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ANOTHER REALIZATION OF THE CATEGORY OF MODULES

OVER THE SMALL QUANTUM GROUP

SERGEY ARKHIPOV AND DENNIS GAITSGORY

Introduction

0.1. Let g be a semi-simple Lie algebra. Given a root of unity (cf. Sect. 1.2), one
can consider two remarkable algebras, Uℓ and uℓ, called the big and the small quantum
group, respectively. Let Uℓ -mod and uℓ -mod denote the corresponding categories of
modules. It is explained in [16] and [1] that the former is an analog in characteristic 0
of the category of algebraic representations of the corresponding group G over a field
of positive characteristic, and the latter is an analog of the category of representations
of its first Frobenius kernel.

It is a fact of crucial importance, that although Uℓ is introduced as an algebra de-
fined by an explicit set of generators and relations, the category Uℓ -mod (or, rather,
its regular block, cf. Sect. 5.1) can be described in purely geometric terms, as perverse

sheaves on the (enhanced) affine flag variety F̃l, cf. Sect. 6.5. This is obtained by com-
bining the Kazhdan-Lusztig equivalence between quantum groups and affine algebras

and the Kashiwara-Tanisaki localization of modules over the affine algebra on F̃l. This
paper is a first step in the project of finding a geometric realization of the category
uℓ -mod. We should say right away that one such realization already exists, and is a
subject of [6]. However, we would like to investigate other directions.

We were motivated by a set of conjectures proposed by B. Feigin, E. Frenkel and
G. Lusztig, which, on the one hand, tie the category uℓ -mod to the (still hypothetical)
category of perverse sheaves on the semi-infinite flag variety (cf. [7], [8]), and on the
other hand, relate the latter to the category of modules over the affine algebra at the
critical level.

Since we already know the geometric interpretation for modules over the big quantum
group, it is a natural idea to first express uℓ -mod entirely in terms of Uℓ -mod. This is
exactly what we do in this paper.

0.2. According to [13], there is a functor Fr∗ from the category of finite-dimensional
representations of the Langlands dual group to Uℓ -mod. In particular, we obtain a
bi-functor: Ǧ -mod×Uℓ -mod → Uℓ -mod: V,M → Fr∗(V )⊗M . We introduce the
category C(AG,OǦ) to have as objects Uℓ-modules M , which satisfy the Hecke eigen-
condition, in the sense of [5].

In other words, an object of C(AG,OǦ) consists of M ∈ Uℓ -mod and a collection of
maps αV : Fr∗(V )⊗M → V⊗M , where V is the vector space underlying the represen-
tation V . The main result of this paper is Theorem 2.4, which states that there is a
natural equivalence between C(AG,OǦ) and uℓ -mod.
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As the reader will notice, the proof of Theorem 2.4 is extremely simple. However, it
allows one to give the desired description of the regular block uℓ -mod0 of the category
of uℓ-modules in terms of perverse sheaves on the enhanced affine flag variety satisfying
the Hecke eigen-condition, cf. Sect. 6.4.

In a future publication, we will explain how Theorem 6.4 can be used to define a
functor from uℓ -mod0 to the category of perverse sheaves on the semi-infinite flag vari-
ety and to other interesting categories that arise in representation theory. In particular,
uℓ -mod0 obtains an interpretation in terms of the geometric Langlands correspondence:
it can be thought of as a categorical counterpart of the space of Iwahori-invariant vec-
tors in a spherical representation.

In another direction, Theorem 2.4 has as a consequence the theorem that uℓ -mod
is equivalent to the category of G[[t]]-integrable representations of the chiral Hecke
algebra, introduced by Beilinson and Drinfeld. (We do not state this theorem explicitly,
because the definition of the chiral Hecke algebra is still unavailabale in the published
literature.)

0.3. Let us briefly describe the contents of the paper.
In Sect. 1 we recall the basic definitions concerning quantum groups.
In Sect. 2 we state our main theorem and its generalization for pairs of bi-algebras

(A, a).
In Sect. 3 we prove Theorem 2.4 in the general setting.
In Sect. 4 we discuss several categorical interpretations of Theorem 2.4 and, in

particular, its variant that concerns the graded version
•
uℓ of uℓ.

In Sect. 5 we discuss the relation between the block decompositions of Uℓ and uℓ.
Finally, in Sect. 6 we prove Theorem 6.4, which provides a geometric interpretation

for the category uℓ -mod0.

In this paper we consider quantum groups at a root of unity of an even order, in
order to be able to apply the Kazhdan-Lusztig equivalence. However, the main result
i.e. Theorem 2.4 holds and can be proved in exactly the same way in the case of a
root of unity of an odd order, with the difference that in the definition of the quantum
Frobenius, the Langlands dual group Ǧ must be replaced by G.

0.4. Acknowledgments. The main idea of this paper, i.e. Theorem 2.4, occurred to
us after a series of conversations with B. Feigin, M. Finkelberg and A. Braverman, to
whom we would like to express our gratitude.

In addition, we would like mention that Theorem 2.4, was independently and almost
simultaneously obtained by B. Feigin and E. Frenkel.

1. Quantum groups

1.1. Root data. Let G be a semi-simple simply-connected group. Let T be the Cartan
group of G and let (I,X, Y ) be the corresponding root data, where I is the set of vertices
of the Dynkin diagram, X is the set of characters T −→ Gm (i.e. the weight lattice
of G) and Y is the set of co-characters Gm −→ T (i.e. the coroot lattice of G). We
will denote by 〈 , 〉 the canonical pairing Y ×X −→ Z. For every i ∈ I, αi ∈ X (resp.,
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α̌i ∈ Y ) will denote the corresponding simple root (resp., coroot); for i, j ∈ I we will
denote by ai,j the corresponding entry of the Cartan matrix, i.e. ai,j = 〈α̌i, αj〉.

Let (·, ·) : X ×X −→ Q be the canonical inner form. In other words, ||αi||
2 = 2di,

where di ∈ {1, 2, 3} is the minimal set of integers such that the matrix (αi, αj) := di ·ai,j
is symmetric.

1.2. The big quantum group. Given the root data (I, Y,X) Drinfeld and Jimbo
constructed a Hopf algebra Uv over the field C(v) of rational functions in v. Namely,
Uv has as generators the elements 1 Ei, Fi, i ∈ I, Kt, t ∈ T and the relations are:

Kt1 ·Kt2 = Kt1·t2 ,

Kt · Ei ·K
−1
t = αi(t) ·Ei, Kt · Fi ·K

−1
t = αi(t

−1) · Fi

Ei · Fj − Fj · Ei = δi,j ·
Ki −K−1

i

vdi − v−di
, where Ki = Kdi·α̌i(v),

∑

r+s=1−aij

(−1)s
[
1− aij

s

]

di

Er
i ·Ej · E

s
i = 0 if i 6= j,

∑

r+s=1−aij

(−1)s
[
1− aij

s

]

di

F r
i · Fj · F

s
i = 0 if i 6= j, where

[
m
t

]

d

:=

t∏

s=1

vd·(m−s+1) − v−d·(m−s+1)

vd·s − v−d·s
for m ∈ Z.

The co-product is given by the formulae:

∆(Ei) = Ei ⊗ 1 +Ki⊗Ei,

∆(Fi) = Fi ⊗K−1
i + 1⊗Fi,

∆(Kt) = Kt⊗Kt,

and the co-unit and antipode maps are

ǫ(Ei) = ǫ(Fi) = 0, ǫ(Kt) = 1,

τ(Kt) = Kt−1 , τ(Ei) = −K−1
i ·Ei, τ(Fi) = −Fi ·Ki.

Let now ℓ be a sufficiently large even natural number, which divides all the di’s. We
set ℓi = ℓ/di and let us fix a primitive 2ℓ-th root of unity ζ. Let R ⊂ C(v) denote the
localization of the algebra C[v, v−1] at the ideal corresponding to v − ζ.

In his book [13], G. Lusztig defined an R-lattice UR inside Uv. Namely, UR is an
R-subalgebra of Uv generated by Ei, Fi,Kt and the following additional elements:

1We are using a slightly non-standard version of U, in which the toric part coincides with the
group-algebra of the classical torus T
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E
(ℓi)
i :=

Eℓi
i

[ℓi]di !
, F

(ℓi)
i :=

F ℓi
i

[ℓi]di !
, where [m]d! =

m∏

s=1

vd·s − v−d·s

vd − v−d
,

and

[
Ki;m

t

]

di

:=

t∏

s=1

Ki · v
di·(m−s+1) −K−1

i · v−di·(m−s+1)

vdi·s − v−di·s
, for m ∈ Z.

