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Abstract

While major advancements have been achieved in many fields utilizing artificial

intelligence for a variety of tasks, some specialized areas remain difficult to tackle. The

legal domain is one such area. It is often said that legal language is a dialect of English

and one that requires a Law degree to be fluent in. In this work we examined parallels

between software engineering and legal drafting to develop definitions for contract

smells, quick indications for potential issues with legal contracts. We created an auto

labelled dataset of these contracts smells using engineered prompts and demonstrated

how even a small set of human labels can significantly improve auto labelling results

with few shots techniques. We demonstrated using bi-directional deep learning models

that these contract smells can indeed be successfully detected automatically with high

accuracy after further fine tuning BERT as well as LegalBert. This work underscores

the feasibility of applying advanced NLP techniques to automate aspects of legal

contract review and provides a strong foundation to further develop models for this

purpose.



Acknowledgements

I would like to thank my thesis director, Prof. Daniel Martin Katz and my

thesis advisor Prof. Hongming Wang, for their guidance and continuous support

throughout this work. I am also deeply grateful for my husband’s tremendous support

during this journey.

iv



Contents

Table of Contents

List of Figures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

List of Tables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

List of Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

Chapter I: Introduction

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.1.1 Legal Contracts Background . . . . . . . . . . . . . . . . . . . 2

1.1.2 Importance of Legal Contracts . . . . . . . . . . . . . . . . . . 3

1.1.3 Current Challenges with Legal Contracts . . . . . . . . . . . . 4

1.2 Software Development and Legal Drafting . . . . . . . . . . . . . . . 6

1.2.1 Realm Similarities . . . . . . . . . . . . . . . . . . . . . . . . 6

1.2.2 Software Development Code Smells . . . . . . . . . . . . . . . 8

1.2.3 Code Smells and Legal Issues . . . . . . . . . . . . . . . . . . 9

1.3 Machine Learning to detect code smells . . . . . . . . . . . . . . . . . 10

1.4 Machine learning for legal analysis . . . . . . . . . . . . . . . . . . . . 12

1.5 Natural language processing . . . . . . . . . . . . . . . . . . . . . . . 14

v



1.6 Project Goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Chapter II: Development of Contract Smells

2.1 Defining Contract Smells . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.2 Mapping Code to Contract . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.1 Long Method . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.2 Large Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.2.3 Primitive Obsession . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.4 Data Clumps . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.5 Switch Statements . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.6 Temporary Variable . . . . . . . . . . . . . . . . . . . . . . . . 19

2.2.7 Feature Envy . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.8 Duplicate Code . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.9 Lazy Class . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.10 Speculative Generality . . . . . . . . . . . . . . . . . . . . . . 20

2.2.11 Inappropriate Intimacy . . . . . . . . . . . . . . . . . . . . . . 21

2.2.12 Comments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3 Selecting Candidates . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.3.1 Overly Long Clauses (Long Method) . . . . . . . . . . . . . . 22

2.3.2 Overly Broad Scope (Large Class) . . . . . . . . . . . . . . . . 23

2.3.3 Overuse of Basic Provisions (Primitive Obsession) . . . . . . . 23

2.3.4 Repetitive Clauses (Data Clumps) . . . . . . . . . . . . . . . . 23

vi



2.3.5 Over-Reliance on Conditional Clauses (Switch Statements) . . 24

2.3.6 Inconsistent Terms (Temporary Field) . . . . . . . . . . . . . 24

2.3.7 Misplaced Responsibilities (Feature Envy) . . . . . . . . . . . 24

2.3.8 Redundant Language (Duplicate Code) . . . . . . . . . . . . . 24

2.3.9 Superfluous Clauses (Lazy Class) . . . . . . . . . . . . . . . . 25

2.3.10 Overly Broad Provisions (Speculative Generality) . . . . . . . 25

2.3.11 Overly Detailed Disclosures (Inappropriate Intimacy) . . . . . 25

2.3.12 Excessive Legalese (Comments) . . . . . . . . . . . . . . . . . 25

Chapter III: Methods And Experiments

3.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.1 Labelling Contracts . . . . . . . . . . . . . . . . . . . . . . . . 27

3.1.2 Labelling Methods . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

Chapter IV: Development

4.1 Development Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2 Project Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.1 Optimizing Definitions For Model Consumption . . . . . . . . 31

4.2.2 Set 1 - Focus on textual patterns: . . . . . . . . . . . . . . . . 31

4.2.3 Set 2 - Focus on parallels to coding: . . . . . . . . . . . . . . . 32

Chapter V: Results

5.1 Auto-labelling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

vii



5.1.1 Coding Oriented Dataset: . . . . . . . . . . . . . . . . . . . . 33

5.1.2 Textual Oriented Dataset: . . . . . . . . . . . . . . . . . . . . 35

5.1.3 Auto Labeled Dataset: . . . . . . . . . . . . . . . . . . . . . . 38

5.1.4 Human Labeled Dataset: . . . . . . . . . . . . . . . . . . . . . 40

5.1.5 Datasets Highlights: . . . . . . . . . . . . . . . . . . . . . . . 42

5.2 Baseline BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.3 Legal BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4 CUAD trained Legal BERT . . . . . . . . . . . . . . . . . . . . . . . 47

5.5 Models Summery . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.5.1 High Level Performance . . . . . . . . . . . . . . . . . . . . . 49

5.5.2 Smell Specific Analysis . . . . . . . . . . . . . . . . . . . . . . 50

5.5.3 Cross Predictions Results . . . . . . . . . . . . . . . . . . . . 50

Chapter VI: Summary and Conclusions

6.1 Discussion Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

References

Appendix A: Source Code

viii



List of Figures

V.1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

V.2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

V.3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

V.4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

V.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

V.6 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

V.7 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

V.8 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

ix



List of Tables

II.1 Identified Contract Smells . . . . . . . . . . . . . . . . . . . . . . . . 26

V.1 BERT Baseline Model Results . . . . . . . . . . . . . . . . . . . . . . 44

V.2 LegalBert Model Results . . . . . . . . . . . . . . . . . . . . . . . . . 46

V.3 CUAD trained LegalBert Results on Text-Oriented and Coding-Oriented

Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

V.4 Performance Metrics of Different Models . . . . . . . . . . . . . . . . 49

V.5 Accuracy Analysis Across Models for Contract Smells . . . . . . . . . 50

V.6 Analysis Across Models for Human Evaluated Contract Smells . . . . 50

V.7 Predictive Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

x



List of Code

xi



Chapter I.

Introduction

In software engineering there is a well known term “code smells” referring to

easily detected code problems which could be a good indication for deeper problems

in the system itself. In previous work done to port these concepts from software

engineering to the legal world (Coupette et al., 2023), they were redefined for the

legal context and named “Law Smells”, meaning easily detected issues in laws and

regulations that can indicate deeper problems in the law. This work successfully

identified several such smells and developed a toolkit to demonstrate how we can

detect some of these smells in US laws. This thesis will visit the work done on Law

Smells starting with definitions and going all the way to actual detection methods,

to explore the law smells that can be applied to contracts and legal agreements in

order to alleviate the load of the contract review process. Accomplishing detection of

”contract smells” will make contract reviewing a more automated process and even

has the potential to stride in the direction of more standardizes contract drafting.



