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Abstract 

Differentiation, the process of individualizing education, remains a difficult 

endeavor that can overwork teachers and negatively affect students.  Due to the 

tremendous upside of differentiation, this thesis examines the possibility of predicting 

student performance using Cross-Network LSTMs with additional data sources.  After 

modifying the attention mechanism, the model proposed showed an improved 

performance in prediction with the inclusion of additional measurements already in the 

Junyi Academy Online Learning Activity Dataset.  The modifications also showed the 

ability to separate problems into course units based on their similarity scores, and quickly 

make long term predictions.  The development of this network as recommender system 

for differentiation is discussed as well as a working example using the AP Calculus BC 

curriculum.  
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Chapter I. 

Introduction 

Traditional k-12 education has the following disadvantages. First 

traditional education is unable to provide a personalized manner of 

teaching and learning. In traditional education, students are instructed 

in classrooms. Because there are many students, usually more than 50 

students, in a classroom, teachers cannot teach students in a 

personalized manner. Second, traditional classroom education does not 

take different abilities and traits of individuals into account, resulting 

that the teaching schedule is too relaxed for the top students and too 

pushy for academically poor students. As the same homework is 

assigned to the whole class, top students finish assignments faster and 

need to seek more work to do, whereas academically poor students are 

frustrated with the task they are assigned. Third, traditional education 

system lacks a valid standard method to assess students’ knowledge 

level by collecting their submitted exercises data.  

—(Gong et al., 2018). 

Any educator entering the classroom immediately realizes the size of the task in 

front of them. Each student thinks uniquely, with different interests, and has their own 

needs. To properly address the distribution of personalities a teacher will need to spin 
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many plates at the same time. Just the complexity of the task intimidates many educators 

from even attempting to modify the curriculum on the individual level. 

When I first attempted to differentiate the curriculum in my classroom, I felt the 

same. It was in my first year as the head of the Mathematics Department at Kinglee High 

School in Zhengzhou, China, and due to articulation, my Algebra II class became 

composed of equal parts remedial and advanced students. The environment remained 

productive, and we did create a positive math experience, but towards the last quarter of 

the year I found the students either struggling, or desperately seeking a challenge. 

Kinglee always remained a supportive environment for educators, and with the 

encouragement of my supervisors I decided to differentiate my classroom. I split the class 

into two parts and allowed students to choose their half of the class. One half worked on 

applied projects, and the other half reviewed problems. The projects scared away the 

remedial students, and the problems threatened the advanced students with tedious 

boredom. I did not think I could lecture both, so I gave only a brief introduction to the 

projects and allowed the students to problem solve their projects as they went.  

At the time I decided to intervene, the class was in the unit for systems of 

equations and matrices. The project group worked on making websites that performed 

matrix operations. The other group worked on general linear algebra questions. I spent 

most of class time answering questions posed by either group. 



 

3 

 

Figure 1. Matrix Inverses Widget, In Split View! 

Finished Website Turned in by a Student. (Lin, n.d.) 

At the end of the semester, I felt the two groups got what they needed. Everyone 

took the same final and did well. Some students got an introduction to applied math in 

front end development as shown in Figure 1. Other students got the extra reps they 

needed to master the material. Everyone created a positive experience with math, and 

many of the students in that class went on to pursue graduate work in STEM. 

As a teacher I felt a great sense of pride in my work, but as a developer of 

curriculum I knew I created an unrepeatable course. Even when I wrote my unit guides, it 

became difficult to archive the final quarter. I created a course that did not scale and 

required extensive professional development for its instructor. After the course, no 

instructor chose to duplicate that semester. 

Even if another teacher chose to replicate that curriculum, the semester did not 

thoroughly differentiate the material. The course did not offer much in the extent of 
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individualized education. Students chose if they wanted to do projects or problems. The 

choices did not address other preferences or optimize the success of the students. At best 

it made two groups based on the students’ choosing, which may lead to additional 

difficulties. 

Creating a choice does not even guarantee a student will make decisions to 

facilitate their learning in the best way. The student received work based on their 

preference, and making students happy is not always the best metric for education. Even 

with the extra work I put in, and the praise of my supervisors, my efforts could only offer 

an additional choice. It did not give students the opportunity to learn and explore the 

material in a unique way that was meaningful for them.  

As in my case, differentiation puts many requirements on instructors. It adds an 

additional course the instructor must prepare. This will often require separate lectures, 

assessments, and materials. If a teacher does a modest differentiation of each course, it 

doubles their amount of preparation time. Traditional methods of instruction make 

individualizing math education difficult. 

On the other hand, technology caters to millions of users on the individual level. 

News feeds, shopping suggestions, and targeted ads all operate catering to specific user 

profiles. All of us expect to get unique results when we log in. Social media sites operate 

elastically and readily adapt to an influx of complex data. The algorithms used by these 

platforms extend usage, and nurture habitual use. 

The next time I considered using technology to differentiate my classroom. The 

ability to predict student preferences still remained outside of my skillset at that moment. 

Each student got problems from a problem bank with randomized parameters. Upon 
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submission of the problem set, the students got an immediate result of their grade with 

specific labels for the problems they got wrong. Although the different assessments 

ignored student preferences, a secondary effect of individualized education occurred. 

Students could not submit another student’s solutions. Every student completed every 

assessment independently. 

The first Algebra II class to receive individualized assessments became one the 

most successful classes I ever taught. I gave them a quiz on simple 33 matrix inverses 

without any instruction. Every student successfully inverted 33 matrices, and each 

student used a different method. 

Even with the success of individualized assessment, students always gave some 

resistance to its use. I always needed to add individualized assessments carefully. The 

contrast between traditional instruction and individualized instruction felt completely 

jarring for most students. Students do not frequently encounter assessments created 

specifically for them. Even more rarely do students encounter assessments with the same 

adaptability as social media, as proposed in this project. Based on the results from my 

students, it appears differentiation of education on the individual level offers a wildly 

different experience compared to traditional instruction. 

The combination of an under-addressed need, and stable widely used technology, 

presents a tremendous opportunity. Their intersection should lead to an increased usage, 

and research of both. The user experience, and more importantly the education of the 

individual, should benefit through promotion of interdisciplinary research. 
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1.1 Differentiation in Education 

Differentiation, the individualization of education, aims to provide a learning 

environment for each student’s interests, abilities, and learning styles (Deunk et al., 

2018). Formative assessments should engage the students. Students with short attention 

spans should get problems with many smaller parts. Students that learn better through life 

experience should get problems with an opportunity to work independently. Students 

looking to explore a career should get problems from professionals in that career 

(Tomlinson et al., 2003). End of unit tests should allow students to demonstrate 

knowledge in a variety of ways. Differentiation finds the right curriculum for each 

student while accomplishing the same academic goals. 

Of course no introduction to differentiation in education would be complete 

without the classic cartoon of animals taking a test. This cartoon exemplifies 

differentiation so well it exists in hundreds of variations throughout the internet. Some 

versions add a quote falsely attributed to Albert Einstein, redraw the picture, or add some 

text to give political context. Almost every introduction to differentiation finds enough 

utility in this cartoon to include it, and even sometimes add modifications. 
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Figure 2. A Comic Frequently Used to Describe Differentiation in Education 

An Instructor Asks a Group of Different Animals to Complete a Task Suited for One of 

Them (Linton, 2000) 

The cartoon in Figure 2 shows an instructor asking different animals to climb a 

tree and highlights how individual differences can affect the measurement of ability. 

Instructors will often use this picture as an example of reductio ad absurdum when 

introducing differentiation. Asking a penguin to climb a tree seems ridiculous. If the 

method of examination does not address the differences of the individuals, the results 

carry as much weight as asking a monkey and a fish to climb a tree. Although this 

example highlights the absence of differentiation in examination, this example can also 

extend into instruction as well. If assessment does not address the differences of 

individuals, it will create underlying differences in achievement (Moon, 2005). 
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1.1.1 Potential Difficulties in Differentiation 

To properly differentiate a classroom, an instructor will often create multiple 

assignments for each lesson with similar learning goals. Assessments should address each 

learning style, ability, and interest. For an instructor this means making resources for 

every student and the workload can quickly become overwhelming (Differentiated 

Instruction, 2014). To accomplish differentiation in a traditional setting, this often 

requires the grouping of students based on the observations of the instructor. Even with 

the best intentions, the act of grouping may introduce unintended consequences. 

In the case of Circular Differentiation, bias may group students by race, ethnicity, 

gender, family social status, immigrant status or disability, instead of interests, ability, or 

learning style. In this case the act of grouping the students determines the students 

outcome (Schneider, 2018). Often the most at-risk students will need the most specialized 

education while attending schools without proper funding. As the study of differentiation 

goes forward, it needs to address how to group students in a way that most benefits them. 

The documented difficulties in individualized education make it a hit or miss 

proposition. It greatly increases the responsibilities of teachers, and students could face 

lifelong setbacks. Even though these issues are difficult to overcome, these potential 

difficulties should not deter the future use of differentiation. With improved tools, and 

technologies, students could receive individualized education without an increased 

workload on teachers. 

1.1.2 Addressing Language Usage with Differentiation 

In addition to the problem of proper grouping, cultural effects in assessment give 

another problem differentiation should address. Differentiation should reduce the 
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differences created by the educational process. Standardized tests frequently exaggerate 

cultural differences in achievement. For example, a test may measure a cultural 

difference in achievement, but only when the test uses common language. These 

differences disappear when the test asks questions more formally. A theoretical 

explanation of this phenomena comes from the different use of common language within 

each group (Freedle, 2003). As the understanding of a question should not affect the 

measurement of proficiency, individualized instruction needs to adapt appropriately. 

Phrasing a question in a way that best communicates to the user looks like a great 

opportunity for differentiation.  

1.1.3 Fundamental Work in Differentiation 

Carol Ann Tomlinson summarized the problems in differentiation, and strategies 

to address them in the work The differentiated classroom: Responding to the needs of all 

learners. Here she laid the groundwork for the modern differentiated classroom. Many 

expanded on this work in specific areas, and mathematics received a full treatment in 

Good questions: Great ways to differentiate mathematics instruction in the standards-

based classroom. by Marian Small. In an extension of Tomlinson’s work to big data the 

Recommender systems handbook second edition, summarized the incorporation of 

recommender systems in the domain of education, or as literature refers to it 

individualized education (Tang et al., 2016a).  

1.2 Recommender Systems 

The previous section showed the incredible difference differentiation can make in 

education, but it did not address how to overcome the difficulty in implementation. 
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Individualized education requires too much effort from teachers, and mistakes can be 

costly. The primary problem of how to deliver content on an individual level is already 

solved in the technology sector in the form of Recommender Systems.  

Recommender Systems (RS) take a user’s interactions online and make 

recommendations for content. Social media and online platforms depend on this 

technology. Facebook, Tik Tok, Instagram, and YouTube rely on these technologies for 

user engagement, but also to give effective targeted ads. Without RS, deriving meaning 

out of the quickly accumulating, and bottomless volume of user data appears impossible. 

RS works by summarizing a user’s interactions mathematically. After 

summarizing the interactions, the RS can predict the user’s preferences and present the 

user with content they will most likely interact with. If the platform prioritizes usage, the 

user will use the platform more frequently and longer. If the platform prioritizes 

development, the same mechanisms will attempt to maximize user development. 

Similarly to differentiation, RS and the collection of educational data are well 

understood and researched due to their industrial use (Rodrigues et al., 2018; Sin et al., 

2015). Discovered almost unintentionally by computer scientist Elaine Rich in 1979 

while looking for book recommendations, RS attracted many corporate and institutional 

research groups. The possibility for commercial use attracted attention from traditional 

tech companies, which prompted Netflix to begin the Netflix Prize. Opening the research 

of recommendation engines to a public competition introduced many new ideas including 

causing some researchers to consider neural networks for prediction.  



 

11 

1.2.1 Influence of the Netflix Prize in Recommender Systems 

With the influence of the Netflix Prize researchers used user ratings with Residual 

Neural Networks (RNNs) to create predictions for YouTube ratings. Their research 

focused on the contextual information by embedding it and then combining the 

embedding with the hidden state with element-wise multiplication. The long-term and 

short-term dynamics of the problems drew most of the focus from the team. They found 

considerable statistical significance in their predictions for recommendation systems with 

a downside of a long training time (Beutel et al., 2018).  

RNNs also showed an ability to predict student behavior by using student written 

essays and user click data coming from Massive Online Open Courses (MOOCs). Given 

a prompt, Two Layer LSTMs can suggest the next word after given the previous text in 

an essay. For different levels of mastery, the model can train on segmented data based on 

grade level or ability. After training the model predicted the correct work choice 21% of 

the time, which is quite a high accuracy given the large vocabulary of the system.  

In the same study researchers looked at predicting the clicks of students given 27 

options. They found statistically significant predictions but not enough to claim a solution 

to the problem. For further research they suggested more detailed data including section 

number and problem id. In an extension of the research the same research team applied 

their methods to a different MOOC. In this case they compared the performance of 

several different models. The models showed a similar overall asymptotic performance 

while differing mostly in the number of epochs for training. According to the researchers 

one of the downsides came from the necessity of a GPU for the Python modules used 

(Tang et al., 2016b).  
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Previous work also showed the use of AI in mathematics education. The 

Classroom Learning Partner (CLP) used tablet-based software to help teachers 

understand how students visualized arithmetic. Students solved problems on their tablets 

and machine analysis routines categorized students based on solution method. In 

addition, the tablets took data from the students as they developed a solution. Measured 

data points included the order of steps and removed steps. This automated the need for a 

human to label a student’s work, and improved feedback capabilities. Students received 

feedback based on the order of intermediate steps and removed steps. For the teacher it 

allowed a real time summary of how the students visualized arithmetic (Koile et al., 

2016). 

In a setting outside of education Perera and Zimmermann showed the ability of 

combining models in a Cross-Network LSTM Network. They used models trained on 

responses from independent data sources and combined them for input into a LSTM. 

Their results showed an improved accuracy in predicting the actions of users. Several 

opportunities exist to improve prediction based on the inclusion of contextual details into 

the models (Perera & Zimmermann, 2020). 

As the primary goals of differentiation include incorporating students’ interests, 

reducing the effects of cultural background on performance, and giving assessments that 

adapt to learning styles, a network that quickly includes additional data sources, appears 

like a prime candidate for differentiation. With a problem bank of sufficient complexity, 

a Parallel LSTM Network could take additional measurements and give users an 

experience that exactly meets their preferences.  
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1.3 Automated Assessment in Mathematics 

Mathematics assessment comes in a variety of forms due to the prevalence of 

technology in the classroom. Through. automation of grading, modification of 

assignments between students, and gamification of education, technology usage in the 

classroom accelerated assessment in mathematics. Due to the available platforms 

assessments usually come in a few standard types, static problem sets, static problem sets 

with variable parameters, dynamic problem sets, dynamic problem sets with variable 

parameters, individualized problem sets, and individualized problem sets with variable 

parameters. 

A Learning Management System (LMS) such as Canvas1 will offer access to the 

problems as well as other course resources. The LMS also serves as a base of tools an 

instructor can use for assessment. The proprietary tools as well as plugins such as 

Proctorio allow for the creation of formative assessments and tests. 

As shown later the presentation of the problem will become an important factor in 

the prediction of a student’s performance. Hints, references, examples, and videos give 

the students enough resources to finish problems without a formal introduction. When 

predicting how a student will do on new problems, problems with videos attached do not 

see a drop off even if the content comes much later in a course. This will need more 

careful treatment later, but for now it serves as a testament to the importance of problem 

format. 

 
1Canvas is a Learning Management System used by many educational institutes to administer classes. 

https://www.instructure.com/canvas 

https://www.instructure.com/canvas
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1.3.1 Static Problem Sets 

Static problem sets consist of identical assignments between all students. These 

can consist of problems out of a book, problems created by an instructor, or problems 

coming from an online platform offering assessment. The students may complete the 

assignment by turning in their work on paper or submitting answers through an online 

form. The students can receive feedback immediately after completing a problem, after 

completing all problems, or after submitting their assignment and their instructor reviews 

the assessment.  

An example of an assessment with static problems would be the Final Practice 

from the course Math 1A Introduction to Functions and Calculus2 offered at Havard 

College. All students in the class shared the same problems shown and submitted their 

answers by writing their answers into the answer blank. After reviewing the submissions 

an instructor could provide feedback to the students. 

 
2 Math 1A is the Harvard Introductory Calculus class. https://qrd.college.harvard.edu/classes/math-1a-

introduction-calculus 

https://qrd.college.harvard.edu/classes/math-1a-introduction-calculus
https://qrd.college.harvard.edu/classes/math-1a-introduction-calculus
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Figure 3. Math 1A Final Practice A Answer Blank with Partial Answer Blank 

Instructions with Partial Answer Blank Shown (Knill, 2020) 

Figure 3 shows how the answer blank would appear in practice. Each answer 

blank refers to a set of questions, and different versions of the same exam could exist to 

vary questions between groups of students. This answer blank refers to one version of the 

assignment, and students with different versions of the assignment could not share work. 

However, because the problems cover the same topics different versions of the test will 

allow students to collaborate without directly sharing responses.  
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Figure 4. Math 1A Final Practice A Sample Problem 

Sample Problem with Answer Blanks Shown (Knill, 2020) 

Static problem sets serve as a great choice when an instructor needs to guarantee 

the student can attempt the problems without difficulties. Figure 4 shows an example of a 

static problem set. Students can do static problem sets without access to the LMS, the 

internet, or even electricity. They remain a stable fail-safe system from traditional 

education. Due to their simplicity and reliability, they remain very common even with 

other options. 

However, some of the key criticisms of static problem sets come from the same 

characteristics that make them great. After a student receives the problem set, the 

problem set can go anywhere. The student can take a picture of it and upload it to a 

Discord server with their friends, they can upload it and it can become part of the 
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problem bank at websites such as Chegg3 where professional tutors will solve it, or they 

can even take a picture of it where an app will turn the problem into Latex and search for 

the solution. Even prior to the widespread use of the internet, static assessments and their 

solutions could become part of a frat’s test bank. Static problem sets struggle to adapt to 

modern technology. 

1.3.2 Static Problem Sets with Variable Parameters 

Static problem sets with variable parameters consist of shared problems between 

all students with different parameters for each student. These can consist of problems 

created by an instructor with specialized instructions, or problems coming from an online 

platform offering assessment. In the case of an instructor writing their own problems, a 

parameter may remain unset and later plugged in with a personal detail such as the last 

few numbers of a student identification number. This will sometimes automate grading as 

they can use the student’s personal details in an excel file and compare the answers with 

the student’s answers. Parameters often come from a small set of possible values giving 

an instructor the opportunity to verify automated grading operates correctly. Even with a 

small set of parameters for each problem, the likelihood of two students getting similar 

assessments remains very low with a modest number of parameters. 

Students may exploit an assessment of this type. Given enough attempts and a 

small set of possible parameters, students can cycle through their values until they receive 

a problem containing parameters they desire. As some grading systems give the answers 

to problems after an incorrect attempt, a student just needs to continue incorrectly 

 
3 Chegg is an online education platform that specializes in providing solved homework problems. 

https://www.chegg.com 

https://www.chegg.com/
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answering the problem until they get a desired set of parameters. The parameters they 

chose may come from a previous attempt that gave them the solution, or from another 

student’s problem set that contains the answer. Also due to the need for the solution to 

come from a simple formula based on the parameters, a student may see the relationship 

and finish a problem though pattern recognition. Although these seem as far-fetched 

methods for completing assignments, students have used all of these methods in front of 

me.  

As with the static problem set, students may complete the assignment by turning 

in their work on paper or submitting answers through an online form. As each problem 

contains a different answer, the need for an automated grading system becomes readily 

apparent. Also, as before with the static problem set, the students can receive feedback 

immediately after completing a problem, after completing all problems, or after their 

instructor reviews their assessment after submission. 

An example of the static problem set with variable parameters would be a 

problem coming from the WeBWork4 platform as shown in Figure 5. 

 
4 Webwork offers automated grading for the OpenStax textbooks. https://webwork.maa.org/moodle/ 

https://webwork.maa.org/moodle/
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Figure 5. WeBWorK Problem 

WeBWorK Problem with Answer Blanks and Variable Parameters (AlHaosului, 2007) 

In this case students submitted their answers in the online form. An instructor may 

choose to give immediate feedback or wait until receiving all submissions. Immediate 

feedback improves the experience in formative assignments but may lead to academic 

dishonesty for test and summative assignments. 

These problems promote a higher level of academic integrity. As the number of 

values of a parameter increases the likelihood of a student coming across their problem 

decreases. Even though these problems can dramatically reduce the prevalence of 

cheating they do require an automated grading system. For a problem of many parameters 

the grading system will need a function programmed to evaluate if the student submitted 

a correct answer. This will most likely require a software engineer to oversee. These 

types of problems cause the greatest number of problems in practice. For a small set of 

parameters some LMSs offer plugins that can check the student’s answer against a table.  
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Problems of this type can create the most difficulty for a neural network. When 

the network predicts student performance a problem with many parameters can act like a 

family of problems. Some parameters may lead to a simple solution while other problems 

may greatly increase the difficulty.  

