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OVERVIEW OF THESIS PAPERS

Cardiovascular disease is the leading cause of mortality among patients with kidney failure
receiving maintenance hemodialysis (HD), accounting for around 40% of deaths in the United
States.! These patients are subject to both traditional and non-traditional cardiovascular risk
factors,? with unique features including the episodic nature of intermittent HD, where blood
pressure and volume status can rapidly change over relatively short periods.3 For example, both
intra-dialytic hypotension and intra-dialytic hypertension are each associated with adverse

outcomes among patients receiving HD.*>

Over time, patients receiving maintenance HD experience progressive loss of residual
kidney function,® which results in increasing dependence on HD to achieve adequate volume and
blood pressure control. However, despite widespread acceptance of a direct link between
hypervolemia and hypertension in patients with kidney failure, the physical exam has major
limitations in the accurate diagnosis of volume status,” which may adversely influence clinical
management decisions related to volume and blood pressure control. In this respect,
bioimpedance has been widely investigated as a tool to provide more objective measures of
volume status among patients receiving maintenance HD. Indeed, bioimpedance proxies of
hypervolemia (such as shorter vector length) were observed to be independently associated with
adverse cardiovascular outcomes.®2 However, on the patient and per-session clinical practice
level, there is a paucity of data regarding the association of vector length with intra-dialytic blood
pressure parameters. Similarly, whether changes in vector length are associated with changes in

metrics of cardiac structure and function among patients receiving maintenance HD is unclear.



The Frequent Hemodialysis Network (FHN) Daily Trial, a randomized trial of 6/week versus

3/week HD,® measured vector length and cardiac magnetic resonance imaging (cMRI) at multiple

time points during the trial protocol, providing a unique opportunity to explore these research

qguestions. Therefore, using data from FHN, in Paper 1 we explored the association of vector

length with intra-dialytic blood pressure parameters; in Paper 2, we explored the association of

changes in vector length with changes in cMRI measures of cardiac structure and function.
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Original Article

Association of Bioimpedance Parameters with Increases
in Blood Pressure during Hemodialysis

Erass Elsayed(®," Youssel MK Farag(®,"" Katherine Scovaer Ravi(®,™ Gleme M. Cherow(®,”
and Finnian & Me Causland(® ™
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the FHN Daily Trial have been published *-2% The FHN
Duaily Trial protocol was approved by institutional review
boards ar each participating center, and written informed
consent was oblained from all study participants. We ob-
tained data for these analyses from the Mational Institute of
Diabetes and Digestive and Kidrey DMiscases data repository.

In brief, the FHM Daily Trial was a mullicenter, random-
ized, parallel-group trial comparing frequent (six times per
week) with conventional (three times per week) in-center
HD, performed in the United States and Canada. Patients
receiving maintenance HD were eligible for inclusion if they
were 13 yvears or older, achieved meean equilibrated Ki/WV
urea > 1.0 for the past two baseline HD' sessions, and
weighed =30 kg Notable exclusion criteria included
poor  adherence, contraindication to  heparin, residual
urea clearance =3 ml/min per 35 L, HD vintage <3 months,
and imability to have cardiac magnetic resomance imaging,.
The trial was designed o examine two co-primary com-
posite outcomes: (I} death or change (from baseline to 12
meontha]) im left ventricular mass and (2) death or change
(from baseline o 12 months) in the physical health com-
posite score of the EAND 36-item health survey.

Exposure Wariables

We considered wvector lemgth, measured by single-
frequency bicelectrical impedance analysis, as the primary
exposure of interest. We calculated vector length indexed 1o
height in meters (Z/H) from the raw measurements of
resistance (R) and reactance (Xc), where R represents the
opposition to the low of an altermating current through
iomic solutions and Xe is the capacitance produced by
interfaces across lissues {eg., cell membranes), according
to the following formula: IZ/Hl = [[(R/H)P? + (Xc/H)F)205
A shorter vector length reflects a higher degree of sofl-tissue
hydration. Bioimpedance measurements were obtained at
baseline (month 0) and follow-up visits {months 1, 4, and
12}, with the patient in a recumnbent position before a mid-
week HD treatment. We considered vector length as con-
tinuous and categorical {tertiles) variables. In companion
analyses, we considered derived extracellular and intracel-
lular water compartments {in L) and the ratio of extracel-
lular water/total body water as exposures of interest

Outcome Variables
The primary outcome for this analysis was post-HD
systolic BP. Other outcomes of interest included deve-

non-normally distributed variables. We examined cate-
gorical variables by frequency distribulion and recorded
data as proportions. We compared baseline characteris-
lics across tertiles of the vecltor length using tesls for
trend on the basis of linear mgr&qsinn, __:(l tremnd btest, and
Cuzick nonparameltric trend test, as appropriate for data
distribution.

We assessed the association between vector length and
post-HD and nadir intradialytic systolic BP using unad-
justed and adjusted random-eifects linear regression Lo
account for repeated measures within patients. We used
analogous approaches using random-effects logistic regres-
sign o assess the association with binary oulcomes of
intradialytic hypertension and intradialytic hypotension.
Model 1 was adjusted for randomized treatment assign-
ment and the pre-HD systolic BP. Model 2 was additionally
adjusted for age, sex, self-reported race (collected per orig-
imal study protocol), Cuételet (body mass) index, and access
type. Model 3 was additionally adjusted for vintage (=2,
2-5, =5 years); history of hypertension, heart failure, and
diabetes; and baseline residual urea clearance (0, =1, =1-3,
=3 ml/min), hEl'nDB]rbilL ST pl'msphale. equi'librated
KL/ . serum-dialysate sodium gradient, and ultrafiltra-
tion rate (ml/kg per h}. All variables were time-updated as
appropriate for each visit. We examined for potential effect
modification by randomized treatment arm by inclusion of
the corresponding cross-product term in the fully adjusted
model. We used restricted cubic splines to model the as-
sociation of mean vector length {as a continuous variable)
with meean post-HIY systolic BFP.

We considered two-tailed I* values < 005 as statistically
significant. We conducted analyses using Stata MP (version
16.0, Stata Corp., College Station, TX).

Results
Baseline Characteristics

Drata were available for 234 randomized patients (96%)
and 800 study visits for this analysis (Figure 1). The median
number of sessions with available bioimpedance measures
was four {interquartile range, 3—4) per patient. The mean
age of participants was 50214 years, 3%% were female, and

Original FHM Daily
Trial parscipants

lopment of intradialytic hypertenzion, defined as any N=245
increase =0 mm Hg from pre- to post-HD™; nadir intra-
dialysis BF; and development of intradialytic kypatension,
defined as any occurrence of a minimum intradialvlic sys-
tolic BP <%0 mm Hg if pre-HD systolic BF was <160 mm Hg | Missing beolmpedance |
er-mirdrnu et diphe b seastoll o T ] 00 enin Kl 3 g : CEET
B el BTt ] mm e e g T — A= T —
S, e e o e p e ST e g e,
hypmederSen (amw v op o IR ST TV E e BT

o I }

IRciwded in
present sas —|

Statistical Analyses b

We examined continuous variables graphically and re-
corded data as means (=5Ds) for normally distributed
variables or medians (with 25th—75th percentiles) for

Figure 1. CONSORT disgram_ FHMN, Freguent Hemoobaleis Metwork
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43% were Black. Differences in baseline characteristics of
included and  excluded participants are presented in
Supplemental Table 1.

At baseline, patients in lower tertiles of vector length
were more likely to be male; have a history of hypertension;
and have a higher body mass index, lean body mass, phase
angle, and residual kidney function. Falienmts in lower ter-
liles of vector length had a shorter HDY vintage, were more
likely o use a fistula, and had lower ulteafiliration rates and
KV ea (Table 1)

Association of Vector Length with Post-Dialysis Systolic BP

During the follow-up period, the mean patient-level pre-
dialysis vector length was 28959 f}/m. The median
patient-level change {decrease) in systolic BP {pre-dialysis
minus post-dialysis) was 13 {200 mm Hg: sysiolic BF
increased from pre- o post-HD in 147% of participants.