It is shown in loc.cit. that UR is a Hopf subalgebra of Uv. Finally, following Lusztig
we set Uℓ to be the reduction of UR modulo the ideal (v − ζ) ⊂ R. By construction,
Uℓ is a Hopf algebra over C.

The main object of study of this paper is not so much the algebra Uℓ itself, but
rather certain categories of its representations. We introduce the category Uℓ -mod
as follows: its objects are finite-dimensional representations M of Uℓ, for which the
action of the Kt’s comes from an algebraic action of the torus T on M , and such that

for λ ∈ X, the action of

[
Ki;m

t

]

di

on the subspace of M of weight λ ∈ X is given by

the scalar

[
〈α̌i, λ〉+m

t

]

di

. (Note that the elements

[
m
t

]

di

∈ C(v) all belong to R,

and hence they are well-defined in C = R/(v − ζ).)
The category Uℓ -mod is a monoidal category endowed with a forgetful functor to the

category of finite-dimensional C-vector spaces. Hence, there exists a Hopf algebra, such
that the category Uℓ -mod is equivalent to the category of finite-dimensional co-modules
over it. We will denote this Hopf algebra by AG.

One should think of AG as of a quantization of the algebra of regular functions on the
group G. It is known that AG is finitely generated as an associative algebra. Moreover,
we will see that AG contains a large commutative subalgebra, over which it is finitely
generated as a module.

1.3. Quantum Frobenius homomorphism. Let (I,X∗, Y ∗) be the Langlands dual
root data. In other words, X∗ := Y and Y ∗ := X are the weight and the coweight
lattices of the Langlands dual torus Ť . The corresponding semi-simple group Ǧ is by
definition of the adjoint type. Let ǧ denote the Lie algebra of Ǧ. Let Ǧ -mod denote
the category of finite-dimensional Ǧ-modules and let OǦ be the algebra of functions on

Ǧ. We will denote by U(ǧ) the usual universal enveloping algebra of ǧ.

The canonical inner form (·, ·) on X gives rise to the inner form on Y , which is not
necessarily integral-valued, since ||α̌i|| =

2
di
. However, if we multiply the latter by ℓ,

we obtain an integral valued form (·, ·)ℓ : Y × Y −→ Z. By construction,

||α̌i||
2
ℓ = 2 · ℓi and (µ̌, α̌i)ℓ = ℓi · 〈µ̌, αi〉.

Using the pairing (·, ·)ℓ we obtain the map φ : Y −→ X given by µ̌ 7→ (µ̌, ·)ℓ and the
map φT : T −→ Ť .

Following Lusztig ([13], Theorem 35.1.9) one defines the quantum Frobenius mor-
phism. For us, this will be a functor

Fr∗ : Ǧ -mod −→ Uℓ -mod,
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constructed as follows:
Starting with a Ǧ-module V , we define a Uℓ-action on it by letting the torus T act

via

T
φT→ Ť →֒ Ǧ,

which defines the action of the Kt’s and the

[
Ki;m

t

]

di

’s.

The generators Ei, Fi will act by 0, and E
(ℓi)
i , F

(ℓi)
i will act as the corresponding

Chevalley generators ei and fi of U(ǧ).
It is essentially a theorem of Lusztig, ([13], Theorem 35.1.9) that the above formu-

lae indeed define an action of Uℓ on V . Moreover, from loc.cit. it follows that the
functor Fr∗ preserves the tensor structure and is full. Hence, we obtain an injective
homomorphism of Hopf algebras φG : OǦ −→ AG.

Let Ǧsc be the simply-connected cover of the group Ǧ and let X∗
sc, Y

∗
sc and Ťsc be the

corresponding objects for Ǧsc. In particular, Y identifies with the coroot lattice inside
the coweight lattice X∗

sc, and Y ∗
sc = Span(αi).

Since φ(α̌i) = ℓi · αi, we obtain that the map φ gives rise to a map φsc : X
∗
sc → X.

Therefore, we have a map φT,sc : T → Ťsc and the functor Fr∗ : Ǧ -mod → Uℓ -mod

can be extended to a tensor functor Fr∗sc : Ǧsc -mod → Uℓ -mod by the same formula.

1.4. The small quantum group. Following Lusztig, we first define the graded version

of the small quantum group, denoted
•
uℓ.

By definition, this is a sub-algebra of Uℓ generated by Ei, Fi, i ∈ I and all the Kt’s.

From the formula for coproduct of the above generators, it follows that
•
uℓ is in fact

a Hopf subalgebra of Uℓ.

We define the category
•
uℓ -mod to consist of all finite-dimensional uℓ-modules M , on

which the action of the Kt’s comes from an algebraic action of T on M .

The restriction functor Uℓ -mod →
•
uℓ -mod corresponds to a map of Hopf algebras

AG →
•
aG.

Finally, we are ready to introduce our main object of study– the small quantum group,
uℓ. One would want it to be a Hopf subalgebra of Uℓ, universal with the property that
it acts trivially on representations of the form Fr∗(V ).

When one works with a root of unity of an odd order, the corresponding subalgebra
is just generated by Ki, Ei and Fi, i ∈ I. However, in the case of a root of unity of
an even order considered in the present paper, it appears that a Hopf subalgebra with
such properties does not exist.

In our definition, uℓ will be just an associative subalgebra of Uℓ, generated by
KiEi, Fi, i ∈ I and Kt for Kt ∈ ker(φT ). It is easy to see that uℓ is finite-dimensional.

We define the category uℓ -mod to have as objects all finite-dimensional uℓ-modules.
By construction, we have a restriction functor Res : Uℓ -mod → uℓ -mod. It corre-

sponds to a homomorphism of co-algebras AG → aG.

Note that although the co-product on Uℓ does not preserve uℓ, it maps it to uℓ⊗Uℓ.
This means that aG has a structure of a right AG-module. In categorical terms, we
have a well-defined functor (M ∈ uℓ -mod, N ∈ Uℓ -mod) 7→ M ⊗ Res(N) ∈ uℓ -mod.
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Remark. As we shall see later, although aG is not a Hopf algebra, the category uℓ -mod
will be in fact a monoidal category. The “paradox” is explained as follows: the tau-
tological forgetful functor uℓ -mod → {Vector spaces} cannot be made into a tensor
functor so that the composition

Uℓ -mod
Res
→ uℓ -mod → {Vector spaces}

is the standard fiber functor on Uℓ -mod.

Consider now the restriction of the quantum Frobenius to uℓ, i.e. the composition

Ǧ -mod
Fr∗
−→ Uℓ -mod

Res
−→ uℓ -mod .

From the formula for Fr∗ it is easy to see that it factors through the forgetful functor
V 7→ V from Ǧ -mod to vector spaces, i.e.

Ǧ -mod → {Vector spaces}
co-unit
→ uℓ -mod .

Moreover, we have the following assertion ([13], Theorem 35.1.9):

Proposition 1.5. Let M be an object of Uℓ -mod. Then

(1) The subspace of uℓ-invariants Muℓ ⊂ M (i.e. m ∈ Muℓ if u · m = ǫ(u) · m for
u ∈ uℓ) is Uℓ-stable.

(2) If the uℓ-action on M is trivial, there exists a (unique up to a unique isomorphism)
Ǧ-module V such that M ≃ Fr∗(V ).

For completeness, let us sketch the proof of the second part of this proposition.

Proof. From the short exact sequence 1 → ker(φT ) → T → Ť → 1 we obtain the
T -action on M comes from a Ť -action.

In particular, the element

[
Ki; 0
ℓi

]

di

acts on M as the Lie algebra element hi ∈ ǧ.

We define the action of ei and fi as E
(ℓi)
i and F

(ℓi)
i , respectively, and we need just

to check that the relation [ei, fi] = hi holds. But this follows from the formula

[E
(ℓi)
i , F

(ℓi)
i ] = Σ

0≤k<ℓi
(

1

[k]di !
)2 · (Ei)

k ·

[
Ki; 2k
ℓi − k

]

di

· (Fi)
k,

and all the terms but

[
Ki; 0
ℓi

]

di

belong to the two-sided ideal generated by the Ei’s

and the Fi’s.

In a similar fashion one defines the “simply-connected” version of uℓ, which we will
denote by uℓ,sc. By definition, this is an associative subalgebra of uℓ generated by
KiEi, Fi, i ∈ I and Kt for Kt ∈ ker(φT,sc).

The category uℓ,sc -mod and the co-algebra aGsc are defined in a similar way. The

analog of Proposition 1.5 above holds for uℓ replaced by uℓ,sc and Ǧ replaced by Ǧsc,
respectively.
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2. The main result

2.1. The category C(AG,OǦ). We now come to the definition crucial for this paper.

To avoid redundant repetitions, we will work with uℓ (resp., Ǧ), while the case of uℓ,sc
(resp., Ǧsc) can be treated similarly.

