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Abstract

Graph Neural Networks (GNNs) have emerged as a powerful class of machine

learning techniques capable of processing graph-structured data, showing immense

promise in molecular property prediction. This thesis compares the performance of

two specific GNNs—Graph Attention Networks (GATs) and Attentive FP models

with Graph Convolutional Networks (GCNs) in predicting the biological activities

of protein targets across several protein families. Our findings indicate that while

GCNs are highly effective for molecular property prediction, GATs and Attentive FP

models also offer competitive performance, with GATs showing particular promise for

enzymes and transporters. The experiments suggest that the choice of model should

be tailored to specific families of target proteins, highlighting the need to consider

the particular protein family when selecting GNNs for predictive modeling in drug

discovery.
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Chapter I.

Introduction

1.1. Background

Deep learning have emerged as a promising method to aid the discovery of

new medicine and reduce the time and cost associated with experimental screening

(Gawehn et al., 2016). With the advent of these techniques, more sophisticated

computational methods for molecular activity prediction have been developed (LeCun

et al., 2015; Chen et al., 2018; Zhavoronkov et al., 2019; Stokes et al., 2020; Jiménez-

Luna et al., 2020). Graph neural networks (GNNs) have shown great promise in

modeling the relationships between molecular structures and their properties Wu

et al. (2021).

GNNs are adept at processing graph-structured data, which makes them ideal

for modeling the complex relationships between atoms and bonds in a compound

(Gilmer et al., 2017). GNNs learn representations of molecular structures directly

from input data, addressing limitations of traditional models like Quantitative Structure-

Activity Relationships (QSAR) and Quantitative Structure-Property Relationships

(QSPR), thereby enhancing predictive performance (Gawehn et al., 2016). Among



various GNN architectures, GATs are notable for their effective depiction of complex

node relationships within graphs through the use of attention mechanisms, which al-

low them to adaptively weight the influence of neighboring nodes (Veličković et al.,

2018). This adaptability makes GATs particularly suited for handling complex molec-

ular structures and predicting a broad range of properties, such as molecular activity

(Wu et al., 2021). Recent research has shown GATs’ capabilities in predicting molec-

ular properties like solubility (Lee et al., 2023) and toxicity (Chen et al., 2021; Cremer

et al., 2023), underlining their significance in advancing molecular activity prediction.

Molecules can be effectively represented as graphs, with atoms as nodes and

bonds as edges (Gilmer et al., 2017). Additional details, such as atom types, bond

types, and other atom-level features, can be incorporated as attributes of the nodes

and edges. This graph-based representation facilitates the direct encoding of a molecule’s

topological structure, which plays a crucial role in determining its properties and

molecular activities (Gawehn et al., 2016). Once the molecular graph is constructed,

GNNs can be employed to process and analyze the graph-structured data.

A key component of GNNs is the message-passing framework, which allows for

the efficient and systematic aggregation of information from neighboring nodes. Node

representations are iteratively updated and optimized through a series of message-

passing steps that combine the features of neighboring nodes and edge attributes.

This process enables the GNN to capture both local and nonlocal information within

the molecular graph, ultimately resulting in a fixed-size representation that can be
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used for various property prediction tasks (Gilmer et al., 2017).

One of the most widely used GNN architectures for molecular property pre-

diction is the Graph Convolutional Network (GCN) (Kipf & Welling, 2017). GCNs

employ a convolutional layer to update node representations by aggregating informa-

tion from neighboring nodes through a simple averaging operation. Sakai et al. (2021)

utilized GCNs to predict pharmacological activities based on chemical structures with

graph convolutional neural networks. Despite their success in various molecular prop-

erty prediction tasks, GCNs also have several limitations. For example, the simple

averaging operation can lead to information loss, as it does not consider the relative

importance of different neighboring nodes (Kipf and Welling, 2017). Furthermore,

GCNs might struggle to capture complex relationships between nodes, as they lack a

mechanism for adaptively weighting the contributions of neighboring nodes.

These limitations of GCNs have motivated the development of more advanced

GNN architectures, such as Graph Attention Networks (GATs), which aim to address

these shortcomings and improve the performance of molecular property prediction

tasks (Veličković et al., 2018). By incorporating attention mechanisms, GATs are

able to adaptively weight the contributions of neighboring nodes, allowing for a more

flexible and robust approach to information aggregation (Veličković et al., 2018). As

a result, GATs have the potential to outperform traditional GCNs and other GNN ar-

chitectures in predicting molecular activity and other molecular properties (Wu et al.,

2021). In addition to GATs, several other advanced GNN architectures have emerged
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in recent years, further contributing to the ongoing advancements in the field of

molecular property prediction. These include Graph Isomorphism Networks (GINs),

which aim to capture the structural information of molecular graphs more effectively

by considering graph isomorphism, and Message Passing Neural Networks (MPNNs),

which provide a general framework for constructing a wide variety of message-passing

algorithms for GNNs (Gilmer et al., 2017). Each of these architectures offers unique

advantages and addresses different aspects of the limitations found in earlier GNN

models.

The growing body of research on GNNs for molecular property prediction un-

derscores the potential of these techniques to revolutionize drug discovery and related

fields. While GCNs and GATs have demonstrated significant success in various pre-

diction tasks, ongoing research continues to explore and develop new GNN architec-

tures that can further enhance the performance and interpretability of these models.

By understanding the strengths and weaknesses of different GNN architectures, re-

searchers can better select and tailor GNN models to address specific challenges in

molecular property prediction tasks (Stokes et al., 2020). The continued advancement

of GNNs and their application to molecular property prediction has the potential to

significantly impact the efficiency of the drug discovery process, paving the way for

more effective and targeted therapeutic interventions (Chen et al., 2020).

GATs have emerged as a powerful GNN architecture for molecular property

prediction, largely due to their incorporation of attention mechanisms (Veličković

4



et al., 2018). Unlike GCNs, which aggregate information from a one-hop neighbor-

hood uniformly, GATs employ attention mechanisms to dynamically assign weights to

neighboring nodes during aggregation, based on a computed compatibility score be-

tween nodes. This typically results in a more flexible and robust approach than GCN’s

reliance on simple averaging operations (Kipf & Welling, 2017). By learning to as-

sign different levels of importance to neighboring nodes, GATs can better capture the

complex relationships between atoms and bonds within a molecule, ultimately leading

to more accurate property predictions (Wu et al., 2021). The advantages of attention

mechanisms in GATs can be attributed to their ability to focus on the most relevant

parts of a molecular graph while filtering out less important information (Veličković

et al., 2018). This selective focus enables GATs to effectively capture both local and

global contexts within the molecular graph, thereby enhancing their performance in

predicting various molecular properties (Wu et al., 2021). Additionally, the attention

mechanism in GATs also provides a degree of interpretability, as it allows researchers

to visualize the importance of different parts of the molecular graph in the predic-

tion process (Veličković et al., 2018). Several studies have already demonstrated the

potential of GATs for predicting molecular properties. For example, in Lusci et al.

(2013), GATs were applied to predict the solubility of compounds, outperforming tra-

ditional GNNs and other machine learning methods in terms of prediction accuracy.

Another study used GATs to predict the binding affinity of small molecules to protein

targets, showcasing their ability to effectively model complex molecular interactions
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(Chen et al., 2018). These studies, among others, highlight the effectiveness of GATs

in various molecular property prediction tasks and suggest their potential for advanc-

ing the state of the art in molecular activity prediction (Stokes et al., 2020). Building

on this concept, Attentive FP (Xiong et al., 2019) emerges as another powerful GNN

model that uses Recurrent Neural Networks (RNNs) to aggregate the structural infor-

mation encoded in the graph from nearby to distant nodes. It adopts graph attention

mechanisms at both the atomic and molecular scales to discern local and nonlocal

chemical properties. Attentive FP has been shown to be very successful for molecular

toxicity prediction tasks (Ketkar et al., 2023).

1.2. Motivation

Chemicals are the building blocks of the world, and chemical compounds con-

stitute all living things. By observing the properties of chemical compounds and

their interactions, we understand the world and create drugs to achieve desired ef-

fects. Traditionally, drug discovery has been a manual process, but with technological

advancements, we have accelerated this process. Although the advent of AI has au-

tomated much of it, there is still room to further our understanding.

While leveraging GNNs for predictive tasks in drug discovery has become

commonplace, the industry often relies on a narrow selection of models. Typically,

once these models are trained, they are frequently used indiscriminately for various

tasks. This approach may not yield the best results as the most optimal model for
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a particular task does not automatically mean it will be equally effective for other

tasks. Thus, it is crucial to investigate diverse model architectures in order to enhance

performance. By doing so, we can potentially uncover more efficient methods for drug

discovery, tailoring model selection to the unique challenges of each task, and thereby

pushing the boundaries of what is possible with machine learning in this domain.

1.3. Problem Domain

Molecular property prediction, a crucial task in drug discovery, demands accu-

rate methods to infer properties from molecular structures. This domain encompasses

both categorical (e.g., toxicity) and continuous (e.g., solubility) property predictions,

posing unique challenges. The effectiveness of predictions depends on the chosen rep-

resentation method, such as Simplified Molecular Input Line Entry System (SMILES)

or fixed representations like fingerprints and structure keys.

Molecular property prediction falls under the supervised learning category,

where a model is trained on a dataset consisting of molecules with known proper-

ties. Once trained, the model is able to make predictions on the properties of new,

unseen molecules. To evaluate the model’s performance, a separate test set is used,

which includes molecules with known properties. For classification tasks, metrics

like accuracy, precision, recall, and F1 score are commonly employed. On the other

hand, mean squared error (MSE), root mean squared error (RMSE), and the coeffi-

cient of determination (R2), and area under the curve (AUC) are frequently used for
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regression tasks.

1.4. Thesis Outline

The main goal of this thesis is to explore the prediction capabilities of GATs

and Attentive FP networks in molecular property prediction. We compared their

performance with GCNs on prediction tasks. Computational experiments were con-

ducted using the BACE dataset, benchmark datasets from earlier papers, and a man-

ually filtered dataset to demonstrate its effectiveness.

This thesis begins with the Introduction (Chapter I), which introduces the

topic and sets the stage for the subsequent chapters. A critical review of the existing

literature on GNNs and their applications is provided in the Graph Neural Networks

section (Chapter II). The Methodology chapter (Chapter III) outlines the specific

methodologies and experimental procedures employed. The findings of the research

are presented in the Results chapter (Chapter IV), followed by the Discussion chapter

(Chapter V), which interprets these findings and discusses their implications. The

thesis concludes with the Conclusion (Chapter VI), summarizing the study’s key

insights and suggesting directions for future research.

8



Chapter II.

Graph Neural Networks

In the realm of neural networks, GNNs have marked a significant breakthrough

with their specialized approach to graph-structured data. The foundational concept

of GNNs dates back to the late 1980s, but it was not until the 1990s that these

networks began to gain traction within the research community. The early work by

Baldi & Chauvin (1996) laid the groundwork for what would eventually evolve into

modern GNNs. In their seminal paper, they proposed a hybrid architecture combin-

ing elements of Hidden Markov Models (HMMs) and Neural Networks, addressing

some of the limitations inherent in HMMs, such as control of model structure and

complexity. This approach demonstrated significant improvements in efficiency, as

evidenced by their construction of a model for the immunoglobulin protein family

with fewer parameters than previous HMMs.

The term ”Graph Neural Network” itself was coined later by Gori et al. (2005),

conceptualized as an extension of recursive neural networks capable of directly pro-

cessing graph data. This marked a pivotal moment in the history of GNNs, laying

the foundation for their widespread application in various fields. The comprehensive
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framework for GNNs, encompassing both graph and node-focused applications, was

further refined and formally introduced by Scarselli et al. (2009). This work unified

the diverse applications of GNNs into a common framework, setting the stage for the

rapid development and adoption of GNNs in subsequent years.

Since then, GNNs have have proven to be valuable in various domains such

as social media analysis, recommendation systems, drug discovery, natural language

processing, and computer vision. The flexibility and applicability of GNNs make them

an indispensable resource for modern machine learning methods, providing innovative

responses to complex problems that can be framed within the graph-based approach.

A GNN typically consists of three types of layers, each serving a distinct

purpose in processing graph-structured data. These layers are designed to capture

the inherent structure of the graph and the relationships between its nodes, enabling

the network to learn and predict based on this information. The three types of layers

in a GNN are as follows:

(i) Permutation-equivariant layers: These layers map a graph to an updated repre-

sentation of the same graph. They are commonly referred to as message passing

layers, which propagate messages between nodes based on their neighborhood

information.

(ii) Local pooling layers: These layers aggregate the node representations into a

graph representation, helping to reduce the dimensions of the data by combining

information from the nodes.

10



(iii) Global pooling layers: Also known as readout layers, these layers consolidate

information from every node in the graph to provide a fixed-size representation

of the entire graph.

2.1. Graph Neural Networks and Molecular Activity Prediction

Molecular activity prediction has become a popular application of GNNs in

recent times. Traditional methods, such as QSAR and QSPR, primarily relied on

descriptor-based models for molecular activity prediction. These approaches char-

acterized molecules using a predefined set of descriptors and then mapped these to

the properties of interest using linear or nonlinear models (Shayanfar et al., 2010;

Perkins et al., 2003). GNNs, however, have shifted this paradigm by enabling end-

to-end learning of molecular properties. This development represents a significant

move from relying on expert intuition for feature engineering to allowing algorithms

to automatically learn and discern underlying representations directly from the data.

