 

B=SenT100.11, C=SenT044.12, D=SenT210.12, E=SenT232.13, 

F=SenT232.13. Orange/grey color scheme represents the IBD map of the 

polygenomic infection, with orange representing regions of the genome that are 

IBD and grey representing regions of the genome not IBD. Blue/green color 

schemes represent regions of the genome that are IBD between the strains 
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(Figure 2.5, continued) found within the polygenomic infections and a related 

monogenomic strain. Blue bars indicate that region of the genome is IBD with 

one of the monogenomic strains while green bars indicate that region of the 

genome is IBD with the other monogenomic strain. Values in parenthesis indicate 

the proportion of the within-polygenomic infection IBD block that is explained by a 

particular monogenomic infection.  

2.4.2 Expected relatedness with superinfection 

Under the superinfection hypothesis, polygenomic infections are 

composed of parasite strains sampled from the local population. Here, we 

simulated the formation of polygenomic infections through superinfection by 

sampling from a set of 146 monogenomic infections previously collected from 

Senegal around the same time and place as our 31 polygenomic samples. These 

samples exhibit negligible population structure [56]. A polygenomic infection was 

simulated by drawing two random sets of SNPs from the full set of 3132, where 

each set of SNPs represents one of a pair of genomes in a superinfection. We 

assumed pairs of genomes because the average number of unique strains in our 

sample of polygenomic infections is two [55].  

Our first sampling scheme did not correct for either differences in sample 

size or any potential bias in the monogenomic samples. We created a naive 

simulation of superinfection by quantifying the relatedness between all possible 

146-choose-2 monogenomic sample pairs. We found that the distribution of 

relatedness is positively skewed, with 99% of the comparisons having a 
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relatedness of 0. Under this naive simulation, the average relatedness of 

simulated polygenomic infections under superinfection is only 0.007 

(Supplemental Figure S2.8).   

Because the distribution of relatedness within real polygenomic infections 

was based on only 31 samples, we wanted to generate a simulation that took into 

account sampling variation. To do this, we generated simple random sampling 

bootstrap distributions of the mean relatedness between sample pairs (Figure 

2.6, blue). We calculated the mean relatedness of 31 randomly chosen sample 

pairs and repeated this process 40,000 times. We found that the mean 

relatedness of this distribution was extremely low (0.02). In addition, to correct for 

any potential strain bias in the set of 146 monogenomic samples, we also 

generated a weighted bootstrap distribution where monogenomic sample pairs 

were weighed according to the frequency of the corresponding 24-SNP barcode 

for each strain (Figure 2.6, green). The 24-SNP barcode consists of 24 

putatively neutral, unlinked sites that were used to profile parasite diversity in 

Senegal[24]. After correcting for potential ascertainment bias that would lead to 

an underestimate of true relatedness among monogenomic samples in the 

population, we found that the expected relatedness under superinfection was still 

very low (0.048.) 

However analyzed, the simulated superinfections severely underestimate 

the level of relatedness within polygenomic infections (p-value in the naïve 

simulations = 1.1 x 10-21, Mann-Whitney U). Attempts to correct for sample size 

and strain bias failed to recapitulate the level of relatedness actually observed 
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within polygenomic infections. In both bootstrap simulations, the relatedness 

within simulated superinfections is significantly lower than the relatedness 

observed within polygenomic infections, with p-values ≤ 2.5 x 10-5 for both (p-

value calculated using resampling techniques). 

 

 

Figure 2.6 Expected relatedness under superinfection 

Bootstrap distributions for the expected relatedness under superinfection were 

generated by randomly sampling with replacement 31 monogenomic pairs. For 

each set of 31 monogenomic pairs, we calculated the average relatedness and 

repeated this process 40,000 times to generate bootstrapped distributions of the 

mean relatedness between monogenomic infection pairs. Superinfection was 

simulated with either a simple random sampling scheme (blue), in which all 
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(Figure 2.6, continued) sample pairs were equally likely, or a weighted sampling 

scheme (green), which uses the barcode frequencies of the corresponding 

monogenomic samples to weigh each sample pair. Bootstrap resampled 

distributions of expected relatedness in polygenomic infections are shown in 

orange. P-values for both sampling schemes ≤ 2.5 x 10-5
.
  

 

2.5 Discussion 

Understanding the genomic composition of polygenomic infections is 

crucial for the assessment of transmission based on the genetic profile of malaria 

infections and for generating epidemiological models relating population 

genomics to transmission intensity. In this study, we investigated whether 

polygenomic infections simulated under superinfection conditions would 

accurately recapitulate the genetic relatedness observed in 31 natural 

polygenomic infections collected from patients in Thiès, Senegal. We first 

developed a strategy that offers a simple, cost-effective way of quantifying the 

relatedness within polygenomic infections without serial dilution or flow sorting 

single cells. Previous studies have characterized the relatedness within 

polygenomic infections by isolating individual parasite haplotypes through culture 

adaptation, serial dilution or flow sorting [41–43]. Our pipeline uses standard 

Illumina sequencing reads to interpret the relatedness within polygenomic 

infections from direct patient samples without needing to establish linkage phase, 

which greatly increases the number of polygenomic infections one can examine. 

This approach trades the resolution of previous approaches in exchange for 
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reduced sample preparation requirements and does not require that cells be 

preserved intact. Our methodology is more applicable to a broader range of 

samples, which may be useful for understanding the relatedness of polygenomic 

infections in different transmission settings. 

However, alternative sequencing approaches should be considered when 

analyzing polygenomic infections with a COI > 2. While our approach works well 

when COI is 2, it underestimates the relatedness of polygenomic infections with 

COI > 2, since the constructed pseudohaplotypes will combine the differences 

across all strains in the infection. Polygenomic infections identified as being 

composed of apparently unrelated parasites by our method may in fact be 

composed of 3 or more strains of varying degrees of relatedness. Thus, the 

genomic haplotypes of more complex polygenomic infections should be 

established prior to using our HMM. Haplotypes can be established using 

sequencing technologies that generate longer reads, but haplotype 

reconstruction can be computationally challenging, especially in situations where 

the relative frequency of strains are not the same (reviewed in [57]). Single-cell 

sequencing, which was previously used to calculate the relatedness of strains in 

polygenomic infections for both P. falciparum and P. vivax [43], has the 

advantage of avoiding complex haplotype reconstruction algorithms but is 

extremely labor intensive. Although our HMM will be useful for quantifying the 

relatedness of more complex infections, quantifying the relatedness of more 

complex polygenomic infections will require more sophisticated sequencing 

technologies or haplotype reconstruction algorithms. 
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Our study also contributes to a growing body of evidence indicating that 

cotransmission is common in natural parasite populations. Studies in low 

transmission areas, such as the Peruvian Amazon [44] and Thai-Burma border 

[25,42,43], have reported highly related parasite strains within polygenomic 

infections. Highly related polygenomic infections are also observed in high 

transmission areas [41,42], despite the fact that patients are exposed to a large 

numbers of infectious mosquito bites. Here, we simulated superinfection as the 

random sampling of parasites from those found in Thiès, Senegal and found that 

a pure superinfection model fails to explain the observed relatedness within 

natural polygenomic infections.  

When constructing our superinfection simulations, we assumed that the 

parasite population in Thiès, Senegal was completely mixed, with no hidden 

population structure. This is an oversimplification, since malaria transmission 

becomes clustered around transmission foci at low transmission settings [58]. To 

date, there is no genetic evidence of population structure in this region [56], but 

this could be because the sample collection was insufficient to capture the effects 

of localized transmission foci or other spatial heterogeneity effects. Spatial 

clustering can result in localized inbreeding events that raise the relatedness of 

parasites in the surrounding region and thus increase the relatedness of true 

superinfections. We believe it is unlikely that the relatedness in our polygenomic 

infections is due solely to the sampling of infections from transmission clusters, 

since the majority of parasites in Senegal are unrelated to one another [40] and 

because patients reporting to clinic do not necessarily live in the same areas of 
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Thiès. However, since patient data regarding residence and travel history were 

not made available, we cannot exclude this possibility. We recognize that the 

relatedness of superinfection events could be influenced by the inhibition of 

future strains due to the host immune response, but we suspect these are effects 

are small and previous studies have observed similar findings in children with 

little or no premunition [42]. 

The wide range of polygenomic relatedness values in Senegal suggests 

that our polygenomic infections may represent a mix of both superinfection and 

cotransmission events. Some polygenomic infections include apparently 

unrelated parasite genomes, but it is unclear whether these result from 

superinfection or the cotransmission of unrecombined parasite genomes. With 

self-fertilization in the mosquito, it is theoretically possible for two unrelated 

genomes to be cotransmitted by a single mosquito host. This problem could be 

exacerbated if there is a preference for self-fertilization or selection occurring 

within the mosquito vector and human host. These complications make it difficult 

to estimate the rate of cotransmission based solely on the frequency of highly 

related genomes in polygenomic infections. Nonetheless, our data suggest that 

cotransmission is frequent in Thiès, Senegal and may be a dominant mechanism 

by which polygenomic infections persist in low transmission settings. 

 Previously, Nkhoma et al [42] suggested that extreme degrees of genetic 

relatedness within polygenomic infections could be the result of repeated 

cotransmission events, or serial cotransmission chains. Analyses of experimental 

crosses indicate that the mean relatedness between F1 progeny is approximately 
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normally distributed with a mean of 0.52 and a standard deviation of 0.08 [59]. In 

our data (Figure 2), 6.5% of polygenomic infections exhibit genomic relatedness 

exceeding 0.76, which is three standard deviations above the mean in 

experimental crosses, and also suggests serial cotransmission. The relatively low 

frequency of such closely related genomes might suggest that serial 

cotransmission over multiple generations is rare in this population. However, 

because polygenomic infections were identified based on the proportion of sites 

with non-unanimous reads, some of the infections classified as monogenomic 

may actually be polygenomic infections with extremely related parasite strains. 

This issue could be resolved by analyzing samples with higher read depth 

coverage. Because we were concerned about the loss of low frequency strains, 

our samples were directly sequenced from patient samples. This meant that the 

majority of generated reads aligned to the human genome. The genomes of 

parasites within some of these samples were only represented by 300 SNPs, 

which complicates the detection of sites with non-unanimous reads in highly 

related samples. Future studies could use selective whole genome amplification 

or hybrid selection to generate higher quality samples but will need to consider 

the potential for strain amplification bias.  

A major implication of this work is that genetic epidemiology models can 

be improved by accounting for the genetic relatedness within polygenomic 

infections. The rates of superinfection and cotransmission may change 

depending on the transmission setting. In high transmission settings, genetic 

epidemiology models that simulate polygenomic infections as the result of 
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superinfection may be sufficient, since superinfection is expected to be more 

common than cotransmission [48]. However, this assumption may be suspect, 

due to the observation of highly related haplotypes in polygenomic infections 

from high transmission settings [42], and cotransmission could still play a major 

role in these areas. In mid-low transmission settings, genetic epidemiology 

models should be adjusted to take into account the genetic relatedness of 

polygenomic infection owing to cotransmission, since superinfection will 

underestimate the genetic relatedness of polygenomic infections. Future studies 

are needed to quantify the relative rates of cotransmission and superinfection, 

but cotransmission can be incorporated into existing models by simulating the 

sampling of parental genotypes and sexual reproductive processes within the 

mosquito vector to determine the relatedness of the subsequent polygenomic 

infection. The explicit modeling of cotransmission connects the relatedness of 

polygenomic infections to the genetic composition of local parasite population, 

allowing it to be affected by changes in transmission intensity and is applicable 

across any epidemiological setting.  

The incorporation of related strains within polygenomic infection is 

important for understanding the genetic composition of parasite populations, 

particularly those in low transmission settings, since it can lead to differences in 

modeled expectations. Theoretical models of superinfection suggest that 

superinfection can greatly increase selection efficiency within the host [60] and 

can affect the fitness of drug resistant parasites [61]. However, the presence of 

related strains within infections can alter these effects. For example, one study 
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found that simulated infections composed of unrelated parasite strains can have 

different infection lengths compared to those of related strains [62]. Models that 

incorporate cotransmission should provide more accurate predictions, which will 

be helpful in malaria elimination activities to monitor transmission, assess the 

impact of interventions, and improve our understanding of the underlying biology 

and consequences on important traits such as drug resistance that threaten to 

undermine our elimination efforts.  

Finally, the high prevalence of highly related polygenomic infections 

suggests that current methods for estimating COI can be improved. We 

previously published a method for estimating the COI of polygenomic infections 

based off a set of biallelic SNP markers [55]. Our method, known as COIL, 

assumes that polygenomic infections are composed of unrelated parasite strains, 

which we now know is not always the case in natural populations. Recognition 

that polygenomic infections can be composed of related parasite strains 

suggests that estimated COI levels could be reported as continuous rather than 

discrete values in settings where co-transmission is prevalent.  

 

2.6 Conclusions 

 To conclude, we find that models that simulate polygenomic infections 

through superinfection do not produce the high degree of relatedness observed 

within a set of 31 natural polygenomic infections collected from patients in Thiès, 

Senegal. The relatedness within these polygenomic infections suggests that 

cotransmission plays a major role in the persistence of polygenomic infections. 
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Our data support the hypothesis that the cotransmission of genetically related 

parasite strains is common, and that this aspect of transmission should be 

incorporated into existing genetic epidemiology models. These findings have 

important implications for our understanding of malaria transmission, and 

potentially how important phenotypes like drug resistance that threaten to 

undermine malaria elimination activities may be promoted. As public health 

interventions drive parasite populations toward elimination, these models will play 

a critical role in understanding the changes in population structure associated 

with declining transmission rates and influencing the future of public health 

policy. 

 

2.7 Addendum 

2.7.1 List of abbreviations 

EIR: Entomological inoculation rate, SNP: Single Nucleotide Polymorphism, 

DNA: Deoxyribonucleic acid, IBD: Identical by descent, DBD: Different by 

Descent, COI: Complexity of Infection, HMM: Hidden Markov Model, NMCP: 

National Malaria Control Programme 

2.7.2 Declarations 

Ethics approval and consent to participate 

All human samples were collected after recruitment and with written consent from 

either the subject or a parent/guardian. This protocol was reviewed and approved 

by the ethical committees of the Senegal Ministry of Health (Senegal) and the 
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Harvard T.H. Chan School of Public Health (16330-110, 2008) for Senegalese 

subjects. This study conforms to the principles established in the Declaration of 

Helsinki. 
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3.1 Abstract 

 Unlike in most pathogens, multiple-strain (polygenomic) infections of P. 

falciparum are frequently composed of genetic siblings. These genetic siblings 

are the result of sexual reproduction and can coinfect the same host when 

cotransmitted by the same mosquito. The degree with which coinfecting strains 

are related varies among infections and populations. Because sexual 

recombination occurs within the mosquito, the relatedness of cotransmitted 

strains could depend on transmission dynamics, but little is actually known of the 

factors that influence the relatedness of cotransmitted strains. Part of the 

uncertainty stems from an incomplete understanding of how within-host and 

within-vector dynamics affect cotransmission. Cotransmission is difficult to 

examine experimentally but can be explored using a computational model. We 

developed a malaria transmission model that simulates sexual reproduction in 

order to understand what determines the relatedness of cotransmitted strains. 

This study highlights how the relatedness of cotransmitted strains depends on 

both within-host and within-vector dynamics including the complexity of infection. 

We also used our transmission model to analyze the genetic relatedness of 

polygenomic infections following a series of multiple transmission events and 

examined the effects of superinfection. Understanding the factors that influence 

the relatedness of cotransmitted strains could lead to a better understanding of 

the population-genetic correlates of transmission and therefore be important for 

public health. 
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3.2 Background 

Unlike most bacterial and viral pathogens, the malaria parasite P. 

falciparum, while predominantly haploid, must sexually reproduce in a mosquito 

vector before infecting a new human host. Sexual recombination has a significant 

impact on the population genomics of the parasite, and its effects depend on 

epidemiological conditions such as transmission intensity [35,38,63].  One 

outcome of sexual recombination is that parasites transmitted by a mosquito 

vector can be genetically related, which can be measured as the proportion of 

the genome that is identical-by-descent (IBD). IBD segments are region of the 

genome that originate from a recent common parental strain. A number of 

studies have used IBD to study transmission [40–42,64,65], survey antimalarial 

resistance [21], and detect signals of selection [66].  

The effects of sexual recombination are also apparent in polygenomic 

(multi-strain) infections. Polygenomic infections can be formed through a series 

of infectious mosquito bites (superinfection) or through the transmission of 

multiple strains from the a single mosquito bite (cotransmission) [42,61,64]. 

Coinfecting strains resulting from superinfection are assumed to be unrelated 

while those resulting from cotransmission are assumed to be genetically related 

[41,42,64]. While superinfection is believed to be common in high transmission 

settings, owing to high entomological inoculation rates and complexity of 

infections (COI, the number of strains per infection) [12,48], the frequency with 

which cotransmission occurs is less clear. Studies of genetic relatedness in 

symptomatic polygenomic infections reporting to clinics in mid-to-low 
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transmission settings show that cotransmission is prevalent in these regions 

[41,42,64,65], but little is known of the frequencies of cotransmission and 

superinfection across transmission settings. Genetic relatedness studies reveal a 

large amount of variation in the relatedness of polygenomic infections. The fact 

that sexual recombination occurs within the mosquito suggests that the 

relatedness in these polygenomic infections is associated with transmission. High 

relatedness in polygenomic infections could be indicative of serial cotransmission 

chains [43], but it is unclear what other factors may influence the relatedness of 

polygenomic infections. 