In unadjusted analyses, shorter vector length (per 50 41/ m)
was associated with 3.7 mm Hg higher post-HD systolic BP

Binimpedance and BF during Hemodialysis, Elsaved et al. 331

(95% confidence interval [CI], 2.4 1o 4.9). In the fully
adjusted model, this association was attenuated such
that shorter vector length (per 30 £1/m) was associated
with 2.9 mm Hg (95% CI, 1.6 to 4.3) higher post-HD
systolic BP (Table 2}. There was no evidence for effect
maodification according to the randomized treatment arm
(P-interaction = 0.19). In fully adjusted categorical anal-
vaes, the lowest terlile of vector length was associated
with 4.8 mm Hg (95% CI, 1.0 to 8.5) higher post-HD
systolic BF compared with the highest tertile (Table 2). A
monolonic association was also noted in spline analy-
ses [Figure Z).

Association of Vector Length with Intradialytic
Hypertension

During the follow-up period, the average patient-level
frequency of intradialytic hypertension (defined as any
increase >0 mm Hg from pre- lo post-dialysis) was 19%
of HD sessions. In unadjusted analyses, shorter weclor

Characterstic®

Table 1. Baseline characleristics acuur:lins Lis n‘l.eu‘oriﬂ af weclor l:-ngl‘h

Tertile 1, n=78

Tertile 2, n=78 Tettile 3, =78

Vector length, £1/m 225220 226 (211-237) 2T6*15 173 (264-2B8)  35624E 342 {319-379)
Lean body mass, kg 53=R 457 35+5
Phase angle, * 559+17 55=14 45212
Age, yr 49=12 51=14 51=16
Female, n {%) B {1 217 (35) 55 (71
Race or ethnic group, r (%}

Asian 4 (5] & (B} & (B}

Black 35 (45} 31 (40) 34 ()

Multiracial, unknown or not reported 7 6 [B] 1iF (13)

Mative American, Aboriginal Canadian, Alaskan 4 (5] 3 (4} ik {0y

Mative, or First Mation

Mative Hawaiian or another Pacific lslander 4 (5] a oy {0y

White 24 (31} 32 [41) I8 (34)
BMI, IcE_.-'lﬂ:l Hd=hl 28.2=65 25369
Drialysis access, m (")

Fistula 56 (7} 52 (B7) dr (31)

Ciraft 10 (13} 11 (14} 2 (26)

Catheter 1Z (15} 15 (19) 18 (23)
TDruration of kidney filure, n (%)

=2 yr 27 (35} 4 (31) 14 (18)

-5 yr 2B (36} 12 (28) 6 (33)

=5 yr 23 29} 32 (41) 38 (49)
Coexisting medical conditions, n %)

Hypertension 76 (97} 5 [BT) 68 (E7)

Heart faihare 18 (23} 14 (1) 16 (21)

Dhabetes mellitus 35 45} (a4 6 (33)
Krll mlimin, a ")

Anuria 44 (56} 51 (B3) S8 (Fd)

=1 14 (18} 11 (14} 11 (14}

=1-3 17 (22} 15 (19) 912y

=3 Ed) 11} ik {0}
]’ru—dlal:(m e;yxh:di.c EBI', mm H;; 151=14 144=18 146+ 18
Pre-dialysis laboratory measurements

Hemaglabin, g/dl 12.0=1.2 115213 122413

Phas el G116 SE=1T 53=13
Equilibrated Kt/ V ures 131202 140=02 1.57+0.3
Ultrafiltration volume. L Ah+09 F1=04 2ER=0%
Ultrafiltration rate, ml)/ kﬁ per h 11=4 11=4d 135
Sodium gradient, mmaol/L 2 [—d o 1} =1 {—4 ta 1) =2 =4t 1]
Randomized to 60wk HDY, o (%) 47 (6O} 35 [45) 35 (d5)

h.cmnd:ial:r.sl:; Erl, residual urea clearance.

Sodium H.radimf calculated as Pt\e-di.:l.yxi:i- serum sodium minues Pn:x:n'bud d.ia]:,'s:be sesdinm. BMI, body mass index; HIF,

“Results are Prmncd as mean=50 or median tﬁth—?Slh F-crcrnlill:x] For continuous varsables.
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Table 2. Association of vector length with post-dialysis systolic BP
Difference in Post-Dialyss Systolic BP (95% Cl} in mm Hg

Model

Per 50 £2/m Lower Yector Length Tertile 1 Tertile 2 Tertile 3
Unadjusted 37 (A to 4.9) 7.2 (3.6 to 10.7) 31 (—0.1 & 6.3} Ref
Model 1 1% (1.0 ter 2.9} 45 {1% o 72) 22 {-02 to 4.7} Fet
Model 2 3.2 {21 ter 4.3} 57 (3.8 o 9.7 3.7 (1.1 b £.3) Fet
Model 3 2% (1.6 ter 4.3} 4.5 {10 o B5) 16 {—1.6 to 4.5 Fet

Model 1 was adjusted for randomized treatment assignment and pre-dialysis systolic BP. Model 2 was additionally adjusted for age.
S CADE, bn-d}' miass index, ard access tvpe. Belosclel 3 was additionally adjusted for vintage (<2, 2-5, =5 years), h}lp:-rberlsinn. heart
tatlure, diabebes, residwal wrea clearance {0, =1, =1-3, =3 ml/mm}, hemugl.cbi:l. SETLIM phcmph.:
rate, and serum-dialyssbe sedinm j;rad.il:nt. Aml}-ms include S0 visits fromm 254 patients LI, confidence mberval.

te, equilibrated Ke/V, ultrafiltration

length {per 50 £2/m) was nol associated with odds of intra-
dialytic hypertension (odds ratio J[OR] 1.03; 95% 1, (L8] to
1.32). Is the fully adjusted maodel, shorter vector length was
associated with 6% higher odds of development of intra-
dialytic hypertension (OR 1.66; 95% CI, 1.07 1o 2.55) (Table 3).
There was no evidence of effect modification according to
randomized treatment amm (P-interaction = 0.39). In fully
adjusted categorical analyses, the lowest tertile of vector
lemgth was associated with 68% higher odds of intradialytic
hypertension (OR 1.68; 95% CI, 0.56 1o 5.03) compared with
the highest tertile (Table 3).

A =10 mm Hg increase in pre- to post-dialysis systolic BP
was observed in 7% of sessions. Using this more stringent
definition, shorter vector length (per 50 £2/m) was associated
with a 2 2-fold higher odds of developing intradialytic hyvper-
tension (OR 2.17; 957% CI, (L88 o 536; Supplermental Table Z).

Association of Vector Length with Nadir Systolic BF and
Intradialytic Hypotension

During the follow-up period, the median patient-level
change (decrease) in systolic BI® {pre-HD minus nadir) was

140

i § G

Mean Post-HD Systalic BF (mm Hg)
]

113 1

27 (20-36) mm Hg, while the average patient-level fre-
quency of intradialytic hypolension was 8% of sessions.
Shorter vector length, both as a continuous and categorical
variable, was associated with a higher madir systolic BP.
These effect estimates were accentuated with multivariable
adjustment {Supplemental Table 3). Shorter vector length
was nol associated with the development of intradialytic
hypotension {(Supplemental Table 4).

Association of Intracellular Water and Extracellular Water
with Outcomes

I companion analyses, derived intracellular and ex-
tracellular water and the ratio of extracellular waber/
lotal body water were considered separately as expo-
sures of interest. In the fully adjusted models, extracel-
lular water and the ratio of extracellular water/ total
body water were associated with a higher post-dialysis
systolic BP, with a trend toward a higher risk of intra-
dialytic hypertension. There was no association of intra-
cellular water with any of the oulcomes considered
{Supplemental Table 5).