Let us consider the ind-completions of the categories Uℓ -mod, uℓ -mod and Ǧ -mod.
Each of these categories consists of all co-modules over the corresponding co-algebra,
i.e. AG, aG or OǦ, respectively.

We define the category C(AG,OǦ) to have as objects vector spaces M endowed with
an action of the algebra OǦ and with a co-action of the co-algebra AG compatible in
the following natural way:

co-ac(f ·m) = ∆(f) · (co-ac(m)).

Here f ∈ OǦ, m ∈ M , co-ac : M −→ AG⊗M denotes the co-action map, the element
∆(f) belongs to OǦ⊗OǦ ⊂ AG⊗AG and acts on AG⊗M . Morphisms in this category
are the ones preserving both the action and the co-action.

In other words, we need that the action map OǦ⊗M → M is a map of AG-comodules,
or equivalently, that the co-action map M → AG⊗M is the map of OǦ-modules.

An example of an object of C(AG,OǦ) is M = OǦ, with the natural AG-coaction
(coming from the fact that OǦ is a Hopf subalgebra in AG) and the OǦ-action. Another
basic example is M = AG.

2.2. A reformulation. Here is a more “geometric” way to formulate this definition.
We claim that the category C(AG,OǦ) is equivalent to the category of pairs

(M ∈ AG -comod, {αV , ∀V ∈ Ǧ -mod}),

where each αV is a map of AG-comodules (i.e., of Uℓ-modules)

αV : Fr∗(V )⊗M → V ⊗M

(recall that for V ∈ Ǧ -mod, the notation V stands for the underlying vector space),
such that

• For V = C, αV : M → M is the identity map.
• For a map V1 → V2, the diagram

Fr∗(V1)⊗M
αV1−−−→ V1 ⊗M

y
y

Fr∗(V2)⊗M
αV2−−−→ V2 ⊗M

commutes.
• A compatibility with tensor products holds in the sense that the map

Fr∗(V1)⊗ Fr∗(V2)⊗M → Fr∗(V1⊗V2)⊗M
αV1⊗V2−→ V1 ⊗ V2 ⊗M → V2 ⊗ V1 ⊗M

equals

Fr∗(V1)⊗Fr∗(V2)⊗M
id⊗αV2−→ Fr∗(V1)⊗V2⊗M ≃ V2⊗Fr∗(V1)⊗M

id⊗αV1−→ V2⊗V1⊗M.
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Morphisms in this category between (M,αV ) and (M ′, α′
V ) are Uℓ-module maps

M → M ′, such that each square

Fr∗(V )⊗M
αV−−−→ V ⊗M

y
y

Fr∗(V )⊗M ′
α′
V−−−→ V ⊗M ′

commutes.

Indeed, given M as above we define the action of OǦ on it as the composition map

Fr∗(OǦ)⊗M
αO

Ǧ−→ OǦ ⊗M
ǫ⊗ id
−→ M,

where ǫ is the co-unit f 7→ f(1) in OǦ. Conversely, given M ∈ C(AG,OǦ), the map αV

comes by adjunction from the map

Fr∗(V )⊗ V ∗ ⊗M
matr.coef.⊗id

−→ Fr∗(OǦ)⊗M → M.

Let us make the following observation:

Proposition 2.3. For (M,αV ) ∈ C(AG,OǦ), the maps αV are automatically isomor-
phisms.

Proof. Let N be the kernel of the map Fr∗(V )⊗M → V⊗M and let V ∗ ∈ Ǧ -mod be
the dual of V . From the axioms on the αV ’s, we obtain that the composition

Fr∗(V ∗)⊗N → Fr∗(V ∗⊗V )⊗M → V ∗⊗V⊗M → M

is on the one hand zero, and on the other hand equals the natural map Fr∗(V ∗)⊗N →
M , which is a contradiction. The surjectivity of αV is proved in the same way.

Our main result is the following theorem:

Theorem 2.4. The category C(AG,OǦ) is naturally equivalent to the category of aG-
comodules. Objects in C(AG,OǦ), which are finitely generated over OǦ, correspond
under this equivalence to finite-dimensional aG-comodules.

This theorem has the following interesting corollary:

Corollary 2.5. The Langlands dual group Ǧ acts on the category uℓ -mod by endo-
functors. In other words,

(1) For every γ ∈ Ǧ there is a functor Tγ : uℓ -mod → uℓ -mod.

(2) For each pair γ1, γ2 ∈ Ǧ there is an isomorphism of functors Tγ1 ◦ Tγ2 ⇒ Tγ1·γ2 .

(3) For each triple γ1, γ2, γ3 the two natural transformations Tγ1 ◦ Tγ2 ◦ Tγ3 ⇒ Tγ1·γ2·γ3

coincide.

Proof. Let us view uℓ-modules as objects of C(AG,OǦ) via Theorem 2.4.

Given an object (M,αV ) ∈ C(AG,OǦ) and an element γ ∈ Ǧ we define a new object
Tγ(M,αV ) as follows:
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The underlying Uℓ-module is the same, i.e. M . However, the corresponding mor-
phism

Fr∗(V )⊗M → V ⊗M

is the old αV composed with V ⊗ M
γ⊗id
−→ V ⊗ M , where γ ∈ Ǧ is viewed as an

automorphism of the vector space V .
It is clear that in this way we indeed obtain an action of Ǧ on C(AG,OǦ), and hence

on aG-comod, by endo-functors.

Another corollary of Theorem 2.4 is as follows:

Corollary 2.6. The category uℓ -mod has a natural monoidal structure.

Proof. Given two objects (M,αV ) and (M ′, α′
V ) in C(AG,OǦ) we have to define their

tensor product (M ′′, α′′
V ) as a new object of C(AG,OǦ).

Consider first their naive tensor product M ⊗ M ′ as a Uℓ-module. We claim that
the algebra OǦ acts on it by endomorphisms. Indeed, to define such an action, it is
enough to define Uℓ-module maps

V ⊗ (M ⊗M ′) → V ⊗ (M ⊗M ′)

for every V ∈ Ǧ -mod, compatible with the tensor structure on Ǧ -mod in the same
sense as in the definition of C(AG,OǦ).

The sought-for maps are defined as follows:

V ⊗M ⊗M ′ αV
≃ (Fr∗(V )⊗M)⊗M ′ ≃ M ⊗ (Fr∗(V )⊗M ′)

α′
V
≃ V ⊗M ⊗M ′,

where the second arrow comes from the braiding on the category Uℓ -mod.
The Uℓ-module M ′′ is defined as the fiber at 1 ∈ Ǧ of M ⊗ M ′ viewed as a quasi-

coherent sheaf on Ǧ. It comes equipped with a data of α′′ by construction.
It is easy to see that the functor (M,αV ), (M

′, α′) 7→ (M ′′, α′′
V ) admits a natu-

ral associativity constraint, which makes C(AG,OǦ) into a monoidal category. More-
over, if both M and M ′ are finitely generated as OǦ-modules, then so is M ′′. Hence,
this monoidal structure preserves the sub-category of finite-dimensional aG-comodules,
which is the same as uℓ -mod.

2.7. The general setting. It will be convenient to generalize our setting as follows.
Let O, A be two Hopf algebras and let O → A be an embedding.

In addition, let a be a co-algebra and a right A-module, and let A → a be a surjection
respecting both structures.

We impose the following conditions on our data:

(i) The composition O → A → a factors as O
co-unit
−→ C

unit
−→ a.

(ii) The inclusion O ⊂ Aa is an equality. 2

2For a co-algebra B co-acting on M , the notation MB will mean “invariants”, i.e.

M
B = HomB -comod(C,M) = Ker(M

co-ac−1⊗id
−→ B⊗M).

For example, for a uℓ-module M (which is the same as an aG-comodule) Muℓ = MaG .
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(iii) The inclusion m · A ⊂ Ker(A → a) is an equality, where m is the augmentation
ideal in O.

In addition, we impose the following technical condition, that one of the following
two properties is satisfied (compare with [17], Sect. 3.4):

(iv a) Either A is faithfully-flat as an O-module,

(iv b) or the induction functor Ind : a -comod → A -comod (cf. Sect. 3.1 for the definition
of Ind) is exact and faithful.

Of course, we will prove that our triple (OǦ,AG, aG) satisfies conditions (i-iv).

We define the category C(A,O) to have as objects vector spaces M endowed with a
left action of the algebra O and a left co-action of the co-algebra A which are compatible
in the same sense as in the definition of C(AG,OǦ). The following is a generalization
of Theorem 2.4:

Theorem 2.8. The categories C(A,O) and a -comod are naturally equivalent.