Part of the uncertainty stems from an incomplete understanding of the 

cotransmission process. When a female Anopheline mosquito bites an individual 

infected with malaria, she ingests male and female gametocytes. The ingestion 

of these gametocytes activates them to form gametes that fuse to create a 

diploid zygote. Gametes can fuse with other gametes of the same genotype, 

resulting in self-fertilization (selfing), or can fuse with gametes from other 

genotypes resulting in outcrossing. The zygote undergoes meiosis and develops 

into a motile ookinete that traverses the midgut epithelial layer and forms an 

oocyst. Within the oocyst, the parasite undergoes many rounds of mitosis to 

create thousands of haploid sporozoites. These sporozoites travel to the 

mosquito salivary glands and are stored until deposited by the mosquito into the 

human host during a blood meal. Only those sporozoites that invade the liver will 

survive to continue the malaria life cycle. How then could variation in within-host 

and within-vector transmission dynamics, such as the number of oocysts formed 
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and the number of sporozoites infecting the liver, affect the relatedness of 

cotransmitted strains, and how could these variables in turn affect the 

relatedness of polygenomic infections in natural populations?  

To address the complexity of this transmission cascade and better 

understand the process of cotransmission, we devised a classification framework 

based on parasite pedigrees and kinships to develop an understanding of how 

the various sampling and mating events within the mosquito vector affects the 

relatedness of transmitted sporozoites. We then created a transmission model to 

quantify the relatedness of cotransmitted strains under a variety of within-host 

and within-vector dynamics and used this model to examine the relatedness of 

polygenomic infections in transmission chains. Our study reveals new insights 

into the cotransmission process, which we believe will be useful for the 

interpretation of population genomic signals obtained from more complicated 

population-level models or from natural populations. 

 

3.3 Results 

3.3.1 Simulating sexual recombination 

To simulate sexual recombination, we developed a P. falciparum-specific 

meiosis model based on the whole genome sequences of 69 genetically distinct 

progeny derived from 3 previously generated P. falciparum crosses involving 

different laboratory-adapted strains (3D7, HB3, Dd2, 7G8, and GB4) [67–71]. 

The whole genome sequences generated from these crosses are one of best 
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sources of data for designing a P. falciparum-specific meiosis model because the 

genotypes of the parental strains are known. Furthermore, we can be confident 

of the number of sexual reproduction cycles separating progeny and parental 

strains. While previous IBD analyses of parasites from natural parasite 

populations have identified putative F1 progeny [42,44,64,72], having complete 

knowledge of parental ancestry simplifies the identification of IBD segments and 

allows us to better identify recombination events throughout the genome. We 

calculated the number of crossover events and inter-crossover distances 

(Supplemental Figure S3.1 & Supplemental Table S3.1) using a hidden 

Markov model (HMM) [40,73] to identify IBD segments shared between progeny 

and parental strains (Methods). We then used this data to test the fit of two 

different meiosis models, one with and one without obligate chiasma formation. 

Both were based off the gamma model of crossover formation, which has been 

used to characterize recombination events in a wide variety of taxa, including H. 

sapiens, D. melanogaster, and S. cerevisiae [74–77]. The gamma model is an 

improvement over simpler Poisson-based crossover models because it allows us 

to explore a wide range of crossover interferences. 

 Regardless of whether obligate chiasma formation was modeled, the 

number of crossover events and intercrossover distances in our simulated 

meiotic events resembled those of the laboratory-crossed progeny (Figure 3.1A, 

1B). However, both meiosis models underestimated the frequency of short 

intercrossover distances (< 50 cM) (Figure 3.1A), which we suspect is because 

our HMM overestimated the frequency of short intercrossover distances in the 
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laboratory-cross data (Supplemental Figure S3.2). We found that the obligate 

chiasma model generated crossover events that were more consistent with that 

of the laboratory-crossed progeny, but overestimated the number of 

chromosomes with two crossover events. Using a pseudo-likelihood function 

(Methods), we determined that an obligate chiasma model fit the data better than 

a non-obligate chiasma model (Figure 3.1C). However, we could not estimate 

the level of crossover interference. Because crossover interference is observed 

in a wide-variety of organisms spanning multiple taxa [74], we chose to use an 

obligate chiasma meiosis model with a weak level of interference (gamma 

distribution with shape = 2, scale = 0.38) for all of our transmission simulations. 
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Figure 3.1 Meiosis simulations.  

Blue indicates data obtained from the progeny of strains crossed in the 

laboratory. Orange indicates simulated data using the non-obligate chiasma 

meiosis model while green indicates simulated data from the obligate chiasma 

meiosis model. A) Barplots of the intercrossover distances of all 14 

chromosomes of the P. falciparum genome. B) Barplots of the number of 

chiasma scattered throughout the genome. For A and B, simulated data were 
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(Figure 3.1, continued) generated using a shape parameter of 2. C) Line plots of 

the negative pseudolikelihood values of the non-obligate and obligate meiosis 

models at different levels of crossover interference. Along the x-axis are different 

levels of crossover interference (determined by the value of the shape 

parameter). A shape parameter of 1 indicates no crossover intereference. Lower 

negative pseudo-likelihood values indicate a better fit to the data obtained from 

the progeny of experimentally lab-crossed strains. 

3.3.2 Role of pedigree and kinship in determining genetic relatedness. 

To develop an intuition of how the relatedness of cotransmitted strains is 

influenced by within-host and within-vector transmission dynamics, we developed 

a framework for understanding how these aspects could affect the relatedness of 

cotransmitted strains. We reasoned that changes in oocyst counts and COI could 

alter the relatedness of cotransmitted strains by influencing how gametocytes are 

sampled and mate within the mosquito vector. This framework is based on one of 

nine possible pedigrees describing sporozoite pairs. These pedigrees are defined 

by 1) whether sporozoites are sampled from multiple oocysts and 2) whether 

these oocysts are the result of selfing or outcrossing. If sporozoites are sampled 

from multiple oocysts, we consider a third criterion: the number of parental 

strains shared between oocyst pairs.  

We used our meiosis simulations to quantify the relatedness of 

sporozoites described by each possible pedigree. Based on the parental 

ancestries described by our nine pedigrees and the estimate of relatedness 
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provided by our meiosis simulation, we also grouped parasites using kinship 

definitions. These kinship definitions are analogous to those used in diploid 

organisms and have been used in other IBD analyses [42]. However, we found 

that sporozoites sampled from a single, outcrossed oocyst (pedigree 3) could not 

be described by existing kinship categories. Because they originate from the 

same meiotic event, we describe their kinship as “meiotic siblings.” Although the 

average relatedness of meiotic siblings is 0.5, our meiosis simulation revealed 

that the distribution is bimodal, with one mode at 1.0 (the expected relatedness of 

genetically identical meiotic siblings) and one mode at 0.33 (the expected 

relatedness of genetically distinct meiotic siblings) (S3 Fig). Our pedigree/kinship 

framework and meiosis simulation results are summarized in Figure 3.2. 
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Figure 3.2 Pedigrees between parasites and their expected relatedness.  

The 9 possible pedigrees describing parasite pairs. Pedigrees represent the 

genetic ancestry of parasites and the oocysts they are sampled from. Circles at 

the top of each pedigree represent the gametes that fuse and undergo meiosis 

while circles at the bottom represent the sporozoites that are generated following 

meiosis and expansion in the oocyst. Different colors represent different 

genomes. Sporozoites with mixed colors indicate they are the result of 

outcrossing. Blue arrows between pedigrees indicate that sporozoites are 

sampled from different oocysts. Parasites can be sampled from the same oocyst 
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(Figure 3.2, continued) (pedigrees 1 and 2) or from multiple oocysts (pedigrees 

3-9). For pedigree 2, the distribution of expected relatedness was bimodal, and 

we provide the average across the entire distribution (top) as well as the two 

modes (bottom). Pedigree 6 and 8 are only accessible when COI ≥ 3 and 

pedigree 9 is only accessible when COI ≥ 4.  

3.3.3 Transmission Model Description 

We then designed a transmission model that partitions transmission into 

three steps: 1) The host-vector sampling of gametocytes from an initial host 

infection 2) the sequence of events starting from gamete fusion and meiosis to 

the development of the oocyst within the mosquito vector, and 3) the vector-host 

injection of sporozoites and subsequent invasion of the liver to determine the 

genetic composition of the next human host (Figure 3.3). We initiate our model 

by simulating a mosquito blood-feeding event on a polygenomic infection 

comprised of unrelated strains and parameterized by 1) COI, 2) oocyst count, 

and 3) the infected hepatocyte count. The number of unique strains present in 

the initial infection is determined by COI. In our model, we consider oocyst 

formation as the final outcome of gamete fusion and subsequent meiosis. Based 

on the oocyst count, our model samples gamete pairs, which fuse and undergo 

meiosis to create an oocyst consisting of four unique meiotic products. 

Competition within the oocyst is not modeled and we assume that each meiotic 

product is present at equal proportion in the oocyst. After all oocysts are created, 

the model samples sporozoites according to the infected hepatocyte count to 
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determine the genetic composition of the subsequent host infection. If the 

resulting infection harbors multiple strains, we calculated the relatedness of 

cotransmitted strains as the average pairwise relatedness between each of the 

unique genotypes present in the final host infection.  

 

 

 

Figure 3.3 Model of parasite transmission.  

Model of transmission where genetically distinct parasites are distinguished by 

color. Parameter values are drawn from the set {1, 2, 3, 4, 5, 10, 20}, which 

represents the range of values observed in real life simulations. The bold number 

indicates the value in the example shown in the figure. Gametocytes are sampled 

from an initial polygenomic infection comprised of unrelated parasite strains. 

Sampled gametocytes are used to create oocysts within the mosquito midgut 

(middle). Each oocyst summarizes the entire sequence of events starting from 
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(Figure 3.3, continued) gamete fusion to the end of meiosis. Oocyst are 

represented using a stylized pedigrees tree, where the crescents at the top 

represent parental strains undergoing meiosis, the oval in the center indicates 

whether the mating event is the result of selfing (solid color) or outcrossing 

(color-gradient), and the sporozoites at the bottom represent the four meiotic 

products generated through meiosis. Those with multiple colors indicate that 

genomes have undergone effective recombination and are genetically distinct 

from the parental strains and to each other. Sporozoites are sampled from the 

total pool of meiotic products to determine the genetic composition of the 

subsequent host infection. The number of sporozoites sampled is determined by 

the infected hepatocyte count used in the simulation.  

 

The values for the infected hepatocyte count are pre-specified and drawn 

from the set {1, 2, 3, 4, 5, 10, 20}. Simulations with COI =1 were excluded 

because they always result in selfing and the transmission of genetic clones. 

Simulations with an infected hepatocyte count = 1 were also excluded, as they 

cannot result in cotransmission. Small values are overrepresented to reflect the 

right-skewed distributions of oocyst counts observed in mosquito feeding assays 

and infected hepatocyte counts estimated from a malaria-challenge study [78–

80]. These values also include the COI observed in naturally occurring 

polygenomic infections from mid-to-low endemic settings (COI ranging from 2-6 

in polygenomic infections).  
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3.3.4 Single oocyst simulations guarantee the transmission of meiotic 

siblings or genetic clones 

From our pedigree/kinship framework, we knew that sporozoites sampled 

from a single oocyst would be either genetic clones or meiotic siblings. Our 

transmission simulation confirmed this prediction and found that the expected 

relatedness of cotransmitted strains in single-oocyst transmission simulations 

was always 0.33 (Figure 3.4), which is the expected relatedness of genetically 

distinct meiotic siblings. In single oocyst transmission simulations, 

cotransmission can only be achieved by the transmission of two or more 

genetically distinct meiotic siblings. The distinction between genetically distinct 

and genetically identical meiotic siblings is relevant in the context of 

cotransmission, as the transmission of clonal meiotic siblings cannot result in 

cotransmission. Changes to the infected hepatocyte count do not affect the 

expected relatedness values, but higher infected hepatocyte counts caused the 

distribution to be more concentrated around the mean. 
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Figure 3.4 Relatedness of cotransmitted strains when oocyst count is 1.  

Violin plots of the relatedness of cotransmitted strains in single oocyst 

simulations. Only the results for simulations with infected hepatocyte count of 2 

(A) or 5 (B) are shown. The expected relatedness (in terms of both median and 

mean) is always 0.33. A box plot is drawn in the center of each violin plot, where 

the white dot represents the median of the distribution, the thicker line represent 

the interquartile range, and the thinner line represents the whiskers of the box 

plot, up to 1.5 times the interquartile range. The horizontal dotted line represents 

the value of 0.33.  
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3.3.5 The expected relatedness of cotransmitted strains in multiple oocyst 

simulations depends on COI 

 In multiple oocyst transmission simulations, the relatedness of 

cotransmitted strains is not as easy to predict, since multiple kinships can be 

transmitted. Based on our pedigree/kinship framework, we hypothesized that COI 

modulates the expected relatedness of cotransmitted strains by limiting the 

transmission of half-siblings and unrelated strains; the transmission of half-

siblings and unrelated strains described by pedigrees 6 are only possible when 

COI ≥ 3. The transmission of unrelated strains described by pedigree 9 only 

applies when COI ≥ 4.  

Our transmission simulation simulations confirmed these predictions and 

revealed a simple relationship between COI, oocyst count, and the relatedness of 

cotransmitted strains (Figure 3.5, 3.6): the relatedness of cotransmitted strains 

declines with increasing COI. All COI = 2 simulations have an expected 

relatedness > 0.33, with a larger increase in high oocyst count simulations. The 

increase in relatedness is a reflection of the increased transmission of full-

siblings and parent-offspring strains. When COI = 3, increasing oocyst counts no 

longer increased the expected relatedness of cotransmitted strains due to the 

additional transmission of half-siblings. Once COI > 4, increasing oocyst counts 

decreased the expected relatedness of cotransmitted strains. This was due to the 

increased transmission of unrelated strains, particularly those described by 

pedigree 9 (outcrossed oocysts that do not share any parental strains) (Fig 6C-D, 
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c-d). When COI = 20, the majority of transmitted parasites are either meiotic 

siblings or unrelated strains described by pedigree 9.  

We found that different infected hepatocyte counts altered the distribution 

of relatedness (Supplemental Figure S3.4 Fig & Supplemental Figure S3.5) 

but had no effect on the trends established by either COI or oocyst count. Again, 

simulations with a COI = 2 consistently had the highest expected relatedness 

values while simulations with higher COIs had lower expected relatedness 

values, regardless of the infected hepatocyte count. 
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Figure 3.5 Relatedness of cotransmitted strains in multiple oocyst simulations. 

Violin plots of the relatedness of cotransmitted strains in multiple oocyst 

simulations. Only the results for simulations with oocyst counts of 2 (A) and 20 

(B) and infected hepatocyte counts of 2 are shown. The expected relatedness of 

cotransmitted strains declines with increasing COI. A box plot is drawn in the 

center of each violin plot, where the white dot represents the median of the 

distribution, the thicker line represent the interquartile range, and the thinner line 

represents the whiskers of the box plot, up to 1.5 times the interquartile range. 

The horizontal dotted line represents the value of 0.33.  
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Figure 3.6 Pedigree and kinship frequencies from multiple oocyst simulations. 

 Stacked line charts of the frequencies of different pedigrees (A-D) and kinships 

(a-d) plotted against oocyst count. Each subplot represents a scenario with a 

different COI (A/a = 2, B/b = 3, C/c = 4, D/d = 20). Only the results from 

simulations where infected hepatocyte count = 10 are shown. Genetic clones are 

defined as those emerging from oocysts characterized by pedigree 1 and 3; 

genetically identical meiotic siblings are still classified as meiotic siblings in this 

graph 
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3.3.6 Investigating the effect of non-uniform gametocyte sampling 

probabilities   

Thus far, our simulations have assumed that the strains making up 

polygenomic infection are present and sampled in equal proportions. However, 

strain proportions in natural polygenomic infections can be highly skewed. 

Furthermore, different strains can have different transmissibility relating to factors 

such as gametocyte production.  To investigate how skewed gametocyte 

sampling probabilities could affect the relatedness of cotransmitted strains, we 

devised a weighted sampling scheme defined by the ratio of the most frequent to 

the least frequent strain in the infection (Methods).  

Predictably, skewing the gametocyte strain ratios increased the rate of 

selfing and the transmission of genetic clones (Supplemental Figure S3.6). 

Skewed ratios of up to 10:1 increased relatedness of cotransmitted strains by a 

small amount. Ratios ranging from 1:1 to 10:1 increased the expected 

relatedness of cotransmitted strains by 0.01 – 0.10. This increase depended on 

both COI and the magnitude by which strains proportions differed. The 

relatedness of cotransmitted strains from high COI infections was more robust to 

differences in strain proportions; a 10:1 ratio in a COI = 20 infection increased 

relatedness by only 0.02 while a 10:1 ratio in a COI = 3 infection increased 

relatedness by 0.03-0.06.  
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3.3.7 Generating a combined model of cotransmission and examining 

serial cotransmission chains 

The genetic composition of natural polygenomic infections can result from 

multiple transmission events and influenced by population-level transmission 

dynamics. However, developing a model that take into account all possible 

population-level transmission dynamics is beyond the scope of this paper. 

Instead, we used our model to quantify the relatedness of polygenomic infections 

in three different multiple transmission simulations, which we refer to as 

transmission lineages. Each transmission lineage is designed to resemble 

transmission chains that occur in natural populations and initiated by simulating a 

mosquito blood-feeding event on a polygenomic infection comprised of unrelated 

strains.  The first transmission lineage does not allow superinfection; all 

subsequent transmission events in the chain must infect uninfected hosts. The 

second and third transmission lineages allow superinfection and are 

differentiated by the nature of the resident strain in the soon-to-be superinfected 

host. For the second transmission lineage, the resident strain is identical to one 

of the parental strains in the initial polygenomic infection (resembling natural 

backcrossing events). For the third transmission lineage, the resident strain is not 

related to any of the parental strains in the initial polygenomic infection but is the 

same in all transmission events. In the last transmission lineage, the resident 

strain is not related to any of the parental strains in the initial polygenomic 

infection and is different in all transmission events. 