For example, in mathematics the factoring of a polynomial can greatly increase in 

difficulty with the variation of a parameter. As a formative assesment, students first 

encounter factoring polynomials in Algebra I, and see it continuously as parts of 

problems until they finish Differential Equations. It appears as the solutions to an 

equation, the roots of a parabolic function, the denominator to a partial fraction integral, 

or the characteristic equation for a second order differential equation with constant 

coefficients. These potential uses of the problem span from middle school though 

undergraduate math courses. 

Consider for example the second degree polynomial𝑦 = 𝑥2 + 5𝑥 + 𝛽, for the 

parameter . If the parameter takes the value 6, a student may choose to solve the 

problem by inspection and simply write the solution. If the value becomes a decimal, 

while the polynomial retains real roots, students may choose to use the quadratic 

equation. In the standard curriculum students will study math for two years between 

learning these methods of solution. Additionally, if the polynomial contains complex or 

irrational roots students may not be able to factor it during their entire time studying math 

in high school. 
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1.3.3 Dynamic Problem Sets 

Dynamic problem sets consist of unique sets of problems for all students with 

identical parameters when repeated. These sets usually consist of problems coming from 

a problem bank with a predetermined solution. Students can get feedback after each 

problem, after submitting all of the problems, or after their instructor reviews their 

assignment. 

Similar to static problem sets, students can usually find the problems in their 

assessment online or share them in online group chats. This becomes more difficult as the 

test bank increases. Individuals may also share their problems, but for a small group of 

individuals the intersection of problem sets reduces as the size of the problem library 

increases. If a summative assessment needs to reduce the uncertainty in difficulty 

between all the problems, such as a semester final, the assessment may use repeated 

problems sets. 

1.3.4 Dynamic Problem Sets with Variable Parameters. 

Dynamic problem sets with variable parameters essentially combine the two types 

of assessment considered previously. The problem sets will consist of unique problems 

coming from subsets of a problem bank. The individual problems each use different 

parameters for each instance. The grading mechanisms, difficulties in implementation, 

and benefits of usage, remain the same even when combined.  

Assessments of this type reduce the possibility of students sharing solutions better 

than any other type discussed. When encountering problems of this type students will 

usually give up on answering questions dishonestly. They also create the most difficulty 

in ensuring the correct grading and require the most testing.  
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Even with the added difficulty of the delivering these problems, their potential for 

differentiation encourages their usage. The variable parameters can change the language, 

content, and presentation of a problem. In the domain of grammar exercises, NoRedInk 

exemplifies how to incorporate variable parameters to keep users studying. 

 

Figure 6. NoRedInk Prompting Students to Include Their Interests 

When Registering Users Get Asked a Series of Questions to Include Their Interests. (How 

Do I Update My Interests? – NoRedInk Help Center, n.d.) 

As shown above NoRedInk5 does a great job of including student interests in 

assignments. During sign up a prompt asks students to give a list of their interests, and a 

list of friends’ names. The students then receive grammar exercises with parameters 

modified specifically for their interests. Figure 6 shows the prompt a user encounters 

when they login to NoRedInk for the first time. After an introductory survey a database 

will associate variables with users to summarize their interest.  

 
5 NoRedInk is a grammar learning app. https://www.noredink.com/ 

https://www.noredink.com/
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Using predictive models offers an alternative to directly asking the user for 

information. This offers the benefit of requiring nothing additional from the user and 

starts improving recommendation immediately. Models can use IP addresses, networks 

connected to, and cross app data. Additionally, specific devices can give additional 

measurements to aid recommendation such as location data. Models can even use the 

proximity of other users throughout the day to determine common interests. 

Outside of interests, these same measurements can also find what presentation of 

a curriculum a user will respond best to. Students may learn best with problems of the 

optimized length, difficulty, or type. These accommodations to learning style may even 

change between topics. Measuring the history of performance, and session measurements 

can address immediate and long-term needs. 

 

Figure 7. Adaptive Junyi Problems 

A Screenshot of The Junyi Academy LMS 
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Junyi Academy6 does a great job of accommodating users by adjusting the 

difficulty of problems. Figure 7 shows how the Junyi Academy adjusts difficulty between 

groups of problems called exercises. Adjusting difficulty allows users to upgrade and get 

more difficult problems based on their performance. This addresses the need of students 

needing easier or more difficult problems. 

This also appears to open the doors for models to make assessment adaptive to the 

individual. In addition to making problems with different difficulty levels, problems can 

alter language, and learning preferences, by introducing problem variations, and variable 

parameters. Just as Junyi Academy used variations in exercises between users, the 

modification in language used by Web Assign can also accommodate learners.  

1.3.5 Hints, References, Examples, and Video 

Along with the question, problems may contain links or references to additional 

resources. The hints and references may contain the topics used to finish the problem, or 

references to textbook sections where a student may review additional material. Links to 

examples may also exist that link to other parts of the learning platform or may toggle 

open additional parts of the GUI. Additionally, links may take the student to a video 

which may exist on a third-party platform. 

Hints quickly guide the student and give them a level of control over the help they 

receive. When students try to quickly solve problems a great hint can encourage 

impatient students. Hints also create the front line of resources that will stop students 

from using websites with their homework solutions. They integrate seamlessly into 

 
6 Junyi Academy is a Taiwanese online education platform. https://www.junyiacademy.org/ 

https://www.junyiacademy.org/
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learning platforms running on web browsers. They can open as small modifications in the 

website using JavaScript Events or React.  

Additionally, they may come from a hover feature. When used properly a hover 

feature can complement a problem. They do not take up space, convey information 

quickly, and implement intuitive usage. Despite their benefits, hover features can also 

inadvertently open, and students lose the control to work independently. Hover features 

also hide in plain sight. A user will not know a hover feature exists until they encounter 

it, but after they find it, they can quickly integrate its usage.  

Like hover features, modals also require the right situation. Modals7 give a direct 

message that the user must address. This makes modals great for important messages like 

error messages. They guarantee the user addresses the message, but they also contain 

drawbacks. Due to their usage in giving error messages, users will negatively associate 

with modals.  

When students learn several methods to solve similar problems, these references 

can guide the student when they plan a method of solution. Guiding the student becomes 

extra important when only certain methods will solve certain problems. Reaching a dead 

end while following instruction can lead to frustration and a reduction of motivation in a 

student. 

Examples show a concrete problem a student may review when struggling with a 

formative assessment. They can appear as links, modals, or toggle open on an event. 

They often show the same problem with altered parameters. Videos may also accompany 

 
7 Modals come from the Bootstrap framework and appear like a popup. 

https://getbootstrap.com/docs/4.0/components/modal 

https://getbootstrap.com/docs/4.0/components/modal


 

26 

problems with instruction. This happens more often when the learning platform offers a 

complete course.  

1.4 Previous Work on Junyi Datasets 

Junyi Academy provides large datasets of student performance on exercises. Their 

dataset includes measures of student demographics, problem details, and records of the 

student responses to problems. The datasets provide not only the basics required for 

recommendation systems, such as timestamp, user, and rating, but also includes 

additional measurements.  

These datasets provide the basis for researchers in student modeling. They give 

the resources for training baselines, as well as the additional measurements that can 

develop new models. As this research uses the Junyi20 dataset it depends on the previous 

work done. 

1.4.1 Should Neural Networks be Used? 

Consumers now encounter neural networks daily. Their incredible performance 

leads many to believe in the coming of a broad restructuring of society. Even though 

almost all users have encountered an AI intelligence unimaginable just a decade ago, 

almost all users have also encountered an AI making comically absurd mistakes. They 

can hoard resources and underperform. Even in well researched problems, such as the 

self-driving car, creating a sufficient neural network can be difficult. Elon Musk is in his 

10th year of promising a self-car. (Elon Musk Promises for the Millionth Time That Tesla 

Will Achieve Full Self-Driving Soon We’ve Definitely Heard This One Before., n.d.). 
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When allocating the resources necessary for a neural network, a developer should 

consider if a simpler algorithm would perform better. 

Even when a situation calls for neural networks, the question of the complexity 

needed still stands. RNNs should not immediately replace simple and efficient networks. 

Even the multi-layer perceptron can show success in modeling complex human behavior 

(Armstrong, 2017). 

Due to the difficulty in designing, maintaining, and training complex neural 

networks, they look like they are overkill when machine learning (ML) techniques will 

do. This makes ML techniques great for education applications. Specifically, researchers 

frequently apply ML techniques to the Junyi datasets.  

1.4.2 Usage of ML Techniques on the Junyi Datasets 

ML shows a great ability to categorize problems in the Junyi Datasets. 

Researchers demonstrated this ability by using ML to create pairs of problems. Random 

forest, nu-SRV, and linear regression all matched problems pairs for exercises in a Junyi 

dataset. The pairs between problems focused on similarity, difficulty, and perquisite 

knowledge. It ran against human making pairs, and showed much improved performance 

(Tang et al., 2016b).  

Researchers also found success with ML by breaking up data and including 

additional complexity to the model. Logistic Regression based models predicting student 

performance very well on the Junyi15 dataset. The model improved prediction without 

requiring additional data measurements by adding additional features. It also took 

advantage of the Junyi measurements coming from its LMS. The datasets record if the 

student watched the videos related to the question before responding. Including the if the 
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student watched the video improved performance. Additionally, the model trained on 

different moments in time after the student began the curriculum. This allowed the model 

to adapt to the students as they learn. (Schmucker et al., 2022). 

1.4.3 Usage of Neural Techniques on the Junyi Datasets 

To further model how students change as they learn, other researchers adapted an 

LSTM on the Junyi data. Two specific mechanisms control the learning and forgetting 

gates, which they call Gating-controlled Forgetting and Learning mechanisms for Deep 

Knowledge Tracing (GFLDKT) (Zhao et al., 2023). Other researchers investigated using 

Graph Neural Networks (GNN) on the Junyi15 dataset. In these methods the network 

makes nodes and edges to model student behavior (Ni et al., 2023). Both models showed 

improved performance compared to their predecessors. Furthermore, they provide 

evidence that neural networks can provide improvements on the Junyi datasets.  

1.5 What Direction Does the Research Tell us to Go? 

The ML techniques on the Junyi data sets showed student prediction changes as 

they go through the course. In addition, the Junyi datasets give additional measurements 

to improve prediction. The ML techniques also showed success categorizing problems by 

similarity, difficulty, and prerequisite knowledge. LSTM techniques showed an ability to 

update without segmenting the data. GNN showed a necessity to update the network 

topology to optimize prediction. Combining these three methods would require a neural 

network that changes as students learn and changes its structure to model students.  
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1.5.1 The Case for Cross-Network LSTMs 

When trying to find a method that balances all the techniques cross-network 

LSTMs on the Junyi dataset seem up to the task. They can ingest many parallel data 

networks at once. The LSTM basis allows the learning and forgetting gates that modify 

as students learn more. The Junyi dataset gives multiple measurements that can lead to 

the development of additional mechanisms that improve prediction. 

1.5.2 The Perera and Zimmermann Network 

With a few modifications the Perera and Zimmermann Network makes for a great 

potential network for the Junyi dataset. It can directly take the data from the dataset and 

make predictions. It only requires a data point consisting of a user, an object ranked, and 

a score assigned to it. 

The Perera and Zimmermann Network also contains an attention network which 

looks at similarity between ranked objects. A method is given that uses the cosine 

similarity between objects, but the authors also leave open the possibility to replace the 

cosine similarity with another method. As early work using ML on the Junyi datasets 

showed an ability to find similar problems, it looks like the similarity could use a 

categorization of like objects. 
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Chapter II. 

Network Description 

Is someone aware of a language model experiment where you keep all 

the 2022 goodies/data, except swap a Transformer for an LSTM? 

—Andrej Karpathy Founding Member of OpenAI 

The goal of this network is to create something that will adapt to different datasets 

coming from many applications in math education. Although a network can always 

include additional complexity to meet the specific details of a single dataset, in practice 

this does not lead to a more robust network. The design of this network will avoid adding 

bells and whistles to make short term improvements in prediction. 

The primary way to ensure the network will make predictions beyond the scope of 

the data in this research comes from the choice of network. The network chosen here 

already shows proficiency in making predictions about user interactions on social media 

(Perera & Zimmermann, 2020). Adapting a proven network assures the network works in 

one instance outside of its current application and improves its probability of success. 

Adapting the network will require some new techniques not used in the original 

implementation of the network. The primary modification from the original network will 

come from the additional data sources used. In the original paper the second data source 

came from an additional social media platform and measured a user’s interactions with 

media. In the model proposed here, the second measurement will come from session, and 

database measurements made on the individual. The attention mechanism will also need 
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modification as the library of problems used in the dataset shows little overlap. To 

modify the attention mechanism, this network categorizes problems by topics, so the 

network may recognize similarity in sessions. Finally, as the scores in the networks 

represent categorical data, their values will reference a one-dimensional embedding to get 

scores.  

The second way this network will lend itself to more general usage comes from 

the method of fitting the hyper-parameters of the model. The fitting of the hyper-

parameters in this model will not try to prove some artificial point. The hyper-parameters 

will remain uniform thoughout the experiments, and the observed performance 

differences will come from modifications to the network. 

Finally, the design of this network will emphasis on not requiring any rare, exotic, 

or expensive resources. The software and hardware discussed in this section drop these 

requirements by being widely available, and widely applicable. The software comes as 

open-source, and anyone can readily download it. The network was designed around 

hardware that some might consider e-waste but maintains a comparable performance with 

more expensive options. The network can also run on available virtual resources for 

quick start up and tear down. The combined effect of these considerations makes this 

network available to the masses.  

2.1 Why Use an LSTM? 

A quick search on the current use of LSTMs returns the debate over the relevance 

of LSTMs. Half of the articles state “LSTMs are Dead! Long live Transformers”, and the 

other half respond “No, LSTMs are not Dead!” For the purpose of this research LSTMs 

are a tool with advantages and disadvantages. 
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2.1.1 Combining Data Networks 

The primary reason for using an LSTM is the ability to quickly combine data 

from different sources. In the usage case of math education, in addition to the problem, 

and the user, metadata such as the session length, time of day, and user background 

would give additional improvements to prediction. Cross-Network LSTMs combine data 

sources upon ingestion and offer a practical solution. 

2.1.2 Long-Term, Short-Term Characteristics 

In mathematics education, the performance of students depends on many factors. 

Some of these factors will depend on the student’s background, previous experience in 

mathematics, natural ability, and intuition. These factors would influence a student’s 

performance independently of recent study sessions and show a longer lasting overall 

influence. Other factors such as how long a student studied a certain topic, what unit they 

are on, and current responsibilities, would also influence performance, but these effects 

would appear more transient. 

The Carnegie Mellon research group mentioned in the introduction noticed the 

importance of transient effects on performance. They trained separate models focusing on 

different time frames of the student and combined the results. Their models focused on 

students at the beginning of the curriculum and towards the end. The combined model 

recorded a very high AUC, but it required several models. Ideally one model should 

adapt to the students as they grow. 

An LSTM appears as a natural solution, with unique qualities to help prediction. 

The weights can update after each step and move the embeddings of the students. The 

model used here updates once a day and would slowly change with the student. Instead of 
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breaking a student’s data into separate sections and training the model, the data would get 

broken up on a daily basis.  

2.1.3 Low Computational Overhead 

LSTMs also give sequential predictions. Running through the daily data, adjusting 

the weights, and updating the embeddings, happens in a couple milliseconds under the 

hardware used in this experiment. After updating the network, the prediction comes out 

equally fast, and for certain metadata the prediction can happen once per day. 

With the hardware used here, a class of 20 students with a time step each day, 

would require 5-10 seconds of computation throughout the entire year. This means that 

the hardware here could take on several districts of students and adequately meet their 

needs. In fact, the more resource intensive aspects would come from the delivery of the 

assessments to the student through an LMS.  

2.2 Hardware 

One of the primary concerns in the design of this network focused on building the 

network around the capabilities of the GPU. A network designed with this concern can 

achieve great performance without incurring a cost that would prohibit the use of the 

network by educational institutions. For this reason, using hardware and software to 

unlock the potential of the GPU will give an opportunity for wide usage with great 

efficacy. 
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2.2.1 GPU 

The realistic time scale of latency in the updating of the weights, and the 

requirements of this the current implementation require a GPU. PyTorch readily 

incorporates CUDA for NVIDIA8 GPUs through a specific installation of PyTorch for 

CUDA. Although this method quickly solves latency issues, it also depends on the usage 

of proprietary software. This could potentially limit the usage of similar methods in an 

academic setting, but at the time of this writing NVIDIA GPUs are plentiful and cheap. 

Additionally, Amazon Web Services offers EC29 instances that launch with PyTorch and 

CUDA. Currently virtual resources remain outside of the budget for most public schools 

with a g4dn EC2 instance coming at $0.63 per hour(Add Service - AWS Pricing 

Calculator, n.d.), but as better resources become available their cost should reduce. 

Although the future gives no guarantee of the availability of these resources, their 

absence would imply the development of better and more affordable alternatives. 

This experiment used a NVIDIA GeForce GTX 1660 Ti. It is a common and 

affordable GPU, with 2.02% market share of Steam users (Steam Hardware & Software 

Survey, n.d.). It is a GPU commonly used in laptops for its low power consumption, high 

performance, and reasonable cost. This makes it an excellent prospect for investigating a 

network that a school would consider adopting. 

In this experiment the GPU performed adequately with the ability to store the 

network, the problem embeddings, and the user embeddings. This data set in particular 

used 72 thousand students, 1.6 million data measurements, and 42 thousand problems. 

 
8 NVIDIA is a manufacturer of hardware. https://www.nvidia.com/  
9 EC2 or elastic computing instances form the backbone of Amazon’s cloud-computing platform. 

https://docs.aws.amazon.com/ec2/ 

https://www.nvidia.com/
https://docs.aws.amazon.com/ec2/
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Outside of coding errors the GPU usage remained less than half of its maximum. These 

parameters imply a modest GPU could handle realistic data set in an actual application. 

 

Figure 8. GTX 1660 ti GPU Externally and Inside of Thermal Piping 

A Picture of the GPU Outside of the Laptop and the Under the Thermal Piping 

The GPU and CPU come together and do not need any additional assembly. 

Figure 8 shows them combined into a singular laptop. This will ensure fewer issues with 

setting up the hardware and makes the network easier to adapt to new implementations. 

As this research focuses on not using exotic hardware, using a laptop that combines 

everything fits into the spirit of this research.  
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Figure 9. Time to Run Five Mini-Batches with Different Network Size 

Time Independent Graph for the Runtime of the GPU 

When running the network with different size embeddings, the time to run the 

network five times appears independent of component size. Running the network requires 

several matrix multiplications. As the network runs with several matrix multiplications 

the theoretical limit for the time complexity of the network should approach the time 

complexity of matrix multiplication, O(n2.37). The miracle of the GPU spreads the 

calculations amongst many threads, and as shown clearly from the graph makes the 

runtime independent of the embedding size. Figure 9 shows no noticeable difference as 

the dimension of the embedding increases. A time complexity of O(1) is the theoretical 

best result achievable.  
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2.2.2 CPU 

As the implementation studied relies on CUDA, the CPU requirements remain 

minimal. The network and methods used were also coded with the intent of reducing the 

CPU dependency. The network could run on a CPU and did during testing, but the 

reduction of performance remained too great for practical use. This experiment used an 

Intel Core it-10705h @ 2.60 GHz. It is a low power CPU for laptops with six cores, and 

twelve threads. When paired with the GPU it performed adequately for the loading of 

large tensors in chunks, organizing forward passes, and storing data summaries. 

2.2.3 Performance 

 

Figure 10. Usage of the CPU and GPU While Running the Network 

Screenshot of the CPU and GPU Monitoring  

When running the network on the GPU, the CPU appears to handle the load 

adequately. The GPU does exhaust its memory while running the network calculations 
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and will revert to a scheduler when this happens. Figure 10 shows the load on the CPU 

and GPU. The parallel performance of the GPU threads performed better than the CPU 

even in this case, and handle the load in a reasonable amount of time. 

2.3 Network Model 

The network used in these experiments will closely follow the work done by 

Perera and Zimmermann. Their network consisted of a LSTM that combined data sources 

and made predictions on YouTube videos. In the development of their network, they 

considered two problems with LSTMs. First LSTMs struggle to model non-linear 

behavior, and secondly, they do not update after the accumulation of additional user data. 

To address these issues, they suggested three additions to the standard LSTM. The first 

addition is an attention network that includes all the user’s interactions and models the 

long-term user interests. The second addition gives a higher order combination of the data 

prior to entering the LSTM. These two alterations make quite interesting improvements 

when applied to mathematics education. 