M. of patents

T
200 250 300

350

Mean Yector Length (Ohmim)

Figure 2. Associalion of mean vector length with mean post-dialysis systolic BP. The solid black line represents the association of mean
wector length with mean post-dialysis systalic BF; the dashed lines are the 95% confidence intervals; the histogram in the background
represents the frequency of patients with various mean vector lengths. HD, bernodialysis.
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Table 3. Association of vector length with development of intradialytic hypertension (any increase =0 mm Hg from pre- Lo post-dialyss
syslolic BF)
Ohddds of Intradialytic Hypertension (95% C1)

Belncbeel

Per 50 f1/m Lower Vector LGEI:h Tertile 1 Terkle 2 Terkle 3
Unadijusted LOG (D& to 1.32) L9B {045 bo 1.98) OLBS (44 1o 16d) Ref
Belincheel 1 L18 (09D to 1.55) 1.2% {061 b 2.73) 090 (b to 1EI) Ref
Belinchee] 2 LES (117 to 2.33) 235 {057 to 5.65) 1.32 (k63 to 2.79) Ra=f
Belinchel 3 Le6 (107 to 1.55) LB {056 b 5.03) OLBS (134 to 2.12) Ref

failure, diabetes, residual urea clearance [ =1, =1-3, =3 ml/min],

BeliscBeel 1 wwas adpusted for randomized treatment assignment and Pﬂ'l:-l:'lﬂl:f"ﬂ.'l scy'ﬂnllc Bl Musdel 2 was additionally adjusted for age,
sex, race, body mass index, and access type. Model 3 was additionally adpested for vinta

rate, and mum-dl.ﬂwcalle sodiam Emclmnf A.nalyw:x mclude B0 vesits from 234 Pntlmlx Cl, comfidence interval.

EI:' [=2,2-5, =5 \-mn::l riension, heart
hemoglobin, serum phosphate, Equlh'bm'r:d Kt/ ¥, ultrafiltzation

Discussion

In this pest hoo analysis of the FHMN Daily Trial, we ob-
served an association of shorer vector length {a proxy for
increased tisswe hvdration) with higher post-HD systolic BP
and higher odds of developing intradialytic hypertension.

Although there ave several potential Etmlnbl.e-'. A g per-
volemia is hypothesized o be a major contributor o the
development of intradialytic hypertension. In a post hoo
analysis of the dry weight reduction in the hyperlensive
hemaodialysis patient trial, patients whose dry weight de-
creased the most had the largest magnitude of intradialytic
BF decline, which in turn was associated with a reduction
in interdialvtic ambulatory BF measurements.* Prior
studies using bicimpedance have reported similar resulls.
For example, Nongnuch ¢f 2l measured multifrequency
bicelectrical impedance during a single mid-week HD
session in 531 patients in the Uniled Kingdom. Thev
reported that patients who experienced a =10 rise in
systolic B had a higher ratio of bioimpedance-derived
extracellular water/total body water at pre- and post-HD
time points compared with those who did not” Similar
findings were noled in a smaller case—control study (p=18
in each group) where post-HD multifrequency bioimpe-
dance measures of extracellular volume {at a single mid-
week HD session) were higher among patients with
intradialytic hypertension (defined as four of six screen-
ing sessions wilh an increase in systolic BP =10 mm Hg)
compared with those without ” Consistent findings were
also noted in a multicenter observational study (2= 190)
from South Africa®

Crur data extend the prior knowled ge base by examining
repeated measures of volume status over time and by
exploring the association with changes in intradialytic BP
measurements that were carefully collected as parl of a
randomized controlled trial. We observed that shorter vec-
Ltor length is associated with higher post-HD systolic BF and
the development of intradialytic hypertension. Further-
more, this proxy of hypervelemia was also associated
with higher nadir intradialytic BF and a lower risk of intra-
dialytic hypotension. Prior reports using the FHMN Duaily
Trial data have noted that extracellular water decreased o a
greater degree from baseline o 12 months among the &
times/ week group (with corresponding increases in vector
length} compared with the 3 times/week group.™ sug-
gesting that vector length may be a useful marker of
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extracellular water and a prediclor of BP among patients
receiving maintenance HDL MNotably, vector length corre-
lates directly with body cell mass, that is, shorter vector
length correlates with higher body cell mass, necessilating
sorne caution in reliance on vector length as a sole metric of
volume status. However, in this respect, we also noted in
companion analyses that only derived extracellular water
and the ratio of derived extracellular /todal body waler were
significantly associated with a higher post-dialysis systolic
BF, providing some modicum of reassurance of the pres-
ence of the relationship of hypervolemia with postdialy-
sis BP.

Objective measures of volume status have been pro-
mulgated as superior to clinical examination.*® A system-
atic review and mela-apalysis of randomized trials of
technology-assisted largel weight reductions (published
in 2019} reported some benefil of technology-related in-
terventions in relation to reduction in systolic BP, with a
lower risk of hospitalization in subgroup analyses of bio-
impedance studies. However, there was a large degree of
helerogeneity amd risk of bias with many of the studies,
which were generally underpowered for hospitalization
and  mortality-related  outcomes.' More recently, the
open-label Lung Water by Ullrasound Guided Treatment
in Hemodialysis Patients trial tested a lung ultrasound-
guided treatment strategy versus usual care, reporting
relief of lung congestion, but a nonsignificant reduction
in the compaosite of all-cause death, nonfatal myocardial
infarction, or decompensated heart Failure (hazard ratio
058 95% CI, 063 o 1.24). However, this trial under-
recruited and overestimated the potential risk reduction
in determining the original sample size calculations, ne-
cessilating caution in the interprelation of the primary
resulls. Indeed, there were fewer intradialytic hypotlensive
evenls in the intervention arm compared with standard
care, suggesting that data from objeclive volume assess-
ment may lead o provider responses (e.g., lengthening of
HD sessions) that promote hemodynamic stability. ™ Some
have commented on the variability of the relationship of
BF and volume among patients receiving HIDL while
others have reported that the association of extremes of
pre-dialvsis systolic BF with clinical oulcomes may differ
according to the concomitant volume status. 5 In the
context of our current resulls, whether such objective
volume assessments can be used o targel patients at
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risk of intradialytic hypertension with the goal of improv-
ing clinical culcomes remains Lo be seen.

There are several strengths o cur study, including the
availability of repeated measures of bioimpedance and BF,
which were carefully collected in the setting of a ramdom-
ized conteolled trial, and the ability 1o adjust for several
potential confounders that were also time-updated. How-
ever, our study has several important limitations. The FHMN
Daily Trial was not designed to test the association of
bioimpedance measures with BI* changes, and despite mul-
tivariable adjustment, the potential for residual confound-
ing remains. Dala regarding the exact timing of BP
measurements and peri-HD medication use were lacking,
as were post-HD bioimpedance measurements and changes
in plasma csmolality, which limited our ability o assess the
association of changes in these parameters with changes in
BF. There are also limitations in the generalizability of our
findings to non-Morth American patient populations and o
those not represented within the inclusion/exclusion crite-
ria of the FHN Daily Trial.

In conclusion, we observed that shorter pre-HDY vector
length was associated with higher post-HIDY systolic BF, a
higher odds of intradialytic hyperltension, and a lower risk
of intradialytic hypotension among patients enrolled in the
FHM Draily trial. Whether population-based or individual-
ized vector lengths could be used o guide the velume and
pace of ultrafiltration and associated outcomes will require
prospective testing, preferably in an adequately powered
randomized clinical trial.
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ABSTRACT

Background and hypothesis:

Hypervolemia is thought to be a major contributor to higher left ventricular mass (LVM), a potent
predictor for cardiovascular mortality among patients on maintenance hemodialysis. We
hypothesized that a decrease in vector length over time (a bioimpedance proxy of worsening
hypervolemia) would be associated with an increase in LVM.

Methods:

Using data from the Frequent Hemodialysis Network Daily Trial (n=160) we used linear regression
to assess the association of changes in vector length from baseline to month 12 with changes in
magnetic resonance imaging (MRI) measures of LVM and other cardiac parameters. We adjusted
models for the randomized group, baseline vector length, age, sex, race, body mass index,
vascular access, dialysis vintage, hypertension, heart failure, diabetes, residual kidney function,
pre-dialysis systolic blood pressure (BP), ultrafiltration rate, serum-dialysate sodium gradient,
hemoglobin, phosphate, angiotensin-converting enzyme inhibitor or angiotensin receptor
blocker use, log-transformed erythropoietin dose, and equilibrated Kt/V.