GNNs have demonstrated efficacy in predicting a variety of molecular properties, in-

cluding solubility (Lee et al., 2023), toxicity (Chen et al., 2021; Cremer et al., 2023),

and drug-likeness (Sun et al., 2022).

2.2. Fundamentals of GCNs

GCNs have emerged as a powerful tool in deep learning, particularly for tasks

where data is naturally structured as graphs. Originating from advancements in CNNs

11



(Lecun et al., 1998) for grid-like data, such as images, GCNs adapt the concept of

convolutions to graph-structured data.

The fundamental principle behind GCNs is message passing, which aggregates

feature information from a node’s neighbors in a graph. This process enables nodes to

capture local graph structures and feature distributions. The aggregation function,

typically a weighted sum, is crucial as it determines how neighbor information is

combined at each node.

In a typical GCN layer, each node’s features are updated by aggregating its

own features with those of its neighbors, followed by a nonlinear transformation. The

weights in the aggregation function are learned during training, allowing the network

to adapt to specific patterns in the graph data.

GCNs have been successfully applied in various domains, including social net-

work analysis (Lin, 2020), recommendation systems (Wu et al., 2019; Zhang et al.,

2020), and bioinformatics Sun et al. (2020); Zhang et al. (2021). In the context

of pharmacological activity prediction, GCNs leverage the structural information of

chemical compounds represented as molecular graphs, where nodes represent atoms

and edges represent bonds. Sakai et al. (2021) have attempted to use GCNs for pre-

dicting compound activities, highlighting the importance of graph-structural features

and the effectiveness of GCNs in capturing intricate details crucial to pharmacology.

The core functionality of a GCN can be defined as:

12



h(l+1)
vi

= σ

(∑
j

1

cij
h(l)
vj
W (l)

)
,

where h
(l+1)
vi denotes the feature vector of node vi at layer (l + 1), and σ is a

nonlinear activation function. The term
∑

j
1
cij
h
(l)
vj W

(l) represents the aggregation of

features from neighboring nodes (vj) of node vi, weighted by the layer-specific weight

matrix W (l) and normalized by cij, which is a normalization constant that depends

on the degree of the nodes vi and vj.

2.3. Emergence of Advanced GNN Architectures

While early GNNs like GCNs marked a significant advancement, they had

limitations, such as a simplistic averaging operation that could lead to information loss

(Kipf & Welling, 2017). This paved the way for more sophisticated architectures like

GATs (Veličković et al., 2018) and Attentive FP (Xiong et al., 2019) networks, which

incorporate attention mechanisms to improve predictive accuracy and interpretability.

Yang et al. (2019) introduced Directed Message Passing Framework (D-MPNN)

for molecular property prediction, a model that uses a hybrid representation com-

bining convolutions and descriptors. D-MPNN’s approach of focusing convolutions

on bonds rather than atoms minimizes unnecessary computational loops during the

message passing phase, thereby improving efficiency. The framework achieved strong

results even on proprietary datasets, demonstrating the practical applicability and

readiness of learned molecular representations in industrial settings.
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Zhu et al. (2022) developed Hierarchical Informative Graph Neural Network

(HiGNN) integrating molecular and fragment-level data. The model uses a decompo-

sition algorithm and a feature-wise attention block for enhanced feature recalibration

post-message passing. HiGNN’s interpretability at the subgraph level, facilitated by

a molecular-fragment similarity mechanism, helps with identifying crucial molecular

components for design optimization.

Lusci et al. (2013) proposed building deep learning architectures using directed

acyclic graphs (DAGs) to predict solubility with great results. This method involves

utilizing a collection of RNNs linked to every possible vertex-centered acyclic orien-

tation of a molecular graph. This reduces the need for feature engineering and allows

the model to learn the best features given molecular descriptors.

2.4. Graph Attention Networks

GATs represent a significant advancement in the field of graph-based neural

network models. Introduced by Veličković et al. (2018), GATs have addressed the

limitations of earlier graph neural network architectures by incorporating attention

mechanisms. The primary principle of GATs lies in their ability to assign varying

levels of importance to nodes in a graph, thereby allowing for more nuanced feature

aggregation.

GATs operate on the premise that not all nodes in a graph contribute equally

to the representation of a given node. This is particularly pertinent in applications

14



where graph structures are irregular, making the uniform application of convolutional

operations, as seen in traditional GCNs, less effective. By utilizing self-attention

layers, GATs can weigh the influence of each node’s neighbors, which leads to dynamic

weight assignment based on the features of the nodes involved.

The development of GATs was a response to the need for more adaptive and

flexible models that could handle complex, non-Euclidean data structures common

in various real-world applications. One of the notable strengths of GATs is their

applicability to a wide range of domains, including but not limited to social network

analysis, recommendation systems, and biological data interpretation, particularly in

understanding molecular structures and interactions.

In drug discovery contexts, GATs have shown promise in predicting drug in-

teractions and drug efficacy by analyzing molecular structure graphs. The ability of

GATs to focus on relevant parts of a graph makes them particularly suited for such

tasks, where the significance of specific molecular substructures can vary greatly.

The flexibility in capturing node dependencies without the need for complex matrix

operations or extensive feature engineering underscores the practicality of GATs in

handling intricate graph structures.

The output features of node i in GAT can be defined as:

h′
i = σ

(∑
j∈Ni

αijWhj

)

In this expression, h′
i represents the updated feature vector of node i after
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applying the attention mechanism. The sum iterates over the neighborhood Ni of

node i, aggregating features (hj) from neighbors weighted by the attention coefficients

αij. These coefficients are learned during training and reflect the relative importance

of each neighbor’s features. W is a weight matrix applied to each neighbor’s features

before aggregation, and σ denotes a nonlinear activation function. This formula

enables GATs to dynamically adjust to the information’s relevance from different

parts of the graph, enhancing their flexibility and power in capturing graph-embedded

patterns.

2.5. Attentive FP

Attentive FP represent a novel approach in the field of cheminformatics, par-

ticularly in the domain of drug discovery and molecular property prediction. These

networks leverage the principles of attention mechanisms, a concept borrowed from

the realm of neural language processing, to enhance the ability of models to focus on

relevant parts of molecular structures for predicting pharmacological properties.

The core idea behind Attentive FP is the utilization of a message-passing

framework that enables the aggregation of information from both local atom-level

features and global molecular-level features. This dual focus allows the network to

learn not just the significance of individual atoms but also their contextual relevance

within the entire molecular structure.

In Attentive FP, each atom has its own neighbor features that concentenate
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both neighboring atoms and the connecting bond features Xiong et al. (2019). In

each attentive layer, a novel state vector is produced for each atom. This state vector

acquires neighborhood information as it moves through multiple successive attentive

layers. The final state vector represents the learned structural information about the

molecular graph, which is then followed by a layer designed for prediction.

2.6. Interpretability of GNNs

A common approach to explain predictions is by identifying subgraphs of the

input graph with a small subset of node features that are most influential for the

prediction. Ying et al. (2019) demonstrates this in their GNNEXPLAINER paper

where they formulated as an optimization task that maximizes the mutual information

between a GNN’s prediction and distribution of possible subgraph structure

In the field of chemistry, (Wu et al., 2023) shows a very intuitive way of ex-

plaining graph neural networks for molecular property prediction with substructure

tasking. They proposed substructure mask explanation (SME) based on established

molecular segmentation methods. SMEs interpret GNN predictions based on molec-

ular substructures, which makes more sense to chemists. By masking different sub-

structures in a molecule to determine its influence in the model’s ability to predict,

this helps with explaining the model’s prediction and makes it less of a black box.

There has been visual tools developed for GCN property prediction done by

Kojima et al. (2020). Their tool, kGCN provides easy to use graphics user interface
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for users to easily keep track and visualize the model training and evaluation process.

This makes it easy to recognize the factors that affect the model’s performance.

2.7. Ensemble Models in Machine Learning

Ensemble models in machine learning represent a paradigm where multiple

learning algorithms are strategically employed to achieve better predictive perfor-

mance than could be obtained from any of the constituent algorithms alone. This

approach leverages the strength and mitigates the weaknesses of individual models,

often leading to improved accuracy and robustness in predictions. In the context of

chemical predictions, by combining diverse approaches such as decision trees, neural

networks, or even multiple configurations of the same algorithm can provide a more

nuanced understanding of these interactions.

The success of ensemble models depends on the diversity of the individual

models, either by using different learning algorithms, different configurations of the

same algorithm, or different subsets of training data. The models’ individual pre-

dictions are then integrated using techniques such as voting, averaging, or stacking,

where the outputs of individual models are input into a secondary model for final

predictions.

Recent research highlights the evolving landscape of ensemble models in ma-

chine learning. Mohammed & Kora (2023) discuss various strategies in ensemble

learning. Liu et al. (2021) introduced EGCN, which combines GCN with neural ar-
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chitecture data processing to mitigate overfitting. Hu et al. (2021) applied ensemble

models for predicting solubility, while Lu et al. (2019) developed a Multilevel Graph

Convolutional Neural Network (MGCN) for molecular property prediction, empha-

sizing its generalizability and transferability. Lastly, Wang et al. (2023) experimented

with a mixture of experts (MoE) approach in their GMoE model, demonstrating its

efficacy in graph, node, and link prediction tasks.

2.8. Efficacy of GNNs in Various Contexts

Although GNNs have shown great promise in molecular activity prediction,

they are not always the optimal choice. Descriptor-based models may be more suit-

able in some cases, especially with smaller datasets or simpler tasks. This notion is

supported by a study conducted by Dejun et al. (2020), which analyzed the capability

of eight machine learning (ML) algorithms, including four descriptor-based models

(SVM, XGBoost, RF and DNN) and four graph-based models (GCN, GAT, MPNN

and Attentive FP). They found that on average the descriptor based models per-

formed better than the GNNs. However, in specific contexts, particularly with larger

or multitask datasets, GNNs, such as GCN and Attentive FP could offer outstanding

performance on a fraction of larger or multitask datasets.

In another study, Fung et al. (2021) also showed that descriptor-based models

performing better than GNNs with small data sizes, but with GNNs performing better

when ample data is available.
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Chapter III.

Methodology

3.1. Computation

We used open source frameworks for machine learning, data handling, and

optimization, including Ubuntu 22.04.3 LTS, DeepChem 2.7.2 (Ramsundar et al.,

2019), Python 3.10.11, NumPy (Harris et al., 2020), Pandas (pandas development

team, 2020), and pyGPGO (Jiménez-Luna & Ginebra, 2017). The experiments were

conducted using a local NVIDIA RTX 3090 graphics card and Nvidia A10Gs on

AWS. All experiments require no more than 24GB of video random-access memory

(VRAM).

We implemented all models using the DeepChem library, using the CSVLoader

class for data loading and the MolGraphConvFeaturizer for feature extraction. The

models were instantiated with parameters optimized through Bayesian Optimization

using the pyGPGO library, focused on maximizing the R2 score while minimizing the

MAE score.

Table 1 lists the key computing systems used in this work.
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Type Technology
Operating System Ubuntu 22.04.3 LTS
Programming Language Python 3.10.11
Machine Learning Framework DeepChem
Numerical Computing Library NumPy
Data Analysis Library Pandas
Gaussian Process Optimization pyGPGO
Logging wandb
Hardware GPU with 24GB VRAM

Table 1: Key Computing Systems and Libraries

3.2. Model Training, Validation, and Assessment

We trained GAT and Attentive FP networks on identical datasets, which were

divided into training (80%), validation (10%), and testing (10%) sets. This approach

aligns with previous research methodologies and adheres to the Pareto principle,

optimizing the balance between training effectiveness and performance evaluation on

unseen data.

Regarding hyperparameters, we tuned them using Bayesian Optimization, a

method known for optimizing expensive black-box functions. We selected this ap-

proach due to its ability to handle noisy evaluations and its robustness in finding the

global optimum. We then evaluate the models using our chosen metrics.

21



Figure 1: Flowchart of the Research Methodology
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3.3. Data

We use four distinct datasets to investigate the performance of GAT and At-

tentive FP models. The datasets are described below:

(i) Serotonin Transporter: Provided by Sakai et al. (2021), this dataset contains

7890 compounds, each with a SMILES string and an affinity value.

(ii) BACE: From Wu et al. (2018), the BACE dataset comprises 1513 compounds

and is used for regression analysis, focusing on beta-secretase 1 inhibitors rele-

vant to Alzheimer’s research.

(iii) Acetylcholinesterase: A curated selection of 422 compounds from ChEMBL,

chosen for its smaller size to enable efficient model training and testing, focusing

on acetylcholinesterase inhibitors.

(iv) Target Protein Datasets: Curated by Sakai et al. (2021), this dataset in-

cludes 127 targets from ChEMBL, offering a wide array of biological targets for

benchmarking model performance.

3.4. Hyperparameter Optimization

We set custom ranges for our hyperparameters, including: graph attention

layers, attention heads, dropout rate, learning rate, weight decay, and alpha. We

evaluated them using the same 2R2 MAE metric defined by Sakai et al. (2021) in
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Equation III.1. This selects for a higher R2 score for parameter settings with the

same MAE, leading to a better model fit.

2R2 MAE = (R2 −MAE) +R2 (III.1)

3.4.1 GAT Hyperparameters

The hyperparameters for our GAT models, as detailed in Table 2, were estab-

lished through a blend of empirical experimentation and literature analysis. These

parameters include the size of graph attention layers, the number of attention heads,

dropout rates, alpha values, predictor hidden features in the predictor, predictor

dropout rates, learning rate, and weight decay.