1.1. Background

1.1.1 Legal Contracts Background

A contract is a legally enforceable agreement between two or more parties that

is entered into voluntarily, with the intent to create legal relations. Each party accepts

a set of obligations, rights, and benefits established within the contract. Contracts

are fundamental instruments within private law and serve as the basis for a vast range

of commercial and personal transactions, relationships, and exchanges. In order for

the contract to be legally binding it needs to meet several requirements. Some of

these core requirements are: one of the parties must make a clear offer that the other

parties will be accepting in this agreement , there must be a consideration made on

each of the parties to supply some value to the other and that the transaction itself

must be legal. The parties themselves must also have the legal capacity and com-

petency to contract, meaning they are of sound mind and a certain minimum age

depending on the type of contract. The specific terms within a contract articulate

the responsibilities, entitlements, and commitments each party will be bound to. The

obligations and benefits of all parties are explicitly stated, and failure to fulfill one’s

obligations can result in legal consequences imposed by the contract itself or through

litigation, such as compensatory damages or court-ordered performance. The terms

of a contract are interpreted strictly by the courts, and will be enforced as written

unless found to be ambiguous or unconscionable. This is where contract agreements

complexity become challenging as one can not cover every possible outcome of the
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contract. Edge cases, special circumstances and external impacts could be only a

few of the hard to tackle clauses. Contracts establish a mechanism by which parties

can rely on the force of law to guarantee confidence, equity, and performance in their

dealings and exchanges. By voluntarily consenting to the mutual obligations and

benefits set out within a contract, individuals, businesses, and organizations are able

to engage in risk-taking by planning for the future, developing ongoing relationships,

and participating in complex transactions—all with the assurance that legal recourse

is available if either party fails to carry out their contractual responsibilities. Con-

tracts thus provide an indispensable foundation for commerce and cooperation in an

immense range of human affairs.

1.1.2 Importance of Legal Contracts

Legal contracts are at the heart of human society. They are the basis of in-

stilling trust and eliminating risk in situations and transaction and in that they are

in fact one of the biggest driver of economic progress. We can think of agreements as

strings that connect people, businesses, organizations and countries. When focusing

on the world of commerce we can see how contracts are very much indispensable.

The create a framework for trade and felicitate business and how it is conducted

between parties. Agreement clauses specifying each party’s rights and obligations are

placed in order to protect both sides, reduce uncertainty, reduce risk and guaran-

tee the parties interests in a transaction. This provides trust on which parties can

build on when collaborating and exchanging knowledge, goods, or any other valuable.
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This is key to economic growth and development. The 2016 Nobel prize in the field

of economics was awarded to researchers for their work in contract theory, demon-

strating just how much contracts are crucial for our society. Looking at this from a

social development perspective we can see here also contracts are pivotal in shaping

societal behaviours and setting expectations. For example employment agreements

are not only binding the employee and employer, they are also setting norms for fair

compensation, reasonable work life balance and safe working environment. Further-

more, social stability and justice which are the pillar of democratic societies, rely

on contracts as a fundamental mechanism for enforcing rule of law, individual rights

and ensuring accountability. This also contributes to reinforcing trust in legal and

institutional systems. One important characteristic of contracts is their evolution

which happens in tandem with social development, technological development and so

they are transforming over time along with us. Today, with the advent of artificial

intelligence and machine learning, we stand on the brink of another major shift in

contract management and analysis. This research aims to contribute to this evolving

landscape by developing a deep learning model to detect law smells in legal contracts,

thereby enhancing the efficiency and accuracy of contract analysis.

1.1.3 Current Challenges with Legal Contracts

As legal contracts are such a big part of our society, economic system and law,

they are not without challenges. In fact, challenges in properly drafting a contract can

be clearly observed through the need for interpretation that occurs after the contract
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is signed and in effect. Many times this can even require settling unclear contracts

clauses disputes in court. Issues with contracts are expected to a certain level, as

it is the contract’s goal to cover as many possible future outcomes and scenarios

as possible, however the future is inherently uncertain and covering all options is

non realistic. The law itself, to which a contract is subject to, is not static. Rules

and regulations change over time, evolve, and this has an impact on the context

in which the contract was created. The above cause challenges both when drafting

and interpreting contacts, however we can also describe several other causes that

can be minimized with proper tools and procedures. The first comes from language.

Any language can be open to different interpretations and sometimes even missing

or incorrect punctuation can result in a completely different meaning for a sentence.

This is even amplified in the legal language which incorporates the usage of many

specific terms, and legal phrases. This can make a legal contract more complex to

draft, resulting in many ambiguities. A second cause is the lack of drafting standards

in the field in general. Each law firm will tend to have several templates they work

with and edit them to fit the purpose of a newly drafted contract. A mistake in

this template will persist in all contracts that were based of that template. Also the

fact that these templates differ from law firm to another cause additional overhead

when analyzing contracts as they can be very different and require much bigger effort

to properly assess all the clauses. Lastly, we need to always remember the human

factor. More prone to errors can be inexperienced law professionals especially with no
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guidelines or standards, they have a greater chance to make mistakes when drafting

contracts. Also with contract length and complexity increase, the bigger the chance

even very experienced law professionals will overlook inconsistencies, gaps or contract

vulnerabilities. All these can be addressed and mitigated with software tools to help

automate the process of assessing and detecting issues with legal contracts and lead

the way to drafting better contracts. We can see the impact of these challenges when

summing court cases for clarifying or interpreting contracts as they are accessible

through CanLi, a non for profit organization providing web access to court judgments

from all Canadian courts. In the past 3 years we can consistently see approximately

10% of court judgments were with regards to contracts and interpretation.

1.2. Software Development and Legal Drafting

1.2.1 Realm Similarities

The creation of both legal agreements and software code share intriguing com-

monalities, despite seeming disconnected on the surface. A deeper analysis illuminates

striking parallels between these two rule-based systems, forming a compelling basis for

applying insights on code smells from software engineering to the novel concept of law

smells in contractual agreements. Legal contracts and software code both establish

intricate rule systems intended to tightly control behaviors and outcomes. Both define

the content world it governs, then a set of conditions and outcomes that are based on

the branching of those conditions. Even minor oversights can propagate through such
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fastidious rule-based frameworks, magnifying unintended consequences. This similar-

ity was noted by (Coupette et al., 2023), who characterized both domains as systems

of instructions crafted to direct actions towards desired results. Furthermore, the

languages involved require specialized expertise. Legal ’legalese’ and programming

syntax comprise complex vocabularies which only skilled practitioners can fluently

employ. Errors in syntax or legal language usage, introduces vulnerabilities, mani-

festing as software bugs or legal loopholes. Additionally, contracts and code alike must

manage multiple possible scenarios. Agreements account for potential disputes, just

as programs handle varied inputs. This reality was highlighted by (Coupette et al.,

2023), who observed both fields grappling with dynamic situations and abstraction of

unknowable future complexities. Most critically, both domains suffer from detectable

warning signs of latent defects, analogized as code smells and law smells. While

not immediately dysfunctional, such symptoms often betray future complications.

As (Coupette et al., 2023) suggested, identifying such contract weaknesses enables

proactive quality assurance, much like how code smells flag software vulnerabilities.