2.9. The “classical” case. The general Theorem 2.8 models the following familiar
situation. Let

1 → H ′ → H ′′ → H → 1

be a short exact sequence of linear algebraic groups. Take O = OH , A = OH′′ and a =
OH′ . Conditions (i)-(iii) obviously hold and we claim, that the assertion of Theorem 2.8
in this case is following well-known phenomenon:

First, by definition, the category C(A,O) is naturally equivalent to the category

QCohH
′′

(H) of H ′′-equivariant quasi-coherent sheaves on H. By taking the fiber of a
sheaf at 1 ∈ H we obtain a functor

QCohH
′′

(H) → QCohH
′

(pt),

which is known to be an equivalence of categories. However,

QCohH
′

(pt) ≃ H ′ -mod ≃ a -comod .

The proof of Theorem 2.8 in the general case will be essentially a translation of the
above two-line proof into the language of Hopf algebras.

Remark. Suppose that in the setting of Theorem 2.8, O is in fact commutative, i.e. O

is the algebra of functions on an affine group-scheme Γ.
Then we have an analog of dual group action, that Γ acts on the category a -comod

by endo-functors. In the above example of (A = OH′′ , a = OH′), this action corresponds
to the natural map of Γ = H to the group of outer automorphisms of H ′.

3. Proof of the main theorem

We will first prove the general Theorem 2.8. Then we show that conditions (i)-(iv)
are satisfied for AG,OǦ and aG.
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3.1. The functor of (finite) induction. Now we proceed to the proof of Theorem 2.8
in general.

Let us recall the definition of the (finite) induction functor a -comod 7→ A -comod.
Recall that if M r

1 is a right co-module and M l
2 is a left co-module over a co-algebra

a, it makes sense to consider the vector space (M r
1 ⊗M l

2)
a, equal by definition to the

equalizer of the two maps

∆1 ⊗ id, id⊗∆2 : M
r
1 ⊗M l

2 → M r
1 ⊗ a⊗M l

2.

For M ∈ a -comod consider A as a left A-co-module and a right a-comodule, and set
Ind(M) := (A⊗M)a, which carries a left A-coaction by functoriality.

By construction, this functor is left exact, and it is the right adjoint of the natural
restriction functor Res : A -comod → a -comod.

Note now that since O = Aa, the action of O on A⊗M by left multiplication maps the
subspace (A ⊗M)a to itself. Moreover, this action O-action on Ind(M) is compatible
with the A-coaction. Therefore, the functor Ind can be extended to a functor from
a -comod to C(A,O), which we will denote by Ind.

Let us consider two examples. First, it is easy to see that Ind(a) ≃ A. Secondly,
Ind(C) ≃ O, and more generally, for M is of the form Res(N) for N ∈ A -comod, we
have: Ind(Res(N)) ≃ O ⊗ N , with the diagonal A-coaction and the O-action on the
first factor.

3.2. The adjoint functor. Now we will define a functor C(A,O) → a -comod.
Given an object N ∈ C(A,O), consider the vector space Ψ(N) := C ⊗

O

N , where

O → C is the co-unit map.
Since the O-action on N commutes with the a-coaction, Ψ(N) carries a natural

co-action of a.
Thus, we obtain a functor, denoted Res : C(A,O) −→ a -comod. By construction,

this functor is right exact.

By definition, for O viewed as an object of C(A,O), Res(O) ≃ C. Property (iii) of
Sect. 2.7 implies that Res(A) ≃ a. More generally, for objects of C(A,O) of the form
O⊗ Res(N), we have: Res(O⊗ Res(N)) ≃ Res(N).

Proposition 3.3. The functor Res is the left adjoint to Ind.

Proof. We need to construct adjunction maps

Res ◦ Ind(M) → M and N → Ind ◦ Res(N)

for M and N in a -mod and C(A,O), respectively.

Let M be as above. Consider the composition (A ⊗ M)a →֒ A ⊗ M
ǫ⊗id
−→ M . By

construction, this is a map of a-comodules and it obviously factors through

(A⊗M)a → Ψ((A⊗M)a) → M.

Therefore, we obtain a map Res ◦ Ind(M) ≃ Ψ((A⊗M)a) → M .

For N ∈ C(A,O), consider the map

N
∆
→ (A⊗N)A →֒ (A⊗N)a → Ψ((A⊗N)a).
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This map respects the A-coaction and the O-action by construction.
Thus, we obtain a map

N → (A⊗Ψ(N))a ≃ Ind ◦ Res(N).

Now we are ready to prove Theorem 2.8. We will give two proofs corresponding to
the two variants of condition (iv).

3.4. Proof 1. Let us first prove Theorem 2.8 under the assumption that (O,A, a)
satisfies condition (iv b) of Sect. 2.7, i.e. that the induction functor Ind is exact and
faithful.

We claim that the adjunction map

N → Ind(Res(N))

is an isomorphism for any N ∈ C(A,O).
Since the functor Res is right-exact and Ind is exact, the composition Ind ◦ Res is

also right exact. Hence, it suffices to show that for any N as above there exists another
object N ′ ∈ C(A,O) with a surjection N ′

։ N , for which the map N ′ → Ind(Res(N ′))
is an isomorphism.

We set N ′ = O⊗N , where O acts on O⊗N via

a′ · (a⊗ n) 7→ a′ · a⊗ n,

and the A-coaction is the diagonal one. The map O⊗N → N is given by the original
O-action on N .

Now, Res(N ′) ≃ Res(N), and Ind(Res(N ′)) ≃ O⊗N , such that the above adjunction
map for N ′ becomes the identity map on O⊗N .

Thus, to prove Theorem 2.8, it suffices to check that the other adjunction map
Res(Ind(M)) → M is an isomorphism for any M ∈ a -comod. However, since the
functor Ind (and hence Ind) is faithful, it suffice to check that

Ind(Res(Ind(M))) → Ind(M)

is an isomorphism. However, we know that the composition

Ind(M) → Ind(Res(Ind(M))) → Ind(M)

is the identity map on Ind(M), and the first arrow is an isomorphism by what we have
proved above. Hence, the second arrow is an isomorphism as well.

3.5. Proof 2. Now let us prove Theorem 2.8 under the assumption that (O,A, a)
satisfies condition (iv a) of Sect. 2.7.

Proposition 3.6. The functor Res : C(A,O) → a -comod is exact and faithful.

Proof. For an object N ∈ C(A,O), consider the tensor product A ⊗
O

N . This is a left

A-module and a left A-comodule via the diagonal co-action.
Thus, we obtain a functor CoindAO : C(A,O) → C(A,A), which is exact and faithful,

since A was assumed faithfully flat over O.
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Now, the functor N 7→ Ψ(N) considered as a functor from C(A,O) to the category
of vector spaces can be factored as

Ψ ≃ ΨA ◦ CoindAO,

where ΨA is the corresponding functor for C(A,A). Therefore, it suffices to show that
ΨA is exact and faithful.

However, the triple (A,A,C) satisfies assumption (iii b), and we already know that
ΨA induces an equivalence between C(A,A) and the category of vector spaces. In
particular, Ψ is exact and faithful.

The rest of the proof proceeds very much in the same way as Proof 1 above.

First, we claim that Proposition 3.6 above implies that the adjunction morphism

Res ◦ Ind(M) → M

is an isomorphism for every M ∈ a -comod. Indeed, every object in a -comod can be
embedded into a direct sum of several copies of a, viewed as a co-module over itself.
Hence, every M ∈ a -comod admits a resolution of the form:

M → a⊗W0 → a⊗W1 → ...,

where Wi are some vector spaces. Since the composition Res ◦ Ind(M) is left-exact, it
is enough to prove that Res ◦ Ind(a) → a is an isomorphism. However, this is obvious,
since this map is the composition Res ◦ Ind(a) ≃ Res(A) ≃ a.

Thus, it remains to show that the adjunction map N → Ind ◦ Res(N) is an isomor-
phism. However, since the functor Res is faithful, it is enough to show that

Res(N) → Res ◦ Ind ◦ Res(N)

is an isomorphism. But we already know that Res ◦ Ind ◦ Res(N) → Res(N) is an
isomorphism and the composition

Res(N) → Res ◦ Ind ◦ Res(N) → Res(N)

is the identity map.

Remark Note that Theorem 2.8 implies that under the assumption that A is faithfully-
flat over O, the induction functor Ind : a -comod → A -comod is automatically exact.
I.e., condition (iv a) in fact implies condition (iv b).

