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Abstract

In the first section of this thesis, we explore the use of family pedigrees in association
analysis. Family pedigrees were successfully used in linkage analysis to discover many
genes for Mendelian traits, but less successful for identifying genes for complex diseases.
The family-based association test (FBAT) can be used to test for association in pedigrees
by two methods, conditioning on the parents to get the null distribution of the offsprings’
genotypes separately for each nuclear family and then combining over families, or condi-
tioning on the founders in the pedigree to get the offsprings” genotypes. In this study, we
use simulations to compare the power of conditioning on the founders or parents when
using the FBAT statistic to test for association in the family pedigree.We consider two
scenarios where the disease outcome is represented as a simple Mendelian trait and the
disease outcome is modeled as more complex as multiple factors influence the disease.

Two new results were found in our simulation study. Under the first assumption of a
Mendelian disease outcome, conditioning on the founders is slightly more powerful than
conditioning on the parents for detecting association. For complex diseases, the power of
all of the ascertainment methods were reduced considerably, but using multiplex pedi-
grees were still more powerful than trios and sib pairs when the recurrence risk ratio was
between family members was relatively low.

In the second part of this thesis we explore the use of twin studies in assessing can-
cer risk and cancer resistance. Twin studies provide unique information about familial

risk of cancer. Typically, twin studies are used to quantify heritability. However, clinical
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application of the insight gained from twin studies needs to rely on estimates of absolute
risk, as these are directly relevant for both individual and population-level decision mak-
ing. We provide estimates of risk using the Nordic Twin Studies of Cancer (NorTwinCan),
estimate risk ratios which can be applied to estimate the risks in a population with a dif-
ferent baseline risk, and compare methods of calculating the risks. Our results suggest
that both models provide slightly different absolute risk estimates compared to the em-
pirical estimates, which is not surprising since these models rely on differing modeling
assumptions and condition on different covariates. While estimates of heritability of can-
cer are high, for an unaffected individual the implications of having an affected co-twin
remain relatively contained, and additional family history should continue to play a role
in counseling and decision making.

In the last section, we explore cancer resistance using twin studies. It has been hy-
pothesized that some individuals have a decreased risk of cancer, or a cancer resistance,
resulting from genetic predisposition. Using simulation studies and twin study data, we
explored the question of whether these studies can also be used to investigate a genetic
predisposition to avoiding cancer. We first conduct simulations to assess the impact such
a genetic predisposition would have on the proportions of cancer concordant MZ and
DZ twins, we postulated a simple model wherein a fraction of the population carries an
inherited and extreme resistance to cancer, and developed a likelihood-based approach
to estimate this prevalence. We then applied our approach to the Nordic Twin Studies of
Cancer (NorTwinCan), a cohort of over 200,000 individual twins from Sweden, Norway,
Denmark and Finland. We estimate the prevalence of the ”cancer resistance” genotypes
as 1.7% (95% C.L: 1.2,2.1%) in this population. These results are obtained using the fol-
lowing assumptions; 1) all cancers are considered together, 2) the resistance genotype is
fully penetrant, and 3) distributions for age of onset of cancer, censoring, and death are
tixed. We do, however, provide a general framework under which these assumptions
can be relaxed. Our results suggest that predisposition to avoiding cancer may be herita-
ble, that twin data can provide information on this hypothesis, and that the largest twin

studies allow for quantitative exploration of genetic parameters.

v



Contents

Titlepage . . . . . . . . e i
Abstract. . . . . . . . L e iii
Tableof Contents . . . . . . ... . . ... v
Listof Figures . . . . . . . . .. .. . .. . . e vii
Listof Tables . . . . . . .. . ... .. . . Xii
Acknowledgments . . . ... ... L Lo L Xiv
1 Analyzing Pedigrees for Association Analysis 1
1 Introduction . . .. ... ... o 2
1.2 Using Pedigrees for Association Analysis . . .. ... ............. 3
1.3 Methods . . . ... . . . 5
1.3.1 SimulationDesign . . ... ... ... ... ... ... . ... . ..., 5
14 Results . . ... ... .. .. 8

141 Comparison of FBAT Conditioning on Parents” and Founders’ Geno-
types for Pedigrees . . . . . ... ... ... L L 8
142 Comparison of ascertainment conditions . . . .. .. ... ... ... 10
1.43 Comparison of ascertainment conditions for “complex disease” . . . 11
1.5 Data Application . . .. ... ... ... ... L 13
1.6 Discussion . . . . . . . . . . 14
2 Cancer Risk Assessment in Twins 17
21 Introduction . . ... ... ... ... 18
22 Goals . . . . 20
23 Methods . . .. .. ... 20
23.1 StudyPopulations . . .. .. ... ... .. oo 20
232 Definitions . . . . . ... 21
2.3.3 Calculating Risk Using The Empirical Distribution . . ... ... .. 22

234 Calculating Risk Using a Semi-parametric Random Effects Model
for Multivariate Competing Risks Data . . . . . ... ... ... ... 23

2.3.5 Calculating Risk Using the Liability Threshold Model for Right-
CensoredData . .. ... ...... ... ... . ... . ... ... 24
24 Results . . ... . . 26
2.4.1 Risk Estimates based on the Empirical Distribution . . . ... .. .. 26

2.4.2 Risk Estimates based on the Semi-parametric Random Effects Model
for Multivariate Competing Risks Data . . . . ... ... .. ... .. 30
2.4.3 Risk Estimates based on the Liability Threshold Model . . . . . . .. 32
244 ComparisonoftheModels . . ... ... ............. ... 34
25 Discussion . . . . ... 35
3 Exploring Cancer Resistance in Twins 38
1 Introduction . . . . ... 39
32 Methods . ... ... . . ... 41
321 NorTwinCanCohort . . . . ... ... .................. 41
322 Notation . . . ... ... . 42
3.2.3 Model Assumptions and Likelihood Function . . ... ... ... .. 42
33 Simulations . ... ... ... 44



3.4
Al

3.3.1 DataGeneration . . . . . . . . . . . 44

3.3.2 Effects of Resistance on Disease Concordance . . . . . .. ... .. .. 46
3.3.3 Likelihood Estimation . . . . . . .. . . . . .. . . . ... . ... ... 52
Resultsin NorTwinCan . . . . . . . . . . . o e e e 53
Discussion . . . . . . . . . 54
Cancer Risk AssessmentinTwins . . . . . . . . . . . ... ... .. ...... 60
A.1.1 Additional Analyses . . . .. ... ... ... .. Lo L 60
Cancer Resistance Using Twin Studies . . . . .. ... ... ... .... ... 65
A21 Additional SimulationResults . . . . ... . .. ... .. ... .... 65
A.2.2 Additional Details on Likelihood Function . . ... ... ... .... 71

Vi



List of Figures

1.1 Examples of study designs used in simulations. A trio where 1 and 2 are
parents and 3 is the offspring (a), a sib pair where 1 and 2 are the parents
and 3 and 4 are the offspring (b), and a three-generation pedigree where
1,2,4 are the founders and 3 and 5 are the offspring(c). . . . . ... ... ...