2.3.1 Context of the Network 

The original network combined data sources to make predictions about YouTube 

videos. The network looked to predict if a user will like a YouTube video or add it to a 

playlist. The data sources they combined consisted of Tweets and posts on Google Plus. 

These datasets consisted of very sparse data, as users will not frequently interact with 

content they encounter on social media. The users averaged 26 interactions each. The 

timestep varied from one second to seven months. This could imply timesteps included as 
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little as one datapoint, but no information exists on the number of data points in a 

timestep. 

2.3.2 Non-Linear Behavior 

Prior to entering the LSTM cell, the data from this network gets combined 

through component-wise multiplication of n-dimensional arrays. If the data was just 

added together and put into the cell, a repeated measurement would amplify with the 

number of times it appears. This would send a larger input into the LSTM. Including 

higher order combinations of data allows the network to mitigate the increasing 

amplitude.  

In a linear network, if a student attempted a problem multiple times, the signal 

would get bigger with each attempt. An array of n entries would represent an embedding 

for each user and problem in an n-dimensional space. These arrays would enter the 

LSTM directly. If a student attempts problems multiple times in a row it may not make 

sense to amplify the signal. Doing a problem multiple times may mean the student does 

not understand the material and the data network should not amplify the signal getting 

sent to the LSTM cell. 

Adding the second order interactions removes the necessity to amplify the signal. 

If a student attempts a problem multiple times, the second order addition allows the 

network increase or reduce the signal going into the LSTM. 
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Figure 11. Usage of the CPU and GPU While Running the Network 

Example of a Second Order Combination Reducing the Effect of a Problem Embedding 
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The example in Figure 11 shows a reduction of the signal due to the second order 

combination. For the specific problem, and user embedding above, doubling the score of 

the problem embedding reduces the magnitude of the same embedding. In the 

intermediate sum you can see the overall contribution from the problem embedding is 

half as large as in the first order combination. 

2.3.3 Attention Mechanism 

In a standard LSTM the hidden state must contain all the information of user’s 

history. This network also uses a hidden state, but it also uses an additional cell and 

hidden state. This hidden state is calculated by using the previous hidden states, and 

weights them by their similarities to the interactions in the last time step. This additional, 

hidden state and cell state form the attention mechanism. 

This addition will also benefit the network given the context of the application. 

Embeddings will give the characteristics of the users and the problems. How a user 

performs in the last week, semester, or unit will come from the attention mechanism. In 

the original context the attention mechanism looked for similar interactions by looking at 

if a user interacted with the exact same objects during a timestep. Modifications to the 

attention mechanism allow the network to look for if the user completes problems from 

the same topic. 

2.3.4 Irregular Timesteps 

Perera and Zimmermann added an additional modification to their model. They 

added the ability of the network to handle irregular timesteps. The third addition to the 

LSTM does not affect performance in this context. Although this network can handle 
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irregular timesteps they should not occur. The timesteps should consist of uniform 

lengths between periodic low demand hours of the day. 

The problem this network addresses by taking in irregular timesteps though, 

should improve the performance of the network. While the network adds additional 

students, it will need to update the embeddings of the users and the problems. Allowing 

for irregular timesteps would let the network pick up students at different stages in the 

course. 

2.4 Network Architecture 

The network consists of a cross network LSTM. Previously this network used 

data coming from different sources and combined them (Perera & Zimmermann, 2020). 

In this network treats different measurements as data coming from different data sources. 

It does this by creating a specific embedding for each measured quantity. Incorporating 

different measurements in this method creates an increased performance without 

additional measurements. 

2.4.1 Layers in Perera and Zimmermann 

The network from Perera and Zimmermann consists of a data layer, cross-network 

topical layer, embedding layer, higher order interaction layer, and the prediction layer. I 

highly recommend looking at their diagrams and description of the network. The data 

layer consists of an array representing the user and raw data sources. The user array is a 

sparse array with the same dimension as the number of users. A single unitary entry 

representing the user. The cross-network layers consist of sparse arrays for each data 

source with entries corresponding the score a user gave to items. The embedding layer 
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gets the embeddings for the user and items. The network also uses the scores from the 

topical layer to amplify the embeddings in the embedding layer. The higher order 

interaction layer makes element-wise products of the combinations of all items. After 

summing these products, the result enters the LSTM which forms the prediction layer. 

Most of these layers appear in the coding except for the cross-network topical 

layer. The cross-network layer uses the binary interaction vectors for each network and 

the user. As the interaction vectors only serve to supply indices to the embeddings, that 

layer does not exist in the current coding of the network. The data stores items as unique 

integers and uses those integers to get the embeddings. As the interaction vectors use 

memory in the GPU, their omission improves efficiency. However, they should remain in 

the diagram of network to improve the clarity of how the network performs forward 

passes. 

The higher order interaction network requires the most computation prior to the 

data entering the prediction layer. It unintentionally acts as a gate keeper and will 

overwhelm the GPU if a mini-batch becomes too large. Due to its importance, it stands 

out as a modular component.  

2.4.2 Embeddings of the Network 

Embeddings addresses the problem of sparsity in the vectors. When examining an 

interaction vector composed of binary values, where ones indicate user interactions with 

the nth item, most of the vector will comprise of zeros. Given the dataset used for this 

network consisted of thousands of problems, a student will complete a small proportion 

of problems in any timestep. Instead of using these vectors directly the non-zero entries 

act as indices for embeddings. 
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During a forward pass the raw data comes into the embedding layer as integers 

referring to the student, and the problem. The data then enters the LSTM though the 

student and problem n-dimensional embeddings. The network can treat the dimension of 

the embedding as a hyperparameter. As the network consumes data and adjusts its 

weights, similar problems and students form clusters in the embeddings. 

Given the randomized instantiation of the embeddings it is unlikely that any 

dimension will correspond to a recognizable characteristic for the student or problems. 

Like problems and students will group together for reasons in the data. In future work 

with a wider spectrum of problems the embedding could separate problems by student 

interest, learning styles, or assessment style. 

Although embeddings make it difficult to find meaning in a particular dimension, 

this network initially ordered the problems on the unit circle in the first two dimensions. 

As problems came later in the course, their initial embedding fell further 

counterclockwise on the unit circle. Even though initializing the embeddings required 

data from the course, a problem’s topic could give an estimate of when students should 

attempt it. This initial embedding allows the network to identify the topics of the 

problems quickly. 

The implementation of this network holds the embeddings in a class object. The 

weights come from a parameter in the object used to reference the tensor. For K 

embeddings with dimension k the embeddings at a time step t appear as  

𝐸k, 𝑡 = {𝑒1
𝑘,𝑡, 𝑒2

𝑘,𝑡, … , 𝑒𝐾
𝑘,𝑡} ∈ ℝk×K  where 𝑒𝑗

𝑘,𝑡 ∈ ℝ𝑘. The problem and user 

embeddings will share the dimension k but differ in the number of total embeddings. 
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2.4.3 Additional Embeddings 

For each additional network every problem gets an additional embedding. 

Although the embeddings could differ in dimensions the higher order combination of the 

embeddings require the same dimensions. For an additional number of networks m, the 

embeddings appear as𝐸k, 𝑡 = {𝑒1
𝑘,𝑡, 𝑒2

𝑘,𝑡, … , 𝑒𝑚𝐾
𝑘,𝑡} ∈ ℝk×mK. 

2.4.4 Higher Order Interaction Layer 

 

Figure 12. Combining Embeddings for LSTM Input 

Diagram of How the Data Reaches the LSTM 

Putting the embeddings into the network requires a final method to combine the 

data into a single array of length k. Although necessary, combining the data also allows 

the opportunity to model higher order behavior in the embeddings. The original authors 

of this network took inspiration from Factorization Machines (FM) for the idea of 

combining the data this way. 
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Combining the embeddings requires three steps. As shown in Figure 12 the first 

step in the network gathers all the embeddings related to the users’ interactions for a time 

step. In an application in education, a time step of a day would allow the network to 

update with an appropriate latency to give students relevant daily problems. An 

embedding for a problem would appear in each network. An additional embedding comes 

from the user.  

The second step involves combining the embeddings into a new set of arrays with 

the same length as the embeddings. The set includes all the embeddings individually. 

Then all combinations of two embeddings get put into the set. To put the combinations 

into the set, two embeddings get multiplied with the element-wise product resulting in 

one array that can fit inside the set. As combinations from a set do not include an element 

chosen twice, the new set does not include the elementwise product of arrays with 

themselves.  

The third step simply sums the elements in the last set by component. The result 

gives an array with the same length as the embeddings and includes second order 

interactions. This array enters the LSTM cell with the same dimension as the embedding 

dimension. 

Considering the first step formally, given n interactions a user makes with the 

network in a given a periodic time step Δt, the embeddings will give a tensor filled with 

embedding 𝐸α,𝑡 ∈ ℝ𝑛×𝑘. For each additional network their exists an additional 

embedding 𝐸β,𝑡 ∈ ℝ𝑛×𝑘, 𝐸γ,𝑡 ∈ ℝ𝑛×𝑘, … which will each contribute to the final array. In 

addition, the embeddings will include the user embedding 𝐸𝑢,𝑡 ∈ ℝ𝑘. Together all the 

embeddings combine to give 𝐸𝑡 = (Eu,t|Eα,t|Eβ,t|… ). 
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Prior to combing the embeddings, each problem embedding gets multiplied by a 

score. For the problem embeddings, the score consisted of a one if the student got the 

problem right and continued, and a zero otherwise. The score used by the RS which 

inspired this network consisted of scores of zero to five stars. The design gives the 

network the ability to add additional granularity for scores. In the implementation of this 

network other options exist for scores, such as giving one point for completing a problem 

and two points for completing the problem and continuing. 

This network operated on the assumption that problems and users acted as the 

primary contributions to the probability for the student to get a problem correct and 

continue. To reduce the dependency on the additional networks, the scores get reduced by 

an order of magnitude. For the raw hour of the day the scores,ℎ ∈ ℝ𝑘, ℎ𝑚𝑎𝑥 = 23, and 

ℎ𝑚𝑖𝑛 = 0. When plugged directly into the network these large scores overwhelm the 

other contributors to the final probabilities. To lessen the effect of the hour scores, the 

scores get put through an additional one-dimensional embedding. Each value becomes an 

index for the embedding. The values in the embedding start as decimals less than one, so 

using them as scores reduces the behavior caused by the initial large values. Other scores, 

such as the minutes studying m, show a larger number of embedding indices that would 

get lost due to the variety of data encountered. For cases when the score values become 

large, this network chose to categorize them by bin. For the minutes studying, the scores 

came from bins of five-minute intervals. 

The inclusion of an array of all ones simplifies the second step, as the summing 

step needs to include the individual embeddings. Let  
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𝐸∗𝑡 = (Eu,t|Sα ⊙Eα,t|Sβ ⊙Eβ,t|… |𝟙) include the additional array with dimensions 

(𝑛𝑚 + 2, 𝑘) for m networks, where 𝑆σ is a tensor composed of rows with repeated values 

corresponding to embeddings, and ⊙ is the element-wise product. Combing two arrays 

give the number of combinations as (𝑛𝑚 + 2)(𝑛𝑚 + 1)/2. Call the list of all 

combinations of indices c = [(0,1), (0,2), … ] ∈ ℕ0
(𝑛𝑚+2)(𝑛𝑚+1)/2×2. Then the list of all 

combination becomes 𝐶𝑡
𝑗 = 𝐸∗𝑡

𝑐𝑗,0
⊙𝐸∗𝑡

𝑐𝑗,1
.  

The result of the previous two processes gives the input into the LSTM as 

utj = ∑ E∗ci,0
t

(𝑚𝑛+2)(𝑚𝑛+1)−1

𝑖=0

⊙E∗ci,1
t . 

2.4.5 Attention Mechanism 

A standard LSTM contains a hidden state that gets passed back into the LSTM 

before a forward pass. The LSTM for this experiment uses an additional hidden state that 

weighs previous hidden states on their similarity to the previous days. After calculating 

the similarity between the daily interactions, the previous hidden states get aggregated 

with similar hidden states gaining greater importance. The similarity comes from 

Softmax applied to the cosine similarity between the days. The arrays for each day come 

from sum of the hot coded arrays based on the topics of the problems. The topics for the 

problems exist as points in the problem embedding and a problem’s topic depends what 

topic embedding the problem lies closest to. As the number of topics could increase 

arbitrarily the topics could represent, difficulty, unit, semester, interest, or learning style. 

The only issue with increasing the number of topics comes from the increased likelihood 

of no similarities between time step aggregations. 
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The cosine similarity of hot-encoded arrays falls between zero and one. After 

summing the hot-encoded arrays the cosine similarity between the resultant also remains 

between zero and one. This comes from the encoding that makes every component 

positive. After putting the Cosine Similarity in Softmax the greatest weight will differ 

from the smallest by a factor of e. 

 

Figure 13. Initialization of Problem Embeddings and Their Topics 

Showing the Initialization of Problem Embeddings to Ensure Ordered Topics 

Basing the topic of problems on their location in the embedding makes fitting the 

topic embeddings difficult. To facilitate the fitting of embeddings, the topic are 

positioned on the unit circle, aligning with the first two dimensions of their embedding, 

and their angle is determined by the day of their initial appearance. Figure 13 shows the 

initial embedding of the problems in two dimensions. Assuming students learn with 

progression of units their order of first appearance would give an approximation of their 

topic. If the topics of the problems are already known, their assumed topic may place 
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them on the unit circle. The remaining dimensions of the embeddings allow for the fitting 

of weights to determine additional characteristics. 

Consider a list of topics for a particular day Ti = [t0, t1, … ] where tj ∈ N0. Each 

topic will contain a positive integer as a label for certain problems. The hot encoding of a 

topic will appear as a sparse array. For a hot encoding function h with a domain of k 

topics, ℎ(𝑡𝑗) = [0,0, … ,1, … ,0] ∈ R𝑘. The sum of all hot encoding becomes the 

aggregation for the interactions in a particular time step as 𝑑 = ∑ ℎ(𝑡𝑗)𝑗 . 

The cosine similarity for two aggregations di, and dj uses the n-dimensional dot-

product to find the cosine of the angle between the two arrays, as sim(di, dj) =
di⋅𝑑j

|𝑑i||𝑑j|
. 

Notice the geometric interpretation of the cosine similarity as the dot product of 

normalized vectors. For days without interactions the addition of a small parameter in the 

denominator avoids interruptions of computation sim(di, dj) =
di⋅𝑑j

|𝑑i||𝑑j|+δ
. Softmax retains 

its standard definition as the Boltzmann Distribution, σ(zi) = zi/∑ exp(zj)j , where the 

states would include all previous states. The combination of these two functions gives the 

weight for a hidden state as αj = σ(sim(dlast, dj)). 

Given previous hidden states as ℎ𝑗 , the element-wise sum of the of the hidden 

states and the weights gives the attention array as a sum of the previous stateshA
t−1 =

∑ αshss . 
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2.4.6 LSTM Cell 

 

Figure 14. LSTM Cell 

Diagram of the Operation of the LSTM Cell 

The long term, short term, memory aspects of the LSTM make it a great candidate 

to model the performance of students. The hidden state holds the information about short 

term interactions, and in this application, it would hold information about a student’s 

performance with their current material. The cell would contain weights for long term 

memory. In this case the weight would hold a student’s learning style, demographics, and 

interests. Figure 14 summarizes the interactions of the network, but I would highly 

recommend viewing their original description of the Perera and Zimmerman network. 

Their presentation does a phenomenal job explaining the operation of the network. 
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After creating the inputs for the current state of the LSTM, the forward pass 

consists of a series of linear layers, and activation functions. Let σ be the sigmoid 

activation function. Then for the activation branch of the forward pass, 

iA
t = σ(WA

i ut + UA
i hA

t−1) 

cÃ
t = tanh(WA

cut + UA
chA

t−1) 

𝑐𝐴
𝑡 = 𝑖𝐴

𝑡 ⊙ 𝑐̃𝐴
𝑡  

where WA
i ,WA

c ∈ ℝk×k are linear layers without biases, UA
i , UA

c ∈ ℝk×k are linear layers 

with biases, and k denotes the dimensions of the embeddings. 

The most recent leg of the of the of the LSTM gives the forward pass as, 

it = (1 − exp(−δ)) ⋅ σ(Wiut + Uiht−1) 

f t = exp(−δ) ⋅ σ(Wfut + Ufht−1) 

𝑜𝑡 = σ(𝑊𝑜𝑢𝑡 + 𝑈𝑜ℎ𝑡−1) 

𝑐̃𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑐𝑢𝑡 + 𝑈𝑐ℎ𝑡−1) 

Ct = f t ⊙C𝑡−1 + 𝑖𝑡 ⊙ 𝑐̃𝑡 + 𝑖𝐴
𝑡 ⊙ 𝑐̃𝐴

𝑡  

ht = ot ⊙ tanh(Ct) 

where  𝑊𝑓 ,𝑊𝑜 ,𝑊𝑐 ∈ Rℎ×𝑘 are linear layers without bias, 𝑈𝑓 , 𝑈𝑜 , 𝑈𝑐 ∈ Rℎ×𝑘 are linear 

layers with bias, and k and δ are hyperparameters.  

In the Perera and Zimmerman network δ measured the length of the timestep for 

irregular timesteps. In a network with uniform timesteps δ takes on different meaning. It 

serves as a factor to reduce the importance of old data. It could however retain its original 

purpose if the network considered the days between student interactions. This network 

will not implement the original intent of δ, but this could form a basis for future 

improvements.  
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The biases also take on different meaning given the context of the network. Biases 

in the linear layers maintain group statistics in the final prediction. If they remain without 

dropout during training, the network will minimize the effects of the embeddings and use 

the biases as the primary effect of the linear layers. Leaving the biases in will improve 

performance but reduce the effects of the user and additional data sources.  

The final output for the network comes from 

𝑦̂𝑡 = σ(𝑊𝑟ℎ𝑡) 

where 𝑊𝑟 ∈ ℝ𝑚×ℎ is a linear layer with bias, and m predictions for the 

probability of getting the problem correct.  

2.5 Software 

Just as the hardware chosen can make the use of the network outside of research 

impractical, software shares an equal importance. The theoretical mapping between 

gradients, implementation of a GPU, and updating of weights, require a high level of 

expertise under the wrong implementation. The choice of software can limit the 

complexity of these problems by automating tasks. 

This research chose software to prioritize the practical usage of this network. The 

software should be open source, capable of automating complexity, and easily used. 

Although TensorFlow, Keras, and MXNet could conduct this research, PyTorch showed 

the best implementation with remote resources, and the momentum in the industry. 
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2.5.1 PyTorch 

PyTorch (Torch) 10 comes with robust libraries to handle the implementation of 

networks, fitting of weights, and usage of GPUs. It comes as open source, and it’s widely 

used. It also holds the majority of market share for RS research, and it installs quickly in 

a variety of implementations. This makes it ideal for this application.  

2.5.2 Tensors and Gradients 

Torch uses Tensors as the primary object for holding data. Tensors exist as multi-

dimensional arrays with size and shape determined upon initialization. Weights and 

embeddings will exist with this structure to hold values in their classes. Tensors exist on 

hardware, and tensors existing on different hardware can only interact in limited ways. 

Tensors on CPUs do not allow for basic linear algebra operations with tensors on GPUs, 

but they can pass as arguments for indices of GPUs. Tensors on GPUs use methods that 

parallelize on many threads and show excellent performance. The data stored in the 

tensors can consist of several types with binary representations, but Tensors cannot 

contain common data types such as string or char. 

Tensors can contain a secondary data structure containing gradients for each 

value. Upon instantiation a passed parameter will determine if the tensor should maintain 

static values during network updates, or values that update with the network. The 

gradients of Tensors do the primary work when updating the weights and embeddings 

through the back pass. 

 
10 Pytorch is a Python module for incorporating ML and GPUs https://pytorch.org 

https://pytorch.org/
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2.5.3 Autograd Engine 

Updating weights between forward passes relies on navigating a jungle of partial 

derivatives. Diagraming the network and creating the relationships between the gradients 

becomes an insurmountable task as the complexity of the network increases. Testing the 

effect of small alterations leads to hours of algebra to update the relationships between 

the gradients. 

One of the huge upsides of using Torch is the availability of the Autograd Engine 

(Overview of PyTorch Autograd Engine | PyTorch, n.d.). Given a target, an input and a 

model, the Autograd Engine can update the weights in a model for most processes 

consisting of linear algebra, and neural network operations. The requirements for 

deriving the equations to update weights disappears and allows for quick changes to the 

network while in the developmental stages.  

The process works by automating the chain rule from multi-variable calculus. The 

input and output for components come with gradients associated with their values. For 

the components PyTorch determines the relationships between the gradient of the input 

and the output. As the data gets passed from one component to another, a map holds the 

relationships between the inputs and the outputs.  

