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Abstract 

Biomimicry is a technique for solving complex technical challenges by applying 

biologically inspired processes. When considering flight through challenging conditions, 

bats (order chiroptera) have demonstrated a keen ability to use non-visual senses to 

navigate surroundings, avoiding obstacles, and create a mental map of the environment in 

which they live and operate.  

Unmanned aerial drones are controlled in flight by an intelligent agent, be it a 

human pilot or artificial intelligence (AI) based autopilot. Simultaneous Localization and 

Mapping (SLAM) is a technique for building a map of an environment while keeping 

track of a vehicle’s position within that environment. This thesis shows that is possible to 

use bats as the inspiration for the development of an AI autopilot, Chiroptera, that can 

conduct SLAM operations to navigate a drone through an unknown environment.  A 

bespoke 3D drone flight simulator, Bat Cave, will be developed concurrently within 

which Chiroptera’s SLAM capabilities can be tested and its behavior refined.  
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Frontispiece 

 

A still frame taken from a test flight conducted in the Bat Cave flight simulator and 

described in Chapter VI.4 shows Chiroptera navigating a virtual drone through the 

wilderness, marking its path as it goes. 
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Chapter I. 

Introduction 

Intelligent agents are entities that can leverage sensor data to collect information 

about their environment and use that information to make decisions about how to interact 

with that environment. Biological organisms (human or otherwise) and artificial 

intelligence (AI) systems both fit this definition. Biological organisms collect data using 

sensors including, but not limited to, their eyes, ears, and noses, while AIs rely on 

artificial sensors to determine distance, forces, and positional measurements. Evolution 

has granted biological organisms the ability to synthesize that sensor data into an 

understanding of their environment such that they can effectively recognize and navigate 

a path between two points. Software based approaches to finding a route between two 

points are known as pathfinding and are categorized as a subset of graph theory. An 

outstanding problem in artificial intelligence involves the determination of how to find a 

path between two points in an unknown environment while avoiding obstacles along the 

way. One approach to this problem is Simultaneous Localization and Mapping (SLAM), 

an operation in which an autonomous agent creates a map of its surroundings while 

keeping track of its position within that map and using the map as an aide to navigation. 

Because the author has a background in both software engineering and biology, 

the goal of this thesis was to combine both disciplines to explore a biologically inspired 

approach to an open problem in artificial intelligence decision making, specifically the 

ability of an autonomous vehicle to find a path through an unexplored environment. In 

the natural world, bats have been observed using a variety of senses to seemingly create 
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an internal map as an aid to navigating through their environment. Studying the published 

research around this phenomena inspired the development of two software systems to 

explore the same concept as it could be applied to autonomous vehicle pathfinding. The 

first was an intelligent agent, Chiroptera, capable of real-time of synthesis of sensor data 

into a 3D map sufficient for performing SLAM operations within an unknown, obstacle 

filled environment. To test Chiroptera’s capabilities, a drone simulator called Bat Cave 

was developed. Bat Cave provided a robust sandbox in which different sensor 

configurations and autonomous navigation strategies could be validated.  

I.1 Related Work 

I.1.1 Drone Control 

Unmanned aerial vehicles (UAV) are colloquially referred to as drones. Off-the-

shelf and bespoke drones are finding increasing use as a front-line tool in wilderness 

environments. While once they were exclusively the purview of military and intelligence 

organizations, today anyone can buy or build an inexpensive quadcopter outfitted with a 

digital camera or other sensors, controlled via a dedicated remote control or smartphone 

app. Trail and ecological monitoring has traditionally required teams of workers to 

conduct extensive on-site sampling or measurements. Monitoring via aerial and satellite 

photography provides a less manpower-intensive alternative, but the usefulness of the 

collected data can be limited by the camera resolution or unfavorable weather conditions. 

Drones equipped with high-resolution cameras have been deployed to map vegetation, 

land cover, and the potential impact of recreational use on protected environments 
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(Ancin‐Murguzur, 2019), while non-camera-based sensors have found use in conducting 

wildlife observations (Roberts, 2020). 

Drones in flight are directly controlled by a human or software based intelligent 

agent. Manual flight control offers a high degree of flexibility, as human pilots’ general 

intelligence allows them to quickly adapt to new situations. A commercial videography 

drone that was intended to capture documentary film footage was used for an impromptu 

search-and-rescue operation in the mountains of Pakistan. The human pilot was able to 

manually fly the drone around the area in which a climber was lost, successfully locating, 

and making contact with the climber faster than a ground-based search and rescue team 

(McRae 2019). Despite their flexibility, however, manually controlled flights are subject 

to limitations, including radio control distance and signal obstruction. The 

aforementioned mountain rescue would likely not have been successful if the missing 

climber was inside a cave or otherwise obstructed such that the drone would not be able 

to enter the enclosed space without losing contact with the pilot. In cases where a drone 

needs to be flown outside of human control range, a skilled human pilot is not available, 

or a high degree of precision maneuvering is required, autonomous solutions must be 

considered. 

I.1.2 Autonomous Aerial Vehicle Navigation 

Autonomous flight for general mapping or environmental monitoring applications 

can involve a solution as conceptually simple as flying a drone through a preset path of 

GPS waypoints. A predefined path can be revisited for future surveys, offering a means 

to capture time series imagery from a consistent set of locations (Afghah, 2019). Data 

from external sensors provides the flight computer with information on the drone’s state 
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relative to the environment. A typical sensor suite would include an inertial measurement 

unit (IMU) to determine the drone’s acceleration and orientation, barometric or pressure 

sensor based altimeter to measure the altitude above sea level (ASL), a downward facing 

fixed laser or ultrasonic range finder to track altitude relative to the ground (AGL), and 

global positioning system (GPS) to provide waypoint positional data. This sensor suite is 

sufficient for aerial survey and mapping operations but is limited in its use when 

obstacles are present along the flight path or GPS signals are not consistently available 

due to obstructing biomass such as thick tree canopies or artificial structures. 

When GPS is not sufficient, machine vision offers an alternate means of 

navigating wilderness environments under a tree canopy. Vision-based systems operate 

by extracting features of interest from a video stream without human assistance. 

Promising work has been conducted in leveraging machine learning algorithms to 

achieve autonomous flight through forest trails by training a single camera system to 

recognize the boundaries of a trail, a pattern recognition problem that in some cases can 

be difficult for humans as well (Giusti, 2016). Automatic feature extraction can prove 

challenging when operating in conditions of low or inconsistent lighting, as well as 

ambiguous feature boundaries (Back, 2020). As such, vision-based approaches can not 

necessarily be considered a general solution to autonomous navigation in obstacle-filled 

environments. 

I.1.3 SLAM 

SLAM is an active area of AI research that seeks to addresses the problems 

inherent in navigating environments whose layout is not known a priori by incrementally 

creating a map of the unknown environment while at the same time determining the 
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vehicle’s location within the map (Durrant-Whyte 1996). Camera-based approaches 

known as visual-SLAM provide a promising approach but still require a visual feature 

detection and extraction step (Cheng 2022) and are subject to the same environmental 

challenges as non-SLAM vision solutions (Tourani 2022).   

Non-camera approaches to SLAM have leveraged sonar for underwater 

operations (Westman 2018) and LIDAR (Light Detection and Ranging) for self-driving 

cars (Elhousni 2020). LIDAR is widely used for UAV-based mapping and navigation. It 

generates a so-called “point cloud,” a collection of tens- to hundreds- of thousands of 

discrete points in 3D space which represent the surface area of an object. Point clouds are 

generally analyzed post-process, as mapping and survey applications require the ability to 

differentiate the point cloud into discrete objects and structures. A number of open source 

software libraries are available for this task, including Open3D1 and PCL2. These 

libraries store the point cloud in octrees: three dimensional volumes modeled as 

hierarchical branching data structures in which each parent node has eight child nodes, 

each of which represents a sub-region within the volume as shown in Figure 1. Point 

cloud data is stored in the octree’s leaf nodes, with each leaf node containing one or more 

points. Depending on the depth of the octree and resolution of the leaf nodes, some of the 

detail of the point cloud may be lost. However, octrees are computationally efficient as 

their hierarchical structure allows points to be found or inserted without requiring a full 

exploring of the octree.  

 
1 https://www.open3d.org 
2 https://pointclouds.org 
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Figure 1: Octree structure and subdivision3 

 

Efficient search operations have made octrees the data structure of choice for use in 

indoor navigation of autonomous vehicles (Rodenberg 2016) and flight navigation of a 

video game AI (Rabin 2017) where sufficient navigational accuracy can be achieved at a 

resolution lower than that provided by the point cloud raw data. However, these examples 

presuppose a priori knowledge of the geometry of the environment that is being 

explored. 

I.1.4 Biological Analogues to SLAM 

When we consider non-vision based approaches to SLAM, the natural world can 

serve as a source of inspiration. The term biomimicry has been coined to describe the 

process of examining nature to solve technological problems. Evolution has provided 

biological intelligent agents with a keen ability to function in unknown environments, as 

demonstrated by human drone pilots. A biological intelligent agent does not necessarily 

 
3 Image courtesy of https://en.wikipedia.org/wiki/Octree 
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have to refer to a human, however. A potential solution to the problem of autonomous 

navigation of a challenging environment via an intelligent agent could be reframed as 

something akin to attempting to mimic the observed behavior of an animal like a bat. 

The bat (order chiroptera) is a creature known to be adept at navigating gracefully 

through natural environments. Bats do not rely exclusively on their sense of sight but 

supplement their visual system with additional environment observations sourced through 

echolocation, olfactory signals, and a sense akin to an internal magnetometer (Holland 

2006). While much is not fully understood about exactly how different species of bats 

navigate their specific environments, it appears that bats can switch between different 

navigational strategies for different tasks (Genzel, 2018). Research also indicates that 

bats can keep a large-scale map of their environment in memory, using it as an aid to 

navigation (Tsoar, 2011).   
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Chapter II: 

Project Design and Architecture 

The primary goal of this thesis was the development of a software based 

intelligent agent capable of accurately navigating to a given point in an unknown 

environment. The intelligent agent, Chiroptera, is capable of performing SLAM 

operations without the use of a camera, relying instead on data captured by a suite of 

sensors including LIDAR, downward facing ultrasonic range finder, altimeter, and GPS. 

The LIDAR and ultrasonic range finder data is used to build a graphical representation of 

the environment, such that Chiroptera can find a path from point to point and make flight 

control decisions necessary to move along that path. Chiroptera is ultimately intended for 

use on physical drones, so it has been designed to be compatible with the existing open 

source MAVLink4 communication protocol, an interface and messaging protocol used by 

drone flight controllers, ground stations, and autopilots. By implementing a subset of the 

MAVLink command language, Chiroptera is compatible with open source MAVLink 

based flight controllers such as the ArduPilot Copter5 multi-rotor UAV controller, as well 

as associated drone hardware such as the PixHawk6 flight controller.  

Off the shelf drone controllers typically include a mission planner which allows 

users to plan, save, and execute autonomous flights. ArduPilot’s mission planner shown 

in Figure 2 includes a robust graphical interface and integration with Google maps 

 
4 https://www.mavlink.io 
5 https://www.ardupilot.org/copter 
6 https://pixhawk.org 
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allowing flight destinations, also known as waypoints, to be specified with a simple 

mouse-click. 

 

Figure 2: ArduPilot mission planner 

To allow for more time spent focusing on Chiroptera, I did not develop a 

graphical interface for interactive flight planning and modification, opting instead to 

define waypoints and other mission commands in newline-delimited ASCII text files 

which Chiroptera loads and parses upon application startup. The specific format of the 

mission file will be described in Chapter 3. 

While conducting a mission, Chiroptera must be able to convert sensor data into 

an in-memory geometric representation of its environment. As its focus is on navigation 

and not detailed survey operations, Chiroptera’s internal map only needs a resolution 

high enough to facilitate obstacle avoidance. Likewise, it isn’t necessary to differentiate 

between different objects in the environment; it’s enough for Chiroptera to conceptually 
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know that a given region of space if empty and traversable, while another region has an 

obstruction that must be avoided. Chiroptera’s must continuously update its map as 

additional sensor data is received. If additional obstacles are detected, a new path to the 

current waypoint may need to be determined mid-flight.  

As a proverbial “brain in a jar,” Chiroptera does not know or care if it is operating 

in a simulated or real-world environment. As such, a secondary goal of this thesis was the 

development of an environment and drone flight simulator, Bat Cave, in which 

Chiroptera’s mapping and navigation capabilities could be tested. Bat Cave generates a 

user-defined 3D obstacle filled environment (also known as a scene), as well as a virtual 

drone and sensor data including GPS and altimeter, external LIDAR, and ultrasonic range 

finder. For this project I chose to base Bat Cave’s simulated drone on a S500 quadcopter 

as shown in in Figure 3. The S500 provides a versatile off the shelf platform that can be 

tasked for different types of flight operations (Babcock 2023) and is easily integrated 

with PixHawk flight controllers7. As we will see in Section 3, the physical characteristics 

of the S500 frame will be used to determine the resolution of Chiroptera’s octree map. 

 

Figure 3: An S500 quadcopter frame 

 
7 https://docs.px4.io/main/en/frames_multicopter/holybro_s500_v2_pixhawk4.html 
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Bat Cave’s virtual S500 drone is controlled by a custom physics engine called 

Fleder that I developed specifically for this project. Fleder, a shorted version of 

fledermaus, the German word for bat, implements simulated forces and a real-time 

collision detector allowing Bat Cave’s sensors to interact with the environment geometry 

in a way analogous to their real-world counterparts. The sensors-environment interaction 

facilitates the generation of a point-cloud representation of the scene. The sensor data is 

both visualized within Bat Cave and sent to Chiroptera for use in its mapping and 

navigation operation.  

Like the ArduPilot mission planner, Bat Cave implements a graphical interface 

that allows a user to monitor the drone’s status during flight, as well as start, pause, and 

reset the simulation.   

Communication between Chiroptera and Bat Cave’s simulated drone is facilitated 

via named pipes into which ASCII text formatted command and telemetry messages are 

written. The communication architecture is shown in Figure 4. To ensure that neither 

application is blocked during command or simulation execution, both Chiroptera and Bat 

Cave create new threads in which Read operations can be executed.  

 

Figure 4: Communication between Chiroptera and Bat Cave’s simulated drone 
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Chiroptera and Bat Cave exist in a feedback loop, in which a message from one 

application leads to a state change in the other application, and vice versa. Figure 5 

illustrates the following high level sequence of events when Chiroptera issues a command 

to Bat Cave. Section III and IV will describe each of these steps in detail. 