Hyperparameter Type Range

Graph Attention Layer Size int [32, 2048]

Number of Attention Heads int [2, 16]

Dropout continuous [0.0, 0.5]

Alpha continuous [0.0, 1.0]

Predictor Hidden Features int [32, 512]

Predictor Dropout continuous [0.0, 0.5]

Learning Rate continuous [0.0001, 0.0020]

Weight Decay continuous [0.0, 0.01]

Table 2: Hyperparameters for Graph Attention Networks
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3.4.2 Attentive FP Hyperparameters

For the Attentive FP models, we examined a set of hyperparameters detailed

in Table 3. As with the GAT models, we customized ranges for the number of layers,

timesteps, graph feature size, and dropout rates.

Hyperparameter Type Range

Learning Rate continuous [0.0001, 0.0020]

Number of Layers integer [1, 5]

Number of Timesteps integer [1, 5]

Graph Feature Size integer [100, 300]

Dropout continuous [0.0, 0.5]

Table 3: Hyperparameters for Attentive FP Networks

25



Chapter IV.

Results

4.1. Evaluation of Models Across Datasets

4.1.1 Serotonin Transporter

The Serotonin Transporter Dataset contains the SMILE strings of 7890 com-

pounds. Sakai et al. (2021) used this dataset for virtual screening and identified a

new compound with activity similar to that of a marketed drug in in vivo assays. We

selected this dataset as our initial point of comparison between GATs and Attentive

FP against Sakai’s custom GCN model. We performed the hyperparameter optimiza-

tion process mentioned in 3.4 and applied identical settings to all three models. The

results are summarized in Table 4.
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Table 4: Consolidated Performance Metrics on Serotonin Transporter

Metric Method Training Validation Testing

MAE GCN 0.439375 0.553131 0.568916

MSE GCN 0.571541 0.724126 0.739575

R2 GCN 0.823894 0.721155 0.701071

MAE GAT 0.261709 0.625375 0.602776

MSE GAT 0.352881 0.820818 0.798426

R2 GAT 0.932803 0.631962 0.668463

MAE Attentive FP 0.258687 0.544640 0.551442

MSE Attentive FP 0.351476 0.726672 0.729712

R2 Attentive FP 0.940689 0.727299 0.723846

We observed that Attentive FP surpassed other models in terms of MAE and

R2 metrics. It is worth noting that both Attentive FP and GAT exhibited a signifi-

cantly larger performance gap between the training and validation sets compared to

GCN, suggesting that the graph attention-based networks may have overtrained on

nonlocal properties. Such overfitting indicates a potential limitation in their ability

to model simpler interactions across diverse datasets. However, it could be easily

mitigated by incorporating regularization techniques or augmenting the training data

to cover a broader range of scenarios.
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4.1.2 BACE

We proceeded to test our models on the BACE dataset (Wu et al., 2018), The

outcomes of these evaluations are documented in Table 5.

Table 5: Consolidated Performance Metrics on BACE

Metric Method Training Validation Testing

MAE GCN 0.188240 0.400432 0.430842

MSE GCN 0.251903 0.574059 0.541392

R2 GCN 0.942777 0.716605 0.703539

MAE GAT 0.360441 0.450633 0.434854

MSE GAT 0.459834 0.597393 0.554088

R2 GAT 0.866507 0.727799 0.783553

MAE Attentive FP 0.094698 0.432758 0.337523

MSE Attentive FP 0.163809 0.585793 0.469685

R2 Attentive FP 0.975934 0.703627 0.797840

Attentive FP demonstrated superior performance across all metrics, surpassing

both GAT and GCN. While Attentive FP and GCNs exhibited strong results on the

training set, their effectiveness was less notable on the validation and testing sets,

which might be due to the small size of the dataset. In this instance, GATs showed

a higher R2 value on the testing set yet remained inferior to GCNs in terms of MAE.

Nonetheless, the marginal difference between GAT and GCN suggests that the models
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may be used interchangeably.

4.1.3 Acetylcholinesterase

The Acetylcholinesterase dataset was derived by further filtering the ChEMBL

24 dataset, originally curated by Bosc et al. (2019). We found that most targets from

the paper had between 50 and 200 datapoints. We opted for the largest subset, the

Acetylcholinesterase target with 422 data points. Similar to previous experiments,

Attentive FP demonstrated superior performance over the other two models in R2 and

MAE metrics. Although GATs showed slightly higher R2 scores, their performance

was lower in both MAE and MSE metrics. These results are summarized in Table 6.

Table 6: Consolidated Performance Metrics on Acetylcholinesterase

Metric Method Training Validation Testing

MAE GCN 0.331082 0.438151 0.529737

MSE GCN 0.446471 0.588697 0.684809

R2 GCN 0.830635 0.748961 0.596156

MAE GATs 0.250314 0.545306 0.577207

MSE GATs 0.327429 0.698976 0.760359

R2 GATs 0.925153 0.590297 0.629249

MAE Attentive FP 0.055869 0.481681 0.477356

MSE Attentive FP 0.110144 0.703513 0.618998

R2 Attentive FP 0.989614 0.618218 0.752217
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Interestingly, we observed that the R2 score showed a noticeable increase from

the validation to the testing sets for GAT, and even more significantly for Attentive

FP. This outcome is unusual, though not unprecedented, as typically scores deterio-

rate when transitioning from validation to testing. We hypothesize that this anomaly

may be attributed to random variation and possibly the quality and size of the dataset.

Given that this is already the largest subset, we opted not to extend the experiment

to even smaller subsets. Nonetheless, according to Sakai et al. (2021), a model is

considered a good model if it achieves either an MAE < 0.6 or an R2 > 0.6. In this

case, all models met these criteria.

4.1.4 Target Protein Datasets

To broaden the evaluation of GAT and Attentive FP, we leveraged the datasets

encompassing 127 target proteins as provided in Sakai et al. (2021). We trained our

models and evaluated their performance on these datasets. In Table 7, we present

the targets corresponding to the top 4 performing models from Sakai’s study, selected

based on the lowest MAE scores. The full results are summarized in Table 8 and

Table 9.
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Protein Family Target Size GCN Attentive FP GAT

MAE R2 MAE R2 MAE R2

GPCR Orexin Receptor 1 2852 0.41 ± 0.013 0.79 0.497706 0.591447 0.475512 0.636221

GPCR Serotonin 7 5-HT7 Receptor 2395 0.47 ± 0.023 0.74 0.626231 0.565231 0.62795 0.528161

GPCR Orexin Receptor 2 3079 0.50 ± 0.010 0.71 0.597953 0.518812 0.526359 0.612372

GPCR Cannabinoid CB1 Receptor 6966 0.51 ± 0.0080 0.76 0.588262 0.604333 0.584363 0.615557

Enzyme Acetyl-CoA Carboxylase 2 3136 0.33 ± 0.018 0.68 0.339897 0.59946 0.348305 0.59923

Enzyme Poly ADP-Ribose Polymerase-1 3101 0.42 ± 0.012 0.82 0.477657 0.72486 0.475141 0.737627

Enzyme Cholinesterase 3011 0.43 ± 0.015 0.82 0.464326 0.755615 0.442243 0.759405

Enzyme Nicotinamide Phosphoribosyltransferase 2342 0.45 ± 0.011 0.68 0.460304 0.552548 0.431985 0.623034

Ion Channel hERG 9198 0.42 ± 0.013 0.66 0.402358 0.585391 0.477247 0.524965

Ion Channel Voltage-Gated Potassium Channel Subunit Kv1.5 739 0.42 ± 0.020 0.53 0.488535 0.430439 0.497179 0.458191

Ion Channel Sodium Channel Protein Type IX Alpha Subunit 5677 0.47 ± 0.016 0.72 0.555087 0.577707 0.481973 0.648225

Ion Channel Vanilloid Receptor 2856 0.50 ± 0.017 0.78 0.5731 0.609582 0.541078 0.684196

Kinase Nerve Growth Factor Receptor Trk-A 2587 0.42 ± 0.017 0.71 0.44961 0.650777 0.471246 0.616584

Kinase Insulin-Like Growth Factor I Receptor 3019 0.44 ± 0.010 0.85 0.457185 0.811463 0.509064 0.784112

Kinase Tyrosine-Protein Kinase JAK1 4345 0.45 ± 0.012 0.81 0.514207 0.657184 0.550293 0.636757

Kinase Serine Threonine-Protein Kinase mTOR 4414 0.46 ± 0.018 0.81 0.48659 0.751609 0.478746 0.752173

Nuclear Receptor Thyroid Hormone Receptor Alpha 461 0.40 ± 0.014 0.82 0.317999 0.905391 0.432221 0.838262

Nuclear Receptor Glucocorticoid Receptor 2293 0.53 ± 0.026 0.78 0.60594 0.647011 0.606133 0.650094

Nuclear Receptor Peroxisome Proliferator-Activated Receptor Gamma 3018 0.55 ± 0.015 0.72 0.587907 0.665589 0.573776 0.680704

Nuclear Receptor Vitamin D Receptor 546 0.54 ± 0.030 0.88 0.501735 0.853711 0.552683 0.819698

Protease Cathepsin D 2568 0.42 ± 0.018 0.85 0.501099 0.821792 0.501263 0.804864

Protease Matrix Metalloproteinase-1 3746 0.47 ± 0.020 0.81 0.455911 0.63966 0.468225 0.652845

Protease ADAM17 2410 0.47 ± 0.022 0.89 0.457197 0.861113 0.510525 0.849666

Protease Cathepsin S 2309 0.50 ± 0.010 0.79 0.597208 0.681064 0.604124 0.689075

Transporter Potassium-Transporting ATPase 532 0.42 ± 0.0081 0.52 0.518178 0.546349 0.49603 0.587555

Transporter GABA Transporter 1 576 0.47 ± 0.040 0.86 0.477037 0.783785 0.495396 0.743078

Transporter Dopamine Transporter 5908 0.54 ± 0.014 0.76 0.670739 0.656383 0.55616 0.737176

Transporter Norepinephrine Transporter 4342 0.55 ± 0.015 0.7 0.631822 0.544152 0.618925 0.53601

Others Histone Deacetylase 1 4239 0.47 ± 0.015 0.74 0.48994 0.659453 0.497822 0.670272

Others Bromodomain-Containing Protein 4 2208 0.46 ± 0.032 0.82 0.53122 0.694395 0.528409 0.710369

Others Histone Deacetylase 6 2725 0.47 ± 0.023 0.82 0.564483 0.711331 0.522767 0.734411

Others P53-Binding Protein MDM-2 2346 0.47 ± 0.020 0.88 0.48738 0.866853 0.466591 0.883679

Table 7: Comparing GAT and Attentive FP against Sakai’s Top 4 GCN Models for
Each Protein Family
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Our results indicate that many of our GAT and Attentive FP models achieved

MAE scores that fall within the range of GCNs reported by Sakai et al. (2021). Also,

30 out of 32 models from both GAT and Attentive FP categories met Sakai’s criteria

of having MAE < 0.6 or an R2 > 0.6. Considering all 127 models, 104 GAT models

and 98 Attentive FP models met this criterion.

GATs also achieved a better R2 fit in P53 Binding Protein MDM-2, Potassium

Transporting ATPase, and Thyroid Hormone Receptor Alpha. Similarly, Attentive

FP showed better R2 values in Potassium Transporting ATPase and Thyroid Hormone

Receptor Alpha. Particular striking was the superb performance of Attentive FP

models on the Thyroid Hormone Receptor Alpha dataset, which, containing only

461 data points, is the smallest in our study. This finding prompted us to further

investigate the relationship between dataset size and model performance, a topic we

explore in Section 4.3.