Pytorch handles most RNNs well with the exceptions of LSTMs. The hidden state 

from a previous forward pass will link the next forward pass to the last one. This requires 

Pytorch to hold on to the mappings for all passes. Old mappings usually get discarded 

once a forward and backward pass finish, so keeping old mappings puts an additional 

strain on the hardware requirements. While running the hardware will show the effects of 

the old mappings by reducing the speed of forward and backward passes. To prevent this 
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feedback loop, the class LSTM in the nn module implements LSTMs and solves the 

problem behind the scenes. As this class does not allow for the addition of the attention 

mechanism, the network will need to use the other solution to the problem, detaching the 

hidden and cell state between forward passes.  

2.5.4 Loss Functions 

The loss function compares the target data and the calculation from the model 

when updating the weights. A loss function determines the difference between two 

arrays. If the loss function gives a high value between the two arrays, then the model did 

not give a good prediction. In the setting of the weights, the network will look to update 

weights in a way to minimize the value of the loss function called loss. 

Although it seems like Root Mean Square Error (RMSE) should become a 

primary candidate for a loss function, measuring the loss is only one purpose of the loss 

function. A loss function also needs to give gradients that quickly update weights during 

minimization. RMSE would not quickly give a quick measurement as efficient code 

avoids the use of square roots. Additionally, RMSE does not arise from the form of its 

gradient. This means that it looks like a good measure of error but may not update 

weights efficiently. 

As with network modifications, changing the loss function does alter the 

relationship between the gradients. As it comes in the last step of a forward pass, it 

modifies the mapping between the gradients minimally, but it still requires an updating to 

the mapping.  

To fill the gradients after running through the data the Autograd Engine starts 

from the loss function and works backwards though the mapping. The initial gradients 
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from the loss function get calculated by looking at the relationship between the gradients 

of the input, weights, and output. After choosing an appropriate learning rate the mapping 

between the gradients updates the gradients of the weights all the way through the 

network. This makes the gradient of the loss function its primary attribute. 

Looking at loss under this magnifying glass changes the type of loss functions a 

network should implement. This research used two primary loss functions, the Mean 

Squared Error loss function (MSE) due to its common usage in RS development, and the 

Binary Cross Entropy loss function (BCE) due to the network attempting to match binary 

values. The MSE comes with its standard definition MSE(x, 𝑦) =
1

𝑁
∑ (𝑥𝑖 − 𝑦𝑖)

2𝑁
𝑖=0 , and 

the BCE comes with the definition BCE(x, y)  =
1

N
∑ yi
N
i=0 ln(xi)   +  (1 − yi) 𝑙𝑛(1 − 𝑥𝑖). 

2.5.5 Optimizers 

Once the mapping determines the relationship between gradients, updating the 

weights relies on optimizers. The torch.optim module automates this process, provides 

methods for updating weights, and includes classes of optimizers. Methods to assist in the 

tuning of the model include methods to dynamically adjust the learning rate and 

normalize batches. The engines to update the weights come in about a dozen varieties 

with use cases based on the data they encounter. Overall, the module supplies a plethora 

of tools to update the network. 

As with determining the loss function, the obvious choice to update the weights 

does not always achieve the desired goals. When first encountering the problem, it seems 

reasonable to find the gradient, take a small step the size of the learning rate, and the loss 

should reduce. Subtracting the product of the gradients and the learning rate from the 
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weights does find local minimums but can struggle when the gradients become low. 

Optimizers that use momentum when updating weights, such as the family of ADAM 

optimizers, find improved weights even under these undesirable circumstances. 

This study employed Stochastic Gradient Descent with momentum for the 

optimizer. The implementation of Stochastic Gradient Decent came from the SGD class 

in the torch.optim module. The learning rate and the momentum were specified from 

passed parameters upon initialization, and their values came from testing preliminary 

models prior to using the educational data.  

2.6 Running Network 

Running the network in simulations comes with considerations based on the 

purposed usage of the network. Choosing the research methodology depends more on 

finding a good simulation to catering for students, than finding the parameters that 

optimize the network. In addition, while fitting hyper-parameters, the requirements on the 

hardware need to define constraints for the model. The context of the usage will primarily 

make decisions usually reserved to optimize the predictions.  

2.6.1 Time Step 

In general, the time step should come from which values makes the best 

predictions on the data. As this network also comes with the context of mathematics 

assessment, the size and frequency of the time step should fit into this context. A large 

time step will not make predictions with the appropriate latency. An excessively small 

time step will not give enough time for the network to accumulate new data, and may 

become smaller than the granularity of the data.  
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This network will use the time step of a day. This doesn’t come from any 

performance improvements of the network, but strictly from the needs of the application. 

Under the assumption students do math problems daily, the use of a daily time step will 

give new predictions with the same frequency as the students do problems, but also puts 

the least dependency on the physical resources while meeting demands. 

In addition, for each time step the weights and embeddings should update. 

Depending on the resources available, the LMS may slow down while the network 

updates. An additional consideration of the time step should include at what time the 

network separates two different timesteps. When deciding where to separate timesteps 

low activity times should take precedence due to a reduced probability of separating one 

study session, and so users experience no unnecessary delays. 

2.6.2 Hidden Dimension 

For this network three parameters remain unchosen. The first parameter sets the 

dimension for student embeddings, problem embeddings, topic embeddings, and hidden 

state. These dimensions need to match, or the combinations of the embeddings will not 

go into the LSTM cell. The second dimension chooses the size of the cell state. These 

need to match between the LSTM cells but no other mechanisms in the network need to 

match these dimensions. The final dimension chooses the number of topics that will 

categorize the problems.  

These parameters should be chosen to optimize the performance of the network, 

but the first parameter is the primary decider of the size of the network in memory. In 

addition, as the size of the embeddings increases, the training time also increases. 

Specifically, the size in memory increases as O(n).  
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Figure 15. Network Size as the Embedding Dimension Increases 

GPU Memory Allocation as the Embeddings Increase 

When looking at the actual effect of increasing the embedding dimension the 

theoretical relationship between network size and embedding dimension appears 

accurate. Figure 15 shows how the memory grows with the increase of embedding 

dimension. The overhead however overwhelms the theoretical relationship. From the 

graph doubling the size of the embeddings increased the network size by less than 2%. 

Given the actual measurement of the network size a corrected space complexity would 

give O(1). The practical limitations of fitting the embeddings would make this the 

theoretical best space complexity while at the same time the worse. The network size 

does not grow much because of the resources allocated to Pytorch upon instantiation. The 

best possible result comes because Pytorch takes so many resources to start. 
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Figure 16. Loss for Various Values of Embedding Dimension 

Comparing the Performance of the LSTM One Data Network with Several Embedding 

Dimensions 

As shown above in Figure 16, after running through the data for two epochs the 

embedding dimension performs the best with the parameter for dimensions as three. Five 

dimensions also performs well but increases the size of the network in memory. For this 

graph the cell size remained set at three. 

This cell trained with biases and no dropout on the biases. Biases reduce the 

influence of differences from the embeddings but gives an overall performance 

improvement. The similar performance of the different embedding dimensions comes due 

to preserving the accuracy of the group statistics. After determining the value for bias 

dropout, a preferred embedding dimension will appear.  

As you change the first dimension, the performance of the network for each value 

for the size of the cell differs. Choosing the best parameter for the embedding dimension 



 

62 

does not guarantee the best overall performance. You can set these parameters in tandem 

using a relaxation technique, or a net, but the overall performance on this specific data set 

does not primarily concern this research.  

 

Figure 17. Loss for Various Values of Cell Dimension 

Comparing the Loss for Different Cell Dimensions in the LSTM 

For the embedding dimension of three, the cell dimension of seven appears to 

perform the best. Figure 17 summarizes the results. Five also performs well but the extra 

memory used for the extra dimensions does not matter for the cell dimension. As this 

network trained with biases changing the cell dimension changes the group statistics and 

creates a larger effect. In the second graph a larger difference in performance shows up in 

the graph. 
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2.6.3 Detaching Hidden and Cell Tensors 

LSTMs use the hidden state outputs from previous forward passes in their current 

forward pass. If you consider the map relating the input and output of components, the 

output of components during previous forward passes will map to components in the 

current forward pass. This mapping becomes intricate quickly, and updating the weights 

may require updating the weights for every previous forward pass. PyTorch avoids these 

situations by not keeping maps between forward passes. This also means that when the 

hidden states try to map backwards, they will reach a dead end.  

For cases with hidden states, the hidden states need to be specifically detached 

between the forward passes. The method detach() for a tensor in PyTorch removes a 

tensor from a graph. Running the detach method on the hidden and cell states will prevent 

them from interacting with the previous forward passes. 

2.6.4 Epochs 

When using biases the network sets its weights after two passes through the entire 

training set. After two passes reducing the loss becomes increasingly difficult. Each pass 

through the data gets cut up into mini-batches of users. The GPU specified earlier 

allowed mini-batches of 20 users. For each time step in the mini-batch the network runs a 

full backward pass and updates the weights and embeddings. Updating the network after 

each forward pass replicates its performance in practice. 

For the training used here, each mini-batch passes through its entire set of data 

before starting another mini-batch. This replicates a small class of 20 students going 

through the curriculum before another group of students begins. An alternate path though 

the data would loop through each mini-batch for a time step. This would replicate many 
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classes of 20 students studying at the same time. The actual data collection happened 

over a period of less than a year so running though each time step would more accurately 

replicate the use of the network in practice. Although the training of this network did not 

choose the method most representative of its actual usage, the network does not 

encounter pairs of users, and problems in a different order. The weights in the LSTM cell 

however will be fit on the entire year of data before encountering the next mini-batch.



 

65 

Chapter III. 

Modifying the Attention Mechanism  

. However, all parts of the user history are not equally relevant for 

recommendations in the current time step (e.g., due to seasonal 

preferences). Hence, the model computes attention scores to weigh the 

relevances of different parts of the user history. 

— Dilruk Perera and Roger Zimmermann 

To summarize the long-term behavior, an attention mechanism retains 

information from many previous timesteps. The importance of each time step depends on 

its similarity to the last time step of interactions. Similarity will depend on the context of 

the network application, but the larger the pool of problem the more complex it becomes 

to define similarity. 

As the number of problems increases, the network will need more training time to 

determine the relationships between them. The training methods used for neural networks 

also do not guarantee an optimal solution, but only a solution that performs good locally 

around the initialization of the weights. This makes the initialization of the weights an 

important role in the overall performance of the network.  

With the correct training time and optimizer settings, theoretically the network 

should achieve the same performance regardless of any initial values for weights, but this 

may not be the case in practice. Addressing these issues allows the network to weight 

previous timesteps appropriately, while retaining a modest training time. 
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3.1 Attention Scores 

The scores coming from the attention mechanism signaled a need to modify it. 

The attention scores equally weighted all previous sessions independent of interactions. 

As no overlapping interactions occurred in any sessions the similarity scores between any 

two sessions remained zero. After applying Softmax the weights all became the same 

value.  

Consider a network with three problems, and three sets of problems. Also let each 

set of problems consist of one interaction in the data network. If different interactions 

happen in each set then the weights will all take on uniform values. With many problems, 

the intercations will most assuredly consist of sparse vectors with unique interactions. 

This causes the uniformity of the weights. However, if the interaction vectors get 

categorized by topic before calculating the weights, then the weights take on different 

values.  
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Figure 18. Grouping the Interaction Vectors by Topic 

An Example of Categorizing the Interaction Vector to Add Relevance to the Similarity 

Scores 

In Figure 18 you can see the calculation of the weights before and after 

categorizing the interaction vectors. Both inputs contain no overlap in the interactions, 

but grouping similar problems allows the network to modify similarity. Instead of 

weighting all sessions with the same similarity, different similarity scores come out of the 

network with topics.  

3.1.1 Large Problem Databases 

As the number of problems in a database increases the probability of encountering 

a problem multiple times approaches zero. This attribute of database size exists not only 

as coincidence, but also as a design for administering problems. Large databases give 
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students multiple opportunities to encounter material, provide unique learning 

experiences, and promote academic integrity. 

The cosine similarity between days in these situations falls to zero. The use of 

cosine similarity in this network comes from the original context of the recommendation. 

As a user might frequently watch YouTube videos repeatedly, the cosine similarity 

between these days would not go to zero even if the platform gives many options for the 

user. With a large database of problems, a student returning to problems repeatedly 

would not come from the same type of behavior and implies an error in the 

recommendation system.  

Remember the equations for the similarity scores αj = σ(sim(dlast, dj)), where 

sim(di, dj) =
di⋅𝑑j

|𝑑i||𝑑j|
, and di is the daily aggregation of interactions. For large a database 

of n items, di ⋅ 𝑑𝑗 ≈ 0, and α𝑗 = (1/𝑛, 1/𝑛,… 1/𝑛). These scores should represent the 

similarity between study sessions, but instead they start losing meaning. All the past 

states become equally important in the attention mechanism. 

3.1.2 Daily Aggregations 

To address the vanishing dot product this network uses a different daily 

aggregation to summarize a day as a vector. The primary difference comes from 

categorizing the interaction vectors, into categories called topics. The original cosine 

similarity did not differentiate for how many times a user interacted with the same 

problem during the same time step. When switching to topics it becomes almost 

inevitable a user will interact with the same topic many times during a time step. To 
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address this obstacle, the daily aggregation for this network consists of the sum of the 

topic vectors encountered from each problem. 

When calculating the daily aggregation, the problems will get hot coded by topic. 

At the end of the time step the hot coded arrays will still get summed, creating a daily 

aggregation as 𝑑𝑗 ∈ ℕ0
𝑗. The topic vectors will act the same as the interaction vectors 

and the network will still operate in its usual fashion. 

This new definition of similarity shares many of the characteristics with the old 

cosine similarity. As the daily aggregations only consists of the sum of hot coded vectors, 

the cosine similarity stays between zero and one. It gives a value of one for identical 

vectors and zero for vectors that share no topics. It also gives a similarity score of one for 

study session that consist of the same topics in equal proportions. Sessions with high 

similarity scores will consist of the same ratio of problems but may differ in length. 

3.1.2 Topics 

The usage of the word topics refers to the different categories the problems can 

fall into. This comes from the idea that students would work on topics covering the same 

material as they work their way through a unit. In practice topics simply define the 

categories problems can fall into. For instance, a network with two topics might focus on 

separating problems by semesters, change in material, or difficulty. For example, AP 

Calculus BC would be a good candidate to try a network with two topics due to the 

transition from differential to integral calculus. Topics could also take values 

representing, chapters, lessons, or sections. In a network with 10 topics the labels could 

represent chapters or units.  
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The problems get topic labels from their location in the embedding space. The 

topics sit in the same space as the problems and a problem gets its label from the closest 

topic embedding. As they sit in the same space this means that the topic embedding must 

have the same dimension as the problem embedding. This assumes regions of the 

embedding space contain similar problems, which may not be true for all contexts of the 

network. 

Consider a 3-dimensional space with problem embeddings in the space. This 

would corespond locations in a space as we commonly understand them. In higher 

dimensions the network will loose the analog to our perception of space, but we could 

still use this mental model. Topics would also sit in the same space. To label the 

problems we could just identify the closest topic to their locations as show below.  

 

Figure 19. Finding the Topics of the Problems with the Topic Embeddings 

Showing How the Topic Embeddings Categorize the Problem Embeddings with the 

Closest Topic Embedding 
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Figure 19 shows the categorization of problems by topic for a 3-dimensional 

embedding. The darker dots represent the topic embeddings, and the lighter dots 

represent the problem embeddings. The categorization depends on the closest topic 

embedding and the grouping of the problem embeddings becomes apparent. 

3.1.3 Updating Topic Embeddings 

Putting the topics in an embedding allows the network to use the Autograd feature 

to update the embeddings between forward passes. This allows the problem embeddings 

and the topic embeddings to move as appropriate. The positions could also update with 

K-Means between forward passes, and if the implementation of K-Means used the linear 

algebra operations available in PyTorch, the positions of the topics would properly 

update. This research did not focus on categorizing problems with K-Means, but it could 

prove a useful method going forward. 

3.2 Initialization of Embeddings 

Operating under the assumption that problems with similar locations in the 

embeddings share similar characteristics, the initialization of the problem embeddings 

allows the curriculum to pass data to the network prior to measuring interactions. If the 

locations get assigned randomly at the start, the network may never discover the 

relationship between problems and the curriculum. However, if the embeddings contain 

dimensions ordered by the curriculum while retaining randomly assigned positions in 

additional dimensions, the embeddings may describe the curriculum while allowing the 

network to encode additional relationships in the embeddings. 
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3.2.1 Randomized Initialization 

Randomizing the problem and topic embeddings creates mostly noise. The 

attention scores appear uniform and do not weight similar study sessions higher. The 

noise is so severe that the network may not find the progression of problems throughout 

the course. 

As the problem embedding will also keep the same topic label under small 

updates, the network also falls into the dilemma of vanishing gradients. Using the 

appropriate optimizer with momentum can address this problem, but it increases the 

difficulty of training the network. 

With randomized weights fewer topic embeddings will give better results because 

of the noise created by increasing the number of topic embeddings. This does not 

necessarily lead to a better network, but a more limited network. It removes the 

possibility of topics embeddings predicting student interests and learning styles. 

3.2.2 Initializing Weights Based on the Assumption of Curriculum 

In this network’s context, recommendations depend on the previous units. The 

material from the course comes in a sequential progression and creates a chain of 

dependency. A poor recommendation will not allow a student to demonstrate 

understanding due to the recommendation not coming at the right time. A good 

recommendation will not introduce material too far beyond the student’s current 

progression though the curriculum. Paradoxically to find when a recommendation is 

inappropriate the network will need to learn from making bad predictions. 

In addition, predictions will need to incorporate many aspects of assessment to 

maximize desired outcomes. Questions accomplish multiple goals such as, checking for 
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broad understanding, reviewing old topics, and creating a sense of trajectory when they 

contain material from multiple units. Some of the best questions contain material from 

multiple units and good assessments should use them. To make better predictions the 

network will need to find a user’s progression in their current course. 

The issue of poorly timed prediction doesn’t come about due to the material 

coming from multiple units, but giving problems to students before they encounter the 

prerequisite material. Traditional assessment does not encounter these problems due to a 

sequential dependence of units. The curriculum will most likely come ordered in terms of 

units, or quickly separated into units, so labeling the problems prior to running network 

would combine the natural structure of the assessments with the network. Although this 

seems like a straightforward solution, precautions needs be taken so that the network can 

still draw its own inferences. 

The data used for this network represented an academic year with increased 

density during the semesters. The problems came with a label structure, but the structure 

did not seem to give much help to initialize weights. The labeling also does not appear 

generalizable, and the methods used in this instance may not adapt to other data sets. For 

this reason, using an alternate method for labeling may benefit future networks. 

A more generalizable estimate may come from the first occurrence of the 

problems as each problem usually comes with a first occurrence in the course. Using the 

first occurrence of the problem uses on a natural progression of topics of material. 

Assuming the problems came as part of a curriculum, their first appearance would 

approximate the primary unit of their content. In the problem embeddings, their initial 

placement should roughly group them by units with additional freedom to model 
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additional behavior. This would make the date of first occurrence a good measurement to 

initially label the unit of the problems.  

Given an n-dimensional embedding where n > 2, the unit circle in first two 

dimensions gives an embedding for assumed topics. The topic embeddings for the ith 

topic embedding ei = (cos(2πi/n) , sin(2πi/n) , … ), and for the problem embeddings let 

ei = (cos(2πday/365) , sin(2πday/365) , … ) where the remaining dimensions get 

initialized with randomized numbers of a reduced magnitude. The radius of the circle 

may also serve as hyperparameter as the problems might quickly reduce their magnitude 

to fit their interactions with other components.  

3.3 Performance of Topics 

Given the categorization of the problems, the similarity scores should improve. 

As a student changes between topics, their performance should not rely as much on their 

results from pervious units and more on their results in recent units. Additionally, 

students should find the highest similarity scores with their most recent performance as it 

is more telling of their current mental state. 

3.3.1 Performance 

The hardware limitations of the network gave an upper bound for the number of 

topics. Using topics to represent lessons or weeks put too much strain on the GPU. The 

forward pass would stall when the topics went beyond ten. With limited topics the 

network would alternate labels to model the transitions between topics. Additional topics 

would show an improved performance when reviewing several topics for a summative 

assessment. 
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Figure 20. Loss for Models with Different Size Topic Embeddings 

Showing the Performance Difference of the Networks with Different Numbers of Topic 

Embeddings 

In terms of performance the addition of topics did not show a continued 

improvement in the network. Figure 20 summarizes the performance when modifying the 

embedding dimension. Increasing the number of topics beyond two does not show a 

visible difference in prediction on the graph. Changing the number of topics altered the 

fourth decimal of the prediction meaning it most likely consists of a fourth or fifth order 

correction to this prediction. However, differences in the way the network made the 

prediction did appear. 