3.7. Finiteness properties of A. Thus, Theorem 2.8 is proved. Let us now describe
the image of the category of finite-dimensional a-comodules under our equivalence of
categories.

Proposition 3.8. An a-comodule M is finite-dimensional if and only of Ind(M) is
finitely generated as an O-module.

Proof. One direction is clear: if N ∈ C(A,O) is finite as an O-module, then Res(N) =
Ψ(N) is finite-dimensional.
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Conversely, assume that M is finite dimensional, and let M ′ ⊂ Ind(M) be a finite-
dimensional A-subcomodule, which surjects onto M under

Res(Ind(M)) → Res(Ind(M)) ≃ M.

Then the O-submodule N ′ in Ind(M) generated by M ′ is stable under both the
O-action and A-coaction, and Res(N ′) surjects onto M . Hence, N ′ = Ind(M).

This proposition implies among the rest, that if a is finite-dimensional, then A ≃
Ind(a) is finitely generated as a module over O. In particular, we obtain that in the
quantum group setting, AG is a finite OǦ-module.

3.9. Verification of properties (i)-(iv) for quantum groups. First, the map
OǦ → AG is injective because the quantum Frobenius homomorphism is surjective.

To show that AG → aG is surjective is equivalent to showing that every object M ∈
uℓ -mod appears as a sub-quotient of one of the form Res(N) for some N ∈ Uℓ -mod.
We will prove a stronger assertion, namely, that any M as above is in fact a quotient
of some Res(N):

Proposition 3.10. For any M ∈ uℓ -mod, the canonical map Res(Ind(M)) → M is
surjective.

Proof. First, it is known (cf. [4] Theorem 4.8 or [2] Proposition 3.15) that the functor
Ind : uℓ -mod → Uℓ -mod is exact. Therefore, it is sufficient to show that the map
Res(Ind(M)) → M is surjective when when M is an irreducible uℓ-module.

However, it is known (cf. [14] Proposition 5.11) that every irreducible uℓ-module is
of the form Res(N) for an irreducible N ∈ Uℓ -mod.

Now, for N as above the co-action map defines a map N → Ind(Res(N)), and the
composition

Res(N) → Res(Ind(Res(N))) → Res(N)

is the identity map.
Hence, Res(Ind(M)) ≃ Res(Ind(Res(N))) → Res(N) ≃ M is a surjection.

Condition (i) of Sect. 2.7 follows immediately from the fact that uℓ acts trivially on
any module of the form Fr∗(V ) for V ∈ Ǧ -mod. To verify condition (ii) we will use
Proposition 1.5:

Indeed, we know that if M is a AG-comodule, then the co-action map restricted to
MaG factors as

MaG → OǦ ⊗MaG →֒ AG ⊗M.

By taking M = AG and evaluating (id⊗ǫ) ◦∆ on a ∈ A
aG

G , we obtain that

a = (id⊗ǫ) ◦∆(a) ∈ OǦ.

Let us now verify (iii). This follows from the next proposition:

Proposition 3.11. Let (A,O, a) be satisfying properties (i), (ii). Suppose that the
adjunction map Res(Ind(M)) → M is surjective for any a-comodule M . Then m ·A =
Ker(A → a).



MODULES OVER THE SMALL QUANTUM GROUP 15

Proof. Set I ′ = m · A, I = Ker(A → a). Set a′ := A/I ′. Then a′ is a co-algebra and a
right A-module, and we have a sequence of epimorphisms A → a′ → a respecting both
structures.

We must show that the inclusion I ′ ⊂ I is an equality. For this, it is enough to show
that I is a′-stable, i.e. that the composition

I → A
∆
→ A⊗A → a′ ⊗A

maps to a′ ⊗ I. Indeed, by applying (id⊗ǫ) ◦ ∆ to a ∈ I we then obtain that a =
(id⊗ǫ) ◦∆(a) projects to the 0 element in a′, i.e. belongs to I ′.

Using the fact that Res(Ind(M)) → M i surjective for any a-comodule, we can find
an A-comodule B with a surjection N ։ I.

However, from condition (ii), we obtain that in

A →֒ A
a
′

→֒ A
a

the composition is an isomorphism. Hence Aa′ = Aa, which implies that Na′ = Na

for any N ∈ A -comod. In particular, if N1 and N2 are two A-comodules, any map
N1 → N2 respecting the a-coaction, respects also the a′-coaction.

Applying this to the composition N ։ I →֒ A, we obtain that I = Im(N) ⊂ A is an
a′-subcomodule.

Finally, as was mentioned above, the functor Ind is exact, hence (AG,OǦ, aG) verifies
condition (iv b).

For completeness, we will show that in fact (AG,OǦ, aG) verifies also condition (iv
a). More generally, we will prove the following proposition:

Proposition 3.12. let O → A be an embedding of Hopf algebras, with O being com-
mutative. Then A is faithfully-flat as an O-module.

3.13. Proof of Proposition 3.12. Let us denote Spec(O) by Γ, and view A as a
quasi-coherent sheaf on Γ.

We have the following lemma:

Lemma 3.14. For every γ ∈ Γ, the pull-back γ∗(A) of A under the translation map
γ′ → γ · γ′ is (non-canonically) isomorphic to A as a quasi-coherent sheaf.

Proof. Let γ ∈ Γ be a point over which the embedding O → A induces an injection on
fibers Oγ → Aγ . We will call such γ’s “good”. First, we claim that for a “good” γ we
do obtain an isomorphism

γ∗(A) ≃ A.

Indeed, let ξγ be any linear functional (A)γ → C which extends the evaluation map
O → C corresponding to γ. Consider the map

A
∆
→ A⊗A

ξγ⊗ id
−→ A.

It is easy to see that this map defines the sought-for isomorphism γ∗(A) ≃ A.

Now let us show that all γ ∈ Γ are “good”. Suppose not. Since O → A is an
embedding , there exists a collection ∪

k
Yk of proper sub-schemes of Γ defined over C,
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such that all points in Γ \ ∪
k
Yk are “good”. By what we proved above, the translation

by a “good” γ maps the collection ∪
k
Yk to itself.

Let us make a field extension C 7→ C(Γ). Over this field, Γ has the canonical
generic point, which is clearly “good”. However, this generic point cannot map a
proper sub-scheme defined over C to another proper sub-scheme defined over C, which
is a contradiction.

This lemma implies Proposition 3.12:
To prove that A is flat over O, we must show that Tor1

O
(A,Cγ) = 0, for every

γ ∈ Γ. (Here Cγ denotes the sky-scraper sheaf at γ.) As in the above argument,

Tor1
O
(A,Cγ) = 0 for all γ’s lying outside ∪

k
Yk.

However, by Lemma 3.14, all points of Γ are “the same” with respect to A. Hence,
Tor1

O
(A,Cγ) = 0 everywhere.

To complete the proof of the proposition, we must show that the fiber of A at
any γ ∈ Γ is non-zero. But this has been established in the course of the proof of
Lemma 3.14.

4. Further properties of the equivalence of categories

4.1. Definition by the universal property. In this section we will make several
additional remarks about the equivalence of categories established in Theorem 2.4.
When our discussion applies to any triple (O,A, a), we will work in this more general
context. Let us denote by F ∗ the natural functor from O -comod to A -comod.

By condition (i) of Sect. 2.7, we have an isomorphism of functors

O -comod×A -comod → a -comod : αcan
V : Res(F ∗(V )⊗N) ≃ V ⊗ Res(N).

Let C be an abelian C-linear category and let R : A -comod → C be a C-linear functor
with the property that for each V ∈ O -comod and N ∈ A -comod there is a natural
transformation

αC

V : R(F ∗(V )⊗N) 7→ V⊗R(F ∗(N)),

which satisfies the three properties of Sect. 2.2.

Proposition 4.2. There exists a functor r : a -comod → C and an isomorphism of
functors R ≃ r ◦ Res, such that αC

V = r(αcan
V ).

The meaning of this proposition is, of course, that the forgetful functor Res :
A -comod → a -comod is universal with respect to the property that it transforms
F ∗(V )⊗N to V⊗N .

Proof. Using Theorem 2.8, we will think of a -comod in terms of C(A,O) and we will
construct a functor r : C(A,O) → C.

Let O⊗M
act
→ M be the action map. By assumption, we obtain the map

O⊗R(M) ≃ R(O⊗M) → R(M).

The axioms on the αC

V ’s imply that O acts on R(M) as an associative algebra. We set
r(M) := C⊗

O

R(M).
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Let us show now that R is canonically isomorphic to r ◦Res. Under the equivalence
of Theorem 2.4, the functor Res goes over to N 7→ O⊗N . Therefore,

r ◦ Res(N) ≃ C⊗
O

R(O⊗N) ≃ R(N).