Results:

The mean age was 50 13 years; 35% were female. In the fully adjusted models, a decline in
vector length (per 50 Q/m; i.e., increase in volume) was associated with a 6.8 g (95%Cl -0.1, 13.7)
and 2.6 g/m2 (95%Cl -1.2, 6.3) increase in LVM and LVM index, respectively; and an increase of
15.0 mL (95%Cl 7.5, 22.4), 7.3 mL (95%CI 3.0, 12.7), 7.8 mL (95%Cl 3.0, 12.7), and -0.9 % (95%Cl -
3.1, 1.3) in left ventricular (LV) end-diastolic volume (LVEDV), end-systolic volume (LVESV), stroke
volume (LVSV), and ejection fraction (LVEF), respectively. The lowest tertile of change in vector
length (i.e., greater increase in volume) was associated with greater increases in LVEDV and LVSV,
versus the highest tertile. There was no evidence of heterogeneity by randomized group.

Conclusions:

Change in vector length over 12 months, a bioimpedance-derived proxy of volume status, was
inversely associated with indices of left ventricular mass and volume measured by cardiac MRl in
patients randomized to conventional or frequent hemodialysis over 12 months.
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INTRODUCTION

Cardiovascular disease remains the leading cause of mortality among patients with end-stage
kidney disease (ESKD) receiving maintenance hemodialysis (HD), accounting for around 40% of

deaths. !

Cardiac structural abnormalities tend to accumulate with the progression of chronic kidney
disease, such that left ventricular hypertrophy (LVH) is estimated to affect 75% of patients
initiating maintenance HD therapy.?™ LVH and higher left ventricular mass (LVM) are potent
predictors of cardiovascular mortality among patients receiving maintenance HD,>® while
observational data suggests that regression of LVH is associated with lower mortality. 3 Similarly,
higher left ventricular volume is a powerful independent predictor of death in patients with

structural heart disease.”®

Hypervolemia, estimated to affect 56-73% of patients receiving maintenance HD,° is
thought to contribute to changes in left ventricular structure and function. *° Clinical assessment
of volume status has inherent limitations,’* while data regarding the association of more
objective measures of volume status (and changes over time) with sensitive measurements of

cardiac indices (cardiac magnetic resonance imaging [MRI]) remain sparse.

Therefore, using detailed data from Frequent Hemodialysis Network (FHN) Daily Trial, we
tested the hypothesis that changes in vector length, a bioimpedance-derived proxy of volume
status, are associated with changes in left ventricular structure and function assessed by cardiac
magnetic resonance imaging (MRI). Further, we tested if the associations differed according to

the randomized treatment arm (6/week vs. 3/week hemodialysis).
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METHODS

Study design and population

FHN Daily Trial was a multicenter, randomized, parallel-group trial comparing frequent (6/week),
to conventional (3/week) in-center HD, conducted in the United States and Canada.

Patients undergoing maintenance HD were considered for enroliment if they were at least
13 years old, attained a mean equilibrated Kt/V urea value greater than 1.0 during their last two
baseline HD sessions, and had a body weight exceeding 30 kg. Notable factors that led to
exclusion from the trial were inadequate treatment adherence, an inability to use heparin,
residual urea clearance >3 ml/min per 35 L, undergoing HD for fewer than three months, and
being unable to undergo cardiac MRI.

The study design and protocol, 123 primary results,’* and results of several secondary
analyses of the FHN Daily Trial have been published.’>?” The protocol was approved by
Institutional Review Boards at each participating center and written informed consent was
obtained from all study participants. We obtained data for the present analyses from the NIDDK
data repository.

Two co-primary composite outcomes were assessed in the original trial: 1) death or
change (from baseline to 12 months) in left ventricular mass; 2) death or change (from baseline

to 12 months) in the physical health composite score of the RAND 36-item health survey.

Exposure variables
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We considered changes in vector length from baseline to the end of the follow-up period (month
12 — month 0), as the primary exposure of interest. These measurements were obtained with
single-frequency (50 Hz) bioelectrical impedance analysis, using the Hydra 4200 Bioimpedance
Analyzer (San Diego, CA, USA) just before a mid-week HD session with the patient in a recumbent
position for those with at least one intact leg and arm; however, a minority of BIA assessments
were performed on other days or after HD. We calculated vector length indexed to height in
meters (Z/H) from the raw measurements of resistance (R) and reactance (Xc), where R
represents the opposition to the flow of an alternating current through ionic solutions and Xc is
the capacitance produced by interfaces across tissues (e.g., cell membranes), according to the

following formula: |Z/H| = V[(R/H)? + (Xc/H)?]. 1819

We considered the change in vector length in both a continuous and categorical (tertiles) fashion.
A positive value for the change in vector length reflects a decrease in soft tissue hydration from
baseline to month 12; conversely, a negative value reflects an increase in soft tissue hydration
from baseline to month 12. The highest tertile of change was chosen as the reference; the lowest
tertile of change therefore reflects an increase in soft tissue hydration from baseline to month

12.

Outcomes
The primary outcome of interest was the change in left ventricular mass (LVM), as assessed by
cardiac MRI from baseline to 12 months after randomization. Secondary outcomes included the

changes from baseline to 12 months in left ventricular mass index (LVMI), left ventricular end-
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diastolic volume (LEDV), left ventricular end-systolic volume (LVESV), left ventricular stroke
volume (LSV), and left ventricular ejection fraction (LVEF).

Cardiac MRI was performed using the 1.5-Tesla MRI systems (minimum gradient
performance: peak strength 212 mT/m, slew rate 240 mTm/s) with dedicated surface coils.
Standardized protocols were utilized across centers, with central and blinded review of acquired
images. 1> Myocardial volume (excluding papillary muscles) was measured on end-diastolic
frames using validated software. The derived volume was multiplied by the specific density of
the myocardium (1.05 g/cm?3) to calculate LVM,*> and indexed to body surface area using the

formula of DuBois and DuBois.2°

Statistical analyses

We examined continuous variables graphically and reported values as means (+ standard
deviations) for normally distributed data, or medians [25™, 75t percentiles] for non-normally
distributed data. We examined categorical variables by frequency distribution and reported
values as proportions. We compared baseline characteristics across tertiles of the change in
vector length using tests for trend based on linear regression, x? trend test, and the Cuzick
nonparametric trend test, as appropriate for data distribution.

We assessed the association of the change in the vector length with change in left
ventricular indices from baseline to month 12 using unadjusted and adjusted linear regression
models. The multivariable model adjusted for randomized treatment assignment, pre-dialysis

systolic BP, baseline vector length, age, sex, self-reported race, Quételet (body mass) index (BMl),
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vascular access type (arteriovenous fistula, graft, or tunneled catheter), dialysis vintage (<2, 2-5,
>5 years), hypertension, heart failure, diabetes, residual kidney function (0, <1, >1 to 3, >3
ml/min), hemoglobin, serum phosphorus, ultrafiltration rate, angiotensin-converting enzyme
inhibitor (ACEi) or angiotensin receptor blocker (ARB) use, log-transformed erythropoietin dose,
and equilibrated Kt/V. For each separate cardiac MRI parameter, the corresponding baseline
measurement was included in the multivariable model. A further model was considered that
additionally adjusted for serum sodium to dialysate gradient — this was considered as an
exploratory sensitivity analysis, as data were missing from 27% of sessions. Other covariates had
complete data, apart from one missing hemoglobin value. As all models considered the change
from baseline to month 12 for the exposure and outcome and adjusted for baseline covariates,
there was no violation of the assumption of independence of observations, allowing the use of
linear regression models. Non-linearity was assessed via restricted cubic splines. Effect
modification according to the randomized treatment arm was assessed by the inclusion of cross-
product terms in the adjusted model.

We conducted all analyses at an alpha level of 0.05, without correction for multiple

hypothesis testing, using Stata MP (version 16.0, Stata Corp., College Station, Texas).
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RESULTS

Baseline characteristics

A total of 160 (65%) of the original 245 patients had cardiac MRI and bicimpedance data at
baseline and 12 months and were included in the present analyses (Figure 1). A comparison of
the baseline characteristics of included versus excluded patients is presented in Supplementary

Table S1.