1.2 Empirical power of the FBAT statistic for pedigrees. The disease preva-
lence is 0.1% in panel (a) and 14% on in panel (b). The panel on the left
in (a) and (b) represents and odds ratio of 1.4 and the panel on the right
represents an odds ratio of 2. On the x-axis is the frequency of the disease
allele and on the y-axis is the power. The red line represents the empiri-
cal power for the FBAT statistic of pedigrees conditional on the parents ,
and the blue line represents the empirical power for the FBAT statistic of
pedigrees conditional on the founders. . . . ... ... ... ... .. ...

1.3 Comparison of ascertainment conditions for simple disease. The disease
prevalence is 0.1% in panel (a) and 14% in panel (b). The panel on the left
in (a) and (b) represents and odds ratio of 1.4 and the panel on the right
represents an odds ratio of 2. On the x-axis is the frequency of the disease
allele and on the y-axis is the power. The red line represents the empirical
power for the FBAT statistic of pedigrees conditional on the parents , the
black line represents sib-pairs, and the blue line represents the power for
trios. . . .. e

1.4 Comparison of ascertainment conditions for complex disease. Compares
the empirical power of the FBAT used to analyze the pedigree for asso-
ciation, PBAT used for the pedigree analysis, sibpairs, and trios for the
additive mode of inheritance and prevalence of 0.14. . . ... .. ... ...

1.5 Data application: APP gene. Pedigree representing a family with the APP
gene which is known to be associated with early onset Alzheimer’s disease
(Goate et al., 1991). Black indicates a carrier of the gene and slashes indicate
the person is dead. The triangles are used to preserve the anonymity of a
family. . ...

2.1 Empi};ical Absolute Risk Estimates. The figure shows the 5-year, 10-year,
20-year, and 30-year risks (arranged from top to bottom) of having cancer
conditional on whether or not the co-twin had cancer previously . The x-
axis is the age of the unaffected twin that is being counseled. The y-axis
represents the risk of cancer for the unaffected twin. The risk is estimated
empirically using the cumulative incidence curve. Red represents the risk
for MZ twins with an affected co-twin and blue represents the risk for DZ
twins with an affected co-twin. The purple represents the risk conditional
on having an unaffected co-twin. The dashed lines represent the 95% con-
tidence intervals which are calculated using the bootstrap method. . . . . .

vii



2.2

2.3

24

25

Empirical Absolute Risk Ratio Estimates. The figure shows the ratio of
the 5-year,10-year, 20-year, and 30-year risk of having cancer conditional
on having an affected /unaffected co-twin compared to the unconditional
risk estimates. The red line represents the risk ratio for an MZ twin that
has an affected co-twin compared to the unconditional risk. The blue line
represents the risk ratio for DZ twin with an affected co-twin compared
to the unconditional risk estimates. The orange and purple lines represent
the risk ratio for MZ (orange) and DZ (purple) twins with an unaffected co-
twin compared to the unconditional risk estimates. The dashed lines repre-
sent the 95% confidence intervals which are calculated using the bootstrap

method. . . . . . . .

SEER Risk Estimates. (a) Unconditional risk estimated using 2011-13 SEER

data (purple) and the unconditional estimates from NorTwinCan data (black).

(b) The figure shows the 5-year, 10-year, 20-year, and 30-year risks (ar-
ranged from top to bottom) of having cancer conditional on whether or
not the co-twin had cancer previously based on SEER baseline risks . The
x-axis is the age of the unaffected twin that is being counseled. The y-axis
represents the risk of cancer for the unaffected twin. The risk is estimated
empirically using the cumulative incidence curve. Red represents the risk
for MZ twins with an affected co-twin and blue represents the risk for DZ
twins with an affected co-twin. The purple represents the risk conditional
on having an unaffected co-twin. The dashed lines represent the 95% con-

fidence intervals which are calculated using the bootstrap method. . . . . .

Semi-parametric Random Effects Model Absolute Risk Estimates. The
tigure shows the 5-year, 10-year, 20-year, and 30-year risks (arranged from
top to bottom) of having cancer conditional on whether or not the co-twin
had cancer previously based on the semi-parametric random effects model.
The x-axis is the age of the unaffected twin that is being counseled. The
y-axis represents the risk of cancer for the unaffected twin. The risk is es-
timated empirically using the cumulative incidence curve. Red represents
the risk for MZ twins with an affected co-twin and blue represents the risk
for DZ twins with an affected co-twin. The purple represents the risk con-
ditional on having an unaffected co-twin. The dashed lines represent the

95% confidence intervals which are calculated using the bootstrap method.

Liability Threshold Model Absolute Risk Estimates. The figure shows
the 5-year, 10-year, 20-year, and 30-year risks (arranged from top to bot-
tom) of having cancer conditional on whether or not the co-twin had can-
cer previously based on data simulated from a liability threshold model.
The x-axis is the age of the unaffected twin that is being counseled. The
y-axis represents the risk of cancer for the unaffected twin. The risk is es-
timated empirically using the cumulative incidence curve. Red represents
the risk for MZ twins with an affected co-twin and blue represents the risk
for DZ twins with an affected co-twin. The purple represents the risk con-
ditional on having an unaffected co-twin. The dashed lines represent the

95% confidence intervals which are calculated using the bootstrap method.

viil

32

33



2.6

3.1

3.2

3.3

3.4

3.5

Al

A2

Model Comparison of Absolute Risk Estimates. Comparison of 5, 10, 20,
and 30-year risk estimates for a twin with an affected MZ co-twin. The
empirical risks are calculated using the using NorTwinCan data (pink), es-
timates the semi-parametric random effects model (green), and simulated
data from the liability threshold model (orange). 95% confidence intervals

are calculated using the bootstrap method. . . . ... ... ... .. ... ..

Concordant cancer twin pairs with no censoring. Simulation results based
on 79,520 MZ twins and 123, 348 DZ twins with no censoring and 10% sus-
ceptibility. Proportion of cancer concordant twin pairs as we vary levels of
resistance in the population (left). Differences in proportions of cancer con-
cordant MZ and DZ twins as we vary levels of resistance (right). Results

are based on 100 data generations. . . . .. ... ... .. ... ... . ...

Concordant cancer twin pairs with 70% censoring. Simulation results
based on 79,520 MZ twins and 123, 348 DZ twins with no censoring and
10% susceptibility. Proportion of cancer concordant twin pairs as we vary
levels of resistance in the population (left). Differences in proportions of
cancer concordant MZ and DZ twins as we vary levels of resistance (right).

Results are based on 100 data generations. . . . . . . ... ... ........

Concordant cancer twin pairs by age with no censoring. Simulation re-
sults based on 79, 520 MZ twins and 123, 348 DZ twins with no censoring
and 10% susceptibility. Differences in proportions of cancer concordant MZ
and DZ twins as we vary levels of resistance, across different age groups

(50, 60, 70, 80). Results are based on 100 data generations. . . . . . . ... ..