4.3. Reconstruction of A -comod from a -comod. For (O,A, a) with O being com-
mutative, let us recall from Corollary 2.5 that the group Γ = Spec(O) acts on the
category a -comod by endo-functors.

Thus, it makes sense to talk about Γ-equivariant objects of a -comod.

Proposition 4.4. The category of Γ-equivariant objects of a -comod is naturally equiv-
alent to A -comod.

Proof. Let M be a H-equivariant object in C(A,O). By definition, the underlying
A-comodule has an additional commuting structure of a Γ-equivariant quasi-coherent
sheaf on Γ. By taking its fiber at the point 1 ∈ Γ, we obtain an A-comodule.

Thus, we have constructed a functor

C(A,O)G → A -comod,

and it is easy to see that it is an equivalence.

Thus, given A, the category of a-comodules is a “de-equivariantization” of A -comod.

4.5. Other versions of quantum groups. Let us discuss briefly the generalization

of Theorem 2.4 in the context of uℓ,sc and
•
uℓ.

Consider the triple A = AG, O = OǦsc
and a = aGsc. In a way completely analo-

gous to what we did in the previous section, one shows that these co-algebras satisfy
conditions (i)-(iii) of Sect. 2.7.

Let C(AG,OǦsc
) denote the corresponding category C(A,O). We have the following

version of Theorem 2.4:

Theorem 4.6. The categories C(AG,OǦsc
) and aGsc -comod are naturally equivalent.

Now let us consider the case of
•
uℓ. In what follows, for a Ǧ-module V , we will regard

ResǦ
Ť
(V ) as a Y -graded vector space.

We introduce the category
•

C(AG,OǦ) as follows: its objects are Y -graded AG-
comodules M = ⊕

ν∈Y
Mν , each endowed with a collection of grading-preserving maps

αV , V ∈ Ǧ -mod

Fr∗(V )⊗M ≃ ResǦ
Ť
(V )⊗M,

(as in Sect. 2.2) where the Y -grading on the LHS comes from the grading on M and
on the RHS the grading is diagonal. Maps in this category are grading preserving
Uℓ-module maps, which intertwine the corresponding αV ’s.

Theorem 4.7. The category
•

C(AG,OǦ) is equivalent to
•
uℓ -mod.
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Proof. First, let us observe that if we put A =
•
aG, O = OŤ , a = aG, the corresponding

triple would satisfy conditions (i)-(iii) of Sect. 2.7. Hence, the general Theorem 2.8 is
applicable as well as Proposition 4.4.

Therefore, the category
•

C(AG,OǦ) is equivalent to the category of Ť -equivariant

objects in C(AG,OǦ). However, the latter is by definition the same as
•

C(AG,OǦ).

Finally, let us characterize the category
•

C(AG,OǦ) by a universal property.

For an λ̌ in Y = X∗ (or even in X∗
sc) let us denote by Cλ̌ the corresponding 1-

dimensional module over
•
uℓ, and by Pλ̌ :

•
uℓ -mod 7→

•
uℓ -mod the translation functor

M 7→ Cλ̌ ⊗M .
Let now C be an abelian C-linear category and let PC

λ̌
: C → C be an action of Y on

C by endo-functors. Let R : AG -comod → C be a C-linear functor with the property
that for each V ∈ OǦ -comod there is a natural transformation

αC

V : R(Fr∗(V )⊗M) 7→ ⊕
ν
V (ν̌)⊗ PC

ν̌ (R(M)),

which satisfies the three properties of Sect. 2.2. (In the above formula, for a Ǧ-module
V and ν̌ ∈ Y , V (ν̌) denotes the corresponding weight subspace.)

Proposition 4.8. There exists a functor r :
•
aG -comod → C and an isomorphism of

functors
R ≃ r ◦ Res .

Moreover, the functor r commutes with the translation functors in the obvious sense.

We omit the proof, since it is completely analogous to the proof of Proposition 4.2.

5. The regular block

5.1. Blocks in the categories A -comod and a -comod. Recall that any Artinian
abelian category C is a direct sum of its indecomposable abelian sub-categories called
blocks or linkage classes of C. Obviously, a block of a category is completely described
by the set of irreducible objects contained in it. We will denote the set of blocks of C
by Bl(C).

Note that the categories of finite dimensional A- and a-comodules (denoted below

by A -comodf and a -comodf , respectively) are Artinian, therefore, they admit decom-
positions into blocks. We will use the notation Bl(A) and Bl(a) for the sets of blocks

of A -comodf and a -comodf , respectively.
Evidently, we have

A -comod = ind. comp.
(
A -comodf

)
and a -comod = ind. comp.

(
a -comodf

)
.

For α ∈ Bl(A) (resp., α′ ∈ Bl(a)) let us denote by A -comodα (resp., a -comodα′) the

ind-completion of the corresponding block of A -comodf (resp., a -comodf ).

We will call the block of A -comod (resp., a -comod) which contains the trivial rep-
resentation C the regular block and will denote it by A -comod0 (resp., a -comod0).
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Assume that the category A -comod has the following additional property with re-
spect to O -comod:

(∗) For any α ∈ Bl(A) and V ∈ O -comod, the functor F ∗(V )⊗· : A -comod −→
A -comod maps A -comodα to itself.

Let us compare the block decompositions of A -comod and a -comod.

Proposition 5.2. There is a one-to-one correspondence between the sets Bl(A) and
Bl(a) determined by the following properties:

(a) N ∈ A -comodα if and only if Res(N) ∈ a -comodα.

(b) M ∈ a -comodα if and only if Ind(M) ∈ A -comodα.

Proof. First, observe that Ind ◦Res : A -comod → A -comod preserves each A -comodα,
by assumption, since Ind ◦Res(N) ≃ F ∗(O)⊗N .

Secondly, let us show that Res ◦ Ind maps each a -comodα to itself. Indeed, let
M ∈ a -comodα and let N ′ be an a-stable direct summand of Ind(M), which belongs to
some a -comodβ. Then N ′ is preserved by the O-action, and thus defines a sub-object
of Ind(M) ∈ C(A,O). But then Res(N ′) ∈ a -comodβ is a non-zero direct summand of
M , which means that β = α.

Let N be an object of A -comod. Let Res(N) = Res(N)′ ⊕ Res(N)′′ be a block
decomposition in a -comod. Let us show that Res(N)′ and Res(N)′′ are in fact A-
sub-comodules. Without restricting the generality, we can assume that N is a sub-
comodule of Ind(M) for some M ∈ a -comod. However, as we have just seen, the block
decomposition of Res ◦ Ind(M) coincides with the block decomposition of M .

Therefore, the block decomposition of a -comod is “coarser” than that of A -comod.
However, by our assumption on A, its block decomposition is “coarser” than the

block decomposition of C(A,O). This implies the assertion of the proposition in view
of Theorem 2.2.

5.3. The category C(A,O)0. We define the category C(A,O)0 as the preimage of
A -comod0 under the tautological forgetful functor C(A,O) → A -comod. This defini-
tion makes sense due to condition (∗) above. In the course of the proof of Proposition 5.2
we have established the following assertion:

Corollary 5.4. Under the equivalence of categories C(A,O) ≃ a -comod, the sub-

category C(A,O)0 goes over to the regular block a -comod0.

5.5. The case of uℓ. For a regular dominant λ ∈ X, let W(λ) ∈ Uℓ -mod denote the
corresponding Weyl module. It is well-known that W(λ) has a unique simple quotient,
denoted L(λ) and that each simple object in Uℓ -mod is isomorphic to L(λ) for some
λ.

The following facts about the block decomposition of the category Uℓ -mod were
established in [3]:

Let Waff be the affine Weyl group Y ⋉W . It acts on the lattice X as follows: the
translations by Y act via the homomorphism φ : Y → X and the action of the finite
Weyl group W is centered at −ρ := − Σ

i∈I
ωi, where ωi’s are the fundamental weights.
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Theorem 5.6. Two simple modules L(λ1) and L(λ2) are in the same block if and only
if λ1 and λ2 belong to the same Waff -orbit.

Moreover, we have the following statement (cf. [16], Theorem 7.4 and Proposition
7.5):

Proposition 5.7. Let λ = λ1 + λ2 be the unique decomposition, with λ2 = φsc(µ̌),
where µ̌ ∈ X∗

sc is a dominant integral weight of the group Ǧsc and λ1 is such that
0 ≤ 〈λ1, α̌i〉 < ℓi for all i ∈ I. Then:

(i) L(λ2) ≃ Fr∗sc(V
µ̌), where V µ̌ is the corresponding irreducible representation of

Ǧsc.
(ii) The restriction of L(λ1) to uℓ remains irreducible.
(iii) L(λ) ≃ L(λ1)⊗ L(λ2).