4.2. Our Top 4 Models for Each Protein Family

We further evaluated our models on the complete set of 127 target protein

datasets provided by Sakai, identifying the top four models for each protein family

based on MAE scores. The summarized results are presented in Table 8.
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Protein Family Target MAE R2

GPCR Corticotropin Releasing Factor Receptor 1 0.490922 0.623825

GPCR Dopamine D3 Receptor 0.531025 0.663432

GPCR Orexin Receptor 1 0.53926 0.553303

GPCR Serotonin 6 5-HT6 Receptor 0.556455 0.612263

Enzyme Acetyl-CoA Carboxylase 2 0.339142 0.604616

Enzyme Nicotinamide Phosphoribosyltransferase 0.424282 0.6268

Enzyme Poly ADP-Ribose Polymerase-1 0.473701 0.735631

Enzyme Arachidonate 5-Lipoxygenase 0.506763 0.53998

Ion Channel hERG 0.453352 0.519903

Ion Channel Voltage-Gated Potassium Channel Subunit Kv1.5 0.510276 0.423206

Ion Channel P2X Purinoceptor 7 0.586491 0.360953

Ion Channel Vanilloid Receptor 0.618081 0.598255

Kinase Serine Threonine-Protein Kinase mTOR 0.43832 0.780209

Kinase Fibroblast Growth Factor Receptor 3 0.447547 0.681579

Kinase Fibroblast Growth Factor Receptor 1 0.458142 0.823691

Kinase Insulin-Like Growth Factor I Receptor 0.468389 0.790613

Nuclear Receptor Thyroid Hormone Receptor Alpha 0.403229 0.80651

Nuclear Receptor Vitamin D Receptor 0.538696 0.848425

Nuclear Receptor Androgen Receptor 0.572326 0.676986

Nuclear Receptor Peroxisome Proliferator-Activated Receptor Gamma 0.602087 0.642367

Protease Cathepsin D 0.453734 0.855205

Protease Matrix Metalloproteinase-1 0.472195 0.639366

Protease ADAM17 0.497856 0.82213

Protease Leukocyte Elastase 0.567666 0.946549

Transporter GABA Transporter 1 0.45197 0.786631

Transporter Serotonin Transporter 0.541849 0.710211

Transporter Norepinephrine Transporter 0.574207 0.602269

Transporter Dopamine Transporter 0.594363 0.717012

Others Histone Deacetylase 1 0.479778 0.68022

Others P53-Binding Protein MDM-2 0.488922 0.879627

Others Bromodomain-Containing Protein 4 0.504837 0.751841

Others Apoptosis Regulator BCL-2 0.568045 0.829819

Table 8: Top 4 Attentive FP Models for Each Protein Family
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The targets that appeared in our top 4 Attentive FP models did not always

match those in Sakai’s top 4 models. The Protease family showed the most overlap,

with the top 3 models appearing in Sakai’s rankings in the same order. For other

families, only 1 or 2 targets were common across both rankings. This variation

suggests that model performance may depend on the target protein, indicating that

the best model for one target might not be the best for another. A similar analysis was

conducted for GATs, with the results summarized in Table 9. In the case of GATs,

while the Protease family again showed the most overlap with 3 common targets,

their order differed from Sakai’s rankings.
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Protein Family Target MAE R2

GPCR Orexin Receptor 1 0.475512 0.636221

GPCR Corticotropin Releasing Factor Receptor 1 0.515567 0.65453

GPCR Orexin Receptor 2 0.526359 0.612372

GPCR Adenosine A2A Receptor 0.551854 0.678465

Enzyme Acetyl-CoA Carboxylase 2 0.348305 0.59923

Enzyme Nicotinamide Phosphoribosyltransferase 0.431985 0.623034

Enzyme Poly ADP-Ribose Polymerase-1 0.475141 0.737627

Enzyme Protein-Tyrosine Phosphatase 1B 0.494986 0.656528

Ion Channel hERG 0.477247 0.524965

Ion Channel Sodium Channel Protein Type IX Alpha Subunit 0.481973 0.648225

Ion Channel Voltage-Gated Potassium Channel Subunit Kv1.5 0.497179 0.458191

Ion Channel Transient Receptor Potential Cation Channel Subfamily M Member 8 0.519204 0.828398

Kinase Fibroblast Growth Factor Receptor 3 0.447973 0.706114

Kinase Nerve Growth Factor Receptor Trk-A 0.471246 0.616584

Kinase Serine Threonine-Protein Kinase mTOR 0.478746 0.752173

Kinase Serine Threonine-Protein Kinase B-Raf 0.488564 0.734272

Nuclear Receptor Thyroid Hormone Receptor Alpha 0.432221 0.838262

Nuclear Receptor Androgen Receptor 0.509433 0.741759

Nuclear Receptor Vitamin D Receptor 0.552683 0.819698

Nuclear Receptor Peroxisome Proliferator-Activated Receptor Gamma 0.573776 0.680704

Protease Matrix Metalloproteinase-1 0.468225 0.652845

Protease Cathepsin D 0.501263 0.804864

Protease ADAM17 0.510525 0.849666

Protease Beta-Secretase 1 0.590782 0.635515

Transporter GABA Transporter 1 0.495396 0.743078

Transporter Potassium-Transporting ATPase 0.49603 0.587555

Transporter Dopamine Transporter 0.55616 0.737176

Transporter Serotonin Transporter 0.566232 0.685962

Others P53-Binding Protein MDM-2 0.466591 0.883679

Others Histone Deacetylase 1 0.497822 0.670272

Others Histone Deacetylase 6 0.522767 0.734411

Others Bromodomain-Containing Protein 4 0.528409 0.710369

Table 9: Top 4 GAT Models for Each Protein Family
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4.2.1 Comparison of GAT and Attentive FP

We display the per-family MAE and R2 scores for all 127 targets in Figure

2. The data reveal that the families showing the most significant differences in per-

formance between the two models are in the GPCR, Kinase, and Nuclear Receptor

families. Specifically, GATs significantly outperform Attentive FP within the GPCR

and Kinase families, whereas Attentive FP demonstrates superior performance in the

Nuclear Receptor family.

Figure 2: Performance of GAT and Attentive FP on 127 Target Protein Datasets
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4.3. Experiments on Truncated Datasets

In the evaluated datasets, GATs and Attentive FP demonstrated good per-

formance on the Serotonin Transporter, BACE, and Acetylcholinesterase datasets

compared to GCNs. According to the standards established by Sakai et al. (2021),

most of our models qualified as good models. We observed that model performance

not only varied across datasets with different target families but also dataset sizes. We

speculate that some of this performance variability may be linked to the differences

in the sizes of the datasets. For example, the Serotonin Transporter dataset includes

7890 data points, whereas the BACE and Acetylcholinesterase datasets contain 1513

and 422 data points. Our GAT and Attentive FP models outperformed Sakai’s GCN

model on the Thyroid Hormone Receptor Alpha dataset, which has only 461 data

points. To delve deeper, we truncate all target protein dataset sizes to 461 data

points, the size of the smallest dataset, and reassessed our models. The results of this

experiment are presented in Section 4.3.

4.3.1 Attentive FP Model Performance

We discovered that for the Protease, Transporter, and Enzyme families, three

of the top four models remained consistent compared to their performance before

truncation. This consistency suggests that these families might be more resilient to

variations in dataset size. Notably, ADAM17 showed minimal performance decline

after its reduction from 2410 to 461 data points. For Transporters and Nuclear
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Receptors, half of the top four models still qualify as effective, although a significant

performance reduction was observed in most targets. These findings are detailed in

Table 10.
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Protein Family Target MAE R2

GPCR Dopamine D1 Receptor 0.682311 0.452283

GPCR Orexin Receptor 2 0.700794 0.290899

GPCR G Protein-Coupled Receptor 44 0.701444 0.388748

GPCR Sigma Opioid Receptor 0.728259 0.298365

Enzyme Acetyl-CoA Carboxylase 2 0.517972 0.231402

Enzyme Nicotinamide Phosphoribosyltransferase 0.647807 0.172251

Enzyme Cyclooxygenase-1 0.663365 0.198229

Enzyme Poly ADP-Ribose Polymerase-1 0.720633 0.547431

Ion Channel Voltage-Gated Potassium Channel Subunit Kv1.5 0.608806 0.371786

Ion Channel Transient Receptor Potential Cation Channel Subfamily M Member 8 0.614203 0.784754

Ion Channel Sodium Channel Protein Type IX Alpha Subunit 0.694951 0.329833

Ion Channel Transient Receptor Potential Cation Channel Subfamily A Member 1 0.708502 0.396932

Kinase Serine Threonine-Protein Kinase Aurora-A 0.602185 0.744449

Kinase Fibroblast Growth Factor Receptor 3 0.622104 0.544021

Kinase Nerve Growth Factor Receptor Trk-A 0.63105 0.294513

Kinase Tyrosine-Protein Kinase Receptor Flt3 0.686655 0.478522

Nuclear Receptor Thyroid Hormone Receptor Alpha 0.353245 0.875037

Nuclear Receptor Vitamin D Receptor 0.718436 0.735657

Nuclear Receptor Glucocorticoid Receptor 0.780833 0.423534

Nuclear Receptor Estrogen Receptor Alpha 0.815322 0.467774

Protease ADAM17 0.5552 0.812146

Protease Matrix Metalloproteinase-1 0.69898 0.463085

Protease Cathepsin D 0.722064 0.539881

Protease Matrix Metalloproteinase 9 0.727469 0.654812

Transporter GABA Transporter 1 0.532831 0.68282

Transporter Potassium-Transporting ATPase 0.551369 0.555607

Transporter Norepinephrine Transporter 0.809101 0.369478

Transporter Dopamine Transporter 0.929396 0.356622

Others Apoptosis Regulator BCL-2 0.640531 0.755704

Others Bromodomain-Containing Protein 4 0.686667 0.461269

Others Histone Deacetylase 1 0.739618 0.329351

Others Histone Deacetylase 6 0.860364 0.345978

Table 10: Attentive FP Performance Metrics on truncated Target Protein Datasets
with 461 Datapoints (Top 4)
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4.3.2 GAT Performance

We also evaluated GATs on the truncated datasets. Our findings indicate

that for the Ion Channel and Transporter families, three out of the top four targets

remained the same, whereas for the Protease family, all four targets persisted, though

with a different order. ADAM17 maintained its strong performance following the

truncation. Moreover, 13 GATs achieved a MAE of less than 0.6 or R2 greater than

0.6, compared to 10 models for Attentive FP. These results suggest a greater resilience

of GATs to variations in dataset size relative to Attentive FP. The detailed outcomes

are presented in Table 11.
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Protein Family Target MAE R2

GPCR Orexin Receptor 2 0.589704 0.452898

GPCR Dopamine D1 Receptor 0.60931 0.486423

GPCR Orexin Receptor 1 0.612161 0.580473

GPCR Cholecystokinin B Receptor 0.668391 0.694264

Enzyme Acetyl-CoA Carboxylase 2 0.424239 0.233817

Enzyme Nicotinamide Phosphoribosyltransferase 0.599874 0.208696

Enzyme Carbonic Anhydrase XII 0.669231 0.422563

Enzyme Poly ADP-Ribose Polymerase-1 0.742217 0.566515

Ion Channel Sodium Channel Protein Type IX Alpha Subunit 0.642392 0.402947

Ion Channel Transient Receptor Potential Cation Channel Subfamily A Member 1 0.642817 0.548105

Ion Channel Voltage-Gated Potassium Channel Subunit Kv1.5 0.6506 0.401565

Ion Channel P2X Purinoceptor 7 0.669577 0.218545

Kinase Tyrosine-Protein Kinase SYK 0.550226 0.501422

Kinase Nerve Growth Factor Receptor Trk-A 0.562369 0.319242

Kinase Serine Threonine-Protein Kinase B-Raf 0.679553 0.546901

Kinase PI3-Kinase P110-Delta Subunit 0.698697 0.49173

Nuclear Receptor Thyroid Hormone Receptor Alpha 0.432221 0.838262

Nuclear Receptor Vitamin D Receptor 0.676815 0.747461

Nuclear Receptor Glucocorticoid Receptor 0.70666 0.562693

Nuclear Receptor Estrogen Receptor Alpha 0.774727 0.600589

Protease Cathepsin D 0.57719 0.67336

Protease ADAM17 0.684251 0.803204

Protease Matrix Metalloproteinase-1 0.720367 0.490284

Protease Beta-Secretase 1 0.733293 0.357651

Transporter Potassium-Transporting ATPase 0.489583 0.553208

Transporter GABA Transporter 1 0.539342 0.692818

Transporter Norepinephrine Transporter 0.827091 0.4493

Transporter Dopamine Transporter 0.97181 0.268033

Others Bromodomain-Containing Protein 4 0.605324 0.568015

Others Apoptosis Regulator BCL-2 0.704223 0.75977

Others Histone Deacetylase 6 0.727624 0.555039

Others Histone Deacetylase 1 0.878685 0.233667

Table 11: GAT Performance Metrics on truncated Target Protein Datasets with 461
Datapoints (Top 4)
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4.3.3 Comparison of GAT and Attentive FP

Attentive FP no longer falls behind in the number of models with superior

R2 scores for GPCR and Kinases. It also retains its lead in Nuclear Receptors, as

illustrated in Figure 3. These results suggest that Attentive FP might exhibit greater

resilience to dataset size variations compared to GAT, particularly in smaller datasets.

This observation is consistent with our previous findings, where Attentive FP achieved

significantly higher scores in its training and validation sets than in testing.