Given these marked similarities, applying software methods for smell detection to le-

gal agreements shows a lot of promise. This research will develop a model leveraging

machine learning to pinpoint law smells, working towards the quantitative contract

analysis envisioned by (Coupette et al., 2023) By detecting problematic codifications

early and improving drafting quality, this approach can enhance the effectiveness of

legal agreements.
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1.2.2 Software Development Code Smells

Code smells were initially introduced in the 1990s and became popular fol-

lowing a publication of a book on the topic (Fowler et al., 1999) focusing on code

manifestations or patterns that could be good indications to an actual problem with

the software system at hand. Below is a short definition for code smells: Long Method:

A method that is too long or became too long with time, suggesting that it is doing

too many things. Large Class: Similar for long method but referring to a class. A

class that is simply too large, often containing many variables and methods. Primi-

tive Obsession: Using primitive data types instead of using simple and small objects

for basic tasks (for instance for currency, ranges, special strings for phone numbers,

etc.). Long Parameter List: Methods that have more parameters than necessary,

making them hard to understand and maintain. Data Clumps: Different sections of

the software code that use the same groups of variables, suggesting that they should

actually be combined into the same class. Switch Statements: Extensive use of switch

statements or sequences of if statements, which could be replaced with polymorphism.

Temporary Field: Occurs when a class has a field that is only set in certain circum-

stances. Such fields are puzzling and error-prone. Divergent Change: Class that is

being changed in several different ways for a number of different reasons, suggesting

that it has more than one responsibility and context. Shotgun Surgery: Similar to

divergent change, but in this case, a change in one class requires additional changes

to be done in many other classes. Feature Envy: A method that makes more calls
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to other class methods than it is making calls internally which is suggesting we may

have misplaced functionality. Duplicate Code: When sections of identical code or

very close to that, can be seen in more than one place in the software system. Lazy

Class/Freeloader: A class that has insignificant responsibility and is not pulling its

weight, increasing the cost of maintenance without offering much functionality. Spec-

ulative Generality: A class or method that has been created to support anticipated

future requirements that never materialize. Inappropriate Intimacy: A class that is

using some internal fields and methods of another class excessively despite these are

meant to be for internal use. Message Chains: A pattern of method calls that form

a chain, which can create a strong coupling between classes. Middle Man: A class

that does nothing but delegate to another class, which can be eliminated to simplify

the design. Inheritance vs. Delegation: Inappropriate use of inheritance, where dele-

gation might be more appropriate. Data Class: A class with no actual functionality,

that in fact only contains data fields and thegetters and setter for accessing them.

Refused Bequest: If a subclass does not use the methods and properties inherited

from its superclass, inheritance might not be the best approach. Comments: Exces-

sive use of comments to explain complex code, instead of refactoring the code to be

more understandable.

1.2.3 Code Smells and Legal Issues

Building on the concept of code smells, and as seen in the work by (Coupette

et al., 2023) a mapping was defined between code smells and issues with law, legisla-
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tion and regulations. The mapping focused on creating parallels between the realms

but also defined law smells based on that mapping. Here are the law-smells the

work focused on: Duplicated phrase: A phrase in a legal text that repeats in several

occurrences. This indicates inefficiencies and create risks of inconsistencies. Long

element: An element (e.g. section, chapter) of law containing text that exceeds an

absolute length threshold or is an outlier by some relative measure. Indicates lack of

structure/abstraction. Ambiguous syntax: Use of conditions or punctuation marks

or confusing structure in a way that leaves room for interpretation and can be under-

stood in more than one way. Creates legal uncertainty. Large reference tree: When

the structure of the legal element is too complex and contains too many references

to other elements. This can be confusing and may require to be traversed to un-

derstand it. Increases cognitive load. Natural language obsession: Representation

of structured data solely as unstructured natural language text. Impedes analysis

and maintenance. In this work we will perform a similar mapping, only under the

focus of legal contracts.The focus here of our first step is to define the most common

or impactful code smell concepts and apply them to the realm of common contract

issues.

1.3. Machine Learning to detect code smells

Identification of code smells early on and automatically is extremely benefi-

cial for software products development and so we can see than there has been work
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done to use machine learning in order to help with this task. (Gupta et al., 2021)

evaluates the effectiveness of natural language processing (NLP) methods for pre-

dicting code smells. In this research, 629 open source packages were subjected to

machine learning techniques in order to predict eight different code smells. Some of

their findings suggest that different datasets, ML techniques, performed better for

different types of code smells, indicating that there is no one model fits all approach

that could be effective for catching all code smells. The work demonstrates the po-

tential of AI/ML methods for automating code smell detection to aid developers.

Another research that was done by (Sharma et al., 2019) was looking at he feasibility

of transfer learning code smells using deep learning. This work demonstrated how

using RNNs and CNNs for code smell detection is effective and can even be trans-

ferred between different code languages. Another approach that was examined is code

smell detection using multilabel classification approach by (Guggulothu, 2019). Here

researchers were taking into account the level in which code smells can be manifested

and created a method-level data set to focus on that. The researchers also redefined

code smell detection as a multilabel classification challenge, enabling the detection of

multiple code smells within a singular code element. This is a significant shift from

the traditional approach, which treated the problem as a single-label classification

task. This successfully resolved the problem of inconsistencies that happened on the

single code smell label approach. This raises a question if targeting several labels

in parallel is increasing the accuracy of detecting code smells. Another related re-
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search work by (Soares et al., 2023) explored test smells which are smells that exist

in software testing scripts. This tests are usually written in natural language and

include a description on how to test a feature or functionality. The work included

expanding the catalog defining test smells and then creating a tool to automatically

detect these smells within a dataset of test scripts. The researchers created a test

tool using Part-of-speech tagging, named entity recognition, dependency parsing, and

syntactic analysis to identify test smells in the test scripts samples. A very recent

research that is leveraging machine learning for automatic detection of smells, this

time the focus is on defining API documentation smells and using ML for automatic

detection of those smells (Khan et al., 2021). The team created the first benchmark

dataset that is focused on API documentation smells. Five types of API documen-

tation smells were defined: lazy, bloated, excess structure, tangled and fragmented.

The datasett created included examples for all these smells, and several automated

detection techniques were used. The top performer here was BERT which achieved

an F1 score of 0.75-0.97.

1.4. Machine learning for legal analysis

Due to the nature of the legal domain, it has been challenging for machine

learning researchers to achieve as much progress as we could see with other domains.

However, some significant work was done and continues to be done to utilize the

potential of artificial intelligence tools for helping legal professionals. Legal AI can be
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broken down to several main categories: Legal Judgment Prediction, Contract Review

and Analysis, Discovery and Due Diligence, Legal Question Answering and Legal

Document Generation. For legal judgment prediction we can see the paper (Yang

et al., 2020), work aimed to deal with the main challenges of LJP such as multiple

sub tasks that are involved when performing LJP, as well as the fact that some of the

sub tasks are dependent on others. The researchers used graph theory to formulate

dependencies relationships and used that to create a learning framework called TOP-

JUDGE for legal judgment prediction. Unlike previous approaches, TOP-JUDGE

represents the relationships between different subtasks as a Directed Acyclic Graph

(DAG). This allows capturing of the dependencies among connected subtasks directly

into the model architecture. By integrating multiple related subtasks and modelling

their interdependencies, TOP-JUDGE provides a way to improve judgment prediction

performance. The key innovation is the use of a DAG structure to capture how

completion of certain subtasks influences and informs the overall judgment prediction

task. This topological framework is at the core of the proposed TOP-JUDGE model.