69	
  
	
  

For our transmission lineage simulations, we modified our cotransmission 

model so that oocyst and infected hepatocyte counts are determined by 

randomly sampling from distributions reflecting those of found in previous studies 

[80,81]. Subsequent transmission events sample parasites from the infection 

generated by the previous transmission event. Allowing oocyst and infected 

hepatocyte counts to be chosen from these distributions did not affect the 

previously observed relationship between COI and the relatedness of 

cotransmitted strains (Supplemental Figure S3.7). The relatedness of 

cotransmitted strains following single cotransmission events from infections COI 

= 2 had an expected relatedness greater than 0.33 while those with a COI > 3 

had an expected relatedness less than 0.33.  

As expected of serial cotransmission chains, we found that the 

relatedness of polygenomic infections increases with each transmission event 

(Figure 3.7). Transmission lineages with superinfection had lower relatedness 

values and smaller proportions of serial transmission simulations that converged 

to the transmission of single strains. The reduction in relatedness was greatest in 

those where the resident strain was unrelated to the parental strains of the 

original infection (Fig 7, purple). Changing the resident strain after each 

transmission event prevented the relatedness of polygenomic relatedness from 

increasing beyond 0.10 even after five transmission events. We also saw that the 

COI of the initial infection could have a lasting effect on the relatedness of 

polygenomic infections. Transmission lineages initiated with low COI 

polygenomic infections had higher relatedness values than those initiated with 
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high COI polygenomic infections. This effect was weaker in superinfection 

lineages with unrelated resident strains. While skewed gametocyte-sampling 

ratios had a modest effect on the relatedness of polygenomic infection, it 

drastically increased the rate with which transmission lineages converged to the 

transmission of single strains for all transmission lineages except the one where 

unrelated resident strains were changed after each transmission event. 

 

 

Figure 3.7 Relatedness of polygenomic infections after multiple transmission 

events 

Line plots of the average relatedness of polygenomic infections (A,C) and 

proportion of simulations that have converged to the transmission of a single 

strain after multiple transmission events across 500 simulations (B,D). Only 
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(Figure 3.7, continued) results from simulations where gametocyte-sampling 

probabilities are equal (A,B) and where gametocyte sampling probabilities are 

skewed by a 10:1 ratio between the most frequent and least frequent strain (C,D) 

are shown. Blue = No superinfection. Green = Superinfection where the resident 

strain is the same as one of the parental strains in the initial infection. Red = 

Superinfection where the resident strain is unrelated to the parental strains in the 

initial infection. Purple = Superinfection where the resident strain is unrelated and 

different in each transmission event. Solid dark lines indicate results where the 

initial polygenomic infection had a COI =2 and light dotted lines indicate results 

where the initial polygenomic infection had a COI = 5. 

 

3.4 Discussion  

Parasite strains in polygenomic infections are often genetically related, but 

it is unclear why there is so much variation between infections or whether the 

relatedness of polygenomic infections can be used to understand parasite 

transmission. In order to help bridge the gaps in our understanding, we 

developed a pedigree/kinship framework for understanding how COI and oocyst 

counts affect the relatedness of cotransmitted strains. We then tested the 

predictions of this framework using a parasite transmission model to quantify 

changes in the relatedness of cotransmitted strains. We demonstrated that 

multiple oocyst simulations in low COI conditions favor the transmission of full-

siblings / parent-offspring strains and limit the transmission of half-siblings and 

unrelated strains, causing an increase in the expected relatedness of 
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cotransmitted strains. Multiple oocyst simulations in high COI conditions 

decrease the relatedness of cotransmitted strains by favoring the transmission of 

half-siblings and unrelated strains. Alterations to the number of sporozoites that 

invade the liver have little effect on relatedness, conditioned on the fact that 

multiple sporozoites invade.  

We also examined how non-uniform gametocyte-sampling probabilities 

could affect the relatedness of cotransmitted strains. Previous studies have 

established that intra-host parasite dynamics depend on patient age [82,83] 

disease severity (reviewed in [84]), and eco-epidemiological factors such as 

seasonal transmission [85,86]. These dynamics are strongly influenced by host 

immunity [87] and can fluctuate over the course of a single infection [62,83,88–

90]. Furthermore, gametocyte sampling is not completely random [91] and not 

reliant on peripheral blood gametocyte densities at low parasitemias [85,92]. Our 

results show that the relatedness of cotransmitted strains is robust to variations 

in intra-host strain proportions and gametocyte-sampling probabilities. Even 

infections where the ratio of the most frequent to least frequent strain is 10:1 do 

not result in drastic changes to that observed from infections with even strain 

proportions. This suggests that the relatedness of cotransmitted strains is 

consistent across differences in patient-age, disease severity, and host immunity.  

Our results are in agreement with the frequent assumption that 

cotransmission events are comprised of genetically related parasite strains 

[41,42,64,65]. A large fraction of simulated cotransmission events result in the 

transmission of genetically distinct meiotic siblings, as evidenced by the peaks at 
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0.33 for all simulations where oocyst counts and hepatocyte counts were 

randomly sampled. However, we also found that the transmission of unrelated 

strains is a major aspect of cotransmission. The cotransmission of unrelated 

strains was present in all multiple oocyst simulations and increased in frequency 

with COI. Polygenomic infections comprised of unrelated strains are typically 

assumed to be the result of superinfection, but these findings suggest that some 

are the result of cotransmission. Current estimates of the prevalence of 

cotransmission are underestimates, since they rely on the subset of 

cotransmission events resulting in polygenomic infections comprised of 

genetically related strains [64]. 

Our results reveal an inverse relationship between the relatedness of 

cotransmitted strains and COI. COI is correlated with high entomological 

inoculation rates [25,26] and a known genetic correlate of transmission intensity 

[25,26]. COI is higher in high transmission areas than in low transmission areas 

due to increased superinfection rates. The association between the relatedness 

of cotransmitted strains and COI suggests that polygenomic infections in low 

transmission areas are comprised of more related strains than those in high 

transmission areas. We previously found that the average relatedness of 32 

symptomatic polygenomic patients collected from a clinic in a low transmission 

region of Senegal (mean COI of two) was 0.38 [64]. This value exceeds the 

expected relatedness of meiotic siblings and may reflect an increase in the 

transmission of full-siblings / parent-offspring parasites but could also result from 

factors such as population structure. Previous studies of genetic relatedness 
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have focused on areas of mid-to-low transmission setting [41,42,64,65] and a 

comparison of genetic relatedness of polygenomic infections across transmission 

settings have yet to be performed. High relatedness from low COI infections 

could have implications for the spread of drug resistance traits in low 

transmission settings, as the increased relatedness could increase the chance 

that multi-locus drug resistant genes are passed on together to the next 

generation.  

It remains to be seen whether the relationship between relatedness and 

COI can be reflected in polygenomic infections collected from natural parasite 

populations. If the inverse relationship between COI and relatedness holds, then 

the relatedness of coinfecting strains could be a potential population genetic 

correlate of transmission intensity. Population genetic correlates of transmission 

are valuable in the context of malaria control and can be used to supplement or 

supplant traditional epidemiological measures, which can be difficult to collect in 

low transmission areas [20,25]. With regards to polygenomic infections, only the 

frequency and COI of polygenomic infections are known to correlate with 

transmission intensity [25,40,55]. Other population genetic metrics, such as 

parasite clonality [25], currently rely on data obtained from monogenomic 

infections, which are limited in high transmission areas where polygenomic 

infections are frequent. By providing an additional source of information, genetic 

relatedness could increase the granularity by which we use genetic signals to 

monitor changes in transmission. However, spatial-temporal transmission, such 

as the seasonality or the existence of transmission hotspots, and host immunity 
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can influence population genetic structure [87]. Neither of these are taken into 

consideration in this study, and it is unclear how these might affect polygenomic 

relatedness. Population-level models and epidemiological sampling will be 

needed to understand the effects of cotransmission and establish whether the 

relatedness of polygenomic infections correlates with transmission intensity. 

An alternative method of dissecting population-level dynamics is to focus 

on the characterization of transmission lineage. Transmission lineages consist of 

chained transmission events and are a simplification of the transmission 

processes within populations. Our transmission lineages were designed to 

examine the effect of multiple transmission events and to examine how the co-

occurrence of superinfection affects the relatedness of polygenomic infections. 

They show that superinfection depresses the relatedness of polygenomic 

infections, but also show how sensitive these lineages are to the conditions of the 

host infection. Strikingly, they show that cotransmission fails to increase the 

relatedness of polygenomic infections if each host in the transmission chain 

harbors a different, genetically unrelated parasite strain. They also reveal the 

fragility of serial cotransmission chains. In the absence of superinfection, serial 

cotransmission chains quickly converge to the transmission of single strains. 

High COI in the initial infection delays this process but a large fraction of serial 

cotransmission chains still converge within five transmission events. Because 

these transmission lineages are analogous to the introduction of a polygenomic 

infection to a new population, polygenomic relatedness could be useful for 

studying transmission in import scenarios.  
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In conclusion, our study uses a model of parasite transmission to provide 

mechanistic insight into the process of cotransmission to help understand the 

factors that influence the relatedness of cotransmitted strains. Understanding the 

effects of sexual recombination and transmission on malaria population 

genomics is of key public health interest in an era where parasite populations are 

experiencing rapid declines in transmission intensity. We believe mechanistic 

models such as the one used in this study reveal new insights that can be 

applied to the results obtained from more complicated conditions. Our model 

highlights the importance of COI in influencing the relatedness of cotransmitted 

strains, but future models and epidemiology studies are needed uncover how 

transmission intensity and cotransmission affects the genetic composition of 

strains in polygenomic infections in natural populations.  

 

3.5 Methods and Models 

3.5.1 Simulating meiosis and recombination 

We simulated meiosis under two different frameworks: one with and one 

without obligate chiasma formation. Both frameworks sample from a constrained 

gamma distribution where the average distance between randomly sampled 

distances is 50 centimorgans to determine the location of chiasma along a 

bivalent [75,93]. For each placed chiasma, our meiosis model chose one sister 

chromatid from each homolog to undergo recombination. Sister chromatids were 

independently chosen for each recombination event. Once all recombination 
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events were complete, the model independently segregated and randomly 

combined sister chromatids from other bivalents to create haploid parasite 

genomes. 

For the non-obligate chiasma framework, our meiosis model placed the 

first chiasma 105 base pairs before the beginning of each chromosome. It then 

drew a distance, d, from a gamma distribution with shape = v and scale = 1/(2v) 

[93] to determine the location of the next chiasma. New chiasma were placed d 

units after the previous chiasma and a new distance was drawn for each 

chiasma. Chiasma locations were filtered to include only those that fell within the 

boundaries of the chromosome under consideration.  

For the obligate chiasma framework, the position of the first chiasma was 

determined by drawing from a uniform distribution that spans the length of each 

chromosome. Subsequent chiasma were placed by drawing distances from a 

constrained gamma distribution (described in the next paragraph) and placing the 

next chiasma d units before it. This was repeated until the start of the 

chromosome was reached. Afterwards, the process was repeated in the other 

direction until the end of the chromosome was reached.  

Due to the forced placement of chiasma, we could not use the formulas 

used in the non-obligate chiasma framework to generate appropriately 

constrained gamma distributions. We used an approximate Bayesian 

computation (ABC) Markov chain Monte Carlo (MCMC) to solve the appropriate 

scale parameter and shape parameters. Shape parameters varied from 1 - 9 and 

scale parameters were sampled from a uniform distribution with a range of 0 - 5. 
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For each set of scale and shape parameters, we counted the number of chiasma 

on a bivalant 100 centiMorgans (cM) in length and repeated this process 1000 

times to estimate the average and standard deviation. We evaluated the fit of 

each proposed parameter using the following distance metric: 

𝐷′ =
(2− 𝑢)!

0.05! + 𝛿! 

where u and δ are the simulated mean and standard deviations of the number of 

chiasma, 2 represents the desired number of chiasma per 100 centiMorgans, 

and 0.05 represents a small error term. We then constructed an estimate of the 

pseudo-likelihood as: 

𝐿 =   
1
𝑒!!

 

The proposed scale parameter was accepted if the proposed pseudo-likelihood 

was greater than the pseudo-likelihood of the previously proposed parameter. If 

the new pseudo-likelihood was smaller, then the probability of rejection was 

decided by the ratio of the current pseudo-likelihood over the previous pseudo-

likelihood. This process was repeated 2,500 times to form a MCMC chain. After 

our MCMC chain was completed, we calculated the mean of the accepted scale 

parameters from the last 1500 steps to serve as our estimate of the scale for 

each shape parameter. 

3.5.2 Model selection: Non-obligate vs obligate chiasma model 

 We calculated the average number of crossover events and intercrossover 

distances for each chromosome in the genome using SNP data from 69 
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genetically distinct progeny generated from 3 different laboratory crosses [67,69–

71]. These data were previously generated by the Pf3k project 

(www.malargen.net/pf3k) [67–71]. VCF files were downloaded and filtered based 

on the available INFO strings. We removed non-Mendelian sites, sites that did 

not pass the quality filters used, and sites that were invariant between the 

parental strains used in the cross. Samples from each laboratory cross were 

represented by an average of 1028 SNPs. From this filtered dataset, we 

performed pairwise calculations of percent similarity to identify and remove 

duplicate strains. Duplicate strains were defined as those having greater than 

90% SNP similarity.  

For each chromosome, we used a modified version of an IBD Hidden 

Markov Model (HMM) [40,73] to quantify the average number of crossover 

events and the average intercrossover distance for each chromosome. Our 

previously published HMM relied on population SNP frequencies to infer IBD, 

which is problematic when using cultured strains with vague demographic 

histories. For each laboratory cross, we used SNP data to infer IBD between 

progeny and parental strains using the following emission probabilities: 

𝑃(𝐶𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒  |  𝐼𝐵𝐷)   =    1− 𝜀 ! +   (𝜀)! 

𝑃 𝐶𝑜𝑛𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒     𝑛𝑜𝑛 − 𝐼𝐵𝐷)   =   2ε(1− 𝜀) 

𝑃 𝐷𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒     𝐼𝐵𝐷) =   2𝜀(1− 𝜀) 

𝑃 𝐷𝑖𝑠𝑐𝑜𝑟𝑑𝑎𝑛𝑐𝑒     𝑛𝑜𝑛 − 𝐼𝐵𝐷) = 1− 2ε(1− 𝜀) 
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where ε refers to the rate of sequencing error, concordance refers to having the 

same SNP identity, discordance refers to having different SNP identities, and IBD 

refers to identical-by-descent.  

The resulting IBD maps closely mirror the parental inheritance boundaries 

specified in [68], but sometimes identifies very short IBD fragments that are 

unlikely to be real (S5 Fig). Crossover events were identified as the points in the 

chromosome where the IBD map switches from IBD to non-IBD and 

intercrossover distance was calculated as the distance (in cM) between each of 

the identified crossover points. Intercrossover distances were converted to 

centiMorgans using the estimates reported in [67,68] (15 kb/cM). If no crossovers 

were observed, then the intercrossover distance was defined as the length of the 

entire chromosome. 

We then used the average number of crossovers and intercrossover 

distances to determine whether a non-obligate or obligate chiasma model of 

meiosis would fit the data best. Each simulation was run 20 times to get an 

average and standard deviation of the number of crossover events and crossover 

distances per chromosome. We then devised a distance metric defined as: 

𝐷! =   
(𝑢!,!"# − 𝑢!,!"#$%&$')!

𝛿!!,!"# +   𝛿!!,!"#$%&$'

!"

!

 

where u is the mean, δ is the standard deviation, j is the feature (number of 

crossover events or interarrival distance), i is the chromosome number, sim 

indicates the simulation result, and observed indicates the value observed in the 

69 progeny strains. We defined a pseudo-likelihood as 



81	
  
	
  

𝐿 =   
1
𝑒!!

!

!

 

and used it to determine the model that fit the data best.  

3.5.3 Model design: Modeling transmission 

To quantify the average relatedness of cotransmitted strains, we 

developed an agent-based mosquito transmission model that simulates the 

sampling processes that occur as parasites enter and exit the mosquito vector 

and parameterized by COI, oocyst count, and infected hepatocyte count. The 

values for oocyst count and infected hepatocyte count were drawn from the set 

{1, 2, 3, 4, 5, 10, 20} while the values for COI were drawn from the set {2, 3, 4, 5, 

10, 20}. Each set of parameters was run 2000 times. Each simulation was 

initiated by creating an initial infection comprised of unrelated parasite strains; 

the number of strains within the initial infection was determined by COI. 

To model differences in intra-host strain proportions and differences in 

sampling probabilities, we assumed that strain proportions followed an 

exponential equation of the form: 

𝑓 𝑥 = 𝐴𝑒!" 

where x is a discrete variable representing each strain in the infection. We used 

an exponential equation to magnify the difference in frequency between the most 

frequent strain and the other strains present in the infection. 

For an infection with COI = n, x ranges from 0 to n -1. We fit this equation 

to two points, (0, f(0)) and (n - 1, f(n - 1)), based on the ratio of the most frequent 
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to the least frequent strain in the infection. These ratios ranged from 1:1 to 10:1, 

reflecting the observed strain proportions in a set of polygenomic infections 

collected from Thiès, Senegal (Supplemental Figure 3.6). f(0) is the ratio of the 

most frequent to the least frequent strain. f(n - 1) is the ratio of the final strain to 

the least frequent strain and always equal to one. The ratios of all other strains 

present in the infection was determined by f(1), f(2), ...f(n-1). We then drew from 

a Dirichlet distribution with a concentration parameter = {f(0), f(1), f(2), … f(n - 1)} 

1000 times to calculate the expected frequency of each strain in the infection.  