Of the patients included in the present analyses, at baseline, the mean age was 50 £13
years, 35% were women, and 39% had diabetes mellitus. At baseline, those in the lowest tertile
of change in vector length (i.e., largest increase in volume from baseline to 12 months) were
more likely to be older, have higher hemoglobin, be randomized to 3/week HD, have lower
ultrafiltration rates, and were less likely to have hypertension (Table 1). There were no major
differences in the cardiac MRI parameters at baseline or 12 months across the tertiles of

change in vector length (Table 2).

Association of change in vector length with changes in LVM and LVMI

The median change in vector length from baseline to month 12 was +5 [-20, +34] Q/m. In
unadjusted analysis, a more pronounced decline in vector length from baseline to month 12 (per
50 Q/m; i.e., generally corresponding to an increase in volume) was associated with an increase
in LVM (10.1; 95%Cl 4.6, 15.6 g) and LVMI (5.1; 95%Cl 2.1, 8.0 g/m?3). In fully adjusted models,
these associations were attenuated: LVM (6.8; 95%Cl -0.1, 13.7 g) and LVMI (2.6; 95%CI -1.2, 6.3
g/m?) per 50 Q/m decline in vector length from baseline to 12 months (Table 3). In additional
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analyses adjusting for sodium gradient, effect estimates were accentuated: LVM (13.5; 95%Cl
4.2, 22.7 g) and LVMI (5.5; 95%Cl 0.6, 10.5 g/m?) per 50 Q/m decline in vector length from
baseline to 12 months (Supplementary Table S2).

In the unadjusted categorical analyses, an inverse association was observed between
change in vector length with change in LVM and LVMI from baseline to month 12 (Table 3).
However, these associations only approached statistical significance for LVM in the fully adjusted
models that included adjustment for serum-to-dialysate sodium gradient (Supplementary Table

s2).

Association of change in vector length with the changes in LVEDV, LVESV, LVSV, and LVEF

In adjusted analyses, a more pronounced decline in vector length from baseline to month 12 (per
50 QO/m; i.e., increase in volume) was associated with an increase from baseline to month 12 in
LVEDV, LVESV, and LVSV, but not with changes in LVEF (Table 3). There was no evidence for a
non-linear association of change in vector length with change in LVM, LVMI, LVEDV, LVESV, LVSV,
or LVEF (P for non-linearity=0.18, 0.32, 0.19, 0.10, 0.85, and 0.73, respectively; Supplementary
Figure 2). Similar patterns were noted in models where the change in vector length was
considered as a categorical variable and in models that additionally adjusted for serum-to-

dialysate sodium gradient (Table 3 and Supplementary Table S2).

Assessment for differential associations according to randomized treatment arm

In the fully adjusted model, there was no evidence for effect modification of the association of

changes in vector length with LVM, LVMI, LVEDV, LVESV, LVSV, or LVEF (P-interaction=0.67, 0.39,
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0.74, 0.63, 0.23, and 0.22, respectively). Sub-group analyses according to the randomized

treatment arm are presented in Supplementary Table S3.
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DISCUSSION

In this post hoc analysis of the FHN Daily Trial, we observed that decreases in vector length from
baseline to 12 months, a proxy for volume expansion, were associated with increases in cardiac
MRI determinations of LVM and indices of LV volume over the same period. These associations
were not modified by the randomized treatment assignment of 6/week versus 3/week HD.

Cardiac structural abnormalities are common among patients initiating maintenance HD,
with prior echocardiographic studies estimating that around 75% of patients meet the criteria for
LVH, 36% had evidence for LV dilatation, and 15% had evidence of systolic dysfunction.?
Somewhat similar estimates of LVH prevalence of 64% have been documented using cardiac MRI,
21 which is widely recognized to provide more accurate assessments of cardiac dimensions than
echocardiography in this patient population.?? Importantly, LVH and higher LVM are potent
predictors of mortality among patients receiving maintenance HD.?*>24 As such, changes in LVM
have sometimes been considered as potentially modifiable surrogate endpoints for clinical trials
(including as a co-primary endpoint for the FHN Daily trial). **

Although there are many potential etiologies for the development of higher LVM and
other cardiac structural changes among patients receiving HD, 2°> unremitting hypervolemia is
thought to play a major role, 19?6 and has itself been independently associated with
hospitalization and cardiovascular-related mortality.?’” A prior study of prevalent patients
(maintenance HD for >3 months; n=246) reported that higher end-diastolic volume, pre-HD
systolic BP, and calcium-phosphate product were independent predictors of LVH and higher

LVMI.2t The observation that higher EDV was the strongest predictor of LVH and LVMI is
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consistent with the contention that sustained hypervolemia results in maladaptive responses of
the LV in the setting of kidney failure.

To date, few studies have examined the association of bioimpedance-proxies of volume
status with echocardiographic or cardiac MRI assessments of cardiac structure and function
among patients with kidney failure. One modest-sized cross-sectional study of Italian patients
on maintenance HD (n=110) reported that higher extracellular water (derived from
bioimpedance measurements) was independently and directly correlated with LVMI, assessed by
echocardiography.?® Other cross-sectional observational studies in patients with stage V CKD, but
not yet on HD, have reported similar findings.?>3° Our present findings therefore expand the
knowledge base in this regard, supporting the notion that changes in vector length over a 12-
month period are significantly associated with changes in cardiac MRI parameters of LV mass and
volume.

The primary results of the FHN Daily trial demonstrated that frequent HD (compared with
conventional, thrice-weekly HD) resulted in a relative reduction in LVM. 1% A post hoc analysis of
FHN also reported that randomization to 6/week HD resulted in more profound reduction in
LVEDV, compared with 3/week HD.3! Further, they observed that these effects differed by
residual urine volume and were most apparent among those with urine volume <100 mL/day vs
>100 mL/day (-14.2 mL vs -3.25 mL, respectively; P-interaction=0.02). One of the hypotheses put
forward to explain these observations was related to improved overall volume status, which was
also suggested from a smaller randomized cross-over trial of daily versus thrice-weekly HD, where
concomitant reductions in bioimpedance metrics of extracellular volume and LVM were noted.3?

Our present results support this hypothesis and, as evidenced by the lack of differential
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associations according to the randomized treatment arm, additionally suggest that the modality
by which optimization of volume is achieved may not be paramount. In this respect, given the
association of higher dialysate sodium with inter-dialytic weight gain on one hand and a lower
risk of intra-dialytic hypotension on the other hand, 33 it is notable that the effect estimates were
more pronounced in models that adjusted for the serum-to-dialysate sodium gradient. However,
a prior randomized controlled trial of conventional versus lower dialysate sodium (140 vs. 135
mmol/L) did not report any differences in cardiac MRI-assessed LVMI over 12 months,
highlighting the need for further research in this area. 3*

The strengths of our study include the availability of repeated measures of bioimpedance
and cardiac MRI performed in the setting of a randomized controlled trial. Further, we were able
to perform multivariable-adjusted models to account for potential confounders, including
ultrafiltration rates and the serum-to-dialysate sodium gradient. However, there were several
limitations to consider. These include the potential for residual confounding and risk of false
positive results from multiple testing in this post hoc observational analysis, lack of detailed
information on dietary sodium intake and sodium balance, and lack of data on natriuretic
peptides. Further limitations relate to the generalizability of our findings to patients beyond
those included in the FHN Daily Trial, who by virtue of their willingness to be randomized into a
trial potentially requiring a more burdensome and time-consuming therapy, were likely different
from the general HD population. Lastly, despite several strengths, bioimpedance still requires a
degree of technical and interpretative expertise and remains an imperfect biomarker of true
volume status, necessitating some caution in the extrapolation of the present results to

contemporary clinical practice.
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In conclusion, among patients in the FHN Daily trial, we observed that decreases in vector
length from baseline to 12 months were associated with increases in cardiac MRI parameters of
LV mass and volume over the same period. These findings did not differ according to the
randomized treatment arm, suggesting that improved volume control may be a potential

mechanism for improvements in cardiac structure and function.
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Table 1. Baseline characteristics according to categories of change in vector length