1. Chiroptera reads the drone state information from the telemetry pipe.  

2. Chiroptera executes the current command, passing the drone state data as a 

parameter, and returning a drone control instruction. 

3. Chiroptera writes the drone control instruction to the command pipe. 

4. Bat Cave reads the drone control instruction from the command pipe. 

5. Bat Cave updates the simulation. 

6. Bat Cave writes the updated drone state to the telemetry pipe. 

 

Figure 5: Chiroptera command execution and dispatching 
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Chapter III: 

The Chiroptera Intelligent Agent 

Chiroptera is conceptually not unlike a video game intelligent agent, something I 

have developed several of in the past. At the highest level, Chiroptera’s raison d’être is to 

navigate an autonomous drone from point to point while conducting SLAM operations 

facilitated by data received from a suite of external sensors. As a pre-loaded series of 

flight commands is executed, collected sensor data is used to construct an internal 3D 

map of the drone’s surroundings from which flight operation decisions can be made.  

Chiroptera is written in C++11. As it is ultimately intended for use on physical 

hardware, no third-party libraries are used in the interest of keeping its memory footprint 

as lean as possible.  

The class diagram in Figure 6 illustrates Chiroptera’s core architecture.  

 

Figure 6: Chiroptera class diagram 
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Chiroptera is architected as a set of narrowly focused classes, each responsible for 

one aspect of drone control. The namesake class is responsible for initializing the helper 

classes and executing Chiroptera’s main event loop. The event loop is detailed in section 

III.2. A FlightPlanner class is responsible for loading and parsing the mission 

command file. As each command is parsed, the FlightPlanner returns an Action 

which is added to an ActionManager. The Action and ActionManager classes are 

detailed in section III.1.3.  

As the main event loop executes, the CommunicationManager described in 

section II reads telemetry data from the drone and writes commands back to the drone. 

Section III.1.5 describes the message format used to encode telemetry and command 

data. Telemetry data is stored in the DroneState class, described in section III.1.2. The 

Octree class implements the octree data structure used to store the environment map and 

perform pathfinding operation. Mapping and pathfinding are described in sections III.1.6 

and III.1.7. 

III.1 Implementation 

III.1.1 Motion 

Chiroptera’s motion algorithms are based on the kinematic equations of classical 

mechanics. Starting from a dead stop, Chiroptera will need to calculate the three-

dimensional velocity and acceleration vectors necessary to move the drone to its 

requested position. The final velocity of an object, vf, can be calculated as the sum of the 
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initial velocity of the object plus the object’s acceleration scaled by the elapsed time. This 

is expressed as the kinematic equation: 

vf  = v0 + at 

where v0 is the initial velocity of the object, a is the acceleration, and t is time. 

Once in motion, adjustments to the drone’s velocity will be necessary to change 

direction or slow down and come to a stop. By definition, acceleration is the change in 

velocity with respect to time. Solving for a, we have: 

a = (vf – v0) / t 

Chiroptera uses this equation to calculate the acceleration required to update the 

drone’s velocity as required by the current maneuver. In this equation, time t acts as a 

scaling factor and can vary based on the desired magnitude of acceleration. Initiating 

motion from a dead stop can take place over a short interval and small value of t, while 

gradually slowing down to approach a destination requires a larger value of t. Time 

intervals do not necessarily need to be hardcoded in advance; rather, we will see in the 

Action section below that arbitrary values of t can be defined on an action by action 

basis. It is important to note that values of t appropriate for use in the Bat Cave simulator 

may not be suitable for use in physical drones. This consideration will be explored further 

in Section VII.1. 

Rather than using a third party physics library which contains unnecessary 

functionality, Chiroptera directly implements the minimum necessary set of position, 

motion, and transformation vector and matrix data and operations. These vector and 

matrix classes will also be used by the Fleder physics engine described in Section IV. A 

base Vector3 class is used to model both the {x, y, z} coordinates of an object in 3D 
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world space, as well as a force vector that parameterizes desired changes in motion. The 

latter is referred to as a steering force (Reynolds, 1999). A Kinematic class (Millington, 

2009) was implemented to model Chiroptera’s current and desired kinematic properties: 

CLASS Kinematic 

  position         Vector3 

  orientation      Vector3 

  heading          Vector3 

  velocity         Vector3 

  angularVelocity  Vector3 

ENDCLASS 

III.1.2 Drone State 

Chiroptera implements a DroneState class to keep track of its current and target 

Kinematic states, as well as references to the most recently received set of LIDAR data 

and the navigation graph. A reset flag can be toggled by a message from Bat Cave, 

instructing Chiroptera to return to its initial state and restart its current flight. 

CLASS DroneState 

  current          Kinematic 

  target           Kinematic 

  LIDAR            Vector3[] 

  graph            Octree 

  reset            boolean 

ENDCLASS 

III.1.3 Actions 

Chiroptera’s core functionality is built around the concept of taking an action in 

response to a predetermined flight plan or unanticipated change in drone state. An action 

can represent a kinematic event, a change in internal drone state, or even no behavior at 

all. Actions are inherited from the Action base class whose attributes include the 
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drone’s current and desired state, as well as virtual initializer and execution methods. The 

execute method returns an ActionOutput object containing the target steering vector 

and angular acceleration. 

CLASS ActionOutput 

  action              string 

  linearAcceleration  Vector3 

  angularAcceleration Vector3 

ENDCLASS 

 

CLASS Action 

  # properties 

  current     Kinematic 

  target      Kinematic 

  state       DroneState 

  is_complete boolean 

   

  # methods 

  Constructor() 

  virtual Init(DroneState) 

  virtual Execute(DroneState) : ActionOutput 

ENDCLASS 

 

Actions represent individual instructions that change the drone’s state. The core 

set of motion actions described in Table 1 are based on a subset of steering behaviors for 

autonomous entities originally described by Craig Reynolds (Reynolds, 1999).  

Table 1: Steering Actions 

Action Description 

Seek Steers the drone towards a specific position in world space. 

Arrive Identical to Seek but directs the drone to slow down as it 

approaches the target, eventually coming to a stop at the 

target position. 

Alignment Adjusts the drone’s orientation until it is pointing straight 

towards a specified position in world space. 
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Obstacle Avoidance Maneuvers the drone through an obstacle filled environment 

by dodging anything its path. This applies to obstacles 

between the drone and its immediate goal, it is not a large 

scale pathfinding solution. 

Path Following Steers the drone along a predetermined path. The path is 

determined by the algorithm described in section III.1.7 

 

The implementation of each steering action is extended from the Action base 

class. Each action child class defines necessary attributes and implements custom 

constructor, initialization, and/or execution methods that contain the logic necessary to 

fulfill the action. In the Arrive action, for example, attributes define the maximum 

speed and acceleration of the action. A time_to_target value is used to scale the 

resulting acceleration value as described in the previous section, and a slow_radius 

denotes the distance at which Chiroptera should being slowing down. During Arrive 

initialization the slow_radius is defined as one-third the distance from the initial 

position to the target position. Section VII.1 will discuss alternate future approaches to 

determining this parameter.  

CLASS Arrive EXTENDS Action 

  # properties 

  max_speed         float 

  max_acceleration  float 

  time_to_target    float 

  slow_radius       float 

 

  # methods 

  constructor(latitude, longitude, altitude) 

  Init(DroneState) 

  Execute(DroneState) : ActionOutput 

ENDCLASS 

 

A full description of all implemented Actions and their attributes can be found in 

Appendix 2. 
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Actions can be composed into more complex behaviors. A series of actions can be 

executed in sequence, or a given action can execute given the current drone state 

conditions. In the Waypoint action, for example, Chiroptera combines the Align and 

Arrive actions to adjust the drone’s heading to and move to the requested position in a 

single command: 

CLASS Waypoint: 

  align        Align 

  arrive       Arrive 

  is_aligning  boolean 

 

  METHOD Waypoint::Execute(droneState) 

    IF isAligning THEN 

      IF align is complete THEN 

        is_aligning := false 

        arrive.Init(droneState)  

      ELSE 

        actionOutput = align.Execute(droneState) 

      END IF 

    ELSE 

      IF arrive is complete THEN 

        Set Waypoint.isComplete := true 

      ELSE 

        actionOutput = arrive.Execute(droneState) 

      END IF 

    END IF 

    Return actionOutput 

  ENDMETHOD 

ENDCLASS 

 

Actions are initialized and executed by an ActionManager class. The 

ActionManager stores the actions that are to be executed as a linked list. The active 

action is denoted by a pointer to a node within the linked list.  

CLASS ActionManager 
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  # properties 

  actions_list:  Action[] 

  active_action: Action 

  # methods 

  ExecuteAction(DroneState) : ActionOutput 

ENDCLASS 

Action execution will be described below in the Execution section. 

III.1.4 Commands 

Actions are invoked via an API that implements a subset of the ArduPilot Copter 

interface (ArduPilot 2024). Commands are classified as either Navigation commands 

used to control the motion of the drone (e.g. travel to the given latitude and longitude), 

DO commands used to change the drone’s internal state without changing the drone’s 

position (e.g. change max speed), or Conditional commands which delay DO commands 

until some condition is met (e.g. the drone adjust yaw by a given number of degrees). As 

per the MAVLink spec, up to one Navigation and one DO or Conditional command can 

be executing at a time. A full dictionary of implemented commands can be found in 

Appendix 2. 

III.1.5 Communications 

Chiroptera communicates with Bat Cave via named pipes as described in Chapter 

2. A CommunicationManger class is responsible for opening and closing the telemetry 

input (rx) and command output (tx) file streams and reading from/writing to buffers. As 

no more than one instance of the CommunicationManager is required, the class is 

implemented using a Singleton pattern: 

CLASS CommunicationManager 
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  # properties 

  rx: unsigned integer 

  tx: unsigned integer 

   

  # methods 

  Read() 

  Write() 

  GetTelemetry() 

ENDCLASS 

 

Messages are sent and received as newline-delimited ASCII strings. Each line 

begins with a code which identifies the type of data the line contains. Floating point 

values are formatted to 4 places left of the decimal point (3 digits plus an option sign) and 

two digits to the right of the decimal point. 

Drone instructions posted to Bat Cave are ASCII strings up to 128 byte in length, 

with a format shown in Table 2. Identifier 0 can be up to 32 characters long. Identifiers 1-

4 are each 24 characters long. Each line includes a newline delimiter. Identifiers 1 and 2 

are the drone kinematic instruction data. Identifiers 0, 3 and, 4 denote data that is 

displayed or visualized in Bat Cave as an aide to debugging Chiroptera’s behavior.  

Table 2: Chiroptera instruction format 

ID Content Format Description 

0 Command String The currently executing command 

1 Linear Acceleration 3 floats, space 

delimited 

The desired steering vector 

2 Angular Acceleration 3 floats, space 

delimited 

The desired angular acceleration 

vector 

3 Drone position in SVO 3 floats, space 

delimited 

The world space position of the 

SVO node the drone occupies 

4 Current waypoint 

position in SVO 

3 floats, space 

delimited 

The world space position of the 

octree node the current waypoint 

occupies 
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Telemetry and sensor data received from Bat Cave is up to 256 bytes in length.  

Telemetry will include either a single reset command or multiple lines describing the 

current drone state. As with the instruction data, each line includes a newline delimiter. 

Drone state telemetry will contain both drone kinematic data and acquired sensor data. 

Identifiers 1-3 are 24 character long strings of kinematic data.  Identifier 4 consists of a 

single floating point AGL value. Identifier 5 is a 24 character string, and can appear 

multiple times with each line representing acquired LIDAR data. Each line of LIDAR 

data represents an individual laser beam known as a channel. The LIDAR unit organizes 

channels vertically, and the scan resolution of the sensor is directly related to the number 

of channels available. Section IV.1.3 will describe the channel configuration 

implemented by Bat Cave.  

Table 3: Bat Cave telemetry and data format 

ID Content Format Description 

0 Reset integer The number 0. Signals Chiroptera 

to reset to its initial state. 

1 Drone position 3 floats, space 

delimited 

The drone position in world space. 

2 Drone orientation 3 floats, space 

delimited 

The drone orientation in world 

space. 

3 Linear velocity 3 floats, space 

delimited 

The drone’s current linear velocity 

in meters / second. 

4 AGL Floating point Altitude in meters above ground 

level as measured by the altimeter 

5 LIDAR data 3 floats, space 

delimited 

A 3D point in world space. There 

can be multiple lines of LIDAR 

data, where each line represents a 

channel. 
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III.1.6 Mapping 

As we saw in Chapter 2, Chiroptera treats its environment as a volume of discrete 

3D regions called octants. If a point cloud data point is determined to exist with a given 

leaf-node octant, the octant’s node type is set to filled and the original data point is 

discarded. Figure 7 shows a side-by-side of a point cloud versus its voxel representation. 

The latter is a lower-resolution representation of the environment, but Chiroptera does 

not require the level of fine detail or object recognition called for by engineering or 

survey applications. Rather, real-time flight decisions can be based strictly on knowing 

that some kind of object occupies a certain position in world space.  

 

Figure 7: Point cloud visualized alongside its voxel representation. 

III.1.7 Localization and Pathfinding 

To find a path through the octree, its nodes need to be connected into a traversable 

graph suitable for analysis by a shortest-path pathfinding algorithm like Dijkstra’s (1959) 

or A* (Hart 1968). Rodenberg et al. (2016) detail several historical approaches to this 

problem. As Chiroptera’s octree is modeled as a pointer-representation, I implemented a 

combination of the lookup table solution described by Payeur (2006) combined with the 
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Namdari et al. (2015) approach in which neighboring nodes are joined during octree 

subdivision. For each octant, a list of face, edge, and vertex connections is stored. As 

illustrated in Figure 8 each octant can have up to 26 possible connections. The image on 

the left shows the 8 connections that share the same z-coordinate as the octant, while the 

image on the right represents the other 18 connections that are on a layer above or below 

the octant. The C++ implementation of the lookup table and node connections can be 

found in Appendix 4. 

 

Figure 8: Node 0 shares 6 faces (blue), 12 edges (green), and 8 vertices (yellow) 

 

With the octree regions now joined into a traversable graph, the A* algorithm is 

used to find a path from the drone’s current position to a given goal node. A* is a 

computationally efficient search algorithm that has its origins in the Shakey project, an 

early attempt at providing an autonomous robot with capability of navigating an obstacle 

filled environment (Kuipers 2017).  

