
Essays in Household Finance and Bank Regulation

Permanent link
http://nrs.harvard.edu/urn-3:HUL.InstRepos:37945005

Terms of Use
This article was downloaded from Harvard University’s DASH repository, and is made available 
under the terms and conditions applicable to Other Posted Material, as set forth at http://
nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA

Share Your Story
The Harvard community has made this article openly available.
Please share how this access benefits you.  Submit a story .

Accessibility

http://nrs.harvard.edu/urn-3:HUL.InstRepos:37945005
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://nrs.harvard.edu/urn-3:HUL.InstRepos:dash.current.terms-of-use#LAA
http://osc.hul.harvard.edu/dash/open-access-feedback?handle=&title=Essays%20in%20Household%20Finance%20and%20Bank%20Regulation&community=1/1&collection=1/4927603&owningCollection1/4927603&harvardAuthors=5a023eef937d96a925b52d3471eb765b&departmentBusiness%20Economics
https://dash.harvard.edu/pages/accessibility


Essays in Household Finance and Bank Regulation

A dissertation presented

by

Vijay Tupil Narasiman

to

The Department of Economics

in partial fulfillment of the requirements

for the degree of

Doctor of Philosophy

in the subject of

Business Economics

Harvard University

Cambridge, Massachusetts

July 2016



c© 2016 Vijay Tupil Narasiman

All rights reserved.



Dissertation Advisors:
Professor David Scharfstein
Professor Jeremy Stein

Author:
Vijay Tupil Narasiman

Essays in Household Finance and Bank Regulation

Abstract

My dissertation focuses on topics in household finance and bank regulation. In chapter 1, I

estimate the household consumption response to a predictable, quasi-permanent income shock.

Credit card spending rises well before the positive shock occurs and then plateaus, suggesting

that households are forward-looking and have enough liquidity to increase spending. This type of

household behavior is found to be remarkably similar to the simulation of a modified buffer-stock

model. The main conclusion is that households appear to be quite sophisticated in their consump-

tion behavior, which has various policy implications.

In chapter 2 (joint with Divya Kirti), we present a model that describes how different types

of bank regulation can affect the likelihood of fire sales in a crisis. There are three main results.

First, the design of capital requirements affects whether fire sales can occur in the recapitalization

process. Second, the interaction between capital and liquidity requirements causes banks to

become larger and can also make fire sales more likely. Third, mandatory equity issuance can be

a useful policy for limiting fire sales, but only if binding. Collectively, our findings suggest that

bank regulation may have a strong effect on the likelihood of fire sales. In addition, time-varying

risk weights may more effective than time-varying capital requirements in preventing fire sales.

In chapter 3 (joint with Todd Keister), we investigate whether policy makers should be

permitted to bail out financial institutions during a financial crisis. We develop a model that

incorporates two competing views about the causes of these crises: self-fulfilling shifts in investors’

expectations and deteriorating economic fundamentals. We show that – in both cases – the

desirability of allowing intervention depends on a tradeoff between incentives and insurance. If
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policy makers can correct incentive distortions through regulation, then allowing intervention is

always optimal. If regulation is imperfect and the risk-sharing benefit from intervention is absent,

it is optimal to prohibit intervention. Our results show that it is possible to provide meaningful

policy analysis without taking a stand on the contentious issue of whether financial crises are

driven by expectations or fundamentals.
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Chapter 1

What do adjustable-rate mortgage resets

say about household consumption

behavior and the income channel of

monetary policy?1

1.1 Introduction

How does household spending respond to predictable income shocks? The answer to this

question is related to a number of issues that are fundamental to household finance, such as the

level of sophistication of households, their ability to anticipate and act in advance of shocks, and

the extent to which they are liquidity constrained. More generally, this question is related to how

households make dynamic consumption decisions in the face of uncertainty. Are they relatively

unsophisticated, hand-to-mouth consumers? Or do they exhibit buffer-stock behavior?

1This research was made possible by a data-use agreement with the JPMorgan Chase Institute (JPMCI),
which has created anonymized data assets that are selectively available to be used for academic re-
search. More information about JPMCI anonymized data assets and data privacy protocols are available at
https://www.jpmorganchase.com/corporate/institute/data-privacy.htm. All statistics from JPMCI data, includ-
ing medians, reflect cells with at least 10 observations. The opinions expressed are those of the author alone and do not
represent the views of JPMorgan Chase & Co. While working on this paper, I was a paid contractor of JPMCI.

1

https://www.jpmorganchase.com/corporate/institute/data-privacy.htm


Prior work offers somewhat conflicting evidence on this issue, particularly for “poor” house-

holds with low income or wealth. For example, Hsieh (2003) and Browning and Collado (2001)

find households to be quite sophisticated in anticipating and smoothing non-durable consumption

around large, recurring income shocks. Hsieh (2003) finds this to be true even for low-income

households. In contrast, Parker et al. (2013) find that spending by poor households on large-ticket

durable goods is highly responsive to the timing of predictable tax rebates. The same result

is found with non-durable goods as well (Souleles (1999), Johnson et al. (2006), Parker (2015)),

suggesting that households either do not foresee shocks or do not have sufficient liquidity to

increase spending in advance of them. In this paper, which is similar to Di Maggio et al. (2015) and

Keys et al. (2014), I attempt to bring further clarity to this issue by investigating how households

respond to a “quasi-permanent” income shock that is known to occur at a certain date in the

future but is uncertain in magnitude.

Due to the nature of the income shock I study, this paper also speaks to the effectiveness

of the income channel of monetary policy, whereby a reduction in market interest rates raises

the disposable income of households in a “quasi-permanent” fashion. There are two ways this

channel can operate. First, lower market rates allow fixed-rate mortgage holders to refinance

and lower their monthly payments. Since these mortgages generally carry 30-year terms, the

reduction in payments extends over a fairly long horizon and provides a quasi-permanent increase

in household disposable income. Second, lower market rates cause the monthly payments of

floating-rate mortgage holders to fall automatically. This also has a quasi-permanent effect on

disposable income to the extent that a reduction in current rates lowers the expected interest rates

(and therefore the expected mortgage payments) in future months as well.

The general challenge with identifying the effect of an income shock on household spending

is finding a suitable control group. For example, with respect to the income channel of monetary

policy, a suitable control should not experience a reduction in mortgage payments when interest

rates fall but should be otherwise similar to households that do. The problem is that households

who experience a reduction in payments tend to be either fixed-rate mortgagees who are able to

refinance or floating-rate mortgagees. In contrast, households who do not experience a reduction

2



in payments tend to be fixed-rate mortgagees who are unable to refinance. It certainly seems

plausible that the ability to refinance or the choice to have a floating-rate mortgage is correlated

with many outcomes of interest, such as household spending. If so, the assumptions required for

identification are not met.

Fuster and Willen (2013) were the first to address this issue by studying hybrid adjustable-rate

mortgage (ARM) resets. A hybrid ARM is a 30-year mortgage that has an initial term during

which monthly payments are fixed. After this fixed term expires, the mortgage “resets”, meaning

that monthly payments go from being fixed to being linked to the current prevailing interest rate.

The length of the initial fixed term is offered in various increments (5 years, 7 years, 10 years, etc)

and is chosen at origination.

Hybrid ARMs offer a nice environment for identifying the effects of income shocks. Suppose

that when market interest rates are high, two households (A and B) originate 5-year fixed term

hybrid ARMs in close temporal proximity to each other (A being first). Over the next 5 years,

suppose that market interest rates fall dramatically. When household A’s mortgage resets, its

disposable income rises as its mortgage payment becomes linked to the low prevailing market

rate. However, household B’s mortgage has not yet reset - it continues paying the same fixed

amount for some time. Therefore, the spending of household B is a potential counterfactual for

the spending of household A around the latter’s reset. The required assumption is that in the

absence of household A’s reset, A and B would have parallel trends in spending. This certainly

seems plausible since both households chose to originate the exact same type of mortgage in the

same high interest rate environment, just at different times.

Di Maggio et al. (2015) and Keys et al. (2014) employ this identification strategy in an event

study framework to estimate the effects of income shocks on household consumption. Specifically,

they use 5-year hybrid ARMs that are originated in a high interest rate environment (2004-2008)

and that reset when market rates are at the zero lower bound (2009-2013). They find strong effects

of income shocks on auto spending, their principal measure of household consumption. In the

month that a household’s mortgage payment falls, there is a sharp increase in auto spending that

3



is sustained for several months. This effect is concentrated in low income households and is weak,

if not negligible, in the months leading up to reset. The authors conclude from these results that

the income channel of monetary policy is strong, particularly for low-income households, and

that these households lack either the foresight or liquidity to increase auto spending in advance of

their shocks.

However, this evidence by itself does not provide a complete picture of household behavior or

by extension, the income channel. As documented in Di Maggio et al. (2015), average monthly

household spending on autos is only $300, a small portion of total consumption. In addition, auto

purchases are very infrequent: the probability of purchasing a car in a month is less than 1.5%.

Therefore, the response of auto spending to income shocks may not represent how broader forms

of consumption, namely non-durable goods, respond to the same kinds of shocks.

In this paper, using a methodology similar to Di Maggio et al. (2015), I conduct an event study

of hybrid ARM borrowers in a 2-year window around reset using anonymized data from JPMor-

gan Chase (hereafter referred to as “the Bank”). The main innovation compared to prior work is

the use of an important and previously unexplored consumption variable: credit card spending.2

Its importance as a consumption variable is demonstrated by median monthly household credit

card spending in my sample being $2400, significantly more than average auto purchases in prior

work ($300). In addition, the set of goods purchased with credit card offers a broader perspective

on consumption than autos alone.

A second innovation of this paper is the splitting of ARM borrowers into different groups

based on how mortgages are amortized before and after reset. While all groups experience a reset,

differences in amortization cause some groups to experience much larger reductions in mortgage

2Di Maggio et al. (2015) and Keys et al. (2014) use a measure of credit card spending calculated from outstanding
credit card balances and payments and find similar results compared to their main consumption variable of auto
spending. While both balances and payments are made available in credit bureau data, banks are not required to report
either one to the credit reporting agencies. The Fair Credit Reporting Act only places requirements on banks once they
voluntarily choose to provide information (see 15 U.S.C §1681s-2). Therefore, it is possible that credit card spending
imputed from credit bureau data is unreliable. The stark differences between the credit card spending results of this
paper and those of Di Maggio et al. (2015) and Keys et al. (2014) provide some evidence in favor of this view.

4



payments than others. In prior work, just one of these groups is studied in isolation (Di Maggio

et al. (2015)) or they are all lumped together (Keys et al. (2014)). In this paper, I analyze each

of these groups separately, allowing for a deeper understanding of household behavior and the

income channel.

The first main result of the event study is that the dynamics of credit card spending in response

to ARM reset are different from that of auto purchases. For households who experience large

payment reductions at reset, credit card spending gradually increases in the months leading up to

reset, with no sharp change in the month of reset itself. This suggests that not only do households

fully anticipate their resets, they also have enough liquidity to increasing spending before the

positive shock occurs. This is quite different from the results on auto spending in Di Maggio

et al. (2015), where there is a very small increase in spending pre-reset and a sharp increase in the

month of reset itself.

The second result is that for the set of ARM borrowers who happen to experience a negligible

payment reduction at reset, there is not a statistically significant increase in spending either before

or at reset. This is important because it represents a sort of “placebo test” of the previous result.

However, based on point estimates for these households, the credit card spending profile actually

follows a similar pattern as in the previous result, just with much smaller magnitudes. Spending

gradually rises pre-reset, with no sharp change in the month of reset itself. This latter result is

puzzling because these households experience only a negligible payment reduction at reset, yet

still seem to increase credit card spending leading up to reset.

The third result explores how household wealth affects the response of credit card spending

to income shocks. Prior work finds the effect to be concentrated in households with low income

and attributes this to tighter liquidity constraints for this group. I find that for households who

experience a large payment reduction at reset, there is a similar concentration of the spending

response in households with below-median wealth, as measured by liquid assets holdings. How-

ever, these spending responses still occur before payment reductions happen at reset. In addition,

for households who experience a negligible payment reduction at reset, the spending response is
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concentrated in households with above-median wealth. These observations seem to be at odds

with a pure liquidity constraints story.

In the last portion of the paper, I turn to theory and ask whether there is a model of household

consumption that is consistent with the main empirical results: (1) no sharp increase in spending

at reset, (2) a gradual increase in spending pre-reset, (3) a similar pattern with much smaller mag-

nitudes for households whose payment reductions at reset are negligible, and (4) heterogeneous

responses by household wealth that flip based on the whether the payment reduction at reset is

large or negligible.

I start with a standard buffer-stock model of consumption with labor income uncertainty, as in

Deaton (1999), and incorporate elements to mimic the environment of the empirical event study.

For example, I require agents to make mortgage payments that match the profile of a 5-year

hybrid ARM and “start“ the model 1 year before mortgage reset. Before reset, payments are fixed

at a high value and after reset, payments become a function of the prevailing market rate in the

reset month. Note that the current market interest rate will be a key state variable in the pre-reset

window because it guides agents as to what the prevailing market rate at reset, and therefore

what agents’ mortgage payments in the post-reset window, will be.

To assess whether this model comports with the results of the empirical event study, I solve the

model numerically and simulate it for a specific path of market interest rates in a 2-year window

around the reset month. To emulate the event study, the simulated path of rates is set to reflect

what ARM borrowers in my sample actually faced in proximity of their resets. Since the resets in

question occur after 2009 when market interest rates were consistently at the zero lower bound

(ZLB), the simulated path of rates is set to be low and stable.

The final result of this paper is that the simulated consumption profiles of agents in a modified

buffer-stock model are strikingly consistent with the empirically estimated credit card spend-

ing profiles described earlier. Thus, the modified buffer-stock model provides a fairly good

description of how household credit card spending responds to permanent income shocks. A key
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property of the model is that agents with high levels of liquid assets act like permanent income

consumers while agents with low levels of assets act primarily out of a concern for maintaining

an adequate buffer against labor income shocks. It is this dichotomy that causes the simulation

to produce the same type of heterogeneous effects by wealth that the empirical event study exhibits.

Two main conclusions are drawn from the collective results of this paper. The first is related to

household behavior. Consistent with Hsieh (2003) and Browning and Collado (2001), households

appear to display a high degree of sophistication and forward-looking behavior. Not only do

they seem to anticipate their resets, their actions in advance of reset match those of a dynamically

optimizing buffer-stock agent. This conclusion is most striking for low-asset households, who

gradually adjust their spending upward as their resets become more imminent. Such behavior

reflects a keen awareness of one’s current and future financial situation and demonstrates that

even low-asset households have some liquidity to draw on.

How can this result be reconciled with other evidence that households lack sophistication,

liquidity, or both? In the case of the evidence on durable goods, it is plausible that poor house-

holds, even if they have some liquidity, just do not have enough to purchase large-ticket durables

until a shock actually occurs. In the case of the evidence on non-durable goods, Hsieh (1999) and

Browning and Collado (2001) claim that since the income shocks in these cases are relatively small,

transient, and irregular, households with bounded rationality simply ignore them until they occur,

and therefore appear unsophisticated.

However, the results of this paper point to a different explanation. If poor households are

indeed buffer-stock agents with a small amount of liquidity, their consumption decisions at any

given time will be tightly linked to their perceived exposure to negative labor income shocks going

forward. Since a tax rebate is small, transient, and irregular, it cannot have a very lasting impact

on a household’s ability to weather labor income shocks. Instead of drawing on their liquidity to

consume in advance of the shock, poor households would rather retain whatever liquidity they

have as a buffer. The decision to hold off on spending until the shock occurs is therefore a rational

one. Importantly, the same logic does not apply to shocks that are large, permanent (like ARM
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resets), or recurring, because these shocks do have a lasting impact on poor households’ exposure

to negative labor income shocks.

The second main conclusion of the paper is related to monetary policy. The conclusion is

that event studies of ARM resets may not be useful for estimating the effects of monetary policy

surprises. Given the evidence that households seemed to fully anticipate their resets, the observed

spending responses and their relationships to household wealth could be different if the shock is

unanticipated. Indeed, in a buffer-stock model, the spending of wealthy households will be more

responsive to surprise income shocks since poorer households will use some of the windfall to

bolster their asset buffers.

Nevertheless, the analysis of ARM resets in this paper is useful for understanding whether

monetary policy can affect current spending by changing household beliefs about future interest

rates, holding current rates constant. Both the empirical and theoretical evidence point to wealthy

households adjusting their current consumption in response to changes in expected permanent

income. If this is true in practice, the ability to guide household beliefs about future interest

rates is a powerful monetary policy tool. Specifically, the income channel can operate through

an “expectations effect” for wealthy households: the Fed causes expected future rates to fall,

households’ expected future disposable income rises, and their current consumption rises too.

The rest of the paper is organized as follows. In Section 1.2, I provide an overview of the

anonymized data used in the event study and present summary statistics. In Section 1.3, I outline

the empirical methodology and provide justification for the identification strategy. In Section 1.4, I

present the results of the event study. In Section 1.5, I formally develop the modified buffer stock

model and show how it is solved numerically. In section 1.6, I simulate the modified buffer-stock

model and compare the results to the event study. Finally, I summarize all of the results and

conclude in section 2.5.
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1.2 Data and summary statistics

The data used in the event study are anonymized and can be split into three categories:

mortgages, credit cards, and demographics.

1.2.1 Mortgage data

The mortgage data are a monthly panel of customer accounts from April 2009 to present for

the universe of mortgages that the Bank services. The anonymized data contains information on

the the interest rate, loan amount, term, and home value estimate of every account at origination

and as a time series. For hybrid ARMs, the lengths of the initial fixed terms are not given in the

data by default and have to be inferred from changes in the interest rate variable.

This paper focuses on 5-year fixed term hybrid ARMs that originate before December 2007 and

reset after April 2010. Based on the 5-year fixed term, these dates imply an origination window

of April 2005-December 2007 and a reset window of April 2010-December 2012. The rationale

for these windows is threefold. First, they ensure that households can experience large payment

reductions upon reset. As seen in Figure 1.1, average market interest rates during the origination

window (between the first two dotted lines) are approximately 5%, substantially higher than

they are during the reset window (between the second two dotted lines). Second, neither the

origination nor reset windows overlap with the Great Recession (December 2007 to June 2009),

which is desirable from an external validity point of view. Finally, starting the reset window in

April 2010 (as opposed to earlier) is necessary for there to be at least one full year of data available

before reset, since the data from the Bank begins in April 2009.

A few additional restrictions are also imposed on the mortgage sample. First, mortgage

accounts that are modified in any way (term, principal, rate, etc) prior to reset are excluded.

In addition, mortgages that are refinanced at any point in their lives are also excluded. These

restrictions are imposed because modifications and refinancings can introduce additional shocks

and change the nature of the shocks that households experience at reset. They are also endogenous

decisions that may be correlated with trend of household spending.
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Figure 1.1: USD 3-month LIBOR

In any given month, the mortgages studied in this paper have either zero or positive amortiza-

tion, where the former implies that payments are interest-only and the latter implies payments

are interest-plus-principal.3 As indicated in Section 1.1, one of the differences between this

paper and prior work is dividing ARM borrowers into three groups based on how amortization

changes before and after reset. The first group is labeled “zero-zero” and contains households

with zero-amortization (interest-only payments) before and after reset. The second group is

“positive-positive” and contains households with positive-amortization (interest-plus-principal

payments) before and after reset. The last group is “zero-positive” and contains households with

zero-amortization (interest-only payments) before reset and positive-amortization (interest-plus-

principal payments) after reset.4

3Negative amortization mortgages are excluded from the sample because they are relatively few in number.

4Each household’s amortization group is not specified in the data and must be inferred from how observed
mortgage payments change at reset.
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While all three amortization groups experience a reset in the interest rates on which their

mortgage payments are based, the effect of reset on actual mortgage payments will differ by

group. This is the primary motivation behind analyzing these groups separately. Each group

effectively experiences a different “treatment”, making comparisons across these groups useful for

understanding household behavior. An additional reason to analyze these groups separately is

that households choose their amortization schedules. If this choice is correlated with the trend of

household spending, the groups should be analyzed separately for the purpose of identification.

1.2.2 Credit card data

The credit card data are also a monthly panel of customer accounts from April 2009 to present

for all households that have ever had a credit card account with the Bank. The anonymized data

contains information on total spending, revolving balances, and credit limits. There are three

important benefits associated with this data compared to credit bureau records, the primary credit

card-related data source in prior work. First, the Bank spending data is built up from actual credit

card purchases and does not need to be derived imperfectly from outstanding credit card balances.

Second, the Bank spending data can be disaggregated into a broad range of categories. Third,

the Bank data on revolving balances, which is the portion of outstanding credit card balances on

which interest is paid, is not available in credit bureau records.

A few additional restrictions are imposed on the credit card data as well. First, I require that

in the 2-year window around each household’s ARM reset month, the median number of monthly

transactions on the card exceeds 10. This excludes households whose credit card spending at the

Bank is not sufficiently active for it to be representative of their general consumption. Second,

ARM households must have held their credit card account at the Bank for at least 2 years prior to

their reset dates. This filter is imposed so that the results of the event study are not contaminated

by households who just recently opened a credit card account in order to make a large purchase.

11



1.2.3 Demographics data

The Bank has demographic data on the age, zip code, annual income, and liquid asset holdings

of all of its customers. Annual income is the Bank’s estimate of an account holder’s gross annual

income. Similarly, liquid asset holdings is the Bank’s estimate of an account holder’s total liquid

assets (cash, money market accounts, etc), not just those held at the Bank. In this paper, I use the

liquid asset estimate rather than the income estimate as a proxy for household liquidity, as the

former is more related to the concept of cash on-hand. Therefore, when the terms “wealthy” and

“poor” are used hereafter, I use them in reference to a household’s liquid asset estimate. It should

be noted that since these numbers are just estimates, it is better to interpret them as indications of

ordinality (relative ordering) rather than cardinality (actual magnitude).

1.2.4 Summary statistics

Tables 1.1 and 1.2 show how certain mortgage and demographic-related summary statistics are

affected by the various sample restrictions discussed in Sections 1.2.1 and 1.2.2. Table 1.1 contains

means and Table 1.2 contains medians.5

Table 1.1: Evaluation of sample restrictions (means)

sample n loan_orig ltv_orig rate_orig age income liqassets

30-yr MTG, 2005-2007 orig 4, 772, 642 214, 049 0.800 0.050 44 85, 873 78, 396
Not fixed-rate 912, 826 315, 753 0.740 0.053 48 109, 867 119, 248
No mod/refi 532, 223 344, 535 0.710 0.049 49 127, 937 163, 874

5-yr hybrid ARM 71, 053 350, 365 0.710 0.060 48 124, 186 135, 780
MTG/CC data window 19, 823 398, 456 0.700 0.061 48 138, 392 150, 202

CC activity filter 5, 021 473, 505 0.690 0.060 48 179, 339 217, 783

The first column of Tables 1.1 and 1.2 are explained as follows. “30 yr MTG, 2005-2007 orig”

refers to the universe of 30-year mortgages (fixed, floating, and hybrid) that were originated

between April 2005 and December 2007. “Not fixed-rate” excludes all mortgages that are pure

fixed-rate. “No mod/refi” imposes the restriction of no modifications or refinancings during the

life of the mortgage. “5-year hybrid ARM” requires the mortgages to be 5-year fixed term hybrid

5Throughout this section, medians are reported as the average of all observations lying between the 49th and 51st
percentiles. The reason for this alternate definition is that the conventional median corresponds to the actual data of an
individual account holder (or the average of two), which the Bank does not make publicly available.
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Table 1.2: Evaluation of sample restrictions (medians)

sample n loan_orig ltv_orig rate_orig age income liqassets

30-yr MTG, 2005-2007 orig 4, 772, 642 161, 539 0.800 0.049 43 63, 048 25, 178
Not fixed-rate 912, 826 226, 241 0.770 0.056 47 74, 980 32, 983
No mod/refi 532, 223 230, 144 0.750 0.048 49 86, 087 57, 061

5-yr hybrid ARM 71, 053 254, 474 0.750 0.059 47 87, 235 46, 546
MTG/CC data window 19, 823 298, 774 0.750 0.060 47 98, 525 53, 190

CC activity filter 5, 021 359, 665 0.740 0.060 49 120, 440 87, 948

ARMs. “MTG/CC data window” requires there to be continuous, non-missing mortgage and

credit card data in a 2-year window around each household’s ARM reset. Finally, “CC activity

filter” implements the sample restrictions related to credit card usage frequency and account age

described in Section 1.2.2.

The remaining columns represent the number of customer accounts within each sample (“n”),

the original loan amount (“loan_orig”), the loan-to-value ratio at origination (“ltv_orig”), the

interest rate at origination (“rate_orig”), and customer age (“age”), estimated annual income

(“income”), and estimated liquid asset balance (“liqassets”) as of the earliest possible date in the

reset window.

The key insight from Table 1.1 is that as more filters are incorporated, the sample becomes

much smaller and more biased toward households with bigger mortgages, higher income and

wealth, and older age. For example, there are over 4.7 million customers with 30-year mortgages

originated between April 2005 and December 2007. After limiting the sample to 5-year hybrid

ARM borrowers that meet the mortgage and credit card data sufficiency requirements in the last

two rows of Tables 1.1 and 1.2, the remaining sample size is only 5,021. In addition, the average

mortgage balances, income, and liquid asset holdings of the final sample are more than twice as

large as the same figures for the initial sample. Table 1.2 tells the same story but also conveys that

the sample is quite skewed - means are considerably greater than medians.

Clearly, the final sample of households is not perfectly representative of the typical house-

hold with a mortgage. Therefore, any results from analyzing this sample are only applicable
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to households that are generally older and wealthier, rather than the universe at large. This is

an important caveat, considering that one of the main conclusions of this paper is related to

how sophisticated households are. In spite of this bias, the final sample does not just contain

households that are very high-earning and wealthy. For example, the 25th percentile of income

and liquid asset holdings for the final sample are $79,000 and $36,000, respectively.

The sample of households in the final row of Tables 1.1 and 1.2 can further be broken down

by amortization group: zero-zero, positive-positive, and zero-positive (see Section 1.2.1). The

households in these three groups will form the core samples for the empirical analysis of this

paper. Table 1.3 presents detailed mortgage summary statistics for these three groups, at both

origination and reset. Each group has two rows in the table, one for means and one for medians.

The column “pmt_orig” refers to the initial 5-year fixed payment, “pmt_reset” refers to the first

post-reset payment, and “fico” refers to the customer’s FICO score as of 12 months before reset.

Table 1.3: Mortgage characteristics by amortization group

summary_stat amort_final n loan_orig ltv_orig rate_orig pmt_orig ltv_reset rate_reset pmt_reset fico

mean zero_zero 912 389, 294 0.720 0.065 2, 046 1.070 0.032 988 781
mean positive_positive 1, 182 327, 825 0.710 0.060 1, 945 0.870 0.032 1, 439 783
mean zero_positive 2, 564 581, 440 0.670 0.059 2, 770 0.980 0.031 2, 696 782

median zero_zero 912 288, 704 0.770 0.064 1, 521 1.040 0.031 748 791
median positive_positive 1, 182 207, 659 0.750 0.059 1, 251 0.850 0.031 916 795
median zero_positive 2, 564 481, 439 0.720 0.058 2, 257 0.980 0.031 2, 230 793

Across the three amortization groups, samples size ranges from 912 to 2,564. In terms of

mortgage characteristics, all groups have relatively high credit quality as measured by FICO score.

The zero-zero and positive-positive groups appear quite similar at origination based on loan size,

loan-to-value (LTV) ratios, rates, and payments. In addition, both groups experience relatively

large reductions in mortgage payments at reset, though the reduction is larger for the zero-zero

group. The substantial difference in LTV ratios at reset is because the positive-positive group pays

down principal while the zero-zero group does not in the 5 year gap between origination and

reset. The zero-positive group is quite different from the others according to Table 1.3, with higher

loan balances and payments at origination. Most importantly, this group experiences a very small
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change in its payment at reset compared to the other two groups.

Figure 1.2 presents a frequency distribution of the change in households’ monthly mortgage

payments at reset by amortization group, where negative values on the x-axis represent reductions

in payments. Consistent with Table 1.3, households in the zero-zero group have the largest

payment reductions at reset, followed by the positive-positive group. The reasons for this relative

ordering are given precisely in Appendix A.1. The intuition is that only the interest portion of the

positive-positive group’s payments experience a decline at reset due to a lower rate. The principal

portion effectively does not. In contrast, the full interest-only payment of the zero-zero group

experiences a decline.

Figure 1.2 also highlights that among the three groups, the zero-positive group experiences

the smallest payment reduction, which is close to zero on average. There are two two offsetting

forces: the decline in the interest rate at reset makes payments smaller but post-reset payments

now include a principal portion, making payments larger. The net effect depends on the specific

interest rate reduction that a given household experiences at reset (see Appendix A.1).

One piece of external validation for the anonymized data used in this paper is that the charac-

teristics of the the zero-zero group documented in Table 1.3 and Figure 1.2 are fairly consistent

with those of the households studied by Di Maggio et al. (2015) (not shown here). The reason that

this specific comparison represents a validation is because Di Maggio et al. (2015) focus exclusively

on 5-year fixed term hybrid ARM borrowers that have interest-only payments for the first 10 years

after origination, a restriction that is conceptually similar to the definition of the zero-zero group

in Section 1.2.1. It is therefore comforting that despite being drawn from different data sources,

these two samples exhibit similar mortgage characteristics.

Table 1.4 presents demographics data by amortization group as of April 2009. Consistent with

Table 1.3, the zero-zero and positive-positive groups are broadly similar along the dimensions of

age, income, and wealth. Also consistent with Table 1.3, the zero-positive group is older and has

higher income and wealth. While statistics on the geographic concentration of households in eac

group are not reported in Table 1.3, there are some sharp differences. Such heterogeneity would
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Figure 1.2: Frequency distribution of payment change at reset

Table 1.4: Demographic characteristics by amortization group

summary_stat amort_final n age income liqassets

mean zero_zero 912 47 167, 043 178, 661
mean positive_positive 1, 182 47 180, 854 163, 725
mean zero_positive 2, 564 49 185, 778 254, 969

median zero_zero 912 47 127, 065 77, 953
median positive_positive 1, 182 47 115, 097 73, 884
median zero_positive 2, 564 49 126, 423 110, 578

be worrisome if identification relied on comparisons across these three groups. However, as will

be described in Section 1.3, the empirical analysis will be based on within-group comparisons.

Finally, Table 1.5 presents summary statistics on credit card usage for each amortization

group during the 2 year window around households’ reset months. The columns show credit

card revolving balance (“cc_revbal”), credit card limit (“cc_creditlimit”), number of credit card

transactions (“cc_txns”), and creedit card spend (“cc_spend”). The main takeaway from this table
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is that credit card spending is a large component of consumption for these households, especially

compared to autos. Median monthly credit card spending ranges from $2,334 to $2,508, compared

to average monthly spending on autos of $300 over a similar time period (Di Maggio et al. (2015)).

Table 1.5: Credit card usage characteristics by amortization group

summary_stat amort_final n cc_revbal cc_creditlimit cc_txns cc_spend

mean zero_zero 912 4, 939 30, 997 38 3, 818
mean positive_positive 1, 182 4, 845 31, 559 38 4, 105
mean zero_positive 2, 564 6, 010 36, 650 37 4, 037

median zero_zero 912 0 26, 272 29 2, 415
median positive_positive 1, 182 0 25, 804 29 2, 401
median zero_positive 2, 564 0 31, 737 29 2, 553

Before reviewing the empirical methodology in the next section it is worth summarizing the

two key points from this section. First, compared to the 30-year mortgage universe, the sample

used in this paper is biased toward households with higher wealth and income, and probably

higher consumption as well. However, the sample still includes many households with moderate

levels of wealth and income. Second, there are many observable differences between the three

amortization groups, which justifies analyzing each of them separately.

1.3 Empirical methodology

The research design of this paper is similar to Di Maggio et al. (2015). The objective is to

estimate the causal effect of mortgage reset on a number of outcomes, with a focus on credit card

spending (hereafter, credit card spending will be used to refer to the outcome). The analysis is

done separately for each amortization group (zero-zero, positive-positive, and zero-positive) to

account for observable (see Tables 1.3-1.5) and potentially unobservable differences across groups

that could be correlated with the trend of credit card spending.

For each amortization group, I run an event study in a 2-year window around households’

mortgage reset months. The window length of 2 years was chosen to balance three considerations.

First, the window should be wide enough to be able to identify any effects of mortgage reset that
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occur before (i.e. anticipation effects) or after (i.e. delayed reactions) reset actually takes place.

Second, since every household needs to have continuous data in the full window around its reset

month, a window that is too wide would result in a small sample size. Finally, we will see in

Section 1.3.3 that as the window gets wider, the ability to precisely identify causal effects becomes

more limited. A window length of 2 years was chosen taking all of these issues into consideration.

1.3.1 Identification assumption

The identification assumption that underlies the event study is as follows: households in the

same amortization group but with different origination dates would share common trends in

credit card spending in the 2-year window around each household’s reset month if reset were

not to occur. The exact implications of this assumption are made more clear in Figure 1.3, which

shows a timeline of mortgage origination and reset for two hypothetical households, A and B.

As noted in Section 1.2.1, this paper focuses on households with 5-year fixed term hybrid

ARMs originated between April 2005 and December 2007 and therefore resetting between April

2010 and December 2012. Suppose that households A and B are of the same amortization type

and originate their mortgages on the two ends of the origination window, as demonstrated in

Figure 1.3. This means that household A’s “event window”, defined as the 2-year window around

its reset month, is April 2009 to April 2011. Similarly, household B’s event window is December

2011 to December 2013.