If you considered the average of the last 10 similarity scores, adding topics did 

weight the more recent sessions higher. It appears that categorizing the problems and then 

calculating the similarity scores affects how the network includes the pervious hidden 
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states. The addition of topics will allow for more relevant suggestions, compared to the 

network without categorized problems. 

  

Figure 21. Last 10 Similarity Scores Average 

A Graph Showing as the Number Topic Embeddings Increases the Weights of Problems 

in the Same Unit Increases 

In looking at how the alphas distribute in practice, the average for the last 10 

alphas values increased with the addition of networks. Figure 21 shows the shifting 

weights with the increase in topics. As this value increases the network puts more weight 

on the more recent measurements. The network with zero topics crossed the cutoff 2.8% 

of the time, the network with two topics crossed the threshold 13.6% of time, the network 

with five topics crossed the threshold 14.4% of the time, and the network with 10 topics 

crossed the threshold 13.6% of the time. The similarities between the number of networks 
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support the uniform performance of students though out the school year. We should 

expect to see this in the data. 

SoftMax also adds an unwanted consequence of normalization. As the number of 

days increase the alpha values with similarity scores close to zero approach a 1/days 

behavior. To compare the values of alphas between forward passes their overall values 

were multiplied by a factor proportional to the number of days.  

The network with zero topics also showed different values of alpha. The problem 

arrays contain sparse data, so the variation of alpha values seems surprising. This may 

come from days when students repeat problems or from days when the students did not 

complete problems, such as weekends. 

3.4 Deciding to Add in Topics  

3.4.1 Considerations 

Adding topic embeddings depends on the performance of the attention 

mechanism. If the context of the network requires more importance on more recent data 

measurements, then the use of topics seems appropriate. Topics also can aid when items 

of recommendation come in set like units. Topics find similarity when sparse arrays 

would not. Finally topics aid when recommended items require content to be delivered in 

order.
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Chapter IV 

Data Source 

We hope our dataset could empower the research of creating a better 

and personalized learning experience for students, and further 

encourage broader participation for contributing to the future of online 

learning from interdisciplinary experts. 

—Junyi Academy 

To ensure general applicability of the network, the data source should not contain 

anything that would skew the results. Primarily this would include the basic 

measurements needed for an RS. Ideally no measurable influence from external factors 

should appear. Furthermore, the data source should exhibit universal characteristics 

common to all datasets coming from math assessment. The dataset will require 

examination for any peculiarities that will cause any unwanted behavior when training 

the network. 

The primary concern in a data source for fitting a network comes from the number 

of datapoints. Each datapoint will modify the weights and embeddings during one 

backward pass. As datapoints will contain different values of each measured variable 

several datapoints need to exist for each value of a variable to contain a distribution of 

measurements. After filtering the data, a sufficient amount of datapoints need to exist to 

fit the network. 
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The fewest measurements required for a datapoint in an RS would include the 

user, rated object, and rating. State of the art networks also include a measurement for the 

time when the rating occurs. The analog measurements in education would be student, 

problem, and correct answer. This dataset will also require additional measurements for 

the added data networks. These additional measurements could come from session 

details, or from database details about the user. 

The measurement of the data also needs consideration. The students need enough 

time and incentive to complete the problems. The problems need the appropriate 

difficulty, and adequate student preparation. Additionally, the distribution of students 

needs to include distribution across many measurements including intelligence, intuition, 

experience, region, and gender. 

For the dataset used, the trends in the data should guide the development of the 

network. Additions in data should improve the performance of the network when used as 

additional measurements. Measurements with little effect on the data should show less 

improvement, however the network can group students or problems together and find less 

obvious relationships.  

4.1 Context of Data 

Where the data comes from, how the data was collected, and what the data says, 

will primarily influence the design of the network and its usage. If students do problems 

online for practice, they will perform differently than if they do the problems for a grade. 

Also, as discussed earlier, the resources given with the problem will affect how well the 

students do. Depending on if hints, examples, or instructional videos come with the 
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problems, differences in performance should appear. Finally, the dependency of data on 

different variables will determine what variables to include in the second data network.  

4.1.1 Source 

To train the network the model ran on data from the Junyi Academy Online 

Learning Activity Dataset11. This data set consists of 16 million exercise attempts from 

72k students in Junyi Academy from August 2018 to July 2019. Junyi Academy 

Foundation is a Taiwanese, non-profit, educational organization and maintains a mission 

goal to provide education for all children by using technology. The students consist of 

first through twelfth grade students from cities though Taiwan.  

The questions the students answered on the Junyi Academy platform. They 

platform operates as stand-alone courses, supplement to in class instruction, or as an 

additional enrichment for students. Some students did get teachers from the Junyi 

Academy assigned to them, while others worked independently. Additionally, the 

platform offered formative videos, and badges to incentivize students.  

The platform showed some adaptation to the students. First each student got a 

different problem set over a topic. Depending on the student’s performance the LMS 

upgraded or downgraded students after the answered exercises.  

4.2 Details of Data 

The data comes in three files totaling about 2 GB. The files break the data into 

problem attempts, user information, and problem information, with the names 

 
11 https://www.kaggle.com/datasets/junyiacademy/learning-activity-public-dataset-by-junyi-academy 

https://www.kaggle.com/datasets/junyiacademy/learning-activity-public-dataset-by-junyi-academy
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Log_Problem.csv, Info_UserData.csv, and Info_Content.csv respectively. The Junyi 

Academy released the data under the Creative Common License, CC BY-NC-SA 4.0. 

Figure 22 shows the summary of dataset on Kaggle. 

 

Figure 22. The Dataset on Kaggle 

A Screenshot of the Dataset on Kaggle with the Files in the Dataset 

4.2.1 Students 

The students consist of elementary, middle school, and high school age students. 

Each user got a unique ID (uuid) consisting of a random alpha numeric string. The 

platform recorded the gender of students as “male”, “female”, “unspecified”, or “null” 

with the 55% of the users recorded as “null”. Users also identified with a city from the 

list of 20 cities and towns, spread throughout geographic, economic, and population 

demographics. 

https://creativecommons.org/licenses/by-nc-sa/4.0/
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Figure 23. Pandas Data Columns from Loaded CSV Information File 

Showing a Screenshot of the DataFrame Loaded into Pandas 

The snippet of code above in Figure 23 shows column names after loading the 

data from the csv file to pandas. The columns names represent the data from the columns, 

and the data type differs by column. PyTorch can only take in data represented 

numerically so it needed alternative representations of the data. This can be done by 

representing the sting in ascii as hexadecimal, or by using dictionaries. 

The number of problems each student finishes also affects the ability of the 

network to make predictions. To ensure each student completes enough problems the 

density of problems attempted per student needs to be looked at.  
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Figure 24. Problem Attempt Density 

Problem Density for the Number of Times Students Attempted a Problem 

After filtering the students that completed less than 100 problems, the data 

remains dense. As shown above in Figure 24, the number of students roughly decays 

exponentially with the number of problems finished. This leaves enough students for the 

training of the network. 

Additionally, the distribution of students per year will show where the bulk of the 

data lies. This will help in the analysis of performance. It will show where a lack of data 

may lead to abnormal behavior of the network. 
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Figure 25. Histogram of Students by Year 

Histogram of Students by Year for the Junyi Dataset 

From the graph shown in Figure 25 the data peaks between 5th-7th grade. As the 

age of the students goes away from the central max the volume data drops off. There still 

exists several hundred students in each year, and several thousand students in the bins 

from 2nd-9th grade. With a median value of around 50 problems per student this would 

mean there are several thousand data points for each year. 

4.2.2 Problems 

The problems come from exercises, and exams. All measurements in the data 

come from a type of exercise with the structure shown in Figure 26. A unique problem id 

(upid) identifies each of the 25,785 problems in the dataset. Some of the exercises come 

as a collection of problems related to a certain topic. Each problem also comes with a 

topic id based on its content, its perceived difficulty, and its school level. The difficulty 
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levels come as “easy”, “medium”, and “hard”, and the school level comes as 

“elementary”, “junior”, and “senior”. The students get problems presented to them in 

groups that share a common content ID. 

 

Figure 26. Pandas Data Columns from Loaded CSV Content File 

Showing a Screenshot of the DataFrame Loaded into Pandas 

The content that contains the problems also comes sorted in a 4 level ID structure. 

Each ID consists of a randomly generated alphanumeric string such as 

“aH0Dz0KdH9gio7rrcGRHvrmd9vcd/0WJbeEFB7qeUKA=”. Level 1 represents the 

subject, which in this dataset only consists of math. Every problem in the dataset has the 

Level 1 ID corresponding to math. The Level 2 ID more closely relates to the course the 

problem comes from. The example given in the documentation uses “Geomentry” as the 

string associated with the Level 2 ID. The Level 3 ID represents the unit, and the Level 4 

ID represents the topic. Students get problems presented to them in groups that share a 

common content ID. 

From the screenshot of the website, you can see an exercise consisting of several 

problems. Between the problems this website also uses videos to introduce the material. 

The multi-media play button links to videos explaining the problems, and the star button 

links to a problem. 
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Figure 27. Example of an Exercise Consisting of Several Problems 

An Exercise Consisting of Videos and Problems (怎樣解題：數量關係 | 均一教育平台, 

n.d.) 

As discussed earlier, the addition of videos affects the measurement of 

performance. If a student encounters a problem outside of what they know, the videos 

allow them to learn how to solve the problem. As shown in Figure 27 several videos 

introduce each problem. When the network predicts the probability of a student 

answering a question correctly, the probability should fall to zero as a problem falls later 

in the course. In the data it does not appear students attempted problems coming much 

later in the course before completing the introductory material. With the addition of the 

videos and the missing data for later problems, the network will struggle to make 

predictions for problems coming later in the course. 
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The time of the videos also comes next to link so students see the videos will 

concisely explain how to do the problems. Students will sometimes avoid videos due to 

the time it takes to watch them and look for examples that they can quickly modify to 

solve their problem. If the videos do not get too long, including the times should 

positively influence performance beyond the standard effect of videos. 

The videos themselves do a good job of explaining the method of solution. They 

solve the problems with diagrams, algebraic relations, written language, and audio 

description. When trying to quickly, and clearly explain a problem to a group of students 

the combination of elements will allow students to learn in their preferred method while 

keeping a redundancy in case a student becomes confused in their primary method of 

learning. 

 

Figure 28. Example of a Video Explaining the Material 

Screenshot of a Video Coming from the Junyi Academy Exercises 
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The screenshot above from Figure 28 shows a video used in the exercises. This 

problem comes from the Algebra I curriculum, in the 6th year of instruction. The videos 

are public YouTube videos linked to a teacher’s accounts. The videos come in Mandarin 

and the instruction style relies heavily on the diagramed answer. 

The problems come as static problems coming from a problem library. The 

problems also use parameters and may change, but that is uncertain. The problems use 

blanks for responses, and grade immediately. After grading, mascots also encourage the 

students to keep trying. The format also includes a list of problems and video. This helps 

put in the appropriate videos next to the problems, but it also makes students start a new 

problem set to continue after the last problem.  

 

Figure 29. Example of a Problem in an Exercise 

A Problem Coming from a Junyi Academy Exercise with Translation Added 
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Figure 29 shows a problem with an added translation. In the Common Core 

Curriculum the problems would come from Advanced Algebra I, or Algebra II. The 

exercise is labeled as “Elementary”, but the content falls a little above elementary.  

To investigate how the problems appear to the students, a web browser can probe 

the server several times with different cookies. The problems do not require a user login 

so loading the problems with a different web browsers and cookies give different 

problem sets.  

 

Figure 30. Example of Different Users Getting Different Problems 

Two Different Final Problems Coming from the Same Exercise 
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After loading the same exercise twice two different final problems appear. Figure 

30 shows an alternate question in the exercise. The problem library contains enough 

problems that it becomes difficult to determine if the problems will show up with 

different parameters. The problems did not show up on a Google search or Chegg. This 

exercise shows how to correctly use a library of problems. This guarantees the students 

worked independently but may have worked together on similar problems with different 

parameters. 

Even though the exercises used a large problem library, the density of problems 

each student attempted remains high. Many students attempted several hundred problems. 

The data does not fall off very quickly. As Figure 31 shows a sufficient number of 

students attempted several hundred problems.  

 

Figure 31. Density of Students Completed by Problems Completed 

Density of Students by Problems Showing the Number of Students that Completed the a 

Certain Number of Problems 
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Problems occurred in the dataset most commonly less than five times. Each 

occurrence would correspond to an attempt to solve the problem by a student. After 

filtering problems with less than five occurrences, the number of problems appears to 

decay linearly as the number of attempts increases. Considering the weights will only use 

a portion of the data for fitting each problem needs multiple attempts to fit itself inside 

the embedding. Given this density of attempts there exists sufficient data to set the 

embedding of the problems after a few epochs.  

4.2.3 Measurements 

The log data of the problem attempts came as a CSV file with, string, Boolean, 

integer, and float data. Figure 32 summarizes the columns of the CSV. As Pytorch 

tensors only support numerical datatypes, the data will need a dictionary, or 

representation in hexadecimal to fit into a tensor. Each row in the CSV records one 

attempt for a problem in an exercise.  

 

Figure 32. Pandas Data Columns from Loaded CSV Log File 

Screenshot of a Video Coming from the Junyi Academy Exercises 

When a student answers a question a 14 column measurement are inserted into the 

log problems data. The 14 measurements consist of Taiwanese timestamp, uuid, ucid, 
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upid, number of problems encountered in the exercise, the number of times the user 

attempted this problem during this exercise, if the user answered the question correctly, 

the total seconds taken, the number of times the user submitted an answer, and the if the 

hint was used. Rows consists of a comma separated values of strings. The timestamps use 

a granularity of 15 minutes, and the time spent on each problem used a granularity of 

seconds.  

4.3 Trends in Data 

For the dataset given, the analysis focused on session variables, and database 

variables. The network could easily use these variables as second data sources. Database 

variables could contain user information that the user embeddings might find difficult to 

record, and session variables record instantaneous measurements that are difficult to 

determine from user embeddings. 

4.3.1 Session Variables 

During a user session the platform can make measurements about the current 

exercise. For instance, the platform can measure length of session, how many problems 

the user attempted, or the time in the user’s time zone. These measurements do not 

depend on the characteristics of the user and simply on the interactions performed on the 

network. 

These characteristics measure universal attributes like fatigue, frustration, and 

time constraints. As this network also uses higher order interactions, the network may 

model characteristics that adapt to the individual. In practice these measurements come 

from pools of users which should show a distribution of the values. Even if the 
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aggregations of data do not reveal patterns, the network may naturally segment the data 

where trends do exist. In addition, user personality should dictate preferences in study 

sessions, outside of broad trends.  

4.3.2 Time of Day 

Time of day serves as a uniform measure of fatigue. Although particular students 

will perform better during different times of the day, the middle of the night should show 

a dip in performance for all users. As performance at certain times of the day differs by 

user this variable also makes for a great second order effect. 

 

Figure 33. Histogram of Daily Activity by School Level 

Graph Showing Density of When Students Work 
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Trends appear in the daily activity which reflect the circadian rhythms. Figure 33 

shows these patterns. When plotted by level, the distribution of activity by hour looks 

identical across the different school levels. Activity begins around 5 am and dies down at 

8 pm. Peaks in the data occur at 8 am, 12 pm, and 4 pm. The main peak at all three levels 

occurs around 12 pm.  

As discussed in subsection 2.5.1 the time separating the timesteps should come 

from the low activity periods on the network. As the data shows separating timesteps 

between 10 pm and 3 am would reduce the probability of breaking a study session into 

two separate timesteps and reduce the load on the network when the network updates 

weight and embeddings.  

 

Figure 34. Student Performance by hour of the Day 

Graph Showing the Performance as the Time of Day Changes 
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Additionally, the time of day affected the performance of the students. Figure 34 

summarizes the measurements. Performance in this manner refers to the probability a 

student will get the problem correct and begin another problem within fifteen minutes. 

Similar trends exist between the different school levels, however in contrast to the 

previous day, data noticeable differences exist in the late-night behavior. The eldest 

students showed an increased performance at the end of the day compared to students in 

other levels. Throughout all levels, increased activity led to decreased performance.  

4.3.3 Length of Session in Minutes 

The number of minutes a student works differs from the other session variables. 

This measurement comes with an expectation of the shape of the data. In the first few 

minutes the data should look noisy with students attempting problems and then 

abandoning study sessions. After a period of a couple minutes where a student commits 

to a study session, students should start to leave session with a constant rate. The rate 

combines students finishing assigned work and distractions. If the rate remained constant 

the curves would appear as exponential decays. 



 

96 

 

Figure 35. Histogram of Session Length by School Level 

Density of Session Length in Minutes, Categorized by Level 

Though out the levels of instruction the exponentially decaying behavior prevails 

as shown in Figure 35. Additionally, trends in session length appeared uniform 

throughout the different school levels. The session lengths show a finer granularity than 

the data due to their calculation. For the length of study session, the seconds the students 

took on each problem were added together, and the analysis used idle periods of more 

than a half hour as markers to end a study session. High school students showed a minor 

tendency to study for longer periods of time, but not enough to visibly skew the data. All 

levels showed a reduction in the number of study sessions lasting beyond 60 minutes.  

There also exists a spike around 30 minutes at all levels. This implies many 

students ended their study sessions at 30 minutes. This might occur due to instructors 
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requiring students to do problems for 30 minutes, but it also might occur due to the way 

the graph splits up study sessions. If a student remained idle for 30 minutes the graph 

considered that period as the end of the study session. That would mean students who 

opened a problem and left it on their computer would fall in this bin on the graph. 

 

Figure 36. Probability of Correct Answer by Session Length 

Probability of Correct Answer by Session Length, Categorized by Level 

Although the data shows a clear distribution in the session length, the session 

length does not affect the student performance based on level. When the data gets further 

stratified by grade patterns emerge. In particular the 12th year students showed an 

increase in performance in longer sessions. As visible from Figure 36 almost no 

difference in performance exists as session length increases.  
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Figure 37. Student Performance of Each Grade by Session Length 

Performance by Session Length Separated by Grade 

The consistent performance, which includes the probability of a student not 

continuing, appears roughly constant throughout as a function of study time. This 

approximates the behavior seen in the pervious set of graphs which showed an 

exponential decay of the density. As seen in Figure 37 small differences exist between 

grades but they mostly approximate their averages by level displayed in Figure 36. 

4.3.4 Number of Problems in a Session 

One of the standard measurements in the Junyi datasets comes from how many 

problems a student completed in their current study session. The data records the number 

of problems a student encountered including their current problem. As before, an exercise 

consists of the group of videos and problems. With this definition the expectation is the 

value of problem number to peak at around a central value and quickly fall off. At earlier 

years the fall off might not get as extreme due to their exercises consisting of shorter 

problems.  
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Figure 38. Problems Per Exercise Separated by Level 

Problem Number in Exercise as Given by Junyi 

When separated by levels patterns in the data appear. Figure 38 shows these 

differences. The fall off at the elementary level does become less severe. For the Junior 

and Senior level students the problems peak at around 20 problems with a more drastic 

fall off.  

4.3.5 Database Variables 

In addition to session measurements, static database variables can also guide 

prediction. In this context database variables could include gender, location, and 

additional socio-economic indicators. Unlike session measurements, database variables 

change infrequently, and may rely on information provided by the user. During the 
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session the network will not update or record database variables as it would with session 

variables.  

These characteristics measure details specific to the user. In general, the session 

measure will describe the progression of the session, and the database measurements will 

measure the characteristics of the user. The user embeddings should include these details, 

but creating such an embedding requires extensive training. It therefore may improve 

performance to include these characteristics through a second network. 

4.3.6 Gender 

Gender comes as the first database variable examined. Database variables require 

the user to submit their gender at a certain point, so these values are frequently missing. 

Gender also traditionally shows differences amongst students, but this dataset does not 

guarantee these differences will appear.  
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Figure 39. Performance Separated by Gender Separated by Year 

The Average Performance of the Three Values Recorded for Gender Separated by the 

Student’s Grade 

When looking at the relationships between gender and performance, these graphs 

show the largest differences between curves out of any data encountered so far. Figure 39 

summarizes these findings. Gender is not a particularly strong indicator of performance, 

as we will see later, but it shows the dramatic difference between session measurements 

and user measurements. The least predictive database variables will show larger 

differences in performance than the most predictive session variables. 

As stated in the previous section, the dataset recorded gender very poorly. Most 

users did not make any record of their gender. It also appears the highest performing 

gender consisted of students choosing to not specify their gender. From this data even 

bad database variable measurements look like better predictors than session 

measurements.  
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4.3.4 City 

City value also shows a great potential to affect performance. City value can 

include additional characteristics the user embeddings may not. City value can describe 

the proficiency of local schools, the influence on regional education programs, cultural 

attitudes toward education, or even household income levels. Considering performance 

differences in local schools exist at every level, users should also show differences in 

performance based on the local elementary, middle, and high schools. The regions or 

districts these schools fall into, and how they get their funds can also affect the 

performance of the students. This database variable can potentially measure many 

differences in educational opportunities  

 

Figure 40. Performance Separated by City 

Performance Separated by City, Two Letter City Codes 
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The city associated with each student also looks predictive of the performance. 