Concordant cancer twin pairs by age with 70% censoring. Simulation re-
sults based on 79, 520 MZ twins and 123, 348 DZ twins with 70% censoring
and 10% susceptibility. Differences in proportions of cancer concordant MZ
and DZ twins as we vary levels of resistance, across different age groups

(50, 60, 70, 80). Results are based on 100 data generations. . . ... ... ..

Likelihood Based Approach. Simulation results based on 79, 520 MZ twins
and 123, 348 DZ twins with 70% censoring and 10% susceptibility. We com-
pare true parameters used to generate the data (actual estimates), to those

estimated using our proposed likelihood based approach. . . ... ... ..

Semi-parametric Random Effects Model: Risk Varies by Percentile of
Random Effect. The graph shows the 5th, 25th, 50th, 60th, 75th, and 95th
percentiles of the 5-year, 10-year, 20-year, and 30-year risk of having cancer
conditional on the DZ co-twin (MZ not shown) having cancer for data us-
ing the semi-parametric random effects model. The x-axis is the age of the
unaffected twin that is being counseled. The y-axis represents the risk of

cancer for the unaffected twin. . . . . . . . . . . ... ...

Liability Threshold Model: Casewise Concordance Estimates. The graph
shows the casewise concordance estimates of MZ and DZ twins estimated
from the liability threshold model. The x-axis is the age of the unaffected
twin that is being counseled. The y-axis represents the casewise concor-
dance. The red represents the MZ twin and the blue represents the DZ

twin. The dotted lines are the 95% confidence intervals. . . .. ... .. ..

iX



A3

A4

A5

A6

A7

Empirical Absolute Risks for Twin with Co-Twin Affected in Past 5 Years.

The graph shows the 5-year, 10-year, 20-year, and 30-year risk of having
cancer conditional on whether the co-twin has cancer in the past 5 years
or the co-twin doesn’t have cancer. The x-axis is the age of the unaffected
twin that is being counseled. The y-axis represents the risk of cancer for the
unaffected twin. The risk is estimated empirically using the cumulative in-
cidence curve. The red represents the MZ twin with an affected co-twin
and the blue represents the DZ twin with an affected co-twin. The purple
is representative of the risk conditional on having an unaffected co-twin.

The 95% confidence intervals are calculated using the bootstrap method. . .

Empirical Absolute Risks for Twin with Co-Twin Affected in Past 10
Years. The graph shows the 5-year, 10-year, 20-year, and 30-year risk of
having cancer conditional on whether the co-twin has cancer in the past 10
years or the co-twin doesn’t have cancer. The x-axis is the age of the unaf-
fected twin that is being counseled. The y-axis represents the risk of cancer
for the unaffected twin. The risk is estimated empirically using the cumu-
lative incidence curve. The red represents the MZ twin with an affected
co-twin and the blue represents the DZ twin with an affected co-twin. The
purple is representative of the risk conditional on having an unaffected
co-twin. The 95% confidence intervals are calculated using the bootstrap

method. . . . . . . .

Empirical Absolute Risks for Twin with Co-Twin Affected in Past 20
Years. The graph shows the 5-year, 10-year, 20-year, and 30-year risk of
having cancer conditional on whether the co-twin has cancer in the past 20
years or the co-twin doesn’t have cancer. The x-axis is the age of the unaf-
fected twin that is being counseled. The y-axis represents the risk of cancer
for the unaffected twin. The risk is estimated empirically using the cumu-
lative incidence curve. The red represents the MZ twin with an affected
co-twin and the blue represents the DZ twin with an affected co-twin. The
purple is representative of the risk conditional on having an unaffected
co-twin. The 95% confidence intervals are calculated using the bootstrap

method. . . . . . . .

Concordant cancer-free twin pairs with no censoring. Simulation results
based on 79,520 MZ twins and 123, 348 DZ twins with no censoring and

10% susceptibility. Proportion of cancer-free concordant twin pairs as we
vary levels of resistance in the population (left). Differences in propor-
tions of cancer concordant MZ and DZ twins as we vary levels of resistance

(right). Results are based on 100 data generations. . . . ... .. ... ....

Concordant cancer-free twin pairs with 70% censoring. Simulation re-
sults based on 79, 520 MZ twins and 123, 348 DZ twins with 70% censoring
and 10% susceptibility. Proportion of cancer-free concordant twin pairs as
we vary levels of resistance in the population (left). Differences in propor-
tions of cancer concordant MZ and DZ twins as we vary levels of resistance

(right). Results are based on 100 data generations. . . . ... ... ... ...

62

66

68



A.8 Concordant twin pairs where both twins are alive and cancer-free by

age with no censoring. Simulation results based on 79, 520 MZ twins and

123, 348 DZ twins with no censoring and 10% susceptibility. Differences in

proportions of concordant MZ and DZ twin pairs that are alive and cancer-

free, as we vary levels of resistance, across different age groups (50, 60, 70,

80). Results are based on 100 data generations. . . . . . ... ... ...... 69
A.9 Concordant twin pairs where both twins are alive and cancer-free by age

with 70% censoring. Simulation results based on 79,520 MZ twins and

123, 348 DZ twins with 70% censoring and 10% susceptibility. Differences in

proportions of concordant MZ and DZ twin pairs that are alive and cancer-

free, as we vary levels of resistance, across different age groups (50, 60, 70,

80). Results are based on 100 data generations. . . . . ... ... ....... 70
A.10 Difference of the proportions of MZ and DZ concordant cancer twin

pairs with varying levels of censoring and 10% susceptibility. The left

graph are the results from 20% censoring, the middle is 50% censoring and

the right graph are the results from 80% censoring. . . . . . ... ... .. .. 71

pel



List of Tables

3.1 Study population. Characteristics of the Nordic Twin Studies of Cancer . . 42

xii



In memory of my grandmother, Mattie Pearl Turner, and my loved ones whose life was ended by cancer.

xiii



Acknowledgments

I would first like to thank God, whom I truly believe I would not have made it with-
out. Thank you to my wonderful and supportive advisor, Giovanni Parmigiani who has
guided me throughout this process and helped me to grow as a researcher. I would like
to thank my parents and my sister Jeffrey, Patricia, and Amanda McIntosh whose support
has been invaluable to helping me finish this process and in life. Thank you to my fiance,
Khaden Nurse, whose love and support has helped me to finish this process. Lorenzo
Trippa, Lorelei Mucci, and Nan Laird deserve a special thank you as members of my
committee who continued to believe in me and encourage throughout the entire process.
Thank you to members of the Nordic Twin Studies of Cancer (NorTwinCan) for allowing
me to collaborate with you and use the data. Danielle Braun has been instrumental in
guiding me through this process, and I am very grateful for her mentorship and friend-

ship.