With this framework, the identification assumption can be rearticulated in the context of

households A and B. The assumption states that in a hypothetical world in which A’s and B’s

hybrid ARMs do not reset, their credit card spending would share common trends within each of

their event windows. In other words, household B is a good counterfactual for household A from

April 2009 to April 2011 and vice versa from December 2011 to December 2013.

Why might this assumption be valid? First, households A and B made fairly similar choices

with respect to their mortgages. They both chose to originate 5-year hybrid ARMs with the same
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Figure 1.3: Timeline of origination and reset

pre/post-reset amortization structure. They also chose to originate in a relatively high interest

rate period, before the beginning of the Great Recession. Therefore, even if household credit card

spending is correlated with mortgage-related decisions, households A and B can still be good

counterfactuals for each other.

Second, it is not essential that households A and B share common trends in credit card spend-

ing in the full time series. In fact, it is reasonable for households to change their spending patterns

around salient events like a home purchase. For example, households may curtail spending as

a consequence of feeling the pinch from making a large down payment. On the other hand,

households may also increase spending on a host of goods that are complementary to homes

(furnishings, decorative items, etc). However, these changes in spending patterns are likely to be

limited to a narrow window around mortgage origination. For the event study of this paper, the

common trend assumption for identification only needs to apply within each household’s event

window, which is 4-6 years after origination.

Therefore, even if one thinks that the trend of credit card spending for household B would

be different from that of household A in the immediate vicinity of the former’s origination in

December 2007, this does not invalidate identification unless this difference persists through

household A’s event window, which is 16-40 months later. Similarly, during household B’s event
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window, household A is more than 6 years removed from its origination date and so is unlikely to

still be affected by the origination.

1.3.2 Formal specification

The formal regression specification for the event study is given below in (1.1). Note that this

specification is applied separately to each of the three amortization groups.

Yi,t =
12

∑
k=−12

βk1{τi,t = k}+ βL1{τi,t < −12}+ βR1{τi,t > 12}+ λi + ηt + ε i,t (1.1)

The dependent variable Yi,t is the value of an outcome variable (i.e. credit card spending) for

household i in month t. The variable τi,t is “event time”: the difference in months between t and

the month in which household i makes its last pre-reset payment. For example, suppose that a

household’s first post-reset payment occurs in July 2011. Then τi,t = 1 for this household when

t = July 2011. For t = June 2011 (the last month in which a pre-reset payment is made), τi,t = 0

and for t = August 2011, τi,t = +2.

The coefficients of interest in (1.1) are the βk’s, the coefficients on monthly event time dummies

between -12 (one year before reset) and +12 (one year after reset), i.e. the event window. There

are also dummies for being to the left and right of the event window, with coefficients βL and

βR, respectively. Finally, the specification includes both household (λi) and monthly (ηt) fixed

effects. The household fixed effect controls for any time-invariant household attributes that may

be correlated with the level of credit card spending. The time fixed effect controls for any temporal

effects on credit card spending that apply to all households in the sample.

The interpretation of βk is the causal impact of mortgage reset on credit card spending k

months after reset occurs. However, due to the inclusion of fixed effects, βk is only identified up

to a constant. I choose this constant to be β−12 to highlight that the event study is effectively a

difference-in-differences framework. The interpretation of the normalized coefficient βk − β−12 is

the causal impact of mortgage reset on credit card spending k months after reset relative to 1 year

before reset. Put another way, βk − β−12 represents the difference between treatment and control
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households when the former is in event month k relative to the same difference when the former

is in event month −12.

The normalization of coefficients is formally presented below. First, define t∗ implicitly with

τi,t∗ = −12. This definition implies that t∗ is the month in which household i is 12 months before

reset. Using (1.1), we have

Yi,t∗ = β−12 + λi + ηt∗ + ε i,t∗

=
12

∑
k=−12

β−121{τi,t = k}+ β−121{τi,t < −12}+ β−121{τi,t > 12}+ λi + ηt∗ + ε i,t∗ (1.2)

Then, subtract Yi,t∗ in (1.2) from Yi,t in (1.1).

Yi,t −Yi,t∗ =
12

∑
k=−12

(βk − β−12)1{τi,t = k}+ (βL − β−12)1{τi,t < −12}

+ (βR − β−12)1{τi,t > 12}+ (ηt − ηt∗) + (ε i,t − ε i,t∗)

(1.3)

The specification in (1.3) is the regression that is run for each amortization group. It is clear from

(1.3) that the coefficients on the event time dummies will reflect the desired normalization relative

to β−12. In addition, the coefficient on the event time dummy for k = −12 will always be zero by

construction.

1.3.3 Identification revisited

The formal specification for the event study given in (1.1) permits a more nuanced discussion

of how causal effects are identified in this paper. The identification assumption stated in Section

1.3.1 is that households in the same amortization group but with different origination dates would

share common trends in credit card spending in the 2-year window around each household’s

reset month if reset were not to occur. Using the notation of (1.1), this assumption is equivalent to

E(ε i,t | λi, ηt, τi,t) = 0 (1.4)

That is, conditional on household, time, and event window effects, there is no expected difference

between actual credit card spending and spending predicted by (1.1).
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A similar identification assumption is stated in Di Maggio et al. (2015) and is used to justify

that for a given household, all other households with different reset dates are appropriate

counterfactuals, no matter when their resets actually occur:

In other words, we estimate the consumption response of the households who experi-
enced a reduction in the interest payment, relative to that of households holding the
same mortgage, but with a different reset date... the assumption is that households
whose mortgage is reset in May 2010 are basically comparable to households that
experience their reset, say in December.

However, based on the specification in (1.1), households that are appropriate counterfactuals must

have reset dates that are sufficiently far apart in time from the household in question. We will

show this with the following example.

Suppose household A experiences its first month after reset in June 2011, which is given by

t = t′. This means that τA,t′ = 1. Let household B experience its second month after reset in June

2011, or τB,t′ = 2. This implies that households A and B have reset dates that are one month apart.

Suppose that we try to estimate β1− β−12 using a difference-in-differences (DD) estimate β̂, where

household A is the treatment group and household B is the control. Since t′ = June 2011 is the

first month after reset for the treatment household (A), this implies that May 2010 = t′ − 13 is 12

months before reset for household A. Therefore, the DD estimate takes the following form.

β̂ = (YA,t′ −YB,t′)− (YA,t′−13 −YB,t′−13) (1.5)

= ((β1 + λA + ηt′ + εA,t′)− (β2 + λB + ηt′ + εB,t′)) (1.6)

− ((β−12 + λA + ηt′−13 + εA,t′−13)− (β−11 + λB + ηt′−13 + εB,t′−13))

=⇒ E(β̂) = (β1 − β−12)− (β2 − β−11) (1.7)

Expression (1.5) is the usual form of the DD estimator: the difference in the outcome Y between

the treatment (A) and control (B) when the treatment group is 1 month after reset minus the

same difference when the treatment group is 12 months before reset. Expression (1.6) comes from

substituting (1.1) into (1.5). Expression (1.7) comes from canceling terms, taking expectations of

both sides, and employing the identification assumption in (1.4).
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Notice that the expression in (1.7) does not properly identify β1− β−12 as intended. Household

B is not an appropriate counterfactual because it is also being “treated” during the time period

from t′ − 13 to t′. While household A experiences the treatment of being 1 month after relative to

12 months before reset, household B experiences the treatment of being 2 months after relative

to 11 months before reset. The effect of household B’s treatment is given by β2 − β−11, which is

precisely the bias displayed in (1.7).

This problem can be addressed by comparing household A to a household whose treatment

status does not change over the same time period. For example, suppose the control group is

household C, who in June 2011 is at least one year before reset (τC,t′ < −12). In this case, the DD

estimate takes the following form.

β̂ = (YA,t′ −YC,t′)− (YA,t′−13 −YC,t′−13)

= ((β1 + λA + ηt′ + εA,t′)− (βL + λC + ηt′ + εC,t′))

− ((β−12 + λA + ηt′−13 + εA,t′−13)− (βL + λC + ηt′−13 + εC,t′−13))

=⇒ E(β̂) = β1 − β−12

The DD estimate is unbiased because from t′ − 13 to t′, household C’s treatment status does not

change. It is always to the left of its event window.

The general rule is that for household A who experiences event month k in month t, valid

counterfactuals are households who are outside of their event windows when household A is expe-

riencing event time between [−12, k], or [t− (k + 12), t]. This means that for the set of valid coun-

terfactual households, represented by the set Ω(k, t), t must be more than 12 months before reset or

t− (k + 12) must be more than 12 months after reset. The latter condition is equivalent to t being

more than 24 + k months after reset. Therefore, we have Ω(k, t) = {j : τj,t < −12 or τj,t > 24 + k},

where Ω(k, t) is the set of valid counterfactual households for a treatment household that experi-

ences event month k in month t. Clearly, not all households who just have different origination

dates are valid counterfactuals.
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I close this section by noting two important properties of the set Ω(k, t). First, as the event

window gets wider than 12 months on each side of reset, the set of valid counterfactual households

becomes smaller. It is easy to show that with an event window length L on each side of reset, the

set of valid counterfactual households is Ω(k, t, L) = {j : τj,t < −L or τj,t > 2L + k}. Therefore,

as L gets larger, a household has to reset even farther from t to be a valid counterfactual. As

mentioned at the beginning of this section, this is another reason why a very wide event window

is untenable. Parameter estimates would be very imprecise with a small set of valid counterfactual

households.

Second, as k gets larger, the set Ω(k, t) becomes smaller because it becomes less likely for a

candidate counterfactual household to be more than 24 + k months after reset in month t. This

means that holding other things equal, the normalized coefficients βk − β−12 should be estimated

with less and less precision as k goes from -12 to 12. We shall see this in the event study results,

which we turn to next.

1.4 Event study results

In this section, I present the results of the event study specified in (1.3). The results are

displayed in graphical form, with the x-axis representing the event window from 12 months before

to 12 months after reset and the y-axis representing the magnitude of the normalized event month

coefficients. Recall from Section 1.3 that the interpretation of the coefficient for event month k is

the effect of mortgage reset on the outcome in month k relative to 12 months before reset, relative

to control.

In addition to credit card spending, results are shown for a number of other outcome variables.

First, to highlight the kinds of changes that occur at reset, graphs are presented for the outcome

variables “mortgage rate” and “monthly mortgage payment”. Each graph will have three lines,

one for each amortization group (zero-zero, positive-positive, and zero-positive).

Next, I focus on the main credit card spending outcome variable, with each amortization group
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studied separately. In addition to reporting the baseline results, I also report the results for two

subsets of each group: above-median and below-median liquid assets, representing wealthy and

poor households, respectively. This split will establish whether there is any heterogeneity in the

effect of mortgage reset by wealth. I also report for each group a decomposition of the credit card

spending outcome into 9 different categories of spending (i.e. general retail, home improvement,

leisure, etc). The purpose of this decomposition is to assess whether the effect is concentrated

in one or two particular categories or broadly spread across many of them. The last outcome

variable studied is revolving credit card balances, i.e. credit card debt.

In all of the graphs, 95% confidence intervals for estimated coefficients are provided, with

standard errors clustered at the household level.6 In addition, to remove the effects of outliers, the

data for each regression are winsorized at the 1% and 99% levels. For certain outcome variables,

results are shown for the natural log of the variable to estimate relative effects. For these log event

studies, a small positive number is added to any zero-valued outcome variables in the data.

1.4.1 Mortgage rates and payments

The results of the mortgage rate event studies for each amortization group are given in Figure

1.4. The first result to note is that before the first post-reset month (x-axis < 1), all three groups are

at zero. This is expected because 5-year hybrid ARMs have a fixed mortgage rate until reset occurs.

Upon reset, the mortgage rate of all three groups falls dramatically, with the decline ranging

from 276 to 332 basis points. The reason that the zero-zero group has a larger decline than the

others is because these mortgages tended to be originated closer to the end of the origination

window (December 2007) than the other two groups. As seen in Figure 1.1, the end of the

origination window is when market interest rates peaked, meaning that the zero-zero group

would have originated at higher rates than the other groups. Moreover, market rates do not exhibit

much variation during the reset window - they are consistently low. Therefore, households in the

zero-zero group exhibit the largest decline in their mortgage interest rates.

6Clustering was also done at the monthly level for robustness. The resulting standard errors were generally smaller
than when clustering by household.
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Figure 1.4: Event study of mortgages rates

The event study results for monthly mortgage payments are given in Figure 1.5. Consistent

with Figure 1.2 and the analysis of Appendix A.1, there is considerable heterogeneity in payment

reductions across amortization groups. Despite experiencing very similar interest rate changes at

reset, households in the zero-zero, positive-positive, and zero-positive groups experience average

payment reductions of approximately $1000, $500, and $60, respectively.

How large are these payment reductions relative to pre-reset payments? This question can

be answered by using the natural log of mortgage payments as the outcome variable, the results

of which are shown in Figure 1.6. It is clear that the relative payment reductions are quite large

for the zero-zero and positive-positive groups: approximately 75 and 30 log points, respectively.7

Meanwhile, the zero-positive group experiences only a 2 log point decline in payments.

7Log point declines of 75 and 30 correspond to percentage declines of 53% and 25%, respectively.
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Figure 1.5: Event study of mortgage payments

The preceding results indicate that while the zero-zero and positive-positive groups experience

large absolute and relative declines in mortgage payments at reset, the zero-positive group’s

payments change very little. As we continue to the main outcome of credit card spending in

Section 1.4.2, it should be kept in mind that this disparity between the zero-positive group and the

others provides an informal check on the the research design of this paper. Specifically, suppose

that large effects on credit card spending are estimated for the zero-zero and positive-positive

groups (who experience large payment reductions). These effects will only have credibility as

causal impacts of payment reductions if the same effects are not observed in the zero-positive

group (who experience very small payment reductions). Otherwise, estimated effects could be

caused by something else that occurs at reset or a faulty identification strategy.
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Figure 1.6: Event study of mortgage payments

1.4.2 Credit card spending

The event study results for credit card spending are presented separately for each amortization

group: zero-zero, positive-positive, and zero-positive. The coefficients in the graphs represent

the amount by which credit card spending in each event month in the event window exceeds

spending from 1 year before reset, relative to control households. By construction, the coefficients

for event month -12 will equal zero. In addition to the baseline results, results are also shown for

sub-samples of each amortization group based on household wealth.

Zero-zero group

The credit card spending results for the zero-zero group are reported in Figure 1.7. There

are three salient features. First, credit card spending rises dramatically over the course of the

entire event window. One year after reset, spending is a statistically significant $500 higher than

it is 1 year before reset, which represents about 50% of the average payment reduction of $1000
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for this group (see Figure 1.5). Second, the increase in spending occurs gradually over several

months, reaches statistical significance before reset, and is limited to the pre-reset window. When

households actually experience the decline in payments in event month = 1, there is no sharp

jump in spending and it is relatively flat thereafter. This is very different from the results on auto

spending in Di Maggio et al. (2015). Third, as expected based on the discussion at the end of

Section 1.3.3, coefficients are estimated with less precision as event time goes from -12 to 12.
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Figure 1.7: Event study of credit card spending for zero-zero group

Results are reported for the log of credit card spending in Figure 1.8. The coefficients exhibit

the same pattern as that of the levels results in Figure 1.7. Credit card spending rises by a

statistically significant 40 log points over the course of the pre-reset window and if anything,

declines slightly in the post-reset window. It should be noted that 40 log points is more than the

20% that results from putting the levels result in relative terms.8 The reason for this disparity is

8The figure of 20% is obtained by dividing the $500 increase in spending (Figure 1.7) by median monthly spending
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the presence of households that start with a very small amount of spending 12 months before

reset and increase spending modestly during the pre-reset window. For these households, the

relative change in spending will be extremely large and positive.

However, this does not mean the log results are spurious. If there were households with

modest amounts of spending 12 months before reset who reduced spending to very small amounts

during the pre-reset window, their relative changes in spending would be extremely large and

negative, offsetting the earlier effect. The result that the relative effect remains large and positive

therefore means that there are more households of the former type (large relative spending

increases during the pre-reset window) than the latter (large relative spending reductions during

the pre-reset window).
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Figure 1.8: Event study of log credit card spending for zero-zero group

for the zero-zero group of $2400 (Table 1.5).
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Next, I explore to what extent the effects documented in Figures 1.7 and 1.8 are exhibited by

zero-zero households with different levels of wealth. Figure 1.9 addresses this question by report-

ing event study results for two separate sub-samples: above-median (left plot) and below-median

(right plot) liquid assets. The plots (which have the same y-axis scale) clearly indicate that the

effect is concentrated in low-wealth households. The coefficients for the high-wealth sample are

never statistically different from zero while the coefficients for the low-wealth sample match the

pattern of Figures 1.7 and 1.8, with larger magnitudes.
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Figure 1.9: Event studies of credit card spending for zero-zero group by household wealth

In summary, households in the zero-zero group exhibit large increases in credit card spending

in both absolute and relative terms due to the decline in mortgage payments at reset. The increase

is gradual and comes entirely before reset occurs, with no sharp increase in spending at or after

reset. In addition, the effect is concentrated in households with low levels of wealth.

Positive-positive group

The results for the positive-positive group are very similar to those of the zero-zero group.

In Figure 1.10, the results for the positive-positive group are shown for both the level (left) and
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log (right) of credit card spending. As with the zero-zero group, there is an economically and

statistically significant increase in spending during the pre-reset window ($700 or 40 log points),

with no sharp change at reset and a flat profile afterward.
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Figure 1.10: Event studies (levels and logs) of credit card spending for positive-positive group

Figure 1.11 shows that the positive-positive group also displays the same kind of heterogeneity

in wealth as the zero-zero group. The pre-reset increase in spending is clearly exhibited in

households with lower levels of liquid assets and does not appear strongly among wealthier

households.

Zero-positive group

In Figure 1.12, the event study results on credit card spending are shown for the zero-positive

group. Recall from Figure 1.5 that this group experiences a very small reduction in payments at

reset on average. Figure 1.12 shows that while the shape of the profile of coefficients resembles

that of the zero-zero and positive-positive groups (Figures 1.7 and 1.10), the magnitudes are much

smaller and there is no statistical significance. Specifically, while there is an increase in credit card

spending of about $150 during the pre-reset window, this point estimate is not significant and is

much smaller than the spending increases exhibited by the zero-zero and positive-positive groups.
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Figure 1.11: Event studies of credit card spending for positive-positive group by household wealth

After reset, the zero-positive group exhibits no sharp increase in spending - the coefficients remain

insignificant and flat around $150.

This result for the zero-positive group lends credibility to the claim that the estimated effects

for the zero-zero and positive-positive groups in Sections 1.4.2 and 1.4.2 are indeed caused by

payment reductions associated with mortgage reset. Recall that the zero-positive group experiences

an interest rate reduction but only a tiny reduction in mortgage payments at reset on average.

Therefore, the result that this group also exhibits a small, insignificant spending response in

Figure 1.12 means that the large responses exhibited by the zero-zero and positive-positive groups

are probably not spurious (i.e. driven by something else correlated with mortgage reset or a faulty

identification strategy).

The log plot for the zero-positive group in Figure 1.13 tells a different story: it closely matches

the log results of the zero-zero and zero-positive groups (Figures 1.8 and 1.10) in terms of economic

and statistical significance. Since the zero-positive levels result is clearly not significant in Figure

1.12, this is a bit puzzling. The logs result must be driven by households that start with a tiny

amount of spending 12 months before reset and increase spending modestly during the pre-reset

window. For these households, the relative change in spending is quite large and positive but the
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Figure 1.12: Event study of credit card spending for zero-positive group

absolute change is small.

For this explanation to be robust, there must not be many households that have a modest

amount of spending 12 months before reset and reduce spending to a tiny amount during the

pre-reset window, as this would result in large, negative effects that would offset the previous

effect. Therefore, the level and log results collectively imply that while zero-positive households

generally do not increase spending by a large dollar amount, the relative effect is strong due to

the “net” presence of households increasing spending modestly but from a small base.

Figure 1.14 shows the zero-positive event study results separately for households with above-

median (left) and below-median (right) wealth. Interestingly, to the extent that an effect exists,

it is concentrated among wealthier households. Meanwhile, the coefficients for low-wealth

zero-positive households on the right side of Figure 1.14 are stable around zero.
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Figure 1.13: Event study of log credit card spending for zero-positive group
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Figure 1.14: Event studies of credit card spending for zero-positive group by household wealth
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Decomposition of credit card spending

In sections 1.4.2-1.4.2, it was shown that the general pattern of credit card spending around

mortgage reset is as follows: a gradual pre-reset increase, no sharp increase at reset, and stability

thereafter. In other words, spending increases are concentrated almost entirely in the pre-reset

window. In this section, I investigate which categories of spending are driving this result. Specifi-

cally, I report event study results using 9 different categories of credit card spending as outcome

variables for each of the three amortization groups. The categories are auto parts/maintenance,

health care, home improvement, leisure, general retail, services, staples, transportation, and

miscellaneous.

Instead of presenting the event study results in the form of line graphs as in the previous sec-

tions, for simplicity I present just one statistic for each spending category/amortization group. The

statistic is the average of the normalized βk’s from event months 1 to 12. The interpretation of this

statistic is the average amount by which post-reset spending in a particular category exceeds spend-

ing 12 months before reset, relative to control. A more intuitive interpretation is the amount by

which spending in a particular category increases during the pre-reset window, relative to control.9

Figure 1.15 presents the decomposition statistics for all three amortization groups. The cumula-

tive size of the bars above each amortization group represents the effect of mortgage reset on total

credit card spending. This aggregate effect is in turn decomposed into 9 different categories.10 For

example, in the positive-positive group, leisure spending increases by $162 pre-reset whereas for

the zero-zero group, home improvement spending increases by roughly $179. Across all three

amortization groups, the pre-reset increase is spending, while concentrated in certain discretionary

categories like leisure, home improvement, and general retail, is spread fairly broadly. If the

increase was confined to just one or two categories, this might indicate that something else may

be happening around mortgage reset that is causing spending to increase. However, this does not

9This interpretation assumes that the profiles of category-level spending are similar to those of total spending, i.e.
relative stability post reset. While results confirming this are not shown here, this is indeed the case.

10The disaggregated results do not sum exactly to the results for total spending because the data is winsorized
separately for each regression.
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appear to be the case.

Figure 1.16 presents the same decomposition as Figure 1.15 using the logs of credit card

spending in each category as outcome variables. As such, Figure 1.16 accounts for the possibility

that different amortization groups might have different baseline levels of spending in each category.

These results provide further evidence of the same point - the pre-reset increase in spending

caused by mortgage reset is spread broadly across several categories.
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Figure 1.15: Decomposition of credit card spending effects (dollars)

1.4.3 Credit card revolving balances

The last outcome variable that is used in the event study is credit card revolving balances. A

household’s revolving balance is the portion of its outstanding credit card balance on which it

pays interest. The remaining portion of the outstanding balance is the “float” on which interest is

not paid. Therefore, carrying a revolving balance is synonymous with borrowing on one’s credit
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Figure 1.16: Decomposition of credit card spending effects (log points)

card. In this section, I discuss how credit card revolving balances are affected by mortgage reset.

Figure 1.17 reports the event study results on credit card revolving balances for the zero-zero

(left) and positive-positive (right) groups. Although the coefficients are not highly significant, the

results seem to exhibit the familiar pattern of a pre-reset increase, no sharp increase at reset, and

stability afterward. Recall that for these amortization groups, the spending result was found to

be concentrated in households with low levels of liquid assets (Figures 1.9 and 1.11). Therefore,

Figure 1.17 suggests that the pre-reset spending increases exhibited by poor households in the

zero-zero and positive-positive groups are at least partially financed by credit card debt.

In contrast, Figure 1.18 shows that zero-positive households do not exhibit the same pattern

in revolving balances, which remain relatively stable throughout the event window. This result

lends credibility to the claim that the estimated effects on revolving balances for the zero-zero and
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Figure 1.17: Event studies of credit card revolving balances for zero-zero and positive-positive groups

positive-positive groups in Figure 1.17 are indeed due to payment reductions at reset. Moreover,

recall that to the extent there is any spending response among zero-positive households during

the pre-reset window, it is concentrated in wealthier households (Figure 1.14). Together with

Figure 1.18, this means that if wealthy, zero-positive households did indeed increase spending, it

must have been financed by other borrowing or savings (not credit card debt from this Bank).

1.4.4 Summary of results and implications

In the preceding sections, I presented a number of event study results for various permutations

of outcome variables, amortization groups, and wealth-based subsamples. In this section, I provide

a brief summary of these results and discuss their implications on household behavior.

The first result is that households in the zero-zero and positive-positive groups (those that

experience large payment reductions at reset) exhibit large, significant increases in credit card

spending during the event window. However, unlike the pattern of auto spending documented

in Di Maggio et al. (2015), the increases in credit card spending are gradual and occur entirely

pre-reset. The identification strategy underlying these results is bolstered by the finding that the
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Figure 1.18: Event study of credit card revolving balances for zero-positive group

zero-positive group, which experiences a similar reset in mortgage rates but only a tiny reduction

in payments, exhibits much smaller, insignificant increases in spending during the pre-reset

window.

Second, for the zero-zero and positive-positive groups, the spending effects described above are

limited to households with low levels of liquid assets and appear to be financed at least in part by

credit card debt. In contrast, to the extent that any spending effect is present among zero-positive

households, it appears to be concentrated among households with high levels of liquid assets

and is not financed with credit card debt. Finally, all of the aforementioned spending increases

are fairly widely spread across multiple categories of spending, with a slight concentration in

discretionary goods.

There are several interesting implications of these results on household behavior. First, the
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results indicate that households fully anticipate and act in advance of their ARM resets. Instead

of increasing spending sharply at reset, the increases comes gradually beforehand. This kind of

household behavior is certainly forward-looking and has the feel of dynamic optimization. It also

implies that households, even those with below-median wealth, are not fully liquidity constrained

because they are able to increase spending well in advance of the positive shock.

Second, wealth appears to affect the way that household spending responds to ARM resets,

but in a manner that actually depends on the exact nature of the reset. For example, when reset is

synonymous with a quasi-permanent income shock as it is for the zero-zero and positive-positive

groups, low-wealth households appear much more responsive. When reset simply reflects an

adjustment to the mortgage rate with no significant change to permanent income (the zero-positive

group), high-wealth households appear more responsive.

Is there a model of consumption that produces this kind of household behavior in the presence

of ARM resets? Clearly, models in which agents are very myopic or unsophisticated would not be

consistent with the empirical results. Neither would models in which all agents are awash with

liquidity and consume according to the permanent income hypothesis. In the next two section, I

incorporate ARM resets into a model that fits somewhere in between, i.e. a buffer-stock model,

and assess via simulation whether its predictions are consistent with the empirical evidence.

1.5 Modified buffer-stock model

The standard buffer-stock model of Zeldes (1989), Deaton (1991), and Carroll (1992) describes

how agents make consumption decisions in the face of labor income uncertainty and borrowing

constraints. In this section, I develop a modified version of the model in which agents also have to

make mortgage payments that are similar to the payments on a hybrid ARM. That is, mortgage

payments are fixed until some known date in the future, at which point they reset based on

the prevailing market interest rate. Agents in the modified model therefore face two sources of

uncertainty: labor income (as before) and post-reset mortgage payments.
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In a standard model where labor income is iid each period, the only state variable for an agent

is her “cash on-hand”, the amount of funds available for consumption through her asset holdings

from the previous period and labor income from the current period. However, the modified

model with ARM reset has two additional state variables: the current market interest rate and the

number of periods until reset occurs. While these variables do not directly impact current cash

on-hand, they do affect the distribution of future cash on-hand, which makes them relevant for

buffer-stock agents’ current consumption.

In accordance with the empirical event study, the model will have three types of agents: zero-

zero, zero-positive, and control. The positive-positive group is unmodeled because as shown in

Section 1.4, its behavior is quite similar to that of the zero-zero group. In the following subsections,

I review the environment and assumptions of the modified buffer-stock model, describe the

agent’s problem, assign parameter values, and demonstrate how the model is solved numerically.

1.5.1 Model environment and assumptions

In this section, I describe the basic environment of the model. The discussion centers around

the part of the model that departs from the standard version: mortgage payments. Then, I

motivate the principal assumptions of the model and evaluate them in the context of the empirical

event study.

Environment

Time is indexed in months relative to reset, which occurs at t = 1. Each period, agents

maximize the sum of an infinite stream of discounted CRRA utility, where δ is the monthly

exponential discount factor and ρ is relative risk aversion. The model begins at -12 (1 year before

reset) and is analyzed through +12 (1 year after reset) to match the empirical event study. Monthly

labor income yt ∈ {yL, yH} is iid where Prob(yt = yL) = py. Agents can lend and borrow at a

constant risk-free rate r f but face an exogenous borrowing constraint b.

The main departure from the standard buffer-stock model is that in each period, agents have
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to make a mortgage payment zt. The time profile of payments is similar to that of a 5-year fixed

term hybrid ARM that resets at t = 1. There are three types of agents: control (c), zero-zero (zz),

and zero-positive (zp). The latter two agent types correspond to the classes of ARM borrowers in

the empirical portion of the paper (see Section 1.2.1).11 Before reset (t < 1), all three types have

interest-only payments equal to rorig
12 B, where rorig is the initial fixed rate of the hybrid ARM and

B is the original outstanding balance. Post-reset payments (t ≥ 1) for each agent type are given

below.

zc =
rorig

12
B (1.8)

zzz(r1) =
r1 + m

12
B (1.9)

zzp(r1) =
r1+m

12

1− (1 + r1+m
12 )−300

B (1.10)

where r1 is the value of rt, the market interest rate that ARMs are indexed to (i.e. Libor), that

prevails when reset occurs at t = 1 and m is the margin that is applied on top of this rate

for credit risk. For control agents in (1.8), payments do not change at reset. For zero-zero

agents in (1.9), payments remain interest-only but are based on r1 + m rather than rorig. For

zero-positive agents in (1.10), payments switch to interest-plus-principal and equal the 300 month

(25-year) annuitized value of B with an annualized interest rate of r1 + m.12 In all cases, post-reset

payments do not change again after t = 1, which explains why there is no t subscript in (1.8)-(1.10).

The market interest rate rt evolves as follows. In every period before reset (t < 1), rt either

stays the same or goes up by a small amount ∆ with probability pr:

rt+1 ∈ {rt, rt + ∆}

pr = Prob(rt+1 = rt + ∆)
(1.11)

In addition to being simple, this interest rate structure is chosen to roughly correspond to the

environment that households in the empirical event study faced in proximity of their ARM resets.

11Positive-positive households are not simulated because in Section 1.4.2, their actual behavior was very similar to
zero-zero households. The simulated behavior of these two types of households would be very similar too.

12The 300 month or 25 year term is because after a 5-year fixed term hybrid ARM resets, the mortgage has a
remaining term of 25 years.
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Recall from Figure 1.3 that the reset window in the event study is from April 2010 to December

2012. Based on Figure 1.1, it is clear that starting well before the beginning of the reset window,

market interest rates were effectively at the zero lower bound (ZLB). In fact, the Federal Reserve

set the target Fedfunds rate to zero in December of 2008. Therefore, in the months leading up to

their mortgage resets, households were indeed facing an environment in which rates could either

stay at the ZLB or go up each period. Notably, rates ultimately stayed at the ZLB throughout the

entire reset window (see Figure 1.1), which will inform how the model is simulated in Section 1.6.

Motivation and evaluation of assumptions

It is important to motivate the key assumptions of this model and evaluate their consistency

with the environment of the empirical event study. First, the way that hybrid ARMs are modeled

here is different from how they work in practice. Here, it is assumed that there is one reset date,

after which there is no uncertainty in payments. In practice, hybrid ARMs continue to reset

periodically after the first occurrence, usually at a frequency of 1 year. Rather than modeling

interest rates over a much longer horizon, we simply assume that there is only one reset date. In

addition, the model assumes that mortgage payments are made in perpetuity, not just for the

typical 30 year term. This assumption is made so that after reset, the agent’s problem is stationary

over an infinite horizon, and therefore more easily solvable.

Second, the model assumes that agents lend and borrow at the same, constant rate r f . One

issue with this assumption is that the lending/borrowing rate is decoupled from rt, the market

interest rate that ARM resets are tied to. While this is probably not true in reality, the assumption

is needed to avoid modeling the evolution of rt over the infinite horizon of the model. A second

issue with this assumption is that lending and borrowing rates for households are typically very

different in practice, particularly if a household’s primary means of borrowing is a credit card.

The problem with setting the borrowing rate higher is that in order for the buffer-stock model to

be numerically solvable, the discount rate must exceed the lending/borrowing rate.13 Satisfying

this condition would require a discount rate that is unrealistically high.

13This condition is sufficient for the Bellman functional to be a contraction, which allows for the contraction-mapping
theorem to be invoked.
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Finally, the model assumes that agents discount utility exponentially, which is at odds with

a large body of evidence on individuals having time inconsistent preferences (citations needed).

Exponential discounting is chosen for its simplicity.