Another recent work for LJP can be seen in the paper Legal Judgment Prediction

via Event Extraction with Constraints (Feng et al., 2022). The researchers here are

making a claim that the most significant challenge for LJP models is their inability

to identify the exact event or fact that are the determining factor for the judgment

decision that is made. Therefor they are suggesting an event based prediction model

to address this challenge. If the model is able to detect the event pattern in the facts
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of the case, it can match it to an event pattern that is detailed in a law article and then

it can deduct the decision and applicable penalty. While there is a lot of work done

on prediction models to assist legal professionals, legal language is at the center of

any type of legal task and therefor we can see significant amount of effort directed to

legal language understanding with language models. To evaluate and compare models

performances we need a benchmark. Research by (Chalkidis et al., 2022) introduces

LexGLUE, a benchmark dataset for this very task. Looking at state of the art in NLP,

we can see that pre trained transformer based NLP models are leading in performance

for almost all tasks and showing rapid improvements. The benchmark is providing

both a generic and also a legal specific evaluation, and so it was able to show that

legal-specific models are consistently performing better across multiple tasks. The

evaluation benchmark datasets are available to use as well as the code used during

this research. The legal tasks that were explored were judgment prediction, legal

topic classification, and information extraction. The researchers looked at state of

the art models such as BERT (Devlin et al., 2019), RoBERTa, Deberta (He et al.,

2021), Longformer, BigBird, Legal-BERT and CaseLaw-BERT that was introduced

at previous reseach works.

1.5. Natural language processing

Looking specifically at using NLP for legal purposes, the work by (Zhong et al.,

2020) is reviewing how recent NLP work done is benefiting the legal industry. It de-
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fines that LegalAI purpose is to apply AI and NLP to assist with legal tasks, particu-

larly in automating paperwork and streamlining legal processes. We can see two main

approaches the field primarily utilizes: embedding methods that learn from data, and

symbol methods that use legal knowledge. Drilling down on embedding-based meth-

ods using Character, Word, and Concept, we can see Word2Vec is being applied to

legal texts, with the challenge being the learning of professional legal vocabulary and

the aim being to capture grammar and legal knowledge within the embeddings. We

can also drill down on pre-trained language models. Models like BERT have shown

success in NLP, but legal terminology differences can lead to poor performance, as

well as lack of large enough corpus as legal documents tend to be confidential or

private. Pretraining on legal documents did shown better benchmark performances,

with future work focusing on integrating knowledge into pretrained models for im-

proved reasoning and actual tasks performed on legal texts as opposed to focusing

on general understanding. In the realm of symbol-based methods we see the focus

on extractions of information. This involves tasks like named entity recognition and

relation extraction, crucial for legal tasks such as inheritance dispute resolution and

criminal case judgment. Future applications include using extracted information for

downstream legal tasks. We can identify several applications for LegalAI: Judgement

prediction based on case facts, similar case matching, question answering which is

both to help non professionals get legal help but also professionals who are looking

to do legal research. Here the most recent models are still performing below human
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performances especially with multiple stage reasoning. Despite the progress, sev-

eral areas require further improvement, knowledge representation, reasoning ability,

and interpretability. It appears that by combining data-driven and knowledge-based

methods, as well as few-shot learning techniques in prompting, we can expect better

results.

1.6. Project Goals

The goal of this project is to first identify the possible contract smells, define

them and categorize if they are a good candidate for detection by machine learning

techniques. As well as identify which machine learning techniques are performing

better at identifying contract smells in different types of contracts and different types

of contracts. The goal is to test the feasibility of detecting such contract smells

and provide a mechanism for both law professionals and the public to obtain an

initial idea of areas in which a given contract might be lacking or requiring additional

clarifications.
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Chapter II.

Development of Contract Smells

2.1. Defining Contract Smells

Code smell is defined as an indication of a problem, suggesting a weakness in

design that may increase the risk of future software failures or defects. Law smell

is defined as a pattern in legal texts that pose threat to the comprehensibility and

maintainability of the law. Contract smell can therefore be defined as a pattern or an

indication in a legal contract document, that suggests a problem with the contract

and increases the risk of a contract failure in comprehensibly and maintainability and

may require mitigation. We can draw some parallels between contract legal draft-

ing and software development. These will be used as the basis for identification and

categorization of contract smells. 1. Logical structure: Both tasks require sticking

to a logical structure. This structure has a significant role in making sure the ex-

pected result. In software the structure implements the control flow, conditions and

outcomes. In legal contracts, the structure also allowing to organize the logical flow

of the clauses but also to cover various conditions and contingencies. 2. Clarity:

Since both rely on textual descriptions and in order for both to achieve exactly the
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desired results, software code and legal contracts need to be very clear and contain

no ambiguity. 3. Maintenance: Software code and legal contract need to be adjusted

while still in use. Software may need updates for new features, security, or efficiency

improvements. Contracts might be updated to reflect changes in law, business ar-

rangements, or other circumstances. 4. Interpretation for execution: In both cases,

the text is being interpreted and then executed based on that interpretation. The

impact of a possible inaccurate interpretation could be very significant in both case,

resulting in major consequences and losses to the involved parties or software users.

2.2. Mapping Code to Contract

2.2.1 Long Method

Overly Long Clauses - In code, methods that carry on too long can become

difficult to parse and manage. Similarly lengthy clauses in legal contracts tend to

introduce complexity leading to potential misinterpretations or issues enforcing them.

2.2.2 Large Class

Overly Broad Scope - Software classes that take on too many responsibilities

start to get unwieldy. Likewise, contracts with excessively wide scope likely address

more than needed, resulting in ambiguity or disputes.
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2.2.3 Primitive Obsession

Overuse of Basic Provisions - Leaning too heavily on primitive data types

rather than rich objects creates problems in code. Contracts that are too reliant

on generic boilerplate terms can require more tailored provisions to address specific

needs.

2.2.4 Data Clumps

Repetitive Clauses - Groups of variables that appear together again and again

in code signal opportunities to refactor. The same could be said for repetitive clauses

in contracts that point to redundancies.

2.2.5 Switch Statements

Over-Reliance on Conditional Clauses - Chain after chain of switch statements

usually indicate structural issues in code. Similarly, contracts that are long and

contain many conditional clauses tend to be confusing.

2.2.6 Temporary Variable

Inconsistent Terms - variables or fields that are used only temporarily make

code harder to follow. Terms or definitions in contracts that arbitrarily shift from

section to section can cause confusion.
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2.2.7 Feature Envy

Misplaced Responsibilities - When methods rely more on other classes, re-

sponsibilities are not placed where they should. Contracts could also include related

responsibilities in mixed clauses causing confusion and make the contract more diffi-

cult to interpret.

2.2.8 Duplicate Code

Redundant Language cutting and pasting codes, or multiple hands drafting

the same long contract could cause duplications go unnoticed. Repetitions cause

not only an unnecessary increase in length and complexity , but can also increase

the challenge of maintaining the contract when a clause that has many duplications

requires updating.

2.2.9 Lazy Class

Code that lacks specificity or detail, or clause that add no real legal weight as

it is not detailed enough to be enforceable or effective, will only make the contract

longer, more complex to understand.

2.2.10 Speculative Generality

Coding for speculative future scenarios that can never apply adds unnecessary

complexity. Similarly, overly broad contract provisions risk covering edge cases that
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are unlikely to appear.

2.2.11 Inappropriate Intimacy

In code, classes coupled too tightly run risks. Contracts often include sensitive

information, overly detailed disclosures could cause a breach of confidentiality and an

increased liability.

2.2.12 Comments

Over-reliance on comments inside code segments to explain complex code can

be mapped to using excessive legalese or legal jargon terms can in fact make the con-

tract harder to understand not only for the general public but also for less experienced

law professionals.