Xiv



1. Analyzing Pedigrees for Association Analysis

Christina McIntosh!, Wai-Ki Yip!, Nan Laird'

"Department of Biostatistics, Harvard School of Public Health



1.1 Introduction

Due to genotyping technology, the Human Genome Project, and the lack of success
in linkage studies for identifying genes for complex traits, the focus of gene mapping in
humans is now largely based on association studies. In genetic association studies, both
population based and family based tests are used to detect genes that may be associated
with a particular trait such as disease. An advantage of using family based designs is that
they protect against false positive findings due to population substructure (Laird and
Lange, 2010).

The most simple family based design for testing association uses trios which include
an affected offspring and two parents. The transmission disequilibrium test (TDT) was
introduced as a test for linkage in the presence of association, but it is now widely used
as a test for association (Spielman et al., 1993). The approach of the TDT is to compare the
null distribution of the offspring’s genotype under Mendel’s laws to the offspring geno-
type that is actually observed in trios. A general method for testing association in family
based designs, known as the family based association test (FBAT), and can be applied to
testing pedigrees for association (Laird et al., 2000). This testing approach is the same as
the TDT, namely to compare the observed genotype of the offspring to what is expected
under Mendel’s laws. In fact, when using the FBAT statistic to test for association in pedi-
grees, there are two ways to determine the distribution of the genotypes of the offsprings
in the pedigree. The first approach is to use the parents’ genotypes to determine the null
distribution of the offspring genotype under no association. The second approach in-
volves using the founders” genotypes in the pedigree to determine the genotypes of the
offspring. The power of these two approaches when analyzing pedigrees for association

has not yet been compared.We conducted a simulation study with three goals:

1. To compare the power of two methods of analyzing pedigrees for genetic association
based on a simple Mendelian disease model. The first method involves conditioning
on parents’ genotypes and traits, and the second method involves conditioning on

founders’ genotypes and traits.



2. To compare the power of using FBAT to analyze pedigrees to the power of using

FBAT to analyze trios and multiplex trios (two parents and two offspring).

3. To compare the power of using FBAT to analyze pedigrees under a complex disease

model with shared factors (i.e. environmental) within families).

1.2 Using Pedigrees for Association Analysis

A trio is defined as two parents and an affected offspring, known as the proband. A
nuclear family with two affected siblings is referred to as affected sib pairs (Figure 1.1a). A
family pedigree not only includes genetic information about the proband and its parents
(and possibly siblings), but it may include information from the proband’s other relatives
as well, such as the proband’s aunts, siblings, children, grandparents, great-greatparents.
An example of a simple family pedigree can be found in Figure 1.1c. If 4 in the pedigree
represents the proband in Figure 1.1c, then 1 and 2 represent the proband’s parents, while
4 and 3 are the parents of 5 in the pedigree. People in the pedigree with no parental
information are known as founders in the pedigree. As an example, 1, 2, and 3 are the
founders in the pedigree in Figure 1.1c. The family based association test (FBAT) is a
generalization of the TDT test that can be used to determine the association between a
trait and gene/s in any type of pedigree.

We consider trios (Figure 1.1a), affected sib pairs (Figure 1.1b), and mulitplex pedi-
grees, as in Figure 1.1c with two affected offspring. Both tests described below are based
on transmissions to affected offspring. In the first approach to the calculation of the FBAT
test statistic, genotypes that are observed in the offspring are compared to those expected
under Mendel’s law conditioning on the parental genotypes. Then, contributions of each
nuclear family are combined over pedigrees.

The general form of the FBAT statistic is

> ik Lign(Xijr — E(Xijk| Pjr))
Zz‘jk E%kvar(Xijﬂij)

We sum over the total number of K pedigrees, £ = 1,2, ..., K and define X,;; to be the

3



o

(a) (b) (©)

Figure 1.1: Examples of study designs used in simulations. A trio where 1 and 2 are parents and
3 is the offspring (a), a sib pair where 1 and 2 are the parents and 3 and 4 are the offspring (b), and
a three-generation pedigree where 1,2,4 are the founders and 3 and 5 are the offspring(c).

coded genotype of the i*" offspring in the j family, T};; is the coded trait for the i
offspring in the ;" nuclear family, and P, are the parental genotypes of the j nuclear
family. The distribution of X} is dependent of the genotypes of parents that contribute
to the offspring genotypes. When analyzing pedigrees for association, the numerator
and denominator of the FBAT statistic are calculated separately for each offspring. The
numerator of the FBAT statistic for the pedigree is calculated by summing the numerators
for each of the offspring, similarly, the denominator of the FBAT statistic is calculated by
summing the denominators for each of the offspring. For each offspring, the expected
distribution of the offspring’s genotype varies with the parental genotypes that contribute
to the offspring genotypes.

In the second approach of the FBAT statistic, the expected distribution of the geno-
types of the offspring are compared to those expected under Mendel’s laws and the

founder genotypes. The general form of the statistic when conditioning on the founder

genotypes is
> ijk Lige(Xije — E(Xije| Fr))
U‘W(Zi]’k T%k(‘XUk‘Fk)) 7

where T}, is the same as in the FBAT statistic. The difference between the two approaches

is that the expected distribution of the genotypes of the offspring is calculated conditional
on the founders’ genotypes in the pedigree and not the parents’ genotypes as in the first
approach. In order to obtain the distribution of the genotypes of the offspring using the

founders, the algorithm in Rabinowitz and Laird is used (Rabinowitz and Laird, 2000).
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When calculating the FBAT statistic for Figure 1.1c, one can split the pedigree into
nuclear families. The first family includes 1, 2, and 3 and the second family includes 3, 4,
and 5. The distribution of the genotype of 3 is determined by the genotypes of the parents,
1 and 2. Similarly, the distribution of the genotype of 5 is determined by the genotypes of
the parents, 3 and 4 when using the FBAT statistic. When conditioning on the founders,
the distribution of the genotype of 4 is determined by the founders 1 and 2; therefore, the
null distribution of the genotype of offspring 4 is the same genotype distribution when
you condition on the parents. This is not the case when the distribution of the genotype
of 5 is calculated using the genotype of the founders,1, 2, and 3 in the pedigree. There-
fore, using the founder genotypes to calculate the expected distribution of offspring geno-
types accounts for all of the possibilities of the parental genotypes which leads to using
more information in the pedigree. In the example pedigree using Figure 1.1c, all possible
genotypes of offspring 4 are considered when calculating the genotype distribution for
offspring.

The power of the TDT is influenced by the mode of inheritance and the number of
informative mating types used in the calculation of the statistic (Rabinowitz and Laird,
2000). It is hypothesized that because conditioning on the founders in the test statistic
uses more information in the pedigree, the power of the statistic will be greater compared

to conditioning on the parents.