Chiroptera’s A* implementation is based on Hart et al’s (1968) described 

execution of an evaluation function: 

f(n) = g(n) + h(n) 
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where f(n) is the estimated cost of the optimal path through a node n, based on the 

sum of g(n), the cost of travel from the current node to node n, and h(n), a heuristic that 

estimates the cost from node n to the goal node. Chiroptera’s cost function g(n) returns 

an estimate of the distance between two nodes based on the type of connection they share 

as shown in Figure 9.  

 

Figure 9: Directions of travel between connected nodes. 

 

Nodes that share a common face (Figure 9.A) are considered to have a distance of 

1.0. Nodes that share an edge (Figure 9.B) would be separated by a distance of  √(1 + 1) 

= √2 ≈ 1.4, while nodes that share a single vertex (Figure 9.C) would be separated by a 

distance of √(√2 + 1) ≈ 1.6. For ease of calculation these values are defined in code as the 

integers 10, 14, and 16 (see Appendix 4.1). 

The heuristic h(n) is based on the Euclidian distance between n and the goal 

node. To introduce a bias in favor of nodes that are at the same altitude as the goal node, 

we add an offset equal to the difference between the altitude and n and the altitude at the 

goal node. 

A* is popular as its use of a weighted graph and heuristic guidance guarantee that 

it will return the shortest path between two points. This result is predicated on having 
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complete a priori knowledge of the search space prior to algorithm execution. 

Chiroptera’s pathfinding is designed to work in environments where the characteristics of 

the search space are not known in advance, however, but rather are updated over the 

course of the mission.  

 

METHOD Pathfind::Execute(droneState) 

  IF current_waypoint IS null THEN 

    current_waypoint := Pathfind.NextWaypoint() 

  ENDIF 

  IF current_waypoint IS complete THEN 

    next_waypoint := Waypoint.NextWaypoint() 

 

    IF next_waypoint IS filled THEN 

      Pathfind::AStar(droneState); 

      current_waypoint := Pathfind.NextWaypoint() 

    ELSE  

      current_waypoint := next_waypoint; 

    ENDIF 

  ENDIF 

  return current_waypoint.Execute(droneState); 

ENDMETHOD 

 

At each execution of the path traversal, Chiroptera’s Pathfind action looks 

ahead to see if the next node in the path has been flagged as filled. If the path is clear, 

Chiroptera will command the drone to continue moving along the path. If the next node is 

now known to be obstructed, Chiroptera will execute another A* pass to find a new path 

around the obstruction. Assuming a valid path exists, the result is a guaranteed path from 

start to destination, but without the A* guarantee that the final path will be the shortest 

path between the locations. Chiroptera’s A* implementation is guaranteed to find a valid 

path as long as one exists. If a path does not exist, Chiroptera will return an error and end 
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the simulation. Options for handling this scenario in a physical drone will be discussed in 

section VII.1.  

III.2 Execution 

Upon launch, Chiroptera goes through a setup phase, then enters its primary event 

loop. The setup phase consists of first loading and validating the flight plan. As 

mentioned in Chapter 2, the flight plan is an ASCII text file with the .flt extension, 

containing a series of commands in the MAVLink format. 

After loading the flight plan file, Chiroptera parses each line. Comment lines are 

denoted by a starting # character. If a line contains an unknown command or insufficient 

number of parameters for the given command, Chiroptera logs an error and exits. As each 

line is parsed, an Action-derived object is returned and added to the ActionManager. 

After parsing the command file, Chiroptera then initializes the 

CommunicationManager and opens the named pipes. If either named pipe cannot be 

opened Chiroptera logs an error and exits. If the names pipes are opened successfully a 

thread is spawned off to handle Read operations from the telemetry pipe without blocking 

Chiroptera’s main event loop. 

With communication channels established, the final setup step is the initialization 

of the octree. The root node is recursively subdivided until it reaches a specified 

resolution, and the nodes are connected into a traversable graph as described above. 

Chiroptera is now ready to begin flight operations.  
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Flight operations are conducted within an event loop that executes five times per 

second and consists of a telemetry and state update phase, followed by a command 

execution phase. 

METHOD Chiroptera::Update: 

  // update state phase 

  telemetry := CommunicationManager.GetTelemetry() 

  drone_state := Chiroptera.update_drone_state(telemetry) 

  Chiroptera.update_octree(telemetry) 

 

  // execute command phase 

  actionOutput := ActionManager.execute(drone_state) 

  command := Chiroptera.encode_command(actionOutput) 

  Chiroptera.send_command_to_drone(command) 

ENDMETHOD 

 

The loop begins by reading and parsing the telemetry payload data. As shown 

previously in Table 3, the telemetry data includes both drone flight information and the 

latest LIDAR data. The telemetry data is used to update the drone’s kinematic state. 

Octree regions which contain the LIDAR and ultrasonic altimeter data are determined 

and their status is set to filled. 

After the drone’s state has been updated, the new state is passed as a parameter to 

the execution of the currently active command. The execute method first checks if the 

drone state’s reset flag has been set. If it has, the ActionManager is reset to its initial 

conditions. If the drone state has not been reset, the ActionManager then checks if an 

action is currently active. Recall that the ActionManager stores the actions as a linked 

list. If there is no active action, the active action is set to the root of the action list. The 

active action is then initialized, taking the drone state as a parameter.  
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As each action completes execution the active_action is updated to point to 

the next node in the list. If there are no more actions to execute, the ActionManager 

returns an empty ActionOutput which Chiroptera interprets as the conclusion of the 

flight. 

METHOD ActionManager::Execute(drone_state) 

  IF drone_state.do_reset THEN 

    reset(drone_state) 

    return 

  END IF 

   

  IF NOT active_action THEN 

    active_action = actions_list 

    active_action.Init(drone_state) 

  END IF 

   

  IF active_action.is_complete THEN 

    IF actions_list.next THEN 

 active_action = actions_list->next 

    ELSE 

 return empty action 

    END IF 

    active_action.Init(drone_state) 

  END IF 

   

  return active.Execute(drone_state) 

ENDMETHOD 

 

Recall that the output of an action is an ActionOutput data structure containing 

two Kinematic objects representing a steering vector and angular acceleration. The final 

step of Chiroptera’s Update method is to encode the action output into an ASCII string of 

the format shown in Table XXX. The encoded message is then written to the command 

pipe, from which Bat Cave will read and act on it. 
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Chapter IV:  

The Bat Cave Environment and Drone Flight Simulator 

Bat Cave is a voxel-based flight simulator within which Chiroptera can pilot a 

virtual quadcopter outfitted with an array of sensors through a 3D environment 

containing obstacles which must be avoided. A scene description language facilitates the 

building of different test environments using a library of primitive scene objects 

including a topologically varied ground plane and variety of trees. The custom physics 

engine, Fleder, implements the minimum necessary functionality to calculate and apply 

forces and detect collisions. To assist in visualizing sensor data, Bat Cave includes 

options to render the raw sensor data point cloud as well as the voxel representation, and 

octree region boundaries. A graphical interface (Figure 10) includes panels that display 

drone telemetry, simulation frame rate, and slider bars to adjust LIDAR, octree, and 

virtual camera settings. The user interface will be described in Section V. 

 

Figure 10: Bat Cave scene and user interface 
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Bat Cave is written in C++11. A 3D graphics renderer was implemented via the 

OpenGL version 3.3 API8.  As OpenGL is a low level hardware API, C++-specific 

function pointers and bindings were generated using the Glad9 loader-generator. 

Windowing and rendering contexts are managed by the GLFW10 OpenGL utility library. 

Graphical user interface panels and displays are implemented via the C++ ImGUI11  

library.  

The class diagram in Figure 11 illustrates Bat Cave and Fleder’s core architecture. 

 

Figure 11: Bat Cave and Fleder UML class diagram 

 

 
8 https://www.opengl.org 
9 https://glad.dav1d.de 
10 https://www.glfw.org 
11 https://www.dearimgui.com 



 

32 

Like Chiroptera, the Bat Cave namesake class is primarily responsible for 

initializing and facilitating updates by the classes that implement simulation 

functionality. The structure and execution of Bat Cave’s main event loop is detailed in 

section IV.2. The Scene class creates and manages the environment in which the drone 

operates. An abstract Entity class implements the core functionality required by all 

objects in the scene, including defining model data, rendering, and updating object 

attributes as the simulation runs. The Scene and Entity classes are described in Section 

IV.1. While OpenGL was used to render the simulation, Bat Cave’s Scene and Entity 

classes were designed to be graphics API agnostic. As such, this class diagram 

intentionally omits the OpenGL integration classes.  

Section IV.1.2. describes Fleder and its role in calculating drone motion dynamics 

and sensor interaction with environment objects. Bat Cave delegates all responsibility for 

drone operation to the Drone class detailed in section IV.1.3. Data acquired by the 

sensors is stored in the PointCloud. A simplified version of Chiroptera’s Octree 

displays the voxel representation of the acquired data and provides visual insight into the 

environment graph Chiroptera uses for navigation. The PointCloud and Octree are 

described in section IV.1.4. The Drone communicates directly with Chiroptera via the 

CommunicationManager described in section IV.1.5.  

IV.1 Implementation 
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IV.1.1 Scene 

Bat Cave scenes are defined via a scene description language which provides 

instructions for placing voxel-based objects knows as entities in the scene. Each Entity 

has a unique identifier and includes a 3D voxel model, the geometry of which is 

described in a local coordinate system centered on the origin coordinate { 0, 0, 0 }. 

Complex entities can be composed as aggregates of simpler entities via a parent-child 

relationship. Each entity in an aggregate holds a reference to its parent entity, as well as a 

list of references to any child entities that have been added to the aggregate.  

CLASS Entity 

  # properties 

  id: unsigned integer 

  next_id: static unsigned integer 

   

  model: Model 

  parent: Entity; 

  children: Entity[] 

   

  # methods 

  virtual Update() 

  virtual AddToCollider() 

  AddChild() 

  Reset() 

ENDCLASS 

 

An entity’s transformation state is updated on each frame of the simulation, and 

any transformations are propagated down to the child entities as needed. A reset method 

is available to return the entity to its initial transformation state. To make an entity 

detectable by a sensor a method is provided to register an entity with Fleder’s collision 

detector. The specifics of collision detection are described below but suffice it to say that 
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a necessary pre-requisite is the conversion of an entity’s vertex data from its local 

coordinate system to world space coordinates.  

Environment entities include a ground plane, rocks, and different species of trees. 

Trees are modeled as aggregated entities with the tree trunk as the root entity and the 

branches and leaf canopies as parent/child entities as shown in Figure 12, and described 

by the following scene syntax: 

1 ground 10.0 10.0  

2 oaktree 

3 translate 0.0 3.0 0.0 

 

Figure 12: A tree modeled as an aggregated entity 

 

In addition to transformations explicitly defined in the scene description, tree 

entities have their overall dimensions randomly scaled across a range of .75x – 1.25x, 

which allows for size variability to be introduced into the simulated groves. Figure 13 

shows two different renders of the same scene description file. 
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Figure 13: Random variation in the size of rendered trees 

Full details of the scene description language is found in Appendix 3. 

IV.1.2 The Fleder Physics Engine 

Fleder was envisioned as a cross-platform, rendering-framework agnostic 

dynamic motion and collision physics simulator. Just as with Chiroptera, the necessary 

vector and matrix data structures and transformation operations were implemented from 

the ground up, rather than relying on any third party libraries. Compatibility with Bat 

Cave’s OpenGL renderer is handled via an adapter class which provides methods to 

convert Fleder geometry to OpenGL geometry and vice versa. 

 

Dynamic Motion: Fleder models the virtual drone as a point of specified mass with 

position, velocity, and acceleration kinematic attributes. The kinematic attributes can be 

modified through the application of dynamic forces to the point mass. Newton’s second 

law of motion tells us that: 

F = ma 
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where the net force F is equal to an object’s mass m multiplied by the object’s 

acceleration a. The S500 drone has a mass of 782g12. As described in Chapter 3, 

Chiroptera commands include the linear acceleration necessary to update the drone’s 

motion. Fleder’s point mass implementation is inspired by the particle implementation 

class described by Millington (2007).  

CLASS PointMass 

  # properties 

  mass: float 

  inverse_mass: float 

  kinematic: Kinematic 

  net_force: Vector3 

  damping: float 

 

  # methods 

  AddForce(Vector3 force) 

  Integrate(float deltaTime) 

  ResetAccumulator() 

ENDCLASS 

 

The net force is a vector that represents the sum of all forces applied to the object. 

As commands are received from Chiroptera, Fleder updates the net force to represent the 

requested new linear acceleration. In the integration method the net force is multiplied by 

the pre-calculated inverse of the drone’s mass, with the resulting value becoming the 

drone’s current acceleration as per Newton’s second law. The acceleration is scaled by 

the time interval and the product added to the drone’s velocity. The velocity is then 

constrained by a damping factor which can be thought of as a representation of air 

resistance. 

METHOD PointMass::Integrate(deltaTime): 

  PointMass.position += PointMass.velocity * deltaTime; 

 
12 https://holybro.com/products/s500-v2-kit 
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  PointMass.acceleration =  

    (PointMass.net_force * PointMass.inverse_mass); 

 

  PointMass.velocity += (PointMass.acceleration * deltaTime); 

  PointMass.velocity *= (PointMass.damping * deltaTime); 

ENDMETHOD  

 

Force Generators. Forces applied to an object can be constant, such as gravity, or variable 

such as the thrust generated by a drone’s spinning rotors. Fleder implements a physics 

engine abstraction known as a ForceGenerator (Millington 2007), a class which 

obfuscates the calculation of a force’s magnitude such that Fleder’s PointMass 

integrator can apply the resulting force without needing to know the specifics of how the 

magnitude of the force was determined. 

CLASS ForceGenerator 

  # properties 

  force: Vector3 

 

  # methods 

  virtual UpdateForce(PointMass p, float deltaTime) 

ENDCLASS 

 

Recall from section III.1.3 that Chiroptera returns an ActionOutput containing 

the linear acceleration necessary to adjust the drone’s velocity. Looking again at 

Newton’s second law, force is proportional to acceleration. A MotorForceGenerator 

class extended from the base ForceGenerator provides a means to add the acceleration 

returned by Chiroptera to the net force acting on the drone’s PointMass. As shown in 

section IV.1.2.DynamicMotion, the PointMass integrator will determine the final 

acceleration to apply based on the net force and mass of the drone. 
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Collision Detection. Fleder implements a line-triangle collider for use by the sensors, 

inspired by the efficient real-time intersection algorithm described by Ericson (2005). 