1.5.2 Agent’s problem

The dynamic optimization problem for agents of type i ∈ {c, zz, zp} is as follows:

max
ci,t

Et0

[
∞

∑
t=t0

δt−t0

(
c1−ρ

i,t − 1
1− ρ

)]

s.t. ai,t = (1 + r f )ai,t−1 + yi,t − zi,t − ci,t (1.12)

ai,t ≥ b

where t0 is each month in the event window (t0 ∈ {−12,−11, ..., 12}) and ct is consumption in

period t. Assets held at end of period t are given by ai,t and evolve according to (1.12): assets from

the previous period are grossed up by r f , current period income yi,t is added, and the mortgage

payment zi,t and consumption ci,t for the current period are subtracted. Assets each period must

exceed b, the borrowing constraint. The mortgage payment zi,t equals rorig
12 B for t < 1 and is given

by (1.8)-(1.10) for each agent type for t ≥ 1. The initial conditions for the agent’s problem are

ai,−13 (initial asset holdings) and r−12 (the market interest rate 12 months before reset).

1.5.3 Parameter selection

To the extent possible, parameters are selected to roughly match the characteristics of house-

holds in the empirical event study (see Tables 1.3 and 1.4). For example, agents’ monthly labor

income process is parameterized by {yL, yH} = { 40,000
12 , 80,000

12 } and py = 0.1. This means that in

the good state of the world with probability 0.9, annual income is $80,000 and in the bad state

with probability 0.1, annual income is $40,000. In addition, agents’ original mortgage balance B is

set to $350,000.

Other parameters are set based on a combination of existing literature, summary statistics from
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the Bank’s data, and intuition. In accordance with (citation needed), agents’ monthly discount

factor δ is set to 0.99 and relative risk aversion ρ is set to 2. Based on data from the Bank, the

credit-risk margin m that post-reset mortgage payments are based on is set to 3%. The monthly

risk-free rate r f is arbitrarily set to a low value of 1%
12 . Finally, the borrowing constraint b equals 0,

meaning that agents are unable to borrow.

The interest rate at which mortgages are originated (rorig) is defined implicitly so that zero-

positive agents experience no change in their mortgage payment if the prevailing market interest

rate at reset (r1) equals 0. The motivation for this condition is that in the empirical event study,

mortgage payments for the zero-positive group change very little at reset (see Figure 1.5), and reset

occurs when market interest rates are at the ZLB. The definition of rorig is given in (1.13), where

the left-hand side is the pre-reset mortgage payment and the right-hand side is the post-reset

mortgage payment from (1.10) with r1 = 0.

rorig

12
B =

m
12 B

1− (1 + m
12 )
−300 (1.13)

=⇒ rorig = 5.69%

For the evolution of the market interest rate rt, the amount by which rates can go up each period

(∆) is set to 0.25%. The probability that the market rate rises each period (pr) is given three

possible values: 0.0, 0.1, and 0.25. The model is solved for multiple values of pr because this

parameter plays an important role in setting agents’ pre-reset expectations for how mortgage

payments will change at reset. In Section 1.6, I compare simulations of the model for different

values of pr, which builds intuition about household behavior under the model.

1.5.4 Solving the agent’s problem

The agent’s problem from Section 1.5.2 is solved in two steps. First, since the problem in every

post-reset period (t ≥ 1) is stationary, it can be solved using standard Bellman iteration techniques.

Second, to find the pre-reset value functions, the value function from the first step is used to

solve the agent’s problem in t = 0, which is used to solve the problem in t = −1, and so on until

t = −12.
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Solving the stationary post-reset problem

In each period after reset, agents of type i ∈ {c, zz, zp} face the same problem. Let Vi,1(at−1, yi,t, r1)

be the post-reset value function for agents of type i. Vi,1 can be defined iteratively as follows:

Vi,1(ai,t−1, yi,t, r1) = max
ci,t
{u(ci,t) + δEt[Vi,1(ai,t, yi,t+1, r1)]} (1.14)

s.t. ai,t = (1 + r f )ai,t−1 + yi,t − zi(r1)− ct

ai,t ≥ b

Vi,1 is a function of asset holdings at the end of the previous period (ai,t−1), current period labor

income (yi,t), and the prevailing market interest rate at t = 1 (r1). The sole state variable in the

problem is asset holdings at−1, whose evolution is determined by yi,t and r1. The effect of r1 is

through post-reset mortgage payments zi(r1) defined in (1.8)-(1.10).

Since δ = 0.990 < 0.999 = 1
1+r f

, the functional defined by (1.14) is a contraction and by the

contraction mapping theorem, the value function and policy function c∗i,t(ai,t−1, yi,t, r1) can be

found by numerically iterating the functional until it converges.

Solving for pre-reset value functions

In each period before reset (−12 ≤ t ≤ 0), the agent’s problem is no longer stationary. There

is also an additional state variable: the current interest rate rt. In addition, the pre-reset value

function will depend on the value of the parameter pr, the probability that market rates rise each

period. Letting pj index the possible values of pr, the pre-reset value function takes the form

V j
i,t(ai,t−1, yi,t, rt) and is defined below.

V j
i,t(ai,t−1, yi,t, rt) = max

cj
i,t

{
u(cj

i,t) + δEt

[
V j

i,t+1(aj
i,t, yi,t+1, rt+1)

∣∣∣ pr = pj
]}

(1.15)

s.t. aj
i,t = (1 + rt)ai,t−1 + yt −

rorig

12
B− cj

i,t

aj
i,t ≥ b

t ∈ {0,−1, ...,−12}
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There are four key differences between (1.15) and the post-reset value function in (1.14). First,

the continuation value in (1.15) is based on next period’s value function, highlighting the non-

stationarity of the pre-reset problem. This means that in pre-reset periods, two agents that are the

same in every respect except for how far away they are from reset will generally make different

consumption decisions.

Second, the pre-reset value function in (1.15) is an explicit function of rt. This dependence

arises from the fact that the post-reset value function in (1.14) depends on post-reset mortgage

payments, which depend on r1. Prior to reset, the distribution of r1 depends on the current value

of rt. Therefore, rt is a state variable because as it changes, it affects agents’ perceptions about

what their post-reset mortgage payments will be.

Third, the pre-reset value function in (1.15) depends on the parameter pr. This dependence

is due to the fact that pr determines agents’ expectations of future interest rates, which affects

the nature of the expectations operator on the right side of (1.15). This is why the operator is

conditioned on pj
r. Finally, in (1.15) the mortgage payment zi equals rorig

12 B for all agent types

because as discussed earlier, all three agents types make interest-only payments pre-reset.

The pre-reset value functions and policy functions cj
i,t
∗
(at−1, yt, rt) are found by first inserting

the post-reset value function Vi,1 into the right hand side of (1.15) and numerically solving for V j
i,0

(noting that Vi,1 will not depend on j). Then, V j
i,0 is inserted on the right hand side of (1.15) and

V j
i,−1 is numerically solved for. This process continues until V j

i,−12 is obtained. It should be noted

the control agents’ problem is stationary even in pre-reset periods since nothing occurs at reset

for them. Therefore, the control agents’ value and policy functions in all periods are obtained by

solving (1.14).

In the next section, we use the policy functions developed in this section to simulate the model

and compare it to the results of the empirical event study.
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1.6 Simulating the model

In Section (1.5), I developed and solved a modified buffer-stock model that describes house-

hold consumption behavior in the face of labor income and hybrid ARM reset uncertainty. In

this section, I simulate household consumption for a specific realization of market interest rates

that attempts to mimic the environment of the empirical event study of Section 1.4. Recall that

households in the event study have hybrid ARMs that reset between April 2010 and December

2012, a period before which and during which market interest rates remained consistently at the

ZLB. Therefore, the modified buffer-stock model will be simulated under a realization of interest

rates of the form r−12 = 0 = rt for all t ≤ 1. That is, at one year before reset (t = −12), market

rates equal zero and they remain at zero until reset occurs at t = 1. Importantly, agents in the

simulation do not know the realized path of interest rates beforehand. They simply know that

each period, rates can either remain the same or go up by ∆ with probability pr, as specified by

(1.11).

In the remainder of this section, I first go into detail on how the modified buffer-stock model

is simulated. I then report the simulation results for zero-zero and zero-positive agents and show

that they are very similar to the results of the empirical event study in Section 1.4. Finally, I

explain the intuition for why the model produces these results and discuss their implications.

1.6.1 Simulation details

The output of Section 1.5 is two sets of policy functions for consumption for agents of type i ∈

{c, zz, zp}. First, there are the pre-reset policy functions cj
i,t
∗
(ai,t−1, yi,t, rt) for t ∈ {−12,−11, ..., 0},

where j indexes values of pr. Second, there are the post-reset policy functions c∗i,t(ai,t−1, yi,t, r1) for

t ∈ {1, 2, ..., 12}.

The goal is to simulate paths of consumption for zero-zero and zero-positive agents from

t = −12 to t = 12 for different levels of initial asset holdings (a−13 ∈ {0, 20000, 40000, 60000, 80000})

and different probabilities of interest rate increases (pr ∈ {0, 0.1, 0.25}), relative to control types.

The first step is generating 10,000 paths of labor income. Then, for each of these income paths,
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each of the three values of pr, each of the four values of a−13, and the realized path of interest

rates (rt = 0 for all t ≤ 1), I use the policy functions from Section 1.5 to produce simulated paths

of consumption from t = −12 to t = 12 for the zero-zero and zero-positive types.

Each of these consumption paths has an associated “control” path, derived from the control

policy functions, which is what a control type consumes in each period with the same level of

asset holdings and the same income realization. The control paths are subtracted from their

“treatment” paths to produce consumption paths that represent the causal effects of ARM reset.

Finally, for each triplet of (agent type, a−13, pr), the average consumption path is computed across

the 10,000 simulated income paths.

The final outputs of the simulation are therefore average causal effects of ARM reset on

consumption in each period of the “event window” from t = −12 to t = 12 as functions of

agent type, initial asset holdings, and the probability of interest rate increases. As was the

intention, the interpretation of the simulation output is very similar to the interpretation of the

coefficients estimated in the empirical event study in Section 1.4, with one exception. As noted

in Section 1.3, the empirical event study coefficients are difference-in-differences (DD) estimates

- the coefficients represent the causal effects of ARM reset on spending in a particular event

month, relative to 12 months before reset. In contrast, the simulation output does not have the

second differencing. While it can be put in DD form, doing so would discard potentially valuable

information. Therefore, the simulation output will be viewed in both single and double-differenced

forms.

1.6.2 Simulation results

The simulated causal effects of ARM reset on consumption for zero-zero and zero-positive

agents are reported in Figures 1.19-1.22. The results for each type of agent are discussed in detail

below.
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Zero-zero agents

Figure 1.19 reports the single-differenced simulation results for zero-zero agents while Figure

1.20 reports the double-differenced results. The three plots in each figure represent different

values of pr and within each plot, each line represents different values of initial wealth.

The main conclusion from these results is that for a given value of pr, consumption rises

gradually from t = −12 to t = 1 (the pre-reset periods), exhibits no sharp increase at reset,

and is stable thereafter. Moreover, this effect gets stronger as initial agents’ wealth gets smaller

(comparing the green line to the blue line). These features of the double-differenced simulation in

Figure 1.20 are strikingly consistent with the results of the empirical event study for zero-zero

households in Figures 1.7 and 1.9.

Another thing to note is that in the single-differenced simulation results of Figure 1.19, all of

the lines for wealthy households are well above zero at 12 months before reset (t = −12), meaning

that consumption is significantly higher than control. This is not the case in the double-differenced

results of Figure 1.20 though, where the lines for wealthy households are exactly at zero at

t = −12 for mechanical reasons. This highlights one limitation of using a difference-in-differences

(DD) approach, as was done in the empirical event study of this paper. For example, if the

single-differenced consumption of wealthy agents mirrors the green line in Figure 1.19 with

pr = 0, a DD framework would show a very small effect for these households, as in Figure 1.20.

But in reality, the consumption of these agents is uniformly higher in the pre-reset window.

One interesting feature of the double-differenced results in Figure 1.20 is that as the probability

of interest rate increases goes up (i.e. moving from left to right in the plots), the amount by which

consumption increases during the pre-reset periods becomes larger for wealthy agents only. For

example, poor agents (the blue lines) build up to a double difference of $825 in pre-reset periods

for all values of pr. In contrast, the double difference that wealthy agents (the green lines) build up

to is higher when pr is higher. This same feature can be observed in the single-differenced results

in Figure 1.19. Here, wealthy agents (the green lines) build up consumption to roughly $900 at
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Figure 1.19: Simulation output for zero-zero agents (single difference)

t = 1 for all values of pr but start at a lower level when pr is higher. While this aspect of the

simulation results is not directly translatable to the empirical event study, we shall see in Section

1.6.3 that it is related to wealthy buffer-stock agents acting like permanent income consumers.

Zero-positive agents

The simulated causal effects of ARM reset on consumption for zero-positive agents are given

in Figures 1.21 and 1.22. The first thing to note is that when pr = 0, there is no difference

in consumption relative to control in any time period. This is because according to (1.13), the

mortgage payments of zero-positive agents do not change at all if interest rates equal zero at reset.

This is indeed the case for the realized path of interest rates in the simulation (rt = 0 for all t ≤ 1).

Furthermore, when pr = 0 there is no chance of interest rates rising during the pre-reset periods,

meaning that agents are guaranteed a post-reset rate of zero. Therefore, when pr = 0 zero-positive

agents know for sure in every pre-reset period that their payments will not change at reset, so

there is no reason for there to be any difference in consumption relative to control.

Second, the single-differenced simulation results of Figure 1.21 are always weakly below zero

before reset, meaning that simulated consumption for zero-positive agents is never higher than

52



-10 -5 0 5 10

0

200

400

600

800

1000

sp
en

di
ng

 r
el

at
iv

e 
to

 c
on

tr
ol

p
r
=0.00

-10 -5 0 5 10

p
r
=0.10

-10 -5 0 5 10

p
r
=0.25

a
-13

=0 a
-13

=20000 a
-13

=40000 a
-13

=60000 a
-13

=80000

Figure 1.20: Simulation output for zero-zero agents (double difference)

control. This result, which cannot be inferred from the double-differenced results of Figure 1.22,

is because the best case scenario for zero-positive agents is that interest rates at reset equal zero

and mortgage payments remain the same. If rates get any higher, mortgage payments go up. As a

result, zero-positive agents will never consume more than control agents, whose payments do not

change at reset. However, as reset approaches and the prospect of mortgage payments remaining

the same becomes more certain, zero-positive consumption converges to the control.

The main conclusion from Figures 1.21 and 1.22 is that when pr > 0, the effect of reset on

consumption is quite small relative to that of zero-zero agents and to the extent that there is an

effect, it appears to be concentrated among wealthier households . For example, in the double-

differenced results in Figure 1.22 with pr = 0.1, the maximum consumption increase between

t = −12 and t = 1 is roughly $75, compared to a maximum increase of roughly $900 for zero-zero

agents in Figure 1.20. In addition, the effect on zero-positive agents in Figure 1.22 is stronger for

agents with higher levels of initial wealth (the green lines vs the blue lines), particularly when

pr is larger. This feature of the simulation (a small effect that is concentrated among wealthy

agents) is also remarkably consistent with the results of the empirical event study for zero-positive

households in Figures 1.12 and 1.14.
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Figure 1.21: Simulation output for zero-positive agents (single difference)
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Figure 1.22: Simulation output for zero-positive agents (double difference)
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1.6.3 Explanation and discussion of results

In the previous section, we observed that the simulated causal effects of ARM reset on con-

sumption for zero-zero and zero-positive agents are very similar to the empirical event study

results of Section 1.4. It appears that the modified buffer stock model of Section 1.5 describes

the behavior of households fairly well in the context of ARM resets. In this section, I explain the

mechanisms of the model that produce the results in Figures 1.19-1.22 and discuss their broader

implications.

First, it is useful to define the random variable r̃1,t, the interest rate that prevails at reset (t = 1)

as a function of the current interest rate rt. Note that (1.16) is derived from the interest rate process

detailed in (1.11).

r̃1,t = rt + ∆
0

∑
k=t

1{rk+1 = rk + ∆} (1.16)

Using (1.8)-(1.10) and (1.16), we can define another random variable X̃i,t, the amount that mortgage

payments fall at reset for agents of type i ∈ {c, zz, zp}.

X̃i,t = −
(

zi(r̃1,t)−
rorig

12
B
)

(1.17)

The value of (1.17) is shown for each agent type below. Note that X̃c,t = 0 by construction because

control agents experience no change in payments at reset.

X̃zz,t =
B
12

(rorig − (r̃1,t + m)) (1.18)

X̃zp,t =
B
12

[
rorig −

r̃1,t + m

1− (1 + r̃1,t+m
12 )−300

]
(1.19)

With this framework, we can precisely identify what agents expect to happen at reset when they

are in the pre-reset window. Recall that in the simulation, all agents face a market interest rate

realization of zero in every period. Therefore, agents’ expected payment reductions as of each

pre-reset period can be determined by taking expectations of (1.18) and (1.19) conditional on rt = 0.

We can then describe how these expectations affect dynamic consumption decisions in a

modified buffer-stock model and how these decisions are influenced by wealth. We will see
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that the consumption of poor agents will be highly sensitive to the perceived risk of their asset

buffers being depleted by labor income shocks. In contrast, wealthy agents have such large buffers

that they do not need to worry about asset depletion - they act like they are permanent income

consumers. This analysis is carried out for each agent type below.

Zero-zero agents

The expected payment reduction at reset conditional on rt = 0 for zero-zero agents is given in

(1.20), using the definition of X̃zz,t in (1.18) and r̃1,t in (1.16).

E(X̃zz,t | rt = 0) =
B
12

(rorig − (m + (1− t)pr∆)) (1.20)

Using the parameter values for B, rorig, and m and the assumption that 0 ≤ pr ≤ 0.25 from Section

1.5.3, we have

E(X̃zz,t | rt = 0) ≈ 785− 73(1− t)pr

=⇒ E(X̃zz,t | rt = 0) ∈ [785− 18(1− t), 785] (1.21)

Expression (1.21) shows that in pre-reset periods, zero-zero agents expect a relatively large mort-

gage payment reduction at reset, even with the probability of interest rate increases (pr) at its

maximum value of 0.25. This is true going back 12 months before reset (t = −12) as well, when

the minimum expected payment reduction according to (1.21) is 785− 18(13) = $548. This is

unsurprising: prior to reset, agents that make interest-only payments before and after reset will

expect large reductions in payments at reset when current interest rates are zero.

The fact that E(X̃zz,t | rt = 0) is large for each t < 1 is central to why there is a gradual

increase in pre-reset consumption for zero-zero agents in Figures 1.19 and 1.20. The large expected

payment reduction means that prior to reset, zero-zero agents expect that after reset, their asset

buffers will have less of a chance of being depleted by negative labor income shocks. This is

because when mortgage payments are much smaller, it is easier to maintain consumption in the

face of a negative labor income shock without drawing too heavily on assets. Negative labor

income shocks still pose a serious threat before reset occurs, but this threat naturally subsides
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with the passage of time. As each period passes, there is less of a chance that a negative labor

income shock occurs before reset, as there is simply less time until reset.

Therefore, as reset approaches and agents get closer to being “in the clear”, they require less

of a precautionary buffer and can steadily increase consumption. This effect should be most

prominent for agents whose precautionary buffer is of first-order importance, i.e. poor agents.

This is precisely what is observed in the empirical (Figures 1.7 and 1.9) and double-differenced

simulated (Figure 1.20) results for the zero-zero group: a gradual increase in consumption leading

up to reset, with the effect being stronger among agents with lower initial wealth. Despite being

relatively poor, households still have enough liquidity to increase consumption relative to control

in the pre-reset periods, before their mortgage payments are actually reduced.

What about agents with high levels of wealth? The effect described above does not apply to

them because they have a comfortable asset buffer. In other words, wealthy agents are already “in

the clear” before reset occurs. This is related to the point that in standard buffer-stock models,

wealthy agents effectively consume their expected permanent incomes each period. In the modi-

fied model, since mortgage payment reductions constitute a permanent shock, wealthy agents will

immediately (at t = −12) draw down on their assets and increase consumption by roughly the

amount that they expect mortgage payments to decline at reset. As time passes, wealthy agents

will continue adjusting consumption by however much their expected payment reductions at reset

change.

This intuitive description of the behavior of wealthy agents can be related to the single-

differenced simulation results in Figure 1.19 by differentiating the expected payment reduction in

(1.20) with respect to pr and t.

∂E(X̃zz,t | rt = 0)
∂pr

= − B
12

(1− t)∆ < 0 (1.22)

∂E(X̃zz,t | rt = 0)
∂t

=
B
12

[
pr∆− ∂rt

∂t

]
=⇒

∂2E(X̃zz,t | rt = 0, ∂rt
∂t = 0)

∂pr∂t
=

B
12

∆ > 0 (1.23)
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Expression (1.22) shows that as pr gets lower, the expected payment reduction at reset becomes

higher. This makes sense, as a lower pr means that it is more likely that the prevailing interest

rate and mortgage payments at reset are low. The implication is that as pr falls, agents’ expected

permanent income rises. This is why going from right to left in Figure 1.19, wealthy agents (the

green lines) consume more relative to control in any given event month when pr is lower.

Expression (1.23) shows that as time passes and interest rates remain the same ( ∂rt
∂t = 0, as is

the case in the simulation), the expected payment reduction grows by more when pr is larger. This

also makes sense - if the perceived probability of an interest rate increase is extremely low, an

occurrence of rates staying the same is very much consistent with agents’ beliefs and so expected

payment reductions remain relatively unchanged. On the other hand, if the perceived probability

of an interest rate increase is higher, an occurrence of rates staying the same is more surprising

and expected payment reductions must be revised upward. This is why going from left to right in

Figure 1.19, wealthy agents increase consumption by more between t = −12 and t = 1 as pr gets

higher.

Zero-positive agents

For zero-positive agents, the main finding from the double-differenced simulation results

in Figure 1.22 is that when pr > 0, the effect of reset on consumption is quite small relative to

that of zero-zero agents and to the extent that there is an effect, it appears to be concentrated

among households with higher levels of initial wealth (the green lines as opposed to the blue

lines). To explain this result, it is useful to first formally show that for zero-positive agents, the

expected payment reduction at reset conditional on current rates being zero is weakly negative,

i.e. E(X̃zp,t | rt = 0) ≤ 0.

0 =
B
12

(
rorig −

m
1− (1 + m

12 )
−300

)
(1.24)

≥ B
12

(
rorig − E

[
r̃1,t + m

1− (1 + r̃1,t+m
12 )−300

∣∣∣∣∣ rt = 0

])
if r̃1,t ≥ 0 (1.25)

= E(X̃zp,t | rt = 0) (1.26)
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where (1.24) uses the definition of rorig in (1.13), (1.25) uses

∂

∂α

[
α + m

1− (1 + α+m
12 )−300

]
> 0

and (1.26) uses the definition of X̃zp,t in (1.19). The result that expected payment reduction is

weakly negative is the reason why the lines in the single-differenced simulation results in Figure

1.21 are always below zero. If agents only expect payments to rise, there is no reason for them to

consume more than control agents.

But why is there not a large pre-reset increase in the double-differenced simulation results

in Figure 1.22, as there is in Figure 1.20 for zero-zero agents? Recall that poor zero-zero agents

increase consumption because their precautionary motives get lower as they get closer to being

“in the clear” at reset, when mortgage payments are expected to fall by a large amount. However,

zero-positive agents face a fundamentally different situation. According to (1.26), payments for

zero-positive agents are always expected to rise at reset. In fact, the best-case scenario is for

interest rates to remain at zero, in which case mortgage payments remain the same. Zero-positive

agents do not become “in the clear” at reset and so prior to reset, they have the same precautionary

motives as the control group.

Therefore, if any effect exists for zero-positive agents between t = −12 and t = 1, it must

come from agents for whom the precautionary motive is not a major factor in determining

consumption, i.e. wealthy agents. As noted earlier, the consumption of wealthy agents in the

modified buffer-stock model only responds to changes in expected payment reductions at reset.

While E(X̃zp,t | rt = 0) cannot be computed analytically from (1.19) for zero-positive agents as it

could for zero-zero agents, it can be verified by Monte Carlo simulation that E(X̃zp,t | rt = 0) has

similar properties as the expected payment reduction for zero-zero agents, namely the derivatives

in (1.22) and (1.23).14

This means that wealthy zero-positive agents should behave similarly to wealthy zero-zero

14These are verified by Monte Carlo simulation for 0 ≤ pr ≤ 0.25 and −12 ≤ t ≤ 1.
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agents between from t = −12 to t = 1. Specifically, if pr is higher, the expected payment re-

duction at reset will be more negative for zero-positive agents. But as time passes and interest

rates remain the same, the expected payment reduction approaches its upper bound of zero

more quickly when pr is larger. This explains the behavior of wealthy agents in the single-

differenced simulation results in Figure 1.21. Consumption is below control by an amount that

increases with pr but as time passes, consumption gradually converges to that of the control group.

Note that a DD framework can also lead to mistaken conclusions for the zero-positive group.

For example, the double-differenced simulation results in Figure 1.22 and the DD event study

results in Figure 1.14 could be interpreted as wealthy agents spending more than control agents

in the pre-reset periods, with the gap widening with time. However, these double-differenced

results could actually arise from single-differenced results that mirror Figure 1.21, which shows

wealthy agents actually consuming less than control, with the gap narrowing with time.

1.7 Summary of results and conclusion

In this paper, I explore how household credit card spending responds to a predictable, un-

certain, quasi-permanent income shock in the form of a hybrid ARM reset. The main empirical

finding is that spending rises gradually in advance of reset but is relatively smooth in the month

of reset itself and stable thereafter. The implication is that households not only anticipate their

resets but also have sufficient liquidity to increase spending in advance of it. These results

are substantially different from prior work, namely Di Maggio et al. (2015), who find that auto

spending increases sharply in the month of reset and very little beforehand.

I also show that the results of the empirical event study have a theoretical basis. In a modified

buffer-stock model that incorporates hybrid ARM payments, the simulated behavior of agents in

the model is remarkably consistent with the results of the empirical event study. In the simulation,

agents with high levels of wealth behave like permanent income consumers. Knowing that a large

expected payment reduction is coming at reset, wealthy agents draw on their assets to finance

higher consumption from the very beginning of the event window. In addition, they gradually in-
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crease their spending by a small amount during the pre-reset window, as their expected mortgage

payment reductions at reset get slightly larger when interest rates remain flat over time.

In contrast, agents with low wealth do not have enough liquidity to consume their expected

permanent incomes one year before reset occurs. But they do have enough liquidity to increase

spending gradually (and in aggregate, dramatically) over the entire pre-reset window. As each

month passes, there is less and less of a concern that their limited asset buffers will be wiped out

by a labor income shock before reset. Moreover, after reset, they can be less worried about these

kinds of shocks in general because mortgage payments will be substantially and permanently

lower. This reasoning allows them to do increasingly less precautionary saving (increasingly more

consumption) in the pre-reset window.

The first main point to take away from this paper is that households, even those with below-

median wealth, appear to be quite sophisticated in their spending responses to income shocks.

Even though the sample studied in this paper is slightly biased toward households that may be

more sophisticated to begin with, this conclusion is still at odds with the large body of evidence

that households seem to sharply increase spending precisely when they are hit by other kinds of

income shocks. However, these shocks are generally temporary, small, and non-recurring. If poor

households follow a buffer-stock model, it may actually be optimal for them to ignore these kinds

of shocks until they actually occur. Unlike an ARM reset, these shocks will not have a very lasting

impact on poor households’ ability to weather labor income shocks. Therefore, it is possible for

households to be rational in both ignoring these shocks until they occur while using their liquidity

to spend in advance of larger, more permanent shocks.

The second key point is related to the use of ARM resets to assess the income channel of

monetary policy. This paper offers evidence that ARM resets are anticipated and acted upon in

advance by households. If this is the case, then event studies of ARM resets (as in this paper)

will not necessarily give reliable estimates of the effects of monetary policy surprises. This is

because households may respond differently to anticipated and unanticipated shocks. Indeed, in

a buffer-stock model, the spending of wealthy households may be more responsive to surprise
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income shocks than that of poorer households as the latter would use some of their windfall to

bolster their asset buffers.

Nevertheless, the event study results of this paper are still useful for evaluating monetary

policy because they suggest that wealthy households with mortgages respond to changes in their

expected future payments. Therefore, this paper suggests that the income channel can operate

through an “expectations” effect. Specifically, if wealthy households learn that it is more likely for

interest rates to fall in the future, they will have higher expectations of permanent income and

will increase their current spending.
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Chapter 2

How is the likelihood of fire sales in a

crisis affected by the interaction of

various bank regulations?1

2.1 Introduction

It is commonly believed that the financial crisis of 2008 was made significantly worse by banks

engaging in fire sales of risky assets (Brunnermeier, 2009). These fire sales are generally attributed

to two sources. First, short-term creditors of banks refused to roll over their loans, forcing banks to

sell assets in order to repay these loans (Shleifer and Vishny, 2011). Second, after an initial shock

led banks to suffer losses on their holdings, banks sold assets in order to recapitalize (Hanson et al.,

2011). Though these two explanations for fire sales are well-accepted, there is little theoretical

work on the optimal course of action for banks facing creditor withdrawals or with insufficient

capital. One could argue that in the former situation, expediency might take precedence over

optimality. Following a shock, however, banks generally have a longer horizon over which to

recapitalize, making this situation suitable for a theoretical model.

In this paper, we model the recapitalization process in a setting where banks face a (potentially

1Co-authored with Divya Kirti

63



risk weighted) regulatory capital requirement. After experiencing an initial shock that causes

them to fall short of the requirement, banks choose the optimal combination of asset sales and

equity issuance that restores their capital ratio.2 We then analyze how bank behavior is impacted

when additional regulations, such as liquidity requirements and mandatory equity issuance, are

in place. It is important to think about how regulations put in place to solve different problems

interact with each other.3 Can high risk weights be counterproductive? Can liquidity requirements

interact with capital requirements in a harmful manner?

We assume that banks are risk-neutral, act in the interests of their existing shareholders, and

that all assets are priced in a risk-neutral manner. Under these assumptions, we show that the

optimal bank choice is shaped solely by risk-shifting motives. Intuitively, as banks act on behalf

of shareholders with limited liability, actions that allow them to retain more risk, while still

satisfying regulatory requirements, are desirable because value can be transferred from creditors

to shareholders. Importantly, we assume that in the absence of shocks, risk-shifting motives play

a very limited role in bank decision-making. In particular, the composition of the asset side of

bank balance sheets is taken to be exogenous in our model before the shock takes place.

While these assumptions are admittedly strong, the purpose of our model is simply to show

how risk-shifting can influence banks’ recapitalization decisions in the midst of a crisis. We argue

that such analysis is useful to the extent that shareholder value maximization, which is the root

of risk-shifting, is an important consideration for banks. Consistent with the risk shifting view,

weaker banks in the Euro area concentrated their balance sheets into domestic sovereign debt

following the Euro area crisis (Acharya and Steffen, 2015; Crosignani, 2015).4 Prior work on the

crisis, including Hanson et al. (2011) and French et al. (2010), uses debt overhang as the overarching

2We assume that the calculation of a bank’s capital ratio involves marking-to-market the value of its assets.
According to the new Basel III regulations, this is the case for assets designated as “trading” and “available for sale”
but not “held to maturity”. The first two buckets make up over 50% of total bank assets (source).

3The post crisis regulatory agenda includes many separate regulatory thrusts. Andy Haldane listed ten separate
areas at a speech given at a 2015 conference (slides here). These different areas have largely been treated as independent
or complementary of each other.

4While risk shifting is one explanation for this pattern, high expected returns following fire sales (Shleifer and
Vishny, 2011; Diamond and Rajan, 2011) and financial repression (Becker and Ivashina, 2014) might also be relevant.
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framework, which implicitly makes the same assumption. There is also a literature on risk shifting

by banks in more ‘normal’ circumstances (Stiglitz and Weiss, 1981; Hellmann et al., 2000; Acharya

and Viswanathan, 2011; Dell’Ariccia et al., 2016).5 In addition, it is precisely in the midst of crises,

when the probability of insolvency is nontrivial, that shareholders have the greatest ability to shift

risk on to creditors. Similarly, in the absence of a crisis, shareholders are almost fully exposed

to any risks that they take because the probability of insolvency is so low. Therefore, it seems

appropriate for banks to incorporate risk-shifting into their post-shock recapitalization plans while

focusing on other factors before the shock occurs.

Having established that the bank recapitalization process is shaped by risk-shifting motives,

we then solve the model. When the banks experience a shock and face risk-weighted capital

requirements, banks choose to recapitalize by concentrating their holdings into one particular asset

and shedding the others. The “desired” asset is selected based on two criteria: the underlying

risk of the asset’s return and the asset’s risk weight. This is a manifestation of risk-shifting and

resembles regulatory arbitrage: banks choose to concentrate their portfolios in the asset that

provides the greatest risk relative to the amount of capital that must be held against it.

This result leads to the first main result of our paper: when banks recapitalize after a shock,

the choice of risk weights in the capital requirement strongly affects whether fire sales6 can occur

in equilibrium. If all risk weights are identical, as in a simple leverage ratio requirement, then

the optimal choice for banks is to sell relatively safe assets. However, if risky assets are given

sufficiently high risk weights, banks will find it optimal to sell these assets in a fire sale. This

result is driven by banks’ risk-shifting motives. If a risky asset has a high risk weight, retaining

this asset requires banks to hold relatively more capital for a given value of total assets, which

represents a transfer of value from shareholders to creditors. For a high enough risk weight,

5Bahaj and Malherbe (2016) provide empirical evidence on banks’ responses to changes in capital requirements
consistent with a model based on maximizing value for existing shareholders.