1.3 Methods
1.3.1 Simulation Design

A dichotomous trait is simulated with a single disease allele. Let A be the disease
allele and B be the non-disease allele. As in Risch and Merikangas, Knapp, and Whittaker
and Lewis, we assume the best-case scenario for the marker locus- that is, that the marker
locus is that disease locus which contains the disease allele (Spielman et al., 1993) (Risch
et al., 1996) (Knapp, 1999). A pedigree was built with three generations which include

three founders and two offspring (Figure 1.1c). The pedigrees were simulated by first



calculating the probabilities of the individual pedigrees using the logit model described
below.

Let Y;; and g;; represent the trait and genotype of the j individual in the " family.
Let g;, represent the genotypes of the parents in the i*" family. In general, the probability
that both siblings are affected by a particular disease depends on the genotypes of both
siblings, the genotypes of the parents, and other individual and family factors . For our
tirst set of simulations, we assume that the probability of an offspring being affected is
independent of its siblings” outcomes and genotypes as well as parental genotypes. More

specifically given two offspring, we assume

P(Yi = Yo = 1gi1, 9i2, 9ip) = P(Yir = 1|gi1, 92, 9ip) P(Yir = 1|91, Gi2, Gip)-
Using the logit model,
logit(P(Y;; = 1)) = Bo + b1gij

the probability that both siblings are affected is

ePotbgin ePot+Bgiz
P(Y;l =Y = 1|gi1’ giz) - / 1 + ePotBiga 1 + ePotBigiz

It is seen that the probability of disease is solely dependent on the genotype of the off-

spring which leads to the implicit assumption that the genotypes of each of the offspring
are independent of each other conditional on their parents? genotypes. Therefore, we
refer to this model as the independence model. This independence assumption is relaxed
in the last part of the simulations.

Once the three-generation pedigrees were simulated, the FBAT test statistic condi-
tioning on the parent genotypes and traits and the statistic conditioning on the founder
genotypes were calculated for each of the pedigrees. The alpha level was calculated by
determining the proportion of the statistics which have an absolute value greater than
1.96 (the cutoff point for the standard normal p-value of 0.05) when the probability of
disease given each genotype is the same. Next, the power of the test is compared under

the additive and recessive modes of inheritance for rare and common disease (prevalence
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0.1% and 14% respectively). There were 5000 simulations and each simulation contained
100 pedigrees. The range of the frequency of the disease allele was from 0.001 to 0.5. In
the second goal of the paper, the power of the two approaches for calculating the FBAT
test statistic (conditioning on the parents’ genotypes and conditioning on the founders’
genotypes) for the pedigree are compared to the empirical power of the FBAT statistic
calculated for the trio and sib pairs. The number of trios is doubled to evenly match the
number of affected offspring in the pedigree and multiplex trios.

In the simulations constructed for the first goal of the paper, the trait is obtained solely
based on the individual’s genotype. This, however, is a reasonable assumption if the dis-
ease is Mendelian but not if other factors contribute to the disease as well. It is known that
siblings and parents and their offspring share genetic and environmental effects. Conse-
quently, simulations are conducted to account for shared effects by adding the parameter
¢; to the logit model used in part one of the simulations, the where i represents the family
of the individual. Specifically, let Y;;, g;;, and ¢; represent the trait, genotype, and shared
correlated effects of the j individual in the i"* family. Let g;, represent the genotypes
of the parents in the i’ family. In the simulation, the probability that both siblings are
affected by a particular disease depends on the genotypes of both siblings, genotypes of
the parents, and other shared effects such as environment. Given, g, , gi2, gip, and ¢, the

probability of the offspring being affected are independent. More specifically, we assume

P(Yn =Y = 1|gilugi27gip7 ¢z’) = P(Yz‘l = 1|gi17gi2>gip7¢i>P(}/;1 = 1|g¢1,g¢2,gip>¢i)~

Using the logit model,

ePotBigin+i ePotBigiati
P(Yh - }/;2 - 1‘91’1; giz; (bl) - / 1+ 650+5191'1+¢1:1 1 + 650+5191¢2+¢z‘ f<¢l)d¢z

The same structure can be used to account for additional variation in the three-
generation pedigree structure with parent/offspring where Y;; is the phenotype of 4 in
Figure 1.1c (the affected parent who is also an offspring), and Y, is the phenotype of 5 in
Figure 1.1c (the offspring 4 and 5 in the pedigree).
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We assume ¢; ~ N (0, 0?) for the straightforward calculation. The probability of both
offspring and parent-offspring pairs being affected using the logit model is used to cal-
culate the probability of the pedigrees and the multiplex trios and the recurrence risk ra-
tios. Then, the power of the FBAT statistic when conditioning on parental genotypes and
founder genotypes using the random effect are compared to the power of FBAT statis-
tic when conditioning on parental and founder genotypes under the assumption that the

trait is generated solely based on the genotypes with no shared family effects.

1.4 Results

1.4.1 Comparison of FBAT Conditioning on Parents’ and Founders’
Genotypes for Pedigrees

In the scenarios under the additive model, both offspring are affected, all genotypes
are known, and one pedigree type is used Figure 1.1c. The alpha level was calculated to be
around 0.05 on average for a nominal level of 0.05 (not shown). In Figure 1.2a, the power
for FBAT while conditioning on the founders of the pedigree and while conditioning on
the parents of the pedigree of a rare disease (prevalence of 0.001) and odds ratio (OR) of
1.4 and 2 are compared.

For each of the allele frequencies, the power for the FBAT when conditioning on
founders? genotypes in the pedigree is minutely higher than the power when we con-
dition on parental genotypes . In Figure 1.2b, the power is also calculated for a common
disease (prevalence of 0.14). The power of the statistic is lower with a rare disease, yet
there is still a very small increase in power when conditioning on the founder genotypes
for the statistic.Spielman et al. (1993) showed that when ascertaining on all offspring be-
ing affected, the power of the FBAT is heavily influenced by the genotypic relative risk
and proportion of informative families (those families whose variance is not 0 in the statis-
tic) that contribute to the statistic. Therefore, the increase in power with relative risk is
consistent with Spielman et al. (1993). Also, for a common disease, the power is less

dependent on the relative risk compared to a rare disease, where the power is more de-



pendent. The number of pedigrees in each simulation were doubled when calculating
the empirical power under the recessive mode of inheritance. However, the power was

extremely low and is not shown.

Comparison of Power for Rare Disease (0.1%)

OR=14 OR=2
L] Conditi P ts (FBAT)
R 1L Condiion on Founders (PBAT) ®
o | o |
S o S o
(] (]
5. 5«
[T a e
N N
o o
= Q|
° T T T ° T T T
0.0 0.2 0.4 0.0 0.2 0.4
Frequency of Disease Allele Frequency of Disease Allele
(a)
Comparison of Power for Common Disease (14%)
OR=14 OR=2
o |= Condition on Parents (FBAT) [}
© |4  Condition on Founders (PBAT) o
< | © |
a o E o
2 < 2
g o3
N = N
o o
e e
o . . o

0.0 0.2 04 0.0 0.2 0.4
Frequency of Disease Allele Frequency of Disease Allele

(b)

Figure 1.2: Empirical power of the FBAT statistic for pedigrees. The disease prevalence is 0.1%
in panel (a) and 14% on in panel (b). The panel on the left in (a) and (b) represents and odds ratio
of 1.4 and the panel on the right represents an odds ratio of 2. On the x-axis is the frequency of the
disease allele and on the y-axis is the power. The red line represents the empirical power for the
FBAT statistic of pedigrees conditional on the parents , and the blue line represents the empirical
power for the FBAT statistic of pedigrees conditional on the founders.