Based on the specified oocyst count, our model sampled gametocyte pairs 

by their intra-host strain proportions to create oocysts, allowing for multiple 

samplings of the same strain. Each sample pair underwent meiosis to create four 

meiotic products. The progeny from all the meiotic events were combined without 

the removal of repeat strains to represent the sporozoites within the mosquito 

vector. Our model assumed mating success and oocyst formation could be 

simulated as the random sampling of gametocytes from the human host. It is 

unclear whether the parasite has a preference for self-fertilization or outcrossing. 

Evidence for non-random mating is based on the observation of highly inbred 

oocysts within the mosquito midgut [94], but it is unknown to what extent self-

fertilization occurs more frequently than expected by chance.  

We then sampled sporozoites to represent the strains in the infected 

hepatocytes. Multiply-infected hepatocytes were not allowed. At this point, our 

model performed pairwise comparisons between all the parasites in the infected 

hepatocytes, regardless of whether or not the pair consisted of genetically 
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distinct parasites, to determine the frequency of the different pedigrees specified 

in Fig 2. The expected relatedness of cotransmitted strains was calculated as the 

average pairwise relatedness between genetically distinct strains. This average 

is not weighted by the frequency of strains within the infected hepatocytes. 

Because cotransmission must result in the creation of polygenomic infections, we 

excluded infections where the infected hepatocytes consisted of a single strain. 

When an infected hepatocytes consisted of two or more genetically distinct 

strains, the relatedness of cotransmitted strains was calculated as the 

relatedness between the two strains; when an infection was comprised of 20 

genetically distinct strains, the relatedness of cotransmitted strains is calculated 

as the average pairwise relatedness from all 20-choose-2 comparisons.  

Source code is available on GitHub, under the project name 

Cotransmission (https://github.com/weswong/Cotransmission). The code is 

written using Python 2.7.0 and is platform independent. 

 

3.5.4 Quantifying relatedness in simulated genomes 

We defined relatedness as the proportion of the genome that is identical-by-

descent (IBD) owing to inheritance from the same common ancestor. Because 

the genetic ancestry of all input strains was known and assumed to be 

genetically unrelated, IBD segments were identified as segments of the genome 

that originated from the same parental input strain.  
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3.5.5 Calculating the expected relatedness of the nine pedigrees 

To calculate the expected relatedness of parasites described by our 9 pedigrees, 

we generated simulations with the appropriate number of oocysts (1 or 2), the 

appropriate pedigreess for each oocyst, and the appropriate method of sampling 

parasite pairs (within or between oocysts) for each pedigree and quantified the 

relatedness of a single randomly drawn parasite pair. This process was repeated 

800 times to generate distributions of relatedness and to get an estimate of the 

mean.  

 

3.6 Addendum 

3.6.1 Author’s Contributions 

EW helped create the initial transmission simulation design. WW performed all 

simulations and analysis. DLH and DFW supervised the project 
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4.1 Abstract 

Selective whole genome amplification (SWGA) is a method of 

preferentially amplifying species-specific DNA from a sample with DNA from two 

or more species. SWGA could be particularly useful for sequencing malaria 

parasites, because genomes are extracted from patient blood containing a 

mixture of both human and parasite DNA. Determining whether SWGA has 

strain-specific amplification biases is important for the characterization of intra-

host strain dynamics of polygenomic infections, of which little is currently known. 

We generated samples using four lab-cultured strains to determine the limitations 

of selective whole genome amplification. In the presence of human DNA, SWGA 

outperforms standard whole genome amplification and direct sequencing. We 

found no significant differences in genome coverage or average read depth 

associated with either the source material used or the number of strains present 

in the sample. These results demonstrate the potential of SWGA for whole 

genome sequencing analysis and demonstrate that dried filter paper material can 

provide equivalent genomic information as that derived from blood pellets. We 

also show that there is little evidence for strain-bias with SWGA and validate its 

use for characterizing the genomic composition of polygenomic infections.  
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4.2 Introduction 

In Plasmodium falciparum, advances in whole genome sequencing 

technologies have enabled large-scale population genomic analyses that have 

revealed crucial insights into parasite evolution and drug resistance 

[22,56,18,21,19]. In the context of public health, genomic analyses are uniquely 

positioned to identify molecular markers of drug resistance and played a major 

role in identifying the genetic basis of artemisinin and piperaquine resistance 

[22,95,96] In recent years, genomics has also been used to track changes in 

transmission by monitoring changes in population genetic correlates of 

transmission such as parasite clonality [25,40].   

Obtaining sufficient amounts of genomic DNA for whole genome 

sequencing can be challenging due to the overwhelming presence of 

contaminating host DNA and to the limited amount of DNA present in the sample. 

To date, the most common method of sample retrieval for whole genome 

sequencing is from venous blood collected from infected patients. This process is 

logistically demanding and requires highly trained personnel to draw and filter 

large volumes of blood (~5-10ml per sample). Once drawn, samples needs to be 

maintained at 4-8°C until genomic DNA (gDNA) extraction [97].  These samples 

are then run through columns to remove leukocytes. Even after leukocyte 

depletion, the amount of human DNA in the sample can be high, constituting 

anywhere from 10-50% of the DNA in the sample [97,13]. gDNA can also be 

extracted from dried filter paper blood spots generated during routine diagnostic 

surveys. Post gDNA extraction methods of depleting host DNA, such as hybrid 
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selection, can also be used to improve parasite DNA yields [98]. Hybrid selection 

uses biotinylated RNA baits that bind to the P. falciparum genome and later 

pulled down using streptavidin-coated magnetic beads for whole genome 

sequencing. However, hybrid selection is technically demanding and requires the 

use and construction of costly RNA baits. Neither of these methods address the 

issue of low input DNA and requires a separate genomic DNA amplification step. 

Recently, selective whole genome amplification (SWGA) has been used to 

generate high quality sequences from mixed-species DNA samples [99–101]. 

Unlike leukocyte depletion or hybrid selection, SWGA simultaneously addresses 

the issue of low input DNA and the presence of human DNA.  SWGA uses 

primers designed to target species-specific DNA motifs present in the genome of 

interest but absent in the genomes of other species present in the sample. 

SWGA also uses a unique strand-displacing phi29 DNA polymerase. Instead of 

stopping when it encounters a stretch it double-stranded DNA, the phi29 

polymerase displaces the complimentary strand and continues with DNA 

extension [99,102]. This allows simultaneous amplification of DNA in regions 

where primer binding is frequent.   

For P. falciparum, SWGA has been used to generate whole genome 

sequences from both venous blood and dried filter paper blood spots collected 

from the field [100,101,103]. SWGA has also been used to successfully generate 

whole genome sequences from Plasmodium vivax, another human malaria 

species [104]. These studies show that SWGA is a cost-effective way of 

obtaining P. falciparum whole genome sequences from low DNA samples with 
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significant amounts of contaminating human DNA and can be used to reliably 

recover whole genome sequences from both venous blood and dried filter paper 

blood spots.  

However, it is unclear whether SWGA can accurately recover genomic 

information from polygenomic (multiple-strain) samples. Polygenomic infections 

are common in natural populations and the frequency of polygenomic infections 

and the complexity of infection (number of strains per infection) are known 

population genetic correlate of transmission intensity [25,26,105]. The intra-host 

strain dynamics of polygenomic infections can yield much needed insight to the 

nature of within-host strain composition and the effects of immune-mediated 

selection.  Characterizing the genomic composition polygenomic infections can 

also reveal the dynamics of superinfection and cotransmission [64,41,65,42]. 

Using genomics to characterize intra-host strain dynamics would require deep 

sequencing coverage and need to be free of any strain-specific amplification 

bias. The primers used in previous P. falciparum SWGA studies were based off 

the DNA motifs in the 3D7 reference strain [103,106]. It is unclear whether this 

primer design favors the amplification of 3D7 over that of other P. falciparum 

strains.  

The goal of this study was to confirm the results of previous SWGA 

studies and to determine whether SWGA could be used to reliably characterize 

intra-host strain dynamics. We generated a series of mock infections and dried 

filter paper blood spots that explore the range of parasitemias observed in real 

clinical infections and test how well SWGA performs compares against direct 
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sequencing and standard whole genome amplification (WGA), which does not 

use the phi29 DNA polymerase or the primers designed to preferentially bind to 

P. falciparum specific DNA motifs. Using SWGA to characterize polygenomic 

infections could lead to better insights into how intra-host competition, host 

immunity, and transmission affect parasite evolution and population genetics. 

 

4.3 Results 

4.3.1 Mock Infection and sample creation 

To test the efficacy of SWGA, we created a series of mock infections with 

varying parasitemias using four lab-adapted parasite strains: 3D7, Dd2, 

SenT120.11 and SenT185.10 (Methods). 3D7 and Dd2 are standard lab-

adapted strains that have been in culture for over 30 years [107,71,108]. 

SenT120.11 and SenT185.10 were culture-adapted from samples collected from 

patients with P. falciparum malaria reporting to a clinic in Thiès, Senegal in 2011 

and 2012 respectively. These mock infections contained red blood cells (RBC) 

infected with live parasites and synchronized so that all parasites were at the 

ring-stage. The parasitemias for these mixtures ranged from 3% to 0.003% to 

reflect the parasitemias observed in natural infections. For the 3% parasitemia 

infections, we created mock infections with and without the presence of 

contaminating human DNA. For the remaining parasitemias, we only created 

mock infections with human DNA. In terms of strain composition, we created 

seven genetically distinct mock infections. Four were monogenomic (one for 
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each strain) and three were polygenomic. Our polygenomic mixtures consisted of 

a 1:1 mixture of 3D7 and Dd2, a 7:3 mixture of SenT120.11 and SenT185.10, 

and a 9:1 mixture of SenT120.11 and SenT185.10. In summary, a total of 35 

mock infections were generated, seven with and 28 without human DNA 

(Supplementary Table S4.1). We generated 16 monogenomic and 19 

polygenomic mock infections.  

Once our mock infections were created, we extracted gDNA from the RBC 

pellet of spun down mock infections. We also generated a set of dried filter paper 

blood spots from each of the 28 mock infections with human DNA. These filter 

paper samples mimic the dried bloodspots collected from clinics in the field. We 

did not create any filter paper samples from the seven mock infections without 

human DNA, since such mixtures exist only in laboratory settings and the use of 

dried bloodspots there is less common. Once dried, we extracted genomic DNA 

(gDNA) from the filter paper samples. Extracted gDNA was amplified using either 

standard whole genome amplification (WGA) or SWGA prior to whole genome 

sequencing. gDNA was also directly sequenced without any pre-amplification 

step for a subset the RBC pellet samples. Using gDNA extracted from our 3D7 

and Dd2 monogenomic cultures, we also created one polygenomic gDNA 

mixture mixed at a 1:1 ratio. For polygenomic infections, we performed two 

technical replicates of direct sequencing, WGA, and SWGA using the same 

gDNA. The steps leading to sample creation and gDNA extraction are described 

in Figure 4.1.  
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Figure 4.1 Mock infection and sample creation design 

Mock infections were split into two arms: one with and without human DNA. We 

first created a 3% parasitemia mock infection with 40% hematocrit using cultured 

parasite material. This initial mock infection was used as the source material for 

all subsequent mock infections with the same strain composition. For the “no 

human DNA arm,” a portion of this mixture was spun down to create an RBC 

pellet. gDNA extracted from the RBC pellet was used for direct sequencing or 

amplified using either WGA or SWGA prior to sequencing. For the “with human 

DNA arm”, we replaced the culture media with a serum/WBC mixture obtained 

from spinning down uninfected non-leukocyte-depleted whole blood. We diluted 

this mixture using whole blood to create our lower parasitemia samples. For 

samples with human DNA, we created a set of dried filter paper blood spots and 

With Human DNA Arm No Human DNA Arm 

Spin down 
RBC pellet 

Spot on filter 
Paper  

SpotSpin down 
RBC pellet 

Extract gDNA 
for direct 

sequencing, 
WGA, and 

SWGA 
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Extract gDNA 
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Replace culture media with 
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from whole bood 

3% 
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in Culture 

Media

3% 
Parasitemia
in Culture 

Media
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(Figure 4.1, continued) a set of spun down RBC pellets. gDNA was extracted 

from both the dried filter paper blood spots and the RBC pellets. Not all mock 

infections were sequenced for this study. Only the 3D7 monogenomic infections 

were sequenced at parasitemias below 0.3%. 

 

In summary, a total of 96 samples were submitted for whole genome 

sequencing (Supplemental Table S4.1). These samples differed based on the 

strain composition, parasitemia, and presence/absence of human blood in the 

initial mock infection. They also differed based on how gDNA was extracted (from 

pellet or filter paper), and the type (or lack thereof) of pre-amplification prior to 

whole genome sequencing. Although mock infections and dried filter bloodspots 

were created at all parasitemias, not all were whole genome sequenced; only the 

3D7 monogenomic mock infections were sequenced at parasitemias below 0.3%.  

4.3.2 Comparing sequencing quality  

To examine the sequencing quality of SWGA, we quantified the total 

number of sequencing reads generated, the proportion of reads aligning to the 

3D7 P. falciparum reference genome, mean coverage, proportion of genome with 

at least 5x coverage, and the proportion of reads that are PCR duplicates.  We 

first examined whether SWGA performed worse than either direct sequencing or 

WGA in the absence of human DNA. All samples without human DNA had a 

parasitemia of 3% and had gDNA extracted from RBC pellet. We found no 

statistically significant difference between direct sequencing, WGA, and SWGA 
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for the five metrics mentioned above (1-way ANOVA: p-value > 0. 064 for all five 

metrics) (Figure 4.2A). Regardless of pre-amplification strategy, well over 90% 

of the reads generated aligned to the 3D7 P. falciparum reference genome, with 

a mean coverage > 8. Despite this, only about half of the genome had at least 5x 

coverage. Genome-wide coverage varied greatly throughout the genome (Figure 

4.2B). 

We next expanded our analysis to consider samples with human DNA. We 

found that SWGA consistently outperformed both direct sequencing and WGA 

(Figure 4.3). We also saw that SWGA resulted in a smaller number of total reads 

than either direct sequencing or WGA. However, a greater proportion of them 

aligned to the 3D7 P. falciparum genome. Even with SWGA, lower parasitemia 

samples had worse sequencing quality. When parasitemia was 0.03%, ~50% of 

the reads from SWGA samples aligned to the 3D7 P. falciparum genome. This 

percentage was higher than that of any of the direct sequencing or WGA 

samples, which remained stable at 8-10%. We found no statistically significant 

difference in sequencing quality associated with extracting DNA from either RBC 

pellet or filter paper (1-way ANOVA: p-value > 0.20 for all sequencing quality 

metrics). 
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Figure 4.2 Sequencing quality of 3D7 monogenomic samples (no human DNA) 

A) Barpots of the total read count, percent of reads aligning to the 3D7 P. 

falciparum genome, mean coverage, proportion genome with >5x coverage, and 

PCR duplication rates for all samples with 3% parasitemia and no human DNA. 

Colors indicate whether gDNA was directly sequenced (grey) or amplified using 

either WGA (blue) or SWGA (green) and error bars represent 1 standard 

deviation. There are no statistically significant differences in any of these 5 

metrics associated with direct sequencing, WGA, or SWGA. (1-way ANOVA p-

values for total reads = 0.152, percent reads aligning to the 3D7 P. falciparum 

genome  = 0.064, mean coverage = 0.406, proportion genome with >5x coverage 

= 0.331, and PCR duplication rates= 0.507.) There were also no differences 

between these 5 metrics associated with the extraction of gDNA from either RBC 
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(Figure 4.2, continued) pellet or filter paper. (Student’s T test p-values for total 

reads = 0.374, percent reads aligning to the 3D7 P. falciparum genome = 0.197, 

mean coverage = 0.206, proportion genome with >5x coverage = 0.202, and 

PCR duplication rate = 0.15.)  B) Coverage plot across the entire genome. 