2.3. Selecting Candidates

When assessing the suitability of different contract smells for detection by

machine learning models, there are a few key factors to consider. The detection level,

when the options are the clause, contract, or comparative level, impacts how easy it

is to automate identification. If we require to assess a long clause, we would need to

determine acceptable length for example. Also, the contextual understanding plays

a major role. Smells that can be quantified or identified through pattern recognition

tend to allow for more straightforward auto-labeling.

Consider something like overly long clauses, which can simply be measured
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by word or sentence count thresholds. The length of clauses provides clear numerical

data for algorithms to parse. On the other end of the spectrum, you have issues

like misplaced responsibilities that require deeper comprehension of the contractual

relationships and objectives, which can be challenging for auto detection by AI.

In between, there are smells that have some mix of signals and subjective inter-

pretation involved. For instance, repetitive clauses can certainly be spotted through

duplicate text detection, but techniques like transformer-based language models may

prove better suited to assess whether contractual provisions are basic.

As natural language understanding capabilities continue to progress, more

smells may shift from moderate to high suitability for auto-labeling and detection.

However is it likely that a hybrid approach that leverages the strengths of both

automated flagging and expert human review is likely to produce the most robust

results. However for this work we will mostly focus on a subset of contract smells

that make the best candidates for auto detection based on their required level of

context for successful detection. Below is a breakdown of our contract smells and an

evaluation of their potential for auto detection. We will attempt to cover detection

of the contract smells that will offer high suitably for detection by machine learning

and auto labeling by large language models.

2.3.1 Overly Long Clauses (Long Method)

Detection Level: Clause Level Suitability for Auto-Labeling: High. Length of

clauses can be measured quantitatively, making it suitable for auto-labeling at the

22



individual clause level. This could be done against a pre determined threshold, and

also potentially looking at the type of clause as some are proned to be longer than

other by nature.

2.3.2 Overly Broad Scope (Large Class)

Detection Level: Contract Level Suitability for Auto-Labeling: Moderate. Re-

quires understanding the overall context of the contract in order to evaluate the extent

of scope which is covered in a specific clause. Additionally, comparative analysis with

standard scopes in similar contracts could also provide significant information for the

purpose of detection.

2.3.3 Overuse of Basic Provisions (Primitive Obsession)

Detection Level: Clause and Contract Level Suitability for Auto-Labeling:

Moderate. Pattern recognition can help identify overused provisions within the clause

however a comparative analysis with other contracts is also required to determine if

the usage can indeed be considered excessive.

2.3.4 Repetitive Clauses (Data Clumps)

Detection Level: Contract Level Suitability for Auto-Labeling: High. Repeti-

tive text within a contract is straightforward to identify, however the challenge here

is the need to analyze the contract as a whole in order to achieve best results. As

some contracts can reach a length of 500 pages, this is not easily achieved.
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2.3.5 Over-Reliance on Conditional Clauses (Switch Statements)

Detection Level: Clause and Contract Level Suitability for Auto-Labeling:

Moderate. Identifying multiple conditional clauses is feasible, but understanding

their logical flow requires a broader view of the contract and as discussed above, is

challenging with longer contracts.

2.3.6 Inconsistent Terms (Temporary Field)

Detection Level: Contract Level Suitability for Auto-Labeling: High. Incon-

sistencies can be detected by comparing terms within the same contract.

2.3.7 Misplaced Responsibilities (Feature Envy)

Detection Level: Contract Level Suitability for Auto-Labeling: Low. Requires

deep understanding of the contract’s context, not only its structure and therefore

could be more difficult to automate.

2.3.8 Redundant Language (Duplicate Code)

Detection Level: Clause and Contract Level Suitability for Auto-Labeling:

High. Redundant language can be identified by detecting similar phrases or sentences

within a contract or within a clause.
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2.3.9 Superfluous Clauses (Lazy Class)

Detection Level: Contract and Clause Level Suitability for Auto-Labeling:

Moderate. Determining the the necessity for a given clause requires a contextual un-

derstanding of the entire contract, which is difficult for automated systems. However

we can try to evaluate the amount of details in a specific clause to determine if it is

sufficient in order for this clause to enforceable and effective.

2.3.10 Overly Broad Provisions (Speculative Generality)

Detection Level: Contract Level and Comparative Analysis Suitability for

Auto-Labeling: Moderate. Broad language can be identified, but assessing its specu-

lative nature might require comparison with typical provisions in similar contracts.

2.3.11 Overly Detailed Disclosures (Inappropriate Intimacy)

Detection Level: Clause and Contract Level Suitability for Auto-Labeling:

Moderate. Detailed disclosures can be flagged, but evaluating their appropriateness

requires understanding the contract’s context.

2.3.12 Excessive Legalese (Comments)

Detection Level: Clause Level Suitability for Auto-Labeling: High. Machine

learning can identify complex legal jargon at the clause level and contract level as

well.
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Name Level Suitability
Overly Long Clauses (Long Method) Clause High
Overly Broad Scope (Large Class) Contract Moderate
Overuse of Basic Provisions (Primitive Obsession) Clause, Contract Moderate
Repetitive Clauses (Data Clumps) Contract High
Over-Reliance on Conditional Clauses (Switch Statements) Clause, Contract Moderate
Inconsistent Terms (Temporary Field) Contract High
Misplaced Responsibilities (Feature Envy) Contract Low
Redundant Language (Duplicate Code) Clause, Contract High
Superfluous Clauses (Lazy Class) Clause, Contract Moderate
Overly Broad Provisions (Speculative Generality) Contract, Comparative Moderate
Overly Detailed Disclosures (Inappropriate Intimacy) Clause, Contract Moderate
Excessive Legalese (Comments) Clause High

Table II.1: Identified Contract Smells
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Chapter III.

Methods And Experiments

3.1. Dataset

The dataset we are using is the CUAD dataset introduced in (Hendrycks et al.,

2021). The dataset comprises over 500 legal contracts, encompassing 25 different types

of contracts. These contracts vary in length, ranging from a few pages to over 100

pages. The work done here was to label these contracts for extracting significant pieces

of information that law professionals usually look for when evaluating and reviewing

contracts. The annotations produced during CUAD work, are not relevant for the

purpose of this research, however the store of contracts that are publicly available

are very useful as obtaining legal contracts can be challenging due to privacy and

confidentiality considerations.

3.1.1 Labelling Contracts

In order to train models to detect contract smells that were introduced above,

we need to create a labeled dataset of contracts. As manual labeling by law profes-

sionals is expensive and extremely time consuming, the plan is to use large language
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models to auto label the contracts. Auto labelling was performed in several ways

in order to further discuss how best we can leverage LLMs for auto labeling. The

current leading LLM model that also offer API access is GPT4-turbo by OpenAI and

that is the engine we use. - Feeding whole contract to the model along with a subset

of the selected contract smells as identified in table II.1 with high suitably for auto

labelling and detection.

3.1.2 Labelling Methods

A total of 3 datasets were created when auto-labeling the contracts: In order

to create the first database, GPT4 api inference is used, provided contract clauses

and a list of 5 contract smells with their definitions, and produces a list of clauses to

match with the contract smells, if such found. The dataset columns are: contract,

clause, LongMethod, DataClumps, TempField, DuplicateCode, ExcessLegalese. This

is an extractive zero shot approach as no examples are provided to the model. Only

a descriptive textual definition of all the smells in question. This is referred to as the

Textual-Oriented dataset. The second dataset is created in a similar manner, however

the prompt to identify the contract smells within the contract is based on a coding

oriented definition of the contract smells. This is referred to as the Coding-Oriented

dataset. The third dataset is auto-labelled with extended (coding and textual) defi-

nitions of all seven contract smells selected. Since this is the most extensive dataset

created, it is simply referred to as the Auto-Labeled dataset. A forth dataset we are

using is the Human Labeled dataset that we were able to obtain by collecting human
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feedback. As human resources are limited we were only able to obtain a small set

of contracts labeled only to cover two of our selected contract smells: LazyClass and

InappropIntimacy.