1.4.2 Comparison of ascertainment conditions

Next, the ascertainment of pedigrees is compared with nuclear families. Because the
power of the FBAT statistic is very close when conditioning on parents and founders,
only the power for conditioning on parents is shown in Figure 1.3. Under the additive
mode of inheritance with an odds ratio of 1.4 and 2, the power of the FBAT used with
pedigrees is higher than the power of the sib pairs and the trios is the lowest disease
allele frequency (Figure 1.3). However, the power difference between sib pairs and trios
is extremely minimal for both common and rare disease. In fact, the power of ascertaining

pedigrees is the highest for both rare and common disease (Figure 1.3).
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Comparison of Power for Rare Disease (Prevalence 0.1%)
for Ascertainment Conditions
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Figure 1.3: Comparison of ascertainment conditions for simple disease. The disease prevalence
is 0.1% in panel (a) and 14% in panel (b). The panel on the left in (a) and (b) represents and odds
ratio of 1.4 and the panel on the right represents an odds ratio of 2. On the x-axis is the frequency
of the disease allele and on the y-axis is the power. The red line represents the empirical power
for the FBAT statistic of pedigrees conditional on the parents , the black line represents sib-pairs,
and the blue line represents the power for trios.

1.4.3 Comparison of ascertainment conditions for “complex disease”

In the first part of the simulations, the disease trait is simulated only based on the
genotype. We make the assumption that there are other factors that contribute to the out-
come of disease using a logit model with a random effect. The random effect represents

shared factors between family members. These shared factors can be additional genetic
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components or environmental components. By increasing the variance component of the
shared familial effect, one also increases the recurrence risk ratio (RRR). The sibling RRR
is defined as the probability of a person being affected given his/her sibling is affected
divided by the probability the sibling is affected. The RRR can also be calculated for par-
ent/offspring. The RRR shown in Figure 1.4 is the sibling RRR, the sibling RRR is very
close in magnitude to the parent/offspring RRR. Figure 1.4 has three lines that represent
the change in power for the FBAT statistic when applied to pedigrees, sib pairs, and trios.
In all three situations, as the RRR increases, the power decreases. When 0?2 =0, the sibling
RRR is 1.01. Because there is an additional component that contributes to the outcome,
the genetic effect is attenuated causing a decrease in power. In addition, as ¢? increases,
the recurrence risk ratio for siblings and parent-offspring increases. Our results show that
the power of family based designs decrease because shared genetic factors increase heri-
tability. Our results are consistent with Ferreira et. al who show that inclusion of shared
factors by families (i.e. environmental) decrease the power (Ferreira et al., 2007). When
including shared familial factors, families with a high value of (which means more shared
familial components) are more likely to be selected even if there are no disease alleles in
the family. However, for smaller values of the RRR, ascertaining pedigrees still has higher
power than ascertaining sib pairs and trios. As the RRR gets large, the difference between

the power of the designs is very small.
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Comparison of Power for Common Disease (14%)
as Recurrence Risk Ratio Increases
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Figure 1.4: Comparison of ascertainment conditions for complex disease. Compares the empir-
ical power of the FBAT used to analyze the pedigree for association, PBAT used for the pedigree
analysis, sibpairs, and trios for the additive mode of inheritance and prevalence of 0.14.

1.5 Data Application
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Figure 1.5: Data application: APP gene. Pedigree representing a family with the APP gene which
is known to be associated with early onset Alzheimer’s disease (Goate et al., 1991). Black indicates
a carrier of the gene and slashes indicate the person is dead. The triangles are used to preserve the
anonymity of a family.

We compare the power of the test statistic when conditioning on the parents” geno-
types and conditioning on the founders’” genotypes in the pedigree in which early-onset
AD is inherited as an autosomal dominant disorder in Figure 1.5. Although we do not
have the actual genotypes in the pedigree, the genotypes can be inferred using the domi-

nant mode of inheritance. The pedigree in Figure 1.5 was analyzed for association using
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the FBAT, conditioning on the parents and the founders, assuming one marker at the DSL
and autosomal dominant inheritance. When conditioning on the parents, the value of
the FBAT statistic is x* = 8(p = 0.001). When conditioning on the founders, the FBAT
statistic is x* = 5.67(p = 0.0345). We notice that conditioning on the parents leads to a
more significant statistic. This example further illustrates the small difference between
conditioning on the parents’ genotypes and conditioning on the founders’ genotypes in

the pedigree.

1.6 Discussion

In this simulation study, we have shown the following;:

1. In our scenarios, conditioning on founders has a very small power advantage over

conditioning on parents.

2. Multiplex pedigrees can have a large power advantage over trios and sib pairs when

the causal locus is a substantial risk factor.

3. For diseases with a large sib RRR due to shared family factors, the power decreases
as RRR increase for all ascertainment designs. Yet, multiplex pedigrees still have

larger power over trios and sib pairs for smaller RRR.

In this study, we have shown that there is minimal difference in the power of FBAT,
conditioning on founders and parents in a pedigree. In fact, the power of condition-
ing on founders is slightly higher in the study, but in the data application, the statistic
for condition- ing on parents is more significant than the statistic computed by condi-
tioning on founders. To understand this, consider that the power of the statistic depends
on the degree of heterozygosity in the family. As the number of heterozygotes increases,
the power of the TDT and FBAT statistic increases. Figure 9 shows an example where
conditioning on founders is more powerful than conditioning on parents. Let A be the
disease allele. When conditioning on the parents 1.1c, offspring 5 (with parents 3 and