 

 

Figure 4.3 Sequencing quality of samples with human DNA 

Line plots of the total read count, percent of reads aligning to the 3D7 P. 

falciparum genome, mean coverage, proportion genome with >5x coverage, and 

PCR duplication rates for all samples with human DNA plotted against  

A

B
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(Figure 4.3, continued) parasitemia. Colors indicate whether gDNA was directly 

sequenced (grey) or amplified using either WGA (blue) or SWGA (green). Solid 

lines indicate that gDNA was extracted from RBC pellet while dotted lines 

indicate that gDNA was extracted from dried filter paper blood spots. Only results 

for the 3D7 monogenomic samples (A) and results from the polygenomic 

samples (B) are shown. In the presence of human DNA, there was a statistically 

significant difference in sequence quality between direct sequencing, WGA, and 

SWGA samples (1-way ANOVA: p-values  <1.22e-10 for all metrics, after dividing 

samples by parasitemia and pre-amplification strategy. Statistics were not 

performed on the 3D7 monogenomic samples with parasitemias ≤ 0.03% 

because there were only 2 WGA and SWGA samples.).  There was no 

statistically significant difference in sequence quality associated with extracting 

gDNA from either RBC pellet or filter paper material (Student’s T-test: p-values > 

0.201 for all metrics). Samples amplified using SWGA have fewer total reads 

than either direct sequencing or WGA, but have a higher proportions of reads 

aligning to P. falciparum 3D7 reference genome, higher mean coverage depths, 

and a higher proportion of the genome with >5x coverage across all 

parasitemias.  
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4.3.3 Base Call analysis 

To determine whether SWGA could be used for future population genetic 

analyses, we called the allelic identity of every nucleotide position in the genome 

using a pipeline based on the GATK best practices.  Based on the SWGA 

samples with parasitemia of 3%, we identified a core genome where greater than 

70% of samples had a non-missing base call. This core genome covers 88.5% of 

the entire genome and excludes subtelomeric regions and highly repetitive 

regions such as rifins, stevor, and var genes (Figure 4.4, Supplemental Table 

S2). The presence of human DNA or other parasite strains did not affect the 

boundaries of the core genome. Sequencing error rates within the core genome 

for SWGA were small and comparable to those from direct or post-WGA 

sequences (Table 4.1).   
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Figure 4.4 Map of the core genome of using SWGA 

The core genome is defined as the region of the genome where >70% of the 3% 

parasitemia SWGA samples (no human DNA) have non-missing data averaged 

across a 1000kb window. Each of the grey blocks represents one of the 14 

chromosomes in the P. falciparum genome. The green line plot indicates the 

average proportion of samples with a non-missing call averaged across a 1000kb 

sliding window. Dark yellow regions indicate regions where <70% of the samples 

have non-missing data. Light yellow regions indicate regions where <80% of the 

samples have non-missing data. Mitochodrial and apicoplast sequences were not 

examined. 
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Table 4.1 Sequencing error rates for all 3D7 monogenomic samples 

We compared the base calls of all sites for each sample to the known 3D7 

reference genome. All sites with calls different from the 3D7 reference genome 

were considered sequencing error. This included all erroneous SNPs as well as 

insertion and deletions. Sites with missing calls were not included in these 

calculations. 
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When compared to direct sequencing and WGA, we found that SWGA has 

similar base call rates within the core genome for samples without human DNA 

(Figure 4.5). In the presence of human DNA, SWGA performed better than either 

direct sequencing or WGA. We observed no statistically significant difference in 

the average proportion of called sites between samples with 3% parasitemia and 

samples with 0.3%, regardless of the presence or absence of human DNA (1-

way ANOVA, p-value = 0.64). More than 80% of the core genome was callable in 

our post-SWGA sequences. This percentage is similar to the percentage 

observed in our gDNA mixture.  Once parasitemia dipped below 0.3%, there was 

a statistically significant decline in the proportion of callable sites compared to 

that of post-SWGA sequences from 3% parasitemia samples with human DNA 

(Student’s T-test, p-value = 0.02 for the 0.03% sample and p-value = 0.0048 for 

the 0.003% sample). Across all pre-amplification strategies, we also noticed 

higher call rates in coding regions than in non-coding regions.  
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Figure 4.5 Barplots of the proportion of callable sites per sample 

Colors indicate whether gDNA was directly sequenced (grey) or amplified using 

either WGA (blue) or SWGA (green). Minus signs indicate categories lacking 

human DNA while plus signs indicate categories containing human DNA. The 

“gDNA (-)” category refers to the polygenomic gDNA mixture obtained by mixing 

gDNA extracted from our 3D7 and Dd2 monogenomic samples (no human DNA, 

3% parasitemia). There are no standard deviation bars for any of the direct 

sequencing categories with human DNA, or for WGA 3% (-) and gDNA (-) 

because these categories are represented by a single sample.  
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4.3.4 Polygenomic infections 

To determine whether SWGA could be used to interrogate intra-host strain 

dynamics, we went back to our sequencing read data and characterized the read 

pileups of sites with at least 5x coverage. Because greater than 99% of sites with 

5x coverage were unanimous in our polygenomic samples, we focused our 

analysis to variant sites. We identified these variant sites by comparing the 3D7, 

Dd2, SenT120.11, and SenT185.10 whole genome sequences in the Pf3K 

database (https://www.malariagen.net/projects/pf3k). SenT129.11and 

SenT185.10 were first sequenced and published in [40]. We identified 9,157 

variant sites between 3D7 and Dd2 and 2,167 variant sites between SenT120.11 

and SenT185.10. For samples without human DNA, our 3D7/Dd2 mixtures had 

an average of 5658 variant sites with > 5x while our Senegal mixtures had an 

average of 1664 variant sites with >5x coverage. For samples with human DNA, 

sequences amplified using WGA or directly sequenced had fewer than 500 

variant sites with >5x coverage for our 3D7/Dd2 and Senegal polygenomic 

mixtures. Conversely, sequences amplified using SWGA had an average of 4197 

variant sites with >5x coverage in our 3D7 mixture. For our Senegal mixtures, we 

found an average of 1201 variant sites and 1323 variant sites with >5x coverage 

for our 7:3 and 9:1 mixtures, respectively. For each of these mixtures, we found 

that the allele balances corresponded to the proportions with which each strain 

was present (Figure 4.6).  
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Figure 4.6 Allele proportions at variant sites 

Barplots of the read pileup allele proportions at known variant sites for A) the 1:1 

3D7/Dd2 mixture, B) the 7:3 SenT120.11/SenT185.10 mixture, and C) the 9:1 

SenT120.11/SenT185.10 mixture. Only SWGA results are shown for samples 

with human DNA, as sequences amplified using WGA or directly sequenced had 

fewer then 500 sites with >5x coverage. Colors indicate whether gDNA was 

directly sequenced (grey) or amplified using either WGA (blue) or SWGA (green). 

The dotted black line represents the expected read depths for each of the 

polygenomic mixtures. Each bar represents an individual sample. The first letter 

indicates the source from which gDNA was extracted from (p = RBC pellet, f = 

filter paper). The second letter indicates whether gDNA was directly sequenced 

(d) or amplified using either WGA (w) or SWGA (s). +/- indicates the presence or 

absence of human blood. The percentage in parenthesis indicates the 

parasitemia of the mock infection. Technical replicates were not sequenced for 

our 9:1 Senegal mock infections.  
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Finally, we determined whether SWGA could be used to quantify the 

relatedness of co-infecting strains in polygenomic infections. Although 3D7 and 

Dd2 have been lab-culture for many years, they have different sampling and 

population genetic histories. 3D7 was first derived from a parasite line first 

isolated in the Netherlands but population genetic analyses show that it is 

genetically similar to African parasites [109]. Dd2 was derived from a parasite 

line isolated in Southeast Asia [107]. Based on these histories, we expected 3D7 

and Dd2 to be unrelated and for their genomes to have no shared IBD regions. 

Conversely, SenT120.11 and SenT185.10 were isolated more recently and from 

the same population. Based on a panel of 3,132 SNPs that were filtered to have 

the least potential for sequencing error using WGA, we previously identified 

these strains as genetically related [64]. For this study, we wanted to test 

whether SWGA could be used to accurately quantify the relatedness between 

different strains. 

We focused our analysis to a set of 11,450 SNPs that have a minor allele 

frequency of at least 5% in Thiès, Senegal. As expected, our HMM identified 3D7 

and Dd2 as unrelated when comparing gDNA extracted from our monogenomic 

cultures (Figure 4.7).  For each polygenomic sample, we constructed 

pseudohaplotypes (Methods) and used an IBD Hidden Markov Model (HMM) to 

quantify the relatedness between the two strains. Our pseudohaplotypes do not 

establish true genomic phase but maintain the order and positions of concordant 

and discordant sites between sequence pairs. Our HMM correctly identified our 

3D7/Dd2 mixtures as unrelated when SWGA was used. When WGA or direct 
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sequencing was used, our HMM correctly identified the mixtures as unrelated 

when parasitemia was 3% (with and without human DNA).  However, it 

incorrectly identified them as genetically related when parasitemia was 0.3%.  

 

 

Figure 4.7 IBD maps of the relatedness of strains present in our 3D7/Dd2 mock 

infections. 

3D7 and Dd2 are known to be unrelated to one another. Data is organized by 

row: A) 3% parasitemia without human DNA B) 3% parasitemia with human 

DNA, and C) 0.3% parasitemia with human DNA. Data is also organized by 

3% Parasitemia (-)

3% Parasitemia (+)

0.3% Parasitemia (+)

Direct WGA SWGA
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(Figure 4.7, continued) column. From left to right, the first column shows the 

relatedness results from direct sequencing (dark grey), the second column shows 

the results from WGA (blue), and third column shows the results from SWGA 

(green). Each bar represents a one of the 14 chromosome in the P. falciparum 

genome and is shaded proportionally based on the number of sample pairs that 

are IBD at that position. Light grey shading indicates that the region is not IBD 

while other colors indicate that region is IBD.  All three pre-amplification 

strategies correctly identify the sample as being comprised of unrelated strains 

except in the 0.3% parasitemia mock infection with human DNA. Only SWGA 

correctly identifies this mixture as being comprised of unrelated strains. 

 

For our Senegal samples, we first characterized IBD between gDNA 

extracted from our SenT120.11 and SenT185.10 monogenomic samples. These 

monogenomic infections had a parasitemia of 3% and had no contaminating 

DNA. These sequences were directly sequenced with no pre-amplification step. 

The results from this comparison were treated as our gold standard and used to 

quantify the sensitivity and specificity of direct sequencing, WGA, and SWGA in 

our lab-generated polygenomic mixtures (Figure 4.8). In the absence of human 

DNA, direct sequencing, WGA, and SWGA correctly identified IBD in our 3% 

parasitemia polygenomic samples with high sensitivity and specificity. However, 

in the presence of human DNA, direct sequencing and WGA resulted in a loss in 

sensitivity at 3% parasitemia and a loss in specificity at 0.03% parasitemia. 
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Regardless of parasitemia or the presence of human DNA, SWGA had 

consistently high sensitivity and specificity. 

 

 

Figure 4.8 IBD maps of the relatedness of strains present in our SenT120.11 and 

SenT185.10 mock infections 

The expected positions of IBD blocks obtained from comparing SenT120.11 and 

SenT185.10 sequences obtained from our 3% monogenomic mock infections 

(without human DNA) are outlined in black boxes. Data is organized by row: A) 

3% parasitemia without human DNA B) 3% parasitemia with human DNA, and C) 

0.3% parasitemia with human DNA. Data is also organized by column. From left 

to right, the first column shows the relatedness results from direct sequencing 

(dark grey), the second column shows the results from WGA (blue), and third 

3% Parasitemia (-)

3% Parasitemia (+)

0.3% Parasitemia (+)

Direct WGA SWGA
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(Figure 4.8, continued) column shows the results from SWGA (green). Each bar 

represents one of the 14 chromosome in the P. falciparum genome and is 

shaded proportionally based on the number of sample pairs that are IBD at that 

position. Light grey shading indicates that the region is not IBD while other colors 

indicate that region is IBD. The fourth column is an ROC plot of the true positive 

and false positive rates for each sample.  Each dot represents a different sample 

and the color indicates whether it was directly sequenced (grey) or amplified 

using either WGA (blue) or SWGA (green).  

 

4.4 Discussion 

Here, we generated a series of mock infections to test the limitations of 

SWGA and to determine whether SWGA could be used to interrogate intra-host 

parasite variation in polygenomic samples. Our study compared the quality of 

whole genome sequences that were either directly sequenced or pre-amplified 

using either WGA or SWGA prior to sequencing. We found that SWGA performs 

equivalently to WGA and direct sequencing for samples lacking human DNA. For 

samples with human DNA, SWGA performs significantly better, even though it 

generates a smaller number of total reads. The sequences generated by SWGA 

are of high quality and can be used to call the positions of > 88% of the P. 

falciparum genome with low error rate. The areas of the genome that cannot be 

called are either sub-telomeric or highly repetitive, which are known to make 

sequencing difficult. Our results also show that dried filter paper blood spots can 

be used a source of genomic DNA. We observed no difference in sequencing 
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quality associated with extracting gDNA from either RBC pellet or from dried filter 

paper material. These results confirm the results of a previous study [106] and 

show that dried filter paper blood spots are a potential source of parasite 

genomic DNA. Filter paper blood spots have less stringent storage requirements 

than blood draws and more easily maintained. Whole genome sequencing 

analyses would benefit from using SWGA to amplify gDNA from dried filter paper 

blood spots and expand the areas where population genomic analyses are 

amenable without the need for complex techniques such as hybrid-selection or 

leukocyte depletion.  

Despite this, our results show that sequencing quality declines in low 

parasitemia samples.  Lower parasitemia samples consistently had lower 

coverage and average read depths than those of higher parasitemia samples, 

and we found that samples with lower than 0.3% parasitemias resulted in subpar 

whole genome sequences. Compared to our 3% parasitemia samples, we 

observed a small decline in sequencing quality based on the percent reads 

aligning to the genome, the mean coverage, and the proportion of the genome 

with >5x coverage. However, these declines were not enough to affect base 

calling, and there was little difference in the number of callable bases or in the 

sequencing error rate. The SWGA results from our 0.3% parasitemia samples 

closely matched the results obtained from our pure gDNA mixtures. These 

results suggest that SWGA can be used to generate high quality whole genome 

sequences for all infections with at least 0.3% parasitemia. This concentration 

falls within the range of typical of symptomatic, clinical malaria cases. However, 
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we observed a sharp decline in sequencing quality for samples with parasitemias 

at or below 0.03%. Previous studies have also reported a declining relationship 

between sequencing quality and parasitemia, but identified 0.003% (~150 

parasites/ul) as the cut-off for which sequencing becomes unreliable.  Our 

threshold is higher because mock infections were synchronized to early ring-

stages and have an average of one genome per RBC. The threshold in other 

studies is lower due to the presence of late-stage parasite stages in their 

samples, which increases the average number of genomes per RBC. 

Regardless of the cut-off, these results suggest that a single round of 

SWGA will be insufficient to recover enough genomic material from subpatent 

infections for whole genome sequencing.  Diagnostic tests based on light 

microscopy can detect parasites at 10-100 parasites per ul while PCR-based 

assays can detect parasites at concentrations of 0.05-10 parasites/ul [110]. 

Despite their low densities, submicroscopic infections are still infectious and can 

contribute to a significant proportion of mosquito infections in the population 

[111]. This can be problematic in low transmission areas, where it has been 

hypothesized that infections are on average older and more likely to have 

parasite densities undetectable using light microscopy [112]. It may also be 

difficult to sequence parasites from asymptomatic or chronic infections, which 

oftentimes have subpatent parasitemias [110]. One way to improve the quality of 

post-SWGA sequences from low parasitemia samples may be to perform 

multiple amplification reactions. However, we advise that each amplification step 

use different primer sets due to the high PCR duplication rates observed in our 
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0.0003% parasitemia samples. Alternatively, increasing the amount of input DNA 

used for SWGA or increasing the number of lanes used for sequencing could 

improve yields as well. 

Finally, our study found little evidence of strain-amplification bias 

associated SWGA, suggesting that it can be used to characterize the intra-host 

strain dynamics within polygenomic infections. Polygenomic infections are 

common in malaria endemic areas, but can be challenging to study. The use of 

genomics for understanding intra-host strain dynamics could hinge on methods 

such as SWGA to amplify gDNA from whole genome sequencing. Intra-host 

dynamics are an important aspect of malaria biology crucial to our understanding 

of both disease progression and parasite evolution. These dynamics are a 

reflection of both within-host parasite competition and host immune selection, but 

our understanding is still incomplete. It is known that strain proportions vary 

throughout the course of natural infections, but little is known of what drives 

these fluctuations or whether host factors such as age or immunity affect them.  

Our study also found that whole genome sequences generated using SWGA 

could be used to accurately quantify the genetic relatedness of strains within 

polygenomic infection with high sensitivity and specificity. The relatedness of 

coinfecting strains within polygenomic infections can be used to characterize 

cotransmission and superinfection events in natural parasite populations and 

help us better understand parasite transmission.  

In conclusion, our study shows that SWGA can be used to amplify gDNA 

for whole genome sequencing. These sequences are of high quality, and 
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unaffected by the presence or absence of human DNA or the type of material 

used to extract gDNA. SWGA is a cheap, cost-effective method of generating 

whole genome sequences from unprocessed blood samples and can be used to 

study the intra-host variation within polygenomic infections. SWGA has the 

potential to increase the number and types of samples amenable to population 

genomic analysis, thereby improving our understanding of malaria evolution and 

the use of genomics for public health interventions. 

 

4.5 Methods 

4.5.1 Sample collection and culture maintenance 

SenT120.11 and SenT185.10 were previously collected from individuals 

after recruitment and written consent of either the subject or a parent/guardian 

[40]. This protocol was reviewed and approved by the ethical committees of the 

Senegal Ministry of Health (Senegal) and the Harvard School of Public Health 

(16330, 2008) for Senegalese subjects. SenT120.11 and SenT185.10 were 

obtained through passive case detection from patients over 12 years of age 

reporting to clinic with acute fever and with no reported history of antimalarial use 

for suspected malaria. SenT185.10 was collected sometime between September 

and December of 2010 while SenT120.11 was collected sometime between 

September and December of 2011. SenT185.10 and SenT120.11 were culture 

adapted by thawing cryopreserved material containing infected RBCs that had 
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been mixed with glycerolyte. These samples were confirmed to be monogenomic 

using a 24-SNP barcode [51].  

All parasite cultures were maintained in fresh, leukocyte-depleted human 

blood (O+) and Hepes buffered RPMI containing 10% O+ human serum (heat 

inactivated and pooled). Cultures were placed in modular incubators and gassed 

with 1% O2/5% CO2/balance N2 gas and incubated with rotation (50rpm) in a 

37°C incubator.  