This proposition combined with Theorem 5.6 implies that the category Uℓ -mod
satisfies condition (∗).

Let C(AG,OǦ)
0 denote the corresponding sub-category of C(AG,OǦ). By applying

Proposition 5.2 and Corollary 5.4, we obtain the following theorem:

Theorem 5.8. We have a bijection between the sets Bl(Uℓ -mod) ≃ Bl(uℓ -mod) and
an equivalence of categories:

uℓ -mod0 ≃ C(AG,OǦ)
0.

Recall (cf. [14] or [4]) that to every element λ ∈ X we attached an irreducible object
of uℓ -mod, denoted L(λ), which depends only on the image of λ in the quotient X/φ(Y ),
and Proposition 5.7(ii) implies that if λ satisfies 〈λ, α̌i〉 < ℓi, then L(λ) ≃ Res(L(λ)).

The following corollary repeats in fact Sect. 2.9 of [4]:

Corollary 5.9. For two elements λ1 and λ2 of X, the modules L(λ1) and L(λ2) belong
to the same block of uℓ -mod if and only if λ1 and λ2 ∈ X are Waff -conjugate.

5.10. The graded case. For completeness, let us analyze the block decomposition of

the category
•
uℓ -mod in light of Theorem 5.2. However, all that we are going to obtain

is already contained in [4].

Recall that for λ ∈ X,
•

L(λ) denotes the corresponding irreducible object of
•
uℓ -mod,

and L(λ) = Res
•
uℓ
uℓ
(
•

L(λ)).
The following is known, due to [4]:

Proposition 5.11. The translation functors Pλ̌, λ̌ ∈ Y preserve the block decomposi-

tion of
•
uℓ -mod.

Using this proposition, we can apply Proposition 5.2 to the category
•
uℓ -mod and the

group Ť . Thus, we obtain the following result of [4]:

Corollary 5.12. There is a natural bijection Bl(
•
uℓ -mod) ≃ Bl(uℓ -mod). The modules

•

L(λ1) and
•

L(λ2) belong to the block in
•
uℓ -mod if and only if λ1 and λ2 are Waff -

conjugate.
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Let
•

C(AG,OǦ)
0 denote the preimage ofUℓ -mod0 under the obvious forgetful functor.

From Proposition 5.2 and Theorem 4.7, we obtain the following theorem (cf. [1] for the
first assertion):

Theorem 5.13. There is an isomorphism of sets Bl(Uℓ -mod) ≃ Bl(
•
uℓ -mod) and an

equivalence of categories:
•
uℓ -mod0 ≃

•

C(AG,OǦ)
0.

5.14. The case of uℓ,sc. Observe that if we consider the triple A = AG, O = OǦsc
,

a = aGsc, then condition (*) above will not be satisfied. Instead, we have the following
assertion:

Proposition 5.15. The natural restriction functor uℓ -mod → uℓ,sc -mod induces an
equivalence uℓ -mod0 → uℓ,sc -mod0.

Proof. For λ ∈ X, let us denote by L(λ)sc the restriction of L(λ) to uℓ,sc. By construc-
tion, it depends only on the class of λ in X/φ(X∗

sc).
Let us consider the forgetful functor Resuℓuℓ,sc : uℓ -mod → uℓ,sc -mod. Note that in

terms of C(AG,OǦ) and C(AG,OǦsc
), it acts as follows:

M ∈ C(AG,OǦ) 7→ OǦsc
⊗
OǦ

M ∈ C(AG,OǦsc
).

This functor has a right adjoint, which we will denote by Induℓuℓ,sc . On the level of

C(AG,OǦsc
), Induℓuℓ,sc is the natural forgetful functor.

Note that for M ∈ uℓ -mod we have:

Induℓuℓ,sc ◦Res
uℓ
uℓ,sc

(M) ≃ ⊕
λ̌∈X∗

sc/X
∗

M ⊗ Cλ̌.

(Recall that Cλ̌ is a 1-dimensional
•
uℓ-module, and, hence, we are allowed to tensor any

uℓ-module by it on the right.) In particular, Induℓuℓ,sc(L(µ)sc) = ⊕
λ̌∈X∗

sc/X
∗

L(µ+ φsc(λ̌)).

Therefore, two irreducible objects L(µ1)sc and L(µ2)sc of uℓ,sc -mod belong to the

same block if and only if there exists λ̌ ∈ X∗
sc, such that L(µ1 + φsc(λ̌)) and L(µ2)

belong to the same block of uℓ -mod, i.e. µ1 and µ2 belong to the same orbit of the
extended affine Weyl group W ext

aff ≃ X∗
sc ⋉W .

Thus, we obtain that the functor Resuℓuℓ,sc maps uℓ -mod0 to uℓ,sc -mod0. We claim

now that this functor has a left quasi-inverse. Namely, it is given by

N 7→ pr0(Ind
uℓ
uℓ,sc

(N)),

where pr0 denotes the functor of projection onto the regular block in uℓ -mod. Indeed,
for M ∈ uℓ -mod0 we have:

pr0(Ind
uℓ
uℓ,sc

◦Resuℓuℓ,sc(M)) ≃ M,

because for λ̌ ∈ X∗
sc, the object pr0(M ⊗Cλ̌) is non-zero only if λ̌ ∈ X∗, which follows

from the description of blocks of uℓ -mod in terms of Waff .
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To finish the proof of the proposition it remains to show that if N is a non-zero
object in uℓ,sc -mod0, then pr0(Ind

uℓ
uℓ,sc

(N)) is non-zero either. For that, it is enough to

suppose that N is irreducible, i.e. of the form L(λ)sc, and our assertion follows from
the explicit description of uℓ,sc -mod0 given above.

6. Geometric interpretation

6.1. Affine flag variety. Our goal in this section is to give a geometric description of
the category uℓ -mod0. Namely, we will show that it can be described as the category of
certain perverse sheaves on the affine flag variety corresponding to the group G, which
have the Hecke eigen-property. It is via this description that one can link uℓ -mod0
to certain categories which appear in the geometric Langlands correspondence and to
other interesting categories arising in representation theory.

First, we will briefly recall several definitions concerning the affine Grassmannian
and the affine flag variety. We refer the reader to [18], [5] or [9] for a more detailed
discussion.

Consider the ringC[[t]] of Taylor series and the field C((t)) of Laurent series. The loop
group G((t)) (resp., the group of positive loops G[[t]]) has a structure of an indgroup-
scheme (resp., of a group-scheme). The quotient G((t))/G[[t]] is an ind-scheme of
ind-finite type, called the affine Grassmannian of the group G, denoted Gr.

By definition, the group-scheme G[[t]] acts (on the left) on Gr. The orbits of this
action are finite-dimensional quasi-projective varieties and they are in a natural bijec-

tion with the dominant elements Y + ⊂ Y . For λ̌ ∈ Y +, we will denote by Gr
λ̌
the

closure of the corresponding orbit. Thus, it makes sense to talk about the category of
G[[t]]-equivariant perverse sheaves on Gr. By definition, every such perverse sheaf is

supported on Gr
λ̌
for λ̌ sufficiently large. We will denote this category by PG[[t]](Gr).

This is an abelian category and it possesses an additional structure of the convolution
product PG[[t]](Gr) ⋆ PG[[t]](Gr) → PG[[t]](Gr), which makes PG[[t]](Gr) into a tensor
category.

We have the following fundamental theorem ([10], [18]):

Theorem 6.2. There is an equivalence of tensor categories Ǧ -mod ≃ PG[[t]](Gr). Un-
der this equivalence, the intersection cohomology sheaf IC

Gr
λ̌ goes over to the highest

weight module V λ̌.

Now we pass to the definition of the affine flag variety.

Let Iw ⊂ G[[t]] be the Iwahori subgroup. By definition, Iw is the preimage of the
Borel subgroup B ⊂ G under the natural evaluation map G[[t]] → G. The quotient
G((t))/ Iw is also an ind-scheme of ind-finite type, called the affine flag variety of G,
denoted Fl. By definition, we have a projection Fl ։ Gr, whose fibers are (non-
canonically) isomorphic to the usual flag manifold G/B.