Given a line segment defined by two points and a target triangle, Ericson’s algorithm 

calculates a point-normal representation of the plane in which the triangle exists then 

tests if the line segment intersects the plane. If the line intersects the plane, the algorithm 

then checks if the intersection point is found within the original triangle.  

CLASS LineCollider 

  # properties 

  entries: Triangle[] 

 

  # methods 

  AddTriangle(Vector3 vertices[3]) 

  DoesIntersect(Vector3 line[2], Vector3 r) : boolean 

ENDCLASS 

 

Recall that Bat Cave entities include a method to convert their local polygon 

coordinates to world-space coordinates. Fleder’s LineCollider class declares a list of 

world-space Triangles which is populated as environment entities are added to the 

scene. As each polygon is added to the list, the triangle’s normal is calculated and stored 

alongside the vertex data. On each sensor update the list of triangles is checked against a 

given line defined by two points. If an intersection is detected the distance from the drone 

to the intersection point is stored. Upon completion of testing the triangle list, the closet 

point of intersection to the drone, if any, is returned. Full C++ source code for the 

LineCollider can be found in Appendix 4. 
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IV.1.3 Drone 

Bat Cave’s simulated drone is composed of a 3D model of the S500 quadrotor 

frame, simulated LIDAR and ultrasonic rangefinder sensors, and hooks to the 

communication manager and Fleder’s point mass and colliders. 

 

Model: The drone frame model is implemented as a unique scene entity whose position 

and rotation properties are updated on each frame of the simulation. As the drone model’s 

position in world space is updated, the position property is used as a source of data for 

two simulated sensors. The drone’s { x, y } coordinates serve as a floating point 

representation of the latitude and longitude, and the { z } coordinate is used to represent 

the ASL as measured by the altimeter. 

The LIDAR and ultrasonic range finder sensors are implemented as extensions of 

a sensor base class. The sensor base class defines attributes for the frequency of sensor 

readings and the elapsed time since the last reading as well as virtual function 

declarations to measure the sensor data and update the sensor model entity.  

CLASS Sensor : extends Entity 

  # properties 

  frequency: float 

  elapsed_time: float 

   

  # methods 

  virtual Update() 

  virtual GetSensorData() 

ENDCLASS 

  

LIDAR: Bat Cave implements a LIDAR that is mounted to a gimbal on the front of the 

drone allowing for a 90 degree arc to be swept in front of the drone (Figure 15.A) at a 
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default frequency of 2 Hz. The LIDAR emits 8 channels spread across a 30 degree 

vertical arc with an effective horizontal range of 30 meters. Mounting the LIDAR 

housing at an upward pitch angle (Figure 14.B) corrects for the drone frame’s downward 

pitch when the drone is in flight (Figure 14.C).  

 

Figure 14: Area scanned by the drone LIDAR 

The LIDAR has a updates at a default frequency of 10 Hz. On each update the 8 channels 

are passed to the line collider as described previously, returning the closest intersection 

point of each channel with an environment entity. These points are the basis of the SLAM 

point cloud as shown in Figure 15. 
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Figure 15: Generating a point cloud from LIDAR data. 

 

Ultrasonic range finder: The downward facing range finder is mounted to the underside 

of the drone frame. Bat Cave assumes that the range finder will be stabilized by a gimbal 

that can respond to the drone’s pitch angle, ensuring that the range finder always points 

directly downward. The range finders emit a single beam with a refresh rate of 20 Hz. 

The beam is passed to the line collider as described in the LIDAR section, with the 

returned intersection point representing the AGL. The AGL is added to the point cloud as 

seen in Figure 16 but is also used by Chiroptera to determine when the drone has reached 

its specified take off altitude, as well as to make altitude adjustments when terrain 

following is enabled.  

IV.1.4 Point Cloud and Octree 

Bat Cave stores point cloud data for visualization in an octree variation called a 

sparse voxel octree (SVO). An SVO is an octree in which a region is subdivided only if it 

contains a filled leaf node. As shown in Figure 16, rendering an SVO presents a clear 
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visualization of where the collected data is located without the visual clutter of largely 

empty 3D lattice. 

 

Figure 16: SVO visualization of octree data 

IV.1.5 Communications 

Bat Cave’s CommunicationManger implementation is functionally identical to 

the Chiroptera CommunicationManager described in Chapter 3, except that the input 

(rx) channel receives commands and the output (tx) channel posts drone telemetry and 

sensor data. The communication manager is an association of the Drone class, as the 

communicated data either represents either a command issued to the drone, or drone state 

and sensor data communicated as telemetry. As with Chiroptera, a separate thread is 

spawned to handle read operations, so as to not block execution of the main program 

loop. The command and telemetry message formats are identical to those described in 

Chapter 3.  
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IV.2 Execution 

Upon launch, Bat Cave goes through an initialization phase before starting its 

primary event loop. The initialization phase begins by setting up the scene. Bat Cave 

loads the scene description file then parses each line. If a line contains an unknown 

identifier or transformation, Bat Cave will log an error then exit. As each line is parsed 

the appropriate entity is added to the scene registry. 

After loading the scene, the drone is initialized. A force generator to simulate the 

net force produced by the drone’s motors is instantiated and attached to the drone 

model’s body. The scene registry is then traversed, and references to each entity are 

added to the altimeter and LIDAR colliders. The CommunicationManager is 

instantiated as described in Chapter 3. Finally, the octree is instantiated. Unlike 

Chiroptera which subdivides its octree to the defined resolution upon initialization, Bat 

Cave’s SVO as described in section IV.1.3 is subdivided to a resolution of 1 at the start.  

The Bat Cave main loop handles updating the scene, drone, and sensors. The 

update rate of the simulation is between 30 and 60 frames per second, depending on the 

complexity of the scene. More complex scenes contain more entities to check collisions 

against, as well as larger volumes of point cloud data leading to update and rendering 

slowdowns. Several optimization possibilities are discussed in Section VII. 

Bat Cave can exist in one of three possible execution states, play, pause, or reset, 

each of which has an effect on the execution of the update method. The initial state is set 

to pause to allow the initial simulation conditions to be examined prior to initiating the 

mission.  

METHOD BatCave::Update(float delta_time): 

    IF GetSimState() == SIM_PAUSE THEN 
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        return 

    ELSE IF GetSimState() == SIM_RESET THEN 

        ResetSimulation() 

        drone.SendReset(); 

        return     

    ENDIF 

     

    fleder.Start(); 

 

    drone.Update(delta_time); 

    fleder.RunPhysics(delta_time); 

 

    models.Update(delta_time); 

    sensors.Update(delta_time);    

     

    elapsed_time += delta_time; 

    frame_rate = 1./ delta_time; 

 

    IF elapsed_time > 0.5 THEN 

        drone.SendTelemetry(); 

    ENDIF 

ENDMETHOD 

 

The update loop begins by checking the simulation state. If the simulation state is 

pause, the loop exits immediately. If the state is reset, Bat Cave resets the octree, clears 

the point cloud, and returns the drone to its initial kinematic state. A reset signal is sent to 

Chiroptera as described in section III.1.2. 

If the simulation is not paused or reset, the physics and entity states are updated. 

Fleder first clears the net forces applied to the drone and prepares to calculate the 

dynamics for the current frame. The drone’s update method is then invoked.  

METHOD Drone::Update(delta_time) 

    command = parse_command(); 

 

    set_thrust(command->linear_acceleration); 
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    set_angular_acceleration(command->angular_acceleration);     

ENDMETHOD 

 

The drone update begins by reading and parsing the command payload. Refer to 

Table 2 in Section III.1.V for the format of the command data. The provided linear and 

angular accelerations are used to update the drone’s state and are passed to Fleder for use 

in the force calculations described in section IV.1.2. The drone, lidar, and ultrasonic 

range finder model position and rotation attributes are then updated prior to rendering. 

With the new drone and sensor kinematic attributes set, the LIDAR and ultrasonic 

range finder data is acquired. The sensors leverage the LineCollider described in 

section IV.1.2 to determine if the sensor channel(s) intersects with an environment entity. 

If an intersection is detected, the point of intersection is added to the point cloud data.  

After all updates have completed the simulation timer is updated the new drone 

state is sent to Chiroptera. Data is written to the telemetry pipe at a frequency of ~5 Hz.  
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Chapter V: 

User Interface 

This section describes the command line and graphical interfaces used to execute 

and interact with Chiroptera and Bat Cave. 

V.1 Chiroptera 

Chiroptera is executed as a command line application:  

./chiroptera <mission_filename> 

The application takes as an argument the name of an ASCII text file with the .flt 

extension, the contents of which describe a sequence of MAVLink commands as 

described in section III.1.4.  

# fells-test.flt 

MAV_CMD_NAV_TAKEOFF 1.5 

MAV_CMD_PATHFIND 5.0 10.0 2.0 

MAV_CMD_NAV_LAND 0.0 0.0 
 

In addition to the command file, Chiroptera includes an environment settings 

header file in which the dimensions and resolution of the of the octree can be specified. 

The octree is defined by two vertices representing the bottom-left and top-right of the 

region. The header file can be found in Appendix IV.1. 

V.2 Bat Cave 

Like Chiroptera, Bat Cave is executed from the command line, passing the name 

of the environment file as a parameter:  

./batcave <scene_filename> 
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Launching Bat Cave opens the interface shown in Figure 10 at the start of Section IV. 

User interface panels display data about the current state of the simulation, as well as 

controls to start, stop, or change the simulation parameters. 

V.2.1 Drone Telemetry 

The top left panel shown in Figure 17 displays the telemetry data being 

transferred to/from Chiroptera. At the top of the panel is the currently active command 

Chiroptera has issued to Bat Cave. If Chiroptera returns an error, it will be shows below 

the displayed action. Just below the command is the drone telemetry being sent to 

Chiroptera. The telemetry panel also includes the drone’s measured ASL. Chiroptera 

does not use the ASL for any actions at this time, but the value is provided for the user as 

a comparison to the AGL value returned by the downward facing range finder. 

 

Figure 17: Chiroptera command and drone telemetry panel 

The LIDAR subpanel offers slider bars that can be used to modify the LIDAR 

sensor settings. The resolution value is not reflected in Chiroptera but is provided to offer 
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a visual insight into what the octree would look like at different levels of subdivision. The 

octree resolution can be modified in the env.h file described in section V.1. 

V.2.2 Execution Control and Rendering Options 

The top-right panel provides controls to start, pause, or reset the simulation. Bat 

Cave launches in a paused state. Pressing the Start button (Figure 18.A) will begin 

execution of the mission and the button text will change to read Pause (Figure 18.B). The 

Reset button resets the simulation to its initial state as described in section IV.2. 

 

Figure 18: Start, Pause, and Rest buttons 

Two sets of slider bars located below the Start and Reset buttons can be used to 

change the view of the simulation by adjusting the position of the virtual camera. Finally, 

a group of check boxes provides options to change the way the scene is rendered. By 

default, the scene models and SVO are displayed. Options are available to render the 

scene in wireframe, show/hide the point cloud, and show/hide the SVO regions and filled 

leaf nodes.  
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Chapter VI. 

Experimental Results 

Development of Chiroptera and Bat Cave followed an iterative process, in which 

new capabilities added to Chiroptera were validated in Bat Cave before moving on to the 

next step. Sample Chiroptera flight plans were developed to test each new decision-

making capability, steering behavior, and associated MAVLink commands. These test 

flights were conducted in sample scenes consisting of a 30 cubic meter navigable region 

containing increasingly complex obstacle layouts. 

VI.1 Flight Commands and Localization 

The first four test flights were conducted in an open scene consisting of a ground 

plane and no obstacles. The Bat Cave GPS provided latitude and longitude data relative 

to the drone’s starting position of { 0.0, 0.0 } while the downward facing ultrasonic 

rangefinder provided a measurement of the AGL. Both sensors were updated at a 10 Hz 

frequency. This value is sufficient for navigating the simulation environment at a speed 

of 1 m/s. Sensor updates sufficient for high speed maneuvering are outside the scope of 

this work but are addressed in section VII. 

 

VI.1.1 Takeoff and Landing  

The most basic test of the Chiroptera system involves issuing a takeoff command, 

holding position for a specified number of seconds, then landing successfully. This test 

validates that the range finder is correctly measuring the AGL above the ground plane. 

# test-takeoff-landing.flt 
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1 MAV_CMD_NAV_TAKEOFF 2.0 

2 MAV_CMD_NAV_DELAY 2 

3 MAV_CMD_NAV_LAND 0.0 0.0 

VI.1.1 Arrival 

Following a successful takeoff and landing, the next operation validated is a 

straight-line flight to a specified destination while maintaining altitude as shown in 

Figure 19. 

# test-arrive.flt 

1 MAV_CMD_NAV_TAKEOFF 2.0 

2 MAV_CMD_NAV_DELAY 2 

3 MAV_CMD_NAV_WAYPOINT 0 0.0 10.0 0.0 

4 MAV_CMD_NAV_LAND 0.0 0.0 

 

Figure 19: Arrival at a waypoint 
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VI.1.2 Arrive at Destination then Return Home 

After flying to a specified destination, we validate that the drone can align and 

return to its home location (Figure 20). 

# test-return.flt 

1 MAV_CMD_NAV_TAKEOFF 2.0 

2 MAV_CMD_NAV_DELAY 2 

3 MAV_CMD_NAV_WAYPOINT 0 0.0 10.0 0.0 

4 MAV_CMD_NAV_RETURN_TO_LAUNCH 

5 MAV_CMD_NAV_LAND 0.0 0.0 

 

Figure 20: Drone travels to a waypoint then returns to its starting point 

VI.1.3 Travel to Multiple Waypoints 

In this test, the drone aligns and flies in a clockwise direction to two coordinates 

before returning to its starting position  (Figure 21). 

#  test-multiple-waypoints.flt 

1 MAV_CMD_NAV_TAKEOFF 2.0 

2 MAV_CMD_NAV_DELAY 2 

3 MAV_CMD_NAV_WAYPOINT 0 -4.0  6.0 0.0 
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4 MAV_CMD_NAV_WAYPOINT 0  3.0 12.0 0.0 

6 MAV_CMD_NAV_RETURN_TO_LAUNCH 

7 MAV_CMD_NAV_LAND 0.0 0.0 

 

Figure 21: Drone travels to multiple waypoints. 