Figure 3: Comparison of GAT and Attentive FP on Truncated Datasets
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4.3.4 GCN Performance on Truncated Datasets

We also trained Sakai’s GCN model on the truncated dataset, with the results

detailed in Table 12. In alignment with the outcomes from GAT and Attentive

FP evaluations, the Protease and Transporter families demonstrated considerable

resilience to the reduction in dataset size, maintaining consistency in three of the

top four models. Additionally, 14 GCN models achieved an MAE < 0.6 or an R2 >

0.6, aligning with our earlier observations that GCNs may be less prone to overfitting

relative to GAT and Attentive FP. We also observed that GABA transporter 1 showed

significant improvements in both MAE and R2, suggesting that the reduction in

dataset size may have eliminated extraneous noise, thereby enhancing the model’s

predictive accuracy.
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Protein Family Target MAE R2

GPCR Corticotropin Releasing Factor Receptor 1 0.53043 0.613273

GPCR Orexin Receptor 1 0.563273 0.501651

GPCR Orexin Receptor 2 0.648319 0.58323

GPCR Dopamine D4 Receptor 0.68916 0.298028

Enzyme Acetyl-CoA Carboxylase 2 0.531899 0.190923

Enzyme Cyclooxygenase-1 0.643148 0.005915

Enzyme Nicotinamide Phosphoribosyltransferase 0.655247 0.452706

Enzyme Carbonic Anhydrase XII 0.679434 0.514694

Ion Channel Voltage-Gated Potassium Channel Subunit Kv1.5 0.521221 0.576173

Ion Channel Transient Receptor Potential Cation Channel Subfamily A Member 1 0.637406 0.563163

Ion Channel Transient Receptor Potential Cation Channel Subfamily M Member 8 0.693393 0.596989

Ion Channel P2X Purinoceptor 7 0.731497 0.215338

Kinase Fibroblast Growth Factor Receptor 1 0.591589 0.668814

Kinase Fibroblast Growth Factor Receptor 3 0.603639 0.2777

Kinase PI3-Kinase P110-Gamma Subunit 0.61724 0.453256

Kinase Tyrosine-Protein Kinase SYK 0.623505 0.657596

Nuclear Receptor Thyroid Hormone Receptor Alpha 0.367244 0.832336

Nuclear Receptor Vitamin D Receptor 0.507467 0.868099

Nuclear Receptor Peroxisome Proliferator-Activated Receptor Gamma 0.689822 0.54366

Nuclear Receptor Estrogen Receptor Alpha 0.69876 0.657512

Protease Cathepsin D 0.739058 0.608501

Protease Cathepsin S 0.739394 0.600441

Protease Matrix Metalloproteinase-1 0.770415 0.367968

Protease Beta-Secretase 1 0.781328 0.427122

Transporter GABA Transporter 1 0.296487 0.934026

Transporter Potassium-Transporting ATPase 0.62387 0.389884

Transporter Norepinephrine Transporter 0.687844 0.48581

Transporter Dopamine Transporter 0.881828 0.273499

Others P53-Binding Protein MDM-2 0.628305 0.73832

Others Bromodomain-Containing Protein 4 0.660821 0.703937

Others Apoptosis Regulator BCL-2 0.750484 0.768536

Others Histone Deacetylase 1 0.776877 0.249638

Table 12: GCN Performance Metrics on Truncated Target Protein Datasets with 461
Datapoints (Top 4)
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Chapter V.

Discussions

5.1. Performance of GNNs across different protein families

Our analysis shows that Attentive FP consistently outperformed GATs and

GCNs across the Serotonin Transporter, BACE, and Acetylcholinesterase datasets.

While GATs were also competitive on the BACE dataset, their performance was

mixed on Sakai’s 127 target protein dataset.

When comparing the top four targets by MAE against Sakai’s best models, At-

tentive FP had three overlaps in the rankings for Enzymes, Ion Channels, Proteases,

Transporters, and ”Others” categories, two for Kinases and Nuclear Receptors, and

one for GPCRs. For GATs, all four matched in ”Others,” three in Enzymes, Ion

Channels, Proteases, and Transporters, two in GPCRs and Kinases, and one in Nu-

clear Receptors. Despite the overlaps, there are notable ranking differences between

GAT and Attentive FP when applied to the same datasets. For instance, in Ki-

nases, while only two top targets overlapped, Attentive FP’s top four MAEs were

comparable to those of GCNs, as illustrated in Figure 4.
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Figure 4: Top 4 models for Kinases using Attentive FP and GCNs

The findings suggest that Attentive FP could be a viable alternative for binding

affinity prediction tasks in Kinases, similar to GATs in many other protein families.

This variability underscores the importance of model selection based on the dataset

and the specific target protein family, echoing the conclusions of McCardle (2023),

which noted minimal differences in predictive capabilities among GNN architectures

across diverse datasets. Our study reinforces the notion that while model diversity

may have less impact on predictive accuracy than previously thought, the character-
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istics of target protein families are crucial in determining the most effective modeling

approach.

5.2. GATs and Attentive FP

There is a noticeable performance gap between Attentive FP and GATs, par-

ticularly in the GPCR and Kinase families, as detailed in Figure 5. GATs outperform

Attentive FP in these categories, showing higher counts of better R2 scores. How-

ever, there are individual instances where Attentive FP significantly exceeds GATs

performance in these families. In other protein families, the performance between the

two models is comparable, with Attentive FP often having a slight advantage.

The observed performance gap between Attentive FP and GATs in those fam-

ilies may be attributed to the different ways these models handle graph structures

and node features. Attentive FP allows for more nuanced weighting of interactions,

which could be particularly beneficial for the complex binding sites found in these

protein families. However, this also contributes to the increased computational time,

suggesting a trade-off between predictive performance and efficiency that must be

considered in practical applications.

Our preliminary tests indicate that Attentive FP could take up to 25% longer

to run. Despite this, while Attentive FP can excel under certain conditions, GATs

generally serve as a more reliable first choice for many datasets.
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Figure 5: Heatmap of the performance of GAT and Attentive FP across different
datasets

5.3. Impact of truncating datasets

Overall, the truncation of datasets negatively impacted the performance of

the models, as the number of good models using Sakai’s heuristic of R2 > 0.6 or

MAE < 0.6 decreased from 104 to 13 for GAT and 98 to 10 for Attentive FP.

However, while most of the models generally performed worse when the datasets

were truncated, the few that remained the same or improved shows that for certain

targets, the models were able to generalize well.

For example, we found that Proteases and Transporters generally maintained
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the same models in the top 4 when ranked by MAE as shown earlier in Figure 6 and 7.

In the following sections, we try to take a deeper look into the impact of truncation

for GAT and Attentive FP by taking a look at the families that did change, the

magnitude of changes in our metrics, and the few targets that saw an increase in

performance.

5.3.1 GAT

GAT models generally performed worse after truncation. The Enzyme family

was very sensitive to the change in dataset size, while Nuclear Receptors were the most

resilient. This mostly aligns with the results from Attentive FP. Overall, it appears

that dataset truncation has had a larger impact on the performance of Attentive FP

compared to GATs. This is shown in Figure 6.

Figure 6: Before and after truncation performance of GATs

Similarly, a few targets in the GPCR and Kinase families saw some perfor-

49



mance gains. Not only GATs appeared to be more resistant to changes relative to

Attentive FP, the average changes in MAE and R2 by family also appeared more

predictable. This implies that GATs may be a better choice for binding affinity

prediction tasks when data is limited. The full results for the main and truncated

datasets can be found in Table 13 and 15.

5.3.2 Attentive FP

For Attentive FP, the results were mostly similar, but there were a few that

improved. We show this in Figure 7, where we graph both the number of changes

between MAE and R2, and also the average changes in MAE and R2 by family.

Figure 7: Before and after truncation performance of Attentive FP

Out of the test targets. The Enzyme family appeared most prone to changes,

while Transporters, Ion Channels, and Nuclear Receptors were the most resilient.

The full results for the main and truncated datasets can be found in Table 14 and 16.
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Chapter VI.

Conclusion

6.1. Summary

This thesis evaluated the effectiveness of GATs and Attentive FP in compar-

ison to GCNs for predicting molecular compound activities. The results indicate

that GATs and Attentive FP perform comparably to GCNs in predicting the binding

affinity of molecular targets, showcasing their utility in molecular simulations. We

observed that the Protease and Transporter families appear to be more resilient to

changes compared to other families when we truncate our datasets. An interesting

observation from our study is how different targets reacted to dataset truncation.

Specifically, GABA Transporter 1 showed improved performance with GCNs after

truncation. In contrast, ADAM17 maintained consistent performance across all mod-

els despite a data reduction exceeding 80%, showing its robustness.

This research paves the way to further explore the potential of GATs and

Attentive FP networks in drug discovery and molecular property prediction. We

note that the choice of model should be made based on the dataset and the family

of the target protein. We also highlight the importance of using a broad spectrum
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of chemical diversity to ensure accurate generalization to unknown molecules. We

believe these findings will inspire and guide future efforts in the fields of molecular

property prediction and drug discovery.

6.2. Future Directions

Building upon the strong foundation laid by this thesis, future research could

explore the performance of models on 3D molecular structures to potentially capture

more intricate geometric details that are not represented in 2D SMILES sequences.

Moon et al. (2023) demonstrates that leveraging 3D positions enables the utiliza-

tion of unique molecular geometric properties such as distance, angle, and torsion in

Euclidean space. This may lead to more accurate predictions of molecular properties.

To further improve the robustness of predictive models, it is recommended that

future studies expand the diversity of data sources. While the datasets employed in

this thesis provided valuable insights, a more comprehensive dataset that includes a

wider array of protein families and data points would be beneficial. This could be

complemented by integrating additional data types such as protein sequences and 3D

structural information to enable a more holistic analysis.

Finally, the use of large synthetic datasets should be explored. Synthetic data

can supplement training, especially when empirical data is limited. Volgin et al.

(2022) demonstrated the effectiveness of synthetic data in model training, suggesting

this approach could also enhance molecular property prediction models. Implement-
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ing synthetic datasets could be particularly valuable in drug discovery when empirical

data is not available. These proposed directions not only aim to refine the predictive

accuracy of molecular property models but also hold the potential to significantly

accelerate the pace of drug discovery and development.

53



References

Baldi, P. & Chauvin, Y. (1996). Hybrid modeling, hmm/nn architectures, and protein

applications. Neural computation, 8, 1541–65.

Bosc, N., Atkinson, F., Félix, E., Gaulton, A., Hersey, A., & Leach, A. (2019). Large

scale comparison of qsar and conformal prediction methods and their applications

in drug discovery. Journal of Cheminformatics, 11, 4.

Chen, H., Engkvist, O., Wang, Y., Olivecrona, M., & Blaschke, T. (2018). The rise

of deep learning in drug discovery. Drug Discovery Today, 23(6), 1241–1250.

Chen, J., Si, Y. W., Un, C.-W., & Siu, S. (2021). Chemical toxicity prediction based

on semi-supervised learning and graph convolutional neural network. Journal of

Cheminformatics, 13.

Cremer, J., Medrano Sandonas, L., Tkatchenko, A., Clevert, D.-A., & Fabritiis, G.

(2023). Equivariant graph neural networks for toxicity prediction.

Dejun, J., Wu, Z., Hsieh, K., Guangyong, C., Liao, B., Wang, Z., Shen, C., Cao, D.-

S., Wu, J., & Hou, T. (2020). Could graph neural networks learn better molecular

54



representation for drug discovery? a comparison study of descriptor-based and

graph-based models.

Fung, V., Zhang, J., Juarez, E., & Sumpter, B. (2021). Benchmarking graph neural

networks for materials chemistry. npj Computational Materials, 7.

Gawehn, E., Hiss, J. A., & Schneider, G. (2016). 6 deep learning in drug discovery.

Gilmer, J., Schoenholz, S. S., Riley, P. F., Vinyals, O., & Dahl, G. E. (2017). Neural

message passing for quantum chemistry.

Gori, M., Monfardini, G., & Scarselli, F. (2005). A new model for learning in graph

domains. volume 2 (pp. 729 – 734 vol. 2).

Harris, C. R., Millman, K. J., van der Walt, S. J., Gommers, R., Virtanen, P., Cour-

napeau, D., Wieser, E., Taylor, J., Berg, S., Smith, N. J., Kern, R., Picus, M.,

Hoyer, S., van Kerkwijk, M. H., Brett, M., Haldane, A., del Ŕıo, J. F., Wiebe, M.,
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Appendix A.

Source code for this work is available upon request on Github.
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Appendix B.

def hyper_model(params, train_dataset, valid_dataset):

model = create_model(params, train_dataset, valid_dataset)

valid_scores = model.evaluate(valid_dataset, [Metric(

mean_absolute_error), Metric(pearson_r2_score)], transformers

=[])

return -valid_scores[’mean_absolute_error’] + 2 *

valid_scores[’pearson_r2_score’]

...

params_dict = {

’graph_attention_layer_size’: (’int’, [32, 2048]),

’n_attention_heads’: (’int’, [2, 16]),

’dropout’: (’cont’, [0.0, 0.5]),

’alpha’: (’cont’, [0.0, 1.0]),

’predictor_hidden_feats’: (’int’, [32, 512]),

’predictor_dropout’: (’cont’, [0.0, 0.5]),

’learning_rate’: (’cont’, [0.0001, 0.0020]),

’weight_decay’: (’cont’, [0.0, 0.01])

}

cov = matern32()

gp = GaussianProcess(cov)

acq = Acquisition(mode=’ExpectedImprovement’)

gpgo = GPGO(gp, acq, lambda **params: hyper_model(params,

train_dataset, valid_dataset), params_dict)

gpgo.run(max_iter=10, init_evals=1)

best_params = gpgo.getResult()[0]

save_hyperparameters(best_params)
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Appendix C.

def hyper_model(params, train_dataset, valid_dataset):

model = create_model(params, train_dataset, valid_dataset

)

valid_scores = model.evaluate(valid_dataset, [Metric(

mean_absolute_error), Metric(pearson_r2_score)], transformers

=[])

return -valid_scores[’mean_absolute_error’] + 2 *

valid_scores[’pearson_r2_score’]

...

params_dict = {

’learning_rate’: (’cont’, [0.0001, 0.002]),

’num_layers’: (’int’, [1, 5]),

’num_timesteps’: (’int’, [1, 5]),

’graph_feat_size’: (’int’, [100, 300]),

’dropout’: (’cont’, [0.0, 0.5])

}

cov = matern32()

gp = GaussianProcess(cov)

acq = Acquisition(mode=’ExpectedImprovement’)

gpgo = GPGO(gp, acq, lambda **params: hyper_model(params,

train_dataset, valid_dataset), params_dict)

gpgo.run(max_iter=10, init_evals=1)

best_params = gpgo.getResult()[0]

save_hyperparameters(best_params)
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Appendix D.