Let NIw be the unipotent radical of Iw. By definition, NIw is the preimage of N ⊂ B

under Iw → B. Since NIw is normal in Iw and Iw /NIw ≃ T , the quotient F̃l :=
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G((t))/NIw is a principal T -bundle over Fl := G((t))/ Iw. We will call F̃l the enhanced

affine flag variety. The group-scheme G[[t]] acts on the left on both Fl and F̃l.
We define the category PG[[t]](Fl) to be the abelian category of G[[t]]-equivariant

perverse sheaves on Fl. We define the category P̃G[[t]](Fl) to be the sub-category of the

category of G[[t]]-equivariant perverse sheaves on F̃l, which consists of T -monodromic
objects. 3 Note that the pull-back functor identifies PG[[t]](Fl) with the sub-category

of P̃G[[t]](Fl) consisting of T -equivariant objects.

It is known (cf. [9] for details) that the convolution tensor structure on the category
PG[[t]](Gr) extends to an action of PG[[t]](Gr) on PG[[t]](Fl).

Similarly, one can define an action

PG[[t]](Gr) ⋆ P̃G[[t]](Fl) → P̃G[[t]](Fl).

6.3. Hecke eigen-sheaves. Let P̃G[[t]](Fl) denote the ind-completion of the category

P̃G[[t]](Fl). We define the category A as follows: its objects are pairs

(F ∈ P̃G[[t]](Fl), {αV , ∀V ∈ Ǧ -mod}),

where each αV is a map

FV ⋆ F → V⊗F,

where FV ∈ PG[[t]](Gr) is the perverse sheaf corresponding to V ∈ Ǧ -mod via the
equivalence of categories of Theorem 6.2. The maps αV must satisfy the three conditions
of Sect. 2.2. Morphisms in A between (F, αV ) and (F′, α′

V ) are maps F → F′, which
intertwine between αV and α′

V . As in Proposition 2.3, one shows that the maps αV as
above are automatically isomorphisms.

The rest of this section (and of the paper) is devoted to the proof of the following
theorem.

Theorem 6.4. For ℓ sufficiently large, there is an equivalence of categories between A

and uℓ -mod0.

Unfortunately, the proof relies on two results, whose proofs are unavailable in the
published literature. Therefore, the reader may regard Theorem 6.4 as a conjecture,
which can be deduced from Theorem 6.7 and Theorem 6.12 stated below.

6.5. Twisted D-modules on F̃l. The first step in the passage A −→ uℓ -mod0 is the

functor from perverse sheaves on F̃l to modules over the Kac-Moody algebra due to
[12].

Recall that to an invariant symmetric form c : g ⊗ g → C, which is integral (i.e.
induces an integral-valued form on the cocharacter lattice Y ), we can associate a line

bundle Lc on Gr (cf. [12]). By pulling it back to Fl and F̃l we obtain the corresponding
line bundles on the latter ind-schemes.

3Recall that a perverse sheaf is called T -monodromic when it has a filtration, whose sub-quotients
are T -equivariant perverse sheaves.
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Thus, we can consider the category of Lc-twisted right D-modules on F̃l, cf. [12], [5].

As Lc is G[[t]]-equivariant, it makes sense to consider the category D
G[[t]]
c (F̃l) of G[[t]]-

equivariant T -monodromic Lc-twisted right D-modules on F̃l.

Let us now consider the Kac-Moody algebra ĝ corresponding to g:

0 → C → ĝ → g((t)) → 0,

defined with respect to the pairing g⊗ g → C given by c. Let us denote by ĝc -mod the
category of continuous representations of ĝ on which 1 ∈ C ⊂ ĝ acts as identity.

Let us denote by ĝ
G[[t]]
c -mod the subcategory of ĝc -mod consisting of finite length

representations, on which the action of g[[t]] ⊂ ĝ integrates to the action of the group-
scheme G[[t]]. According to [11], this is an Artinian category and we will denote by

ĝ
G[[t]]
c -mod0 its regular block.

From now on let us suppose that c is such that ccrit − c is positive definite on Y ,
where ccrit corresponds to −1

2 ·(the Killing form). When g is simple, ccrit is −ȟ times

the canonical integral from on Y , where ȟ is the dual Coxeter number.
The following theorem has been established in [12] and [5]:

Theorem 6.6. The functor of global sections of a twisted D-module defines an exact
and faithful functor:

DG[[t]]
c (F̃l) −→ ĝG[[t]]

c -mod0 .

However, a stronger statement is true: 4

Theorem 6.7. The above functor D
G[[t]]
c (F̃l) −→ ĝ

G[[t]]
c -mod0 is in fact an equivalence

of categories.

The Riemann-Hilbert correspondence yields an equivalence of categories between

D
G[[t]]
c (F̃l) and P̃G[[t]](Fl), cf. [12]. Therefore, we obtain the following corollary:

Corollary 6.8. There is an equivalence of categories P̃G[[t]](Fl) ≃ ĝ
G[[t]]
c -mod0.

6.9. The Kazhdan-Lusztig equivalence of categories. Now let ℓ be as in Sect. 1.2
and set c = ccrit − (·, ·)ℓ, where (·, ·)ℓ has been introduced in Sect. 1.3. Again, when g

is simple, c is −ȟ− ℓ
d times the canonical form, where d = max(di).

The following theorem has been established in [11]:

Theorem 6.10. When ℓ is sufficiently large, there is an equivalence of categories

Uℓ -mod ≃ ĝ
G[[t]]
c -mod.

By combining this theorem with Corollary 6.8, we obtain the following corollary:

Corollary 6.11. There is an equivalence of categories: P̃G[[t]](Fl) ≃ Uℓ -mod0.

To prove Theorem 6.4, we will need the following property of the equivalence stated
in Corollary 6.11:

4This result is probably well-known to many experts. The proof that we have in mind has been
explained to us by M. Finkelberg and R. Bezrukavnikov.
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Theorem 6.12. Under the above equivalence of categories P̃G[[t]](Fl) ≃ Uℓ -mod0 the

functors Ǧ -mod×P̃G[[t]](Fl) → P̃G[[t]](Fl) given by

V,F 7→ FV ⋆ F and V,M 7→ Fr∗(V )⊗M

are naturally isomorphic.

This result has not been stated explicitly in [11]. We will supply the proof in a later
publication.

Now, by passing to the ind-completions of the categories P̃G[[t]](Fl) and Uℓ -mod0,
we obtain that Theorem 6.4 is a consequence of Theorem 2.4 and Theorem 6.12.

References

[1] H. H. Andersen, J. C. Jantzen, W. Soergel, Representations of quantum groups at p-th roots of

unity and of semisimple groups in characteristic p: independence of p, Asterisque 220 (1994).
[2] H. H. Andersen, J. Paradowski Fusion categories arising from semisimple Lie algebras, Comm.

Math. Phys. 169 (1995), 563–588.
[3] H. H. Andersen, P. Polo, Wen K.,Representations of quantum algebras, Invent. Math. 104 (1991),

1–59.
[4] H. H. Andersen, P. Polo, Wen Kexin, Injective modules over quantum algebras, Amer. Jour. of

Math. 114 (1992), 571–604.
[5] A. Beilinson, V. Drinfeld, Quantization of the Hitchin’s integrable system and Hecke eigensheaves,

preprint (2000), available electronically at www.math.uchicago.edu/∼benzvi.
[6] R. Bezrukavnikov, M. Finkelberg, V. Schechtman, Factorizable Sheaves and Quantum Groups,

Lecture Notes in Math. 1691 (1998).
[7] M. Finkelberg, I. Mirkovic, Semi-infinite flags-I. Case of global curve P1, Differential topology,

infinite-dimensional Lie algebras, and applications, Amer. Math. Soc. Transl. Ser. 2 194, Amer.
Math. Soc., Providence (1999), 81–112, math.AG/9707010 (1997).

[8] B. Feigin, M. Finkelberg, A. Kuznetsov, I. Mirkovic, Semiinfinite Flags II. Local and global

Intersection Cohomology of Quasimaps’ spaces, to appear in Advances in Math. Sciences.
[9] D. Gaitsgory, Construction of central elements of the affine Hecke algebra via nearby cycles,

Invent. Math. 144 (2001), 253-280.
[10] V. Ginzburg, Perverse sheaves on a loop group and Langlands’ duality, math.AG/9511007 (1995).
[11] D. Kazhdan, G. Lusztig, Tensor structures arising from affine Lie algebras, I, J. Amer. Math.

Soc. 6 (1993), 905–947; II, J. Amer. Math. Soc. 6 (1993), 949–1011; III, J. Amer. Math. Soc. 7
(1994), 335–381; IV, J. Amer. Math. Soc. 7 (1994), 383–453.

[12] M. Kashiwara, T. Tanisaki, The Kazhdan-Lusztig conjecture for affine Lie algebras with negative

level, Duke Math. Jour. 77 (1995), 21–62.
[13] G. Lusztig, Introduction to quantum groups, Progress in Mathematics 110, Birkhäuser, Boston
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