6The term fire sale is generally used for assets that have substantial illiquidity such that if a large quantity was sold,
the price would drop substantially. An example would be subprime MBS. On the other hand, if a large quantity of a
relatively safe, liquid asset like GSE debt was sold, there would likely be little price impact. Therefore, we do not think
of the latter situation as a fire sale.
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banks would rather sell the risky asset and retain a lower risk-weight asset, even though it is safer,

because it does not require as much capital to be held.

In contrast, when risk weights are identical, all assets have the same capital charge regardless

of riskiness. In this case, risk-shifting motives lead to a simple choice: retain the risky assets and

sell the relatively safer ones. These results are pertinent in light of the recently adopted Basel

III capital regulations. One component of the regulations is a simple leverage ratio requirement,

which lowers the risk of fire sales according to our model. However, the regulations also modify

the existing regime by assigning higher risk weights to a variety of risky assets, which arguably

raises the risk of fire sales.

Our second result is that if, in addition to a capital requirement, banks face a liquidity require-

ment that requires them to retain a minimum amount of “safe” assets, banks have an incentive

to become large in scale and could be pushed toward a fire sale of risky assets in response to a

shock. The rationale for the scale is that liquidity requirements force banks to hold assets they

would otherwise want to sell. Banks make up for this by building up holdings of desired assets to

the maximum extent possible, to dilute the holdings of the undesired assets.

Suppose that in the absence of the liquidity requirement, banks prefer to sell the relatively

safe assets and retain risky assets. The liquidity requirement can be interpreted as diminishing

the appeal of this action. Banks want to hold a concentrated portfolio of risky assets, but the

liquidity requirement forces them to hold a diversified portfolio of risky and safe assets, which

is costly when there is a risk-shifting motive. Alternatively, the bank can recapitalize by selling

risky assets, which are likely not subject to liquidity requirements. Though this action involves

holding a concentrated portfolio of safer assets, this portfolio could still be more appealing

than a diversified portfolio of the risky and safe assets, especially if the liquidity requirement is

strict (more diversification required) and risky assets have high risk weights (making them less

desirable). This result is particularly important given that Basel III introduces enhanced liquidity
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requirements to be implemented alongside stricter risk-weighted capital requirements.7

Our first two results suggest that undercapitalized banks may respond to a shock by engaging

in fire sales of risky assets. One common view is that these fire sales can be averted by forcing

banks to issue equity (Hanson et al., 2011), the idea being that equity issuance recapitalizes banks

while rendering it unnecessary to sell assets. Our third result is that there is theoretical justification

for mandatory equity issuance. In the absence of the mandate, banks wish to concentrate their

portfolios in one asset and dispose of the others to the maximum extent possible given liquidity

requirements. Mandatory equity issuance forces banks to hold assets they would otherwise sell,

which could potentially prevent fire sales of illiquid assets. However, if the constraint is not

binding for banks, fire sales may still occur, suggesting that mandatory equity issuance amounts

should be aggressive.

Collectively, our results suggest that the assignment of risk-weights can be an important

determinant of how banks choose to recapitalize in a crisis. While assigning high risk weights to

risky, illiquid assets may have favorable ex-ante incentives, doing so might generate unintended

ex-post incentives for banks to engage in fire sales, particular if liquidity requirements are in

place.8 Moreover, cyclical risk weights (CRWs) could be a powerful tool in the midst of a crisis,

potentially more powerful than cyclical capital requirements (CCRs). In addition to implicitly

lowering the capital requirement, lowering risk weights on certain risky, illiquid assets makes it

more worthwhile for banks to retain these assets and sell safe ones, for the same risk-shifting

related reasons described earlier. Therefore, CRWs offer additional ammunition against the risk of

fire sales compared to CCRs.

Our approach contributes to the literature by studying the joint impact of multiple types of

bank regulation in a setting where banks adjust their portfolio allocation to multiple assets. Much

7Our model does not include incompleteness in the market for insurance against aggregate risks or other features
that could make liquidity requirements optimal (Allen, 2014). We simply highlight potential negative side effects of
combining capital and liquidity requirements.

8Similarly, exposure limits with respect to risky assets, or risk weights that increase with concentration on the
balance sheet, might have good ex-ante properties but generate bad ex-post incentives.
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of the literature of interactions between capital requirements and other policy tools focuses on the

interaction of capital or macruprudential regulation with monetary policy. See IMF (2013) and

BOE (2015) for a discussion of the literature in this area. Closer to our work, Walther (2016) and

Goodhart et al. (2013) study the effects and design of capital and other types of bank regulation,

including liquidity requirements. Both of these papers abstract away from multiple asset classes.

Similarly, work on the role of cyclical capital requirements typically focuses on the time dimension

rather than the cross section of assets (Kashyap and Stein, 2004; Repullo and Suarez, 2013). We

emphasize the impact of the interaction of various types of bank regulation on the tradeoffs

between multiple assets.

The paper proceeds as follows. In Section 2.2, we describe a basic version of the model in

order to build intuition about the recapitalization problem that banks face in a crisis. In Section

2.3, we lay out a more generalized and detailed version of the model. In Section 2.4, we use the

generalized model in Section 2.3 to prove various propositions related to our main results. Section

2.5 concludes.

2.2 Basic Model

In this section, we describe a very basic version of the model in order to show why banks are

driven by risk-shifting motives when deciding how to recapitalize in a crisis. The analysis of the

banks’ actual decisions will be left for the more generalized model in the Section 2.3.

2.2.1 Setup and Assumptions

There are three periods: 0, 1, and 2. In period 0, a representative bank holds assets A0, debt

with face value D0 that matures in period 2, and adequate regulatory capital. In period 1, asset

fundamental value is shocked to A1, after which some combination of asset sales and equity

issuance is done in order to restore the capital ratio. Negative asset sales (i.e. asset purchases) and

negative equity issuance (equity repurchases) are permitted. After these actions, bank assets are

A1,post (implying asset sales were A1− A1,post) and the face value of debt that remains until period

2 is D2. In period 2, the value of assets evolves from A1,post to A2, where the latter is uncertain.
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Assets are then liquidated and debt/equity holders are paid accordingly.

We assume that all assets (including debt and equity) are priced fairly for a risk neutral

investor with a discount rate of zero. This assumption implies that E(A2) = A1,post. In addition,

the proceeds of asset sales and equity issuance in period 1 are used to buy back debt. The price

at which $1 of debt is bought back in period 1 (β) must equal the value of the debt per unit face

value that remains after the action is taken:

β =
E (min [A2, D2])

D2
(2.1)

Finally, in period 1 banks choose the combination of equity issuance and asset sales that maximizes

the expected payoff to the existing shareholders, the only restriction on asset sales being that the

bank cannot short any asset.

2.2.2 Objective function

In period 1, the bank chooses equity issuance (e) and asset sales (A1 − A1,post) to maximize the

expected payoff to existing shareholders in period 2, subject to restoring its capital ratio. Therefore,

the objective function is (
1− e

E (max [A2 − D2, 0])

)
E (max [A2 − D2, 0])

=E (max [A2 − D2, 0])− e (2.2)

=E (A2 −min [A2, D2])− e

=A1,post − βD2 − e (2.3)

where the last equality uses the definition of β in (2.1). We will show that this objective function is

equivalent to minimizing the price of debt β.

Since debt is bought back at a price of β using the proceeds of asset sales and equity issuance,

the following is true:

D0 − D2 =
1
β

(
(A1 − A1,post) + e

)
(2.4)
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Substituting for D2 into the objective (2.3), we get

A1,post − β

(
D0 −

1
β

(
(A1 − A1,post) + e

))
− e

=A1 − βD0 (2.5)

Note that A1, the fundamental value of the assets after the shock, and D0, the face value of the

debt in period 0, do not depend on the specific action taken. As a result, the objective function is

equivalent to minimizing β, the price of the debt outstanding after the action (also the price at

which the debt is repaid in period 1).

This version of the objective in (2.5) characterizes the risk shifting problem. Since all assets

are priced at fair value, there is no NPV to be gained by taking any specific action. However,

different actions can result in different transfers from shareholders to creditors. Shareholders want

to choose the action that minimizes this transfer, which is equivalent to minimizing the price of

the remaining debt, β. There is a risk-shifting motive: shareholders want to take as much risk as

possible because the creditors absorb the downside risk. This result extends to the more general

version of the model described in the next section but is perhaps more easily seen in this simple

setting. Banks want to pursue a recapitalization strategy that minimizes the price of its remaining

debt per unit face value.

2.3 Generalized model

In this section, we lay out a more generalized version of the model described in the previous

section. This model will allow for analysis of banks’ optimal recapitalization plans and will be

used to establish the main results of the paper.

2.3.1 Setup

There are three periods: 0, 1, and 2. In period 0, there is a continuum of identical banks,

each with total assets A and debt dA. The banks hold n different types of assets, the weight and

risk-weight on asset i being wi and ri, respectively. Regulation requires that banks maintain a

70



risk-weighted capital ratio of at least θ ∈ (0, 1) and we assume that this requirement is binding for

banks in period 0.9 The binding capital requirement in period 0 implies:

θ =
A(1− d)

n

∑
i=1

Awiri

=
1− d

r̄

⇐⇒ 1− θr̄ = d (2.6)

where r̄ =
n

∑
i=1

wiri. In period 1, there is an unanticipated shock to asset fundamental values.

Specifically, every asset j experiences a percentage decline of 1− λj, where λj ∈ (0, 1). The shock

causes banks’ total assets to fall to
n

∑
i=1

Awiλi = λ̄A, causing the capital ratio to fall under the

regulatory minimum. This can be shown as follows:

λi < 1, θri < 1 ∀i =⇒
n

∑
i=1

wiλi(1− θri) <
n

∑
i=1

wi(1− θri) (2.7)

=⇒ λ̄− θ
n

∑
i=1

wiλiri < 1− θr̄ = d (2.8)

=⇒ A(λ̄− d)
n

∑
i=1

Awiλiri

< θ (2.9)

where (2.8) employs (2.6) and the left side of (2.9) represents the risk-weighted capital ratio of

the bank after the unanticipated shock in period 1. Note the inclusion of θri < 1 ∀i in (2.7). We

assume this is true and believe it is reasonable given the level of capital requirements and range

of risk weights in the new Basel III regulations.10

In period 2, every asset j experiences a net return of ηj
λj
− 1, where {ηi}n

i=1 are jointly distributed

according to f (η1, η2, ... ηn), marginally distributed according to fi(ηi), and the support of ηi is

[0, ηiH ] where ηiH > 0. We assume that in period 1, all assets are priced in a risk-neutral manner

based on fundamental values with a risk-free rate of zero, which implies E[ηi] = λi. At the end of

period 2, banks liquidate their assets at fundamental values, repay debt to the extent possible, and

give the residual to shareholders.

9This assumption can be justified in the data by observing that banks generally maintain their capital ratios close to
the requirement and tend to resist proposed increases in the required ratio.

10http://usbasel3.com/tool/
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In order to recapitalize in period 1, banks undertake some combination of asset sales/purchases

and equity issuance/repurchase. By assumption, they choose whatever combination maximizes

the expected value of existing shareholders’ equity. The dollar amount of asset i sold is given by

siλ̄A, where si can be positive (asset sale) or negative (asset purchase). There is a no shorting

constraint, meaning a bank cannot sell more of an asset than it has. There is also a maximum

amount of each asset that can be purchased (the market supply of the asset). The dollar amount

of equity issued is given by eA, where e can also be positive or negative. The amount of equity

repurchased cannot exceed the equity value of the entire firm.

Any cash excess (deficit) from transactions in assets and equity is offset by debt repurchase

(issuance). After all transactions, the outstanding debt of the bank must be weakly positive. Like

the assets the banks hold, bank debt and equity are priced in a risk-neutral manner based on

fundamental values. Moreover, there is a no-arbitrage condition that the price at which debt and

equity are issued or repurchased must be the same as the price of outstanding debt and equity.

2.3.2 The bank’s problem

In this section, we formally present the bank’s problem. We then show how this problem

collapses into the bank simply wanting to minimize the price of its debt per unit face value, just

as in basic model presented in Section 2.2. Finally, we eliminate some redundant constraints to

produce the most parsimonious version of the problem.

Statement of the problem

In period 1, the bank maximizes the expected equity value of existing shareholders in period 2.

This is equivalent to solving the following problem, a general version of (2.2):

max
{si}n

i=1, e
E

(
max

[
n

∑
i=1

ηi

λi
(wiλi − siλ̄)−

(
d− 1

β

(
e + λ̄

n

∑
i=1

si

))
, 0

])
− e (2.10)
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subject to

θ =

λ̄

(
1−

n

∑
i=1

si

)
−
(

d− 1
β

(
e + λ̄

n

∑
i=1

si

))
n

∑
i=1

ri(wiλi − siλ̄)

(2.11)

β =

E

(
min

[
n

∑
i=1

ηi

λi
(wiλi − siλ̄), d− 1

β

(
e + λ̄

n

∑
i=1

si

)])

d− 1
β

(
e + λ̄

n

∑
i=1

si

) (2.12)

βd− λ̄ ≤ e ≤ βd− λ̄
n

∑
i=1

si (2.13)

−κi ≤ siλ̄ ≤ wiλi, ∀i ∈ {1, 2, ... n} (2.14)

Objective function

The objective function (2.10) can be explained as follows. The term wiλi − siλ̄ represents the

amount of asset i that the bank holds after selling or purchasing some of the asset.11 Multiplying

this quantity by ηi
λi

gives the value of the bank’s holdings of asset i in period 2 and summing

across all i gives the total value of the bank’s assets.

The term e + λ̄
n

∑
i=1

si represents the net amount the bank raises in equity issuance and asset

sales. By assumption, this excess or deficit goes toward debt repurchase or issuance at the price of

β. Therefore, d− 1
β

(
e + λ̄

n

∑
i=1

si

)
is the face value of debt that remains after all transactions. The

total value of the bank’s equity is the greater of zero and the difference between total assets and

remaining debt. The expected value of this quantity is taken (since ηi is uncertain) and in order to

isolate the value to existing shareholders, the amount of equity issued is subtracted.

11The constant A (the value of the bank’s initial assets) is technically a multiplier on all of the above equations but
can be dropped or canceled. The problem is invariant to the original scale of the banks.
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Constraints

Constraint (2.11) is the capital requirement that must be satisfied in period 1 after the unantici-

pated shock. On the right hand side, λ̄

(
1−

n

∑
i=1

si

)
is the value of assets that remain after all sales

or purchases. As discussed before, the second term in the numerator is the face value of debt that

remains after all transactions, making the numerator the book value of equity in period 1. The

denominator of (2.11) is the bank’s cumulative risk-weighted assets after all purchases and sales:

the weighted sum of the amount of each asset held, where the weight on asset i is its regulatory

risk weight ri. Therefore, constraint (2.11) says that after all transactions in period 1, the ratio

of book equity to risk-weighted assets must exceed the regulatory requirement θ. The equality

condition in (2.11) is by assumption, though it can be shown that if constraint was an inequality, it

would be binding.12

Constraint (2.12) is the definition of β, the price of the bank’s outstanding debt per unit of face

value after all transactions. The numerator is the expectation of what debtholders will receive in

period 2: the smaller of total asset value and the face value of remaining debt. This quantity is

scaled by the face value of remaining debt to put β in the correct units. By assumption, β is also

the price at which debt is purchased or issued, as seen in (2.10) and (2.11). Note that constraint

(2.12) is undefined for d− 1
β

(
e + λ̄

n

∑
i=1

si

)
= 0. In the event this condition is true, β is simply

defined by this condition.

Constraint (2.13) defines the bounds on the choice of e. The right inequality states that

the proceeds of equity issuance (e) cannot exceed the market value of debt that was originally

outstanding (βd), net of the proceeds of asset sales (λ̄
n

∑
i=1

si). This constraint is equivalent to

condition that the amount of debt that remains after the proceeds of equity issuance and asset

sales, d− 1
β

(
e + λ̄

n

∑
i=1

si

)
, must exceed zero.

The left inequality of (2.13) puts a limit on how much equity can be repurchased. This

12The proof involves showing that if the capital ratio exceeds θ, the bank can raise shareholder value by simply
issuing debt and repurchasing equity.
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inequality can be restated as −e ≤ λ̄− βd, where −e is the amount of equity repurchased. The

right hand side is the market value of equity that is available to be repurchased after asset sales

are used to repurchase debt at the price of β:

λ̄

(
1−

n

∑
i=1

si

)
− β

(
d− 1

β
λ̄

n

∑
i=1

si

)

which simplifies to λ̄− βd.

Finally, constraint (2.14) puts limits on asset sales and purchases. The right inequality says that

the amount of asset i that is sold (siλ̄) cannot exceed the holdings of asset i after the unanticipated

shock in period 1 (wiλi). The left inequality says that the amount of asset i that is purchased

(−siλ̄) cannot exceed market supply κi. One can imagine that κi is large for liquid assets and small

for illiquid assets.

Note that constraints (2.13) and (2.14) ensure that the numerator and denominator of β as

defined in (2.12) are weakly positive, meaning β ≥ 0. In addition, the nature of the definition of β

in (2.12) implies β ≤ 1. Therefore, we have β ∈ [0, 1].

Equity issuance feasibility

In order for equity issuance to be feasible after the unanticipated shock in period 1, the amount

of equity issued must be less than or equal to the total equity value to new and old shareholders

after all asset sales and debt repurchases have taken place:

e ≤ λ̄

(
1−

n

∑
i=1

si

)
− β

(
d− 1

β

(
e + λ̄

n

∑
i=1

si

))

⇐⇒ λ̄ ≥ βd

In other words, the bank’s assets must exceed the market value of its debt. Since (2.12) implies

that β ≤ 1, a sufficient condition for equity issuance being feasible in period 1 is λ̄ ≥ d: after the

unanticipated shock in period 1, the bank’s assets must exceed the face value of its debt.
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2.3.3 Simplifying the problem

In this section, we show how in the general model, just as in the basic model presented in

section 2.2, the bank’s objective is equivalent to minimizing β (the price of the bank’s outstanding

debt per unit face value). We start with the fact that for any X and Y, max(X − Y, 0) = X −

min(X, Y). This means that the bank’s objective in (2.10) can be rewritten as

E

(
n

∑
i=1

ηi

λi
(wiλi − siλ̄)−min

[
n

∑
i=1

ηi

λi
(wiλi − siλ̄), d− 1

β

(
e + λ̄

n

∑
i=1

si

)])
− e

Using (2.12) and E[ηi] = λi, this becomes

λ̄

(
1−

n

∑
i=1

si

)
− β

(
d− 1

β

(
e + λ̄

n

∑
i=1

si

))
− e (2.15)

= λ̄− βd (2.16)

Since λ̄ and d are parameters that do not depend on the bank’s decision, the bank’s problem can

be restated as

min
{si}n

i=1, e
β

subject to (2.11)-(2.14). Intuitively, the shareholders want to take the action that minimizes the

market value of the debt (per unit of face value) because that maximizes the market value of

equity, given that total asset values (λ̄) are unaffected by the action taken. This is the risk-shifting

motive: shareholders want to take on as much risk as possible, offloading the downside on to

the creditors or equivalently, lowering the price of outstanding debt. The preceding argument

proves that this is in fact the only consideration. From (2.15), asset sales reduce the market value

of assets and debt by the same amount. In addition, equity issuance adds to the total equity value

of the firm but is subtracted out for the existing shareholders. Therefore, asset sales/purchases

and equity issuance/repurchases only affect the objective through their effects on β.

Since the definition of β in (2.12) is self-referencing, it is useful to express it differently. Using

(2.11) and noting that

λ̄

(
1−

n

∑
i=1

si

)
=

n

∑
i=1

(wiλi − siλ̄) (2.17)
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we find

d− 1
β

(
e + λ̄

n

∑
i=1

si

)
=

n

∑
i=1

(1− θri)(wiλi − siλ̄) (2.18)

Substituting (2.18) into (2.12), the objective function becomes

g(s1, s2, ... sn) =

E

(
min

[
n

∑
i=1

ηi

λi
(wiλi − siλ̄),

n

∑
i=1

(1− θri)(wiλi − siλ̄)

])
n

∑
i=1

(1− θri)(wiλi − siλ̄)

(2.19)

The problem can therefore be restated as

min
{si}n

i=1

g(s1, s2, ..., sn)

subject to (2.11), (2.13), and (2.14), with g(s1, s2, ..., sn) being substituted for β. To be clear, g(·) is

the value of β (the price per unit face value of the debt outstanding) that results from a particular

choice of asset sales {s1, s2, ..., sn}, assuming that the capital ratio requirement in (2.11) is met.

Note that the choice of e is no longer part of the bank’s problem. This is because e is pinned down

by the choice of asset sales and (2.11), with g(·) in place of β.

2.3.4 Eliminating redundant constraints

In this section, we show that constraint (2.13) is redundant. Let
{
{si}n

i=1 , e
}

be any feasible

solution that satisfies (2.11) and (2.14), with g(·) in place of β. Using (2.17) and rearranging (2.11),

we have

e =

(
d−

n

∑
i=1

(1− θri)(wiλi − siλ̄)

)
g(s1, s2, ... sn)− λ̄

n

∑
i=1

si (2.20)

= g(·)d− λ̄
n

∑
i=1

si − g(·)
n

∑
i=1

(1− θri)(wiλi − siλ̄) (2.21)

= g(·)d− λ̄ +

[
λ̄

(
1−

n

∑
i=1

si

)
− g(·)

n

∑
i=1

(1− θri)(wiλi − siλ̄)

]

= g(·)d− λ̄ +

[
λ̄

(
1−

n

∑
i=1

si

)
(1− g(·)) + g(·)

n

∑
i=1

θri(wiλi − siλ̄)

]
(2.22)

Using g(·) ≥ 0, θri ≤ 1 ∀i, and (2.14), we have

g(·)
n

∑
i=1

(1− θri)(wiλi − siλ̄) ≥ 0
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Combining this with (2.21) implies that e ≤ g(·)d− λ̄
n

∑
i=1

si, which is the right inequality of (2.13).

Using g(·) ∈ [0, 1] and (2.14), the bracketed term in (2.22) is weakly positive, which implies

that e ≥ g(·)d− λ̄, which is the left inequality of (2.13). To summarize, any choice of {s1, s2, ..., sn}

that satisfies (2.14) is feasible as long as e is set according to (2.20).

2.3.5 Final statement of problem

The problem can be stated as

min
{si}n

i=1

g(s1, s2, ... sn) =

E

(
min

[
n

∑
i=1

ηi

λi
(wiλi − siλ̄),

n

∑
i=1

(1− θri)(wiλi − siλ̄)

])
n

∑
i=1

(1− θri)(wiλi − siλ̄)

(2.23)

subject to

−κi ≤ siλ̄ ≤ wiλi ∀i ∈ {1, 2, ..., n}

sjλ̄ < wjλj for at least one j ∈ {1, 2, ..., n}
(2.24)

Note that the second constraint in (2.24) has been introduced to eliminate the possibility of

selling the entire balance sheet, which would lead to zero capital and risk-weighted assets.

In summary, the bank’s problem is to choose asset sales {s1, s2, ..., sn} that minimize the price

per unit face value of the outstanding debt, or g(·). As stated earlier, this is the action that

maximizes equity value, because it minimizes the transfer made to the creditors. Importantly,

apart from (2.24), the problem is otherwise unconstrained. This is because for any choice of

{s1, s2, ..., sn}, a value of e can be obtained from (2.20) that satisfies the constraints (2.11) and (2.13).

2.4 Results

In this section, we solve the model introduced in the previous section to establish the main

results of the paper. To build intuition, we begin by analyzing the case in which banks hold just

one asset. As in (Admati et al., 2013), we find that banks are indifferent over all combinations of
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asset sales and equity issuance that restore the capital ratio. We then move to the n-asset case and

show that the solution involves banks concentrating their portfolio in the asset that permits the

most risk-taking. Finally, we use the n-asset case to prove the main results of the paper regarding

how risk weights, liquidity requirements, and mandatory equity issuance can affect whether

banks engage in fire sales when recapitalizing in a crisis.

2.4.1 One asset case

Using (2.23) with n = 1, we have

g(s1) =
E
(

min
[

η1
λ1

λ1(1− s1), (1− θr1)λ1(1− s1)
])

(1− θr1)λ1(1− s1)

=
E
(

min
[

η1
λ1

, 1− θr1

])
1− θr1

(2.25)

Note that g(s1) does not depend on s1. Therefore, any {s1, e} that satisfies (2.20) and (2.24) is a

valid solution. As long as the capital ratio is restored, the particular combination of asset sales and

equity issuance does not affect the price of debt per unit face value and therefore does not matter.

This result is better understood by looking at the capital requirement (2.11) when n = 1:

θ =
λ1(1− s1)−

(
d− 1

β (e + λs1)
)

r1λ1(1− s1)

=⇒ 1− θr1 =
d− 1

β (e + λs1)

λ1(1− s1)

The last line shows that regardless of the choice of {s1, e}, the ratio of the face value of debt

outstanding (numerator) to assets (denominator) after any asset sales and equity issuance in

period 1 equals 1− θr1. The choice of {s1, e} only changes the scale of the bank’s balance sheet.

This is the nature of the capital requirement with one asset.

Let p be the probability of default in period 2. With probability 1− p, the value of assets

exceeds the face value of debt and creditors receive $1 for every dollar of face value. With

probability p, creditors only recover some fraction µ of the face value of debt, where µ equals the

ratio of asset value to the face value of debt. With this terminology, we can express the period 1
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price of debt outstanding per unit face value as

g(s1) = (1− p)(1) + pE(µ | default)

Earlier, we showed that the ratio of debt outstanding to assets at the end of period 1 is fixed

at 1 − θr1. This means that p and E(µ | default) will depend only on this ratio and return

distribution of the asset between periods 1 and 2. They will not depend on the choice of {s1, e}.

These dependencies are clearly observed in (2.25). Different actions simply scale up or down how

large the bank is but leave the fundamental riskiness of the debt (and therefore its price per unit

of face value) unchanged.

2.4.2 Multiple asset case

In the one asset case, we showed that the price of the bank’s debt per unit face value depends

on the ratio of debt to assets at the end of period 1 and the return distribution of the asset between

between periods 1 and 2, neither of which depend on the choice of {s1, e}. Therefore, banks are

indifferent between any choice of {s1, e} that satisfies the capital requirement. When there are two

or more assets, this indifference result no longer holds.

The first reason is that if the assets have different risk weights, the ratio of debt to assets at

the end of period 1 depends on the choice of {{si}n
i=1, e}. If the bank chooses to sell assets with

low risk weights (retain assets with high risk weights), the capital requirement forces the bank to

hold less debt for the same level of assets. If the bank chooses to sell assets with high risk weights

(retain assets with low risk weights), the bank is allowed to hold more debt for the same level of

assets. The second reason is that if the assets have different return distributions, the distribution

of the return of the bank’s assets between periods 1 and 2 depends on the composition of the

bank’s portfolio at the end of period 1. This composition in turn depends on which assets the

bank chooses to sell and retain in period 1.
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Characterizing the solution

We have shown that the recapitalization decision is non-trivial for banks when there is more

than one asset. To find the optimal action, we formally solve the problem described by (2.23) and

(2.24): choosing the combination of asset sales that minimizes the price of the bank’s outstanding

debt per unit face value subject to no-shorting constraints, where equity issuance is pinned

down by the capital requirement according to (2.20). The bank’s decision is characterized by the

following proposition.

Proposition 1. The solution to the recapitalization problem described by (2.23) and (2.24) involves

concentrating the portfolio into one asset and selling all other assets. The asset that is retained is the solution

to

arg min
i

E
(

min
[

ηi
λi

, 1− θri

])
1− θri

If multiple assets solve this problem, banks still choose to retain a single asset as long as there is imperfect

correlation across asset returns. However, the bank is indifferent between retaining any of the assets that

solve the problem.

Proof. See Appendix B.1.

The intuition for this result is fairly straightforward. Since the objective is to minimize the

price of debt, the shareholders want to take on as much risk as possible. It is therefore undesirable

to hold multiple assets at once, as this could only provide unwanted diversification. Even though

all assets are priced fairly, the one that allows for the most risk-taking is best for shareholders

because it minimizes the transfer to creditors. As a result, the optimal choice is to sell out of the

other assets entirely. A similar argument holds if two assets provide equal amounts of risk when

held on their own. While the solution is not unique (the bank is indifferent between holding either

asset by itself), the bank does not want to hold these assets simultaneously due to the unwanted

diversification effect.

In Appendix B.1, one can see in (B.1) that if only one asset (k) is retained, the objective function

takes the form
E
(

min
[

ηk
λk

, 1− θrk

])
1− θrk

(2.26)
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Note that (2.26) does not depend sk, which means (2.26) does not depend on how much of

asset k the bank holds after recapitalizing. While this may seem puzzling, it is because a bank that

completely discards all but one asset is equivalent to the one-asset bank analyzed in the previous

section. We showed that in this case, the bank is indifferent between all actions that satisfy the

capital requirement.

The decision of which asset to sell involves comparing the value of (2.26) across all assets. The

comparison is equivalent to the following. In period 1, suppose there are n banks. Each bank

holds only one asset, holds a different asset than all other banks, and is adequately capitalized.

Note that these hypothetical banks are what would result from choosing to sell all assets other

than one in the course of recapitalizing. The relevant question is: which bank’s debt has the lowest

price per unit face value? The optimal decision is to retain only the asset that this bank holds and

sell all other assets. This decision can be interpreted as banks engaging in “regulatory arbitrage”:

concentrating the portfolio in assets that allow the most risk-taking while satisfying regulatory

requirements.

It is worth noting here that Proposition 1 is quite extreme. For several reasons, it is unreasonable

for banks to close out their entire holdings of all assets except for one in the process of recapitalizing

(we will revisit this assumption in a later section). However, Proposition 1 is just meant to

underscore the risk-shifting motives that banks face when choosing how to recapitalize in a crisis.

Holding constant all of the other factors that drive banks’ recapitalization decision, banks have an

incentive to concentrate their portfolios in assets that allow them to take the most risk. This basic

intuition leads to the main results of the paper, which we turn to next.

The effect of risk weights

The effect of risk weights on the recapitalization decision is summarized by the following two

propositions.

Proposition 2. For each asset k, there exists r̄k <
1
θ such that for all rk > r̄k, asset k is sold in the process

of recapitalizing, holding fixed all other assets’ risk weights.
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Proof. See Appendix B.2.

The intuition for this result is as follows. Proposition 1 established that when deciding how

to recapitalize in a crisis, banks choose to retain the single asset that minimizes the bank’s price

of debt per unit face value. Suppose the bank is evaluating the option of retaining asset k. As

rk rises, the probability of solvency in period 2 goes up because the bank is forced to hold less

debt when risk weights on asset k are higher. However, this effect is ultimately second-order for

creditors because the benefit of newly solvent states of the world in which creditors are made

whole is offset by the fact that prior to the increase in rk, creditors were just barely insolvent in

these states. Creditors are benefiting only slightly in these newly solvent states in terms of the

market value of debt per unit of face value.

A higher rk also does not affect the attractiveness of retaining any other asset by itself. The

only first-order effect of a higher rk is that when banks holding asset k are forced to hold less debt,

creditors recover a greater percentage of their face value in insolvent states of period 2. This is bad

for shareholders, as it raises the price of debt per unit face value and constitutes a transfer from

to creditors. If rk is high enough, shareholders will eventually prefer to sell asset k and retain a

different asset since retaining the former forces the bank to be underleveraged.

In risk-weighted capital requirements, “risky” assets tend to be assigned higher risk weights.

This fact, along with Proposition 2, leads to the first main result of the paper: the design of capital

requirements, specifically the assignment of risk weights, can affect whether banks engage in fire

sales of risky assets when recapitalizing in a crisis. Holdings other things constant, the higher the

risk weights are on “risky” assets, the more likely it is that banks choose to sell these risky assets

in a recapitalization. If these risky assets are illiquid, fire sales could occur. In other words, while

high risk weights on risky assets may have ex-ante benefits, they are not necessarily a panacea

because of the adverse ex-post incentives they create.

The next proposition establishes what happens when risk weights are uniform across assets.

Proposition 3. Suppose the risk weights of all assets are identically equal to one. If asset j’s net return
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( ηj
λj
− 1) is a mean-preserving spread of the return of asset k (i.e. asset j is riskier), then the bank will not

sell asset j in the process of recapitalizing.

Proof. See Appendix B.3.

Proposition 3 can be interpreted as follows: a system of uniform risk weights across assets can

push banks toward the more desirable outcome of selling “safer” assets when recapitalizing in

a crisis. In this paper, we denote an asset being “safer” than another if the latter’s net return in

period 2 is a mean-preserving spread of the former’s. In other words, while a safer asset has the

same expected net return as a riskier asset, it also has less volatility.

The intuition behind Proposition 3 is straightforward. When risk weights are identical, the

choice of which asset to retain has no influence on the amount of leverage banks can take.

Therefore, the decision for an equity-maximizing bank is simple: retain the asset whose return

profile offers the most risk. Since all assets provide the same expected return of zero, an asset

whose return is a mean-preserving spread of another’s is attractive to shareholders because it must

perform relatively well in good states of the world. In contrast, retaining a safe asset provides less

upside, raises the price of the bank’s debt per unit face value, and constitutes a transfers from

shareholders to creditors.