4.5.2 Mock infection creation 

3D7, Dd2, SenT120.11, and SenT185.10 monogenomic cultures were 

synchronized to 0-6 hour rings and grown until parasitemia exceeded 3%. Thick 

smears were checked prior to mock infection creation to check parasitemia and 

to ensure that parasites were synchronized. Parasitemias were also verified 

using a SYBR green FACS assay described in [113]. Briefly, parasites were 

stained in 10x SYBR Green I in 1x BS for 30 min in the dark at 37°C.  Cells were 

washed and resuspended in 5x the initial volume of PBS used in the assay. 

FACS data acquisition was performed on a MACSQuant VYB (Milteni Biotec) 

with a 488nm laser and a 525 nm filter and analyzed with FlowJo 2. RBCs were 

gated on the forward light scatter and side scatter. Infected RBCS were detected 

in channel B1. At least 100,000 events were analyzed for each sample. 

 Once all the monogenomic cultures had a parasitemia of at least 3%, 

cultures were spun down to separate the RBC pellet. Culture media was 

removed and packed, uninfected RBCs were added to normalize the 
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parasitemias of all the cultures to 3%. Polygenomic infections were created by 

mixing the infected RBC pellets from the corresponding monogenomic cultures at 

the appropriate ratios. A portion of the 3% parasitemia RBC pellet was used to 

generate mock infections without human by adding hepes buffered RPMI media 

to the infected RBC pellet until hematocrit was 40% hematocrit. Lower 

parasitemia samples were not created using this mixture. The remainder of the 

3% parasitemia RBC pellet was combined with serum/WBC mixture obtained by 

mixing the serum and buffy coat from non-leukocyte depleted whole blood to 

create a 40% hematocrit mock inection. This serum/buffy coat mixture was 

obtained from separated whole blood. To create lower parasitemia mock 

infections, we diluted this mixture using non-leukocyte depleted whole blood 

obtained from the same patient. We did not correct for any differences in 

hematocrit between the whole patient blood (which was estimated to be ~40% 

hematocrit by sample volume) and our 3% parasitemia 40% hematocrit mock 

infections. 

 Once each mock infection was created, we spotted 500ul of each mock 

infection onto Whattman filter papers to create filter paper blood spots. Dried filter 

paper blood spots were not created for the 3% parasitemia mock infection diluted 

in hepes buffered RPMI media. Dried filter paper blood spots were allowed to dry 

overnight before storage in boxes filled with dessicant. The remainder of each 

mock infection was frozen in equal volumes of glycerolyte solution at -80°C until 

gDNA extraction.  
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4.5.3 DNA extraction and pre-amplification 

gDNA was extracted from filter papers using a Promega DNA IQ 

Casework Pro kit for Maxwell 16 (Promega Corp., Madison, WI, USA). gDNA 

was extracted from culture-adapted material using the QIAamp DNA Blood 

Minikit. Both kits are commercially available and extractions were done according 

to manufacture specification. gDNA was amplified with WGA using a 

commercially available WGA kit. gDNA was amplified using SWGA following a 

protocol obtained from the Wellcome Trust Sanger Institiute and used in [106]. 

Briefly, 40ng of extracted gDNA is added to a 30ul reaction containing the phi29 

polymerase and SWGA primers (Supplemental Table S4.3). The reaction is run 

in a PCR machine that cycles between 35°C for 5 min, 34°C for 10 min, 33°C for 

15 min, 32°C for 20 min, 30°C for 16 hours, and 65°C for 15 min (heat-

inactivation of phi29 polymerase).  

4.5.4 Sequencing and sequencing analysis 

DNA was submitted to the Broad Institute for next generation Illumina 

short-read sequencing. A total of 1ug of DNA obtained after amplifying gDNA 

with WGA and SWGA were used to contruct libraries. 1ug of unamplified gDNA 

was submitted for direct library construction and sequencing. Illumina libraries 

were constructed using commericially available Nextera XT Sample Prep kits 

(Illumina, San Diego, CA, USA) and sequenced on an Illumina Hiseq 2000 

(Illumina, San Diego, CA, USA). Reads were aligned to the P. falciparum 3D7 

reference assembly (PlasmoDb v 7.1) using a combination of Burrows-Wheeler 
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Aligner (version 0.5.9-r16)[40] and PicardTools (v2.14.0). Base calls were 

determined using the GATK Unified Genotyper based on a pipeline that follows 

GATK best practices for variant calling [41]. Variant quality score recalibration 

(VQSR) was not run on these samples because there were an insufficient 

number of variant sites between 3D7, Dd2, SenT120.11, and SenT185.10. 

Downstream sequencing analyses were performed using SAMtools (v1.3), 

VCFtools (v0.1.14), BCFtools (v1.5), and a set of custom python scripts.  

4.5.5 Quantifying relatedness 

The relatedness between two strains was calculated as the proportion of the 

genome inherited from the same ancestor, or identical by descent. Relatedness 

was calculated from 11,450 SNPs that have a minor allele frequency in of at least 

5% in Senegal. These SNPs were used in hidden Markov model described in 

[26] to identify IBD blocks and quantity genetic relatedness. The eps parameter 

(sequencing error rate) in the HMM was set to 0.005. Specificity and sensitivity 

were calculated by quantifying the number of sites that were correctly/incorrectly 

identified as being IBD and the number of sites that were correctly/incorrectly 

identified as not being IBD. Sites that were expected to be IBD were based on 

the IBD between the whole genome sequences of 3D7 vs Dd2 and SenT185.10 

and SenT120.11 obtained form our 3% parasitemia monogenomic samples. 

These samples did not have any human DNA and were directly sequenced 

without pre-amplification.  
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4.6 Addendum 

4.6.1 Author’s Contributions 

CK, SKV, AL, and SB participated in the culturing and culture-adaptation of 

parasite strains. SB created all mock infection samples, extracted gDNA from 

RBC pellet samples, and performed all amplification reactions prior to library 

construction. SKV extracted gDNA from filter paper samples and helped with 

sample preparation. Project design and all genomic analyses were performed by 

WW. SKV, DEN and DFW guided and supervised the project.  
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5.1 Abstract 

Renewed interest in malaria eradication has emphasized the need to 

accurately monitor changes in malaria transmission. Genetic epidemiology 

models provide a framework for predicting how these signals react to changes in 

transmission, but lack defined transmission topologies and assume that infected 

individuals are equally likely to transmit to any other member of the population. 

Previous models of infectious disease evolutionary dynamics are insufficient for 

malaria because they ignore coinfection or focus on asexually reproducing 

organisms. Here, we performed evolutionary invasion analyses with and without 

coinfection on networks representing highly clustered populations or populations 

containing super-spreaders. Our results show that clustered transmission makes 

the parasite population more resilient to the invasion by a newly arrived mutation 

but that superspreading has no effect. These results highlight the importance of 

incorporating different transmission structures in genetic epidemiology models 

and contribute to our understanding of the emergence of new beneficial 

mutations such as those involved with drug resistance. 
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5.2 Introduction 

Renewed interest in malaria eradication and improvements in sequencing 

technology have increased the number of studies applying population genomics 

to understand trends genetic diversity, tracking the emergence and spread of 

drug resistance, and for monitoring changes in transmission intensity 

[19,20,25,114]. These studies have led to the discovery of new population 

genetic correlates of transmission intensity and are of significant public health 

value. This is particularly true in low transmission regions where standard 

epidemiological measures are difficult to collect [115]. The application of 

population genetics for understanding malaria transmission and epidemiology 

promises to be a fruitful endeavor and is critical for understanding how public 

health interventions affect parasite populations. Genetic epidemiology models 

integrate population genetics concepts into traditional epidemiology models, 

which are strain agnostic. We previously used a genetic epidemiology model to 

show that parasite clonality, polygenomic (multiple-strain) infection frequency, 

and complexity of infection (number of strains/ infection) track with declining 

transmission intensities [40].  

However, genetic epidemiology models typically assume transmission is 

well-mixed. This is not the case in natural populations, where transmission differs 

by geographic region and is clustered by household [58,116–118]. Mosquito 

biting exposure is also heterogeneous, with a small minority of individuals 

exposed to a large number of bites [118,119]. Previous epidemiology models 

have stressed the importance of contact structure and transmission topology in 
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promoting or suppressing the spread of epidemics [120,121]. Differences in 

transmission structures also affect parasite population genetics and evolution 

[64], but it is unclear how it could affect malaria population genetics. One way of 

understanding how transmission structure affects population genetics and 

evolutionary dynamics is by performing evolutionary invasion analyses [122]. 

Evolutionary invasion analyses are used to understand the long-term 

consequences of mutations with an “invasion fitness” which quantifies the growth 

rate of a novel rare variant. In the context of infectious diseases, the invasion 

fitness is usually defined as R0, the number of new cases per infection in an 

infinitely large population [36].  A recent study by Leventhal et al. showed that 

superspreading impedes the fixation of newly derived mutations [123].  

However, current evolutionary invasion models are not suitable for 

understanding malaria evolutionary dynamics. Evolutionary invasion models do 

not allow coinfection (the infection of multiple strains in the same individual) or 

focus on asexually reproducing organisms. This limits their usefulness in 

organisms like malaria, which undergoes sexual reproduction during every 

transmission event. In malaria, cotransmission (infection of two or more strains 

from a single mosquito bite) is common, as evidenced by the genetic relatedness 

of polygenomic (multiple strain) infections in natural parasite populations [42,64].  

How then, would evolutionary invasion models behave in the presence of 

coinfection and cotransmission? 

Here, we performed evolutionary invasion analyses on populations whose 

transmission topologies are represented by one of four idealized networks. 
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Unlike previous studies, our model allows for both coinfection and 

cotransmission. These four idealized networks (complete, random regular, 

Barabasi scale free, and a ring lattice) represent different aspects of transmission 

in natural populations. Complete networks are equivalent to the well-mixed 

populations used in most epidemiology and population genetic models. Random 

regular networks limit the number of transmission routes per individual; each 

infection can only infect a limited number of individuals. Barabasi scale free 

networks have exposure heterogeneity and can be used to model 

superspreading. Finally, ring lattices represent the most extreme form of 

clustering, and do not allow transmission between distal nodes. While these 

idealized networks do not recapitaulate the transmission topologies of actual 

populations, they allow us to separate quantifiable network metrics such as the 

degree heterogeneity (the variation in edges per node) and the clustering 

coefficient (the extent to which nodes in a graph cluster together). Because all 

networks can be characterized by these metrics, understanding the individual 

effects of each will be beneficial for understanding malaria evolutionary dynamics 

in more complicated transmission topologies. 

 How infections spread through a population is just as important as the rate 

with which it spreads. In fact, changes in transmission intensity can result in 

changes in transmission transmission topology. Evidence of hotspots and 

clustered transmission are more frequent in low transmission areas [58]. 

Networks are a useful way of simulating transmission topologies because they 

can be summarized by metrics such as the degree heterogeneity and clustering 
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coefficient. Understanding the consequences of structured transmission on 

parasite population genetics is of key public health importance, especially as 

population genomic metrics such as identity-by-descent are being used 

understand patterns in parasite movement and migration [124].  

 

5.3 Results 

5.3.1 Model Description 

To model the effect of transmission topology on malaria population 

genetics, we performed evolutionary invasion analyses on four different idealized 

networks (Figure 5.1). Evolutionary invasion analyses were initiated by 

simulating single-strain epidemics on networks with 200 individuals. Throughout 

this study, we refer to the initial epidemic strain as the resident strain. During 

transmission, our model samples gametocytes from infected individuals. Parasite 

sexual reproduce to create recombinant sporozoites that are injected into the 

recipient host. Gametocyte sampling probabilities are based on the intra-host 

parasite densities within infected individuals. Once recombinant sporozoites were 

created, we randomly chose an individual connected by an edge to the source 

infection to receive recombinant sporozoites.  
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Figure 5.1 Networks 

Representations of the four networks used in this study. Each of the four 

networks can be described by the mean degree (average number of edges per 

node), the degree heterogeneity (the standard deviation in the number of edges 

per node), and its clustering coefficient (a measure of how clustered 

interconnected nodes are). Complete networks (Orange) are equivalent to 

completely mixed populations where transmission random. Nodes in random 

regular (green), scale free, (blue) and ring lattice networks (red) have a limited 

number of edges. Edges in random regular and scale free are randomly drawn 

while edges in ring lattices are preferentially drawn to neighboring nodes. Scale 

free networks are characterized by high degree heterogeneity and used to 

represent superspreading. The degree heterogeneity of Barabasi scale free 

networks follows a Power distribution. Ring lattice networks have a high 

clustering coefficient and are used to represent highly clustered transmission, 

such as in transmission hotspots. In this figure, node sizes are weighted by the 

number of connecting edges.  
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Our model allows both superinfection and cotransmissions but does not 

allow infected individuals to be reinfected by concurrent strains. Susceptibility is 

strain-specific and there is no resistant or recovered class in our model. 

Individuals can be reinfected with previous strains once it has been cleared. 

Biologically, this means that host immunity is strain specific but not long-lasting. 

Strains within each infection have a maximum duration time that is drawn from a 

distribution reflecting the duration times of untreated malaria infections [83,125]. 

For polygenomic infections, our model assumes that asexual parasite and 

gametocyte densities are independently determined for each coinfecting strain. 

We also assume there is no competition between coinfecting strains.  

 

5.3.2 Prevalence in single-strain epidemics 

We first examined the steady-state prevalences of single-strain epidemics 

run on different networks (Figure 5.2A). We define prevalence as the proportion 

of infected individuals within the population. Under this definition, polygenomic 

infections are treated the same as monogenomic infections. As expected, 

different transmission topologies supported different prevalence values. Random 

regular, scale free, and ring lattice networks had smaller prevalences than the 

complete network. Of these, we saw that scale free networks had the smallest 

steady-state prevalence values. These networks also differed in how uninfected 

and infected individuals were connected to one another. One property of 

epidemics in ring lattice networks is that uninfected individuals tend to be 
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clustered; uninfected individuals in these networks are more likely to be 

connected with other uninfected individuals. Our simulation results agree with 

this assertion. A large proportion of uninfected individuals in ring lattice are only 

connected to other uninfected individuals (Supplemental Figure S1). This 

proportion is much larger than that of our other idealized networks.  

 

 

Figure 5.2 Prevalence curves 

Line plots of the prevalence in our simulations, conditioned on successful 

invasion. A) Prevalence in simulations without invasion. B) Prevalence in our 

invasion simulations where coinfection is not allowed (traditional model) and C) in 

our invasion simulations where coinfection is allowed (malaria coinfection model). 

The grey dotted line in B and C marks the point in time when importation 

occurred. Orange lines are the prevalence values of epidemics run on complete 

networks, green on random regular networks, blue on scale free networks 

(Barabasi) and red on ring lattices.  
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5.3.3 Coinfection increases post importation steady-state prevalence and 

importation success  

To simulate importation, we randomly infected an uninfected individual 

with a second strain after the resident strain epidemic reached steady-state 

prevalence. Traditional evolutionary invasion analyses do not allow either 

coinfection or cotransmission. To determine how evolutionary invasion models 

behave once these aspects of malaria biology are allowed, we considered two 

frameworks: one with and one without coinfection. Both simulations allow sexual 

recombination, but only simulations with coinfection allow outcrossing and 

effective recombination. Here, we refer to simulations without coinfection as our 

“traditional” model and simulations with coinfection and cotransmission as our 

malaria coinfection model. 

We found that coinfection and cotransmission has a substantial impact on 

both steady-state prevalences and on importation success probabilities. In our 

traditional model, the importation of a second strain had no effect on steady-state 

prevalence and was the same as that observed in our single-strain epidemics 

(Figure 5.2B). In our malaria coinfection model, prevalence rose after 

importation and continued to rise until a new steady-state equillibrium was 

established (Figure 5.2C). Of the networks examined, we found that ring lattices 

had the smallest increase in prevalence following importation.  

We also found that probability of importation success differed between our 

traditional model and our malaria coinfection model (Figure 5.3). We define 

importation success by the presence or absence of non-resident strains at the 
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end of each simulation. If non-resident strains were present, we considered the 

simulation to be an example of importation success. Overall, we found that 

importation success was low in the traditional model, with success rates below 

15%. Of the networks examined, ring lattices in our traditional model were the 

most susceptible to invasion by an imported strain. Allowing for coinfection made 

importation success much more likely. We found that more than 30% of 

simulations in our malaria coinfection model had successful importation. Relative 

to the complete network, both the random regular and scale free networks had 

reduced importation success probabilities. Surprisingly, our malaria coinfection 

model showed that the ring lattice had the lowest importation success 

probabilities, suggesting that it was the least susceptible to invasion by an 

incoming strain. 

 

 

Figure 5.3 Importation success probabilities 

Bar graphs of the importatation success probabilities from 4000 simulations run 

using our A) traditional model (no coinfection) and B) malaria coinfection model. 
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(Figure 5.3, continued) Error bars indicate one standard error from the mean. 

Importation success was defined by the presence or absence of non-resident 

strains in the population by the end of the simulation. Simulations with non-

resident strains were considered succesful importation events. There was no 

statistically significant difference in importation success probabilities between the 

random regular and scale free networks in either the traditional model or the 

malaria coinfection model (Two proportion z-test: traditional model p-value = 

0.78, malaria coifection model p-value = 0.71). All other comparisons were 

statistically significant at an alpha level of 0.004 after Bonferroni correction.  

 

5.3.4 Incorporating more refined transmission topologies decreases the 

rate with which the resident strain is replaced 

We then examined how coinfection and transmission topologies affected 

the resident strain replacement rate. Here, we focused our analyses to the 

subset of simulations with successful importation. Again, we found substantial 

differences between our traditional model and our coinfection model (Figure 5.4 

and Figure 5.5). The most obvious difference concerns the generation of 

recombinant strains. Because coinfection is not possible, parasites in our 

traditional model can never outcross or generate new recombinant strains. There 

are only ever two strains present in our traditional model: the resident strain and 

the imported strain. In contrast, there can be a limitless number of strains in our 

coinfection model because each outcrossing event results in the formation of 
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new recombinant strains. In our malaria coinfection model, we divided the 

parasite population into three categories consisting of 1) resident strains, 2) 

imported strains, and 3) recombinant strains. 