 

VI.2 Terrain Following 

With the flight commands and localization in place, it was now possible to 

instruct Chiroptera to maintain a consistent AGL. The flat ground plane was expanded to 

model a terraced landscape. The waypoints previously defined in the test-multiple-

waypoints flight plan were now located at different Terrain ALTs. 

As in the previous test, the test-multiple-waypoints.ftl flight was 

executed. As expected, the AGL remained consistent throughout the entire flight as 

shown in Figure 22. 
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Figure 22: Drone AGL is not set to follow terrain. 

 

To validate terrain following, test-multiple-waypoints.ftl was modified to 

enable the TERRAIN_FOLLOW flag. 

# test-terrain-follow.flt 

1 MAV_CMD_DO_TERRAIN_FOLLOW 1 

2 MAV_CMD_NAV_TAKEOFF 2.0 

3 MAV_CMD_NAV_DELAY 2 

4 MAV_CMD_NAV_WAYPOINT 0 -4.0  6.0 0.0 

5 MAV_CMD_NAV_WAYPOINT 0  0.0 17.0 0.0 

6 MAV_CMD_NAV_WAYPOINT 0  4.0  4.0 0.0 

7 MAV_CMD_NAV_RETURN_TO_LAUNCH 

8 MAV_CMD_NAV_LAND 0.0 0.0 

 

The AGL variation due to terrain following is shown in Figure 23. 
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Figure 23: Drone AGL is adjusted to follow the terrain. 

VI.3 SLAM 

Chiroptera’s mapping and flight planning can be tricky to test, as pathfinding is 

not necessarily deterministic even when conducted in the same scene. Variation in 

pathfinding is a result of the initial pathfinding solution’s dependence on the results of the 

initial LIDAR scan of the environment, while subsequent pathfinding decisions will be 

made relative to the drone’s position at that time. If the LIDAR scan is biased in one 

direction the initial pathfind may favor a path that has more obstacles whose positions are 

initially unknown to Chiroptera as they were not mapped in the initial scan. To limit this 

uncertainty the drone is commanded to adjust its yaw from +/- 45 deg then back to its 

initial heading, effectively instructing it to “look both ways” before beginning 

pathfinding. 

Unlike an A* search of an environment whose layout is known fully in advance, 

the adaptive nature of Chiroptera’s pathfinder means that there can be more than one 
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correct way in which to navigate to a waypoint, but the final path might not be the 

shortest. In Figure 24, we see two different pathfinding solutions to a scene consisting of 

four trees with a waypoint on the far side. Plotting a path between or around the trees 

while maintaining a consistent altitude are both valid solutions to arrive at the given 

waypoint.  

 

Figure 24: Two different pathfinding solutions to the same scene and flight plan.  

 

In the case of a horizontal obstruction, the 3D interconnectivity of Chiroptera’s 

octree facilitates altering the drone’s altitude to find a path as shown in Figure 25. This 

example illustrates a scenario in flying over the obstacle is the only option. In other cases, 

flying over an obstacle may not be necessary, but could represent the shortest path. If 

terrain following is enabled, vertical pathfinding takes precedence when determining the 

drone’s altitude. This precedence is offset by Chiroptera’s A* heuristic biasing 

pathfinding in favor of nodes that are close in altitude to the drone’s target altitude as 

described in section III.1.7. 
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Figure 25: Plotting a path over a horizontal obstruction. 

In Figure 26.A we see the drone navigate through a hole in a wall, then adjust its 

altitude to fly over a subsequent wall. The second wall was not initially visible, and after 

passing through the hole the drone noticeably stopped for a moment to reconsider its 

path. To confirm that the drone was capable of flying over or under a horizontal 

obstruction, the height of the back wall was increased for the next test. As shown in Fig 

26.B Chiroptera now calculated a path that flew under the back wall.  

 

Figure 26: A & B: Plotting a path through a hole in the environment. 
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VI.4 Simulating a Real Environment 

As this project was partly inspired by the watching bats fly through the groves of 

the Middlesex Fells13, a small part of that environment was modeled as a scene in Bat 

Cave. A topographic map of the area around the Winchester Reservoir shown in Figure 

27.A was the inspiration for the scene shown in Figure 2.B. This wilderness environment 

provides the backdrop for the ultimate test of Chiroptera’s pathfinding and navigation 

ability. In these examples the positive y-axis is considered to point north. The octree 

encompasses a volume of 50 m3 at a resolution level of 6, so each leaf node will represent 

a ~ .75 m3 region. Environment textures were sourced from OpenGameArt.org14. 

 

Figure 27: A. Middlesex Fells topographic map and B. Bat Cave representation  

Two different missions were tested in which the goal was to navigate the drone 

from the starting point at the bottom of the map to the fork in the path. The first mission 

plan explicitly specified active terrain following and multiple waypoints along the path.  

# test-fells-manual-01.flt 

1 MAV_CMD_DO_TERRAIN_FOLLOW 1 

2 MAV_CMD_NAV_TAKEOFF 2 

3 MAV_CMD_NAV_DELAY   1 

 
13 https://www.mass.gov/locations/middlesex-fells-reservation 
14 https://opengameart.org/ 
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4 MAV_CMD_NAV_WAYPOINT 0 -0.5 5.0 2.0 

5 MAV_CMD_NAV_WAYPOINT 0 -2.0 10.0 2.0 

6 MAV_CMD_NAV_WAYPOINT 0 1.0 15.0 2.0 

7 MAV_CMD_NAV_WAYPOINT 0 1.5 20.0 2.0 

 

In the first test the waypoints were deliberately chosen to create a flight path that 

follows the ground path as shown in Figure 28. Three intermediate waypoints were set, 

with the final waypoint located ~20 meters from the drone’s initial position. The elapsed 

time from takeoff to arrival at the destination waypoint was ~27 seconds. 

 

Figure 28: Manually defined waypoint guiding Chiroptera to the fork in the path 

In the second test, the manual waypoints were replaced by a single 

MAV_CMD_PATHFIND command, the destination of which matches the destination of the 

final manually defined waypoint in test-fells-manual-01.ftl.  
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# test-fells-pathfind-01.flt 

MAV_CMD_NAV_TAKEOFF 2 

MAV_CMD_CONDITION_YAW 45.0 

MAV_CMD_CONDITION_YAW -45.0 

MAV_CMD_NAV_DELAY   1 

MAV_CMD_PATHFIND 1.5 20.0 2.0 

 

The second test begins with commands to adjust the drone’s yaw and “look both 

way” as described in section VI.3. This side to side scan took ~30 seconds to complete. 

The initial octree map is shown in Figure 29. 

 

Figure 29: Octree map after a side-to-side scan from the drone’s initial position 

Based on the initial scan, Chiroptera found a nearly straight path to the goal 

position. Compared to the manually defined waypoints that followed the foot path, 

Chiroptera’s flight path closely hugged the tree line as shown in Figures 30. 
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Figure 30: Finding a path that closely hugged the tree line 

Figure 31 shows the complete flight path, which was straighter and more direct 

than the manually defined path. Chiroptera required ~130 seconds to conduct this 

mission. 

 

Figure 31: Chiroptera’s calculated route to the fork in the foot path 

To test Chiroptera’s ability to navigate through off-trail, the preceding tests were 

expanded to include a new target position halfway up the right-hand path, roughly ~30 
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meters from the drone’s initial position as shown in Figure 32. In the manual test two 

additional waypoints were defined, and the elapsed time from takeoff to arrival at the 

new target coordinate was ~43 seconds. 

 

Figure 32: Expanding the Fells test to include a further target waypoint. 

In the previous pathfinding test, Chiroptera again was instructed to make an initial 

scan of the environment. As before, this scan took ~30 seconds to complete. Unlike the 

previous pathfinding test in which the destination coordinate was due north of the starting 

position, the new destination coordinate was located north-northeast of the start. As 

shown in Figure 33, Chiroptera almost immediate turned northeast and traveled into the 

forest. In Figure 34 the drone can be seen exiting the forest on the far side after finding a 

path that took it between the trees.  
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Figure 33: Chiroptera navigating off path and into the forest. 

 

Figure 34: Chiroptera exiting in the forest. 
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Figure 35: Chiroptera’s direct route through the forest to reach the far side 

Chiroptera required ~6.5 minutes to complete this flight, the path of which is 

shown in Figure 35. After the opening ~30 second scan of the environment, the initial 

pathfinding operation took ~3 minutes. Given that the octree regions representing the 

environment beyond the area mapped by the initial scan were treated as unfilled, 

Chiroptera’s A* operation would consider them all to be traversable nodes resulting in a 

much larger set of candidate paths to examine. 

As Chiroptera traveled through the forest it was observed to be recalculating a 

path every few seconds. Subsequent pathfinding operations took progressively less time 

to complete, as the more detailed map environment available to Chiroptera allowed the 

A* implementation to discard octree nodes that were now known to be blocked.  
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Chapter VII: 

Conclusions and Future Work 

The goal of this thesis was the development of two software applications to test 

the feasibility of non-camera based SLAM operations. The first application, Chiroptera, 

has demonstrated that autonomous pathfinding through unknown environments whose 

topography is modeled via a moderate-resolution voxel octree is a viable approach to this 

challenge. The test flights in section VI.3 and VI.4 in particular show that if a path is 

available Chiroptera is guaranteed to find it, though it may take significant time to do so. 

It should be noted that in the section VI.4 manually defined flights the topography of the 

scene was fully visible to the user and reasoned decisions regarding waypoint positioning 

could be made in advance. The distance between waypoints was ~5 m, while the size of 

Chiroptera’s octree leaf nodes was ~.75m3. The manually defined path allowed the drone 

to maintain speed for longer stretches versus the automated path, though the latter can be 

improved by enhancing Chiroptera’s path following algorithm such that it does not come 

to a complete stop at each intermediate waypoint. However, automated pathfinding 

allowed the drone to successfully fly directly through the forest, a task that would have 

been difficult for a manually defined path. Without knowing precise tree positions and 

branch structures, a human would not be able to accurately define waypoints through the 

forest suitable for a safe flight to be conducted. 

Chiroptera’s pathfinding algorithm demonstrated a critical vulnerability, however, 

when traversing a diagonal connection between two nodes which are obstructed on either 

side as shown in Figure 36. As we saw in section III.1.7, Chiroptera looks ahead in the 

pathfinding node list to check if any nodes have been recently flagged as filled. This 
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functionality should be expanded to check the condition of adjacent leaf nodes when a 

diagonal move is made to ensure that Chiroptera does not attempt to fly the drone 

through an occupied space. 

 

Figure 36: A seemingly valid path that could result in colliding with an obstruction 

 

The second software application, Bat Cave, proved to be a suitable environment 

in which to test Chiroptera’s capabilities and work to resolve the described algorithmic 

difficulties. Debugging Chiroptera’s behavior was made difficult by the black-box nature 

of the application. As Chiroptera was conceptually designed to not know or care if it was 

operating in a simulated or real environment, the only way to visualize its internal 

behavior was by attempting to mimic its octree structure in Bat Cave, then plot its current 

drone state and target as commands were received. No good way was found to visualize 

pathfinding paths as they were being calculated, a challenge that is critical to address in 

future work, described in section VII.1.1. 

 Out of the need to prioritize development time towards the pathfinding algorithm, 

the voxel-based environment features were modeled at a low-resolution and level of 

detail. Bat Cave is technically capable of supporting more complex models, and its ability 
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to simulate non-camera sensor interactions with environmental features is a significant 

and unique contribution of this thesis.  

VII.1 Future Work 

VII.1.1 Pathfinding Optimizations and Debugging 

Chiroptera currently executes an A* search on the full octree. As it does not have 

a priori knowledge of the topography of its environment, nodes in the octree graph that 

are not immediately scanned are initially considered empty. As such, the initial 

pathfinding has been observed taking as long as ~3 minutes when attempting to find a 

path to a point ~30 meters away. A possible solution to optimize pathfinding efficiency 

would be to conduct the A* search through an SVO instead of a full octree. This would 

require a modification to the graph connections and A* algorithm heuristic such that it 

can determine when to search a node on a higher or lower level of the graph.  

Concurrent to algorithmic improvement is the need to visualize the pathfinding 

process. A debugging message sent to Bat Cave as the pathfind algorithm is executing 

would potentially allow a user to see the calculation of the path in real time. This would 

allow modification of the A* implementation and heuristic, while also calling attention to 

potential bugs in the implementation of the octree and graph structure.  

VII.1.2 Integrating Chiroptera with Hardware 

The ultimate goal of Chiroptera’s development is integrating with a physical 

drone and testing non-camera SLAM in a real wilderness environment. Chiroptera 

currently mimics a number of MAVLink commands, so rather than producing an 
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ActionOutput that is intended for use by Bat Cave, Chiroptera could directly output 

MAVLink XML-based messages15. When working with custom Actions that return an 

acceleration vector, an adapter could be developed that would translate the 

ActionOutput to a suitable MAVLink command(s). Serializing Chiroptera’s output in 

a MAVLink compatible message would provide Chiroptera the ability to issue commands 

directly to a PixHawk-based flight controller. 

VII.1.3 Bat Cave Enhancements 

Bat Cave currently takes a brute force approach to creating and rendering object 

displayed in a scene. Inefficiencies in the implementation become apparent in larger 

scenes containing many environment objects, and by extension, large point clouds, as the 

frame rate of the simulation drops below 30 frames per second. There may be options 

available to optimize scene geometry, for example, displaying point cloud data as two-

dimensional points projected atop the three-dimensional scene, rather than modeling each 

point as a three-dimensional object. Instancing larger models such as trees and more 

complex rock structures may serve to save memory by allowing a single copy of the 

object geometry to be stored, rather than duplicating the full set of vertices and edges 

each time an object is added to the scene. 

Beyond geometry optimization, Bat Cave’s user interface can be enhanced to 

provide an experience similar to ArduPilot’s Mission Planner shown in section II. One 

approach would be the replacement of text-based telemetry output with animated dials. 

Likewise, the camera controls can be modified to provide the more familiar pan-tilt-zoom 

 
15 https://mavlink.io/en/guide/xml_schema.html 
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capability found in 3D modeling and animation applications and linked to mouse 

movement to allow a more interactive experience. 

The user interface could incorporate an interactive mission planner that allows the 

user to interactively build Chiroptera flight plans, replacing the process of manually 

creating a mission text file. This interactive mission builder could provide the ability to 

update commands and Chiroptera’s flight plan during the mission. 