The effect of liquidity requirements

Proposition 1 says that the solution to the recapitalization problem involves retaining just one

asset and selling all of the others completely. One reason such an action would not be feasible in

practice is that banks are subject to internal or regulatory liquidity requirements, whereby certain

assets must be retained for liquidity purposes. In this section, we introduce a simplified version

of liquidity requirements in order to understand how it changes the bank’s decision from the base

case in Proposition 1.

We model liquidity requirements by modifying constraint (2.24) as follows.

− κi ≤ siλ̄ ≤ γiwiλi ∀i ∈ {1, 2, ... n} , γi ∈ [0, 1) (2.27)

84



The modified constraint (2.27) says that asset i can be sold only up to a fraction γi of current

holdings. One can imagine that for illiquid assets γi ≈ 1 and for liquid assets γi << 1, the idea

being that banks must retain a certain amount of liquid assets while there is no such requirement

on illiquid assets.13 While this setup may not be how liquidity requirements work in practice, it

offers a simple way of building intuition about the problem.14

The next proposition examines how banks recapitalize in the presence of both capital and

liquidity requirements.

Proposition 4. With constraint (2.27) in place of (2.24) to reflect liquidity requirements, the solution to

the bank’s recapitalization problem is an extreme point of the feasible set: sell all assets but one and expand

holdings of the remaining asset, both to the maximum extent allowable under (2.27).

Proof. See Appendix B.4.

The intuition underlying Proposition 4 is similar to that of Proposition 1: banks wants to

take as much risk as possible. In the presence of liquidity constraints, this means expanding the

holdings of one asset as much as possible while simultaneously holding as little as possible of

every other asset. This produces the least diversified (riskiest) portfolio. Indeed, we can show that

if there is no restriction on how much asset holdings can be built up (κ = ∞ in (2.27)), banks can

achieve the same minimized objective as they do without liquidity requirements.15

To prove this, we take the limit of the objective (2.23) as sk converges to −∞ (expanding

13For transaction costs reasons, it may be the case that the opposite is true: banks can sell a large amount of liquid
assets and only a small amount of illiquid assets. In this paper, we assume that since banks do not have to recapitalize
all at once, transaction costs have less influence on banks’ decision than liquidity requirements.

14In practice, Basel III requires banks to hold liquid assets to match short-term liabilities. This corresponds with
effective limits on selling certain assets after facing a negative shock.

15This thought experiment corresponds to the case in which the bank grows by issuing long-term debt (and equity
to meet the capital requirement), so there is no increase in the level of the liquidity requirement.
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holdings of asset k to infinity).

lim
sk→−∞

E

(
min

[
n

∑
i=1

ηi

λi
(wiλi − siλ̄),

n

∑
i=1

(1− θri)(wiλi − siλ̄)

])
n

∑
i=1

(1− θri)(wiλi − siλ̄)

= lim
sk→−∞

E

(
min

[
∑
i 6=k

ηi

λi

wiλi − siλ̄

wkλk − skλ̄
+

ηk

λk
, ∑

i 6=k
(1− θri)

wiλi − siλ̄

wkλk − skλ̄
+ 1− θrk

])

∑
i 6=k

(1− θri)
wiλi − siλ̄

wkλk − skλ̄
+ 1− θrk

=
E
(

min
[

ηk
λk

, 1− θrk

])
1− θrk

The last line is equivalent to (B.1), the objective when retaining only asset k in the absence of

liquidity requirements. The intuition here is that building up holdings of one asset to infinity

offers the same risk profile as holding a finite amount of that asset and selling all other assets

entirely. While the liquidity requirements affect the structure of the bank’s portfolio, they do not

affect the minimized value of the objective function.

Therefore, one of the main effects of liquidity requirements is that banks are no longer invariant

to their scale, as they were in Proposition 1. Instead, banks want to expand holdings of one asset

as much as they can in order to “dilute” holdings of other assets that cannot be sold because of

liquidity requirements.

The limit analysis above shows that when asset holdings can be built up indefinitely (κ = ∞ in

(2.27)), banks will choose to build up the same asset that is retained in the absence of liquidity

requirements (see Proposition 1). However, when asset holdings cannot be built up indefinitely

(κ < ∞ in (2.27)), the asset that banks choose to build up is not necessarily the asset that is retained

in the absence of liquidity requirements.

Proposition 1 shows that if there are no liquidity requirements, asset j is retained based on

two factors only: the inherent riskiness of its gross return ηj
λj

and the leverage it permits through

its risk weight rj. With liquidity requirements, there are two additional factors at play: the extent
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to which an asset’s holdings can be built up (κj) and how small the liquidity requirements of the

remaining assets are (γk ∀k 6= j).

As an example, suppose there are two assets: j and k. Asset j is risky and illiquid, meaning it

has a low liquidity requirement and minimal market supply. In contrast, asset k is safer and more

liquid, with a higher liquidity requirement and plenty of market supply. Suppose also that the

assets’ risk weights are the same. By Proposition 3, asset k should be is sold and asset j retained in

the process of recapitalizing when there are no liquidity requirements. However, it is possible that

this decision flips with liquidity requirements in place. The appeal of “concentrating” the portfolio

in j is limited by the fact that a certain amount of diversification is unavoidable: a minimum

amount of asset k must be held and holdings of asset j cannot be built up tremendously due

to limited market supply. Meanwhile, it is possible to concentrate the portfolio in asset k, since

its holdings can be built up substantially and asset j does not need to be held for liquidity purposes.

In summary, liquidity requirements have two main effects on banks’ recapitalization decision.

First, banks have an incentive to become very large in the process of accumulating one asset and

diluting the holdings of others. Second, the desire to retain risky assets for risk-shifting purposes

may be undone if there is not an abundant supply of these assets or the liquidity requirements on

other asset are high. If either of these is true, banks may choose to sell risky assets en masse (a

fire sale) in the process of recapitalizing in a crisis.

Mandatory equity issuance

In this section, we explore how banks’ recapitalization decisions are affected by mandatory

equity issuance when both capital and liquidity requirements are in place. The principal issue

is whether mandatory equity issuance can prevent fire sales of illiquid assets that banks would

otherwise engage in as part of their recapitalization decisions.

Recall that when equity issuance is not mandatory, banks can choose any combination of asset

sales/purchases {si}n
i=1 that complies with (2.27). Based on this choice of {si}n

i=1, equity issuance
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is pinned down by (2.20). When there is mandatory equity issuance of ē, the bank’s choice of

{si}n
i=1 is subject to the following additional constraint.16(

d−
n

∑
i=1

(1− θri)(wiλi − siλ̄)

)
g(s1, s2, ... sn)− λ̄

n

∑
i=1

si ≥ ē (2.28)

The left hand side of (2.28) is the same as the right hand side of (2.20). The first term is the market

value of the debt that is repurchased and the second term is the net proceeds of asset sales. Any

difference between these two values must be made up with equity issuance, which the constraint

requires to be greater than ē.

It is difficult to articulate a general solution to the bank’s problem with mandatory equity

issuance due to the dependence on multiple parameter values (the issuance requirement ē, the

liquidity requirement γi for asset i, and the market supply κi of asset i). Instead, we can describe

the nature of the deviations that mandatory equity issuance causes when it is binding, compared

to what banks choose to do when they are not subject to (2.28) (see Proposition 4). We can

also describe whether there are situations in which mandatory equity issuance is ineffective (i.e.

non-binding) and if so, whether banks engage in fire sales of illiquid assets in such situations.

First, we analyze the binding case. Suppose that a bank has implemented its optimal recapi-

talization plan according to Proposition 4, meaning the bank has built up holdings of one asset

and sold the remaining, both to the maximum extent possible under (2.27). Since mandatory

equity issuance is binding, the bank’s choice of e in (2.20) is less than ē and it must issue more

equity. The main impact of additional issuance is that the bank is forced to use the proceeds to

purchase assets. But because the bank has already expanded holdings of its most desired asset

to the maximum extent possible, the proceeds of equity issuance can only be used to “buy back”

assets the bank originally wanted to sell.

While this is bad for the bank’s shareholders, who are forced to have a more diversified asset

portfolio, mandatory equity issuance also causes banks to engage in less selling of the assets that

16Note that ē is expressed as a fraction of the bank’s total assets.
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would otherwise be sold to the maximum extent possible. If these “undesired” assets happen to

be illiquid, mandatory equity issuance can reduce the severity of fire sales that might otherwise

occur in the process of bank recapitalization.

It is also possible that the constraint imposed by mandatory equity issuance is not binding, i.e.

banks choose to issue sufficient equity on their own. Since equity issuance equals the difference

between debt repurchases and asset sales, mandatory equity issuance would be non-binding if

either debt repurchases are large, the bank is a large net buyer of assets, or both. None of these

circumstances rule out fire sales of illiquid assets though, since even if a bank is net buyer of

assets it could be selling certain assets in large quantities.

The conclusion from this section is that mandatory equity issuance can potentially mitigate

the severity of fire sales when it is binding by forcing banks to do less net selling of potentially

illiquid assets. However, if the constraint is not binding, fire sales may still occur. This suggests

that mandatory equity issuance amounts should be set aggressively by policymakers.

2.5 Conclusion

In this paper, we model how banks that are subject to capital requirements choose to recapital-

ize after being hit by a shock to their asset values. We then use the model to assess how policy

levers such as risk weights, liquidity requirements, and mandatory equity issuance can affect

whether banks engage in fire sales of illiquid assets in the process of recapitalizing.

We first show that if banks act in the interest of shareholders, they will be influenced by

risk-shifting motives and choose the combination of asset sales and equity issuance that minimizes

the value of their debt per unit face value. In line with this objective, banks choose to concentrate

their portfolios in one asset and discard the others, as this allows for minimal diversification and

maximal risk-taking. The asset that is retained is the one that provides the best tradeoff between

risk and allowable leverage, a function of the asset’s regulatory risk weight.
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Based on this result, we show that the assignment of risk weights can affect whether banks

engage in fire sales when recapitalizing. If the risk weight on a particular asset is sufficiently high,

banks will choose to sell it because retaining it forces them to be underleveraged, limiting the

amount of risk that can be shifted on to creditors. Since high risk-weight assets are likely to be

illiquid, fire sales can result. However, fire sales may be prevented if the risk weights on all assets

are the same because banks will retain the asset that has the greatest underlying risk and sell

assets that are safer and probably more liquid.

When liquidity requirements are introduced, banks again choose to concentrate their portfolios

into one asset but instead of selling the others completely, they are sold to the maximum extent that

the liquidity requirements allow. This has two main effects on the bank recapitalization process.

First, banks have an incentive to build up holdings of the desired asset as much as possible in order

to dilute the holdings of the less desired assets that must be held because of liquidity requirements.

Second, the appeal of retaining a risky, illiquid asset is diminished because banks are forced to

hold a certain amount of safe, liquid assets, creating unwanted diversification. To avoid this, banks

might instead choose to build up holdings of a different asset and sell the illiquid asset in a fire sale.

Finally, mandatory equity issuance can potentially mitigate the severity of fire sales when it is

binding because it forces banks to do less net selling of potentially illiquid assets. However, if the

circumstances are such that banks are issuing sufficient amounts of equity on their own, fire sales

may still occur. This issue can potentially be addressed by setting mandatory equity issuance

amounts aggressively.

Overall, our model suggests that regulations can impact how banks choose to recapitalize in

a crisis. While assigning high risk weights to risky, illiquid assets may have favorable ex-ante

incentives, doing so might generate unintended ex-post incentives for banks to engage in fire sales.

In contrast, a system of uniform risk weights probably reduces the risk of fire sales. These findings

are interesting in light of the fact that the new Basel III accords both raise the risk weights on a

variety of risky, illiquid assets and introduce a simple leverage requirement (which is equivalent

to uniform risk weights). According to the results of this paper, these two policies may actually
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have different effects on the tendency of banks to engage in fire sales when recapitalizing.

Our model also suggests that the interaction between different types of regulations can affect

bank decision making. For example, it is possible that banks choose not to engage in fire sales

when just capital requirements are in place but do engage in fire sales when liquidity requirements

are introduced.

Finally, a policy prescription of our model is cyclical risk weights (CRWs) for illiquid assets. In

addition to implicitly lowering the capital requirement after a shock occurs, CRWs would also

lower risk weights on certain risky, illiquid assets, making it more worthwhile for banks to retain

these assets in the process of recapitalizing. CRWs therefore offer additional ammunition against

the risk of fire sales compared to cyclical capital requirements.
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Chapter 3

Expectations vs. fundamentals-driven

bank runs: When should bailouts be

permitted?1

3.1 Introduction

The recent financial crisis saw governments and central banks undertake a range of unusual

and, in some cases, unprecedented actions that could be characterized as “bailing out“ financial

institutions and investors. Many of these actions remain controversial and have led to calls for

restricting policy makers’ ability to intervene in future crises. Some restrictions of this type have

already been put into place. For example, the Dodd-Frank Act in the United States requires

any future Federal Reserve emergency lending programs to be approved by the Secretary of the

Treasury, imposes stricter collateral and disclosure requirements on these programs, and prohibits

programs that are designed to aid a particular financial institution. In addition, the Act prohibits

the Treasury from issuing the type of guarantees offered to money market mutual funds beginning

in September 2008. These legal changes raise an important question: When is it desirable to

restrict policy makers’ ability to intervene in a future crisis? While there has been much debate

about the effects of such restrictions in policy circles, no clear principles have emerged to guide

1Co-authored with Todd Keister
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these decisions. One common view holds that the desirability of restricting intervention depends

critically on the underlying cause of a financial crisis. Gorton (2010) argues that the recent crisis

was – at its heart – a run on certain elements of the financial system, similar in structure to the

events that plagued the U.S. banking system in the 19th century. In such an event, many investors

withdraw their funds from banks and other financial institutions in a short period of time, placing

severe strain on the financial system. Lacker (2008) proposes a simple rule to guide decisions

about whether intervention should be allowed that focuses on the underlying cause of these runs:

Researchers have found it useful to distinguish between what I’ll call ‘fundamental’
and ‘non-fundamental’ runs. . . . This distinction is important because the two types of
runs have very different policy implications. Preventing a non-fundamental run avoids
the cost of unnecessary early asset liquidation, and in some models can rationalize
government or central bank intervention. In contrast, in the case of runs driven by
fundamentals, the liquidation inefficiencies are largely unavoidable and government
support interferes with market discipline and distorts market prices.

In other words, Lacker (2008) argues that intervention may be useful when runs on the financial

system are self-fulfilling in nature, caused by shifts in investors’ expectations. In particular, if the

economy has multiple equilibria, allowing intervention may help eliminate undesirable equilibria

and thereby prevent a run from occurring. If, however, the economy has a unique equilibrium

and runs are instead driven by deteriorating economic fundamentals, restricting policy makers

from intervening is claimed to lead to better outcomes.

Support for this view can be found in the growing literature on bank runs and financial crises.

In the classic paper of Diamond and Dybvig (1983), for example, a bank run is non-fundamental

in nature; depositors who are not in immediate need of funds will run on their bank only if they

expect other depositors to do so. In their setting, intervention in the form of deposit insurance is

desirable if it can remove the strategic complementarity in depositors’ actions and ensure that

no run occurs. This pattern – where bank runs are driven by agents’ expectations and where

allowing intervention may be desirable – can be found in many subsequent papers; examples

include Chang and Velasco (2000), Cooper and Kempf (2013) and Keister (2016), to name only a

few. Other papers in the literature, in contrast, study environments where a crisis results from a

fundamental shock and have the property that restricting intervention, if feasible, would generate
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a superior outcome by eliminating the incentive distortions that arise when investors anticipate

being rescued in the event of a crisis. See, for example, Farhi and Tirole (2012) and Chari and

Kehoe (2013) for environments with these features.

While the results in these papers are consistent with the view that allowing intervention may

be desirable if runs are caused by shifting expectations but is otherwise undesirable, none of

the papers directly test this view. The models studied differ across papers along a number of

dimensions, making it difficult to isolate the precise source(s) of the differing policy prescriptions.

In this paper, we investigate the desirability of restricting intervention using a model in which

an equilibrium bank run may be driven by either expectations or fundamentals, depending on

parameter values. By including both possibilities in a unified framework, we are able to study the

extent to which the desirability of restricting intervention depends on the underlying cause of a

crisis and the extent to which it depends on other factors.

Our model is in the tradition of Diamond and Dybvig (1983) and builds most closely on that

in Keister (2016), where a bank run can occur when depositors’ actions are coordinated on an

extrinsic “ sunspot“ variable. We extend the model by introducing intrinsic uncertainty: the

level of fundamental withdrawal demand is random. We say that a bank run in this expanded

setting is driven by expectations when depositors’ behavior depends on the sunspot variable and,

hence, is driven in part by their beliefs about the actions of other depositors. In contrast, we say

that a bank run is driven by fundamentals if a run necessarily occurs whenever fundamental

withdrawal demand is high, independent of the sunspot variable. We ask whether the desirability

of restricting intervention in this setting depends critically on which form a run takes, that is, on

whether runs are driven by expectations or by fundamentals.

We show that the optimal policy regime in our model depends on a basic tradeoff between

incentives and insurance. When banks and depositors anticipate that policy makers will intervene

in the event of a crisis, they have less incentive to provision for bad outcomes. In response,

banks increase their short-term liabilities, which distorts the allocation of resources and tends to

make the financial system more susceptible to a run. At the same time, however, intervention
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can provide an important source of risk sharing in the economy. By mitigating the potential

losses depositors suffer during a crisis, a “bailout“ can both smooth depositors’ consumption

across states and encourage them to leave their funds in the financial system rather than trying to

withdraw. Thus, while the incentive distortion associated with intervention tends to make the

financial system more fragile and lower welfare, the insurance effect tends to raise welfare and

promote stability. Importantly, this same tradeoff arises regardless of whether runs in the model

are driven by expectations or by fundamentals.

The desirability of restricting intervention depends on which of these two effects dominates.

If policy makers are able to eliminate the incentive distortion through effective regulation and

supervision of banks, then allowing intervention is always optimal. If regulation is imperfect

and the risk-sharing benefit from intervention is absent, in contrast, it is optimal to prohibit

intervention. In between these extreme cases, we show that allowing intervention is optimal

whenever regulation is sufficiently effective for the insurance effect to dominate. The precise cutoff

point will depend on the specific features of the economy, including whether runs are driven by

expectations or by fundamentals. However, the same tradeoff between incentives and insurance

arises in both cases and the same basic principle should guide the policy choice. In this sense, our

model provides meaningful policy advice that applies regardless of the underlying cause of these

crises.

In the next section, we present the model and discuss the distinction between fundamental

and non-fundamental runs in our framework. In Section 3, we study equilibrium outcomes when

policy makers are restricted from intervening during a crisis. In section 4, we study equilibrium

when intervention is allowed, highlighting both the resulting incentive distortion and the insurance

benefit that arise. We compare these outcomes in Section 5, deriving conditions under which each

regime is optimal and illustrating these conditions with a series of examples. Finally, in Section 6,

we offer some concluding remarks that relate our results to the long-standing debate about the

role of self-fulfilling expectations in financial crises.
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3.2 The Model

Our model builds on that in Keister (2016), which is a version of the Diamond and Dybvig

(1983) model augmented to include fiscal policy and a public good. We introduce aggregate

uncertainty about the level of fundamental withdrawal demand to the model so that we can study

runs caused by fundamental shocks in addition to runs triggered by shifts in expectations.

3.2.1 The environment

There are three time periods, t = 0, 1, 2. Each of a continuum of depositors, indexed by

i ∈ [0, 1] , is endowed with one unit of the good at t = 0 and has preferences given by

U (c1, c2, g; ωi) = u
(

c1 + I(ωi=2)c2

)
+ v (g) ,

where ct is consumption of the private good in period t, I is the indicator function, and g is the

level of public good. The preference type of depositor i, denoted ωi, is a binomial random variable

with support Ω = {1, 2}. If ωi = 1, depositor i is impatient and only cares about consumption at

t = 1, while if ωi = 2 she is patient and can consume at either t = 1 or t = 2. A depositor’s type

ωi is revealed to her in period 1 and is private information. We assume the functions u and v to

be of the constant relative risk-aversion form, with

u (c) =
c1−γ

1− γ
and v (g) = δ

g1−γ

1− γ
. (3.1)

The parameter δ ≥ 0 measures the relative importance of the public good and will be a key factor

in determining the potential insurance benefit from intervention. As in Diamond and Dybvig

(1983), the coefficient of relative risk-aversion γ is assumed to be greater than one.

At the beginning of period 1, the aggregate state of the economy is realized. This state has

two components. The fundamental state (L or H) determines the fraction π of depositors who are

impatient, with πL < πH. Conditional on the realized value of π, each depositor faces the same

probability of being impatient. The “ sunspot“ state (α or β) is independent of the fundamental

state and has no effect on preferences or technologies, but may serve to coordinate depositors’
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expectations in equilibrium. We denote the full state of the economy by

s ∈ S =
{

Lα, Lβ, Hα, Hβ

}
and the probability of state s by qs.

There is a single, constant-returns-to-scale technology for transforming endowments into

private consumption in the later periods. A unit of the good invested in period 0 yields R > 1

units in period 2, but only one unit in period 1. This investment technology is operated by a set of

banks in which depositors pool resources to insure individual liquidity risk. Each bank is large

enough that the fraction of its depositors who are impatient will equal the economy-wide average

πs with probability 1, but small enough that its deposits are a negligible fraction of the aggregate

endowment. Banks operate to maximize their depositors’ expected utility at all times.

Depositors are isolated from each other in periods 1 and 2 and no trade can occur among

them. Upon learning her preference type, each depositor chooses to withdraw in either period 1

or period 2. Depositors who choose to withdraw in period 1 arrive at their bank one at a time

in a randomly-determined order and each exits the banking location before the next depositor

arrives. As in Wallace (1988) and Wallace (1990), this sequential-service constraint implies that the

payment made to a depositor can only depend on the information received by the bank up to the

point at which she withdraws; we discuss the implications of this constraint in detail below.

There is also a linear technology for transforming units of the private good into units of the

public good in period 1. Without any loss of generality, we assume the transformation rate is

one-for-one. This technology is available to all agents, but the fact that both depositors and banks

are small relative to the overall economy implies that there is no private incentive to provide the

public good. Instead, there is a benevolent policy maker who has the the ability to tax banks in

period 1 and can use the revenue from this tax to produce the public good. The objective of the

policy maker is to maximize the equal-weighted sum of individual expected utilities,

W =
∫ 1

0
E [U (c1 (i) , c2 (i) , g; ωi)] di. (3.2)

97



Note that while banks and the policy maker both aim to maximize depositor welfare, a key

difference is that each bank only cares about its own depositors while the policy maker cares

about all depositors in the economy.

We follow Ennis and Keister (2009) and Ennis and Keister (2010) in assuming that banks

cannot commit to future actions. This inability to commit implies that they are unable to use the

type of suspension of convertibility plans discussed in Diamond and Dybvig (1983) or the type of

run-proof contracts studied in Cooper and Ross (1998) to eliminate undesirable equilibria. Instead,

the payment given to each depositor who withdraws in period 1 will always be chosen as a best

response to the current situation. The policy maker is also unable to commit to future plans and

will choose the tax policy to maximize the objective 3.2 at each point in time in reaction to the

situation at hand.

Depositors observe the realization of the state of nature at the beginning of period 1 and can,

therefore, condition their withdrawal behavior on this information. Banks do not observe the state

at this point and must make inferences about it from the flow of withdrawals.2 In the equilibria

we study below, a bank will be able to infer that the fundamental state is H whenever the measure

of t = 1 withdrawals goes above πL. To simplify the analysis, we allow banks to observe the

sunspot state at this same point. In other words, after a fraction πL of depositors have withdrawn,

banks will learn the full state and, therefore, will know whether any surge in withdrawals has

an expectations-driven component.3 We place no restrictions on the payments a bank can make

to its depositors other than those imposed by the information structure and sequential service

2This inference problem has been studied in related settings by Green and Lin (2003), Peck et al. (2003), Andolfatto
et al. (2007) and Ennis and Keister (2010), and Sultanum (2014), among others.

3If banks and the policy maker did not observe the sunspot state, their reaction to a surge of withdrawals at t = 1
in the type of equilibria we study here would occur in two stages, the first when the fundamental state is inferred (after
πL withdrawals) and the second when the sunspot state is inferred (after πH withdrawals). This two-stage response
would imply that different types of expectations-driven runs are possible. Patient depositors may, for example, run
until the first reaction and then stop, or they may run until the second reaction and then stop. While the possibility of
expectations-driven bank runs occurring in distinct waves is interesting (see Ennis and Keister (2010) for a detailed
analysis), our focus here is on comparing the policy implications of expectations-driven vs. fundamentals-driven runs.
Assuming that the sunspot state is revealed after πL withdrawals simplifies the analysis by allowing us to focus on a
single type of expectations-driven run. The results we present below would be qualitatively unchanged if we instead
allowed for a two-stage response and choose to focus only on equilibria in which a run stops after the first policy
response.
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constraint described above. In particular, a bank is always free to adjust the payment it gives to its

remaining depositors and will choose to do so when this new information arrives. We assume the

policy maker observes the same information as banks about withdrawal behavior and the sunspot

state.

3.2.2 Intervention and Regulation

We study two policy regimes. In the no intervention regime, the policy maker collects taxes

and provides the public good at the beginning of period 1, before any withdrawals have occurred.

Once withdrawals begin, any further fiscal policy is prohibited. In the regime with intervention, in

contrast, the policy maker is able to learn the state s before collecting taxes. The policy maker will

respond to this information by adjusting tax rates and the level of the public good. In particular,

the policy maker will generally respond to a crisis by lowering taxes, thereby “bailing out“ banks

and their depositors. Figure 3.1 depicts the timeline of events under each policy regime.

Figure 3.1: Timeline of events

We also give the policy maker a regulatory tool for mitigating potential incentive distortions.

We show below that once the state has been fully revealed and any intervention has taken place,

no such distortions arise and there is no role for regulation. As the first πL withdrawals take

place, however, the policy maker may wish to influence banks’ choices. We assume the policy

maker is able to encounter a fraction σ ∈ [0, 1] of these depositors immediately after they have

withdrawn from the bank and before they have consumed. When the policy maker encounters
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a depositor, he can observe the quantity of goods she holds and can confiscate some of these

goods, if desired. Confiscated goods are rebated back to all banks in a lump-sum fashion. The

identities of the depositors who will encounter the policy maker are determined randomly but, as

each depositor withdraws, the bank observes whether or not she will be monitored. The bank

can forecast the maximum amount of consumption allowed by the policy maker and will, in

equilibrium, choose to give monitored depositors exactly that amount, which may differ from the

level of consumption given to non-monitored depositors. In this way, the policy maker’s ability to

monitor some withdrawals effectively places a cap on the amount these depositors will receive

from their bank.

We interpret funds that will be withdrawn from a bank before the state is revealed as rep-

resenting the bank’s short-term liabilities. The activity of monitoring depositors is intended to

represent, within the context of our model, a range of regulatory and supervisory activities that

aim to limit such liabilities in practice. The Basel III accords, for example, introduce a Liquidity

Coverage Ratio requirement that limits the short-term liabilities of a bank to be no larger than

the quantity of safe, liquid assets it holds.4 The parameter σ in our model represents the policy

maker’s ability to use these types of regulatory and supervisory powers effectively. When σ = 1,

we say that prudential regulation is perfectly effective: the policy maker can completely control

the amount of funds withdrawn from the banking system before the state is revealed. Having

σ < 1 represents an environment where writing effective regulation is difficult or where banks

can partially evade regulations by, for example, designing new legal or accounting structures.

In the analysis below, we study how the effectiveness of regulation impacts the desirability of

allowing the policy maker to intervene.

3.2.3 Runs and fragility

Each depositor chooses a strategy that lists the period in which she will withdraw (1 or 2) for

each possible realization of her preference type ωi and the state s,

4See BCBS (2013) for a detailed discussion of this requirement.
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yi : Ω× S→ {1, 2} . (3.3)

Let y denote a profile of withdrawal strategies for all depositors. An equilibrium of the model is a

profile of withdrawal strategies, together with strategies for each bank and the policy maker, such

that every agent is best responding to the strategies of others. Because the strategy sets of banks

and the policy maker are more complex, we discuss them in the context of each policy regime

separately in Sections 3.3 and 3.4. In this section, we discuss the types of withdrawal strategies

that depositors may play in equilibrium.

Because depositors only care about t = 1 consumption when they are impatient, withdrawing

at t = 2 is a strictly dominated action in this case and any equilibrium strategy profile will have

yi (1, s) = 1 for all s. The interesting question is how depositors will behave in each state when

they are patient. We focus on symmetric equilibria, in which all depositors follow the same

strategy, and on equilibria in which patient depositors choose to wait until period 2 to withdraw

when the fundamental state is L. The latter restriction serves only to simplify the presentation;

we focus on crises that occur when the fundamental shock is bad and not when it is good. We

also impose a normalization on the sunspot variable to eliminate equilibria that are equivalent up

to a relabelling of the sunspot states. In particular, we study equilibria in which the measure of

withdrawals at t = 1 is at least as large in state Hβ as in state Hα. In other words, we assume that

depositors potentially view α to be the “good“ sunspot state and β the “bad“ state rather than the

other way around.5 Formally, while an individual depositor can follow any strategy 3.3, we only

study equilibria in which the profile of withdrawal strategies lies in the set

Y =


y : yi (ωi, L) = ωi for all i and

λ
(
yi
(
2, Hβ

)
= 1

)
≥ λ (yi (2, Hα) = 1)

 , (3.4)

where λ is the measure of depositors following a strategy with the indicated property.

5Focusing on the opposite case, where the measure of early withdrawals is weakly larger in state Hα than in state
Hβ, would lead to exactly the same results if the probabilities of states α and β are reversed. What matters is the set of
possible probability distributions over actions and not the labels of the states.
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We refer to an event in which some patient depositors choose to withdraw in period 1 as

a run. Note that the number of early withdrawals is large in a run for two distinct reasons: a

higher-than-normal fraction of the population is impatient in state H and some patient depositors

are also withdrawing early. In this way, a run in this model consists of a shock to fundamentals

whose effect is amplified by the (endogenous) decisions of depositors.

In this setting, two distinct types of runs may arise. We say that a run is driven by expectations

if patient depositors’ withdrawal behavior depends on the realization of the sunspot variable. In

contrast, a run is driven by fundamentals if each depositor’s optimal action is independent of

the actions of other depositors and, hence, of the sunspot variable. We introduce the following

definitions to formalize this distinction.

Definition 1: An economy is weakly fragile if there is an equilibrium in which depositors play

strategy profile

yE : yi (ωi, s) =

 ωi

1

 for s =

 L, Hα

Hβ

 for all i. (3.5)

In other words, we say that an economy is weakly fragile if there exists an equilibrium in which all

depositors condition their withdrawal decisions in fundamental state H on the realization of the

sunspot variable. In this sense, a weakly-fragile economy is susceptible to an expectations-driven

bank run. In contrast, we will say that an economy is strongly fragile if a run necessarily occurs

whenever the realization of withdrawal demand is high.

Definition 2: An economy is strongly fragile if the only equilibrium profile of withdrawal strategies

y ∈ Y is

yF : yi (ωi, s) =

 ωi

1

 for s =

 L

H

 for all i. (3.6)

When an economy is strongly fragile, the expectations-driven run specified in 3.5 is inconsistent

with equilibrium because withdrawing early is a dominant action for patient depositors when the
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fundamental state is H. Instead, depositors necessarily follow 3.6 in equilibrium and bank runs

are driven solely by fundamentals. Lastly, if there is no equilibrium in which patient depositors

withdraw early in some state, we say that the economy is not fragile.

Definition 3: An economy is not fragile if the only equilibrium profile of withdrawal strategies

y ∈ Y is the no-run profile

yN : yi (ωi, s) = ωi for all s, i. (3.7)

We show in the analysis below that, under a given policy regime, an economy fits into exactly one

of these three categories, which we refer to as the fragility type of the economy under that regime.

In the next two sections, we study fragility and equilibrium allocations under the two different

policy regimes. In Section 5, we then ask when the policy maker should be allowed to intervene

and when intervention should be prohibited. Of particular interest is the extent to which the

answer to this question depends on the fragility type of the economy, that is, the extent to which

the desirability of intervention depends on whether the economy is susceptible to runs driven by

expectations or by fundamentals.

3.3 Equilibrium with no intervention

In this section, we study equilibrium outcomes under the policy regime with no intervention,

in which taxes are collected and the public good is provided at the beginning of t = 1 (as shown

in Figure 3.1). In this regime, the same amount of tax τ will be collected from each bank and the

same level of the public good will be provided in all states, that is

gs = τ for all s. (3.8)

We begin the analysis of equilibrium by finding the best responses of banks and the policy maker

to an arbitrary profile of withdrawal strategies y and to each other’s actions. With these responses

in hand, we then ask what profiles y are part of an equilibrium in a given economy.
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3.3.1 The best-response allocation

Given a profile of withdrawal strategies for its depositors, bank j will allocate its available

resources across depositors to maximize the sum of their expected utilities, taking as given the

actions of other banks and the policy maker. In principle, a bank can distribute its resources in

any way that is consistent with depositors’ withdrawal decisions and its own information set. We

can, however, simplify matters considerably by determining the general form an efficient response

to any strategy profile y must take. A bank knows that at least a fraction πL of its depositors

will withdraw in period 1 in both states. As the first πL withdrawals take place, therefore, the

bank is unable to make any inference about the state and will choose to give the same level of

consumption to each non-monitored depositor who withdraws; let c j
1 denote this amount for bank

j. Similarly, the bank will choose to give an amount ĉ j
1 to each monitored depositor who withdraws.