Table 13: GAT Performance for 127 Targets

Protein Family Target MAE R2

GPCR Orexin Receptor 1 0.475512 0.636221
GPCR Corticotropin Releasing Factor Recep-

tor 1
0.515567 0.65453

GPCR Orexin Receptor 2 0.526359 0.612372
GPCR Adenosine A2A Receptor 0.551854 0.678465
GPCR Dopamine D3 Receptor 0.558624 0.636672
GPCR Serotonin 6 5-HT6 Receptor 0.563044 0.585901
GPCR Dopamine D2 Receptor 0.564776 0.541897
GPCR Dopamine D1 Receptor 0.578766 0.559504
GPCR Metabotropic Glutamate Receptor 5 0.587709 0.613008
GPCR Melanin-Concentrating Hormone Re-

ceptor 1
0.589468 0.406779

GPCR Histamine H3 Receptor 0.596571 0.749566
GPCR Cannabinoid CB1 Receptor 0.600483 0.578084
GPCR G Protein-Coupled Receptor 44 0.607457 0.559104
GPCR Adenosine A1 Receptor 0.613453 0.556764
GPCR Serotonin 2A 5-HT2A Receptor 0.614568 0.603278
GPCR Cannabinoid CB2 Receptor 0.617463 0.594979
GPCR Adenosine A3 Receptor 0.621353 0.613821
GPCR Serotonin 7 5-HT7 Receptor 0.62795 0.528161
GPCR Kappa Opioid Receptor 0.628353 0.693432
GPCR Delta Opioid Receptor 0.628962 0.679433
GPCR Neurokinin 1 Receptor 0.636539 0.67147
GPCR Sigma Opioid Receptor 0.654721 0.441043
GPCR Serotonin 1A 5-HT1A Receptor 0.665991 0.554044
GPCR Muscarinic Acetylcholine Receptor M1 0.688145 0.767622
GPCR Mu Opioid Receptor 0.689009 0.645853
GPCR Cholecystokinin A Receptor 0.690741 0.522756
GPCR Cholecystokinin B Receptor 0.703806 0.567417
GPCR Dopamine D4 Receptor 0.704964 0.398064
GPCR Melanocortin Receptor 4 0.718132 0.465346
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GPCR Muscarinic Acetylcholine Receptor M2 0.753243 0.751521
GPCR Alpha-1A Adrenergic Receptor 0.789776 0.707303
GPCR Endothelin Receptor ET-A 0.798292 0.516032
GPCR Gonadotropin-Releasing Hormone Re-

ceptor
0.807326 0.86102

GPCR Serotonin 2c 5-HT2C Receptor 0.825965 0.585749
Enzyme Acetyl-CoA Carboxylase 2 0.348305 0.59923
Enzyme Nicotinamide Phosphoribosyltrans-

ferase
0.431985 0.623034

Enzyme Poly ADP-Ribose Polymerase-1 0.475141 0.737627
Enzyme Protein-Tyrosine Phosphatase 1B 0.494986 0.656528
Enzyme Cyclooxygenase-1 0.509323 0.419991
Enzyme Arachidonate 5-Lipoxygenase 0.5173 0.502931
Enzyme Carbonic Anhydrase I 0.530313 0.680667
Enzyme 11-Beta-Hydroxysteroid Dehydroge-

nase 1
0.561321 0.732221

Enzyme Cholinesterase 0.563629 0.773046
Enzyme Butyrylcholinesterase 0.563629 0.773046
Enzyme Monoamine Oxidase A 0.566847 0.668368
Enzyme Carbonic Anhydrase IX 0.589344 0.592715
Enzyme Carbonic Anhydrase II 0.591008 0.638983
Enzyme Phosphodiesterase 10A 0.600313 0.613031
Enzyme Integrase 0.604866 0.718087
Enzyme Carbonic Anhydrase XII 0.610001 0.612983
Enzyme Cytochrome P450 19A1 0.616699 0.630775
Enzyme Human Immunodeficiency Virus Type

1 Reverse Transcriptase
0.631387 0.596076

Enzyme Acetylcholinesterase 0.637671 0.65907
Enzyme Cyclooxygenase-2 0.665506 0.573248
Enzyme Monoamine Oxidase B 0.683699 0.63055
Enzyme Anandamide Amidohydrolase 0.715577 0.802681
Enzyme Dihydrofolate Reductase 0.722961 0.587692
Enzyme Protein Farnesyltransferase 0.771041 0.650968
Enzyme Coagulation Factor X 0.82506 0.651424
Ion Channel hERG 0.477247 0.524965
Ion Channel Sodium Channel Protein Type IX Al-

pha Subunit
0.481973 0.648225

Ion Channel Voltage-Gated Potassium Channel
Subunit Kv1.5

0.497179 0.458191

Ion Channel Transient Receptor Potential Cation
Channel Subfamily M Member 8

0.519204 0.828398

Ion Channel Vanilloid Receptor 0.541078 0.684196
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Ion Channel P2X Purinoceptor 7 0.599509 0.374953
Ion Channel Transient Receptor Potential Cation

Channel Subfamily A Member 1
0.641016 0.502374

Ion Channel Neuronal Acetylcholine Receptor Pro-
tein Alpha-7 Subunit

0.661421 0.627767

Ion Channel Neuronal Acetylcholine Receptor Al-
pha4 Beta2

0.949944 0.533172

Kinase Fibroblast Growth Factor Receptor 3 0.447973 0.706114
Kinase Nerve Growth Factor Receptor Trk-A 0.471246 0.616584
Kinase Serine Threonine-Protein Kinase

mTOR
0.478746 0.752173

Kinase Serine Threonine-Protein Kinase B-
Raf

0.488564 0.734272

Kinase Pi3-Kinase P110-Alpha Subunit 0.505521 0.705926
Kinase Insulin-Like Growth Factor I Receptor 0.509064 0.784112
Kinase Serine Threonine-Protein Kinase Pim1 0.522521 0.823863
Kinase Hepatocyte Growth Factor Receptor 0.532805 0.703616
Kinase Fibroblast Growth Factor Receptor 1 0.541861 0.759191
Kinase Tyrosine-Protein Kinase JAK1 0.550293 0.636757
Kinase Serine Threonine-Protein Kinase Pim2 0.557517 0.681565
Kinase Serine Threonine-Protein Kinase Akt 0.569934 0.692662
Kinase Tyrosine-Protein Kinase SYK 0.571447 0.645326
Kinase Map Kinase ERK2 0.571936 0.769534
Kinase Tyrosine-Protein Kinase JAK2 0.578351 0.67511
Kinase Epidermal Growth Factor Receptor

ErbB1
0.578622 0.713641

Kinase PI3-Kinase P110-Delta Subunit 0.582241 0.679293
Kinase Vascular Endothelial Growth Factor

Receptor 2
0.587682 0.62532

Kinase Tyrosine-Protein Kinase Receptor
Flt3

0.595912 0.612245

Kinase Map Kinase P38 Alpha 0.602107 0.679678
Kinase PI3-Kinase P110-Gamma Subunit 0.602945 0.589654
Kinase Tyrosine-Protein Kinase JAK3 0.614309 0.764549
Kinase Cyclin-Dependent Kinase 2 0.618524 0.605985
Kinase Tyrosine-Protein Kinase ABL 0.626921 0.781662
Kinase Tyrosine-Protein Kinase Src 0.647486 0.690192
Kinase Serine Threonine-Protein Kinase

Aurora-A
0.660356 0.682692

Kinase Glycogen Synthase Kinase-3 Beta 0.766983 0.446199
Nuclear Receptor Thyroid Hormone Receptor Alpha 0.432221 0.838262
Nuclear Receptor Androgen Receptor 0.509433 0.741759
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Nuclear Receptor Vitamin D Receptor 0.552683 0.819698
Nuclear Receptor Peroxisome Proliferator-Activated Re-

ceptor Gamma
0.573776 0.680704

Nuclear Receptor Glucocorticoid Receptor 0.606133 0.650094
Nuclear Receptor Estrogen Receptor Alpha 0.657432 0.725885
Nuclear Receptor Estrogen Receptor Beta 0.755918 0.655699
Protease Matrix Metalloproteinase-1 0.468225 0.652845
Protease Cathepsin D 0.501263 0.804864
Protease Adam17 0.510525 0.849666
Protease Beta-Secretase 1 0.590782 0.635515
Protease Matrix Metalloproteinase 9 0.594595 0.710221
Protease Cathepsin S 0.604124 0.689075
Protease Dipeptidyl Peptidase IV 0.609874 0.723071
Protease Matrix Metalloproteinase 13 0.635367 0.684301
Protease Leukocyte Elastase 0.638669 0.923682
Protease Gamma-Secretase 0.642171 0.638409
Protease Matrix Metalloproteinase-2 0.642226 0.763534
Protease Thrombin 0.65373 0.730604
Protease Renin 0.82019 0.580784
Protease Trypsin I 0.866903 0.631662
Protease Human Immunodeficiency Virus Type

1 Protease
0.964416 0.491982

Transporter GABA Transporter 1 0.495396 0.743078
Transporter Potassium-Transporting ATPase 0.49603 0.587555
Transporter Dopamine Transporter 0.55616 0.737176
Transporter Serotonin Transporter 0.566232 0.685962
Transporter Norepinephrine Transporter 0.618925 0.53601
Others P53-Binding Protein MDM-2 0.466591 0.883679
Others Histone Deacetylase 1 0.497822 0.670272
Others Histone Deacetylase 6 0.522767 0.734411
Others Bromodomain-Containing Protein 4 0.528409 0.710369
Others Apoptosis Regulator BCL-2 0.542345 0.854652
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Appendix E.

Table 14: Attentive FP Performance for 127 Targets

Protein Family Target MAE R2

GPCR Corticotropin Releasing Factor Recep-
tor 1

0.490922 0.623825

GPCR Orexin Receptor 1 0.497706 0.591447
GPCR Dopamine D3 Receptor 0.531025 0.663432
GPCR Serotonin 6 5-HT6 Receptor 0.556455 0.612263
GPCR Dopamine D1 Receptor 0.564368 0.577392
GPCR Dopamine D2 Receptor 0.570426 0.521134
GPCR Histamine H3 Receptor 0.576515 0.748236
GPCR Kappa Opioid Receptor 0.578933 0.712382
GPCR Melanin-Concentrating Hormone Re-

ceptor 1
0.583885 0.412057

GPCR G Protein-Coupled Receptor 44 0.586915 0.526013
GPCR Cannabinoid CB1 Receptor 0.588262 0.604333
GPCR Adenosine A2A Receptor 0.590046 0.619552
GPCR Orexin Receptor 2 0.597953 0.518812
GPCR Adenosine A3 Receptor 0.605214 0.614513
GPCR Sigma Opioid Receptor 0.61019 0.529517
GPCR Delta Opioid Receptor 0.611888 0.691807
GPCR Serotonin 7 5-HT7 Receptor 0.626231 0.565231
GPCR Serotonin 1A 5-HT1A Receptor 0.629163 0.571075
GPCR Cholecystokinin A Receptor 0.633949 0.545477
GPCR Metabotropic Glutamate Receptor 5 0.636199 0.576591
GPCR Cannabinoid CB2 Receptor 0.638329 0.591378
GPCR Serotonin 2A 5-HT2A Receptor 0.638762 0.534619
GPCR Neurokinin 1 Receptor 0.644041 0.68635
GPCR Adenosine A1 Receptor 0.648008 0.527609
GPCR Muscarinic Acetylcholine Receptor M1 0.6569 0.815135
GPCR Dopamine D4 Receptor 0.658841 0.48456
GPCR Muscarinic Acetylcholine Receptor M2 0.666259 0.761169
GPCR Serotonin 2C 5-HT2C Receptor 0.679467 0.607908
GPCR Melanocortin Receptor 4 0.687404 0.499235
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GPCR Cholecystokinin B Receptor 0.69641 0.594627
GPCR Mu Opioid Receptor 0.728871 0.570209
GPCR Endothelin Receptor ET-A 0.738405 0.59112
GPCR Gonadotropin-Releasing Hormone Re-

ceptor
0.752632 0.863116

GPCR Alpha-1A Adrenergic Receptor 0.813947 0.676316
Enzyme Acetyl-CoA Carboxylase 2 0.339897 0.59946
Enzyme Nicotinamide Phosphoribosyltrans-

ferase
0.460304 0.552548

Enzyme Poly ADP-Ribose Polymerase-1 0.477657 0.72486
Enzyme Arachidonate 5-Lipoxygenase 0.506763 0.53998
Enzyme Cyclooxygenase-1 0.516055 0.384046
Enzyme Carbonic Anhydrase IX 0.516832 0.64339
Enzyme Integrase 0.520679 0.774513
Enzyme 11-Beta-Hydroxysteroid Dehydroge-

nase 1
0.523863 0.754812

Enzyme Carbonic Anhydrase XII 0.549979 0.642072
Enzyme Protein-Tyrosine Phosphatase 1B 0.557424 0.605356
Enzyme Butyrylcholinesterase 0.562489 0.78952
Enzyme Cholinesterase 0.562489 0.78952
Enzyme Carbonic Anhydrase I 0.569368 0.649002
Enzyme Cytochrome P450 19A1 0.60352 0.635757
Enzyme Acetylcholinesterase 0.61918 0.695379
Enzyme Monoamine Oxidase A 0.621665 0.608386
Enzyme Phosphodiesterase 10A 0.632917 0.599676
Enzyme Human Immunodeficiency Virus Type