Fleder’s point mass simulation rules are sufficient for modeling the drone’s 

behavior during point-to-point flights. Implementation of a full rigid body physics system 

would allow for the simulation of more complex maneuvers and flight dynamics. A rigid 

body system in which multiple motor force generators are attached to the drone in 

positions corresponding to the positions of motors on the physical unit. In addition to the 

net forces currently applied to the drone, the net torque generated by the motor force 

generators would provide the ability to simulate banking maneuvers, making Bat Cave 

and Fleder a more realistic toolbox for testing drone flight dynamics. 
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Appendix 1. 

Glossary 

Altimeter 

A sensor that measures the altitude16 of the drone above whatever feature lies 

directly below it. 

Altitude above Ground Level (AGL) 

The altitude of the drone relative to whatever object is directly below it as 

measured by a downward facing laser or ultrasonic range finder. 

Altitude above Sea Level (ASL) 

The altitude of the drone relative to the mean sea level of the world as measured 

by the altimeter. 

A* 

A pathfinding algorithm that finds the shortest path through a directed graph. 

ArduPilot Copter 

A suite of open source tools including hardware drivers, drone controllers, and 

ground control software for use by autonomous multirotor vehicles. 

 
16 The different definitions of altitude are consistent with the ArduPilot specification 
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Biomimicry  

A technique for solving technical challenges by applying biologically 

inspired processes. 

Flight Computer 

A software based intelligent agent that determines a flight path, plots a trajectory, 

and controls the drone in flight. 

Flight Controller  

Hardware and software system responsible for monitoring sensors, motors, and 

communication, and controlling the motion of the drone in flight. 

Global Positioning System (GPS)  

A network of satellites in geosynchronous orbit that provide positional 

information. 

Intelligent Agent  

An entity that leverages sensor data to collect information about its  

environment, then uses this information to decide how to interact with the environment. 

Inertial Measurement Unit (IMU)  

An electronic sensor that leverages a series of gyroscopes and acceleration 

sensors to determine an object’s orientation. 
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Light Detection and Ranging (LIDAR)  

A technique for determining the distance to an object by targeting the object with 

a pulse of laser light and measuring the time necessary for the reflected light to be 

returned to a sensor. 

Octree 

A hierarchical branching volumetric data structure in which each node has eight 

children.  

Point Cloud  

A collection of individual point in three-dimensional space that define the shape 

of an object or volumetric environment. 

PixHawk 

An open-hardware platform for autonomous drone flight controllers. 

Quadcopter  

An aerial drone which flies using a system of four rotors, each controlled by 

their own individual motor.  

Relative Altitude (REL) 

The altitude relative the drone’s origin point. 
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Simultaneous Localization and Mapping (SLAM) 

Construct and update a map of an unknown environment while localizing the 

vehicle’s position within the map in real time. 

Sparse Voxel Octree (SVO) 

An octree that efficiently stores voxel data by only allocating nodes for data as it 

is needed. 

Steering Force 

A three-dimensional force vector that parameterizes desired changes in motion. 

Target Altitude (TALT)  

The desired altitude specified to Chiroptera.  

Terrain Altitude (Terrain ALT) 

The height above sea level of a natural or artificial terrain feature. 

UAV 

An uncrewed aerial vehicle capable of controlled flight via a remote ground 

station, or fully autonomous onboard computer. 

Voxel 

A data point representing a volume within a grid in three-dimensional space.



 

 

Appendix 2. 

Chiroptera Actions and MAVLink Commands 

Actions 

Steering Behaviors 

Align: The drone adjusts its yaw until its heading is pointing towards the given 

coordinate. 

Parameter Description 

Latitude 
The target latitude. If this is 0, the drone will hold at its current 

latitude. Floating point. 

Longitude 
The target longitude. If this is 0, the drone will hold at its current 

longitude. Floating point. 

 

Arrive: Approach the given coordinates. Slowing down when and come to a complete 

stop upon arrival. 

Parameter Description 

Latitude 
The target latitude. If this is 0, the drone will hold at its current 

latitude. Floating point. 

Longitude 
The target longitude. If this is 0, the drone will hold at its current 

longitude. Floating point. 

Altitude 
Optional. The target altitude. If this is blank, the drone will hold at 

its current altitude. Floating point. 
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Seek: Approach the given coordinates but do not come to a stop. Continuously re-align to 

point at the target position. 

Parameter Description 

Latitude 
The target latitude. If this is 0, the drone will hold at its current 

latitude. Floating point. 

Longitude 
The target longitude. If this is 0, the drone will hold at its current 

longitude. Floating point. 

Altitude 
Optional. The target altitude. If this is blank, the drone will hold at 

its current altitude. Floating point. 

 

Delay: Take no action for given number of integer seconds. 

Parameter Description 

Duration Duration in seconds to wait. Integer. 

 

Orient: The drone adjusts its yaw until it reaches the given orientation in degrees. 

Parameter Description 

Orientation The target orientation in +/- degrees. Floating point. 

 

Pathfind: Use A* to navigate the environment to the given coordinates. Re-calculate a 

path if newly discovered obstacles are found to block the route. 

Parameter Description 

Latitude 
The target latitude. If this is 0, the drone will hold at its current 

latitude. Floating point. 

Longitude 
The target longitude. If this is 0, the drone will hold at its current 

longitude. Floating point. 

Altitude 
Optional. The target altitude. If this is blank, the drone will hold at 

its current altitude. Floating point. 
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Commands 

As described in Chapter 3, Chiroptera implements a subset of the MAVLink 

command protocol17. The following MAVLink commands are currently supported. 

Navigation Commands 

Navigation commands are used to specify the movement of the drone. 

 

MAV_CMD_NAV_TAKEOFF. The drone climbs straight up to the specified altitude. If 

this command is invoked when the drone is already in flight, the drone will ascend to the 

newly specified altitude above ground level (AGL). 

Parameter Description 

Altitude The desired AGL in meters. Floating point. 

 

MAV_CMD_NAV_DELAY. The drone will remain stationary at its current position 

until the specified number of seconds has elapsed. 

Parameter Description 

Time Delay in seconds expressed as an integer 

 

MAV_CMD_NAV_ALIGN. The drone will adjust its yaw until its heading points to the 

latitude and longitude specified in floating point representation.  

Parameter Description 

Latitude 
The target latitude. If this is 0, the drone will hold at its current 

latitude. Floating point. 

 
17 https://mavlink.io/en/services/command.html 
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Longitude 
The target longitude. If this is 0, the drone will hold at its current 

longitude. Floating point. 

 

MAV_CMD_NAV_WAYPOINT. Composition of the Align and Arrive actions. Align 

and navigate in a straight line to the specified latitude, longitude, and altitude above 

ground level (AGL). The drone will hold position for the specified delay time before 

proceeding to the next command. 

Parameter Description 

Delay Hold time at waypoint in seconds expressed as an integer 

Lat 
The target latitude. If this is 0, the drone will hold at its current 

latitude. Floating point. 

Lon 
The target longitude. If this is 0, the drone will hold at its current 

longitude. Floating point. 

Alt 
The target AGL. If this is 0, the drone will maintain its current 

AGL. Floating point. 

 

MAV_CMD_NAV_LAND. The drone will land at either its current position or at the 

specified latitude and/or longitude coordinates. 

Parameter Description 

Lat 
The target latitude. If this is 0, the drone will land at its current 

latitude. 

Lon 
The target longitude. If this is 0, the drone will land at its current 

longitude. 

 

MAV_CMD_NAV_RETURN_TO_LAUNCH. The drone will return to its origin point 

and then land. This command does not take any parameters. 

Parameter Description 
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- - 

DO Commands 

Do commands are executed immediately and perform an action that changes the 

drone’s flight state without changing the motion of the drone. 

MAV_CMD_DO_CHANGE_SPEED. Set the maximum speed of the drone. 

Parameter Description 

Type 0: ground speed, 1: climb rate, 2: descent rate 

Speed The target speed in meters / second. Floating point. 

 

MAV_CMD_DO_TERRAIN_FOLLOW. The drone will climb or descend as necessary 

to maintain an AGL consistent with the altitude specified by the 

MAV_CMD_NAV_TAKEOFF command. 

Parameter Description 

Enable 
Enable (1) or disable (0) terrain following. Terrain following is off 

by default. 

Conditional Commands 

MAV_CMD_CONDITION_YAW. Set a new yaw value for the drone. 

Parameter Description 

Degrees +/- 0-360 

Speed Yaw adjustment speed in degrees / second. Integer. 
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Appendix 3. 

Bat Cave Scene Description Language 

Bat Cave scenes are stored in newline delimited ASCII text files with the 

extension .scn. Lines beginning with a # are treated as comments and ignored by the 

parser. 

Primitives 

Ground 

A flat plane generally used to model flat ground or the surface of water. 

Parameter Description 

X The size of the plane in the X-dimension. Floating point. 

Y The size of the plane in the Y-dimension. Floating point. 

Rock 

A rock or boulder than can be placed above ground. Currently modeled as a box. 

Parameter Description 

X The bounds of the rock in the X-dimension. Floating point. 

Y The bounds of the rock in the Y-dimension. Floating point. 

Z The bound of the rock in the Z-dimension. Floating point. 

 

OakTree 

A tree with a large canopy and several branches. 
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Parameter Description 

- - 

 

PineTree 

A tree with a narrow canopy and no branches. 

Parameter Description 

- - 

 

Transformations 

Translate 

Translates the preceding entity to the given coordinates relative to the entity’s 

center of geometry. 

Parameter Description 

X The new coordinate in the X-dimension. Floating point. 

Y The new coordinate in the Y-dimension. Floating point. 

Z The new coordinate in the Z-dimension. Floating point. 

 

Rotate 

Rotates the preceding entity by the given degrees around the entity’s center of 

geometry. 
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Parameter Description 

X The rotation in degrees in the X-dimension. Floating point. 

Y The rotation in degrees in the Y-dimension. Floating point. 

Z The rotation in degrees in the Z-dimension. Floating point. 

 

Scale 

Scales the preceding entity by the given scale factors relative to the entity’s center 

of geometry. 

Parameter Description 

X The scale factor in the X-dimension. Floating point. 

Y The scale factor in the Y-dimension. Floating point. 

Z The scale factor in the Z-dimension. Floating point. 

Attributes 

Color 

Assigns the given red, green, and blue color values to the preceding entity’s 

fragment shader. 

Parameter Description 

R The value of the Red color channel. Integer 0-255. 

G The value of the Green color channel. Integer 0-255. 

B The value of the Blue color channel. Integer 0-255. 
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 Appendix 4. 

Selected Source Code 

Full source code is available in a private repository on GitHub18. Repository 

access is available upon email request19. 

Appendix 4.1 Octree 

/************************************************************************* 

 * Environment stores general Chiroptera configuration settings.  

 * Currently used only to define the bounds and resolution of the 

 * octree 

 ************************************************************************/ 

#ifndef ENVIRONMENT_H 

#define ENVIRONMENT_H 

 

#define SVO_BOTTOM_LEFT Point3{-25.f, -1.f, -.5f} 

#define SVO_TOP_RIGHT Point3{25.f, 49.f, 49.5f} 

#define SVO_RESOLUTION 6 

 

#endif 

 

/** 

 *  Connection stores a directed connection and associated cost  

 *  between two nodes 

 */ 

#ifndef SVO_CONNECTION_H 

#define SVO_CONNECTION_H 

 

class Connection { 

    void *from; 

    void *to; 

    int cost; 

 

public: 

    Connection(void *from, void *to, int cost) : 

        from{from}, to{to}, cost{cost} { } 

 

    void* GetFromNode() { return this->from; } 

 
18 https://www.github.com/alexshopov 
19 Email: shopov.alex@gmail.com 

https://www.github.com/alexshopov
mailto:shopov.alex@gmail.com?subject=CSCI-S499%20Repo%20Access
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    void* GetToNode() { return this->to; } 

    float Cost() { return this->cost; } 

}; 

 

 

#endif 

 

/** 

 *  BoundingBox stores the minimum and maximum bounds of a region 

 *  and a map of vertices to region faces 

 */ 

 

#ifndef SVO_BOUNDING_BOX_H 

#define SVO_BOUNDING_BOX_H 

 

#include "../vector.h" 

typedef struct Vector3 Point3; 

 

struct BoundingBox { 

    /** 

     *  

     *   5---7 

     *  /   /| 

     * 4---6 | 

     * |   | 3 

     * |   |/ 

     * 0---2 

     */ 

    Point3 verts[8]; 

 

   // faces mappings. We'll use this to find sibling nodes 

   int faces[6][4] = { 

       {0, 1, 5, 4}, // left 

       {2, 3, 7, 6}, // right 

       {4, 5, 7, 6}, // top 

       {0, 1, 3, 2}, // bottom 

       {2, 0, 4, 6}, // front 

       {3, 1, 5, 7}, // back 

    }; 

 

    // min = bottom-left-front, max = top-right-back 

    BoundingBox(Point3 min, Point3 max) { 

        verts[0] = min; 

        verts[1] = {min.x, max.y, min.z}; 

        verts[2] = {max.x, min.y, min.z}; 

        verts[3] = {max.x, max.y, min.z}; 

 

        verts[4] = {min.x, min.y, max.z}; 
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        verts[5] = {min.x, max.y, max.z}; 

        verts[6] = {max.x, min.y, max.z}; 

        verts[7] = max; 

    } 

}; 

 

#endif 

 

/************************************************************************* 

 *  The octree is a hierarchical data structure consisting of a parent node  

 *  and 8 child nodes, each representing a region in space defined by a  

 *  minimum and maximum vertex 

 ************************************************************************/ 

 

#ifndef SVO_OCTREE_H 

#define SVO_OCTREE_H 

 

#include <vector> 

#include "connection.h" 

#include "bounding-box.h" 

#include "../env.h" 

#include "../vector.h" 

 

/** 

 * The cost to travel from one node to another based on the type of connection 

 * between the nodes 

 */ 

#define COST_SHARED_FACE   10 

#define COST_SHARED_EDGE   14 

#define COST_SHARED_VERT   16 

 

enum NodeType { 

    REGION, EMPTY, FILLED 

}; 

 

enum NodePosition { 

    BottomLeftFront = 0, 

    BottomLeftBack, 

    BottomRightFront, 

    BottomRightBack, 

    TopLeftFront, 

    TopLeftBack, 

    TopRightFront, 

    TopRightBack 

}; 

 

/** 

 * A map of vertices, faces, and edges shared between a node and its neighbors 
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 */ 

struct ConnectionMap { 

    int verts[7]; 

    int faces[3]; 

    int edges[3]; 

    int corners; 

}; 