The bank will be able to infer the fundamental state after πL withdrawals have been made by

observing whether or not withdrawals continue. It will also observe the sunspot state at this point

and will thus know both what fraction of its depositors are impatient and whether or not a run is

underway. The bank can use this information to calculate the fraction of its remaining depositors

who are impatient, which we denote π̂s. We assume that, once the state has been revealed, each

bank is able to efficiently allocate its available resources among its remaining depositors, even if a

run is underway. In particular, we assume that the remaining patient depositors do not withdraw

early, but instead withdraw in period 2.6 The efficient allocation of bank j’s remaining resources

gives a common amount of consumption, denoted c j
1s, to each remaining impatient depositor

in period 1 and a common amount c j
2s to each remaining patient depositor in period 2. These

amounts will be chosen to maximize the average utility of those depositors who have not yet

6None of our results depend on this assumption. The issue of how banks and policy makers react to a run, and how
this reaction affects the behavior of those depositors who have not yet withdrawn, is quite interesting. Ennis and Keister
(2010) show how a model similar to ours can be used to study this interplay between the actions of depositors and the
reactions of policy makers. The outcome we study here, where a run ends after πL withdrawals, is one equilibrium
that would emerge in such a setting. Focusing on this one outcome allows us to simplify the notation and focus more
clearly on the distinction between expectations-driven and fundamentals-driven runs.
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withdrawn.7

This reasoning shows that a best-response strategy for bank j can be summarized by a vector(
c j

1, ĉ j
1,
{

c j
1s, c j

2s

}
s∈S

)
. We can derive the elements of this vector by working backward, starting

with the allocation of the bank’s remaining resources after it learns the state.

Post-crisis payments. Let ψ
j
s denote the quantity of resources available to bank j, in per-depositor

terms, after a fraction πL of its depositors have withdrawn. The bank will distribute these

resources to solve

V
(

ψ
j
s ; π̂s

)
≡ max{

c j
1s,c j

2s

} (1− πL)
(

π̂su
(

c j
1s

)
+ (1− π̂s) u

(
c j

2s

))
(3.9)

subject to the resource constraint

(1− πL)

(
π̂sc

j
1s + (1− π̂s)

c j
2s
R

)
≤ ψ

j
s

and appropriate non-negativity conditions. Letting µ
j
s denote the multiplier associated with the

resource constraint, the solution to this problem is characterized by the conditions

u′
(

c j
1s

)
= Ru′

(
c j

2s

)
= µ

j
s . (3.10)

Early payments. As the first πL depositors withdraw, bank j is unable to make any inference

about the state. The bank will choose the amount it gives to each monitored depositor, ĉ j
1, and to

each non-monitored depositor, c j
1, to maximize

πL

[
σu
(

min
{

ĉ j
1, c̃1

})
+ (1− σ) u

(
c j

1

)]
+ ∑

s∈S
qsV

(
1− τ − πL

(
σĉ j

1 + (1− σ) c j
1

)
; π̂s

)
,

where c̃1 denotes the cap for the consumption of monitored depositors set by the policy maker,

which bank j takes as given. The min term in this expression shows that any resources above the

cap will be confiscated from these depositors. Looking first at the optimal choice for non-monitored

7The fact that this allocation is efficient implies that there is no role for regulation in improving the allocation of
resources among the remaining (1− πL) depositors under either policy regime. For this reason, our assumption that
the policy maker monitors a fraction σ of only the first πL depositors to withdraw is without any loss of generality.
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depositors, it is characterized by the first-order condition

u′
(

c j
1

)
= ∑

s∈S
qsµ

j
s . (3.11)

This condition says that the bank will allocate resources to equate the marginal utility of a non-

monitored depositor to the expected marginal utility from private consumption for the remaining

(1− πL) depositors. In the absence of the cap c̃1, the first-order condition for the consumption of

monitored depositors would be identical to 3.11. The bank’s optimal choice is, therefore, to give

each monitored depositor the lesser of c j
1, as defined in 3.11, and the cap set by the policy maker,

ĉ j
1 = min

{
c j

1, c̃1

}
. (3.12)

Since all banks face the same optimization problem, they will all choose the same levels of c j
1

and ĉ j
1. As a result, all banks will have the same level of resources ψ

j
s available in a given state after

taxes have been collected and the first πL withdrawals have been made. This fact, in turn, implies

that they all face the same optimization problem 3.9 and will choose the same values of
(

c j
1s, c j

2s

)
in each state. We can, therefore, simplify the notation slightly by omitting the j subscripts when

referring to the best-response payments
(
c1, ĉ1, {c1s, c2s}s∈S

)
.

Prudential regulation. Like the banks, the policy maker is unable to make any inference about

the state s as the first πL withdrawals are made. When he encounters one of these depositors, the

policy maker will choose to confiscate any resources she has above some cutoff amount c̃1. The

optimal cutoff value maximizes

σπLu (c̃1) + ∑
s∈S

qsV (1− τ − πL (σc̃1 + (1− σ) c1) ; π̂s) . (3.13)

The policy maker recognizes that any confiscated resources will be rebated lump-sum to banks and,

therefore, banks’ remaining resources per depositor, ψ, will depend on the actual consumption

levels of both monitored depositors, c̃1, and non-monitored depositors, c1.8 The solution to this

8Recall, however, that the decision rule 3.12 ensures that no funds are actually confiscated in equilibrium.
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problem is characterized by the first-order condition

u′ (c̃1) = ∑
s∈S

qsµs, (3.14)

which is exactly the same as the condition governing an individual bank’s choice in 3.11. In other

words, in the policy regime with no intervention, banks’ incentives are not distorted; the early

payments c1 are set at exactly the level a benevolent policy maker would choose,

c1 (y) = c̃1 (y) for all y, (3.15)

and the regulatory policy is never binding. In the remainder of this section, we use the relationship

in 3.15 to simplify the notation by using c1 to represent the consumption of both monitored and

non-monitored depositors.

The tax rate. When choosing the tax rate at the beginning of t = 1, the policy maker recognizes

that banks will allocate the resources available to them as described above and that prudential

regulation will be non-binding. Taking banks’ allocation rules into account and using 3.15, we can

write the policy maker’s objective as

πLu (c1 (τ)) + ∑
s∈S

qsV (1− τ − πLc1 (τ) ; π̂s) + v (τ) ,

where the notation indicates that the payment c1 will depend on the tax rate τ, as will banks’

remaining resources after the state has been revealed. The first-order condition characterizing the

policy maker’s optimal choice is

πLu′ (c1 (τ))
dc1 (τ)

dτ
−∑

s∈S
qsµs

(
1 + πL

dc1 (τ)

dτ

)
+ v′ (τ) = 0.

Using banks’ decision rule for choosing c1 in 3.11, this condition simplifies to

v′ (τ) = ∑
s∈S

qsµs. (3.16)

In other words, when the policy maker chooses the tax rate at the beginning of the period, the

optimal choice equates the marginal value of public consumption with the expected marginal
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value of private consumption.9

For any profile y of withdrawal strategies, the discussion above shows how the best responses

of banks and the policy maker are summarized by the vector

cNI (y) ≡
(

c NI
1 , c̃ NI

1 ,
{

c NI
1s , c NI

2s

}
s∈S

, gNI
)

,

which we refer to as the best-response allocation associated with y under the policy regime with no

intervention. The elements of this allocation are completely characterized by equations 3.8, 3.10,

3.11, 3.15, 3.16, and the resource constraint in each state. We provide an explicit derivation of this

allocation in appendix C.1. With these best responses in hand, we next ask what profiles y emerge

as equilibria under this policy regime.

3.3.2 Fragility

A profile of withdrawal strategies y∗ is part of an equilibrium under the policy regime with no

intervention if each depositor is choosing the strategy y∗i that maximizes her own expected utility,

taking as given the strategies of other depositors and the allocation cNI (y∗) that results from the

best-responses of banks and the policy maker to those strategies. In Section 3.2.3, we defined the

fragility type of an economy based on which withdrawal strategy(ies) are part of an equilibrium.

Our first proposition determines which of these types applies to a given economy.10

Proposition 5. Under the policy regime with no intervention, the economy is:

(a) weakly fragile if and only if cNI
2Hα

(
yE) ≥ cNI

1

(
yE) ≥ cNI

2Hβ

(
yE) ,

(b) strongly fragile if and only if cNI
1

(
yE) > cNI

2Hα

(
yE) , and

(c) not fragile if and only if cNI
1

(
yE) < cNI

2Hβ

(
yE) .

Proof. See Appendix C.2.1.

9Notice that, while the policy maker can use τ to influence banks’ choice of c1, as well as his own future choice
of c̃1, the term dc1/dτ does not appear in 3.16. This fact reflects an envelope result: c1 and c̃1 are already being set
efficiently from the policy maker’s current point of view. Hence, there is no benefit in deviating from 3.16 in an attempt
to influence these choices.

10Proofs of selected propositions are provided in appendix C.2.
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This result shows that determining the fragility type of a given economy only requires calculating

the best-response allocation to the single strategy profile yE defined in 3.5. If this profile together

with the best responses of banks and the policy maker, cNI (yE), form an equilibrium, then

the economy is weakly fragile by definition. If not, the proposition provides a simple test for

determining whether the economy is strongly fragile or not fragile. In particular, if an individual

patient depositor would prefer to withdraw early in state Hα, even though the sunspot state is “

good“ and she expects other patient depositors to wait until t = 2, then any equilibrium must

feature all patient depositors withdrawing early whenever the fundamental state is H. Conversely,

if an individual patient depositor would prefer to wait until t = 2 in state Hβ even though the

sunspot state is “ bad“ and she expects all other patient depositors to withdraw early, then patient

investors will never withdraw early in equilibrium and the economy is not fragile.

The next result shows that the fragility type of an economy under this regime does not depend

on the regulation parameter σ nor on the desirability of the public good.

Proposition 6. Under the policy regime with no intervention, the fragility type of an economy is indepen-

dent of the parameters σ and δ.

The first part of this result is trivial: since prudential regulation is never binding under this

regime, the entire allocation cNI (y) is independent of the fraction σ of monitored depositors for

any strategy profile y. The second part of the result follows from the functional form in 3.1, which

implies that preferences over private consumption across states of nature are homothetic. An

increase in the parameter δ would, therefore, raise consumption of the public good while lowering

consumption of the private good in each state in proportion, leaving the ratios cNI
1 (y) /cNI

2s (y)

unchanged for any s and any y.11 Depositors’ withdrawal incentives are thus independent of the

size of the public sector under this policy regime.

Using Proposition 5, it is straightforward to find examples of economies that are strongly

fragile under the policy regime with no intervention, as well as economies that are weakly fragile

and not fragile. For each of these economies, our interest is in determining whether welfare would

11This fact is easily verified using the expressions for the best-response allocation cNI in appendix C.1.
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be increased by allowing the policy maker to intervene by adjusting tax rates after the state has

been revealed. As discussed in the Introduction, one view holds that such intervention tends to

be desirable when the economy is weakly fragile, but is undesirable when the economy is either

strongly fragile or not fragile. To test the validity of this view, we next characterize equilibrium

outcomes under a policy regime with intervention.

3.4 Equilibrium with intervention

Now suppose the policy maker collects taxes later in period 1, after a fraction πL of depositors

have withdrawn. (See Figure 3.1 in Section 3.2.2.) At this point, the policy maker has learned the

state and thus knows both the level of fundamental withdrawal demand and whether a run has

occurred. The benefit of acting at this later point is that the level of taxes can be state-contingent,

which allows for risk sharing between the public and private sectors. The cost is that the policy

maker will be tempted to set tax rates in a way that, from an ex ante point of view, will distort

banks’ incentives to provision for bad outcomes. We analyze equilibrium in the model with such

intervention in this section, then study the desirability of allowing intervention in Section 3.5.

3.4.1 Bailouts

After a fraction πL of depositors have withdrawn, the policy maker observes whether or not

withdrawals stop. If they do, the policy maker is able to infer that the fundamental state is L. In

this case, we assume the policy maker chooses a single tax rate τL and collects this tax per unit of

deposits from all banks. If withdrawals continue past πL, however, the policy maker infers that

the fundamental state is H. The policy maker then observes the sunspot state and the financial

condition of each bank before choosing a tax rate τ
j

s for bank j. All tax rates are chosen with

the objective of maximizing 3.2 given the current situation and anticipating that each bank will

allocate its after-tax resources to solve 3.9. The difference

τL − τ
j

s

can be interpreted as the “bailout“ of bank j in states s = Hα, Hβ. When fundamental withdrawal

demand is high, the policy maker will tend to cut production of the public good in order to help
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mitigate the decline in private consumption of the remaining depositors in the banking system. In

principle, however, this bailout can be either positive or negative; a bank in better-than-average

condition might be required to pay a higher-than-normal tax to make up for the poor condition of

other banks.12

3.4.2 The best response allocation

We characterize equilibrium under this regime following the same steps as in Section 3.3. For

a given profile y of withdrawal strategies, we first determine the best responses of banks and the

policy maker to this profile and to each other’s actions. With these responses in hand, we then

ask whether the strategy yi is a best response for depositor i to the strategies of other depositors,

banks, and the policy maker.

After a fraction πL of depositors have withdrawn and taxes have been collected, each bank will

again allocate its remaining resources to solve the problem in 3.9 and, as before, this allocation

is characterized by the first-order conditions in 3.10. We begin, therefore, by studying how the

policy maker will intervene, then work backward to determine the consumption of the first πL

depositors who withdraw.

Choosing tax rates. In state s, the policy maker will choose the tax rate τ
j
s per unit of deposits in

bank j to maximize ∫
V
(

1− τ
j

s − πLc j
1; π̂s

)
dφ (j) + v (τs) ,

where φ represents the distribution of investors across banks and τs denotes total tax revenue in

state s, that is,

τs ≡
∫

τ
j

s dφ (j) .

The tax rate must be the same for all banks in fundamental state L, but may differ across banks

12The assumption that the policy maker does not set bank-specific tax rates in fundamental state L is designed
to ensure that banks have an incentive to provision for t = 2 withdrawals in normal times. It can be justified in
different ways, for example, by assuming that the detailed monitoring needed to accurately determine a bank’s financial
condition is only worthwhile in state H, or by appealing to reputational considerations that would arise in normal
times in a more fully dynamic model. For our purposes, the important thing is that the policy maker’s inability to
commit creates a distortion in banks’ incentives with respect to those states where a crisis occurs.
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in state H. The solution will, therefore, equate the marginal value of public consumption in

fundamental state L to the marginal value of private consumption averaged across banks,

v′ (τL) =
∫

µ
j
s dφ (j) .

The marginal value of public consumption in fundamental state H, in contrast, will be set equal to

the marginal value of private consumption in every bank j ,

v′ (τs) = µ
j
s for all j, for s = Hα, Hβ. (3.17)

In other words, when a crisis occurs, the policy maker will set the tax rate τ
j
s to equalize the

consumption levels of the remaining depositors across banks, meaning that a bank that is in

worse financial condition (because it set c j
1 higher and gave away more resources to the first πL

depositors) will receive a larger bailout. As a result, the resources available to bank j after taxes

have been collected in a crisis state will depend on aggregate economic conditions and not on the

bank’s own actions. Specifically, we have

ψ
j
s = 1− τs − πLc1 for all j, for s = Hα, Hβ, (3.18)

where c1 is defined to be the average early payment across all banks and all depositors,

c1 ≡
∫ (

σĉ j
1 + (1− σ) c j

1

)
dφ (j) .

The incentive problems caused by this bailout policy are clear: a bank with fewer remaining

resources (because it chose a higher value of c j
1) will be charged a lower tax, effectively receiving a

larger “bailout”. This bailout policy will lead all banks to set c j
1 too high from a social point of view.

Notice that this problem arises even when δ = 0 and there is no value associated with the

public good. In that case, the policy maker will set τL = 0 and collect no revenue in normal times.

When a crisis occurs, total tax revenue τs will be set to zero, but the policy maker will still choose

to intervene by taxing banks that have more resources than average and making transfers to banks

that have fewer resources than average. In equilibrium, of course, all banks will make the same

choices and no taxes/transfers will occur. Nevertheless, the fact that these transfers would occur

off the equilibrium path of play affects banks’ decisions on the equilibrium path, as we show below.
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Early payments. As the first πL withdrawals take place, bank j will choose the amount it gives to

each monitored depositor, ĉ j
1, and to each non-monitored depositor, c j

1, to maximize

πL

[
σu
(

min
{

ĉ j
1, c̃1

})
+ (1− σ) u

(
c j

1

)]
+ qLV

(
1− τL − πL

(
σĉ j

1 + (1− σ) c j
1

)
; π̂L

)
(3.19)

+ ∑
s=Hα,Hβ

qsV (1− τs − πLc1; π̂s) .

Since there are no bailouts in state L, the bank recognizes that giving an extra unit of resources to

the first πL depositors will leave one unit less for the remaining depositors in that state. However,

when the fundamental state is H, the policy maker will intervene in such a way that the bank’s

remaining resources will be given by 3.18, independent of its choice of c j
1. As a result, the terms

on the second line of 3.19 are fixed from the individual bank’s point of view and the first-order

condition characterizing the solution to this problem is

u′
(

c j
1

)
= qLµ

j
L. (3.20)

Comparing 3.20 with 3.11 shows the distortion created by intervention: bank j no longer has an

incentive to provision for the fundamental state H. Instead, the bank will balance the marginal

value of resources for the earliest withdrawals against the marginal value of resources for later

withdrawals in fundamental state L only. As a result, the bank will tend to set c j
1 too high from a

social point of view. For monitored depositors, the bank’s optimal choice again follows 3.12; it

will give these agents the lesser of c j
1, now defined in 3.20, and the cap c̃1 set by the policy maker.

As above, all banks face the same decision problem and will choose the same values of c j
1.

Together with the bailout policy in 3.18, this fact implies that all banks also face the same decision

problem in choosing the later payments
(

c j
1s, c j

2s

)
and will again select the same values. We can,

therefore, omit the j subscripts to simplify the notation in what follows.

Prudential regulation. When the policy maker encounters one of the first πL depositors to

withdraw, he will again choose the cutoff value c̃1 to maximize 3.13, with the adjustment that tax

revenue τs now varies across states. The key difference between the policy maker’s objective func-
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tion and that of an individual bank in 3.19 is that the policy maker recognizes that giving a unit

of resources to one of the first πL depositors decreases the resources available for the remaining

depositors in all states, whereas the intervention policy in 3.18 makes this effect external to an

individual bank when the fundamental state is H. The first-order condition that characterizes the

policy maker’s optimal choice is again given by 3.14, which shows how prudential regulation is

now used to correct the distortion created by intervention. When a depositor is monitored by

the policy maker, her marginal utility of consumption is equated to the expected future marginal

value of consumption, taking all states into account, which is precisely what an individual bank

chooses to do when there is no intervention and incentives are not distorted.

The best-response allocation under the policy regime with intervention, denoted

cI (y) ≡
(

c I
1 , c̃ I

1 ,
{

c I
1s, c I

2s, gI
s

}
s∈S

)
,

is characterized by equations 3.10, 3.14, 3.17, 3.20, and the resource constraint in each state. We

provide an explicit derivation of the allocation in appendix C.1. It is straightforward to show that

prudential regulation is always active in this allocation, that is, the policy maker’s cap c̃1 is strictly

lower than the consumption of non-monitored depositors c1,

c̃I
1 (y) < cI

1 (y) for all y ∈ Y. (3.21)

3.4.3 Fragility

We now use the allocation cI to identify conditions under which an economy is susceptible to

runs driven by either expectations or fundamentals under the policy regime with intervention.

We begin with a characterization result similar to Proposition 5. As in Keister (2016), we assume

the states in which intervention occurs are relatively rare, with

qHα + qHβ
<

R− 1
R

, (3.22)
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which simplifies the analysis by placing an upper bound on the size of the incentive distortion.

For notational convenience, we define

E
(

cI (y)
)
≡ σu

(
c̃I

1 (y)
)
+ (1− σ) u

(
cI

1 (y)
)

, (3.23)

which represents the expected utility of a depositor who is among the first πL withdrawals before

she knows whether or not she will be monitored. We then have the following result.

Proposition 7. Under the policy regime with intervention, the economy is:

(a) weakly fragile if and only if u
(

cI
2Hα

(
yE)) ≥ E (cI (yE)) ≥ u

(
cI

2Hβ

(
yE)) ,

(b) strongly fragile if and only if E
(
cI (yE)) > u

(
cI

2Hα

(
yE)) , and

(c) not fragile if and only if E
(
cI (yE)) < u

(
cI

2Hβ

(
yE)) .

Proof. See Appendix C.2.2.

As with Proposition 5 in Section 3.3, this result demonstrates that every economy has a unique

fragility type under a given policy regime and that determining this type only requires calculating

the best-response allocation for the single strategy profile yE defined in 3.5.

The next two propositions study how the fragility type of an economy depends on the

effectiveness of regulation, measured by the parameter σ, and on the importance of the public

good, measured by δ. Recall that Proposition 6 showed the fragility type of an economy to

be independent of these two parameters under the policy regime with no intervention. These

relationships change when intervention is allowed. Let e denote the vector of all parameter values

except σ, so that e =
(

R, γ, δ, {qs, πs}s∈S
)

and an economy is defined by the pair (e, σ) . Then we

have the following result.

Proposition 8. Under the policy regime with intervention, the fragility type of an economy (e, σ) is weakly

decreasing in σ.

Proof. See Appendix C.2.3.

In other words, more effective regulation promotes financial stability when the prospect of inter-

vention distorts banks’ incentives. The intuition for this result is straightforward. The first-order
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condition 3.20 illustrates how intervention leads banks to increase their short-term liabilities by

offering relatively large payments to the non-monitored depositors who withdraw before the

policy reaction occurs. Condition 3.21 shows that the policy maker will cap the consumption of

monitored depositors at a lower level. An increase in the fraction of depositors who are monitored

thus tends to make withdrawing early less attractive for patient investors. At the same time, the

smaller payments made to monitored depositors imply that banks will have more resources left

after the first πL withdrawals have been made, which also makes waiting to withdraw at t = 2

more attractive. For both of these reasons, more effective regulation lowers the incentive for a

patient depositor to run and thus tends to reduce fragility.

The next result highlights the insurance benefit of bailouts: when regulation is sufficiently

effective, financial fragility will be lower in economies where the public sector is larger. For this

result, we need to impose a fairly weak condition on parameter values:

qHα >
1
R

1− πH (1− πL)

πL (1− πH)

(
(1− πL) R

1−γ
γ

(πH − πL) + (1− πH) R
1−γ

γ

)γ
 ≡ qHα

. (3.24)

In many economies, the lower bound qHα
is negative and this condition is automatically satisfied.

In some cases, however (when R is very large, for example), this condition sets a small, positive

floor on the probability qHα.

Proposition 9. Under the policy regime with intervention, if 3.24 holds, then for any e there exists σ̄ < 1

such that the fragility type of all economies (e, σ) with σ > σ̄ is weakly decreasing in δ.

Proof. See Appendix C.2.4.

When δ is higher, the public sector is larger and, as a result, the policy maker will choose bailouts

that are larger relative to the level of private consumption. These larger bailouts decrease the

losses suffered by investors who are not among the first πL to withdraw and, therefore, tend to

lower the incentive for patient depositors to withdraw early. However, there is an offsetting effect:

because the larger bailout payments mitigate the effects of a crisis, the policy maker will choose to

allow a higher level of consumption for monitored depositors who withdraw before the policy

reaction. This fact makes withdrawing early more attractive and tends to increase the incentive
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for patient depositors to run. In general, either effect can dominate and increasing the parameter

δ can either increase or decrease fragility. Proposition 9 demonstrates that when regulation is

sufficiently effective and 3.24 holds, however, the first effect always dominates and having a larger

public sector will (weakly) decrease financial fragility.

3.5 Comparing Policy Regimes

The analysis in the previous two sections has illustrated the costs and benefits of allowing

the policy maker to intervene during a crisis. We now turn to the question of when the benefits

outweigh the costs, providing two analytical results followed by some illustrative examples. We

first study the case where regulation is very effective, that is, the parameter σ is close to one.

We show that, in this case, allowing intervention is always desirable, regardless of the fragility

type of the economy under each regime. We then study the case where δ = 0, meaning that

depositors get no utility from the public good. In this case, we show that there is no insurance

benefit from allowing intervention and, as a result, intervention is never desirable. Away from

these two limiting cases, either of the two effects can dominate. We use a series of examples to

show that intervention tends to be desirable when it improves the economy’s fragility type, but

can be desirable even if it does not because the increased risk sharing between private and public

consumption may more than compensate for the distorted allocation of private consumption.

3.5.1 When regulation is very effective

Our first result identifies situations where regulation is effective enough to guarantee that the

insurance benefit from intervention outweighs the incentive costs. Specifically, assume investors

value the public good (δ > 0) and fix all parameter values except the effectiveness of prudential

regulation σ. When σ is close enough to 1, allowing intervention is always desirable.

Proposition 10. Assume 3.24 holds. For any e with δ > 0, there exists σ < 1 such that allowing

intervention strictly increases equilibrium welfare for all economies (e, σ) with σ > σ.

Proof. See Appendix C.2.5.

The intuition for this result can be seen in two steps. First, imagine that we hold depositors’
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withdrawal behavior fixed. When private consumption levels vary across states, an efficient

allocation of resources requires public consumption levels to vary across states as well. By

collecting higher taxes in good states and lower taxes in bad states, the policy maker helps

smooth depositors’ private consumption, which raises expected utility. In addition, this type of

consumption smoothing lowers the incentive for patient depositors to withdraw early. In fact, the

proof of Proposition 10 (see appendix C.2) shows that when σ is close enough to one, allowing

intervention weakly decreases fragility relative to the regime with no intervention. In other words,

when regulation is sufficiently effective, allowing intervention improves both the allocation of

resources conditional on depositor behavior and depositors’ equilibrium withdrawal behavior;

hence, it is always desirable.

In a model of expectations-driven runs, Keister (2016) shows that allowing bailouts is always

desirable when policy makers can completely offset the associated incentive distortion using

Pigouvian taxes. Proposition 10 shows that this type of result obtains even when prudential

regulation is somewhat imperfect and, more importantly, regardless of whether runs are driven

by expectations or fundamentals.

3.5.2 When the insurance benefit is absent

Our next result focuses on economies where δ = 0, that is, depositors do not value the public

good. The policy maker can still collect taxes and monitor some withdrawals, but there is no

longer a potential gain from sharing risk between the public and private sectors because the

optimal amount of public consumption is zero. In this case, if the incentive distortions associated

with bailouts cannot be fully corrected through regulation (that is, σ < 1), allowing intervention is

undesirable.13

Proposition 11.

For any economy with δ = 0 and σ < 1, allowing intervention strictly decreases equilibrium

welfare.

13If regulation is perfectly effective (σ = 1) , the two policy regimes lead to exactly the same outcome when δ = 0.
In this case, the incentive distortion created by intervention is completely corrected through regulation, leaving the
allocation of consumption across depositors unchanged.
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Proof. See Appendix C.2.6.

This result highlights the importance of the insurance benefit of bailouts in our setting. When

this benefit is absent, allowing intervention still distorts banks’ incentives because the policy

maker is able to reallocate resources across banks following a crisis. This distortion leads to a

misallocation of resources and lowers depositors’ welfare if regulation is imperfect. In this special

case, our model yields the same prescription as others in the literature in which bailouts distort

incentives but do not generate any ex ante benefits; see, for example, Farhi and Tirole (2012)

and Chari and Kehoe (2013). In this way, Proposition 11 demonstrates that the desirability of

prohibiting intervention in these frameworks stems not from the assumptions about what causes

a crisis (fundamentals vs. expectations), but rather from the fact that there is no insurance benefit

from bailouts that could potentially offset the distortion in incentives.14

3.5.3 Examples

Propositions 10 and 11 identify situations in which one of the two competing effects – incen-

tives or insurance – is clearly dominant and thus determines the optimal policy choice. In between

these limiting cases, interesting patterns arise. We illustrate some of these patterns using a series

of three related examples.

An economy that is weakly fragile with no intervention. For our first example, we set R = 1.05,

πL = 0.45, πH = 0.55, qHα = qHβ
= 0.02 and γ = 4. At these values, the economy is weakly fragile

under the policy regime with no intervention for all (σ, δ) pairs.15 Panel (a) of Figure 3.2 depicts

the fragility type of the economy under the regime with intervention. For a broad range of (σ, δ)

pairs in the middle of the panel, the economy is also weakly fragile under this regime. If σ and δ

are both large enough, however, the run equilibrium is eliminated and the economy is no longer

fragile. If σ and δ are small enough, in contrast, allowing intervention makes withdrawing early a

dominant strategy for patient depositors and the economy is strongly fragile.

14This type of insurance benefit of bailouts also appears, in different settings, in Cooper et al. (2008), Green (2010)
and Bianchi (2013).

15Recall that Proposition 2 shows the fragility type of an economy under the regime with no intervention to be
independent of σ and δ.
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Figure 3.2: An economy that is weakly fragile with no intervention

Panel (b) of the figure shows which policy regime generates higher welfare. Allowing inter-

vention is desirable in this example in two situations. First, if allowing intervention eliminates the

run equilibrium and makes the economy not fragile, then doing so is always desirable. Second,

even if allowing intervention leaves the economy weakly fragile, it is desirable whenever σ is close

enough to one, as established in Proposition 10.

An economy that is strongly fragile with no intervention. Now suppose πH is raised to 0.65.

This larger value for the fundamental shock makes the economy strongly fragile under the policy

regime with no intervention. Panel (a) of Figure 3.3 shows the fragility type of the economy when

intervention is allowed. If σ and δ are low enough, the economy remains strongly fragile. For

these cases, panel (b) of the figure indicates that intervention is undesirable. When σ and δ are

higher, however, the fragility type of the economy improves under the regime with intervention,

becoming either weakly fragile or, if σ and δ are high enough, not fragile. In both of these cases,

panel (b) of the figure indicates that allowing intervention raises welfare.

The example in Figure 3.2 showed that allowing intervention may be desirable because it

eliminates a bad equilibrium, moving the economy from weakly fragile to not fragile. The example

in Figure 3.3 shows that allowing intervention may be desirable because it introduces a better

equilibrium. In this case, the economy with no intervention has a unique equilibrium profile of
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Figure 3.3: An economy that is strongly fragile with no intervention

withdrawal strategies y∗ ∈ Y. Bank runs in this equilibrium are driven by fundamentals, which

might tempt one to conclude that runs are inevitable and that allowing intervention cannot change

the level of fragility or improve welfare. However, as the figure shows, allowing intervention in this

case can introduce an equilibrium in which patient depositors only run in state Hβ, rather than in

both Hα and Hβ. In this new equilibrium, where bank runs are driven by expectations, depositors

have higher expected utility. If δ and σ are larger still, allowing intervention can eliminate runs

entirely. This second example illustrates the importance of recognizing that whether runs are

driven by fundamentals or expectations can depend on the policy regime in place. Even when

runs are driven by fundamentals under one regime, it is possible for their incidence to be lessened

or even eliminated under another regime.

An economy that is not fragile with no intervention. Figure 3.4 presents the results when πH is

lowered back to 0.55 and γ is lowered to 2. The smaller coefficient of relative risk aversion leads

banks to provide less liquidity insurance and, in this example, makes the economy not fragile

under the policy regime with no intervention. Panel (a) of the figure shows how, in terms of

fragility, allowing intervention can only make the situation worse in this case. If σ and δ are high

enough the economy remains not fragile under this regime; otherwise it can become weakly or

even strongly fragile. Panel (b) of the figure shows that, in this case, prohibiting intervention
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is the optimal policy for the vast majority of (σ, δ) pairs. However, in line with Proposition 10,

allowing intervention is desirable if σ is very close to 1.

Figure 3.4: An economy that is not fragile with no intervention

Taken together, these three examples present a clear pattern. Allowing intervention tends to

reduce fragility and raise welfare in the upper-right corner of the graphs, where the insurance

benefit is significant and regulation is effective in mitigating the incentive distortion. Prohibiting

intervention tends to be desirable in the lower-left corner, where the potential for risk-sharing is

small and regulation is ineffective. While the precise boundary between these two areas depends

on the particulars of the economy, including whether runs are driven by expectations or by

fundamentals when there is no intervention, the same general pattern arises in each case. The

examples thus illustrate how the key tradeoff facing policy makers, as well as the factors that

should guide the decision to allow or prohibit intervention, are independent of the underlying

cause of bank runs.

3.6 Concluding Remarks

Policy makers and academics around the world are currently engaged in a wide-ranging

discussion about how to best reform banking and financial regulation in light of recent experience.

There is widespread agreement that the anticipation of being bailed out in the event of a crisis

distorts the incentives of financial institutions and their investors, leading them to take actions
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that are socially inefficient and may, in addition, leave the economy more susceptible to a crisis.

There is no consensus, however, about the best way to design a policy regime to mitigate these

problems.

A number of recent papers examine bailout policy in models that include moral hazard

concerns and account for the possible time inconsistency of policy makers’ objectives.16 Each

of these papers makes some assumption about the underlying causes of a crisis: it either is the

unique equilibrium outcome following some real shock to the economy or it arises, in part, from

the self-fulfilling beliefs of agents in the model. There is a long-standing debate about which

of these two approaches best captures the complex array of forces that combine to generate

real-world financial crises.17 Financial crises are infrequent events and there is a limited amount

of available data that can be used to distinguish between the two approaches. Existing empirical

work focuses on establishing a correlation between economic fundamentals and the occurrence

of banking panics. Miron (1986), Gorton (1988) and others argue that such a correlation implies

that runs are caused by shifts in these fundamentals. Ennis (2003) points out, however, that

models of self-fulfilling bank runs will tend to generate this same type of correlation under

reasonable equilibrium selection rules, so that the presence of this correlation alone cannot be used

to distinguish between the two views. Moreover, establishing the importance (or unimportance)

of self-fulfilling beliefs in causing a run requires answering a counterfactual question: would an

individual depositor have withdrawn even if she expected other depositors to remain invested?