1 Reverse Transcriptase
0.666502 0.566929

Enzyme Cyclooxygenase-2 0.755628 0.494175
Enzyme Monoamine Oxidase B 0.756907 0.585437
Enzyme Anandamide Amidohydrolase 0.781291 0.750104
Enzyme Protein Farnesyltransferase 0.78212 0.60475
Enzyme Dihydrofolate Reductase 0.808603 0.511523
Enzyme Carbonic Anhydrase II 0.830163 0.500335
Enzyme Coagulation Factor X 0.841557 0.649621
Ion Channel hERG 0.402358 0.585391
Ion Channel Voltage-Gated Potassium Channel

Subunit Kv1.5
0.488535 0.430439

Ion Channel Sodium Channel Protein Type IX Al-
pha Subunit

0.555087 0.577707

Ion Channel Vanilloid Receptor 0.5731 0.609582
Ion Channel P2X Purinoceptor 7 0.586491 0.360953
Ion Channel Transient Receptor Potential Cation

Channel Subfamily M Member 8
0.633245 0.732009
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Ion Channel Neuronal Acetylcholine Receptor Pro-
tein Alpha-7 Subunit

0.644547 0.661759

Ion Channel Transient Receptor Potential Cation
Channel Subfamily A Member 1

0.718269 0.494236

Ion Channel Neuronal Acetylcholine Receptor Al-
pha4 Beta2

1.10829 0.543367

Kinase Fibroblast Growth Factor Receptor 3 0.447547 0.681579
Kinase Nerve Growth Factor Receptor Trk-A 0.44961 0.650777
Kinase Insulin-Like Growth Factor I Receptor 0.457185 0.811463
Kinase Fibroblast Growth Factor Receptor 1 0.458142 0.823691
Kinase Serine Threonine-Protein Kinase B-

Raf
0.47366 0.765909

Kinase Serine Threonine-Protein Kinase
mTOR

0.48659 0.751609

Kinase Tyrosine-Protein Kinase SYK 0.508856 0.695146
Kinase Tyrosine-Protein Kinase JAK1 0.514207 0.657184
Kinase Serine Threonine-Protein Kinase Pim1 0.537158 0.81245
Kinase Tyrosine-Protein Kinase JAK2 0.542957 0.680993
Kinase PI3-Kinase P110-Gamma Subunit 0.555766 0.587181
Kinase Tyrosine-Protein Kinase Receptor

Flt3
0.556648 0.618616

Kinase Map Kinase ERK2 0.562201 0.780079
Kinase Serine Threonine-Protein Kinase Pim2 0.566125 0.681828
Kinase PI3-Kinase P110-Delta Subunit 0.577136 0.692287
Kinase Tyrosine-Protein Kinase JAK3 0.578918 0.765885
Kinase Serine Threonine-Protein Kinase Akt 0.581336 0.67595
Kinase Tyrosine-Protein Kinase ABL 0.591758 0.772936
Kinase Vascular Endothelial Growth Factor

Receptor 2
0.600296 0.639522

Kinase Hepatocyte Growth Factor Receptor 0.607426 0.588303
Kinase Map Kinase P38 Alpha 0.609208 0.657379
Kinase Epidermal Growth Factor Receptor

ErbB1
0.627375 0.692253

Kinase Tyrosine-Protein Kinase SRC 0.62939 0.694305
Kinase PI3-Kinase P110-Alpha Subunit 0.644473 0.57791
Kinase Cyclin-Dependent Kinase 2 0.645197 0.586916
Kinase Serine Threonine-Protein Kinase

Aurora-A
0.711986 0.625632

Kinase Glycogen Synthase Kinase-3 Beta 0.715222 0.518864
Nuclear Receptor Thyroid Hormone Receptor Alpha 0.317999 0.905391
Nuclear Receptor Vitamin D Receptor 0.501735 0.853711
Nuclear Receptor Androgen Receptor 0.572326 0.676986

71



Nuclear Receptor Peroxisome Proliferator-Activated Re-
ceptor Gamma

0.587907 0.665589

Nuclear Receptor Glucocorticoid Receptor 0.60594 0.647011
Nuclear Receptor Estrogen Receptor Alpha 0.670149 0.683154
Nuclear Receptor Estrogen Receptor Beta 0.706901 0.65642
Protease Matrix Metalloproteinase-1 0.455911 0.63966
Protease ADAM17 0.457197 0.861113
Protease Cathepsin D 0.501099 0.821792
Protease Leukocyte Elastase 0.567666 0.946549
Protease Matrix Metalloproteinase 9 0.584676 0.693282
Protease Beta-Secretase 1 0.594107 0.636789
Protease Cathepsin S 0.597208 0.681064
Protease Matrix Metalloproteinase-2 0.604098 0.770955
Protease Matrix Metalloproteinase 13 0.607412 0.679033
Protease Dipeptidyl Peptidase IV 0.626407 0.710055
Protease Thrombin 0.639469 0.738645
Protease Gamma-Secretase 0.659384 0.576
Protease Renin 0.768762 0.56038
Protease Trypsin I 0.989373 0.621731
Protease Human Immunodeficiency Virus Type

1 Protease
1.07298 0.49152

Transporter GABA Transporter 1 0.477037 0.783785
Transporter Potassium-Transporting ATPase 0.518178 0.546349
Transporter Serotonin Transporter 0.541849 0.710211
Transporter Norepinephrine Transporter 0.631822 0.544152
Transporter Dopamine Transporter 0.670739 0.656383
Others P53-Binding Protein MDM-2 0.48738 0.866853
Others Histone Deacetylase 1 0.48994 0.659453
Others Bromodomain-Containing Protein 4 0.53122 0.694395
Others Histone Deacetylase 6 0.564483 0.711331
Others Apoptosis Regulator BCL-2 0.568045 0.829819
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Appendix F.

Table 15: GAT Performance for 127 Trimmed Targets

Protein Family Target MAE R2

GPCR Orexin Receptor 2 0.589704 0.452898
GPCR Dopamine D1 Receptor 0.60931 0.486423
GPCR Orexin Receptor 1 0.612161 0.580473
GPCR Cholecystokinin B Receptor 0.668391 0.694264
GPCR G Protein-Coupled Receptor 44 0.671468 0.504582
GPCR Corticotropin Releasing Factor Recep-

tor 1
0.692644 0.405586

GPCR Serotonin 2C 5-HT2C Receptor 0.70269 0.482913
GPCR Melanin-Concentrating Hormone Re-

ceptor 1
0.720804 0.264373

GPCR Metabotropic Glutamate Receptor 5 0.736192 0.521537
GPCR Endothelin Receptor ET-A 0.73648 0.55544
GPCR Sigma Opioid Receptor 0.762185 0.317478
GPCR Serotonin 6 5-HT6 Receptor 0.836981 0.216342
GPCR Muscarinic Acetylcholine Receptor M2 0.837103 0.58993
GPCR Dopamine D4 Receptor 0.838033 0.234377
GPCR Dopamine D3 Receptor 0.874233 0.272097
GPCR Histamine H3 Receptor 0.899806 0.232627
GPCR Cannabinoid CB2 Receptor 0.913493 0.329095
GPCR Cholecystokinin A Receptor 0.928256 0.196413
GPCR Adenosine A2A Receptor 0.934012 0.315788
GPCR Dopamine D2 Receptor 0.943521 0.14754
GPCR Delta Opioid Receptor 0.949053 0.578616
GPCR Adenosine A3 Receptor 0.966615 0.154715
GPCR Cannabinoid CB1 Receptor 0.968799 0.337417
GPCR Serotonin 7 5-HT7 Receptor 0.980402 0.198827
GPCR Melanocortin Receptor 4 0.992796 0.189346
GPCR Neurokinin 1 Receptor 0.998566 0.344464
GPCR Adenosine A1 Receptor 1.00151 0.254665
GPCR Serotonin 2A 5-HT2A Receptor 1.02808 0.111837
GPCR Muscarinic Acetylcholine Receptor M1 1.04708 0.646855
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GPCR Serotonin 1A 5-HT1A Receptor 1.08584 0.170924
GPCR Kappa Opioid Receptor 1.19955 0.142706
GPCR Mu Opioid Receptor 1.3573 0.19351
GPCR Alpha-1A Adrenergic Receptor 1.36432 0.21584
GPCR Gonadotropin-Releasing Hormone Re-

ceptor
1.47773 0.867682

Enzyme Acetyl-CoA Carboxylase 2 0.424239 0.233817
Enzyme Nicotinamide Phosphoribosyltrans-

ferase
0.599874 0.208696

Enzyme Carbonic Anhydrase XII 0.669231 0.422563
Enzyme Poly ADP-Ribose Polymerase-1 0.742217 0.566515
Enzyme Cyclooxygenase-1 0.74357 0.196585
Enzyme 11-Beta-Hydroxysteroid Dehydroge-

nase 1
0.81701 0.506097

Enzyme Protein-Tyrosine Phosphatase 1B 0.822669 0.199528
Enzyme Arachidonate 5-Lipoxygenase 0.835897 0.138413
Enzyme Protein Farnesyltransferase 0.845638 0.50651
Enzyme Integrase 0.86877 0.629392
Enzyme Cytochrome P450 19A1 0.875263 0.146494
Enzyme Monoamine Oxidase B 0.914769 0.423846
Enzyme Butyrylcholinesterase 0.917313 0.533758
Enzyme Cholinesterase 0.917313 0.533758
Enzyme Carbonic Anhydrase II 0.936086 0.314345
Enzyme Carbonic Anhydrase IX 1.00677 0.219184
Enzyme Anandamide Amidohydrolase 1.01289 0.537192
Enzyme Phosphodiesterase 10A 1.02204 0.0384146
Enzyme Dihydrofolate Reductase 1.06824 0.267371
Enzyme Acetylcholinesterase 1.07549 0.142763
Enzyme Human Immunodeficiency Virus Type

1 Reverse Transcriptase
1.18144 0.141049

Enzyme Coagulation Factor X 1.24094 0.295657
Enzyme Carbonic Anhydrase I 1.2513 0.286707
Enzyme Cyclooxygenase-2 1.26347 0.160837
Enzyme Monoamine Oxidase A 1.2954 0.123172
Ion Channel Sodium Channel Protein Type IX Al-

pha Subunit
0.642392 0.402947

Ion Channel Transient Receptor Potential Cation
Channel Subfamily A Member 1

0.642817 0.548105

Ion Channel Voltage-Gated Potassium Channel
Subunit Kv1.5

0.6506 0.401565

Ion Channel P2X Purinoceptor 7 0.669577 0.218545
Ion Channel Transient Receptor Potential Cation

Channel Subfamily M Member 8
0.675741 0.726565
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Ion Channel hERG 0.771669 0.192845
Ion Channel Vanilloid Receptor 0.826548 0.337059
Ion Channel Neuronal Acetylcholine Receptor Pro-

tein Alpha-7 Subunit
0.931706 0.402711

Ion Channel Neuronal Acetylcholine Receptor Al-
pha4 Beta2

1.57182 0.097581

Kinase Tyrosine-Protein Kinase SYK 0.550226 0.501422
Kinase Nerve Growth Factor Receptor Trk-A 0.562369 0.319242
Kinase Serine Threonine-Protein Kinase B-

Raf
0.679553 0.546901

Kinase PI3-Kinase P110-Delta Subunit 0.698697 0.49173
Kinase Fibroblast Growth Factor Receptor 3 0.707076 0.482198
Kinase Tyrosine-Protein Kinase Src 0.727675 0.688911
Kinase Serine Threonine-Protein Kinase

Aurora-A
0.741423 0.688579

Kinase Serine Threonine-Protein Kinase
mTOR

0.741542 0.542931

Kinase Hepatocyte Growth Factor Receptor 0.753035 0.481951
Kinase Cyclin-Dependent Kinase 2 0.759393 0.45449
Kinase Tyrosine-Protein Kinase Receptor

Flt3
0.763853 0.490944

Kinase Serine Threonine-Protein Kinase Pim2 0.780631 0.311695
Kinase Tyrosine-Protein Kinase JAK2 0.798446 0.275404
Kinase Tyrosine-Protein Kinase JAK1 0.810062 0.376184
Kinase Serine Threonine-Protein Kinase Pim1 0.816236 0.710495
Kinase PI3-Kinase P110-Alpha Subunit 0.871526 0.309746
Kinase Map Kinase p38 Alpha 0.882311 0.228604
Kinase Serine Threonine-Protein Kinase Akt 0.895098 0.527702
Kinase Tyrosine-Protein Kinase JAK3 0.900458 0.793027
Kinase Insulin-Like Growth Factor I Receptor 0.927926 0.487329
Kinase PI3-Kinase P110-Gamma Subunit 0.978141 0.0642752
Kinase Tyrosine-Protein Kinase ABL 0.99634 0.573457
Kinase Map Kinase ERK2 1.02825 0.297892
Kinase Glycogen Synthase Kinase-3 Beta 1.04363 0.29941
Kinase Fibroblast Growth Factor Receptor 1 1.04414 0.345846
Kinase Vascular Endothelial Growth Factor

Receptor 2
1.12646 0.0718916

Kinase Epidermal Growth Factor Receptor
ErbB1

1.19671 0.244884

Nuclear Receptor Thyroid Hormone Receptor Alpha 0.432221 0.838262
Nuclear Receptor Vitamin D Receptor 0.676815 0.747461
Nuclear Receptor Glucocorticoid Receptor 0.70666 0.562693
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Nuclear Receptor Estrogen Receptor Alpha 0.774727 0.600589
Nuclear Receptor Estrogen Receptor Beta 0.835242 0.509369
Nuclear Receptor Peroxisome Proliferator-Activated Re-

ceptor Gamma
0.849526 0.379332

Nuclear Receptor Androgen Receptor 0.957716 0.316801
Protease Cathepsin D 0.57719 0.67336
Protease ADAM17 0.684251 0.803204
Protease Matrix Metalloproteinase-1 0.720367 0.490284
Protease Beta-Secretase 1 0.733293 0.357651
Protease Cathepsin S 0.837661 0.474929
Protease Gamma-Secretase 0.870358 0.512929
Protease Dipeptidyl Peptidase IV 0.908789 0.351477
Protease Renin 0.923925 0.422101
Protease Trypsin I 0.966424 0.723052
Protease Matrix Metalloproteinase 9 0.969627 0.521593
Protease Thrombin 0.986152 0.505473
Protease Matrix Metalloproteinase 13 1.04879 0.364442
Protease Matrix Metalloproteinase-2 1.17358 0.328815
Protease Human Immunodeficiency Virus Type

1 Protease
1.45177 0.254783

Protease Leukocyte Elastase 1.78818 0.512567
Transporter Potassium-Transporting ATPase 0.489583 0.553208
Transporter GABA Transporter 1 0.539342 0.692818
Transporter Norepinephrine Transporter 0.827091 0.4493
Transporter Dopamine Transporter 0.97181 0.268033
Transporter Serotonin Transporter 1.04551 0.192957
Others Bromodomain-Containing Protein 4 0.605324 0.568015
Others Apoptosis Regulator BCL-2 0.704223 0.75977
Others Histone Deacetylase 6 0.727624 0.555039
Others Histone Deacetylase 1 0.878685 0.233667
Others P53-Binding Protein MDM-2 0.884695 0.611539
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Appendix G.