3.2. Experiments

In order to achieve the best possible results for detecting contract smells,

several experiments were be conducted:

Baseline BERT. Our baseline result is running BERT on each dataset and

producing a prediction on each of the contract smells in question. This model has no

prior knowledge of the domain, nor does it have a the full context of the contract.

This model is trained and evaluated on all four datasets.

LegalBERT. This experiment is to determine the significance of the domain

knowledge on the ability to detect contract smells. The legalbert model was trained

on a variety of legal text and is able to capture the meaning of legal content. This

model is trained and evaluated on all four datasets.

LegalBERT CUAD Fine Tuned. This experiment evaluating the ability to detect

contract smells when the model has both pretaining of legal domain as well as training

on the contracts from which the labelled data is taken from . This is expected to show

the best results for detecting contract smells. This model is trained and evaluated on

all four datasets.
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Chapter IV.

Development

This chapter discusses the tools, libraries and APIs that are employed in the

code development of this contract smells detection system.

4.1. Development Tools

OpenAI’s APIs have been used in order to auto label the contracts using their

latest GPT4 model. Google colab Jupyter notebooks are used as running environment

to for inference and fine tuning of the models. huggingface is the repository used to

access the models that are tested during this work as well as store the datasets created.

4.2. Project Structure

Auto labelling: autolabeldescriptive.ipynb and autolabelbyclause.ipynb are cre-

ated to parse the contracts, analyze them and produce the datasets. This is done when

taking a descriptive prompt approach with two sets of contract smells definitions -

coding oriented, and textual oriented. There are 3 colab notesbooks to match each

of the experiments we run: Baseline BERT model with its specific data prepara-
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tion and results analysis is captured in BERTcontractsmellsdetectionhlautol.ipynb.

LegalBERT model is captured in LegalBERTcontractsmellsdetectionhlautol.ipynb.

CUADLegalBertcontractsmellsdetectionhlautol.ipynb is where we run detection task

on a LegalBert model that was already trained on the contracts from the CUAD

project, which are the source of the clauses that are analysed in this project.

4.2.1 Optimizing Definitions For Model Consumption

The definitions for the selected contract smells are not optimized for model

consumption. The goal is to make them more concise and simple to make them more

accessible for the model to find matches for. We will be experimenting with 2 sets of

optimized definitions:

4.2.2 Set 1 - Focus on textual patterns:

LongMethod (Overly Long Clauses): Clauses in contracts that are exception-

ally long and contain many complex sentences. These clauses can be difficult to

understand and may lead to misinterpretation. DataClumps (Repetitive Clauses):

Clauses that are very similar or identical to each other, appearing multiple times

within the contract. This indicates potential redundancy and makes the contract un-

necessarily long. TempField (Inconsistent Terms): Variations in the use of key terms

or definitions throughout the contract. Inconsistent terminology can create confusion

and ambiguity. DuplicateCode (Redundant Language): Phrases, sentences, or entire

clauses that are repeated unnecessarily. This lengthens the contract without adding
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value and can make future updates more difficult. ExcessLegalese: Overuse of obscure

legal terms and complex jargon. This makes the contract difficult to understand for

non-specialists and may impede clarity even for legal professionals. LazyClass: An

ambiguous clause that add no real legal weight as it is not detailed enough to be

enforceable or effective, will only make the contract longer, more complex to under-

stand. InappropIntimacy: Contracts often include dependencies between clauses or

sentences that are tightly dependant within a clause.

4.2.3 Set 2 - Focus on parallels to coding:

LongMethod: Clauses that are excessively long introduce complexity and can

lead to misinterpretation. Similar to how lengthy methods in code become hard to

manage. DataClumps: Repetitive clauses in contracts, like repeated groups of vari-

ables in code, indicate redundancy that could be streamlined. TempField: Shifting

terms or definitions within a contract create confusion, akin to the use of temporary

fields in code that complicates understanding. DuplicateCode: Redundant language

in contracts, resulting from multiple drafters or copy-pasting, mirrors code duplica-

tion, increasing length and complicating updates. ExcessLegalese: Using too much

legal jargon makes contracts difficult to understand, similar to overusing comments

to explain complex code segments. LazyClass: A code that is not specific enough and

therefore not effective. InappropIntimacy: Classes or functions that are coupled too

tightly.
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Chapter V.

Results

This chapter presents the results obtained from auto labelling as well as results

obtained after completing all fine tuning experiments that were run on the two auto

labelled datasets across models tested.

5.1. Auto-labelling

5.1.1 Coding Oriented Dataset:

Auto labelling the contracts with the coding oriented definitions of the contract

smells provided in the prompt resulted in a dataset of 14,177 smelly clauses detected

across 474 contracts.

Percentage of instances for each class:

i. LongMethod 37.229315

ii. DataClumps 10.002116

iii. TempField 3.625591

iv. DuplicateCode 1.065105

v. ExcessLegalese 78.810750
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Figure V.1:

This dataset is clearly displaying imbalance of the classes when most of the

smelly clauses are identified as ExcessLegalese which means they make excessive use

in legal language. On the other hand we see classes that are extremely rare such as

DuplicateCode or TempField.

It stands to reason that some classes are related to others and so we look at

the co-occurrence of classes in the image below:
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Figure V.2:

5.1.2 Textual Oriented Dataset:

Auto labelling the contracts with the textual oriented definitions of the con-

tract smells provided in the prompt resulted in a dataset of 9,607 smelly clauses

detected across 381 contracts.

Percentage of instances for each class:

i. LongMethod 23.857604

ii. DataClumps 5.214947

iii. TempField 1.405225
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iv. DuplicateCode 1.301135

v. ExcessLegalese 79.046529

Figure V.3:

And similarly the co-occurrence heatmap is shown below:
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Figure V.4:

It appears we have similar distribution for the classes when again ExcessLe-

galese and LongMethod are very prevalent while TempField and DuplicateCode are

rare. This is one of the reasons for the co-occurance we see between these two classes

shown in the heatmap.
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5.1.3 Auto Labeled Dataset:

Auto labelling the contracts with the extended definitions covering all 7 con-

tract smells. A total of 15257 were identified.

Percentage of instances for each class:

i. LongMethod 29.586419

ii. DataClumps 1.356754

iii. TempField 3.172314

iv. DuplicateCode 2.772498

v. ExcessLegalese 28.957200

vi. LazyClass 3.198532

vii. InappropIntimacy 0.117979
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Figure V.5:

And similarly the co-occurrence heatmap is shown below:
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Figure V.6:

5.1.4 Human Labeled Dataset:

Human labels were done for several contracts for InappropIntimacy and Lazy-

Class contract smells. A total of 529 clauses were identified.

Percentage of instances for each class:

i. LazyClass 61.625709
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ii. InappropIntimacy 24.763705

Figure V.7:

And similarly the co-occurrence heatmap is shown below:
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Figure V.8:

5.1.5 Datasets Highlights:

The 2 datasets that were created on specific prompt definitions are similar in

class compositions.