 

class Octree { 

    int resolution = SVO_RESOLUTION; 

    unsigned int level = 0; 

    Point3 min,   // bottom-left-front 

           midpt, // center 

           max;   // top-right-back 

    Octree *parent; 

    Octree *children[8] {}; 

 

    Point3 findMidpt(); 

    bool containsPoint(Point3 p); 

 

    // graph construction 

    void setConnections(); 

    bool findSharedVertices(Octree *node, 

      Point3 p,  

  std::vector<Octree*> &shared); 

    void sharedFaces(int faces[], std::vector<Octree*> &sharedVerts); 

    void sharedEdges(int edges[], std::vector<Octree*> &sharedEdges); 

 

public: 

    unsigned int id; 

    NodeType nodeType = REGION; 

    Position position; 

     

    std::vector<Connection*> connections; 

    int nodeIndex; 

    float cost; 

    float estimatedCost; 

    BoundingBox *boundingBox; 

 

    Octree(Octree *parent, Position pos, Point3 minpt, Point3 maxpt); 

    ~Octree(); 

 

    void Subdivide(); 

    Octree* GetChild(int idx); 

    void InsertPoint(Point3 p); 

    Octree* Find(Point3 p); 

    void ConnectionTo(Octree *to, int cost); 

    Point3 GetMidPt() { return midpt; } 
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}; 

 

#endif 

 

/** 

 * octree.cpp 

 */ 

#include "octree.h" 

 

/** 

 * Predefine the face, edge, and vertex connections for each of the 8 

 * nodes in the octree 

 */ 

ConnectionMap neighbors[8] = { 

    { 

        {0, 1, 2, 3, 4, 5, 6}, 

        {1, 2, 4}, 

        {3, 5, 6}, 

        7 

    }, 

    { 

        {1, 0, 2, 3, 4, 5, 7}, 

        {0, 3, 5}, 

        {2, 4, 7}, 

        6 

    }, 

    { 

        {2, 1, 0, 3, 4, 6, 7}, 

        {0, 3, 6}, 

        {1, 4, 7}, 

        5 

    }, 

    { 

        {3, 1, 2, 0, 5, 6, 7}, 

        {1, 2, 7}, 

        {0, 5, 6}, 

        4 

    }, 

    { 

        {4, 1, 2, 0, 5, 6, 7}, 

        {5, 6, 0}, 

        {7, 1, 2}, 

        3 

    }, 

    { 

        {5, 1, 3, 4, 0, 6, 7}, 

        {4, 7, 1}, 
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        {6, 0, 3}, 

        2 

    }, 

    { 

        {6, 2, 3, 4, 5, 0, 7}, 

        {4, 7, 2}, 

        {5, 0, 3}, 

        1 

    }, 

    { 

        {7, 2, 3, 4, 5, 6, 1}, 

        {5, 6, 3}, 

        {4, 1, 2}, 

        0 

    }, 

}; 

 

/** 

 * Constructor 

 */ 

Octree::Octree(Octree *parent, Position pos, Point3 minpt, Point3 maxpt) : 

    position{pos}, parent{parent}, min{minpt}, max{maxpt} 

{ 

    if (this->parent) 

        this->level = parent->level + 1; 

 

    this->boundingBox = new BoundingBox(min, max); 

 

    if (level == this->resolution) 

        this->nodeType = EMPTY; 

 

    this->midpt = this->findMidpt(); 

} 

 

/** 

 * Destructor 

 */ 

Octree::~Octree() { 

    if (this->children[0]) { 

        for (Octree *child : this->children) { 

            delete child; 

        } 

    } 

} 

 

/** 

 * Subdivide the octree into eight child nodes 

 */ 
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void Octree::Subdivide() { 

    // bottom layer 

    this->children[BottomLeftFront] = 

        new Octree(this, 

                   BottomLeftFront, 

                   this->min, 

                   this->midpt); 

     

    this->children[BottomLeftBack] =  

        new Octree(this, BottomLeftBack, 

                   {this->min.x, this->midpt.y, this->min.z}, 

                   {this->midpt.x, this->max.y, this->midpt.z}); 

     

    this->children[BottomRightFront] = 

        new Octree(this, 

                   BottomRightFront, 

                   {this->midpt.x, this->min.y, this->min.z}, 

                   {this->max.x, this->midpt.y, this->midpt.z}); 

     

    this->children[BottomRightBack] =  

        new Octree(this,  

                   BottomRightBack, 

                   {this->midpt.x, this->midpt.y, this->min.z}, 

                   {this->max.x, this->max.y, this->midpt.z}); 

 

    // top layer 

    this->children[TopLeftFront] =  

        new Octree(this,  

                   TopLeftFront,  

                   {this->min.x, this->min.y, this->midpt.z}, 

                   {this->midpt.x, this->midpt.y, this->max.z}); 

     

    this->children[TopLeftBack] = 

        new Octree(this,  

                   TopLeftBack, 

                   {this->min.x, this->midpt.y, this->midpt.z}, 

                   {this->midpt.x, this->max.y, this->max.z}); 

     

    this->children[TopRightFront] =  

        new Octree(this,  

                   TopRightFront, 

                   {this->midpt.x, this->min.y, this->midpt.z}, 

                   {this->max.x, this->midpt.y, this->max.z}); 

     

    this->children[TopRightBack] =  

        new Octree(this,  

                   TopRightBack, 

                   this->midpt, 
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                   this->max); 

 

    for (auto *c : this->children) { 

        c->setConnections(); 

    } 

} 

 

/** 

 * Define a new connection from *this to another node 

 */ 

void Octree::ConnectionTo(Octree *to, int cost) { 

    // only connect nodes on the same level until we  

    // work out SVO navigation later 

    if (to->level != this->level) return; 

 

    this->connections.push_back(new Connection{(void*)this, (void*)to, cost}); 

} 

 

/** 

 * Find all octrees that share a common vertex with *this 

 */ 

 

bool Octree::findSharedVertices(Octree *node, Point3 p,  

                                std::vector<Octree*> &shared) { 

    for (Octree *child : node->children) { 

    if (child && child->containsPoint(p)) { 

        if (child->nodeType == REGION) { 

                   this->findSharedVertices(child, p, shared); 

        } else { 

            if (child != this) { 

                       shared.push_back(child); 

               } 

            } 

        } 

    } 

} 

 

/** 

 * Find all octrees that share a common face with *this 

 */ 

void Octree::sharedFaces(int faces[], std::vector<Octree*> &sharedVerts) { 

    for (int i = 0; i < 3; ++i) { 

        this->ConnectionTo(this->parent->children[faces[i]],  

                           COST_SHARED_FACE); 

    } 

 

    for (auto *s : sharedVerts) { 

        Position pos = s->position; 
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        if (pos == faces[0] || pos == faces[1] || pos == faces[2]) { 

            this->ConnectionTo(s, COST_SHARED_FACE); 

            s->ConnectionTo(this, COST_SHARED_FACE); 

        } 

    } 

} 

 

/** 

 * Find all octrees that share a common edge with *this 

 */ 

void Octree::sharedEdges(int edges[], std::vector<Octree*> &sharedEdges) { 

    for (int i = 0; i < 3; ++i) { 

        this->ConnectionTo(this->parent->children[edges[i]],  

                           COST_SHARED_EDGE); 

    } 

 

    for (auto *s : sharedEdges) { 

        Position pos = s->position; 

 

        if (pos == edges[0] || pos == edges[1] || pos == edges[2]) { 

            this->ConnectionTo(s, COST_SHARED_EDGE); 

            s->ConnectionTo(this, COST_SHARED_EDGE); 

        } 

    } 

} 

 

/** 

 * Define the graph connections between this octree and its  

 * neighbors/parents/children 

 */ 

void Octree::setConnections() { 

    Octree *root = this; 

    while (root->parent) { 

        root = root->parent; 

    } 

 

    ConnectionMap *cm = &neighbors[this->position]; 

 

    std::vector<Octree*> shared; 

    this->findSharedVertices(root,  

                             this->boundingBox->verts[cm->verts[0]], shared); 

    this->sharedFaces(cm->faces, shared); 

 

    for (int i = 1; i < 7; ++i) { 

        this->findSharedVertices(root,  

                                 this->boundingBox->verts[cm->verts[i]],  

                                 shared); 
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    } 

    this->sharedEdges(cm->edges, shared); 

} 

 

/** 

 * Insert a point by recursively traversing the octree down to the 

 * leaf layer 

 */ 

void Octree::InsertPoint(Point3 p) { 

    if (this->containsPoint(p)) { 

        if (this->nodeType == FILLED) return; 

 

        if (this->nodeType == REGION) { 

            if (!this->children[0]) 

                this->Subdivide(); 

 

            for (Octree *child : this->children) { 

                if (child) child->InsertPoint(p); 

            } 

        } else { 

            this->nodeType = FILLED; 

        } 

    } 

} 

 

/** 

 * Return the child node at the given index 

 */ 

Octree* Octree::GetChild(int idx) { 

    if (idx < 0 || idx > 8) return nullptr; 

 

    return this->children[idx]; 

} 

 

/** 

 * Find the geometric midpoint of the octree 

 */ 

Point3 Octree::findMidpt() { 

    return (this->min + this->max) / 2.f; 

} 

 

/** 

 * Determine if the octree contains the given point 

 */ 

bool Octree::containsPoint(Point3 p) { 

    return p.x >= this->min.x && p.x <= this->max.x && 

           p.y >= this->min.y && p.y <= this->max.y && 

           p.z >= this->min.z && p.z <= this->max.z; 
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} 

 

/** 

 * Find the region containing a given point by recursively traversing the  

 * octree down to the leaf layer 

 */ 

Octree* Octree::Find(Point3 p) { 

    Octree *node = nullptr; 

 

    if (this->containsPoint(p)) { 

        node = this; 

 

        if (this->nodeType == REGION) { 

            for (Octree *child : this->children) { 

                Octree *tmp = child->Find(p); 

                if (tmp != nullptr) { 

                    node = tmp; 

                    break; 

                } 

            } 

        } 

    } 

 

    return node; 

} 

Appendix 4.2 Pathfind 

/************************************************************************ 

 * Action is a header-only class that is extended into specific   

 * action behaviors. 

 * Inspired by the invoked action approach taken by Ian Millington in  

 * Artificial Intelligence for Games (2009) 

 ************************************************************************/ 

#ifndef ACTION_BASE_CLASS_H 

#define ACTION_BASE_CLASS_H 

 

#include <iostream> 

#include "action-utils.h" 

#include "../vector.h" 

#include "../telemetry/telemetry.h" 

 

typedef struct Vector3 Point3; 

typedef struct Vector3 Euler; 

  

struct ActionOutput { 

    std::string action = "..."; 
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    Vector3 linearAcceleration; 

    Euler angularAcceleration; 

    Point3 node{-1.f,-1.f,-1.f}; 

    Point3 target{-1.f,-1.f,-1.f}; 

}; 

 

class Action { 

    bool isComplete = false; 

 

protected: 

    Kinematic drone; 

    Kinematic baseTarget; // the ultimate target for this action 

    Kinematic target;     // temporary target used when avoiding an obstacle 

 

    DroneTelemetry *telemetry = nullptr; 

 

    void SetIsComplete(bool isComplete) { this->isComplete = isComplete; } 

    void SetNewTarget(Kinematic newTarget) { this->target = newTarget; } 

 

public: 

    Action *next; 

 

    Action() = default; 

    virtual ActionOutput Execute(DroneTelemetry *droneTelemetry) = 0; 

    virtual void Init(DroneTelemetry *droneTelemetry) { isComplete = false; } 

    bool IsComplete() { return isComplete; }; 

}; 

 

#endif 

 

/************************************************************************ 

 * Align the drone to a given set of { x, y } coordinates 

 ************************************************************************/ 

 

#ifndef ACTION_ALIGN_H 

#define ACTION_ALIGN_H 

 

#include "action.h" 

 

class Align : public Action { 

    bool isSetHeading; 

    float maxAngularAcceleration = 3.f; 

    float maxAngularSpeed = 0.5f; 

 

    float targetRadius = 0.25; 

    float slowRadius = 2.0f; 

 

public: 
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    Align(float latitude, float longitude) { 

        this->target.position.x = latitude; 

        this->target.position.y = longitude; 

        this->isSetHeading = true; 

    } 

 

    void Init(DroneTelemetry *telemetry); 

    ActionOutput Execute(DroneTelemetry *telemetry); 

}; 

 

#endif 

 

#include <iostream> 

#include <cmath> 

#include "align.h" 

 

void Align::Init(DroneTelemetry *telemetry) { 

    Action::Init(telemetry); 

 

    this->targetRadius = 0.1f; 

    this->maxAngularSpeed = 90; 

    this->maxAngularAcceleration = 1.f; 

    this->slowRadius = 45; 

 

    this->drone.position = telemetry->GetPosition(); 

    this->drone.orientation = telemetry->GetOrientation(); 

 

    Vector3 nCurrent = this->drone.position; 

    Vector3 nTarget = this->target.position - nCurrent;  

    float theta = atan2(nTarget.y, nTarget.x); 

    float nOrientation = (theta * 180 / M_PI); 

 

    this->target.orientation.z = nOrientation;  

} 

 

ActionOutput Align::Execute(DroneTelemetry *telemetry) { 

    ActionOutput out; 

    out.action = "MAV_CMD_CONDITION_YAW"; 

 

    this->drone.orientation = telemetry->GetOrientation(); 

    float rot = this->target.orientation.z - this->drone.orientation.z; 

    if (abs(rot) < targetRadius) { 

        this->SetIsComplete(true); 

        return out; 

    } 

 

    float targetSpeed; 

    if (rot > this->slowRadius) { 
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        targetSpeed = this->maxAngularSpeed; 

    } else { 

        targetSpeed = this->maxAngularSpeed * rot / this->slowRadius; 

    } 

 

    out.angularAcceleration.z = targetSpeed; 

 

    return out; 

} 

 

/************************************************************************ 

 * Travel to a given set of coordinates. Slow down and come to a stop at  

 * the target destination 

 ************************************************************************/ 

#ifndef ACTION_ARRIVE_H 

#define ACTION_ ARRIVE _H 

 

#include "action.h" 

 

class Arrive: public Action { 

    float maxSpeed; 

    float maxAcceleration; 

    float timeToTarget; 

    float targetRadius; 

    float slowRadius; 

 

public: 

    Arrive(float latitude, float longitude, float altitude); 

    void Init(DroneTelemetry *telemetry); 

    ActionOutput Execute(DroneTelemetry *telemetry); 

}; 

 

#endif 

 

/************************************************************************ 

 * Waypoint is a composition of Align and Arrive. Align to the given point 

 * then travel to the target position, coming to a complete step when the 

 * drone arrives 

 ************************************************************************/ 

 

#ifndef ACTION_WAYPOINT_H 

#define ACTION_WAYPOINT_H 

 

#include "action.h" 

#include "align.h" 

#include "arrive.h" 

#include "../svo/octree.h" 
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class Waypoint : public Action { 

    Align *align; 

    Arrive *arrive; 

 

    bool isAligning = true; 

 

public: 

    Octree *node; 

 

    Waypoint(int delay, float latitude, float longitude, float altitude); 

    Waypoint(int delay, float latitude, 

             float longitude, float altitude, Octree *node); 

    void Init(DroneTelemetry *telemetry); 

    ActionOutput Execute(DroneTelemetry *telemetry); 

}; 

 

#endif 

 

/************************************************************************ 

 * Heuristic used by the A* algorithm. Returns a cost equal to the  

 * geometric distance between the current and target nodes with an  

 * additional offset added to represent any required change in altitude. This 

 * offset is intended to bias the A* search in favor of nodes that are at the 

 * drone’s current altitude. 