Table 16: Attentive FP Performance for 127 Trimmed Targets

Protein Family Target MAE R2

GPCR Dopamine D1 Receptor 0.682311 0.452283
GPCR Orexin Receptor 2 0.700794 0.290899
GPCR G Protein-Coupled Receptor 44 0.701444 0.388748
GPCR Sigma Opioid Receptor 0.728259 0.298365
GPCR Corticotropin Releasing Factor Recep-

tor 1
0.732187 0.333108

GPCR Metabotropic Glutamate Receptor 5 0.732705 0.447071
GPCR Orexin Receptor 1 0.736025 0.493911
GPCR Cholecystokinin B Receptor 0.754511 0.589814
GPCR Melanin-Concentrating Hormone Re-

ceptor 1
0.78178 0.227961

GPCR Serotonin 6 5-HT6 Receptor 0.782301 0.347761
GPCR Adenosine A3 Receptor 0.79487 0.200585
GPCR Serotonin 2C 5-HT2C Receptor 0.804422 0.238801
GPCR Adenosine A2A Receptor 0.812463 0.352419
GPCR Delta Opioid Receptor 0.826328 0.648678
GPCR Cannabinoid CB2 Receptor 0.827391 0.379538
GPCR Neurokinin 1 Receptor 0.83114 0.506436
GPCR Cholecystokinin A Receptor 0.835886 0.198803
GPCR Adenosine A1 Receptor 0.836361 0.412129
GPCR Dopamine D4 Receptor 0.88283 0.199972
GPCR Endothelin Receptor ET-A 0.929514 0.483295
GPCR Histamine H3 Receptor 0.929878 0.214152
GPCR Serotonin 1A 5-HT1A Receptor 0.936297 0.233051
GPCR Dopamine D2 Receptor 0.975995 0.112275
GPCR Serotonin 7 5-HT7 Receptor 0.983921 0.20695
GPCR Serotonin 2A 5-HT2A Receptor 0.994333 0.0771701
GPCR Cannabinoid CB1 Receptor 1.01057 0.318776
GPCR Melanocortin Receptor 4 1.0136 0.231703
GPCR Mu Opioid Receptor 1.01997 0.326846
GPCR Dopamine D3 Receptor 1.04419 0.204324
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GPCR Muscarinic Acetylcholine Receptor M2 1.04455 0.42102
GPCR Kappa Opioid Receptor 1.07605 0.268229
GPCR Gonadotropin-Releasing Hormone Re-

ceptor
1.08573 0.938868

GPCR Muscarinic Acetylcholine Receptor M1 1.13591 0.475863
GPCR Alpha-1A Adrenergic Receptor 1.67084 0.0776665
Enzyme Acetyl-CoA Carboxylase 2 0.517972 0.231402
Enzyme Nicotinamide Phosphoribosyltrans-

ferase
0.647807 0.172251

Enzyme Cyclooxygenase-1 0.663365 0.198229
Enzyme Poly ADP-Ribose Polymerase-1 0.720633 0.547431
Enzyme Arachidonate 5-Lipoxygenase 0.724115 0.263447
Enzyme Cytochrome P450 19A1 0.740117 0.345085
Enzyme Protein-Tyrosine Phosphatase 1B 0.748505 0.271287
Enzyme Carbonic Anhydrase XII 0.751454 0.307675
Enzyme Carbonic Anhydrase IX 0.756133 0.437756
Enzyme Protein Farnesyltransferase 0.800804 0.527304
Enzyme 11-Beta-Hydroxysteroid Dehydroge-

nase 1
0.808475 0.407708

Enzyme Integrase 0.86361 0.581748
Enzyme Cyclooxygenase-2 0.918556 0.547687
Enzyme Anandamide Amidohydrolase 0.964452 0.715723
Enzyme Butyrylcholinesterase 0.981487 0.412026
Enzyme Cholinesterase 0.981487 0.412026
Enzyme Phosphodiesterase 10A 0.988912 0.0704144
Enzyme Monoamine Oxidase A 0.992852 0.26462
Enzyme Monoamine Oxidase B 1.06341 0.309571
Enzyme Carbonic Anhydrase II 1.06829 0.203616
Enzyme Acetylcholinesterase 1.06934 0.171395
Enzyme Carbonic Anhydrase I 1.114 0.195443
Enzyme Dihydrofolate Reductase 1.1177 0.233031
Enzyme Human Immunodeficiency Virus Type

1 Reverse Transcriptase
1.17997 0.21327

Enzyme Coagulation Factor X 1.46845 0.134097
Ion Channel Voltage-Gated Potassium Channel

Subunit Kv1.5
0.608806 0.371786

Ion Channel Transient Receptor Potential Cation
Channel Subfamily M Member 8

0.614203 0.784754

Ion Channel Sodium Channel Protein Type IX Al-
pha Subunit

0.694951 0.329833

Ion Channel Transient Receptor Potential Cation
Channel Subfamily A Member 1

0.708502 0.396932
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Ion Channel P2X Purinoceptor 7 0.807999 0.0223141
Ion Channel Neuronal Acetylcholine Receptor Pro-

tein Alpha-7 Subunit
0.823346 0.50744

Ion Channel Vanilloid Receptor 0.922438 0.322762
Ion Channel hERG 1.02747 0.0898554
Ion Channel Neuronal Acetylcholine Receptor Al-

pha4 Beta2
1.44172 0.198465

Kinase Serine Threonine-Protein Kinase
Aurora-A

0.602185 0.744449

Kinase Fibroblast Growth Factor Receptor 3 0.622104 0.544021
Kinase Nerve Growth Factor Receptor Trk-A 0.63105 0.294513
Kinase Tyrosine-Protein Kinase Receptor

Flt3
0.686655 0.478522

Kinase Tyrosine-Protein Kinase SYK 0.696014 0.386
Kinase Tyrosine-Protein Kinase JAK3 0.696355 0.877686
Kinase Map Kinase ERK2 0.712688 0.592067
Kinase Tyrosine-Protein Kinase JAK2 0.727495 0.463981
Kinase Serine Threonine-Protein Kinase B-

Raf
0.776089 0.498727

Kinase PI3-Kinase P110-Gamma Subunit 0.780153 0.151872
Kinase Serine Threonine-Protein Kinase

mTOR
0.787296 0.415848

Kinase Tyrosine-Protein Kinase ABL 0.790516 0.700872
Kinase Hepatocyte Growth Factor Receptor 0.829403 0.416103
Kinase Map Kinase P38 Alpha 0.848987 0.208295
Kinase Serine Threonine-Protein Kinase Pim2 0.855006 0.331146
Kinase Serine Threonine-Protein Kinase Pim1 0.878225 0.658164
Kinase Tyrosine-Protein Kinase SRC 0.885249 0.497705
Kinase Serine Threonine-Protein Kinase Akt 0.887022 0.507695
Kinase PI3-Kinase P110-Delta Subunit 0.898694 0.324156
Kinase PI3-Kinase P110-Alpha Subunit 0.902458 0.209273
Kinase Tyrosine-Protein Kinase JAK1 0.910165 0.33833
Kinase Fibroblast Growth Factor Receptor 1 0.93935 0.368842
Kinase Insulin-Like Growth Factor I Receptor 0.998174 0.357683
Kinase Glycogen Synthase Kinase-3 Beta 1.01375 0.312612
Kinase Epidermal Growth Factor Receptor

ErbB1
1.02061 0.274344

Kinase Vascular Endothelial Growth Factor
Receptor 2

1.04763 0.130452

Kinase Cyclin-Dependent Kinase 2 1.04828 0.225797
Nuclear Receptor Thyroid Hormone Receptor Alpha 0.353245 0.875037
Nuclear Receptor Vitamin D Receptor 0.718436 0.735657
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Nuclear Receptor Glucocorticoid Receptor 0.780833 0.423534
Nuclear Receptor Estrogen Receptor Alpha 0.815322 0.467774
Nuclear Receptor Peroxisome Proliferator-Activated Re-

ceptor Gamma
0.881489 0.291319

Nuclear Receptor Estrogen Receptor Beta 0.897794 0.492477
Nuclear Receptor Androgen Receptor 0.943881 0.270307
Protease ADAM17 0.5552 0.812146
Protease Matrix Metalloproteinase-1 0.69898 0.463085
Protease Cathepsin D 0.722064 0.539881
Protease Matrix Metalloproteinase 9 0.727469 0.654812
Protease Gamma-Secretase 0.735093 0.568424
Protease Cathepsin S 0.86755 0.439025
Protease Dipeptidyl Peptidase IV 0.925892 0.350131
Protease Beta-Secretase 1 0.958189 0.214969
Protease Matrix Metalloproteinase-2 0.965923 0.501818
Protease Renin 0.973206 0.409774
Protease Matrix Metalloproteinase 13 0.980175 0.400279
Protease Thrombin 1.01231 0.361709
Protease Trypsin I 1.03733 0.622753
Protease Human Immunodeficiency Virus Type

1 Protease
1.19677 0.375027

Protease Leukocyte Elastase 1.24264 0.703556
Transporter GABA Transporter 1 0.532831 0.68282
Transporter Potassium-Transporting ATPase 0.551369 0.555607
Transporter Norepinephrine Transporter 0.809101 0.369478
Transporter Dopamine Transporter 0.929396 0.356622
Transporter Serotonin Transporter 1.04327 0.252044
Others Apoptosis Regulator BCL-2 0.640531 0.755704
Others Bromodomain-Containing Protein 4 0.686667 0.461269
Others Histone Deacetylase 1 0.739618 0.329351
Others Histone Deacetylase 6 0.860364 0.345978
Others P53-Binding Protein MDM-2 0.869291 0.520405

80


	Titlepage
	
	Abstract
	Dedication
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables

	I Introduction
	1.1 Background
	1.2 Motivation
	1.3 Problem Domain
	1.4 Thesis Outline

	II Graph Neural Networks
	2.1 Graph Neural Networks and Molecular Activity Prediction
	2.2 Fundamentals of GCNs
	2.3 Emergence of Advanced GNN Architectures
	2.4 Graph Attention Networks
	2.5 Attentive FP
	2.6 Interpretability of GNNs
	2.7 Ensemble Models in Machine Learning
	2.8 Efficacy of GNNs in Various Contexts

	III Methodology
	3.1 Computation
	3.2 Model Training, Validation, and Assessment
	3.3 Data
	3.4 Hyperparameter Optimization
	3.4.1 GAT Hyperparameters
	3.4.2 Attentive FP Hyperparameters


	IV Results
	4.1 Evaluation of Models Across Datasets
	4.1.1 Serotonin Transporter
	4.1.2 BACE
	4.1.3 Acetylcholinesterase
	4.1.4 Target Protein Datasets

	4.2 Our Top 4 Models for Each Protein Family
	4.2.1 Comparison of GAT and Attentive FP

	4.3 Experiments on Truncated Datasets
	4.3.1 Attentive FP Model Performance
	4.3.2 GAT Performance
	4.3.3 Comparison of GAT and Attentive FP
	4.3.4 GCN Performance on Truncated Datasets


	V Discussions
	5.1 Performance of GNNs across different protein families
	5.2 GATs and Attentive FP
	5.3 Impact of truncating datasets
	5.3.1 GAT
	5.3.2 Attentive FP


	VI Conclusion
	6.1 Summary
	6.2 Future Directions

	References
	Appendices
	Appendix A:  Code
	Appendix B:  Hyperparameter Tuning Code for GAT
	Appendix C:  Hyperparameter Tuning Code for Attentive FP
	Appendix D:  GAT Performance for 127 Targets
	Appendix E  Attentive FP Performance for 127 Targets
	Appendix F:  GAT Performance for 127 Truncated Targets
	Appendix G:  Attentive FP Performance for 127 Truncated Targets