Answering such questions on the basis of data from observed crises is intrinsically difficult.18

This ongoing debate would seem to present a serious hindrance to using such models for

policy analysis. Without knowing the underlying cause of observed crises, how can one decide

16See, for example, Bianchi (2013), Chari and Kehoe (2013), Farhi and Tirole (2012), Green (2010), and Keister (2016).

17See Kindleberger (1978), Gorton (1988), Allen and Gale (1998), Allen and Gale (2007), and Goldstein and Pauzner
(2005) for different views of this debate.

18Some authors have argued that the degree to which depositors discriminate between banks during a panic
provides evidence on the underlying cause of the event. See, for example, Saunders and Wilson (1996), Calomiris
and Mason (1997), Calomiris and Mason (2003), Schumacher (2000), and Chen et al. (2010). However, the Ennis (2003)
critique again applies: all but the simplest models of self-fulfilling runs will tend to generate the same correlations as a
model of fundamentals-based runs.
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which type of model should be used to evaluate alternative policy regimes? We have shown how,

in some cases, it is possible to perform meaningful policy analysis without taking a stand on the

question of whether financial crises are driven by expectations or fundamentals. We constructed a

model in which, depending on parameter values, a bank run may be driven by either of these two

forces. We used this model to evaluate the desirability of allowing policy makers to intervene in

the event of a crisis and provide bailouts. We showed that the same broad policy prescription

comes out of the model regardless of whether runs are driven by expectations or fundamentals.

In particular, intervention should be permitted only when prudential regulation and supervision

are sufficiently effective that the insurance benefit from bailouts outweighs the resulting incentive

distortion.

While our focus in this paper is on a single policy issue, we also aim to make a more general

point. Much effort has been devoted to trying to determine the extent to which financial crises can

be caused by self-fulfilling beliefs. This work has generated important insights, but has not led to

a definitive answer to this difficult question. The lack of a clear answer does not imply, however,

that the insights gained from this work cannot be used to inform the current policy debate. Our

analysis here shows how these insights can be useful in studying one particular policy issue.

Future work could examine other issues in banking and financial stability policy, or could seek to

identify conditions under which a more general invariance result might hold.
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Appendix A

Appendix to Chapter 1

A.1 Changes in mortgage payments at reset

In this appendix, I derive the ratios of the post–reset and pre-reset mortgage payments for

each amortization group. We begin with some notation. Let pre and post represent the time

periods before and after reset, respectively. Let the monthly payment, P, and the rate on which the

payment P is based, r, be defined for pre and post. Define η =
rpost
rpre

as the ratio of the post-reset to

the pre-reset rate. Let B0 be the original mortgage balance and B60 be the outstanding mortgage

balance 60 months after origination (which is the reset date for a 5-year hybrid ARM).

A.1.1 Zero-zero group

Payments for this group are the most straightforward, as they are just interest-only both before

and after reset. This implies

Ppost =
rpost

12
B60

Ppre =
rpre

12
B0

=⇒
Ppost

Ppre
=

rpost

rpre
= η

where the last line uses the fact that B60 = B0 when payments are interest-only before reset. For

the zero-zero group, the ratio of the post-reset and pre-reset mortgage payments is simply the

ratio the mortgage rates, η.
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A.1.2 Positive-positive group

The post-reset and pre-reset mortgage payments for this group are given by the annuity

formulas for mortgage payments. First define g(r, m) as follows

g(r, m) = 1−
(

1 +
r

12

)−m
< 1

where r, m > 0. The payments are given below. The post-reset payment uses rpost, the outstanding

mortgage balance after 5 years (B60), and a term of 25 years (300 months) while the pre-reset

payment uses rpre, the original mortgage balance (B0), and a term of 30 years (360 months).

Ppost =

rpost
12

g(rpost, 300)
B60

Ppre =

rpre
12

g(rpre, 360)
B0

=⇒
Ppost

Ppre
=

rpost
g(rpost,300)

rpre
g(rpre,300)

[
B60

B0

g(rpre, 360)
g(rpre, 300)

]

= η
g(rpre, 300)
g(rpost, 300)

[
B60

B0

g(rpre, 360)
g(rpre, 300)

]
I now show that the bracketed term in the last line equals 1. Positive amortization implies the

following evolution of B for 1 ≤ n ≤ 60 (i.e. before reset):

Bn = Bn−1 −
(

Ppre −
rpre

12
Bn−1

)
= Bn−1

(
1 +

rpre

12

)
− Ppre

= B0

(
1 +

rpre

12

)n
− Ppre

n−1

∑
i=0

(
1 +

rpre

12

)i

where the last line iterates the previous line back to B0. Since Ppre is the 30-year annuity payment

whose present value equals B0, we have

B0 = Ppre

360

∑
i=1

(
1 +

rpre

12

)−i
=

g(rpre, 360)
rpre
12

Ppre
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Substituting the first equality into the previous line gives

Bn = Ppre

(
360

∑
i=1

(
1 +

rpre

12

)n−i
−

n−1

∑
i=0

(
1 +

rpre

12

)i
)

= Ppre

360−n

∑
i=1

(
1 +

rpre

12

)−i

=
g(rpre, 360− n)

rpre
12

Ppre

where the last line comes from the fact that the previous line represents the present value of the

annuity Ppre with term 360− n. This implies

B60

B0
=

g(rpre, 300)
g(rpre, 360)

=⇒ 1 =
B60

B0

g(rpre, 360)
g(rpre, 300)

Going back to the beginning, we have

Ppost

Ppre
= η

g(rpre, 300)
g(rpost, 300)

> η ⇐⇒ rpost < rpre

The equality indicates that the ratio of the post-reset to pre-reset payments for the positive-positive

group equals η times a multiplier, which is shown to be greater than 1 if interest rates fall (this

is due to ∂g
∂r > 0). In other words, the positive-positive group experience a smaller reduction in

monthly payments at reset compared to the zero-zero group for the same reduction in interest

rates.

A.1.3 Zero-positive group

Ppost =

rpost
12

g(rpost, 300)
B60

Ppre =
rpre

12
B0

=⇒
Ppost

Ppre
= η

1
g(rpost, 300)

> η
g(rpre, 300)
g(rpost, 300)

where the last line uses g(r, m) < 1. The last inequality shows that households in the zero-positive
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group experience a smaller payment reduction than the positive-positive group, and therefore the

smallest payment reduction overall. This is because while these housholds’ interest rate goes down

at reset, they have to start paying a principal portion as well. Based on the last equality, whether

the ratio of payments is greater or less than 1 will depend on the whether η > g(rpost, 300).
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Appendix B

Appendix to Chapter 2

B.1 Proof of Proposition 1

Proposition 1. The solution to the recapitalization problem described by (2.23) and (2.24) involves

concentrating the portfolio into one asset and selling all other assets. The asset that is retained is the solution

to

arg min
i

E
(

min
[

ηi
λi

, 1− θri

])
1− θri

If multiple assets solve this problem, banks still choose to retain a single asset as long as there is imperfect

correlation across asset returns. However, the bank is indifferent between retaining any of the assets that

solve the problem.

Proof. The first step of the proof is establishing the following lemma.

Lemma 1. Let x, y ∈ R++
n and let α be in the n-dimensional unit simplex. Then

xj

yj
= min

{
xi

yi

}
=⇒

xj

yj
≤

n

∑
i=1

αixi

n

∑
i=1

αiyi

with strict inequality if αj 6= 1 and xj
yj

is a unique minimum.

Proof. The proof is by induction. First, we prove the result for n = 2. Without loss of generality,

suppose x1
y1
≤ x2

y2
. Based on the conditions of the Lemma, α1 ∈ [0, 1]. If α1 = 1, then the result is
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trivially true. Suppose α1 ∈ (0, 1). This implies

α1x1

α1y1
≤ α2x2

α2y2

=⇒ α1x1α2y2 ≤ α1y1α2x2

=⇒ α1x1(α1y1 + α2y2) ≤ α1y1(α1x1 + α2x2)

=⇒ x1

y1
≤ α1x1 + α2x2

α1y1 + α2y2

and the result holds. Note that if x1
y1

is the unique minimum ( x1
y1

< x2
y2

), the result would hold with

strict inequality.

Now suppose α1 = 0 (which implies α2 = 1). Then we have

x1

y1
≤ x2

y2
=

α1x1 + α2x2

α1y1 + α2y2

and the result still holds, noting again that if x1
y1

is the unique minimum, the result would hold

with strict inequality.

Now suppose that the result is true for n. With x, y ∈ R++
n+1, xj

yj
= min{ xi

yi
}, and α in the

(n + 1)-dimensional unit simplex, we must show that the result is true for n + 1:

xj

yj
≤

n+1

∑
i=1

αixi

n+1

∑
i=1

αiyi

Again, the result is trivially true for αj = 1. Suppose that αj ∈ [0, 1). We start with

n+1

∑
i=1

αixi

n+1

∑
i=1

αiyi

=

∑
i 6=j

αixi + αjxj

∑
i 6=j

αiyi + αjyj
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Given the assumptions that xj
yj
= min

{
xi
yi

}
and the result is true for n, we have

xj

yj
= min

{
xi

yi

}
≤ min

i 6=j

{
xi

yi

}
≤

∑
i 6=j

αi

1− αj
xi

∑
i 6=j

αi

1− αj
yi

with the first inequality being strict if xj
yj

is the unique minimum. Since we established that the

result is true for n = 2, we can use the outer terms of the above to show

xj

yj
≤

(1− αj)∑
i 6=j

αi

1− αj
xi + αjxj

(1− αj)∑
i 6=j

αi

1− αj
yi + αjyj

=

n+1

∑
i=1

αixi

n+1

∑
i=1

αiyi

with the inequality being strict if xj
yj

is the unique minimum. This completes the proof of the

lemma.

The proof continues as follows. When only asset j is retained, siλ̄ = wiλi for all i 6= j. Using

this, the objective function (2.23) when only asset j is retained simplifies to

E
(

min
[

ηj
λj

, 1− θrj

])
1− θrj

(B.1)

Therefore, if the bank wants to minimize the objective while retaining only one asset, that asset

must be contained in the set S defined below:

S =

j ∈ {1, 2, ..., n} : j = arg min
i

E
(

min
[

ηi
λi

, 1− θri

])
1− θri

 (B.2)

The set S is non-empty and may contain multiple elements. Let k be any element in S. We will

now show that the objective function when retaining only asset k is strictly less than the objective

when the bank holds any portfolio containing more than just one asset. Clearly, if the banks holds

a portfolio with just one asset, the objective will either be the same (if this asset is in S) or higher

(if this asset is not in S). In other words, the solution to the recapitalization problem involves

retaining only asset k, where k is any element of S.

Let {s1, s2, ..., sn} be a decision of the bank in which more than one asset is retained. Denote
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the bank’s portfolio weight on asset j after all sales and purchases by αj, defined below:

αj =
wjλj − sjλ̄

n

∑
i=1

(wiλi − siλ̄)

(B.3)

where α is in the n-dimensional unit simplex because of (2.24). With this terminology, the condition

that more than one asset is retained in the portfolio is equivalent to αi ∈ (0, 1) for at least two assets.

Now, we divide the numerator and denominator of bank’s objective (2.23) by
n

∑
i=1

(wiλi − siλ̄)

to get

g(s1, s2, ..., sn) =

E

(
min

[
n

∑
i=1

αi
ηi

λi
,

n

∑
i=1

αi(1− θri)

])
n

∑
i=1

αi(1− θri)

(B.4)

Our goal is to show that if αi ∈ (0, 1) for at least two assets, then (B.1) for asset k, where k ∈ S

defined in (B.2), is strictly less than (B.4) . Since the function min(x, y) is concave and α is in the

n-dimensional unit simplex, Jensen’s inequality implies

min

[
n

∑
i=1

αi
ηi

λi
,

n

∑
i=1

αi(1− θri)

]
≥

n

∑
i=1

αimin
[

ηi

λi
, 1− θri

]
(B.5)

=⇒
min

[
n

∑
i=1

αi
ηi

λi
,

n

∑
i=1

αi(1− θri)

]
n

∑
i=1

αi(1− θri)

≥

n

∑
i=1

αimin
[

ηi

λi
, 1− θri

]
n

∑
i=1

αi(1− θri)

(B.6)

=⇒ g(s1, s2, ..., sn) ≥

n

∑
i=1

αiE
(

min
[

ηi

λi
, 1− θri

])
n

∑
i=1

αi(1− θri)

(B.7)

Note that (B.6) is true because θri < 1 ∀i and αi > 0 for at least two assets. The expression in (B.7)

takes expectations of both sides of (B.6) and uses (B.4).

In (B.5), the inequality is generally weak but it will be useful to understand when it would be
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strong. Define the sets D1(η, α) and D2(η, α) as follows:

D1(η, α) =

{
i ∈ {1, , ..., n} :

ηi

λi
< 1− θri and αi ∈ (0, 1)

}
D2(η, α) =

{
i ∈ {1, , ..., n} :

ηi

λi
> 1− θri and αi ∈ (0, 1)

} (B.8)

The set D1 is the set of assets that have positive weights in portfolio α and for a particular

realization of η, a well-capitalized bank in period 1 holding only that asset defaults in period

2. This is because as can be seen from (B.1), the ratio of assets to debt in period 2 for a well-

capitalized bank (capital ratio equals θ) in period 1 holding only asset x is 1
1−θrx

ηx
λx

. Similarly,

the set D2 is the set of assets that have positive weights in portfolio α and for a particular real-

ization of η, a well-capitalized bank in period 1 holding only that asset does not default in period 2.

Based on the nature of the min function in (B.5), it is clear that the inequality in (B.5) would

be strong if both D1 and D2 were non-empty for all possible α’s. This would be true if, for every

possible portfolio α and for a particular realization of η, there exists two particular assets with

positive weight. For one asset, a well-capitalized bank holding just that asset in period 1 defaults

in period 2. For the other asset, a well-capitalized bank holding just that asset does not default in

period 2.

This may not be true for a particular realization of η. However, in (B.7), expectations of (B.6)

are taken over all possible realizations of η. Therefore, the inequality in (B.7) would be strict if,

for all possible portfolios α, there exists a realization of η such that the sets D1 and D2 are both

non-empty. This condition can be stated more concisely as D3 6= ∅, where D3 is defined below in

(B.9).

D3 = {{η} : D1(η, α) 6= ∅ and D2(η, α) 6= ∅ ∀α} (B.9)

The condition D3 6= ∅ can be thought of as imposing imperfect correlation across asset returns.

The condition is fairly weak and will be useful in establishing the uniqueness of the solution in

certain corner cases (see the end of the proof).
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Now, define the following:

xi = E
(

min
[

ηi

λi
, 1− θri

])
yi = 1− θri

which imply the following:

xi

yi
=

E
(

min
[

ηi
λi

, 1− θri

])
1− θri

n

∑
i=1

αixi

n

∑
i=1

αiyi

=

n

∑
i=1

αiE
(

min
[

ηi

λi
, 1− θri

])
n

∑
i=1

αi(1− θri)

(B.10)

Note that xi
yi

takes the same form as (B.1), the objective function when retaining only one asset. In

addition, xi, yi ∈ R++
n and α defined in (B.3) is in the n-dimensional unit simplex. Furthermore,

according to (B.2), we assumed that among the options of retaining each asset by itself, retaining

asset k ∈ S minimizes the bank’s objective function: xk
yk

= min
{

xi
yi

}
. With all of these conditions,

we can demonstrate the following.

E
(

min
[

ηk
λk

, 1− θrk

])
1− θrk

=
xk

yk
≤

n

∑
i=1

αixi

n

∑
i=1

αiyi

=

n

∑
i=1

αiE
(

min
[

ηi

λi
, 1− θri

])
n

∑
i=1

αi(1− θri)

≤ g(s1, s2, ..., sn)

where the equalities are from (B.10), the first inequality is from Lemma 1, and the second inequality

is from (B.7).

Note that αk 6= 1 because at least two assets in the portfolio have positive weight. Therefore, if

S contains only one element or equivalently, if the solution to (B.2) is unique, the first inequality

would be strict based on Lemma 1 and the proof is complete. The intuition here is that if retaining

asset k by itself is strictly preferred to retaining any other asset by itself, retaining asset k must be

superior to any portfolio of two or more assets, since the portfolio can be thought of as a weighted

average of retaining the constituent assets by themselves. This logic holds even if the assets are

perfectly correlated.
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If the set S has multiple elements, the first inequality is not strict. In this case, the bank is

indifferent between retaining different individual assets by themselves. However, if the set D3

as defined in (B.9) is non-empty, the second inequality is strict and the proof is complete. This

condition can be thought of as imposing imperfect correlation across the returns of the assets

contained in S. The intuition is that imperfect correlation creates diversification and lowers risk.

As a result, it is undesirable for the bank to hold two assets at once, even if they are both contained

in S.

The only case in which the proof breaks down is if S contains multiple elements and the

assets in S are almost perfectly correlated (i.e. D3 as defined in (B.9) is empty), a situation that

would only occur if two assets were close to identical. Even in this case, the solution prescribed in

Proposition 1 is valid, just not necessarily unique.

B.2 Proof of Proposition 2

Proposition 2. For each asset k, there exists r̄k <
1
θ such that for all rk > r̄k, asset k is sold in the process

of recapitalizing, holding fixed all other assets’ risk weights.

Proof. Expression (2.26) is the value of the bank’s objective if it chooses to retain asset k. Note

that (2.26) only depends on rk, not any of the other assets’ risk weights. Also, note that (2.26)

converges to 1 as rk converges to 1
θ from below:

lim
rk→ 1

θ

−

E
(

min
[

ηk
λk

, 1− θrk

])
1− θrk

= 1

Note also that since the objective is the price of debt per unit face value, its value must be less

than one. Therefore, if we can show that (2.26) is strictly increasing in rk, there exists some r̄k <
1
θ

above which (2.26) will exceed the value of the objective when retaining any other asset. For any

rk ∈ (r̄k, 1
θ ), asset k will be sold and a different asset will be retained.
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We begin by rewriting (2.26) as follows

g(·) = 1
1− θrk

∫ ∞

−∞
min

[
ηk

λk
, 1− θrk

]
fk(ηk)dηk (B.11)

= 1− Fk(λk(1− θrk)) +
1

λk(1− θrk)

 λk(1−θrk)∫
−∞

ηk fk(ηk)dηk


then differentiating with respect to rk

∂g(·)
∂rk

= fk(λk(1− θrk))θλk +
1

(λk(1− θrk))
2

(
λk(1− θrk)(−θλk)λk(1− θrk) fk(λk(1− θrk))

+ θλk

λk(1−θrk)∫
−∞

ηk fk(ηk)dηk

)

=
θλk

(λk(1− θrk))
2

 λk(1−θrk)∫
0

ηk fk(ηk)dηk

 > 0

because θ, λk, and 1− θrk are all strictly greater than zero. This completes the proof.

B.3 Proof of Proposition 3

Proposition 3. Suppose the risk weights of all assets are identically equal to one. If asset j’s net return

( ηj
λj
− 1) is a mean-preserving spread of the return of asset k (i.e. asset j is riskier), then the bank will not

sell asset j in the process of recapitalizing.

Proof. Suppose that the return of asset j (Rj =
ηj
λj
− 1) is a mean-preserving spread of the return

of asset k (Rk = ηk
λk
− 1). According to (2.26) with rj = rk = 1, asset k is sold in the process of

recapitalizing if

E
(

min
[

ηk
λk

, 1− θ
])

1− θ
≥

E
(

min
[

ηj
λj

, 1− θ
])

1− θ

⇐⇒ E (min [Rk, −θ]) ≥ E
(
min

[
Rj, −θ

])
⇐⇒ E (h(Rk)) ≥ E

(
h(Rj)

)
(B.12)

where the function h(·) is defined as h(x) = min [x,−θ].
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Since Rj is a mean-preserving spread of Rk, it must be the case that E (u(Rk)) ≥ E
(
u(Rj)

)
for

any concave, non-decreasing function u(·). Since h(·) in (B.12) is concave and non-decreasing, the

proof is complete.

B.4 Proof of Proposition 4

Proposition 4. With constraint (2.27) in place of (2.24) to reflect liquidity requirements, the solution to

the bank’s recapitalization problem is an extreme point of the feasible set: sell all assets but one and expand

holdings of the remaining asset, both to the maximum extent allowable under (2.27).

Proof. The proof has three steps. The first step is showing that any feasible solution can be

represented as a convex combination of the extreme points of the feasible set.1 The second step

is showing that the objective function is quasiconcave.2 Combining the first two steps, the third

step is showing that the value of the objective at any non-extreme feasible solution must exceed

the value of the objective at some extreme point of the feasible set. Therefore, the objective must

achieve its minimum at an extreme point.

Let the feasible set for s = {s1, s2, ..., sn} be given by Ωs. The set Ωs is defined by (2.27) and is

clearly closed, bounded, and therefore compact. In addition, Ωs is an n-dimensional box and is

therefore convex.

The objective function can be restated in terms of the vector α in the n-dimensional unit

simplex, as in (B.4), with α defined in (B.3). Furthermore, based on (B.3), the function that maps s

to α is a linear fractional function of the form

α =
As + b
c′s + d

where A = −λ̄In, bi = wiλi, ci = −λ̄, and d = λ̄. Since linear fractional functions preserve

1An extreme point of a set S is any point in S which does not lie in any open line segment joining two points of S.

2A function f (x) is quasiconcave if and only if for every t ∈ [0, 1] and any x1, x2 in the domain of f (·), f (tx1 + (1−
t)x2) ≥ min{ f (x1), f (x2)}.

141



convexity of sets, it follows that the feasible set for α, Ωα, is also convex. Moreover, the function

that maps s to α is also continuous, which implies that Ωα is also compact.

The Krein-Millman theorem states that if Ωα is convex and compact, Ωα is the convex hull

of its extreme points, given by the set e(Ωα). By the definition of a convex hull, this implies

that for every non-extreme feasible solution α f to the problem in Ωα, there exists t ∈ (0, 1) and

α1, α2 ∈ e(Ωα) such that α f = tα1 + (1− t)α2. Note that the definition of extreme points implies

that the set e(Ωα) contains all the portfolios that result from accumulating one asset while selling

all other assets, both to the maximum extent possible under (2.27).

Below, we show that the objective function (B.4) evaluated at any non-extreme feasible solution

α f is weakly greater than the minimum of the objective evaluated at all of the extreme points of

Ωα.

g(α f ) = g(tα1 + (1− t)α2)

=

E

(
min

[
n

∑
i=1

(tα1
i + (1− t)α2

i )
ηi

λi
,

n

∑
i=1

(tα1
i + (1− t)α2

i )(1− θri)

])
n

∑
i=1

(tα1
i + (1− t)α2

i )(1− θri)

≥
E

(
n

∑
i=1

(tα1
i + (1− t)α2

i )min
[

ηi

λi
, 1− θri

])

t
n

∑
i=1

α1
i (1− θri) + (1− t)

n

∑
i=1

α2
i (1− θri)

(B.13)

=

tE

(
n

∑
i=1

min
[

α1
i

ηi

λi
, α1

i (1− θri)

])
+ (1− t)E

(
n

∑
i=1

min
[

α2
i

ηi

λi
, α2

i (1− θri)

])

t
n

∑
i=1

α1
i (1− θri) + (1− t)

n

∑
i=1

α2
i (1− θri)

(B.14)

where (B.13) uses the fact that the function min(x, y) is concave and tα1
i + (1− t)α2

i is in the

n-dimensional unit simplex to apply Jensen’s inequality. Note that for the same reason discussed

at length in Appendix B.1 (see the discussion of equations (B.8) and (B.9)), the inequality in (B.13)

would be strict under fairly weak conditions that amount to imperfect correlation across assets.
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Let gn(·) and gd(·) represent the numerator and denominator, respectively, of the objective

(B.4). Then, continuing from (B.14) we have

g(a f ) ≥ tgn(α1) + (1− t)gn(α2)

tgd(α1) + (1− t)gd(α2)

Since t ∈ (0, 1), we can use Lemma 1 to show

g(a f ) ≥ min{g(α1), g(α2)} ≥ min
α∈e(Ωα)

{g(α)}

The first inequality is equivalent to the objective function g(·) being quasiconcave. The second

inequality is strict if one of the extreme points uniquely minimizes the objective among all extreme

points.

This completes the proof. To summarize, we have shown that the objective function evaluated

at any non-extreme, feasible solution is weakly greater than the minimum objective across all

extreme points of the feasible set. This means that at least one of the extreme points minimizes

the objective. Moreover, if assets are imperfectly correlated or one of the extreme points uniquely

minimizes the objective among all extreme points, no non-extreme point minimizes the objective.

Finally, if multiple extreme points minimize the objective, they all represent valid solutions.
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Appendix C

Appendix to Chapter 3

In appendix C.1, we provide an explicit derivation of the allocation of resources that results

from the best responses of banks and the policy maker to an arbitrary profile of depositors’

withdrawal strategies under each of the two policy regimes. In appendix C.2, we use this

derivation to provide proofs of selected propositions from the paper.

C.1 Best-Response Allocations

For any profile of withdrawal strategies y ∈ Y, let π̂s (y) denote the fraction of the remaining

depositors who are impatient after πL withdrawals have been made. Since we focus on equilibria

in which there is no panic when the fundamental state is L, the first πL withdrawals in that state

represent all of the impatient depositors and we have

π̂L (y) = 0. (C.1)

When the fundamental state is H, the first πL withdrawals may be a mix of patient and impatient

investors. Using the assumption that β is the “bad” sunspot state, as introduced in 3.4, we have

πH − πL

1− πL
≤ π̂Hα (y) ≤ π̂Hβ

(y) ≤ πH (C.2)

for all y ∈ Y. Given the values of π̂s associated with a particular profile y, we can derive the best

responses of banks and the policy maker under each regime as follows.
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C.1.1 No intervention

Under the policy regime with no intervention, the best-responses of banks and the policy

maker are characterized by equations 3.8, 3.10, 3.11, 3.15, 3.16, and the resource constraint in each

state. It can be shown that these same conditions also characterize the solution to the problem of

choosing an allocation vector c to maximize 3.2 subject to the basic resource constraints

πL (σc̃1 + (1− σ) c1) + (1− πL)
(

π̂s (y) c1s + (1− π̂s (y))
c2s

R

)
+ g ≤ 1

for all s ∈ S. Using the functional form 3.1, the solution to this problem can be shown to be

c̃NI
1 (y) = cNI

1 (y) =
1

πL + δ
1
γ + x̄ (y)

1
γ

, (C.3)

cNI
1s (y) =

(
x̄ (y)
xs (y)

) 1
γ

cNI
1 (y) and cNI

2s (y) = R
1
γ cNI

1s (y) for all s, (C.4)

g (y) = δ
1
γ cNI

1 (y) , (C.5)

where

xs (y) ≡
(
(1− πL)

(
π̂s (y) + (1− π̂s (y)) R

1−γ
γ

))γ

and (C.6)

x̄ (y) ≡ ∑
s∈S

qsxs (y) . (C.7)

This solution depends on depositors’ withdrawal strategies y only through the values of π̂s (y).

C.1.2 With intervention

Under the policy regime with intervention, the best-responses of banks and the policy maker

are characterized by equations 3.10, 3.14, 3.17, and 3.20, together with the resource constraint in

each state,

πL (σc̃1 + (1− σ) c1) + (1− πL)
(

π̂s (y) c1s + (1− π̂s (y))
c2s

R

)
+ gs ≤ 1.

Again using the functional form 3.1, the unique solution to these equations can be shown to be

c̃I
1 (y) =

(
σπL + (1− σ)πL

(
z (y)

qLzL (y)

) 1
γ

+ z (y)
1
γ

)−1

, (C.8)

cI
1 (y) =

(
z (y)

qLzL (y)

) 1
γ

c̃I
1 (y) , (C.9)
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cI
1s (y) =

(
z (y)
zs (y)

) 1
γ

c̃I
1 (y) and cI

2s (y) = R
1
γ cI

1s (y) for all s, (C.10)

gs (y) =

(
δ

z (y)
zs (y)

) 1
γ

c̃I
1 (y) , (C.11)

where

zs (y) ≡
(
(xs (y))

1
γ + δ

1
γ

)γ
, (C.12)

z̄ (y) ≡ ∑
s∈S

qszs (y) (C.13)

and xs (y) is defined in C.6.

C.2 Proofs of Selected Propositions

C.2.1 Proof of Proposition 5

Proposition 5. Under the policy regime with no intervention, the economy is:

(a) weakly fragile if and only if cNI
2Hα

(
yE) ≥ cNI

1

(
yE) ≥ cNI

2Hβ

(
yE) ,

(b) strongly fragile if and only if cNI
1

(
yE) > cNI

2Hα

(
yE) , and

(c) not fragile if and only if cNI
1

(
yE) < cNI

2Hβ

(
yE) .

Proof. For part (a) , recall that the economy is defined to be weakly fragile if there exists an

equilibrium in which depositors follow the strategy profile yE in 3.5. Consider the decision

problem of depositor i if she expects all other depositors to follow this profile. Her best response

clearly requires withdrawing at t = 1 when she is impatient. When she is patient, withdrawing

at t = 1 in state s is part of a best response if and only if cNI
1

(
yE) ≥ cNI

2s
(
yE) holds, while

withdrawing at t = 2 is part of a best response if and only if this inequality is reversed. The

definitions in C.6 and C.7, together with C.1 and the inequalities in C.2, imply that x (y) ≥ xL (y)

holds for any y ∈ Y. Using C.4, we then have

cNI
1 (y) < cNI

2L (y) (C.14)

for any y ∈ Y and, hence, the depositor will always choose to wait until t = 2 when patient and

the fundamental state is L. Therefore, the strategy in profile yE, where she withdraws early in
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state Hβ but not in Hα, represents a best response if and only if the two inequalities in part (a) of

the proposition hold. In this case, there is an equilibrium in which all depositors follow yE and,

hence, the economy is weakly fragile if and only if these inequalities hold.

Before moving to parts (b) and (c) of the proposition, we establish some useful inequalities.

Note that the definitions of yE and π̂s imply

π̂Hα

(
yE
)
=

πH − πL

1− πL
and π̂Hβ

(
yE
)
= πH. (C.15)

The inequalities in C.2 thus imply that, of all strategy profiles in the set Y, yE has the minimum

proportion of remaining investors who are impatient in state Hα and the maximum proportion in

state Hβ. Using the definition of xs (y) in C.6, it follows that for any y ∈ Y, we have

xL (y) = xL

(
yE
)
< xHα

(
yE
)

and (C.16)

xHα

(
yE
)
≤ xHα (y) ≤ xHβ

(y) ≤ xHβ

(
yE
)

. (C.17)

We can use the definition of x̄ (y) in C.7 to write

x̄ (y)
xHα (y)

= qL
xL (y)
xHα (y)

+ qHα + qHβ

xHβ
(y)

xHα (y)

and
x̄ (y)

xHβ
(y)

= qL
xL (y)

xHβ
(y)

+ qHα

xHα (y)
xHβ

(y)
+ qHβ

.

Using C.16 and C.17, it is then straightforward to show that for all y ∈ Y, we have

x̄ (y)
xHα (y)

≤
x̄
(
yE)

xHα (yE)
and

x̄ (y)
xHβ

(y)
≥

x̄
(
yE)

xHβ
(yE)

.

In addition, the middle inequality in C.17 implies

x̄ (y)
xHβ

(y)
≤ x̄ (y)

xHα (y)

for any y ∈ Y. Combining the two previous lines, we have

x̄
(
yE)

xHβ
(yE)

≤ x̄ (y)
xHβ

(y)
≤ x̄ (y)

xHα (y)
≤

x̄
(
yE)

xHα (yE)
(C.18)

for any y ∈ Y.

Now suppose the inequality in part (b) of the proposition holds. Then the expression for the
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best-response allocation cNI in C.4 implies

x̄
(
yE)

xHα (yE)
<

1
R

.

Using the two right-most inequalities in C.18 together with C.4, it then follows that

cNI
1 (y) > cNI

2s (y)

holds for s =
(

Hα, Hβ

)
and for all y ∈ Y. In other words, if an investor’s best response when all

other investors are playing yE requires withdrawing early in state Hα, then her best response to

any strategy profile in Y will involve withdrawing early whenever the fundamental state is H.

As a result, yF is the only possible equilibrium strategy profile in Y. The fact that yF is indeed an

equilibrium profile follows from these inequalities together with C.14. We have, therefore, shown

that yF is the unique equilibrium strategy profile and the economy is strongly fragile.

For the converse, suppose the economy is strongly fragile. Then yE is not an equilibrium

strategy profile and one of the two inequalities in part (a) of the proposition must be violated.

Using C.4, the fact that yF is an equilibrium strategy profile implies

x̄
(
yF)

xHα (yF)
<

1
R

.

It is straightforward to show that x̄
(
yF) > x̄

(
yE) and xHα

(
yF) = xHβ

(
yE) . Together with the

previous line, these two conditions imply

x̄
(
yE)

xHβ
(yE)

<
1
R

.