LongMethod and ExcessLegalese are both classes that could be over repre-

sented in both datasets which impacts models tendency to classify clauses for these

classes. There may be a need to undersample this class.
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DataClumps, DuplicateCode, TempField may all be underrepresented in both

datasets which can impact the models predictions.

InappropIntimacy and LazyClass are both even more rare in our auto-labelled

dataset.

Differences between the auto labeller’s results can be explained by the impact

of rare events i.e. because contract smells are generally rare, and most contracts

examined are of high quality, there is more impact to the prompt provided as there

are simply less examples to learn from.

Since we have such imbalance in the datasets, it is more reasonable to train

separately on each contract smell than it would be to train for a multi label problem.

5.2. Baseline BERT

BERT was trained on a train-test split of twenty percent as commonly used

for train on task, and was run on each of the contract smells separately (single label

scenario) Below is a table showing performance metrics that were evaluated on the

performance of a baseline BERT model for detecting contract smells:
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Category Dataset Type Accuracy F1 Score Precision Recall

LongMethod Text-Oriented 89.12% 84.70% 86.65% 83.19%

LongMethod Coding-Oriented 91.39% 90.75% 91.21% 90.37%

LongMethod Auto-Labelled 94.00% 92.74% 93.01% 92.47%

DataClumps Text-Oriented 96.30% 82.66% 88.66% 78.46%

DataClumps Coding-Oriented 96.12% 88.66% 91.49% 86.29%

DataClumps Auto-Labelled 98.69% 71.10% 76.34% 67.64%

TempField Text-Oriented 99.42% 87.06% 87.93% 86.23%

TempField Coding-Oriented 98.76% 90.97% 93.26% 88.93%

TempField Auto-Labelled 97.51% 77.01% 78.65% 75.55%

DuplicateCode Text-Oriented 98.64% 49.65% 49.32% 50.00%

DuplicateCode Coding-Oriented 99.43% 78.80% 95.56% 71.13%

DuplicateCode Auto-Labelled 98.10% 73.62% 91.31% 66.79%

ExcessLegalese Text-Oriented 77.99% 43.81% 38.99% 50.00%

ExcessLegalese Coding-Oriented 88.54% 81.16% 84.69% 78.73%

ExcessLegalese Auto-Labelled 87.35% 84.28% 84.85% 83.76%

InappropIntimacy Auto-Labelled 99.87% 49.97% 49.93% 50.00%

InappropIntimacy Human-Labelled 71.69% 41.75% 35.84% 50.00%

LazyClass Auto-Labelled 96.85% 69.19% 72.86% 66.61%

LazyClass Human-Labelled 76.41% 70.64% 85.95% 70.23%

Table V.1: BERT Baseline Model Results
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It is clear that BERT baseline is able to produce strong overall results on most

datasets especially for accuracy. When looking at the precision and recall however ,

it is clear that the model is facing challenges with false positives and false negatives.

Better results are obtained on the Coding oriented dataset, and it appears that all

are especially challenged when trying to detect DuplicateCode, ExcessLegalese and

InappropIntimacy. This is reflected in the F1 score as well.

5.3. Legal BERT

LegalBERT was similarly trained on a train-test split of twenty percent as

commonly used for train on task, and was run on each of the contract smells sep-

arately (single label scenario). Below is a table showing performance metrics that

were evaluated on the performance of a the LegalBERT model for detecting contract

smells:
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Category Dataset Type Accuracy F1 Score Precision Recall

LongMethod Text-Oriented 83.71% 76.69% 78.26% 75.49%

LongMethod Coding-Oriented 73.23% 67.29% 72.95% 66.54%

LongMethod Auto-Labelled 93.84% 92.47% 92.92% 92.05%

DataClumps Text-Oriented 96.98% 83.94% 90.05% 79.61%

DataClumps Coding-Oriented 90.40% 59.66% 77.87% 57.06%

DataClumps Auto-Labelled 98.66% 68.12% 78.04% 63.49%

TempField Text-Oriented 98.64% 49.65% 49.32% 50.00%

TempField Coding-Oriented 96.40% 49.08% 48.20% 50.00%

TempField Auto-Labelled 97.90% 75.93% 88.23% 69.83%

DuplicateCode Text-Oriented 99.06% 67.62% 99.53% 60.86%

DuplicateCode Coding-Oriented 99.04% 49.76% 49.52% 50.00%

DuplicateCode Auto-Labelled 98.39% 84.37% 85.44% 83.36%

ExcessLegalese Text-Oriented 80.64% 52.45% 77.63% 54.03%

ExcessLegalese Coding-Oriented 78.63% 44.01% 39.31% 50.00%

ExcessLegalese Auto-Labelled 87.19% 84.11% 84.51% 83.75%

InappropIntimacy Auto-Labelled 99.93% 49.98% 49.97% 50.00%

InappropIntimacy Human-Labelled 71.70% 41.76% 35.85% 50.00%

LazyClass Auto-Labelled 96.79% 60.29% 76.56% 56.74%

LazyClass Human-Labelled 72.64% 63.52% 84.57% 64.63%

Table V.2: LegalBert Model Results
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For this model we can actually see that accuracy scores for the textual dataset

are better than the ones obtained on the coding oriented dataset. We can also see that

precision and recall are better on the textual dataset as well. However these results

are improved significantly when training on the auto-labelled dataset built using the

extended definitions. This suggests the Legal context this model has, enabled it to

detect contract smells better on a textual definition and improved balance.

5.4. CUAD trained Legal BERT

The last experiment on our two datasets is running with a LegalBERT model

that was already trained on the contracts developed in the CUAD research work.

This model is familiar with all the contracts used for creation of the two datasets.

Below is a summary of the results:
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Category Dataset Type Accuracy F1 Score Precision Recall

LongMethod Text-Oriented 84.55% 79.39% 79.54% 79.25%

LongMethod Coding-Oriented 89.31% 88.67% 88.47% 88.89%

LongMethod Auto-Labelled 93.35% 92.18% 91.60% 92.83%

DataClumps Text-Oriented 96.51% 81.54% 83.03% 80.20%

DataClumps Coding-Oriented 95.20% 86.74% 87.93% 85.64%

DataClumps Auto-Labelled 98.62% 66.84% 79.98% 61.84

TempField Text-Oriented 98.69% 49.67% 49.35% 50.00%

TempField Coding-Oriented 97.07% 77.05% 81.12% 73.99%

TempField Auto-Labelled 97.08% 75.95% 78.74% 73.69%

DuplicateCode Text-Oriented 98.69% 63.95% 80.67% 59.18%

DuplicateCode Coding-Oriented 99.33% 78.72% 96.11% 70.95%

DuplicateCode Auto-Labelled 98.39% 81.71% 85.53% 78.66%

ExcessLegalese Text-Oriented 77.73% 43.73% 38.86% 50.00%

ExcessLegalese Coding-Oriented 88.01% 81.40% 83.14% 80.01%

ExcessLegalese Auto-Labelled 87.02% 84.45% 84.70% 84.21%

InappropIntimacy Auto-Labelled 99.93% 49.98% 49.97% 50.00%

InappropIntimacy Human-Labelled 71.70% 41.76% 35.85% 50.00%

LazyClass Auto-Labelled 96.79% 60.29% 76.56% 56.74%

LazyClass Human-Labelled 75.47% 70.37% 77.81% 69.47%

Table V.3: CUAD trained LegalBert Results on Text-Oriented and Coding-Oriented

Datasets
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We can see this model also performs well in terms of accuracy across all cat-

egories especially on the coding-oriented dataset. In previous models we have seen

that while accuracy was high, F1 scores were not as good, however here we can see

improvements on the F1 scores compared to the original LegalBert, and similar in

performance to the baseline BERT model.