4) does not contribute to the test statistic because both parents are homozygous. On the
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other hand, when the statistic is calculated conditioning on the founders (1, 2, and 3),
offspring 5 contributes to the statistic because both possible genotypes for offspring 4 are
considered (AB and BB), which increases the sample space of the genotype of offspring 5
(AB and BB) 1.1c. Therefore, conditioning on founders provides more information about
potential outcomes. For complex disease, the power reduces as the recurrence risk ratio
increases for trios, sibpairs and multiplex pedigrees. As ¢ increases, the RRR increases
which means families that do not have the disease allele are more likely to enter the sam-
ple. As a result, the frequency of the disease allele decreases and so does the power of the
statistic. This result is consistent with the results from Ferreira et al. (2007). In addition,
our study shows that pedigrees still have a power advantage over ascertaining trios and
sib pairs for a complex disease model. As the strength of the familial factors increases,
though, the power advantage decreases as well. These results suggest that pedigrees are
powerful in detecting association where additional familial factors such as environment
and polygenic effects do not strongly influence the disease risk. Comparing the FBAT
statistic when conditioning on founders versus parent genotypes, conditioning on the
founders was more powerful for the additive and recessive inheritance models and over
varying allele frequencies, but the power difference was very slight. When comparing
using association tests for pedigrees to using the association statistic in other designs, it
is important to consider shared familial factors which decrease the power of the FBAT
statistic when applied to trios, sib pairs, and pedigrees. Analyzing multiplex pedigrees
for association has a large power advantage compared to ascertaining trios and sib pairs
for Mendelian diseases. The power advantage is still there when analyzing association for
complex disease for smaller values of the RRR. As the RRR gets large, the power advan-
tage diminishes. Although our results show that conditioning on founders is slightly but
consistently more powerful than conditioning on parents, in many cases the genotypes
of founders are not available and power may be lost when using methods to reconstruct
the missing family genotypes (Laird et al., 2000). In the scenario presented in the paper,
all of the genotypes are known. Future work includes comparison of the power when

genotypes are missing. The scenario included in the paper is a three-generation pedigree,
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but one could look at the effect of different pedigree structures on the power of the FBAT
statistic. Furthermore, one could explore the implication of the power difference on the

cost effectiveness of genotyping when comparing ascertainment conditions.
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2.1 Introduction

Twin studies provide important information about familial risk of cancer by using the
unique genetic relationships of monozygotic (MZ) and dizygotic (DZ) twin pairs. Gener-
ally, twin studies are analyzed to quantify heritability, or partition phenotypic variation
among genetic and other sources (Kempthorne and Osborne, 1961). Heritability is the
proportion of the total variation of a trait that is due to genetic factors in a population.
Lichtenstein et al. (2000) reported comprehensive heritability estimates of cancer using
twin registries from Sweden, Denmark, and Finland. For breast cancer, heritability was
estimated to be 27%, 42% for prostate cancer, and 35% for colorectal cancer. The estimates
for other common cancers were not interpretable. Mucci et al. (2016) reported updated
heritability estimates using the Nordic Twin Studies of Cancer (NorTwinCan), which in-
cludes twins from nationwide registers in Denmark, Finland, Norway, and Sweden, and
presently constitutes the largest twin study in the world. Twin pairs are followed for an
average of 32 years for cancer incidence and mortality. The authors estimate the heritabil-
ity of cancer overall to be 33%[30%, 37%)]. They also report estimates of concordance; the
frequency with which twins within a pair experience the same health history. The familial
risk is defined as the risk of cancer in a twin given his/her co-twin was diagnosed with
the same cancer. Mucci et al. (2016) found an excess cancer risk in twins whose co-twin
was diagnosed with cancer. After age 65, the familial risk of any cancer by age 100 in these
twins was 37%[36%, 38%)| for DZ twin pairs and almost 46%[44%, 48%)] for MZ pairs.

When one considers the trait defined as the onset of an age-dependent disease, as
is the case in cancer, heritability is estimated by creating an artificial, unobserved, trait
whose variance components are inferred statistically (Wright, 1934). This makes the con-
cept of heritability somewhat abstract and only indirectly relevant for clinical practice.
Concordance is a more intuitive concept, but it also falls short of full clinical usability, as
most clinical decisions are best framed within the context of a specific time period, say 10
or 20 years.

The first aim of this paper is to expand analyses of heritability and concordance by
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providing absolute risk estimates conditional on the affection status of the co-twin, for
use in practical cancer prevention settings. For example, consider a twin who does not
yet have cancer and would like to be counseled about his/her future risk of cancer. Based
on knowledge of the cancer status of his/her twin, we use data from NorTwinCan to com-
pute the absolute 5-year, 10-year, 20-year, and 30-year cancer risk. These absolute risks in
MZ and DZ twins provide a practical tool that can be used, for example, in assisting de-
cisions about targeted prevention strategies. DZ twins share approximately half of their
genetic make-up which makes them similar to full-siblings, as such the risks for DZ twins
approximates the risks for full siblings.

As a second aim, we also evaluate risk ratios, comparing MZs and DZs twins’ risk
to the baseline cancer risk without conditioning on the co-twin. We can then use these
risk ratios to obtain the risk conditional on a co-twin’s status in a new population, by
multiplying these ratios by the baseline cancer risk of the new population. For example,
we apply the risk ratios estimated from NorTwinCan to data from the Surveillance, Epi-
demiology, and End Results program (SEER) (Howlader et al., 2013), to calculate the risks
conditional on the co-twin’s affection status in the U.S. population.

Several alternative methods can be used for estimating risk in this context. Unlike
heritability, absolute risk estimates can be derived by direct empirical estimation of the
cumulative incidence curve, using the Aalen-Johansen estimator (Aalen and Johansen,
1978) to account for competing risks (in this case mortality). This approach does not re-
quire any assumptions about latent traits, their distributions or the distribution of the
failure times. It is interesting to contrast these direct estimates to those implied by state
of the art methods for heritability analyses, which also allow one to derive risk estimates.
We consider two: the semi-parametric random effects model developed by (Scheike et al.,
2010), which can be used to estimate the joint probability of cancer for twin pairs in the
presence of competing risks, left-truncation, and right-censoring; and the liability thresh-
old model typically used to estimate heritability. Holst et al. (2016) expanded the standard
liability threshold model to include inverse probability of censoring weighting of com-

plete observations, which leads to consistent estimates of heritability and concordance
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estimates in the presence of censoring. The final aim of the paper is to provide estimates
of the absolute risks using all three approaches, allowing us to investigate how the as-

sumptions of each model impact the estimates of risk.

2.2 Goals

Using the NorTwinCan cohort, we compute the absolute 5, 10, 20, and 30-year risk

estimates using three methods:

1. The empirical conditional cumulative incidence curve in the stratum of interest, us-
ing the Aalen-Johansen estimator. This is done directly on the observed twin data

from NorTwinCan without simulations.

2. The semi-parametric random effects model of Scheike et al. (2010). This is done
directly on the observed twin data from NorTwinCan without simulations using
the estimates of concordance and cumulative incidence produced using the semi-

parametric random effects model.

3. The Holst et al. (2016) version of the liability threshold model for right censored
data. We fit the model to NorTwinCan data, simulate twin data based on the model
parameters, and then empirically calculate the cumulative incidence curves based

on the simulated data.

2.3 Methods

2.3.1 Study Populations

The NorTwinCan cohort is the largest twin cohort in the world. It includes 357, 377
twin individuals, and is comprised of both MZ, same-sex DZ, and opposite-sex DZ twins.
Our analysis considers the 202,868 MZ and same-sex DZ twin pairs where both twins
were alive at the start of follow-up. We excluded twin pairs whose zygosity was un-

known. Individuals in NorTwinCan were followed prospectively until: cancer diagnosis,
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death from other causes, emigration during follow-up, or time of last follow-up. The me-
dian follow-up time in NorTwinCan is 32 years, and there were 27, 156 incident cancers
in the cohort. See Mucci et al. (2016) for further description of the cohort.