Using C.4 again, we then have

cNI
1

(
yE
)
> cNI

2Hβ

(
yE
)

.

In other words, when the economy is strongly fragile, the second inequality in part (a) of the

proposition is satisfied. The first inequality on that line must, therefore, be violated, which

establishes that the inequality in part (b) of the proposition holds.

Now suppose the inequality in part (c) of the proposition holds. Again using the expression
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for the best-response allocation cNI in C.4, this inequality implies

x̄
(
yE)

xHβ
(yE)

>
1
R

.

Using C.4 and the two left-most inequalities in C.18, together with C.14, it follows that

cNI
1 (y) < cNI

2s (y)

for all s and for all y ∈ Y. In other words, if an investor’s best response when all other investors

are playing yE involves waiting until t = 2 in state Hβ if she is patient, then her best response

to any profile in Y will be to wait until t = 2 in all states if she is patient. We have, therefore,

established that yN , defined in 3.7, is the unique equilibrium strategy profile and the economy is

not fragile.

Finally, for the converse, note that if yN is the unique equilibrium strategy profile, it follows

immediately from parts (a) and (b) of the proposition that the inequality in part (c) must hold.

C.2.2 Proof of Proposition 7

Proposition 7. Under the policy regime with intervention, the economy is:

(a) weakly fragile if and only if u
(

cI
2Hα

(
yE)) ≥ E (cI (yE)) ≥ u

(
cI

2Hβ

(
yE)) ,

(b) strongly fragile if and only if E
(
cI (yE)) > u

(
cI

2Hα

(
yE)) , and

(c) not fragile if and only if E
(
cI (yE)) < u

(
cI

2Hβ

(
yE)) .

Proof. The proof is broadly similar to that of Proposition 5, but with some important differences.

For part (a) , consider the decision problem of depositor i if she expects all other depositors to

follow yE in 3.5. Her best response clearly requires withdrawing at t = 1 when she is impatient.

When she is patient, withdrawing at t = 1 in state s is part of a best response if and only if

E
(

cI
(

yE
))
≥ u

(
cI

2s

(
yE
))

holds, while withdrawing at t = 2 is part of a best response if and only if this inequality is

reversed. Using 3.22 together with the definition 3.23 and the expressions for the best-response
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allocation cI in C.9 - C.10, it is straightforward to show that

E
(

cI (y)
)
≤ u

(
cI

2L (y)
)

(C.19)

holds for any y ∈ Y and, hence, the depositor will always choose to wait until t = 2 when she is

patient and the fundamental state is L. The strategy in profile yE, under which she withdraws

early in state Hβ but not in Hα, then represents a best response if and only if the two inequalities

in part (a) of the proposition hold. In this case, there is an equilibrium in which investors follow

yE and, hence, the economy is weakly fragile if and only if these two inequalities hold.

Next, note that the definition of zs (y) in C.12 combined with C.16 and C.17 implies that for

any y ∈ Y, we have

zL (y) = zL

(
yE
)
< zHα

(
yE
)

and (C.20)

zHα

(
yE
)
≤ zHα (y) ≤ zHβ

(y) ≤ zHβ

(
yE
)

. (C.21)

In addition, using the same steps that led to C.18, we can show

z̄
(
yE)

zHβ
(yE)

≤ z̄ (y)
zHβ

(y)
≤ z̄ (y)

zHα (y)
≤

z̄
(
yE)

zHα (yE)
. (C.22)

Suppose the inequality in part (b) of the proposition holds. Using 3.23 together with the

expressions for the best-response allocation cI in C.9 - C.10, and recalling that γ > 1, this inequality

implies

σ + (1− σ)

(
z̄
(
yE)

qLzL (yE)

) 1−γ
γ

< R
1−γ

γ

(
z̄
(
yE)

zHα (yE)

) 1−γ
γ

or

σ

(
z̄
(
yE)

zHα (yE)

) γ−1
γ

+ (1− σ)

(
qLzL

(
yE)

zHα (yE)

) γ−1
γ

< R
1−γ

γ .

Combined with C.20 and C.21, we then have

σ

(
z̄ (y)
zs (y)

) γ−1
γ

+ (1− σ)

(
qLzL (y)

zs (y)

) γ−1
γ

< R
1−γ

γ

for s =
(

Hα, Hβ

)
and for all y ∈ Y. Again using 3.23 and C.9 - C.10, this inequality implies that

E
(

cI (y)
)
> u

(
cI

2s (y)
)

holds for s =
(

Hα, Hβ

)
and for all y ∈ Y. In other words, if an investor’s best response when all
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other investors are playing yE requires withdrawing early in state Hα, then her best response to

any strategy profile in Y will involve withdrawing early whenever the fundamental state is H.

As a result, yF is the only possible equilibrium strategy profile in Y. The fact that yF is indeed an

equilibrium profile follows from these inequalities together with C.19. We have, therefore, shown

that yF is the unique equilibrium strategy profile and the economy is strongly fragile.

For the converse, suppose the economy is strongly fragile. Then yE is not an equilibrium

strategy profile and one of the two inequalities in part (a) of the proposition must be violated.

Using C.9 - C.10, the fact that yF is an equilibrium strategy profile implies

σ

(
z̄
(
yF)

zHα (yF)

) γ−1
γ

+ (1− σ)

(
qLzL

(
yF)

zHα (yF)

) γ−1
γ

< R
1−γ

γ .

Using the definitions in C.12 and C.13, it is easy to show that z̄
(
yF) > z̄

(
yE) , zL

(
yF) = zL

(
yE)

and zHα

(
yF) = zHβ

(
yE) . Together with the previous line, these three conditions imply

σ

(
z̄
(
yE)

zHβ
(yE)

) γ−1
γ

+ (1− σ)

(
qLzL

(
yE)

zHβ
(yE)

) γ−1
γ

< R
1−γ

γ .

Using C.9 and C.10 again, we then have

E
(

cI
(

yE
))

> u
(

cI
2Hβ

(y)
)

.

In other words, when the economy is strongly fragile, the second inequality in part (a) of the

proposition is satisfied. The first inequality on that line must, therefore, be violated, which

establishes that the inequality in part (b) of the proposition holds.

Now suppose the inequality in part (c) of the proposition holds. Again using 3.23 together

with C.9 and C.10, this inequality implies

σ + (1− σ)

(
z̄
(
yE)

qLzL (yE)

) 1−γ
γ

> R
1−γ

γ

(
z̄
(
yE)

zHβ
(yE)

) 1−γ
γ

or

σ

(
z̄
(
yE)

zHβ
(yE)

) γ−1
γ

+ (1− σ)

(
qLzL

(
yE)

zHβ
(yE)

) γ−1
γ

> R
1−γ

γ .
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Using the inequalities in C.20 - C.22, we then have

σ

(
z̄ (y)
zs (y)

) γ−1
γ

+ (1− σ)

(
qLzL (y)

zs (y)

) γ−1
γ

> R
1−γ

γ

for s =
(

Hα, Hβ

)
and for all y ∈ Y. Using C.9 and C.10 together with the definition 3.23 and the

inequality in C.19, we then have

E
(

cI (y)
)
< u

(
cI

2s (y)
)

for all s and for all y ∈ Y. In other words, if an investor’s best response when all other investors

are playing yE involves waiting until t = 2 in state Hβ if she is patient, then her best response to

any profile in Y will be to wait until t = 2 in all states if she is patient. This fact establishes that

yN is the unique equilibrium strategy profile and the economy is not fragile.

Finally, for the converse, note that if yN is the unique equilibrium strategy profile, it follows

immediately from parts (a) and (b) of the proposition that the inequality in part (c) must hold.

C.2.3 Proof of Proposition 8

Proposition 8. Under the policy regime with intervention, the fragility type of an economy (e, σ) is weakly

decreasing in σ.

Proof. To establish this result, we need to show that for any e and any σ′ > σ,

(a) if (e, σ) is not fragile, then (e, σ′) is not fragile, and

(b) if (e, σ) is weakly fragile, then (e, σ′) is either weakly fragile or not fragile.

For part (a), if (e, σ) is not fragile, then from Proposition 7 we have

E
(

cI
(

yE; σ
))

< u
(

cI
2Hβ

(
yE; σ

))
.

Using the definition in 3.23 and the expressions for the best-response allocation cI in C.9 and C.10,

this inequality is equivalent to

σ + (1− σ)

(
z̄
(
yE)

qLzL (yE)

) 1−γ
γ

> R
1−γ

γ

(
z̄
(
yE)

zHβ
(yE)

) 1−γ
γ

.

The definitions of zs and z̄ in C.12 and C.13 show that these terms are independent of σ. Moreover,

z̄
(
yE) > qLzL

(
yE) and γ > 1 imply that the left-hand side of this inequality is strictly increasing
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in σ. Therefore, for any σ′ > σ we have

σ′ +
(
1− σ′

) ( z̄
(
yE)

qLzL (yE)

) 1−γ
γ

> R
1−γ

γ

(
z̄
(
yE)

zHβ
(yE)

) 1−γ
γ

.

Again using 3.23, C.9, and C.10, this inequality implies

E
(

cI
(

yE; σ′
))

< u
(

cI
2Hβ

(
yE; σ′

))
,

which establishes that economy (e, σ′) is not fragile as well.

The argument for part (b) is similar. If (e, σ) is weakly fragile, then we have

E
(

cI
(

yE; σ
))
≤ u

(
cI

2Hα

(
yE; σ

))
.

Following the same steps used in part (a) then shows that for any any σ′ > σ, we have

E
(

cI
(

yE; σ′
))

< u
(

cI
2Hα

(
yE; σ′

))
.

This inequality establishes that the economy (e, σ′) is not strongly fragile, implying that it is either

weakly fragile or not fragile, as desired.

C.2.4 Proof of Proposition 9

Proposition 9. Under the policy regime with intervention, if 3.24 holds, then for any e there exists σ̄ < 1

such that the fragility type of all economies (e, σ) with σ > σ̄ is weakly decreasing in δ.

Proof. Let e′ denote a vector of parameters that differs from e only in the parameter δ, with δ′ > δ.

To establish the result, we need to show there exists σ̄ < 1 such that σ > σ̄ implies

(a) if (e, σ) is not fragile, then (e′, σ) is not fragile, and

(b) if (e, σ) is weakly fragile, then (e′, σ) is either weakly fragile or not fragile.

The proof is divided into three steps.

Step (i) : Establish part (a) . If (e, σ) is not fragile, then from Proposition 7 we have

E
(

cI
(

yE; e
))

< u
(

cI
2Hβ

(
yE; e

))
.
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Using the definition in 3.23 and dividing both sides by u
(

cI
2Hβ

)
, this inequality can be written as1

σ
u
(
c̃I

1

(
yE; e

))
u
(

cI
2Hβ

(yE; e)
) + (1− σ)

u
(
cI

1

(
yE; e

))
u
(

cI
2Hβ

(yE; e)
) > 1.

Using the expressions in C.9 and C.10, this inequality reduces to

σ

(
R

z̄
(
yE; e

)
zHβ

(yE; e)

) γ−1
γ

+ (1− σ)

(
R

qLzL
(
yE; e

)
zHβ

(yE; e)

) γ−1
γ

> 1. (C.23)

Using the definitions in C.12 and C.13, the ratio of z̄ (y) to zHβ
(y) for any y can be written as

z̄ (y)
zHβ

(y)
= qL

 xL (y)
1
γ + δ

1
γ

xHβ
(y)

1
γ + δ

1
γ

γ

+ qHα

 xHα (y)
1
γ + δ

1
γ

xHβ
(y)

1
γ + δ

1
γ

γ

+ qHβ
.

The definitions in C.6 show that xs (y) is independent of δ for all s. It is then straightforward

to show that C.17 implies this expression is strictly increasing in δ for any y. Therefore, since e′

differs from e only in that δ′ > δ, we have

R
z̄
(
yE; e′

)
zHβ

(yE; e′)
> R

z̄
(
yE; e

)
zHβ

(yE; e)
. (C.24)

The same steps can be used to show that the ratio of zL (y) to zHβ
(y) is strictly increasing in δ for

any y. Combining this fact with C.23 and C.24 yields

σ

(
R

z̄
(
yE; e′

)
zHβ

(yE; e′)

) γ−1
γ

+ (1− σ)

(
R

qLzL
(
yE; e′

)
zHβ

(yE; e′)

) γ−1
γ

> 1.

Using C.9 and C.10 together with the definition in 3.23, we then have

E
(

cI
(

yE; e′
))

< u
(

cI
2Hβ

(
yE; e′

))
,

which establishes that the economy (e′, σ) is also not fragile. Note that no restriction on σ is

required for this step of the proof.

Step (ii) : Establish a useful intermediate result: If 3.24 holds and the ratio Rz̄
(
yE) /zHα

(
yE) is

greater than 1 for some value of δ, then it is greater than 1 for all δ′ > δ. We establish this result

by showing that whenever this ratio is smaller than 1, the ratio is a strictly increasing function of

1Recall that γ > 1 implies u (c) is a negative number, which is why the inequality reverses direction in this step.
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δ. Since the ratio is a continuously differentiable function of δ, its value can never cross 1 from

above as δ is increased.

We begin this step by using the definitions in C.12 and C.13 to show that Rz̄
(
yE) /zHα

(
yE) < 1

is equivalent to2

z̄
zHα

= qL

(
(xL)

1
γ + δ

1
γ

(xHα)
1
γ + δ

1
γ

)γ

+ qHα + qHβ


(

xHβ

) 1
γ
+ δ

1
γ

(xHα)
1
γ + δ

1
γ


γ

<
1
R

. (C.25)

This expression is a differentiable function of δ for all δ > 0 and we can write the derivative as

d
dδ

(
z̄

zHα

)
= δ

1−γ
γ (zHα)

− 2
γ

 qL

(
zL

zHα

) γ−1
γ
(
(xHα)

1
γ − (xL)

1
γ

)
−qHβ

( zHβ

zHα

) γ−1
γ

((
xHβ

) 1
γ − (xHα)

1
γ

)
 . (C.26)

In general, the sign of this expression can be either positive or negative. Our interest, however, is

in signing the expression when condition C.25 holds. We can rewrite C.25 as

qHβ

zHβ

zHα

<
1
R
− qHα − qL

zL

zHα

.

Combined with C.26, we then have

d
dδ

(
z̄

zHα

)
> δ

1−γ
γ (zHα)

− 2
γ

 qL

(
zL

zHα

) γ−1
γ
(
(xHα)

1
γ − (xL)

1
γ

)
−
[

1
R − qHα − qL

zL
zHα

] ( zHβ

zHα

)− 1
γ

((
xHβ

) 1
γ − (xHα)

1
γ

)
 (C.27)

The inequalities in C.20 and C.21 imply(
zL

zHα

)− 1
γ

>

( zHβ

zHα

)− 1
γ

.

Using this inequality to replace the penultimate term in C.27 and simplifying, we have

d
dδ

(
z̄

zHα

)
> δ

1−γ
γ (zHα)

− 2
γ

 qL

(
zL

zHα

) γ−1
γ

((
xHβ

) 1
γ − (xL)

1
γ

)
−
[ 1

R − qHα

] ( zL
zHα

)− 1
γ

((
xHβ

) 1
γ − (xHα)

1
γ

)
 . (C.28)

Note that 3.22 implies qL ≥ 1/R and, therefore, a sufficient condition for the derivative in C.28 to

2The terms zs and xs are all evaluated at the strategy profile yE throughout this step. We omit this dependence
from the notation here to save space.
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be positive is

1
R

(
zL

zHα

) γ−1
γ
((

xHβ

) 1
γ − (xL)

1
γ

)
>

[
1
R
− qHα

] (
zL

zHα

)− 1
γ
((

xHβ

) 1
γ − (xHα)

1
γ

)
.

Using the definitions C.6 and C.12 together with C.1 and C.15, it is straightforward to show that

this inequality is equivalent to 3.24. In other words, as long as 3.24 holds, we have established that

the ratio Rz̄
(
yE) /zHα

(
yE) strictly increasing in δ whenever the value of the ratio is less than 1. If

the ratio is greater than 1 for some value of δ, therefore, it must be greater than 1 for all δ′ > δ

since continuity implies that it cannot cross 1 from above as δ is increased.

Step (iii) : Establish part (b) . If the economy (e, σ) is weakly fragile, then from Proposition 7 we

have

E
(

cI
(

yE; e
))
≤ u

(
cI

2Hα

(
yE; e

))
.

Following the same approach as in step (i) above, this inequality can be written as

σ

(
R

z̄
(
yE; e

)
zHα (yE; e)

) γ−1
γ

+ (1− σ)

(
R

qLzL
(
yE; e

)
zHα (yE; e)

) γ−1
γ

≥ 1. (C.29)

It follows immediately from the definition of z̄ in C.13 that z̄ (y) > qLzL (y) holds for any y. If the

inequality in C.29 holds, therefore, it must be the case that

R
z̄
(
yE; e

)
zHα (yE; e)

> 1.

The result from step (ii) above together with δ′ > δ then implies

R
z̄
(
yE; e′

)
zHα (yE; e′)

> 1.

It follows from continuity that we can find σ̄ < 1 such that if σ > σ̄, we have

σ

(
R

z̄
(
yE; e′

)
zHα (yE; e′)

) γ−1
γ

+ (1− σ)

(
R

qLzL
(
yE; e′

)
zHα (yE; e′)

) γ−1
γ

> 1.

Using 3.23, C.9 and C.10, we then have

E
(

cI
(

yE; e′
))

< u
(

cI
2Hα

(
yE; e′

))
.

By Proposition 7, this inequality demonstrates that the economy (e′, σ) is not strongly fragile,
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implying that it is either weakly fragile or not fragile, as desired.

Lemma 2. For any e with δ > 0 and any y ∈ Y, there exists σ < 1 such that W I (y) > WNI (y) for all

economies (e, σ) with σ > σ

Proof. The proof of Lemma 2 is divided into four steps as follows.

Step (i) : Calculate the level of welfare associated with y under policy regime NI. For this case, the

value of the objective function 3.2 can be written as a function of the elements of the best-response

allocation vector cNI as follows:3

WNI (y) = πLu
(

cNI
1

)
+ (1− πL) sums∈Sqs

(
π̂su

(
cNI

1s

)
+ (1− π̂s) u

(
cNI

2s

))
+ v

(
gNI
)

.

Using the solutions in C.3 - C.5 and simplifying terms, this expression can be reduced to

WNI (y) =
1

1− γ

(
πL + δ

1
γ + x̄

1
γ

)γ
. (C.30)

Step (ii) : Find a lower bound for the welfare level associated with y under regime I. The value of

the objective function 3.2 in this case can be written as

W I (y) = σπLu
(

c̃I
1

)
+ (1− σ)πLu

(
cI

1

)
+

sums∈Sqs

(
(1− πL)

(
π̂su

(
cI

1s

)
+ (1− π̂s) u

(
cI

2s

))
+ v

(
gI

s

))
.

Using the solutions in C.8 - C.11 and simplifying terms, this expression can be reduced to

W I (y) =
1

1− γ

σπL + (1− σ)πL

(
z̄

qLzL

) 1−γ
γ

+ z̄
1
γ(

σπL + (1− σ)πL

(
z̄

qLzL

) 1
γ
+ z̄

1
γ

)1−γ
. (C.31)

The definition of z̄ in C.13 shows that z̄ > qLzL holds. Using this fact and γ > 1, we have

(
z̄

qLzL

) 1−γ
γ

<

(
z̄

qLzL

) 1
γ

3Note that each element of cNI depends on the profile of withdrawal strategies y, but the dependence is omitted in
this expression to save space. The same is true for the terms xs and zs in the equations that follow.

157



and, therefore,

W I (y) >
1

1− γ

(
σπL + (1− σ)πL

(
z̄

qLzL

) 1
γ

+ z̄
1
γ

)γ

.

Step (iii) : Establish a useful intermediate result. Define

h (δ) ≡ x̄
1
γ + δ

1
γ − z̄

1
γ .

Using the definitions of x̄ and z̄ in C.7 and C.13, we then have

h (δ) = (sums∈Sqsxs)
1
γ + δ

1
γ −

(
sums∈Sqs

(
(xs)

1
γ + δ

1
γ

)γ) 1
γ

.

It is easy to see from this expression that g (0) = 0. Differentiating with respect to δ and simplifying

terms yields

h′ (δ) =
1
γ

δ
1−γ

γ

1−
sums∈Sqs

(
(xs)

1
γ + δ

1
γ

)γ−1

(
sums∈Sqs

(
(xs)

1
γ + δ

1
γ

)γ) γ−1
γ

 . (C.32)

Note that for any distinct numbers {ds} > 0 and ε > 1, Jensen’s inequality implies

sums∈Sqsds < (sums∈Sqsdε
s)

1
ε .

Setting

ds =
(
(xs)

1
γ + δ

1
γ

)γ−1
and ε =

γ

γ− 1
,

we then have

sums∈Sqs

(
(xs)

1
γ + δ

1
γ

)γ−1
<
(

sums∈Sqs

(
(xs)

1
γ + δ

1
γ

)γ) γ−1
γ

for all δ > 0, which implies that the term in the square brackets in C.32 is strictly positive. In other

words, we have established that function h is strictly positive and strictly increasing for all δ > 0.

Step (iv) : Find σ̄ such that σ > σ̄ implies welfare is necessarily higher with intervention. Using

the expressions above, a sufficient condition for W I (y) to be larger than WNI (y) is

1
1− γ

(
σπL + (1− σ)πL

(
z̄

qLzL

) 1
γ

+ z̄
1
γ

)γ

>
1

1− γ

(
πL + δ

1
γ + x̄

1
γ

)γ

or

σπL + (1− σ)πL

(
z̄

qLzL

) 1
γ

+ z̄
1
γ < πL + δ

1
γ + x̄

1
γ
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or

(1− σ)πL

((
z̄

qLzL

) 1
γ

− 1

)
< x̄

1
γ + δ

1
γ − z̄

1
γ = h (δ) .

In step (iii) we showed that h (δ) > 0 for all δ > 0. The definitions of x̄, z̄, and zL in C.7, C.12, and

C.13 show that each of these terms is independent of σ. Therefore, if we define

σ̄ ≡ 1−

 x̄
1
γ + δ

1
γ − z̄

1
γ

πL

((
z̄

qLzL

) 1
γ − 1

)
 < 1,

then σ > σ̄ implies welfare is strictly higher under the regime with intervention, as desired.

Lemma 3. Assume 3.24 holds. For any e with δ > 0, there exists σ < 1 such that allowing intervention

weakly reduces the fragility type of all economies (e, σ) with σ > σ

Proof. To establish this result, we need to show that for any e with δ > 0, there exists σ̄ < 1 such

that σ > σ̄ implies

(a) if (e, σ) is not fragile under NI, it is not fragile under I, and

(b) if (e, σ) is weakly fragile under NI, it is either weakly fragile or not fragile under I.

For part (a) , if (e, σ) is not fragile under regime NI, then by Proposition 1 we know cNI
1

(
yE) <

cNI
2Hβ

(
yE) holds. Using C.4, we then have

x̄
(
yE)

xHβ
(yE)

= qL
xL
(
yE)

xHβ
(yE)

+ qHα

xHα

(
yE)

xHβ
(yE)

+ qHβ
>

1
R

. (C.33)

Note that all of the terms in this expression are independent of the parameter δ. Next, the ratio of

z̄
(
yE) to zHβ

(
yE) can be written as

z̄
(
yE)

zHβ
(yE)

= qL

 xL
(
yE) 1

γ + δ
1
γ

xHβ
(yE)

1
γ + δ

1
γ

γ

+ qHα

 xHα

(
yE) 1

γ + δ
1
γ

xHβ
(yE)

1
γ + δ

1
γ

γ

+ qHβ
. (C.34)

This ratio is identical to the one in C.33 when δ is set to zero. Moreover, it is straightforward to

show that C.17 implies that C.34 is strictly increasing in δ. It follow that for any economy in which

C.33 holds, we also have
z̄
(
yE)

zHβ
(yE)

>
1
R

.

Using C.10, we then have c̃I
1

(
yE) < cI

2Hβ

(
yE) . Continuity and 3.23 then imply that we can find
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σ̄ < 1 such that σ > σ̄ implies

E
(

cI
(

yE; σ
))

< u
(

cI
2Hβ

(
yE; σ

))
,

which, by Proposition 2, shows that (e, σ) is not fragile under policy regime I.

For part (b) , if the economy is weakly fragile under regime NI, then by Proposition 1 we

know that cNI
1

(
yE) ≤ cNI

2Hα

(
yE) holds. Using C.4, we then have

x̄
(
yE)

xHα (yE)
= qL

xL
(
yE)

xHα (yE)
+ qHα + qHβ

xHβ

(
yE)

xHα (yE)
≥ 1

R
. (C.35)

Note that, as with C.33, all of the terms in this expression are independent of the parameter δ.

Next, the ratio of z̄
(
yE) to zHα

(
yE) can be written as

z̄
(
yE)

zHα (yE)
= qL

 xL
(
yE) 1

γ + δ
1
γ

xHα (yE)
1
γ + δ

1
γ

γ

+ qHα + qHβ

 xHβ

(
yE) 1

γ + δ
1
γ

xHα (yE)
1
γ + δ

1
γ

γ

. (C.36)

This ratio is identical to the one in C.35 when δ is set to zero. Moreover, step (ii) in the proof of

Proposition 9 establishes that, assuming 3.24 holds, whenever the ratio z̄
(
yE) /zHα

(
yE) is less

than 1/R, it is strictly increasing in δ.4 Starting from C.35, which is independent of δ, and using

the fact that this ratio is a continuously differentiable function of δ, it follows that

z̄
(
yE)

zHα (yE)
≥ 1

R
(C.37)

holds for any δ > 0. Therefore, any economy for which C.35 holds will also satisfy C.37 and,

using C.10, will necessarily have c̃I
1

(
yE) ≤ cI

2Hα

(
yE) . Following the same logic as in step (i) above,

continuity and 3.23 then imply that we can find σ̄ < 1 such that σ > σ̄ implies

E
(

cI
(

yE; σ
))
≤ u

(
cI

2Hα

(
yE; σ

))
.

4The role of assumption 3.24 in the analysis can be seen by comparing equations C.34 and C.36. The expression in
C.34 is always a strictly increasing function of δ, which implies that when σ is close to 1 and the incentive distortions
associated with bailouts are small, having a larger public sector always reduces the incentive for depositors to run in
state Hβ. Working with the expression in C.36 shows that the same is not true in state Hα. The larger bailout payments
associated with a higher value of δ will lead the policy maker to be less conservative in setting the early payment c̃1.
In some cases, the ratio c̃1/c2Hα

will actually rise when δ is increased, meaning that larger bailouts can increase the
incentive for depositors to run in state Hα. Step (ii) of the proof shows that this effect cannot arise when the economy
is strongly fragile if 3.24 holds. In step (iii), we use this intermediate result to show that allowing intervention cannot
move the economy from weakly fragile to strongly fragile when σ is close to 1 and 3.24 holds, which allows us to
establish the desirability of allowing intervention in such cases in Proposition 10 below.
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By Proposition 2, therefore, the economy is not strongly fragile under regime I, implying that it is

either weakly fragile or not fragile, which completes the proof.

C.2.5 Proof of Proposition 10

Proposition 10. Assume 3.24 holds. For any e with δ > 0, there exists σ < 1 such that allowing

intervention strictly increases equilibrium welfare for all economies (e, σ) with σ > σ.

Proof. The proof of the proposition is divided into two steps.

Step (i): Show WP (yN) > WP (yE) > WP (yF) for P = NI, I.

Proof: Using the definitions of these three strategy profiles in 3.5 – 3.7, together with the definition

of π̂s (y) as the fraction of the remaining depositors who are impatient after πL withdrawals have

been made, we have

π̂Hα

(
yN
)

= π̂Hα

(
yE
)
< π̂Hα

(
yF
)

, and

π̂Hβ

(
yN
)

< π̂Hβ

(
yE
)
= π̂Hβ

(
yF
)

.

Using C.1 and the definition of x̄ (y) in C.7, we then have

x̄
(

yN
)
< x̄

(
yE
)
< x̄

(
yF
)

. (C.38)

Equation C.30 shows that the level of welfare generated by the best-response allocation cNI is a

strictly decreasing function of x̄ (y) (recall that γ > 1). Therefore, we have

WNI
(

yN
)
> WNI

(
yE
)
> WNI

(
yF
)

.

For policy regime I, combining C.38 and the definition of z̄ (y) in C.13, we have

z̄
(

yN
)
< z̄

(
yE
)
< z̄

(
yF
)

.

Working from equation C.31, it can be shown that the level of welfare generated by the best-

response allocation cI is a strictly decreasing function of z̄ (y).5 Therefore, we have

5To see this result, differentiate the expression for W I with respect to z̄. The resulting expression is lengthy, but can
be shown to be strictly positive.
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W I
(

yN
)
> W I

(
yE
)
> W I

(
yF
)

,

as desired.

Step (ii): Establish the result. Consider any e with δ > 0 and let y∗NI ∈
{

yN , yE, yF} de-

note equilibrium strategy profile in the policy regime with no intervention if the economy

is not/weakly/strongly fragile under that regime. Then equilibrium welfare is WNI (y∗NI) . Lemma

2 establishes that there exists σ̄1 < 1 such that σ > σ̄1 implies

W I (y∗NI) > WNI (y∗NI) .

Lemma 3 establishes that there exists another cutoff point σ̄2 < 1 such that σ > σ̄2 implies the

fragility type of the economy under the policy regime with intervention is weakly lower than

under the regime with no intervention. Step (i) above establishes that lowering the fragility type

of the economy always raises equilibrium welfare. Combining these results shows that whenever

σ > max {σ̄1, σ̄2} , we have

W I (y∗I ) > WNI (y∗NI)

and allowing intervention strictly increases equilibrium welfare.

Lemma 4. For any economy with δ = 0 and σ < 1, WNI (y) > W I (y) holds for all y ∈ Y.

Proof. The proof is divided into two steps.

Step (i) : Show that when δ = 0 and σ = 1, the allocations cNI (y) and cI (y) are equivalent

for any y. This result follows from the expressions given for the two allocations in Appendix A.

When δ = 0, equation C.12 shows that zs (y) = xs (y) for all s and y. When σ = 1 also holds,

equations C.3 and C.8 show that cNI
1 (y) = c̃I

1 (y) for all y; equations C.4 and C.10 then show

that cNI
ts (y) = cI

ts (y) for t = 1, 2, for all s, and for all y. Using δ = 0 in equations C.5 and C.11

shows that no public good is provided in either allocation. The only difference between the two

allocations, therefore, is that the “distorted” payment cI
1 (y) appears in the allocation under regime

I. When σ = 1, however, no depositors receive this consumption level. In this sense, the two
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allocations are equivalent and necessarily generate the same level of welfare,

WNI (y) = W I (y) .

Step (ii) : Establish the result. The intuition for this step is clear: the two regimes are equivalent

when δ = 0 and σ = 1, and lowering σ below 1 will decrease welfare under regime I while having

no effect under regime NI. However, W I (y) does not necessarily change monotonically with σ for

all σ < 1. To establish the result, therefore, we consider the the auxiliary problem of maximizing

σπLu (c̃1) + (1− σ)πLu (c1) + (1− πL) sums∈Sqs (π̂su (c1s) + (1− π̂s) u (c2s)) (C.39)

subject to

σπL c̃1 + (1− σ)πLc1 + (1− πL)
(

π̂sc1s + (1− π̂s)
c2s

R

)
≤ 1. (C.40)

The solution to this problem is the best feasible allocation of resources in an economy where

investors follow a given strategy profile y and do not value the public good (that is, δ = 0). It is

straightforward to show that the first-order conditions characterizing this solution are given by

3.10, 3.11 and 3.14. In other words, the solution to this problem is equivalent to the best-response

allocation under the policy regime with no intervention, cNI (y). Note that the best-response

allocation under the regime with intervention, cI (y), is in the feasible set C.40, but is clearly not

equal to the solution because C.9 shows that c̃NI
1 (y) 6= cNI

1 (y) . Since C.39 is strictly concave, cI (y)

generates strictly lower welfare than cNI (y) when δ = 0 and σ < 1, that is,

WNI (y) > W I (y)

for any y ∈ Y, as desired.

Lemma 5. For any economy with δ = 0 and σ < 1, allowing intervention weakly increases the fragility

type of the economy.

Proof. Step (i) of the proof Lemma 4 established that when δ = 0 and σ = 1, cNI (y) and cI (y) are

equal and, hence, we have
cNI

1 (y)
cNI

2s (y)
=

c̃I
1 (y)

cI
2s (y)
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for all s and y. It then follows from Propositions 5 and 7 that the fragility type of the economy is

the same under both regimes. Proposition 6 established that the fragility type of an economy is

independent of σ under regime NI, while Proposition 8 established that it is weakly decreasing

in σ under regime I. Therefore, for any σ < 1, the fragility type of the economy must be weakly

higher under regime I than under regime NI.

C.2.6 Proof of Proposition 11

Proposition 11.

Proof. Using the result from Lemma 4 with the equilibrium strategy profile under regime NI,

when δ = 0 and σ < 1 we have

WNI (y∗NI) > W I (y∗NI) . (C.41)

Lemma 5 establishes that the fragility type of the economy under regime I is at least as high

as under regime NI, while step (i) of the proof of Proposition 10 establishes that increasing the

fragility type of an economy strictly lowers welfare under either regime. Combining these two

results with C.41 yields

WNI (y∗NI) > W I (y∗I ) ,

which establishes the proposition.
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