None of the simulations in our traditional model resulted in the complete 

replacement of the resident strain (Figure 5.4). However, they showed that scale 

free networks had the lowest resident strain frequencies while ring lattices had 

the highest resident strain frequencies. There was no difference in resident strain 

frequencies between the random regular and complete networks. We found a 

completely different association between resident strain frequencies and 

transmission topology in our malaria coinfection model (Figure 5.5). Here, the 

resident strain was completely replaced by recombinant strains in the complete, 

random regular and scale free networks. Complete networks had the fastest 

replacement rates, but we observed no difference between the random regular 

and scale free networks. Only epidemics run on ring lattices failed to replace the 

resident strain. Epidemics run on ring lattices had the highest resident strain 

frequences and the lowest recombinant strain frequencies. Across all networks, 

imported strain fractions remained small. There was a small increase in the 

imported strain fraction immediately after importation, but this declined as the 

epidemic proceeded. 
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Figure 5.4 Strain proportion plots in our traditional model 

Resident strain, imported strain, and recombinant strain proportions in our 

traditional model. Each line represents the average proportions in simulations 

with successful importation. Orange lines are the results obtained from pidemics 

run on complete networks, green on random regular networks, blue on scale free 

networks (Barabasi) and red on ring lattics. Scale free networks had the lowest 

resident strain proportions. There was little difference in strain proportions 
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(Figure 5.4, continued) between the random regular and the complete networks. 

No recombinant strains were present in our traditional model.  

 

 

Figure 5.5 Strain proportion plots in our malaria coinfection model 

Resident strain, imported strain, and recombinant strain proportions in our 

malaria coinfection model. Each line represents the average proportions in 

simulations with successful importation. Orange lines are the results obtained 
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(Figure 5.5, continued) from epidemics run on complete networks, green on 

random regular networks, blue on scale free networks (Barabasi) and red on ring 

lattics. Ring lattice networks had the highest resident strain proportions and the 

lowest recombinant strain proportions. There was little difference in strain 

proportions between the random regular and the scale free networks. 

 

We reasoned that the high proportion of resident strains in our ring lattice 

networks was because clustered transmission made coinfection difficult. To 

address this, we examined whether the replacement of the resident strain was 

associated with increased outcrossing opportunity by measuring the proportion of 

polygenomic infections in the population. Simulations were not performed using 

our traditional model because polygenomic infection formation is impossible. We 

found that complete networks supported the highest frequency of polygenomic 

infections while ring lattices had the lowest frequencies (Supplemental Figure 

S5.2).  

 

5.3.5 Limited transmission routes and clustered transmission increase 

allele extinction probabilities and suppress fixation probabilities 

 Next, we examined how network topologies influenced the emergence and 

spread of single point mutations in our malaria coinfection model. Here, we 

examined the fate of an allele carried by the imported strain by looking at the 

combined allele frequency spectrum across all simulations. Strains carrying this 
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allele have a transmission advantage that makes them to more likely to be 

sampled by the mosquito vector than strains without the allele. This transmission 

advantage is relative and dependent on the frequency of the allele in the 

population. The imported allele confers the greatest advantage when it is rare 

and offers no transmission advantage when it is fixed. 

For a neutral imported allele, we found that random regular, scale free, 

and ring lattice networks had increased extinction probabilities compared to the 

complete network (Figure 5.6). Ring lattices had the highest extinction 

probabilities and there was no statistically significant difference in extinction 

probabilities between our random regular and scale free networks (Chi-Square: 

p-value = 0.73). As might be expected, the imported neutral allele rarely reached 

fixation. For an imported beneficial allele with a 5x transmission advantage, we 

found that random regular, scale free, and ring lattices had reduced extinction 

probabilities and suppressed fixation probabilities. Complete networks had the 

highest fixation probabilities while ring lattices had the lowest. There was no 

statistically significant difference in either the fixation or extinction probabilities 

between our random regular and scale free networks (Chi-square: p-values = 

0.17). 

Finally, we examined the linkage disequillirium (LD) of nearby sites to 

examine the effect these topologies have on the effective recombination rate 

(Figure 5.7A). LD is the non-random association between genetic markers and 

the rate at which it is broken down provides a sense of how frequent outcrossing 

occurs. We found that the random regular and scale free networks resulted in 
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stronger linkage disequilibrium patterns than the complete network but that ring 

lattices maintained the higher levels of linkage disequilibrium, even on the most 

distally located sites. Doubling the host population size had no effect on LD 

decay in simulation run with complete, random regular and scale free networks 

but increased LD decay in simulations run on ring lattices (Figure 5.7B).   
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Figure 5.6 Allele frequency spectrum of the imported allele in our malaria 

coinfection model 

The allele frequency spectrum of A) a neutral imported allele or B) an imported 

allele that confers a transmission advantage across all 4000 simulations. In B), 

strains with the imported allele are 5x more likely to be sampled by the mosquito 

vector than strains without the imported allele. The allele frequency spectrum is 

not conditioned on successful invasion. Simulations where the allele frequency of 
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(Figure 5.6, continued) the imported allele was less than 0.01 were considered 

extinct while those with allele frequencies between 0.9 and 1.0 were considered 

fixed or near fixation.  

 

 

Figure 5.7 Linkage disequilibrium of alleles proximal to the imported allele 

From lightest to darkest, linkage disequilibrium (LD) plots of alleles located 10cM, 

20cM, 30cM, 40cM, 50cM from the site of the imported allele. The darkest line 

shows the LD at a site located on a different chromosome. We assumed that 

1cM was equal to 1.5 Mbp [67]. LD was calculated using r2, which is better at 

detecting LD between low frequency alleles than D prime.  
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5.4 Discussion 

Here, we examined how different transmission topologies could affect 

malaria parasite population genetics using evolutionary invasion models. 

Because coinfection and cotransmission is an important part of malaria 

transmission, we also examined whether the coinfection and sexual 

recombination would affect the predictions made from evolutionary invasion 

models. Our results highlight the importance of transmission topology and show 

how populations with the same transmission intensity can have different 

epidemiological and population genetic outcomes. Models that assume 

transmission is completely mixed have higher prevalence values, invasion 

success probabilities, and allele fixation probabilities than models that 

incorporate more complicated transmission dynamics. While superspreading was 

previously shown to have an inhibitory effect in traditional evolutionary invasion 

models [123], we found it had little effect compared to a network with the same 

level of limited transmission once coinfection and cotransmission was allowed. 

Our study shows that clustered transmission impedes the spread of new 

alleles in the population and promotes inbreeding of parasites in locally spaced 

infections. Clustered transmission limits mating to neighboring nodes, resulting in 

the maintenance of higher levels of LD. While this makes intuitive sense, it also 

runs counter to the historical patterns of malaria drug resistance emergence and 

spread. Despite having the greatest levels of parasite diversity [12,13], drug 

resistance mutations of global importance rarely originate from the African 

continent [14,18,126,127]. Southeast Asian and South American parasite 



140	
  
	
  

populations are more clustered, structured, and have smaller effective population 

sizes than African parasite populations [12,13,22]. Such conditions enhance the 

effects of genetic drift, which is theorized to increase the number of slightly 

deleterious mutations in the population and allow new mutational pathways to be 

accessed [128–130]. Migration between populations and other metapopulation 

(multiple, loosely connected communities) structures could make it easier for 

mutations to fixate than in our model, which consists of a single, closed 

population. Alterations in population size could also play a role, but we found 

there no differences in results from run with 200 or 400 individuals. It is likely that 

our understanding of how structure influences drug resistance will need to 

incorporate differential treatment coverage and efficacy to truly understand the 

emergence of drug resistance in these regions.  

Another major conclusion of this study is that traditional evolutionary 

invasion models should not be used to understand malaria population genetics 

and evolution. Traditional evolutionary invasion models are characterized by the 

competition for uninfected hosts. In these models, infected individuals cannot be 

reinfected until the current infection expires. Using the assumptions of traditional 

evolutionary invasion models, we found that clustered transmission makes a 

network more prone to importation. However, imported strains are maintained at 

low frequencies. This is because epidemics in ring lattices form small clusters of 

uninfected individuals. This make invasion easier by providing an environment 

where the imported strain does not compete with the resident strain for 

uninfected hosts [120]. However, these clusters also make it more difficult for 
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imported strains to reach high frequencies because other uninfected pockets in 

the population are difficult to reach. Conditioned on successful invasion, we 

found that scale free networks supported the highest frequency of imported 

strains. This outcome is consistent with the expectation that epidemics on scale 

free networks spread more rapidly than on other networks [131]. This is due to 

the presence of central hubs that serve as rapid access points to other 

individuals in the population [123,131,132]. 

 Why do these predictions not hold when coinfection and cotransmission 

are allowed? Part of the reason is because uninfected host availability no longer 

limits transmission. While the dynamics of traditional evolutionary invasion 

models can be framed as the competition for uninfected hosts, the dynamics in 

our malaria coinfection model are better framed as the competition for 

susceptible hosts. Because we assume infections cannot be reinfected by 

concurrent strains, susceptibility is strain-specific. Unlike in our traditional 

evolutionary invasion model, clustered transmission networks are now the least 

susceptible to invasion. This is because of two factors. First, isolated pockets of 

uninfected individuals do no affect transmission dynamics because all individuals 

immediately following importation are considered susceptible to the imported 

strain. Second, infections spread slowly in clustered transmission networks, as 

evidenced by the higher resident strain frequencies, lower polygenomic infection 

frequencies, and maintenance of high LD in our ring lattice networks. From a 

population genetic perspective, the slow dissemination of infections on clustered 

transmission networks makes it much more difficult for an allele to reach fixation, 
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even if the mutation has a high selective coefficient. It also enhances the effect of 

random genetic drift, as neighboring individuals are more likely to have the same 

genetic composition and serve as dead ends for transmission.  

Our coinfection framework precludes reinfection with concurrent strains 

and is similar to the framework used in other coinfection models [133,134]. 

Previous studies have argued that this framework is inaccurate for evolutionary 

invasion analyses because it gives imported strains a frequency dependent 

transmission advantage during the initial stages of invasion [37]. This scenario 

may not be inappropriate for a disease like malaria, which has strong strain-

specific immunity [87,135–137]. Strain-specific immunity limits the spread of pre-

existing diversity but is less effective at limiting the spread of novel strains. This 

provides a biological mechanism for strain-dependent frequency in the initial 

stages of invasion. Our model also does not does not take into account lasting 

immunity. Again, this may not be inappropriate for malaria, where strain-specific 

host immunity wanes quickly over time. The efficacy of the RTSS-vaccine against 

the 3D7 reference strain in recent clinical trials is remarkably short wanes over 

the course of a few weeks [138]. However, host immunity is also “strain-

transcending” [87,139] and cross-reactive immune responses make hosts less 

susceptible to infection by new strains than simulated here. Amplicon sequencing 

data from the RTSS-vaccine trials suggest that cross-reactive immunity is 

stronger if targeted against genetically-similar parasites [138]. Although our 

model simulates sexual reproduction, we assumed that there were no cross-

reactive immune responses between strains, even for highly related strains.  
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Thus, the models used in our study represent two opposite extremes. The 

traditional model represents complete strain-transcending immunity while our 

malaria coinfection model represents complete “strain-specific” immunity. Real 

transmission dynamics likely lie somewhere between these two extremes and 

future models will need to address how host immunity affects the strain dynamics 

of related parasite strains. One approach is to simulate parasites with different 

var antigens and weigh immunity according to the similarity of var types between 

different strains [140,141]. This approach is similar to the ones used in [62,142]. 

However, var antigens are susceptible to mitotic recombination [143], and it is 

unclear how strain-specific immunity could act on parasites with genome-wide 

relatedness. Data from immunogenic antigens, such as the csp1 and sera2 

antigens used in the RTSS vaccine, could also be used to model cross-reactivity 

and are not believed to undergo mitotic recombination. Future work will also need 

to examine how differences in infectiousness, such as that between acute and 

chronic infections, and asymptomatic infections could affect the results reported 

in this study 

 The use of population genetics for monitoring and assessing public health 

interventions relies on our ability to accurately predict how changing transmission 

affects parasite populations. Mechanistic mathematical models can reveal gaps 

in our knowledge and reveal critical features that need to be taken into account. 

While more complicated models are needed to accurately simulate and predict 

changes in natural populations, our framework enables us to develop a stronger 

intuition of the relative importance of different transmission structures.  Such 
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intuition is critical for interpreting data from the field and for the application of 

genetics for monitoring transmission and parasite evolution. 

  

5.5 Methods 

5.5.1 Model description 

Our model is a stochastic, agent-based simulation that simulates the 

transmission of different parasite strains. Simulations were run on randomly 

generated networks with 200 individuals and a total of 4000 simulations were run 

on each network type. Resident strain epidemics were initiated with initial 

frequencies of at least 30% to prevent stochastic loss. After  53 transmission 

cycles (~30 years), an uninfected individual was randomly infected with an 

imported strain. Each strain is represented by a genome consisting of 66,110 

sites. These sites were based off the sites with a minor allele frequency of > 0.01 

in Thiès, Senegal. Only the genomic positions of these sites were used in this 

study and we did not incorporate allele frequencies in our simulations. We 

assumed that the resident and imported strain were completely unrelated to one 

another and had no allelic variants in common.  

 

5.5.2 Modeling Transmission 

Transmission happened in discrete steps that occurred once every 21 

days. Each simulation lasts 500 transmission cycles. We determined the number 
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of transmission per infection by drawing from a Poisson distribution with a rate 

parameter of 0.21 transmissions/transmission cycle. Variations in transmission 

rate were not explored and we assumed that the infectiousness of each infection 

did not vary with either parasitemia or infection age.  

To simulate transmission, we used the framework described in (Plos 

CompBio paper, thesis chapter 2). During transmission, mosquitos sample 

gametocytes according to the gametcoyte parasite densities of the infected 

individual and the transmission advantage of each strain in the infection. Each 

strain’s transmission advantage was determined by the presence or absence of 

the imported allele in its genome. By definition, the transmission coefficient of the 

resident strain allele was always equal to one. The probability of sampling 

gametocyte strains was determined by multiplying the strain’s transmission 

advantage, s, with its gametocyte parasite density. These were then normalized 

so that the total sampling probabilities of each coinfecting strain was one.  

Sampled gametocyte pairs form gametes that fuse and undergo meiosis to 

create sporozoites that are then sampled from to determine the genomic 

composition of the next host.  

Our model allows for both superinfection and cotransmission, but 

reinfection of concurrent strains is not allowed. Superinfection and 

cotransmission rates are not specified by our model, and instead depend on how 

recipient hosts are chosen. Superinfection occurs if the model chooses a 

previoulsy infected individual to be the recipient host.  Recipient hosts are based 

on the connections in the network used to represent the transmission topology of 
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the population. Random networks were generated for each simulation using the 

random graph generators in NetworkX, a python package for the creation, 

manipulation, and study of complex networks. Scale free networks were 

generated using the Barabasi-Albert preferential attachment model. Ring lattices 

were generated using the Watts Strogatz algorithm for generating small world 

networks. Despite using the Watts Strogatz algorithm, we did not create small 

world networks and the rewiring probability was set to 0. 

 

5.5.3 Modeling Intra-host dynamics 

For each infected individual, our model simulates asexual and gametocyte 

parasite densities which change throughout infection time. These parasite 

dynamics are based on the parasite densities of children under the age of five in 

the EMOD/DTK malaria transmission model [144] (Supplemental Figure S5.3). 

Briefly, our model simulates asexual parasite densities by tracking the parasite 

densities of up to 10 antigenic variants per strain. These antigenic variants are 

strain-specific and characterized by a normal distribution whose peak height 

depends on the time the strain has been present in the infection. We assume an 

incubation period of 7 days and that gametocytes appear 10 days after infection. 

The time separating antigen wave peaks are loosely based on the rate of var 

antigen switching in natural infections and drawn from a uniform distribution 

ranging from 8-30 days. While we allowed antigen waves to overlap, we 
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assumed that antigens went extinct 15 days after peak parasitemia for that 

antigenic wave was reached.  

Gametocyte densities are proportional to the asexual parasite densities 

and assumed to follow an exponentially modified Gaussian probability density 

function (sigma = 1.2, lambda = 0.5) over time. Each antigen has a different 

gametocyte production rate. Gametocyte production rates are drawn from a 

bounded lognormal variate distribution (mu = -3, sigma = 2) with a maximum 

value of 0.1 and a minimum value of 3e-4 [145]. Strains durations within each 

infection was determined by drawing from a lognormal variate distribution (mu 

=5.13, sigma = 0.8). This distribution reflects the infection duration times from the 

cross-sectional surveys of village populations used in the Garki project and in 

villages in Ghana and Tanzania [23,125]. Our model assumes that the asexual 

and gametocyte parasite densities of coinfecting strains are independent of one 

another and models each separately. However, a maximum of 10 coinfecting 

strains were allowed in each polygenomic infection. Once a strain expired, the 

individual was immediately susceptible to reinfection by the same strain. No 

lasting immunity was modeled.   