When plotted against each other the performance varies wildly between cities. Figure 40 

shows large variations from city to city. When summarized by gender peaks appear 

around year six and year twelve. When split by city the any universal characteristics 

appear to disappear.  
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Chapter V 

Performance of Parallel Networks 

My psychiatrist told me I was crazy, and I said I wanted a second 

opinion. He said, "Okay, you're ugly, too." 

—Rodney Dangerfield 

Adding parallel networks acts like a second opinion. Each student gets a unique 

user embedding, and the student’s user embedding should give the best prediction. That 

doesn’t mean the user embedding can contain all the information available. Adding 

parallel data networks acts like a new individual privy to additional information and 

inputs additional measurements into the network.  

For instance, the network without additional data sources does not contain any 

way to include session variables. Without the session variables the network remains blind 

to the current status of the student. It does not know how long a student has worked for, 

what time of day it is, or how many problems the student has attempted. Adding 

additional data networks allows for the input of these measurements without dramatic 

alterations to the network. 

5.1 Adding Parallel Networks 

In the Perera and Zimmerman network additional ingestion networks come from 

separate sources of data. These data networks usually consist of an independent data 
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source with little heterogeneity. The data networks added in this case will consist of 

different measurements coming from the same dataset. 

5.1.1 Additional Embeddings 

The instantiation of the LSTM object requires the passing of a dictionary 

containing the number of networks among other things. This allows the data when passed 

in to contain an additional column for the scores of an additional network. The network 

scales to as many additional networks as the hardware will allow to exist. As each row of 

data contains an integer representing the problem attempted, the data can identify 

additional embeddings for the same problem associated with a different measurement. 

The additional embeddings come in during the higher order interaction layer of 

the forward pass and get combined with the original data. They take the same path after 

this step and get passed through to the same LSTM cell. Although it may seem more 

appropriate to create a complete second network and combine the results at a later stage, 

combining the data sources prior to entering the cell makes the addition of additional data 

sources simple. 

The drawback from this architecture comes from the addition of networks after 

training. As the higher order interaction layer happens before entering the LSTM cell, the 

cell does not adapt to the new data combination coming into the cell. It will need to 

retrain with the additional data. However, during the retraining the network performs well 

when the number of data sources gets decided prior to fitting the weights. Given the 

quick training time of the network, reaching asymptotic performance after two epochs in 

some instances, the problem of adding data sources after training might not matter. 
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5.1.2 Network Hyperparameters 

As throughout this work, the hyper-parameters used while combining networks 

were fit, but not with the intent to create a misrepresentation of performance. The results 

summarized do not come from the meticulous training of the network for a desired result, 

but from the apparent performance upon modest training. This network should adapt to 

other education sets, with the goal of improving mathematics education. The suggestions 

made should aid many instances of future networks, with datasets currently unavailable.  

5.2 Separation of Data 

Separation of data makes sure the network gets an opportunity to perform on data 

it did not train on. If the separation of data does not occur, no real measurement of the 

network accuracy exists. The network may also over-fit its weights to the training data, 

and this only becomes apparent when the network makes predictions of the test data. 

Separation of data remains an important step for the evaluation of the network. 

5.2.1 Training, Testing, and Evaluation Data 

The data for training, testing, and evaluating gets split by users into three groups 

after filtering. The splits consisted of 60% of users for training, 20% of the users for 

testing, and 20% for validating. Upon instantiation the LSTM object, which requires an 

int representing the number of users in a passed dictionary, creates three random lists 

consisting of the users. Prior to creating the lists, the LSTM object sets the random seed 

in PyTorch, so the results of the test remain deterministic. 

The training data sets the weights, and the testing data compares different values 

of the hyper-parameters. For one set of hyper-parameters the training data will set the 
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weights, and the testing data will give accuracy to the network based on a particular loss 

function. After several cycles enough measurements should exist to determine the 

optimum hyper-parameters for the data. This research looks to determine the effect of 

parallel networks with secondary data source, and meticulously tuning the hyper-

parameters may undermine these effects.  

After fitting the hyper-parameters, the validation data works as a test to see how 

the network will act on new data. The values of the loss functions on the evaluation data 

will form a metric for the success of parallel networks. 

5.2.2 Network Ingestion of Data 

The network goes through more forward passes it will need to record the data it 

sees for the calculation of the hidden states, and the hidden states in the attention 

mechanism. Feeding all of data at once would give the smallest requirement on memory 

but creates some issues with assurance the network accurately makes predictions that it 

already holds in tensors. In order to accurately test the network, the LSTM object holds 

data passed through it separately, and between epochs its historical data gets reset. This 

prevents the network from making predictions on data out of order or referring to 

outcomes stored in the data it already encountered. 

5.2.2 Mini-Batches 

The number of data points for any given day will overwhelm the network if a 

forward pass contains all of them. The data then gets broken into groups of a few users 

and the network trains itself through the whole course on these users. Between each day 

the weights update in the same way the act during normal operation.  
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5.2.3 Filtering 

To ensure adequate data exists to model problems and students, cutoffs for the 

minimum number of attempts for a problem, and the minimum number of problems a 

student completed filtered the data. These graphs used cutoffs for a problem of 20 

attempts and 100 completed problems for a student. Some problems students completed 

got filtered even though the students actively completed problems. As the measurement 

of time fell into 15 minutes increments, a student could get a problem removed from a 

session without the network falsely recognizing the session as two separate sessions.  

 

Figure 41. Data Points Remaining After Filtering 

Reduction of Total Datapoints as the Cutoff for Minimum Number of Problems Increases 

After the filtering it appears that putting cutoffs on the data does not dramatically 

reduce the size of the dataset. Figure 41 shows the effect of the cutoff. The cutoff at 20 

problems appears to reduce the size of the dataset by less than one percent. When looking 

at filtering the problems by number of attempts, the default cutoff of 100 problems per 

student was used. Similarly applying cutoffs for the number of problems completed by 
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students does not dramatically affect the data. Applying the filtering does leave enough 

data to reasonably fit the weights for the network. 

5.3 Session Data Parallel Networks 

Session data comes from values stored in temporary variables and consists of 

measurements made during a session. The measurements take no consideration for the 

characteristics of the student using the learning platform. Predictions coming from a 

session should measure details universal to all students, such as fatigue, motivation, 

difficulty and learning style. Students using the network still get personalized modeling, 

but session details will not determine the geographic, socio-economic, or cultural, aspects 

of student performance. 

Throughout these tests the embeddings used a size of five and the LSTM cell used 

a size of five. The networks included topic embeddings, so embedding the curriculum in 

the first two dimensions affected the performance of the networks with three dimensions. 

The networks will fit around the sixth year dataset due to the curriculum’s similar 

structure to later grades, its large number of students, and position in the amongst the 

other years. Each network trained for two epochs on the training data, before running on 

the test data. 

5.3.1 Performance of Session Variables 

The session variables examined in this experiment included time of day, problem 

number in the exercise, and session length. These three variables indirectly measure 

fatigue and frustration. In the data, time of day showed a distinctive effect on the 

performance of the students. 
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When running the network, the biases of the linear layers allow for the network to 

change its performance and distinguish between data sources. Added biases allow the 

network to perform better on group statistics. Operating the network without biases 

allows the network to show differences between the two data source networks.  

 

Figure 42. Training for Session Variables with Bias 

Graph Showing the Difference Between Different Session Variable Networks During 

Training, the Linear Layers Operated with Bias 

With biases the training curves become almost indistinguishable even after 700 

mini-batches. Figure 42 shows them right on top of each other. Other experiments 

showed the data should start to separate before reaching 700 mini-batches. All of the two 

data source networks uniformly performed better than the one data source, but it becomes 

difficult to state one outperforms the others. The networks approach asymptotic 

performance after about 700 mini-batches. All of the curves dip and climb which implies 
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they struggle with the same mini-batches. After removing the biases different behaviors 

appears.  

 

Figure 43. Training for Session Variables with no Bias 

Graph Showing the Difference Between Different Session Variable Networks During 

Training, the Linear Layers Operated with no Bias 

Without the bias the data visibly separates. Figure 43 shows a considerable 

separation between the performance of networks. In the first 400 mini-batches the loss 

values for the two data source networks stay together. After 400 mini-batches the 

differences in performance become apparent. On the training data the two data source 

networks do not perform better than the single data source network. Each network shows 

similar difficulties on the same mini-batches  

After running through eight epochs on the training data, a clear distinction 

between the single and double data source appears. On the training data the single source 
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shows a better performance than the two data sources. The network appears to approach 

their asymptotic performance values. 

When running the network on the test data the inclusion of biases should allow for 

an improved performance at the expense of distinguishing the networks. All of the 

networks with biases outperformed the single data source network, and all of the 

networks without biases performed worse than the single data source networks. With the 

biases the networks show the expected behavior.  

 

Figure 44. Session Variable Testing with Bias 

Running the Trained Variable Networks with Biases on the Test Data 

Uniformly the networks with biases performed better than the single data source 

network on the testing data. Figure 44 shows them with a much lower loss. The networks 

performed similarly to their performance on the test data. Their grouping also stayed 
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similar with the training data. The problem number network performed worse on the data, 

but the session length and time of day networks performed better than the problem 

number session. 

The network without the bias should show a worse performance than the one data 

source network on the test data. It also should perform worse than networks with biases. 

At the expense of this performance the networks should show different performances on 

the test data. 

 

Figure 45. Session Variable Testing 

Running the Trained Variable Networks on the Test Data 

The results of the network on the test data show a similar performance to the 

network with the bias. Figure 45 summarized their results. All the networks with two data 

sources performed better than the network with one data source. The networks with two 
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data sources also uniformly struggled on the same mini-batches. Without the bias larger 

differences between the curves appear which matches the performance on the training 

data. 

Based on the performance on the test data the networks with two data sources 

should outperform the networks with one data source using the metric of AUC. In 

previous work using state of the art logistic regression on pieces of the data showed an 

average AUC of around 0.8 (Schmucker et al., 2022). As the embedding dimension, 

hidden dimension, data sources, and bias dropout rate were not tuned on this data the 

previous value should serve as an upper bound of performance.  

 

Figure 46. Session Variables ROC Curve with Bias 

Comparison of All Session Variable ROC Curves and AUC Scores on Test Data 
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The ROC Curves showed a better performance for all second variable source 

networks, however Figure 46 shows little difference in their curves. The performance 

overall looks very similar. As the Autograd focused on minimizing the loss and not 

maximizing the AUC different training methods could improve this metric. 

Without bias the previous loss graphs imply the AUC curve should show more 

difference between the networks while retaining similar performance. The one data 

source network should also change its performance as removing the biases will change 

the architecture of the network. 

 

Figure 47. Session Variables ROC Curve without Bias 

Comparison of All Session Variable ROC Curves and AUC Scores on Test Data 

Without bias the one data source network performs the best. It performs better 

than all pervious networks. Figure 47 shows the single data source network with a much 
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higher AUC score than the other networks. The addition of bias also seems to group the 

networks together. The performance of the different networks shows less difference than 

previously. 

When using networks with a second data source of session variables, removing 

the bias showed the best performance. Including biases reduces the loss while improving 

the AUC values. Using dropout on the biases may allow for differences between the 

networks while maintaining the increased performance.  

5.3.2 Number of Problems in an Exercise with Bias 

The data implies the number of problems a student completes in the exercise 

could affect the performance of that student. As a student works longer, fatigue, 

frustration, and probability of quitting should affect the probability of a student getting a 

right answer and continuing. These effects should also depend largely on the individual. 
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Figure 48. Test with Problem Number Second Network 

Difference Between Problem Number Network and Average of All Two Data Source 

Session Variable Networks 

After removing the average performance, the loss of the network with the 

problem number second data source appears lower than the average. The graph in Figure 

48 displays an almost uniformly negative value. It shows the greatest increase in 

performance during the mini-batches where the two data source networks found 

prediction difficult. The improvement does not look universal as at some points its loss 

becomes greater than the average performance.  

5.3.3 Session Length in Minutes with Bias 

Although the data did not show any relationship between session length in 

minutes and a reduction in performance, individual students may exhibit behavior outside 

of the data summary. This second data network differs from the problem number because 
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the data did not show a difference in performance. As before, individual variations may 

exist, but not present themselves in the summaries of the data.  

On the training data it showed a very similar performance to the other networks 

and approached the mean very quickly. Small differences in performance existed while 

training but after 50 mini-batches these differences broadly disappeared.  

 

Figure 49. Test with Session Length Second Network 

Difference Between Session Length Network and Average of All Two Data Source 

Session Variable Networks 

On the test data this network showed the best performance of the networks 

considered. Figure 49 showed the lowest loss relative to the other networks. It performed 

best when mini-batches maintained a uniform difficulty of prediction. It did not 

universally perform better than the other networks but performed better on average. The 
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session length and problem number in exercise networks are relatively comparable with a 

percent difference of less than 25%. 

5.3.4 Time of Day during an Exercise 

From the data, time of day showed the greatest promise as a second data source. 

From the graphs in the previous chapter performance clearly dipped for all students in the 

middle of the day, and at the end of the day for younger students.  

 

Figure 50. Test with Time of Day Second Network 

Difference Between Time of Day Network and Average of All Two Data Source Session 

Variable Networks 

Time of Day performed the worst of all the second data sources from session 

variables. Figure 50 showed an overall positive value for loss relative to all the other 

networks. Its difference from the average appears on a different scale than the others. 
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Although this network does not perform as well as the others, a second data source with 

the large variations seen in the data may need more specialized training than the other 

networks. 

5.4 Database Variables and Parallel Networks 

In the last section, using the situation during which a student attempted a problem 

clearly affected the performance. In this section the network used the characteristics of 

the users to determine their effects on performance.  

Similar to the reduced scores used in the networks with session contextual data, 

the networks with user contextual data used reduced scores. The reduced scores rely on 

the same assumption, the main predictors of performance are the user and the problem 

they attempt.  

The motivation for the research in the previous section focused on the ability to 

keep a student productively working given the context of a session. The network could 

give individualized suggestions to maximize the effectiveness of the session on the 

individual level. In this section the motivation doesn’t look to maximize the individual 

but to get a uniform performance amongst all of the students. Based on individual 

characteristics problem selection can achieve the same curriculum goals but without the 

unintended consequences of asking a question in the wrong way. 

5.4.1 Performance of the Database Variables 

The database variables examined in this experiment included gender, and city. 

These variables indirectly measure complex differences between the users. In the data 

these showed the greatest differences in student performance. 
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As the session variables focused on attributes common to all individuals like 

fatigue, and networks with bias showed good group statistics, database variables show 

theoretical mechanisms for improvement and reduction for performance. Database 

variables could allow networks adapt to the individual and maintain good group statistics, 

or they may effect the networks ability to make good predictions on the group.  

 

Figure 51. Training for Database Variables with Bias 

Graph Showing the Difference Between Different Database Variable Networks During 

Training 

On the training data the database variable networks showed a large difference in 

performance. Figure 51 shows the differences. Both networks performed better than the 

one data network, but additionally a large difference in the two networks becomes 

apparent between the two data source networks. The networks with session variables did 

not show a clear distinction between data sources.  
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The curves also separate very early in the training which did not appear in the 

session variables. Before 100 mini-batch a difference between the curves appears. A large 

difference in performance persists until the end of training. Given the difference in the 

training data the testing data should show a similar difference.  

 

Figure 52. Training for Database Variables with No Bias 

Graph Showing the Difference Between Different Database Variable Networks During 

Training 

After removing the bias some consistencies seen in the training return. Figure 52 

appears to keep the characteristics of Figure 51. The reduction in performance returns 

with a visible difference in between the two data source curves. The city network 

however, retains an improved performance even with the bias removed. 

With the bias the two data sources should show an improved performance on the 

testing data with little difference between the performance of the networks. The session 
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variables showed that behavior throughout training, and testing. The differences they 

showed also only appeared after removing the bias.  

 

Figure 53. Database Variable Testing 

Running the Trained Variable Networks on the Test Data 

As before the two data source networks showed an improved performance on the 

testing data. In Figure 53 the second data source networks find much lower average 

values for loss. City showed a better performance that persisted though the training data. 

With no bias the difference between the networks differs from the session variables. As a 

second data source measurement of city looks like a unique metric. 

Without the bias the session variables showed an improved performance even 

with the reduction in performance while training. On the testing data the database 
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measurements without bias should show similar results. The certainty of this expectation 

is less, due to the unusual performance of city measurements.  

 

Figure 54. Database Variable Testing 

Running the Trained Variable Networks on the Test Data 

Without the bias the difference of performance on the testing data remains about 

the same as shown in Figure 54. The bias does not appear to affect the prediction of 

networks. Universally the two data source networks made better predictions with the 

same difference between the networks as seen in the session variables. 

On the ROC curve the one data source performed better with the inclusion of a 

bias. Overall, the session variables showed the best performance from the one data source 

network and no bias. With a bias the one data source did not perform as well with the 

bias.  
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Figure 55. Session Variables ROC Curve 

Comparison of All Session Variable ROC Curves and AOC Scores on Test Data 

With the bias the city network shows a better AUC than any network looked at so 

far. In Figure 55 the first clear distinction in the AUC curves occurs. As before all the 

two data source networks performed better than the one data source. The difference of the 

curves in this situation however makes the database variables much different than the 

session variables. 

With no bias the one data source curve should perform better than all of the 

curves. Prior to running the network on the city data, the one data source without the bias 

showed the best AUC. Before looking at the performance the expectation of performance 

remains unclear.  
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Figure 56. Session Variables ROC Curve 

Comparison of All Session Variable ROC Curves and AOC Scores on Test Data 

The City Network without bias showed an even a better performance than with 

bias. Figure 56 exaggerates the difference in performance first observed in Figure 55. Its 

AUC score rose above the one data source network and all of the other networks. It 

appears as a special measurement for a second data network, and clearly improve the 

prediction of the network.  

5.4.2 Gender 

A large portion of the data came with no indication of gender. Even with the 

reduced dataset, the possibility of improving the prediction of student performance makes 

the experiment worthwhile. Gender remained one of the most visible differences in 

performance across all grades.  
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Figure 57. Test with Time of Day Second Network 

Difference Between Gender Network and Average of All Two Data Source Database 

Variable Networks 

Gender showed the smallest loss of the two database variables. In Figure 57 it 

maintains a negative value almost though out its domain. It did not uniformly outperform 

the average of the database variables, but its average was below the mean. Its 

improvement in performance does not follow the average performance.  

5.4.3 City 

The cities changed the data most dramatically out of any of the variables looked. 

The data shows enough intricacies that it looks difficult to model with any methods. 

Some cities performed better or worse on average, but when separated by city particular 

grades began to show differences.  
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Figure 58. Running Average of Performance with City Second Network 

Difference Between City Network and Average of All Two Data Source Database 

Variable Networks 

City showed the lowest performance of the database variables, as shown in Figure 

58. The increase in the loss function also follows the pattern, as the details of the dataset 

increase, the network struggles to reduce loss. Although it’s tempting to compare the 

performance of the time network and the city network, a different average was subtracted 

from each loss. To compare the performance, a direct comparison will still need to occur. 

5.5 More than Two Parallel Networks  

One of the benefits of the network construction includes the ability to quickly 

include additional parallel networks without any additional coding. The LSTM object 

only requires the number of networks stated upon instantiation and additional data 

columns of data given to it during a forward pass.  
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The issue with increasing the network complexity becomes the training of the 

additional embeddings. The network may give better results, but it may come after 

several additional epochs of training. Allowing one network to receive extra training does 

not make it comparable to other networks. 

5.5.1 Number of Problem and Time of Day Network  

The specific coding allows the addition of networks seamlessly. After looking at 

the performance of different variables, curiosity would dictate looking at the performance 

of three variables. The session variables so far measured how long a student worked, and 

when they worked. For the three data source network, the two additional data sources 

should represent both categories of measurements. 

In the previous experiments, as the complexity of the data increased the 

performance reduced. For the three data source network the performance should reduce 

under the assumption three data sources contains more complexity than two data sources. 

However, the three data source network contains an extra embedding. Adding an 

embedding showed the greatest increase in performance so far.  
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Figure 59. Test with Time of Day Second Network and Problem Number Third 

Network 

Graph Comparing all Two Data Source Networks and a Three Data Source Network 

The three data source network performed about the same as the two data source. 

Figure 59 only shows a minor difference. Adding one embedding may exhaust the 

benefits from adding embeddings. This may change when the data comes from two 

sources that represent the same measurement. The complexity of the three data sources 

however did make the three data source network perform worse than the two data source 

network.  
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5.6 Comparison of Networks  

After removing the one network LSTM, the difference between the networks 

appears. Taking the average value for their loss gives a good comparison of which 

network performed best on the test data. 