Characteristic

Categories of change in vector length (Q2/m)
from baseline to month 12

Tertile 1 Tertile 2 Tertile 3 P-trend
-41 +26 Q/m 4+10Q/m 54 +27 Q/m
(n=54) (n=53) (n=53)
Baseline vector length, Q/m 315+65 276 £ 63 261 +£55 <0.001
Age, yrs 51 t14 53 14 45 +£9 0.03
Gender, n (%) 0.59
- Female 21 (39 %) 17 (32 %) 18 (34 %)
Race or Ethnic group, n (%) 0.89
- Native American, Aboriginal 1(1.9%) 3(5.7%) 2(3.8%)
Canadian, Alaskan Native, or First
Nation
- Asian 4(7.4%) 2 (3.8%) 7 (13.2%)
- Native Hawaiian or another Pacific 0(0.0%) 1(1.9%) 2(3.8%)
Islander
- Black 28 (51.9%) 26 (49.1%) 18 (34.0%)
- White 14(25.9%) 18 (34.0%) 17 (32.1%)
- Multiracial, unknown or not 7 (13.0%) 3(5.7%) 7 (13.2%)
reported
BMI, kg/m? 27.3 £69 27.7 £6.6 26.5 £6.2 0.54
Dialysis Access, n (%) 0.02
- Graft 15 (28.3%) 5 (9.4%) 6 (11.5%)
- Fistula 31 (58.5%) 36 (67.9%) 34 (65.4%)
- Catheter 7 (13.2%) 12 (22.6%) 12 (23.1%)
Duration of ESKD, n (%) 0.86
- <2years 11 (20.4%) 23 (43.4%) 13 (24.5%)
- 2-5years 23 (42.6%) 10 (18.9%) 17 (32.1%)
- >5years 20 (37.0%) 20(37.7%) 23 (43.4%)

29



Coexisting Medical Conditions, n (%)

- Hypertension 47 (87.0%) 48 (90.6%) 52 (98.1%) 0.04
- Heart Failure 11 (20% ) 9(17%) 11 (21%) 0.96
- Diabetes Mellitus 22 (40.7%) 20(37.7%) 20(37.7%) 0.75
KrU, n (%) 0.54
- Anuria 35 (64.8%) 30 (56.6%) 39 (73.6%)
- >0-1ml/min 11(20.4%) 7 (13.2%) 5(9.4 %)
- >1-3ml/min 8 (14.8%) 15 (28.3%) 8 (15.1%)
- >3 ml/min 0 (0.0 %) 1(1.9%) 1(1.9%)
Pre-dialysis systolic blood pressure, mmHg 146 =17 150 20 147 +18 0.79
Pre-dialysis laboratory results:
- Hemoglobin, mg/dL 12.3 +1.3 12.0 +1.2 11.8 +1.2 0.05
- Serum Phosphate, mg/dL 56 +1.6 56 +1.8 6.1 +1.4 0.11
Kt/V Equilibrated 1.43 +0.27 1.40 +0.28 1.44 +0.24 0.76
Ultrafiltration rate, mL/kg/hour 11.4 +3.4 119 +4.0 129 +45 0.05
Sodium gradient, mmol/L -2 [-4, -0] -11[-4, 1] -2 [-6, 1] 0.88
ACEi or ARB use, n(%) 25 (46.3%) 19 (35.8%) 34 (64.2%) 0.07
Erythropoietin dose, Units 9862 [4500, 6400 [2700, 8500 [3275, 0.26
21000] 18750] 12125]
Randomized to 6/week HD, n(%) 21(38.9%) 27(50.9%) 38 (71.7%) <0.001

Results are presented as mean + standard deviation, or median [25"-75" percentiles] for continuous variables.
Abbreviations: BMI, body mass index; ESKD, end-stage kidney disease; KrU, residual renal urea clearance; BP, blood pressure; HD, hemodialysis;
ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker
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Table 2. Baseline and 12-month cardiac MRI parameters according to categories of change in vector length

Characteristic

Categories of change in vector length (2/m) from

baseline to month 12

Tertile 1 Tertile 2 Tertile 3 P-value
-41 26 Q/m 4+10Q/m 54 +27 Q/m
(n=54) (n=53) (n=53)

LV Mass, g

Baseline 137 146 143 57 149 64 0.54

Month 12 132 =47 133 57 129 46 0.91
LV Mass Index, g/m?

Baseline 71 23 73 +29 80 +32 0.28

Month 12 68 24 68 +28 70 25 0.92
LV End-Diastolic Volume, mL

Baseline 173 £53 171 60 184 60 0.42

Month 12 171 42 164 +58 155 142 0.22
LV End-Systolic Volume, mL

Baseline 78 40 72 +32 81 +38 0.43

Month 12 75 +32 71 35 64 +26 0.19
LV Stroke Volume, mL

Baseline 94 +26 99 +35 103 36 0.37

Month 12 96 +26 93 +31 91+23 0.60
LV Ejection Fraction, %

Baseline 56 +11 59 9 57 11 0.40

Month 12 57 +11 58 +10 60 +8 0.44

Abbreviations: LV, left ventricle
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Table 3. Association of change in vector length with change in cardiac MRI parameters

Change in outcome from baseline to month 12 according to change in vector length (95%Cl)

Outcomes Model Per 50 Ohm/m P- value Tertile 1 Tertile 2 Tertile 3 P-trend
decrease in vector
length
LVM, g Unadjusted 10.1 (4.6, 15.6) <0.001 15.0(2.7,27.3) 9.3(-3.1, 21.6) Ref 0.02
Adjusted 6.8 (-0.1, 13.7) 0.05 6.5(-8.2,21.1) 7.0(-6.3, 20.3) Ref 0.37
LVMI, g/m? Unadjusted 5.1(2.1, 8.0) 0.001 6.7 (0.2, 13.3) 4.3 (-2.3,10.9) Ref 0.04
Adjusted 2.6(-1.2,6.3) 0.17 0.5(-7.4,8.4) 2.2(-5.1,9.4) Ref 0.89
LVEDV, mL Unadjusted 16.3(9.2,23.4) <0.001 27.5(11.6, 43.4) 23.3(7.4,39.3) Ref 0.001
Adjusted 15.0(7.5, 22.4) <0.001 25.4(9.3,41.6) 15.6 (0.9, 30.3) Ref 0.002
LVESV, mL Unadjusted 9.4(4.7,14.0) <0.001 13.4 (2.9, 23.9) 15.8 (5.3, 26.3) Ref 0.01
Adjusted 7.3(1.9,12.7) 0.01 9.2 (-2.5, 20.8) 9.5 (-1.0, 20.0) Ref 0.11
LVSV, mL Unadjusted 6.9 (2.2, 11.6) 0.004 14.1 (3.7, 24.4) 7.5(-2.9,17.9) Ref 0.01
Adjusted 7.8 (3.0,12.7) 0.002 15.8 (5.5, 26.1) 6.7 (-2.7, 16.0) Ref 0.003
LVEF, % Unadjusted -1.7 (-3.4,0.1) 0.06 -1.8 (-5.6, 2.0) -3.1(-6.9,0.7) Ref 0.36
Adjusted -0.9 (-3.1, 1.3) 0.41 -0.3(-4.9, 4.3) -0.9 (-5.1, 3.2) Ref 0.89

The multivariable model adjusted for baseline vector length, baseline outcome, randomized treatment assignment, age, sex, race, body mass
index, access type, vintage (<2, 2-5, >5 years), pre-dialysis systolic BP, hypertension, heart failure, diabetes, residual urea clearance (0, <1, >1 to
3, >3 ml/min), hemoglobin, phosphate, ultrafiltration rate, angiotensin-converting enzyme inhibitor (ACEi) or angiotensin receptor blocker (ARB)
use, log-transformed erythropoietin dose, and equilibrated Kt/V.