 ************************************************************************/ 

 

#ifndef SVO_HEURISTIC_H 

#define SVO_HEURISTIC_H 

 

#include "./octree.h" 

 

class Heuristic { 

    Octree *goal; 

 

public: 

    Heuristic(Octree *goal) : goal{goal} { } 

 

    float EstimateFrom(Octree *from) { 

    Point3 a = from->GetMidPt(); 

    Point3 b = this->goal->GetMidPt(); 

 

    float deltaZ = abs(b.z - a.z); 

 

    return (b - a).Magnitude() + deltaZ; 

    } 

}; 

 

#endif 
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/************************************************************************ 

 * PathfindList is a helper class that contains a list of nodes the need  

 * to be search or have already been search by the Pathfind A* implementation. 

 * The use of a dedicated pathfind list class was adapted from an approach 

 * described in Millington’s Artificial Intelligence for Games (2009) 

 ************************************************************************/ 

 

#ifndef ACTION_PATHFIND_LIST_H 

#define ACTION_PATHFIND_LIST_H 

 

#include <vector> 

#include "../svo/octree.h" 

#include "../svo/node.h" 

#include "../svo/heuristic.h" 

 

class PathfindList { 

    std::vector<Node*> entries; 

public: 

    inline void operator +=(Node *node) { 

        this->entries.push_back(node); 

    } 

    inline void operator -=(Node *node) { 

        std::vector<Node*>::iterator it; 

        it = find(entries.begin(), entries.end(), node); 

        this->entries.erase(it); 

    } 

    int Size(); 

 

    Node* ShortestEstimated(); 

    bool Contains(Octree *node); 

    Node* Find(Octree *node); 

}; 

 

#endif 

 

/** 

 * pathfind-list.cpp 

 */ 

#include "pathfind-list.h" 

 

int PathfindList::Size() { 

    return this->entries.size(); 

} 

 

Node* PathfindList::ShortestEstimated() { 

    float shortest = MAXFLOAT; 

    Node* out = nullptr; 
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    for (auto *n : this->entries) { 

        if (n->estimatedTotalCost < shortest) { 

            out = n; 

            shortest = n->estimatedTotalCost; 

        } 

    } 

 

    return out; 

} 

 

bool PathfindList::Contains(Octree *node) { 

    for (auto *n : this->entries) { 

        if (n->node == node) return true; 

    } 

 

    return false; 

} 

 

Node* PathfindList::Find(Octree *node) { 

    for (auto *n : this->entries) { 

        if (n->node == node) return n; 

    } 

 

    return nullptr; 

} 

 

/************************************************************************ 

 * Pathfind. Perform an A* search of a directed graph and return a set of 

 * nodes representing a path from an origin to destination node. 

 * 

 * The original A* algorithm was described by Hart, et al in A Formal Basis  

 * for the Heuristic Determination of Minimum Cost Paths (1968). 

 * This implementation is based on that paper as well as contributions by 

 * Millington (Artificial Intelligence for Games, 2007)  

 ************************************************************************/ 

 

#ifndef ACTION_PATHFIND_H 

#define ACTION_PATHFIND_H 

 

#include <vector> 

#include "action.h" 

#include "waypoint.h" 

#include "pathfind-list.h" 

#include "../svo/heuristic.h" 

 

struct NodeRecord { 

    Octree *node; 
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    Connection *connection; 

    float costSoFar; 

    float estimatedTotalCost; 

}; 

 

class Pathfind : public Action { 

    Heuristic *heuristic; 

    Node *startNode; 

 

    std::vector<Waypoint*> waypoints; 

    Waypoint *currentWaypoint = nullptr; 

    Waypoint* nextWaypoint(); 

 

public: 

    Pathfind(float latitude, float longitude, float altitude); 

    void Init(DroneState *state); 

    ActionOutput Execute(DroneState *state); 

}; 

 

#endif 

 

/** 

 * pathfind.cpp 

 */ 

#include "pathfind.h" 

 

Pathfind::Pathfind(float latitude, float longitude, float altitude) { 

    this->target.position.x = this->baseTarget.position.x = latitude; 

    this->target.position.y = this->baseTarget.position.y = longitude; 

    this->target.position.z = this->baseTarget.position.z = altitude; 

} 

 

void Pathfind::Init(DroneState *state) { 

    Action::Init(state); 

 

    this->waypoints.clear(); 

    this->currentWaypoint = nullptr; 

 

    state->targetPosition = this->target.position; 

 

    Octree *start = state->graph->Find(state->GetPosition()); 

    Octree *end = state->graph->Find(this->target.position); 

    this->heuristic = new Heuristic(end); 

 

    start->GetMidPt().Println(); 

    end->GetMidPt().Println(); 

 

    this->startNode = new Node{}; 
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    this->startNode->node = start; 

    this->startNode->connection = nullptr; 

    this->startNode->costSoFar = 0.f; 

    this->startNode->estimatedTotalCost = heuristic->EstimateFrom(start); 

 

    PathfindList open; 

    PathfindList closed; 

 

    open += this->startNode; 

 

    Node *current; 

    // iterate through nodes 

    while (open.Size()) {     // find the smallest element in the open list 

        current = open.ShortestEstimated(); 

 

        // if current is the goal, we're done 

        if (current->node == end) { 

            break; 

        } 

 

        // pop current off open and add to closed 

        open -= current; 

        closed += current; 

 

        // loop through outgoing connections 

        for (auto *connection : current->node->connections) { 

            if (!connection) 

                continue; 

 

            // get cost estimate to end node 

            Octree *endNode = (Octree*)connection->GetToNode(); 

            if (!endNode) 

                continue; 

 

            // if endNode is blocked, move on to the next one 

            if (endNode->nodeType == FILLED) 

                continue; 

 

            float endNodeCost = current->costSoFar + connection->Cost(); 

 

            Node *endNodeRecord = nullptr; 

            float endNodeHeuristic = 0.f; 

 

            // if closed contains end-node 

            if ((endNodeRecord = closed.Find(endNode))) { 

                if (endNodeRecord->costSoFar <= endNodeCost) 

                    continue; 
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                closed -= endNodeRecord; 

                endNodeHeuristic =  

       endNodeRecord->estimatedTotalCost –  

    endNodeRecord->costSoFar; 

            } else if ((endNodeRecord = open.Find(endNode))) { 

                if (endNodeRecord->costSoFar <= endNodeCost) 

                    continue; 

 

                endNodeHeuristic =  

       endNodeRecord->estimatedTotalCost –  

           endNodeRecord->costSoFar; 

            } else { // unvisited node, add to list 

                endNodeRecord = new Node{}; 

                endNodeRecord->node = endNode; 

                endNodeHeuristic = heuristic->EstimateFrom(endNode); 

            } 

 

            // we need to update the node 

            endNodeRecord->costSoFar = endNodeCost; 

            endNodeRecord->fromNode = current; 

            endNodeRecord->connection = connection; 

            endNodeRecord->estimatedTotalCost =  

         endNodeCost + endNodeHeuristic; 

 

            // throw it on the pile 

            if (!open.Contains(endNode)) { 

                open += endNodeRecord; 

            } 

        } 

    } 

 

    // we’ll return an error but how else can we gracefully handle not 

    // finding a path to the target node? 

    if (current->node != end) { 

        std::cout << "No Path Found" << std::endl; 

        return; 

    } else { 

        std::cout << "Found Path" << std::endl; 

    } 

 

    // nodes were added from end -> start so now we need to reverse the order 

    // of the list 

    // add current to path 

    Octree *from = current->node; 

    Point3 pt = from->GetMidPt(); 

    this->waypoints.push_back(new Waypoint{0, pt.x, pt.y, pt.z, from}); 

 

    while (current->fromNode->node != start) { 
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        from = (Octree*)(current->connection->GetFromNode()); 

        pt = from->GetMidPt(); 

        this->waypoints.push_back(new Waypoint{0, pt.x, pt.y, pt.z, from}); 

        current = current->fromNode; 

    } 

} 

 

Waypoint* Pathfind::nextWaypoint() { 

    auto *next = this->waypoints.back(); 

    this->waypoints.pop_back(); 

    return next; 

} 

 

ActionOutput Pathfind::Execute(DroneState *state) { 

    ActionOutput out; 

    out.action = "MAV_CMD_NAV_PATHFIND"; 

 

    if (this->currentWaypoint == nullptr) { 

        if (this->waypoints.size() == 0) { 

            this->SetIsComplete(true); 

            return out; 

        } 

 

        this->currentWaypoint = this->nextWaypoint(); 

        this->currentWaypoint->Init(state); 

    } 

     

    if (this->currentWaypoint->IsComplete()) { 

        if (this->waypoints.size() == 0) { 

            this->SetIsComplete(true); 

            return out; 

        } 

 

        auto prevWaypoint = this->currentWaypoint; 

 

        this->currentWaypoint = this->nextWaypoint(); 

        this->currentWaypoint->node->GetMidPt().Println(); 

        this->currentWaypoint->node->PrintId(); 

 

        /** 

         * the next node has become occupied since we first scanned it. 

         * Reinitialize the action and conduct a search for a new path. 

         */ 

        if (this->currentWaypoint->node->nodeType == FILLED) { 

            this->Init(state); 

            return out; 

        } 
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        this->currentWaypoint->Init(state); 

    } 

 

    out = this->currentWaypoint->Execute(state); 

    return out; 

} 

 

Appendix 4.3 Line Collider 

/************************************************************************ 

 * The LineTriangle Collider is based on the line-triangle intersection 

 * algorithm described by Ericson in Real Time Collision Detection,  

 * Chapter 5.3. Ericson’s algorithm is invoked as part of a larger routine 

 * that tests a set of triangles and in the event of multiple collisions  

 * returns the triangle closest to the origin point of the line. 

 ************************************************************************/ 

 

#ifndef LINE_TRIANGLE_COLLIDER_H 

#define LINE_TRIANGLE_COLLIDER_H 

 

#include <vector> 

#include "vector.h" 

 

namespace fleder { 

 

typedef Vector3 Point3; 

 

/** 

 * Point-normal representation of the plane that encapsulates a triangle 

 */ 

struct Plane { 

    float d; 

    Vector3 n; // normal 

     

    Plane() = default; 

    Plane(Point3 a, Point3 b, Point3 c) { 

        Vector3 v0, v1; 

 v0 = b - a; 

 v1 = c - a; 

 

 n = v0.Cross(v1); 

 n = n.Normalize(); 

 

 d = n.Dot(a); 

    } 
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}; 

 

/** 

 * 3-Vertex plus normal representation of a triangle 

 */ 

struct Triangle { 

    Point3 a, b, c; 

    Vector3 n; // normal 

    Plane plane; 

 

    Triangle(Point3 a, Point3 b, Point3 c) : a{a}, b{b}, c{c} { 

        plane = Plane{a, b, c}; 

        n = plane.n; 

    } 

}; 

 

} // end namespace 

 

class LineCollider { 

    std::vector<Triangle> entries; 

    bool intersectLinePlane(Point3 a, Point3 b, Triangle tri, Point3 &r); 

 

public: 

    bool DoesIntersect(Point3 a, Point3 b, Point3 &r, Vector3 &n); 

    void AddTriangle(Point3 a, Point3 b, Point3 c); 

}; 

 

 

#endif 

 

/** 

 * line-collider.cpp 

 */ 

#include "line-collider.h" 

 

using namespace fleder; 

 

float scalar_triple(Vector3 a, Vector3 b, Vector3 c) { 

    return (a.Cross(b)).Dot(c); 

} 

 

void LineCollider::AddTriangle(Point3 a, Point3 b, Point3 c) { 

    this->entries.emplace_back(a, b, c); 

} 

 

/** 

 * Given two point, find and return the closest intersecting triangle 

 */ 
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bool LineCollider::DoesIntersect(Point3 a, Point3 b, Point3 &r, Vector3 &n) { 

    bool intersects = false; 

    float mag = MAXFLOAT; 

     

    for (Triangle tri : this->entries) { 

        Point3 pt; 

        if (this->intersectLinePlane(a, b, tri, pt)) { 

            intersects = true; 

 

            Vector3 vr = pt - a; 

            float vrmag = vr.Magnitude(); 

            if (vrmag < mag) { 

                mag = vrmag; 

                r = pt; 

                n = tri.plane.n; 

            } 

        } 

    } 

 

    return intersects; 

} 

 

/** 

 * Implementation of Ericson’s line-plane collision detector 

 */ 

bool LineCollider::intersectLinePlane(Point3 a, Point3 b,  

                                      Triangle tri, Point3 &r) { 

    Vector3 ab = b - a; 

    float t = (tri.plane.d - tri.plane.n.Dot(a)) / tri.plane.n.Dot(ab); 

 

    if (t >= 0.0f && t <= 1.0f) { 

        // check if point is inside triangle 

        Vector3 pa = tri.a - a; 

        Vector3 pb = tri.b - a; 

        Vector3 pc = tri.c - a; 

 

        float u = scalar_triple(ab, pc, pb); 

        if (u < 0.0f) return false; 

         

        float v = scalar_triple(ab, pa, pc); 

        if (v < 0.0f) return false; 

 

        float w = scalar_triple(ab, pb, pa); 

        if (w < 0.0f) return false; 

 

        r = (ab * t) + a; 

        return true; 

    } 
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    return false; 

}  
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