5.5. Models Summery

5.5.1 High Level Performance

The summary of average accuracy and F1 scores on the results emphasize the

impact of dataset type in model performance, meaning the prompt used in the auto

labelling process has a visible impact on the quality of the results. In terms of model

performance, the average performance across all smells is greatest when using the

Baseline BERT model.

Bert LegalBert CUADLegalBert

Accuracy Textual 92.294 91.806 91.234

F1 Textual 69.576 66.070 63.656

Accuracy Coding 94.848 87.540 93.784

F1 Coding 86.068 53.960 82.516

Accuracy Auto-Labelled 95.13 95.196 94.892

F1 Auto-Labelled 79.75 81 80.226

Table V.4: Performance Metrics of Different Models
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5.5.2 Smell Specific Analysis

Accuracy values are very strong for all models on most of the contract smell

types. However we can see clearly that for LongMethod and ExcessLegalese the

accuracy values are not as good. This is likely due to the fact that for both these

classes, it is a challenge to identify them by the clause level alone.

Category BERT Baseline LegalBert CUAD-trained LegalBert

Text Coding Auto-Labelled Text Coding Auto-Labelled Text Coding Auto-Labelled

LongMethod 89.12% 91.39% 94.00% 83.71% 73.23% 93.84% 84.55% 89.31% 93.34%

DataClumps 96.30% 96.12% 98.68% 96.98% 90.40% 98.65% 96.51% 95.20% 98.62%

TempField 99.42% 98.76% 97.50% 98.64% 96.40% 97.90 % 98.69% 97.07% 97.08%

DuplicateCode 98.64% 99.43% 98.09% 99.06% 99.04% 98.39% 98.69% 99.33% 98.39%

ExcessLegalese 77.99% 88.54% 87.35% 80.64% 78.63% 87.18% 77.73% 88.01% 87.02%

Table V.5: Accuracy Analysis Across Models for Contract Smells

Contract smells for which we also had human labelled data are analyzed below:

Category BERT Baseline LegalBert CUAD-trained LegalBert

Human Labelled Auto Labelled Human Labelled Auto Labelled Human Labelled Auto Labelled

LazyClass 76.41% 96.85% 72.64% 96.78% 75.47% 96.46%

InappropIntimacy 71.69% 99.86% 71.69% 99.93% 99.73% 86.74%

Table V.6: Analysis Across Models for Human Evaluated Contract Smells

5.5.3 Cross Predictions Results

Models Comparison. With human labels so difficult to obtain, there is great

value in developing further the idea of auto labelling to allow models to better predict

human labels. In this research we have two contract smells for which we can used
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automatically generated labels, to the human labels provided. Below we can see

performance of our models that were trained on the auto labelled data, in predicting

the human labels.

Auto-Labelled Training to Predict Human Labels:

Category Accuracy F1 Score Precision Recall

BERT LazyClass 39.62% 28.38% 19.81% 50.00%

BERT InappropIntimacy 71.70% 41.76% 35.85% 50.00%

LegalBERT LazyClass 38.68% 27.89% 19.34% 50.00%

LegalBERT InappropIntimacy 71.70% 41.76% 35.85% 50.00%

CUADLB LazyClass 37.74% 27.40% 18.87% 50.00%

CUADLB InappropIntimacy 71.70% 41.76% 35.85% 50.00%

Table V.7: Predictive Results

Improving Cross Prediction - Few Shot. In our case, and this is quite common,

we only have a small sample of human labelled examples and these as we have seen

are not enough to achieve good fine tuning results. However there is another way in

which we can use our human labelled data. Capturing examples which our models

incorrectly predicted their value, we are able to use those difficult to label examples in

order to better our auto labeller. To demonstrate this, we have selected several such

examples and recrafted the prompt used for auto labelling the data. After few-shots

labelling of 106 examples, we can see the following correct labelling improvements:

LazyClass 38% InappropIntimacy 0.9%
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This improvement is definitely related to the type of contract smell but we

can see that the bigger improvement was achieved on LazyClass which is the contract

smell on which the auto trained models showed poor prediction performance in the

table above.

52



Chapter VI.

Summary and Conclusions

As this work is showing us, NLP is demonstrating great promise when it comes

to taking on the challenging task of legal contract review. There is no doubt this field

in legal work can be effectively automated with properly trained models and more

extensive datasets. In addition, people in their everyday lives are interacting with

contracts and agreements written in legal language and are unable to fully understand

the meaning due to this language barrier. The successful detection of issues with legal

contracts that was displayed in this work, lays the foundation for a development of

a fully automated system for contract evaluation by ML and AI that can help the

public get a quick feedback to a legal document they are confronted with and be able

to get an initial idea of how well the document is drafted while also provide them

with a better ability to benefit from professional legal advice once they reach out for

one. As well as demonstrating the great potential of using auto labelling for creating

quality datasets.
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6.1. Discussion Points

i. The successful mapping of code smells into contract smells that was completed

during this work, is showing great promise for further transfer of ideas and

concepts between software development and legal drafting.

ii. To mitigate imbalance in the datasets, the training was done separately on

each contract smelland allowed the models to be specialized on each contract

category.

iii. The summary of average accuracy and F1 scores on the results emphasize the

impact of dataset type in model performance, meaning the prompt used in

the auto labelling process has a visible impact on the quality of the results.

In terms of model performance, the average performance across all smells is

greatest when using the Baseline BERT model.

iv. As seen in the results of this research, the parallels between software devel-

opment and legal drafting are in fact benefiting NLP models when analyzing

legal contracts despite the fact that these domain seem to be non related on the

face of it. We see this in the way BERT baseline model showed performance

that surprisingly surpassed the LegalBert performance. Meaning general legal

training is not as impactful for this specific task as well as the fact that our

definitions for issues are taken from software engineering domain and there-

fore a more versatile training allowed BERT baseline to generalize better when

detecting contract smells.
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v. We can also see that CUAD contracts training did not improve model perfor-

mance by much and therefore suggesting that for our selected contract smells,

task based fine tuning is more effective compared to general context and famil-

iarity with the used documents.

v. Using automatic labelling as means to save on human label costs and time,

had proved to be extremely instrumental and the confirms a way to tackle

the challenges in obtaining data for model training. This is only enhanced

by our demonstration of how even a small subset of human data can create

a stronger auto labellers with iteratively improving using difficult to label few

shots examples in our auto labeller prompt.

6.2. Future Work

This work is laying a foundation for development of a set of tools to assist both

professionals and non professionals with contract understanding and mass contract

review process that is often required in a business scenario. There are however more

ways to further explore and enhance the results that were achieved during this work.

Below are examples of such ideas:

i. Combining other computational metrics and information such as regex matching

or computed thresholds could be included in the prompt and in the labelling

process for achieving better results.

ii. Further exploring of the other contract smells that were defined during this

55



work and envision ways to automatically detect these as well.

iii. NLP models have gotten a boost of new approaches and advancements in the

past several months with Generative AI models leading the way. Using even

newer state of the art models can produce even more successful results.
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Appendix A.

Source Code

The source code for this work can be found in the following github repositories:

github repository .
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