Abbreviations: LVMI, left ventricular mass index; LVM, left ventricular mass; LVEDV, left ventricular end-diastolic volume; LVESV, left ventricular
end-systolic volume; LVSV, left ventricular stroke volume; LVEF, left ventricular ejection fraction.
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Supplementary Table S1. Baseline characteristics of included and excluded participants

Characteristic Included Excluded P-value
participants participants
n=160 n=85

Age, yrs 50 +13 51 +15 0.52
Female, n(%) 56 (35.0%) 38 (44.7%) 0.14
Race or Ethnic group, n (%) 0.18

- Native American, Aboriginal Canadian, 6 (3.8%) 2 (2.4%)

Alaskan Native, or First Nation
- Asian 13 (8.1%) 3 (3.5%)
- Native Hawaiian or another Pacific 3(1.9%) 1(1.2%)
Islander

- Black 72 (45.0%) 30 (35.3%)

- White 49 (30.6%) 40 (47.1%)

- Multiracial, unknown or not reported 17 (10.6%) 9 (10.6%)
BMI, kg/m? 27.2+6.6 28.3+7.0 0.19
Dialysis Access, n (%) 0.69

- Graft 26 (16.5%) 17 (21.0%)

- Fistula 101 (63.9%) 49 (60.5%)

- Catheter 31 (19.6%) 15 (18.5%)
Duration of ESKD, n (%)

- <2years 47 (29.4%) 18 (21.2%) 0.37

- 2-5years 50 (31.3%) 31 (36.5%)

- >5years 63 (39.4%) 36 (42.4%)
Coexisting Medical Conditions, n (%)

- Hypertension 147 (91.9%) 72 (84.7%) 0.08

- Heart Failure 31 (19.4%) 18 (21.2%) 0.74

- Diabetes Mellitus 62 (38.8%) 38 (44.7%) 0.37
KrU, n (%) 0.57

- Anuria

104 (65.0%)

58 (68.2%)

- >0-1ml/min

23 (14.4%)

14 (16.5%)
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- >1-3ml/min 31 (19.4%) 11 (12.9%)

- >3 ml/min 2 (1.3%) 2 (2.4%)
Pre-dialysis Systolic BP, mmHg 148 + 18 145 + 17 0.22
Pre-dialysis laboratory measurements
- Hemoglobin, g/dL 12.0+1.3 11.8+1.3 0.10
- Phosphorus, mg/dL 58+1.6 57+1.7 0.76
Equilibrated Kt/V urea 1.4+0.3 1.4+0.3 0.69
Ultrafiltration rate, mL/kg/hour 12+4 11+4 0.07
Sodium gradient, mmol/L -2 [-4,1] -1[-4,1] 0.52
ACEi or ARB use, n(%) 78 (48.8%) 40 (47.1%) 0.80
Erythropoietin dose, Units 8188 [3150, 11250 [5625, 0.08
17125] 19800]
Randomized to 6/week HD, n(%) 86 (53.8%) 39 (45.9%) 0.24

*Results are presented as mean + standard deviation, or median [25"-75™ percentiles] for continuous variables.
Abbreviations: BMI, body mass index; ESKD, end-stage kidney disease; KrU, residual renal urea clearance; BP, blood pressure; HD, hemodialysis;
ACEi, angiotensin-converting enzyme inhibitor; ARB, angiotensin receptor blocker
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Supplementary Table 2. Association of the change in vector length with the changes in cardiac MRI indices parameters (models
including adjustment for sodium gradient).

Change in outcome from baseline to month 12 according to change in vector length (95%Cl)

Outcome Model Per 50 Q/m decrease  P-value Tertile 1 Tertile 2 Tertile 3 P-trend
in vector length
LVM, g Unadjusted 10.1 (4.6, 15.6) <0.001 15.0(2.7, 27.3) 9.3(-3.1, 21.6) Ref 0.02
Adjusted 13.5(4.2,22.7) 0.01 17.6 (-1.5, 36.8) 10.3 (-5.9, 26.5) Ref 0.06
LVMI, g/m? Unadjusted 5.1(2.1, 8.0) 0.001 6.7 (0.2, 13.3) 4.3(-2.3,10.9) Ref 0.04
Adjusted 5.5 (0.6, 10.5) 0.03 5.9 (-4.3, 16.0) 4.2 (-4.4,12.9) Ref 0.22
LVEDV, mL Unadjusted 16.3 (9.2, 23.4) <0.001 27.5(11.6, 43.4) 23.3(7.4,39.3) Ref 0.001
Adjusted 20.4 (11.2, 29.7) <0.001 31.3(11.7, 50.8) 15.4(-1.2,31.9) Ref 0.002
LVESV, mL Unadjusted 9.4(4.7,14.0) <0.001 13.4 (2.9, 23.9) 15.8 (5.3, 26.3) Ref 0.01
Adjusted 10.6 (3.5, 17.8) 0.004 13.2(-1.7, 28.0) 9.7 (-2.9, 22.2) Ref 0.06
LVSV, mL Unadjusted 6.9 (2.2, 11.6) 0.004 14.1 (3.7, 24.4) 7.5(-2.9,17.9) Ref 0.01
Adjusted 9.8(3.4,16.2) 0.003 16.9 (4.0, 29.9) 5.5(-5.5, 16.5) Ref 0.01
LVEF, % Unadjusted -1.7 (-3.4,0.1) 0.06 -1.8 (-5.6, 2.0) -3.1(-6.9,0.7) Ref 0.36
Adjusted -1.1(-4.1,1.9) 0.48 -0.7 (-6.7, 5.4) -1.3(-6.4,3.7) Ref 0.77

The multivariable model adjusted for baseline vector length, baseline outcome, randomized treatment assignment, age, sex, race, body mass
index, access type, vintage (<2, 2-5, >5 years), pre-dialysis systolic BP, hypertension, heart failure, diabetes, residual urea clearance (0, <1, >1 to
3, >3 ml/min), hemoglobin, phosphate, ultrafiltration rate, angiotensin-converting enzyme inhibitor (ACEi) or angiotensin receptor blocker (ARB)
use, log-transformed erythropoietin dose, equilibrated Kt/V, and sodium gradient.

Abbreviations: LVMI, left ventricular mass index; LVM, left ventricular mass; LVEDV, left ventricular end-diastolic volume; LVESV, left ventricular
end-systolic volume; LVSV, left ventricular stroke volume; LVEF, left ventricular ejection fraction.
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Supplementary Table 3. Association of the change in vector length with the changes in cardiac MRI indices parameters according
to sub-groups of randomized treatment arm (3/week or 6/week hemodialysis).

Change in outcome from baseline to month 12 according to change in vector length (95%Cl)

Outcome Model Per 50 2/m decrease P-value Tertile 1 Tertile 2 Tertile 3 P-
in vector length trend

Randomized

to 3/week HD

LVM, g Unadjusted 7.6 (0.3, 14.9) 0.04 11.0(-5.1, 27.2) 2.4 (-14.3,19.2) Ref 0.13
Adjusted 11.3 (-2.6, 25.3) 0.11 13.8 (-13.9, 41.6) 4.3(-22.6,31.2) Ref 0.30

LVMI, g/m? Unadjusted 3.4 (-0.6, 7.5) 0.10 4.6 (-4.4,13.5) 0.4 (-8.9,9.7) Ref 0.24
Adjusted 4.9(-2.8,12.5) 0.21 5.5 (-9.5, 20.6) 2.0(-12.7, 16.6) Ref 0.44

LVEDV, mL Unadjusted 16.0 (5.1, 26.9) 0.01 25.5 (1.2, 49.8) 7.3 (-18.0, 32.6) Ref 0.03
Adjusted 24.9 (9.3, 40.5) 0.003 35.9 (4.0, 67.7) 18.2 (-12.8, 49.2) Ref 0.03

LVESV, mL Unadjusted 8.8 (1.2,16.4) 0.02 11.3(-5.7, 28.3) 12.1(-5.6, 29.8) Ref 0.26
Adjusted 10.6 (-1.2, 22.4) 0.08 15.4 (-7.5, 38.3) 17.3 (-4.9, 39.6) Ref 0.21

LVSV, mL Unadjusted 7.2 (-0.3,14.8) 0.06 14.2 (-1.8, 30.3) -4.8 (-21.5,11.9) Ref 0.03
Adjusted 14.3 (2.6, 26.1) 0.02 20.0(-3.3,43.2) 1.6 (-21.2, 24.4) Ref 0.07