 

 

Figure 60. Test with Time of Day Second Network and Problem Number Third 

Network 

Comparison of All Networks 

The session length gave the best prediction on the data as a second data source. 

As speculated before, combining the session variables that the embedding struggles to 

encode did lead to the best prediction. Figure 60 confirms this suspicion. Students do 

form habits of how many problems they perform in a row, and the encoding can contain 

the overall effect, but that does not affect the prediction on one individual problem. The 
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second most predictive variable came from the problem number in the exercise. These 

both come from session variables describing the current stage of the session and not the 

long-term characteristics of the individual.  

5.6.1 Complexity 

Complexity of the data source remained the number one predictor of the network 

performance. As the data contained more complexity, the network reduced in 

predictivity. City contained some of the most complex data and performed the worst. 

When deciding which data source to use a consideration of complexity should be made, if 

the training time will remain the for all networks. 
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Chapter VI. 

Implementation of Network in Practice 

So I live in a friendly neighborhood and everyone really likes to talk to 

their neighbors. So This new guy moved into my neighborhood and I as 

a friendly neighbor introduced myself. "Hi I'm Norm McDonald" so he 

says something, something, I don't remember his name. He asks, “What 

do you do?” I say, "I'm a comic." and I ask him “What do you do?” 

and he says "I'm a professor of logic at University of something." I 

don't remember the name that well. So I ask "What does it mean ? I 

mean what do you do?" so he says “It includes syllogism of something, 

something,” and everything's going over my head so he says, “Let me 

show you with an example.” 

—Norm Macdonald 

The discussion so far consisted of abstract, highfalutin, complicated language, so 

the time has come to implement the network to recommend problems. Some issues will 

still require rigor, but the goal of this chapter exists to discuss how to use the network.  

6.1 Cold Starting 

Cold starting refers to the difficulty a network faces when it makes predictions for 

users for the first time. The network will struggle because it has no measurements on the 

users outside of session variables. 
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The weights for the problems and users will start randomly in the embeddings, so 

the network will not become predictive until it encounters a significant about of data. 

Setting the weights forms a feedback loop where putting data into the networks will alter 

the predictions and direct the creation of new data for the network. 

The data this network ran on consisted of csv files of measurements. Simulating 

these files should set the weights. Given a model for students and a model for the 

problems, a few lines of code should be able to create the files. Modifying the models can 

create more realistic csv files but as the weights update once a time step, this seems 

unnecessary. After determining the number of timesteps needed to set a user’s weights, 

the weights at this timestep in the simulation form a good initial value for a new user. 

6.1.1 User Embeddings 

When the LSTM encounters a user for the first time it will randomly place them 

in the embedding. The position of the user in the embedding will summarize the 

preferences and characteristics of the user from measurement. Due to its random 

placement the network will need to move the user’s embedding though back propagation 

before the network begins to make accommodations. This will require the network to 

make measurements on the user while it operates in an unintelligent way. Depending on 

the length of this period the user may lose faith in the learning platform and stop 

attempting problems. 
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Figure 61. Test with Time of Day Second Network and Problem Number 

Changing of the Weights for Each Forward Pass in the LSTM Network 

Although the background noise remains large the user embeddings change more 

on average during a new epoch. Figure 61 shows the increased movement of the 

embeddings during the beginning of the epochs. The changes in the user embeddings 

increased 58% during the first 20 days compared to the change in the embeddings during 

the remainder of the epoch. The network encounters users for the first time at the start of 

the epoch, so an increase is expected. The change of the embeddings during the 

remainder of the epoch however appears quite surprising. The embeddings keep moving 

even after the initial period of encountering the new users. 

6.1.2 Easing Cold Start with Additional Data Sources 

Previously additional data sources appeared redundant as the user embeddings 

should summarize the measurements of the individuals. These variables however may 
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reduce undesired behavior during cold start. Upon acquiring a new user session and 

database variables may reduce the extent of the undesired behavior. For instance, the 

database variables measured in the dataset studied, would normally get encoded into the 

embedding. They were also pieces of information that a user would need to volunteer 

prior to using the platform. Including additional measurements prior to a cold start would 

help alleviate it.  

 

Figure 62. Test with Time of Day Second Network and Problem Number  

Changing of the Weights for Each Forward Pass in the Gender Network 

When looking at gender as a second data source, the change in the user 

embedding increases more in the beginning of the epoch as well as the remainder of the 

epoch. Figure 62 summarizes these results. The effect of the second data source seems to 

increase the gradients throughout the epoch. The percent increase of the daily change in 
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the embeddings though remains smaller. Day to day the user embeddings change 45% 

during the first 20 days of the epoch.  

 

Figure 63. Test with Time of Day Second Network and Problem Number  

Changing of the Weights for Each Forward Pass in the LSTM Network 

The city second data network shows a similar behavior to the gender network, as 

shown in Figure 63. Even with the large amount of noise in the data, the change in the 

embeddings decreases during the first 20 timesteps. It appears in all three networks 

reduce the change in user embeddings as time goes forward, but these changes do not go 

to zero. Continually changing embeddings could imply the development of a student so 

their continued movement does not necessarily imply the network struggles to fit the 

user. 

From these networks it appears that the user embeddings take about 50 timesteps 

to settle down. To alleviate cold start, it may make sense to use this embedding for a new 
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user. With simulated data, after about 50 timesteps the user embeddings would reach 

values that could be used for the initial embedding of new users.  

6.2 Predicting Standardized Test Scores 

One of the interesting things about the initial period when user embeddings move 

around, is the long-term prediction after the user embeddings relax. The network 

predictions on problems toward the end of the course did not move around after the first 

50 timesteps. The network understands the user very quickly and applies their 

characteristics to the remaining curriculum. Inside the first quarter of the school year the 

network could make predictions for the remainder of the year. This makes the network a 

good candidate for early intervention, and early estimations of standardized test scores. 

6.2.1 Problems without Instruction 

As discussed earlier, the resources given with a problem may alter the 

performance of the students. The data set used in this research only contained problems 

with videos. In addition, the students did not attempt problems out of order. In the 

beginning of the course the students did not jump to problems in the end of the course. 

No data to model a drop off was fed into the network. For the prediction to remain 

relevant in practice students need to receive the same level of instruction throughout the 

entirety of the course.  

6.2.2 Prediction After n Days 

After n days the prediction of performance in the previous days should converge 

to their asymptotic values. The model does not get any new data for the previous 
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problems, and the original prediction should stay static. The user embeddings do continue 

to move throughout the course, and they may change the prediction of previously 

measured data, but this should not lead to a large change. 

To test the performance of the network on previously measured data, the network 

ran though one mini-batch and stopped periodically to make a prediction on the problems 

in the beginning of the course. One mini-batch roughly equates to one class of 20 

students. To record the day the problems occurred this test used their average timestamp. 

As the dataset used a library of problems students could do them on different days or do 

different problems entirely. To find the predicted performance on a given day, this test 

collected all the problems with average timestamps on that day, and averaged all 

problems over all users.  

 

Figure 64. Test with Time of Day Second Network and Problem Number  

Predicting the Performance of the Mini-Batch in the Beginning of the Course After n 

Timesteps  
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The ability of the LSTM cell to model the performance of students with no 

measurements is quite extraordinary. In Figure 64 the curves change very little after 

receiving more measurements. The predictions only show a minor difference between the 

predicted performance over the beginning of the course after 0 days and after 350 days. 

After going through the problems once the model maintains an almost uniform prediction 

on previous data for the remainder of the course. As the user embeddings move 

continuously, small differences in the prediction of first 100 days occurred during the 

later units of the course.  

To test the performance of the network on long term predictions the same test 

occurred but with predictions over the entire course instead of the beginning of the 

course. As the network records more data, the later predictions should update as the 

course goes forward. 
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Figure 65. Test with Time of Day Second Network and Problem Number  

Predicting the Performance of the Mini-Batch at the End of the Course After n Timesteps  

The prediction of performance in the last units of the course does not change in a 

meaningful way as the network gets more data, as shown in Figure 65. In fact, the 

predictions before the network acquired measurements of the students and after the 

network made several hundred days of measurements do not differ significantly. As the 

LSTM cell trained on several hundred mini-batches of training data, it does a great job 

representing the average performance of the students. 

When looking at the individual performance a similar pattern emerges. The 

network decides very early about the performance of the student in the later units of the 

course. As the performance of a student may stay uniform trough the entirety of the 

course these predictions do not seem unusual.  
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Figure 66. Test with Time of Day Second Network and Problem Number  

Predicting the Performance of One Student At the End of the Course After n Timesteps  

The predictions on the user appear like the predictions on group. The graphs fall 

right on top of each other in Figure 66. They update very little as the network collects 

data, and the prediction mostly depends on the LSTM Cell. The curve also matches the 

graph from the average group prediction. This implies the difference between the group 

and individual prediction does not differ dramatically. 

To determine the difference the network gives to different users the background 

prediction needs removal. After subtracting the mean of the predictions, the distribution 

about the center of the curve appears. 
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Figure 67. Test with Time of Day Second Network and Problem Number  

The Distribution of the Prediction About the Mean n Days into the Course 

In the distribution you can see the effect the user embedding on the prediction, as 

shown in Figure 67. For this mini-batch the prediction differed about 1% for the students. 

This makes the bulk of the prediction coming from the LSTM Cell and user embeddings 

contributing to a third order correction to the probability. This may seem like a small 

difference in prediction, but the user embeddings do not limit how large they can grow. If 

larger differences fit the data better the data better the network could accommodate them.  

Due to the quick prediction of the network, this makes it an ideal candidate for 

early intervention. With about 50 timesteps of data the user embeddings relax and a 

prediction of student performance stays the same during the remainder of the course. 

Additionally, as the network can make predictions though the entire course, weighting the 

predictions by their probability of occurring on a standardized test gives a prediction for 

the performance of a student on that test.  
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6.3 Choosing Problems 

The LSTM gives useful predictions and can find problems suitable for each 

student. These were some of the major concerns for differentiation. This network can find 

the best problems for the individual while not increasing the workload on an instructor.   

Although the LSTM solves two of the major problems in individualizing 

instruction, it still does not give problems to the user. To give exercises to the user, the 

LMS will still need an additional algorithm to use the network.  

6.3.1 Utility Functions. 

Utility functions give scores to items based on predetermined priorities. They can 

focus on one priority or balance several priorities at the same time. For this application, 

improving the students score on an end of year test could provide a balance of prorates 

needed for the basis of the utility function.  

Consider for example the AP Calculus BC multiple choice test. From the course 

description AP gives the distribution of problems. A simple function to choose the topic 

of the next question could consist of picking the earliest unit the student historically 

performed under a certain threshold and choosing a problem at random from a list 

determined by the LSTM. This should also allow a new user to quickly find the 

appropriate difficulty of the problem during their session. As the AP test consists of many 

problem types in each unit, the units could consist of even smaller subsections to assure 

even coverage. 
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Figure 68. Test with Time of Day Second Network and Problem Number  

Exam Weights from the AP Calculus Multiple Choice Test as Given By the Course 

Description 

After looking at the table of weights in Figure 68, a simple utility function does 

not seem too farfetched. The table already determines the importance of different units. 

With the additions of algorithms combining everything together the  

6.4 Maintenance 

Once a timestep the network needs to go down while the weights update. While 

the network goes down the LMS will need to manage any incoming requests. Based on 

the length of the downtime the prediction may need to temporarily use a divert to another 

algorithm while the weights update.  
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6.4.1 Backward Pass 

During the experiments run, the network updated once a timestep. It collected the 

data since the last update and used the data to update the weights. The network split the 

data into different timesteps every day at 3:00 TW. This allowed the network to learn 

about new users and set the user embeddings.  

For the data from the dataset a mini-batch took about 30 seconds to run. This 

would consist of doing the forward passes, and backward passes required for 365 days 

with 20 users. For several thousand users this could become a lengthy update process. To 

assist in the process the LMS could queue the back passes and load problems based on a 

failsafe algorithm to keep running while updating. As the data showed a down period in 

the early morning, the queue should be able to handle updating the weights during this 

period. 

6.4.2 Adding Users and Problems 

Tensors exist to hold the embeddings for all the problem and users. As the LMS 

adopts users these embeddings will need to expand. The indices of the tensors refer to 

specific users which requires care when placing the user into the tensor. A similar 

problem occurs with the addition of problems. 

The GPU also does not handle errors in the same way the CPU does. Small errors 

can cause crashes and the output will give only rudamentary error tracing. As the 

predictions stay stable between timesteps keeping a copy of the model in memory will 

help with redundancy. 



 

147 

6.5 Phaidu 

The actual implementation consists of the webpage phaidu.com. It runs on a 

t2.large EC2 instance from Amazon AWS. It combines the network implemented in 

Pytorch with a webserver by using Django. A MySQL database handles the database 

needs of the website. Together these technologies allow a student to work their way 

through the AP Calculus BC curriculum.  

6.5.1 EC2 

In the development of this network keeping a GPU no longer remained 

economically feasible. Although AWS does offer GPU instances, their monthly cost for 

using an instance with a GPU as a web server makes it prohibitively expensive. Pytorch 

does however allow CPU only usage. This makes a good substitute until resources 

become available to incorporate a GPU. Depending on the device that stores the tensors 

Pytorch will operate on either a CPU or GPU. The only modification to network for GPU 

usage comes from compiling Pytorch with functionality for GPUs, and storing the 

devices on the GPU. 

Several EC2 instance types can run webservers with a MySQL database. 

Incorporating Torch into the RS increases the disk requirements beyond the 

specifications of the lower tier options. The size of instances that can include Torch far 

exceed the needs of a simple webserver. This means the addition of Torch increases the 

cost beyond the cost of a basic server needed to run a website. 

The upside of an EC2 instance however far exceeds the difficulties meeting the 

specifications of Torch. The disk keeps multi-regional redundancy, the network stays up 
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at a high rate, and the hardware quickly upgrades. Given the nature of Torch to quickly 

incorporate a GPU, EC2 instances make an ideal choice for hosting a Torch based RS. 

6.5.2 Django 

The current implementation of the network requires Python and the standard 

Apache, NGNIX, or Node.js servers will not directly integrate Python scripts. Php, and 

JavaScript allow options for running command line statements so it is possible to run 

scripts, but it would be simpler to remove communication between the server and the 

network. Using a different language for the Torch library would work but requires coding 

the network in another language. In the end the app needs to choose between tools front-

end developers find more useful, or tools network researchers find more useful.  

Django adequately performs basic webserver functions, so it makes the quickest 

jump from development to market. The network code can exist with the webserver and 

import itself while instantiating the server. This implementation of the app uses the 

LSTM network as a global variable created when the server defines the functions for 

rendering the webpages. This stores the network in memory while the server runs. To 

prevent interruptions in service the network could occasionally preserve itself using the 

pickle module of Python and reload its previous state when server restarts. Given the 

utility of Python, Django will allow the network to run with the server and survive 

interruptions in service. 

6.5.3 MySQL 

Using MySQL as a database allows for familiar methods of user verification, and 

security. It survives restarting the EC2 instance and makes for a robust option. There also 
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exists resources online for preventing MySQL injections and cross-site attacks. From a 

security standpoint, it is well researched and stable. As shown in Figure 69 a MySQL 

table can accommodate the need for storing login and user data. 

 

Figure 69. Description of Table Containing User Data 

The Output of the User Table Description from the Users Database 

 

Figure 70. Description of Table Containing Questions 

The Output of the Problem Table Description from the Problems Database 

Other properties of MySQL also make it ideal for the distribution of data. The 

segmentation of repositories into databases allows for MySQL to separate user 
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verification, and problem information. In this app separate databases housed the tables 

associated with problems, and the tables associated with users. The problem statements, 

solutions, topics, and ids came from rows in the Problems table. The user emails, 

passwords, ids, and history of problems came from the rows in the Users table. Figure 69 

and Figure 70 show the summary of the tables. 

In addition to segmenting data, after the incorporation of the GPU MySQL 

balances the workload between the CPU and GPU. Although Python allows for confining 

user data to Torch tensors the app would lose the benefits of MySQL tables. The tables 

may also contain enough data for the app to act independently if the network fails. 

Separating the login information and the networks seems like the best option. 

To add a fallback in case of an interruption in service from the network, this app 

keeps the last 100 problems a student answered. When the network fails the table gives 

randomized suggestions outside of the last 100 problems. A rudimentary function 

measures the last topic the student worked on, and their proficiency in that topic. The 

algorithm uses this topic to choose the problem. This makes the MySQL tables a great 

option for a fallback when the network goes down. Together with Torch, MySQL can 

make an excellent addition for delivering problems, and running the website.
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Chapter VII. 

Conclusion 

And to this end they built themselves a stupendous super-computer 

which was so amazingly intelligent that even before its data banks had 

been connected up it had started from I think therefore I am and got as 

far as deducing the existence of rice pudding and income tax before 

anyone managed to turn it off. 

—Douglas Adams 

7.1 Summary 

When I began this research, I wanted to know if a neural network can give a 

student the best possible math education by including additional data networks. I wanted 

to know if a neural network can give a student exercises, they find relevant, exercises that 

address their cultural background, and exercises that fit their exact skill level. After 

running the network and looking at the results, it became clear the network could find the 

problems students preferred, but the network opened more opportunities for research than 

answered questions. 

Overall, the network shows the potential for implementation as an RS in a 

mathematics education environment. It would perform better than other current options 

such as static problems, or problems randomly coming from a database. The network can 
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factor in many additional student attributes and reduce loss functions using these 

additional attributes.  

The network also shows potential for additional applications such as a tool to 

predict early intervention situations and include student interests. With a trained LSTM 

cell, the network quickly predicted the course outcomes for the students. This would give 

administration tools to forecast end-of-year results in a few weeks. Early in the semester 

students could still move to a more appropriate level before progressing too far into a 

course. Additionally, adding student interests addresses the nagging concern of 

applicability for the individual. Students would see more of their day-to-day life 

intertwined with math and be able to make intelligent decisions. 

The development of actual app shows the technology exists to incorporate neural 

nets in predictions. Including future hardware beyond what cloud resources will currently 

provide affordably gives a solid future that the network. The future of the network will 

improve with the adoption of future technologies. 

7.2 Future Research 

After seeing the network respond to data, the door really opens for the primary 

goals of differentiation. It remains an open question if a neural network can identify the 

interests of students and how student interest can improve their performance. It also is not 

known how a network would reduce the cultural differences between students. It could 

make predictions on what language a student will respond best to or incorporate an 

entirely different model. How the network will deliver content also remains open. 

Although this network used an LSTM other type of networks may perform better after 

investigation.  
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7.3 Data 

Even with the network working on real data and in a real application, how it will 

react to different datasets remains unknown. The data contains too many resources for 

each problem. Every problem the students encountered came with videos. The network 

never modeled problems students should fail. 

Given a problem sufficiently ahead of a student’s current progress in a course, the 

network should predict a lower probability of answering correctly. The network never 

successfully modeled this drop off. As the LMS from Junyi Academy gave the students 

problems at the appropriate time, the dataset does not contain data to model this effect. 

This dataset does not contain enough opportunities for students to fail. The problems 

level up and level down to match the ability of the user, the problems come during the 

appropriate time, and with instruction. 

The problems also come labeled by mathematical topics and not interests. They 

even lack variable parameters to modify content based on user interest. This makes 

differentiating by interest difficult. The ability of this network to apply a student’s 

interest into the curriculum remains unknown. Additional work by either labeling the 

problems by interest, or by using additional data needs to take place to determine this 

network’s ability to make these recommendations. Given the individual differences the 

network makes during predictions without biases, it remains a candidate for including 

student interests in the curriculum. 

7.4 LSTM 

The LSTM showed very quick developing long-term predictions with little 

variance between students, or slower developing long-term predictions with significant 
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variation between students depending on if the network included biases. With biases the 

network quickly fit its weights. After fitting the LSTM cell during training, the predicted 

performance did not change as the network encountered new students. The LSTM would 

give almost static long-term predictions even when the students completed more 

problems. Removing the biases showed the effect of more variation of prediction 

between students. The adverse effect of the larger spectrum of prediction came from the 

LSTM taking longer to learn to predict individuals. As the network ingested more data it 

changed its long-term predictions of the students. Using the network as an early 

intervention indicator may not give enough of difference between students at an early 

stage. 

7.5 Potential Uses 

This research concentrated on students learning Algebra I and applied the 

research to the AP Calculus BC curriculum. The network focused on predicting when a 

student will get a problem right and continue studying. After fitting the network, the 

application used the network as a recommendation engine, and predictive mechanism for 

early intervention.  

As the network gets better it may not just be used as a problem delivery system 

but also to evaluate the ability of students. As it stands, a test focuses on a single data 

point to analyze a students’ ability. When the network achieves significant predictive 

ability, it may know how well the student will do over all the potential problems. This 

will give a better measurement of the student’s ability instead of just one test. 
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Appendix 1. 