Once we estimate risk ratios for cancer risk conditional on a co-twin’s affection status,
we use these risk ratios to estimate the absolute risks of cancer in the United States by
using estimates of baseline risk of cancer from the SEER program registry. SEER began
in 1973 and collects data on cancer cases from locations throughout the United States

(Howlader et al., 2013).

2.3.2 Definitions

Let K be the number of twin pairs. We consider two events; cancer and mortality.
For the i twin, i = 1,2 in the k™ twin pair, k = 1,2, ..., K, let the event time be T}; and
the event type be €,. Let ¢;; = 1 if the event that is observed is cancer and ¢;; = 2 if the
event is death. Let 5, equal to O for a censored individual. Thus, we observe €, = €0,
which is 0 for a censored individual, 1 for an individual diagnosed with cancer, and 2
for a deceased individual. Additionally, let Xy; = (1, Xy 1, ..., Xip)” indicate a vector of
covariates for the i"* twin in the &' twin pair.

For our analyses, twins are considered to be classified in three ways: 1) diagnosed
with cancer of any type, 2) dead without cancer diagnosis, or 3) alive without cancer
diagnosis or lost to follow-up. Based on the country of birth for the twins, we defined the
time of entry into the study and end of follow-up. We assume the same censoring in pairs,
which we believe is reasonable since censoring in this type of data is often be attributed
to administrative causes. Hence, identifying the bivariate censoring distribution can be
reduced to estimating the marginal censoring distributions (Scheike et al., 2014). We test
the assumption of equivalent cumulative incidence for MZ and DZ twins using the Fine-
Gray regression model. We found that the cumulative incidence for MZ twins was around

1% higher than DZ twins.
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2.3.3 Calculating Risk Using The Empirical Distribution

The Aalen-Johansen estimator is a nonparametric maximum likelihood estimator of
the cumulative incidence of cancer at age a, denoted by P(7}; < a,€;; = 1) (Aalen and
Johansen, 1978). Under some regularity conditions, the Aalen-Johansen estimator con-
verges with probability 1 to the cumulative incidence function and is asymptotically nor-
mally distributed (Aalen and Johansen, 1978). Using the Aalen-Johansen estimator, we
compute the absolute risks for counseling an unaffected individual based on his/her co-
twin’s history. Let i = 2 indicate the unaffected twin that is being counseled, and let i = 1
indicate the other twin. Let a; be the current age of the twins, and ¢, be the time interval

of interest for risk evaluation, say ¢, = 5, 10, 20, 30.

1. If twin 7 = 1 is unaffected, we wish to estimate the probability that twin i = 2
develops cancer in the next ¢, years, given that both twins are alive and unaffected

at their current age a4:

P(Tie < ay +ty, e = 1T > a1, Tro > ay). (2.1)

2. If twin ¢ = 1 is affected, we wish to estimate the probability that twin i = 2 will
develop cancer in the next ¢, years, given that he/she is alive and unaffected, and
twini = 1 was diagnosed in the period between a, and a; (where q is the beginning

of the time period that is used to define the conditioning event for twin i = 1):

P(Tho < ay +tr,ep2 = 1ag < Ty < ay,Tra > a1, €1 = 1). (2.2)

To calculate these risk estimates, we must first create strata as follows.

1. To compute (3.2), where twin ¢ = 1 is unaffected: Identify twin pairs where both

twins are unaffected at age a;.

2. To compute (3.2), where twin ¢ = 1 is affected: Identify twin pairs where exactly one
twin has cancer between the ages of ay and a; and the other twin is cancer free at

age a.
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Once the appropriate stratum is created, we use the Aalen-Johansen estimator to es-
timate that cumulative incidence function within each strata. The unconditional risks are
calculated without conditioning on the co-twin’s affection status, P(Tj2 < a; + t,, €2 =
1|Tye > a1). We then use these curves to estimate the absolute 5, 10, 20, and 30-year risks.

We calculate 95% confidence intervals using the bootstrap method (Monaco et al., 2005).

2.3.4 Calculating Risk Using a Semi-parametric Random Effects Model
for Multivariate Competing Risks Data

Scheike et al. (2010) propose a semi-parametric random effects model that accounts
for left-truncation and right-censoring in clustered survival data. In our case, clusters are
twin pairs. The model allows one to estimate the marginal cumulative incidence func-
tions, and the associations between cause-specific failure times within a pair are modeled
through dependence parameters of copula functions. Using the cumulative incidence
functions and the estimates of the associations between the failure times, one can calcu-
late the cumulative incidence for a specific pair, which in turn allows estimation of the
joint probability of both twins experiencing an event by a particular time. Using the joint
probabilities, we can then estimate the risk for a twin experiencing an event given his/her
co-twin has already experienced an event.(Scheike et al., 2010).

Let 6, denote the random effects, and assume they are independently distributed
random variables, one for each pair, that capture variability in risk from pair to pair. Indi-
vidual twins within pairs are independent conditional on §;. We also consider gender and
country as covariates (Xy; ) in the model in order to estimate the dependence parameters.

The model assumes a cumulative incidence function of the form

Pi(Tyi < a, €5 = 1ag;) = 1 — exp(—0, 9, [—n(a) 24]), (2.3)

where 7(a) is a (p + 1)-dimensional vector of regression functions that vary with age, q,
and VU, (a) = Ey, [exp(—6ka)|zy;] is the Laplace transform of the random effects 6;. In
our simulation, we choose V,, (a) to be the Laplace transform of a gamma distribution

with mean 1 and variance v,,z for MZ twins, and vp; for DZ twins which is the standard
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choice. Here, vj;z and vpz control the association between the ages of cancer diagnosis.
The marginal cumulative incidence function is then modeled using the generalized

semi-parametric additive model.
—log[l — PC(T]m < a,€p = 1‘1’]“)] = n(a)Txki. (24)

Once we have obtained 7(a) from 2.4, we can also evaluate the bivariate cumulative

incidence function, P, for two arbitrary ages a and o’

Pn(a,a’) = P(T1 S a, € = 1,T2 S a/,el = 1,62 = 1) =
1 — exp{~n(a)" X} — exp{—n(a’)" Xj2}

+ U, [\I/;kl (exp{—n(a)" Xz1}) + \Ilgkl(exp{—n(a')Tng)}} . (2.5)

Using the bivariate cumulative incidence function and the marginal cumulative inci-
dence, we can calculate the absolute risks conditional on a co-twin’s affection status. For
example, to calculate the ¢,-year risk of twin i = 2 getting cancer conditional on twini = 1

being affected, we can evaluate:

Pl <ar+trero=1]Ti < a1,The > a1, = 1) =
Pi(ar,a1 + 1) _ Pii(ay,ar)
Pc(al) Pc(al)

(2.6)

Without taking into account truncation, we 