LVEF, % Unadjusted -1.3(-4.4,1.7) 0.39 -1.4 (-8.0, 5.2) -6.0 (-12.9, 0.8) Ref 0.97
Adjusted 0.4(-4.4,5.2) 0.87 -0.6 (-9.7, 8.5) -4.5 (-13.5, 4.5) Ref 0.98

Randomized

to 6/week HD

LVM, g Unadjusted 9.7 (1.5, 18.0) 0.02 9.9 (-9.8, 29.7) 10.5(-7.8, 28.7) Ref 0.26
Adjusted -1.3(-10.3, 7.7) 0.77 -8.5(-28.2,11.1) -3.5(-22.6, 15.6) Ref 0.39

LVMI, g/m? Unadjusted 5.2(0.9,9.5) 0.02 4.5 (-5.9,14.8) 5.3(-4.3,14.9) Ref 0.33
Adjusted -1.4 (-6.5, 3.7) 0.58 -8.1(-19.1, 2.8) -2.0(-12.9, 8.9) Ref 0.15

LVEDV, mL Unadjusted 13.5 (3.7, 23.2) 0.01 14.3 (-8.5, 37.0) 30.9 (9.9, 52.0) Ref 0.11
Adjusted 7.5(-2.0, 17.0) 0.12 13.9 (-7.7, 35.4) 12.4 (-7.8,32.7) Ref 0.17
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LVESV, mL Unadjusted 8.9 (2.5,15.2) 0.01 11.2 (-3.8, 26.2) 16.8 (2.9, 30.7) Ref 0.08
Adjusted 2.8 (-4.0,9.6) 0.41 2.9(-12.4,18.2) 3.1(-11.3,17.5) Ref 0.67
LVSV, mL Unadjusted 4.6 (-1.6, 10.8) 0.14 3.1(-11.2,17.3) 14.1 (0.9, 27.4) Ref 0.45
Adjusted 4.6 (-1.3,10.5) 0.13 12.1(-0.9, 25.2) 8.3(-4.0, 20.7) Ref 0.06
LVEF, % Unadjusted -1.9(-4.1,0.2) 0.08 -3.3(-8.4,1.7) -0.8 (-5.4, 3.9) Ref 0.21
Adjusted -0.5(-3.2, 2.3) 0.73 0.4 (-5.6, 6.5) 1.8 (-3.9, 7.5) Ref 0.84

The multivariable model adjusted for baseline vector length, baseline outcome, randomized treatment assignment, age, sex, race, body mass
index, access type, vintage (<2, 2-5, >5 years), pre-dialysis systolic BP, hypertension, heart failure, diabetes, residual urea clearance (0, <1, >1 to
3, >3 ml/min), hemoglobin, phosphate, ultrafiltration rate, angiotensin-converting enzyme inhibitor (ACEi) or angiotensin receptor blocker (ARB)
use, log-transformed erythropoietin dose, and equilibrated Kt/V.

Abbreviations: LVMI, left ventricular mass index; LVM, left ventricular mass; LVEDV, left ventricular end-diastolic volume; LVESV, left ventricular
end-systolic volume; LVSV, left ventricular stroke volume; LVEF, left ventricular ejection fraction.
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Figure 1. Consort diagram

N=245
Original trial participants

85 patients with missing
—> bioimpedance or cardiac
MRI data

v

160 patients included
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Supplementary Figure 1. Restricted cubic splines showing the adjusted association of mean
changes in vector length with the mean changes in cardiac MRI parameters.
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OVERALL SUMMARY

In the two papers comprising this Master’s thesis, we analyzed the dataset from the FHN Daily
Trial to test our hypotheses regarding the association of: 1) bioimpedance assessments of volume
status (vector length) with peri-HD systolic blood pressure parameters; and 2) changes in vector
length with changes in cardiac MRI indices of left ventricular mass and other metrics of cardiac
structure and function.

In our first paper, we observed that shorter vector length (a proxy of hypervolemia)
among patients on maintenance HD was independently associated with an increase in systolic
blood pressure from pre to post-HD and with a higher risk of intradialytic hypertension, which is
known to be a poor prognostic marker and associated with adverse cardiovascular outcomes in
the HD population.

In our second paper, we observed that changes in pre-HD vector length were inversely
associated with changes in left ventricular mass, left ventricular end-diastolic volume, left
ventricular end-systolic volume, and left ventricular stroke volume, as assessed by cardiac MRI.
In other words, worsening (increasing) volume status was associated with an increase in these
cardiac parameters over time, suggesting the presence of a temporal association.

These findings provoke an important clinical question - could using more objective
methods to assess volume status (and potentially guide the hemodialysis prescription) improve
volume control and reduce maladaptive changes in cardiac structure and function? To test this,
and whether this might translate into reducing cardiac morbidity and mortality among patients

on maintenance hemodialysis, will require a prospective interventional study.

43



DISCUSSION AND PERSPECTIVES

In our study, we explored the association of hypervolemia with the occurrence of intradialytic
hypertension, left ventricular hypertrophy, and other cardiac functional and structural changes
among patients receiving maintenance HD. We used vector length, a bioimpedance proxy of
volume status, as our exposure of interest and observed that shorter vector length was
independently associated with the occurrence of intradialytic hypertension (an increase in
systolic blood pressure from pre to post-HD). Furthermore, we observed that a decrease in
vector length over 12 months (increasing volume overload) was associated with an increase in
left ventricular mass and volume indices, which are known to be associated with cardiac

morbidity and mortality among patients receiving maintenance HD.

One issue that arises is the challenge of interpreting vector length, as it is not a commonly used
metric. To provide context, FHN Daily Trial participants have shorter vector length (261 Ohm/m
in men, 323 Ohm/m in women) than values observed in healthy individuals (287 Ohm/m in men,
382 Ohm/m in women). These data highlight the differences in vector length and reflect
increased pre-HD volume status among the HD population.! A second issue is the fact that vector
length reflects primarily extravascular volume status, as opposed to intravascular (the latter
probably having more immediate importance to the development of intra-dialytic hypotension).
The Crit-Line monitor, which is a device used during hemodialysis to monitor hematocrit levels in
the patient's blood continuously, can provide a surrogate of intravascular volume. Hematocrit is
the proportion of red blood cells to the total blood volume and tends to increase with progressive
ultrafiltration. An excessive rate of increase in hematocrit during the HD session can reflect

inadequate plasma refilling, predisposing to hypotension. Despite these limitations, our data
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support the hypothesis for a central role of hypervolemia with higher blood pressure and the
development of intradialytic hypertension among this high-risk patient population. The temporal
changes we observed highlight the possibility that intervening to optimize volume status may
make a difference in clinical practice in terms of reducing the development of maladaptive

changes in cardiac structure and function.

Our analyses had several strengths, which included the availability of repeated measures
of bioimpedance, intra-HD blood pressure, and cardiac MRl measurements, which were carefully
collected in the setting of a randomized controlled trial. Furthermore, we were able to perform
several multivariable-adjusted models to account for potential confounders. However, these
were all post hoc analyses and should be considered hypothesis-generating. As discussed in the
papers, a major limitation relates to the possibility of residual confounding, particularly in
relation to nutritional factors, and the generalizability to patients who would not have been
eligible to participate in the FHN Daily Trial. Further limitations include the lack of availability of
post-HD bioimpedance measurements, limiting our ability to examine pre-to-post HD changes in
vector length with outcomes of interest. Furthermore, although peri-HD BP measurements were
collected in the setting of a randomized controlled trial, there remains the potential for variability
in such measurements. We only performed a complete case analysis — despite reasonable
comparability of included and excluded patients, the potential for selection bias remains.

Despite the aforementioned limitations, our findings provide support for considering
wider use of bioimpedance technology among HD patients, especially with improvements in the
‘user-friendliness’ of more contemporary platforms that are not as cumbersome to use and

require less specialized training. Whether its use to guide blood pressure management will

45



translate into better cardiovascular clinical outcomes will require prospective testing in an
adequately powered randomized controlled trial.
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