Glossary 

ADAM – Adaptive Moment Estimation. An optimization algorithm that extends SGD by 

including momentum. 

Attention Mechanism – A layer that allows the inclusion of the entire user history into the 

current forward pass while weighting different parts of the history differently. 

Bais – A matrix in a linear layer added to the product of the input and the transpose of the 

weights. It acts analogously to the y-intercept in a linear model. 

CPU - Central Processing Unit. A computer component that performs the majority of 

computation. CPUs excel at performing a few complex computations. 

Differentiation – A teaching method that adjusts instruction, assessment, and examination 

to meet the needs of individual students. It's a process that ensures students with 

different abilities and needs have equal access to learning. 

GPU - Graphical Processing Unit. A computer component that specializes in processing 

images and rendering of 3D computer graphics. A GPU can perform many linear 

algebra processes at the same time. 

LMS – Learning Management System. A software application for organizations to 

institutions to host, manage, and track learning programs. 

LSTM – Long Short-Term Memory. A recurrent neural network that is well-suited for 

sequence prediction tasks and excels in capturing long-term dependencies. 

Momentum – The behavior of an optimization algorithm to continue to update weights 

based off of previous updates even when gradients become small. 

Parallel Data Networks – Two or more data sources that get fed into a neural network. 
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SGD – Stochastic Gradient Descent. An optimization algorithm that updates the weights 

using Gradient Descent on a randomly selected portion of the data.  

Topics – The category label the network gives to a problem. 

Torch – Pytorch. A machine learning framework based on the Torch library, used for 

applications such as computer vision and natural language processing. 
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Appendix 2. 

Source Code 

Link to Source Code. 

1  import torch 

2   

3  device = "cuda" 

4   

5   

6  class LSTM(torch.nn.Module): 

7      def __init__(self, tensor_data, hidden_1, hidden_2, hidden_3=0\ 

8          , set_weights=False, bias=True, dropout=False): 

9          super(LSTM, self).__init__() 

10         # instantiating class 

11         self.bias = bias 

12         self.dropout = dropout 

13         self.dropout_rate = 0.6 

14         self.test_mode = False 

15         self.user_labels = tensor_data["users"] 

16         self.users = self.user_labels.shape[0] 

17         self.problem_labels = tensor_data["problems"] 

18         self.problems = self.problem_labels.shape[0] 

19         self.split_users() 

20         self.networks = tensor_data["networks"] 

21         self.tensor = torch.zeros(0, self.networks + 3, device=device) 

22         self.hidden_1 = hidden_1 

23         self.hidden_2 = hidden_2 

24         self.hidden_3 = hidden_3 

25         self.set_weights = set_weights 

26         self.epsilon = 0.000001 

27         self.delta = 0.000001 

28         self.day = 0 

29         self.days = tensor_data["days"] 

30         self.h = torch.zeros((self.users, self.hidden_2, self.days + 1)\ 

31             , device=device, dtype=torch.float32) 

32         self.C = torch.zeros((self.users, self.hidden_2, self.days + 1)\ 

33             , device=device, dtype=torch.float32) 

34         self.softmax = torch.nn.Softmax(dim=1) 

35         self.sigmoid = torch.nn.Sigmoid() 

36         if self.networks > 1: 

37             networks_sizes = tensor_data["network_sizes"] 

38             network_indices = [0, 0] 

39             for n in range(len(networks_sizes) - 1): 

40                 network_indices.append(sum(networks_sizes[:n])) 

41             self.network_indices = torch.tensor(network_indices, device=device) 

42             self.network_embeddings = torch.nn.Embedding(sum(networks_sizes)\ 

43                 , 1, device=device, dtype=torch.float32) 

44         else: 

45             self.network_embeddings = torch.nn.Embedding(2, 1, device=device\ 

46             , dtype=torch.float32) 

47             self.network_indices = torch.tensor([0], device=device) 

48         self.user_embeddings = torch.nn.Embedding(self.users, self.hidden_1\ 

49             , device=device, dtype=torch.float32) 

50         self.problem_embeddings = torch.nn.Embedding(\ 

51             self.problems * self.networks, self.hidden_1, device=device\ 

52             , dtype=torch.float32) 

53         if self.hidden_3 > 0: 

54             self.topic_embeddings = torch.nn.Embedding(self.hidden_3\ 

55             , self.hidden_1, device=device, dtype=torch.float32) 

https://github.com/bentrey/Personalized-Mathematics-Education-with-Intelligent-Recommendation./blob/main/LSTM.py
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56         if self.set_weights: 

57             self.problem_embeddings.weight.data /= 10 

58             self.topic_embeddings.weight.data = torch.zeros_like(\ 

59                 self.topic_embeddings.weight.data) 

60             self.topic_embeddings.weight.data[:, 0] = torch.cos(2 * 3.1415\ 

61                 * torch.arange(self.hidden_3) / self.hidden_3) 

62             self.topic_embeddings.weight.data[:, 1] = torch.sin(2 * 3.1415\ 

63                 * torch.arange(self.hidden_3) / self.hidden_3) 

64         self.WiA = torch.nn.Linear(self.hidden_1, self.hidden_2, bias=False\ 

65             , device=device, dtype=torch.float32) 

66         self.UiA = torch.nn.Linear(self.hidden_2, self.hidden_2\ 

67             , bias=self.bias, device=device, dtype=torch.float32) 

68         self.WcA = torch.nn.Linear(self.hidden_1, self.hidden_2, bias=False\ 

69             , device=device, dtype=torch.float32) 

70         self.UcA = torch.nn.Linear(self.hidden_2, self.hidden_2\ 

71             , bias=self.bias, device=device, dtype=torch.float32) 

72         self.Wi = torch.nn.Linear(self.hidden_1, self.hidden_2, bias=False\ 

73             , device=device, dtype=torch.float32) 

74         self.Ui = torch.nn.Linear(self.hidden_2, self.hidden_2\ 

75             , bias=self.bias, device=device, dtype=torch.float32) 

76         self.Wf = torch.nn.Linear(self.hidden_1, self.hidden_2, bias=False\ 

77             , device=device, dtype=torch.float32) 

78         self.Uf = torch.nn.Linear(self.hidden_2, self.hidden_2, bias=self.bias\ 

79             , device=device, dtype=torch.float32) 

80         self.Wo = torch.nn.Linear(self.hidden_1, self.hidden_2, bias=False\ 

81             , device=device, dtype=torch.float32) 

82         self.Uo = torch.nn.Linear(self.hidden_2, self.hidden_2, bias=self.bias\ 

83             ,device=device, dtype=torch.float32) 

84         self.Wc = torch.nn.Linear(self.hidden_1, self.hidden_2, bias=False\ 

85             , device=device, dtype=torch.float32) 

86         self.Uc = torch.nn.Linear(self.hidden_2, self.hidden_2, bias=self.bias\ 

87             , device=device, dtype=torch.float32) 

88         self.Wr = torch.nn.Linear(self.hidden_2, self.problems\ 

89             , bias=self.bias, device=device, dtype=torch.float32) 

90         self.loss_function = torch.nn.BCELoss() 

91  

92     def reset_tensor(self): 

93         self.tensor = torch.zeros(0, self.networks + 3, device=device) 

94  

95     def split_users(self): 

96         torch.manual_seed(42) 

97         rand_users = torch.randperm(self.users) 

98         self.training_users = self.user_labels[\ 

99             rand_users[: int(self.users * 8 / 10)]\ 

100            ] 

101        self.validation_users = self.user_labels[\ 

102            rand_users[int(self.users * 0 / 10) : int(self.users * 0 / 10)]\ 

103            ] 

104        self.test_users = self.user_labels[\ 

105            rand_users[int(self.users * 8 / 10) :]\ 

106            ] 

107 

108    def get_mini_batch(self, type, size=20): 

109        torch.manual_seed(42) 

110        if type == "train": 

111            users = self.training_users[\ 

112                torch.randperm(self.training_users.shape[0])][ : size] 

113            self.training_users = self.training_users[\ 

114                ~torch.isin(self.training_users, users) 

115                ] 

116        if type == "test": 

117            users = self.test_users[torch.randperm(self.test_users.shape[0])]\ 

118                [ : size] 

119            self.test_users = self.test_users[\ 

120                ~torch.isin(self.test_users, users)] 

121        if type == "validation": 

122            users = self.validation_users[\ 

123                torch.randperm(self.validation_users.shape[0])][ : size] 

124            self.validation_users = self.validation_users[\ 

125                ~torch.isin(self.validation_users, users)] 

126        return users 
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127 

128    def get_users_indices(self, data): 

129        return torch.cat((data, self.user_labels))\ 

130            .unique(return_inverse=True)[1][ : data.shape[0]] 

131 

132    def get_problems_indices(self, data): 

133        return torch.cat((data, self.problem_labels))\ 

134            .unique(return_inverse=True)[1][ : data.shape[0]] 

135 

136    def get_problem_topics(self, data): 

137        problem_embeddings = self.problem_embeddings(\ 

138            self.get_problems_indices(data))\ 

139            .repeat_interleave(self.hidden_3, dim=0) 

140        topics_embeddings = self.topic_embeddings(\ 

141            torch.arange(self.hidden_3, device=device))\ 

142            .repeat((data.shape[0], 1)) 

143        chi_sqr = (\ 

144            ((problem_embeddings - topics_embeddings) ** 2).sum(dim=1)\ 

145            .reshape(data.shape[0], self.hidden_3)) 

146        return chi_sqr.min(dim=1)[1] 

147 

148    def alphas_topics(self, data): 

149        # data format: time, day, user_id, problem_id, network, value, 

150        # correct_and_continued 

151        # embed new problems 

152        new_problems_indices = self.get_problems_indices(data[:, 3]).unique() 

153        unknown_problems = torch.arange(self.problems, device=device)[\ 

154            (self.problem_embeddings.weight.data[:, 0] == 0)[: self.problems]] 

155        new_problems = new_problems_indices[ 

156            torch.isin(new_problems_indices, unknown_problems) 

157        ] 

158        days = data[:, 1].min() * torch.ones_like(new_problems, device=device) 

159        self.problem_embeddings.weight.data[new_problems, 0:2] = (\ 

160            self.set_weights * torch.stack((torch.cos(2 * 3.1415 * days /\ 

161            self.days), torch.sin(2 * 3.1415 * days / self.days)), dim=1) 

162            + (1 - self.set_weights) 

163            * self.problem_embeddings.weight.data[new_problems, 0:2]) 

164        # returns tensor, rows are users, columns are days ago 

165        topics_data = torch.cat((data[:, :3]\ 

166            , self.get_problem_topics(data[:, 3].int()).reshape((-1, 1))\ 

167            , data[:, 4:]), dim=1) 

168        # problems, problem_indices = data[:,3].unique(return_inverse=True) 

169        topics, topics_indices = topics_data[:, 3].unique(return_inverse=True) 

170        max_day = int(torch.max(topics_data[:, 1])) 

171        users, users_indices = topics_data[:, 2].unique(return_inverse=True) 

172        # creating event tensor 

173        event_tensor = torch.zeros(users.shape[0], topics.shape[0]\ 

174            , device=device) 

175        day_indices = data[:, 1] 

176        event_tensor[users_indices, topics_indices] += 1 

177        event_tensor /= self.networks 

178        # creating topic data 

179        historical_data = self.tensor[torch.isin(self.tensor[:, 2], users)\ 

180            * torch.isin(self.get_problem_topics(self.tensor[:, 3]), topics)] 

181        topics_historical_data = torch.cat((historical_data[:, :3]\ 

182            , self.get_problem_topics(historical_data[:, 3].int())\ 

183            .reshape((-1, 1)), historical_data[:, 4:]), dim=1) 

184        # creating historic event tensor 

185        historical_event_tensor = torch.zeros((max_day + 1) * users.shape[0]\ 

186            , topics.shape[0], device=device) 

187        users_indices = topics_historical_data[:, 2]\ 

188            .unique(return_inverse=True)[1] 

189        day_indices = topics_historical_data[:, 1] 

190        topics_indices = (topics_historical_data[:, 3]\ 

191            .unique(return_inverse=True)[1]).int() 

192        historical_event_indices = (users_indices * (max_day + 1) \ 

193           + day_indices).int() 

194        historical_event_tensor[historical_event_indices, topics_indices] += 1 

195        historical_event_tensor /= self.networks 

196        # doting historic with last day 

197        all_historical_indices = torch.arange( 
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198            historical_event_tensor.shape[0], device=device).int() 

199        all_users_indices = all_historical_indices // (max_day + 1) 

200        historical_event_tensor[all_historical_indices, :] *= event_tensor[\ 

201            all_users_indices : ] 

202        # summing 

203        alphas = torch.sum(historical_event_tensor, dim=1) 

204        alphas /= (torch.sqrt(torch.sum(event_tensor[all_users_indices, :]\ 

205            , dim=1)) + self.epsilon) 

206        alphas /= (torch.sqrt(torch.sum(historical_event_tensor\ 

207            [all_historical_indices, :], dim=1)) + self.epsilon) 

208        # reshape 

209        alphas = alphas.reshape(users.shape[0], max_day + 1)[:, :-1] 

210        alphas = torch.softmax(alphas, dim=1) 

211        # alphas = torch.nn.functional.normalize(alphas) 

212        return alphas 

213 

214    def hA_tm1_topics(self, data): 

215        # data format: time, day, user_id, problem_id, network, value, 

216        #correct_and_continued 

217        users = torch.unique(data[:, 2]) 

218        users_h_index = self.get_users_indices(users) 

219        days = torch.max(data[:, 1]).int() - 1 

220        alphas = self.alphas_topics(data) 

221        # h format: = users, hidden_1, days 

222        h = self.h[users_h_index, :, : days + 1] 

223        user_indices = (torch.arange(users.shape[0] * days, device=device\ 

224            , dtype=torch.int64) // days) 

225        day_indices = (torch.arange(users.shape[0] * days, device=device\ 

226            , dtype=torch.int64) % users.shape[0]) 

227        h[user_indices, :, day_indices] *= (alphas[user_indices, day_indices]\ 

228            .reshape((-1, 1)).repeat(1, self.hidden_2)) 

229        hAtm1 = torch.sum(h, dim=2) 

230        return hAtm1 

231 

232    def data_reshaper(self, data): 

233        # data coming format: time, day, user_id, problem_id, {network_scores} 

234        # data going format: time, day, user_id, problem_id, network, value 

235        h, w = data.shape 

236        return_data = torch.zeros( 

237            h * self.networks, 6, dtype=torch.float, device=device 

238        ) 

239        # copy first four columns 

240        indices = torch.arange(0, self.networks * h, 1, device=device) % h 

241        return_data[:, :4] = data[indices, :4] 

242        # setting network label 

243        networks = torch.arange(0, self.networks * h, 1, device=device) // h 

244        return_data[:, 4] = networks 

245        # setting values 

246        values = torch.ones(h, self.networks, device=device) 

247        values[:, 1:] = data[:, (w + 1 - self.networks) :] 

248        return_data[:, 5] = values[torch.arange(h * self.networks) % h\ 

249            , torch.arange(h * self.networks) // h] 

250        embedding_indices = (self.network_indices[networks] + (networks != 0) \ 

251            * (return_data[:, 5]).int()) 

252        embeddings = self.network_embeddings(embedding_indices).reshape(-1) 

253        return_data[:, 5] = (networks == 0) + (networks != 0) * embeddings 

254        return return_data 

255 

256    def interaction_vector(self, data): 

257        # getting info 

258        users, user_indices = torch.unique(data[:, 2].int()\ 

259            , return_inverse=True) 

260        problems, problem_indices = torch.unique(data[:, 3].int()\ 

261        , return_inverse=True) 

262        network_indices = data[:, 4].int() 

263        # creating tensor of embeddings 

264        embeddings = torch.zeros(users.shape[0] * (problems.shape[0] \ 

265            * self.networks + 2), self.hidden_1, device=device,\ 

266            dtype=torch.float32) 

267        # filling embeddings tensor 

268        embeddings[user_indices * (problems.shape[0] * self.networks + 2)\ 
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269            + network_indices * problems.shape[0] + problem_indices\ 

270            , :] = self.problem_embeddings(\ 

271            self.get_problems_indices(data[:, 3]).int()\ 

272            + network_indices * self.problems) 

273        ones_indices = (torch.arange(1, users.shape[0] + 1)\ 

274            * ((problems.shape[0] * self.networks + 2)) - 1) 

275        embeddings[ones_indices, :] = torch.ones(users.shape[0], self.hidden_1\ 

276            , device=device) 

277        users_embeddings_indices = ones_indices - 1 

278        self.get_users_indices(users).int() 

279        embeddings[users_embeddings_indices, :] = self.user_embeddings(\ 

280            self.get_users_indices(users).int()) 

281        # multiply by score 

282        embeddings[user_indices * (problems.shape[0] * self.networks + 2)\ 

283            + network_indices * problems.shape[0] + problem_indices, :\ 

284            , ] *= data[:, [5] * self.hidden_1] 

285        # permuting and dotting 

286        embeddings = embeddings.reshape(users.shape[0], -1, self.hidden_1) 

287        height = embeddings.shape[1] 

288        combinations = (height * (height - 1)) // 2 

289        combinations_vector = torch.zeros(users.shape[0], combinations\ 

290            , self.hidden_1, device=device) 

291        combination_pairs = torch.combinations(torch.arange(height\ 

292            , device=device)) 

293        height_indices = torch.arange(combinations, device=device) 

294        combinations_vector[:, height_indices, :] += (\ 

295            embeddings[:, combination_pairs[:, 0], :]\ 

296            * embeddings[:, combination_pairs[:, 1], :]) 

297        return combinations_vector.sum(dim=1) 

298 

299    def forward(self, data): 

300        self.tensor = torch.unique(torch.cat((self.tensor\ 

301            , data[: data.shape[0] * (1 - self.test_mode), :])), dim=0) 

302        data = self.data_reshaper(data) 

303        dropout = self.dropout * (torch.rand(1).item()) < self.dropout_rate 

304        users, counts = torch.unique(data[:, 2], return_counts=True) 

305        h_C_indices = self.get_users_indices(users) 

306        day = int(data[:, 1].max()) 

307        i = self.interaction_vector(data) 

308        hA_tm1 = self.hA_tm1_topics(data) 

309        iA_t = self.sigmoid(self.WiA(i) + (1 - dropout) * self.UiA(hA_tm1)\ 

310            + dropout * torch.mm(hA_tm1, self.UiA.weight.T)) 

311        cA_t = torch.tanh(self.WcA(i) + (1 - dropout) * self.UcA(hA_tm1)\ 

312            + dropout * torch.mm(hA_tm1, self.UcA.weight.T)) 

313        cA_t = iA_t * cA_t 

314        h_tm1 = self.h[h_C_indices, :, day - 1] 

315        it = (1 - torch.tensor([-self.delta], device=device).exp()) \ 

316            * self.sigmoid(self.Wi(i) + (1 - dropout) * self.Ui(h_tm1)\ 

317            + dropout * torch.mm(h_tm1, self.Ui.weight.T)) 

318        ft = torch.tensor([-self.delta], device=device).exp() * self.sigmoid(\ 

319            self.Wf(i) + (1 - dropout) * self.Uf(h_tm1)\ 

320            + dropout * torch.mm(h_tm1, self.Uf.weight.T)) 

321        ot = self.sigmoid(self.Wo(i) + (1 - dropout) * self.Uo(h_tm1)\ 

322            + dropout * torch.mm(h_tm1, self.Uo.weight.T)) 

323        ct = torch.tanh(self.Wc(i) + (1 - dropout) * self.Uc(h_tm1)\ 

324            + dropout * torch.mm(h_tm1, self.Uc.weight.T)) 

325        C_tm1 = self.C[h_C_indices, :, day] 

326        Ct = ft * C_tm1 + it * ct + iA_t * cA_t 

327        self.C[h_C_indices, :, day + 1] += Ct * (1 - self.test_mode) 

328        ht = ot * torch.tanh(Ct) 

329        self.h[h_C_indices, :, day + 1] += ht * (1 - self.test_mode) 

330        output = self.sigmoid((1 - dropout) * self.Wr(ht) + dropout \ 

331            * torch.mm(ht, self.Wr.weight.T)) 

332        user_indices = (data[:, [2] * users.shape[0]] == \ 

333            users.repeat(data.shape[0], 1)).nonzero()[: int(data.shape[0] \ 

334            / self.networks), 1] problem_indices = self.get_problems_indices(\ 

335            data[: int(data.shape[0] / self.networks), 3]) 

336        prediction = output[user_indices, problem_indices] 

337        return prediction 

338 

339    def loss(self, output, target): 
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340        return self.loss_function(output, target) 
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Appendix 3. 

Working Example 

Link to Working Demo

https://www.phaidu.com/
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