 

5.6 Addendum 

5.6.1 Author’s contributions 
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EW provided the initial model design, which was heavily modified by WW. WW 

was responsible for project design and all data analyses. DLH and DFW 

supervised the project. 
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Chapter 6: Conclusion 

Using population genomics to understand parasite transmission and 

evolution hinges on our ability to integrate population genetics into existing 

epidemiological frameworks. The integration of these fields will require advances 

in data analysis and theory development: how do we layer data from multiple 

sources into a single conceptual framework? Importantly, these advances need 

to act in concert and should not be developed in isolation. Theory is needed to 

correctly interpret population genomic signals and predict how changing 

transmission conditions will affect parasite evolution. Likewise, because all 

theoretical models rely on simplifying assumptions, data analysis can reveal 

when assumptions are appropriate and when assumptions are erroneous. 

Ideally, data analysis and theory development should form a feedback loop 

because neither can advance without the other. To quote Dr. Sean Caroll, a 

theoretical cosmologist at Caltech, “Theory without data is blind. Data without 

theory is lame.”   

As with all major scientific works, the scope of this thesis has expanded 

since its initial conception. I first described the genetic relatedness of coinfecting 

strains in polygenomic infections collected from Thiès, Senegal. At the time, our 

understanding of cotransmission and superinfection was fairly simplistic: 

coinfecting strains in superinfections were unrelated while those in 

cotransmissions were related. Based on the relatedness of these polygenomic 

infections, we concluded that cotransmission is common in natural parasite 

populations. Our study showed that cotransmission is highly prevalent in natural 
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populations and that it is unlikely that all polygenomic infections are the result of 

superinfection. This study provided evidence against the assumption used in 

mathematical models that polygenomic infections are the result of superinfection. 

However, this study also raised new issues. How reliable is genetic 

relatedness for identifying cotransmission events? Are, as a previous study 

suggested [1], polygenomic infections with highly related strains evidence of 

serial cotransmission? When considering transmission and parasite mating, we 

quickly realized that cotransmitted parasites are not always related; of the nine 

ways pedigrees characterizing cotransmitted parasites, three of them involve the 

cotransmission of unrelated parasites. Far from the simple assertion that 

“cotransmission = related,” cotransmission is a complicated process and 

cotransmitted parasites can have a wide range in relatedness values. Our 

simulations showed that the reliability of using genetic relatedness for identifying 

cotransmissions depends on the greater population genetic and epidemiological 

context. Our simulations predict that cotransmission events in highly diverse 

populations are much less likely to transmit related strains than those in lower 

diversity populations. 

Looking back, it was fortunate that my first study analyzed the relatedness 

of polygenomic infections from a mid-low transmission setting. If the initial study 

had analyzed polygenomic infections collected from highly diverse populations in 

high transmission setting, we may have erroneously concluded that 

cotransmission is not a significant aspect of parasite transmission. Our 

simulations shows how theory can help us understand the data collected in the 
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field and generate new lines of investigation. One hypothesis I am interested in 

pursuing is whether the relatedness of polygenomic infections differs between 

high and low transmission settings. To date, there has been no systematic study 

comparing the relatedness of polygenomic infections collected from low and high 

transmission settings. Optimistically, the relatedness of polygenomic infections 

may be a new population genetic correlate of transmission and thus of interest 

for future for future genetic epidemiology studies.  

Although I previously stated that today’s challenges lie in data 

interpretation, there are also major challenges in data collection and data 

generation that need to be addressed.  In our initial study, because we were 

concerned about strain ascertainment bias, we sequenced patient samples 

directly without leukocyte depletion or hybrid selection.  As a result, the 

sequences used in our initial study had poor sequencing depth and coverage. 

This prompted our investigation of whether selective whole genome amplification 

could be used to accurately characterize the strain dynamics of polygenomic 

infections. Selective whole genome amplification could increase the number of 

high quality whole genome sequences from poorly sampled populations where 

dried filter paper blood spots are easier to obtain than venous blood draws.  

Finally, my last study provides an example of why it is critical that 

population genetic models be integrated with existing epidemiological 

frameworks of understanding transmission. Contact structure and transmission 

topology are important epidemiology concepts that are acknowledged but not 

well explored in population genomic studies. Current genetic epidemiology 
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models do not handle sexual reproduction and coinfection very well, and thus 

unsatisfactory for making predictions regarding malaria population genetics. 

Using an evolutionary invasion framework, I show how transmission topology can 

affect malaria evolutionary dynamics.  

In this thesis, I focused on the consequences of malaria coinfection and 

how it provides the opportunity for sexual recombination and cotransmission. 

However, the story of how coinfection and cotransmission affects malaria 

genetics is far from complete. Intra-host strain dynamics due to host immunity 

and inter-strain competition are only lightly touched upon in this thesis and will 

require additional genomic analyses and modeling. Even with our limited scope, 

we show that coinfection and cotransmission are major aspects of malaria 

transmission that have an impact on malaria population genomics. This research 

contributes to our understanding of malaria population genomics and the 

importance of coinfection and sexual recombination in the context of 

transmission.  
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Appendix A: Chapter 2 Supplemental  

 

 

 

Supplemental Figure S2.1 Developing a trusted SNP set.  

A) Histogram of allele balance across our set of preliminary trusted SNPs by 

sample.  The preliminary SNP set consisted of 440,000 SNPs identified as 

having a non-unanimous pileup across 190 Senegal samples. An initial cut off of 

80% was used to identify a set of putatively monogenomic infections. B) The 

percent non-unanimous reads across all the 440,000 SNPs in the 56 randomly 

chosen putative monogenomic infections.  C) Cumulative density plot of the 

maximum percent of non-unanimous reads at each of the 440,000 sites. The 

read pileup over most sites has less than 0.2% of their reads with an alternative 

allele.   
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Supplemental Figure S2.2 Histogram of proportions of reads supporting the 

major read  

Histograms showing the proportions of reads supporting the major read over 

each of the 3132 trusted SNP sites for a variety of lab-generated mixtures. Sites 

where the proportion is equal to one indicates a unanimous read pileup. Sites 

where the proportion is 0.6 indicates that 60% of the reads show support for the 

major variant present in the read pileup while 40% if the reads show support for 

the minor variant.  Blue histogram represents the lab mixture where COI = 1, 

green COI = 2, red COI = 3, orange COI = 4, and yellow COI = 5. 
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Supplemental Figure S2.3 Trusted SNP set coverage for all 111 samples 

collected from 2011-2013. 

Boxplots showing the number of trusted SNP sites with at least 1 read support. 

Each dot represents a sample collected from 2011-2013. Samples collected from 

2011 had the most number of trusted SNP sites represented, while samples 

collected from 2012-2013 had a broad range in the number of represented sites.  
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Supplemental Figure S2.4 Sensitivity of HMM to different SNP subsets.  

A) Mean relatedness estimates across different SNP subsets. For the genome-

wide SNP set and the trusted SNP set, the mean is equal to the observed 

relatedness. For all other SNP sets, the mean represents the average 

relatedness across 40 randomly generated subsets. Each line represents a 

particular pairwise comparison  

B) Standard deviation of relatedness estimates across different SNP subsets. 

For the genome-wide SNP set and the full trusted SNP set, we cannot calculate 

a standard deviation and are thus not plotted. For all other SNP sets, we 

calculated the standard deviation across 40 randomly generated subsets. Each 

line represents a particular pairwise comparison.   
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Supplemental Figure S2.5 3132 trusted SNP set vs genome-wide SNP set 

Scatterplots representing the concordance (A) and relatedness (B) calculating 

using a set of 3132 trusted SNPs or the a set of 14,197 genome-wide SNPs. 

Concordance is the percent similarity at minor allele sites while relatedness is the 

proportion of the genome that is IBD. Individual points represent individual 

sample pairs. The blue diagonal line represents the 1-1 expectation.  
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Supplemental Figure S2.6 Histogram of relatedness within polygenomic 

infections 

Histogram of jackknife estimates of the mean relatedness within 31 polygenomic 

infections collected from patients in Senegal from 2011-2013. 
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Supplemental Figure S2.7 IBD map of the monogenomic strains related to 

SenT009.11 

Orange represents the section of the genome that is IBD while grey represents 

the section of the genome that is not IBD.  
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Supplemental Figure S2.8 Naive resampling relatedness distributions  

Boxplots of the relatedness between monogenomic sample pairs and the 

observed polygenomic infections. The distribution of relatedness among 

monogenomic infections is highly skewed, with 99% of the data having a 

relatedness of 0. The mean relatedness of this distribution is 0.07. The 

distribution of relatedness within polygenomic infections is much less skewed, 

with a mean relatedness of 0.4. 
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Supplemental Table S2.1 

 

Table of the strain composition and ratios of the lab-generated strain mixtures.  A 

= SenT148.2009, B = SenT111.2009, C = SenT165.2009, D = SenT033.2009, 

and E = SenT015.2009. Sample concentrations were determined by nanodrop 

(Thermo).The mixtures of genomic DNA were made at final concentrations of 

5ng/ul.  

 

ID Combination Mixture 

COI5 ABCDE 20:20:20:20:20 

COI4 ABCD 25:25:25:25 

   

COI3a CDE 33:33:33 

COI3b CDE 40:20:40 

COI3C CDE 45:10:45 

COI3d CDE 49:02:49 

   

COI2a AB 50:50 

COI2b AB 75:25 

COI2c AB 90:10 

COI2d AB 95:05 

   

COI2e BC 50:50 

COI2f BC 75:25 

COI2g BC 90:10 

COI2h BC 95:05 

   

COI1A A 100 

COI1B B 100 

COI1C C 100 

COI1D D 100 

COI1E E 100 
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Appendix B: Chapter 3 Supplemental  

 

 

Supplemental Figure S3.1 Observed intercrossover distances from progeny of 

lab crossed strains.  

Histograms of the distribution of intercrossover distances (cM) for each 

chromosome in the P. falciparum genome. Dark blue indicate distances whose 

boundaries fall within each chromosome and light blue represents distances that 

span the entire chromosome.  
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Supplemental Figure S3.2 IBD Map Comparison.  

Comparison of the parental inheritance boundaries defined by [68] (left) and our 

HMM (right) for A) 3D7_ERR019061 (parental) vs C12_ERR019063 (progeny) B) 

7G8_ERR027099 (parental) vs AUD_ERR029406 (progeny) and C) 

DD2_ERR012840 (parental) vs 3BA6_ERR126027 (progeny). For the maps 

based on the boundaries defined by [68], only the results from chromosomes 

with evidence of recombination are shown. Orange coloration indicates a section 
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(Supplemental Figure S3.2, continued) of the genome inherited from 

3D7_ERR019061, 7G8_ERR027099, or DD2_ERR012840 while grey sections 

indicate a section inherited by the other parent in the cross. Our HMM 

occasionally identified short IBD segments not present in the data from [68]. 
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Supplemental Figure S3.3 Relatedness distributions for each of the 9 pedigrees.  

Histograms of the expected relatedness for each pedigree. Orange: Relatedness 

of between progeny strains. Yellow: relatedness of progeny strains vs one of the 

parental strains. The blue dotted line represents the expected relatedness of half-

siblings (0.25), the green dotted line represents the expected relatedness of  
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(Supplemental Figure S3.3, continued) unique meiotic siblings (0.33), and the 

purple dotted line  represents the expected relatedness of full-siblings / parent-

offspring strains (0.5). 
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Supplemental Figure S3.4 Relatedness of cotransmitted strains in multiple oocyst 

simulations with high infected hepatocyte counts.  

Violin plots of the relatedness of cotransmitted strains in simulations where the 

infected hepatocyte count was 20 and the oocyst count was 2 (A) or 20 (B). A 

box plot is drawn in the center of each violin plot, where the white dot represents 

the median of the distribution, the thicker line represent the interquartile range, 

and the thinner line represents the whiskers of the box plot, up to 1.5 times the 

interquartile range. The horizontal dotted line represents the value of 0.33.  
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Supplemental Figure S3.5 Pedigree and kinship frequencies from multiple oocyst 

simulations with high infected hepatocyte counts.  

Stacked line charts of the frequencies of different pedigrees (A-D) and kinships 

(a-d) plotted against oocyst count. Each subplot represents a scenario with a 

different COI (A/a = 2, B/b = 3, C/c = 4, D/d = 20). Results from simulations 

where infected hepatocyte count = 20 are shown. Genetic clones are defined as 

those emerging from oocysts characterized by pedigree 1 and 3; genetically 

identical meiotic siblings are still classified as meiotic siblings in this graph 
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Supplemental Figure S3.6 Non-uniform gametocyte sampling probabilities 

Strain frequencies in COI 2 (A), 4 (B) and 20 (C) infections. We examined strain 

proportions ranging from 1:1 to 10:1 for all COI infections. We also examined a 

1000:1 ratio for COI = 20 infections. Ratios exceeding 10:1 were not examined in 

the COI =2 and COI =4 infections because the minor strains become so 
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(Supplemental Figure S3.6, continued) infrequent that the infections could be 

considered lower COI infections. B) Expected relatedness of cotransmitted 

strains after a single cotransmission event. Only results using oocyst and 

infected hepatocyte counts of 2 are shown. C) Kinships among transmitted 

parasites from infections with different strain proportions. Only results using 

oocyst and infected counts of 2 from a COI = 2 infection are shown.  
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Supplemental Figure S3.7 Relatedness of cotransmitted strains under variable 

oocyst and infected hepatocyte conditions.  

Violin plots of the relatedness of cotransmitted strains where oocyst and infected 

hepatocyte counts were drawn from distributions resembling those in real 

transmission events. A box plot is drawn in the center of each violin plot, where 

the white dot represents the median of the distribution, the thicker line represent 

the interquartile range, and the thinner line represents the whiskers of the box 

plot, up to 1.5 times the interquartile range. The horizontal dotted line represents 

the value of 0.33. 
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Supplemental Figure S3.8 3D7 reference allele proportions in polygenomic 

infections collected from Thiès, Senegal 

Representative 3D7 reference allele proportions in the pileups of all sites with a 

non-uniform read pileup from three COI = 2 polygenomic infections collected 

from Thiès, Senegal. These samples were previously sequenced and used in 

[40]. These reference allele proportions reveal a wide range in strain proportions, 

ranging from 1:1 to 9:1.  
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Supplemental Table S3.1 Observed chiasma events from progeny of lab crossed 

strains. 

 

  

Chromosome( Average(Number(of(!
Chiasma(Events(

Standard(
Deviation(

1( 0.38! 0.68!
2( 0.78! 0.99!
3( 0.96! 1.01!
4( 0.75! 0.84!
5( 1.01! 0.83!
6( 1.14! 1.03!
7( 1.06! 1.1!
8( 1.06! 1.2!
9( 1.26! 1.04!
10( 1.19! 1.13!
11( 1.55! 1.41!
12( 1.57! 1.31!
13( 1.97! 1.34!
14( 2.45! 1.66!

!
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Appendix C: Chapter 4 Supplemental  

Supplemental Table S4.1 

Sheet 1: List of all the mock infections generated for this study. 
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(Supplemental Table S4.1, continued)  

Sheet 2: List of the 96 samples submitted for sequencing. 
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(Supplemental Table S4.1, sheet 2, continued)  
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Supplemental Table S4.2 

Sheet 1: The genomic coordinates of all non-core regions.  
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(Supplemental Table S4.2, continued) Sheet 2: All genes that fall within the non-

core regions of the genome. 
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(Supplemental Table S4.2, sheet 2, continued) 
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Supplemental Table S4.3 

List of primers used in the SWGA reaction 

sWGA primers for Plasmodium falciparum 

Primer 

name 
Primer sequence* 

Primer 

quantity to 

order 

Primer 

formulation 

Pf1 ATATATATAT*A 250 nmole STD 

Pf2 TATATATATAT*T 250 nmole STD 

Pf3 TATATATATA*A 250 nmole STD 

Pf4 TAATATATA*T 250 nmole STD 

Pf5 TATATATATT*T 250 nmole STD 

Pf6 ATTATTATTA*T 250 nmole STD 

Pf7 TAATAATAAT*A 250 nmole STD 

Pf8 AAAAAAAAAAA*A 250 nmole STD 

Pf9 AATAATAATA*A 250 nmole STD 

Pf10 TATTATATA*T 250 nmole STD 
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Appendix D: Chapter 5 Supplemental  

 

 

Supplemental Figure S5.1 Uninfected individuals on ring lattice networks are 

clustered 

Distributions of the average proportion of edges connected to uninfected 

individuals per uninfected node in A) random regular network, B) Barabasi scale 

free network and C) ring lattice network from 200 simulations. The distribution is 

skewed in the ring lattice networks and most uninfected nodes are only 

connected to other uninfected nodes. D) An epidemic run on a ring lattice 
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(Supplemental Figure 5.1, continued) network immediately prior to the 

importation of a second strain. Nodes infected with the resident strain are colored 

red while uninfected nodes are colored grey. Edges that are drawn between one 

or more infected individuals are also in red. Edges connecting uninfected nodes 

are in grey. Uninfected individuals tend to cluster in epidemics run on ring lattice 

networks. 

 

 

Supplemental Figure S5.2 Polygenomic infection fraction our malaria coinfection 

model 

The fraction of infected individuals that are polygenomic in epidemics run on 

complete (orange), random regular (green), scale free (blue) and ring lattices 

(red). Complete and random regular networks have the highest proportion of 

polygenomic fractions because transmission is evenly distributed and random. 

Ring lattices had the lowest polygenomic fractions.  
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Supplemental Figure S5.3 Polygenomic infection fraction our malaria coinfection 

model 

Average asexual parasite densities and gametocyte densities of infections 

coinfected with up to 10 strains. Densities are independently simulated for all 

coinfecting strains. This allows us to simulate time-dependent parasite strain 

proportions, but has the side effect of increasing parasite densities in 

polygenomic infections. Asexual and gametocyte parasite densities are used to 

guide mosquito sampling probabilities and have no bearing on infection duration 

or infectivity.  
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